

03/12/13

Technical Report for

Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

46194348

Accutest Job Number: C26386

Sampling Dates: 02/21/13 - 02/22/13

Report to:

URS Corporation 111 SW Columbia, Suite 1500 Portland, OR 97201-5850 brian.pletcher@urs.com

ATTN: Brian Pletcher

Total number of pages in report: 59

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

James J. Rhudy Lab Director

Jumy. Mush

Client Service contact: Nutan Kabir 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD/ISO/IEC 17025:2005 (L2242)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	6
3.1: C26386-1: TX-03A	7
3.2: C26386-2: MW-301	10
3.3: C26386-3: MW-303	13
3.4: C26386-4: MW-309	16
3.5: C26386-5: MW-310	19
3.6: C26386-6: MW-302	22
3.7: C26386-7: MW-304	25
3.8: C26386-8: MW-307	28
3.9: C26386-9: MW-308	31
3.10: C26386-10: TRIP BLANK	34
Section 4: Misc. Forms	35
4.1: Chain of Custody	36
Section 5: GC/MS Volatiles - QC Data Summaries	38
5.1: Method Blank Summary	39
5.2: Blank Spike/Blank Spike Duplicate Summary	41
5.3: Laboratory Control Sample Summary	43
5.4: Matrix Spike/Matrix Spike Duplicate Summary	45
Section 6: GC Volatiles - QC Data Summaries	47
6.1: Method Blank Summary	48
6.2: Blank Spike/Blank Spike Duplicate Summary	50
6.3: Matrix Spike Summary	52
6.4: Duplicate Summary	
Section 7: GC Semi-volatiles - QC Data Summaries	56
7.1: Method Blank Summary	57
7.2: Blank Spike/Blank Spike Duplicate Summary	
7.3: Duplicate Summary	59

ယ

0

Sample Summary

Shell Oil Company

Job No: C26386

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA Project No: $\,46194348$

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C26386-1	02/21/13	16:49 CP	02/26/13	AQ	Ground Water	TX-03A
C26386-2	02/21/13	12:43 CP	02/26/13	AQ	Ground Water	MW-301
C26386-3	02/21/13	11:03 CP	02/26/13	AQ	Ground Water	MW-303
C26386-4	02/21/13	15:24 CP	02/26/13	AQ	Ground Water	MW-309
C26386-5	02/21/13	09:17 CP	02/26/13	AQ	Ground Water	MW-310
C26386-6	02/22/13	14:54 CP	02/26/13	AQ	Ground Water	MW-302
C26386-7	02/22/13	13:27 CP	02/26/13	AQ	Ground Water	MW-304
C26386-8	02/22/13	08:38 CP	02/26/13	AQ	Ground Water	MW-307
C26386-9	02/22/13	09:48 CP	02/26/13	AQ	Ground Water	MW-308
C26386-10	02/21/13	00:00 CP	02/26/13	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits Job Number: C26386

Shell Oil Company Account:

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 02/21/13 thru 02/22/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C26386-1	TX-03A					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) TPH (Diesel) ^a		2810 40.3 42.1 48.9 J 8.20 0.320	40 40 40 80 4.0 0.10	8.0 8.0 8.0 18 1.0 0.050	ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX NWTPH-DX
C26386-2	MW-301					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) TPH (Diesel) ^a		659 17.5 26.4 17.3 J 3.98 0.315	10 10 10 20 1.0 0.10	2.0 2.0 2.0 4.6 0.25 0.050	ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX NWTPH-DX
C26386-3	MW-303					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) TPH (Diesel) ^a		2340 95.5 1290 338 12.8 0.674	40 40 40 80 4.0 0.10	8.0 8.0 8.0 18 1.0 0.050	ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX NWTPH-DX
C26386-4	MW-309					
TPH (Diesel) ^a		0.0790 J	0.10	0.050	mg/l	NWTPH-DX
C26386-5	MW-310					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) TPH (Diesel) ^a		1800 76.8 506 180 8.37 0.603	25 25 25 50 2.0 0.10	5.0 5.0 5.0 12 0.50 0.050	ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX NWTPH-DX
C26386-6	MW-302					
Benzene Toluene Ethylbenzene		393 14.9 124	10 10 10	2.0 2.0 2.0	ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B

Summary of Hits

Job Number: C26386

Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 02/21/13 thru 02/22/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Xylene (total)		116	20	4.6	ug/l	SW846 8260B
TPH (Gasoline)		4.15	2.0	0.50	mg/l	NWTPH-GX
TPH (Diesel) ^a		0.435	0.10	0.050	mg/l	NWTPH-DX
C26386-7	MW-304					
Benzene		507	10	2.0	ug/l	SW846 8260B
Toluene		22.5	10	2.0	ug/l	SW846 8260B
Ethylbenzene		208	10	2.0	ug/l	SW846 8260B
Xylene (total)		149	20	4.6	ug/l	SW846 8260B
TPH (Gasoline)		5.56	2.0	0.50	mg/l	NWTPH-GX
TPH (Diesel) ^a		0.762	0.10	0.050	mg/l	NWTPH-DX
TPH (Motor Oil)		0.186 J	0.20	0.10	mg/l	NWTPH-DX
C26386-8	MW-307					
Benzene		497	10	2.0	ug/l	SW846 8260B
Toluene		35.8	10	2.0	ug/l	SW846 8260B
Ethylbenzene		226	10	2.0	ug/l	SW846 8260B
Xylene (total)		145	20	4.6	ug/l	SW846 8260B
TPH (Gasoline)		6.02	2.0	0.50	mg/l	NWTPH-GX
TPH (Diesel) ^a		0.604	0.094	0.047	mg/l	NWTPH-DX
C26386-9	MW-308					
Benzene		668	10	2.0	ug/l	SW846 8260B
Toluene		7.8 J	10	2.0	ug/l	SW846 8260B
Ethylbenzene		44.3	10	2.0	ug/l	SW846 8260B
Xylene (total)		5.9 J	20	4.6	ug/l	SW846 8260B
TPH (Gasoline)		3.48	1.0	0.25	mg/l	NWTPH-GX
TPH (Diesel) ^a		0.354	0.10	0.050	mg/l	NWTPH-DX

C26386-10 TRIP BLANK

No hits reported in this sample.

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: TX-03A

 Lab Sample ID:
 C26386-1
 Date Sampled:
 02/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** VN1179 Run #1 N37103.D 40 03/01/13 TF n/an/aRun #2

Run #1 10.0 ml Run #2

Purgeable Aromatics

Compound	Result	RL	MDL	Units	Q
Benzene Toluene Ethylbenzene Xylene (total)	2810 40.3 42.1 48.9	40 40 40 80	8.0 8.0 8.0 18	ug/l ug/l ug/l ug/l	J
Surrogate Recoveries	Run# 1	Run#	2 Lim	its	
Dibromofluoromethane Toluene-D8	93% 104%		70-1	30%	
	Benzene Toluene Ethylbenzene Xylene (total) Surrogate Recoveries Dibromofluoromethane	Benzene 2810 Toluene 40.3 Ethylbenzene 42.1 Xylene (total) 48.9 Surrogate Recoveries Run# 1 Dibromofluoromethane 93% Toluene-D8 104%	Benzene 2810 40 Toluene 40.3 40 Ethylbenzene 42.1 40 Xylene (total) 48.9 80 Surrogate Recoveries Run# 1 Run# 2 Dibromofluoromethane 93% Toluene-D8 104%	Benzene 2810 40 8.0 Toluene 40.3 40 8.0 Ethylbenzene 42.1 40 8.0 Xylene (total) 48.9 80 18 Surrogate Recoveries Run# 1 Run# 2 Lim Dibromofluoromethane 93% 70-1 Toluene-D8 104% 70-1	Benzene 2810 40 8.0 ug/l Toluene 40.3 40 8.0 ug/l Ethylbenzene 42.1 40 8.0 ug/l Xylene (total) 48.9 80 18 ug/l Surrogate Recoveries Run# 1 Run# 2 Limits Dibromofluoromethane 93% 70-130%

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TX-03A

Lab Sample ID:C26386-1Date Sampled:02/21/13Matrix:AQ - Ground WaterDate Received:02/26/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK33883.D 20 03/01/13 TT n/a n/a GJK1359

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	8.20	4.0	1.0	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TX-03A

 Lab Sample ID:
 C26386-1
 Date Sampled:
 02/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 GG41412.D 1 02/27/13 JH 02/26/13 OP7550 GGG1098 Run #2

Run #1 1000 ml 1.0 ml Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.320 ND	0.10 0.20	0.050 0.10	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	107%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-301 Lab Sample ID: C26386-2

Date Sampled: 02/21/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: SW846 8260B Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** VN1179 Run #1 N37104.D 10 03/01/13 TF n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	659 17.5 26.4 17.3	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	95% 104% 97%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-301

Lab Sample ID: C26386-2 **Date Sampled:** 02/21/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK33884.D 5 03/01/13 TTGJK1359 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.98	1.0	0.25	mg/l	
CACN	C	D #1	D #4	т	24_	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-301 Lab Sample ID: C26386-2

Date Sampled: 02/21/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID **Analytical Batch** DF Analyzed By **Prep Date Prep Batch** Run #1 GG41413.D 1 02/27/13 JH 02/26/13 OP7550 GGG1098 Run #2

Final Volume Initial Volume Run #1 1000 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.315 ND	0.10 0.20	0.050 0.10	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	107%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-303 Lab Sample ID: C26386-3

 Lab Sample ID:
 C26386-3
 Date Sampled:
 02/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** VN1179 Run #1 N37105.D 40 03/01/13 TF n/an/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	2340 95.5 1290 338	40 40 40 80	8.0 8.0 8.0 18	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	94% 104% 97%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Ind

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-303

Lab Sample ID:C26386-3Date Sampled:02/21/13Matrix:AQ - Ground WaterDate Received:02/26/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK33886.D 20 03/01/13 TT n/a n/a GJK1359

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	12.8	4.0	1.0	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		

ND = Not detected MDL - Method Detection Limit J = Indicat

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-303

 Lab Sample ID:
 C26386-3
 Date Sampled:
 02/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1GG41414.D102/27/13JH02/26/13OP7550GGG1098

Run #2

Initial Volume Final Volume

Run #1 1000 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.674 ND	0.10 0.20	0.050 0.10	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
630-01-3	Hexacosane	100%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 1 of 1

Client Sample ID: MW-309

 Lab Sample ID:
 C26386-4
 Date Sampled:
 02/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** VN1179 Run #1 N37106.D 1 03/01/13 TF n/an/a Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	90% 106% 97%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates the substitution of the substitution of

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

Client Sample ID: MW-309

Lab Sample ID: C26386-4 **Date Sampled:** 02/21/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK33903.D 1 03/01/13 TTGJK1360 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	C .					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Page 1 of 1

Client Sample ID: MW-309

 Lab Sample ID:
 C26386-4
 Date Sampled:
 02/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 GG41415.D 1 02/27/13 JH 02/26/13 OP7550 GGG1098 Run #2

Run #1 Initial Volume Final Volume
1000 ml 1.0 ml

Northwest TPH-Dx

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.0790 ND	0.10 0.20	0.050 0.10	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	108%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

Page 1 of 1

Client Sample ID: MW-310 Lab Sample ID:

C26386-5 **Date Sampled:** 02/21/13 Matrix: **Date Received:** 02/26/13 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	R14864.D	25	03/02/13	KN	n/a	n/a	VR533
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene	1800 76.8 506	25 25 25	5.0 5.0 5.0	ug/l ug/l ug/l	
1330-20-7	Xylene (total)	180	50	12	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	112% 99%	70-130% 70-130%		30%	
460-00-4	4-Bromofluorobenzene	104%		70-1	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: MW-310

Lab Sample ID: C26386-5 **Date Sampled:** 02/21/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK33904.D 10 03/01/13 TTGJK1360 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	8.37	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
C115 110.	Surrogute Recoveries	Kuli,, I	Italiii 2	2	·	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-310

Lab Sample ID: C26386-5 **Date Sampled:** 02/21/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** GG41416.D Run #1 1 02/27/13 JH 02/26/13 OP7550 GGG1098

Run #2

Final Volume Initial Volume Run #1 1000 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.603 ND	0.10 0.20	0.050 0.10	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	107%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis Page 1 of 1

Client Sample ID: MW-302

 Lab Sample ID:
 C26386-6
 Date Sampled:
 02/22/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 R14868.D 10 03/02/13 KN VR533 n/an/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	393 14.9 124 116	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		-	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	102% 102% 100%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit J = In

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-302

Lab Sample ID:C26386-6Date Sampled:02/22/13Matrix:AQ - Ground WaterDate Received:02/26/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK33905.D 10 03/01/13 TT n/a n/a GJK1360

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	4.15	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
0120 1100	Surrogute recoveries	14411// 1	11411111 =	2		

ND = Not detected MDL - Method Detection Limit J = Indi

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-302

 Lab Sample ID:
 C26386-6
 Date Sampled:
 02/22/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID **Analytical Batch** DF Analyzed By **Prep Date Prep Batch** Run #1 GG41417.D 1 02/27/13 JH 02/26/13 OP7550 GGG1098 Run #2

Run #1 1000 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.435 ND	0.10 0.20	0.050 0.10	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	109%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Client Sample ID: MW-304

Lab Sample ID: C26386-7 **Date Sampled:** 02/22/13 Matrix: **Date Received:** 02/26/13 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	R14865.D	10	03/02/13	KN	n/a	n/a	VR533
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	507 22.5 208 149	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	99% 103% 100%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: MW-304

Lab Sample ID: C26386-7 **Date Sampled:** 02/22/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK33906.D 10 03/01/13 TTGJK1360 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	5.56	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
C115 110.	Surrogute Recoveries	Kuli,, I	Italiii 2	2	·	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-304

 Lab Sample ID:
 C26386-7
 Date Sampled:
 02/22/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 GG41418.D 1 02/27/13 JH 02/26/13 OP7550 GGG1098 Run #2

Run #1 1000 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.762 0.186	0.10 0.20	0.050 0.10	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	108%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

Date Sampled: 02/22/13

Report of Analysis

Client Sample ID: MW-307 Lab Sample ID: C26386-8

Matrix:AQ - Ground WaterDate Received:02/26/13Method:SW846 8260BPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 R14869.D 10 03/02/13 KN VR533 n/an/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	497 35.8 226 145	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	99% 103% 102%			30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ċ

Page 1 of 1

Client Sample ID: MW-307

Lab Sample ID: C26386-8 **Date Sampled:** 02/22/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK33907.D 10 03/01/13 TTGJK1360 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	6.02	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	Surrogue recoverses	111111111111111111111111111111111111111	11411111 2	2	·	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-307

 Lab Sample ID:
 C26386-8
 Date Sampled:
 02/22/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG41419.D 1 02/27/13 JH 02/26/13 OP7550 GGG1098

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.604 ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	107%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-308 Lab Sample ID: C26386-9

 Lab Sample ID:
 C26386-9
 Date Sampled:
 02/22/13

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 R14866.D 10 03/02/13 KN VR533 n/an/aRun #2

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	668 7.8 44.3 5.9	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	98% 102% 100%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-308

Lab Sample ID: C26386-9 **Date Sampled:** 02/22/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK33908.D 5 03/01/13 TTGJK1360 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.48	1.0	0.25	mg/l	
CACN	Cuma acta Decembra	D # 1	D# 2	т ::	!4a	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-308

Report of Analysis

Lab Sample ID: C26386-9 **Date Sampled:** 02/22/13 Matrix: AQ - Ground Water **Date Received:** 02/26/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 GG41420.D 1 02/27/13 JH 02/26/13 OP7550 GGG1098 Run #2

Final Volume Initial Volume Run #1 1000 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.354 ND	0.10 0.20	0.050 0.10	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	112%		50-1	50%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Page 1 of 1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 C26386-10
 Date Sampled:
 02/21/13

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 02/26/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	R14855.D	1	03/02/13	KN	n/a	n/a	VR533
Run #2							

Purge Volume
Run #1 10.0 ml
Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	98% 102% 99%		70-13 70-13 70-13	80%	

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

	r •	
1\/	lisc.	Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

			ú
	ı		•
			г

LAB (LOCATION) Shell Oil Products Chain Of Custody Record URS Shell Oil Products Chain Of Custody Record URS Print Bill To Contact Name: INCIDENT # (ENV SERVICES) Custode to Incident # Parts																																
Floatscience (Pric	it Bi	ŲŢ	o Co	onta	ct Na	inie			333				NCIL	EN	# (ŅÝ	ŞĖ	RVIC	ES			ECK IF NO INCIDENT # APPLIES
DITESTAMERICA ()	□EIN. SE		_ =		RETAI	1		HELL RE	TAIL.	_													L	L	<u> </u>	9	0	9	3	6	DX	NE: 225/13
Other (□CONSULTANT □ LUBES							PO #												333	SAP#								AGE:10/1
Lab Vendor # 1813640 (Acculest)	IPELINE	□OTHER																				3 5 7 0 3 2 PAGE 1811										
SUMPLING COMPANY.	F00 000E:								STIE ADDRESS: Street and City State													active one.										
URS Corporation	10									2555 13th Avenue SW, Seattle W													E-E	AU.		_	—	_		CONSILTANT PROJECT NO:		
111 Southwest Columb	e 1500, P										Clifford J Pearson, URS, Portland 503-222-7200														ford	Door	enne	e com		46194348		
PROJECT CONTACT @ fardcopy or POF Report to)	Brian Plet	cher	19								Cattord J Pearson, URS, Portland 503-222-7200										Lie appropriate Victoria (Control Control Cont											
TELEP-ONE: FAX: 503-222-7200 503-222-4	292	Bill Te Cort	Brian Pletcher@URS.com								CUH PEARSEN													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
TURNAROUND TIME (CALENDAR DAYS)		<u> </u>	RESULTS NEEDED								REQUESTED ANALY												IS			_	_	_	20000	Ĩ		
☑ STANDARD (14 DAY) ☐5 DAYS ☐3 DAY	rs 🔯	DAYS	24 HOURS ON WEEKEND								UNIT COST									_	NON-UNIT COST											
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:			_								İ	ı	-			- 1	-					1			1		ı		1		ŀ	FIELD NOTES:
	3 ∐LEVEL 4		OTHER (SPEC	,							å.	ı	-	-		1	- 1							1		į	-	-	1	1		TEMPERATURE ON RECEIPT C
TEMPERATURE ON RECEIPT C* Cooler #1	Cooler #2			Coole	£13						8	ı			-	- 1	1					1	İ	1	1		1				-1	3,29 5.70
SPECIAL INSTRUCTIONS OR NOTES :			जिल्हा	CONTR	ACTRA	TE APLI	ES				Silice	ı	1	П		-	ı					1		ľ		1	1	1			ŀ	5,5 / 5 /
			TEDD N	OT NEE	DED					ğ	ě	1996	ĝ	-	-	-1	- 1						l		1	1	1					
Trate surpression and the state of the state												Į							1	1		1				-	Container PID Readings or Laboratory Notes					
	SAMP	1 8963		П	PE	RESERVAT	nve	П		2	Z															d	A	8 0	3		36	Of Cabolatoly Notes
Field Sample Identification	DATE	TIME	MATRIX	Н					NO. OF CONT.				+			+	+								+		4	+	Ŧ		H	
ONLY	DATE	TIME		HCL	HNO	H2804 P	VONE (01H€R						H											1	#		4	#	#	₩.	
TX-03A	2/21/2013	1649	Water	x	Ш	\vdash	X		7	X	X	×	+	+	+	4	4				_	1	<u> </u>	1	1	╀	+	+	+	+	4	
- 2 MW-301	2/21/2013	1243	Water	x	Ш		X		8	X	X	Ľ	<u> </u>	ᆚ		\perp	_				_	L	L	L	┸	丄	┸	丄	\perp	\perp	┙	
. 5 мw-303	2/21/2013	1103	Water	x			x		8	X	X	×	K	\perp		\perp	\perp						Ľ			L	L	丄	\perp	\perp	┙	
-4 MW-309	2/21/2013	1524	Water	x			x		8	x	X,	×	ĸ																	1		
-\$ MW-310	2/21/2013	917	Water	x	П		x		8	X	X	×	ĸ	Т	Т	Т	П					Г		Т		Τ	T	T	Т	T	T	
6534345					П	$\neg \dagger$				х	x	×		Ť	\top	十	7					T		T	T	$^{+}$	1	\top	T	十	7	
6 MW-302	2/22/2013	1454	Water	X	Н	\dashv	×		7	-		╀	╌	+	+	+	+	\dashv	-	_	-	╀	├-	╀	╀	╀	╁	+	+	+	+	
7 MW-304	2/22/2013	1327	Water	x			х		8	X	X	×	<u> </u>	\bot	\perp	┛	\perp					L		L	L	丄	┸	\perp	\perp	\perp	┙	
+∂ MW-307		838	Water	x			x		8	x	x	×	ĸ			1	- 1	- 1				1		1		1	1	1	1		1	
(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	2/22/2013	630	Water	l^	\vdash		^+	-	•	x	x	×		╅	十	十	+	_				\vdash	H	✝	+	+	+	十	十	十	+	
-9 MW-308	2/22/2013	948	Water	X	\vdash	_	X	-	8	Ĥ		Ļ	` -	- -	4	4	4	_				⊢	L	1	┺	╄	╀	+	+	+	4	
TRIP BLANK	_	_	Water	Ιx					. 6			×	4	Т		П	- 1							1			1		1	1.		
Reinquiried by. (Signature)			Received by (Sig	rature)		-																		Des	•					To	(675a)	
CWIM2 ! UPS COOP FED IX 2										217	15	U	3			13F15 1315																
Received by (Symbol) Deb. Tree											1)15																					
1 FD 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												:	734 LB 1513																			
Total Patricy (Signalury) True												1																				
																								1								
										_			_											•								75/206 Revision

C26386: Chain of Custody

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: C263	386 Client:	SHELL OIL	Project: 2555 13TH AVE	SW, SEATTLE, V	VA.
Date / Time Received: 2/26/	2013	Delivery Method:	FedEx Airbill #'s:		
Cooler Temps (Initial/Adjusted	d): #1: (3.2/3.2); #2: (5	<u>i.7/5.7); 0</u>			
Cooler Security Y 1. Custody Seals Present: ✓	or N 3. COC Pre	Y or N sent: ✓ □	Sample Integrity - Documentation 1. Sample labels present on bottles:	Y or N ✓	<u>L</u>
2. Custody Seals Intact:	4. Smpl Dates	Time OK ✓	Container labeling complete:	_	
Cooler Temperature	Y or N		3. Sample container label / COC agree:	v	
Temp criteria achieved: Cooler temp verification: Cooler media: No. Coolers:	IR Gun Ice (Bag)		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y or N V Intact	_
Quality Control_Preservation	Y or N N/A		Sample Integrity - Instructions	Y or N	N/A
Trip Blank present / cooler: Trip Blank listed on COC:			Analysis requested is clear: Bottles received for unspecified tests	✓	
Samples preserved properly:	V		Sufficient volume recvd for analysis:		
4. VOCs headspace free:			Sumcerit volume recval or analysis. Compositing instructions clear:		
			5. Filtering instructions clear:		\checkmark
	1-liter Amber ONLY for NV				
Accutest Laboratories V:408.588.0200			ndy Avenue 588.0201		San Jose, CA 95131 www/accutest.com

C26386: Chain of Custody

Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
VN1179-MB	N37087.D	1	03/01/13	TF	n/a	n/a	VN1179

The QC reported here applies to the following samples:

C26386-1, C26386-2, C26386-3, C26386-4

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No. Surrogate Recoveries Limits 1868-53-7 Dibromofluoromethane 100% 70-130% 2037-26-5 Toluene-D8 102% 70-130% 460-00-4 4-Bromofluorobenzene 98% 70-130%

Method: SW846 8260B

Method Blank Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR533-MB	R14853.D	1	03/02/13	KN	n/a	n/a	VR533

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	102%	70-130%
2037-26-5	Toluene-D8	102%	70-130%
460-00-4	4-Bromofluorobenzene	99%	70-130%

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VN1179-BS	N37090.D	1	03/01/13	TF	n/a	n/a	VN1179
VN1179-BSD	N37091.D	1	03/01/13	TF	n/a	n/a	VN1179

The QC reported here applies to the following samples:

C26386-1, C26386-2, C26386-3, C26386-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	16.8	84	18.0	90	7	77-122/25
100-41-4	Ethylbenzene	20	16.4	82	17.4	87	6	76-126/17
108-88-3	Toluene	20	16.5	83	17.5	88	6	75-122/17
1330-20-7	Xylene (total)	60	48.0	80	50.7	85	5	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Dibromofluoromethane	100%	100%	70-130%
	Toluene-D8	101%	99%	70-130%
	4-Bromofluorobenzene	101%	100%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VR533-BS	R14848.D	1	03/02/13	KN	n/a	n/a	VR533
VR533-BSD	R14849.D	1	03/02/13	KN	n/a	n/a	VR533

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	20.6	103	20.6	103	0	77-122/25
100-41-4	Ethylbenzene	20	21.6	108	21.9	110	1	76-126/17
108-88-3	Toluene	20	21.1	106	21.3	107	1	75-122/17
1330-20-7	Xylene (total)	60	61.3	102	61.9	103	1	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	102%	100%	70-130%
2037-26-5	Toluene-D8	101%	100%	70-130%
460-00-4	4-Bromofluorobenzene	103%	103%	70-130%

^{* =} Outside of Control Limits.

Laboratory Control Sample Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VN1179-LCS	N37092.D	1	03/01/13	TF	n/a	n/a	VN1179

The QC reported here applies to the following samples: Method: SW846 8260B

C26386-1, C26386-2, C26386-3, C26386-4

CAS No. **Surrogate Recoveries BSP** Limits 1868-53-7 Dibromofluoromethane 99% 70-130% 2037-26-5 Toluene-D8 102% 70-130% 460-00-4 4-Bromofluorobenzene 99% 70-130%

Ç

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary Job Number: C26386

Account: SHELLWIC Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR533-LCS	R14852.D	1	03/02/13	KN	n/a	n/a	VR533

The QC reported here applies to the following samples:

C26386-5, C26386-6, C26386-7, C26386-8, C26386-9, C26386-10

LCS Spike LCS CAS No. Compound ug/l ug/l **%** Limits

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	101%	70-130%
2037-26-5	Toluene-D8	101%	70-130%
460-00-4	4-Bromofluorobenzene	101%	70-130%

^{* =} Outside of Control Limits.

5.4.1

Page 1 of 1

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C26386

460-00-4

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C26459-1MS	N37107.D	1	03/01/13	TF	n/a	n/a	VN1179
C26459-1MSD	N37108.D	1	03/01/13	TF	n/a	n/a	VN1179
C26459-1	N37093.D	1	03/01/13	TF	n/a	n/a	VN1179

The QC reported here applies to the following samples:

C26386-1, C26386-2, C26386-3, C26386-4

4-Bromofluorobenzene

CAS No.	Compound	C26459-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	20 20 20 60	19.3 19.6 19.3 56.2	97 98 97 94	19.8 20.7 20.3 59.2	99 104 102 99	3 5 5 5	77-122/16 76-126/17 75-122/17 77-125/17
CAS No.	Surrogate Recoveries	MS	MSD	C2	6459-1	Limits			
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	95% 101%	90% 103%	979 102		70-1309 70-1309			

99%

98%

70-130%

98%

U

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C26386-9MS	R14871.D	10	03/02/13	KN	n/a	n/a	VR533
C26386-9MSD	R14872.D	10	03/02/13	KN	n/a	n/a	VR533
C26386-9	R14866.D	10	03/02/13	KN	n/a	n/a	VR533

The QC reported here applies to the following samples:

C26386-5, C26386-6, C26386-7, C26386-8, C26386-9, C26386-10

CAS No.	Compound	C26386 ug/l	-9 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	668		200	683	8* a	745	39* a	9	77-122/16
100-41-4	Ethylbenzene	44.3		200	247	101	256	106	4	76-126/17
108-88-3	Toluene	7.8	J	200	217	\bigcirc 105	223	108	3	75-122/17
1330-20-7	Xylene (total)	5.9	J	600	616	102	633	105	3	77-125/17

CAS No.	Surrogate Recoveries	MS	MSD	C26386-9	Limits
1868-53-7	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	98%	99%	98%	70-130%
2037-26-5		101%	102%	102%	70-130%
460-00-4		103%	103%	100%	70-130%

(a) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: NWTPH-GX

Method Blank Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1359-MB	File ID JK33880.D	DF 1	Analyzed 03/01/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1359

The QC reported here applies to the following samples:

C26386-1, C26386-2, C26386-3

CAS No. Compound Result RL MDL Units Q

TPH (Gasoline) ND 0.20 0.050 mg/l

CAS No. Surrogate Recoveries Limits

98-08-8 aaa-Trifluorotoluene 111% 50-150% 460-00-4 4-Bromofluorobenzene 94% 50-150%

Method: NWTPH-GX

Method Blank Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1360-MB	File ID JK33900.D	DF 1	Analyzed 03/01/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1360

The QC reported here applies to the following samples:

C26386-4, C26386-5, C26386-6, C26386-7, C26386-8, C26386-9

CAS No. Compound Result RL MDL Units Q

TPH (Gasoline) ND 0.20 0.050 mg/l

CAS No. Surrogate Recoveries Limits

 98-08-8
 aaa-Trifluorotoluene
 114%
 50-150%

 460-00-4
 4-Bromofluorobenzene
 97%
 50-150%

Blank Spike/Blank Spike Duplicate Summary

Job Number: C26386

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
GJK1359-BS	JK33881.D	1	03/01/13	TT	n/a	n/a	GJK1359
GJK1359-BSD	JK33882.D	1	03/01/13	TT	n/a	n/a	GJK1359

The QC reported here applies to the following samples: Method: NWTPH-GX

C26386-1, C26386-2, C26386-3

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD	
	TPH (Gasoline)	0.4	0.410	103	0.403	101	2	60-140/30	
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits				
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	108% 94%	109 959	, -	50-1509 50-1509				

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1360-BS	File ID JK33901.D	DF	Analyzed 03/01/13	By TT	Prep Date	Prep Batch	Analytical Batch GJK1360
GJK1360-BSD	JK33902.D	1	03/01/13	TT	n/a n/a	n/a n/a	GJK1360

The QC reported here applies to the following samples:

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	0.4	0.404	101	0.413	103	2	60-140/30
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	109% 95%	112 98%		50-150% 50-150%			

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Matrix Spike Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C26386-4MS	File ID JK33913.D	DF	Analyzed 03/02/13	By TT	Prep Date n/a	Prep Batch	Analytical Batch GJK1360
C26386-4	JK33903.D	1	03/01/13	TT	n/a	n/a	GJK1360

The QC reported here applies to the following samples:

CAS No.	Compound	C26386-4 mg/l Q	Spike mg/l	MS mg/l	MS %	Limits
	TPH (Gasoline)	ND	0.4	0.404	101	60-140
CAS No.	Surrogate Recoveries	MS	C26386-4	4 Lim	uits	
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	101% 93%	106% 95%		50% 50%	

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Matrix Spike Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C26386-4MS	File ID JK33914.D	DF	Analyzed 03/02/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1360
C26386-4	JK33903.D	1	03/01/13	TT	n/a	n/a	GJK1360

The QC reported here applies to the following samples:

CAS No.	Compound	C26386-4 mg/l Q	Spike mg/l	MS mg/l	MS %	Limits
	TPH (Gasoline)	ND	0.4	0.394	99	60-140
CAS No.	Surrogate Recoveries	MS	C26386-	4 Lim	its	
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	104% 96%	106% 95%		50% 50%	

^{* =} Outside of Control Limits.

Duplicate Summary

Job Number: C26386

SHELLWIC Shell Oil Company Account:

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C26386-2DUP	JK33885.D	5	03/01/13	TT	n/a	n/a	GJK1359
C26386-2	JK33884.D	5	03/01/13	TT	n/a	n/a	GJK1359

The QC reported here applies to the following samples:

Method: NWTPH-GX

C26386-1, C26386-2, C26386-3

CAS No.	Compound	C26386-2 mg/l Q	DUP mg/l Q	RPD Limits	
	TPH (Gasoline)	3.98	4.02	1 20	
CAS No.	Surrogate Recoveries	DUP	C26386-2	Limits	
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	122% 131%	113% 123%	50-150% 50-150%	

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C26364-11DUP C26364-11	File ID JK33911.D JK33910.D	DF 1 1	Analyzed 03/01/13 03/01/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1360 GJK1360
C20304-11	JK33910.D	1	03/01/13	11	II/ a	II/ a	GJK1300

The QC reported here applies to the following samples:

CAS No.	Compound	C26364-11 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Gasoline)	ND	ND	nc 20
CAS No.	Surrogate Recoveries	DUP	C26364-11	Limits
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	103% 93%	107% 95%	50-150% 50-150%

^{* =} Outside of Control Limits.

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: NWTPH-DX

Method Blank Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP7550-MB	File ID GG41399.D	DF 1	Analyzed 02/26/13	Ву ЈН	Prep Date 02/26/13	Prep Batch OP7550	Analytical Batch GGG1097

The QC reported here applies to the following samples:

C26386-1, C26386-2, C26386-3, C26386-4, C26386-5, C26386-6, C26386-7, C26386-8, C26386-9

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.10 0.20	0.050 0.10	mg/l mg/l
CAS No.	Surrogate Recoveries		Limit	s	

630-01-3 Hexacosane 91% 50-150%

Method: NWTPH-DX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP7550-BS OP7550-BSD	File ID GG41400.D GG41401.D	-	Analyzed 02/26/13 02/26/13	Ву ЈН ЈН	Prep Date 02/26/13 02/26/13	Prep Batch OP7550 OP7550	Analytical Batch GGG1097 GGG1097
OF 7330-BSD	GG41401.D	1	02/20/13	JΠ	02/20/13	OF 7550	GGG1097

The QC reported here applies to the following samples:

C26386-1, C26386-2, C26386-3, C26386-4, C26386-5, C26386-6, C26386-7, C26386-8, C26386-9

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel)	1	0.745	75	0.853	85	14	45-140/30
	TPH (Motor Oil)	1	0.699	70	0.753	75	7	45-140/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
630-01-3	Hexacosane	94%	110%	50-150%

^{* =} Outside of Control Limits.

Method: NWTPH-DX

Duplicate Summary

Job Number: C26386

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP7550-DUP2 C26386-8	File ID GG41421.D GG41419.D	_	Analyzed 02/27/13 02/27/13	By JH JH	Prep Date 02/27/13 02/26/13	Prep Batch OP7550 OP7550	Analytical Batch GGG1098 GGG1098

The QC reported here applies to the following samples:

C26386-1, C26386-2, C26386-3, C26386-4, C26386-5, C26386-6, C26386-7, C26386-8, C26386-9

CAS No.	Compound	C26386-8 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Diesel) TPH (Motor Oil)	0.604 ND	0.538 ND	12 25 nc 25
CAS No.	Surrogate Recoveries	DUP	C26386-8	Limits
630-01-3	Hexacosane	104%	107%	50-150%

^{* =} Outside of Control Limits.

Data Review

The data quality review of the nine primary groundwater samples and one trip blank collected on February 21st and February 22nd, 2013 at the Harbor Island site in Seattle, Washington has been completed. Samples were submitted to Accutest Laboratories (Accutest) of San Jose, California. The samples submitted were analyzed for one or more of the following: benzene, toluene, ethylbenzene, and total xylene (BTEX; EPA Method 8260B); total petroleum hydrocarbons (TPH) as diesel (NWTPH-Dx) with silica gel cleanup; and TPH gasoline (NWTPH-Gx).

The review included the analytical data presented in Accutest report C26386. The data were reviewed based on *United States Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines (NFGs) for Organic Data Review*, June 2008 and laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records, hold times, surrogate recoveries, matrix spike and matrix spike duplicate results, laboratory control and laboratory control duplicate results, laboratory duplicate results, method blank results and trip blank results. No data qualifiers were assigned as a result of this review.

The following criteria were evaluated during the review:

• <u>COC Records</u> – Acceptable with the following exceptions:

The laboratory noted only one one-liter amber bottle was received for the samples TX-03A and MW-302 for NWTPH-Dx analysis. Adequate sample volume was available for analysis, therefore; no qualification is necessary.

- Temperature Acceptable
- Preservation Acceptable
- Hold Times Acceptable
- <u>Trip Blanks</u> Acceptable
- Method Blanks Acceptable
- <u>Surrogates</u> Acceptable
- Laboratory Control Samples (LCS/LCSD) Acceptable
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable
- Reporting Limits The laboratory reported all detections between the method detection limit (MDL) and method reporting limit (MRL) as estimated and flagged the results 'J'.

Shell - First Quarter Progress Report - Harbor Island

• Laboratory Notes –

Accutest commented that higher boiling gasoline compounds in the diesel range are present in the samples and a diesel pattern is not present and flagged the results 'a'. These comments are available in the Accutest reports. None of the diesel range hydrocarbon results were qualified based on the Accutest comments.

Overall Assessment of Data

The completeness of the analytical reports for this groundwater monitoring event is 100%. The usefulness of the data is based on the USEPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are considered usable. Additional qualifiers were not added during the data review process.

References

USEPA, 2008. U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines for Organic Data Review. June 2008.

Data Review

The data quality review of the eighteen primary groundwater samples, three field duplicates, and one trip blank collected May 14th to May 16th, 2013 at the Harbor Island site in Seattle, Washington has been completed. Samples were submitted to Accutest Laboratories (Accutest) of San Jose, California. The samples submitted were analyzed for one or more of the following: benzene, toluene, ethylbenzene, and total xylene (BTEX; EPA Method 8260B); total petroleum hydrocarbons (TPH) as diesel (NWTPH-Dx) with silica gel cleanup; TPH gasoline (NWTPH-Gx); total lead (EPA Method 6010B); and polycyclic aromatic hydrocarbons (EPA 8270C SIM);

The review included the analytical data presented in Accutest report C27781. The data were reviewed based on *United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines (NFGs) for Organic Data Review*, June 2008, *USEPA CLP NFGs for Inorganic Superfund Data Review*, January 2010, and laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records, hold times, surrogate recoveries, matrix spike and matrix spike duplicate results, field duplicates, laboratory control and laboratory control duplicate results, laboratory duplicate results, method blank results and trip blank results. No data qualifiers were assigned as a result of this review.

The following criteria were evaluated during the review:

- COC Records Acceptable
- Temperature Acceptable
- Preservation Acceptable
- <u>Hold Times</u> Acceptable
- <u>Trip Blanks</u> Acceptable
- <u>Method Blanks</u> Acceptable
- <u>Surrogates</u> Acceptable
- Laboratory Control Samples (LCS/LCSD) Acceptable
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable
- <u>Field Duplicates</u> Sample MW-301D-0513 (C27781-9) was submitted as a field duplicate of primary sample MW-301-0513 (C27781-8), sample MW-214D-0513 (C27781-13) was submitted as a field duplicate of primary sample MW-214-0513 (C27781-12), and sample MW-305D-0513 (C27781-15) was submitted as a field duplicate of primary sample MW-305-0513 (C27781-14). Relative percent difference (RPD) calculations were performed on the field duplicate sample pair results when the sample results were greater than five times the method reporting limit. All calculated RPDs for duplicate pairs were within the historical project

Shell - Second Quarter Progress Report - Harbor Island

control limit of 20%.

• <u>Reporting Limits</u> – The laboratory reported all detections between the method detection limit (MDL) and method reporting limit (MRL) as estimated and flagged the results 'J'.

Overall Assessment of Data

The completeness of the analytical reports for this groundwater monitoring event is 100%. The usefulness of the data is based on the USEPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are considered usable. Additional qualifiers were not added during the data review process.

References

- USEPA, 2008. U.S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Organic Data Review. June 2008.
- USEPA, 2010. U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. January 2010.

06/01/13

Technical Report for

Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

46194348

Accutest Job Number: C27781

Sampling Dates: 05/14/13 - 05/16/13

Report to:

URS Corporation 111 SW Columbia, Suite 1500 Portland, OR 97201-5850 brian.pletcher@urs.com

ATTN: Brian Pletcher

Total number of pages in report: 101

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

James J. Rhudy Lab Director

Jumy. Mudy

Client Service contact: Nutan Kabir 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD/ISO/IEC 17025:2005 (L2242)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	4
Section 2: Summary of Hits	6
Section 3: Sample Results	10
3.1: C27781-1: MW-104-0513	11
3.2: C27781-2: MW-302-0513	14
3.3: C27781-3: MW-304-0513	16
3.4: C27781-4: MW-310-0513	18
3.5: C27781-5: MW-202-0513	20
3.6: C27781-6: TX-03A-0513	22
3.7: C27781-7: MW-203-0513	24
3.8: C27781-8: MW-301-0513	26
3.9: C27781-9: MW-301D-0513	28
3.10: C27781-10: TRIP BLANK	30
3.11: C27781-11: MW-213-0513	32
3.12: C27781-12: MW-214-0513	36
3.13: C27781-13: MW-214D-0513	40
3.14: C27781-14: MW-305-0513	44
3.15: C27781-15: MW-305D-0513	46
3.16: C27781-16: MW-306-0513	48
3.17: C27781-17: MW-307-0513	50
3.18: C27781-18: MW-308-0513	52
3.19: C27781-19: SH-04-0513	54
3.20: C27781-20: MW-303-0513	57
3.21: C27781-21: MW-309-0513	59
Section 4: Misc. Forms	61
4.1: Chain of Custody	62
Section 5: GC/MS Volatiles - QC Data Summaries	66
5.1: Method Blank Summary	67
5.2: Blank Spike/Blank Spike Duplicate Summary	70
5.3: Laboratory Control Sample Summary	73
5.4: Matrix Spike/Matrix Spike Duplicate Summary	75
Section 6: GC/MS Semi-volatiles - QC Data Summaries	78
6.1: Method Blank Summary	79
6.2: Blank Spike/Blank Spike Duplicate Summary	80
6.3: Matrix Spike/Matrix Spike Duplicate Summary	81
Section 7: GC Volatiles - QC Data Summaries	82
7.1: Method Blank Summary	83
7.2: Blank Spike/Blank Spike Duplicate Summary	85
7.3: Matrix Spike/Matrix Spike Duplicate Summary	
7.4: Duplicate Summary	
Section 8: GC Semi-volatiles - QC Data Summaries	
8.1: Method Blank Summary	93

ယ

CI

 ∞

Sections:

Table of Contents

-2-

8.2: Blank Spike/Blank Spike Duplicate Summary	94
8.3: Duplicate Summary	95
Section 9: Metals Analysis - QC Data Summaries	96
9.1: Prep QC MP6223: Pb	97

G

-

က

ဖ

Sample Summary

Shell Oil Company

Job No: C27781

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA Project No: 46194348

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C27781-1	05/14/13	10:00 DL	05/17/13	AQ	Ground Water	MW-104-0513
C27781-2	05/14/13	11:35 DL	05/17/13	AQ	Ground Water	MW-302-0513
C27781-3	05/14/13	13:55 DL	05/17/13	AQ	Ground Water	MW-304-0513
C27781-4	05/14/13	15:00 DL	05/17/13	AQ	Ground Water	MW-310-0513
C27781-5	05/15/13	08:35 DL	05/17/13	AQ	Ground Water	MW-202-0513
C27781-6	05/15/13	11:00 DL	05/17/13	AQ	Ground Water	TX-03A-0513
C27781-7	05/15/13	11:30 DL	05/17/13	AQ	Ground Water	MW-203-0513
C27781-8	05/15/13	13:10 DL	05/17/13	AQ	Ground Water	MW-301-0513
C27781-9	05/15/13	13:30 DL	05/17/13	AQ	Ground Water	MW-301D-0513
C27781-10	05/15/13	00:00 DL	05/17/13	AQ	Trip Blank Water	TRIP BLANK
C27781-11	05/15/13	15:45 DL	05/17/13	AQ	Ground Water	MW-213-0513
C27781-12	05/15/13	16:20 DL	05/17/13	AQ	Ground Water	MW-214-0513
C27781-13	05/15/13	16:30 DL	05/17/13	AQ	Ground Water	MW-214D-0513

Sample Summary (continued)

Shell Oil Company

Job No: C27781

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA Project No: $\,\,$ 46194348

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C27781-14	05/15/13	13:07 DL	05/17/13	AQ	Ground Water	MW-305-0513
C27781-15	05/15/13	13:15 DL	05/17/13	AQ	Ground Water	MW-305D-0513
C27781-16	05/15/13	10:45 DL	05/17/13	AQ	Ground Water	MW-306-0513
C27781-17	05/15/13	08:40 DL	05/17/13	AQ	Ground Water	MW-307-0513
C27781-18	05/15/13	09:28 DL	05/17/13	AQ	Ground Water	MW-308-0513
C27781-19	05/15/13	14:25 DL	05/17/13	AQ	Ground Water	SH-04-0513
C27781-20	05/16/13	08:07 DL	05/17/13	AQ	Ground Water	MW-303-0513
C27781-21	05/16/13	08:51 DL	05/17/13	AQ	Ground Water	MW-309-0513

Summary of Hits
Job Number: C27781
Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 05/14/13 thru 05/16/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C27781-1	MW-104-0513					
TPH (Gasoline) TPH (Diesel)		5.07 0.601	2.0 0.096	0.50 0.048	mg/l mg/l	NWTPH-GX NWTPH-DX
C27781-2	MW-302-0513					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		873 23.1 236 145 4.19	10 10 10 20 2.0	2.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C27781-3	MW-304-0513					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		645 28.3 209 144 4.73	10 10 10 20 2.0	2.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C27781-4	MW-310-0513					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		993 70.3 654 175 6.49	10 10 10 20 2.0	2.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C27781-5	MW-202-0513					
TPH (Gasoline) TPH (Diesel)		3.83 1.62	2.0 0.096	0.50 0.048	mg/l mg/l	NWTPH-GX NWTPH-DX
C27781-6	TX-03A-0513					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		2150 45.9 J 189 64.3 J 3.11	50 50 50 100 2.0	10 10 10 23 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C27781-7	MW-203-0513					
TPH (Gasoline)		0.144 J	0.20	0.050	mg/l	NWTPH-GX

Summary of Hits
Job Number: C27781
Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 05/14/13 thru 05/16/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C27781-8	MW-301-0513					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		357 12.2 23.1 14.5 3.63	5.0 5.0 5.0 10 2.0	1.0 1.0 1.0 2.3 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C27781-9	MW-301D-0513					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		363 12.5 26.4 14.8 J 3.62	10 10 10 20 2.0	2.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C27781-10	TRIP BLANK					
No hits reported	in this sample.					
C27781-11	MW-213-0513					
No hits reported	in this sample.					
C27781-12	MW-214-0513					
TPH (Diesel)		0.0857 J	0.096	0.048	mg/l	NWTPH-DX
C27781-13	MW-214D-0513					
TPH (Diesel)		0.0932 J	0.096	0.048	mg/l	NWTPH-DX
C27781-14	MW-305-0513					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		397 26.3 290 86.7 6.28	10 10 10 20 4.0	2.0 2.0 2.0 4.6 1.0	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C27781-15	MW-305D-0513					
Benzene Toluene		318 21.7	10 10	2.0 2.0	ug/l ug/l	SW846 8260B SW846 8260B

Summary of Hits
Job Number: C27781
Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 05/14/13 thru 05/16/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Ethylbenzene		233	10	2.0	ug/l	SW846 8260B
Xylene (total)		68.9	20	4.6	ug/l	SW846 8260B
TPH (Gasoline)		6.42	2.0	0.50	mg/l	NWTPH-GX
C27781-16	MW-306-0513					
Benzene		746	20	4.0	ug/l	SW846 8260B
Toluene		47.2	20	4.0	ug/l	SW846 8260B
Ethylbenzene		837	20	4.0	ug/l	SW846 8260B
Xylene (total)		3700	40	9.2	ug/l	SW846 8260B
TPH (Gasoline)		18.5	8.0	2.0	mg/l	NWTPH-GX
C27781-17	MW-307-0513					
Benzene		437	10	2.0	ug/l	SW846 8260B
Toluene		46.1	10	2.0	ug/l	SW846 8260B
Ethylbenzene		167	10	2.0	ug/l	SW846 8260B
Xylene (total)		120	20	4.6	ug/l	SW846 8260B
TPH (Gasoline)		4.56	2.0	0.50	mg/l	NWTPH-GX
C27781-18	MW-308-0513					
Benzene		392	10	2.0	ug/l	SW846 8260B
Toluene		5.2 J	10	2.0	ug/l	SW846 8260B
Ethylbenzene		42.7	10	2.0	ug/l	SW846 8260B
TPH (Gasoline)		2.54	1.0	0.25	mg/l	NWTPH-GX
C27781-19	SH-04-0513					
Benzene a		1.6 J	2.5	0.50	ug/l	SW846 8260B
Ethylbenzene ^a		4.2	2.5	0.50	ug/l	SW846 8260B
Xylene (total) a		3.2 J	5.0	1.2	ug/l	SW846 8260B
TPH (Gasoline)		2.16	0.50	0.13	mg/l	NWTPH-GX
TPH (Diesel)		0.376	0.096	0.048	mg/l	NWTPH-DX
C27781-20	MW-303-0513					
Benzene		1900	50	10	ug/l	SW846 8260B
Toluene		86.4	50	10	ug/l	SW846 8260B
Ethylbenzene		983	50	10	ug/l	SW846 8260B
Xylene (total)		272	100	23	ug/l	SW846 8260B
TPH (Gasoline)		10.6	8.0	2.0	mg/l	NWTPH-GX

Summary of Hits

Page 4 of 4

Job Number: C27781

Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 05/14/13 thru 05/16/13

Lab Sample ID Client Sample ID Result/
Analyte Qual RL MDL Units Method

C27781-21 MW-309-0513

No hits reported in this sample.

(a) Dilution required due to high concentration of non-target hydrocarbons.

Report of Analysis

Client Sample ID: MW-104-0513

Lab Sample ID: C27781-1 **Date Sampled:** 05/14/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 JK35829.D 10 05/22/13 TTGJK1445 n/an/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	5.07	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-104-0513

Lab Sample ID: C27781-1 **Date Sampled:** 05/14/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 HH303599.D 1 05/19/13 AG 05/18/13 OP8007 **GHH984** Run #2

Final Volume Initial Volume Run #1 1040 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.601 ND	0.096 0.19	0.048 0.096	mg/l mg/l	
CAS No. Surrogate Recoveries		Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	71%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-104-0513

Lab Sample ID:C27781-1Date Sampled:05/14/13Matrix:AQ - Ground WaterDate Received:05/17/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	< 10	10	ug/l	1	05/20/13	05/21/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3174(2) Prep QC Batch: MP6223

Page 1 of 1

Client Sample ID: MW-302-0513

Lab Sample ID: C27781-2 **Date Sampled:** 05/14/13 Matrix: **Date Received:** 05/17/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	U11117.D	10	05/21/13	TF	n/a	n/a	VU426
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 Benzene 108-88-3 Toluene 100-41-4 Ethylbenzene 1330-20-7 Xylene (total)		873 23.1 236 145	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	115% 101% 103%		70-13 70-13 70-13	80%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: MW-302-0513

Lab Sample ID: **Date Sampled:** 05/14/13 C27781-2 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: **NWTPH-GX Percent Solids:** n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 JK35830.D 10 05/22/13 TTGJK1445 n/a n/aRun #2

Purge Volume

4-Bromofluorobenzene

Run #1 10.0 ml

Run #2

460-00-4

Northwest TPH-Gx

CAS No. RLUnits Q Compound Result MDL TPH (Gasoline) 2.0 4.19 0.50 mg/l CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 98-08-8 aaa-Trifluorotoluene 102% 50-150%

83%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

50-150%

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-304-0513

Lab Sample ID: C27781-3 **Date Sampled:** 05/14/13 Matrix: **Date Received:** 05/17/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15020.D	10	05/22/13	PH	n/a	n/a	VQ603
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	S No. Compound		RL	MDL	Units	Q
71-43-2 Benzene 108-88-3 Toluene 100-41-4 Ethylbenzene 1330-20-7 Xylene (total)		645 28.3 209 144	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	95% 104% 106%		70-13 70-13 70-13	80%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-304-0513

Lab Sample ID: C27781-3 **Date Sampled:** 05/14/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35832.D 10 05/22/13 TTGJK1445 n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	4.73	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ite	
CAS NO.	Surrogate Recoveries	Kuli# 1	Kuli# 2	1/11111	163	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-310-0513

Lab Sample ID: C27781-4 **Date Sampled:** 05/14/13 Matrix: **Date Received:** 05/17/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15021.D	10	05/22/13	PH	n/a	n/a	VQ603
Pun #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	993 70.3 654 175	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	92% 103% 105%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-310-0513

Lab Sample ID: C27781-4 **Date Sampled:** 05/14/13 Matrix: **Date Received:** 05/17/13 AQ - Ground Water Method: **Percent Solids: NWTPH-GX** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	JK35833.D	10	05/22/13	TT	n/a	n/a	GJK1445
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	6.49	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	102% 85%		50-1 50-1		

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: MW-202-0513

Lab Sample ID: C27781-5 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35834.D 10 05/22/13 TTGJK1445 n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.83	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-202-0513

Lab Sample ID: C27781-5 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 HH303600.D 1 05/19/13 AG 05/18/13 OP8007 **GHH984**

Run #2

Final Volume Initial Volume Run #1 1040 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	1.62 ND	0.096 0.19	0.048 0.096	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	71%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TX-03A-0513

Lab Sample ID: C27781-6 **Date Sampled:** 05/15/13 Matrix: **Date Received:** 05/17/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	Q15022.D	50	05/22/13	PH	n/a	n/a	VQ603	
Run #2								

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	2150 45.9 189 64.3	50 50 50 100	10 10 10 23	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	93% 105% 106%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TX-03A-0513

Lab Sample ID:C27781-6Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35835.D 10 05/22/13 TTGJK1445 n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.11	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ite	
CAS NO.	Surrogate Recoveries	Kuli# 1	Kuii/i 2	1/11111	163	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-203-0513

Lab Sample ID: C27781-7 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35837.D 1 05/23/13 TTGJK1445 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	0.144	0.20	0.050	mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	5					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: MW-203-0513

Lab Sample ID: C27781-7 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 HH303601.D 1 05/19/13 AG 05/18/13 OP8007 **GHH984** Run #2

Final Volume Initial Volume Run #1 1040 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.096 0.19	0.048 0.096	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	096 0.048 mg/ 9 0.096 mg/	its	
630-01-3	Hexacosane	72%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-301-0513

 Lab Sample ID:
 C27781-8
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15023.D	5	05/22/13	PH	n/a	n/a	VQ603
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	357 12.2 23.1 14.5	5.0 5.0 5.0 10	1.0 1.0 1.0 2.3	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	95% 100% 108%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit J = I

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-301-0513

 Lab Sample ID:
 C27781-8
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 NWTPH-GX
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35838.D 10 05/23/13 TTGJK1445 n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.63	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ite	
CAS No.	Surrogate Recoveries	Kuli# 1	Kuli# 2	Lilli	its	

ND = Not detected MDL - Method Detection Limit J = I

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-301D-0513

 Lab Sample ID:
 C27781-9
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15024.D	10	05/22/13	PH	n/a	n/a	VQ603
Run #2							

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	363 12.5 26.4 14.8	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	93% 102% 106%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ć.

