2405 140th Avenue, NE Suite 107 Bellevue, WA 98005-1877

SCS ENGINEERS

December 19, 2014 File No. 04214002.04

Mr. David Bosch Tacoma-Pierce County Health Department 3629 South D Street Tacoma, Washington 98418

Subject:Documentation Report for Repair of South Slope Cover System,
Hidden Valley Landfill, Puyallup, Washington

Dear David:

On behalf of Pierce County Recycling, Composting and Disposal LLC, dba LRI (LRI), this report provides documentation of the Hidden Valley Landfill cover repair which was conducted in conformance with the Cover Repair Work Plan dated September 16, 2013. The repair was conducted between May 12 and June 3, 2014 on the south slope of the landfill within the Southwest Closure Area.

1 INTRODUCTION

Cover Repair Overview

The Southwest Closure Area was constructed in 1992. The cover system for the Southwest Closure Area consists of the following layers of materials from top to bottom:

- Vegetative Soil (14-inches)
- Non-woven geotextile filter (6-ounce/sq. yard)
- Gravel Drainage Layer (12-inches)
- 40 mil Very Low Density Polyethylene (VLDPE) Geomembrane
- Foundation (bedding) Layer (4-inches)
- Foundation Soil Layer (12-inches)

This area of the landfill does not include a bottom liner.

The cover system repair consisted of the removal of approximately 2,175 cubic yards(CY) of vegetative cover soils (on top of the geomembrane), removal of approximately 40 CY of foundation soils (below the geomembrane) and regrading to reestablish surface drainage, installation of approximately 6,215 SF of geomembrane, installation of approximately 6,835 SF of geonet composite in lieu of a gravel drainage layer, installation of approximately 3,000 SF of geotextile filter, and replacement of the vegetative soils. The landfill cap repair was constructed to provide continuous coverage and surface drainage within the cover system.

Cover soils removed from the repair area were stockpiled onsite and re-used as much as possible. Soils and waste materials removed from below the liner were hauled to the onsite transfer station using a dump truck. Prior to re-use, all deleterious materials were removed from the existing soils. Additional soils and aggregates were provided by Corliss Resources and approved by LRI and the SCS Engineer prior to placement.

Drawings showing the approximate excavation of the repair area are included in Attachment A, and a photo-log of repair activities is included in Attachment B.

Background

An area of suspected subsurface oxidation was originally identified by differential settlement sometime in the late 1990's. The area was repaired, and subsequently repaired a second time in 2006 after a sinkhole redeveloped. The sinkhole began to slowly re-form in 2008 and eventually become about 70 feet long by 40 feet wide by 4 to 6 feet deep. Then in March 2010, a second sink hole about 15 feet in diameter rapidly developed. The sinkholes were located approximately 60 to 70 feet apart and roughly parallel to the south perimeter of the landfill.

The sinkholes are interpreted to be the result of subsurface oxidation events(s) that caused consolidation of the waste and created void space. Both sinkholes were backfilled in April 2010 with low-permeability glacial till soil and covered with reinforced plastic that was secured in place with soil and sand bags. Diagrams showing the locations of the sinkholes and the work area are included in Attachment A.

The development of the sinkhole in 2008 coincided with off-site excavation at the Corliss Resources Puyallup Plant, which further exposed the slope immediately south of the property boundary. The cut slope of the adjacent gravel pit appears to be the route of oxygen intrusion into the landfill. Therefore, a recommendation was made to cover the slope with a lowpermeability soil or other oxygen barrier. After discussions with Pierce County, Corliss, and the Tacoma-Pierce County Health Department (TPCHD), it was agreed that Corliss would install a soil barrier of their own design and LRI would observe the performance to see if it was effective and resistant to erosion.

The soil barrier was installed during July 2010. The soil barrier construction consisted of removing approximately 2 feet of gravelly soil from the bank surface and replacing it with approximately 2 feet of silty clay soil. The soil was placed in lifts using an excavator and a bulldozer. The finished grade was track-walked parallel to the slope with a bulldozer for compaction. The landfill perimeter fence was temporarily removed to allow soil placement at the top of the slope. The slope was hydroseeded with a mulch/grass seed mixture in September 2010.

In addition to the soil barrier, a portion of the gas collection and control system (GCCS) was taken off-line in September 2009. The disconnected wells included N-42, N-43, N-54, N-60, N-60A, N-61, and N-62. Also in September 2009, three temporary monitoring probes (LFG-1, LFG-2, and LFG-3) were installed near the settlement area to investigate subsurface conditions and to serve as additional monitoring locations. An analysis of the GCCS found the system was over-drawing and providing too much vacuum to the well-field. The system blowers were

subsequently modified until the blower/flare station could be replaced in 2010 and 2011. SCS also began monthly maintenance activities to keep the GCCS operating as designed and minimize the potential to draw air into the waste mass in order to starve the subsurface area of oxygen.

The south slope and sinkhole repair area was monitored for stabilization, slope erosion, and odors beginning in 2010. The inspections included weekly visual inspections by LRI personnel and monthly inspections by SCS personnel. Monthly monitoring and inspections consisted of visual inspection and the use of a Landtec GEM 2000 for Methane (CH_4), Carbon Dioxide (CO_2), Oxygen (O_2) and relative pressure measurements.

In addition to the monthly monitoring, SCS periodically monitored the temporary probes and surrounding landfill gas (LFG) collection wells for Carbon Monoxide (CO) and down temperature. Carbon Monoxide measurements were taken using Draeger Gas Monitoring Tubes and downhole temperatures were measured using an Oakton Temp JKT connected to a type K thermocouple. Results from the periodic monitoring events are included in the Work Plan and in quarterly and annual; monitoring reports.

Prior to the start of the repair work, CO measurements were not indicative of ongoing combustion and down-hole temperature measurements were not elevated above typical municipal solid waste (MSW) landfill levels.

2 PROJECT ROLES AND RESPONSIBILITIES

Pierce County Recycling, Composting and Disposal, dba LRI

LRI is the Owner and operator (Owner) of the Hidden Valley Landfill and transfer station. For the repair of the cover system, LRI provided equipment and staff to assist with the moving of geotextile rolls and the sourcing of soils and aggregates for use in the cover system.

SCS Engineers

SCS Engineers is the Engineer of Record (Engineer) and CQA representative for repair of the cover system. SCS prepared the work plan, including technical specifications and CQA guidelines, implemented a comprehensive CQA Program, provided field-engineering services during construction, and prepared this construction report.

Glacier Construction Services, Inc.

Glacier Construction Services, Inc. was the general contractor (Contractor) for the construction project. Glacier was responsible for the excavation, grading and repair of the landfill cover system.

Hidden Valley Landfill, Cover System Repair Documentation Report December 19, 2014

Northwest Linings and Geotextile Products, Inc.

Northwest Linings and Geotextile Products, Inc. (NWL) was a subcontractor to Glacier Construction, and was responsible for the supply and installation of geomembrane and geonet-composite products (Installer).

Texas Research International, Inc.

Texas Research International, Inc. (TRI) was contracted to provide laboratory testing of geomembrane seam samples.

3 EARTHWORK

Earthwork components for the cover system repair consisted of the following:

- Soil Excavation
- Foundation Soil Layer
- Bedding Layer
- Drain Rock
- Vegetative Soil Layer

Soil Excavation

Approximately 2,175 CY of soil were excavated from above the existing geomembrane liner to expose approximately 6,215 SF of cover to be repaired. Excavation of the work area was completed in three phases; one phase for each of the two sinkholes (east and west), and a third phase to reestablish surface drainage. Each sinkhole was exposed separately. Removed soils were stockpiled on the cover adjacent cover to the work area. Care was taken during excavation to minimize damage to the existing cover system and disturb as little area as possible.

To reestablish site drainage, a 155-foot long trapezoidal ditch was installed. Ditch slopes extended from the east side of the west sinkhole to the southeast, past the east sinkhole and into the perimeter collection channel (existing) near gas extraction well N-62. The existing geomembrane was cut and folded back to allow for excavation of the trapezoidal channel with 1 horizontal to 1 vertical side slopes (1H:1V). The drainage ditch was sloped at a minimum of 2 percent (ft/ft) from the low point of the west sinkhole to the perimeter channel. Over excavation of approximately 40 CY from below the existing geomembrane was performed to reestablish surface drainage and allow adequate thickness for placement of a foundation and bedding layer below the geomembrane. Excavated soil and waste debris was delivered to the transfer station for proper disposal.

During soil excavation operations, the CQA representative verified the following:

• Verified large rocks were removed from the completed foundation and bedding layer soils.

- Verified excavated soils were stockpiled in designated areas and all deleterious materials were removed prior to placement.
- Measured work area for approximate excavation volume(s).
- Inspected excavation side slopes for stability and safety.
- Assisted in the location of subsurface utilities and other underground infrastructure.
- Verified as-built survey of the excavation was performed.

Foundation Soil Layer

Once excavation of each of the work areas was completed, the excavations were graded to ensure proper cover drainage. Grades were checked using a laser level. Minimal fill soils (<2 CY) were required to grade the west sinkhole, and approximately 10 CY of material were used to fill a depression at the edge of the east sinkhole. A minimum of 12-inches of foundation soil was placed above the waste. Compaction of the soil foundation layer was performed by tamping with the excavator bucket to a firm unyielding state.

During foundation soil placement, the CQA representative verified the following:

- Inspected compaction of foundation soil to an unyielding state using a soil probe.
- Verified large rocks were removed from the completed foundation soils.
- Verified minimum grades and slopes were maintained.
- Verified materials were placed and compacted to the specified lift thickness.
- Verified surfaces were smooth finished prior to placement of the bedding layer.

Bedding Layer

Following grading and compaction of the foundation soil layer, a 4-inch thick bedding layer was placed to protect the overlying geomembrane. Corliss Resources provided approximately 40 CY of medium to coarse grained sand for the bedding layer.

During bedding layer placement, the CQA representative verified the following:

- Verified soils were placed in a manner that did not damage underlying layers.
- Verified that large rocks and other deleterious materials were removed from underlying foundation soil prior to placement of bedding layer.
- Verified soils were placed in a single uniform 4-inch (minimum) thickness.
- Verified soils did not exhibit vertical deflection when force was applied to the surface.

Drain Rock

Drain rock was used to fill the drainage ditch between the west sinkhole and the perimeter channel following installation of geosynthetics. The drain rock was filled to an approximate depth of 2-feet. Prior to placement of the drain rock, all geosynthetics were installed and approved by the CQA representative. Drain rock consisted of 2-inch minus washed rounded rock provided by Corliss Resources.

During drain rock placement, the CQA representative verified the following:

- Verified materials were placed in a manner that did not damage underlying geomembrane and geonet composite.
- Verified materials delivered to the site meet the specifications outlined in the work plan and large rocks and other deleterious materials were not present.
- Verified testing data for underlying layers was received prior to placement.

Vegetative Soil Layer

Excavated soils were used to construct the anti-erosional / vegetative soil layer. Soils were placed in a minimum of 14-inch thickness to return the work area to match surrounding grades. Placement of soils was completed using an excavator, and finished by track-walking perpendicular to the slope to minimize erosion.

During vegetative soil placement, the CQA representative verified the following:

- Verified testing data for the underlying layer was received prior to placement.
- Verified geonet-composite and non-woven geotextile were tied into existing separation fabric to prevent soil dams within the geonet-composite.
- Verified large rocks and other deleterious materials were removed prior to placement and grading.
- Verified soils were placed in a manner that did not damage underlying layers.
- Verified minimum thickness of placed soils was achieved.

4 GEOSYNTHETICS

The goal of the geosynthetics CQA program was to verify that the materials delivered to the site conformed to the technical specifications, and that proper construction techniques and procedures were used in accordance with the work plan. The Engineer and CQA representative verified installation quality by monitoring on-site testing performed by the Installer, performing independent testing, and visual inspections of the Installer's work.

The following types of geosynthetics were utilized for this project:

- High Density Polyethylene (HDPE) geomembrane, double sided textured surface, 60-mil thickness
- Geotextile Filter, 8-ounce per square yard, non-woven
- Geonet-Composite, 8-ounce & 16-ounce non-woven geotextiles on opposite sides of a 330-mil geonet

G e o m e m b r a n e

Approximately 6,215 SF of black 60-mil HDPE 460ST-1000 texture geomembrane, manufactured by Solmax, was installed over the foundation and bedding soils as described previously. Only textured geomembrane was used for the cover repair. The geomembrane

consisted of one roll, measuring approximately 22-feet by 560-feet. Manufacturers' quality control (MQC) and conformance test results were reviewed prior to installation of the geomembrane. The geomembrane met the specifications listed in Table 1. Product information is included in Attachment C.

