Port of Seattle Lora Lake Apartments Site

Remedial Investigation/ Feasibility Study

Volume II

Appendix G Lora Lake Parcel Remedial Investigation Data Report

Attachment G.3 Laboratory Analytical Data Reports

DIOXIN/FURAN ANALYTICAL METHODS AND REPORTING LIMIT DEFINITIONS

Frontier Analytical Laboratories analyzed soil, groundwater, and sediment samples collected as part of the Lora Lake Apartments Remedial Investigation and Feasibility Study (RI/FS) for dioxins/furans using U.S. Environmental Protection Agency (USEPA) Method 1613.

Currently, there are eight analytical methods that are routinely used for the determination of dioxins and furans. Of those, USEPA Methods 8290 and 1613 are fine-scale analytical methods comparable in the quality of analysis and results.¹ Both employ high resolution gas chromatography/high-resolution mass spectrometry processes that provide test results as low as parts per trillion (ppt) for solid samples and parts per quadrillion (ppq) for aqueous samples.

Analytical requirements for dioxins/furans are unique compared to other routinely monitored contaminants. Because dioxins/furans are toxic at much lower concentrations than other contaminants and dioxin/furan analysis requires speciation of many congeners, the analytical requirements are far more sophisticated and sensitive. For instance, most contaminants are commonly measured in parts per million (ppm) and parts per billion (ppb) whereas dioxins/furans are commonly measured in ppt and ppq. Stable isotopically labeled analogs of the target compounds are used to determine exact retention times and to correct targets for recovery, providing a more analytically precise value for the dioxins/furans than most other analyte groups.

USEPA Method 1613 defines three analytical limits for dioxin/furan analysis that are critical to the evaluation of the reported data and assessment of data quality. The Minimum Limit (ML) is the highest (least fine scale) limit, the Detection Limit (DL) is a mid-range limit, and the Method Detection Limit (MDL) is the lowest (finest scale) limit (refer to Figure 1). These limit definitions have significant importance in the calculation of dioxin/furan toxic equivalency quotients (TEQs), as discussed below.

The MDL is defined as "The minimum concentration of a substance that can be measured and reported with 99 percent confidence that the value is above zero and is determined from analysis of a sample in a given matrix type containing the analyte." (USEPA SW-846).² Therefore, there is a statistically valid 99 percent probability that any analyte observed greater than the MDL is, indeed, present in the sample. The USEPA has established the MDL as a reporting threshold. By laboratory and USEPA

¹ The primary differences in these methods are analyte recovery limits, internal standards, and sample holding times (described in detail in the Lora Lake Apartments RI/FS Work Plan). USEPA Method 1613 was selected to analyze the Lora Lake Apartments Site RI samples to take advantage of the method holding time of 1 year (in contrast to the USEPA Method 8290 holding time of 30 days). The longer holding time made it possible to follow the tiered dioxin/furan soil analysis approach described in the Lora Lake Apartments RI/FS Work Plan (Floyd|Snider 2010).

² The MDL is a statistically calculated value, and for operational purposes the USEPA states that when it is necessary to determine the MDL in a matrix, the MDL should be determined by multiplying the appropriate one-sided 99 percent t-statistic by the standard deviation obtained from a minimum of three analyses of matrix spike containing the analyte of interest at a concentration three to five times the estimated MDL, where the t-statistic is obtained from standard references or as described in Chapter 1 of SW-846 (USEPA 1992).

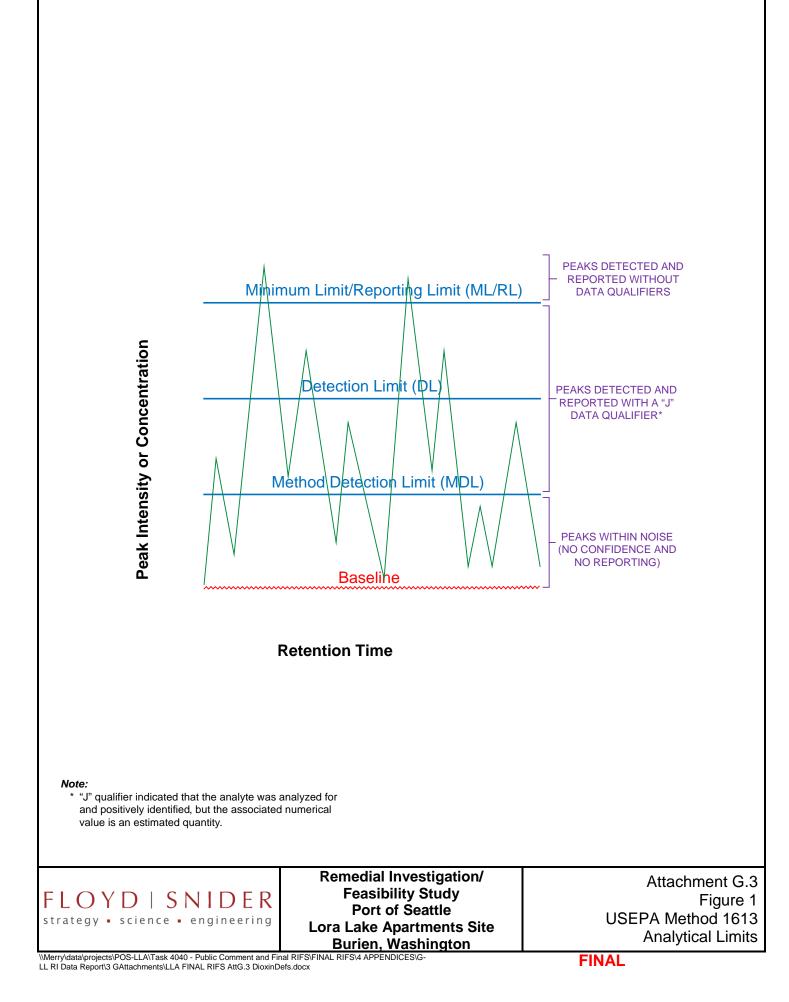
standards and industry convention, the analyte is considered "not present" even if a measured value less than this level is reported by the analytical process.