Page 1 of 1

Client Sample ID: MW-301D-0513

Lab Sample ID:C27781-9Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK35839.D 10 05/23/13 TT n/a n/a GJK1445

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.62	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 C27781-10
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 05/17/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15027.D	1	05/22/13	PH	n/a	n/a	VQ603
D 110							

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	91% 106% 105%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: TRIP BLANK

Lab Sample ID:C27781-10Date Sampled:05/15/13Matrix:AQ - Trip Blank WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK35840.D 1 05/23/13 TT n/a n/a GJK1445

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
0120 1100	24 g					

ND = Not detected MDL - Method Detection Limit J = 1

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-213-0513

Lab Sample ID: C27781-11 **Date Sampled:** 05/15/13 Matrix: **Date Received:** 05/17/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15028.D	1	05/22/13	PH	n/a	n/a	VQ603

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	99% 106% 107%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-213-0513

Lab Sample ID: C27781-11 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: SW846 8270C BY SIM SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 T8801.D 1 05/20/13 NL 05/17/13 OP8000 ET401

Run #2

Final Volume Initial Volume

Run #1 1060 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	0.47	0.047	ug/l	
208-96-8	Acenaphthylene	ND	0.47	0.047	ug/l	
120-12-7	Anthracene	ND	0.47	0.047	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.094	0.050	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.094	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.033	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.094	0.034	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.094	0.037	ug/l	
218-01-9	Chrysene	ND	0.094	0.042	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.094	0.033	ug/l	
206-44-0	Fluoranthene	ND	0.47	0.047	ug/l	
86-73-7	Fluorene	ND	0.47	0.047	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.094	0.033	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.47	0.094	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.47	0.094	ug/l	
91-20-3	Naphthalene	ND	0.47	0.094	ug/l	
85-01-8	Phenanthrene	ND	0.47	0.047	ug/l	
129-00-0	Pyrene	ND	0.47	0.047	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
4165-60-0	Nitrobenzene-d5	71%		31-12	28%	
321-60-8	2-Fluorobiphenyl	70%		34-12	23%	
1718-51-0	Terphenyl-d14	78%		43-13	36%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-213-0513

Lab Sample ID:C27781-11Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35841.D 1 05/23/13 TTGJK1445 n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-213-0513

 Lab Sample ID:
 C27781-11
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 HH303602.D 1 05/19/13 AG 05/18/13 OP8007 **GHH984** Run #2

Run #1 1040 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.096 0.19	0.048 0.096	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	74%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = Indicates a

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-214-0513

Lab Sample ID: C27781-12 **Date Sampled:** 05/15/13 Matrix: **Date Received:** 05/17/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15029.D	1	05/22/13	PH	n/a	n/a	VQ603
Dun #2							

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	96% 106% 106%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-214-0513

Lab Sample ID: C27781-12 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: SW846 8270C BY SIM SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 T8802.D 1 05/20/13 NL 05/17/13 OP8000 ET401

Run #2

Final Volume Initial Volume

Run #1 1060 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	0.47	0.047	ug/l	
208-96-8	Acenaphthylene	ND	0.47	0.047	ug/l	
120-12-7	Anthracene	ND	0.47	0.047	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.094	0.050	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.094	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.033	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.094	0.034	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.094	0.037	ug/l	
218-01-9	Chrysene	ND	0.094	0.042	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.094	0.033	ug/l	
206-44-0	Fluoranthene	ND	0.47	0.047	ug/l	
86-73-7	Fluorene	ND	0.47	0.047	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.094	0.033	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.47	0.094	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.47	0.094	ug/l	
91-20-3	Naphthalene	ND	0.47	0.094	ug/l	
85-01-8	Phenanthrene	ND	0.47	0.047	ug/l	
129-00-0	Pyrene	ND	0.47	0.047	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
4165-60-0	Nitrobenzene-d5	73%		31-12	28%	
321-60-8	2-Fluorobiphenyl	77%		34-12	23%	
1718-51-0	Terphenyl-d14	78%		43-13	36%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-214-0513

Lab Sample ID:C27781-12Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK35842.D 1 05/23/13 TT n/a n/a GJK1445

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-214-0513

Lab Sample ID: C27781-12 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 HH303603.D 1 05/19/13 AG 05/18/13 OP8007 **GHH984** Run #2

Final Volume Initial Volume Run #1 1040 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.0857 ND	0.096 0.19	0.048 0.096	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	73%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-214D-0513

 Lab Sample ID:
 C27781-13
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15030.D	1	05/22/13	PH	n/a	n/a	VQ603
D 42							

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	95% 107% 106%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-214D-0513

 Lab Sample ID:
 C27781-13
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 SW846 8270C BY SIM SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 T8803.D 1 05/20/13 NL 05/17/13 OP8000 ET401

Run #2

Initial Volume Final Volume

Run #1 1050 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	0.48	0.048	ug/l	
208-96-8	Acenaphthylene	ND	0.48	0.048	ug/l	
120-12-7	Anthracene	ND	0.48	0.048	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.095	0.050	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.095	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.095	0.033	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.095	0.034	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.095	0.037	ug/l	
218-01-9	Chrysene	ND	0.095	0.043	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.095	0.033	ug/l	
206-44-0	Fluoranthene	ND	0.48	0.048	ug/l	
86-73-7	Fluorene	ND	0.48	0.048	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.095	0.033	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.48	0.095	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.48	0.095	ug/l	
91-20-3	Naphthalene	ND	0.48	0.095	ug/l	
85-01-8	Phenanthrene	ND	0.48	0.048	ug/l	
129-00-0	Pyrene	ND	0.48	0.048	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
4165-60-0	Nitrobenzene-d5	69%		31-12	28%	
321-60-8	2-Fluorobiphenyl	67%		34-12	23%	
1718-51-0	Terphenyl-d14	68%		43-13	36%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-214D-0513

Lab Sample ID:C27781-13Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35853.D 1 05/23/13 TTGJK1445 n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-214D-0513

Lab Sample ID: C27781-13 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 HH303604.D 1 05/19/13 AG 05/18/13 OP8007 **GHH984** Run #2

Final Volume Initial Volume Run #1 1040 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.0932 ND	0.096 0.19	0.048 0.096	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	72%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-305-0513

Lab Sample ID: C27781-14 **Date Sampled:** 05/15/13 Matrix: **Date Received:** 05/17/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15031.D	10	05/22/13	PH	n/a	n/a	VQ603
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	397 26.3 290 86.7	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	94% 105% 108%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: MW-305-0513

Lab Sample ID:C27781-14Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 JK35845.D 20 05/23/13 TTGJK1445 n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	6.28	4.0	1.0	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	9					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-305D-0513

Lab Sample ID: C27781-15 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15032.D	10	05/22/13	PH	n/a	n/a	VQ603
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	318 21.7 233 68.9	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	92% 105% 106%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-305D-0513

Lab Sample ID:C27781-15Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35846.D 10 05/23/13 TTGJK1445 n/an/a Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	6.42	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit J = Indication Indicatio

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-306-0513

 Lab Sample ID:
 C27781-16
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q15033.D	20	05/22/13	PH	n/a	n/a	VQ603
Run #2							

Purge Volume
Run #1 10.0 ml
Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	746 47.2 837 3700	20 20 20 40	4.0 4.0 4.0 9.2	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	94% 106% 107%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-306-0513

Lab Sample ID:C27781-16Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK35848.D 40 05/23/13 TT n/a n/a GJK1445

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	18.5	8.0	2.0	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
98-08-8	aaa-Trifluorotoluene	101%		50-15	-00/	

ND = Not detected MDL - Method Detection Limit J = Indicate

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-307-0513

Lab Sample ID: C27781-17 **Date Sampled:** 05/15/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: SW846 8260B Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	R17182.D	10	05/22/13	TN	n/a	n/a	VR626
Run #2							

	Purge Volume
Run #1	10.0 ml
Run #2	

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	437 46.1 167 120	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	100% 98% 97%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-307-0513

Lab Sample ID:C27781-17Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK35849.D 10 05/23/13 TT n/a n/a GJK1445

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	4.56	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-308-0513

 Lab Sample ID:
 C27781-18
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	R17183.D	10	05/22/13	TN	n/a	n/a	VR626	
Run #2								

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	392 5.2 42.7 ND	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 97% 98%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicates a

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-308-0513

Lab Sample ID:C27781-18Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK35850.D 5 05/23/13 TT n/a n/a GJK1445

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	2.54	1.0	0.25	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
C115 110.	Surrogute Recoveries	Kuliii I	Italiii 2			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: SH-04-0513

 Lab Sample ID:
 C27781-19
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	R17184.D	2.5	05/22/13	TN	n/a	n/a	VR626
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	1.6 ND 4.2 3.2	2.5 2.5 2.5 5.0	0.50 0.50 0.50 1.2	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	98% 90% 97%		70-13 70-13 70-13	30%	

(a) Dilution required due to high concentration of non-target hydrocarbons.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 1 of 1

Client Sample ID: SH-04-0513

Lab Sample ID:C27781-19Date Sampled:05/15/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK35862.D 2.5 05/23/13 TT n/a n/a GJK1446

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	2.16	0.50	0.13	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ite	
CAS No.	Surrogate Recoveries	Kuli# 1	Kuli# 2	Lilli	11.5	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: SH-04-0513

 Lab Sample ID:
 C27781-19
 Date Sampled:
 05/15/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 HH303605.D 1 05/19/13 AG 05/18/13 OP8007 **GHH984** Run #2

Kun #2

Initial Volume Final Volume

Run #1 1040 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.376 ND	0.096 0.19	0.048 0.096	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	71%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-303-0513

Lab Sample ID: C27781-20 **Date Sampled:** 05/16/13 Matrix: AQ - Ground Water **Date Received:** 05/17/13 Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	R17185.D	50	05/22/13	TN	n/a	n/a	VR626
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	1900 86.4 983 272	50 50 50 100	10 10 10 23	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	98% 99% 97%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-303-0513

Lab Sample ID:C27781-20Date Sampled:05/16/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK35864.D 40 05/23/13 TTGJK1446 n/an/a Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	10.6	8.0	2.0	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit J = Indicat

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Client Sample ID: MW-309-0513

 Lab Sample ID:
 C27781-21
 Date Sampled:
 05/16/13

 Matrix:
 AQ - Ground Water
 Date Received:
 05/17/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	R17186.D	1	05/22/13	TN	n/a	n/a	VR626
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	99% 90% 95%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates Indicate Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Client Sample ID: MW-309-0513

Lab Sample ID:C27781-21Date Sampled:05/16/13Matrix:AQ - Ground WaterDate Received:05/17/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK35865.D 1 05/23/13 TT n/a n/a GJK1446

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

	r •	
1\/	lisc.	Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	_	SHOLL	WICZ	660	Fre	EX 802	00929	60/2	2
LAB (LOCATION)	©	Shell	Oil Pro	ducts	Chain Of (Custody I	Record		
VENCO ()	Please Check Appropri	late Box:		o Contact I			ENT # (ENV SE	RVICES)	CHECK IF NO INCIDENT # APPLIES
TEST AMERICA (SERVICES OTIVA RETAIL	SHELL RETAIL					3 5 7		DATE:
	TVA SD&CM DHSULTANT	UJBES		P	0 #		SAP#		PAGE:
	L PIPELINE THER			TTT		$T^{*}T^{*}$	300	036	PAGE: of
CONSULTANT COMPANY:				(Street, City and Sta	ate};				
ADDRESS:			SHELL 1	HARBUR 1	SLAND 2	2555 13	Dave .	5W 9	SFATTLE, WA
III SW COLUM	1 13 1/1		B	RIAN P	LETTHER	_	46	(4434	3
PORTLAND, OR	PINS.		SAMPLER HAME(S)	(Print):	LETTHER	MARK "	TAUSCHE	R LAB	USE ONLY
1503-222-72vd	Brign, pletcher	PUCS.com	<u> </u>	DAVE L	rewis/ci	AFFORD PO	EARSON		C27781
TUBRAROUND TIME (GALENDAR DAYS): STAHDARD (14 DAY) SDAYS SDAYS SDAYS	ZDAYS ZHHOURS	PESULTS NEEDED ON WEEKEND	30		7	REQUESTE	D ANALYSIS		
DELIVERABLES: LEVEL 1 LEVEL 2 LEVEL 3 LEVEL	L4 THER (SPECIFY)		14.4.0 (E)	I				$\neg \neg \neg$	514CA-GEL
TEMPERATURE ON RECEIPT C ³ Cooler #1 Cooler #2	Cooler #3		1 7 2						
SPECIAL INSTRUCTIONS OR NOTES :	FELL CONTRACT RATI	E APPLIES	[K" x						CLEW-4P ON NWTPH-DX 5.4/5,3/5.5°
	STATE REIMBURSEMEN		30						ON HUTPH- DX
	PROVIDE LEDD DISK		취취기	47					09-04 -06
SAMP	IIING DOES	BERVATIVE	518 K	心耳	1 1 1				3.4/5.3/5.5
Field Sample Identification	HATON I	NO. OF CONT.	NWTPH NWTPH BTF	37					Container PiD Readings
USE ONLY		2504 NONE OTHER	२ २						or Laboratory Hotes
1 MW-104-0513 4/4/13	1000 HZO XX	X 署 6	XX	x					
2 MW-302-0513 4/4/13	1135" " X	6	XX						
3 MW-304-0513 1/4/3	(353 " X	6	x \					+	
2 MW-302-0513 4/4/3 3 MW-304-0513 4/4/3 4 MW-310-0513 4/4/3 5 MW-202-0513 4/5/3	1500 11 X	6	Ŷ		 		111	+	
5 MW-202-0513 4/15/	3082 11 X	X' 5							
6 TX-03A-US13 History		6		;	1 1 1 1 -	++-	++++	+++	
	1/30 1	x 5	$\frac{x}{x}$	+			+++	+++	
1.1/1		Y 1 7] 	+	 	+	+	
8 mw-301-0513 4/15/13/1		6	X X	1				4-1-1	
9 MW-301D-0513 1/5/13/	1330 " X	6	X					111	
10 TRIP BLANK 98/13	- 11	9	XX						
RelingUnited by: (Signature)	Received by, (Signature)	· · · · · · · · · · · · · · · · · · ·	W 1 1 /		1 1 1		Date:	1 1	Time:
Nauteuis 5/16/13/12	200								
Reinquistred by (Signature)	Received by: (Signature)	n					Date / 7/10		Tune: aCCT)
PEUEX 5/17/13		Baux				(BX	6/17/13	05/17/13	000
Reinquisted by (Signature)	Received by: (Signature)						Date	\neg	Time:
						N 1119	57004 2	SEALS	05/2/08 Revision /W.THCT

C27781: Chain of Custody
Page 1 of 4

LAB (LOCATION)	Shell	Oil Products Chain Of Custoo	dy Record	
——————————————————————————————————————	Please Check Appropriate Box:	Print Bill To Contact Name:	INCIDENT # (ENV SERVICES)	HECK IF NO INCIDENT # APPLIES
TEST AMERICA (ES OTIVA RETAIL SHELL RETAIL			DATE:
- III doma coa	CM CONSULTANT LUBES	PO#	SAP#	1 2
GINER (ACCUTEST)	INE GTHER		 	PAGE: Z of
TANKET TO THE PARTY OF THE PART		SITE ADDRESS (Street, City and State):		2 1
MRS MORESS III SW Columbia		BUTE ADDRESS (BLEES, City and Esta): SHEW HARBOR ISLAND CONSULTING PROJECT CONTINUE (1999-18) EMPLER NUMBER (1999-19) DANE VEWS / CLIFFOR D (LETT)	2553 13th AVE S	SW Seattle, WI
com: O - H 11 00		BRIAN PLETA	IER	
TELEPHONE POUTLAND OR EMALE		SAMPLER NAME(S) (Pring):	, LAB USE	EONLY
1502-721-7200 hou		DANE LEWIS/CLIFFORD PLETCH	ER /MARK TAUSCHER	C27+81
TURNAROUND TIME (CALENDAR DAYS): TANDARD (14 DAY) TORNAROUND TIME (CALENDAR DAYS): TANDARD (14 DAY) TORNAROUND TIME (CALENDAR DAYS):	S 24 HOURS PESULTS NEEDED	/ REQU	ESTED ANALYSIS	
DELIVERABLES: LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4	THER (SPECIFY)			
TEMPERATURE ON RECEIPT C° Cooler #1 Cooler #2	Cooler#3			
SPECIAL INSTRUCTIONS OR NOTES :	HELL CONTRACT RATE APPLIES			
	STATE REIMBURSEMENT RATE APPLIES			
	PROVIDE LEDO DISK			
	KOVIDE LEDD DISK	7 2 2 2		
SAMPLING	PRESERVATIVE	06/744 6775 6745 6745		
LAB Field Sample Identification DATE TIME		3 3 22 4		Container PID Readings or Laboratory Notes
oney State of the state of the	HCL HNO3 H2SC4 NONE OTHER			of Laboratory Notes
11 IMW-213-0513 9/5/13/1545	1 H20 X X 10	XXXX	 	
12 MW-214-0513 5/15 162		X		
13 MW-2140-0513 5/15/163		XXXX		
14 MW-305-0513 5/15 130		x x		
15 MW-3050-0513 5/15 1315	5 H20 × 6	x x x		
16 MW-306-0513 515 1045	1 H20 X	X X		
1/2 MW-306-0513 515 1045 17 MW-307-0513 515 0840		X X		
18 MW-308-0513 SIK 272	4.5	K X		
9 54-04-0513 515 1425	1120 K R B	XXX		
20 MW-303-0513 5/16 080	1 120 4 6	X X		
Reinogladed by (Signature)	Received by (Signature)		Date: Time:	
1/6/13 1200 Registrator, 1890ana				
FBDBX	Received by (Signature) Lee Ba		5/17/13 Time	185D
Reinquished by, (Signature)	Received by, (Signature)		41710 1	1000
			Date: Time:	
				05/2/08 Revision

C27781: Chain of Custody
Page 2 of 4

LAB (LOCATION)					@						rod																		RS_
CALSCIENCE ()			ease Chec						Prij	ot Bil	I To C	ònta	ct Na	ne;				<u>ા</u> !	ACIDI	ENT	#`(El	NV S	ER	VICE	S)	Дсн	ECK IF NO IN	CIDENT # AF	PLIES
TESTAMERICA ()	[]ENV	. SERVICES		10TTV	RETAIL		SHEFF &	ETAIL	<u> </u>											3	5	7	0	3	2	D/	ATE:		
Plater ()	□мот	TVA SD&CM	По	ONSUL	TANT		LUBES						PO	#							SAI	#				١.,	NGE: 3	20-7	
Lab Vendor # See Dropdown	SHE	L PIPELINE	□	THER .						\Box	<u> </u>	Ť	1	\Box	T	Π.	T	1		3	<u>ا</u>		0	3	T] "	GE: 5	UF3	
SAMPLING COMPANY.				1030	OOE:				1		SS: Street		-					State			0.0	SN EO N	D:	<u> </u>	4 `	1			
URS Corporation				L					25	55 13	3th A	/eni	ie SV	V, S	eattle	(PHOA	E WO	WA			E-MAX						Lows	SECRET FARTE	
ADDRESS: 111 Southwest Columbia St	reet, Sui	ite 1500,	Portland, Or	egon	97201				1							- 1					l						i		
PROJECT CONTACT (Hardcopy or PDF Report to).									Cliff	ord J	Pearson	n, UR	S, Port	land,	OR	503	-222-72	200			Cliffo	ord.Pe	earsc	on@U	RS.c	om BUSE (uqusu	8
TELEPHONE: FAX	rian Ple	B& To Corta							1	>, A	CARLY	Эr,	DOC	ĸ١	₹w`t	٠.	MM	lk-	TAL	1561	(CL	-			I		C2:	Z:2 <i>4</i>)
503-222-7200 503-222-4292			<u>Bria</u>	n.Ple	lcher@u				┡						DE	UEST	A1		010					_			-A	174	7
TURNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY)	(2 DAYS	☐ 24 HO	URS		RESULTS ON	NEEDEI WEEKI					UNI	TCOS	T	REG	NE2	EDA	VALT		NON-	UNI	тсо	ST						
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:			-						T	П		Т	Т	П	\neg		1	Π				Γ		П	1	П	FIE	LD NOT	ES:
DELIVERABLES: LEVEL 1 LEVEL 2 LEVEL 3	☐\LEVE	1.4 [OTHER (SPEC	IFY)_					1							1		1				l				1			
	Cooler #2			Cook	or #3				Į.				1			1								1			TEMPERA	TURE ON R	ECEPTIC
				•						الج. ا						-								ı	ı				
SPECIAL INSTRUCTIONS OR NOTES:			[]SHELL	REPE	NEW PROPERTY	E APPLIES IT RATE APP	LIES		Ě	Ϋ́	×	1							ĺ	l				l					
				OT NE	EDED	REQUESTE			Ę	18	101 TX	ı												1					_
			☐h¥0AI	DE LEE	XO DISK				HE S	F	IZ		11		-		l						Į					ner PID Rei boratory N	
	SAM	PLING -		Т	PRE	SERVATIVE		NO. OF																					
De Field Sample Identification	DATE	TIME	MATRIX	H	TT	<u> </u>	T	CONT.																					
*********			13	_	HPNO3 H	2504 HONE	отнея	-	2002															H					
11 MW-309-0513	5)k	03SI	HEO	X	\vdash	_		10	<u> </u>	X	<u> </u>	+	+	_	-	-				-	_	-	⊢	⊢	⊢	\vdash			
				_						Ш													L	L	<u> </u>	Ш			
												ı																	
												ı				T	Γ												
				╁	\vdash	_	1	 	┢	H	-	╁	_	十	\top	+		 						—	╅	П			
			<u> </u>	╁	\vdash	+	-		┢		+	╀	+	\dashv	-	+	 	┝		\vdash	_	H	H	╁	\vdash	Н			
							<u>L</u>		L							\bot						L	L		L	Ш			
				1			1									1	l			П					l	l			l
				╁╌	++		╁	\vdash	 	H		+-	+	\dashv	-	+		Н		\vdash	_	Н	\vdash	\vdash	H	\vdash			
				<u> </u>	\perp		_	<u> </u>	Ш	_		┺	\perp	_	_ _			Ш		Н	L		_	<u> </u>	_	Ш			
				1			1					1		-				l		Ш						Ш			
				✝			1		T	Ħ	\neg	T	+	一	十	\top				П					Г	П			
Reing/shid by (Signature)	<u> </u>		Received by (Sig	72/20						·										Date			Ц.	Ц_	<u> </u>	Time			
Develous 5/6	13	1200	þ																										
Hampiehier by (Signaturity)			Received by (Sq	(Sudder	/_	se-	_	RI	wi											5	//-	7/1	3			0	\$50		
Reinquished by (Signature)			Received by: (Sig	ynature)				$\mathcal{L}_{\mathcal{L}}$				_								Date:						Time.		····	
																									-		05/2/06 Rev	sióh:	

C27781: Chain of Custody

Page 3 of 4

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: C27	781		Client: SHELL	OIL	Project: 2555 13TH AVE SW, SEATTLE, WA							
Date / Time Received: 5/17	7/2013		Delive	ry Method:	FedEx	Airbill #'s: 8020082950	12; 7957815	93963; 7	95781593974			
Cooler Temps (Initial/Adjust	ed): <u>#</u>	1: (5.4/5.4	4); #2: (5.3/5.3);	#3: (5.5/5.5); 0								
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved:		3.	COC Present: npl Dates/Time Of	<u>Y</u> or N ✓ □	Sample labe Container la Sample con	arity - Documentation els present on bottles: abeling complete: stainer label / COC agree: grity - Condition	>	or N				
Cooler temp verification: Cooler media: No. Coolers:		IR Gun Ice (Bag)			1. Sample rec	vd within HT:	V					
Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly:	\ \ \		N/A		Analysis re Bottles rec Sufficient v	grity - Instructions quested is clear: eived for unspecified tests rolume recvd for analysis:	✓✓✓	or N	N/A ✓			
VOCs headspace free:	✓				·	ng instructions clear: structions clear:			▽			
Comments Accuted Laboratories				2105	Lundy Avenue				San Ince CA 95131			
Accutest Laboratories V:408.588.0200					Lundy Avenue 108.588.0201				San Jose, CA 95131 www/accutest.com			

C27781: Chain of Custody

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VU426-MB	U11101.D	1	05/21/13	TF	n/a	n/a	VU426

The QC reported here applies to the following samples:

C27781-2

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No.	Surrogate Recoveries		Limits
2037-26-5	Dibromofluoromethane	109%	70-130%
	Toluene-D8	105%	70-130%
	4-Bromofluorobenzene	97%	70-130%

Method: SW846 8260B

Method Blank Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample VQ603-MB	File ID Q15019.D	DF 1	Analyzed 05/22/13	By PH	Prep Date n/a	Prep Batch n/a	Analytical Batch VQ603

The QC reported here applies to the following samples:

C27781-3, C27781-4, C27781-6, C27781-8, C27781-9, C27781-10, C27781-11, C27781-12, C27781-13, C27781-14, C27781-15, C27781-16

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	88%	70-130%
2037-26-5	Toluene-D8	106%	70-130%
460-00-4	4-Bromofluorobenzene	105%	70-130%

Method: SW846 8260B

Method Blank Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
VR626-MB	R17181.D	1	05/22/13	TN	n/a	n/a	VR626

The QC reported here applies to the following samples:

C27781-17, C27781-18, C27781-19, C27781-20, C27781-21

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No.	Surrogate Recoveries	Limits	
2037-26-5	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	95% 101% 96%	70-130% 70-130% 70-130%

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27781

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VU426-BS	U11097.D	1	05/20/13	TF	n/a	n/a	VU426
VU426-BSD	U11098.D	1	05/20/13	TF	n/a	n/a	VU426

The QC reported here applies to the following samples:

C27781-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	20.4	102	20.2	101	1	77-122/25
100-41-4	Ethylbenzene	20	20.6	103	20.7	104	0	76-126/17
108-88-3	Toluene	20	20.2	101	20.4	102	1	75-122/17
1330-20-7	Xylene (total)	60	58.8	98	59.2	99	1	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Dibromofluoromethane Toluene-D8	104% 103%	104% 103%	70-130% 70-130%
460-00-4	4-Bromofluorobenzene	102%	104%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample VQ603-BS VQ603-BSD	File ID Q15016.D Q15017.D	DF 1	Analyzed 05/21/13 05/21/13	By PH PH	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VQ603 VQ603

The QC reported here applies to the following samples:

C27781-3, C27781-4, C27781-6, C27781-8, C27781-9, C27781-10, C27781-11, C27781-12, C27781-13, C27781-14, C27781-15, C27781-16

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	18.2	91	18.3	92	1	77-122/25
100-41-4	Ethylbenzene	20	21.5	108	20.8	104	3	76-126/17
108-88-3	Toluene	20	19.9	100	19.8	99	1	75-122/17
1330-20-7	Xylene (total)	60	57.3	96	57.1	95	0	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	97% 105% 105%	100% 104% 106%	70-130% 70-130% 70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VR626-BS	R17178.D	1	05/22/13	TN	n/a	n/a	VR626
VR626-BSD	R17179.D	1	05/22/13	TN	n/a	n/a	VR626

The QC reported here applies to the following samples:

C27781-17, C27781-18, C27781-19, C27781-20, C27781-21

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	20.5	103	20.7	104	1	77-122/25
100-41-4	Ethylbenzene	20	21.5	108	21.9	110	2	76-126/17
108-88-3	Toluene	20	20.9	105	21.3	107	2	75-122/17
1330-20-7	Xylene (total)	60	60.2	100	61.2	102	2	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	101%	103%	70-130%
2037-26-5	Toluene-D8	99%	99%	70-130%
460-00-4	4-Bromofluorobenzene	98%	98%	70-130%

^{* =} Outside of Control Limits.

Laboratory Control Sample Summary Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample VU426-LCS	File ID U11099.D	DF	Analyzed 05/20/13	By TF	Prep Date	Prep Batch	Analytical Batch VU426
							. 2 . 2 .

The QC reported here applies to the following samples: Method: SW846 8260B

C27781-2

CAS No. **Surrogate Recoveries** BSP Limits 1868-53-7 Dibromofluoromethane 104% 70-130% 2037-26-5 Toluene-D8 105% 70-130% 460-00-4 4-Bromofluorobenzene 100% 70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary Job Number: C27781

Account: SHELLWIC Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR626-LCS	R17180.D	1	05/22/13	TN	n/a	n/a	VR626

The QC reported here applies to the following samples:

C27781-17, C27781-18, C27781-19, C27781-20, C27781-21

Spike LCS LCS CAS No. Compound ug/l ug/l **%** Limits

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane	99%	70-130%
2037-26-5	Toluene-D8	99%	70-130%
460-00-4	4-Bromofluorobenzene	97%	70-130%

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27781

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C27781-2MS	U11118.D	10	05/21/13	TF	n/a	n/a	VU426
C27781-2MSD	U11119.D	10	05/21/13	TF	n/a	n/a	VU426
C27781-2	U11117.D	10	05/21/13	TF	n/a	n/a	VU426

The QC reported here applies to the following samples: **Method:** SW846 8260B

C27781-2

CAS No.	Compound	C27781-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	873	200	1130	129* a	1240	184* a	9	77-122/16
100-41-4	Ethylbenzene	236	200	467	116	526	145* a	12	76-126/17
108-88-3	Toluene	23.1	200	233	105	269	123*	14	75-122/17
1330-20-7	Xylene (total)	145	600	775	105	885	123	13	77-125/17
CAS No.	Surrogate Recoveries	MS	MSD	C27	7781-2	Limits			
1868-53-7	Dibromofluoromethane	111%	104%	115	%	70-130%)		
2037-26-5	Toluene-D8	101%	101%	101	%	70-130%)		
460-00-4	4-Bromofluorobenzene	106%	103%	103	%	70-130%)		

(a) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C27781-15MS	Q15034.D	10	05/22/13	PH	n/a	n/a	VQ603
C27781-15MSD	Q15035.D	10	05/22/13	PH	n/a	n/a	VQ603
C27781-15	Q15032.D	10	05/22/13	PH	n/a	n/a	VQ603

The QC reported here applies to the following samples:

C27781-3, C27781-4, C27781-6, C27781-8, C27781-9, C27781-10, C27781-11, C27781-12, C27781-13, C27781-14, C27781-15, C27781-16

CAS No.	Compound	C27781-15 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	318	200	490	86	490	86	0	77-122/16
100-41-4	Ethylbenzene	233	200	446	107	433	100	3	76-126/17
108-88-3	Toluene	21.7	200	217	98	218	98	0	75-122/17
1330-20-7	Xylene (total)	68.9	600	638	95	637	95	0	77-125/17

CAS No.	Surrogate Recoveries	MS	MSD	C27781-15	Limits
	Dibromofluoromethane	99%	97%	92%	70-130%
	Toluene-D8	104%	105%	105%	70-130%
	4-Bromofluorobenzene	107%	107%	106%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27781

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C27798-17MS	R17201.D	1	05/22/13	TN	n/a	n/a	VR626
C27798-17MSD	R17202.D	1	05/22/13	TN	n/a	n/a	VR626
C27798-17	R17199.D	1	05/22/13	TN	n/a	n/a	VR626

The QC reported here applies to the following samples:

C27781-17, C27781-18, C27781-19, C27781-20, C27781-21

CAS No.	Compound	C27798-17 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	19.4	97	19.4	97	0	77-122/16
100-41-4	Ethylbenzene	ND	20	20.9	105	21.2	106	1	76-126/17
108-88-3	Toluene	ND	20	20.0	100	20.1	101	0	75-122/17
1330-20-7	Xylene (total)	ND	60	56.7	95	57.2	95	1	77-125/17
	• , , ,								
CAC NI-	C	MC	MCD	C22	7700 17	T !!4-			

CAS No.	Surrogate Recoveries	MS	MSD	C27798-17	Limits
1868-53-7	Dibromofluoromethane	99%	96%	100%	70-130%
2037-26-5	Toluene-D8	100%	99%	99%	70-130%
460-00-4	4-Bromofluorobenzene	98%	98%	97%	70-130%

^{* =} Outside of Control Limits.

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8270C BY SIM

Method Blank Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP8000-MB	File ID T8779.D	DF 1	Analyzed 05/17/13	By NL	Prep Date 05/17/13	Prep Batch OP8000	Analytical Batch ET400

Limits

The QC reported here applies to the following samples:

C27781-11, C27781-12, C27781-13

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	0.50	0.050	ug/l
208-96-8	Acenaphthylene	ND	0.50	0.050	ug/l
120-12-7	Anthracene	ND	0.50	0.050	ug/l
56-55-3	Benzo(a)anthracene	ND	0.10	0.053	ug/l
50-32-8	Benzo(a)pyrene	ND	0.10	0.041	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.035	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.10	0.036	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.039	ug/l
218-01-9	Chrysene	ND	0.10	0.045	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.035	ug/l
206-44-0	Fluoranthene	ND	0.50	0.050	ug/l
86-73-7	Fluorene	ND	0.50	0.050	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.035	ug/l
90-12-0	1-Methylnaphthalene	ND	0.50	0.10	ug/l
91-57-6	2-Methylnaphthalene	ND	0.50	0.10	ug/l
91-20-3	Naphthalene	ND	0.50	0.10	ug/l
85-01-8	Phenanthrene	ND	0.50	0.050	ug/l
129-00-0	Pyrene	ND	0.50	0.050	ug/l

CAS No. Surrogate Recoveries

4165-60-0	Nitrobenzene-d5	77%	31-128%
321-60-8	2-Fluorobiphenyl	74%	34-123%
1718-51-0	Terphenyl-d14	84%	43-136%

Method: SW846 8270C BY SIM

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP8000-BS	T8780.D	1	05/17/13	NL	05/17/13	OP8000	ET400
OP8000-BSD	T8781.D	1	05/17/13	NL	05/17/13	OP8000	ET400

The QC reported here applies to the following samples:

C27781-11, C27781-12, C27781-13

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
83-32-9	Acenaphthene	5	3.8	76	3.8	76	0	57-113/24
208-96-8	Acenaphthylene	5	3.5	70	3.7	74	6	58-117/25
120-12-7	Anthracene	5	3.9	78	4.1	82	5	65-121/23
56-55-3	Benzo(a)anthracene	5	4.3	86	4.3	86	0	62-121/21
50-32-8	Benzo(a)pyrene	5	4.5	90	4.6	92	2	65-125/20
205-99-2	Benzo(b)fluoranthene	5	4.5	90	4.0	80	12	62-126/22
191-24-2	Benzo(g,h,i)perylene	5	3.9	78	4.3	86	10	45-133/22
207-08-9	Benzo(k)fluoranthene	5	4.6	92	5.1	102	10	61-122/20
218-01-9	Chrysene	5	4.3	86	4.3	86	0	62-118/20
53-70-3	Dibenzo(a,h)anthracene	5	3.7	74	4.1	82	10	45-135/25
206-44-0	Fluoranthene	5	4.2	84	4.3	86	2	63-118/21
86-73-7	Fluorene	5	3.8	76	3.9	78	3	59-115/24
193-39-5	Indeno(1,2,3-cd)pyrene	5	3.5	70	3.9	78	11	51-130/26
90-12-0	1-Methylnaphthalene	5	3.5	70	3.5	70	0	53-107/25
91-57-6	2-Methylnaphthalene	5	3.3	66	3.7	74	11	56-115/26
91-20-3	Naphthalene	5	3.4	68	3.4	68	0	54-110/23
85-01-8	Phenanthrene	5	3.8	76	3.9	78	3	60-114/26
129-00-0	Pyrene	5	4.1	82	4.0	80	2	58-124/21

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
4165-60-0	Nitrobenzene-d5	82%	74%	31-128%
321-60-8	2-Fluorobiphenyl	82%	74%	34-123%
1718-51-0	Terphenyl-d14	91%	87%	43-136%

^{* =} Outside of Control Limits.

Method: SW846 8270C BY SIM

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP8000-MS	T8793.D	1	05/17/13	NL	05/17/13	OP8000	ET400
OP8000-MSD	T8794.D	1	05/17/13	NL	05/17/13	OP8000	ET400
C27752-8	T8784.D	1	05/17/13	NL	05/17/13	OP8000	ET400

The QC reported here applies to the following samples:

C27781-11, C27781-12, C27781-13

G L G M	G 1	C27752-8	Spike	MS		MSD	MSD	DDD	Limits
CAS No.	Compound	ug/l Q	ug/l	ug/	1 %	ug/l	%	RPD	Rec/RPD
83-32-9	Acenaphthene	0.47 U	5	3.8	76	3.7	74	3	57-113/24
208-96-8	Acenaphthylene	0.47 U	5	3.9	78	3.7	74	5	58-117/25
120-12-7	Anthracene	0.47 U	5	3.9	78	3.9	78	0	65-121/23
56-55-3	Benzo(a)anthracene	0.094 U	5	4.0	80	3.5	70	13	62-121/21
50-32-8	Benzo(a)pyrene	0.094 U	5	4.1	82	3.8	76	8	65-125/20
205-99-2	Benzo(b)fluoranthene	0.094 U	5	3.4	68	3.7	74	8	62-126/22
191-24-2	Benzo(g,h,i)perylene	0.094 U	5	3.4	68	3.1	62	9	45-133/22
207-08-9	Benzo(k)fluoranthene	0.094 U	5	4.4	88	3.8	76	15	61-122/20
218-01-9	Chrysene	0.094 U	5	3.9	78	3.7	74	5	62-118/20
53-70-3	Dibenzo(a,h)anthracene	0.094 U	5	3.5	70	2.9	58	19	45-135/25
206-44-0	Fluoranthene	0.47 U	5	4.0	80	4.0	80	0	63-118/21
86-73-7	Fluorene	0.47 U	5	3.9	78	3.6	72	8	59-115/24
193-39-5	Indeno(1,2,3-cd)pyrene	0.094 U	5	3.2	64	2.5	50* a	25	51-130/26
90-12-0	1-Methylnaphthalene	0.47 U	5	3.6	72	3.5	70	3	53-107/25
91-57-6	2-Methylnaphthalene	0.47 U	5	3.7	74	3.7	74	0	56-115/26
91-20-3	Naphthalene	0.47 U	5	3.6	72	3.5	70	3	54-110/23
85-01-8	Phenanthrene	0.47 U	5	3.9	78	3.8	76	3	60-114/26
129-00-0	Pyrene	0.47 U	5	3.9	78	3.9	78	0	58-124/21
CAS No.	Surrogate Recoveries	MS	MSD		C27752-8	Limits			
4165-60-0	Nitrobenzene-d5	78%	82%		70%	31-1289	6		

77%

80%

68%

65%

34-123%

43-136%

(a) Outside control limits due to matrix in	III CHELCIUC. MAIIII	DIC TOLLICO CHIUISION	OULTIE EXTRACTION DEOCESS.

80%

77%

2-Fluorobiphenyl

1718-51-0 Terphenyl-d14

321-60-8

o

^{* =} Outside of Control Limits.

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: NWTPH-GX

Method Blank Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1445-MB	File ID JK35826.D	DF 1	Analyzed 05/22/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1445

The QC reported here applies to the following samples:

C27781-1, C27781-2, C27781-3, C27781-4, C27781-5, C27781-6, C27781-7, C27781-8, C27781-9, C27781-10, C27781-11, C27781-12, C27781-13, C27781-14, C27781-15, C27781-16, C27781-17, C27781-18

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l

CAS No.	Surrogate Recoveries		Limits
98-08-8	aaa-Trifluorotoluene	95%	50-150%
460-00-4	4-Bromofluorobenzene	75%	50-150%

Method: NWTPH-GX

Method Blank Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1446-MB	File ID JK35859.D	DF 1	Analyzed 05/23/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1446

The QC reported here applies to the following samples:

C27781-19, C27781-20, C27781-21

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l

CAS No. Surrogate Recoveries Limits

 98-08-8
 aaa-Trifluorotoluene
 99%
 50-150%

 460-00-4
 4-Bromofluorobenzene
 80%
 50-150%

Method: NWTPH-GX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1445-BS GJK1445-BSD	File ID JK35827.D JK35828.D	DF 1 1	Analyzed 05/22/13 05/22/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1445 GJK1445

The QC reported here applies to the following samples:

C27781-1, C27781-2, C27781-3, C27781-4, C27781-5, C27781-6, C27781-7, C27781-8, C27781-9, C27781-10, C27781-11, C27781-12, C27781-13, C27781-14, C27781-15, C27781-16, C27781-17, C27781-18

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	0.4	0.414	104	0.405	101	2	60-140/30

CAS No.	Surrogate Recoveries	DSP	DSD	Limits
98-08-8	aaa-Trifluorotoluene	88%	88%	50-150%
460-00-4	4-Bromofluorobenzene	73%	73%	50-150%

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1446-BS GJK1446-BSD	File ID JK35860.D JK35861.D	DF 1 1	Analyzed 05/23/13 05/23/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1446 GJK1446

The QC reported here applies to the following samples:

C27781-19, C27781-20, C27781-21

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	0.4	0.390	98	0.392	98	1	60-140/30
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
98-08-8	aaa-Trifluorotoluene	89%	920	%	50-150%)		
460-00-4	4-Bromofluorobenzene	77%	779	%	50-150%			

^{* =} Outside of Control Limits.

7.3.1

Page 1 of 1

Method: NWTPH-GX

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch	
C27781-11MS	JK35851.D	1	05/23/13	TT	n/a	n/a	GJK1445	
C27781-11MSD	JK35852.D	1	05/23/13	TT	n/a	n/a	GJK1445	
C27781-11	JK35841.D	1	05/23/13	TT	n/a	n/a	GJK1445	

The QC reported here applies to the following samples:

C27781-1, C27781-2, C27781-3, C27781-4, C27781-5, C27781-6, C27781-7, C27781-8, C27781-9, C27781-10, C27781-11, C27781-12, C27781-13, C27781-14, C27781-15, C27781-16, C27781-17, C27781-18

CAS No.	Compound	C27781-11 mg/l Q	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	ND	0.4	0.362	91	0.381	95	5	60-140/20
CAS No.	Surrogate Recoveries	MS	MSD	C27	781-11	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	87% 67%	94% 72%	96% 73%		50-150% 50-150%			

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C27781-21MS	JK35866.D	1	05/23/13	TT	n/a	n/a	GJK1446
C27781-21MSD	JK35867.D	1	05/23/13	TT	n/a	n/a	GJK1446
C27781-21	JK35865.D	1	05/23/13	TT	n/a	n/a	GJK1446

The QC reported here applies to the following samples:

C27781-19, C27781-20, C27781-21

		C27781-21	Spike	MS	MS	MSD	MSD		Limits	
CAS No.	Compound	mg/l Q	mg/l	mg/l	%	mg/l	%	RPD	Rec/RPD	
	TPH (Gasoline)	ND	0.4	0.411	103	0.431	108	5	60-140/20	
CAS No.	Surrogate Recoveries	MS	MSD	C27	7781-21	Limits				
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	98% 82%	90% 78%	95% 80%		50-1509 50-1509				

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C27781-2DUP C27781-2	File ID JK35831.D JK35830.D	DF 10 10	Analyzed 05/22/13 05/22/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1445 GJK1445

The QC reported here applies to the following samples:

C27781-2

CAS No.	Compound	C27781-2 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Gasoline)	4.19	4.18	0 20
CAS No.	Surrogate Recoveries	DUP	C27781-2	Limits
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	109% 87%	102% 83%	50-150% 50-150%

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C27781-12DUP C27781-12	File ID JK35843.D JK35842.D	DF 1 1	Analyzed 05/23/13 05/23/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1445 GJK1445

The QC reported here applies to the following samples:

C27781-1, C27781-3, C27781-4, C27781-5, C27781-6, C27781-7, C27781-8, C27781-9, C27781-10, C27781-11, C27781-12, C27781-13, C27781-14, C27781-15, C27781-16, C27781-17, C27781-18

CAS No.	Compound	C27781-12 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Gasoline)	ND	ND	nc 20
CAS No.	Surrogate Recoveries	DUP	C27781-12	Limits
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	103% 75%	103% 76%	50-150% 50-150%

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C27781-19DUP C27781-19	File ID JK35863.D JK35862.D	DF 2.5 2.5	Analyzed 05/23/13 05/23/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1446 GJK1446

The QC reported here applies to the following samples:

C27781-19, C27781-20, C27781-21

CAS No.	Compound	C27781-19 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Gasoline)	2.16	2.29	6 20
CAS No.	Surrogate Recoveries	DUP	C27781-19	Limits
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	94% 76%	95% 77%	50-150% 50-150%

^{* =} Outside of Control Limits.

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: NWTPH-DX

Method Blank Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample File ID DF Analyzed By Prep Date Prep Batch Anal OP8007-MB HH303610.D1 05/19/13 AG 05/18/13 OP8007 GHH	ytical Batch 1984
---	----------------------

The QC reported here applies to the following samples:

C27781-1, C27781-5, C27781-7, C27781-11, C27781-12, C27781-13, C27781-19

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel)	ND	0.10	0.050	mg/l
	TPH (Motor Oil)	ND	0.20	0.10	mg/l

CAS No. Surrogate Recoveries Limits
630-01-3 Hexacosane 70% 50-150%

Method: NWTPH-DX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP8007-BS OP8007-BSD	File ID DF HH303607.D1 HH303608.D1	Analyzed 05/19/13 05/19/13	By AG AG	Prep Date 05/18/13 05/18/13	Prep Batch OP8007 OP8007	Analytical Batch GHH984 GHH984

The QC reported here applies to the following samples:

C27781-1, C27781-5, C27781-7, C27781-11, C27781-12, C27781-13, C27781-19

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel)	1	0.888	89	0.902	90	2	45-140/30
	TPH (Motor Oil)	1	0.961	96	0.979	98	2	45-140/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
630-01-3	Hexacosane	77%	77%	50-150%

^{* =} Outside of Control Limits.

Method: NWTPH-DX

Duplicate Summary

Job Number: C27781

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP8007-DUP1 C27781-11	File ID DF HH303606.D1 HH303602.D1	Analyzed 05/19/13 05/19/13	By AG AG	Prep Date 05/18/13 05/18/13	Prep Batch OP8007 OP8007	Analytical Batch GHH984 GHH984

The QC reported here applies to the following samples:

C27781-1, C27781-5, C27781-7, C27781-11, C27781-12, C27781-13, C27781-19

CAS No.	Compound		DUP mg/l Q	RPD Limits			
	TPH (Diesel) TPH (Motor Oil)	ND ND	ND ND	nc 25 nc 25			
CAS No.	Surrogate Recoveries	DUP	C27781-11	Limits			
630-01-3	Hexacosane	65%	74%	50-150%			

^{* =} Outside of Control Limits.

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C27781

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6223 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

05/20/13

Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	13	8.5		
Antimony	6.0	.7	.51		
Arsenic	10	.7	.65		
Barium	200	. 4	.35		
Beryllium	5.0	. 2	. 4		
Bismuth	20		2.9		
Boron	100	.9	.64		
Cadmium	2.0	. 2	.15		
Calcium	5000	7.1	12		
Chromium	10	. 3	.41		
Cobalt	5.0	. 2	.3		
Copper	10	1.2	3		
Iron	200	6.4	12		
Lead	10	.7	.85	-0.20	<10
Lithium	50		2		
Magnesium	5000	27	36		
Manganese	15	.1	1.3		
Molybdenum	20	. 2	.22		
Nickel	5.0	. 2	.12		
Potassium	10000	18	44		
Selenium	10	1.8	2.2		
Silicon	100	1.2	6.9		
Silver	5.0	.3	.47		
Sodium	10000	15	13		
Strontium	10	. 2	.24		
Thallium	10	.5	.54		
Tin	50	. 2	.7		
Titanium	10	. 4	.34		
Vanadium	10	.3	.3		
Zinc	20	.3	4.2		

Associated samples MP6223: C27781-1

(*) Outside of QC limits
(anr) Analyte not requested

97 of 101
ACCUTEST

C27781

C27781

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C27781 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6223 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

05/20/13 Prep Date:

Metal	C27781-1 Original	MS	Spikelot MPIR4A	% Rec	QC Limits	
Aluminum						
Antimony						
Arsenic	anr					
Barium						
Beryllium						
Bismuth						
Boron						
Cadmium						
Calcium						
Chromium	anr					
Cobalt						
Copper						
Iron						
Lead	3.7	553	500	109.9	75-125	
Lithium						
Magnesium						
Manganese						
Molybdenum						
Nickel	anr					
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						

Associated samples MP6223: C27781-1

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C27781 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6223 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

05/20/13

Metal	C27781-1 Original		Spikelot MPIR4A	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic	anr					
Barium						
Beryllium						
Bismuth						
Boron						
Cadmium						
Calcium						
Chromium	anr					
Cobalt						
Copper						
Iron						
Lead	3.7	562	500	111.7	1.6	20
Lithium						
Magnesium						
Manganese						
Molybdenum						
Nickel	anr					
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						
Associated sa	mples MP62	23: C2778	1-1			

Associated samples MP6223: C27781-1

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C27781
Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6223 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

05/20/13 05/20/13 Prep Date: QC Spikelot BSD BSP Spikelot BSD QC MPIR4A Limits MPIR4A RPD Limit Metal Result % Rec Result % Rec Aluminum Antimony Arsenic anr Barium Beryllium Bismuth Boron Cadmium Calcium Chromium anr Cobalt Copper Iron Lead 556 500 111.2 80-120 563 500 112.6 1.3 Lithium Magnesium Manganese Molybdenum Nickel anr Potassium Selenium Silicon Silver Sodium Strontium Thallium

Associated samples MP6223: C27781-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

Tin
Titanium
Vanadium
Zinc

SERIAL DILUTION RESULTS SUMMARY

Login Number: C27781 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6223 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 05/20/13

Metal	C27781-1 Original	SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium				
Beryllium				
Bismuth				
Boron				
Cadmium				
Calcium				
Chromium	anr			
Cobalt				
Copper				
Iron				
Lead	3.70	0.00	100.0(a)	0-10
Lithium				
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP6223: C27781-1

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Laboratory Report

Site: Shell Harbor Island Terminal

Seattle WA

Prepared for:

URS CORPORATION 111 SW COLUMBIA, SUITE 1500 PORTLAND, OR UNITED STATES

Prepared on: May 23, 2013

Project Summary and Objective

W. L. Gore & Associates, Inc. (Gore) provided the GORE® Survey (Survey) used at:
Shell Harbor Island Terminal
Seattle WA
The service provided by Gore included delivery of the required quantity of GORE® Modules analysis by the method described below for the requested organic compounds, reporting of the data, and contour mapping (as needed).
This report includes results for only the samples noted under the Laboratory Sample Report section. If contour maps are part of the project deliverable, the maps will be prepared and issued under a separate report cover, upon receipt of a usable sitemap (electronic) and compound choices for contouring.
Written/submitted by:
Dayna M Cobb
Project Manager
Reviewed/approved by:
Jay W Hodny
Project Manager
Analytical data approved by:
Jasmine R. Smith
Chemist

GORE_® Survey - Laboratory Report

Quality Assurance Statement

The Survey Products Group laboratory, at W. L. Gore & Associates' facility in Elkton, MD USA, operates under the guidelines of its ISO Standard 17025 DoD ELAP accreditation, and its Quality Assurance Manual, Operating Procedures, and Methods (SPG-SOP-0462).

For this project, the analytical method, results, and observations reported do [] do not [$\sqrt{\ }$] fall within the scope of W. L. Gore's ISO 17025 accreditation.

Screening/Concentration Method

The GORE® Modules are analyzed at Gore's fixed laboratory using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) instrumentation following U.S. EPA Method 8260 (SPG-WI-0292) which includes the following:

- BFB Tuning Frequency: A BFB tune is analyzed at the start of each analytical run and after every 30 samples.
- Initial Calibration: A minimum of a five point calibration curve is analyzed prior to the analysis of samples.
- · **Linearity of Target Compounds:** If the RSD of any target analyte is less than or equal to 25% then average response factor can be used for quantitation. If the RSD exceeds 25% for a target compound a regression equation can be used for quantitation.
- Continuing Calibration Verification: After every 10 samples, and at the end of each analytical batch, and a second-source Reference Standard is analyzed near the mid point of the calibration curve. The acceptance criteria for all target analytes in the reference standards are +/- 50% of the true value.
- · Method Blank: Analyzed prior to the analysis of field samples and every 30 samples.

Note: Analyte levels reported for the field-deployed GORE® Modules that exceed trip and method blank levels, and/or method detection limit, are more likely to have originated from on-site sources.

Media Sampled: SOIL GAS

Chemist - sample analysis: Kelly J Stringham
Chemist - data processor: Kelly J Stringham
Chemist - data review: Jasmine R. Smith

Method deviations: None.

Please note that data file names ending with R are rerun samples using the second pair of sorbers, in which the original results were not reported. Data file names ending in D are duplicate analysis results for the second set of sorbers from the same module, and are reported.

Additional Report Information

- Comments
- Laboratory Sample Report
- Chain of Custody
- Installation and Retrieval Log
- Data Table(s)
- Concentration Calculation Method Summary (as applicable)
- Total Ion Chromatograms

Project Specific Comments

Survey period ¹ Modules were installed on May 14, 2013 and retrieved on May 17,

2013 for a 3 day exposure period.

Tamper seal intact: Yes

Date received: 5/20/2013 9:00 AM By: Darlene Yellowdy

COC returned: Yes

Comments:

^{1 -} Installation start to end of retrieval, as reported. See installation and retrieval log for individual deployment and retrieval dates and times (i.e., sampler exposure time).

General Comments

Analytical QA/QC

Laboratory instrumentation consists of gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation involves cutting the tip off the bottom of the GORE® Module, and transferring one or more "sorbers" to a thermal desorption tube for analysis. The insertion/retrieval cord prevents soil, water and other interferences from coming in contact with the adsorbent. No further sample preparation is required. Any replicate sorbers not consumed in the initial analysis will be discarded fifteen (15) days from the date of the laboratory report.

Data are archived and stored in a secure manner as per Gore's Quality Assurance program (SPG-SOP-0462).

Total petroleum hydrocarbons (TPH), gasoline-range petroleum hydrocarbons (GRPH), and/or diesel range petroleum hydrocarbons (DRPH), when reported, are calculated using the area under the peaks observed in m/z 55 and 57 selected ion chromatograms. Quantitation of the mass values was performed using the response factor for a specific alkane (present in the calibration standards). TPH values include the entire chromatogram and provide estimates for aliphatic hydrocarbon ranges of C4 to C20. GRPH and DRPH include only the relevant regions of the chromatograms and provide estimates for C4 to C10 and C10 to C20 aliphatic hydrocarbons, respectively.

Trip blanks were provided to document potential exposures that were not part of the signal of interest (e.g., impact during sampler shipment, installation and/or retrieval, and storage). The trip blanks are identically manufactured and packaged GORE® Modules to those modules deployed in the field. The trip blanks remain unopened during all phases of the project. Levels reported on the trip blanks may indicate potential impact to the modules other than the contaminant source of interest.

Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central gas chromatograph elution time in the total ion chromatogram. UPEs may be indicative of complex fluid mixtures. UPEs observed early in the chromatograms are considered to indicate presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

Total ion chromatograms (TICs) are included in the Attachments. The eight-digit serial number of each module is incorporated in the TIC identification (e.g., <u>12345678.D</u> represents GORE® Module <u>12345678</u>).

General Comments

Soil Gas Sampling

For soil gas sampling, the GORE® Survey reports mass levels migrating through the open pore spaces of the soil and diffusing through the sampler membrane for sorption by the engineered, hydrophobic adsorbents, housed within the membrane tube. During the migration of the soil gas away from the source to the GORE® Module, the vapors are subject to a variety of attenuation factors. The soil gas masses reported on the modules compare favorably with the concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels to other sampled locations on the site, the matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.

Soil gas concentrations (μ g/m3) are calculated following the method described in the Additional Report Information section.

Soil gas signals reported by this method cannot be correlated specifically to soil adsorbed, groundwater, and/or free-phase contamination. The soil gas signal reported from each GORE® Module can evolve from all of these sources. Differentiation between soil and groundwater contamination can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater contamination only).

Air Sampling

For indoor, outdoor, and crawlspace air sampling, the GORE® Survey reports mass levels present in the air and diffusing through the sampler membrane for sorption by the engineered adsorbents housed within the membrane tube.

Air concentrations (µg/m3) are calculated following the method described in the Additional Report Information section.

Groundwater and Sediment Porewater Sampling

For groundwater and sediment porewater sampling, the GORE® Survey reports the mass levels of compounds present in the water which, when coming in contact with the sampler membrane, partitions out of solution, and diffuses through the sampler membrane for sorption by the engineered adsorbents.

Water concentrations (μ g/L) are calculated using the quantified mass, exposure period and the compound specific uptake rate. The rates were measured under controlled experimental conditions. The uptake rates are corrected for water pressure (depth of the GORE® Module below the water table), water temperature and the aquifer flow rate.

LABORATORY SAMPLE REPORT

Project: ENV 22212579 Site Name: Shell Harbor Island Terminal Module Type: SPG0008

Module ID	Sample Type		Field ID
00714161	FIELD_SAMPLE		SG09
00714162	FIELD_SAMPLE		SG10
00714163	FIELD_SAMPLE		SG19
00714164	TRIP_BLANK		Trip Blank
00714165	TRIP_BLANK		Trip Blank
00714166	FIELD_SAMPLE		SG20
00714167	FIELD_SAMPLE		SG07
00714168	FIELD_SAMPLE		SG13
00714169	FIELD_SAMPLE		SG12
00714170	FIELD_SAMPLE		SG15
00714171	FIELD_SAMPLE		SG16
00714172	FIELD_SAMPLE		SG05
00714173	FIELD_SAMPLE		SG14
00714174	FIELD_SAMPLE		SG18
00714175	FIELD_SAMPLE		SG06
00714176	FIELD_SAMPLE		SG17
00714177	FIELD_SAMPLE		SG11
00714178	FIELD_SAMPLE		SG08
00714179	FIELD_SAMPLE		SG01
00714180	FIELD_SAMPLE		SG02
00714181	FIELD_SAMPLE		SG04
00714182	FIELD_SAMPLE		SG03
Total #	Total #	Total #	Total #
"FIELD SAMPLES"	"TRIP BLANKS"	"UNUSED"	"LOST"
20	2	0	0

Duplicate samples: 0

Sample ID	Date / Time Deployed	Date / Time Retreived
SG-01	5/14/2013 11:45	5/17/2013 7:46
SG-02	5/14/2013 11:35	5/17/2013 7:45
SG-03	5/14/2013 11:25	5/17/2013 7:43
SG-04	5/14/2013 10:30	5/17/2013 7:41
SG-05	5/14/2013 12:55	5/17/2013 7:58
SG-06	5/14/2013 12:45	5/17/2013 8:00
SG-07	5/14/2013 13:05	5/17/2013 8:03
SG-08	5/14/2013 10:00	5/17/2013 7:39
SG-09	5/14/2013 13:10	5/17/2013 7:37
SG-10	5/14/2013 13:35	5/17/2013 7:35
SG-11	5/14/2013 11:55	5/17/2013 7:49
SG-12	5/14/2013 13:50	5/17/2013 8:07
SG-13	5/14/2013 13:45	5/17/2013 8:05
SG-14	5/14/2013 12:05	5/17/2013 7:51
SG-15	5/14/2013 14:05	5/17/2013 8:09
SG-16	5/14/2013 14:30	5/17/2013 8:11
SG-17	5/14/2013 12:15	5/17/2013 7:53
SG-18	5/14/2013 12:25	5/17/2013 7:55
SG-19	5/14/2013 14:55	5/17/2013 8:17
SG-20	5/14/2013 14:45	5/17/2013 8:15

Soil gas and/or Air Sampling	Production Order #: 22212579
Customer Name: URS CORPORATION Address: P O BOX 203970 ATTN: ACCOUNTS PAYABLE	Site Name: Shell Harbor Island Terminal Site Address: Seattle WA
AUSTIN, TX 78720 USA	Project Manager: BRIAN PLETZILLER DBS CORPOPATION
00714161 - 00714182 Tota Tota	Modules for Installation 20.00 # of Trip Blanks 2 al Modules Shipped 22.00 Pieces al Modules Received Pieces al Modules Installed Pieces Serial # of Trip Blanks (Client Decides)
1 . 1 . 1	
Prepared By: Classics UMILL Verified By:	Installation Method: (Circle those that apply) Slide Hammer Hammer Drill Auger Other Soi PPOBE
Installation Performed By: Name: CLIFFORD J - READSON Company: URS CORP	Retrieval Performed By: Name: CUHOPS T. RARGE Company: UPS CORP
Installation Start Date / Time: 5/14/13 1000 Installation Complete Date / Time: 5/14/13 1300	Retrieval Start Date / Time: 5/17 (3 0735 Retrieval Complete Date / Time 5/17(13 0817
Total Modules Retrieved: Total Modules Lost In Field: Total Unused Modules Returned:	
Relinquished By	Received By: Children Date/Time 5/9/13
Delineviahed Dv. Cl. 114 as/d 177	Received By: FEO EX Date/Time 5/10/13 Company: "
Relinquished By Company:	Received By: Nather hylloudy 3/20/13 Company: Will Green 9:30 Am

	Remodelined by (Olymenics)		Perrophys by (Security)	Reinigraphyd by (Signatura)	CA	O.	1/2 to-03	56-06 SIN	30-0S			56-02 3In	Ne 36 - 95		Field Sample Identification	CHE CHOTE NO. BEAUTIC SHEW HAILDON. 151910 TEMMINEN. 130430	SPECIAL INSTRUCTIONS OF NOTES	1 (JUEVEL 2 ()LEVEL 3	□ LA - RIMQCB REPORT FORMAT □ UST AGENCY:	TUBUNGUND TIME (CALENDARY AVE. CAVE.)		111 Southwest Columbia Street	URS Corporation	Lab Vendor # See Dropdown	L		CALSCIENCE(LAB (LOCATION)
	Received by Showman	Received by: (Signature)		11735 AND XX /	131 Alia x	7737 Ain x /	7803AIR 0 1	300 AIL	758 AIR	741 AIL	743 Air	75 40	AIN OPPL	THEE	SAMPLING PROPERTY IN	DS-VEZ CONTRACT ANTE APPLES BID NOT NEEDED DECENT VEHICATION REQUESTED PROVIDE LEDD DISK	Cooler #2	□LEVEL 4 □OTHER (SPECIFY)	LIZ DAYS LIZ4 HOURS ON WESIGNO	Bran.Pletcher@urs.com	Brian Pietcher	111 Southwest Columbia Street, Suite 1500, Portland, Oregon 97201	nos cone	SHELL PIPELINE DOTHER	☐MOTIVA SOACM ☐CONSULTANT ☐LUBES	□ENV. SERVICES □MOTTVA RETAIL □SHELL RETAIL	te Bor	
Date	Table 1		Date																UNIT COST REQUESTED ANALYSIS NON-UNIT COST	C. PENISON : M. THUSGHER	Clifford J Pearson, URS, Portland, OR 503-222-7200 Clifford	DE DELVENIUE PORTUGE CONTROL C	3 0	# HVS		PINCIDENT # (ENV SERVICES)	Shell Oil Products Chain Of Custody Record	
 State			7					SORE							Constant Of succession	ny 23 2013		FIELD NOTES: 10		24.000	Clifford "Barson@URS.com 4619494 8	COMMITTEE OF THE PROPERTY OF T	0 0 3 6 FAGE (& T		7 0 3 2 DATE MAN 13 2013	(SERVICES) CHECKIF NO INCIDENT & ARRIVES		

						\vdash																						
8	Ī				=	9						23									8				98			
						-						C.									(entered	Received by: (Signatu	2				Reinquished by: (Signature)	Redrigue
•	Ī				#	8						*											10000					
						\vdash															iangent	Received by: (Signature)					Reinquiehed by: (Signature)	Reinqui
*	ī	ł		8	*	•															d.		an i				20	
						e 100		_	-	<u> </u>			\vdash	\vdash					×	No.		AIX	1815	TIL.		SC -20	S (Spreadors)	Reinqu
										<u> </u>				_	_			-	8			Aje	418	15		6-19	38	
						H								\vdash			+	_	>			AIR	_	507 785		6-18	SG	
		\dashv	\Box			-													K			Air	R	SIn		+11-	56	
														-						×		AIR	-	11811/5		7-16	25	
	士	\dashv	\Box							Ш									+	*		AIK	10000	Sh		15	<u>ۍ</u> ۶۷.	
		+				_	-					\vdash		$\vdash \vdash$			H		×			AIR	15)	5/n	,=	h1-78	75	
	\Box	\dashv	1		\dashv	4	_	_	\dashv				\dashv					Ι,	ď			AIR	Š	5h		54-13	36	
	1	4	1	_	\dashv	\dashv		_	_			\exists						_	ጽ			AIR	8 03	5)n		96-12	76	
		3.												_							_	T T	749	SIT		SC-11	8	
																			ONE OTHER	HANCE HOSE	3		1	N TE				21
																	18	1 S	*	PRESERVATIVE		NATIVE NATIONAL PROPERTY.	SALPERS	2	fication -	Field Sample identification		
0								_									Modified		E ST	SX SHOWING THE	יוספ רבווס ביו				SAMO TETHINAL - 134/30	Equipa	[SJANJO]	38
				<u> </u>		-											10 16 Lunt		Wenters:	KATE APPLE	E REMOURS		HA (18)	TAPAC.	SKACTOK 6	TIONS OR NOTE	SPECIAL INSTRUCTIONS OR NOTES: SEE RUDGE ALG. SEATUE GHELL HANDON DEFINERMENT AND AND AND AND AND AND AND AND AND AND	χ, α
TEMPERATURE ON RECEPT C	<u> </u>												-				ᆜ				Cooler #3		18	Cooler #2		PT C* Cooler #1	TEMPERATURE ON RECEPT C*	JEWIE .
FIELD NOTES:			-		9										-						CUFY)	O'NER (SPECIFY)		CLEVEL 4	.2 □LEVEL 3	ATI	DELIVERMBLES: []II	DELVE
	1	4		NON-UNIT COST		- _≥	-		-			إ	- ;	<u>ا</u>		\dashv	+								UST AGENC":		☐ LA - RWQCB REPORT FORMAT	_ 5
		7					REQUESTED ANALYSIS	JAN	SIE	EQU			TOOT				Т		RESULTS NEEDED		SAUC	24 HOURS	☐2 DAYS		□ □ DAYS	TS DAYS	Carrone (mont)	P
		77770000					7	五	255	E	A V. THUSGHER	٨-	t	xafe	C. FEARSON	i]	Brian Pletcher@urs.com	an.Pletche		10 TO 10 TO		503-222-4292	,	503-222-7200	
Clifford Pearson@urs.com 41/94348	Scom		osuba	ifford.F	Ω		ਣ	503-222-7200	503-2		tland, OR	ortian	JRS, P	80n, U	Clifford J Pearson, URS, Por	lifford	린으						tcher	Brian Platcher				
COMMUNICATION (NO.					2			Ï	TOR NO.	-	ļ		, Ca		104	FORUMEN				ğ	regon 97:	ordand, O	Ite 1500, F	reet, Su	111 Southwest Columbia Street, Suite 1500, Portland, Oregon 97201	111 Southwe	111 S	
	4		- 1	GIGM DIEG			A.W			탼	W, Seattle	₹W.	e S	Avenu	2555 13th Avenue SI	2555 1	2 *				to a cook					CONTROL OF	URS Corporation	URS C
PAGE 2 X	» [<u></u>	_	-I				7	_				\dashv	H	1			OTHER_		SHELL PIPELINE	ВНЕ	pdown	Lab Vendor # See Dropdown	Lab V	
_	N	۵	<u> </u>	\$ <u>A</u>	<u>.</u>							0	8) 3334	Sł	□LUBES		CONSULTANT		MOTTVA SD&CM	□ Mo		34	स्यं०ग्रे	
CHECK IF NO INCIDENT # APPLIES	\$ P	Š	3		_ }	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						19	3					SHELL RETAIL	BHS	TAIL	MOTIVA RETAIL		□ENV. SERVICES				TIESTAMERICA (] [
CIRC) CEB	0	È C										CO	Print Bill To Contact Name	701	D		χ	Please Check Appropriate Box:	SK Appr	ase Che	2				MCCLIEST (֭֓֞֝֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟
				3	5	D	₹ ₹	12	5	Ş	Σ. Σ.	S	Ś	duc	Q	=	Shell Oil Products Chain Of Custody Record	She			_^					(NOI	LAB (LOCATION)	i