Test	Test Designation	Units	Type of Criterion	Acceptable Value	
Carbon Black Content	ASTM D 1603	% by weight	Range	2 – 3	
Carbon Black Dispersion	ASTM D 5596	N/A	Range	Category 1, 2, 3	
Density	ASTM D 1505	Grams/ ml	Minimum	0.932	
Tear Resistance	ASTM D 1004	lb	Minimum	42	
Puncture Resistance	ASTM D 4833	lb	Minimum	90	
Tensile Strength at Yield	ASTM D 6693	ppi	Minimum	126	
Tensile Strength at Break	ASTM D 6693	ррі	Minimum	90	
Yield Elongation	ASTM D 6693	%	Minimum	12	
Break elongation	ASTM D 6693	%	Minimum	100	
Thickness	ASTM D 5994	mils	Minimum Average	57	
Natas					

Table 1. Geomembrane Acceptance Criteria

Notes:

Minimum test frequency is one per 100,000 square feet.

Values are from Tables 1a and 2a of GRI GM 13 Standards.

Carbon Black Dispersion; 9 of 10 views in Category 1 or 2; and 1 in Category 3.

Tensile properties performed in both machine and cross direction.

Prior to installation, the CQA representative and the Installer verified that the area to be covered by the geomembrane was prepared in accordance with the specifications in the work plan. Following visual inspection the surface(s) the CQA representative, Installer, and Contractor completed a written inspection form. Copies of the subgrade inspection and acceptance forms are contained in Attachment D.

Geomembrane panels were deployed from a spreader bar attached to an excavator, and placed by pulling into place by hand. Panels were placed lengthwise oriented up-down slope, and shingled to promote drainage to the southeast. Adjacent panels were overlapped a minimum of 4-inches prior to welding using an extrusion welder.

A total of four (4) destructive seam tests were performed; see Attachment D for results. Peel and sheer testing was performed by TRI. All destructive samples passed in both field and laboratory testing with the exception of destructive sample DS#4. Due to an equipment failure, field tests were only able to be performed on two coupons (one peel, one sheer), instead of the required 6 (three peel, three sheer). An additional two tests were cut from the sample by the Installer for testing, but were not standard test sizes. The Installer elected to have the sample sent for testing as the field results were passing specifications. DS#4 passed laboratory testing and no further action was required. Copies of laboratory test results are contained in Attachment D.

During geomembrane panel placement and seaming, the CQA representative performed the following:

- Verified the underlying surface did not contain stones or other objects that could damage the geomembrane, or excessively soft areas that would not properly support the geomembrane
- Developed a numbering system to identify panel numbers, field seams, destructive test locations, and repairs
- Maintained a panel layout drawing showing panel numbers, seam numbers, test location, and repair locations (see Attachment D)
- Inspected the geomembrane sheet surface and marked areas requiring repair due to defects in workmanship or materials
- Verified repairs were made in accordance with the specifications in the work plan
- Verified geomembrane was not dragged across abrasive surfaces
- Verified equipment used on the geomembrane did not leak fuel
- Verified trial welds were performed in accordance with the specifications in the work plan (see Attachment D)
- Observed trial welding operations and verified installer quantitatively tested each trial weld for peel and shear strength
- Verified seam grinding was completed less than 30 minutes before seam welding, and the upper sheet was beveled
- Verified contact surfaces of the sheets were clean, fee of dirt, dust, grease, debris, and moisture prior to seaming
- Verified procedures used to hold panels temporarily together did not damage the panels and did not prevent installation
- Verified non-destructive testing was performed on all seams and repairs (see Attachment D)
- Marked and observed field testing of destructive test samples (see Attachment D)

Geonet Composite

Approximately 6,835 SF of black 300-mil TN 330-2-8/16 geonet composite, manufactured by Skaps Industries, was installed following the installation of the geomembrane. The geonet composite consisted of fours rolls, measuring approximately 15-feet by 310-feet. The geonet met the specifications listed in Table 2. Product information is included in Attachment E.

Conformance Test Required ASTM Designation	ASTM Designation	Units	Type of Criterion	Acceptable Value
Ply Adhesion	ASTM D-413	lb./in.	Minimum	1.0
Carbon Black	ASTM D-1603	%	Minimum	2.0
Density	ASTM D-1505	g/cm ³	Minimum	0.94
Thickness	ASTM D-5199	Mils.	Range	330+-30
Tensile Strength	ASTM D-5035	lb./in	Minimum	75
Geotextile Component				
Fabric Weight	ASTM D-5261	oz/yd²	Minimum	8.0/16.0
Grab Strength	ASTM D-4632	lbs.	Minimum	220/390
Puncture Resistance	ASTM D-4833	lbs.	Minimum	120/240
Water Flow Rate	ASTM D-4491	gpm/ft ²	Minimum	95/45
Apparent Opening Size	ASTM D-4751	US Sieve Size	Minimum	80/100
Permittivity	ASTM D-4491	sec ⁻¹	Minimum	1.20/0.50

Table 2.Geonet Composite Acceptance Criteria

Values are based on discussions with acceptable manufacturers and represent production values at time of manufacturing.

The geonet composite was installed over the geomembrane liner to provide drainage and prevent damage from the overlying soil layer(s). The geonet composite was deployed using a spreader bar attached to an excavator. Seaming of the geonet composite was accomplished by using nylon ties spaced a maximum of 5 feet apart. In addition, the geotextile component of the geonet composite was heat seamed to provide additional strength and to prevent intrusion from overlying soils.

During geonet composite placement and seaming, the CQA representative performed the following work:

- Inspected the geonet composite for defects in workmanship or materials and for the presence of potentially harmful foreign objects (e.g. needles).
- Verified repairs were made in accordance with manufacturer's recommendations and industry standards.
- Verified seams were overlapped and joined in accordance with the technical specifications and manufacturer's instructions.
- Observed the geonet composite after installation
- Verified the geonet composite was deployed, placed, and seamed in a manner that did not damage underlying materials.

Geotextile Filter Installation

Approximately 3,000 SF of 6-oz./yd² separation geotextile was installed. Prior to installation of the geotextile, quality control and conformance test results were reviewed. The geotextile filter met the project specifications listed in Table 3. Product information is included in Attachment F.

ASTM D-4751	1 /100 000 55			Acceptable Value	
	1/100,000 SF	mm	Maximum	0.21	
ASTM D-4632	1/100,000 SF	lb.	Maximum	160	
ASTM D-4632	1/100,000 SF	%	Maximum	50	
ASTM D-5261	1/100,000 SF	oz./yd²	Minimum	6.0	
ASTM D-4491	1/100,000 SF	gals/min/ft2	Minimum	1.6	
ASTM D-6241	1/100,000 SF	lb.	Minimum	450	
ASTM D-4533	1/100,000 SF	lb.	Minimum	65	
ASTM D-449	1/100,000 SF	gpm/ft ²	Minimum	125	
	ASTM D-4632 ASTM D-5261 ASTM D-4491 ASTM D-6241 ASTM D-4533	ASTM D-4632 1/100,000 SF ASTM D-5261 1/100,000 SF ASTM D-4491 1/100,000 SF ASTM D-6241 1/100,000 SF ASTM D-4533 1/100,000 SF	ASTM D-4632 1/100,000 SF % ASTM D-5261 1/100,000 SF oz./yd ² ASTM D-4491 1/100,000 SF gals/min/ft2 ASTM D-6241 1/100,000 SF lb. ASTM D-4533 1/100,000 SF lb.	ASTM D-4632 1/100,000 SF % Maximum ASTM D-5261 1/100,000 SF oz./yd² Minimum ASTM D-4491 1/100,000 SF gals/min/ft2 Minimum ASTM D-6241 1/100,000 SF Ib. Minimum ASTM D-6241 1/100,000 SF Ib. Minimum ASTM D-4533 1/100,000 SF Ib. Minimum	

Table 3.Geotextile Filter Acceptance Criteria

Values are based on discussions with acceptable manufacturers and represent production values at time of manufacturing.

The geotextile was installed to tie the geonet composite into the existing cover system separation geotextile. The geotextile was installed to ensure that as overlying soils were placed, a soil dam did not form in the geonet composite or existing drainage layer materials. The geotextile was placed between the two layers and heat seamed to the respective layers. Where possible, the existing separation geotextile was tied into the geonet composite directly. In addition, the geotextile was installed over the drain rock described above.

During geotextile placement and installation, CQA representative performed the following:

- Observed excavation and cleaning of the existing geotextile(s) and drainage layer.
- Verified that the existing drainage layer was not obstructed by soils or other deleterious materials.
- Verified that geotextiles were deployed and seamed in a manner that did not damage underlying layers.

Hidden Valley Landfill, Cover System Repair Documentation Report December 19, 2014

5 MISCELLANEOUS SITE WORK

This section describes work performed and the CQA activities and procedures used for miscellaneous site improvements including landfill gas extraction well abandonment and surveying.

Landfill Gas Extraction Well Abandonment

During excavation of the west sinkhole, landfill gas extraction well N-61 was damaged at the well head. As the well had not been connected to the landfill gas collection and control system since 2009, the decision to abandon the well was made by the Engineer and CQA representative. To abandon the well, the well casing was excavated and cut below the upper bentonite well seal, approximately 2 feet below the geomembrane. The 3-inch diameter PVC well casing was backfilled with hydrated bentonite hole plug. After the casing was grouted, the well casing was capped and the upper bentonite seal was replaced.

Abandonment of the extraction well was completed prior to placement and installation of the geomembrane. Abandonment of the well was completed under the supervision of a Professional Engineer (PE) registered in Washington State. Documentation of the well abandonment is included in Attachment G.

Surveying

A survey of the excavated area and drainage ditch was performed to support construction activities and document the as-built conditions of the repairs. The survey was completed by Environmental Information Logistics, LLC (EIL), 1406 12th Street, Suite 104, Hood River, Oregon 97031. Survey records were used to create the drawings provided in Attachment A.

Hidden Valley Landfill, Cover System Repair Documentation Report December 19, 2014