For USEPA Method 1613 the term Minimum Limit is used to represent the lowest point of calibration on the instrument or lowest standard. Minimum requirements for the MLs for dioxin/furan congeners are specified in the method. The ML is equivalent to a "reporting limit" (RL) as that term is used for other analytical methods (e.g., USEPA Method 6010 for metals or USEPA Method 8290 for semivolatile organic compounds). MLs and RLs are equivalent, and, in common practice are used interchangeably to refer to the lowest concentration of an analyte that the laboratory will routinely report or can reliably measure within specified control limits. Detected concentrations greater than or equal to the ML are quantified with a known and acceptable level of precision and accuracy.

MDLs and RLs are terms used to define analytical process limits used consistently across various analytical methods. USEPA Method 1613 dioxin/furan analysis also uses the term Detection Limit or DL. The DL is a "real response" that is based on the method-specific minimum signal-to-noise ratio for each congener, for each analysis run. The DL represents the sample- and matrix-specific level at which a congener can be detected. The DL level or concentration is greater than the MDL, but less than the ML. By definition, to designate a positive detection of an analyte, the analyte concentration must be measured at more than the method-specific minimum signal-to-noise ratio. A positive detection greater than the MDL and less than the ML is given a "J" qualifier to indicate that the analyte or congener was positively identified, but that the concentration was estimated because the precision and accuracy of the result is unknown at this low level. For USEPA Method 1613, the DL is effectively equivalent to the Estimated Detection Limit or EDL used for USEPA Method 8290. An EDL is often still calculated for USEPA Method 1613, per the Contract Laboratory Program requirements.

Given these definitions of analytical limits used for USEPA Method 1613, the common term "non-detect" or "non-detected" means that the analyte measurement was less than the MDL, where potential instrument responses are within the background noise associated with the equipment and analyses. When calculating dioxin/furan TEQ concentrations, non-detect congeners may be assigned a value of one-half of the DL, (WSDOE 2007) or may be assigned "zero." Because dioxins/furans are toxic at very low concentrations, the approach of assigning one-half of the DL for non-detected congeners or setting non-detect compounds to zero for the calculation of dioxin/furan TEQ concentrations is important in evaluating environmental data. Risk-based cleanup levels are often at low levels that may be near or less than the DLs.

REFERENCES


Floyd|Snider. 2010. Lora Lake Apartments Final Remedial Investigation/Feasibility Study Work Plan. Prepared for Port of Seattle. 30 July.

U.S. Environmental Protection Agency (USEPA). 1992. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846). Third Edition. Chapter 1.

http://www.epa.gov/epawaste/hazard/testmethods/sw846/online/ index.htm. Last accessed on November 29, 2011.

Washington State Department of Ecology (WSDOE). 2007. Concise Explanatory Statement and Responsiveness Summary for the Amendment of Chapter 173-340 WAC, Model Toxics Control Act Cleanup Regulation. Publication Number 07-09-108. October.

Figure

Laboratory Reports

Client: Floyd Snider	Project: POS-LL Lora Lake - Subsurface Sediment

	Page From:	Page To:
Inventory Sheet		
Cover Letter		
Chain of Custody Documentation	2	_6
Case Narrative, Data Qualifiers, Control Limits	7	22
SIM PAH Analysis		
Report and Summary QC Forms	_23_	51
PCP/Chlorophenols Analysis		
Report and Summary QC Forms	52	83
Metals Analysis		
Report and Summary QC Forms	84	110
General Chemistry Analysis		
Report and Summary QC Forms	111	124
Geotechnical Analysis		
Report and Summary QC Forms	NA_	NA
Total Solids		
Report and Summary QC Forms	125	129
Subcontracted Analysis	ACA	NA - DISK PROVIDED
Report and Summary QC Forms	130	+32
SIM PAH Raw Data	130	Be "/21/
Extractions Bench Sheets and Notes	133	132
Initial Calibration	_133_	190
Run Logs, Continuing Calibrations, and Raw Data	_191_	457
PCP/Chlorophenols Raw Data		
Extractions Bench Sheets and Notes	458	460
Initial Calibration	MGI	503
Run Logs, Continuing Calibrations, and Raw Data	504	<u>5 86</u>
Metals Raw Data		
Preparation Bench Sheets and Notes	587	590
Run Logs, Calibrations, and Raw Data	591	690

3CMarch-24-2011SignatureDate

May 10, 2011

Ms. Sue Dunnihoo Analytical Resources Incorporated 4611 South 134th Place Tukwila, WA 98168-3240

Dear Ms. Dunnihoo,

Enclosed are the results for Frontier Analytical Laboratory project **6733**. This corresponds to your **Lora Lake Parcel** project under ARI project number **SS71**. Nineteen soil samples were received on 4/22/2011 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. In addition, a matrix spike and matrix spike duplicate (MS/MSD) were performed on sample 6733-009-SA (ARI ID: LL-SB4-2-4-041911). The 2005 World Health Organizations toxic equivalency factors (TEFs) were used to calculate the toxic equivalents (TEQ) on your report. Analytical Resources Incorporated requested a Level IV data package and a turnaround time of fifteen business days for project **6733**.