	Oil Products Chain Of Custody R	ecord	777
9.53	Print Bill To Contact Name	V. SERVICESY	
IELL RETAIL		- 1	DATE MAN TT, 2013
□CONSULTANT □LUBES	# 0e	SAP#	
		ω ω	PAGE: 3 of 3
	PROJECTION.	7,000	CONTRACTOR TRACTILIZATION
	Clifford J Pearson, URS, Portland, OR 503-222-7200	Clifford.Pearson@URS.com	4624694
	Denor &		
CHARLES AND STATE OF THE PROPERTY OF THE PROPE	1 CALMON		
24 HOURS ON WEEKEND	UNIT COST REGOES ED ANALYSIS	NON-UNIT COST	
			FIELD NOTES:
JOTHER (SPECIFY)			
Cooler #3			SHPENATURE ON RECEPT C
JSHEL CONTRACT BATE APPLIES			
	Lediney Te-		Contains PD Teaching
PRESERVATIVE	4		
HCL HANDS H2804 MONE OTHER			
		Time	
country)		These	
Received by: (Signature)		Date	
SAMPLANG SAMPLA	Received by (Signalural) Received by (Signalural) Received by (Signalural) Received by (Signalural) Received by (Signalural) Received by (Signalural) Received by (Signalural)	Shell Oil Products Chain Of Custo Althorism Print Bill To Contact Name Dissell Bernal Dissell Britism Print Bill To Contact Name Dissell Britism Print Bill To Contact Name Dissell Britism Print Bill To Contact Name Dissell Britism Dissell Br	Shell Oil Products Chain Of Custody Record Contact Name Conta

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714161DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG09Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 1:10:00PM

Retrieval Date: 5/17/2013 7:37:00AM Date Analyzed: 5/22/2013 3:57:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	0.72	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	<0.26	0.26
Octane	111-65-9	6.87	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	2.14	0.26
m,p-Xylene	108-38-3/106-42-3	2.01	0.26
o-Xylene	95-47-6	<0.26	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	<0.26	0.26
1,2,4-Trimethylbenzene	95-63-6	<0.26	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	<0.65	0.65
Naphthalene	91-20-3	<0.65	0.65
Tridecane	629-50-5	<0.65	0.65
2-Methylnaphthalene	91-57-6	<0.65	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
ТРН		584.75	6.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714161DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG09Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 1:10:00PM

Retrieval Date: 5/17/2013 7:37:00AM Date Analyzed: 5/22/2013 3:57:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 4.87
 0.26

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714162DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG10Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 1:35:00PM

 Retrieval Date:
 5/17/2013
 7:35:00AM
 Date Analyzed:
 5/22/2013
 9:11:00AM

 Analyst:
 Kelly J Stringham
 Method:
 SPG-WI-0292
 Batch:
 ENV-130521-1

Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	0.41	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	0.60	0.26
Octane	111-65-9	2.44	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	38.89	0.26
m,p-Xylene	108-38-3/106-42-3	75.95	0.26
o-Xylene	95-47-6	0.33	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	21.78	0.26
1,2,4-Trimethylbenzene	95-63-6	89.95	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	2.01	0.65
Naphthalene	91-20-3	20.14	0.65
Tridecane	629-50-5	2.73	0.65
2-Methylnaphthalene	91-57-6	23.39	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
TPH		1,071.33	6.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714162DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG10Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 1:35:00PM

Retrieval Date: 5/17/2013 7:35:00AM Date Analyzed: 5/22/2013 9:11:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 116.17
 0.26

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714163DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG19Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 2:55:00PM

Retrieval Date: 5/17/2013 8:17:00AM

Analyst: Kelly J Stringham

Method: SPG-WI-0292

Batch: ENV-130521-1

Analyst: Kelly J Stringham Method: SPG-WI-0292
Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	<0.26	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	<0.26	0.26
Octane	111-65-9	<0.26	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	<0.26	0.26
m,p-Xylene	108-38-3/106-42-3	<0.26	0.26
o-Xylene	95-47-6	<0.26	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	<0.26	0.26
1,2,4-Trimethylbenzene	95-63-6	<0.26	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	<0.65	0.65
Naphthalene	91-20-3	<0.65	0.65
Tridecane	629-50-5	<0.65	0.65
2-Methylnaphthalene	91-57-6	<0.65	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
TPH		287.25	6.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714163DLFIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG19Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 2:55:00PM
Potrioval Date: 5/17/2013 8:17:00AM

Retrieval Date: 5/17/2013 8:17:00AM Date Analyzed: 5/22/2013 2:03:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS #	Result (ug)	RL (ug)
BTEX		<0.26	0.26

URS CORPORATION FOR: PROJECT NUMBER: ENV 22212579

SITE NAME: Shell Harbor Island Terminal

AUSTIN, TX 78720 SITE ADDRESS: Seattle WA **USA**

MODULE ID: 00714164 TRIP_BLANK

Matrix: SOIL GAS Product: SPG0008 Dilution Factor: 1 Field ID: Trip Blank Porosity: Water Filled Voids:

Date Analyzed: 5/21/2013 5:57:00PM Method: SPG-WI-0292 Batch: ENV-130521-1

Analyst: Kelly J Stringham Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	<0.02	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
TPH		<0.50	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714164 TRIP_BLANKMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:Trip BlankPorosity:Water Filled Voids:

Date Analyzed: 5/21/2013 5:57:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 <0.02</td>
 0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID: 00714165 TRIP_BLANK Matrix: SOIL GAS Product: SPG0008

Dilution Factor: 1 Field ID: Trip Blank Porosity: Water Filled Voids:

Date Analyzed: 5/21/2013 10:43:00PM nalyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Analyst: Kelly J Stringham Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	<0.02	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
TPH		<0.50	0.50

URS CORPORATION FOR: PROJECT NUMBER: ENV 22212579

SITE NAME: Shell Harbor Island Terminal

AUSTIN, TX 78720 SITE ADDRESS: Seattle WA

USA

MODULE ID: 00714165 TRIP_BLANK

Matrix: SOIL GAS Product: SPG0008 Dilution Factor: 1 Field ID: Trip Blank Porosity: Water Filled Voids:

Date Analyzed: 5/21/2013 10:43:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

Compound CAS# Result (ug) RL (ug) 0.02 **BTEX** < 0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714166 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG20Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 2:45:00PM

Retrieval Date: 5/17/2013 8:15:00AM Date Analyzed: 5/21/2013 8:20:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	<0.02	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
ТРН		1.17	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714166 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG20Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 2:45:00PM

Retrieval Date: 5/17/2013 8:15:00AM Date Analyzed: 5/21/2013 8:20:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS #	Result (ug)	RL (ug)
BTEX		<0.02	0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714167 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG07Porosity:0.38Water Filled Voids:0.14

Result (ug)

RL (ug)

Installation Date: 5/14/2013 1:05:00PM

Reviewer: Jasmine R. Smith

Compound

Retrieval Date: 5/17/2013 8:03:00AM Date Analyzed: 5/21/2013 7:22:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

CAS#

208-96-8

629-62-9

83-32-9

86-73-7

1634-04-4 < 0.02 0.02 Methyl tert-butyl ether < 0.02 0.02 trans-1,2-Dichloroethene 156-60-5 1.1-Dichloroethane 75-34-3 < 0.02 0.02 cis-1,2-Dichloroethene 156-59-2 < 0.02 0.02 67-66-3 < 0.02 0.02 Chloroform <0.02 0.02 1.1.1-Trichloroethane 71-55-6 1.2-Dichloroethane 107-06-2 < 0.02 0.02 Benzene 71-43-2 < 0.02 0.02 < 0.02 0.02 Carbon Tetrachloride 56-23-5 Trichloroethene 79-01-6 < 0.02 0.02 < 0.02 0.02 1,1,2-Trichloroethane 79-00-5 Toluene 108-88-3 < 0.02 0.02 Octane 111-65-9 < 0.02 0.02 < 0.02 0.02 Tetrachloroethene 127-18-4 Chlorobenzene 108-90-7 <0.02 0.02 1.1.1.2-Tetrachloroethane 630-20-6 < 0.02 0.02 <0.02 0.02 100-41-4 Ethylbenzene 0.02 108-38-3/106-42-3 < 0.02 m,p-Xylene 95-47-6 < 0.02 0.02 o-Xylene < 0.02 0.02 1,1,2,2-Tetrachloroethane 79-34-5 1,3,5-Trimethylbenzene 108-67-8 < 0.02 0.02 95-63-6 < 0.02 0.02 1,2,4-Trimethylbenzene 1.3-Dichlorobenzene 541-73-1 < 0.02 0.02 <0.02 1.4-Dichlorobenzene 106-46-7 0.02 95-50-1 < 0.02 0.02 1.2-Dichlorobenzene < 0.05 0.05 Undecane 1120-21-4 < 0.05 0.05 Naphthalene 91-20-3 0.05 Tridecane 629-50-5 < 0.05 < 0.05 2-Methylnaphthalene 91-57-6 0.05

Acenaphthylene

Pentadecane

Acenaphthene

Fluorene

TPH

< 0.05

< 0.05

< 0.05

< 0.05

1.12

0.05

0.05

0.05

0.05

0.50

Compound

GORE SURVEY PRODUCTS GROUP 100 CHESAPEAKE BOULEVARD ELKTON MARYLAND USA +1 410 392 7600 ENVIRONMENTAL@WLGORE.COM

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

RL (ug)

Result (ug)

MODULE ID:00714167 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG07Porosity:0.38Water Filled Voids:0.14

Dilution Factor: 1 Field ID: SG07 Porosity: 0.38 Water Fille Installation Date: 5/14/2013 1:05:00PM

Retrieval Date: 5/17/2013 8:03:00AM Date Analyzed: 5/21/2013 7:22:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

CAS#

BTEX <0.02 0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714168 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG13Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 1:45:00PM

Retrieval Date: 5/17/2013 8:05:00AM Date Analyzed: 5/21/2013 8:48:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	<0.02	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
TPH		0.95	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714168 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG13Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 1:45:00PM

Retrieval Date: 5/17/2013 8:05:00AM Date Analyzed: 5/21/2013 8:48:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS #	Result (ug)	RL (ug)
BTEX		<0.02	0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714169 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG12Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 1:50:00PM

Retrieval Date: 5/17/2013 8:07:00AM Date Analyzed: 5/21/2013 7:51:00PM **Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1**

Analyst: Kelly J Stringham Method: Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	<0.02	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
TPH		1.14	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714169 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG12Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 1:50:00PM

Retrieval Date: 5/17/2013 8:07:00AM Date Analyzed: 5/21/2013 7:51:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS #	Result (ug)	RL (ug)
BTEX		<0.02	0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714170DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG15Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 2:05:00PM Retrieval Date: 5/17/2013 8:09:00AM

 Retrieval Date:
 5/17/2013
 8:09:00AM
 Date Analyzed:
 5/22/2013
 4:54:00AM

 Analyst:
 Kelly J Stringham
 Method:
 SPG-WI-0292
 Batch:
 ENV-130521-1

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	74.33	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	2.45	0.26
Octane	111-65-9	0.38	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	61.43	0.26
m,p-Xylene	108-38-3/106-42-3	3.56	0.26
o-Xylene	95-47-6	0.51	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	3.23	0.26
1,2,4-Trimethylbenzene	95-63-6	1.95	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	<0.65	0.65
Naphthalene	91-20-3	1.87	0.65
Tridecane	629-50-5	<0.65	0.65
2-Methylnaphthalene	91-57-6	<0.65	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
TPH		134.95	6.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714170DLFIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG15Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 2:05:00PM

Retrieval Date: 5/17/2013 8:09:00AM Date Analyzed: 5/22/2013 4:54:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 142.27
 0.26

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714171DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG16Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 2:30:00PM

 Retrieval Date:
 5/17/2013
 8:11:00AM
 Date Analyzed:
 5/22/2013
 12:08:00PM

 Analyst:
 Kelly J Stringham
 Method:
 SPG-WI-0292
 Batch:
 ENV-130521-1

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	0.62	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	0.37	0.26
Octane	111-65-9	<0.26	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	0.73	0.26
m,p-Xylene	108-38-3/106-42-3	0.82	0.26
o-Xylene	95-47-6	<0.26	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	<0.26	0.26
1,2,4-Trimethylbenzene	95-63-6	<0.26	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	3.37	0.65
Naphthalene	91-20-3	<0.65	0.65
Tridecane	629-50-5	<0.65	0.65
2-Methylnaphthalene	91-57-6	<0.65	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
TPH		2,600.41	6.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714171DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG16Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 2:30:00PM

Retrieval Date: 5/17/2013 8:11:00AM Date Analyzed: 5/22/2013 12:08:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 2.54
 0.26

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714172DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG05Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:55:00PM Retrieval Date: 5/17/2013 7:58:00AM

 Retrieval Date:
 5/17/2013
 7:58:00AM
 Date Analyzed:
 5/22/2013
 10:08:00AM

 Analyst:
 Kelly J Stringham
 Method:
 SPG-WI-0292
 Batch:
 ENV-130521-1

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	0.49	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	<0.26	0.26
Octane	111-65-9	17.37	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	3.84	0.26
m,p-Xylene	108-38-3/106-42-3	5.90	0.26
o-Xylene	95-47-6	<0.26	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	0.46	0.26
1,2,4-Trimethylbenzene	95-63-6	0.78	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	<0.65	0.65
Naphthalene	91-20-3	<0.65	0.65
Tridecane	629-50-5	<0.65	0.65
2-Methylnaphthalene	91-57-6	<0.65	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
TPH		827.77	6.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714172DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG05Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:55:00PM

Retrieval Date: 5/17/2013 7:58:00AM Date Analyzed: 5/22/2013 10:08:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 10.22
 0.26

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714173 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG14Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:05:00PM

Retrieval Date: 5/17/2013 7:51:00AM Date Analyzed: 5/21/2013 6:54:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	0.04	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
TPH		10.42	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714173 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG14Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:05:00PM

Retrieval Date: 5/17/2013 7:51:00AM Date Analyzed: 5/21/2013 6:54:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 0.04
 0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714174 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG18Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:25:00PM

Retrieval Date: 5/17/2013 7:55:00AM Date Analyzed: 5/22/2013 11:05:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	0.05	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	0.07	0.02
Octane	111-65-9	7.93	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	2.10	0.02
m,p-Xylene	108-38-3/106-42-3	0.70	0.02
o-Xylene	95-47-6	0.05	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	0.07	0.02
1,2,4-Trimethylbenzene	95-63-6	0.22	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	1.83	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
ТРН		592.37	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714174 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG18Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:25:00PM

Retrieval Date: 5/17/2013 7:55:00AM Date Analyzed: 5/22/2013 11:05:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 2.97
 0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714175DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG06Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:45:00PM

Retrieval Date: 5/17/2013 8:00:00AM Date Analyzed: 5/22/2013 6:48:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	10.41	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	1.30	0.26
Octane	111-65-9	4.22	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	77.83	0.26
m,p-Xylene	108-38-3/106-42-3	17.01	0.26
o-Xylene	95-47-6	0.38	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	6.18	0.26
1,2,4-Trimethylbenzene	95-63-6	5.12	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	1.49	0.65
Naphthalene	91-20-3	14.59	0.65
Tridecane	629-50-5	<0.65	0.65
2-Methylnaphthalene	91-57-6	5.60	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
TPH		972.56	6.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714175DLFIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG06Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:45:00PM

Retrieval Date: 5/17/2013 8:00:00AM Date Analyzed: 5/22/2013 6:48:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 106.92
 0.26

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714176 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG17Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:15:00PM

Retrieval Date: 5/17/2013 7:53:00AM Date Analyzed: 5/21/2013 11:11:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	<0.02	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
ТРН		63.17	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714176 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG17Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 12:15:00PM

Retrieval Date: 5/17/2013 7:53:00AM Date Analyzed: 5/21/2013 11:11:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS #	Result (ug)	RL (ug)
BTEX		<0.02	0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714177 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG11Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 11:55:00AM

Retrieval Date: 5/17/2013 7:49:00AM Date Analyzed: 5/21/2013 6:25:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	0.03	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
TPH		1.18	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714177 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG11Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 11:55:00AM

Retrieval Date: 5/17/2013 7:49:00AM Date Analyzed: 5/21/2013 6:25:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 0.03
 0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714178DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG08Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 10:00:00AM

Retrieval Date: 5/17/2013 7:39:00AM Date Analyzed: 5/22/2013 5:51:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	0.46	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	<0.26	0.26
Octane	111-65-9	5.89	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	1.39	0.26
m,p-Xylene	108-38-3/106-42-3	0.86	0.26
o-Xylene	95-47-6	<0.26	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	0.30	0.26
1,2,4-Trimethylbenzene	95-63-6	0.35	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	0.69	0.65
Naphthalene	91-20-3	<0.65	0.65
Tridecane	629-50-5	<0.65	0.65
2-Methylnaphthalene	91-57-6	<0.65	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
TPH		757.36	6.50

Compound

GORE SURVEY PRODUCTS GROUP 100 CHESAPEAKE BOULEVARD ELKTON MARYLAND USA +1 410 392 7600 ENVIRONMENTAL@WLGORE.COM

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

Result (ug)

RL (ug)

MODULE ID:00714178DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG08Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 10:00:00AM

Petrieval Date: 5/17/2013 7:30:00AM

Retrieval Date: 5/17/2013 7:39:00AM Date Analyzed: 5/22/2013 5:51:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

CAS#

BTEX 2.71 0.26

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714179 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG01Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 11:45:00AM

Retrieval Date: 5/17/2013 7:46:00AM Date Analyzed: 5/21/2013 4:31:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	0.03	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
TPH		0.99	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714179 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG01Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 11:45:00AM

Retrieval Date: 5/17/2013 7:46:00AM Date Analyzed: 5/21/2013 4:31:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 0.03
 0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714180 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG02Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 11:35:00AM

Retrieval Date: 5/17/2013 7:45:00AM Date Analyzed: 5/21/2013 5:28:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

Compound CAS# Result (ug) RL (ug) 1634-04-4 < 0.02 0.02 Methyl tert-butyl ether < 0.02 0.02 trans-1,2-Dichloroethene 156-60-5 1.1-Dichloroethane 75-34-3 < 0.02 0.02 cis-1,2-Dichloroethene 156-59-2 < 0.02 0.02 67-66-3 < 0.02 0.02 Chloroform <0.02 0.02 1.1.1-Trichloroethane 71-55-6 1.2-Dichloroethane 107-06-2 < 0.02 0.02 Benzene 71-43-2 < 0.02 0.02 < 0.02 0.02 Carbon Tetrachloride 56-23-5 Trichloroethene 79-01-6 < 0.02 0.02 < 0.02 0.02 1,1,2-Trichloroethane 79-00-5 Toluene 108-88-3 < 0.02 0.02 Octane 111-65-9 < 0.02 0.02 < 0.02 0.02 Tetrachloroethene 127-18-4 Chlorobenzene 108-90-7 <0.02 0.02 1,1,1,2-Tetrachloroethane 630-20-6 < 0.02 0.02 <0.02 0.02 100-41-4 Ethylbenzene 108-38-3/106-42-3 < 0.02 0.02 m,p-Xylene 95-47-6 < 0.02 0.02 o-Xylene < 0.02 0.02 1,1,2,2-Tetrachloroethane 79-34-5 1,3,5-Trimethylbenzene 108-67-8 < 0.02 0.02 95-63-6 < 0.02 0.02 1,2,4-Trimethylbenzene 1.3-Dichlorobenzene 541-73-1 < 0.02 0.02 <0.02 1.4-Dichlorobenzene 106-46-7 0.02 95-50-1 < 0.02 0.02 1.2-Dichlorobenzene < 0.05 0.05 1120-21-4 Undecane < 0.05 0.05 Naphthalene 91-20-3 0.05 Tridecane 629-50-5 < 0.05 < 0.05 2-Methylnaphthalene 91-57-6 0.05 Acenaphthylene 208-96-8 < 0.05 0.05 Pentadecane 629-62-9 < 0.05 0.05 < 0.05 0.05 Acenaphthene 83-32-9 Fluorene 86-73-7 < 0.05 0.05 TPH 0.68 0.50

BTEX

GORE SURVEY PRODUCTS GROUP 100 CHESAPEAKE BOULEVARD ELKTON MARYLAND USA +1 410 392 7600 ENVIRONMENTAL@WLGORE.COM

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

< 0.02

MODULE ID:00714180 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG02Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 11:35:00AM

Retrieval Date: 5/17/2013 7:45:00AM Date Analyzed: 5/21/2013 5:28:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

Compound CAS # Result (ug) RL (ug)

0.02

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714181DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG04Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 10:30:00AM

Retrieval Date: 5/17/2013 7:41:00AM Date Analyzed: 5/22/2013 1:05:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1 Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.26	0.26
trans-1,2-Dichloroethene	156-60-5	<0.26	0.26
1,1-Dichloroethane	75-34-3	<0.26	0.26
cis-1,2-Dichloroethene	156-59-2	<0.26	0.26
Chloroform	67-66-3	<0.26	0.26
1,1,1-Trichloroethane	71-55-6	<0.26	0.26
1,2-Dichloroethane	107-06-2	<0.26	0.26
Benzene	71-43-2	0.48	0.26
Carbon Tetrachloride	56-23-5	<0.26	0.26
Trichloroethene	79-01-6	<0.26	0.26
1,1,2-Trichloroethane	79-00-5	<0.26	0.26
Toluene	108-88-3	<0.26	0.26
Octane	111-65-9	0.68	0.26
Tetrachloroethene	127-18-4	<0.26	0.26
Chlorobenzene	108-90-7	<0.26	0.26
1,1,1,2-Tetrachloroethane	630-20-6	<0.26	0.26
Ethylbenzene	100-41-4	6.78	0.26
m,p-Xylene	108-38-3/106-42-3	1.53	0.26
o-Xylene	95-47-6	<0.26	0.26
1,1,2,2-Tetrachloroethane	79-34-5	<0.26	0.26
1,3,5-Trimethylbenzene	108-67-8	0.37	0.26
1,2,4-Trimethylbenzene	95-63-6	0.73	0.26
1,3-Dichlorobenzene	541-73-1	<0.26	0.26
1,4-Dichlorobenzene	106-46-7	<0.26	0.26
1,2-Dichlorobenzene	95-50-1	<0.26	0.26
Undecane	1120-21-4	<0.65	0.65
Naphthalene	91-20-3	<0.65	0.65
Tridecane	629-50-5	<0.65	0.65
2-Methylnaphthalene	91-57-6	<0.65	0.65
Acenaphthylene	208-96-8	<0.65	0.65
Pentadecane	629-62-9	<0.65	0.65
Acenaphthene	83-32-9	<0.65	0.65
Fluorene	86-73-7	<0.65	0.65
TPH		417.58	6.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714181DL FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:13Field ID:SG04Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 10:30:00AM

Potrioval Date: 5/17/2013 7:41:00AM

Retrieval Date: 5/17/2013 7:41:00AM Date Analyzed: 5/22/2013 1:05:00AM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

 Compound
 CAS #
 Result (ug)
 RL (ug)

 BTEX
 8.79
 0.26

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720 USA

MODULE ID:00714182 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG03Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 11:25:00AM

Retrieval Date: 5/17/2013 7:43:00AM Date Analyzed: 5/21/2013 5:00:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
Methyl tert-butyl ether	1634-04-4	<0.02	0.02
trans-1,2-Dichloroethene	156-60-5	<0.02	0.02
1,1-Dichloroethane	75-34-3	<0.02	0.02
cis-1,2-Dichloroethene	156-59-2	<0.02	0.02
Chloroform	67-66-3	<0.02	0.02
1,1,1-Trichloroethane	71-55-6	<0.02	0.02
1,2-Dichloroethane	107-06-2	<0.02	0.02
Benzene	71-43-2	<0.02	0.02
Carbon Tetrachloride	56-23-5	<0.02	0.02
Trichloroethene	79-01-6	<0.02	0.02
1,1,2-Trichloroethane	79-00-5	<0.02	0.02
Toluene	108-88-3	<0.02	0.02
Octane	111-65-9	<0.02	0.02
Tetrachloroethene	127-18-4	<0.02	0.02
Chlorobenzene	108-90-7	<0.02	0.02
1,1,1,2-Tetrachloroethane	630-20-6	<0.02	0.02
Ethylbenzene	100-41-4	<0.02	0.02
m,p-Xylene	108-38-3/106-42-3	<0.02	0.02
o-Xylene	95-47-6	<0.02	0.02
1,1,2,2-Tetrachloroethane	79-34-5	<0.02	0.02
1,3,5-Trimethylbenzene	108-67-8	<0.02	0.02
1,2,4-Trimethylbenzene	95-63-6	<0.02	0.02
1,3-Dichlorobenzene	541-73-1	<0.02	0.02
1,4-Dichlorobenzene	106-46-7	<0.02	0.02
1,2-Dichlorobenzene	95-50-1	<0.02	0.02
Undecane	1120-21-4	<0.05	0.05
Naphthalene	91-20-3	<0.05	0.05
Tridecane	629-50-5	<0.05	0.05
2-Methylnaphthalene	91-57-6	<0.05	0.05
Acenaphthylene	208-96-8	<0.05	0.05
Pentadecane	629-62-9	<0.05	0.05
Acenaphthene	83-32-9	<0.05	0.05
Fluorene	86-73-7	<0.05	0.05
TPH		0.65	0.50

PROJECT NUMBER: ENV 22212579 FOR: URS CORPORATION

SITE NAME: Shell Harbor Island Terminal

SITE ADDRESS: Seattle WA AUSTIN, TX 78720

USA

MODULE ID:00714182 FIELD_SAMPLEMatrix:SOIL GASProduct:SPG0008Dilution Factor:1Field ID:SG03Porosity:0.38Water Filled Voids:0.14

Installation Date: 5/14/2013 11:25:00AM

Retrieval Date: 5/17/2013 7:43:00AM Date Analyzed: 5/21/2013 5:00:00PM

Analyst: Kelly J Stringham Method: SPG-WI-0292 Batch: ENV-130521-1

Reviewer: Jasmine R. Smith

Compound	CAS#	Result (ug)	RL (ug)
BTEX		<0.02	0.02

AMPLIFIED GEOCHEMICAL IMAGING LLC ANALYTICAL RESULTS

URS CORPORATION, PORTLAND, OR STANDARD TARGET VOCs/SVOCs

ESTIMATED SOIL GAS CONCENTRATIONS

SHELL HARBOR ISLAND TERMINAL, SEATTLE, WA

PRODUCTION ORDER # 22212579

DATE	SAMPLE						
ANALYZED	NAME	TPH, ug/m^3	BTEX, ug/m^3	BENZ, ug/m^3	TOL, ug/m^3	ETBENZ, ug/m^3	mpXYL, ug/m^3
	RL=	16.39		14.62	1.86	0.94	0.86
5/21/13	714166	447.13	nd	nd	nd	nd	nd
5/21/13	714167	420.17	nd	nd	nd	nd	nd
5/21/13	714168	363.65	nd	nd	nd	nd	nd
5/21/13	714169	430.50	nd	nd	nd	nd	nd
5/21/13	714173	>3559.37	3.39	nd	3.39	nd	bdl
5/22/13	714174	>174189.37	152.65	30.33	5.65	85.20	28.77
5/21/13	714176	>20188.71	nd	nd	nd	nd	nd
5/21/13	714177	436.36	2.37	nd	2.37	nd	nd
5/21/13	714179	369.29	2.28	nd	2.28	nd	nd
5/21/13	714180	256.09	nd	nd	nd	nd	nd
5/21/13	714182	244.13	nd	nd	nd	nd	nd
Dilution Samples*	RL(DL)=	213.08		190.03	24.21	12.22	11.13
5/22/13	714161DL	>14796.26	427.62	257.33	bdl	88.06	82.23
5/22/13	714162DL	>26654.98	>4537.32	bdl	46.81	1474.03	>2999.78
5/22/13	714163DL	>7579.25	nd	nd	nd	nd	nd
5/22/13	714170DL	>3629.31	>13131.40	>10488.81	177.47	>2294.26	145.42
5/22/13	714171DL	>62827.45	324.04	228.39	30.08	31.33	34.25
5/22/13	714172DL	>20503.24	390.22	bdl	bdl	153.77	236.45
5/22/13	714175DL	>23878.14	>5789.01	2162.42	96.05	>2839.55	672.11
5/22/13	714178DL	>18186.54	89.64	bdl	bdl	55.45	
5/22/13	714181DL	>10319.37	320.21	bdl	bdl	259.51	60.70
*Samples were diluted	approximately 13X						
5/21/13	714164	nd	nd	nd	nd	nd	nd
5/21/13	714165	nd	nd	nd	nd	nd	nd
5/21/13	method blank	bdl	nd	nd	nd	nd	nd

No RL (Reporting Limit) is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

AMPLIFIED GEOCHEMICAL IMAGING LLC ANALYTICAL RESULTS

URS CORPORATION, PORTLAND, OR STANDARD TARGET VOCs/SVOCs

ESTIMATED SOIL GAS CONCENTRATIONS

SHELL HARBOR ISLAND TERMINAL, SEATTLE, WA

PRODUCTION ORDER # 22212579

SAMPLE						
NAME	oXYL, ug/m^3	C11, C13, &C15, ug/m^3	UNDEC, ug/m^3	TRIDEC, ug/m^3	PENTADEC, ug/m^3	TMBs, ug/m^3
RL=	1.16		1.79	1.79	1.79	
714166	nd	bdl	nd	bdl	nd	nd
714167	nd	nd	nd	nd	nd	nd
714168	nd	nd	nd	nd	nd	nd
714169	nd	bdl	nd	bdl	nd	nd
714173	nd	bdl	bdl	bdl	nd	nd
714174	2.71	56.96	56.96	nd	nd	13.30
714176	nd	nd	nd	nd	nd	nd
714177	nd	nd	nd	nd	nd	nd
714179	nd	nd	nd	nd	nd	nd
714180	nd	nd	nd	nd	nd	nd
714182	nd	nd	nd	nd	nd	nd
RL(DL)=	15.11		23.26	23.26	23.26	
714161DL	nd	bdl	bdl	nd	nd	bdl
714162DL	16.71	148.59	63.45	85.14	nd	>3956.57
714163DL	nd	nd	nd	nd	nd	nd
714170DL	25.44	nd	nd	nd	nd	225.51
714171DL	bdl	104.82	104.82	nd	nd	bdl
714172DL	bdl	bdl	bdl	nd	nd	55.26
714175DL	18.87	46.65	46.65	nd	nd	460.40
714178DL	nd	bdl	bdl	bdl	nd	bdl
714181DL	nd	bdl	bdl	nd	nd	47.79
approximately 13X						
714164	nd	nd	nd	nd	nd	nd
	nd	nd	nd	nd	nd	nd
714165	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd

No RL (Reporting Limit) is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

AMPLIFIED GEOCHEMICAL IMAGING LLC ANALYTICAL RESULTS

URS CORPORATION, PORTLAND, OR STANDARD TARGET VOCs/SVOCs

ESTIMATED SOIL GAS CONCENTRATIONS

SHELL HARBOR ISLAND TERMINAL, SEATTLE, WA

PRODUCTION ORDER # 22212579

SAMPLE						
NAME	124TMB, ug/m^3	135TMB, ug/m^3	ct12DCE, ug/m^3	t12DCE, ug/m^3	c12DCE, ug/m^3	NAPH&2-MN, ug/m^3
RL=	0.95	1.24		146.98	51.35	
714166	nd	nd	nd	nd	nd	nd
714167	nd	nd	nd	nd	nd	nd
714168	nd	nd	nd	nd	nd	nd
714169	nd	nd	nd	nd	nd	nd
714173	nd	nd	nd	nd	nd	nd
714174	9.30	4.00	nd	nd	nd	nd
714176	nd	nd	nd	nd	nd	nd
714177	nd	nd	nd	nd	nd	nd
714179	nd	nd	nd	nd	nd	nd
714180	nd	nd	nd	nd	nd	nd
714182	nd	nd	nd	nd	nd	nd
RL(DL)=	12.35	16.14		1910.68	667.55	
714161DL	bdl	bdl	nd	nd	nd	nd
714162DL	>3073.34	883.23	nd	nd	nd	1255.91
714163DL	nd	nd	nd	nd	nd	nd
714170DL	77.80	147.71	nd	nd	nd	59.02
714171DL	bdl	bdl	nd	nd	nd	nd
714172DL	31.85	23.42	nd	nd	nd	nd
714175DL	193.43	266.97	nd	nd	nd	587.45
714178DL	bdl	bdl	nd	nd	nd	nd
714181DL	29.30	18.49	nd	nd	nd	nd
approximately 13X						
714164	nd	nd	nd	nd	nd	nd
714165	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd

No RL (Reporting Limit) is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

5/23/2013 Page: 3 of 6

AMPLIFIED GEOCHEMICAL IMAGING LLC ANALYTICAL RESULTS

URS CORPORATION, PORTLAND, OR STANDARD TARGET VOCs/SVOCs

ESTIMATED SOIL GAS CONCENTRATIONS

SHELL HARBOR ISLAND TERMINAL, SEATTLE, WA

PRODUCTION ORDER # 22212579

SAMPLE							
NAME	NAPH, ug/m^3	2MeNAPH, ug/m^3	MTBE, ug/m^3	11DCA, ug/m^3	CHCl3, ug/m^3	111TCA, ug/m^3	12DCA, ug/m^3
RL=	1.79	1.79	76.49	53.71	28.76	18.83	14.65
714166	nd	nd	nd	nd	nd	nd	nd
714167	nd	nd	nd	nd	nd	nd	nd
714168	nd	nd	nd	nd	nd	nd	nd
714169	nd	nd	nd	nd	nd	nd	nd
714173	nd	nd	nd	nd	nd	nd	nd
714174	nd	nd	nd	nd	nd	nd	nd
714176	nd	nd	nd	nd	nd	nd	nd
714177	nd	nd	nd	nd	nd	nd	nd
714179	nd	nd	nd	nd	nd	nd	nd
714180	nd	nd	nd	nd	nd	nd	nd
714182	nd	nd	nd	nd	nd	nd	nd
RL(DL)=	23.26	23.26	994.35	698.23	373.86	244.79	190.48
714161DL	nd	nd	nd	nd	nd	nd	nd
714162DL	582.88	673.03	nd	nd	nd	nd	nd
714163DL	nd	nd	nd	nd	nd	nd	nd
714170DL	59.02	bdl	nd	nd	nd	nd	nd
714171DL	nd	nd	nd	nd	nd	nd	nd
714172DL	nd	nd	nd	nd	nd	nd	nd
714175DL	420.22	167.23	nd	nd	nd	nd	nd
714178DL	nd	nd	nd	nd	nd	nd	nd
714181DL	nd	nd	nd	nd	nd	nd	nd
approximately 13X							
			_				
714164	nd	nd	nd	nd	nd	nd	nd
714165	nd	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd	nd

No RL (Reporting Limit) is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

AMPLIFIED GEOCHEMICAL IMAGING LLC ANALYTICAL RESULTS

URS CORPORATION, PORTLAND, OR STANDARD TARGET VOCs/SVOCs

ESTIMATED SOIL GAS CONCENTRATIONS

SHELL HARBOR ISLAND TERMINAL, SEATTLE, WA

PRODUCTION ORDER # 22212579

SAMPLE							
NAME	TCE, ug/m^3	OCT, ug/m^3	PCE, ug/m^3	14DCB, ug/m^3	Acenaphthene, ug/m^3	Acenaphthylene, ug/m^3	Fluorene, ug/m^3
RL=	6.66	1.93	1.45	0.77	1.79	1.79	1.79
714166	nd	nd	nd	nd	nd	nd	nd
714167	nd	nd	nd	nd	nd	nd	nd
714168	nd	nd	nd	nd	nd	nd	nd
714169	nd	bdl	nd	nd	nd	nd	nd
714173	nd		nd	nd	nd	nd	nd
714174	nd	565.05	nd	nd	nd	nd	bdl
714176	nd	nd	nd	nd	nd	nd	nd
714177	nd	nd	nd	nd	nd	nd	nd
714179	nd		nd	nd	nd	nd	nd
714180	nd		nd	nd	nd	nd	nd
714182	nd	nd	nd	nd	nd	nd	nd
RL(DL)=	86.54			10.07	23.26	23.26	23.26
714161DL	nd			nd	nd	nd	nd
714162DL	nd			nd	bdl	nd	bdl
714163DL	nd		nd	nd	nd	nd	nd
714170DL	nd		nd	nd	nd	nd	nd
714171DL	nd		nd	nd	bdl	nd	bdl
714172DL	nd			nd	nd	nd	nd
714175DL	nd		nd	nd	bdl	nd	nd
714178DL	nd		nd	nd	nd	nd	nd
714181DL	nd	53.32	nd	nd	nd	nd	nd
approximately 13X							
714164	nd		nd	nd	nd	nd	nd
714165	nd	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd	nd

No RL (Reporting Limit) is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

22212579_conc_cust.xls

5/23/2013 Page: 5 of 6

AMPLIFIED GEOCHEMICAL IMAGING LLC ANALYTICAL RESULTS

URS CORPORATION, PORTLAND, OR STANDARD TARGET VOCs/SVOCs

ESTIMATED SOIL GAS CONCENTRATIONS

SHELL HARBOR ISLAND TERMINAL, SEATTLE, WA

PRODUCTION ORDER # 22212579

SAMPLE							
NAME	CCI4, ug/m^3	112TCA, ug/m^3	CIBENZ, ug/m^3	1112TetCA, ug/m^3	1122TetCA, ug/m^3	13DCB, ug/m^3	12DCB, ug/m^3
RL=	16.93	1.31	0.97	0.74	0.74	0.77	0.74
714166	nd	nd	nd	nd	nd	nd	nd
714167	nd	nd	nd	nd	nd	nd	nd
714168	nd	nd	nd	nd	nd	nd	nd
714169	nd	nd	nd	nd	nd	nd	nd
714173	nd	nd	nd	nd	nd	nd	nd
714174	nd	nd	nd	nd	nd	nd	nd
714176	nd	nd	nd	nd	nd	nd	nd
714177	nd	nd	nd	nd	nd	nd	nd
714179	nd	nd	nd	nd	nd	nd	nd
714180	nd	nd	nd	nd	nd	nd	nd
714182	nd	nd	nd	nd	nd	nd	nd
RL(DL)=	220.05	17.05	12.55	9.65	9.65	10.00	9.63
714161DL	nd	nd	nd	nd	nd	nd	nd
714162DL	nd	nd	nd	nd	nd	nd	nd
714163DL	nd	nd		nd	nd	nd	nd
714170DL	nd	nd	nd	nd	nd	nd	nd
714171DL	nd	nd	nd	nd	nd	nd	nd
714172DL	nd	nd	nd	nd	nd	nd	nd
714175DL	nd	nd	nd	nd	nd	nd	nd
714178DL	nd	nd	nd	nd	nd	nd	nd
714181DL	nd	nd	nd	nd	nd	nd	nd
approximately 13X							
		-	-		-1		-
714164	nd	nd	nd	nd	nd	nd	nd
714165	nd	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd	nd

No RL (Reporting Limit) is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

GORE. Surveys

Concentration Method
Calculation Summary for
GORE® Module

In environmental analysis obtaining a contaminate concentration value allows for quantifiable risk assessment. The following procedure outlines the method used to determine accurate concentration values from the GORE® Module in soil gas and air sampling:

FOR ENVIRONMENTAL

DERIVATION OF CONCENTRATION EQUATION

When a fresh module (which, by definition and verification, has a contaminate concentration of zero) is inserted into a locally homogenous contaminated media (with a non-zero contaminant concentration), a concentration gradient is created between the module and the media. Due to the concentration gradient, contaminant will diffuse from the media across the permeable membrane to the enclosed adsorbents as described by Fick's first law of diffusion¹, often expressed in differential form as:

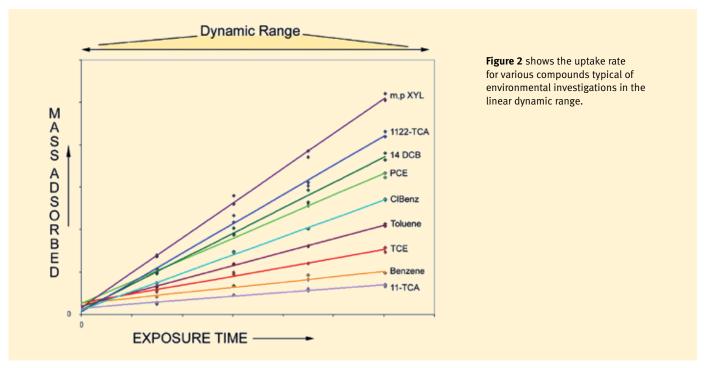
$$F = -D\left(\frac{dC}{dx}\right) \text{ or in the integral form as: } \frac{dm}{dt} = -D\left(\frac{A}{L}\right)(C_X - C_O) \tag{1}$$

where m = mass, t = time, D = diffusion coefficient, (A/L) = geometric parameter describing shape of sampler, $C_X = \text{concentration of analyte in the module at time}$, t = X, $C_0 = \text{concentration at time}$, t = 0.

As we ultimately want to measure the concentration of the analyte, we rearrange equation (1) to solve for C_X :

$$C_{\chi} = -\left[\left(\frac{1}{D}\right)\left(\frac{L}{A}\right)\left(\frac{dm}{dt}\right)\right] + C_{O} \tag{2}$$

By using a fresh module, the initial concentration (C_0) in the module is zero. We combine the quantity $D\frac{A}{L}$, which is referred to as the sampling rate²(S) of the module, measured in units of vol/time for the analyte of interest. This yields:


$$C_{\chi} = -\left[\left(\frac{1}{S} \right) \left(\frac{dm}{dt} \right) \right] \tag{3}$$

Thus, concentration (C_X) can be calculated by using the mass (m) of the analyte adsorbed to the module after a given exposure time (t) and the sampling rate (S) for the analyte of interest. Two of these values are straightforward – the mass is measured using our standard thermal desorption GC/MS procedure, the time is documented by the field installation team. The third, sampling rate (S), is measured through a series of controlled chamber experiments for each analyte. Using these three values, an accurate contaminate concentration value can be calculated using the GORE® Module. The process for determining S for the GORE® Module is described briefly in the next section.

DETERMINING the S PARAMETER – GORE® Module Sampling Rate

To determine S for the GORE® Module we have exposed modules for different times (t) at various concentrations (C). We then plot mass (t) vs. time (t) and divide the slope by concentration to gain a value for S for that compound as shown in equation (4) which is rearranged from equation (3).

When measuring S, we tested each compound at varying temperature (10 to 40°C), relative humidity (0 to 80%), flow rate (0.5 to 15cm/s) and vapor concentrations (0.1ppb to 100ppm).

Under typical sampling conditions, none of these variables were found to significantly impact the sampling rate.

ADJUSTMENTS FOR DIFFUSION RESISTANCE IN SOIL

When measuring gas concentration values in soils we must adjust the sampling rate (S_{air}) values to account for the increased tortuosity due to the presence of soil and moisture.

We previously defined the sampling rate of the module for the analyte of interest as:

$$S_{air} = D_{air} (A/L) \tag{5}$$

In soil, the effective diffusion coefficient (D_{air}) is reduced due to the increased tortuosity, and can be described as:

$$D_{soil} = E(D_{air}) (6)$$

resulting in (when combined with (5))

$$S_{soil} = E(S_{air}) \tag{7}$$

where E is the "Soil Effectiveness Factor."

As Millington & Quirk³ showed, E is governed by the total soil porosity (θ , total volume of pores/total volume) and volumetric air content (θ , volume of air/total volume) of the media and relates as:

$$E = \frac{(\Phi)^{10/3}}{(\theta)^2} \tag{8}$$

Expressing E as a function of total soil porosity (θ) and water filled porosity (ε , volume of water/volume of pores), this relation can be rearranged as:

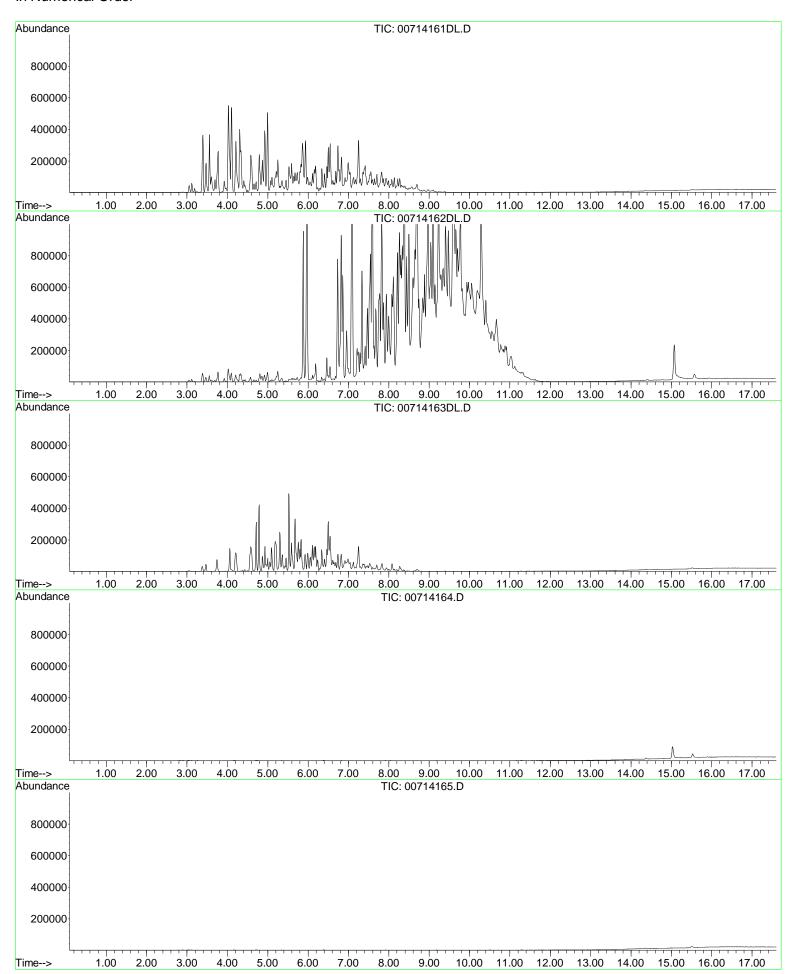
$$E = \theta^{(4/3)} (1 - \varepsilon)^{(10/3)}$$
: as Φ , θ and ε have the following relationship: (9)

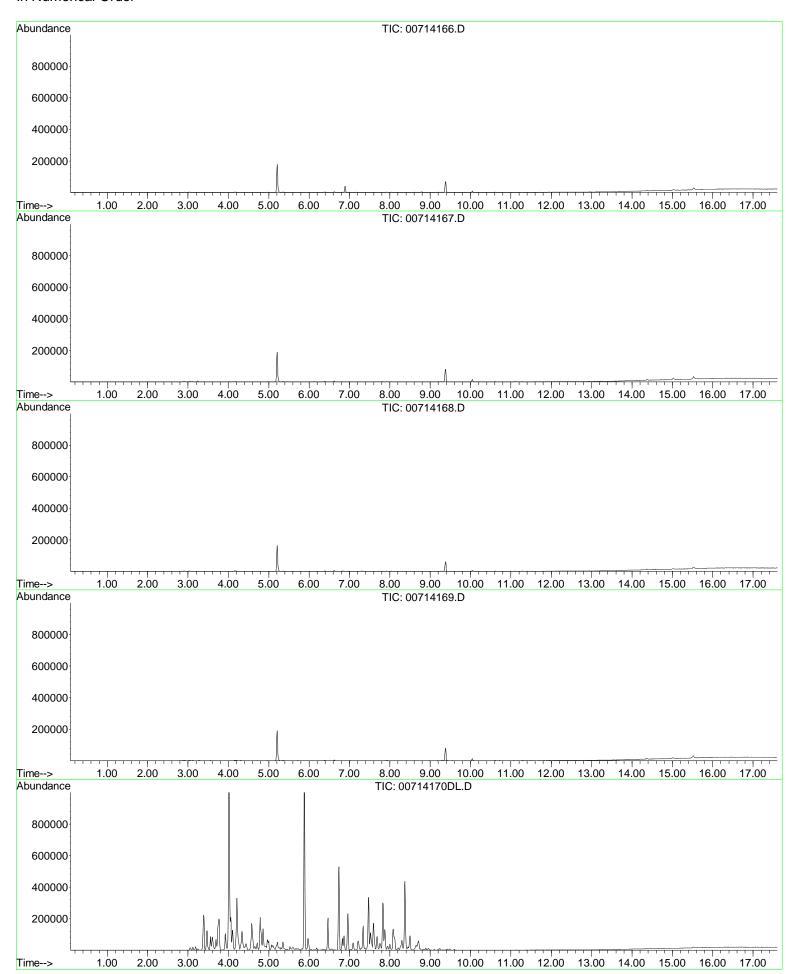
$$\Phi = \theta (1 - \varepsilon)$$

Once we've solved for E, we can solve for D_{soil} using equation (5) and S_{soil} using equation (7).

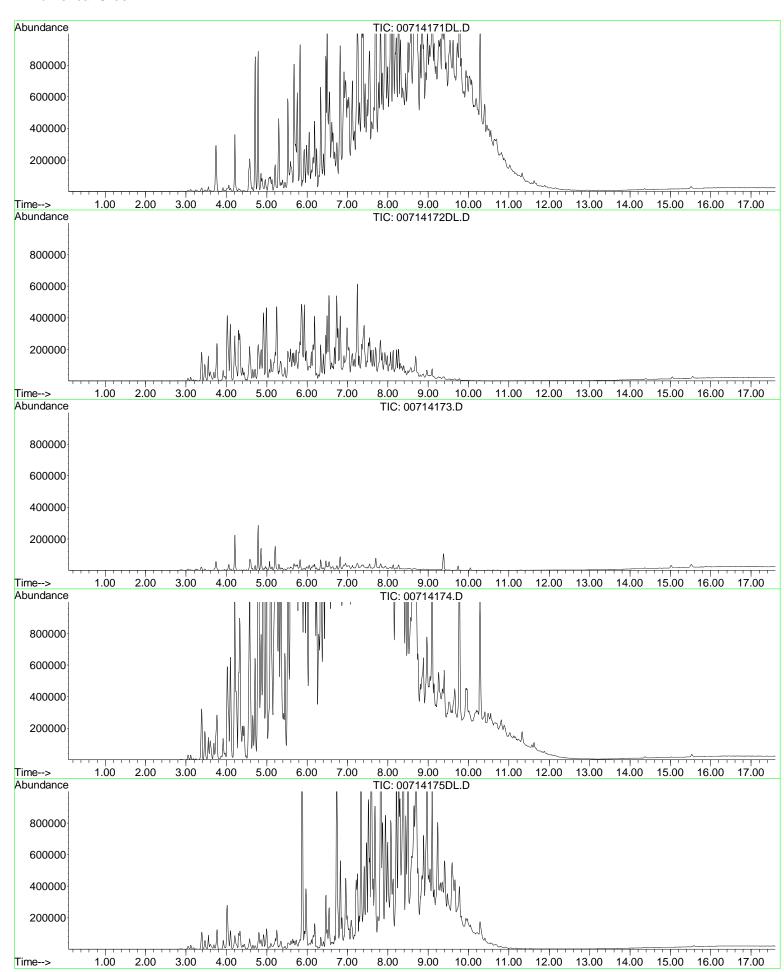
Thus, with measurements for two of these three site-specific soil parameters (θ , ε or Φ), soil gas concentration values can be calculated for modules installed in soil.

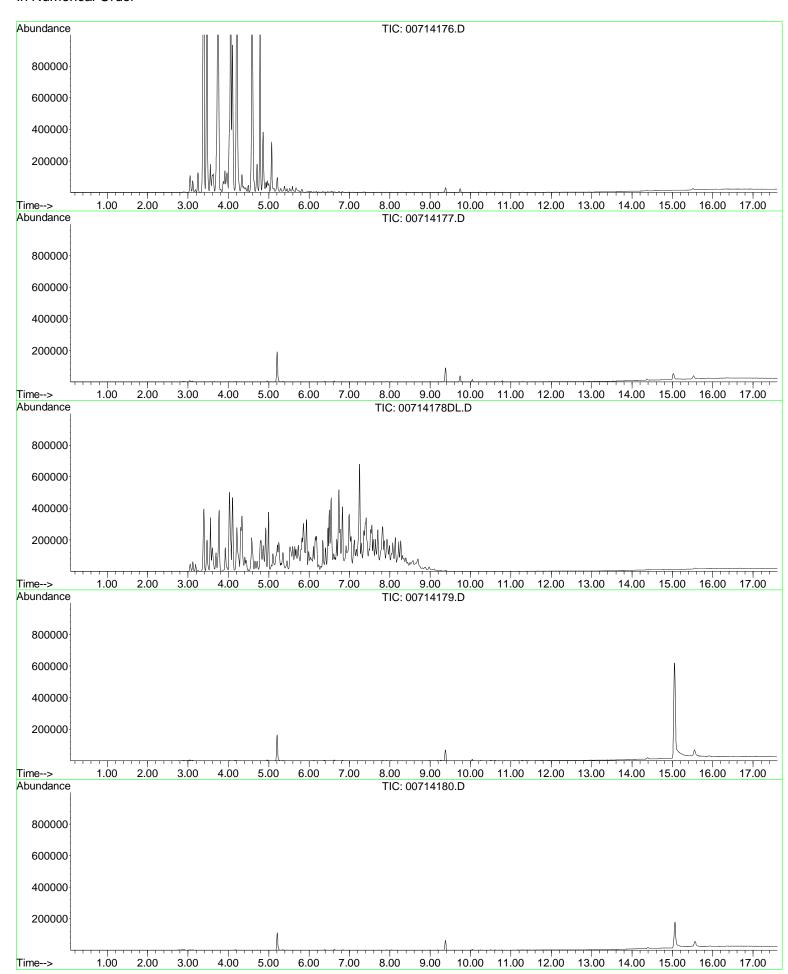
REFERENCES

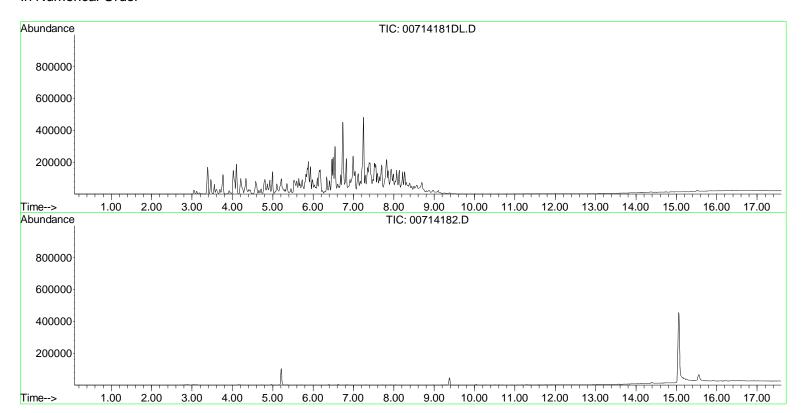

W.L. Gore & Associates, Inc. 100 Chesapeake Boulevard Elkton, MD 21921 Tel.: +1-410-392-7600 E-mail: exploration@wlgore.com W. L Gore & Associates GmbH Wernher-von-Braun-Strasse 18 D-85640 Putzbrunn, Germany Tel.: +49-89-4612-2198



¹ Cussler, E. L., 1997, *Diffusion, Mass Transfer in Fluid Systems*, 2nd ed., Cambridge Univ., Press, 570p.


² James D. Mulik and Robert G. Lewis Advances in Air Sampling, AICHG (1990), ISN 0-87371-115-7, Chapter 9, "Recent Developments in Passive Sampling Devices."


³ Millington, R.J., and J. M. Quirk, "Permeability of Porous Solids", Trans.Faraday Soc., 57, (1961), 1200-1207.



TICS - 22212579 In Numerical Order

TICS - 22212579 In Numerical Order

W. L. GORE & ASSOCIATES, INC.

100 Chesapeake Blvd. • P.O. Box 10 Elkton, MD 21922-0010

Phone: 410.392.7600 • 800.432.7998

Fax: 410.506.4780

SALES OFFICES:

Europe: +49.89.4612.2198 San Francisco: 415.648.0438

Email: environmental@wlgore.com

gore.com/surveys

GORE and designs are trademarks of W. L. Gore & Associates, Inc. ©2007 W. L. Gore & Associates, Inc.

Final Data Review

The data quality review of the six primary groundwater samples, one groundwater field duplicate, one primary soil sample and one trip blank collected September 5th, 2013 at the Harbor Island site in Seattle, Washington has been completed. Samples were submitted to Accutest Laboratories (Accutest) of San Jose, California. The samples submitted were analyzed for one or more of the following: benzene, toluene, ethylbenzene, and total xylene (BTEX; EPA Method 8260B); TPH gasoline (NWTPH-Gx); chemical oxygen demand (COD; SM19 5220C and HACH 8000); percent moisture (SM18 2540G); total organic carbon (TOC; EPA 9060A and SM18 5310C); and dissolved iron and manganese (EPA 6010B). The COD and TOC analysis on the primary soil was subcontracted to Accutest of Orlando, Florida.

The review included the analytical data presented in Accutest report C29590. The data were reviewed based on *United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines (NFGs) for Organic Data Review*, June 2008, *USEPA CLP NFGs for Inorganic Superfund Data Review*, January 2010, and laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records, hold times, surrogate recoveries, matrix spike and matrix spike duplicate results, field duplicates, laboratory control and laboratory control duplicate results, laboratory duplicate results, method blank results and trip blank results. Qualifiers assigned as a result of this review are included in Table 1.

The following criteria were evaluated during the review:

- COC Records Acceptable with the following exceptions:
 - Samples ASW-1-0913 (C29590-2 and C29590-2F), TW-01-0913 (C29590-3 and C29590-3F), and ASW-1-0913-DUP (C29590-9) were collected on September 6th, 2013 according to the COC and confirmed on the field logs. The laboratory logged in the collection as date as September 5th, 2013 during sample receipt. Since data results are not affected, no action was taken to correct the laboratory error.
- Temperature Acceptable
- <u>Preservation</u> Acceptable
- <u>Hold Times</u> Acceptable
- <u>Trip Blanks</u> Acceptable
- Method Blanks Acceptable
- Surrogates Acceptable with the following exceptions:
 - <u>TPH Gasoline by NWTPH-Gx</u> The aaa-trifluorotoluene and 4-bromofluorobenzene surrogates for soil sample TW-01-7.5 (C29590-1) and the

Shell – 2013 Third Quarter Progress Report – Harbor Island

laboratory duplicate performed on TW-01-7.5 (C29590-1) exceeded the upper laboratory control limit of 150% due to matrix interference at 209%/1645% and 220%/1761%, respectively. The out of control surrogate recoveries on the primary sample were confirmed by reanalysis at 215% and 1776%, respectively. The TPH gasoline result was qualified on the primary samples, TW-01-7.5 (C29590-1), as estimated and flagged 'J' due to a potential high bias.

- Laboratory Control Samples (LCS/LCSD) Acceptable
- <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u> Acceptable with the following exceptions:

<u>BTEX by EPA Method 8260</u> – The MS recovery of toluene was exceeded the upper laboratory control limit of 122% at 138% in the analytical batch VU521. The LCS/LCSD recovery results were in control indicating the analytical batch was in control; therefore, only the parent sample, MW-307-0913 (C29590-6) was qualified as estimated and flagged 'J' due to a potential high bias.

<u>COD by SM5220C</u> – The MS recovery of COD was below the lower laboratory control limit of 82% at 65.1% in the analytical batch GP22478. The LCS recovery was in control indicating the analytical batch was in control; therefore, only the parent sample, TW-01-7.5 (C29590-1), was qualified as estimated and flagged 'J' due to a potential low bias.

<u>TOC</u> by <u>EPA</u> Method 9060A - The MS recovery of TOC exceeded the upper laboratory control limit of 114% at 119% in the analytical batch GP22503. The LCS was in control indicating the analytical batch was in control; therefore, only the parent sample, TW-01-7.5 (C29590-1), was qualified as estimated and flagged 'J' due to a potential high bias.

- Laboratory Duplicates Acceptable
- <u>Field Duplicates</u> Sample ASW-1-0913-DUP (C29590-9) was submitted as a field duplicate of primary sample ASW-1-0913 (C29590-2) for TPH gasoline. Relative percent difference (RPD) calculations are performed on the field duplicate sample pair results when the sample results are greater than five times the method reporting limit (MRL). All calculated RPD for the duplicate pairs were within the historical project control limit of 20%.
- Reporting Limits The laboratory reported all detections between the method detection limit (MDL) and MRL (when applicable) as estimated and flagged the results 'J'.

Shell – 2013 Third Quarter Progress Report – Harbor Island

Overall Assessment of Data

The completeness of the analytical reports for this groundwater monitoring event is 100%. The usefulness of the data is based on the USEPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are considered usable. Data qualified as estimated, 'J', during this review process are included in Table 1.

References

- USEPA, 2008. U.S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Organic Data Review. June 2008.
- USEPA, 2010. U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. January 2010.