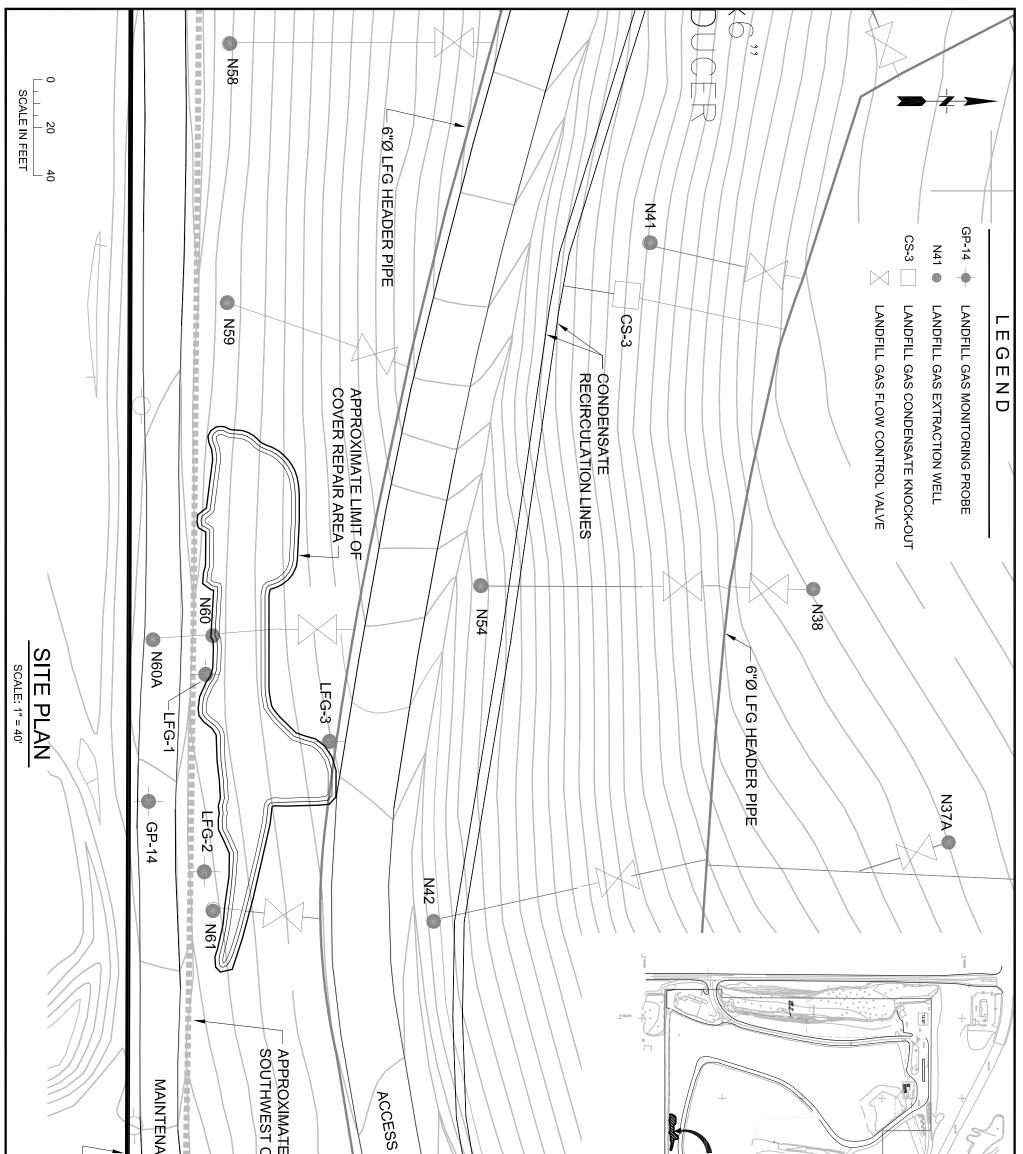
6 STATEMENT OF COMPLIANCE

A CQA program was implemented by SCS during repair of the south slope cover system at the Hidden Valley Landfill. The CQA program, which included the observation and testing of the constructed components of the cover system, documentation of the work completed in accordance with the work plan and design intent of the original cover system. No significant modifications to the CQA testing program were required for this project.

If you have any questions or comments regarding the information or conclusions presented above, please do not hesitate to contact SCS Engineers.

Sincerely,

Kevin Lakey, LHG, PE Vice President SCS ENGINEERS


Sam Adlington, EIT Staff Engineer SCS ENGINEERS

Attachments:

Attachment A: Figures
Attachment B: Photographs
Attachment C: Geomembrane Quality Control Data
Attachment D: Geomembrane Installation Data
Attachment E: Geonet Composite Quality Control Data
Attachment F: Geotextile Quality Control Data
Attachment G: Landfill Gas Well Abandonment

cc: Mohsen Kourdehar, Ecology Andy Comstock, TPCHD Rick Johnston, Pierce County George Duvendack, LRI Jerry Reid, Glacier Construction Services Attachment A

Figures

PROPERTY BOUNDARY	E LIMIT OF CLOSURE AREA N62 ANCE ROADWAY	SROADWAY	2014 REPAIR AREA LOCATION MAP SCALE: 1"= 600' N43	
LE: DECEMBER JRE NO.	S. C. S. E. N. G. I. N. E. E. R. S. invironmental Consultants and Contractors 2405 140th Avenue N.E., Suite 107 Bellevue, Washington 98005 (425) 746-4600 J. Mo. 04214002.04 M.W. BY: KGL CHK. BY: KGL CHK. BY:	Pierce County Recycling, Composting and Disposal, LLC dba LRI	2014 REPAIR AREA PROJECT TITLE HIDDEN VALLEY LANDFILL PIERCE COUNTY, WASHINGTON	NO. REVISION DATE A

Attachment B

Photographs

2010, April 16, viewing east.

2011, July 15, viewing east.

2012, May 23, viewing east.

2013, October 16, viewing east.

Page 2 of 14

2014, March 4, viewing east.

2014, May 12, viewing west. Removal of temporary plastic cover.

2014, May 12. Initial removal of cover soils, east sinkhole.

2014, May 13. Continuing removal of cover soils, east sinkhole.

2014, May 13. East sinkhole.

2014, May 13. Initial excavation at west sinkhole.

2014, May 14. Excavation at west sinkhole; viewing east.

2014, May 14. Excavation at west sinkhole; viewing west.

2014, May 15. Excavation at west sinkhole.

2014, May 15. Backfill placement at east sinkhole.

2014, May 16. Geomembrane placement; east sinkhole

2014, May 16. Geomembrane placement; west sinkhole Page 8 of 14

2014, May 16. Geonet composite installation; east sinkhole

2014, May 16. Geonet composite installation; west sinkhole Page 9 of 14

2014, May 22. Additional excavation to re-establish drainage.

2014, May 29. Additional excavation to re-establish drainage. Page 10 of 14

2014, May 30. Site Overview.

2014, May 30. Preparing subgrade for geomembrane placement.

2014, May 30. Geomembrane installation.

2014, May 30. Geomembrane installation.

2014, June 2. Placement of drain rock within surface drainage feature.

2014, June 2. Placement of geotextile filter over drain rock. Page 13 of 14

2014, June 3. Placement of cover soil.

2014, June 3. Placement of cover soil.

Attachment C

Geomembrane Quality Control Data

LIST OF GEOMEMBRANE ROLLS

Project Number : C-4507

Solmax, 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7 Tél.: 1-450-929-1234 • Fax.: 1-450-929-2547 • www.solmax.com

> Reference Number : ______ Invoice Number : _____

213006

106163

Roll Number	Product Code	Resin Lot Number	Manufactured Date	Resin Melt Index 190/2.16 g/10 min D1238	Resin Density g/cc D1505	OIT Spec Result min D3895	HPOIT Spec Result min D5885	ESCR SP-NCTL Spec Roll Tested hours D5397
5-00732	Solmax 460T-1000	H8232084	18-Jun-13	0.09	0.937	100 > 120	03885	>400 5-00689 CERTIFIED
5-00733	Solmax 460T-1000	H8232084	18-Jun-13	0.09	0.937	100 > 120		>400 5-00689 CERTIFIED
5-00734	Solmax 460T-1000	H8232084	18-Jun-13	0.09	0.937	100 > 120		>400 5-00689 CERTIFIED
5-00737	Solmax 460T-1000	H8232084	18-Jun-13	0.09	0.937	100 > 120		>400 5-00689 CERTIFIED
5-00738	Solmax 460T-1000	H8232084	18-Jun-13	0.09	0.937	100 > 120		>400 5-00689 CERTIFIED
5-00739	Solmax 460T-1000	H8232084	19-Jun-13	0.09	0.937	100 > 120		>400 5-00689 CERTIFIED
5-00746	Solmax 460T-1000	H8232084	19-Jun-13	0.09	0.937	100 > 120		>400 5-00689 CERTIFIED
<mark>5-00748</mark>	Solmax 460T-1000	H8232084	19-Jun-13	0.09	<mark>0.937</mark>	<mark>100 > 120</mark>		>400 5-00689 CERTIFIED
5-00755	Solmax 460T-1000	H8232083	19-Jun-13	0.08	0.937	100 > 120		>400 2-72432 CERTIFIED
5-00757	Solmax 460T-1000	H8232083	20-Jun-13	0.08	0.937	100 > 120		>400 2-72432 CERTIFIED
5-00759	Solmax 460T-1000	H8232083	20-Jun-13	0.08	0.937	100 > 120		>400 2-72432 CERTIFIED

CEPTE

Gagnon

Depar

Chank

Quantity (rolls) :

11

MANUFACTURING QUALITY CONTROL

Test Results - Rolls

Solmax, 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7 Tél.: 1-450-929-1234 • Fax.: 1-450-929-2547 • www.solmax.com

Project Name MARMATH, ND

Project Number : C-4507

Reference Number: 106163 Invoice Number :

213006

Product Solmax 460T-1000

Properties	Thickness ave / min.	Geo- membrane Density	Carbon Black Content	Carbon Black Dispersion	Yie Strength		Bre		Tear Resist.	Puncture Resist.	Dimension. Stability	Asperity Height in / out
Unit	mils	g/cc	%	Cat. 1 and 2	ppi	%	ppi	%	lbs	lbs	%	mils
Test Method	D5994	D1505/D792	D4218	D5596		D66	93		D1004	D4833	D1204	D7466
Frequency	Each roll	1/2 ro	1/2 ro	1/6 ro		1/2	ro		1/6 ro	1/6 ro	1/6 ro	Each roll
Specification	57 / 51	≥ 0.940	2.0 - 3.0	Cat. 1 _ Cat. 2	132	13	132	150	45	120	± 2	15
5-00732 MD XD	57 / 55	0.946	2.28	10 /10 Views	179.6 182.0	14.8 15.7	227 185	556 389	55.3 63.0	164.3	0.26 0.08	21.1 / 30.1
5-00733 MD XD	59 / 57	0.946	2.28	10 /10 Views	179.6 182.0	14.8 15.7	227 185	556 389	55.3 63.0	164.3	0.26 0.08	24.5 / 22.8
5-00734 MD XD	61 / 58	0.946	2.58	10 /10 Views	179.6 182.0	14.8 15.7	227 185	556 389	55.3 63.0	164.3	0.26 0.08	21.3 / 24.6
5-00737 MD XD	61 / 57	0.950	2.72	10 /10 Views	171.1 184.1	16.3 14.9	265 217	650 570	53.8 60.0	166.6	0.26 0.08	16.5 / 22.3
5-00738 MD XD	59 / 54	0.950	2.72	10 /10 Views	171.1 184.1	16.3 14.9	265 217	650 570	53.8 60.0	166.6	0.26 0.08	16.5 / 24.4
5-00739 MD XD	59 / 57	0.950	2.71	10 /10 Views	170.3 177.3	16.4 14.3	222 179	548 344	53.8 60.0	166.6	0.26 0.08	16.5 / 29.6
5-00746 MD XD	58 / 56	0.947	2.68	10 /10 Views	172.0 173.0	16.5 14.5	242 202	598 529	53.6 58.6	165.4	0.26 0.08	16.8 / 19.0
5-00748 MD XD	<mark>59 / 55</mark>	<mark>0.947</mark>	<mark>2.36</mark>	10/10 Views	162.0 170.9	<mark>17.0</mark> 15.1	<mark>227</mark> 208	552 572	52.5 54.9	<mark>156.1</mark>	-0.37 0.01	<mark>16.5 / 16.8</mark>
5-00755 MD XD	59 / 56	0.947	2.40	10 /10 Views	166.4 166.3	16.1 15.1	227 208	560 541	51.4 54.8	162.5	-0.39 0.06	17.1 / 18.3
5-00757 MD XD	59 / 54	0.949	2.98	10 /10 Views	171.5 174.0	16.5 15.7	232 188	565 470	52.9 57.0	162.0	-0.51 0.09	16.8 / 18.0
5-00759 MD XD	59 / 57	0.949	2.19	10 /10 Views	164.4 160.5	16.3 15.4	262 235	660 630	52.9 57.0	162.0	-0.51 0.09	16.7 / 17.0

CEPTED

Certificate of Analysis

Shipped To: SOLMAX 2801 BOUL MARIE-VICTORIN VARENNES QC J3X 1P7 CANADA

Recipient: Giguere Fax:

Delivery #: 88648988 PO #: 110259-0 Weight: 190200 LB Ship Date: 05/10/2013 Package: BULK Mode: Hopper Car Car #: CHVX898234 Seal No: 309437

Product:

MARLEX POLYETHYLENE K306 BULK Additive levels have been tested and meet minimum the specification for this lot. As a result, Standard OIT (by ASTM D 3895) is greater than 120 minutes (nominal value, not tested on every lot). As a result, High Pressure OIT (by ASTM D 5885) is greater than 1000 minutes (nominal value, not tested on every lot).