The following Level IV report consists of an Analytical Data section, a Sample Receipt section, a Laboratory Raw Data section, and an Instrument Raw Data section. The Analytical Data section contains our project-sample tracking log and the analytical results. The Sample Receipt section contains your chain of custodies, our sample login form and the sample photos. The Laboratory Raw Data section contains our project request sheet, a percent solids sheet, an extraction bench sheet and the cleanup bench sheet. The instrument raw data section contains three sub-sections; the sample results section, the initial calibration section and the continuing/ending calibration section. The sample results sub-section consists of the quantitation summary forms with chromatograms for all samples and QC. The initial calibration subsection consists of the individual quantitation summary forms and chromatograms for each point of the initial calibration curve as well as an overall quantitation summary form of the initial calibration curve. The continuing/ending calibration sub-section consists of the quantitation summary forms and chromatograms for all beginning and ending calibration injections associated with the samples and QC. You also requested Electronic Data Deliverables (EDD) for this project. The EDD and Level I summary have been sent to you via email. The Level IV report has been sent to you on compact disk. A hardcopy of the data package will not be forwarded unless specifically requested. The attached results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full.

If you have any questions regarding project **6733**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush

Director of Operations

FRONTIER ANALYTICAL LABORATORY 5172 Hillsdale Circle • El Dorado Hills, CA 95762 Tel (916) 934-0900 • Fax (916) 934-0999 www.frontieranalytical.com

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 6733

Received on: 04/22/2011

Project Due: 05/16/2011 Storage: R2

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
6733-001-SA	0	SS71	LL-SB6-0-0.5-041811	EPA 1613 D/F	Soil	04/18/2011	02:50 pm	04/17/2012
6733-002-SA	0	SS71	LL-SB6-1.5-2-041811	EPA 1613 D/F	Soil	04/18/2011	03:05 pm	04/17/2012
6733-003-SA	0	SS71	LL-SB6-2-4-041811	EPA 1613 D/F	Soil	04/18/2011	03:15 pm	04/17/2012
6733-004-SA	0	SS71	LL-SB5-0-0.5-041811	EPA 1613 D/F	Soil	04/18/2011	04:00 pm	04/17/2012
6733-005-SA	0	SS71	LL-SB5-1.5-2-041811	EPA 1613 D/F	Soil	04/18/2011	04:15 pm	04/17/2012
6733-006-SA	0	SS71	LL-SB5-2-4-041811	EPA 1613 D/F	Soil	04/18/2011	04:30 pm	04/17/2012
6733-007-SA	0	SS71	LL-SB4-0-0.5-041911	EPA 1613 D/F	Soil	04/19/2011	09:10 am	04/18/2012
6733-008-SA	0	SS71	LL-SB4-1.5-2-041911	EPA 1613 D/F	Soil	04/19/2011	09:25 am	04/18/2012
6733-009-SA	0	SS71	LL-SB4-2-4-041911	EPA 1613 D/F	Soil	04/19/2011	09:45 am	04/18/2012
6733-009-MS	0	SS71	LL-SB4-2-4-041911	EPA 1613 D/F	Soil	04/19/2011	09:45 am	04/18/2012
6733-009-MSD	0	SS71	LL-SB4-2-4-041911	EPA 1613 D/F	Soil	04/19/2011	09:45 am	04/18/2012
6733-010-SA	0	SS71	LL-SB3-0-0.5-041911	EPA 1613 D/F	Soil	04/19/2011	11:20 am	04/18/2012
6733-011-SA	0	SS71	LL-SB3-1.5-2-041911	EPA 1613 D/F	Soil	04/19/2011	11:30 am	04/18/2012
6733-012-SA	0	SS71	LL-SB3-2-4-041911	EPA 1613 D/F	Soil	04/19/2011	11:40 am	04/18/2012
6733-013-SA	0	SS71	LL-SB2-0-0.5-041911	EPA 1613 D/F	Soil	04/19/2011	01:45 pm	04/18/2012
6733-014-SA	0	SS71	LL-SB2-1.5-2-041911	EPA 1613 D/F	Soil	04/19/2011	02:00 pm	04/18/2012
6733-015-SA	0	SS71	LL-SB2-2-3.5-041911	EPA 1613 D/F	Soil	04/19/2011	02:15 pm	04/18/2012
6733-016-SA	0	SS71	LL-SB1-0-0.5-041911	EPA 1613 D/F	Soil	04/19/2011	03:10 pm	04/18/2012
6733-017-SA	0	SS71	LL-SB1-0-0.5-041911-D	EPA 1613 D/F	Soil	04/19/2011	03:15 pm	04/18/2012
6733-018-SA	0	SS71	LL-SB1-1.5-2-041911	EPA 1613 D/F	Soil	04/19/2011	03:35 pm	04/18/2012
6733-019-SA	0	SS71	LL-SB1-2-4-041911	EPA 1613 D/F	Soil	04/19/2011	03:50 pm	04/18/2012

FAL ID: 6733-001-MB Client ID: Method Blank Matrix: Soil Batch No: X2282	Date	e Extracted: 05 e Received: N/ ount: 5.00 g			PCDDFAL3-3 olumn: DB5 pg/g	-7-11	Acquired: 05-04-2011 2005 WHO TEQ: 0.00			
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	d Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N	D 0.203 D 0.219 D 0.288 D 0.247 D 0.341			0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144	Total TCDE Total PeCDE Total HxCDE Total HxCDE	D ND D ND	0.142 0.203 0.288 0.341		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	N N N N N N N N N N N N N N N	D 0.157 D 0.169 D 0.179 D 0.168 D 0.190 D 0.176 D 0.255 D 0.292		- - - - - - - - - - -	0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total PeCDI Total HxCDI	F ND F ND	0.115 0.169 0.190 0.292		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,7,8,9-HpCDF 13C-1,2,3,7,8-HpCDF 13C-1,2,3,7,8-HpCDF 13C-1,2,3,7,8,9-HpCDF 13C-1,2,3,7,8,9-HpCDF 13C-1,2,3,7,8,9-HpCDF 13C-1,2,3,7,8-HpCDF 13C-1,2,3,7,8-HpCDF 13C-1,2,3	% Rec 92.2 85.5 91.1 100 102 76.2 98.4 97.7 95.4 95.9 99.9 95.1 99.2 93.0 115 79.7 88.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Quai		A signal t B Analyte C Chemic D Presen E Analyte F Analyte J Analyte M Maximu ND Analyte NP Not Pro- Filte S Sample X Matrix i	c Labeled Stand o noise ratio is > a is present in Me cal Interference ce of Diphenyl E concentration is concentration or concentration or con	>10:1 ethod Blank Ethers s above calib n secondary of s below calib centration Vhatman 0.70 teria not met	ration range column ration range um GF/F filt	e	
Analyst:						Reviewed	I Ву:			