Table 1 Sample Qualification Summary

Sample Number	Laboratory ID	Analyte	Data Qualifier	Reason for Qualification
	TPH Gasoline			Surrogate recovery
TW-01-7.5	C29590-1	COD	J	Matrix on les masses
		TOC		Matrix spike recovery
MW-307-0913	C29590-6	Toluene	J	Matrix spike recovery

9/24/2013 Mr. Clifford Pearson URS Corporation 111 SW Columbia Street Suite 1500 Portland OR 97201

Project Name:

Project #: 46194348 Workorder #: 1309145A

Dear Mr. Clifford Pearson

The following report includes the data for the above referenced project for sample(s) received on 9/10/2013 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 (5&20 ppbv) are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Killy Butte

WORK ORDER #: 1309145A

Work Order Summary

CLIENT: Mr. Clifford Pearson BILL TO: Accounts Payable Austin

URS Corporation
URS Corporation
URS Corporation
P.O. BOX 203970
Suite 1500
Austin, TX 78720-1088

Portland, OR 97201

PHONE: 503-222-7200 **P.O.** #

FAX: PROJECT # 46194348

DATE RECEIVED: 09/10/2013 **CONTACT:** Kelly Buettner 09/24/2013

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	PSV-1	Modified TO-15 (5&20 ppbv)	0.8 "Hg	15.2 psi
02A	PSV-2	Modified TO-15 (5&20 ppbv)	2.4 "Hg	15.3 psi
03A	SVE-1	Modified TO-15 (5&20 ppbv)	2.4 "Hg	15.2 psi
04A	Lab Blank	Modified TO-15 (5&20 ppbv)	NA	NA
05A	CCV	Modified TO-15 (5&20 ppbv)	NA	NA
06A	LCS	Modified TO-15 (5&20 ppbv)	NA	NA
06AA	LCSD	Modified TO-15 (5&20 ppbv)	NA	NA

	Heide Hayes	
CERTIFIED BY:	0 00	DATE: 09/24/13

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, VA NELAP - 460197, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2012, Expiration date: 10/17/2013.
Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 URS Corporation Workorder# 1309145A

Three 1 Liter Summa Canister samples were received on September 10, 2013. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

The year for date of collection for all of the samples was missing on the Chain-of-Custody (COC) form but noted on the sample tags. The information on the sample tags was used to process and report the samples.

Analytical Notes

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Dilution was performed on all of the samples due to the presence of high level target and non-target species.

The recovery of surrogate 1,2-Dichloroethane-d4 in all of the samples was outside laboratory control limits due to high level hydrocarbon matrix interference. The surrogate recovery is flagged.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: PSV-1 Lab ID#: 1309145A-01A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Hexane	1000	1200000 E	3700	4100000 E
Cyclohexane	1000	260000	3600	900000
2,2,4-Trimethylpentane	1000	350000	4900	1600000
Benzene	1000	110000	3300	360000
Heptane	1000	210000	4300	860000
Toluene	1000	3700	3900	14000
Ethyl Benzene	1000	53000	4500	230000
m,p-Xylene	1000	49000	4500	210000
Cumene	1000	2600	5100	13000
Propylbenzene	1000	5100	5100	25000
4-Ethyltoluene	1000	5200	5100	26000
1,3,5-Trimethylbenzene	1000	2900	5100	14000
1,2,4-Trimethylbenzene	1000	8700	5100	43000
TPH ref. to Gasoline (MW=100)	21000	16000000	85000	66000000

Client Sample ID: PSV-2 Lab ID#: 1309145A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Hexane	1100	1200000 E	3900	4200000 E
Cyclohexane	1100	270000	3800	920000
2,2,4-Trimethylpentane	1100	440000	5200	2100000
Benzene	1100	29000	3500	91000
Heptane	1100	160000	4500	670000
Toluene	1100	3200	4200	12000
m,p-Xylene	1100	2400	4800	11000
TPH ref. to Gasoline (MW=100)	22000	20000000	91000	82000000

Client Sample ID: SVE-1 Lab ID#: 1309145A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Hexane	1100	1200000 F	3900	4400000 F

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: SVE-1

TPH ref. to Gasoline (MW=100)

Lab ID#: 1309145A-03A				
Cyclohexane	1100	280000	3800	950000
2,2,4-Trimethylpentane	1100	370000	5200	1700000
Benzene	1100	120000	3500	400000
Heptane	1100	230000	4500	950000
Toluene	1100	4400	4200	16000
Ethyl Benzene	1100	66000	4800	290000
m,p-Xylene	1100	67000	4800	290000
Cumene	1100	2800	5400	14000
Propylbenzene	1100	5500	5400	27000
4-Ethyltoluene	1100	6500	5400	32000
1,3,5-Trimethylbenzene	1100	3800	5400	19000
1,2,4-Trimethylbenzene	1100	9900	5400	49000

22000

17000000

90000

70000000

Chloromethane

Client Sample ID: PSV-1 Lab ID#: 1309145A-01A EPA METHOD TO-15 GC/MS

File Name: 14091723 Date of Collection: 9/5/13 2:40:00 PM Dil. Factor: 209 Date of Analysis: 9/18/13 09:19 AM Amount Rpt. Limit Amount Rpt. Limit Compound (ppbv) (ppbv) (ug/m3) (ug/m3) 1000 Not Detected Freon 12 Not Detected 5200 1000 Not Detected 7300 Not Detected Freon 114

Not Detected

8600

Not Detected

4200

Client Sample ID: PSV-1 Lab ID#: 1309145A-01A EPA METHOD TO-15 GC/MS

File Name: 14091723 Date of Collection: 9/5/13 2:40:00 PM
Dil. Factor: 209 Date of Analysis: 9/18/13 09:19 AM

Dil. Factor:	209	Date of Analysis: 9/18/13 09:19 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1000	Not Detected	8900	Not Detected
1,2-Dibromoethane (EDB)	1000	Not Detected	8000	Not Detected
Chlorobenzene	1000	Not Detected	4800	Not Detected
Ethyl Benzene	1000	53000	4500	230000
m,p-Xylene	1000	49000	4500	210000
o-Xylene	1000	Not Detected	4500	Not Detected
Styrene	1000	Not Detected	4400	Not Detected
Bromoform	1000	Not Detected	11000	Not Detected
Cumene	1000	2600	5100	13000
1,1,2,2-Tetrachloroethane	1000	Not Detected	7200	Not Detected
Propylbenzene	1000	5100	5100	25000
4-Ethyltoluene	1000	5200	5100	26000
1,3,5-Trimethylbenzene	1000	2900	5100	14000
1,2,4-Trimethylbenzene	1000	8700	5100	43000
1,3-Dichlorobenzene	1000	Not Detected	6300	Not Detected
1,4-Dichlorobenzene	1000	Not Detected	6300	Not Detected
alpha-Chlorotoluene	1000	Not Detected	5400	Not Detected
1,2-Dichlorobenzene	1000	Not Detected	6300	Not Detected
1,2,4-Trichlorobenzene	4200	Not Detected	31000	Not Detected
Hexachlorobutadiene	4200	Not Detected	44000	Not Detected
TPH ref. to Gasoline (MW=100)	21000	16000000	85000	66000000

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	132 Q	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	94	70-130	

Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects.

Client Sample ID: PSV-2 Lab ID#: 1309145A-02A EPA METHOD TO-15 GC/MS

File Name:	14091722	Date of Collection: 9/5/13 2:21:00 PM
Dil. Factor:	222	Date of Analysis: 9/18/13 08:47 AM

Dil. Factor:	222	Date of Analysis: 9/18/13 08:47 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1100	Not Detected	5500	Not Detected
Freon 114	1100	Not Detected	7800	Not Detected
Chloromethane	4400	Not Detected	9200	Not Detected
Vinyl Chloride	1100	Not Detected	2800	Not Detected
1,3-Butadiene	1100	Not Detected	2400	Not Detected
Bromomethane	1100	Not Detected	4300	Not Detected
Chloroethane	4400	Not Detected	12000	Not Detected
Freon 11	1100	Not Detected	6200	Not Detected
Ethanol	4400	Not Detected	8400	Not Detected
Freon 113	1100	Not Detected	8500	Not Detected
1,1-Dichloroethene	1100	Not Detected	4400	Not Detected
Acetone	4400	Not Detected	10000	Not Detected
2-Propanol	4400	Not Detected	11000	Not Detected
Carbon Disulfide	1100	Not Detected	3400	Not Detected
3-Chloropropene	4400	Not Detected	14000	Not Detected
Methylene Chloride	1100	Not Detected	3800	Not Detected
Methyl tert-butyl ether	1100	Not Detected	4000	Not Detected
trans-1,2-Dichloroethene	1100	Not Detected	4400	Not Detected
Hexane	1100	1200000 E	3900	4200000 E
1,1-Dichloroethane	1100	Not Detected	4500	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4400	Not Detected	13000	Not Detected
cis-1,2-Dichloroethene	1100	Not Detected	4400	Not Detected
Tetrahydrofuran	1100	Not Detected	3300	Not Detected
Chloroform	1100	Not Detected	5400	Not Detected
1,1,1-Trichloroethane	1100	Not Detected	6000	Not Detected
Cyclohexane	1100	270000	3800	920000
Carbon Tetrachloride	1100	Not Detected	7000	Not Detected
2,2,4-Trimethylpentane	1100	440000	5200	2100000
Benzene	1100	29000	3500	91000
1,2-Dichloroethane	1100	Not Detected	4500	Not Detected
Heptane	1100	160000	4500	670000
Trichloroethene	1100	Not Detected	6000	Not Detected
1,2-Dichloropropane	1100	Not Detected	5100	Not Detected
1,4-Dioxane	4400	Not Detected	16000	Not Detected
Bromodichloromethane	1100	Not Detected	7400	Not Detected
cis-1,3-Dichloropropene	1100	Not Detected	5000	Not Detected
4-Methyl-2-pentanone	1100	Not Detected	4500	Not Detected
Toluene	1100	3200	4200	12000
trans-1,3-Dichloropropene	1100	Not Detected	5000	Not Detected
1,1,2-Trichloroethane	1100	Not Detected	6000	Not Detected
Tetrachloroethene	1100	Not Detected	7500	Not Detected
2-Hexanone	4400	Not Detected	18000	Not Detected

Client Sample ID: PSV-2 Lab ID#: 1309145A-02A EPA METHOD TO-15 GC/MS

File Name: 14091722 Date of Collection: 9/5/13 2:21:00 PM
Dil. Factor: 222 Date of Analysis: 9/18/13 08:47 AM

Dil. I dolor.	LLL	Date of Affaiysis. 3/10/13 00:4/ AW		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1100	Not Detected	9400	Not Detected
1,2-Dibromoethane (EDB)	1100	Not Detected	8500	Not Detected
Chlorobenzene	1100	Not Detected	5100	Not Detected
Ethyl Benzene	1100	Not Detected	4800	Not Detected
m,p-Xylene	1100	2400	4800	11000
o-Xylene	1100	Not Detected	4800	Not Detected
Styrene	1100	Not Detected	4700	Not Detected
Bromoform	1100	Not Detected	11000	Not Detected
Cumene	1100	Not Detected	5400	Not Detected
1,1,2,2-Tetrachloroethane	1100	Not Detected	7600	Not Detected
Propylbenzene	1100	Not Detected	5400	Not Detected
4-Ethyltoluene	1100	Not Detected	5400	Not Detected
1,3,5-Trimethylbenzene	1100	Not Detected	5400	Not Detected
1,2,4-Trimethylbenzene	1100	Not Detected	5400	Not Detected
1,3-Dichlorobenzene	1100	Not Detected	6700	Not Detected
1,4-Dichlorobenzene	1100	Not Detected	6700	Not Detected
alpha-Chlorotoluene	1100	Not Detected	5700	Not Detected
1,2-Dichlorobenzene	1100	Not Detected	6700	Not Detected
1,2,4-Trichlorobenzene	4400	Not Detected	33000	Not Detected
Hexachlorobutadiene	4400	Not Detected	47000	Not Detected
TPH ref. to Gasoline (MW=100)	22000	20000000	91000	82000000

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	135 Q	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	92	70-130	

Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects.

1,4-Dioxane

Toluene

Bromodichloromethane

cis-1,3-Dichloropropene 4-Methyl-2-pentanone

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

Tetrachloroethene 2-Hexanone

Client Sample ID: SVE-1 Lab ID#: 1309145A-03A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14091724 221		Date of Collection: 9/5/13 1:49:00 PM Date of Analysis: 9/18/13 10:06 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	1100	Not Detected	5500	Not Detecte	
Freon 114	1100	Not Detected	7700	Not Detecte	
Chloromethane	4400	Not Detected	9100	Not Detecte	
Vinyl Chloride	1100	Not Detected	2800	Not Detecte	
1,3-Butadiene	1100	Not Detected	2400	Not Detecte	
Bromomethane	1100	Not Detected	4300	Not Detecte	
Chloroethane	4400	Not Detected	12000	Not Detecte	
Freon 11	1100	Not Detected	6200	Not Detecte	
Ethanol	4400	Not Detected	8300	Not Detecte	
Freon 113	1100	Not Detected	8500	Not Detecte	
1,1-Dichloroethene	1100	Not Detected	4400	Not Detecte	
Acetone	4400	Not Detected	10000	Not Detecte	
2-Propanol	4400	Not Detected	11000	Not Detecte	
Carbon Disulfide	1100	Not Detected	3400	Not Detecte	
3-Chloropropene	4400	Not Detected	14000	Not Detecte	
Methylene Chloride	1100	Not Detected	3800	Not Detecte	
Methyl tert-butyl ether	1100	Not Detected	4000	Not Detecte	
trans-1,2-Dichloroethene	1100	Not Detected	4400	Not Detecte	
Hexane	1100	1200000 E	3900	4400000 E	
1,1-Dichloroethane	1100	Not Detected	4500	Not Detecte	
2-Butanone (Methyl Ethyl Ketone)	4400	Not Detected	13000	Not Detecte	
cis-1,2-Dichloroethene	1100	Not Detected	4400	Not Detecte	
Tetrahydrofuran	1100	Not Detected	3200	Not Detecte	
Chloroform	1100	Not Detected	5400	Not Detecte	
1,1,1-Trichloroethane	1100	Not Detected	6000	Not Detecte	
Cyclohexane	1100	280000	3800	950000	
Carbon Tetrachloride	1100	Not Detected	7000	Not Detecte	
2,2,4-Trimethylpentane	1100	370000	5200	1700000	
Benzene	1100	120000	3500	400000	
1,2-Dichloroethane	1100	Not Detected	4500	Not Detecte	
Heptane	1100	230000	4500	950000	
Trichloroethene	1100	Not Detected	5900	Not Detecte	
1,2-Dichloropropane	1100	Not Detected	5100	Not Detecte	
4.4.5	4.400	NI (D) ()	40000	N D	

Not Detected

Not Detected

Not Detected

Not Detected

4400

Not Detected

Not Detected

Not Detected

Not Detected

16000

7400

5000

4500

4200

5000

6000

7500

18000

Not Detected

Not Detected

Not Detected

Not Detected

16000

Not Detected

Not Detected

Not Detected

Not Detected

4400

1100

1100

1100

1100

1100

1100

1100

4400

Client Sample ID: SVE-1 Lab ID#: 1309145A-03A EPA METHOD TO-15 GC/MS

File Name: 14091724 Date of Collection: 9/5/13 1:49:00 PM
Dil. Factor: 221 Date of Analysis: 9/18/13 10:06 AM

- m · woto::		Date of Analysis: 5/10/10 10:00 Am		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1100	Not Detected	9400	Not Detected
1,2-Dibromoethane (EDB)	1100	Not Detected	8500	Not Detected
Chlorobenzene	1100	Not Detected	5100	Not Detected
Ethyl Benzene	1100	66000	4800	290000
m,p-Xylene	1100	67000	4800	290000
o-Xylene	1100	Not Detected	4800	Not Detected
Styrene	1100	Not Detected	4700	Not Detected
Bromoform	1100	Not Detected	11000	Not Detected
Cumene	1100	2800	5400	14000
1,1,2,2-Tetrachloroethane	1100	Not Detected	7600	Not Detected
Propylbenzene	1100	5500	5400	27000
4-Ethyltoluene	1100	6500	5400	32000
1,3,5-Trimethylbenzene	1100	3800	5400	19000
1,2,4-Trimethylbenzene	1100	9900	5400	49000
1,3-Dichlorobenzene	1100	Not Detected	6600	Not Detected
1,4-Dichlorobenzene	1100	Not Detected	6600	Not Detected
alpha-Chlorotoluene	1100	Not Detected	5700	Not Detected
1,2-Dichlorobenzene	1100	Not Detected	6600	Not Detected
1,2,4-Trichlorobenzene	4400	Not Detected	33000	Not Detected
Hexachlorobutadiene	4400	Not Detected	47000	Not Detected
TPH ref. to Gasoline (MW=100)	22000	17000000	90000	7000000

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	133 Q	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	95	70-130

Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects.

Client Sample ID: Lab Blank Lab ID#: 1309145A-04A

EPA METHOD TO-15 GC/MS File Name: 14091709 Date of Collection: NA Dil. Factor: 1.00 Date of Analysis: 9/17/13 05:31 PM Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) 5.0 25 Not Detected Freon 12 Not Detected 5.0 Not Detected 35 Not Detected Freon 114 Chloromethane 20 Not Detected 41 Not Detected 5.0 Not Detected 13 Not Detected Vinyl Chloride 5.0 Not Detected Not Detected 1,3-Butadiene 11 Bromomethane 5.0 Not Detected 19 Not Detected Chloroethane 20 Not Detected 53 Not Detected Freon 11 5.0 Not Detected 28 Not Detected Ethanol 20 38 Not Detected Not Detected Freon 113 5.0 Not Detected 38 Not Detected 1,1-Dichloroethene 5.0 Not Detected 20 Not Detected Acetone 20 Not Detected 48 Not Detected 49 2-Propanol 20 Not Detected Not Detected Carbon Disulfide 5.0 Not Detected 16 Not Detected 20 63 Not Detected 3-Chloropropene Not Detected 5.0 17 Not Detected Not Detected Methylene Chloride 5.0 Not Detected 18 Not Detected Methyl tert-butyl ether 5.0 20 Not Detected Not Detected trans-1,2-Dichloroethene 5.0 Not Detected 18 Not Detected Hexane 5.0 Not Detected 20 Not Detected 1,1-Dichloroethane 20 59 2-Butanone (Methyl Ethyl Ketone) Not Detected Not Detected 5.0 Not Detected 20 Not Detected cis-1,2-Dichloroethene 5.0 Tetrahvdrofuran Not Detected 15 Not Detected 5.0 Not Detected 24 Not Detected Chloroform 1,1,1-Trichloroethane 5.0 Not Detected 27 Not Detected Cvclohexane 5.0 Not Detected 17 Not Detected Carbon Tetrachloride 5.0 Not Detected Not Detected 31 2,2,4-Trimethylpentane 5.0 Not Detected 23 Not Detected 5.0 Benzene Not Detected 16 Not Detected 1,2-Dichloroethane 5.0 Not Detected 20 Not Detected 5.0 Not Detected 20 Not Detected Heptane 5.0 27 Trichloroethene Not Detected Not Detected 1,2-Dichloropropane 5.0 Not Detected 23 Not Detected 20 Not Detected 72 Not Detected 1,4-Dioxane 5.0 Not Detected 34 Not Detected Bromodichloromethane 23 cis-1,3-Dichloropropene 5.0 Not Detected Not Detected 5.0 Not Detected 20 Not Detected 4-Methyl-2-pentanone 5.0 Not Detected 19 Not Detected Toluene 5.0 Not Detected 23 Not Detected trans-1,3-Dichloropropene 27 5.0 Not Detected Not Detected 1,1,2-Trichloroethane 5.0 Not Detected 34 Not Detected Tetrachloroethene 2-Hexanone 20 Not Detected 82 Not Detected

Client Sample ID: Lab Blank Lab ID#: 1309145A-04A EPA METHOD TO-15 GC/MS

File Name:	14091709	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/17/13 05:31 PM

Dil. Factor:	1.00	Date of Analysis: 9/17/13 05:31 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	5.0	Not Detected	42	Not Detected
1,2-Dibromoethane (EDB)	5.0	Not Detected	38	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
Styrene	5.0	Not Detected	21	Not Detected
Bromoform	5.0	Not Detected	52	Not Detected
Cumene	5.0	Not Detected	24	Not Detected
1,1,2,2-Tetrachloroethane	5.0	Not Detected	34	Not Detected
Propylbenzene	5.0	Not Detected	24	Not Detected
4-Ethyltoluene	5.0	Not Detected	24	Not Detected
1,3,5-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,2,4-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,3-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
alpha-Chlorotoluene	5.0	Not Detected	26	Not Detected
1,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected
Hexachlorobutadiene	20	Not Detected	210	Not Detected
TPH ref. to Gasoline (MW=100)	100	Not Detected	410	Not Detected

Container Type: NA - Not Applicable

Container Type: 1171 Het Applicable		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: CCV Lab ID#: 1309145A-05A EPA METHOD TO-15 GC/MS

File Name: 14091705 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/17/13 03:18 PM

Freon 12 104 Freon 114 101 Chloromethane 111 Vinyl Choride 122 1,3-Butadiene 123 Bromomethane 102 Chloroethane 100 Freon 11 103 Ethanol 107 Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methylene Chloride 102 Methylethyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 Chloroform 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzen	Compound	%Recovery	
Chloromethane 111 Vinyl Chloride 122 1,3-Butadiene 123 Bromomethane 100 Chloroethane 100 Freon 11 103 Ethanol 107 Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methylene Chloride 102 Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Potratarydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 <t< td=""><td>Freon 12</td><td>104</td><td></td></t<>	Freon 12	104	
Vinyl Choride 122 1,3-Butadiene 123 Bromomethane 102 Chloroethane 100 Freon 11 103 Ethanol 107 Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methylene Chloride 102 Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethane 99 Tetrahydrofuran 99 Tetrahydrofuran 99 Tetrahydrofuran 103 Cyclohexane 103 Carbon Tetrachloride 101 2,2-4-Timethylpentane 102 Benzene 104 1,2-Dichloroethane 103 <tr< td=""><td>Freon 114</td><td>101</td><td></td></tr<>	Freon 114	101	
1,3-Butadiene 123 Bromomethane 102 Chloroethane 100 Freon 11 103 Ethanol 107 Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylere Chloride 102 Methyle Rechloride 102 Methyle Rechloride 100 Hexane 100 1,-Dichloroethene 105 2-Butanone (Methyl Ethyl Ketone) 104 s5-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 Carbon Tetrachloride 101 2,2-1-Timethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 1,2-Dichloroethane 109 Heptane 104 1,2-Dichloroethane 109 Heptane </td <td>Chloromethane</td> <td>111</td> <td></td>	Chloromethane	111	
1,3-Butadiene 123 Bromomethane 100 Chloroethane 100 Freon 11 103 Ethanol 107 Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methyle ter-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cs-1, 2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 Carbon Tetrachloride 101 Cy,2,4-Timethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Heptane 104 Heptane 104 Heptane 104 Trichloroethane <td>Vinyl Chloride</td> <td>122</td> <td></td>	Vinyl Chloride	122	
Chloroethane 100 Freon 11 103 Ethanol 107 Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methylene Chloride 102 Methylene Chloride 102 Methylene Chloride 100 Hexane 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Chloroform 103 Chloroform 103 Chloroform 103 Chloroform 103 Clarity Tierrichylopethane 100 Cyclohexane 104 Carbon Tetrachloride 101 1,2-Dichloroethane 102 Benzene 104 1,2-Dichloroethane 102 1,2-Dich		123	
Freon 11 103 Ethanol 107 Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1-1-Trichloroethane 100 Cycloexane 103 Carbon Tetrachloride 101 2,2-4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Tichloroethane 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromdichloromethane 102	Bromomethane	102	
Ethanol 107 Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 109 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 <td>Chloroethane</td> <td>100</td> <td></td>	Chloroethane	100	
Freon 113 94 1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methyle ter-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone	Freon 11	103	
1,1-Dichloroethene 99 Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloroptopene 95	Ethanol	107	
Acetone 97 2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1-1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloroptopene <td>Freon 113</td> <td>94</td> <td></td>	Freon 113	94	
2-Propanol 92 Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methylene Chloride 100 Methyl Etr-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloroptopene 95 1,1,2-Trichloroethane 100	1,1-Dichloroethene	99	
Carbon Disulfide 84 3-Chloropropene 93 Methylene Chloride 102 Methyl tert-butyl ether 100 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloroptopene 95 1,1,2-Trichloroethane 100 <t< td=""><td>Acetone</td><td>97</td><td></td></t<>	Acetone	97	
3-Chloropropene 93 Methylene Chloride 102 Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tertarydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	2-Propanol	92	
Methylene Chloride 102 Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Carbon Disulfide	84	
Methyl tert-butyl ether 97 trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	3-Chloropropene	93	
trans-1,2-Dichloroethene 100 Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Methylene Chloride	102	
Hexane 100 1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98		97	
1,1-Dichloroethane 105 2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Tolluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	trans-1,2-Dichloroethene	100	
2-Butanone (Methyl Ethyl Ketone) 104 cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Hexane	100	
cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	1,1-Dichloroethane	105	
cis-1,2-Dichloroethene 99 Tetrahydrofuran 99 Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	2-Butanone (Methyl Ethyl Ketone)	104	
Chloroform 103 1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98		99	
1,1,1-Trichloroethane 100 Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Tetrahydrofuran	99	
Cyclohexane 103 Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Chloroform	103	
Carbon Tetrachloride 101 2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	1,1,1-Trichloroethane	100	
2,2,4-Trimethylpentane 102 Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Cyclohexane	103	
Benzene 104 1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Carbon Tetrachloride	101	
1,2-Dichloroethane 109 Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	2,2,4-Trimethylpentane	102	
Heptane 104 Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Benzene	104	
Trichloroethene 102 1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	1,2-Dichloroethane	109	
1,2-Dichloropropane 101 1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Heptane	104	
1,4-Dioxane 96 Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Trichloroethene	102	
Bromodichloromethane 102 cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	1,2-Dichloropropane	101	
cis-1,3-Dichloropropene 97 4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	1,4-Dioxane	96	
4-Methyl-2-pentanone 100 Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	Bromodichloromethane	102	
Toluene 102 trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	cis-1,3-Dichloropropene	97	
trans-1,3-Dichloropropene 95 1,1,2-Trichloroethane 100 Tetrachloroethene 98	4-Methyl-2-pentanone		
1,1,2-Trichloroethane100Tetrachloroethene98			
Tetrachloroethene 98			
	1,1,2-Trichloroethane	100	
2-Hexanone 91	Tetrachloroethene		
	2-Hexanone	91	

Client Sample ID: CCV Lab ID#: 1309145A-05A EPA METHOD TO-15 GC/MS

File Name: 14091705 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/17/13 03:18 PM

Compound	%Recovery	
Dibromochloromethane	99	
1,2-Dibromoethane (EDB)	104	
Chlorobenzene	99	
Ethyl Benzene	99	
m,p-Xylene	95	
o-Xylene	101	
Styrene	104	
Bromoform	97	
Cumene	108	
1,1,2,2-Tetrachloroethane	103	
Propylbenzene	109	
4-Ethyltoluene	111	
1,3,5-Trimethylbenzene	108	
1,2,4-Trimethylbenzene	106	
1,3-Dichlorobenzene	101	
1,4-Dichlorobenzene	101	
alpha-Chlorotoluene	108	
1,2-Dichlorobenzene	102	
1,2,4-Trichlorobenzene	127	
Hexachlorobutadiene	130	
TPH ref. to Gasoline (MW=100)	100	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCS Lab ID#: 1309145A-06A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:		Collection: NA Analysis: 9/17/13 04:13 PM
dotoi .	Date of I	Method
Compound	%Recovery	Limits
Freon 12	105	70-130
Freon 114	100	70-130
Chloromethane	117	70-130
Vinyl Chloride	123	70-130
1,3-Butadiene	120	70-130
Bromomethane	99	70-130
Chloroethane	95	70-130
Freon 11	101	70-130
Ethanol	90	70-130
Freon 113	89	70-130
1,1-Dichloroethene	107	70-130
Acetone	99	70-130
2-Propanol	88	70-130
Carbon Disulfide	103	70-130
3-Chloropropene	96	70-130
Methylene Chloride	101	70-130
Methyl tert-butyl ether	92	70-130
trans-1,2-Dichloroethene	111	70-130
Hexane	95	70-130
1,1-Dichloroethane	101	70-130
2-Butanone (Methyl Ethyl Ketone)	96	70-130
cis-1,2-Dichloroethene	96	70-130
Tetrahydrofuran	89	70-130
Chloroform	103	70-130
1,1,1-Trichloroethane	99	70-130
Cyclohexane	96	70-130
Carbon Tetrachloride	96	70-130
2,2,4-Trimethylpentane	94	70-130
Benzene	103	70-130
1,2-Dichloroethane	108	70-130
Heptane	95	70-130
Trichloroethene	99	70-130
1,2-Dichloropropane	103	70-130
1,4-Dioxane	88	70-130
Bromodichloromethane	96	70-130
cis-1,3-Dichloropropene	87	70-130
4-Methyl-2-pentanone	85	70-130
Toluene	98	70-130
trans-1,3-Dichloropropene	84	70-130
1,1,2-Trichloroethane	98	70-130
Tetrachloroethene	97	70-130
2-Hexanone	73	70-130

Client Sample ID: LCS Lab ID#: 1309145A-06A EPA METHOD TO-15 GC/MS

File Name: 14091706 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/17/13 04:13 PM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	89	70-130
1,2-Dibromoethane (EDB)	98	70-130
Chlorobenzene	100	70-130
Ethyl Benzene	90	70-130
m,p-Xylene	89	70-130
o-Xylene	90	70-130
Styrene	86	70-130
Bromoform	83	70-130
Cumene	100	70-130
1,1,2,2-Tetrachloroethane	100	70-130
Propylbenzene	102	70-130
4-Ethyltoluene	98	70-130
1,3,5-Trimethylbenzene	100	70-130
1,2,4-Trimethylbenzene	93	70-130
1,3-Dichlorobenzene	98	70-130
1,4-Dichlorobenzene	95	70-130
alpha-Chlorotoluene	78	70-130
1,2-Dichlorobenzene	100	70-130
1,2,4-Trichlorobenzene	117	70-130
Hexachlorobutadiene	122	70-130
TDLL (N = 4 O = H = = I	

TPH ref. to Gasoline (MW=100) Not Spiked

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCSD Lab ID#: 1309145A-06AA EPA METHOD TO-15 GC/MS

File Name: 14091707 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/17/13 04:40 PM

Commonad	0/ December	Method
Compound	%Recovery	Limits
Freon 12	110	70-130
Freon 114	104	70-130
Chloromethane	121	70-130
Vinyl Chloride	132 Q	70-130
1,3-Butadiene	130	70-130
Bromomethane	103	70-130
Chloroethane	103	70-130
Freon 11	106	70-130
Ethanol	91	70-130
Freon 113	98	70-130
1,1-Dichloroethene	111	70-130
Acetone	105	70-130
2-Propanol	94	70-130
Carbon Disulfide	109	70-130
3-Chloropropene	106	70-130
Methylene Chloride	103	70-130
Methyl tert-butyl ether	95	70-130
trans-1,2-Dichloroethene	114	70-130
Hexane	101	70-130
1,1-Dichloroethane	106	70-130
2-Butanone (Methyl Ethyl Ketone)	98	70-130
cis-1,2-Dichloroethene	100	70-130
Tetrahydrofuran	91	70-130
Chloroform	106	70-130
1,1,1-Trichloroethane	102	70-130
Cyclohexane	100	70-130
Carbon Tetrachloride	101	70-130
2,2,4-Trimethylpentane	98	70-130
Benzene	107	70-130
1,2-Dichloroethane	110	70-130
Heptane	98	70-130
Trichloroethene	106	70-130
1,2-Dichloropropane	105	70-130
1,4-Dioxane	90	70-130
Bromodichloromethane	100	70-130
cis-1,3-Dichloropropene	90	70-130
4-Methyl-2-pentanone	87	70-130
Toluene	100	70-130
trans-1,3-Dichloropropene	86	70-130
1,1,2-Trichloroethane	104	70-130
Tetrachloroethene	99	70-130
2-Hexanone	77	70-130

Client Sample ID: LCSD Lab ID#: 1309145A-06AA **EPA METHOD TO-15 GC/MS**

File Name: 14091707 **Date of Collection: NA** Dil. Factor: 1.00 Date of Analysis: 9/17/13 04:40 PM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	93	70-130
1,2-Dibromoethane (EDB)	102	70-130
Chlorobenzene	102	70-130
Ethyl Benzene	93	70-130
m,p-Xylene	92	70-130
o-Xylene	95	70-130
Styrene	92	70-130
Bromoform	83	70-130
Cumene	103	70-130
1,1,2,2-Tetrachloroethane	104	70-130
Propylbenzene	106	70-130
4-Ethyltoluene	102	70-130
1,3,5-Trimethylbenzene	103	70-130
1,2,4-Trimethylbenzene	97	70-130
1,3-Dichlorobenzene	102	70-130
1,4-Dichlorobenzene	97	70-130
alpha-Chlorotoluene	80	70-130
1,2-Dichlorobenzene	102	70-130
1,2,4-Trichlorobenzene	119	70-130
Hexachlorobutadiene	124	70-130
TPH ref. to Gasoline (MW=100)	Not Spiked	

TPH ref. to Gasoline (MW=100)

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	101	70-130	

9/24/2013 Mr. Clifford Pearson URS Corporation 111 SW Columbia Street Suite 1500 Portland OR 97201

Project Name:

Project #: 46194348 Workorder #: 1309145B

Dear Mr. Clifford Pearson

The following report includes the data for the above referenced project for sample(s) received on 9/10/2013 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Killy Butte

WORK ORDER #: 1309145B

Work Order Summary

CLIENT: Mr. Clifford Pearson BILL TO: Accounts Payable Austin

URS Corporation
URS Corporation
URS Corporation
P.O. BOX 203970
Suite 1500
Austin, TX 78720-1088

Portland, OR 97201

PHONE: 503-222-7200 P.O. #

FAX: PROJECT # 46194348

DATE RECEIVED: 09/10/2013 **CONTACT:** Kelly Buettner 09/24/2013

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	PSV-1	Modified ASTM D-1946	0.8 "Hg	15.2 psi
02A	PSV-2	Modified ASTM D-1946	2.4 "Hg	15.3 psi
03A	SVE-1	Modified ASTM D-1946	2.4 "Hg	15.2 psi
04A	Lab Blank	Modified ASTM D-1946	NA	NA
05A	LCS	Modified ASTM D-1946	NA	NA
05AA	LCSD	Modified ASTM D-1946	NA	NA

	Heide Hayes	
CERTIFIED BY:	0 0 0	DATE: 09/24/13

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, VA NELAP - 460197, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2012, Expiration date: 10/17/2013.
Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE Modified ASTM D-1946 URS Corporation Workorder# 1309145B

Three 1 Liter Summa Canister samples were received on September 10, 2013. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reporting limit for Nitrogen was raised from 0.10% to 0.50%.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: PSV-1 Lab ID#: 1309145B-01A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.21	1.5
Nitrogen	1.0	54
Methane	0.00021	31

Client Sample ID: PSV-2 Lab ID#: 1309145B-02A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	1.3
Nitrogen	1.1	59
Methane	0.00022	30

Client Sample ID: SVE-1

Lab ID#: 1309145B-03A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	1.8
Nitrogen	1.1	54
Methane	0.00022	31

Client Sample ID: PSV-1 Lab ID#: 1309145B-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10091917 2.09		ion: 9/5/13 2:40:00 PM is: 9/19/13 06:22 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.21	1.5
Nitrogen		1.0	54
Methane		0.00021	31

Container Type: 1 Liter Summa Canister

Client Sample ID: PSV-2 Lab ID#: 1309145B-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10091918 2.22		tion: 9/5/13 2:21:00 PM sis: 9/19/13 06:45 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.22	1.3
Nitrogen		1.1	59

0.00022

30

Container Type: 1 Liter Summa Canister

Methane

Client Sample ID: SVE-1 Lab ID#: 1309145B-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10091919 2.21		ion: 9/5/13 1:49:00 PM is: 9/19/13 07:11 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.22	1.8
Nitrogen		1.1	54
Methane		0.00022	31

Container Type: 1 Liter Summa Canister

Client Sample ID: Lab Blank Lab ID#: 1309145B-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10091904 1.00	Date of Collect Date of Analy	ction: NA /sis: 9/19/13 09:29 AM
Compound		Rpt. Limit	Amount (%)
Oxygen		(%) 0.10	Not Detected
Nitrogen		0.50	Not Detected
Methane		0.00010	Not Detected

Client Sample ID: LCS Lab ID#: 1309145B-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10091902	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/13 08:16 AM

		Method
Compound	%Recovery	Limits
Oxygen	102	85-115
Nitrogen	100	85-115
Methane	101	85-115

Client Sample ID: LCSD Lab ID#: 1309145B-05AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10091924	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/19/13 09:58 PM

	ov.=	Method
Compound	%Recovery	Limits
Oxygen	100	85-115
Nitrogen	100	85-115
Methane	100	85-115

10/2/2013 Mr. Clifford Pearson URS Corporation 111 SW Columbia Street Suite 1500 Portland OR 97201

Project Name: Harbor Island Pilot Test

Project #: 46194348 Workorder #: 1309319A

Dear Mr. Clifford Pearson

The following report includes the data for the above referenced project for sample(s) received on 9/18/2013 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 (5&20 ppbv) are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Killy Butte

WORK ORDER #: 1309319A

Work Order Summary

CLIENT: Mr. Clifford Pearson BILL TO: Accounts Payable Austin

URS Corporation
URS Corporation
URS Corporation
P.O. BOX 203970
Suite 1500
Austin, TX 78720-1088

Portland, OR 97201

PHONE: 503-222-7200 **P.O.** #

FAX: PROJECT # 46194348 Harbor Island Pilot Test

DATE RECEIVED: 09/18/2013 CONTACT: Kelly Buettner DATE COMPLETED: 10/02/2013

			RECEIPT	FINAL
FRACTION#	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVE-1-2 Hour-090913	Modified TO-15 (5&20 ppbv)	2.4 "Hg	15.5 psi
02A	SVE-1-2 Hour-091013	Modified TO-15 (5&20 ppbv)	4.5 "Hg	15.2 psi
03A	SVE-1-4 Hour-091013	Modified TO-15 (5&20 ppbv)	4.1 "Hg	15.1 psi
04A	Lab Blank	Modified TO-15 (5&20 ppbv)	NA	NA
05A	CCV	Modified TO-15 (5&20 ppbv)	NA	NA
06A	LCS	Modified TO-15 (5&20 ppbv)	NA	NA
06AA	LCSD	Modified TO-15 (5&20 ppbv)	NA	NA

	Thera	0/10	ayro		
CERTIFIED BY:			0	DATE:	10/02/13

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, VA NELAP - 460197, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2012, Expiration date: 10/17/2013.
Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 956:

LABORATORY NARRATIVE EPA Method TO-15 Soil Gas URS Corporation Workorder# 1309319A

Three 1 Liter Summa Canister samples were received on September 18, 2013. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 50 mLs of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Dilution was performed on samples SVE-1-2 Hour-090913 and SVE-1-4 Hour-091013 due to the presence of high level target and non-target species.

The recovery of surrogate 1,2-Dichloroethane-d4 in sample SVE-1-2 Hour-091013 was outside laboratory control limits due to high level hydrocarbon matrix interference. The surrogate recovery is flagged.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates

as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: SVE-1-2 Hour-090913

Lab ID#: 1309319A-01A

Edb 15": 150/51/11 01/1				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Hexane	1100	1100000	3900	4000000
Cyclohexane	1100	260000	3800	910000
2,2,4-Trimethylpentane	1100	350000	5200	1600000
Benzene	1100	120000	3600	380000
Heptane	1100	220000	4600	900000
Toluene	1100	3400	4200	13000
Ethyl Benzene	1100	69000	4900	300000
m,p-Xylene	1100	64000	4900	280000
Cumene	1100	3300	5500	16000
Propylbenzene	1100	7900	5500	39000
4-Ethyltoluene	1100	8700	5500	43000
1,3,5-Trimethylbenzene	1100	4600	5500	22000
1,2,4-Trimethylbenzene	1100	19000	5500	93000
TPH ref. to Gasoline (MW=100)	22000	15000000	92000	60000000

Client Sample ID: SVE-1-2 Hour-091013

Lab ID#: 1309319A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Hexane	29	110000 E	100	380000 E
Cyclohexane	29	26000	99	90000
2,2,4-Trimethylpentane	29	36000 E	130	170000 E
Benzene	29	11000	92	34000
Heptane	29	20000	120	82000
Toluene	29	260	110	1000
Ethyl Benzene	29	3800	120	16000
m,p-Xylene	29	3000	120	13000
Cumene	29	160	140	800
Propylbenzene	29	300	140	1500
4-Ethyltoluene	29	280	140	1400
1,3,5-Trimethylbenzene	29	140	140	690
1,2,4-Trimethylbenzene	29	510	140	2500
TPH ref. to Gasoline (MW=100)	580	1400000	2400	5700000

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: SVE-1-4 Hour-091013

Lab ID#: 1309319A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Hexane	200	180000	690	630000
Cyclohexane	200	41000	670	140000
2,2,4-Trimethylpentane	200	59000	920	280000
Benzene	200	17000	630	55000
Heptane	200	34000	800	140000
Toluene	200	480	740	1800
Ethyl Benzene	200	8600	850	38000
m,p-Xylene	200	6900	850	30000
Cumene	200	410	960	2000
Propylbenzene	200	770	960	3800
4-Ethyltoluene	200	660	960	3300
1,3,5-Trimethylbenzene	200	360	960	1800
1,2,4-Trimethylbenzene	200	1200	960	6000
TPH ref. to Gasoline (MW=100)	3900	2200000	16000	9100000

Client Sample ID: SVE-1-2 Hour-090913 Lab ID#: 1309319A-01A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14092727 224		of Collection: 9/9/ of Analysis: 9/28/	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1100	Not Detected	5500	Not Detected
Freon 114	1100	Not Detected	7800	Not Detected
Chloromethane	4500	Not Detected	9200	Not Detected
Vinyl Chloride	1100	Not Detected	2900	Not Detected
1,3-Butadiene	1100	Not Detected	2500	Not Detected
Bromomethane	1100	Not Detected	4300	Not Detected
Chloroethane	4500	Not Detected	12000	Not Detected
Freon 11	1100	Not Detected	6300	Not Detected
Ethanol	4500	Not Detected	8400	Not Detected
Freon 113	1100	Not Detected	8600	Not Detected
1,1-Dichloroethene	1100	Not Detected	4400	Not Detected
Acetone	4500	Not Detected	11000	Not Detected
2-Propanol	4500	Not Detected	11000	Not Detected
Carbon Disulfide	1100	Not Detected	3500	Not Detected
3-Chloropropene	4500	Not Detected	14000	Not Detected
Methylene Chloride	1100	Not Detected	3900	Not Detected
Methyl tert-butyl ether	1100	Not Detected	4000	Not Detected
trans-1,2-Dichloroethene	1100	Not Detected	4400	Not Detected
Hexane	1100	1100000	3900	4000000
1,1-Dichloroethane	1100	Not Detected	4500	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4500	Not Detected	13000	Not Detected
cis-1,2-Dichloroethene	1100	Not Detected	4400	Not Detected
Tetrahydrofuran	1100	Not Detected	3300	Not Detected
Chloroform	1100	Not Detected	5500	Not Detected
1,1,1-Trichloroethane	1100	Not Detected	6100	Not Detected
Cyclohexane	1100	260000	3800	910000
Carbon Tetrachloride	1100	Not Detected	7000	Not Detected
2,2,4-Trimethylpentane	1100	350000	5200	1600000
Benzene	1100	120000	3600	380000
1,2-Dichloroethane	1100	Not Detected	4500	Not Detected
Heptane	1100	220000	4600	900000
Trichloroethene	1100	Not Detected	6000	Not Detected
1,2-Dichloropropane	1100	Not Detected	5200	Not Detected
1,4-Dioxane	4500	Not Detected	16000	Not Detected
Bromodichloromethane	1100	Not Detected	7500	Not Detected
cis-1,3-Dichloropropene	1100	Not Detected	5100	Not Detected
4-Methyl-2-pentanone	1100	Not Detected	4600	Not Detected
Toluene	1100	3400	4200	13000
trans-1,3-Dichloropropene	1100	Not Detected	5100	Not Detected
1,1,2-Trichloroethane	1100	Not Detected	6100	Not Detected
Tetrachloroethene	1100	Not Detected	7600	Not Detected
2-Hexanone	4500	Not Detected	18000	Not Detected

Client Sample ID: SVE-1-2 Hour-090913 Lab ID#: 1309319A-01A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14092727 224		of Collection: 9/9/ of Analysis: 9/28/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1100	Not Detected	9500	Not Detected
1,2-Dibromoethane (EDB)	1100	Not Detected	8600	Not Detected
Chlorobenzene	1100	Not Detected	5200	Not Detected
Ethyl Benzene	1100	69000	4900	300000
m,p-Xylene	1100	64000	4900	280000
o-Xylene	1100	Not Detected	4900	Not Detected
Styrene	1100	Not Detected	4800	Not Detected
Bromoform	1100	Not Detected	12000	Not Detected
Cumene	1100	3300	5500	16000
1,1,2,2-Tetrachloroethane	1100	Not Detected	7700	Not Detected
Propylbenzene	1100	7900	5500	39000
4-Ethyltoluene	1100	8700	5500	43000
1,3,5-Trimethylbenzene	1100	4600	5500	22000

19000

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

15000000

5500

6700

6700

5800

6700

33000

48000

92000

1100

1100

1100

1100

1100

4500

4500

22000

93000

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected 60000000

Container Type: 1 Liter Summa Canister

1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene alpha-Chlorotoluene

1,2-Dichlorobenzene 1,2,4-Trichlorobenzene

Hexachlorobutadiene

TPH ref. to Gasoline (MW=100)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	127	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: SVE-1-2 Hour-091013 Lab ID#: 1309319A-02A

EPA METHOD TO-15 GC/MS

File Name:	14092725	Date	of Collection: 9/10)/13 11:05:00 AM
Dil. Factor:	5.76		of Analysis: 9/28/	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	29	Not Detected	140	Not Detected
Freon 114	29	Not Detected	200	Not Detected
Chloromethane	120	Not Detected	240	Not Detected
Vinyl Chloride	29	Not Detected	74	Not Detected
1,3-Butadiene	29	Not Detected	64	Not Detected
Bromomethane	29	Not Detected	110	Not Detected
Chloroethane	120	Not Detected	300	Not Detected
Freon 11	29	Not Detected	160	Not Detected
Ethanol	120	Not Detected	220	Not Detected
Freon 113	29	Not Detected	220	Not Detected
1,1-Dichloroethene	29	Not Detected	110	Not Detected
Acetone	120	Not Detected	270	Not Detected
2-Propanol	120	Not Detected	280	Not Detected
Carbon Disulfide	29	Not Detected	90	Not Detected
3-Chloropropene	120	Not Detected	360	Not Detected
Methylene Chloride	29	Not Detected	100	Not Detected
Methyl tert-butyl ether	29	Not Detected	100	Not Detected
trans-1,2-Dichloroethene	29	Not Detected	110	Not Detected
Hexane	29	110000 E	100	380000 E
1,1-Dichloroethane	29	Not Detected	120	Not Detected
2-Butanone (Methyl Ethyl Ketone)	120	Not Detected	340	Not Detected
cis-1,2-Dichloroethene	29	Not Detected	110	Not Detected
Tetrahydrofuran	29	Not Detected	85	Not Detected
Chloroform	29	Not Detected	140	Not Detected
1,1,1-Trichloroethane	29	Not Detected	160	Not Detected
Cyclohexane	29	26000	99	90000
Carbon Tetrachloride	29	Not Detected	180	Not Detected
2,2,4-Trimethylpentane	29	36000 E	130	170000 E
Benzene	29	11000	92	34000
1,2-Dichloroethane	29	Not Detected	120	Not Detected
Heptane	29	20000	120	82000
Trichloroethene	29	Not Detected	150	Not Detected
1,2-Dichloropropane	29	Not Detected	130	Not Detected
1,4-Dioxane	120	Not Detected	420	Not Detected
Bromodichloromethane	29	Not Detected	190	Not Detected
cis-1,3-Dichloropropene	29	Not Detected	130	Not Detected
4-Methyl-2-pentanone	29	Not Detected	120	Not Detected
Toluene	29	260	110	1000
trans-1,3-Dichloropropene	29	Not Detected	130	Not Detected
1,1,2-Trichloroethane	29	Not Detected	160	Not Detected
Tetrachloroethene	29	Not Detected	200	Not Detected
2-Hexanone	120	Not Detected	470	Not Detected

Client Sample ID: SVE-1-2 Hour-091013 Lab ID#: 1309319A-02A

EPA METHOD TO-15 GC/MS

File Name: 14092725 Dil. Factor: 5.76		Date of Collection: 9/10/13 11:05:00 AM Date of Analysis: 9/28/13 10:14 AM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	29	Not Detected	240	Not Detected	
1,2-Dibromoethane (EDB)	29	Not Detected	220	Not Detected	
Chlorobenzene	29	Not Detected	130	Not Detected	
Ethyl Benzene	29	3800	120	16000	
m,p-Xylene	29	3000	120	13000	
o-Xylene	29	Not Detected	120	Not Detected	
Styrene	29	Not Detected	120	Not Detected	
Bromoform	29	Not Detected	300	Not Detected	
Cumene	29	160	140	800	
1,1,2,2-Tetrachloroethane	29	Not Detected	200	Not Detected	
Propylbenzene	29	300	140	1500	
4-Ethyltoluene	29	280	140	1400	
1,3,5-Trimethylbenzene	29	140	140	690	
1,2,4-Trimethylbenzene	29	510	140	2500	
1,3-Dichlorobenzene	29	Not Detected	170	Not Detected	
1,4-Dichlorobenzene	29	Not Detected	170	Not Detected	
alpha-Chlorotoluene	29	Not Detected	150	Not Detected	
1,2-Dichlorobenzene	29	Not Detected	170	Not Detected	
1,2,4-Trichlorobenzene	120	Not Detected	850	Not Detected	
Hexachlorobutadiene	120	Not Detected	1200	Not Detected	
TPH ref. to Gasoline (MW=100)	580	1400000	2400	5700000	

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	174 Q	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	93	70-130	

Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects.

Client Sample ID: SVE-1-4 Hour-091013 Lab ID#: 1309319A-03A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14092726 39.2		of Collection: 9/10 of Analysis: 9/28/	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	200	Not Detected	970	Not Detected
Freon 114	200	Not Detected	1400	Not Detected
Chloromethane	780	Not Detected	1600	Not Detected
Vinyl Chloride	200	Not Detected	500	Not Detected
1,3-Butadiene	200	Not Detected	430	Not Detected
Bromomethane	200	Not Detected	760	Not Detected
Chloroethane	780	Not Detected	2100	Not Detected
Freon 11	200	Not Detected	1100	Not Detected
Ethanol	780	Not Detected	1500	Not Detected
Freon 113	200	Not Detected	1500	Not Detected
1,1-Dichloroethene	200	Not Detected	780	Not Detected
Acetone	780	Not Detected	1900	Not Detected
2-Propanol	780	Not Detected	1900	Not Detected
Carbon Disulfide	200	Not Detected	610	Not Detected
3-Chloropropene	780	Not Detected	2400	Not Detected
Methylene Chloride	200	Not Detected	680	Not Detected
Methyl tert-butyl ether	200	Not Detected	710	Not Detected
trans-1,2-Dichloroethene	200	Not Detected	780	Not Detected
Hexane	200	180000	690	630000
1,1-Dichloroethane	200	Not Detected	790	Not Detected
2-Butanone (Methyl Ethyl Ketone)	780	Not Detected	2300	Not Detected
cis-1,2-Dichloroethene	200	Not Detected	780	Not Detected
Tetrahydrofuran	200	Not Detected	580	Not Detected
Chloroform	200	Not Detected	960	Not Detected
1,1,1-Trichloroethane	200	Not Detected	1100	Not Detected
Cyclohexane	200	41000	670	140000
Carbon Tetrachloride	200	Not Detected	1200	Not Detected
2,2,4-Trimethylpentane	200	59000	920	280000
Benzene	200	17000	630	55000
1,2-Dichloroethane	200	Not Detected	790	Not Detected
Heptane	200	34000	800	140000
Trichloroethene	200	Not Detected	1000	Not Detected
1,2-Dichloropropane	200	Not Detected	900	Not Detected
1,4-Dioxane	780	Not Detected	2800	Not Detected
Bromodichloromethane	200	Not Detected	1300	Not Detected
cis-1,3-Dichloropropene	200	Not Detected	890	Not Detected
4-Methyl-2-pentanone	200	Not Detected	800	Not Detected
Toluene	200	480	740	1800
trans-1,3-Dichloropropene	200	Not Detected	890	Not Detected
1,1,2-Trichloroethane	200	Not Detected	1100	Not Detected
	200	Not Detected	1300	Not Detected
Tetrachloroethene				
2-Hexanone	780	Not Detected	3200	Not Detected

Client Sample ID: SVE-1-4 Hour-091013 Lab ID#: 1309319A-03A

EPA METHOD TO-15 GC/MS

File Name:	14092726	Date of Collection: 9/10/13 1:45:00 PM
i lie Nallie.	14092120	Date of Collection. 3/10/13 1.43.00 FW
Dil. Factor:	39.2	Date of Analysis: 9/28/13 10:40 AM

DII. Factor.	39.2	Date of Analysis. 9/26/13 10:40 Alvi		13 10.40 AW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	200	Not Detected	1700	Not Detected
1,2-Dibromoethane (EDB)	200	Not Detected	1500	Not Detected
Chlorobenzene	200	Not Detected	900	Not Detected
Ethyl Benzene	200	8600	850	38000
m,p-Xylene	200	6900	850	30000
o-Xylene	200	Not Detected	850	Not Detected
Styrene	200	Not Detected	830	Not Detected
Bromoform	200	Not Detected	2000	Not Detected
Cumene	200	410	960	2000
1,1,2,2-Tetrachloroethane	200	Not Detected	1300	Not Detected
Propylbenzene	200	770	960	3800
4-Ethyltoluene	200	660	960	3300
1,3,5-Trimethylbenzene	200	360	960	1800
1,2,4-Trimethylbenzene	200	1200	960	6000
1,3-Dichlorobenzene	200	Not Detected	1200	Not Detected
1,4-Dichlorobenzene	200	Not Detected	1200	Not Detected
alpha-Chlorotoluene	200	Not Detected	1000	Not Detected
1,2-Dichlorobenzene	200	Not Detected	1200	Not Detected
1,2,4-Trichlorobenzene	780	Not Detected	5800	Not Detected
Hexachlorobutadiene	780	Not Detected	8400	Not Detected
TPH ref. to Gasoline (MW=100)	3900	2200000	16000	9100000

Container Type: 1 Liter Summa Canister

Container Type: 1 Eleor Callinia Callictor		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	128	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: Lab Blank Lab ID#: 1309319A-04A

EPA METHOD TO-15 GC/MS					
File Name: Dil. Factor:	14092706 1.00		Date of Collection: NA Date of Analysis: 9/27/13 03:46 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	5.0	Not Detected	25	Not Detecte	
Freon 114	5.0	Not Detected	35	Not Detecte	
Chloromethane	20	Not Detected	41	Not Detecte	
Vinyl Chloride	5.0	Not Detected	13	Not Detecte	
1,3-Butadiene	5.0	Not Detected	11	Not Detecte	
Bromomethane	5.0	Not Detected	19	Not Detecte	
Chloroethane	20	Not Detected	53	Not Detecte	
Freon 11	5.0	Not Detected	28	Not Detecte	
Ethanol	20	Not Detected	38	Not Detecte	
Freon 113	5.0	Not Detected	38	Not Detecte	
1,1-Dichloroethene	5.0	Not Detected	20	Not Detecte	
Acetone	20	Not Detected	48	Not Detecte	
2-Propanol	20	Not Detected	49	Not Detecte	
Carbon Disulfide	5.0	Not Detected	16	Not Detecte	
3-Chloropropene	20	Not Detected	63	Not Detecte	
Methylene Chloride	5.0	Not Detected	17	Not Detecte	
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detecte	
trans-1,2-Dichloroethene	5.0	Not Detected	20	Not Detecte	
Hexane	5.0	Not Detected	18	Not Detecte	
1,1-Dichloroethane	5.0	Not Detected	20	Not Detecte	
2-Butanone (Methyl Ethyl Ketone)	20	Not Detected	59	Not Detecte	
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detecte	
Tetrahydrofuran	5.0	Not Detected	15	Not Detecte	
Chloroform	5.0	Not Detected	24	Not Detecte	
1,1,1-Trichloroethane	5.0	Not Detected	27	Not Detecte	
Cyclohexane	5.0	Not Detected	17	Not Detecte	
Carbon Tetrachloride	5.0	Not Detected	31	Not Detecte	
2,2,4-Trimethylpentane	5.0	Not Detected	23	Not Detecte	
Benzene	5.0	Not Detected	16	Not Detecte	
1,2-Dichloroethane	5.0	Not Detected	20	Not Detecte	
Heptane	5.0	Not Detected	20	Not Detecte	
Trichloroethene	5.0	Not Detected	27	Not Detecte	
1,2-Dichloropropane	5.0	Not Detected	23	Not Detecte	
1,4-Dioxane	20	Not Detected	72	Not Detecte	
Bromodichloromethane	5.0	Not Detected	34	Not Detecte	
cis-1,3-Dichloropropene	5.0	Not Detected	23	Not Detecte	
4-Methyl-2-pentanone	5.0	Not Detected	20	Not Detecte	
Toluene	5.0	Not Detected	19	Not Detecte	
trans-1,3-Dichloropropene	5.0	Not Detected	23	Not Detecte	
1,1,2-Trichloroethane	5.0	Not Detected	27	Not Detecte	
Tetrachloroethene	5.0	Not Detected	34	Not Detecte	
	20	Not Detected	82	Not Detecte	
2-Hexanone	20	Not Detected	OΖ	NOT DETECTE	

Client Sample ID: Lab Blank Lab ID#: 1309319A-04A EPA METHOD TO-15 GC/MS

File Name:	14092706	Date	of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 9/27/13 03:46 PM		13 03:46 PM
Compound	Rpt. Limit Amount Rpt. Limit (ppbv) (ppbv) (ug/m3)		Amount (ug/m3)	
Dibromochloromethane	(ppsv)	Not Detected	42	Not Detected

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	5.0	Not Detected	42	Not Detected
1,2-Dibromoethane (EDB)	5.0	Not Detected	38	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
Styrene	5.0	Not Detected	21	Not Detected
Bromoform	5.0	Not Detected	52	Not Detected
Cumene	5.0	Not Detected	24	Not Detected
1,1,2,2-Tetrachloroethane	5.0	Not Detected	34	Not Detected
Propylbenzene	5.0	Not Detected	24	Not Detected
4-Ethyltoluene	5.0	Not Detected	24	Not Detected
1,3,5-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,2,4-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,3-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
alpha-Chlorotoluene	5.0	Not Detected	26	Not Detected
1,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected
Hexachlorobutadiene	20	Not Detected	210	Not Detected
TPH ref. to Gasoline (MW=100)	100	Not Detected	410	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: CCV Lab ID#: 1309319A-05A EPA METHOD TO-15 GC/MS

File Name: 14092702 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/27/13 01:53 PM

Compound	%Recovery
Freon 12	101
Freon 114	94
Chloromethane	104
Vinyl Chloride	103
1,3-Butadiene	103
Bromomethane	98
Chloroethane	102
Freon 11	102
Ethanol	94
Freon 113	85
1,1-Dichloroethene	97
Acetone	99
2-Propanol	97
Carbon Disulfide	79
3-Chloropropene	95
Methylene Chloride	98
Methyl tert-butyl ether	102
trans-1,2-Dichloroethene	99
Hexane	105
1,1-Dichloroethane	104
2-Butanone (Methyl Ethyl Ketone)	105
cis-1,2-Dichloroethene	101
Tetrahydrofuran	100
Chloroform	104
1,1,1-Trichloroethane	104
Cyclohexane	103
Carbon Tetrachloride	102
2,2,4-Trimethylpentane	105
Benzene	99
1,2-Dichloroethane	106
Heptane	104
Trichloroethene	97
1,2-Dichloropropane	100
1,4-Dioxane	96
Bromodichloromethane	96
cis-1,3-Dichloropropene	98
4-Methyl-2-pentanone	100
Toluene	98
trans-1,3-Dichloropropene	98
1,1,2-Trichloroethane	95
Tetrachloroethene	91
2-Hexanone	92

Client Sample ID: CCV Lab ID#: 1309319A-05A EPA METHOD TO-15 GC/MS

File Name: 14092702 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/27/13 01:53 PM

Compound	%Recovery	
Dibromochloromethane	92	
1,2-Dibromoethane (EDB)	98	
Chlorobenzene	94	
Ethyl Benzene	92	
m,p-Xylene	92	
o-Xylene	96	
Styrene	98	
Bromoform	86	
Cumene	104	
1,1,2,2-Tetrachloroethane	96	
Propylbenzene	105	
4-Ethyltoluene	106	
1,3,5-Trimethylbenzene	105	
1,2,4-Trimethylbenzene	103	
1,3-Dichlorobenzene	94	
1,4-Dichlorobenzene	93	
alpha-Chlorotoluene	107	
1,2-Dichlorobenzene	92	
1,2,4-Trichlorobenzene	112	
Hexachlorobutadiene	116	
TPH ref. to Gasoline (MW=100)	100	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	97	70-130