Lot Number: H8232084

Property	Test Method	Value	Unit
Melt Index HLMI Flow Rate Density Production Date	ASTM D1238 ASTM D1238 D1505 or D4883	0.090 10.60 0.9370 04/28/2013	g/10mi g/10mi g/cm3

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP (CPChem). However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin Quality Systems Coordinator

For CoA questions contact Customer Service Representative at 800-231-1212

Page 1 of 1

XV
Š
SOL

TECHNICAL DATA SHEET

Solmax HDPE Smooth - Imperial Values

Solmax International Inc., 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7

							Tel.: (450	Tel.: (450) 929-1234 Fax: (450) 929-2550		www.solmax.com
PROPERTY	TEST METHOD	FREQUENCY ⁽¹⁾ UNIT	⁽¹⁾ UNIT Imperial	Solmax 420-1000	Solmax 430-1000	Solmax 440-1000	Solmax 460-1000	Solmax 480-1000	Solmax 500-1000	Solmax 520-1000
SPECIFICATIONS										
Thickness (min. avg.)	ASTM D-5199	Every roll	mils	20.0	30.0	40.0	60.0	80.0	100.0	120.0
Thickness (min.)	ASTM D-5199	Every roll	mils	18.0	27.0	36.0	54.0	72.0	90.0	108.0
Resin Density	ASTM D-1505	1/Batch	g/cc	> 0.932	> 0.932	> 0.932	> 0.932	> 0.932	> 0.932	> 0.932
Melt Index - 190/2.16 (max.)	ASTM D-1238	1/Batch	g/10 min	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Sheet Density (8)	ASTM D-1505	Every 2 rolls	g/cc	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940
Carbon Black Content (9)	ASTM D-4218	Every 2 rolls	%	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0
Carbon Black Dispersion	ASTM D-5596	Every 6 rolls	Category	Cat. 1 & Cat. 2	Cat. 1 & Cat. 2	Cat. 1 & Cat. 2				
OIT - standard (avg.)	ASTM D-3895	1/Batch	min	100	100	100	100	100	100	100
Tensile Properties (min. avg) (2)	ASTM D-6693	Every 2 rolls								
Strength at Yield			ppi	40	66	84	130	177	210	252
Elongation at Yield			%	12	13	13	13	13	12	12
Strength at Break			ppi	76	122	162	243	326	380	456
Elongation at Break			%	600	700	700	700	700	700	700
Tear Resistance (min. avg.)	ASTM D-1004	Every 6 rolls	lbf	13	21	28	42	57	70	84
Puncture Resistance (min. avg.)	ASTM D-4833	Every 6 rolls	lbf	36	60	80	122	155	180	216
Dimensional Stability	ASTM D-1204	Every 6 rolls	%	±2	± 2	±2	±2	±2	±2	±2
Stress Crack Resistance (SP-NCTL)	ASTM D-5397	1/Batch	hr	400	400	400	400	400	400	400
Oven Aging - % retained after 90 days	ASTM D-5721	Per formulation								
HP OIT (min. avg.)	ASTM D-5885		%	80	80	80	80	80	80	80
UV Resistance - % retained after 1600 hr	GRI-GM-11	Per formulation								
HP-OIT (min. avg.)	ASTM D-5885		%	50	50	50	50	50	50	50
SUPPLY SPECIFICATIONS	(Roll dimensior	(Roll dimensions may vary ±1%)								
Roll Dimension - Width			Ŧ	22.3	22.3	22.3	22.3	22.3	22.3	22.3
Roll Dimension - Length	·		Ħ	1,400	1,000	780	520	400	320	265
Area (Surface/Roll)			sf	31,220	20,494	17,394	11,596	8,920	7,136	5,910
NOTES										

Testing frequency based on standard roll dimensions and one batch is approximately 180,000 lbs (or one railcar).
 Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.

8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results. 9. Correlation table is available for ASTM D1603 vs ASTM D4218. Both methods give the same results.

* All values are nominal test results, except when specified as minimum or maximum. * The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

X
N
ഗ

TECHNICAL DATA SHEET

Solmax HDPE Textured - Imperial Values

Solmax International Inc., 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7

						2	1011 (100) /2/ 1201 1 dv: (100) /2/ 2000		
PROPERTY	TEST	FREQUENCY ⁽¹⁾	(1) UNIT	Solmax 430T-1000	Solmax 440T-1000	Solmax 460T-1000	Solmax 480T-1000	Solmax FOOT-1000	Solmax 5201-1000
	INIEITOU		IIIIbellal	0001-001		0001 0001	0001 1001		0001 1070
SPECIFICATIONS	l	l	l	l	l	l	l	l	l
Thickness (min ava)	ASTM D-5994	Every roll	mils	0.62	38.0	57.0	76.0	95.0	114 0
I oweet individual for 8 out of 10 values			nile	27.0	36.0	54 0	72.0	0.00	108.0
Lowest individual for 10 out of 10 values	S		mils	26.0	34.0	51.0	68.0	85.0	102.0
Asperity Height (min. avg.) (3)	ASTM D-7466	Every roll	mils	10	15	15	15	15	15
Resin Density	ASTM D-1505	1/Batch	g/cc	> 0.932	> 0.932	> 0.932	> 0.932	> 0.932	> 0.932
Melt Index - 190/2.16 (max.)	ASTM D-1238	1/Batch	g/10 min	1.0	1.0	1.0	1.0	1.0	1.0
Sheet Density (8)	ASTM D-1505	Every 2 rolls	g/cc	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940
Carbon Black Content (9)	ASTM D-4218	Every 2 rolls	%	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0
Carbon Black Dispersion	ASTM D-5596	Every 6 rolls	Category	Cat. 1 & Cat. 2	Cat. 1 & Cat. 2	Cat. 1 / Cat. 2			
OIT - standard (avg.)	ASTM D-3895	1/Batch	min	100	100	100	100	100	100
Tensile Properties (min. avg) (2)	ASTM D-6693	Every 2 rolls							
Strength at Yield			ppi	66	88	132	176	210	252
Elongation at Yield			%	12	12	13	13	12	13
Strength at Break			ppi	66	88	132	167	150	252
Elongation at Break			%	150	150	150	150	100	150
Tear Resistance (min. avg.)	ASTM D-1004	Every 6 rolls	lbf	23	30	45	60	70	84
Puncture Resistance (min. avg.)	ASTM D-4833	Every 6 rolls	lbf	60	06	120	150	150	180
Dimensional Stability	ASTM D-1204	Every 6 rolls	%	±2	±2	±2	±2	±2	±2
Stress Crack Resistance (SP-NCTL)	ASTM D-5397	1/Batch	hr	400	400	400	400	400	400
Oven Aging - % retained after 90 days	ASTM D-5721	Per formulation							
HP OIT (min. avg.)	ASTM D-5885		%	80	80	80	80	80	80
UV Resistance - % retained after 1600 hr	GRI-GM-11	Per formulation							
HP-OIT (min. avg.)	ASTM D-5885		%	50	50	50	50	50	50
SUPPLY SPECIFICATIONS	(Roll dimensions may vary ±1%)	nay vary ±1%)							
Roll Dimension - Width			ŧ	22.3	22.3	22.3	22.0	22.0	22.0
Roll Dimension - Length			Ħ	1,000	780	540	420	320	265
Area (Surface/Roll)			sf	22,300	17,394	12,042	9,240	7,040	5,830
NOTES									

NOTES

1. Testing frequency based on standard roll dimensions and one batch is approximately 180,000 lbs (or one railcar).

Machine Direction (MD) and Cross Machine Direction (XMD or TD) average value's should be on the basis of 5 specimens each direction.
 Of 10 readings; 8 out of 10 must be >7 mils (0.18 mm), and lowest individual reading must be >5 mils (0.13 mm). ASTM D7466 is identical to GRI-GM12.
 Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.
 Correlation table is available for ASTM D1603 vs ASTM D4218. Both methods give the same results.

* All values are nominal test results, except when specified as minimum or maximum.

* The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

	AX
\mathbb{N}	Z
	$\overline{\bigcirc}$
	ഗ

TECHNICAL DATA SHEET

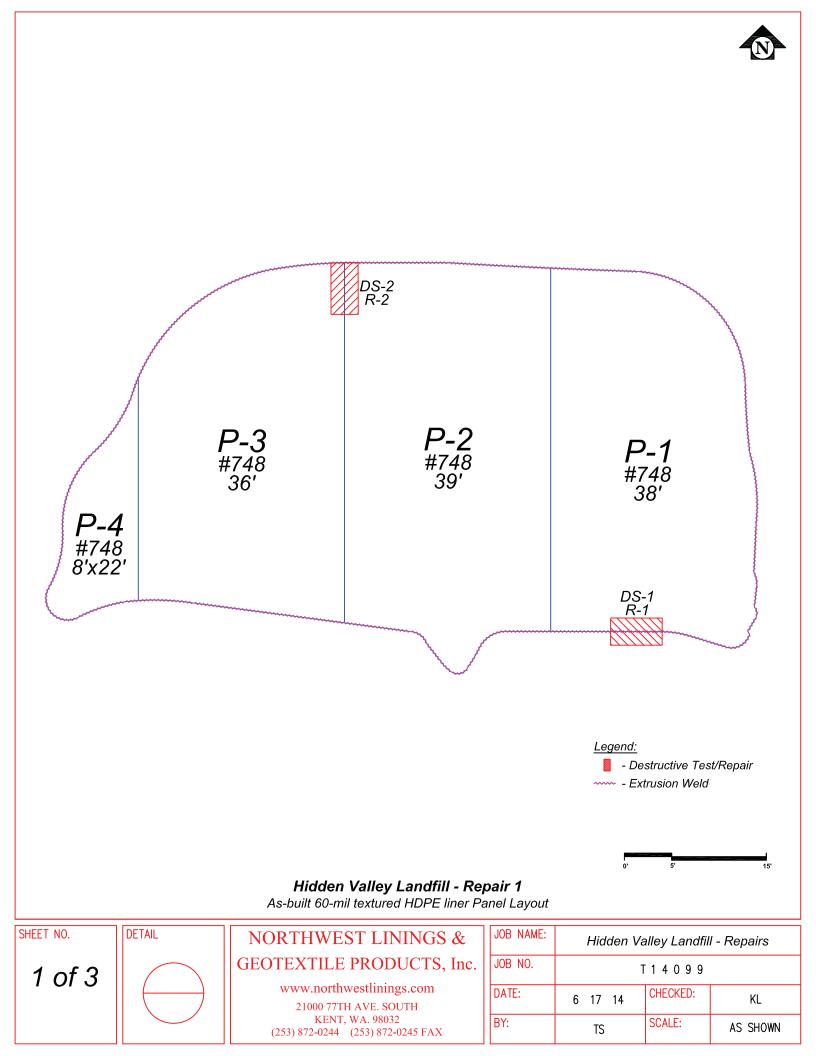
Solmax HDPE Single-Sided Textured - Imperial Values

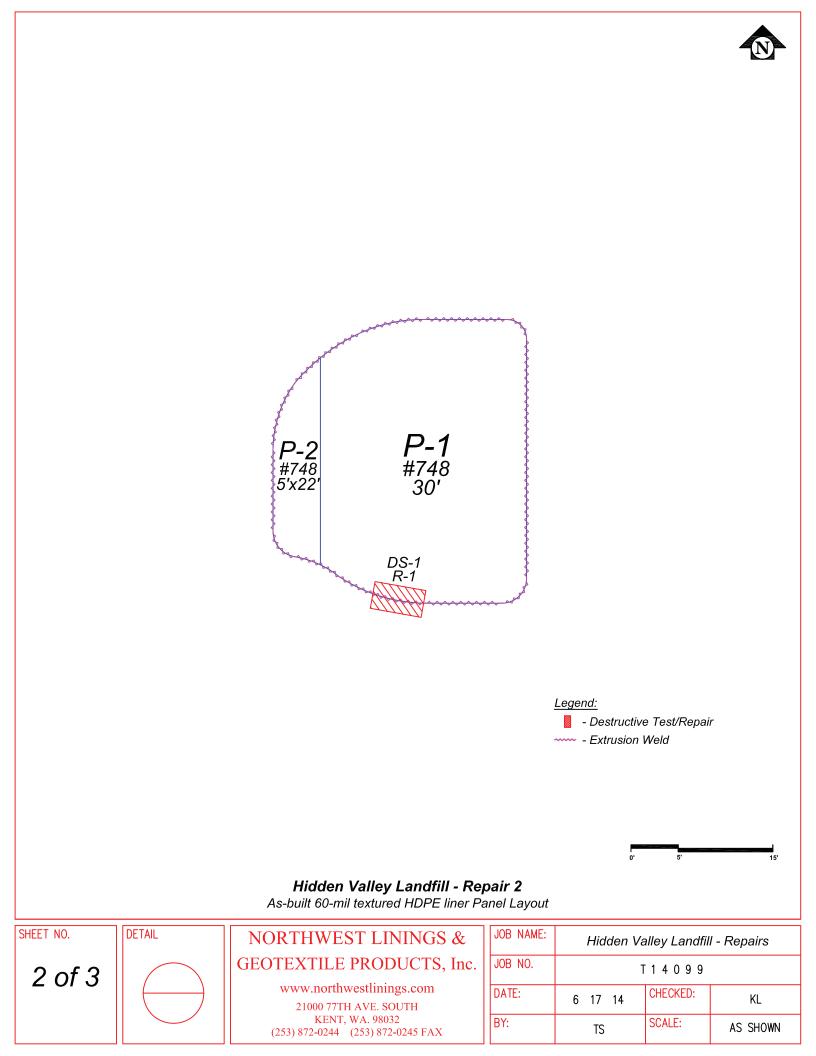
Solmax International Inc., 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7