5/0

Date:

FAL ID: 6733-001-OPR Client ID: OPR Matrix: Soil Batch No: X2282	Date Extracted: 05-02-2011 Date Received: NA Amount: 5.00 g	ICal: PCDDFAL3-3-7-11 Acquired: 05-04-2011 GC Column: DB5 2005 WHO TEQ: NA Units: ng/ml
Compound	Conc QC Limits Qua	Ι
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Internal Standards	% Rec QC Limits Qua	I
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF Cleanup Surrogate 37Cl-2,3,7,8-TCDD	95.0 20.0 - 175 90.3 21.0 - 227 92.0 21.0 - 193 103 25.0 - 163 103 26.0 - 166 79.0 13.0 - 198 101 22.0 - 152 101 21.0 - 192 98.6 13.0 - 328 97.1 19.0 - 202 101 21.0 - 159 97.7 22.0 - 176 98.2 17.0 - 205 94.7 21.0 - 158 122 20.0 - 186 83.4 13.0 - 198	 A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 B Analyte is present in Method Blank C Chemical Interference D Presence of Diphenyl Ethers E Analyte concentration is above calibration range F Analyte concentration on secondary column J Analyte concentration is below calibration range M Maximum possible concentration ND Analyte Not Detected NP Not Provided P Pre-filtered through a Whatman 0.7um GF/F filter S Sample acceptance criteria not met X Matrix interferences * Result taken from dilution or reinjection
Analyst: Date:		Reviewed By: Date:

000004 of 000726 5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

FAL ID: 6733-001-MB Client ID: Method Blank Matrix: Soil Batch No: X2283	Date	Extracted: 05-05-2 Received: NA unt: 5.00 g	GC C	ICal: PCDDFAL3-3-7-11 GC Column: DB5 Units: pg/g			5-07-2011 TEQ: 0.00
Compound	Cond	c DL Qual	2005 WHO Tox		Compound	Conc	DL Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NC NC NC NC NC	0 0.209 0 0.250 0 0.322 0 0.279 0 0.424		0.0434 0.0467	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.126 0.209 0.322 0.424
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NC NC NC NC NC NC NC	0 0.170 0 0.186 0 0.228 0 0.234 0 0.261 0 0.246 0 0.263 0 0.335		0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.115 0.186 0.261 0.335
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,7,8,9-HyCDF 13C-1,2,3,7,8,9-HyCDF 13C-1,2,3,7,8-HYCDF 13C-1,2,3,7,8-HYCDF 13C-1,2,3,7,8,9-HYCDF 13C-1,2,3,7,8-HYCDF 13C-1,2,3,7,8-HYCDF 13C-1,2,3,4,7,8-HYCDF 13C-1,2,3,4,7,8-HYCDF 13C-1,2,3,4,7,8-HYCDF 13C-1,2,3,4,7,8-HYCDF 13C-1,2,3,4,7,8-HYCDF 13C-1,2,3,4,7,	% Rec 93.1 95.7 94.5 98.9 93.8 53.7 98.1 105 101 94.2 93.9 93.0 108 58.7	QC Limits Qual 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157 35.0 - 197		A signal to B Analyte ii C Chemica D Presence E Analyte of J Analyte of M Maximum ND Analyte N NP Not Prov P Pre-filtero S Sample a X Matrix int	ided ed through a Wha acceptance criter	D:1 nod Blank ers above calibr econdary c below calibr ntration ntration atman 0.7u ia not met	ration range olumn ration range m GF/F filter
Analyst:					Reviewed B	y: 	

Date: <u>5/9/11</u>

Reviewed By:_____ Date:______

FAL ID: 6733-001-OPR Client ID: OPR Matrix: Soil Batch No: X2283	Date Extracted: 05-05-2011 Date Received: NA Amount: 5.00 g	ICal: PCDDFAL3-3-7-11 GC Column: DB5 Units: ng/ml	Acquired: 05-07-2011 2005 WHO TEQ: NA
Compound	Conc QC Limits Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
Internal Standards	% Rec QC Limits Qual		
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF Cleanup Surrogate 37Cl-2,3,7,8-TCDD	99.5 $20.0 - 175$ 108 $21.0 - 227$ 95.3 $21.0 - 193$ 105 $25.0 - 163$ 99.4 $26.0 - 166$ 58.9 $13.0 - 198$ 103 $22.0 - 152$ 109 $21.0 - 192$ 106 $13.0 - 328$ 103 $19.0 - 202$ 102 $21.0 - 159$ 97.5 $22.0 - 176$ 98.0 $17.0 - 205$ 96.6 $21.0 - 158$ 110 $20.0 - 186$ 62.6 $13.0 - 198$	 A signal to noise ratio B Analyte is present C Chemical Interfere D Presence of Diphe E Analyte concentrat F Analyte concentration J Analyte concentration J Analyte concentration M Maximum possible ND Analyte Not Detect NP Not Provided P Pre-filtered through S Sample acceptance X Matrix interference 	in Method Blank nce nyl Ethers ion is above calibration range on on secondary column ion is below calibration range concentration red n a Whatman 0.7um GF/F filter e criteria not met
Analyst: Date: 5/9/11		Revie Date:	wed By: S/9//,