2-Hexanone

Client Sample ID: LCS Lab ID#: 1309319A-06A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14092703 1.00	Date of Collection: NA Date of Analysis: 9/27/13 02:30 PM
		Method
Compound	%Recover	y Limits
Freon 12	99	70-130
Freon 114	92	70-130
Chloromethane	108	70-130
Vinyl Chloride	101	70-130
1,3-Butadiene	102	70-130
Bromomethane	88	70-130
Chloroethane	91	70-130
Freon 11	98	70-130
Ethanol	90	70-130
Freon 113	82	70-130
1,1-Dichloroethene	102	70-130
Acetone	96	70-130
2-Propanol	87	70-130
Carbon Disulfide	97	70-130
3-Chloropropene	95	70-130
Methylene Chloride	96	70-130
Methyl tert-butyl ether	95	70-130
trans-1,2-Dichloroethene	104	70-130
Hexane	96	70-130
1,1-Dichloroethane	100	70-130
2-Butanone (Methyl Ethyl Ketone)	97	70-130
cis-1,2-Dichloroethene	95	70-130
Tetrahydrofuran	88	70-130
Chloroform	102	70-130
1,1,1-Trichloroethane	98	70-130
Cyclohexane	96	70-130
Carbon Tetrachloride	94	70-130
2,2,4-Trimethylpentane	96	70-130
Benzene	94	70-130
1,2-Dichloroethane	101	70-130
Heptane	94	70-130
Trichloroethene	94	70-130
1,2-Dichloropropane	94	70-130
1,4-Dioxane	82	70-130
Bromodichloromethane	89	70-130
cis-1,3-Dichloropropene	86	70-130
4-Methyl-2-pentanone	81	70-130
Toluene	91	70-130
trans-1,3-Dichloropropene	85	70-130
1,1,2-Trichloroethane	89	70-130
Tetrachloroethene	85	70-130
	00.0	70.400

66 Q

70-130

Client Sample ID: LCS Lab ID#: 1309319A-06A EPA METHOD TO-15 GC/MS

File Name: 14092703 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 9/27/13 02:30 PM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	79	70-130
1,2-Dibromoethane (EDB)	91	70-130
Chlorobenzene	90	70-130
Ethyl Benzene	86	70-130
m,p-Xylene	84	70-130
o-Xylene	87	70-130
Styrene	78	70-130
Bromoform	72	70-130
Cumene	95	70-130
1,1,2,2-Tetrachloroethane	90	70-130
Propylbenzene	96	70-130
4-Ethyltoluene	92	70-130
1,3,5-Trimethylbenzene	94	70-130
1,2,4-Trimethylbenzene	90	70-130
1,3-Dichlorobenzene	90	70-130
1,4-Dichlorobenzene	87	70-130
alpha-Chlorotoluene	76	70-130
1,2-Dichlorobenzene	90	70-130
1,2,4-Trichlorobenzene	114	70-130
Hexachlorobutadiene	121	70-130
TPH ref. to Gasoline (MW-100)	Not Spiked	

TPH ref. to Gasoline (MW=100) Not Spiked

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

 Surrogates
 %Recovery
 Limits

 1,2-Dichloroethane-d4
 113
 70-130

 Toluene-d8
 102
 70-130

 4-Bromofluorobenzene
 95
 70-130

Client Sample ID: LCSD Lab ID#: 1309319A-06AA EPA METHOD TO-15 GC/MS

File Name: 14092704 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/27/13 02:57 PM

DII. Factor:	1.00 Date of Analys	IS: 9/2//13 02:5/ PIVI
Compound	%Recovery	Method Limits
Freon 12	97	70-130
Freon 114	89	70-130
Chloromethane	107	70-130
Vinyl Chloride	107	70-130
1,3-Butadiene	104	70-130
Bromomethane	90	70-130
Chloroethane	89	70-130
Freon 11	97	70-130
Ethanol	80	70-130
Freon 113	83	70-130
1,1-Dichloroethene	100	70-130
Acetone	92	70-130
2-Propanol	86	70-130
Carbon Disulfide	96	70-130
3-Chloropropene	100	70-130
Methylene Chloride	94	70-130
Methyl tert-butyl ether	91	70-130
trans-1,2-Dichloroethene	103	70-130
Hexane	95	70-130
1,1-Dichloroethane	96	70-130
2-Butanone (Methyl Ethyl Ketone)	94	70-130
cis-1,2-Dichloroethene	94	70-130
Tetrahydrofuran	88	70-130
Chloroform	100	70-130
1,1,1-Trichloroethane	97	70-130
Cyclohexane	95	70-130
Carbon Tetrachloride	95	70-130
2,2,4-Trimethylpentane	93	70-130
Benzene	94	70-130
1,2-Dichloroethane	101	70-130
Heptane	92	70-130
Trichloroethene	92	70-130
1,2-Dichloropropane	92	70-130
1,4-Dioxane	80	70-130
Bromodichloromethane	89	70-130
cis-1,3-Dichloropropene	86	70-130
4-Methyl-2-pentanone	79	70-130
Toluene	90	70-130
trans-1,3-Dichloropropene	85	70-130
1,1,2-Trichloroethane	86	70-130
Tetrachloroethene	84	70-130
2-Hexanone	68 Q	70-130
- ontette		

Client Sample ID: LCSD Lab ID#: 1309319A-06AA **EPA METHOD TO-15 GC/MS**

File Name: 14092704 **Date of Collection: NA** Dil. Factor: 1.00 Date of Analysis: 9/27/13 02:57 PM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	78	70-130
1,2-Dibromoethane (EDB)	90	70-130
Chlorobenzene	89	70-130
Ethyl Benzene	86	70-130
m,p-Xylene	83	70-130
o-Xylene	85	70-130
Styrene	78	70-130
Bromoform	71	70-130
Cumene	92	70-130
1,1,2,2-Tetrachloroethane	92	70-130
Propylbenzene	96	70-130
4-Ethyltoluene	91	70-130
1,3,5-Trimethylbenzene	93	70-130
1,2,4-Trimethylbenzene	90	70-130
1,3-Dichlorobenzene	87	70-130
1,4-Dichlorobenzene	86	70-130
alpha-Chlorotoluene	77	70-130
1,2-Dichlorobenzene	90	70-130
1,2,4-Trichlorobenzene	118	70-130
Hexachlorobutadiene	120	70-130
TPH ref. to Gasoline (MW=100)	Not Spiked	

TPH ref. to Gasoline (MW=100)

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	96	70-130

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 16, 2013

Brian Pletcher URS - Portland 111 SW Columbia STE 1500 Portland, OR 97201-5850

RE: Shell Seattle / [none]

Enclosed are the results of analyses for work order <u>A3I0252</u>, which was received by the laboratory on 9/12/2013 at 4:41:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMATI	ON	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
1-SS	A3I0252-01	Soil	09/12/13 15:00	09/12/13 16:41
2-SS	A3I0252-02	Soil	09/12/13 15:10	09/12/13 16:41
3-SS	A3I0252-03	Soil	09/12/13 15:20	09/12/13 16:41
4-SS	A3I0252-04	Soil	09/12/13 15:25	09/12/13 16:41
5-SS	A3I0252-05	Soil	09/12/13 16:10	09/12/13 16:41
6-SS	A3I0252-06	Soil	09/12/13 16:25	09/12/13 16:41
7-SS	A3I0252-07	Soil	09/12/13 16:30	09/12/13 16:41

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

ANALYTICAL SAMPLE RESULTS

		Diesel	and Oil Hydr	ocarbons by N	IWTPH-Dx			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
1-SS (A3I0252-01)			Matrix: Soi	I В	atch: 309028			
Diesel	1620		25.0	mg/kg dry	1	09/13/13 12:20	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	Recovery: 87 %	Limits: 50-150 %	"	"	"	
2-SS (A3I0252-02)			Matrix: Soi	І В	atch: 309028	38		
Diesel	5790		218	mg/kg dry	10	09/13/13 11:43	NWTPH-Dx	
Oil	ND		436	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 111 %	Limits: 50-150 %	"	"	"	S-05
3-SS (A3I0252-03RE1)			Matrix: Soi	І В	atch: 309028	38		
Diesel	4780		196	mg/kg dry	10	09/13/13 13:33	NWTPH-Dx	
Oil	ND		392	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	covery: 108 %	Limits: 50-150 %	"	"	"	S-05
4-SS (A3I0252-04)			Matrix: Soi	І В	atch: 309028	38		
Diesel	25700		863	mg/kg dry	40	09/13/13 12:38	NWTPH-Dx	
Oil	ND		1730	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	"	"	"	S-01
5-SS (A3I0252-05)			Matrix: Soi	І В	atch: 309028	38		
Diesel	ND		97.5	mg/kg dry	5	09/13/13 13:15	NWTPH-Dx	
Oil	281		195	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	Recovery: 91 %	Limits: 50-150 %	"	"	"	S-05
6-SS (A3I0252-06RE1)			Matrix: Soi	І В	atch: 309028	38		
Diesel	4920		197	mg/kg dry	10	09/13/13 13:33	NWTPH-Dx	
Oil	ND		394	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	Recovery: 80 %	Limits: 50-150 %	"	n .	"	S-05
7-SS (A3I0252-07)			Matrix: Soi	І В	atch: 309028	38		
Diesel	ND		199	mg/kg dry	10	09/13/13 12:20	NWTPH-Dx	
Oil	656		397	"	ıı	"	"	
Surrogate: o-Terphenyl (Surr)		Re	covery: 103 %	Limits: 50-150 %	"	"	"	S-05

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

ANALYTICAL SAMPLE RESULTS

		<u> </u>	BTEX Compo	unds by EPA 82	60B			
A 1 4-	Result	MDL	Reporting Limit		Dilution	Deta Analoga 1	Method	Notes
Analyte	Result	MIDL		Units	ntch: 30902	Date Analyzed	Method	
1-SS (A3I0252-01)	NID		Matrix: So				5025/0260D	V-1
Benzene	ND		0.0120	mg/kg dry	50	09/13/13 11:36	5035/8260B	
Toluene	0.154		0.0480	"	.,	"		
Ethylbenzene Xylenes, total	0.313 2.02		0.0240 0.0720	"	"	"	"	
	2.02			70 120 0/	1	"	"	
Surrogate: Dibromofluoromethane (Surr)			Recovery: 93 %	Limits: 70-130 % Limits: 70-130 %	1 "	"	"	
1,4-Difluorobenzene (Surr)			102 %		,,	"	"	
Toluene-d8 (Surr)			97 % 91 %	Limits: 70-130 % Limits: 70-130 %	,,	"	"	
4-Bromofluorobenzene (Surr)					4 - 1 - 00000	••		
2-SS (A3I0252-02)			Matrix: So		itch: 30902			V-1
Benzene	0.0453		0.0129	mg/kg dry	50	09/13/13 11:11	5035/8260B	
Toluene	0.895		0.0514				"	
Ethylbenzene	1.05		0.0257	"	"	"	"	
Xylenes, total	6.23		0.0772	"			"	
Surrogate: Dibromofluoromethane (Surr)			Recovery: 98 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			106 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			87 %	Limits: 70-130 %	"	"	"	
3-SS (A3I0252-03)			Matrix: So	il Ba	tch: 30902	80		V-1
Benzene	0.0170		0.0125	mg/kg dry	50	09/13/13 12:28	5035/8260B	
Toluene	1.07		0.0500	"	"	"	"	
Ethylbenzene	1.49		0.0250	"	"	"	"	
Xylenes, total	10.6		0.0750	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)			Recovery: 91 %	Limits: 70-130 %	1	n	"	
1,4-Difluorobenzene (Surr)			101 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			92 %	Limits: 70-130 %	"	n .	"	
4-SS (A3I0252-04)			Matrix: So	il Ba	tch: 30902	77		V-1
Benzene	0.911		0.0499	mg/kg dry	200	09/13/13 12:24	5035/8260B	
Toluene	16.3		0.199	"	"	"	"	
Ethylbenzene	12.9		0.0997	"	"	"	"	
Xylenes, total	73.3		0.299	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)			Recovery: 111 %	Limits: 70-130 %	1	"	"	
I,4-Difluorobenzene (Surr)			109 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			111 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

ANALYTICAL SAMPLE RESULTS

		B.	TEX Compo	unds by EPA 82	260B			
A 1.	Result	MDL	Reporting Limit		D'L t'	D. A. I. I.	M-4 J	N-4
Analyte	Result	MDL		Units	Dilution	Date Analyzed	Method	Notes
4-SS (A3I0252-04)			Matrix: So		atch: 30902	/// "	#00#10# COD	V-1
Surrogate: 4-Bromofluorobenzene (Surr)		R	ecovery: 97 %	Limits: 70-130 %	I	"	5035/8260B	
5-SS (A3I0252-05)			Matrix: So	oil Ba	atch: 30902	77		V-1
Benzene	ND		0.0132	mg/kg dry	50	09/13/13 10:38	5035/8260B	
Toluene	0.0737		0.0530	"	"	"	"	
Ethylbenzene	0.0350		0.0265	"	"	"	"	
Xylenes, total	0.159		0.0795	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Re	covery: 104 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			101 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			106 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 70-130 %	"	"	"	
6-SS (A3I0252-06)			Matrix: So	oil Ba	atch: 30902	77		V-15
Benzene	ND		0.0103	mg/kg dry	50	09/13/13 11:04	5035/8260B	
Toluene	0.268		0.0410	"	"	"	"	
Ethylbenzene	0.596		0.0205	"	"	"	"	
Xylenes, total	4.10		0.0615	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Re	covery: 106 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			102 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			107 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			97 %	Limits: 70-130 %	"	"	"	
7-SS (A3I0252-07)			Matrix: So	il Ba	atch: 30902	77		V-15
Benzene	ND		0.0120	mg/kg dry	50	09/13/13 11:32	5035/8260B	
Toluene	ND		0.0480	"	"	"	"	
Ethylbenzene	ND		0.0240	"	"	"	"	
Xylenes, total	ND		0.0720	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Re	covery: 107 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			105 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			106 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			96 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes		
1-SS (A3I0252-01)			Matrix: Soil	Ва	atch: 30902	89				
% Solids	97.0		1.00	% by Weight	1	09/13/13 12:49	Apex SOP			
2-SS (A3I0252-02)			Matrix: Soil	Ва	atch: 30902	89				
% Solids	90.0		1.00	% by Weight	1	09/13/13 12:49	Apex SOP			
3-SS (A3I0252-03)			Matrix: Soil	Ва	atch: 30902	89				
% Solids	93.8		1.00	% by Weight	1	09/13/13 12:49	Apex SOP			
4-SS (A3I0252-04)			Matrix: Soil	Ва	atch: 30902	89				
% Solids	90.3		1.00	% by Weight	1	09/13/13 12:49	Apex SOP			
5-SS (A3I0252-05)			Matrix: Soil	Ва	atch: 30902	89				
% Solids	89.6		1.00	% by Weight	1	09/13/13 12:49	Apex SOP			
6-SS (A3I0252-06)			Matrix: Soil	Ва	atch: 30902	89				
% Solids	97.7		1.00	% by Weight	1	09/13/13 12:49	Apex SOP			
7-SS (A3I0252-07)			Matrix: Soil	Batch: 3090289						
% Solids	94.9		1.00	% by Weight	1	09/13/13 12:49	Apex SOP			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and Oil Hydrocarbons by NWTPH-Dx												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090288 - EPA 3546	6 (Fuels)						Soi	l				
Blank (3090288-BLK1)				Prep	ared: 09/	13/13 09:45	Analyzed:	09/13/13 11	:43			
NWTPH-Dx												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	"	"							
Surr: o-Terphenyl (Surr)		Rec	covery: 93 %	Limits: 50-1	50 %	Dilu	tion: 1x					
LCS (3090288-BS1)				Prepa	ared: 09/	13/13 09:45	Analyzed:	09/13/13 12	2:01			
NWTPH-Dx												
Diesel	115		25.0	mg/kg wet	1	125		92	76-115%			
Surr: o-Terphenyl (Surr)		Rec	covery: 93 %	Limits: 50-1	50 %	Dilu	tion: 1x					
Duplicate (3090288-DUP1)				Prepa	ared: 09/	13/13 09:45	Analyzed:	09/13/13 12	2:56			
QC Source Sample: 7-SS (A3I025	2-07)											
NWTPH-Dx												
Diesel	ND		204	mg/kg dry	10		ND				30%	
Oil	809		408	"	"		656			21	30%	
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50-1	50 %	Dilu	tion: 10x					S-0

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

				Compoun	, -							
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090277 - EPA 5035A	١						Soi	I				
Blank (3090277-BLK1)				Prepa	ared: 09/	13/13 08:00	Analyzed:	09/13/13 (09:46			
5035/8260B												
Benzene	ND		0.00833	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: Dibromofluoromethane (Surr)		Reco	very: 105 %	Limits: 70-1	30 %	Dilu	tion: Ix					
1,4-Difluorobenzene (Surr)			101 %	70-1.			"					
Toluene-d8 (Surr)			102 %	70-1.			"					
4-Bromofluorobenzene (Surr)			101 %	70-1.	30 %		"					
LCS (3090277-BS1)				Prepa	ared: 09/	13/13 08:00	Analyzed:	09/13/13 (08:55			
5035/8260B												
Benzene	1.13		0.0125	mg/kg wet	50	1.00		113	65-135%			
Toluene	1.04		0.0500	"	"	"		104	"			
Ethylbenzene	1.07		0.0250	"	"	"		107	"			
Xylenes, total	3.11		0.0750	"	"	3.00		104	"			
Surr: Dibromofluoromethane (Surr)		Reco	very: 107 %	Limits: 70-1	30 %	Dilu	tion: Ix					
1,4-Difluorobenzene (Surr)			104 %	70-1.			"					
Toluene-d8 (Surr)			104 %	70-1.			"					
4-Bromofluorobenzene (Surr)			100 %	70-1.	30 %		"					
Duplicate (3090277-DUP1)				Prepa	ared: 09/	13/13 09:30	Analyzed:	09/13/13	11:58			
QC Source Sample: 7-SS (A3I0252-	07)	·		·			·		·			
5035/8260B												
Benzene	ND		0.0108	mg/kg dry	50		ND				30%	
Toluene	ND		0.0433	"	"		ND				30%	
Ethylbenzene	ND		0.0216	"	"		ND				30%	
Xylenes, total	ND		0.0649	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Reco	very: 107 %	Limits: 70-1	30 %	Dilu	tion: Ix					
1,4-Difluorobenzene (Surr)			107 %	70-1.	30 %		"					
Toluene-d8 (Surr)			105 %	70-1.	30 %		"					
4-Bromofluorobenzene (Surr)			100 %	70-1.	30 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	Compou	ınds by E	PA 8260B	3					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090280 - EPA 5035	A						Soil	l				
Blank (3090280-BLK1)				Pre	pared: 09/	13/13 08:00	Analyzed:	09/13/13 1	0:46			
5035/8260B												
Benzene	ND		0.00833	mg/kg we	t 50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: Dibromofluoromethane (Surr)		Reci	overy: 100 %	Limits: 70	0-130 %	Dili	ution: 1x					
1,4-Difluorobenzene (Surr)			105 %		-130 %		"					
Toluene-d8 (Surr)			101 %		-130 %		"					
4-Bromofluorobenzene (Surr)			92 %	70	-130 %		"					
LCS (3090280-BS1)				Pre	epared: 09/	13/13 08:00	Analyzed:	09/13/13 0	9:29			
5035/8260B												
Benzene	1.04		0.0125	mg/kg we	t 50	1.00		104	65-135%			
Toluene	0.990		0.0500	"	"	"		99	"			
Ethylbenzene	1.05		0.0250	"	"	"		105	"			
Xylenes, total	3.24		0.0750	"	"	3.00		108	"			
Surr: Dibromofluoromethane (Surr)		Reco	overy: 103 %	Limits: 70	0-130 %	Dili	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %		-130 %		"					
Toluene-d8 (Surr)			99 %	70	-130 %		"					
4-Bromofluorobenzene (Surr)			88 %	70	-130 %		"					
Duplicate (3090280-DUP1)				Pre	epared: 09/	13/13 09:30	Analyzed:	09/13/13 1	2:02			
QC Source Sample: 1-SS (A3I0252-	-01)											
5035/8260B												
Benzene	ND		0.0121	mg/kg dry	y 50		ND				30%	
Toluene	0.140		0.0483	"	"		0.154			9	30%	
Ethylbenzene	0.285		0.0242	"	"		0.313			9	30%	
Xylenes, total	1.91		0.0725	"	"		2.02			6	30%	
Surr: Dibromofluoromethane (Surr)		Re	covery: 92 %	Limits: 70	0-130 %	Dili	ution: 1x					
1,4-Difluorobenzene (Surr)			101 %		-130 %		"					
Toluene-d8 (Surr)			96 %		-130 %		"					
4-Bromofluorobenzene (Surr)			92 %		-130 %		"					
Matrix Spike (3090280-MS1)				_	epared: 09/							

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

BTEX Compounds by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090280 - EPA 5035	A						Soil					
Matrix Spike (3090280-MS1)				Prep	ared: 09/	13/13 09:30	Analyzed: (09/13/13 1	2:53			
QC Source Sample: 3-SS (A3I0252	-03)											
5035/8260B												
Benzene	0.954		0.0125	mg/kg dry	50	0.999	0.0170	94	65-135%			
Toluene	2.02		0.0500	"	"	"	1.07	95	"			
Ethylbenzene	2.49		0.0250	"	"	"	1.49	100	"			
Xylenes, total	13.9		0.0750	"	"	3.00	10.6	109	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 94 %	Limits: 70-	130 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Surr)			101 %	70-1	30 %		"					
Toluene-d8 (Surr)			98 %	70-1	30 %		"					
4-Bromofluorobenzene (Surr)			91 %	70-1	30 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090289 - Total Solids (Dry Weight) Soil												
Duplicate (3090289-DUP1)				Pre	pared: 09/	13/13 10:08	Analyzed:	09/13/13 12	:49			
QC Source Sample: 7-SS (A31025 Apex SOP	2-07)											
% Solids	94.1		1.00	% by Weight	1		94.9			0.8	20%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

SAMPLE PREPARATION INFORMATION

		Di	esel and Oil Hydroca	rbons by NWTPH-Dx			
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3090288							
A3I0252-01	Soil	NWTPH-Dx	09/12/13 15:00	09/13/13 09:45	10.27g/5mL	10g/5mL	0.97
A3I0252-02	Soil	NWTPH-Dx	09/12/13 15:10	09/13/13 09:45	10.19g/5mL	10g/5mL	0.98
A3I0252-03RE1	Soil	NWTPH-Dx	09/12/13 15:20	09/13/13 09:45	10.87g/5mL	10g/5mL	0.92
A3I0252-04	Soil	NWTPH-Dx	09/12/13 15:25	09/13/13 09:45	10.27g/5mL	10g/5mL	0.97
A3I0252-05	Soil	NWTPH-Dx	09/12/13 16:10	09/13/13 09:45	11.45g/5mL	10g/5mL	0.87
A3I0252-06RE1	Soil	NWTPH-Dx	09/12/13 16:25	09/13/13 09:45	10.39g/5mL	10g/5mL	0.96
A3I0252-07	Soil	NWTPH-Dx	09/12/13 16:30	09/13/13 09:45	10.61g/5mL	10g/5mL	0.94
			BTEX Compounds	s by EPA 8260B			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3090277							
A3I0252-04	Soil	5035/8260B	09/12/13 15:25	09/13/13 09:30	12.448g/10mL	10g/10mL	0.80
A3I0252-05	Soil	5035/8260B	09/12/13 16:10	09/13/13 09:30	11.824g/10mL	10g/10mL	0.85
A3I0252-06	Soil	5035/8260B	09/12/13 16:25	09/13/13 09:30	12.847g/10mL	10g/10mL	0.78
A3I0252-07	Soil	5035/8260B	09/12/13 16:30	09/13/13 09:30	11.632g/10mL	10g/10mL	0.86
Batch: 3090280							

09/13/13 09:30

09/13/13 09:30

09/13/13 09:30

09/12/13 15:00

09/12/13 15:10

09/12/13 15:20

Apex Laboratories

A3I0252-01

A3I0252-02

A3I0252-03

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11.096g/10mL

12.108g/10mL

11.417g/10mL

10g/10mL

10g/10mL

10g/10mL

0.90

0.83

0.88

Soil

Soil

Soil

5035/8260B

5035/8260B

5035/8260B

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/16/13 14:51

Notes and Definitions

Qualifiers:

S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

V-15 Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - PortlandProject:Shell Seattle111 SW Columbia STE 1500Project Number:[none]Reported:Portland, OR 97201-5850Project Manager:Brian Pletcher09/16/13 14:51

	60	i			5		١.		,		3	•			Lab #	ĝ			- 1	1 300	+
1 A PS C	27/25	2	-	20.7 0.20	icac i	f f	, 1	į		L				1							
Company: (J.F.)			Project Mar:	- 1	Seile ruerdet	2	0			Pag	ort Name	\$	싊	粌	Project Name; SHELL SEATTLE	ļ		Project #			
Address III SN COLUMBIA Ste ISTO PERTLAND	Š	isa	Pegn	SSS	8			Phone:				Fax	N.			-	4	an-Pret	Emili Brian Plutcher @ Urs. Com	Urs.c	٤
Sympled by:													4	VALY	ANALYSIS REQUEST	St					
She Location: OR (WA)	e IID e	3T.	HE HE	XIRIX	E CONTAINERS	ATPH-HCID	VTPH-Us VTPH-Us	Х3	90 HPP AGC?	9 AOC?	SHAT MIS O	it Chlor. Pest	(8) ausin AR	(51) stateM vitro	26, As, Be, Be, Ca Cr, Co, Ce, Fe, Fe Mg, Me, Te, V, Za Mg, Me, Te, V, Za Mg, Me, Te, V, Za	(8) danté (LP	STOD:0	Z-0			
SAMPLEID	V٦	Vα	AIT	VW	0.0	-	_	TB	_	_	_		-	94	Se Gr VI		130	150			_
1-55	_	121	9-12-13 1500	_	5	_	×	X													
2~55			1510					~				-	-	L							
3 - 55		_	1520	_	_																
4-55			15.55	١.	_	_						-		_							
5-55	_		1610	0	_													_			_
88	_	_	\$2.91	٧.		$\overline{}$		_					_	_							-
7-55		->	व्ह्व		->	⊳	L	4	L		_							_			_
					Þ						_		_	L							
	+	Ц				+	4					\vdash									
T lamaN	Normal Turn Around Time (TAT) = 5-10 Business Days	Time	ATD == \$-1	- Besine	P P	+	-		- 5:	SPECIAL INSTRUCTIONS	INSTRI	1	-ļģ	4		_			-		
TAT Description (climba)	(F)	/A	48 IIR		72 HR																
(ercan) neignber (ercan)	4 DAY	>	\$ DAY		Other			ı													
SAMP	SAMPLES ARE HELD FOR 30 DAYS	HELD !	OR 30 D	VVS					Г												
Spane OHN BAKER	3-12-13	5		Signature:	RECEIVED BY:	. ,	3	\ \x	8 %	RELINQUISHED BY: Sprance	G SEC	ä			Date:			E W	RECEIVED BY: Signature:		
Privated Navelli:	Time			Contract S	Z T	چ ا	53	_	Ĕ	Pristed Name	ij				Tag.			5	Printed Name:		
Company:				Compe	.ceaps.				å	Company:								0	Company:		

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - PortlandProject:Shell Seattle111 SW Columbia STE 1500Project Number:[none]Reported:Portland, OR 97201-5850Project Manager:Brian Pletcher09/16/13 14:51

APEX LABS COOLER RECEIPT FORM
Client: URS Element WO#: A3 IOZ5Z
Project/Project#: Shell Seattle
Delivery info:
Date/Time Received: 9-12-13@16:41 By: Carreg
Delivered by: Apex Courier Client FedEx UPS Swift Senvoy SDS Other
Cooler Inspection Inspected by: Kendra: 9-13-13 @ 8:00
Chain of Custody Included? Yes No
Signed/Dated by Client? Yes No
Signed/Dated by Apex? Yes No
Cooler#1 Cooler#2 Cooler#3 Cooler#4 Cooler#5 Cooler#6 Cooler#7
Temperature (deg. C) 4.3
Received on Ice? (9/N)
Temp. Blanks? (M)
Ice Type: (Gel/Real/Other)
Condition: good
Cooler out of temp? (Y/V) Possible reason why:
Samples Inspection: Inspected by Kendra: 9-13-13 @ 8:20
All Samples Intact? Yes X No Comments:
Bottle Labels/COCs agree? Yes No Comments: no time on 1/2 LL
Bottle Labels/COCs agree? Yes & No & Comments: ho time on 1/2 LL
VORS 5-85. + on all 7-55 containers reads 1635
Containers Appropriate for Analysis? Yes X No Comments:
Do VOA Vials have Visible Headspace? Yes No NA
Comments
Water Samples: pH Checked and Appropriate (except VOAs): YesNoNA
Comments:
Additional Information:
Labeled by: See Project Contact Form: Y

Anex		

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Tuesday, September 24, 2013

Brian Pletcher URS - Portland 111 SW Columbia STE 1500 Portland, OR 97201-5850

RE: Shell Seattle / 2555 13th Ave SW Seattle

Enclosed are the results of analyses for work order <u>A3I0312</u>, which was received by the laboratory on 9/16/2013 at 1:43:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle Reported:
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMATI	ON		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
TWO1-Step1	A3I0312-01	Water	09/12/13 14:45	09/16/13 13:43	_
TWO1-Step2	A3I0312-02	Water	09/12/13 16:45	09/16/13 13:43	
TWO1-Step3	A3I0312-03	Water	09/12/13 17:45	09/16/13 13:43	
TWO1-CR5 Hour	A3I0312-04	Water	09/13/13 14:38	09/16/13 13:43	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle Reported:
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

ANALYTICAL SAMPLE RESULTS

G	asoline Ra	nge Hyd	lrocarbons (E	Benzene to Nap	ohthalene) k	y NWTPH-Gx		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
TWO1-CR5 Hour (A3I0312-04)			Matrix: Wa	ater E	3atch: 309037	72		
Gasoline Range Organics	4.74		1.00	mg/L	10	09/17/13 15:38	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 92 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

ANALYTICAL SAMPLE RESULTS

		E	BTEX Compo	unds by EPA 82	260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Note
ΓWO1-Step1 (A3I0312-01)			Matrix: Wa	iter B	atch: 30903	72		
Benzene	0.384		0.00250	mg/L	10	09/17/13 14:20	EPA 8260B	
Toluene	0.0285		0.0100	"	"	"	"	
Ethylbenzene	0.263		0.00500	"	"	"	"	
Xylenes, total	0.191		0.0150	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)			Recovery: 93 %	Limits: 80-120 %	1	"	"	
1,4-Difluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	
WO1-Step2 (A3I0312-02)			Matrix: Wa	ater Ba	atch: 30903	72		
Benzene	0.429		0.00250	mg/L	10	09/17/13 14:46	EPA 8260B	
Toluene	0.0274		0.0100	"	"	"	"	
Ethylbenzene	0.232		0.00500	"	"	"	"	
Xylenes, total	0.132		0.0150	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)			Recovery: 93 %	Limits: 80-120 %	1	"	"	
1,4-Difluorobenzene (Surr)			99 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			98 %	Limits: 80-120 %	"	"	"	
「WO1-Step3 (A3I0312-03)			Matrix: Wa	ater Ba	atch: 30903	72		
Benzene	0.341		0.00250	mg/L	10	09/17/13 15:12	EPA 8260B	
Toluene	0.0220		0.0100	"	"	"	"	
Ethylbenzene	0.123		0.00500	"	"	"	"	
Xylenes, total	0.0835		0.0150	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)			Recovery: 97 %	Limits: 80-120 %	1	"	"	
1,4-Difluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			98 %	Limits: 80-120 %	"	"	"	
TWO1-CR5 Hour (A3I0312-04)			Matrix: Wa	nter Ba	atch: 30903	72		
Benzene	0.502		0.00250	mg/L	10	09/17/13 15:38	EPA 8260B	
Toluene	0.0259		0.0100	"	"	"	"	
Ethylbenzene	0.185		0.00500	"	"	"	"	
Xylenes, total	0.0909		0.0150	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)			Recovery: 96 %	Limits: 80-120 %	1	"	"	
1,4-Difluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: 2555 13th Ave SW SeattleReported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/24/13 16:03

ANALYTICAL SAMPLE RESULTS

		В	TEX Compo	unds by EP	A 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TWO1-CR5 Hour (A3I0312-04)			Matrix: Wa	iter	Batch: 30903	372		
Surrogate: 4-Bromofluorobenzene (Surr)		R	Recovery: 97 %	Limits: 80-12	0 % 1	"	EPA 8260B	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gaso	line Ran	ge Hydroca	rbons (Be	enzene t	o Naphtha	lene) by l	NWTPH-	Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090372 - EPA 5030I	В						Wat	er				
Blank (3090372-BLK1)				Pre	pared: 09/	/17/13 09:00	Analyzed:	09/17/13 1	3:03			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Rec	covery: 87 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			94 %	50-	-150 %		"					
LCS (3090372-BS2)				Pre	pared: 09/	/17/13 09:00	Analyzed:	09/17/13 1	2:37			
NWTPH-Gx (MS)												
Gasoline Range Organics	0.484		0.100	mg/L	1	0.500		97	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 88 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	50-	-150 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle Reported:
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

QUALITY CONTROL (QC) SAMPLE RESULTS

			ВТЕХ	Compou	nds by l	EPA 8260B	}					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090372 - EPA 5030	3						Wat	er				
Blank (3090372-BLK1)				Pre	pared: 09/	17/13 09:00	Analyzed:	09/17/13 1	3:03			
EPA 8260B												
Benzene	ND		0.000250	mg/L	1							
Toluene	ND		0.00100	"	"							
Ethylbenzene	ND		0.000500	"	"							
Xylenes, total	ND		0.00150	"	"							
Surr: Dibromofluoromethane (Surr)		Re	covery: 92 %	Limits: 80-	-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			100 %	80-	120 %		"					
Toluene-d8 (Surr)			93 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80-	120 %		"					
LCS (3090372-BS1)				Pre	pared: 09/	17/13 09:00	Analyzed:	09/17/13 1	2:11			
EPA 8260B												
Benzene	0.0221		0.000250	mg/L	1	0.0200		110	70-130%			
Toluene	0.0225		0.00100	"	"	"		113	"			
Ethylbenzene	0.0232		0.000500	"	"	"		116	"			
Xylenes, total	0.0703		0.00150	"	"	0.0600		117	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 90 %	Limits: 80-	-120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			98 %	80-	120 %		"					
Toluene-d8 (Surr)			93 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80-	120 %		"					
Matrix Spike (3090372-MS1)				Pre	pared: 09/	17/13 12:36	Analyzed:	09/17/13 1	6:03			
QC Source Sample: TWO1-CR5 Ho	ur (A3I0312	-04)										
EPA 8260B												
Benzene	0.682		0.00250	mg/L	10	0.200	0.502	90	70-130%			
Toluene	0.239		0.0100	"	"	"	0.0259	106	"			
Ethylbenzene	0.403		0.00500	"	"	"	0.185	109	"			
Xylenes, total	0.770		0.0150	"	"	0.600	0.0909	113	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 92 %	Limits: 80-	120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			99 %	80-	120 %		"					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80-	120 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle Reported:
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

SAMPLE PREPARATION INFORMATION

		Gasoline Range H	ydrocarbons (Benz	ene to Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
3atch: 3090372 A3I0312-04	Water	NWTPH-Gx (MS)	09/13/13 14:38	09/17/13 12:36	5mL/5mL	5mL/5mL	1.00
			BTEX Compounds	s by EPA 8260B			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
satch: 3090372							
A3I0312-01	Water	EPA 8260B	09/12/13 14:45	09/17/13 12:36	5mL/5mL	5mL/5mL	1.00
A3I0312-02	Water	EPA 8260B	09/12/13 16:45	09/17/13 12:36	5mL/5mL	5mL/5mL	1.00
A3I0312-03	Water	EPA 8260B	09/12/13 17:45	09/17/13 12:36	5mL/5mL	5mL/5mL	1.00
A3I0312-04	Water	EPA 8260B	09/13/13 14:38	09/17/13 12:36	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle Reported:
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

Notes and Definitions

Qualifiers:

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

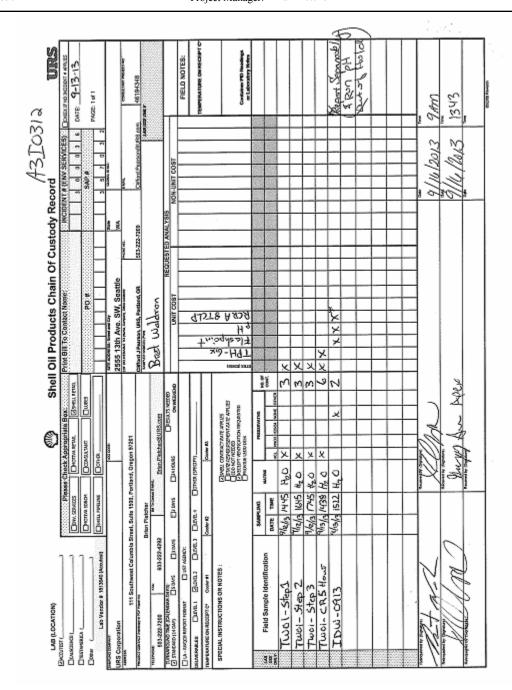
Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.


- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle
111 SW Columbia STE 1500 Project Number: 2555 13th Av.

111 SW Columbia STE 1500 Project Number: 2555 13th Ave SW Seattle Reported:
Portland, OR 97201-5850 Project Manager: Brian Pletcher 09/24/13 16:03

APEX LABS COOLER RECEIPT FORM Project/Project #: 2555 13th Ave SW South Delivery info: Date/Time Received: 41/13 @ 1343 By: Gr 5 Delivered by: Apex Courier Client FedEx UPS Swift Senvoy SDS Other Inspected by: 65 : 9/16/13 Cooler Inspection Chain of Custody Included? Yes 💯 No ___ Signed/Dated by Client? Yes /_ No ___ Yes × No ___ Signed/Dated by Apex? Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (deg. C) Received on Ice? (20N) Temp. Blanks? (Y/(§)) Ice Type: (Gel/Real/Other) Condition: Cooler out of temp? (Y/N) Possible reason why:__ If some coolers are in temp and some out, were green dot applied to out of temperature samples Yes/No& Samples Inspection: Inspected by: KF : 9-16-13 @ All Samples Intact? Yes X No ___ Comments:_ Bottle Labels/COCs agree? Yes X No Comments: 1008 on 100-0913 migsing cla Containers Appropriate for Analysis? Yes X No Comments: Do VOA Vials have Visible Headspace? Yes ___ No X NA ___ Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes__No__NA_X Comments: Additional Information: Labeled by: See Project Contact Form: Y

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, September 19, 2013

Brian Pletcher URS - Portland 111 SW Columbia STE 1500 Portland, OR 97201-5850

RE: Shell Seattle / [none]

Enclosed are the results of analyses for work order <u>A3I0321</u>, which was received by the laboratory on 9/17/2013 at 7:17:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMA	ITION		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
4B-SS	A3I0321-01	Soil	09/16/13 13:20	09/17/13 07:17	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

ANALYTICAL SAMPLE RESULTS

		Diesel a	ınd Oil Hydı	ocarbons by N	WTPH-Dx			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
4B-SS (A3I0321-01RE1)			Matrix: So	il Ba	atch: 30903	94		
Diesel	187		156	mg/kg dry	10	09/18/13 02:38	NWTPH-Dx	F-13, S-01
Oil	551		311	"	"	"	"	Q-42
Surrogate: o-Terphenyl (Surr)		Red	covery: 107 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

ANALYTICAL SAMPLE RESULTS

G	asoline Ra	inge Hydro	ocarbons (E	Benzene to Napl	nthalene) l	by NWTPH-Gx		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
4B-SS (A3I0321-01)		Matrix: Soil Batch: 3090367						V-15
Gasoline Range Organics	ND		5.81	mg/kg dry	50	09/17/13 11:36	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 106 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			107 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

ANALYTICAL SAMPLE RESULTS

	BTEX Compounds by EPA 8260B												
			Reporting										
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes					
4B-SS (A3I0321-01)			Matrix: So		V-1								
Benzene	ND		0.0145	mg/kg dry	50	09/17/13 11:36	5035/8260B						
Toluene	ND		0.0581	"	"	"	"						
Ethylbenzene	ND		0.0291	"	"	"	"						
Xylenes, total	ND		0.0872	"	"	"	"						
Surrogate: Dibromofluoromethane	(Surr)	Re	covery: 111 %	Limits: 70-130 %	1	"	"						
1,4-Difluorobenzene (Su	rr)		108 %	Limits: 70-130 %	"	"	"						
Toluene-d8 (Surr)			98 %	Limits: 70-130 %	"	"	"						
4-Bromofluorobenzene (Surr)		95 %	Limits: 70-130 %	"	"	"						

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

ANALYTICAL SAMPLE RESULTS

_	Percent Dry Weight												
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes					
4B-SS (A3I0321-01)			Matrix: Soil	В	309037	78							
% Solids	87.4		1.00	% by Weight	1	09/17/13 12:38	Anex SOP						

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel and Oil Hydrocarbons by NWTPH-Dx											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090394 - EPA 3546	6 (Fuels)						Soi	l				
Blank (3090394-BLK1)				Prepa	ared: 09/	17/13 18:32	Analyzed:	09/17/13 22	2:17			
NWTPH-Dx												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	"	"							
Surr: o-Terphenyl (Surr)		Recovery: 99 % Limits: 50-150 % Dilution: Ix										
LCS (3090394-BS1)				Prepa	ared: 09/	17/13 18:32	Analyzed:	09/17/13 22	2:40			
NWTPH-Dx												
Diesel	130		25.0	mg/kg wet	1	125		104	76-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 105 %	Limits: 50-1	50 %	Dilu	tion: 1x					
Duplicate (3090394-DUP5)				Prep	ared: 09/	17/13 18:32	Analyzed:	09/18/13 1	1:22			
QC Source Sample: 4B-SS (A3I03	21-01RE1)											
NWTPH-Dx												
Diesel	ND		25.0	mg/kg dry	1		187			***	30%	Q-04
Oil	ND		50.0	"	"		551			***	30%	Q-04
Surr: o-Terphenyl (Surr)		Reco	very: 106 %	Limits: 50-1	50 %	Dilu	tion: 1x					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene to Naphthalene) by NWTPH-Gx												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090367 - EPA 5035/	4						Soil	I				
Blank (3090367-BLK1)				Prep	ared: 09/	17/13 09:00	Analyzed:	09/17/13 1	1:11			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 117 %	Limits: 50-	150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			108 %	50-	150 %		"					
LCS (3090367-BS2)				Prep	ared: 09/	17/13 09:00	Analyzed:	09/17/13 1	0:45			
NWTPH-Gx (MS)												
Gasoline Range Organics	25.5		5.00	mg/kg wet	50	25.0		102	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 108 %	Limits: 50-	150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			109 %	50-	150 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

				Compoun								
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090367 - EPA 5035A	١						Soi	l				
Blank (3090367-BLK1)				Prep	ared: 09/	17/13 09:00	Analyzed:	09/17/13 1	1:11			
5035/8260B												
Benzene	ND		0.00833	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: Dibromofluoromethane (Surr)		Reco	very: 116 %	Limits: 70-1	30 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			112 %	70-1	30 %		"					
Toluene-d8 (Surr)			98 %		30 %		"					
4-Bromofluorobenzene (Surr)			99 %	70-1	30 %		"					
LCS (3090367-BS1)				Prep	ared: 09/	17/13 09:00	Analyzed:	09/17/13 1	0:19			
5035/8260B												
Benzene	1.22		0.0125	mg/kg wet	50	1.00		122	65-135%			
Toluene	1.01		0.0500	"	"	"		101	"			
Ethylbenzene	1.06		0.0250	"	"	"		106	"			
Xylenes, total	3.15		0.0750	"	"	3.00		105	"			
Surr: Dibromofluoromethane (Surr)		Reco	very: 108 %	Limits: 70-1	30 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Surr)			110 %		30 %		"					
Toluene-d8 (Surr)			97 %		30 %		"					
4-Bromofluorobenzene (Surr)			96 %	70-1	30 %		"					
Matrix Spike (3090367-MS1)				Prep	ared: 09/	17/13 09:50	Analyzed:	09/17/13 1	2:02			
QC Source Sample: 4B-SS (A3I0321	1-01)											
5035/8260B												
Benzene	1.57		0.0145	mg/kg dry	50	1.16	ND	135	65-135%			
Toluene	1.20		0.0581	"	"	"	ND	103	"			
Ethylbenzene	1.26		0.0291	"	"	"	ND	109	"			
Xylenes, total	3.73		0.0872	"	"	3.49	ND	107	"			
Surr: Dibromofluoromethane (Surr)		Reco	very: 116 %	Limits: 70-1	30 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			109 %	70-1	30 %		"					
Toluene-d8 (Surr)			96 %	70-1	30 %		"					
4-Bromofluorobenzene (Surr)			97 %	70-1	30 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3090378 - Total Sol	ids (Dry W	eight)					Soil					
Duplicate (3090378-DUP1)				Pre	pared: 09/	17/13 11:49	Analyzed:	09/17/13 12	2:38			
QC Source Sample: 4B-SS (A3103 Apex SOP	321-01)											
% Solids	88.2		1.00	% by Weight	1		87.4			0.9	20%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

SAMPLE PREPARATION INFORMATION

		Dies	sel and Oil Hydroca	rbons by NWTPH-Dx			
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3090394							
A3I0321-01RE1	Soil	NWTPH-Dx	09/16/13 13:20	09/17/13 18:32	14.7g/5mL	10g/5mL	0.68
		Gasoline Range H	ydrocarbons (Benz	ene to Naphthalene) i	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3090367							
A3I0321-01	Soil	NWTPH-Gx (MS)	09/16/13 13:20	09/17/13 09:50	11.234g/10mL	10g/10mL	0.89
			BTEX Compounds	s by EPA 8260B			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3090367							
A3I0321-01	Soil	5035/8260B	09/16/13 13:20	09/17/13 09:50	11.234g/10mL	10g/10mL	0.89

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - Portland Project: Shell Seattle

111 SW Columbia STE 1500Project Number: [none]Reported:Portland, OR 97201-5850Project Manager: Brian Pletcher09/19/13 14:51

Notes and Definitions

Qualifiers:

F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation

Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.

Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)

S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.

V-15 Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

--- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 URS - Portland
 Project:
 Shell Seattle

 111 SW Columbia STE 1500
 Project Number:
 [none]
 Reported:

 Portland, OR 97201-5850
 Project Manager:
 Brian Pletcher
 09/19/13 14:51

APEX LABS						Ξ	Æ	0	FC	CHAIN OF CUSTODY	10	2			Lab	A	8	H3I0321	300	8	1
12232 S.H. Gurdon Place, Tigard, OR 97223 Ph; 503-718-2323 Fax; 503-718-0333	97223	Ph: 50	3-778-2	323 Fe	rr: 503	.718-0	333														
Company: URS			Project Mgr.	Mgr	BRIAN PLETCHER	S.	造	き	ö	- 6	Project Name: SHEW	ä	꽃	1	SEAFTLE	ΗŲ	ĺ	Project #			
ADDRESS 111 SN COLDUBIA, PRETIGNA, OR 97210 MODESOS 222-7260 PASS	ď	BRT	SW.	9	1	13.5	2	Pho	203	223	32	ş	Fax:				8	Email Brigh, Pletcher 3 URS. Con	stcher	ane.	3.8
Sumporting JOHN BAKER	~1													NAU	ANALYSIS REQUEST	EST					
She Lecusion: OR (VA)	₽ at	Ε	3	XIX.	CONTAINERS	пы-нсп	70-H97 70-H95	DOV	RBDM AGC	X3T8	SHV BVHS SAOC	PCBs	OT	(8) stemb (A	P Member (8) P Member (8) P Member (9) P Member (9) P Member (9) P Member (9)	L DISS TCLP L DISS TCLP					
SAMPLE ID	TVB	LVa	MIL	LVIV	40 e	_	_		0928		_	_	L 0 09		TCL CF, C NL SI NCL		1500				
46.55	-0	4.16-13 13.265012	1320	3	-5-	Г	×			>	_	_				-	_				
BAMK 2013 09 16	0	9-16-131405 WRES	윤	蓋	3		×			×							⊢				
						\top	+			+	\vdash				_	-	-				1
				_		+	+-	+		+	+	_		+	-	╁	+			$^{+}$	+
9							-				-	Ļ		+	_	\vdash	-				-
							-	Ш		Н				\vdash		H					
						\top	+	4		+	-	_		+		+				1	+
00						\top	+			+	-	_		\vdash		+	-		\perp		-
Namel Tun Anand Time (TAT) = 7-10 Business Days	thees Do	50		YES		No			П	SPECIAL INSTRUCTIONS:	SU IN	TRUC	NOLL	. i		,					
	1 Day		2 Day		3 Day		7			ŽΛ	52	ין זון כני	£ 3	ةٍ ك	Z Z	5 2	ć	KOSH-JAMPUK 48-55			
LAT Requested (circle)	4 DAY		SDAY		Officer	影	. N	. E		J.	Ť		ž	-	и Д	¥	3	711,051			
SAMPLES ARE HELD FOR 30 DAYS	SARE	(CD)	OR 30						Г												
RELINQUISHED BY:	67	9-13-12 S.	RECEIVED IN:	EU III	1	S	9	1/14/13		RELINQUISHED BY:	CISHE	D BY:				BE :	SWE	RECEIVED BY:			
Chita Rayor		i i		Z	Þ	15	100	6	4	September 1					1	1	Supressure		036		
(18<		-			3	5		>		TOWN TO THE PERSON TO THE PERS							and and	9			
Company of the C			Company			4	4	⇃	Ť	Contrato	١					ð	Corpora				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

URS - PortlandProject:Shell Seattle111 SW Columbia STE 1500Project Number:[none]Reported:Portland, OR 97201-5850Project Manager:Brian Pletcher09/19/13 14:51

APEX LABS COOLER RECEIPT FORM
Client: UPS Element WO#: A3 10321 Project/Project #: Shill Seattle
Delivery info:
Date/Time Received: 9/14/13@ - + + By:
Cooler Inspection Inspected by: 9/19/13 : VI @ 7/7 Chain of Custody Included? Yes P No
Signed/Dated by Client? Yes Y No
Signed/Dated by Apex? Yes No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (deg. C)
Received on Ice? (YAT)
Temp. Blanks? (Y/N)
Ice Type: (Gel/Real/Other) NA
Condition:
Cooler out of temp? (N/N) Possible reason why:
Bottle Labels/COCs agree? Yes Y No Comments:
Containers Appropriate for Analysis? Yes Mo Comments:
Do VOA Vials have Visible Headspace? Yes No 🟏 NA
Comments
Water Samples: pH Checked and Appropriate (except VOAs): Yes NoNA
Comments:
Additional Information:
Labeled by: See Project Contact Form: Y

Apex	Τ,	ıha	rat	orioa
ADCX	L	ιυυ	ıaı	ories

09/23/13

Technical Report for

Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

46194348

Accutest Job Number: C29590

Sampling Date: 09/05/13

Report to:

URS Corporation 111 SW Columbia, Suite 1500 Portland, OR 97201-5850 brian.pletcher@urs.com

ATTN: Brian Pletcher

Total number of pages in report: 76

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

James J. Rhudy Lab Director

Jumy. Mudy

Client Service contact: Nutan Kabir 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD/ISO/IEC 17025:2005 (L2242)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Table of Contents

-1-

Section 1: Sample Summary	4
Section 2: Summary of Hits	6
Section 3: Sample Results	9
3.1: C29590-1: TW-01-7.5	10
3.2: C29590-2: ASW-1-0913	13
3.3: C29590-2F: ASW-1-0913	16
3.4: C29590-3: TW-01-0913	17
3.5: C29590-3F: TW-01-0913	19
3.6: C29590-4: MW-302-0913	20
3.7: C29590-4F: MW-302-0913	22
3.8: C29590-5: MW-304-0913	23
3.9: C29590-5F: MW-304-0913	25
3.10: C29590-6: MW-307-0913	26
3.11: C29590-6F: MW-307-0913	28
3.12: C29590-7: MW-310-0913	29
3.13: C29590-7F: MW-310-0913	31
3.14: C29590-8: TRIP BLANK	32
3.15: C29590-9: ASW-1-0913-DUP	33
Section 4: Misc. Forms	34
4.1: Chain of Custody	35
Section 5: GC/MS Volatiles - QC Data Summaries	37
5.1: Method Blank Summary	38
5.2: Blank Spike/Blank Spike Duplicate Summary	41
5.3: Laboratory Control Sample Summary	44
5.4: Matrix Spike/Matrix Spike Duplicate Summary	
Section 6: GC Volatiles - QC Data Summaries	
6.1: Method Blank Summary	50
6.2: Blank Spike/Blank Spike Duplicate Summary	52
6.3: Matrix Spike/Matrix Spike Duplicate Summary	54
6.4: Duplicate Summary	56
Section 7: Metals Analysis - QC Data Summaries	58
7.1: Prep QC MP6695: Fe,Mn	59
Section 8: General Chemistry - QC Data Summaries	
8.1: Method Blank and Spike Results Summary	65
8.2: Blank Spike Duplicate Results Summary	66
8.3: Duplicate Results Summary	67
8.4: Matrix Spike Results Summary	68
8.5: Matrix Spike Duplicate Results Summary	
Section 9: Misc. Forms (Accutest Laboratories Southeast, Inc.)	
9.1: Chain of Custody	71
Section 10: General Chemistry - QC Data (Accutest Laboratories Southeast, Inc.)	73
10.1: Method Blank and Spike Results Summary	74

Sections:

Table of Contents

-2-

10.2: Matrix Spike Results Summary	75
10.3: Matrix Spike Duplicate Results Summary	76

Sample Summary

Shell Oil Company

Job No: C29590

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Project No: 46194348

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C29590-1	09/05/13	10:10 CPMT	09/07/13	SO	Soil	TW-01-7.5
C29590-2	09/05/13	11:30 CPMT	09/07/13	AQ	Ground Water	ASW-1-0913
C29590-2F	09/05/13	11:30 CPMT	09/07/13	AQ	Groundwater Filtered	ASW-1-0913
C29590-3	09/05/13	10:29 CPMT	09/07/13	AQ	Ground Water	TW-01-0913
C29590-3F	09/05/13	10:29 CPMT	09/07/13	AQ	Groundwater Filtered	TW-01-0913
C29590-4	09/05/13	11:20 CPMT	09/07/13	AQ	Ground Water	MW-302-0913
C29590-4F	09/05/13	11:20 CPMT	09/07/13	AQ	Groundwater Filtered	MW-302-0913
C29590-5	09/05/13	15:25 CPMT	09/07/13	AQ	Ground Water	MW-304-0913
C29590-5F	09/05/13	15:25 CPMT	09/07/13	AQ	Groundwater Filtered	MW-304-0913
C29590-6	09/05/13	09:05 CPMT	09/07/13	AQ	Ground Water	MW-307-0913
C29590-6F	09/05/13	09:05 CPMT	09/07/13	AQ	Groundwater Filtered	MW-307-0913
C29590-7	09/05/13	17:04 CPMT	09/07/13	AQ	Ground Water	MW-310-0913
C29590-7F	09/05/13	17:04 CPMT	09/07/13	AQ	Ground Water	MW-310-0913

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary (continued)

Shell Oil Company

Job No: C29590

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Project No: 46194348

Sample	Collected			Matri	ix	Client
Number	Date	Time By	Received	Code	Type	Sample ID
C29590-8	09/05/13	00:00 CPMT	09/07/13	AQ	Trip Blank Water	TRIP BLANK
C29590-9	09/05/13	11:15 CPMT	09/07/13	AQ	Ground Water	ASW-1-0913-DUP

Summary of Hits Job Number: C29590

Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 09/05/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C29590-1	TW-01-7.5					
Benzene Ethylbenzene Xylene (total) TPH (Gasoline) Chemical Oxygen	n Demand ^a	2370 J 34300 35000 2860 9900	8600 8600 17000 310 900	860 860 1700 160	ug/kg ug/kg ug/kg mg/kg mg/kg	SW846 8260B SW846 8260B SW846 8260B NWTPH-GX SM19 5220C M
C29590-2	ASW-1-0913					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) Chemical Oxygen Total Organic Ca		315 8.6 21.8 30.8 1.32 15.7 3.3	4.0 4.0 4.0 8.0 0.80 10 1.0	0.80 0.80 0.80 1.8 0.20	ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX HACH 8000 SM18 5310C
C29590-2F	ASW-1-0913					
Manganese		186	15		ug/l	SW846 6010B
C29590-3	TW-01-0913					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		521 28.1 359 197 5.47	10 10 10 20 2.0	2.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C29590-3F	TW-01-0913					
Iron Manganese		358 428	200 15		ug/l ug/l	SW846 6010B SW846 6010B
C29590-4	MW-302-0913					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		783 18.9 162 74.6 3.70	20 10 10 20 2.0	4.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX

Summary of Hits Job Number: C29590

Shell Oil Company Account:

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 09/05/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C29590-4F	MW-302-0913					
Iron Manganese		2410 410	200 15		ug/l ug/l	SW846 6010B SW846 6010B
C29590-5	MW-304-0913					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		862 18.8 84.9 61.6 3.09	10 10 10 20 2.0	2.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C29590-5F	MW-304-0913					
Iron Manganese		1630 333	200 15		ug/l ug/l	SW846 6010B SW846 6010B
C29590-6	MW-307-0913					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		643 64.5 154 131 5.30	10 10 10 20 2.0	2.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C29590-6F	MW-307-0913					
Iron Manganese		3010 313	200 15		ug/l ug/l	SW846 6010B SW846 6010B
C29590-7	MW-310-0913					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		960 59.8 310 110 5.51	20 20 20 40 2.0	4.0 4.0 4.0 9.2 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C29590-7F	MW-310-0913					
Iron Manganese		4940 568	200 15		ug/l ug/l	SW846 6010B SW846 6010B

Page 3 of 3

Summary of Hits

Job Number: C29590

Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 09/05/13

Lab Sample ID Client Sample ID Result/ Analyte Qual RL MDL Units Method

C29590-8 TRIP BLANK

No hits reported in this sample.

C29590-9 ASW-1-0913-DUP

TPH (Gasoline) 1.28 0.80 0.20 mg/l NWTPH-GX

(a) Analysis performed at Accutest Laboratories, Orlando FL.

Report of Analysis

Client Sample ID: TW-01-7.5 Lab Sample ID: C29590-1

 Lab Sample ID:
 C29590-1
 Date Sampled:
 09/05/13

 Matrix:
 SO - Soil
 Date Received:
 09/07/13

 Method:
 SW846 8260B
 Percent Solids:
 89.0

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 M41730.D 1 09/10/13 XB n/a VM1260 n/a Run #2

Run #1 4.50 g 5.0 ml 4.0 ul
Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	2370 ND 34300 35000	8600 8600 8600 17000	860 860 860 1700	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	96% 102% 98%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C.

Report of Analysis

Client Sample ID: TW-01-7.5 Lab Sample ID: C29590-1

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Date Sampled: 09/05/13 Matrix: SO - Soil **Date Received:** 09/07/13 Method: **NWTPH-GX Percent Solids:** 89.0 **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	JK39152.D	1	09/13/13	PH	n/a	n/a	GJK1576
Run #2 a	JK39160.D	1	09/13/13	PH	n/a	n/a	GJK1576

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	4.50 g	5.0 ml	2.0 ul
Run #2	4.50 g	5.0 ml	2.0 ul

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	2860	310	160	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

(a) Confirmation run for surrogate recoveries.

(b) Outside control limits due to matrix interference. Confirmed by reanalysis.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TW-01-7.5 Lab Sample ID: C29590-1

 C29590-1
 Date Sampled:
 09/05/13

 SO - Soil
 Date Received:
 09/07/13

 Percent Solids:
 89.0

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Matrix:

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chemical Oxygen Demand ^a	9900	900	mg/kg	1	09/16/13 17:00	AFL	SM19 5220C M
Moisture, Percent	11		%	1	09/10/13 15:30	AC	SM18 2540G
Total Organic Carbon ^a	< 1100	1100	mg/kg	1	09/18/13 15:58	AFL	SW846 9060A MOD

(a) Analysis performed at Accutest Laboratories, Orlando FL.