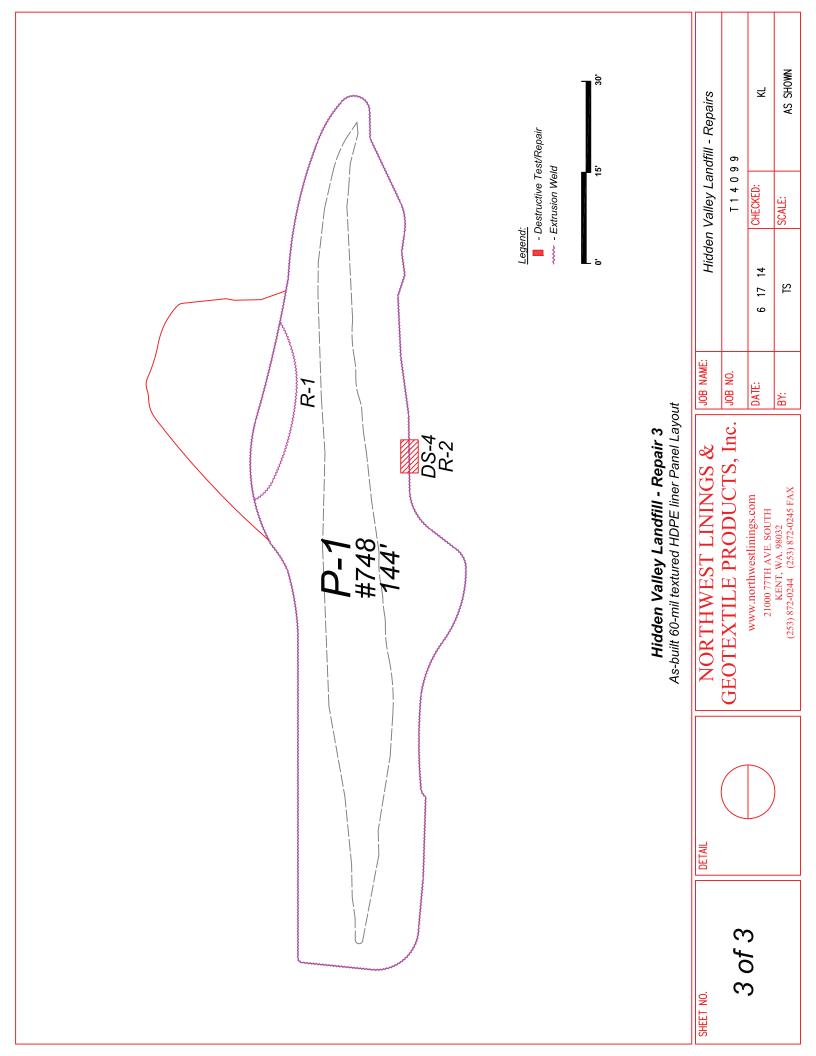
						Tel.:	Tel.: (450) 929-1234 Fax: (450) 929-2550		www.solmax.com
PROPERTY	TEST METHOD	FREQUENCY ⁽¹⁾	(1) UNIT Imperial	Solmax 430ST-1000	Solmax 440ST-1000	Solmax 460ST-1000	Solmax 480ST-1000	Solmax 500ST-1000	Solmax 520ST-1000
SPECIFICATIONS									
Thickness (min. avg.)	ASTM D-5994	Every roll	mils	28.5	38.0	57.0	76.0	95.0	114.0
Lowest individual for 8 out of 10 values			mils	27.0	36.0	54.0	72.0	90.06	108.0
Lowest individual for 10 out of 10 values	S		mils	26.0	34.0	51.0	68.0	85.0	102.0
Asperity Height (min. avg.) (3)	ASTM D-7466	Every roll	mils	10	15	15	15	15	15
Resin Density	ASTM D-1505	1/Batch	g/cc	> 0.932	> 0.932	> 0.932	> 0.932	> 0.932	> 0.932
Melt Index - 190/2.16 (max.)	ASTM D-1238	1/Batch	g/10 min	1.0	1.0	1.0	1.0	1.0	1.0
Sheet Density (8)	ASTM D-1505	Every 2 rolls	g/cc	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940	≥ 0.940
Carbon Black Content (9)	ASTM D-4218	Every 2 rolls	%	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0
Carbon Black Dispersion	ASTM D-5596	Every 6 rolls	Category	Cat. 1 & Cat. 2	Cat. 1 & Cat. 2	Cat. 1 / Cat. 2			
OIT - standard (avg.)	ASTM D-3895	1/Batch	min	100	100	100	100	100	100
Tensile Properties (min. avg) (2)	ASTM D-6693	Every 2 rolls							
Strength at Yield			ppi	63	88	132	176	210	252
Elongation at Yield			%	12	13	13	13	12	13
Strength at Break			ppi	46	88	132	167	150	252
Elongation at Break			%	100	150	150	150	100	150
Tear Resistance (min. avg.)	ASTM D-1004	Every 6 rolls	lbf	21	30	45	60	70	84
Puncture Resistance (min. avg.)	ASTM D-4833	Every 6 rolls	lbf	45	06	120	150	150	180
Dimensional Stability	ASTM D-1204	Every 6 rolls	%	±2	±2	±2	±2	±2	±2
Stress Crack Resistance (SP-NCTL)	ASTM D-5397	1/Batch	hr	400	400	400	400	400	400
Oven Aging - % retained after 90 days	ASTM D-5721	Per formulation							
HP OIT (min. avg.)	ASTM D-5885		%	80	80	80	80	80	80
UV Resistance - % retained after 1600 hr	GRI-GM-11	Per formulation							
HP-OIT (min. avg.)	ASTM D-5885		%	50	50	50	50	50	50
SUPPLY SPECIFICATIONS	(Roll dimensions may vary ±1%)	1ay vary ±1%)							
Roll Dimension - Width	ı		Ħ	22.3	22.3	22.3	22.0	22.0	22.0
Roll Dimension - Length	ı		Ħ	1,000	780	560	440	320	265
Area (Surface/Roll)	ı		sf	22,300	17,394	12,488	9,680	7,040	5,830

NOTES

1. Testing frequency based on standard roll dimensions and one batch is approximately 180,000 lbs (or one railcar).


Machine Direction (MD) and Cross Machine Direction (XMD or TD) average value's should be on the basis of 5 specimens each direction.
 Of 10 readings; 8 out of 10 must be >7 mils (0.18 mm), and lowest individual reading must be >5 mils (0.13 mm). ASTM D7466 is identical to GRI-GM12.
 Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.
 Correlation table is available for ASTM D1603 vs ASTM D4218. Both methods give the same results.


* All values are nominal test results, except when specified as minimum or maximum.


* The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

Attachment D

Geomembrane Installation Data

"Helping to Protect the Environment" 21000 77th Avenue South Kent, WA 98032 (253) 872-0244 / (800) 729-6954 FAX: (253) 872-0245 Date: 5/16/2014 Job #: T14099

Panel Placement Form

Project Name:	HIDDEN VALLEY LF	Supervisor:	R ARELLANO / R CRUZ
Project Location:	PUYALLUP WA	Engineer:	JERRY R
Project Description:	REPAIRS 1,2,&3	Contractor:	GLACIER CONST.
Project Manager:	KA	Contact:	JERRY R
		• •	

Material: 60-MIL HDPE TEXT.

Date	Panel #	Length	Width	Roll Number	Panel Location / Comment
5/16/14	1	38'	22.3	748	S-N
5/16/14	2	39'	22.3	748	S-N
5/16/14	3	36'	22.3	748	S-N
5/16/14	4	22'	8'	748	AT WEST END
5/16/14	1	30'	22.3	748	S-N
5/16/14	2	22'	5'	748	AT WEST END
5/30/14	1	144'	22.3	748	
5/30/14	I	144	22.3	740	
	ļ				

Notes:

"Helping to Protect the Environment" 21000 77th Avenue South Kent, WA 98032 (253) 872-0244 / (800) 729-6954 FAX: (253) 872-0245

Geomembrane Fusion Weld Trial Log

Project Name:	HIDDEN VALLEY LF	Supervisor:	R ARELLANO / R CRUZ
Project Location:	PUYALLUP WA	Engineer:	JERRY R
Project Description:	REPAIRS 1,2,&3	Contractor:	GLACIER CONSTRUCTION
Project Manager:	KA	Contact:	JERRY R

Material: 60-MIL HDPE TEXT.