FAL ID: 6733-001-SA Client ID: LL-SB6-0-0.5-0418 Matrix: Soil Batch No: X2282	11 Date Amo	Extracted: 09 Received: 04 ount: 5.03 g olids: 84.24						Acquired: 05-04-2011 2005 WHO TEQ: 40.4		
Compound	Con	c DL	Qual	2005 WHO Tox		MDL	Compound	l Conc	DL Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.89 7.9 15. 46. 30. 133 1070 0.47 0.61 2.0 17. 5.7 7.3 1.5 17 8.1	7 - 9 - 66 - 3 - 00 - 7 - 22 - 22 - 24 - 55 - 33 - 55 - 33 - 66 -	J J J	0.890 7.97 1.59 4.66 3.03 13.3 3.21 0.0477 0.0185 0.606 1.72 0.574 0.735 0.155 1.73 0.0816 0.122		0.0259 0.0434 0.0587 0.0529 0.0742 0.144 0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HxCDF	 29.5 221 2140 2140 37.2 37.2 176 	-	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2DF Cleanup Surrogate	% Rec 79.4 79.4 77.4 84.4 95.7 86.3 83.1 91.3 88.9 79.2 80.1 78.0 81.5 83.3 102 82.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 133 28.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual	0.122	C D E F J M D N P S	Isotopic I signal to Analyte i Chemica Presence Analyte o Analyte o Analyte o Maximur Analyte N Not Prov Pre-filter Sample a Matrix in	Labeled Standa noise ratio is > s present in Me I Interference e of Diphenyl E concentration is confirmation on concentration is n possible conc Not Detected	ard outside (10:1 ethod Blank thers above calif secondary below calif centration /hatman 0.7 eria not met	oration range column oration range um GF/F filter	

Analyst:

37CI-2,3,7,8-TCDD

75.9

35.0 - 197

Date:

C

Reviewed By:

FAL ID: 6733-002-SA Client ID: LL-SB6-1.5-2-04181 Matrix: Soil Batch No: X2282	I1 Dat Am	e Extracted: 0 e Received: 0 ount: 5.04 g Solids: 88.43		GC Co					5-04-2011 TEQ: 7.57
Compound	Со	nc DL	Qual	2005 WHO Tox		MDL	Compound	Conc	DL Qual
2,3,7,8-TCDD	0.3	17 -	J	0.317		0.0259			
1,2,3,7,8-PeCDD	1.2		J	1.21		0.0434			
1,2,3,4,7,8-HxCDD	2.0		J	0.204		0.0467			
1,2,3,6,7,8-HxCDD	8.5	56 -		0.856		0.0587	Total TCDD	7.72	-
1,2,3,7,8,9-HxCDD	4.(- 05	J	0.405		0.0529	Total PeCDD	14.3	-
1,2,3,4,6,7,8-HpCDD	23	38 -		2.38		0.0742	Total HxCDD	59.0	-
ÓCDD	244	40 -		0.732		0.144	Total HpCDD	467	-
2,3,7,8-TCDF	0.62	25 -	J	0.0625		0.0200			
1,2,3,7,8-PeCDF	0.33	- 30	J	0.00990		0.0304			
2,3,4,7,8-PeCDF	0.82	25 -	J	0.248		0.0322			
1,2,3,4,7,8-HxCDF	2.9	91 -	J	0.291		0.0365			
1,2,3,6,7,8-HxCDF	1.2		J	0.129		0.0357			
2,3,4,6,7,8-HxCDF	2.0	- 09	J	0.209		0.0399			
1,2,3,7,8,9-HxCDF	0.24		J	0.0247		0.0386	Total TCDF		-
1,2,3,4,6,7,8-HpCDF	43			0.430		0.0393	Total PeCDF		-
1,2,3,4,7,8,9-HpCDF	2.0		J	0.0206		0.0418	Total HxCDF		-
OCDF	1:	37 -		0.0411		0.105	Total HpCDF	141	-
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HpCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 97.1 97.2 98.8 104 114 97.3 102 108 107 101 105 100 102 103 121 97.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		C D E F J M D P S	signal to Analyte i Chemica Presence Analyte o Analyte o Analyte o Maximum Analyte N Not Prov Pre-filter Sample a Matrix int	Labeled Standa noise ratio is > s present in Me il Interference e of Diphenyl Ei concentration is confirmation on concentration is n possible conc Not Detected ided ed through a W acceptance crite terferences ken from dilutio	10:1 thod Blank thers above calit secondary below calit entration hatman 0.7 eria not met	oration range column oration range um GF/F filter
Cleanup Surrogate									
37CI-2,3,7,8-TCDD	93.4	35.0 - 197							
Analyst:							Reviewed	By:	

000008 of 000726 5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

Date:

5/5/11

Date:

FAL ID: 6733-003-SA Client ID: LL-SB6-2-4-041811 Matrix: Soil Batch No: X2282	Date Amo	e Extracted: 0 e Received: 0 ount: 4.96 g olids: 90.31		ICal: PCDDFAL3-3-7-11 GC Column: DB5 Units: pg/g				Acquired: 05-04-2011 2005 WHO TEQ: 4.58		
Compound	Cor	ic DL	Qual	2005 WHO Tox		MDL	Compound	l Conc	DL Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	N 0.76 1.1 5.5 2.2 15 171 0.28 N 0.46 2.0 0.79 1.1 N 26 1.3 94	7 - 9 - 10 - 19 - 14 - 0 - 16 - 10 0.2022 11 - 12 - 11 - 12 - 13 - 14 - 15 - 16 - 17 -]]]]]]]]]]	0.767 0.119 0.550 0.229 1.54 0.513 0.0286 0.140 0.200 0.0792 0.111 0.266 0.0137 0.0283		0.0259 0.0434 0.0467 0.0529 0.0742 0.144 0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDD Total PeCDD Total HxCDD Total HpCDD Total HpCDD Total PeCDF Total HxCDF Total HpCDF	6.83 34.7 312 7.65 10.6 25.4	- - - - - - - - - - - - -	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,	% Rec 88.3 87.5 95.0 105 104 78.9 91.8 96.1 92.0 101 103 93.8 95.3 97.5 116 82.2 88.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157 35.0 - 197	Qual		C D E F J M D N P S	signal to Analyte i Chemica Presence Analyte o Analyte o Analyte o Maximum Analyte N Not Prov Pre-filtero Sample a Matrix int	Labeled Standa noise ratio is > s present in Me l Interference e of Diphenyl El concentration is confirmation on concentration is n possible conc Not Detected ided ed through a W acceptance crite terferences ken from dilutio	10:1 thod Blank above cal secondary below cal centration hatman 0. eria not me	ibration range column ibration range 7um GF/F filter	