Page 1 of 1

Client Sample ID: ASW-1-0913

Lab Sample ID: C29590-2 **Date Sampled:** 09/05/13 Matrix: **Date Received:** AQ - Ground Water 09/07/13 Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	U13435.D	4	09/12/13	TF	n/a	n/a	VU521
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No. Compound		Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene	315 8.6 21.8	4.0 4.0 4.0	0.80 0.80 0.80	ug/l ug/l ug/l	
1330-20-7 CAS No.	Xylene (total) Surrogate Recoveries	30.8 Run# 1	8.0 Run# 2	1.8	ug/l its	
1868-53-7	Dibromofluoromethane	108%	Kuiiii 2	70-1	30%	
2037-26-5 460-00-4	Toluene-D8 4-Bromofluorobenzene	113% 106%			30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: ASW-1-0913

Lab Sample ID: C29590-2 **Date Sampled:** 09/05/13 Matrix: AQ - Ground Water **Date Received:** 09/07/13 Method: **Percent Solids: NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 JK39221.D 4 09/17/13 PH GJK1579 n/an/a Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	1.32	0.80	0.20	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
0120 1100	Surrogute Recoveries	Kuli,, I	Italiii 2	211111		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: ASW-1-0913

Lab Sample ID:C29590-2Date Sampled:09/05/13Matrix:AQ - Ground WaterDate Received:09/07/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chemical Oxygen Demand	15.7	10	mg/l	1	09/11/13	EB	HACH 8000
Total Organic Carbon	3.3	1.0	mg/l	1	09/12/13 10:49	RL	SM18 5310C

Report of Analysis

Client Sample ID: ASW-1-0913

Lab Sample ID:C29590-2FDate Sampled:09/05/13Matrix:AQ - Groundwater FilteredDate Received:09/07/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 200	200	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	186	15	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3442

(2) Prep QC Batch: MP6695

Report of Analysis

Client Sample ID: TW-01-0913

Lab Sample ID: C29590-3 **Date Sampled:** 09/05/13 Matrix: **Date Received:** AQ - Ground Water 09/07/13 Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	U13436.D	10	09/12/13	TF	n/a	n/a	VU521
Pun #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	521 28.1 359 197	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	100% 95% 105%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: TW-01-0913

Lab Sample ID: C29590-3 **Date Sampled:** 09/05/13 Matrix: AQ - Ground Water **Date Received:** 09/07/13 Method: **Percent Solids: NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK39222.D 10 09/17/13 PH GJK1579 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	5.47	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ite	
CAS No.	Surrogate Recoveries	Kull# 1	Kuli# 2	Lilli	113	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: TW-01-0913

Lab Sample ID:C29590-3FDate Sampled:09/05/13Matrix:AQ - Groundwater FilteredDate Received:09/07/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	358	200	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	428	15	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3442(2) Prep QC Batch: MP6695

C29590

Report of Analysis

Client Sample ID: MW-302-0913

 Lab Sample ID:
 C29590-4
 Date Sampled:
 09/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 09/07/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	U13437.D	10	09/12/13	TF	n/a	n/a	VU521
Run #2	U13541.D	20	09/18/13	TF	n/a	n/a	VU524

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	783 ^a 18.9 162 74.6	20 10 10 20	4.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 106% 99%	102% 108% 108%	70-13 70-13 70-13	30%	

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ć

Page 1 of 1

Client Sample ID: MW-302-0913

Lab Sample ID:C29590-4Date Sampled:09/05/13Matrix:AQ - Ground WaterDate Received:09/07/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK39223.D 10 09/17/13 PH n/a n/a GJK1579

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.70	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	

ND = Not detected MDL - Method Detection Limit J = Incomparison Detection Limit <math>J = Incomparison Detection De

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-302-0913

Lab Sample ID:C29590-4FDate Sampled:09/05/13Matrix:AQ - Groundwater FilteredDate Received:09/07/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	2410	200	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	410	15	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3442(2) Prep QC Batch: MP6695

Report of Analysis

Client Sample ID: MW-304-0913

 Lab Sample ID:
 C29590-5
 Date Sampled:
 09/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 09/07/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 U13438.D 10 09/12/13 TF VU521 n/an/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene	862 18.8 84.9	10 10 10	2.0 2.0 2.0	ug/l ug/l ug/l	
1330-20-7	Xylene (total)	61.6	20	4.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	104% 117%		70-130% 70-130%		
460-00-4	4-Bromofluorobenzene	100%		70-130%		

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

.

Page 1 of 1

Client Sample ID: MW-304-0913

 Lab Sample ID:
 C29590-5
 Date Sampled:
 09/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 09/07/13

 Method:
 NWTPH-GX
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK39224.D 10 09/17/13 PH n/a n/a GJK1579

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.09	2.0	0.50	mg/l	
CACN	C	D #1	D #4	т	•4	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit J = Indicates the substitution of

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-304-0913

Lab Sample ID:C29590-5FDate Sampled:09/05/13Matrix:AQ - Groundwater FilteredDate Received:09/07/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	1630	200	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	333	15	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3442

(2) Prep QC Batch: MP6695

Page 1 of 1

Client Sample ID: MW-307-0913

Date Sampled: 09/05/13 Lab Sample ID: C29590-6 Matrix: **Date Received:** AQ - Ground Water 09/07/13 Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	U13439.D	10	09/12/13	TF	n/a	n/a	VU521	
Run #2								

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	643 64.5 154 131	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	105% 110% 85%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-307-0913

Lab Sample ID:C29590-6Date Sampled:09/05/13Matrix:AQ - Ground WaterDate Received:09/07/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK39225.D 10 09/17/13 PH n/a n/a GJK1579

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	5.30	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
98-08-8	aaa-Trifluorotoluene	106%		50-15	50%	

ND = Not detected MDL - Method Detection Limit J = Indi

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-307-0913

Lab Sample ID:C29590-6FDate Sampled:09/05/13Matrix:AQ - Groundwater FilteredDate Received:09/07/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	3010	200	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	313	15	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3442(2) Prep QC Batch: MP6695

C29590

Page 1 of 1

Client Sample ID: MW-310-0913

Lab Sample ID: C29590-7 **Date Sampled:** 09/05/13 Matrix: AQ - Ground Water **Date Received:** 09/07/13 Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	U13440.D	20	09/12/13	TF	n/a	n/a	VU521
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	960 59.8 310 110	20 20 20 40	4.0 4.0 4.0 9.2	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	109% 101% 102%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-310-0913

Lab Sample ID: C29590-7 **Date Sampled:** 09/05/13 Matrix: AQ - Ground Water **Date Received:** 09/07/13 Method: **Percent Solids: NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK39226.D 10 09/17/13 PH GJK1579 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	5.51	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-310-0913

Lab Sample ID:C29590-7FDate Sampled:09/05/13Matrix:AQ - Ground WaterDate Received:09/07/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	4940	200	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	568	15	ug/l	1	09/13/13	09/13/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3442(2) Prep QC Batch: MP6695

Report of Analysis

Page 1 of 1

Client Sample ID: TRIP BLANK

Lab Sample ID: C29590-8 **Date Sampled:** 09/05/13 Matrix: AQ - Trip Blank Water **Date Received:** 09/07/13 Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	U13434.D	1	09/12/13	TF	n/a	n/a	VU521
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	C	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	106% 107% 95%		70-13 70-13 70-13	80%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: ASW-1-0913-DUP

 Lab Sample ID:
 C29590-9
 Date Sampled:
 09/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 09/07/13

 Method:
 NWTPH-GX
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK39228.D 4 09/17/13 PH GJK1579 n/an/aRun #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	1.28	0.80	0.20	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	~ · · • · · · · · · · · · · · · · · ·			2		

ND = Not detected MDL - Method Detection Limit J = 1

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

	r •	
1\/	lisc.	Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

LAB (LOCATION) DACCUTEST (SAN JUX- LA					<u></u>			Shel								n (Of C	us											ÜRS
CALSCIENCE ()			ease Chec					1000	Pr	nt B	III.T¢	Col	itact	Nan	10:					NCID	ENT	# (E	NV:	SER	VIÇE	S)		ECK IF NO INCIDENT	# APPLIES
TESTAMERICA ()		/. SERVICES		AVITON		=	SHELLR	ETAIL	L												1 :	3	,	o	0 3	6	D.	ATE: 916	3
Other ()	□MO	TIVA SD&CI		ONSULT	ANT		LUBES							PO	#							SA	P.#]	·	
Lab Vendor # 1813840 (Accutest)	□SHE	LL PIPELINE		THER _											\Box		Т			Τ	T		5	Ţ,	0 3	2	P/	AGE: 1 of 1	
URS Corporation				Lixaca					25	55 1	3th	Ave	. S\	v, s	eatt	e			State			"	OI DUB	NO:					
111 Southwest Columbia S	treet, Su	ite 1500,	Portland, Or	egon 9	7201				1	ELNERÄ							PHK	NE NO:				EAN	Ŀ					CONSULTANT P	OJECT NO.:
PROJECT CONTACT (Nurdeopy or POF Report to)	Brian Pie	etcher							Cliff	ord J	Pears	on, U	RS, Po	rtland	, or		50	3-222-	7200			Cliff	ord.F	ears	on@l		om USE	46194348	
TELEPHONE: FAX: 503-222-7200 503-222-4292		Bill To Conta													Sav	,										1		C2950	n
TURNAROUND TIME (CALENDAR DAYS)		<u> </u>			ner@URS		NEEDED		H	MP	(LK	TV	lus	H	.gc	RE	บรร	FD A	NALY	SIS								YMP'	Y
☑ STANDARD (14 DAY) ☐5 DAYS ☐3 DAYS		□2 DAYS	☐24 HO	URS	-		NWEEK			_			JNIT	cos	T _			Ī			NON	-UNI	T CC	ST					
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:									1		(8		8	_	<u>a</u>			1		1	1	1						FIELD N	OTES:
DELIVERABLES: GUEVEL 1 GUEVEL 2 GUEVEL 3			OTHER (SPECI	_					1	8			210	(P.O	क्ष													TEMPERATURE C	N RECEIPT C
TEMPERATURE ON RECEIPT C° Cooler #1	Cooler #2			Coole	#3				3	Brex (3200B	C)8545)	4000	2	3	3 3	, ž		1		1									
SPECIAL INSTRUCTIONS OR NOTES:			्राध्यक्ष अस्य	CONTRA	CT RATE AR RSEMENT R	PELES FIXE ADOR	1FC		1	33	3.	4	U	. ا <i>ب</i>	غ زاگ	-1		1					ĺ	l				4.6	<u> </u>
* PUBASE FILIER IN CAIS			☐ EDD N	OT NEED	ED CATION RE				10537	t	c (i		Ġ	2	0/6	신		1		1	1	1							
			☐ PROVI	DE LEDO	DISK	QUESTE:			🕏	6	4	Ŋ	920	aco	86								1	l				Container PID or Laborato	
	SAM	PLING		Π	PRESER	/ATIVE		NO. OF																				Or Caborato	yrioles
iAs Field Sample Identification use only	DATE	TIME	MATRIX	HCL	HNO3 H2SO			CONT.						7					+										1
	9/5	1019	5	HAL	103 12504	X.	X.	10	X	×	×		×	7						8 888			233	1000				2-5035	1-402
8 ASW-1-0913	910	1430	W	y.	14	×		12	V	¥		J	×	T	メ	×	Т	Π					l			П		<i>p</i> - <i>p</i> - <i>p</i> -	
7 W-01 - 7.5 3 ASW-1 - 0913 7 W-01 - 0913 4 MN - 302 · 0917 5 MW - 304 - 0913 6 HW - 307 - 0913	916	1029	W	X		X		.7	×	×		K	Ī	1	\top	×	T	Π		T	Г	Т				П			
4 MN -302 ON(7	915	(22)	N	X		ķ		7	×	X		X	T			<	Τ									П		10000	
5 MW - 304 - 04(3	9(5	1525	Ŋ	ĸ		x		7	ŕ	¥		k	T	\top	T	₹	1							<u> </u>	П		T		
6 NW - 307-09(3	વાડ	405	i)	^		*		7	×	¥		7	7	\top	T	x	+	T	1	T				_	П	П	T		
7 NW = 310 - 09(3	45	1104	W	٠		٨		٦	4			K	1		T	×	T										1		
8 TRIP BLANK	_	-	IJ	x				3			1	ق					1			-					П			-6 vialc	
9 ASW -1 -0913-DUP	116	1115	N	×				3	×			જ			1		T			Γ							1		
											T					\top	\top			_					П	7	T		****
Relinquished by (Signature)	L		Received by: (Sign	naAure)																	Oate				لــــــــــــــــــــــــــــــــــــــ	十	Time		
Chilary / UNS			Received by: (Sign		FEA	' 6	义														C	11	<u>ا ا</u>	13				1300	
Fedex			received by: (orga	taure)			8	1													Date	06	1-0	7.	13		Time	11:29	
Relinquished by (Signature)			Received by: (Sign	ob.re)			- 1	v													Date.			-		1	Tese:	•	
																												05/206 Review	

C29590: Chain of Custody

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number:	C29590	c	Client:	SHELL OIL			Project: 2555 13TH AV	E. SW, SEA	TTLE, W	A
Date / Time Received:	9/7/2013			Delivery Metho	od:	FedEx	Airbill #'s: 8020082969	146		
Cooler Temps (Initial/Adj	justed): #	1: (4.6/4.6)	<u>: 0</u>							
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification:	~		COC Pre		or N	Sample labels Container labels Sample conta Sample Integr	iner label / COC agree:	Y V V Y V	or N	
3. Cooler media:	lo	ce (Bag)				Sample recvd All containers		₹		
4. No. Coolers:	-	1				3. Condition of s	ample:		Intact	
Quality Control _Preserva 1. Trip Blank present / coole 2. Trip Blank listed on COC. 3. Samples preserved prope 4. VOCs headspace free: Comments	er: 🗸		N/A			Analysis requ Bottles receiv Sufficient volu	red for unspecified tests ume recvd for analysis: instructions clear:	<u>Y</u>	or N	N/A ☑ ☑
Accutest Laboratories V:408.588.0200						ndy Avenue 3.588.0201				San Jose, CA 95131 www/accutest.com

C29590: Chain of Custody

Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: C29590

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample VM1260-MB	File ID M41725.D	DF 1	Analyzed 09/10/13	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM1260

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	5.0	0.50	ug/kg
100-41-4	Ethylbenzene	ND	5.0	0.50	ug/kg
108-88-3	Toluene	ND	5.0	0.50	ug/kg
1330-20-7	Xylene (total)	ND	10	1.0	ug/kg

CAS No.	Surrogate Recoveries		Limits
2037-26-5	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	105% 107% 101%	70-130% 70-130% 70-130%

Method: SW846 8260B

C

Method Blank Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VU521-MB	U13430.D	1	09/12/13	TF	n/a	n/a	VU521

The QC reported here applies to the following samples:

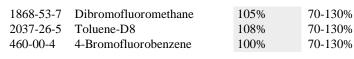
C29590-2, C29590-3, C29590-4, C29590-5, C29590-6, C29590-7, C29590-8

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	102%	70-130%
2037-26-5	Toluene-D8	108%	70-130%
460-00-4	4-Bromofluorobenzene	96%	70-130%

Method Blank Summary Page 1 of 1

Job Number: C29590


Account: SHELLWIC Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VU524-MB	U13539.D	1	09/18/13	TF	n/a	n/a	VU524

The QC reported here applies to the following samples: **Method:** SW846 8260B

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
CAS No.	Surrogate Recoveries		Limit	s	

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM1260-BS	M41722.D	1	09/10/13	XB	n/a	n/a	VM1260
VM1260-BSD	M41723.D	1	09/10/13	XB	n/a	n/a	VM1260

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	BSD ug/kg	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	40	38.7	97	38.4	96	1	81-119/20
100-41-4	Ethylbenzene	40	39.6	99	39.4	99	1	80-119/21
108-88-3	Toluene	40	38.9	97	38.3	96	2	80-117/21
1330-20-7	Xylene (total)	120	116	97	115	96	1	81-122/22

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Dibromofluoromethane	106%	105%	70-130%
	Toluene-D8	103%	102%	70-130%
	4-Bromofluorobenzene	104%	104%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VU521-BS	U13426.D	1	09/12/13	TF	n/a	n/a	VU521
VU521-BSD	U13427.D	1	09/12/13	TF	n/a	n/a	VU521

The QC reported here applies to the following samples:

C29590-2, C29590-3, C29590-4, C29590-5, C29590-6, C29590-7, C29590-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	19.8	99	18.5	93	7	77-122/25
100-41-4	Ethylbenzene	20	20.0	100	19.2	96	4	76-126/17
108-88-3	Toluene	20	20.3	102	19.5	98	4	75-122/17
1330-20-7	Xylene (total)	60	58.6	98	56.3	94	4	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	Dibromofluoromethane	102%	98%	70-130%
	Toluene-D8	119%	107%	70-130%
	4-Bromofluorobenzene	103%	102%	70-130%

^{* =} Outside of Control Limits.

5.2.3

Page 1 of 1

Method: SW846 8260B

U

Blank Spike/Blank Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VU524-BS	U13536.D	1	09/18/13	TF	n/a	n/a	VU524
VU524-BSD	U13555.D	1	09/19/13	TF	n/a	n/a	VU524

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	19.1	96	18.4	92	4	77-122/25
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			

CAS NO.	Surrogate Recoveries	DSI	DSD	Lillits	
1868-53-7	Dibromofluoromethane	96%	98%	70-130%	
2037-26-5	Toluene-D8	108%	107%	70-130%	
460-00-4	4-Bromofluorobenzene	107%	109%	70-130%	

^{* =} Outside of Control Limits.

Laboratory Control Sample Summary Job Number: C29590

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM1260-LCS	M41724.D	1	09/10/13	XB	n/a	n/a	VM1260

The QC reported here applies to the following samples: **Method:** SW846 8260B

C29590-1

LCS Spike LCS CAS No. Compound ug/kg ug/kg **%** Limits

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	102%	70-130%
2037-26-5	Toluene-D8	106%	70-130%
460-00-4	4-Bromofluorobenzene	103%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

		•	Prep Date	Prep Batch	Analytical Batch
1	09/18/13	TF	n/a	n/a	VU524
	1	1 09/18/13	1 09/18/13 TF	1 09/18/13 TF n/a	1 09/18/13 TF n/a n/a

The QC reported here applies to the following samples:

C29590-4

Spike LCS LCS CAS No. Compound ug/l **%** Limits ug/l

CAS No. **Surrogate Recoveries** BSP Limits 1868-53-7 Dibromofluoromethane 100% 70-130% 2037-26-5 Toluene-D8 109% 70-130% 460-00-4 4-Bromofluorobenzene 104% 70-130%

^{* =} Outside of Control Limits.

.4.1

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C29608-2MS	M41732.D	1	09/10/13	XB	n/a	n/a	VM1260
C29608-2MSD	M41733.D	1	09/10/13	XB	n/a	n/a	VM1260
C29608-2	M41727.D	1	09/10/13	XB	n/a	n/a	VM1260

The QC reported here applies to the following samples: Method: SW846 8260B

CAS No.	Compound	C29608-2 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	39.6 39.6 39.6 119	35.2 35.1 35.7 105	89 89 90 88	35.3 35.1 35.5 105	89 88 89 88	0 0 1 0	81-119/20 80-119/21 80-117/21 81-122/22
CAS No.	Surrogate Recoveries	MS	MSD	C29	9608-2	Limits			
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	97% 101% 97%	98% 101% 96%	109 107 103	7%	70-130% 70-130% 70-130%	, o		

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C29590-6MS	U13446.D	10	09/13/13	TF	n/a	n/a	VU521
C29590-6MSD	U13447.D	10	09/13/13	TF	n/a	n/a	VU521
C29590-6	U13439.D	10	09/12/13	TF	n/a	n/a	VU521

The QC reported here applies to the following samples:

C29590-2, C29590-3, C29590-4, C29590-5, C29590-6, C29590-7, C29590-8

CAS No. Compound ug/l	6 Spike Q ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 Benzene 643	200	1010	184* a	1030	194* a	2	77-122/16
100-41-4 Ethylbenzene 154	200	384	115	387	117	1	76-126/17
108-88-3 Toluene 64.5	200	340	138* b	290	113	16	75-122/17
1330-20-7 Xylene (total) 131	600	769	106	780	108	1	77-125/17

CAS No.	Surrogate Recoveries	MS	MSD	C29590-6	Limits
1868-53-7	Dibromofluoromethane	110%	115%	105%	70-130%
2037-26-5	Toluene-D8	122%	104%	110%	70-130%
460-00-4	4-Bromofluorobenzene	104%	110%	85%	70-130%

⁽a) Outside control limits due to high level in sample relative to spike amount.

⁽b) Outside control limits.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C29590

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C29623-3MS	U13556.D	1	09/19/13	TF	n/a	n/a	VU524
C29623-3MSD	U13557.D	1	09/19/13	TF	n/a	n/a	VU524
C29623-3	U13548.D	1	09/18/13	TF	n/a	n/a	VU524

The QC reported here applies to the following samples:

CAS No.	Compound	C29623- ug/l	-3 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	0.32	J	20	19.1	94	19.2	94	1	77-122/16
CAS No.	Surrogate Recoveries	MS		MSD	C	229623-3	Limits			
1868-53-7	Dibromofluoromethane	94%		94%	1	10%	70-130%	ó		
2037-26-5	Toluene-D8	107%		106%	1	04%	70-130%	ó		
460-00-4	4-Bromofluorobenzene	107%		107%	1	05%	70-1309	ó		

^{* =} Outside of Control Limits.

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: NWTPH-GX

Method Blank Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1576-MB	File ID JK39149.D	DF 1	Analyzed 09/13/13	By PH	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1576

The QC reported here applies to the following samples:

C29590-1

CAS No. Compound Result RL MDL Units Q

TPH (Gasoline) ND 5.0 2.5 mg/kg

 CAS No.
 Surrogate Recoveries
 Limits

 98-08-8
 aaa-Trifluorotoluene
 122%
 50-150%

 460-00-4
 4-Bromofluorobenzene
 111%
 50-150%

Method: NWTPH-GX

Method Blank Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1579-MB	File ID JK39218.D	DF 1	Analyzed 09/17/13	By PH	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1579

The QC reported here applies to the following samples:

C29590-2, C29590-3, C29590-4, C29590-5, C29590-6, C29590-7, C29590-9

CAS No. Compound Result RL MDL Units Q

TPH (Gasoline) ND 0.20 0.050 mg/l

CAS No. Surrogate Recoveries Limits

98-08-8 aaa-Trifluorotoluene 103% 50-150% 460-00-4 4-Bromofluorobenzene 96% 50-150%

6.2.1

Page 1 of 1

Method: NWTPH-GX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GJK1576-BS	JK39150.D	1	09/13/13	PH	n/a	n/a	GJK1576
GJK1576-BSD	JK39154.D	1	09/13/13	PH	n/a	n/a	GJK1576

The QC reported here applies to the following samples:

CAS No.	Compound	Spike mg/kg	BSP mg/kg	BSP %	BSD mg/kg	BSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	20	21.1	106	24.1	121	13	60-140/30
CAS No.	Surrogate Recoveries	BSP	BSI)	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	106% 102%	105 96%		50-150% 50-150%			

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
GJK1579-BS	JK39219.D	1	09/17/13	PH	n/a	n/a	GJK1579
GJK1579-BSD	JK39220.D	1	09/17/13	PH	n/a	n/a	GJK1579

The QC reported here applies to the following samples:

C29590-2, C29590-3, C29590-4, C29590-5, C29590-6, C29590-7, C29590-9

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD	
	TPH (Gasoline)	0.4	0.401	100	0.399	100	1	60-140/30	
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits				
98-08-8	aaa-Trifluorotoluene	101%	104	.%	50-150%	ó			
460-00-4	4-Bromofluorobenzene	97%	979	6	50-150%	6			

^{* =} Outside of Control Limits.

5.3.1

Page 1 of 1

Method: NWTPH-GX

σ

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C29591-1MS	JK39157.D	1	09/13/13	PH	n/a	n/a	GJK1576
C29591-1MSD	JK39158.D	1	09/13/13	PH	n/a	n/a	GJK1576
C29591-1	JK39155.D	1	09/13/13	PH	n/a	n/a	GJK1576

The QC reported here applies to the following samples:

CAS No.	Compound	C29591-1 mg/kg Q	Spike mg/kg	MS mg/kg	MS %	MSD mg/kg	MSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	35.2	18.9	55.7	108	51.2	82	8	60-140/30
CAS No.	Surrogate Recoveries	MS	MSD	C29	9591-1	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	113% 118%	111% 117%	129 133		50-150% 50-150%	-		

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C29590-9MS	JK39230.D	4	09/17/13	PH	n/a	n/a	GJK1579
C29590-9MSD	JK39231.D	4	09/17/13	PH	n/a	n/a	GJK1579
C29590-9	JK39228.D	4	09/17/13	PH	n/a	n/a	GJK1579

The QC reported here applies to the following samples:

C29590-2, C29590-3, C29590-4, C29590-5, C29590-6, C29590-7, C29590-9

CAS No.	Compound	C29590-9 mg/l Q	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	1.28	1.6	2.68	88	2.62	84	2	60-140/20
CAS No.	Surrogate Recoveries	MS	MSD	C29	9590-9	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	97% 102%	97% 100%	103 104		50-1509 50-1509	-		

^{* =} Outside of Control Limits.

Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C29590-1DUP	JK39153.D	1	09/13/13	PH	n/a	n/a	GJK1576
C29590-1	JK39152.D	1	09/13/13	PH	n/a	n/a	GJK1576
C29590-1 a	JK39160.D	1	09/13/13	PH	n/a	n/a	GJK1576

The QC reported here applies to the following samples:

Method: NWTPH-GX

CAS No.	Compound	C29590-1 mg/kg Q	DUP mg/kg Q	RPD I	Limits
	TPH (Gasoline)	2860	3280	14 3	0
CAS No.	Surrogate Recoveries	DUP	C29590-1	C29590-1	Limits
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	220%* b 1761%* b	209% * b 1645% * b	215% * b 1776% * b	50-150% 50-150%

⁽a) Confirmation run for surrogate recoveries.

⁽b) Outside control limits due to matrix interference. Confirmed by reanalysis.

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary

Job Number: C29590

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C29590-7DUP	JK39227.D	10	09/17/13	PH	n/a	n/a	GJK1579
C29590-7	JK39226.D	10	09/17/13	PH	n/a	n/a	GJK1579

The QC reported here applies to the following samples:

C29590-2, C29590-3, C29590-4, C29590-5, C29590-6, C29590-7, C29590-9

CAS No.	Compound	C29590-7 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Gasoline)	5.51	5.15	7 20
CAS No.	Surrogate Recoveries	DUP	C29590-7	Limits
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	108% 112%	109% 112%	50-150% 50-150%

^{* =} Outside of Control Limits.

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C29590

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6695 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/13/13

Prep Date.					09/13/13
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	13	8.5		
Antimony	6.0	.7	.51		
Arsenic	10	.7	.65		
Barium	200	. 4	.35		
Beryllium	5.0	. 2	. 4		
Bismuth	20		2.9		
Boron	100	.9	.64		
Cadmium	2.0	.2	.15		
Calcium	5000	7.1	12		
Chromium	10	.3	.41		
Cobalt	5.0	. 2	.3		
Copper	10	1.2	3		
Iron	200	6.4	12	2.1	<200
Lead	10	.7	.85		
Lithium	50		2		
Magnesium	5000	27	36		
Manganese	15	.1	1.3	0.10	<15
Molybdenum	20	. 2	.22		
Nickel	5.0	. 2	.12		
Potassium	10000	18	44		
Selenium	10	1.8	2.2		
Silicon	100	1.2	6.9		
Silver	5.0	.3	.47		
Sodium	10000	15	13		
Strontium	10	. 2	.24		
Thallium	10	.5	.54		
Tin	50	. 2	.7		
Titanium	10	. 4	.34		
Vanadium	10	.3	. 3		
Zinc	20	.3	4.2		

Associated samples MP6695: C29590-2F, C29590-3F, C29590-4F, C29590-5F, C29590-6F, C29590-7F

(*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C29590 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6695 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/13/13

Metal	C29590- Origina		Spikelot MPIR4A	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Bismuth					
Boron					
Cadmium					
Calcium					
Chromium					
Cobalt					
Copper					
Iron	12.0	564	500	110.4	70-130
Lead					
Lithium					
Magnesium					
Manganese	186	758	500	114.4	70-130
Molybdenum					
Nickel					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc					

Associated samples MP6695: C29590-2F, C29590-3F, C29590-4F, C29590-5F, C29590-6F, C29590-7F

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C29590 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6695 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/13/13

Metal	C29590- Origina		Spikel MPIR4A		MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Bismuth						
Boron						
Cadmium						
Calcium						
Chromium						
Cobalt						
Copper						
Iron	12.0	561	500	109.8	0.5	20
Lead						
Lithium						
Magnesium						
Manganese	186	746	500	112.0	1.6	20
Molybdenum						
Nickel						
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						
Associated sa	mples MP6	695: C29	590-2F, C	29590-3F, (C29590-4F,	C29590-5F, C29590-6F, C29590-7F

Associated samples MP6695: C29590-2F, C29590-3F, C29590-4F, C29590-5F, C29590-6F, C29590-7F

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

ACCUTEST.

C29590

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C29590 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6695 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/13/13

Metal	BSP Result	Spikelot MPIR4A	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Bismuth				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron	543	500	108.6	85-115
Lead				
Lithium				
Magnesium				
Manganese	555	500	111.0	85-115
Molybdenum				
Nickel				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP6695: C29590-2F, C29590-3F, C29590-4F, C29590-5F, C29590-6F, C29590-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $% \left(1,0\right) =0$

(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: C29590 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6695 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/13/13

Metal	C29590-2 Original	2F l SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Bismuth				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron	12.0	0.00	100.0(a)	0-10
Lead				
Lithium				
Magnesium				
Manganese	186	200	7.1	0-10
Molybdenum				
Nickel				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP6695: C29590-2F, C29590-3F, C29590-4F, C29590-5F, C29590-6F, C29590-7F

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C29590

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chemical Oxygen Demand Moisture, Percent Total Organic Carbon	GP5500/GN11731 GN11724 GP5508/GN11753	10	0.0	mg/l % mg/l	50 25.0	48.1	96.2 97.0	90-110%

Associated Samples: Batch GP5500: C29590-2 Batch GP5508: C29590-2 Batch GN11724: C29590-1 (*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C29590

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit
Chemical Oxygen Demand Total Organic Carbon	GP5500/GN11731 GP5508/GN11753	mg/l mg/l	50 25.0	46.1 25.0	4.3	25%

Associated Samples: Batch GP5500: C29590-2 Batch GP5508: C29590-2 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C29590
Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Moisture, Percent	GN11724	C29606-1	ે	9.8	10	2.0	0-25%

Associated Samples: Batch GN11724: C29590-1 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C29590

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chemical Oxygen Demand	GP5500/GN11731	C29582-1	mg/l	5.6	50	50.1	89.2(a)	90-110%
Total Organic Carbon	GP5508/GN11753	C29573-14	mg/l	4.1	25.0	28.1	96.0	75-125%

Associated Samples: Batch GP5500: C29590-2 Batch GP5508: C29590-2 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits
(a) Within 75-125% criteria for method COD HACH 8000.

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C29590

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Chemical Oxygen Demand	GP5500/GN11731	C29582-1	mg/l	5.6	50	48.1	4.1	25%
Total Organic Carbon	GP5508/GN11753	C29573-14	mg/l	4.1	25.0	29.4	4.5	

Associated Samples: Batch GP5500: C29590-2 Batch GP5508: C29590-2

(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

	r •		
N/	100	Form	10
10	130.	1 (71 11	11.7

Custody Documents and Other Forms

(Accutest Laboratories Southeast, Inc.)

Includes the following where applicable:

· Chain of Custody

Send the Report to: nutank@accutest.com

t a

ACCUTEST.
Accutest ID and PO#: C29590
2105 Lundy Avenue, San Jose, CA 95131 Phone: (408)588-0200 Fax: (408)588-0201

Subcontract Chain of Custody

Subcontract Lab: Accutest Laboratories Southeast Date Sent: 09/09/13
Date Due: 09/23/13

Project Name: SHELLWIC3660 Project Location:

Collect Collect Date Time			
Method	*TOC *COD		
Matrix	os		
Accutest Lab Customer Sample Matrix Number Name/Field Point ID			
Accutest Lab Number	C29590-1		_

Comments: 1 x 4oz Glass Jar

13 Time: 15:00	Time: 48:46	
Date: 09/09/13	Date: 9-10/3	Date:
Received By: FedEx	Received By: (423 12)	
Relinquished By: Elvink	Relinquished By: FedEx	Relinquished By:

L_{age}q

C29590: Chain of Custody

Page 1 of 2

Accutest Laboratories Southeast, Inc.

ACCUTEST LABORATORIES SAMPLE RECEIPT CONFIRMATION

ACCUTEST'S JOB NUMBER: 99590 CLIP DATE/TIME RECEIVED: 9-10-13 PO:00 (MM/DI	PROJECT: SHELLWIC 3660 DYY 24:00} NIMBER OF COOLERS RECEIVED: / UTEST COURIER GREYHOUND DELIVERY OTHER TEMPERATURE INFORMATION IR THERM ID
SUMMARY OF COMMENTS:	
TECHNICIAN SIGNATURE/DATE & 9-11-/3 NF 12/10 receip	REVIEWER SIGNATURE/DATE Defined of 1/1/3

C29590: Chain of Custody

Page 2 of 2

General Chemistry

QC Data Summaries

(Accutest Laboratories Southeast, Inc.)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C29590

Account: ALNCA - Accutest Northern California, Inc.
Project: SHELLWIC: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chemical Oxygen Demand	GP22478/GN57725	200	0.0	mg/kg	3750	3490	92.3	82-127%
Total Organic Carbon	GP22503/GN57779	1000		mg/kg	20000	20900	104.5	88-114%

Associated Samples: Batch GP22478: C29590-1 Batch GP22503: C29590-1 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C29590

Account: ALNCA - Accutest Northern California, Inc.
Project: SHELLWIC: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chemical Oxygen Demand	GP22478/GN57725	C29590-1	mg/kg	9900	15300	19900	65.1*(a)	82-127%
Total Organic Carbon	GP22503/GN57779	C29590-1	mg/kg	763	22500	27500	119.0N(a)	88-114%

Associated Samples: Batch GP22478: C29590-1 Batch GP22503: C29590-1 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(a) Spike recovery indicates possible matrix interference and/or sample non-homogeneity.

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C29590

Account: ALNCA - Accutest Northern California, Inc.
Project: SHELLWIC: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Chemical Oxygen Demand	GP22478/GN57725	C29590-1	mg/kg	9900	16900	21400	7.6	26%
Total Organic Carbon	GP22503/GN57779	C29590-1	mg/kg	763	22500	28000	1.8	36%

Associated Samples: Batch GP22478: C29590-1 Batch GP22503: C29590-1

(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

11/23/13

Technical Report for

Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

46194384

Accutest Job Number: C30786

Sampling Dates: 11/04/13 - 11/06/13

Report to:

URS Corporation 111 SW Columbia, Suite 1500 Portland, OR 97201-5850 brian.pletcher@urs.com

ATTN: Brian Pletcher

Total number of pages in report: 163

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

James J. Rhudy Lab Director

gung. Mudy

Client Service contact: Nutan Kabir 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD ELAP (L-A-B L2242)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Table of Contents

-1-

Section 1: Sample Summary	4
Section 2: Summary of Hits	7
Section 3: Sample Results	13
3.1: C30786-1: SH-04-1113	14
3.2: C30786-2: MW-112A-1113	17
3.3: C30786-3: TX-04-1113	20
3.4: C30786-4: MW-301-1113	23
3.5: C30786-5: MW-303-1113	25
3.6: C30786-6: MW-304-1113	27
3.7: C30786-6F: MW-304-1113	32
3.8: C30786-7: MW-213-1113	33
3.9: C30786-8: MW-302-1113	37
3.10: C30786-8F: MW-302-1113	42
3.11: C30786-9: MW-310-1113	43
3.12: C30786-9F: MW-310-1113	48
3.13: C30786-10: MW-208-1113	49
3.14: C30786-11: MW-206A-1113	53
3.15: C30786-12: MW-309-1113	56
3.16: C30786-13: MW-203-1113	58
3.17: C30786-13F: MW-2013-1113	63
3.18: C30786-14: TX-03A-1113	64
3.19: C30786-14F: TX-03A-1113	69
3.20: C30786-15: MW-211-1113	70
3.21: C30786-16: MW-214-1113	74
3.22: C30786-17: MW-101-1113	78
3.23: C30786-18: TES-MW-1-1113	81
3.24: C30786-19: MW-308-1113	84
3.25: C30786-20: MW-307-1113	86
3.26: C30786-20F: MW-307-1113	91
3.27: C30786-21: MW-202-1113	92
3.28: C30786-21F: MW-202-1113	98
3.29: C30786-22: MW-201-1113	99
3.30: C30786-23: MW-204-1113	102
Section 4: Misc. Forms	105
4.1: Chain of Custody	106
Section 5: GC/MS Volatiles - QC Data Summaries	110
5.1: Method Blank Summary	111
5.2: Blank Spike/Blank Spike Duplicate Summary	114
5.3: Laboratory Control Sample Summary	117
5.4: Matrix Spike/Matrix Spike Duplicate Summary	119
Section 6: GC/MS Semi-volatiles - QC Data Summaries	122
6.1: Method Blank Summary	123

G

7

 ∞

10

Sections:

-2-

Table of Contents

6.2: Blank Spike/Blank Spike Duplicate Summary	124
	125
	126
	127
	131
	133
	135
	137
Section 8: GC Semi-volatiles - QC Data Summaries	142
8.1: Method Blank Summary	143
8.2: Blank Spike/Blank Spike Duplicate Summary	144
	145
8.4: Duplicate Summary	146
Section 9: Metals Analysis - QC Data Summaries	147
9.1: Prep QC MP6984: Ca,Fe,Mg	148
9.2: Prep QC MP7009: Fe,Mn	153
Section 10: General Chemistry - QC Data Summaries	158
10.1: Method Blank and Spike Results Summary	159
10.2: Blank Spike Duplicate Results Summary	160
10.3: Duplicate Results Summary	161
10.4: Matrix Spike Results Summary	162
10.5: Matrix Spike Duplicate Results Summary	163

N

ယ

G

Sample Summary

Shell Oil Company

C30786 Job No:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA Project No: $\,46194384\,$

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C30786-1	11/04/13	13:00 MT	11/08/13	AQ	Ground Water	SH-04-1113
C30786-2	11/04/13	13:05 MT	11/08/13	AQ	Ground Water	MW-112A-1113
C30786-3	11/04/13	14:55 MT	11/08/13	AQ	Ground Water	TX-04-1113
C30786-4	11/04/13	15:45 MT	11/08/13	AQ	Ground Water	MW-301-1113
C30786-5	11/04/13	16:30 MT	11/08/13	AQ	Ground Water	MW-303-1113
C30786-6	11/05/13	10:00 MT	11/08/13	AQ	Ground Water	MW-304-1113
C30786-6F	11/05/13	10:00 MT	11/08/13	AQ	Groundwater Filtered	MW-304-1113
C30786-7	11/05/13	10:55 MT	11/08/13	AQ	Ground Water	MW-213-1113
C30786-8	11/05/13	11:30 MT	11/08/13	AQ	Ground Water	MW-302-1113
C30786-8F	11/05/13	11:30 MT	11/08/13	AQ	Groundwater Filtered	MW-302-1113
C30786-9	11/05/13	13:05 MT	11/08/13	AQ	Ground Water	MW-310-1113
C30786-9F	11/05/13	13:05 MT	11/08/13	AQ	Groundwater Filtered	MW-310-1113
C30786-10	11/05/13	14:00 MT	11/08/13	AQ	Ground Water	MW-208-1113

Sample Summary (continued)

Shell Oil Company

C30786 Job No:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA Project No: $\,46194384\,$

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C30786-11	11/06/13	15:20 MT	11/08/13	AQ	Ground Water	MW-206A-1113
C30786-12	11/06/13	16:00 MT	11/08/13	AQ	Ground Water	MW-309-1113
C30786-13	11/06/13	16:55 MT	11/08/13	AQ	Ground Water	MW-203-1113
C30786-13F	11/06/13	16:55 MT	11/08/13	AQ	Groundwater Filtered	MW-2013-1113
C30786-14	11/05/13	14:25 MT	11/08/13	AQ	Ground Water	TX-03A-1113
C30786-14F	11/05/13	14:25 MT	11/08/13	AQ	Groundwater Filtered	TX-03A-1113
C30786-15	11/05/13	16:00 MT	11/08/13	AQ	Ground Water	MW-211-1113
C30786-16	11/05/13	16:35 MT	11/08/13	AQ	Ground Water	MW-214-1113
C30786-17	11/06/13	09:00 MT	11/08/13	AQ	Ground Water	MW-101-1113
C30786-18	11/06/13	09:10 MT	11/08/13	AQ	Ground Water	TES-MW-1-1113
C30786-19	11/06/13	10:25 MT	11/08/13	AQ	Ground Water	MW-308-1113
C30786-20	11/06/13	10:35 MT	11/08/13	AQ	Ground Water	MW-307-1113
C30786-20F	11/06/13	10:35 MT	11/08/13	AQ	Groundwater Filtered	MW-307-1113

Sample Summary (continued)

Shell Oil Company

C30786 Job No:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA Project No: $\,46194384\,$

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C30786-21	11/06/13	12:50 MT	11/08/13	AQ	Ground Water	MW-202-1113
C30786-21F	11/06/13	12:50 MT	11/08/13	AQ	Groundwater Filtered	MW-202-1113
C30786-22	11/06/13	13:30 MT	11/08/13	AQ	Ground Water	MW-201-1113
C30786-23	11/06/13	14:15 MT	11/08/13	AQ	Ground Water	MW-204-1113

Summary of Hits
Job Number: C30786
Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 11/04/13 thru 11/06/13

T - L C	Climat C. 1 TD	D14/				
Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C30786-1	SH-04-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) TPH (Diesel)		3.2 0.43 J 7.1 5.0 1.05 0.134	1.0 1.0 1.0 2.0 0.80 0.094	0.20 0.20 0.20 0.46 0.20 0.047	ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX NWTPH-DX
C30786-2	MW-112A-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) TPH (Diesel)		23.8 0.68 J 37.6 1.2 J 0.909 1.72	1.0 1.0 1.0 2.0 0.50 0.19	0.20 0.20 0.20 0.46 0.13 0.094	ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX NWTPH-DX
C30786-3	TX-04-1113					
TPH (Diesel)		0.0492 J	0.095	0.048	mg/l	NWTPH-DX
C30786-4	MW-301-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		160 9.7 16.4 10.9 2.29	2.0 2.0 2.0 4.0 1.0	0.40 0.40 0.40 0.92 0.25	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C30786-5	MW-303-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		884 27.8 219 54.4 6.11	20 20 20 40 2.0	4.0 4.0 4.0 9.2 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C30786-6	MW-304-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		695 16.3 62.9 54.0 2.67	10 10 10 20 1.0	2.0 2.0 2.0 4.6 0.25	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX

Summary of Hits
Job Number: C30786
Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 11/04/13 thru 11/06/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Methane Carbon Dioxide Calcium Iron Magnesium Alkalinity, Total a Hardness, Total a		7650 12700 17000 35500 11200 128 88.6	25 5000 5000 200 5000 5.0 33	13 400	ug/l ug/l ug/l ug/l ug/l mg/l mg/l	RSK-175 RSK-175 SW846 6010B SW846 6010B SW846 6010B SM18 2320B SW846 6010B/SM 2340B
C30786-6F	MW-304-1113					
Iron Manganese		345 273	200 15		ug/l ug/l	SW846 6010B SW846 6010B
C30786-7	MW-213-1113					
TPH (Diesel)		0.0625 J	0.095	0.048	mg/l	NWTPH-DX
C30786-8	MW-302-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) Methane Carbon Dioxide Calcium Iron Magnesium Alkalinity, Total a Hardness, Total a Sulfate C30786-8F		607 11.2 97.7 52.9 2.69 3410 15700 18300 21100 9370 102 84.3 13.2	10 10 20 1.0 13 2500 5000 200 5000 5.0 33 0.50	2.0 2.0 2.0 4.6 0.25 6.3 200	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX RSK-175 RSK-175 SW846 6010B SW846 6010B SW846 6010B SM18 2320B SW846 6010B/SM 2340B EPA 300/SW846 9056A
Manganese		349	15		ug/l	SW846 6010B
C30786-9	MW-310-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) Methane		772 40.9 226 84.6 4.92 4520	10 10 10 20 2.0 2.5	2.0 2.0 2.0 4.6 0.50	ug/l ug/l ug/l ug/l mg/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX RSK-175

Summary of Hits Job Number: C30786

Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 11/04/13 thru 11/06/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Carbon Dioxide	11300	5000	400	ug/l	RSK-175
Calcium	29600	5000		ug/l	SW846 6010B
Iron	34600	200		ug/l	SW846 6010B
Magnesium	9720	5000		ug/l	SW846 6010B
Alkalinity, Total as CaCO3	134	5.0		mg/l	SM18 2320B
Hardness, Total as CaCO3 ^a	114	33		mg/l	SW846 6010B/SM 2340B
C30786-9F MW-310-1113					
Iron	982	200		ug/l	SW846 6010B
Manganese	528	15		ug/l	SW846 6010B
C30786-10 MW-208-1113					
Ethylbenzene	0.63 J	1.0	0.20	ug/l	SW846 8260B
Xylene (total)	5.6	2.0	0.46	ug/l	SW846 8260B
Acenaphthene	0.11 J	0.47	0.047	ug/l	SW846 8270C BY SIM
Naphthalene	0.17 J	0.47	0.094	ug/l	SW846 8270C BY SIM
TPH (Gasoline)	0.151 J	0.20	0.050	mg/l	NWTPH-GX
TPH (Diesel)	0.443	0.095	0.048	mg/l	NWTPH-DX

C30786-11 MW-206A-1113

No hits reported in this sample.

C30786-12 MW-309-1113

No hits reported in this sample.

C30786-13 MW-203-1113

TPH (Gasoline)	0.680	0.20	0.050	mg/l	NWTPH-GX
Methane	800	25	13	ug/l	RSK-175
Carbon Dioxide	20100	5000	400	ug/l	RSK-175
Calcium	53300	5000		ug/l	SW846 6010B
Iron	21900	200		ug/l	SW846 6010B
Magnesium	6670	5000		ug/l	SW846 6010B
Alkalinity, Total as CaCO3	190	5.0		mg/l	SM18 2320B
Hardness, Total as CaCO3 ^a	161	33		mg/l	SW846 6010B/SM 2340B

C30786-13F MW-2013-1113

Iron	3680	200	ug/l	SW846 6010B
Manganese	178	15	ug/l	SW846 6010B

Summary of Hits Job Number: C30786

Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 11/04/13 thru 11/06/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C30786-14	TX-03A-1113					
Benzene		2720	50	10	ug/l	SW846 8260B
Toluene		34.3 J	50	10	ug/l	SW846 8260B
Ethylbenzene		36.4 J	50	10	ug/l	SW846 8260B
Xylene (total)		41.1 J	100	23	ug/l	SW846 8260B
TPH (Gasoline)		6.01	2.0	0.50	mg/l	NWTPH-GX
Methane		6270	25	13	ug/l	RSK-175
Carbon Dioxide		16400	5000	400	ug/l	RSK-175
Calcium		28800	5000		ug/l	SW846 6010B
ron		44900	200		ug/l	SW846 6010B
Magnesium		19500	5000		ug/l	SW846 6010B
Alkalinity, Total		188	5.0		mg/l	SM18 2320B
Hardness, Total a	as CaCO3 ^a	152	33		mg/l	SW846 6010B/SM 2340B
C30786-14F	TX-03A-1113					
Manganese		470	15		ug/l	SW846 6010B
C30786-15	MW-211-1113					
Benzene		0.32 J	1.0	0.20	ug/l	SW846 8260B
Toluene		0.21 J	1.0	0.20	ug/l	SW846 8260B
Ethylbenzene		0.57 J	1.0	0.20	ug/l	SW846 8260B
Acenaphthene		0.20 J	0.48	0.048	ug/l	SW846 8270C BY SIM
Fluoranthene		0.081 J	0.48	0.048	ug/l	SW846 8270C BY SIM
Fluorene		0.29 J	0.48	0.048	ug/l	SW846 8270C BY SIM
1-Methylnaphthal	lene	0.19 J	0.48	0.095	ug/l	SW846 8270C BY SIM
Pyrene		0.070 J	0.48	0.048	ug/l	SW846 8270C BY SIM
TPH (Gasoline)		0.470	0.20	0.050	mg/l	NWTPH-GX
TPH (Diesel)		0.173	0.094	0.047	mg/l	NWTPH-DX
C30786-16	MW-214-1113					
TPH (Diesel)		0.0552 J	0.094	0.047	mg/l	NWTPH-DX
C30786-17	MW-101-1113					
TPH (Gasoline)		0.118 J	0.20	0.050	mg/l	NWTPH-GX
C30786-18	TES-MW-1-1113					

C30786-18 TES-MW-1-1113

No hits reported in this sample.

Summary of Hits
Job Number: C30786
Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 11/04/13 thru 11/06/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C30786-19	MW-308-1113					
Benzene		237	5.0	1.0	ug/l	SW846 8260B
Toluene		3.3 J	5.0	1.0	ug/l	SW846 8260B
Ethylbenzene		5.6	5.0	1.0	ug/l	SW846 8260B
Xylene (total)		2.6 J	10	2.3	ug/l	SW846 8260B
TPH (Gasoline)		1.65	0.80	0.20	mg/l	NWTPH-GX
C30786-20	MW-307-1113					
Benzene		568	10	2.0	ug/l	SW846 8260B
Toluene		44.8	10	2.0	ug/l	SW846 8260B
Ethylbenzene		104	10	2.0	ug/l	SW846 8260B
Xylene (total)		91.2	20	4.6	ug/l	SW846 8260B
TPH (Gasoline)		4.39	2.0	0.50	mg/l	NWTPH-GX
Methane		7270	25	13	ug/l	RSK-175
Carbon Dioxide		8440	5000	400	ug/l	RSK-175
Calcium		10900	5000		ug/l	SW846 6010B
Iron		27000	200		ug/l	SW846 6010B
Alkalinity, Total		60.0	5.0		mg/l	SM18 2320B
Hardness, Total	as CaCO3 ^a	45.4	33		mg/l	SW846 6010B/SM 2340B
C30786-20F	MW-307-1113					
Manganese		217	15		ug/l	SW846 6010B
C30786-21	MW-202-1113					
Toluene		2.7	1.0	0.20	ug/l	SW846 8260B
Ethylbenzene		33.5	1.0	0.20	ug/l	SW846 8260B
Xylene (total)		1.2 J	2.0	0.46	ug/l	SW846 8260B
TPH (Gasoline)		4.68	2.0	0.50	mg/l	NWTPH-GX
Methane		3570	25	13	ug/l	RSK-175
Carbon Dioxide		22100	5000	400	ug/l	RSK-175
TPH (Diesel)		1.29	0.095	0.048	mg/l	NWTPH-DX
Calcium		11100	5000		ug/l	SW846 6010B
Iron		37900	200		ug/l	SW846 6010B
Magnesium		10700	5000		ug/l	SW846 6010B
Alkalinity, Total		80.0	5.0		mg/l	SM18 2320B
Hardness, Total	as CaCO3 ^a	71.8	33		mg/l	SW846 6010B/SM 2340B
Sulfate		0.76	0.50		mg/l	EPA 300/SW846 9056A
C30786-21F	MW-202-1113					
Manganese		439	15		ug/l	SW846 6010B

Summary of Hits Job Number: C30786

Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 11/04/13 thru 11/06/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C30786-22	MW-201-1113					
TPH (Gasoline) TPH (Diesel)		0.0964 J 0.520	0.20 0.094	0.050 0.047	mg/l mg/l	NWTPH-GX NWTPH-DX
C30786-23	MW-204-1113					
Benzene TPH (Gasoline) TPH (Diesel) TPH (Motor Oil)		0.57 J 0.0762 J 0.280 0.0976 J	1.0 0.20 0.096 0.19	0.20 0.050 0.048 0.096	ug/l mg/l mg/l mg/l	SW846 8260B NWTPH-GX NWTPH-DX NWTPH-DX

⁽a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Sample Results	
Report of Analysis	
-	

Client Sample ID: SH-04-1113

 Lab Sample ID:
 C30786-1
 Date Sampled:
 11/04/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43104.D	1	11/13/13	BD	n/a	n/a	VW1530
Run #2							

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	3.2 0.43 7.1 5.0	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	100% 107% 94%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and Indicates a

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: SH-04-1113

Lab Sample ID:C30786-1Date Sampled:11/04/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40587.D 4 11/15/13 TT n/a n/a GJK1637

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	1.05	0.80	0.20	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
98-08-8	aaa-Trifluorotoluene	95%		50-15		

ND = Not detected MDL - Method Detection Limit J

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: SH-04-1113

 Lab Sample ID:
 C30786-1
 Date Sampled:
 11/04/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48568.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Run #1 1060 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (Diesel) TPH (Motor Oil)	0.134 ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	85%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Client Sample ID: MW-112A-1113

 Lab Sample ID:
 C30786-2
 Date Sampled:
 11/04/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	W43105.D	1	11/13/13	BD	n/a	n/a	VW1530
Run #2							

Report of Analysis

Run #1 10.0 ml Run #2

_ _ _ _ .

Purgeable Aromatics

CAS No. Compound		Result	RL	MDL	Units	Q
71-43-2 Benzene 108-88-3 Toluene 100-41-4 Ethylbenzene 1330-20-7 Xylene (total)		23.8 0.68 37.6 1.2	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	99% 105% 99%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indic

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

63

Report of Analysis

Client Sample ID: MW-112A-1113

Lab Sample ID:C30786-2Date Sampled:11/04/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40588.D 2.5 11/15/13 TT n/a n/a GJK1637

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	0.909	0.50	0.13	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
C115 110.	Surrogute Recoveries	Kuliii I	Italiii 2	2		

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ç

Page 1 of 1

Client Sample ID: MW-112A-1113

 Lab Sample ID:
 C30786-2
 Date Sampled:
 11/04/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48569.D 2 11/11/13 NN11/09/13 GGG1335 Run #2

Run #1 1060 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	1.72 ND	0.19 0.38	0.094 0.19	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	81%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: TX-04-1113

 Lab Sample ID:
 C30786-3
 Date Sampled:
 11/04/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43106.D	1	11/13/13	BD	n/a	n/a	VW1530
Run #2							

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 Benzene 108-88-3 Toluene 100-41-4 Ethylbenzene 1330-20-7 Xylene (total)		ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	100% 106% 93%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicate

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ċ

Report of Analysis

Client Sample ID: TX-04-1113

Lab Sample ID:C30786-3Date Sampled:11/04/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40589.D 1 11/15/13 TT n/a n/a GJK1637

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: TX-04-1113

Lab Sample ID: C30786-3 **Date Sampled:** 11/04/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48570.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Final Volume Initial Volume Run #1 1050 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.0492 ND	0.095 0.19	0.048 0.095	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
630-01-3	Hexacosane	91%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-301-1113

Lab Sample ID: **Date Sampled:** 11/04/13 C30786-4 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43108.D	2	11/13/13	BD	n/a	n/a	VW1530
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	160 9.7 16.4 10.9	2.0 2.0 2.0 4.0	0.40 0.40 0.40 0.92	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	108% 104% 97%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-301-1113

Lab Sample ID: C30786-4 **Date Sampled:** 11/04/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40591.D 5 11/15/13 TTGJK1637 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	2.29	1.0	0.25	mg/l	
CACN	G 4 P	TD // 1	D // 0		.,	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-303-1113

Lab Sample ID: **Date Sampled:** 11/04/13 C30786-5 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	W43109.D	20	11/13/13	BD	n/a	n/a	VW1530
Pun #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	884 27.8 219 54.4	20 20 20 40	4.0 4.0 4.0 9.2	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	108% 103% 95%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-303-1113

Lab Sample ID: C30786-5 **Date Sampled:** 11/04/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40646.D 10 11/18/13 TTGJK1639 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	6.11	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: MW-304-1113

 Lab Sample ID:
 C30786-6
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43110.D	10	11/13/13	BD	n/a	n/a	VW1530
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	695 16.3 62.9 54.0	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	107% 104% 96%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit J = I

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-304-1113

 Lab Sample ID:
 C30786-6
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 RSK-175
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 AA004484.D 1 11/11/13 TT n/a n/a GAA208

Run #2

	Initial Volume	Headspace Volume	Volume Injected	Temperature
Run #1	38.0 ml	5.0 ml	10.0 ul	22 Deg. C
Run #2				

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	7650	25	13	ug/l	
124-38-9	Carbon Dioxide	12700	5000	400	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-304-1113

Lab Sample ID:C30786-6Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK40593.D 5 11/15/13 TT n/a n/a GJK1637

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	2.67	1.0	0.25	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
				2		

ND = Not detected MDL - Method Detection Limit J = Incomparison Detection Limit <math>J = Incomparison Detection De

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Page 1 of 1

Client Sample ID: MW-304-1113

Lab Sample ID:C30786-6Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	17000	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Iron	35500	200	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Magnesium	11200	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3576

(2) Prep QC Batch: MP6984

Page 1 of 1

Client Sample ID: MW-304-1113

Lab Sample ID:C30786-6Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	128	5.0	mg/l	1	11/14/13 12:00	AC	SM18 2320B
Hardness, Total as CaCO3 ^a	88.6	33	mg/l	1	11/12/13 18:42	RS	SW846 6010B/SM 2340B
Sulfate	< 0.50	0.50	mg/l	1	11/14/13 18:54	RL	EPA 300/SW846 9056A

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Client Sample ID: MW-304-1113

Lab Sample ID:C30786-6FDate Sampled:11/05/13Matrix:AQ - Groundwater FilteredDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	345	200	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	273	15	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3584(2) Prep QC Batch: MP7009

Page 1 of 1

Report of Analysis

Client Sample ID: MW-213-1113

Lab Sample ID: **Date Sampled:** 11/05/13 C30786-7 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	W43107.D	1	11/13/13	BD	n/a	n/a	VW1530
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 106% 93%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-213-1113

Lab Sample ID: C30786-7 **Date Sampled:** 11/05/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Method: SW846 8270C BY SIM SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 T11421.D 1 11/11/13 LW 11/11/13 OP9024 ET518 Run #2

Final Volume Initial Volume Run #1 1050 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	0.48	0.048	ug/l	
208-96-8	Acenaphthylene	ND	0.48	0.048	ug/l	
120-12-7	Anthracene	ND	0.48	0.048	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.095	0.050	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.095	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.095	0.033	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.095	0.034	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.095	0.037	ug/l	
218-01-9	Chrysene	ND	0.095	0.043	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.095	0.033	ug/l	
206-44-0	Fluoranthene	ND	0.48	0.048	ug/l	
86-73-7	Fluorene	ND	0.48	0.048	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.095	0.033	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.48	0.095	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.48	0.095	ug/l	
91-20-3	Naphthalene	ND	0.48	0.095	ug/l	
85-01-8	Phenanthrene	ND	0.48	0.048	ug/l	
129-00-0	Pyrene	ND	0.48	0.048	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
4165-60-0	Nitrobenzene-d5	80%		31-12	28%	
321-60-8	2-Fluorobiphenyl	67%		34-12	23%	
1718-51-0	Terphenyl-d14	67%		43-13	36%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-213-1113

Lab Sample ID:C30786-7Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	JK40595.D	1	11/15/13	TT	n/a	n/a	GJK1637
D 4/2							

Run #2

Purge Volume Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (Gasoline) ^a	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	Surrogate Recoveries	IXIIIII I	Ruiin 2	2		

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected

MDL - Method Detection Limit

 $RL = \ Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

Report of Analysis

Client Sample ID: MW-213-1113

 Lab Sample ID:
 C30786-7
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48571.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Run #1 Initial Volume Final Volume
1050 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.0625 ND	0.095 0.19	0.048 0.095	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	84%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = Ind

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-302-1113 Lab Sample ID: C30786-8 **Date Sampled:** 11/05/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Method: SW846 8260B Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** VW1530 Run #1 W43111.D 10 11/13/13 BD n/an/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	607 11.2 97.7 52.9	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	111% 103% 96%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Alla

Client Sample ID: MW-302-1113

 Lab Sample ID:
 C30786-8
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 RSK-175
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AA004487.D 1 11/11/13 TT n/a n/a GAA208

Run #2

Run #1 38.0 ml Headspace Volume Volume Injected Temperature 20.0 ul 22 Deg. C

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	3410	13	6.3	ug/l	
124-38-9	Carbon Dioxide	15700	2500	200	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Report of Analysis

Client Sample ID: MW-302-1113

Lab Sample ID:C30786-8Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40647.D 5 11/18/13 TTGJK1639 n/an/a Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	2.69	1.0	0.25	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
98-08-8	aaa-Trifluorotoluene	95%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-302-1113

Lab Sample ID: C30786-8 **Date Sampled:** 11/05/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	18300	5000	ug/l	1	11/12/13	11/13/13 RS	SW846 6010B ¹	SW3010A ²
Iron	21100	200	ug/l	1	11/12/13	11/13/13 RS	SW846 6010B ¹	SW3010A ²
Magnesium	9370	5000	ug/l	1	11/12/13	11/13/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3576

(2) Prep QC Batch: MP6984

Page 1 of 1

Client Sample ID: MW-302-1113

Lab Sample ID:C30786-8Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	102 84.3	5.0	mg/l	1	11/14/13 12:00		SM18 2320B
Hardness, Total as CaCO3 ^a Sulfate	13.2	33 0.50	mg/l mg/l	1	11/13/13 08:13 11/14/13 19:11		SW846 6010B/SM 2340B EPA 300/SW846 9056A

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Page 1 of 1

Client Sample ID: MW-302-1113

Lab Sample ID:C30786-8FDate Sampled:11/05/13Matrix:AQ - Groundwater FilteredDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 200	200	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	349	15	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3584

(2) Prep QC Batch: MP7009

Page 1 of 1

Client Sample ID: MW-310-1113

 Lab Sample ID:
 C30786-9
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43127.D	10	11/13/13	BD	n/a	n/a	VW1531
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	772 40.9 226 84.6	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 101% 93%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-310-1113

 Lab Sample ID:
 C30786-9
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 RSK-175
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AA004489.D 1 11/11/13 TT n/a n/a GAA208

Run #2

Initial Volume Headspace Volume Volume Injected Temperature
Run #1 38.0 ml 5.0 ml 10.0 ul 22 Deg. C
Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	4520	25	13	ug/l	
124-38-9	Carbon Dioxide	11300	5000	400	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-310-1113

Lab Sample ID:C30786-9Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	JK40648.D	10	11/18/13	TT	n/a	n/a	GJK1639
Dun #2							

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	4.92	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
98-08-8	aaa-Trifluorotoluene	94%		50-15	50%	

ND = Not detected MDL - Method Detection Limit J = Indianate

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-310-1113

Lab Sample ID:C30786-9Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	29600	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Iron	34600	200	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Magnesium	9720	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3576(2) Prep QC Batch: MP6984

Report of Analysis

Client Sample ID: MW-310-1113

Lab Sample ID:C30786-9Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3 Hardness, Total as CaCO3 ^a	134 114	5.0 33	mg/l mg/l	1 1	11/14/13 12:00 11/12/13 19:18		SM18 2320B SW846 6010B/SM 2340B
Sulfate	< 0.50	0.50	mg/l	1	11/14/13 20:03		EPA 300/SW846 9056A

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Report of Analysis

Client Sample ID: MW-310-1113

Lab Sample ID:C30786-9FDate Sampled:11/05/13Matrix:AQ - Groundwater FilteredDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	982	200	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	528	15	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3584

(2) Prep QC Batch: MP7009

Page 1 of 1

Client Sample ID: MW-208-1113

Date Sampled: 11/05/13 Lab Sample ID: C30786-10 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43126.D	1	11/13/13	BD	n/a	n/a	VW1531
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND 0.63 5.6	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	96% 104% 98%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-208-1113

 Lab Sample ID:
 C30786-10
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8270C BY SIM SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 T11422.D 1 11/11/13 LW 11/11/13 OP9024 ET518

Report of Analysis

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	0.11	0.47	0.047	ug/l	J
208-96-8	Acenaphthylene	ND	0.47	0.047	ug/l	
120-12-7	Anthracene	ND	0.47	0.047	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.094	0.050	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.094	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.033	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.094	0.034	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.094	0.037	ug/l	
218-01-9	Chrysene	ND	0.094	0.042	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.094	0.033	ug/l	
206-44-0	Fluoranthene	ND	0.47	0.047	ug/l	
86-73-7	Fluorene	ND	0.47	0.047	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.094	0.033	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.47	0.094	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.47	0.094	ug/l	
91-20-3	Naphthalene	0.17	0.47	0.094	ug/l	J
85-01-8	Phenanthrene	ND	0.47	0.047	ug/l	
129-00-0	Pyrene	ND	0.47	0.047	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
4165-60-0	Nitrobenzene-d5	71%		31-12	28%	
321-60-8	2-Fluorobiphenyl	60%		34-12	23%	
1718-51-0	Terphenyl-d14	52%		43-13	36%	

ND = Not detected MDL - Method Detection Limit J = Indicates the substitution of

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Client Sample ID: MW-208-1113

Lab Sample ID:C30786-10Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK40649.D 1 11/18/13 TT n/a n/a GJK1639

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (Gasoline)	0.151	0.20	0.050	mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
	8					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-208-1113

Lab Sample ID: C30786-10 **Date Sampled:** 11/05/13 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: NWTPH-DX SW846 3510C **Percent Solids:**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	GG48572.D	1	11/11/13	NN	11/09/13	OP9019	GGG1335
Run #2							

Final Volume Initial Volume Run #1 1050 ml 1.0 ml Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (Diesel) TPH (Motor Oil)	0.443 ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	80%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-206A-1113

 Lab Sample ID:
 C30786-11
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	W43176.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume
Run #1 10.0 ml
Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limi		its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 109% 95%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-206A-1113

Lab Sample ID:C30786-11Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	JK40599.D	1	11/15/13	TT	n/a	n/a	GJK1637
D 4/2							

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline) ^a	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
CAB NO.	Surrogute Recoveries	Kuli,, I	Italiii 2	211111	•15	

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 1 of 1

Client Sample ID: MW-206A-1113

Lab Sample ID: C30786-11 **Date Sampled:** 11/06/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48573.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Final Volume Initial Volume Run #1 1060 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	75%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-309-1113

Lab Sample ID: C30786-12 **Date Sampled:** 11/06/13 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43177.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 109% 96%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-309-1113

Lab Sample ID:C30786-12Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40651.D 1 11/18/13 TT n/a n/a GJK1639

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

. .