Date/ Time AM Seemer Initials Machine Number Wedge Temp Nip Roller Temp Barrel Temp Preheat Temp Int. Bide Bail Side Bail Fail Bide Bait Fail Bide Bait Fail Bide Bait Fail Bide Bait Fail Bide Pass Fail Bide Fail Bide F					Welder	Extr		Track	c Peel V	/alues	Tei	nsile Va	lue
Inter Intrais Number Temp Speed Temp State State <t< td=""><td>Date/</td><td></td><td>Machine</td><td>Wedge</td><td>Nip Roller</td><td>Barrel</td><td>Preheat</td><td>In-</td><td></td><td></td><td></td><td>Data</td><td></td></t<>	Date/		Machine	Wedge	Nip Roller	Barrel	Preheat	In-				Data	
AM K1 3/3 500 440 109 Pass 184 2 F/M Pass Comments: 60-MIL HDPE TEXT. Ambient Temp: 55 107 Pass 98 2 F/M Pass 116 Pass 98 2 F/M Pass 116 Pass 116 Pass 116 Pass 116 Pass 157 2 F/M Pass 163 117 Pass 163 2 F/M Pass 165 Pass 165 Pass 165 Pass 145 Pass <td< td=""><td></td><td>Intials</td><td>Number</td><td>Temp</td><td>Speed</td><td>Temp</td><td>Temp</td><td>side</td><td>side</td><td>Fail</td><td></td><td></td><td></td></td<>		Intials	Number	Temp	Speed	Temp	Temp	side	side	Fail			
AM 100 440 109 Pass 184 2 F/M Pass Comments: 60-MIL HDPE TEXT. 107 Pass 166 2 F/M Pass 5/16/2014 RT/JM 373 500 430 127 Pass 167 2 F/M Pass Comments: 60-MIL HDPE TEXT. 116 Pass 163 2 F/M Pass 5/30/2014 MCV 507 500 500 123 117 Pass 155 Pass 5/30/2014 MCV 507 500 500 123 117 Pass 155 Pass Comments: 60-MIL HDPE SM. 145 Pass 155 Pass Comments: 60-MIL HDPE SM. 145 Pass 155 Pass Comments: 60-MIL HDPE SM. 145 Pass 167 Pass Comments: 60-MIL HDPE SM. 145 Pass 167 Pass Comments: 60-MIL HDPE SM. 145 Pass 167 Pass Comments: 60 60 60		ВТ	373										
Ambient Temp: 55 55 56 57 56 57 50 50 57 <td>AM</td> <td></td> <td></td> <td></td> <td></td> <td>500</td> <td>440</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	AM					500	440						
S/16/2014 RT/JM 373 500 430 116 Pass 166 2 F/M Pass Comments: 65 117 Pass 157 117 Pass 157 117 Pass 157 Pass 155 Pass 5/30/2014 MCV 507 500 500 123 117 Pass 156 Pass 11:37AM MCV 507 500 500 123 117 Pass 155 Pass Comments: 60-MIL HDPE SM. 112 Pass 155 Pass 155 Pass Comments: 60-MIL HDPE SM. Ambient Temp: 116 145 Pass 155 Pass Comments: Ambient Temp: 123 145 Pass 155 Pass Comments: Ambient Temp: 124 145 Pass 166 145 145 Comments: Ambient Temp: 123 145 145 145 145 145 Comments: 145 145 145	Comments:	60-MIL HDF	PE TEXT.						107	Pass	98	2 F/M	Pass
M K17JM 373 500 430 127 Pass 157 2 F/M Pass Comments: 60-MIL HDPE TEXT. Ambient Temp: 65 117 Pass 163 2 F/M Pass 5/30/2014 MCV 507 500 500 123 117 Pass 156 Pass 5/30/2014 MCV 507 500 500 123 117 Pass 156 Pass 5/30/2014 MCV 507 500 500 123 117 Pass 156 Pass Comments: 60-MIL HDPE SM. 145 Pass 155 Pass Comments: Ambient Temp: 145 Pass Comments: <td></td> <td></td> <td></td> <td></td> <td>Aml</td> <td>bient Temp:</td> <td>55</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Aml	bient Temp:	55						
M K17JM 373 500 430 127 Pass 157 2 F/M Pass Comments: 60-MIL HDPE TEXT. Ambient Temp: 65 117 Pass 163 2 F/M Pass 5/30/2014 MCV 507 500 500 123 117 Pass 156 Pass 5/30/2014 MCV 507 500 500 123 117 Pass 156 Pass 5/30/2014 MCV 507 500 500 123 117 Pass 156 Pass Comments: 60-MIL HDPE SM. 145 Pass 155 Pass Comments: Ambient Temp: 145 Pass Comments: <td></td> <td></td> <td>-</td> <td></td>			-										
PM 500 430 127 Pass 157 2 r/M Pass Comments: 65 117 Pass 163 2 r/M Pass 5/30/2014 MCV 507 500 500 127 Pass 155 Pass 11:37AM MCV 507 500 500 127 Pass 155 Pass Comments: 60-MIL HDPE SM. 123 117 Pass 155 Pass Comments: 60-MIL HDPE SM. 145 Pass 155 Pass Comments: 60-MIL HDPE SM. 145 Pass 155 Pass Comments: 60-MIL HDPE SM. 145 Pass 15 Pass Comments: 60-MIL HDPE SM. 145 Pass 165 160 Comments: 60-MIL HDPE SM. 4mbient Temp: 145 160 160 160 Comments: 60-MIL HDPE SM. 4mbient Temp: 160 160 160 160 Comments: 60-MIL HDPE SM. 60-MIL HDPE SM. 60 160 170 1		RT/JM	373			500	100						
Ambient Temp: 65 0 0 0 5/30/2014 MCV 507 500 500 123 117 Pass 156 Pass Comments: 60-MIL HDPE SM. 145 Pass 155 Pass Ambient Temp: 123 117 Pass 156 Pass Comments: 60-MIL HDPE SM. 145 Pass Comments: Ambient Temp: 145 Pass Comments: 145 Pass Comments: 145 Pass Comments: 145 Pass Comments: 145 Pass Ambient Temp: 145 145 Comments: 145 145 Ambient Temp: 145 145 Comments: 145 145 Ambient Temp: 145 145 Ambient Temp: 145 145 Comments: 145 145 Ambient Temp: 145 145 <						500	430						
S/30/2014 MCV 507 500 500 123 117 Pass 156 Pass Comments: 60-MIL HDPE SM. Ambient Temp: 145 Pass Ambient Temp: 145 Pass Comments: 145 145 Ambient Temp: 145 145 Ambient Temp: 145 145 Comments: 145 145 Ambient Temp: 145 145 Ambient Temp: 145 145 Ambient Temp: 145 145 Comments: 145 145 Ambient Temp: 145 145 Ambient Temp: 145 145 145	Comments:	60-MIL HDF	E IEXI.		A		<u>c</u> e		117	Pass	163	2 F/M	Pass
MCV 507 500 500 127 Pass 155 Pass Comments: 60-MIL HDPE SM. Ambient Temp: 145 Pass Ambient Temp: 145 Pass Comments: 60-MIL HDPE SM. 145 Pass Comments: 145 Pass Comments: 145 Pass Comments: 145 Pass Comments: Ambient Temp: 145 145 Comments: Ambient Temp: 145 145 145 Comments: Ambient Temp: 145 145 145 145 Comments: Ambient Temp: 145 <td></td> <td></td> <td></td> <td></td> <td></td> <td>bient lemp:</td> <td>60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						bient lemp:	60						
MCV 507 500 500 127 Pass 155 Pass Comments: 60-MIL HDPE SM. Ambient Temp: 145 Pass Ambient Temp: 145 Pass Comments: 60-MIL HDPE SM. 145 Pass Comments: 145 Pass Comments: 145 Pass Comments: 145 Pass Comments: Ambient Temp: 145 145 Comments: Ambient Temp: 145 145 145 Comments: Ambient Temp: 145 145 145 145 Comments: Ambient Temp: 145 <td>E/20/2014</td> <td></td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td>400</td> <td>447</td> <td>Deee</td> <td>450</td> <td>1</td> <td>Deee</td>	E/20/2014		I					400	447	Deee	450	1	Deee
Comments: 60-MIL HDPE SM. 145 Pass Ambient Temp: 145 Pass Comments: Ambient Temp: 145 Pass Comments: Ambient Temp: 145 145 Pass Comments: Ambient Temp: 145 145 Pass Comments: Ambient Temp: 145 145 145 145 Comments: Ambient Temp: 145 14		MCV	507			500	500		117				
Ambient Temp: I <				l		500	500	127		Pass			
Image: Comments: Image: Comments: <td>comments.</td> <td></td> <td></td> <td></td> <td>Aml</td> <td>hient Temn.</td> <td></td> <td></td> <td></td> <td></td> <td>140</td> <td></td> <td>Fa55</td>	comments.				Aml	hient Temn.					140		Fa55
Ambient Temp: I <						bient remp.							
Ambient Temp: I <													
Ambient Temp: I <													
Ambient Temp: I <	Comments:			I			I						
Image: constraint of the second se					Aml	bient Temp:							
Ambient Temp: I I I I Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments:						1							
Ambient Temp: I I I I Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments:													
Ambient Temp: I I I I Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments: Image: Comments:													
Image: constraint of the second se	Comments:												
Ambient Temp: I I I I I Image: Comments:					Aml	bient Temp:							
Ambient Temp: I I I I I Image: Comments:													
Ambient Temp: I I I I I Image: Comments:													
Ambient Temp: I I I I I Image: Comments:													
Image: Comments: Image: Comments: <td>Comments:</td> <td></td>	Comments:												
Ambient Temp: I I I I Image: Comments: Image: Comment state Image: Comment state Image: Comment state Image: Comment state					Aml	bient Temp:							
Ambient Temp: I I I I Image: Comments: Image: Comment state Image: Comment state Image: Comment state Image: Comment state													
Ambient Temp: I I I I Image: Comments: Image: Comment state Image: Comment state Image: Comment state Image: Comment state												ļ	
Ambient Temp: I I I I Image: Comments: Image: Comment state Image: Comment state Image: Comment state Image: Comment state	0												
Comments: Image: Comment state	Comments:												
					Aml	bient lemp:							
	Commenter		l	1	1		1						
Amolent (emp.	comments:				4 ml	hient Temp							
						siene remp.							

"Helping to Protect the Environment" 21000 77th Avenue South Kent, WA 98032 (253) 872-0244 / (800) 729-6954 FAX: (253) 872-0245 Date: 5/16/2014 Job #: T14099

Panel Seaming Form

Project Name:	HIDDEN VALLEY LF	Supervisor:	R ARELLANO / R CRUZ
Project Location:	PUYALLUP WA	Engineer:	JERRY R
Project Description:	REPAIRS 1,2,&3	Contractor:	GLACIER CONST.
Project Manager:	KA	Contact:	JERRY R
		-	

Material: 60-MIL HDPE TEXT.

Date/	Seam	Panel	Seam	Seamer	Machine	Machine	Ambient	Weather / Comments
Time	Number	Number	Length	Initials	Number	Temp	Temp	weather / comments
5/16/14 AM	1	P-3/P-2	37'	RT	373	500	60	P/C,S-N
5/16/14 AM	2	P-2/P-1	38'	RT	373	500	60	P/C,S-N
5/16/14 AM	3	P-1/P-4	24'	RT	373	500	60	P/C,S-N
5/16/14 PM	1	P-1/P-2	24'	RT	373	500	65	P/C,N-S
5/30/14 12:45PM	1	1&EXISTING	313'	MCV	507	500	500	PERIMETER EXTRUSION WELD

"Helping to Protect the Environment" 21000 77th Avenue South Kent, WA 98032 (253) 872-0244 / (800) 729-6954 FAX: (253) 872-0245 Date:5/16/2014Job #:T14099

Destructive Testing Form

Project Name:	HIDDEN VALLEY LF	Supervisor:	R ARELLANO / R CRUZ
Project Location:	PUYALLUP WA	Engineer:	JERRY R
Project Description:	REPAIRS 1,2,&3	Contractor:	GLACIER CONST.
Project Manager:	KA	Contact:	JERRY R

Material: 60-MIL HDPE TEXT.

Date/ Time Seam # Sample I.D. Tester Initials Machine Number In- side Out- side Pass/ Fail LBS/I nch Rate Pass/ Fail Pass/ Fail Peel/ Tensile 5/16/2014 PM P-1/E-L DS-1 DS-1 108 Pass 157 2 F/M Pass 100 Comments: 60-MIL HDPE TEXT. 82 Pass 150 2 F/M Pass 100 5/16/2014 P-2/P-3 DS-2 100 Pass 166 2 F/M Pass 100						Track	: Peel V	alues	Тег	ısile Va	lue	La	
Ime I.D. Initials Number side side Fail Tensile 5/16/2014 P-1/E-L DS-1 108 Pass 157 2 F/M Pass PM P-1/E-L DS-1 106 Pass 158 2 F/M Pass Comments: 60-MIL HDPE TEXT. 82 Pass 150 2 F/M Pass 5/16/2014 - - - - - - - 5/16/2014 -<	Date/	Soom #	Sample	Tester	Machine	In-				Pate		Pass / Fail	Peel/
PM F*1/E*L D3*1 106 Pass 158 2 F/M Pass Comments: 60-MIL HDPE TEXT. 82 Pass 150 2 F/M Pass 5/16/2014			I.D.	Initials	Number	side						r ass / Fall	Tensile
PM 106 Pass 158 2 F/M Pass Comments: 60-MIL HDPE TEXT. 82 Pass 150 2 F/M Pass 5/16/2014	5/16/2014	P-1/F-I	DS-1										
5/16/2014 100 Pass 166 /2 F/M Pass	PM												
5/16/2014 P-2/P-3 DS-2 100 Pass 166 2 F/M Pass	Comments:	60-MIL HDF	PE TEXT.				82	Pass	150	2 F/M	Pass		
5/16/2014 P-2/P-3 DS-2 100 Pass 166 2 F/M Pass													
5/16/2014 P-2/P-3 DS-2 100 Pass 166 2 F/M Pass													
	5/16/2014	P-2/P-3	DS-2										ļ
PM 102 Pass 157 2 F/M Pass													
Comments: 60-MIL HDPE TEXT. 114 Pass 163 2 F/M Pass	Comments:	60-MIL HDP	'E IEXI.				114	Pass	163	2 F/M	Pass		
	E/16/2014						400	Deee	404		Deee		
5/16/2014 P-2/E-L DS-1 103 Pass 134 2 F/M Pass PM P P DS-1 104 Pass 128 2 F/M Pass	5/16/2014	P-2/E-L	DS-1										
PM F*2/E*L D3*1 104 Pass 128 2 F/M Pass Comments: 60-MIL HDPE TEXT. 90 Pass 135 2 F/M Pass	E IVI												
	comments.						90	Fa55	130		F 855		<u> </u>
5/30/2014 L EXISTING DO 4 DO 747 69 Pass 72 Pass	5/30/2014					69		Pass		72	Pass		
5/30/2014 1 <existing< th=""> DS-4 RC 747 69 Pass 72 Pass 2:30PM 1<existing< td=""> DS-4 RC 747 91 Pass 72 Pass</existing<></existing<>	2:30PM	1 <existing< td=""><td>DS-4</td><td>RC</td><td>747</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></existing<>	DS-4	RC	747								
Comments: 60-MIL HDPE TEXT. 80 Pass 72 Pass	Comments:	60-MIL HDF	E TEXT.		I								
						00		1 400			1 400		
Comments:	Comments:												
Comments:	Comments:												
		-			-								
													ļ
Comments:	Comments:												
			1										
Commente:	Commontes												
Comments:	comments:												
													<u> </u>