Analyst: Date:

Reviewed By: а ву: S/b//л Date:

FAL ID: 6733-004-SA Client ID: LL-SB5-0-0.5-0418 Matrix: Soil Batch No: X2282	11 Dat Am	e Extracted: 0 e Received: 0 ount: 5.03 g Solids: 73.02		ICal: PCDDFAL3-3-7-11 GC Column: DB5 Units: pg/g			Acquired: 05-04-2011 2005 WHO TEQ: 8.76		
Compound	Co	nc DL	Qual	2005 WHO Tox		MDL	Compound	I Con	c DL Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	1.: 1.:	19 -	ل ل	1.39 1.19 0.185		0.0259 0.0434 0.0467			
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	1.8 8.1		J	0.185		0.0487	Total TCDD	7.77	-
1,2,3,7,8,9-HxCDD	4.2		J	0.423		0.0529	Total PeCDD		
1,2,3,4,6,7,8-HpCDD OCDD	2 ⁻ 214	17 - 40 -		2.17 0.642		0.0742 0.144	Total HxCDD Total HpCDD		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF	1.3 0.7		J	0.132 0.0232		0.0200 0.0304			
2,3,4,7,8-PeCDF	1.2	29 -	J	0.387		0.0322			
1,2,3,4,7,8-HxCDF	3.2		J	0.320		0.0365			
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2. 3.(J J	0.210 0.361		0.0357 0.0399			
1,2,3,7,8,9-HxCDF	0.50	- 00	J	0.0500		0.0386	Total TCDF		
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	41 2.(J	0.410 0.0203		0.0393 0.0418	Total PeCDF Total HxCDF		
OCDF		11 -	0	0.0333		0.105	Total HpCDF		
Internal Standards	% Rec	QC Limits	Qual			lastania	abalad Standa		
13C-2,3,7,8-TCDD	103	25.0 - 164			A		noise ratio is >		e QC range but
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	104 99.8	25.0 - 181 32.0 - 141			В	-	s present in Me		nk
13C-1,2,3,6,7,8-HxCDD	110	28.0 - 130			C C	Chemica	I Interference		
13C-1,2,3,4,6,7,8-HpCDD	123	23.0 - 140			D	Presence	e of Diphenyl E	thers	
13C-OCDD	117	17.0 - 157		~	1				alibration range
13C-2,3,7,8-TCDF	108	24.0 - 169			F	Analyte of	confirmation on	seconda	ry column
13C-1,2,3,7,8-PeCDF	115	24.0 - 185			J	Analyte of	concentration is	below ca	alibration range
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	116 101	21.0 - 178 26.0 - 152			M	Maximur	n possible cond	entration	
13C-1,2,3,6,7,8-HxCDF	104	26.0 - 123			ND	Analyte I	Not Detected		
13C-2,3,4,6,7,8-HxCDF	101	28.0 - 136				Not Prov			
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	106 108	29.0 - 147 28.0 - 143			P	Pre-filter	ed through a W	'hatman C).7um GF/F filter
13C-1,2,3,4,7,8,9-HpCDF	131	26.0 - 138			s	Sample a	acceptance crit	eria not m	net
13C-OCDF	112	17.0 - 157			X		erferences		
					*		ken from dilutio	on or reinj	ection
Cleanup Surrogate					L		<u>,</u>		
37CI-2,3,7,8-TCDD	94.2	35.0 - 197							
Analyst:							Reviewed	BV: ,	
	<u> </u>						I CONGWEU	~/, Ø	
Date: 5/1/							Date:	<u> 19],</u>	
1								e : :	

000010 of 000726 5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

FAL ID: 6733-005-SA Client ID: LL-SB5-1.5-2-04181 Matrix: Soil Batch No: X2282				PCDDFAL3-3-7 olumn: DB5 pg/g		Acquired: 05-04-2011 2005 WHO TEQ: 10.8		
Compound	Conc	DL Qual	2005 WHO Tox	MDL	Compound	Conc	DL Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	1.13 1.44 2.28 11.2 5.11 331 3390	- J - J - - -	1.13 1.44 0.228 1.12 0.511 3.31 1.02	0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144	Total TCDD Total PeCDD Total HxCDD Total HpCDD	5.41 13.4 73.3 665		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{c} 0.671 \\ 0.381 \\ 1.15 \\ 4.63 \\ 1.55 \\ 2.48 \\ 0.334 \\ 61.2 \\ 2.64 \\ 217 \end{array}$	L - L - L - L - L - L - L - L - L - L -	0.0671 0.0114 0.345 0.463 0.155 0.248 0.0334 0.612 0.0264 0.0651	0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDF Total PeCDF Total HxCDF Total HpCDF	19.4 28.0 60.3 204	- - -	
Internal Standards	% Rec QC	Limits Qual		[
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-2,2,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-2,2,4,7,8,9-HpCDF 13C-2,2,4,7,8,9-HpCDF 13C-2,2,7,8,9-HpCDF	89.4 25.0 93.7 32.0 104 28.0 114 23.0 101 17.0 99.8 24.0 101 24.0 102 21.0 96.0 26.0 96.1 28.0 105 28.0 100 17.0) - 164) - 181) - 141) - 130) - 140) - 157) - 169) - 185) - 178) - 178) - 178) - 152) - 123) - 136) - 136) - 147) - 138) - 138) - 157		A signal to B Analyte is C Chemica D Presence E Analyte of J Analyte of M Maximum ND Analyte N NP Not Provi P Pre-filtere S Sample a X Matrix int	ided ed through a Wha acceptance criteri	1:1 od Blank ers bove calibra econdary co elow calibra ntration ntration atman 0.7un a not met	ation range Iumn Ition range n GF/F filter	
Analyst:					Reviewed By Date: <u>5//</u>	:		