Client Sample ID: MW-203-1113

Lab Sample ID: C30786-13 **Date Sampled:** 11/06/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Method: RSK-175 Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 AA004502.D 1 11/12/13 TT**GAA209** n/an/a

Run #2

Volume Injected Temperature Initial Volume Headspace Volume Run #1 38.0 ml 5.0 ml 10.0 ul 22 Deg. C Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	800	25	13	ug/l	
124-38-9	Carbon Dioxide	20100	5000	400	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Page 1 of 1

Client Sample ID: MW-203-1113

Lab Sample ID:C30786-13Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40652.D 1 11/18/13 TTGJK1639 n/an/a Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	CAS No. Compound		RL	MDL	Units	Q
	TPH (Gasoline)	0.680	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

c

Page 1 of 1

Client Sample ID: MW-203-1113

 Lab Sample ID:
 C30786-13
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48574.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Initial Volume Final Volume
Run #1 1060 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	70%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-203-1113

Lab Sample ID:C30786-13Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	53300	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Iron	21900	200	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Magnesium	6670	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3576(2) Prep QC Batch: MP6984

Page 1 of 1

Client Sample ID: MW-203-1113

Lab Sample ID:C30786-13Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	190	5.0	mg/l	1	11/14/13 12:00		SM18 2320B
Hardness, Total as CaCO3 ^a Sulfate	161 < 0.50	33 0.50	mg/l mg/l	1	11/12/13 19:26 11/14/13 20:21		SW846 6010B/SM 2340B EPA 300/SW846 9056A

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Page 1 of 1

Client Sample ID: MW-2013-1113

Lab Sample ID: C30786-13F **Date Sampled:** 11/06/13 Matrix: AQ - Groundwater Filtered **Date Received:** 11/08/13 Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	3680	200	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	178	15	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3584

(2) Prep QC Batch: MP7009

Page 1 of 1

Client Sample ID: TX-03A-1113

 Lab Sample ID:
 C30786-14
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43178.D	50	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume
Run #1 10.0 ml
Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	2720 34.3 36.4 41.1	50 50 50 100	10 10 10 23	ug/l ug/l ug/l ug/l	J J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	111% 107% 96%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TX-03A-1113

 Lab Sample ID:
 C30786-14
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 RSK-175
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AA004490.D 1 11/11/13 TT n/a n/a GAA208

Run #2

Initial Volume Headspace Volume Volume Injected Temperature
Run #1 38.0 ml 5.0 ml 10.0 ul 22 Deg. C
Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	6270	25	13	ug/l	
124-38-9	Carbon Dioxide	16400	5000	400	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TX-03A-1113

Lab Sample ID:C30786-14Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40653.D 10 11/18/13 TTGJK1639 n/an/a Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	6.01	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	C .					

ND = Not detected MDL - Method Detection Limit <math>J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

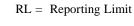
B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C30786

L

Page 1 of 1

Client Sample ID: TX-03A-1113


Lab Sample ID:C30786-14Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	28800	5000	ug/l	1		11/12/13 RS	SW846 6010B ¹	SW3010A ²
Iron Magnesium	44900 19500	200 5000	ug/l ug/l	1		11/12/13 RS 11/12/13 RS	SW846 6010B ¹ SW846 6010B ¹	SW3010A ² SW3010A ²

(1) Instrument QC Batch: MA3576(2) Prep QC Batch: MP6984

Page 1 of 1

Client Sample ID: TX-03A-1113

Lab Sample ID:C30786-14Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	188	5.0	mg/l	1	11/14/13 12:00		SM18 2320B
Hardness, Total as CaCO3 ^a	152	33	mg/l	1	11/12/13 19:48	RS	SW846 6010B/SM 2340B
Sulfate	< 0.50	0.50	mg/l	1	11/14/13 20:38	RL	EPA 300/SW846 9056A

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Page 1 of 1

Client Sample ID: TX-03A-1113

Lab Sample ID:C30786-14FDate Sampled:11/05/13Matrix:AQ - Groundwater FilteredDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 200	200	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	470	15	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3584

(2) Prep QC Batch: MP7009

Page 1 of 1

Client Sample ID: MW-211-1113

 Lab Sample ID:
 C30786-15
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	W43179.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Report of Analysis

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.32 0.21 0.57 ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	103% 109% 100%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Report of Analysis Page 1 of 1

Client Sample ID: MW-211-1113

 Lab Sample ID:
 C30786-15
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8270C BY SIM SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 T11423.D 1 11/11/13 LW 11/11/13 OP9024 ET518 Run #2

Initial Volume Final Volume

1.0 ml

1050 ml

Run #1 Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	0.20	0.48	0.048	ug/l	J
208-96-8	Acenaphthylene	ND	0.48	0.048	ug/l	
120-12-7	Anthracene	ND	0.48	0.048	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.095	0.050	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.095	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.095	0.033	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.095	0.034	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.095	0.037	ug/l	
218-01-9	Chrysene	ND	0.095	0.043	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.095	0.033	ug/l	
206-44-0	Fluoranthene	0.081	0.48	0.048	ug/l	J
86-73-7	Fluorene	0.29	0.48	0.048	ug/l	J
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.095	0.033	ug/l	
90-12-0	1-Methylnaphthalene	0.19	0.48	0.095	ug/l	J
91-57-6	2-Methylnaphthalene	ND	0.48	0.095	ug/l	
91-20-3	Naphthalene	ND	0.48	0.095	ug/l	
85-01-8	Phenanthrene	ND	0.48	0.048	ug/l	
129-00-0	Pyrene	0.070	0.48	0.048	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
4165-60-0	Nitrobenzene-d5	66%		31-12	28%	
321-60-8	2-Fluorobiphenyl	53%		34-12	23%	
1718-51-0	Terphenyl-d14	47%		43-13	36%	

ND = Not detected MDL - Method Detection Limit J = Indicates the substitution of

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-211-1113

Lab Sample ID:C30786-15Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40654.D 1 11/18/13 TT n/a n/a GJK1639

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	0.470	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
			50-150% 50-150%			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Client Sample ID: MW-211-1113

 Lab Sample ID:
 C30786-15
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48575.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Run #1 1060 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.173 ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	55%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = In

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: MW-214-1113

 Lab Sample ID:
 C30786-16
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43180.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume
Run #1 10.0 ml
Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 109% 96%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and J = Indicates and Indicat

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: MW-214-1113

 Lab Sample ID:
 C30786-16
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8270C BY SIM SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1T11424.D111/11/13LW11/11/13OP9024ET518

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	0.47	0.047	ug/l	
208-96-8	Acenaphthylene	ND	0.47	0.047	ug/l	
120-12-7	Anthracene	ND	0.47	0.047	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.094	0.050	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.094	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.033	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.094	0.034	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.094	0.037	ug/l	
218-01-9	Chrysene	ND	0.094	0.042	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.094	0.033	ug/l	
206-44-0	Fluoranthene	ND	0.47	0.047	ug/l	
86-73-7	Fluorene	ND	0.47	0.047	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.094	0.033	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.47	0.094	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.47	0.094	ug/l	
91-20-3	Naphthalene	ND	0.47	0.094	ug/l	
85-01-8	Phenanthrene	ND	0.47	0.047	ug/l	
129-00-0	Pyrene	ND	0.47	0.047	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
4165-60-0	Nitrobenzene-d5	81%		31-12	28%	
321-60-8	2-Fluorobiphenyl	70%		34-12	23%	
1718-51-0	Terphenyl-d14	69%		43-13	36%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-214-1113

Lab Sample ID:C30786-16Date Sampled:11/05/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	JK40606.D	1	11/16/13	TT	n/a	n/a	GJK1637

Run #2

Purge Volume Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline) ^a	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	Surrogute Recoveries	Kuli,, I	Italiii 2	2	•15	

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-214-1113

 Lab Sample ID:
 C30786-16
 Date Sampled:
 11/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG48580.D 1 11/11/13 NN 11/09/13 OP9019 GGG1335

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.0552 ND	0.094 0.19	0.047 0.094	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	69%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

G

Page 1 of 1

Client Sample ID: MW-101-1113

 Lab Sample ID:
 C30786-17
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	W43181.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume
Run #1 10.0 ml
Run #2

Purgeable Aromatics

CAS No. Compound		Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 109% 98%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit J = Indetection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ċ

Page 1 of 1

Client Sample ID: MW-101-1113

Lab Sample ID:C30786-17Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40655.D 1 11/18/13 TT n/a n/a GJK1639

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	0.118	0.20	0.050	mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	8					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-101-1113

 Lab Sample ID:
 C30786-17
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX
 SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	GG48581.D	1	11/11/13	NN	11/09/13	OP9019	GGG1335
Pun #2							

Run #1 1050 ml Final Volume
Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	71%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = In

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TES-MW-1-1113

 Lab Sample ID:
 C30786-18
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43182.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume
Run #1 10.0 ml
Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 109% 95%		70-1 70-1 70-1		

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ċ

Page 1 of 1

Client Sample ID: TES-MW-1-1113

 Lab Sample ID:
 C30786-18
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-GX
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	JK40608.D	1	11/16/13	TT	n/a	n/a	GJK1637
Dun #2							

Run #2

Purge Volume Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline) ^a	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: TES-MW-1-1113

 Lab Sample ID:
 C30786-18
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48582.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Run #1 1050 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	85%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = In

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-308-1113

 Lab Sample ID:
 C30786-19
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	W43186.D	5	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	237 3.3 5.6 2.6	5.0 5.0 5.0 10	1.0 1.0 1.0 2.3	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	108% 106% 99%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indianate

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

Page 1 of 1

Client Sample ID: MW-308-1113

Lab Sample ID:C30786-19Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK40657.D 4 11/18/13 TT n/a n/a GJK1639

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	1.65	0.80	0.20	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
0120 1101	Surrogute Recoveries	Kuli,, I	Italiii 2	2		

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-307-1113

Lab Sample ID: **Date Sampled:** 11/06/13 C30786-20 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43187.D	10	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	568 44.8 104 91.2	10 10 10 20	2.0 2.0 2.0 4.6	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	105% 107% 98%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: MW-307-1113

 Lab Sample ID:
 C30786-20
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 RSK-175
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AA004504.D 1 11/12/13 TT n/a n/a GAA209

Run #2

Initial Volume Headspace Volume Volume Injected Temperature
Run #1 38.0 ml 5.0 ml 10.0 ul 22 Deg. C
Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	7270	25	13	ug/l	
124-38-9	Carbon Dioxide	8440	5000	400	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-307-1113

Lab Sample ID:C30786-20Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40658.D 10 11/18/13 TTGJK1639 n/an/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	4.39	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit J = 1

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-307-1113

Lab Sample ID:C30786-20Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	10900	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Iron	27000	200	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Magnesium	< 5000	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3576

(2) Prep QC Batch: MP6984

Page 1 of 1

Client Sample ID: MW-307-1113

Lab Sample ID:C30786-20Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	60.0	5.0	mg/l	1	11/14/13 12:00		SM18 2320B
Hardness, Total as CaCO3 ^a	45.4	33	mg/l	1	11/12/13 19:55	RS	SW846 6010B/SM 2340B
Sulfate	< 0.50	0.50	mg/l	1	11/14/13 20:55	RL	EPA 300/SW846 9056A

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Page 1 of 1

Client Sample ID: MW-307-1113

Lab Sample ID:C30786-20FDate Sampled:11/06/13Matrix:AQ - Groundwater FilteredDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 200	200	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	217	15	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3584

(2) Prep QC Batch: MP7009

Page 1 of 1

Client Sample ID: MW-202-1113

Date Sampled: 11/06/13 Lab Sample ID: C30786-21 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43183.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND 2.7 33.5 1.2	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	99% 109% 105%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-202-1113

 Lab Sample ID:
 C30786-21
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 RSK-175
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AA004509.D 1 11/12/13 TT n/a n/a GAA209

Run #2

Run #1 38.0 ml Headspace Volume Volume Injected Temperature 22 Deg. C

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	3570	25	13	ug/l	
124-38-9	Carbon Dioxide	22100	5000	400	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-202-1113

Lab Sample ID:C30786-21Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 JK40659.D 10 11/18/13 TT n/a n/a GJK1639

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	4.68	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-202-1113

Lab Sample ID: C30786-21 **Date Sampled:** 11/06/13 Matrix: **Date Received:** 11/08/13 AQ - Ground Water Method: NWTPH-DX SW846 3510C **Percent Solids:**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	GG48583.D	1	11/11/13	NN	11/09/13	OP9019	GGG1335
Run #2							

Final Volume Initial Volume Run #1 1050 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	1.29 ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	67%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-202-1113

Lab Sample ID:C30786-21Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium Iron	11100 37900	5000 200	ug/l ug/l	1		11/12/13 RS 11/12/13 RS	SW846 6010B ¹ SW846 6010B ¹	SW3010A ² SW3010A ²
Magnesium	10700	5000	ug/l	1		11/12/13 RS	SW846 6010B ¹	SW3010A SW3010A ²

(1) Instrument QC Batch: MA3576(2) Prep QC Batch: MP6984

Page 1 of 1

Client Sample ID: MW-202-1113

Lab Sample ID:C30786-21Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	80.0	5.0	mg/l	1	11/14/13 12:00		SM18 2320B
Hardness, Total as CaCO3 ^a	71.8	33	mg/l	1	11/12/13 20:03	RS	SW846 6010B/SM 2340B
Sulfate	0.76	0.50	mg/l	1	11/14/13 21:13	RL	EPA 300/SW846 9056A

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Page 1 of 1

Client Sample ID: MW-202-1113

Lab Sample ID:C30786-21FDate Sampled:11/06/13Matrix:AQ - Groundwater FilteredDate Received:11/08/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	< 200	200	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	439	15	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3584(2) Prep QC Batch: MP7009

Page 1 of 1

Client Sample ID: MW-201-1113

 Lab Sample ID:
 C30786-22
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43184.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume
Run #1 10.0 ml
Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7	Dibromofluoromethane	97%	70-130%			
2037-26-5	Toluene-D8	109%	70-130%			
460-00-4	4-Bromofluorobenzene	99%	70-130%			

ND = Not detected MDL - Method Detection Limit J

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-201-1113

Lab Sample ID:C30786-22Date Sampled:11/06/13Matrix:AQ - Ground WaterDate Received:11/08/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40660.D 1 11/18/13 TTGJK1639 n/an/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	0.0964	0.20	0.050	mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

ND = Not detected MDL - Method Detection Limit J = In

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-201-1113

 Lab Sample ID:
 C30786-22
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48584.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Run #1 1060 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.520 ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	79%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = In

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

101 of 163

ACCUTEST

C30786

LABORATORIES

Page 1 of 1

Client Sample ID: MW-204-1113

 Lab Sample ID:
 C30786-23
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W43185.D	1	11/14/13	BD	n/a	n/a	VW1532
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.57 ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	100% 110% 96%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-204-1113

Lab Sample ID: C30786-23 **Date Sampled:** 11/06/13 Matrix: AQ - Ground Water **Date Received:** 11/08/13 Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40662.D 1 11/19/13 TTGJK1639 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	0.0762	0.20	0.050	mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	_					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-204-1113

 Lab Sample ID:
 C30786-23
 Date Sampled:
 11/06/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/08/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP9019 Run #1 GG48585.D 1 11/11/13 NN11/09/13 GGG1335 Run #2

Run #1 1040 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.280 0.0976	0.096 0.19	0.048 0.096	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	85%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = Indicate

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

3 6.	-
Misc	Forms

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

TEMPERATURE ON RECEIPT C' Cooler \$1	LAB (LOCATION)	SHEL	LLWIC														n O	t C	usto					,,,,			and the second		ÜRS
Description Description	_	<u> </u>								Prii	it Bil	II To	Con	tact	Nam	e.				INC	SIDE	VT#	(EŅ	V SE	RVI	CES)		
Description Description	= :				OTIVA R	ETAIL	_=		TAIL													3	. 0	0	0	3	6	DA	JE: 11/7/13
The properties The		☐MOTEVA:	SD&CM	□∞	NSULTA	NT		LUBES							PO	#							SAP	#				PA	GF: 1 of L
TRANSPORTED STATE Comparation Compar		SHELL PI	PELINE	□от	HER_						П						П	Т				3	5	7	0	3	2	17	····
111 Southwest Columbia Street, Suite 1500, Portland, Oragon 97201 100	COMPLENS COMPANY:				100 000	Œ:				1									•	l			CLOSA	T ED NO.					
111 Southwest Columbia Stocks, Saile 1500, Portland, Oregon 97201										25:	55 1	3th	Ave	SV	N,S	eatti	e	PHON	E NO:	WA		E	-we						CONSULTANT PROJECT NO:
Note Note	111 Southwest Columbia	Street, Suite 1	1500, Portla	land, Ore	gon 9	7201				l		_							000 70	00			OUG.	od Oo		കഥ	10 00		16101318
MARK TAXXLIER	PROJECT CONTACT plandcopy or POF Report to):	Brian Pletch	er							Cliffe	Ord J I	Pears VE(5) (P	on, Ui	RS, P	oniano	, UK		1503	-222-12	00		12	JIIIOI	o.rea	11501			USE C	MEX
DESTRUCTIONS OR HOTES: DATE DATE DIRECTOR DATE THE DATE		Bill			Diotoh	www.100	com			۱۲	M	ZK	7	بلغن	بحز	40	R.	11	1AT	۲ ۱	200	33	5					(C30486
		92						NEEDED		<u> </u>						_		UEST	ED AN	ALYSI						نا	111122		
DATE DIRECT DIR	STANDARD (14 DAY) 5 DAYS 3 DA	YS ∏2	DAYS	24 HOU	RS		Q1	WEEKE	ND				-	JNIT	cos	_			 —		N	ON-L	JNIT	cos	T	- 1		\dashv	FIFT D NOTES:
Temperature on receipt or color #1 Cooler #2 Cooler #3 Cooler #4 Coo					_																	- 1		- 1	- 1			ŀ	FIELD NOTES:
September Sept	DELIVERABLES: [LEVEL 1 []LEVEL 2 []LEVE	L3 DEVEL4	нто[]													-			i								1	3	TEMPERATURE ON RECEIPT
SAMPLING DATE TIME MAJER DATE DA	TEMPERATURE ON RECEIPT C° Cooler #1	Cooler #2			Cooler	#3																- 1			911		J	6	5.6-1.5=
SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE TIME NO. OF SAMPLING DATE DAT	SPECIAL INSTRUCTIONS OR NOTES:			Ωαнаπ c	CONTRA	CT RATE A	PLES						Ξ							<u>.</u>				义	negau	.	3	췽	7-12
Field Sample Identification SAMPLING				EDD NO	TNEED	ED					1		270 311	,				434		Dloxid	٤ ا	3		9	ad Ma	od lo	*	الا	
Field Sample Identification SAMPLING				□ PROVID	T VERIF E LEDD	ICATION R DISK	EQUESTE	D		ğ	¥Q+	ă	8) et 4	kalinit	uffate			7.5		ę.	ota Ire	3	apura	3	hasolv	hand	ž	ઢ	Container PID Readings
Field Sample Identification DATE THE WALL INDUSTRIES SH-OH-INB SH-O		PALIDI II	un T			BDE¢E	N/ATA/E	1			F	b			6					8	F								2 1 -5 =24
5H-O4-11/3 11/4 1300 W X X 8 X X X 1.2 X X 1.2 X X X X X X X X X X X X X X X X X X X	Field Sample Identification	-	— •	MATRIX		FALSE	1	_		-								+-	1						7	+			21 -21
3 MW-112A-1113 114 1305 W X X 8 X X X X X X X X X X X X X X X X	ours.				-	HNO3 H2SC	_	OTHER							9							500	805		4				3.64 -3.1
TX-04-1113	54-04-1113	114 1	300 1	W												_			<u> </u>	<u> </u>	Ш	_	_		_	_	\dashv		1 7 - 0 1
TX-04-1113		11/4/12	305 Y	W	×		×		8	X	X	X								<u> </u>					_	_	_		4.9-15=4.
# MW-301-1113 114 1630 W X	TX = 04 - 1113	11/4 11	455 \	W	×		X		8	×	X	X																	
5 MW-303-1113 114 1630 W X			. ,	w	v		1			X		X											\Box						
6 MW-304-1113 11/5 1000 W XX X 12 X X X X X X X X X X X X X X X X			-			_	+	i	-	₩	۲	-			\vdash	寸		1	1				T	7		\Box	\neg		
8 MW · 30Z · 11\3 11/5 1305 W X X X X X X X X X X X X X X X X X X				-	\Box		١.			Ľ	┰	1-	\vdash	\vdash	\vdash	\dashv	+		+	\v	V		.,	.,		,			
8 MW · 30Z · 11/3 11/5 1130 W X X X 12 X X X X X X X X X X X X X X X	6 MW-304-1113		000	W	X	X	X		17	X		^			Ш			\perp	<u> </u>	X	_	\perp	^	76	λ	^	<u> </u>	^	
8 MW · 30Z · 11/3 11/5 1130 W X X X 12 X X X X X X X X X X X X X X X	AMUL 213-1113	11/5/11	055 Y	W					10	X	1%	X	X						1										
MW-310-1113 11/5 1305 W X X X X X X X X X X X X X X X X X X				11	U		1		37	V	Ė	1	-		П	7	一	\top	T	V	v		×	νĺ	X,	X	$\overline{\mathbf{x}}$	X	
10 MW - 208 - 1113 W/5 1400 W X X 8 X X X X X X X X X X X X X X X X			`		$\overline{}$	_		\perp	160	X	1	<u> </u>	_	<u> </u>	$\vdash \vdash$	-	+	+	╂—	-	-	$\vdash \vdash$	\dashv				_		
Recorded by (Signatur) Recorded by (Signatur) Recorded by (Signatur) Recorded by (Signatur) FED EX Recorded by (Signatur) 1 MW-310-1113	115 1	305 1	W	X	*	イ		12	X		X			\bigsqcup			\perp		X	X		X	X	<u>×</u>	^	<u>^</u>	^		
Received by (Bigulary) May Taul FED EX Received by (Bigulary) Received by (Bigulary) FED EX Received by (Bigulary)	10 MW- 208-1113	11/51	400	W	X		×	П	Q	×	X	×	X						1								ļ		-22 biden
Record by (Signalus) Record by (Signalus) Record by (Signalus) Record by (Signalus) Diek: 11/8//3 1045	Reinquished by: (Signature)		- 1	• •	1'-1		1/.		Φ_		1,,	٠.,	<u></u>					Щ.			1	Date:	_	1	_	ш	\dashv	Time:	<u> </u>
Recovering (Egyphan) Recovering (Egyphan) PEDEX D. LUNA 11/8/13 1045	My South	_	l		-	1.5	<i>1</i> ~ √	,														1	1/7	th	2,			1	iccc)
0000	Reinquished by. (Signature)		Rece	eived by. (Sign		كروامتنا	(<u>~</u> 7														_	Date:	., .	1.	_		-	Time:	-
1 Coche 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Echri			m.	1	4	\Box	, .		A											,	,,	1/6	10	ζ		-		1045
	(CUEX Reinaushed by (Sanatare)		Rece	elved by (Sor	usture)		ν .	رر	(/ <u>U</u>	7												Date:	(3)	′ / ~	_			Time:	
					•																								

C30786: Chain of Custody

Page 1 of 4

	7	
5	á	

LAB (LOCATION)			0	P		Shel								Of	Cu	sto										URS
Accurest ()	Pl	ease Chec	k Appror	riate B	ox:		Prir	it Bil	To	Con	act I	Vame					INC	IDE	NT#	(EN	٧s	ERV	/ICE	S)		ECK IF NO INCIDENT # APPLIES
□CALSCIENCE ()	ENV. SERVICES		MOTIVA RETA	īL .	1 3HE/T	RETAIL													3	n	n	١،	3	6	l D	TE: 4113
☐TESTAMERICA () ☐Other ()	☐MOTIVA SD&CM		CONSULTANT		LUBES						1	°O:#								SAP					1	(,, -
Lab Vendor # 1813640 (Accutest)	SHELL PIPELINE		THER			_	1	Ī			Ť	Ť	Т	T				П	2	5	7	0	Γ,		1 "	AGE: 2013
Lab Velicor # 1813040 (Accurest)			LOG CODE:				SITE	ADORE	SS: Str	eet and	City	1_					State	ш	-3		E ED NA					
URS Corporation							25	55 1:	3th	Ave.	. SV	l, Se	attle		[FHONE		WA		_	E W AL						CONSULTANT PROJECT NO:
ADDRESS: 111 Southwest Columbia Str	reet, Suite 1500,	Portland, Or	едол 9720	1			1																			
PROJECT CONTACT (Hardway) or PDF Report to)	rlan Pletcher						Cliffs	ord J F	Pears version or	on, UR	S, Por	tland,	OR		503-2	22-72) Í	00			Cliffo	rd.Pe	earso	വയു	JRS.co	om Bus≢	46194348 DMEX
TELEPHONE: FAX 503-222-7200 503-222-4292	gas To Corda		n.Pletcher@	QURS.co	m		1 1	خدا	ZV		TA	جري	CHI	Z.		' N	TAI	٢	\mathcal{D})B	B	5				C80786
TURNAROUND TIME (CALENDAR DAYS):				□RE\$	JLTS NEED									REQU	ESTE	D AN	LYS									
STANDARD (14 DAY) S DAYS 3 DAYS	☐2 DAYS	24 HC	URS		ON WEI	KEND	╀			ΠÜ	TINIT (OST		Т	\dashv			^	-NOI	UNIT	co	ST	_	Т	-	FIELD NOTES:
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY: DELIMERAPHES ☐ LEVEL 1 [2] LEVEL 2 ☐ LEVEL 3	Diama f	OTHER (SPEC	TEY)				1													- 1						
	Cooler #2	Joinettoret	Cooler #3				┨				ŀ												1			TEMPERATURE ON RECEIPT C*
	COOKE NE		•			-	┨			H											ď	9900	l			4-100
SPECIAL INSTRUCTIONS OR NOTES:		FISTATI	CONTRACT R							Wig							xide				Ì	geney	٤			, ,
		□ RECE	IOT NEEDED PT VERIFICAT	TON REQUI	ESTED		×	,		PAHs (8270	Medinity	,					on Dio	rotal Iron	otal Laad	doas	Mest	Paylo	solved Iron			Container PID Readings
		PROV	IDE LEOD DIS	۲			TPH-GX	TPH-Dx	втех	ž	N P	Sulfa		\perp			ŧ	ā	al of	Ē.	2	age of	å			or Laboratory Notes
Field Sample Identification	SAMPLING	WATRIX		RESERVAT	ME	NO. OF																				
DISC DALLY	DATE TIME		HCL HNO	H2SO4 N	ONE OTH	CONT.													100							
MW2-7064-1113	11/6 1520	W	X		X	18	X	X	X													L				
12 MW-309-1113	1/6 1600	W	X			6	X		×																L	
13 MW-203-1113	116 1655	W	XX		X	10	X	X			χŀ	χĹ					X	X		Χ	X,	X	X			
				П											i į									L		
							Π																	L		
				П			T			П				Ţ											ŀ	
				11	\top	1	T	П				T		T												
			++	+	+	+	╁╌	H			十	-	╁	+	\vdash					_			-	Ħ	\vdash	
			++	\vdash		+	╀		_	Н	+	+	+	+	Н				H			H	\vdash	\vdash	\vdash	
			$\perp \perp$				┖			Ш		_	_		Ш							L	$oxed{igspace}$	⊢	<u> </u>	
				1 1																				L	<u> </u>	
Reimpiched by (Signifuse)		Received by: (S				_													Date:	J.	رار	1-2			Tarne	1000
Referenciated by (Signature)	1	Received by: (S	gnatre) /	ED	2	<u>X</u> _										•••			Date:	11	11	دا		—	Tme	-
FEDEX			12/		DC	41	11	_											۱	11/8	1	3				10%
Reinquiried by (Signature)		Received by: (S	gnature)												23				Date:						Time	
																			L						1	

C30786: Chain of Custody

Page 2 of 4

LAB (LOCATION))	Shel	I O	il F	ro	du	cts	Cl	nai	n C	f C	ust	ody	/ Re	ecc	ord						URS
[Z]ACOUTEST ()	Ple	ase Check	k Appropr	late Box:		Pri	nt Bi	II.To	Con	tàct	Vámi			433433		100	CIDI	NT	# (El	vV S	ER۱	(ICE	S)	Пан	BCK IF NO INCIDENT # APPLIES
CALSCIENCE ()	□ENV. SERVICES		OTIVA RETAIL		HELL RETAIL	1	*.*.*.*.*										Т	Γ,	0	0	0	3	6	D,	ATE: 117/3
	MOTIVA SD&CM		ONSULTANT		JBES	1			2000	(00)	PO:#	V ()					1		SAF					1	
Other ()	SHELL PIPELINE		THER			i	10002 T		3330	T	<u> </u>	T	T	T	T	24233	T	Ι.	5	1	_	2		P/	AGE: of 3
Lab Vendor # 1813640 (Accutest)			[100 CODE:			SIT	E ADDRE	\$8: St	reet and	City			L			State		1 3		SAL IO N					
URS Corporation			i			25	55 1	3th	Ave	. sv	I, Se	atti	e			WA			EWAI						CONSULTANT PROJECT NO:
ADDRESS: 111 Southwest Columbia Si	reet. Suite 1500. P	ortland, Or	egon 97201			EDF I	DELIVERA	SLE TO	(Name, Co	mpany, C	fice Local	ion):		PHO	NE NO:										
PROJECT CONTACT (Flandcopy or POF Report Is):	Brian Pletcher					Clif	ford J	Pears	on, UF	S, Po	rtland,	OR		50	3-222-	7200			Cliff	ord.P	earso	n@U	RS.c	om e Us≢	46194348 ONLY
TELEPHONE: FAX:	Bill To Contact					1	4M	<i>ا</i> . کد	ι.	~	نى	41	VD.	12	- [MA	۳	4	טכ	3 1	2 <	,			C30786
503-222-7200 503-222-4292		<u>Briar</u>	n.Pletcher@	URS.com	ICEDED.	4	1 4-	_	_	٠,			REC	UEST						<u> </u>	1,0				
TURNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY) 5 DAYS 3 DAYS	2 DAYS	□24 HO	URS		WEEKEND					NIT	COST				T			NON	-UNI	T CO	ST		,		<u> </u>
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:												1	İ						Ì						FIELD NOTES:
DELIVERABLES: DEVEL 1 DEVEL 2 DEVEL 3	□LEVEL 4 □	OTHER (SPEC	IFY)		_	⅃				İ															TEMPERATURE ON RECEIPT C*
TEMPERATURE ON RECEIPT C° Cooler #1	Cooler #2		Cooler #3]						-			1					١.,			l		5.6-1.5=
SPECIAL INSTRUCTIONS OR NOTES:		जिस्ता 	CONTRACTRA	TE APPLIES		1				1						١.			1	١٤	gave				4.18
		□STATE		ENT RATE APPLI	ES	1		İ	70.58							loxide		١,	١.	3	olved Manag	d Iron			' ' -
				ON REQUESTED		PHCx	¥0.	ă	PAHA (327	Alkalinity	uffate					D cod	note I Iron	otal Load	l age	Methone	Olasolvo	ssolve			Container PID Readings
	1					£	F.	<u> </u>	ă.	₹	20		SERE C		2 80	3	٩	۴	2		6	i i	200		or Laboratory Notes
Field Sample Identification	SAMPLING	MATRIX	PF	RESERVATIVE	NO. OF		4_				_	4	4		+	-	+	+-	-	-	₩	-	2000	-	
Field Sample Identification	DATE TIME	****		H2SO4 NONE	OTHER																				
4 TX-034-1113	11/5 1425	W	XX		12	<u> </u>		×	L	×	X	1.		_	Д.	7	()	L	X	×	X	X	_	1	11.
5 MW-Z11-1113	1/5 1600	W	X	X	10	<u> </u>	V×	×	X					\perp	_	\bot	1	ļ			<u> </u>	1		Ľ	11 broken
16 MW-214-1113	11/5 1635	W	X	X	10			X	X		\perp	\perp		┸	\perp			\perp	_	L	<u> </u>	_		_	
12 MW-101-1113	11/6 0900	W	X	×	ઇ		X	×				\perp			┸	* -			1	L	1	╙	L.	╙	
1 TES-MW-1-1113	116 0010	W	X	X	ව	Ŋ	X	X												\bot			L		
19 MW-308-1113	16 1025	W	X		6	Ъ		X							Т				1		İ				
20 MW-307-113	11/6 1035	W	XX	X	1Z	-1-		X		X	X				1	1>	X	T	X	X	×	x			
20 MW-307-1113	11/2 1250		XX	X	14		×	+ -		×	-	_	7	T	十	1,	_	T	X	_	+-	X		17	
	11/6 1250		111	 		_		١	-	^	7	+	\dashv	+	+	+	+	+	+	1	1~	 ``	T	H	11 breken
@ MW-201-1113	1/6 1330	W	X	X	ध	_		X	1		-	-	\dashv		+-	+	-	+	+	┼-	+	-	╁	╁	10
23 MW-204-1113	11/6 1415	Received by: (S	X	L X	8	17	$\langle \times \rangle$	X	<u></u>									Dat	Щ		L	<u></u>		Time	
Ma lan			F	ED	EX															7	13	5			1000
Reingistisidity, (Signature)		Received by: (S	136	7),Lu	ι Λ	1A											Dat	: [[]	ر/ ا	L			Time	1045
Reinquisted by (Signature)		Received by: (S	ignature)) (LV	1/	F \											Đ≇	a:	-/ '				Time	
																								<u> </u>	

C30786: Chain of Custody

Page 3 of 4

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: C	30786		Client: SHELL	_OIL		Project: 2555 13TH AV	E., SW, SEA	ΓTLE, W	Α
Date / Time Received: 11	/8/2013		Delive	ery Method:	FedEx	Airbill #'s: 8031634500	15		
Cooler Temps (Initial/Adjus	sted): <u>#1</u>	<u> : (5.6/4.1</u>	1); #2: (2.6/2.1); #3: (3.6/3.1); #4	4: (1.7/1.2); #5: (4.9	<u>/4.4); 0</u>			
Custody Seals Present:	IR1 Glas	3.	COC Present: npl Dates/Time (Y or N ✓ □ OK ✓ □	Sample labels Container labels Sample container	iner label / COC agree: ity - Condition within HT:	V V	or N	
Quality Control Preservati 1. Trip Blank present / cooler:		or N	<u>N/A</u>		3. Condition of s Sample Integr	ample: ity - Instructions		/ Leaking	N/A
2. Trip Blank listed on COC:		>				ved for unspecified tests	\rightarrow	□	
3. Samples preserved properly4. VOCs headspace free:	/: V					ume recvd for analysis: instructions clear:			V
Comments MW-208-1113 (2 MW-211-1113 (1 MW-201-1113 (1	x 1L Ambe	ers receive	ed broken in Fed	Ex Shipment)	3. Thomg insti	dulions chear.			
Accutest Laboratories V:408.588.0200					Lundy Avenue 408.588.0201				San Jose, CA 95131 www/accutest.com

C30786: Chain of Custody

Page 4 of 4

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: C30786

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample VW1530-MB	File ID W43096.D	DF 1	Analyzed 11/13/13	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW1530

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-4, C30786-5, C30786-6, C30786-7, C30786-8

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	102%	70-130%
2037-26-5	Toluene-D8	106%	70-130%
460-00-4	4-Bromofluorobenzene	93%	70-130%

Method: SW846 8260B

Method Blank Summary

Job Number: C30786

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW1531-MB	W43123.D	1	11/13/13	BD	n/a	n/a	VW1531

The QC reported here applies to the following samples:

C30786-9, C30786-10

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	93%	70-130%
2037-26-5	Toluene-D8	103%	70-130%
460-00-4	4-Bromofluorobenzene	91%	70-130%

Method: SW846 8260B

Method Blank Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample VW1532-MB	File ID W43170.D	DF	Analyzed 11/14/13	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW1532

The QC reported here applies to the following samples:

C30786-11, C30786-12, C30786-14, C30786-15, C30786-16, C30786-17, C30786-18, C30786-19, C30786-20, C30786-21, C30786-22, C30786-23

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l

CAS No.	Surrogate Recoveries		Limits
2037-26-5	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	97% 109% 96%	70-130% 70-130% 70-130%

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA Project:

Sample VW1530-BS VW1530-BSD	File ID W43093.D W43094.D	DF 1	Analyzed 11/12/13 11/13/13	By BD BD	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VW1530 VW1530
V W 1330-B3D	W43094.D	1	11/13/13	БЪ	II/ a	11/ a	V W 1330

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-4, C30786-5, C30786-6, C30786-7, C30786-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	19.7	99	19.7	99	0	77-122/25
100-41-4	Ethylbenzene	20	19.4	97	19.3	97	1	76-126/17
108-88-3	Toluene	20	20.0	100	19.7	99	2	75-122/17
1330-20-7	Xylene (total)	60	60.8	101	59.8	100	2	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	Dibromofluoromethane	118% ^a	117% ^a	70-130%
	Toluene-D8	103%	102%	70-130%
	4-Bromofluorobenzene	96%	96%	70-130%

(a) Outside DOD-QSM4 control limits and laboratory control limits.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW1531-BS	W43117.D	1	11/13/13	BD	n/a	n/a	VW1531
VW1531-BSD	W43118.D	1	11/13/13	BD	n/a	n/a	VW1531

The QC reported here applies to the following samples:

C30786-9, C30786-10

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	19.7	99	19.8	99	1	77-122/25
100-41-4	Ethylbenzene	20	19.4	97	19.3	97	1	76-126/17
108-88-3	Toluene	20	19.8	99	19.7	99	1	75-122/17
1330-20-7	Xylene (total)	60	60.3	101	59.9	100	1	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	108%	109%	70-130%
2037-26-5	Toluene-D8	99%	99%	70-130%
460-00-4	4-Bromofluorobenzene	93%	93%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VW1532-BS	W43167.D	1	11/14/13	BD	n/a	n/a	VW1532
VW1532-BSD	W43168.D	1	11/14/13	BD	n/a	n/a	VW1532

The QC reported here applies to the following samples:

C30786-11, C30786-12, C30786-14, C30786-15, C30786-16, C30786-17, C30786-18, C30786-19, C30786-20, C30786-21, C30786-22, C30786-23

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	19.5	98	19.5	98	0	77-122/25
100-41-4	Ethylbenzene	20	19.7	99	19.5	98	1	76-126/17
108-88-3	Toluene	20	20.0	100	20.0	100	0	75-122/17
1330-20-7	Xylene (total)	60	61.2	102	61.2	102	0	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	Dibromofluoromethane	109%	109%	70-130%
	Toluene-D8	105%	104%	70-130%
	4-Bromofluorobenzene	97%	98%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary Job Number: C30786

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VW1530-LCS	W43095.D	1	11/13/13	BD	n/a	n/a	VW1530

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-4, C30786-5, C30786-6, C30786-7, C30786-8

		Spike	LCS	LCS	
CAS No.	Compound	ug/l	ug/l	%	Limits

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane	107%	70-130%
	Toluene-D8	104%	70-130%
	4-Bromofluorobenzene	94%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW1531-LCS	W43122.D	1	11/13/13	BD	n/a	n/a	VW1531

The QC reported here applies to the following samples:

C30786-9, C30786-10

Spike LCS LCS CAS No. Compound **%** Limits ug/l ug/l

CAS No. **Surrogate Recoveries** BSP Limits 1868-53-7 Dibromofluoromethane 104% 70-130% 2037-26-5 Toluene-D8 101% 70-130% 460-00-4 4-Bromofluorobenzene 93% 70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C30786-6MS	W43113.D	10	11/13/13	BD	n/a	n/a	VW1530
C30786-6MSD	W43114.D	10	11/13/13	BD	n/a	n/a	VW1530
C30786-6	W43110.D	10	11/13/13	BD	n/a	n/a	VW1530

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-4, C30786-5, C30786-6, C30786-7, C30786-8

CAS No.	Compound	C30786-6 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	695	200	767	36* a	796	51* a	4	77-122/16
100-41-4	Ethylbenzene	62.9	200	243	90	243	90	0	76-126/17
108-88-3	Toluene	16.3	200	204	94	203	93	0	75-122/17
1330-20-7	Xylene (total)	54.0	600	629	96	626	95	0	77-125/17
	•								

CAS No.	Surrogate Recoveries	MS	MSD	C30786-6	Limits
1868-53-7	Dibromofluoromethane	114% ^c	118% b	107%	70-130%
2037-26-5	Toluene-D8	102%	102%	104%	70-130%
460-00-4	4-Bromofluorobenzene	96%	96%	96%	70-130%

⁽a) Outside control limits due to high level in sample relative to spike amount.

⁽b) Outside DOD-QSM4 control limits and laboratory control limits.

⁽c) Outside DOD-QSM4 contol limits; within laboratory control limits.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30786

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C30855-1MS	W43138.D	10	11/13/13	BD	n/a	n/a	VW1531
C30855-1MSD	W43139.D	10	11/13/13	BD	n/a	n/a	VW1531
C30855-1	W43125.D	10	11/13/13	BD	n/a	n/a	VW1531

The QC reported here applies to the following samples:

C30786-9, C30786-10

CAS No.	Compound	C30855-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	200 200 200 600	195 195 196 599	98 98 98 100	193 194 196 599	97 97 98 100	1 1 0 0	77-122/16 76-126/17 75-122/17 77-125/17
CAS No.	Surrogate Recoveries	MS	MSD	C	30855-1	Limits			
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	109% 102% 94%	109% 102% 94%	12 97 94	, -	70-130% 70-130% 70-130%	ó		

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C30786-14MS	W43188.D	50	11/14/13	BD	n/a	n/a	VW1532
C30786-14MSD	W43189.D	50	11/14/13	BD	n/a	n/a	VW1532
C30786-14	W43178.D	50	11/14/13	BD	n/a	n/a	VW1532

The QC reported here applies to the following samples:

C30786-11, C30786-12, C30786-14, C30786-15, C30786-16, C30786-17, C30786-18, C30786-19, C30786-20, C30786-21, C30786-22, C30786-23

CAS No.	Compound	C30786 ug/l	-14 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	2720		1000	2600	-12* a	2610	-11* a	0	77-122/16
100-41-4	Ethylbenzene	36.4	J	1000	988	95	981	94	1	76-126/17
108-88-3	Toluene	34.3	J	1000	1000	97	1000	97	0	75-122/17
1330-20-7	Xylene (total)	41.1	J	3000	3010	99	2990	98	1	77-125/17

CAS No.	Surrogate Recoveries	MS	MSD	C30786-14	Limits
1868-53-7	Dibromofluoromethane	118%	118%	111%	70-130%
2037-26-5	Toluene-D8	105%	104%	107%	70-130%
460-00-4	4-Bromofluorobenzene	98%	96%	96%	70-130%

⁽a) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8270C BY SIM

Method Blank Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP9024-MB	T11462.D	1	11/13/13	LW	11/11/13	OP9024	ET519

Limits

The QC reported here applies to the following samples:

C30786-7, C30786-10, C30786-15, C30786-16

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	0.50	0.050	ug/l
208-96-8	Acenaphthylene	ND	0.50	0.050	ug/l
120-12-7	Anthracene	ND	0.50	0.050	ug/l
56-55-3	Benzo(a)anthracene	ND	0.10	0.053	ug/l
50-32-8	Benzo(a)pyrene	ND	0.10	0.041	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.035	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.10	0.036	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.039	ug/l
218-01-9	Chrysene	ND	0.10	0.045	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.035	ug/l
206-44-0	Fluoranthene	ND	0.50	0.050	ug/l
86-73-7	Fluorene	ND	0.50	0.050	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.035	ug/l
90-12-0	1-Methylnaphthalene	ND	0.50	0.10	ug/l
91-57-6	2-Methylnaphthalene	ND	0.50	0.10	ug/l
91-20-3	Naphthalene	ND	0.50	0.10	ug/l
85-01-8	Phenanthrene	ND	0.50	0.050	ug/l
129-00-0	Pyrene	ND	0.50	0.050	ug/l

CAS No. Surrogate Recoveries

4165-60-0	Nitrobenzene-d5	77%	31-128%
321-60-8	2-Fluorobiphenyl	74%	34-123%
1718-51-0	Terphenyl-d14	75%	43-136%

Method: SW846 8270C BY SIM

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP9024-BS OP9024-BSD	File ID T11463.D T11464.D	DF 1 1	Analyzed 11/13/13 11/13/13	By LW LW	Prep Date 11/11/13 11/11/13	Prep Batch OP9024 OP9024	Analytical Batch ET519 ET519

The QC reported here applies to the following samples:

C30786-7, C30786-10, C30786-15, C30786-16

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
83-32-9	Acenaphthene	5	2.9	58	2.3	46* a	23	57-113/24
208-96-8	Acenaphthylene	5	2.7	54* a	2.1	42* a	25	58-117/25
120-12-7	Anthracene	5	3.4	68	2.8	56* a	19	65-121/23
56-55-3	Benzo(a)anthracene	5	3.2	64	3.2	64	0	62-121/21
50-32-8	Benzo(a)pyrene	5	3.3	66	3.2	64* a	3	65-125/20
205-99-2	Benzo(b)fluoranthene	5	3.4	68	3.4	68	0	62-126/22
191-24-2	Benzo(g,h,i)perylene	5	3.4	68	3.3	66	3	45-133/22
207-08-9	Benzo(k)fluoranthene	5	4.0	80	3.8	76	5	61-122/20
218-01-9	Chrysene	5	3.6	72	3.8	76	5	62-118/20
53-70-3	Dibenzo(a,h)anthracene	5	3.7	74	3.4	68	8	45-135/25
206-44-0	Fluoranthene	5	3.4	68	3.0	60* a	13	63-118/21
86-73-7	Fluorene	5	3.1	62	2.4	48* a	25* b	59-115/24
193-39-5	Indeno(1,2,3-cd)pyrene	5	3.2	64	3.0	60	6	51-130/26
90-12-0	1-Methylnaphthalene	5	2.8	56	2.2	44* a	24	53-107/25
91-57-6	2-Methylnaphthalene	5	3.2	64	2.5	50* a	25	56-115/26
91-20-3	Naphthalene	5	3.0	60	2.3	46* a	26* b	54-110/23
85-01-8	Phenanthrene	5	3.2	64	2.7	54* a	17	60-114/26
129-00-0	Pyrene	5	3.0	60	3.1	62	3	58-124/21

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
4165-60-0	Nitrobenzene-d5	53%	52%	31-128%
321-60-8	2-Fluorobiphenyl	52%	55%	34-123%
1718-51-0	Terphenyl-d14	61%	73%	43-136%

⁽a) Outside of in-house control limits; but within the method control limits. AZ:L2

⁽b) Outside laboratory control limits. AZ:R9

^{* =} Outside of Control Limits.

tch

Page 1 of 1

Method: SW846 8270C BY SIM

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP9024-MS	T11419.D	1	11/11/13	LW	11/11/13	OP9024	ET518
OP9024-MSD	T11420.D	1	11/11/13	LW	11/11/13	OP9024	ET518
C30808-6	T11418.D	1	11/11/13	LW	11/11/13	OP9024	ET518

The QC reported here applies to the following samples:

C30786-7, C30786-10, C30786-15, C30786-16

		C30808-6	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
83-32-9	Acenaphthene	ND	4.81	3.0	62	3.1	64	3	57-113/24
208-96-8	Acenaphthylene	ND	4.81	3.3	69	3.0	62	10	58-117/25
120-12-7	Anthracene	ND	4.81	3.8	79	2.9	60* a	27* b	65-121/23
56-55-3	Benzo(a)anthracene	ND	4.81	3.2	67	2.2	46* c	37* b	62-121/21
50-32-8	Benzo(a)pyrene	ND	4.81	3.2	67	2.1	44* a	42* b	65-125/20
205-99-2	Benzo(b)fluoranthene	ND	4.81	3.3	69	2.1	44* c	44* b	62-126/22
191-24-2	Benzo(g,h,i)perylene	ND	4.81	3.4	71	2.1	44* c	47* b	45-133/22
207-08-9	Benzo(k)fluoranthene	ND	4.81	3.5	73	2.2	46* c	46* b	61-122/20
218-01-9	Chrysene	ND	4.81	3.3	69	2.3	48* c	36* b	62-118/20
53-70-3	Dibenzo(a,h)anthracene	ND	4.81	3.5	73	2.2	46	46* b	45-135/25
206-44-0	Fluoranthene	ND	4.81	3.7	77	2.8	58* a	28* b	63-118/21
86-73-7	Fluorene	ND	4.81	3.5	73	2.9	60	19	59-115/24
193-39-5	Indeno(1,2,3-cd)pyrene	ND	4.81	3.4	71	2.1	44* c	47* b	51-130/26
90-12-0	1-Methylnaphthalene	ND	4.81	3.4	71	3.1	64	9	53-107/25
91-57-6	2-Methylnaphthalene	ND	4.81	3.7	77	3.5	73	6	56-115/26
91-20-3	Naphthalene	ND	4.81	3.6	75	3.5	73	3	54-110/23
85-01-8	Phenanthrene	ND	4.81	3.6	75	3.0	62	18	60-114/26
129-00-0	Pyrene	ND	4.81	3.2	67	2.4	50* c	29* b	58-124/21
CAS No.	Surrogate Recoveries	MS	MSD	C	30808-6	Limits			
CAS NO.	Surrogate Recoveries	1713	MISD	C.	20000-0	Lillius			

86%

66%

49%

74%

62%

55%

31-128%

34-123%

43-136%

85%

68%

62%

2-Fluorobiphenyl

4165-60-0 Nitrobenzene-d5

1718-51-0 Terphenyl-d14

321-60-8

⁽a) Outside laboratory control limits. AZ:L2

⁽b) Outside laboratory control limits. AZ:R9

⁽c) Outside laboratory control limits. AZ:M2

^{* =} Outside of Control Limits.

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: NWTPH-GX

Method Blank Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1637-MB	File ID JK40584.D	DF 1	Analyzed 11/15/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1637

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-4, C30786-6, C30786-7, C30786-11, C30786-16, C30786-18

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l

CAS No.	Surrogate Recoveries	Limits	
98-08-8	aaa-Trifluorotoluene	103%	50-150%
460-00-4	4-Bromofluorobenzene	105%	50-150%

Method: NWTPH-GX

Method Blank Summary

Job Number: C30786

460-00-4

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1639-MB	File ID JK40643.D	DF 1	Analyzed 11/18/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GJK1639

The QC reported here applies to the following samples:

4-Bromofluorobenzene

C30786-5, C30786-8, C30786-9, C30786-10, C30786-12, C30786-13, C30786-14, C30786-15, C30786-17, C30786-19, C30786-20, C30786-21, C30786-22, C30786-23

50-150%

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l
CAS No.	Surrogate Recoveries		Limit	s	
98-08-8	aaa-Trifluorotoluene	99%	50-15	0%	

105%

7.1.3

Method Blank Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GAA208-MB	File ID AA004479. D	DF	Analyzed 11/11/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GAA208

The QC reported here applies to the following samples:

Method: RSK-175

C30786-6, C30786-8, C30786-9, C30786-14

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	ND	0.50	0.25	ug/l	
124-38-9	Carbon Dioxide	29.1	100	7.9	ug/l	J

7.1.4

Method Blank Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GAA209-MB	File ID I AA004497.D 1	D F l	Analyzed 11/12/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GAA209

The QC reported here applies to the following samples:

Method: RSK-175

C30786-13, C30786-20, C30786-21

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.26	0.50	0.25	ug/l	_
124-38-9	Carbon Dioxide	30.9	100	7.9	ug/l	J

Blank Spike Summary Job Number: C30786

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample GAA208-BS	File ID DF AA004480. D 1	Analyzed 11/11/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GAA208

The QC reported here applies to the following samples: Method: RSK-175

C30786-6, C30786-8, C30786-9, C30786-14

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
74-82-8	Methane	21.5	18.4	86	70-130
124-38-9	Carbon Dioxide	77.1	75.8	98	70-130

^{* =} Outside of Control Limits.

Blank Spike Summary Job Number: C30786

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed 11/12/13	By	Prep Date	Prep Batch	Analytical Batch
GAA209-BS	AA004499.	D1		TT	n/a	n/a	GAA209

The QC reported here applies to the following samples: Method: RSK-175

C30786-13, C30786-20, C30786-21

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
74-82-8	Methane	21.5	17.9	83	70-130
124-38-9	Carbon Dioxide	77.1	71.7	93	70-130

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1637-BS GJK1637-BSD	File ID JK40585.D JK40586.D	DF 1	Analyzed 11/15/13 11/15/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1637 GJK1637

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-4, C30786-6, C30786-7, C30786-11, C30786-16, C30786-18

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	0.4	0.388	97	0.411	103	6	60-140/30
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	95% 95%	979 989	*	50-1509 50-1509			

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample GJK1639-BS GJK1639-BSD	File ID JK40644.D JK40645.D	DF 1 1	Analyzed 11/18/13 11/18/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1639 GJK1639

The QC reported here applies to the following samples:

C30786-5, C30786-8, C30786-9, C30786-10, C30786-12, C30786-13, C30786-14, C30786-15, C30786-17, C30786-19, C30786-20, C30786-21, C30786-22, C30786-23

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	0.4	0.388	97	0.396	99	2	60-140/30
CAS No.	Surrogate Recoveries	BSP	BSI	D	Limits			
98-08-8	aaa-Trifluorotoluene	95%	93%	6	50-150%	6		
460-00-4	4-Bromofluorobenzene	99%	96%	6	50-150%	6		

^{* =} Outside of Control Limits.

7.4.1

Page 1 of 1

Method: NWTPH-GX

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C30786-7MS	JK40611.D	1	11/16/13	TT	n/a	n/a	GJK1637
C30786-7MSD	JK40612.D	1	11/16/13	TT	n/a	n/a	GJK1637
C30786-7	JK40595.D	1	11/15/13	TT	n/a	n/a	GJK1637

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-4, C30786-6, C30786-7, C30786-11, C30786-16, C30786-18

CAS No.	Compound	C30786-7 mg/l Q	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	ND	0.4	0.474	119	0.443	111	7	60-140/20
CAS No.	Surrogate Recoveries	MS	MSD	C30	0786-7	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	117% 117%	117% 113%	112 109		50-150% 50-150%			

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C30786-12MS	JK40664.D	1	11/19/13	TT	n/a	n/a	GJK1639
C30786-12MSD	JK40665.D	1	11/19/13	TT	n/a	n/a	GJK1639
C30786-12	JK40651.D	1	11/18/13	TT	n/a	n/a	GJK1639

The QC reported here applies to the following samples:

C30786-5, C30786-8, C30786-9, C30786-10, C30786-12, C30786-13, C30786-14, C30786-15, C30786-17, C30786-19, C30786-20, C30786-21, C30786-22, C30786-23

CAS No.	Compound	C30786-12 mg/l Q	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	ND	0.4	0.481	120	0.476	119	1	60-140/20
CAS No.	Surrogate Recoveries	MS	MSD	C30	0786-12	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	106% 106%	105% 102%	89% 98%	-	50-150% 50-150%	-		

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary Job Number: C30786

SHELLWIC Shell Oil Company **Account:**

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C30786-3DUP C30786-3	File ID JK40590.D JK40589.D	DF 1 1	Analyzed 11/15/13 11/15/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1637 GJK1637

The QC reported here applies to the following samples:

C30786-3

CAS No.	Compound	C30786-3 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Gasoline)	ND	ND	nc 20
CAS No.	Surrogate Recoveries	DUP	C30786-3	Limits
98-08-8 460-00-4	aaa-Trifluorotoluene4-Bromofluorobenzene	100% 101%	96% 101%	50-150% 50-150%

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C30786-11DUP C30786-11	File ID JK40600.D JK40599.D	DF 1	Analyzed 11/15/13 11/15/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1637 GJK1637

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-4, C30786-6, C30786-7, C30786-11, C30786-16, C30786-18

CAS No.	Compound	C30786-11 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Gasoline)	ND	ND	nc 20
CAS No.	Surrogate Recoveries	DUP	C30786-11	Limits
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	104% 98%	109% 112%	50-150% 50-150%

⁽a) CCV outside of control limits (biased high); not detected in sample.

*

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C30786-17DUP C30786-17	File ID JK40656.D JK40655.D	DF 1	Analyzed 11/18/13 11/18/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1639 GJK1639

The QC reported here applies to the following samples:

C30786-5, C30786-8, C30786-9, C30786-10, C30786-12, C30786-13, C30786-14, C30786-15, C30786-17, C30786-19, C30786-20, C30786-21, C30786-22

CAS No.	Compound	C30786- mg/l	17 Q	DUP mg/l	Q	RPD	Limits
	TPH (Gasoline)	0.118	J	0.110	J	7	20
CAS No.	Surrogate Recoveries	DUP		C30786-	17	Limits	
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	105% 113%		107% 117%		50-1509 50-1509	-

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary Job Number: C30786

SHELLWIC Shell Oil Company **Account:**

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C30786-23DUP C30786-23	File ID JK40663.D JK40662.D	DF 1	Analyzed 11/19/13 11/19/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1639 GJK1639

The QC reported here applies to the following samples:

C30786-23

CAS No.	Compound	C30786- mg/l		DUP mg/l	Q	RPD	Limits
	TPH (Gasoline)	0.0762	J	0.0663	J	14	20
CAS No.	Surrogate Recoveries	DUP		C30786-23		Limits	
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	96% 96%		108% 112%		50-1509 50-1509	

^{* =} Outside of Control Limits.