"Helping to Protect the Environment" 21000 77th Avenue South Kent, WA 98032 (253) 872-0244 / (800) 729-6954 FAX: (253) 872-0245 Date:5/16/2014Job #:T14099

<u>Repair Report</u>

Project Location:	PUYALLUP WA	Engineer:	JERRY R
Project Description:	REPAIRS 1,2,&3	Contractor:	GLACIER CONST.
Project Manager:	KA	Contact:	JERRY R

Date	Repair ID#	Panel/ Seam#	Extruder Number	Operator Initials	Type of Repair/Detail/Location (I.E DT Patch, Rock Hole, Burn Out, Failed Seam, ETC)	V-Box Pass/Fail
5/16/14	1	P-1/E-L	373	RT	DS-1, 1'X3' PATCH TIE IN WITH E-L	Pass
5/16/14	2	P-2/P-3	373	RT	DS-2, 1'X3' PATCH AT N END	Pass
5/16/14	1	P-2/E-L	373	RT	DS-1, 1'X3' PATCH AT S END WITH- E-L	Pass
5/30/14	1	1	507	MCV	17' EXT WELD ON RELEASE CUT 5' FROM N END	Pass
5/30/14	2	1 <existing< td=""><td>507</td><td>MCV</td><td>3'X3' PATCH OVER DS-4, 10' FROM S BERM</td><td>Pass</td></existing<>	507	MCV	3'X3' PATCH OVER DS-4, 10' FROM S BERM	Pass

Date: 2014-05-20

Mail To:	Bill To:
Sam Adlington	
SCS Engineers	SCS Engineers
2405 140 Ave., NE #107	04214002.04
Bellevue , WA , 98005	

e-mail: sadlington@scsengineers.com klakey@scsengineers.com

Dear Mr. Adlington,

Thank you for consulting with TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	HVL Cover Repair
TRI Job Reference Number:	13220
Material(s) Tested:	(3) Single Extrusion Weld Seam(s)
Test(s) Requested:	SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54/882 mod.)

Codes:	
AD	Adhesion Failure (100% Peel)
BRK	Break in sheeting away from Seam edge.
SE	Break in sheeting at edge of seam.
AD-BRK	Break in sheeting after some adhesion failure - partial peel.
SIP	Separation in the plane of the sheet (leaving the bond intact).
FTB	Film tearing bond (all non "AD" failures).
NON-FTB	100% peel.

If you have any questions or require any additional information, please call us at 1-800-880-8378. Sincerely,

Sennip T. Tennuj

Jennifer Tenney Project Manager Geosynthetic Services Division http://www.geosyntheticstestinc.com

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS - SINGLE TRACK TRI Client: SCS Engineers Project: HVL Cover Repair

Material: 60 mil. HDPE SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54/882 mod.) TRI Log#: 13220

	TEST REPLICATE NUMBER						
PARAMETER	1	2	3	4	5	MEAN	
Sample ID: DS-1 Weld: Single Extrusion							
Side: Peel						Peel	
Peel Strength (ppi)	106	113	109	100	104	106	
Peel Incursion (%)	<5	<5	10	<5	<5		
Peel Locus Of Failure Code	SE	SE	AD-BRK	SE	SE		
Peel NSF Failure Code	FTB	FTB	FTB	FTB	FTB		
Shear						Shear	
Shear Strength (ppi)	175	166	165	169	166	168	
Shear Elongation @ Break (%)	>50	>50	>50	>50	>50		
Sample ID: DS-2 Weld: Single Extrusion							
Side: Peel						Peel	
Peel Strength (ppi)	85	99	98	109	91	96	
Peel Incursion (%)	<5	<5	<5	<5	<5		
Peel Locus Of Failure Code	SE	SE	SE	SE	SE		
Peel NSF Failure Code	FTB	FTB	FTB	FTB	FTB		
Shear						Shear	
Shear Strength (ppi)	168	166	175	177	165	170	
Shear Elongation @ Break (%)	>50	>50	>50	>50	>50		
Sample ID: DS-3 Weld: Single Extrusion							
Side: Peel						Peel	
Peel Strength (ppi)	106	117	100	105	130	112	
Peel Incursion (%)	<5	<5	<5	<5	<5		
Peel Locus Of Failure Code	SE	SE	SE	SE	SE		
Peel NSF Failure Code	FTB	FTB	FTB	FTB	FTB		
Shear						Shear	
Shear Strength (ppi)	168	166	168	163	178	169	
Shear Elongation @ Break (%)	>50	>50	>50	>50	>50		

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Date: 2014-06-03

Mail To:

Bill To:

Sam Adlington SCS Engineers 2405 140 Ave., NE #107 Bellevue , WA , 98005 SCS Engineers 4214002.04

e-mail: sadlington@scsengineers.com klakey@scsengineers.com

Dear Mr. Adlington,

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:		HVL Cover Repair
TRI Job Reference	e Number:	13220
Material(s) Tested	l:	(1) Single Extrusion Weld Seam(s)
Test(s) Requested	d:	SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54)
Codes		N .
AD	Adhesion failure (100% Pe	
BRK	Break in sheeting away fro	om Seam edge

BRK	Break in Sneeting away from Seam edge
SE	Break in sheeting at edge of seam
AD-BRK	Break in sheeting after some adhesion failure - partial peel
SIP	Separation in the plane of the sheet (leaving the bond intact)
FTB	Film tearing bond (all non "AD" failures)
NON-FTB	100% peel

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Jennige T. Tennuf

Jennifer Tenney Project Manager Geosynthetic Services Division www.GeosyntheticTesting.com

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: SCS Engineers Project: HVL Cover Repair

Material: 40 mil. LLDPE / 60mil. HDPE SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: 13220

1 ktrusion	2	3	4	5	MEAN
ctrusion					
					Peel
85	83	84	93	86	86
<5	<5	<5	<5	<5	
SE	SE	SE	SE	SE	
FTB	FTB	FTB	FTB	FTB	
					Shear
84	83	86	85	82	84
>50	>50	>50	>50	>50	
	<5 SE FTB 84	<5 <5 SE SE FTB FTB 84 83	<5	<5	<5

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Attachment E

Geonet Composite Quality Control Data

September 11, 2013 Northwest Linings & Geotextile Products, Inc. P.O Box 1248, 21000 77th Ave South Kent, WA, 98032

Ref. : Sheridan Cell 9 Phase II, WY Customer P.O. # C-4570 Product : TN 330-2-8/16

We certify that the TN 330-2-8/16 drainage geocomposite, meets the project requirements as stated in the specifications. The properties listed in this section are:

Property	Test Method	Unit	Require	ed Value	Qualifier
Geonet ³					
Mass per Unit Area	ASTM D 5261	lbs/ft ²	0.3	300	Minimum
Thickness	ASTM D 5199	mil	330 +	-/- 30	Range
Carbon Black	ASTM D 4218	%	2	.0	Minimum
Tensile Strength	ASTM D 5035	lbs/in	7	5	Minimum
Melt Flow	ASTM D 1238 ²	g/10 min	1	.0	Maximum
Density	ASTM D 1505	g/cm³	0.	94	Minimum
Transmissivity ¹	ASTM D 4716	m2/sec	5.0 >	< 10 ⁻³	Minimum
Composite					
Ply Adhesion	ASTM D 7005	lb/in	1	.0	MARV⁵
Geotextile ^{3 & 4}					
Fabric Weight	ASTM D 5261	oz/yd²	8.0	16.0	MARV
Grab Strength	ASTM D 4632	lbs	220	390	MARV
Grab Elongation	ASTM D 4632	%	50	50	MARV
Tear Strength	ASTM D 4533	lbs	90	150	MARV
Puncture Resistance	ASTM D 4833	lbs	120	240	MARV
Water Flow Rate	ASTM D 4491	gpm/ft ²	95	45	MARV
Permittivity	ASTM D 4491	Sec ⁻¹	1.26	0.57	MARV
AOS	ASTM D 4751	US Sieve	80	100	MaxARV
UV Resistance	ASTM D 4355	%/hrs	70/500	70/500	MARV

Notes:

1 Transmissivity measured using water at 21 ± 2 °C (70 ± 4 °F) with a gradient of 0.1 and a confining pressure of 10,000 psf between steel plates after 15 minutes.

2 Condition 190/2.16

3 Geotextile and Geonet properties are prior to lamination.

4 Geotextile data is provided by the supplier.

5 MARV is statistically defined as mean minus two standard deviations and it is the value which is exceeded by 97.5% of all the test data.

Sincerely,

Nilay Patel Nilay Patel QA Manager

Product : TN 330-2-8/16 Project : Sheridan Cell 9 Phase II, WY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project :

Roll	Geocomposite Roll Number	Geonet Roll Number	Geotextile Roll Number		Ply Adhesion (lb/in)		Geocomposite Transmissivity
			Side A	Side B	Minimum	Average	(m²/sec)
1	55291010001	55291010001 - N	5529.003	5529.217	1.53	3.43	
2	55291010002	55291010002 - N	5529.003	5529.217			
3	55291010003	55291010003 - N	5529.003	5529.217			
4	55291010004	55291010004 - N	5529.003	5529.213			
5	55291010005	55291010005 - N	5529.003	5529.213			
6	55291010006	55291010006 - N	5529.003	5529.213			
7	55291010007	55291010007 - N	5529.003	5529.215			
8	55291010008	55291010008 - N	5529.003	5529.215			
9	55291010009	55291010009 - N	5529.003	5529.215			
10	55291010010	55291010010 - N	5529.007	5529.203			
11	55291010011	55291010011 - N	5529.007	5529.203			
12	55291010012	55291010012 - N	5529.007	5529.203			
13	55291010013	55291010013 - N	5529.007	5529.238			
14	55291010014	55291010014 - N	5529.007	5529.238			
15	55291010015	55291010015 - N	5529.007	5529.238			
16	55291010016	55291010016 - N	5529.007	5529.212			
17	55291010017	55291010017 - N	5529.007	5529.212			
18	55291010018	55291010018 - N	5529.007	5529.212			
19	55291010019	55291010019 - N	5529.012	5529.204			
20	55291010020	55291010020 - N	5529.012	5529.204	1.30	2.58	
21	55291010021	55291010021 - N	5529.012	5529.204			
22	55291010022	55291010022 - N	5529.012	5529.237			
23	55291010023	55291010023 - N	5529.012	5529.237			
24	55291010024	55291010024 - N	5529.012	5529.237			
25	55291010025	55291010025 - N	5529.012	5529.211			
26	55291010026	55291010026 - N	5529.012	5529.211			
27	55291010027	55291010027 - N	5529.012	5529.211			

Product :

Project :

TN 330-2-8/16 Sheridan Cell 9 Phase II, WY

We, the Geonet Manufacturer, hereby certify the following for the material sent to the above referenced project :

Geonet Roll Number	Resin Lot Number	Geonet Density (gm/cc)	Mass Per Unit Area (Ib/ft ²)	Thickness (mils)	Carbon Black (%)	Tensile Strength (MD) (Ib/in)	Transmissivity (m ² /sec)
55291010001 - N	28612-3	0.9558	0.350	331	2.40	115	8.66 x 10 ⁻³
55291010002 - N	28612-3	0.9558					
55291010003 - N	28612-3	0.9558					
55291010004 - N	28612-3	0.9558					
55291010005 - N	28612-3	0.9558					
55291010006 - N	28612-3	0.9558					
55291010007 - N	28612-3	0.9558					
55291010008 - N	28612-3	0.9558					
55291010009 - N	28612-3	0.9558					
55291010010 - N	28612-3	0.9558					
55291010011 - N	28612-3	0.9558					
55291010012 - N	28612-3	0.9558					
55291010013 - N	28612-3	0.9558					
55291010014 - N	28612-3	0.9558					
55291010015 - N	28612-3	0.9558					
55291010016 - N	28612-3	0.9558					
55291010017 - N	28612-3	0.9558					
55291010018 - N	28612-3	0.9558					
55291010019 - N	28612-3	0.9558					
55291010020 - N	28612-3	0.9558	0.343	320	2.67	108	
55291010021 - N	28612-3	0.9558					
55291010022 - N	28612-3	0.9558					
55291010023 - N	28612-3	0.9558					
55291010024 - N	28612-3	0.9558					
55291010025 - N	28612-3	0.9558					
55291010026 - N	28612-3	0.9558					
55291010027 - N	28612-3	0.9558					