Method: RSK-175

Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C30762-2DUP	AA004514.	D1	11/12/13	TT	n/a	n/a	GAA209
C30762-2	AA004512.	D1	11/12/13	TT	n/a	n/a	GAA209
C30762-2	AA004513.	D1	11/12/13	TT	n/a	n/a	GAA209

The QC reported here applies to the following samples:

C30786-13, C30786-20, C30786-21

CAS No.	Compound	C30762-2 ug/l Q		RPD	Limits
74-82-8	Methane	158 ^a	152	4 3	30
124-38-9	Carbon Dioxide	3470 ^a	3590		30

(a) Result is from Run #2.

^{* =} Outside of Control Limits.

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: NWTPH-DX

Method Blank Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP9019-MB	GG48579.D	1	11/11/13	NN	11/09/13	OP9019	GGG1335

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-7, C30786-10, C30786-11, C30786-13, C30786-15, C30786-16, C30786-17, C30786-18, C30786-21, C30786-22, C30786-23

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel)	ND	0.10	0.050	mg/l
	TPH (Motor Oil)	ND	0.20	0.10	mg/l

CAS No.	Surrogate Recoveries		Limits
630-01-3	Hexacosane	92%	50-150%

Method: NWTPH-DX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP9019-BS OP9019-BSD	File ID GG48576.D GG48577.D	Analyzed 11/11/13 11/11/13	By NN NN	Prep Date 11/09/13 11/09/13	Prep Batch OP9019 OP9019	Analytical Batch GGG1335 GGG1335

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-7, C30786-10, C30786-11, C30786-13, C30786-15, C30786-16, C30786-17, C30786-18, C30786-21, C30786-22, C30786-23

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel)	1	0.659	66	0.593	59	11	45-140/30
	TPH (Motor Oil)	1	0.776	78	0.732	73	6	45-140/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
630-01-3	Hexacosane	79%	77%	50-150%

^{* =} Outside of Control Limits.

Method: NWTPH-DX

50-150%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30786

630-01-3

Hexacosane

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

85%

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP9019-MS	GG48587.D	1	11/11/13	NN	11/09/13	OP9019	GGG1335
OP9019-MSD	GG48588.D	1	11/11/13	NN	11/09/13	OP9019	GGG1335
C30786-23	GG48585.D	1	11/11/13	NN	11/09/13	OP9019	GGG1335

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-7, C30786-10, C30786-11, C30786-13, C30786-15, C30786-16, C30786-17, C30786-18, C30786-21, C30786-22, C30786-23

CAS No.	Compound	C30786-23 mg/l Q	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (Diesel) TPH (Motor Oil)	0.280 0.0976 J	1.89 1.89	1.76 1.74	78 87	1.72 1.80	76 90	2 3	45-140/25 45-140/25
CAS No.	Surrogate Recoveries	MS	MSD	C30	0786-23	Limits			

87%

85%

^{* =} Outside of Control Limits.

Method: NWTPH-DX

Duplicate Summary

Job Number: C30786

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP9019-DUP1 C30786-1	File ID GG48586.D GG48568.D	Analyzed 11/11/13 11/11/13	By NN NN	Prep Date 11/09/13 11/09/13	Prep Batch OP9019 OP9019	Analytical Batch GGG1335 GGG1335

The QC reported here applies to the following samples:

C30786-1, C30786-2, C30786-3, C30786-7, C30786-10, C30786-11, C30786-13, C30786-15, C30786-16, C30786-17, C30786-18, C30786-21, C30786-22, C30786-23

CAS No.	Compound	C30786-1 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Diesel) TPH (Motor Oil)	0.134 ND	0.149 ND	11 25 nc 25
CAS No.	Surrogate Recoveries	DUP	C30786-1	Limits
630-01-3	Hexacosane	87%	85%	50-150%

^{* =} Outside of Control Limits.

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C30786

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

11/12/13

			MB	
RL	IDL	MDL	raw	final
200	13	8.5		
6.0	.7	.51		
10	.7	.65		
200	. 4	.35		
5.0	.2	. 4		
100	. 9	.64		
2.0	. 2	.15		
5000	7.1	12	-11	<5000
10	.3	.41		
5.0	.2	.3		
10	1.2	3		
200	6.4	12	-2.8	<200
10	.7	.85		
50		2		
5000	27	36	17.9	<5000
15	.1	1.3		
20	. 2	.22		
5.0	. 2	.12		
10000	18	44		
10	1.8	2.2		
100	1.2	6.9		
5.0	.3	.47		
10000	15	13		
10	. 2	.24		
10	. 5	.54		
50	. 2	.7		
10	. 4	.34		
10	.3	.3		
	200 6.0 10 200 5.0 100 2.0 5000 10 5.0 10 200 10 5.0 10 200 10 50 50 10 10 50 10 10 10 10 10 10 5.0 10 10 10 5.0 10 10 5.0 10 10 5.0	200 13 6.0 .7 10 .7 200 .4 5.0 .2 100 .9 2.0 .2 5000 7.1 10 .3 5.0 .2 10 1.2 200 6.4 10 .7 50 5000 27 15 .1 20 .2 10000 18 10 1.8 100 1.2 5.0 .3 10000 15 10 .2	200 13 8.5 6.0 .7 .51 10 .7 .65 200 .4 .35 5.0 .2 .4 100 .9 .64 2.0 .2 .15 5000 7.1 12 10 .3 .41 5.0 .2 .3 10 1.2 .3 200 6.4 12 10 .7 .85 50 2 .5000 2 5000 2 500 2 .22 5.0 .2 .12 10000 18 44 10 1.8 2.2 100 1.2 6.9 5.0 .3 .47 10000 15 13 10 .5 .54 50 .2 .7	RL IDL MDL raw 200 13 8.5 6.0 .7 .51 10 .7 .65 200 .4 .35 5.0 .2 .4 100 .9 .64 2.0 .2 .15 5000 7.1 12 -11 10 .3 .41 5.0 .2 .3 10 1.2 3 200 6.4 12 -2.8 10 .7 .85 50 2 5000 27 36 17.9 15 .1 1.3 20 .2 .22 5.0 .2 .12 10000 18 44 10 1.8 2.2 100 1.2 6.9 5.0 .3 .47 10000 15 13 10 .2 .24 10 .5 .54 50 .2 .7

Associated samples MP6984: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C30786 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 11/12/13

Metal	C30786-6 Original		Spikelot MPIR4	% Rec	QC Limits
Aluminum					
Antimony	anr				
Arsenic	anr				
Barium					
Beryllium	anr				
Boron					
Cadmium	anr				
Calcium	17000	29500	12500	100.0	75-125
Chromium	anr				
Cobalt					
Copper	anr				
Iron	35500	35600	500	20.0 (a)	75-125
Lead	anr				
Lithium					
Magnesium	11200	24200	12500	104.0	75-125
Manganese					
Molybdenum					
Nickel	anr				
Potassium					
Selenium	anr				
Silicon					
Silver	anr				
Sodium	anr				
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				

Associated samples MP6984: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21

Results < IDL are shown as zero for calculation purposes

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

INTO MACTON.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C30786 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

11/12/13

Metal	C30786-6 Original		Spikelot MPIR4	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony	anr					
Arsenic	anr					
Barium						
Beryllium	anr					
Boron						
Cadmium	anr					
Calcium	17000	29700	12500	101.6	0.7	20
Chromium	anr					
Cobalt						
Copper	anr					
Iron	35500	36000	500	100.0	1.1	20
Lead	anr					
Lithium						
Magnesium	11200	24300	12500	104.5	0.4	20
Manganese						
Molybdenum						
Nickel	anr					
Potassium						
Selenium	anr					
Silicon						
Silver	anr					
Sodium	anr					
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc	anr					

Associated samples MP6984: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C30786
Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

11/12/13 Prep Date: 11/12/13 BSP Spikelot BSD Spikelot BSD QC OC MPIR4 Limits Limit Metal Result % Rec Result MPIR4 % Rec RPD Aluminum Antimony anr Arsenic anr Barium Beryllium anr Boron Cadmium anr Calcium 12800 12500 102.4 80-120 12700 12500 101.6 0.8 Chromium anr Cobalt Copper anr 510 500 102.0 80-120 515 500 103.0 1.0 Iron Lead anr Lithium Magnesium 13000 12500 104.0 12800 12500 102.4 1.6 80-120 Manganese Molybdenum Nickel anr Potassium Selenium anr Silicon Silver anr Sodium anr Strontium Thallium Tin Titanium Vanadium

Associated samples MP6984: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: C30786 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 11/12/13

	G20006 5			0.0
Metal	C30786-6 Original	SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony	anr			
Arsenic	anr			
Barium				
Beryllium	anr			
Boron				
Cadmium	anr			
Calcium	17000	19900	17.4*(a)	0-10
Chromium	anr			
Cobalt				
Copper	anr			
Iron	35500	41800	17.6*(a)	0-10
Lead	anr			
Lithium				
Magnesium	11200	13200	18.2*(a)	0-10
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium	anr			
Silicon				
Silver	anr			
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			

Associated samples MP6984: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Serial dilution indicates possible matrix interference.

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C30786 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

11/18/13

TIOP DUCC					11/10/10
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	13	8.5		
Antimony	6.0	.7	.51		
Arsenic	10	.7	.65		
Barium	200	. 4	.35		
Beryllium	5.0	. 2	. 4		
Boron	100	.9	.64		
Cadmium	2.0	. 2	.15		
Calcium	5000	7.1	12		
Chromium	10	.3	.41		
Cobalt	5.0	. 2	.3		
Copper	10	1.2	3		
Iron	200	6.4	12	3.8	<200
Lead	10	.7	.85		
Lithium	50		2		
Magnesium	5000	27	36		
Manganese	15	.1	1.3	0.0	<15
Molybdenum	20	. 2	.22		
Nickel	5.0	. 2	.12		
Potassium	10000	18	44		
Selenium	10	1.8	2.2		
Silicon	100	1.2	6.9		
Silver	5.0	.3	.47		
Sodium	10000	15	13		
Strontium	10	. 2	.24		
Thallium	10	.5	.54		
Tin	50	. 2	.7		
Titanium	10	. 4	.34		
Vanadium	10	.3	.3		
Zinc	20	.3	4.2		

Associated samples MP7009: C30786-6F, C30786-8F, C30786-9F, C30786-13F, C30786-14F, C30786-20F, C30786-21F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C30786 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 11/18/13

Metal	C30786-0 Original		Spikelot MPIR4A	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium					
Cobalt					
Copper					
Iron	345	856	500	102.2	75-125
Lead					
Lithium					
Magnesium					
Manganese	273	797	500	104.8	75-125
Molybdenum					
Nickel					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc					

Associated samples MP7009: C30786-6F, C30786-8F, C30786-9F, C30786-13F, C30786-14F, C30786-20F, C30786-21F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $% \left(1,0\right) =0$

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C30786
Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

11/18/13

Metal	C30786- Origina		Spikelo MPIR4A	t % Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium						
Cobalt						
Copper						
Iron	345	845	500	100.0	1.3	20
Lead						
Lithium						
Magnesium						
Manganese	273	789	500	103.2	1.0	20
Molybdenum						
Nickel						
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						

Associated samples MP7009: C30786-6F, C30786-8F, C30786-9F, C30786-13F, C30786-14F, C30786-20F, C30786-21F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C30786
Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 11/18/13

Metal	BSP Result	Spikelot MPIR4A	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron	502	500	100.4	80-120
Lead				
Lithium				
Magnesium				
Manganese	528	500	105.6	80-120
Molybdenum				
Nickel				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP7009: C30786-6F, C30786-8F, C30786-9F, C30786-13F, C30786-14F, C30786-20F, C30786-21F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: C30786 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 11/18/13

Metal	C30786-6 Original	F SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron	345	365	5.7	0-10
Lead				
Lithium				
Magnesium				
Manganese	273	293	7.4	0-10
Molybdenum				
Nickel				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP7009: C30786-6F, C30786-8F, C30786-9F, C30786-13F, C30786-14F, C30786-20F, C30786-21F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30786

Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Alkalinity, Total as CaCO3	GN12281	5.0	0.0	mg/l	250	250	100.0	75-125%
Bromide	GP5789/GN12309	0.20	0.0	mg/l	5	4.83	96.6	90-110%
Sulfate	GP5789/GN12309	0.50	0.0	mg/l	5	4.96	99.2	90-110%

Associated Samples:

Batch GP5789: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21 Batch GN12281: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21 (*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30786

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Spike BSD QC Analyte Batch ID Units Amount Result RPD Limit GN12281 mg/l 250 246 1.6 Alkalinity, Total as CaCO3 Bromide GP5789/GN12309 mg/15 4.73 2.1 25% Sulfate GP5789/GN12309 3.3 mg/15 4.80 25%

Associated Samples:

Batch GP5789: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21 Batch GN12281: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30786

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Alkalinity, Total as CaCO3	GN12281	C30810-8	mg/l	80.0	80.0	0.0	0-25%

Associated Samples: Batch GN12281: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30786

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Bromide	GP5789/GN12309	C30714-1	mg/l	0.0	10	9.8	98.0	80-120%
Bromide	GP5789/GN12309	C30714-1	mg/l	0.0	10	9.8	98.0	80-120%
Sulfate	GP5789/GN12309	C30714-1	mg/l	22.6	10	32.0	94.0	80-120%

Associated Samples:

Batch GP5789: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21

(*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30786

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Bromide	GP5789/GN12309	C30714-1	mg/l	0.0	10	9.9	1.0	
Bromide	GP5789/GN12309	C30714-1	mg/l	0.0	10	9.9	1.0	
Sulfate	GP5789/GN12309	C30714-1	mg/l	22.6	10	32.0	0.0	

Associated Samples:

Batch GP5789: C30786-6, C30786-8, C30786-9, C30786-13, C30786-14, C30786-20, C30786-21

(*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

11/25/13

Technical Report for

Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

46194348

Accutest Job Number: C30810

Sampling Date: 11/07/13

Report to:

URS Corporation 111 SW Columbia, Suite 1500 Portland, OR 97201-5850 brian.pletcher@urs.com

ATTN: Brian Pletcher

Total number of pages in report: 71

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

James J. Rhudy Lab Director

gung. Mudy

Client Service contact: Nutan Kabir 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD ELAP (L-A-B L2242)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	6
3.1: C30810-1: MW-102-1113	7
3.2: C30810-2: MW-111-1113	10
3.3: C30810-3: MW-105-1113	13
3.4: C30810-4: MW-05-1113	17
3.5: C30810-5: MW-104-1113	20
3.6: C30810-6: MW-306-1113	23
3.7: C30810-7: MW-305-1113	25
3.8: C30810-8: TW-01-1113	27
3.9: C30810-8F: TW-01-1113	32
3.10: C30810-9: TX-06A-1113	33
Section 4: Misc. Forms	36
4.1: Chain of Custody	37
Section 5: GC/MS Volatiles - QC Data Summaries	39
5.1: Method Blank Summary	40
5.2: Blank Spike/Blank Spike Duplicate Summary	41
5.3: Matrix Spike/Matrix Spike Duplicate Summary	42
Section 6: GC Volatiles - QC Data Summaries	43
6.1: Method Blank Summary	44
6.2: Blank Spike Summary	46
6.3: Blank Spike/Blank Spike Duplicate Summary	47
6.4: Matrix Spike/Matrix Spike Duplicate Summary	48
6.5: Duplicate Summary	49
Section 7: GC Semi-volatiles - QC Data Summaries	
7.1: Method Blank Summary	52
7.2: Blank Spike/Blank Spike Duplicate Summary	53
7.3: Duplicate Summary	54
Section 8: Metals Analysis - QC Data Summaries	55
8.1: Prep QC MP6984: Ca,Fe,Pb,Mg	56
8.2: Prep QC MP7009: Fe,Mn	
Section 9: General Chemistry - QC Data Summaries	66
9.1: Method Blank and Spike Results Summary	67
9.2: Blank Spike Duplicate Results Summary	68
9.3: Duplicate Results Summary	69
9.4: Matrix Spike Results Summary	70
9.5: Matrix Snike Duplicate Results Summary	71

N

w

0,

Sample Summary

Shell Oil Company

C30810 Job No:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA Project No: $\,\,$ 46194348

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C30810-1	11/07/13	08:28 MTM	D11/09/13	AQ	Ground Water	MW-102-1113
C30810-2	11/07/13	10:08 MTM	D11/09/13	AQ	Ground Water	MW-111-1113
C30810-3	11/07/13	11:00 MTM	D11/09/13	AQ	Ground Water	MW-105-1113
C30810-4	11/07/13	12:05 MTM	D11/09/13	AQ	Ground Water	MW-05-1113
C30810-5	11/07/13	12:08 MTM	D11/09/13	AQ	Ground Water	MW-104-1113
C30810-6	11/07/13	13:20 MTM	D11/09/13	AQ	Ground Water	MW-306-1113
C30810-7	11/07/13	14:00 MTM	D11/09/13	AQ	Ground Water	MW-305-1113
C30810-8	11/07/13	14:45 MTM	D11/09/13	AQ	Ground Water	TW-01-1113
C30810-8F	11/07/13	14:45 MTM	D11/09/13	AQ	Groundwater Filtered	TW-01-1113
C30810-9	11/07/13	15:48 MTM	D11/09/13	AQ	Ground Water	TX-06A-1113

Summary of Hits
Job Number: C30810
Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 11/07/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C30810-1	MW-102-1113					
TPH (Motor Oil))	0.144 J	0.19	0.094	mg/l	NWTPH-DX
C30810-2	MW-111-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) TPH (Diesel)		84.5 1.0 0.23 J 0.69 J 0.208 0.174	1.0 1.0 1.0 2.0 0.20 0.095	0.20 0.20 0.20 0.46 0.050 0.048	ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX NWTPH-DX
C30810-3	MW-105-1113					
TPH (Diesel) Lead		0.189 17.9	0.095 10	0.048	mg/l ug/l	NWTPH-DX SW846 6010B
C30810-4	MW-05-1113					
Toluene Xylene (total) TPH (Gasoline)		0.83 J 0.87 J 0.345	1.0 2.0 0.20	0.20 0.46 0.050	ug/l ug/l mg/l	SW846 8260B SW846 8260B NWTPH-GX
C30810-5	MW-104-1113					
TPH (Gasoline) TPH (Diesel)		3.62 0.666	2.0 0.095	0.50 0.048	mg/l mg/l	NWTPH-GX NWTPH-DX
C30810-6	MW-306-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		101 50.2 482 2650 12.8	25 25 25 50 8.0	5.0 5.0 5.0 12 2.0	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX
C30810-7	MW-305-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline)		84.4 25.0 216 91.9 3.59	2.5 2.5 2.5 5.0 2.0	0.50 0.50 0.50 1.2 0.50	ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX

Summary of Hits Job Number: C30810

Account: Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Collected: 11/07/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
C30810-8 TW-01-1113					
Benzene Toluene Ethylbenzene Xylene (total) TPH (Gasoline) Methane Carbon Dioxide Calcium Iron Magnesium Alkalinity, Total as CaCO3 Hardness, Total as CaCO3 a Sulfate	431 24.5 132 72.4 3.24 5290 9310 13200 27000 6090 80.0 58.0 2.7	5.0 5.0 5.0 10 2.0 25 5000 5000 5000 5.0 33 0.50	1.0 1.0 1.0 2.3 0.50 13 400	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B NWTPH-GX RSK-175 RSK-175 SW846 6010B SW846 6010B SW846 6010B SM18 2320B SW846 6010B/SM 2340B EPA 300/SW846 9056A
C30810-8F TW-01-1113				C	
Iron Manganese	4580 320	200 15		ug/l ug/l	SW846 6010B SW846 6010B
C30810-9 TX-06A-1113					
TPH (Diesel)	0.358	0.095	0.048	mg/l	NWTPH-DX

⁽a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Sample Results	
Report of Analysis	
Report of Analysis	

Report of Analysis

Client Sample ID: MW-102-1113

 Lab Sample ID:
 C30810-1
 Date Sampled:
 11/07/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/09/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	V16457.D	1	11/15/13	RD	n/a	n/a	VV651
Run #2							

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	103% 106% 105%	70-130% 70-130% 70-130%		30%	

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-102-1113

Lab Sample ID: C30810-1 **Date Sampled:** 11/07/13 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40674.D 1 11/19/13 TTGJK1640 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis Page 1 of 1

Client Sample ID: MW-102-1113

 Lab Sample ID:
 C30810-1
 Date Sampled:
 11/07/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/09/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 HH309292.D 1 11/12/13 AG 11/12/13 OP9036 GHH1130 Run #2

Run #1 1060 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 0.144	0.094 0.19	0.047 0.094	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	72%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = Indicate MDL - Method Detection Limit <math>MDL - Method Detection Limit MDL - Method Detection Limit MDL - Method Detection Limit <math>MDL - Method Detection Limit MDL -

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4.

Page 1 of 1

Client Sample ID: MW-111-1113

Lab Sample ID: **Date Sampled:** 11/07/13 C30810-2 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	V16458.D	1	11/15/13	RD	n/a	n/a	VV651
Pun #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	84.5 1.0 0.23 0.69	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	101% 107% 104%		70-1	30% 30% 30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-111-1113

Lab Sample ID: C30810-2 **Date Sampled:** 11/07/13 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40675.D 1 11/19/13 TTGJK1640 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	0.208	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
98-08-8		99%			50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Page 1 of 1

Client Sample ID: MW-111-1113

Lab Sample ID: **Date Sampled:** 11/07/13 C30810-2 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: NWTPH-DX SW846 3510C **Percent Solids:**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	HH309293.D	1	11/12/13	AG	11/12/13	OP9036	GHH1130
Pun #2							

Final Volume Initial Volume Run #1 1050 ml 1.0 ml Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.174 ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	63%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-105-1113

Lab Sample ID: **Date Sampled:** 11/07/13 C30810-3 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	V16459.D	1	11/15/13	RD	n/a	n/a	VV651
Run #2							

Purge Volume Run #1 10.0 ml

Purgeable Aromatics

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	ug/l its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	104% 106% 106%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-105-1113

Lab Sample ID:C30810-3Date Sampled:11/07/13Matrix:AQ - Ground WaterDate Received:11/09/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40676.D 1 11/19/13 TT n/a n/a GJK1640

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-105-1113

 Lab Sample ID:
 C30810-3
 Date Sampled:
 11/07/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/09/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 HH309294.D 1 11/12/13 AG 11/12/13 OP9036 GHH1130 Run #2

Run #1 1050 ml Final Volume
1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.189 ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	76%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

رن

Page 1 of 1

Client Sample ID: MW-105-1113

Lab Sample ID:C30810-3Date Sampled:11/07/13Matrix:AQ - Ground WaterDate Received:11/09/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	17.9	10	ug/l	1	11/12/13	11/13/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3578(2) Prep QC Batch: MP6984

Report of Analysis

Client Sample ID: MW-05-1113

 Lab Sample ID:
 C30810-4
 Date Sampled:
 11/07/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/09/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	V16460.D	1	11/15/13	RD	n/a	n/a	VV651
Run #2							

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND 0.83 ND 0.87	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	102% 106% 105%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit J = Indicate

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-05-1113

Lab Sample ID: C30810-4 **Date Sampled:** 11/07/13 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40678.D 1 11/19/13 TTGJK1640 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	0.345	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ita	
CAS No.	Surrogate Recoveries	Kull# 1	Kull# 2	LIIIII	11.5	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-05-1113

Lab Sample ID: **Date Sampled:** 11/07/13 C30810-4 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: NWTPH-DX SW846 3510C Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	HH309295.D	1	11/12/13	AG	11/12/13	OP9036	GHH1130
Run #2							

	Initial Volume	Final Volume
Run #1	1030 ml	1.0 ml
Run #2		

Northwest TPH-Dx

CAS No.	Compound	Result	Result RL		MDL Units	
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.097 0.19	0.049 0.097	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	68%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: MW-104-1113

Lab Sample ID: C30810-5 **Date Sampled:** 11/07/13 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40679.D 10 11/19/13 TTGJK1640 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.62	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
		111111111111111111111111111111111111111	11411111 2	2	· is	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-104-1113

Lab Sample ID: C30810-5 **Date Sampled:** 11/07/13 Matrix: AQ - Ground Water **Date Received:** 11/09/13 Method: NWTPH-DX SW846 3510C Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 HH309296.D 1 11/12/13 AG 11/12/13 OP9036 GHH1130

Run #2

Final Volume Initial Volume

Run #1 1050 ml 1.0 ml

Run #2

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.666 ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	66%		50-1	50%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-104-1113

Lab Sample ID:C30810-5Date Sampled:11/07/13Matrix:AQ - Ground WaterDate Received:11/09/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	< 10	10	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3576(2) Prep QC Batch: MP6984

Report of Analysis

Client Sample ID: MW-306-1113

 Lab Sample ID:
 C30810-6
 Date Sampled:
 11/07/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/09/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	V16461.D	25	11/15/13	RD	n/a	n/a	VV651	
Run #2								

Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	101 50.2 482 2650	25 25 25 50	5.0 5.0 5.0 12	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	112% 105% 105%		70-13 70-13 70-13	30%	

ND = Not detected MDL - Method Detection Limit J = In

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-306-1113

Lab Sample ID:C30810-6Date Sampled:11/07/13Matrix:AQ - Ground WaterDate Received:11/09/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40680.D 40 11/19/13 TT n/a n/a GJK1640

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	12.8	8.0	2.0	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit J = Indicates the substitution of

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: MW-305-1113

Lab Sample ID: **Date Sampled:** 11/07/13 C30810-7 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	V16462.D	2.5	11/15/13	RD	n/a	n/a	VV651
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	84.4 25.0 216 91.9	2.5 2.5 2.5 5.0	0.50 0.50 0.50 1.2	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	109% 104% 107%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-305-1113

Lab Sample ID: C30810-7 **Date Sampled:** 11/07/13 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: Percent Solids: n/a **NWTPH-GX**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 JK40682.D 10 11/19/13 TTGJK1640 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.59	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: TW-01-1113

Lab Sample ID: C30810-8 **Date Sampled:** 11/07/13 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	V16463.D	5	11/15/13	RD	n/a	n/a	VV651	
Run #2								

Purge Volume Run #1 10.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	431 24.5 132 72.4	5.0 5.0 5.0 10	1.0 1.0 1.0 2.3	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	108% 103% 105%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TW-01-1113

 Lab Sample ID:
 C30810-8
 Date Sampled:
 11/07/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/09/13

 Method:
 RSK-175
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 AA004516.D 1 11/12/13 TT n/a n/a GAA209

Run #2

	Initial Volume	Headspace Volume	Volume Injected	Temperature
Run #1	38.0 ml	5.0 ml	10.0 ul	22 Deg. C
Run #2				-

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	5290	25	13	ug/l	
124-38-9	Carbon Dioxide	9310	5000	400	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: TW-01-1113

Lab Sample ID:C30810-8Date Sampled:11/07/13Matrix:AQ - Ground WaterDate Received:11/09/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 JK40683.D 10 11/19/13 TT n/a n/a GJK1640

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	3.24	2.0	0.50	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Client Sample ID: TW-01-1113

Lab Sample ID: C30810-8 **Date Sampled:** 11/07/13 Matrix: AQ - Ground Water **Date Received:** 11/09/13 Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	13200	5000	ug/l	1			SW846 6010B ¹	
Iron	27000	200	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²
Magnesium	6090	5000	ug/l	1	11/12/13	11/12/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3576 (2) Prep QC Batch: MP6984

Page 1 of 1

Client Sample ID: TW-01-1113

Lab Sample ID:C30810-8Date Sampled:11/07/13Matrix:AQ - Ground WaterDate Received:11/09/13Percent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	80.0	5.0	mg/l	1	11/14/13 12:00		SM18 2320B
Hardness, Total as CaCO3 ^a	58.0	33	mg/l	1	11/12/13 20:40	RS	SW846 6010B/SM 2340B
Sulfate	2.7	0.50	mg/l	1	11/15/13 12:30	RL	EPA 300/SW846 9056A

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Report of Analysis

Client Sample ID: TW-01-1113

Lab Sample ID: C30810-8F **Date Sampled:** 11/07/13 Matrix: AQ - Groundwater Filtered **Date Received:** 11/09/13 Percent Solids: n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	4580	200	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²
Manganese	320	15	ug/l	1	11/18/13	11/18/13 RS	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA3584

(2) Prep QC Batch: MP7009

Page 1 of 1

Client Sample ID: TX-06A-1113

Lab Sample ID: C30810-9 **Date Sampled:** 11/07/13 Matrix: **Date Received:** 11/09/13 AQ - Ground Water Method: SW846 8260B **Percent Solids:**

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	V16464.D	1	11/15/13	RD	n/a	n/a	VV651
Run #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 2.0	0.20 0.20 0.20 0.46	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	102% 107% 105%		70-1 70-1 70-1	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: TX-06A-1113

Lab Sample ID:C30810-9Date Sampled:11/07/13Matrix:AQ - Ground WaterDate Received:11/09/13Method:NWTPH-GXPercent Solids:n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1JK40684.D111/19/13TTn/an/aGJK1640

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Northwest TPH-Gx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	

ND = Not detected MDL - Method Detection Limit J = Ind

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: TX-06A-1113

 Lab Sample ID:
 C30810-9
 Date Sampled:
 11/07/13

 Matrix:
 AQ - Ground Water
 Date Received:
 11/09/13

 Method:
 NWTPH-DX SW846 3510C
 Percent Solids:
 n/a

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	HH309297.D	1	11/12/13	AG	11/12/13	OP9036	GHH1130
Pun #2							

	Initial Volume	Final Volume
Run #1	1050 ml	1.0 ml
Run #2		

Northwest TPH-Dx

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	0.358 ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	69%		50-1	50%	

ND = Not detected MDL - Method Detection Limit J = 1

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

3 6.	-
Misc	Forms

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

FEDEX TOKH 8037 0822 0888

LAB (LOCATION)				(P	S	hell	0	il F	ro	duc	ts	Ch	ain	Of (Cus	sto	dy I	Re	cor	d						URS	
ACCUTEST (Ple	ase Chec	k Appro	priate Bo	X		Pri	nt Bil	ΙTο	Cont	act N	ame:					INC	IDE	1T#(ĖΝ	SEF	ινic	ES)			IDENT # APPLIES]
CALSCIENCE (□ENV. SERVICES		OTIVA RETA	ATL [SHELL RE	TAIL													3	0	0	0 3	6	Di	ATE: 1	08/13	1
TESTAMERICA (☐MOTIVA SD&CM		ONSULTANT		LUBES						P	o:#							S	۹P.					•	ı	
Lab Vendor # 181:	3640 (Accutest)	SHELL PIPELINE		THER				-	Π		T	T	T	T	ÌΪ	T				3	5	7	0	3 2	P/	AGE: 1 of 1		
URS Corporation				LOG COCE:							Ave.		Sas	ttla				tate VA		G	LOBAL	ID NO.:						1
ADDRESS:				L				EOF D	ELMERA	LE TO P	Name, Con	pary, Offi	» location	·	ľ	HONE NO	- 1	14		E-M	AK:		_			CONSUL	TANT PROJECT NO.:	1
FROJECT CONTACT (Hardcopy or PDF Reports)	thwest Columbia St	reet, Suite 1500, F	ortland, Or	egon 9720	01			CIHT	ord J I	earso	on, URS	, Port	land, O	R		503-22	2-7200)		CI	ifforc	l.Pears	son@	URS.c		46194	1348	_
		Brian Pletcher						SALE	PLER NA	VE(S) (Pri	10													и	e USE	ο#¥ Λ12	0810	1
TELEPHONE: FAX 503-222-7200	503-222-4292	Bit To Contact		n.Pletcher@	@URS.com	!		I٨	ΛA	RK	<u>'</u> 1	AL)SZ	HER	2	N	147	7	0	03	35	5					vo v	
TURNAROUND TIME (CALENDAR DAYS). ☑ STANDARD (14 DAY) ☐5 0	DAYS 3 DAYS	□2 DAYS	24 HO	URS		TS NEEDED ON WEEKE	ND	F				VIT C		R	EQUE	STED	ANA	LYSIS		ON-UI	VIT (COST]
☐ LA - RWQCB REPORT FORMAT	UST AGENCY:							Γ				T	Τ		П						Τ		T			FIEL	D NOTES:]
DELIVERABLES: [LEVEL 1 []U	EVEL2 ☐LEVEL3	[]LEVEL4 [OTHER (SPEC	IFY)																						TEMPERAT	URE ON RECEIPT O	,
TEMPERATURE ON RECEIPT C° Cool	for#1	Cooler #2		Cooler #3]						1	H							. .				45-	1.5=30	۱۳'
SPECIAL INSTRUCTIONS OR N	NOTES:		િઝન્ટ દ	CONTRACTA	RATE APPLIES	:					۵		İ								1	ave				C/2-1	15-11-1	ساد
			TEDD N	OT NEEDED	EMENT RATE A						(MIS 073							Dioxid		g ,			l lou		۱	r" ,	3-41	Τ
			☐bkcni ☐bkcni	PT VERIFICA DE LEDIO DIS	KTION REQUES SK	STED		PH-Gx	TP1-Dx	этех	PAHs (6270	Alkalinit	Burling					Carbon	Total Iron	Total Load		Meth	Dissolved				er PID Readings poratory Notes	
		SAMPLING			PRESERVATIV	ŧ	NO. OF																					1
Field Sample Ide	entification	DATE TIME	MATRIX	HCL HNO	3 H2SO4 NO	NE OTHER	CONT.								П													1
MW-102-1	1113	11/1 0828	W	X	У		8	X	X	X																1-Lifer	Brokey	
2 MW-111-		11/1 1000	W	X			8	X	X	X		T							П		T					1-lifes	/ Broken	
3 MW - 105-		11/1 1100	W	XX		x T	q	X	X	X		T	T	T	П	T	T			X	T							1
4 MW- 05-	1113	11/1/205	W	\$ '			હ	X	X	X		T	T		П	T					T	T				1-ufe	r Broker	ŀ
5 MW - 104	-1113	11/1/1208	W	XX		4	6	V	K			\neg			П	T			1	X			T					
6 MW- 300		11/7/1320	W	V	1		6	V	1	Х	П		Τ		П						T		Т					1
7 MW - 305		11/7/1400	W	X		+	1.	À	\vdash	X		1	\top							T	1		\top					1
		 	W	+	++	+	12	C	1	X	Η.	XX	+	+	Ħ	1	\dashv	X	$\sqrt{}$		朩	ZΧ		,	十			1
10-1-1W-	01-1113	11/1/1445	- ' ·	╁╼╁╼	++	+	14	ľ	\vdash	1	\vdash	Λľ	+	+-	H	+	\dashv	$\hat{}$	$^{\sim}$	+	+	+	4^	┰	╁			1
7 10-01-1	+13 ==	111111111111111111111111111111111111111	W		\bot		_	_	١.		\sqcup	4	+	-	Н	4	4		\dashv	+	+	- -	+	+-	⊬			-
9 TX-06A	-1113	17 548	W	X			8	N N	<u> </u>	X			\perp	<u> </u>			_1			Date			上		Time			4
Relinquished by: (Signature)			Received by: (Si		FED	7-1															h	8	13		١.	වලල	`	
Relinquished by (Signature)			Received by: (Si	grusture)	レレ	少人													-	Date:	1	$\overline{}$		-	Time			+
TTOUX			1			> .	_	_	-											ul	a.	110	2			KONI		
Reinquished by: (Signature)			Received by: (Si	grate)	\leq	> ~~													7	Deer	-+1	+5			Ten	,700	7	1
																												J
																					_					05/2/06 Revi	sen	

C30810: Chain of Custody

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: C	30810		Client: SHEL	L OIL		Project : 2555 13TH AV	E. SW, SEATTL	E, WA
Date / Time Received: 11	1/9/2013		Deliv	very Method:	FedEx	Airbill #'s: 8037 0822 0	888	
Cooler Temps (Initial/Adjus	sted): <u>#</u>	1: (4.5/3);	#2: (5.6/4.1);	<u>. 0</u>				
Custody Seals Present:	✓	3.	COC Present: npl Dates/Time	<u>Y or N</u>	Sample labe Container la Sample cont	rity - Documentation als present on bottles: beling complete: tainer label / COC agree:	Y or ✓ ✓ ✓ Y or	
3. Cooler media: 4. No. Coolers:		ce (Bag)				rs accounted for:	☑ ☑	
Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved propertion 4. VOCs headspace free:		or N	N/A		Analysis rece Bottles rece Sufficient vo	grity - Instructions quested is clear: eived for unspecified tests plume recyd for analysis: g instructions clear:	Y or V U	N N/A
Comments MW-102-1113 (1 MW-111-1113 (1 MW-05-1113 (1 L	Liter Amb	er N/P rec	eived broken in	shipment) shipment)	•	tructions clear:		
Accutest Laboratories V:408.588.0200					Lundy Avenue 408.588.0201			San Jose, CA 95131 www/accutest.com

C30810: Chain of Custody Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
VV651-MB	V16449.D	1	11/15/13	RD	n/a	n/a	VV651

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-6, C30810-7, C30810-8, C30810-9

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l
					-

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	101%	70-130%
2037-26-5	Toluene-D8	108%	70-130%
460-00-4	4-Bromofluorobenzene	105%	70-130%

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VV651-BS	V16446.D	1	11/14/13	RD	n/a	n/a	VV651
VV651-BSD	V16447.D	1	11/14/13	RD	n/a	n/a	VV651

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-6, C30810-7, C30810-8, C30810-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	20.1	101	20.2	101	0	77-122/25
100-41-4	Ethylbenzene	20	20.1	101	20.0	100	0	76-126/17
108-88-3	Toluene	20	20.0	100	19.7	99	2	75-122/17
1330-20-7	Xylene (total)	60	60.3	101	59.8	100	1	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	112%	107%	70-130%
2037-26-5	Toluene-D8	104%	103%	70-130%
460-00-4	4-Bromofluorobenzene	103%	102%	70-130%

^{* =} Outside of Control Limits.

. .

Page 1 of 1

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C30810-6MS	V16465.D	25	11/15/13	RD	n/a	n/a	VV651
C30810-6MSD	V16466.D	25	11/15/13	RD	n/a	n/a	VV651
C30810-6	V16461.D	25	11/15/13	RD	n/a	n/a	VV651

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-6, C30810-7, C30810-8, C30810-9

CAS No.	Compound	C30810-6 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	101 482 50.2 2650	500 500 500 1500	611 979 553 4080	102 99 101 95	633 1020 552 4270	106 108 100 108	4 4 0 5	77-122/16 76-126/17 75-122/17 77-125/17
CAS No.	Surrogate Recoveries	MS	MSD	C30	0810-6	Limits			
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	105% 105% 101%	105% 105% 104%	112 105 105	5%	70-130% 70-130% 70-130%	6		

^{* =} Outside of Control Limits.

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

SampleFile IDDFAnalyzedByPrep DatePrep BatchAnalyticalGJK1640-MBJK40671.D111/19/13TTn/an/aGJK1640	Batch
---	-------

The QC reported here applies to the following samples:

Method: NWTPH-GX

C30810-1, C30810-2, C30810-3, C30810-4, C30810-5, C30810-6, C30810-7, C30810-8, C30810-9

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Gasoline)	ND	0.20	0.050	mg/l

CAS No.	Surrogate Recoveries	Limits	
98-08-8	aaa-Trifluorotoluene	109%	50-150%
460-00-4	4-Bromofluorobenzene	106%	50-150%

Method Blank Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GAA209-MB	AA004497	7.D1	11/12/13	/12/13 TT n/a		n/a	GAA209

The QC reported here applies to the following samples:

Method: RSK-175

C30810-8

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.26	0.50	0.25	ug/l	J
124-38-9	Carbon Dioxide	30.9	100	7.9	ug/l	J

Blank Spike Summary Job Number: C30810

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample GAA209-BS	File ID DF AA004499. D 1	Analyzed 11/12/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch GAA209

The QC reported here applies to the following samples: Method: RSK-175

C30810-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
74-82-8	Methane	21.5	17.9	83	70-130
124-38-9	Carbon Dioxide	77.1	71.7	93	70-130

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GJK1640-BS	JK40672.D	1	11/19/13	TT	n/a	n/a	GJK1640
GJK1640-BSD	JK40673.D	1	11/19/13	TT	n/a	n/a	GJK1640

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-5, C30810-6, C30810-7, C30810-8, C30810-9

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	0.4	0.487	122	0.479	120	2	60-140/30
CAS No.	Surrogate Recoveries	BSP	BSI)	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene	107% 106%	102 100	, -	50-150% 50-150%	-		

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C30810-1MS	JK40686.D	1	11/19/13	TT	n/a	n/a	GJK1640
C30810-1MSD	JK40687.D	1	11/19/13	TT	n/a	n/a	GJK1640
C30810-1	JK40674.D	1	11/19/13	TT	n/a	n/a	GJK1640

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-5, C30810-6, C30810-7, C30810-8, C30810-9

CAS No.	Compound	C30810-1 mg/l Q	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (Gasoline)	ND	0.4	0.447	112	0.454	114	2	60-140/20
CACN-	Commence of the commence of th	MC	MCD	C21	0010 1	T ::4			
CAS No.	Surrogate Recoveries	MS	MSD	CSI	0810-1	Limits			
98-08-8 460-00-4	aaa-Trifluorotoluene4-Bromofluorobenzene	97% 95%	102% 101%	103 99%		50-1509 50-1509			

^{* =} Outside of Control Limits.

Method: NWTPH-GX

Duplicate Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample C30810-3DUP C30810-3	File ID JK40677.D JK40676.D	DF 1	Analyzed 11/19/13 11/19/13	By TT TT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GJK1640 GJK1640

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-5, C30810-6, C30810-7, C30810-8, C30810-9

CAS No.	Compound	C30810-3 mg/l Q	DUP mg/l Q	RPD Limits	
	TPH (Gasoline)	ND	ND	nc 20	
CAS No.	Surrogate Recoveries	DUP	C30810-3	Limits	
98-08-8 460-00-4	aaa-Trifluorotoluene 4-Bromofluorobenzene	101% 99%	60% 66%	50-150% 50-150%	

^{* =} Outside of Control Limits.

Method: RSK-175

Duplicate Summary Job Number: C30810

SHELLWIC Shell Oil Company Account:

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample	File ID DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C30762-2DUP	AA004514.D1	11/12/13	TT	n/a	n/a	GAA209
C30762-2	AA004512.D1	11/12/13	TT	n/a	n/a	GAA209
C30762-2	AA004513.D1	11/12/13	TT	n/a	n/a	GAA209

The QC reported here applies to the following samples:

C30810-8

CAS No.	Compound	C30762-2 ug/l Q		RPD	Limits
74-82-8	Methane	158 a	152	4	30
124-38-9	Carbon Dioxide	3470 a	3590	3	30

(a) Result is from Run #2.

^{* =} Outside of Control Limits.

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: NWTPH-DX

Method Blank Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP9036-MB	File ID HH309290.I	DF D1	Analyzed 11/12/13	By AG	Prep Date 11/12/13	Prep Batch OP9036	Analytical Batch GHH1130

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-5, C30810-9

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel)	ND	0.10	0.050	mg/l
	TPH (Motor Oil)	ND	0.20	0.10	mg/l

CAS No. Surrogate Recoveries Limits
630-01-3 Hexacosane 73% 50-150%

Method: NWTPH-DX

Blank Spike/Blank Spike Duplicate Summary

Job Number: C30810

SHELLWIC Shell Oil Company Account:

URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA **Project:**

Sample OP9036-BS OP9036-BSD	File ID DF HH309289.D1 HH309291.D1	Analyzed 11/12/13 11/12/13	By AG AG	Prep Date 11/12/13 11/12/13	Prep Batch OP9036 OP9036	Analytical Batch GHH1130 GHH1130

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-5, C30810-9

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel)	1	0.785	79	0.656	66	18	45-140/30
	TPH (Motor Oil)	1	0.899	90	0.734	73	20	45-140/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
630-01-3	Hexacosane	80%	79%	50-150%

^{* =} Outside of Control Limits.

Method: NWTPH-DX

Duplicate Summary

Job Number: C30810

Account: SHELLWIC Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Sample OP9036-DUP C30810-5	File ID HH309298.1 HH309296.1	Analyzed 11/12/13 11/12/13	By AG AG	Prep Date 11/12/13 11/12/13	Prep Batch OP9036 OP9036	Analytical Batch GHH1130 GHH1130

The QC reported here applies to the following samples:

C30810-1, C30810-2, C30810-3, C30810-4, C30810-5, C30810-9

CAS No.	Compound	C30810-5 mg/l Q	DUP mg/l Q	RPD Limits
	TPH (Diesel) TPH (Motor Oil)	0.666 ND	0.900 0.182 J	30* a 25 200* a 25
CAS No.	Surrogate Recoveries	DUP	C30810-5	Limits
630-01-3	Hexacosane	76%	66%	50-150%

(a) Outside laboratory control limits.

^{* =} Outside of Control Limits.

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C30810
Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

11/12/13

Prep Date.					11/12/13
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	13	8.5		
Antimony	6.0	.7	.51		
Arsenic	10	.7	.65		
Barium	200	. 4	.35		
Beryllium	5.0	. 2	. 4		
Boron	100	.9	.64		
Cadmium	2.0	. 2	.15		
Calcium	5000	7.1	12	-11	<5000
Chromium	10	.3	.41		
Cobalt	5.0	. 2	.3		
Copper	10	1.2	3		
Iron	200	6.4	12	-2.8	<200
Lead	10	.7	.85	1.0	<10
Lithium	50		2		
Magnesium	5000	27	36	17.9	<5000
Manganese	15	.1	1.3		
Molybdenum	20	. 2	.22		
Nickel	5.0	. 2	.12		
Potassium	10000	18	44		
Selenium	10	1.8	2.2		
Silicon	100	1.2	6.9		
Silver	5.0	.3	.47		
Sodium	10000	15	13		
Strontium	10	. 2	.24		
Thallium	10	. 5	.54		
Tin	50	. 2	.7		
Titanium	10	. 4	.34		
Vanadium	10	.3	.3		
Zinc	20	.3	4.2		

Associated samples MP6984: C30810-3, C30810-5, C30810-8

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C30810 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 11/12/13

TICP DAGE				11/12/13	
Metal	C30786-6 Original		Spikelot MPIR4	% Rec	QC Limits
Aluminum					
Antimony	anr				
Arsenic	anr				
Barium					
Beryllium	anr				
Boron					
Cadmium	anr				
Calcium	17000	29500	12500	100.0	75-125
Chromium	anr				
Cobalt					
Copper	anr				
Iron	35500	35600	500	20.0 (a)	75-125
Lead	0.0	509	500	101.8	75-125
Lithium					
Magnesium	11200	24200	12500	104.0	75-2
Manganese					
Molybdenum					
Nickel	anr				
Potassium					
Selenium	anr				
Silicon					
Silver	anr				
Sodium	anr				
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				

Associated samples MP6984: C30810-3, C30810-5, C30810-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

⁽a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C30810 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

11/12/13

Metal	C30786- Origina		Spikelot MPIR4	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony	anr					
Arsenic	anr					
Barium						
Beryllium	anr					
Boron						
Cadmium	anr					
Calcium	17000	29700	12500	101.6	0.7	20
Chromium	anr					
Cobalt						
Copper	anr					
Iron	35500	36000	500	100.0	1.1	20
Lead	0.0	508	500	101.6	0.2	20
Lithium						
Magnesium	11200	24300	12500	104.5	0.4	20
Manganese						
Molybdenum						
Nickel	anr					
Potassium						
Selenium	anr					
Silicon						
Silver	anr					
Sodium	anr					
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc	anr					

Associated samples MP6984: C30810-3, C30810-5, C30810-8

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C30810 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:			11/12/13					11/12/13	
Metal	BSP Result	Spikelot MPIR4	% Rec	QC Limits	BSD Result	Spikelot MPIR4	% Rec	BSD RPD	QC Limit
Aluminum									
Antimony	anr								
Arsenic	anr								
Barium									
Beryllium	anr								
Boron									
Cadmium	anr								
Calcium	12800	12500	102.4	80-120	12700	12500	101.6	0.8	
Chromium	anr								
Cobalt									
Copper	anr								
Iron	510	500	102.0	80-120	515	500	103.0	1.0	
Lead	509	500	101.8	80-120	504	500	100.8	1.0	
Lithium									
Magnesium	13000	12500	104.0	80-120	12800	12500	102.4	1.6	
Manganese									
Molybdenum									
Nickel	anr								
Potassium									
Selenium	anr								
Silicon									
Silver	anr								
Sodium	anr								
Strontium									
Thallium									
Tin									
Titanium									
Vanadium									
Zinc	anr								

Associated samples MP6984: C30810-3, C30810-5, C30810-8

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: C30810 Account: SHELLWIC - Shell Oil Company

Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP6984 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 11/12/13

Trop bacc			11/12/13	
Metal	C30786-6 Original	SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony	anr			
Arsenic	anr			
Barium				
Beryllium	anr			
Boron				
Cadmium	anr			
Calcium	17000	19900	17.4*(a)	0-10
Chromium	anr			
Cobalt				
Copper	anr			
Iron	35500	41800	17.6*(a)	0-10
Lead	0.00	0.00	NC	0-10
Lithium				
Magnesium	11200	13200	18.2*(a)	0-10
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium	anr			
Silicon				
Silver	anr			
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			

Associated samples MP6984: C30810-3, C30810-5, C30810-8

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

(a) Serial dilution indicates possible matrix interference.

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C30810
Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

11/18/13

Prep Date:					11/16/13
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	13	8.5		
Antimony	6.0	.7	.51		
Arsenic	10	.7	.65		
Barium	200	. 4	.35		
Beryllium	5.0	. 2	. 4		
Boron	100	. 9	.64		
Cadmium	2.0	. 2	.15		
Calcium	5000	7.1	12		
Chromium	10	.3	.41		
Cobalt	5.0	. 2	.3		
Copper	10	1.2	3		
Iron	200	6.4	12	3.8	<200
Lead	10	.7	.85		
Lithium	50		2		
Magnesium	5000	27	36		
Manganese	15	.1	1.3	0.0	<15
Molybdenum	20	. 2	.22		
Nickel	5.0	. 2	.12		
Potassium	10000	18	44		
Selenium	10	1.8	2.2		
Silicon	100	1.2	6.9		
Silver	5.0	.3	.47		
Sodium	10000	15	13		
Strontium	10	. 2	.24		
Thallium	10	. 5	.54		
Tin	50	. 2	.7		
Titanium	10	. 4	.34		
Vanadium	10	. 3	. 3		
Zinc	20	. 3	4.2		

Associated samples MP7009: C30810-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C30810
Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

11/18/13 Prep Date:

Metal	C30786-6 Original		Spikelot MPIR4A		Rec	QC Limits	
Aluminum							
Antimony							
Arsenic							
Barium							
Beryllium							
Boron							
Cadmium							
Calcium							
Chromium							
Cobalt							
Copper							
Iron	345	856	500	10	02.2	75-125	
Lead							
Lithium							
Magnesium							
Manganese	273	797	500	10	04.8	75-125	
Molybdenum							
Nickel							
Potassium							
Selenium							
Silicon							
Silver							
Sodium							
Strontium							
Thallium							
Tin							
Titanium							
Vanadium							
Zinc							

Associated samples MP7009: C30810-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C30810
Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

11/18/13

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal	C30786-0		Spikelot MPIR4A	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium						
Cobalt						
Copper						
Iron	345	845	500	100.0	1.3	20
Lead						
Lithium						
Magnesium						
Manganese	273	789	500	103.2	1.0	20
Molybdenum						
Nickel						
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						

Associated samples MP7009: C30810-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C30810
Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

11/18/13 Prep Date:

Metal	BSP Result	Spikelot MPIR4A	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron	502	500	100.4	80-120
Lead				
Lithium				
Magnesium				
Manganese	528	500	105.6	80-120
Molybdenum				
Nickel				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP7009: C30810-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: C30810
Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

QC Batch ID: MP7009 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

11/18/13 Prep Date:

Metal	C30786-6 Original	SF L SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron	345	365	5.7	0-10
Lead				
Lithium				
Magnesium				
Manganese	273	293	7.4	0-10
Molybdenum				
Nickel				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP7009: C30810-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30810

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Alkalinity, Total as CaCO3	GN12281	5.0	0.0	mg/l	250	250	100.0	75-125%
Chloride	GP5801/GN12325	0.50	0.0	mg/l	5	4.70	94.0	90-110%
Fluoride	GP5801/GN12325	0.10	0.020	mg/l	5	4.75	95.0	90-110%
Nitrogen, Nitrate	GP5801/GN12325	0.10	0.0	mg/l	5	4.94	98.8	90-110%
Nitrogen, Nitrite	GP5801/GN12325	0.10	0.0	mg/l	5	4.85	97.0	90-110%
Sulfate	GP5801/GN12325	0.50	0.0	mg/l	5	4.78	95.6	90-110%

Associated Samples: Batch GP5801: C30810-8 Batch GN12281: C30810-8 (*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30810

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit
Alkalinity, Total as CaCO3	GN12281	mg/l	250	246	1.6	
Chloride	GP5801/GN12325	mg/l	5	4.59	2.4	25%
Fluoride	GP5801/GN12325	mg/l	5	4.72	0.6	25%
Nitrogen, Nitrate	GP5801/GN12325	mg/l	5	4.91	0.6	25%
Nitrogen, Nitrite	GP5801/GN12325	mg/l	5	4.89	0.8	25%
Sulfate	GP5801/GN12325	mg/l	5	4.74	0.8	25%

Associated Samples: Batch GP5801: C30810-8 Batch GN12281: C30810-8 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30810
Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Alkalinity, Total as CaCO3	GN12281	C30810-8	mg/l	80.0	80.0	0.0	0-25%

Associated Samples: Batch GN12281: C30810-8 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30810

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chloride	GP5801/GN12325	C30810-8	mg/l	0.90	5	5.7	96.0	80-120%
Fluoride	GP5801/GN12325	C30810-8	mg/l	0.25	5	4.9	93.0	80-120%
Nitrogen, Nitrate	GP5801/GN12325	C30810-8	mg/l	0.0	5	4.7	94.0	80-120%
Nitrogen, Nitrite	GP5801/GN12325	C30810-8	mg/l	0.0	5	4.9	98.0	80-120%
Sulfate	GP5801/GN12325	C30810-8	mg/l	2.7	5	7.5	96.0	80-120%

Associated Samples:

- ASSOCIATED Samples.

 Batch GP5801: C30810-8

 (*) Outside of QC limits

 (N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C30810

Account: SHELLWIC - Shell Oil Company
Project: URSORP: Shell/Harbor Island - 2555 13th Ave SW., Seattle, WA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Chloride	GP5801/GN12325	C30810-8	mg/l	0.90	5	5.7	0.0	
Fluoride	GP5801/GN12325	C30810-8	mg/l	0.25	5	4.9	0.0	
Nitrogen, Nitrate	GP5801/GN12325	C30810-8	mg/l	0.0	5	4.7	0.0	
Nitrogen, Nitrite	GP5801/GN12325	C30810-8	mg/l	0.0	5	5.0	2.0	
Sulfate	GP5801/GN12325	C30810-8	mg/l	2.7	5	7.5	0.0	

Associated Samples: ASSOCIATED Samples.

Batch GP5801: C30810-8

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

Final Data Review

The data quality review of the 32 primary groundwater samples collected November 4, 2013 to November 7, 2013 at the Harbor Island site in Seattle, Washington has been completed. Samples were submitted to Accutest Laboratories (Accutest) of San Jose, California. The samples submitted were analyzed for one or more of the following: benzene, toluene, ethylbenzene, and total xylene (BTEX; EPA Method 8260B); TPH gasoline (NWTPH-Gx); TPH diesel (NWTPH-Dx); methane and carbon dioxide (RSK-175); total calcium, iron, lead, and magnesium (EPA 6010B); alkalinity (SM18 2320B); hardness (EPA 6010B/SM2340B); sulfate (EPA 300.0/9056A); dissolved iron and manganese (EPA 6010B); and polycyclic aromatic hydrocarbons (PAH, EPA 8270C SIM).

The review included the analytical data presented in Accutest reports C30786 and C30810. The data were reviewed based on *United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines (NFGs) for Organic Data Review*, June 2008, *USEPA CLP NFGs for Inorganic Superfund Data Review*, January 2010, and laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records, hold times, surrogate recoveries, matrix spike and matrix spike duplicate results, laboratory control and laboratory control duplicate results, laboratory duplicate results, and method blank results. Trip blanks were not included on the COC and not analyzed by the laboratory, therefore; sample results could not be evaluated for contamination related to the transport of the samples. Qualifiers assigned as a result of this review are included in Table 1.

The following criteria were evaluated during the review:

- <u>COC Records</u> Acceptable
- Temperature Acceptable
- Preservation Acceptable
- Hold Times Acceptable
- Method Blanks Acceptable with the following exceptions:

Methane and Carbon Dioxide by RSK 175 – Methane (0.26 micrograms per liter $[\mu g/L]$) and carbon dioxide (30.9 $\mu g/L$) were detected in the method blank in analytical batch GAA209 and carbon dioxide (29.1 $\mu g/L$) was detected in the method blank in analytical batch GAA208. The associated sample result concentration is greater than five times the method blank detection, therefore; no qualification is needed.

• Surrogates – Acceptable

• <u>Laboratory Control Samples (LCS/LCSD)</u> – Acceptable with the following exceptions:

PAH by Method 8270C SIM – The LCS/LCSD recoveries for acenaphthylene (54%/42%) acenaphthene (--/46%), anthracene (--/56%), benzo(a)pyrene (--/64%), fluoranthene (--/60%), fluorene (--/48%), 1-methylnaphthalene (--/44%), 2-methylnaphthalene (--/50%), naphthalene (--/46%), phenanthrene (--/54%), were below the laboratory control limits ranging from 53% to 65% in batch OP9024. Additionally, the relative percent differences (RPDs) of 25% and 26% exceeded the laboratory limits for fluorene and naphthalene of 24% and 23% respectively. All associated sample detections of these analytes were previously qualified by laboratory due to the concentration being between the method detection limit (MDL) and the method reporting limit (MRL). The remaining associated sample results were non-detect, and were qualified as estimated and flagged 'UJ' due to a potential low bias.

- <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u> Acceptable
- <u>Laboratory Duplicates</u> Acceptable with the following exceptions:

<u>TPH Diesel by NWTPH-Dx</u> – The RPD exceeded the laboratory limit of 25% at 30% in the laboratory duplicate associated with analytical batch GHH1130 performed on sample MW-10401113 (C30810-5). The RPD for the LCS/LCSD was in control indicating the analytical batch was in control, therefore; only the parent sample was qualified as estimated and flagged 'J' for precision.

- Reporting Limits The laboratory reported all detections between the MDL and MRL (when applicable) as estimated and flagged the results 'J'.
- Laboratory Notes –

<u>TPH Gasoline by NWTPH-Gx</u> – The laboratory noted the continuing calibration verification sample associated with samples MW-213-1113 (C30786-7), MW-206A-1113 (C30786-11), MW-214-1113 (C30786-16), TES-MW-1-1113 (C30786-18), and laboratory duplicate sample C30786-11DUP was outside control limits and biased high. TPH gasoline was not detected in the associated samples therefore; no qualification is needed.

Shell – 2013 Fourth Quarter Progress Report – Harbor Island

Overall Assessment of Data

The completeness of the analytical reports for this groundwater monitoring event is 100%. The usefulness of the data is based on the USEPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are considered usable. Data qualified as estimated, and flagged 'J' or 'UJ', during this review process are summarized in Table 1.

References

- USEPA, 2008. U.S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Organic Data Review. June 2008.
- USEPA, 2010. U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. January 2010.

Table 1 Sample Qualification Summary

Sample Number	Laboratory ID	Analyte	Data Qualifier	Reason for Qualification		
		Acenaphthene				
		Acenaphthylene				
		Anthracene				
		Benzo(a)pyrene				
MW-213-1113	C30786-7	Fluoranthene	UJ	LCS/LCSD recovery		
WIW-213-1113	C30780-7	Fluorene	OJ.	LCS/LCSD lectively		
		1-Methylnaphthalene				
		2-Methylnaphthalene				
		Naphthalene				
		Phenanthrene				
		Acenaphthylene				
		Anthracene				
		Benzo(a)pyrene				
MW-208-1113	C30786-10	Fluoranthene	UJ	I CC/I CCD magaziani		
WIW-208-1113	C30780-10	Fluorene	UJ	LCS/LCSD recovery		
		1-Methylnaphthalene				
		2-Methylnaphthalene				
		Phenanthrene				
MW-211-1113	C30786-15	Acenaphthylene	UJ	LCS/LCSD recovery		

Shell – 2013 Fourth Quarter Progress Report – Harbor Island

Sample Number	Laboratory ID	Analyte	Data Qualifier	Reason for Qualification
		Anthracene		
		Benzo(a)pyrene		
		2-Methylnaphthalene		
		Naphthalene		
		Phenanthrene		
		Acenaphthene		
		Acenaphthylene		
		Anthracene		
		Benzo(a)pyrene		
		Fluoranthene		
MW-214-1113	C30786-16	Fluorene	UJ	LCS/LCSD recovery
		1-Methylnaphthalene		
		2-Methylnaphthalene		
		Naphthalene		
		Phenanthrene		
		Acenaphthene		
MW-104-1113	C30810-5	TPH diesel	J	Laboratory duplicate