Product : TN 330-2-8/16 Project : Sheridan Cell 9 Phase II, WY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project :

Roll	Geocomposite Roll Number	Geonet Roll Number	Geotextile F	Geotextile Roll Number		hesion ′in)	Geocomposite Transmissivity
			Side A	Side B	Minimum	Average	(m²/sec)
28	55291010028	55291010028 - N	5529.005	5529.219			
29	55291010029	55291010029 - N	5529.005	5529.219			
30	55291010030	55291010030 - N	5529.005	5529.219			
31	55291010031	55291010031 - N	5529.005	5529.232			
32	55291010032	55291010032 - N	5529.005	5529.232			
33	55291010033	55291010033 - N	5529.005	5529.232			
34	55291010034	55291010034 - N	5529.005	5529.207			
35	55291010035	55291010035 - N	5529.005	5529.207			
36	55291010036	55291010036 - N	5529.005	5529.207			
37	55291010037	55291010037 - N	5529.009	5529.233			
38	55291010038	55291010038 - N	5529.009	5529.233			
39	55291010039	55291010039 - N	5529.009	5529.233			
40	55291010040	55291010040 - N	5529.009	5529.205	1.29	2.51	
41	55291010041	55291010041 - N	5529.009	5529.205			
42	55291010042	55291010042 - N	5529.009	5529.205			
43	55291010043	55291010043 - N	5529.009	5529.235			
44	55291010044	55291010044 - N	5529.009	5529.235			
45	55291010045	55291010045 - N	5529.009	5529.235			
46	55291010046	55291010046 - N	5529.001	5529.240			
47	55291010047	55291010047 - N	5529.001	5529.240			
48	55291010048	55291010048 - N	5529.001	5529.240			
49	55291010049	55291010049 - N	5529.001	5529.223			
50	55291010050	55291010050 - N	5529.001	5529.223			
51	55291010051	55291010051 - N	5529.001	5529.223			
52	55291010052	55291010052 - N	5529.001	5529.206			
53	55291010053	55291010053 - N	5529.001	5529.206			
54	55291010054	55291010054 - N	5529.001	5529.206			

Product : TN 330-2-8/16 Project : Sheridan Cell 9 Phase II, WY

We, the Geonet Manufacturer, hereby certify the following for the material sent to the above referenced project :

Geonet Roll Number	Resin Lot Number	Geonet Density (gm/cc)	Mass Per Unit Area (Ib/ft ²)	Thickness (mils)	Carbon Black (%)	Tensile Strength (MD) (Ib/in)	Transmissivity (m ² /sec)
55291010028 - N	28612-3	0.9558					
55291010029 - N	28612-3	0.9558					
55291010030 - N	28612-3	0.9558					
55291010031 - N	28612-3	0.9558					
55291010032 - N	28612-3	0.9558					
55291010033 - N	28612-3	0.9558					
55291010034 - N	28612-3	0.9558					
55291010035 - N	28612-3	0.9558					
55291010036 - N	28612-3	0.9558					
55291010037 - N	28612-3	0.9558					
55291010038 - N	28612-3	0.9558					
55291010039 - N	28612-3	0.9558					
55291010040 - N	28612-3	0.9558	0.345	322	2.72	111	
55291010041 - N	28612-3	0.9558					
55291010042 - N	28612-3	0.9558					
55291010043 - N	28612-3	0.9558					
55291010044 - N	28612-3	0.9558					
55291010045 - N	28612-3	0.9558					
55291010046 - N	28612-3	0.9558					
55291010047 - N	28612-3	0.9558					
55291010048 - N	28612-3	0.9558					
55291010049 - N	28612-3	0.9558					
55291010050 - N	28612-3	0.9558					8.36 x 10 ⁻ 3
55291010051 - N	28612-3	0.9558					
55291010052 - N	28612-3	0.9558					
55291010053 - N	28612-3	0.9558					
55291010054 - N	28612-3	0.9558					

SKAPS
STAT-S

SKAPS			ASTM	I D 4716
Client:	Northwest Linings & Geo	otextile Products. Inc.	Job #	5529
	Sheridan Cell 9 Phase II			0027
	TN 330-2-8/16			
Test Configuration	:			
		↓		×
	INFLOW	12 × 12 Test \$		UTFLOW
Test Informa	tion:			
		Steel Plate	Normal Load	
Boundary Conditio	ns:	Geonet	Gradient:	0.1
		Steel Plate		e: 15 minutes
			Flow Direction	on: MD
Test Results:				
Roll No.	Pressure, psf	Gradient		Transmissivity, m ² /sec
		oradiont		15 minutes
55291010001 - N				8.66 x 10 ⁻³
55291010050 - N	10000	0.1		8.36 x 10 ⁻³
55291010100 - N				8.45 x 10 ⁻³

	KAPS

Customer Name : Project Name : Geocomposite Manufacturer : Geocomposite Production Plant : Geocomposite Brand Name :

POLYETHYLENE RESIN CERTIFICATION

Northwest Linings & Geotextile Products, Inc. Sheridan Cell 9 Phase II, WY SKAPS Industries Commerce, GA TN 330-2-8/16

Resin Supplier	Resin Production Plant	Resin Brand Name	Resin Lot Number	Property	Test Method	Units	Resin Supplier Value	Tested Value*
New South Polymers,	Louis TV	ב ב ב ב ב ב ב	C C F VOC	Density	ASTM D1505	gm / cc	0.9513	0.9510
		НИРЕ	28012-3	Melt flow Index	ASTM D1238 ^(a)	gm / 10 min	0.35	0.34
(a) Condition 190/2.16* Data from SKAPS Quality Control	ty Control							

Attachment F

Geotextile Quality Control Data

Crown Resources

2694 Hayes Wilbank Road Toccoa, GA 30577 (864)968-0592

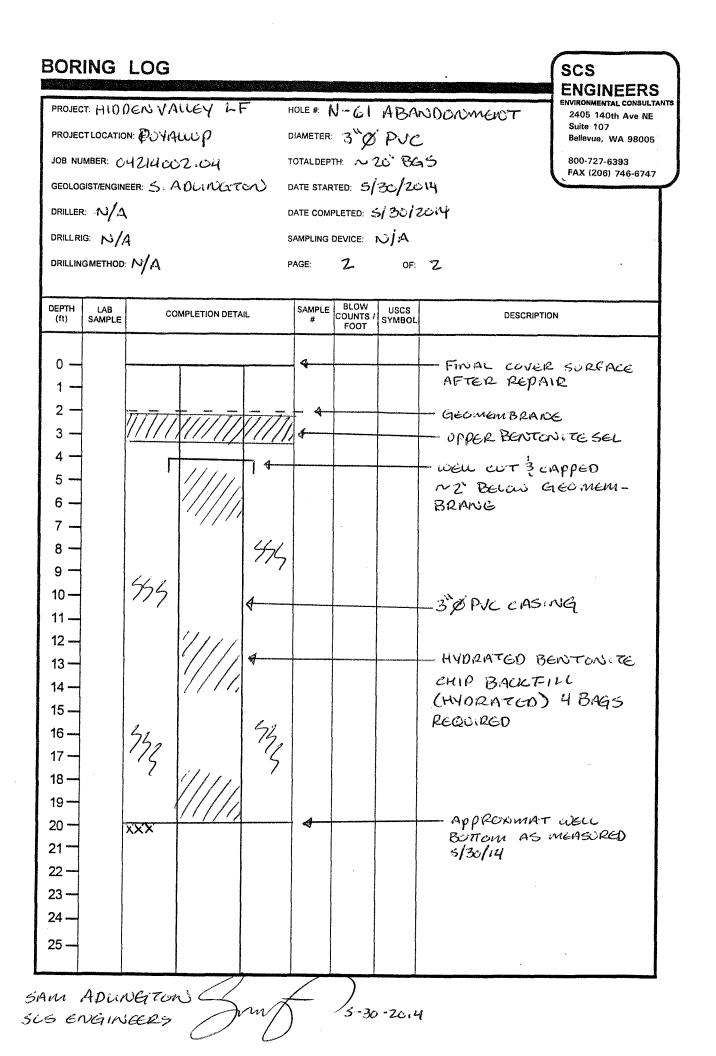
Geotextile Product Description Sheet

Style R060

R060 is a nonwoven geotextile produced by needlepunching synthetic staple fibers in a random network to form a high strength dimensionally stable fabric. The fibers are specially formulated to resist ultraviolet light deterioration, and are inert to commonly encountered soil chemicals. The fabric will not rot or mildew, is non-biodegradable, and is resistant to damage from insects and rodents. Polypropylene is stable within a ph range of 2 to 13. R060 conforms to the physical property values listed below:

Fabric Property	Test Method	Units	Minimum Average Roll Value			
Grab Tensile	ASTM D 4632	lbs.	160 (.711kN)			
Grab Elongation	ASTM D 4632	%	50			
Trap Tear	ASTM D 4533	lbs.	60 (.267 kN)			
CBR Puncture	ASTM D 6241	lbs	410 (1.82 kN)			
Permittivity*	ASTM D 4491	1/sec	1.6			
Water Flow*	ASTM D 4491	gpm/sqft	110 (4880 l/min/sm)			
AOS	ASTM D 4751	U.S. Sieve	70 (.212 mm)			
UV Resistance	ASTM D 4355	% Strength	70			
after 500 hrs.		Retained				
Packaging						
Roll Dimensions-Fe	eet		12.5 x 360/15 x 300			
Square Yards Per F			500			
Estimated Roll Wei	ght-Lbs.		195			

* At time of manufacturing, handling may change these properties.


To the best of our knowledge, the information contained herein is accurate. However, Crown Resources cannot anticipate all conditions under which product information and our products, or the products of other manufacturers in combination with our products, may be used. We accept no responsibility for results obtained by the application of this information or the safety or suitability of our products either alone or in combination with other products. Final determination of the suitability of any information or material for the use contemplated, of its manner of use, and whether the suggested use infringes any patents is the sole responsibility of the user.

Attachment G

Landfill Gas Well Abandonment

ENGINEER'S FIELD REPORT

Project			
****	S ENGINEERS		
INSPE	CTOR: JADUNGTON DATE: FIELD REPORT N 5/30/2014 FIELD REPORT N	0.	
Work ir	N Progress: WELL ABANDON MENT N-60 AT HIDDEN VALLE	-11	
	LANDFILL AS PART OF SOUTHWEST CLOSORE	-7	
	SINK HOLE REPAIR		
WEA	THER: CLEAR ~ 60°F, NO RAIN PREDICTED		
Time	Description	Action	Inform
0420	AS PART OF TRENCHING & GRADING FOR COVER		
	SYSTEM DRAINAGE DITCH. WELL N-61 REQUIRED		**************************************
	TO BE ABANDONED TO ALLOW FOR GRADING OF		
	SIDE SLOPES		
1030	CONFIRM NEED TO ABANDON WELL W/ KEVIN (SCS)		
	APPROXIMATELY & BIAGS of BEENTONITE REQUIRE	0	
	TO GROUT WELL CASING 3 REPAIR UPPER SEAL.		
	LEAVE SITE TO COLLECT MATERIALS :		
	6 BAGS BENTONITE CHIPS		
	1 3° Ø PVC CAP		
	5 GALLONS WATER.		Neven La voien en antiere et a definier et et a dem anne dem
1130	ARRIVE BACK ONSITE. BEGIN WELL ABANDONN	GATT	na dalam antarin, dalam gana haja banan nan menangan
	SEE ATTACHED LOG	<u> </u>	
1250	ABANDONMENT COMPLETE		
Attachm	ents	l	
Action Code:			
l - Ir	tem to Verify R - Respondent QA - Quality Assurance formation Needed E - Engineer Consultant		
	Jost Impact EC - Earthwork Contractor S - Supplier Schedule Impact GC - Geosynthetic Contractor - Supplier		
I	$(\langle \langle \langle \langle \rangle \rangle \rangle \rangle)$		
Inspector's	Signature Pag	eo	f_2_