000011 of 000726 5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

FAL ID: 6733-006-SA Client ID: LL-SB5-2-4-041811 Matrix: Soil Batch No: X2282	Dat Am	e Extracted: 0 e Received: 0 ount: 5.05 g Solids: 82.42			PCDDFAL3-3- olumn: DB5 pg/g		Acquired: 05 1005 WHO T	
Compound	Со	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	7.3 2.3 3.9 18 8.0 51	32 - 56 - 0.0 - 08 - 21 -	J J	7.35 2.32 0.356 1.80 0.808 5.21 1.55	0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144	Total TCDD Total PeCDD Total HxCDD Total HpCDD	16.6 23.3 121 1040	- - -
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	4.1	69 - 00 - 23 - 53 - 77 - 74 - 01 -	ן ר ר ר ר	0.113 0.0171 0.600 0.723 0.253 0.377 0.0474 1.01 0.0411 0.109	0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDF Total PeCDF Total HxCDF Total HpCDF	23.9 36.3 93.5 336	- - -
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 81.3 77.6 78.4 84.5 93.6 88.8 85.8 88.9 88.3 79.4 78.9 78.1 83.2 85.4 101 85.3	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157 35.0 - 197	Qual		A signal to B Analyte i C Chemica D Presence E Analyte o J Analyte o J Analyte o M Maximur ND Analyte 1 NP Not Prov P Pre-filter S Sample a X Matrix int	ided ed through a Wh acceptance criter	D:1 nod Blank ers above calibra econdary co below calibra ntration ntration atman 0.7ur ia not met	ation range olumn ation range n GF/F filter
Analyst: Date:						Reviewed B	y: [(])	

000012 of 000726 5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

Compound 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF	Conc 1.35 0.768 1.15 4.76 2.48 128 1150 1.09 0.471	5 - 3 - 5 - 6 - 3 - 3 - 0 -	Quai J J J J	2005 WHO Tox 1.35 0.768 0.115 0.476 0.248 1.28 0.345		MDL 0.0259 0.0434 0.0467 0.0587 0.0529		Conc	DL Qual
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF	0.768 1.15 4.76 2.48 128 1150 1.09 0.471	3 - 5 - 6 - 3 - 3 -) -	J J	0.768 0.115 0.476 0.248 1.28		0.0434 0.0467 0.0587	Total TODD		
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.772 1.29 0.836 1.40 0.258 24.3 1.27 76.0	2 - 3 - 3 - 7 - 2 - 2 - 3 - 3 - 7 -	J J J J	0.109 0.0141 0.232 0.129 0.0836 0.140 0.0258 0.243 0.0127 0.0228		0.0329 0.0742 0.144 0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDD Total PeCDD Total HxCDD Total HpCDD Total PpCDF Total PeCDF Total HxCDF Total HpCDF	36.1 255 19.7 20.3 27.7	-
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 79.9 78.8 84.6 91.5 96.7 80.7 85.3 87.8 86.2 87.2 89.3 84.9 86.2 86.2 86.6 97.2 79.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 143 26.0 - 138 17.0 - 157 35.0 - 197	Qual		A B C D E F J M D P S X	signal to Analyte is Chemica Presence Analyte o Analyte o Analyte o Maximum Analyte N Not Provi Pre-filtere Sample a Matrix int	Labeled Standa noise ratio is >' s present in Me l Interference e of Diphenyl Et concentration is confirmation on concentration is n possible conc Not Detected ided ed through a Wi acceptance crite terferences ken from dilutio	10:1 thod Blank above calibra secondary co below calibra entration hatman 0.7ur eria not met	ation range olumn ation range n GF/F filter

Analyst: Date:

Reviewed By:_____ Date:_____\$/0/ 7

11 Date Amo	e Received: 04 ount: 4.93 g		GC C	olumn: DB5	7-11			56
Cor	nc DL	Qual	2005 WHO Tox		Compound	l Conc	DL	Qual
N N N 3.0	D 0.198 D 0.214 D 0.280 D 0.241 08 -	J	- - - 0.0308 0.00792		Total PeCDD Total HxCDD	ND 0.469	0.119 0.198 - -	J
N N N N 0.63 N	D 0.129 D 0.135 D 0.181 D 0.186 D 0.204 D 0.187 35 - D 0.218	J	- - - - - - - - - - - - - - - - - - -	0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418	Total PeCDF Total HxCDF	0.358 0.641	-	ل ل ل
% Rec 94.8 93.0 92.4 99.0 103 73.1 99.7 102 101 95.0 99.5 95.7 97.7 91.9 117 78.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isotopic signal to B Analyte i C Chemica D Presence E Analyte o J Analyte o J Analyte o M Maximur ND Analyte I NP Not Prov P Pre-filter S Sample a X Matrix in	Labeled Standa noise ratio is > is present in Me al Interference e of Diphenyl Ef concentration is confirmation on concentration is n possible conce Not Detected ided ed through a W acceptance crite terferences	ard outside Q 10:1 thod Blank thers above calibr secondary c below calibr entration hatman 0.7u eria not met	ration rang olumn ation rango m GF/F filt	ut e
				L	and a particular second	,		l
	11 Dat Ama % S Cor N N N N N N N N N N N N N N N N N N N	Date Received: 0- Amount: 4.93 g % Solids: 90.26 ND 0.119 ND 0.198 ND 0.198 ND 0.214 ND 0.280 ND 0.241 3.08 - 26.4 - ND 0.129 ND 0.129 ND 0.135 ND 0.181 ND 0.187 0.635 - ND 0.218 1.71 - % Rec QC Limits 94.8 25.0 - 164 93.0 25.0 - 181 92.4 32.0 - 141 99.0 28.0 - 130 103 23.0 - 140 73.1 17.0 - 157 99.7 24.0 - 169 102 24.0 - 185 101 21.0 - 178 95.0 26.0 - 152 99.5 26.0 - 152 95.7 28.0 - 143 97.7 2	Amount: 4.93 g % Solids: 90.26 Conc DL Qual ND 0.119 ND 0.198 ND 0.214 ND 0.241 3.08 - 26.4 - ND 0.108 ND 0.129 ND 0.135 ND 0.186 ND 0.181 ND 0.204 ND 0.187 0.635 - ND 0.218 1.71 - J % Rec QC Limits Qual 94.8 25.0 - 164 93.0 25.0 - 181 92.4 32.0 - 141 99.0 28.0 - 130 103 23.0 - 140 73.1 17.0 - 157 99.7 24.0 - 169 102 24.0 - 185 101 21.0 - 178 95.0 26.0 - 123 95.7 28.0 - 147 91.9 28.0 - 143 91.7 26.0 - 138	11 Date Received: 04-22-2011 Amount: 4.93 g GC C 2005 Conc DL Qual WHO Tox ND 0.119 - ND 0.198 - ND 0.214 - ND 0.280 - ND 0.241 - 3.08 - J 0.0308 26.4 - 0.00792 ND 0.183 - ND 0.181 - ND 0.181 - ND 0.184 - ND 0.181 - ND 0.184 - ND 0.185 - ND 0.187 - 0.635 - J 0.000513 % Rec QC Limits Qual 94.8 25.0 - 164 - 93.0 25.0 - 181 - 92.4 32.0 - 140 - 73.1 17.0 - 157 - 99.7 24.0 - 169 - 102 24.0 - 185 -	11 Date Received: 04-22-2011 Amount: 4.93 g % Solids: 90.26 GC Column: DB5 Units: pg/g 2005 MD ND 0.119 - ND 0.119 - ND 0.119 - ND 0.198 - ND 0.214 - ND 0.241 - 0.00792 0.144 ND 0.241 - ND 0.241 - ND 0.241 - ND 0.241 - ND 0.129 - ND 0.135 - ND 0.135 - ND 0.204 - ND 0.204 - ND 0.218 - ND 0.218 - 1.71 - J 92.4 3	11 Date Received: 04-22-2011 Amount: 4.9.3 g GC Column: DB5 Units: pg/g 2005 Conc DL Qual WHO Tox MDL Compound ND 0.119 - 0.0259 ND 0.118 - 0.0434 ND 0.214 - 0.0467 - 0.0587 Total TCDD ND 0.280 - 0.0587 Total PCDD - 0.0214 - 0.0467 ND 0.280 - 0.0308 0.0742 Total HxCDD - 0.0200 - 144 Total HxCDD 3.08 - J 0.0308 - 0.0322 - 141 - 0.0365 ND 0.181 - 0.0365 - 0.0399 - 0.0418 Total PCDF ND 0.187 - 0.0365 - 0.0393 Total PCDF ND 0.187 - 0.0365 - 0.0393 Total PCDF ND 0.187 - 0.0365 - 0.0393 Total PCDF ND 0.187 -	11 Date Received: 04-22-2011 Amount: 4.93 g GC Column: DB5 Units: pg/g 2005 WHO Xonunt: 4.93 g Units: pg/g 2005 2005 WHO Xonunt: 4.93 g Units: pg/g 2005 2005 WHO Xonunt: 4.93 g WHO Tox MDL Compound Conc ND 0.119 - 0.0259 Total TCDD ND ND 0.214 - 0.0467 ND 0.0388 - 0.0308 0.0742 Total PcDD ND 0.449 0.444 Total PcDF 0.441 1.71 0.441 Total PcDF 0.365 ND 0.441 Total PcDF 0.368 ND 0.441 Total PcDF <td>11 Date Received: 04-22-2011 Amount: 4.93 g GC Column: DB5 Units: pg/g 2005 WHO TEQ: 0.044 Units: pg/g 2005 Conc DL Qual WHO Tox MDL Compound Conc DL ND 0.119 - 0.0259 - 0.0447 ND 0.280 - 0.0587 Total TCDD ND 0.119 ND 0.280 - 0.0587 Total TCDD ND 0.119 ND 0.280 - 0.0587 Total TCDD ND 0.119 ND 0.280 - 0.0038 0.0742 Total TCDF 0.848 - ND 0.108 - 0.0200 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0418 Total TCDF 0.287 - - - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0418 Total TCDF 0.287 - - 0.635 - J</td>	11 Date Received: 04-22-2011 Amount: 4.93 g GC Column: DB5 Units: pg/g 2005 WHO TEQ: 0.044 Units: pg/g 2005 Conc DL Qual WHO Tox MDL Compound Conc DL ND 0.119 - 0.0259 - 0.0447 ND 0.280 - 0.0587 Total TCDD ND 0.119 ND 0.280 - 0.0587 Total TCDD ND 0.119 ND 0.280 - 0.0587 Total TCDD ND 0.119 ND 0.280 - 0.0038 0.0742 Total TCDF 0.848 - ND 0.108 - 0.0200 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0418 Total TCDF 0.287 - - - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0365 - 0.0418 Total TCDF 0.287 - - 0.635 - J

37CI-2,3,7,8-TCDD 88.1 35.0 - 197

Analyst: Date:

Reviewed By Date:

Compound Conc DL Qual WHO Tox MDL Compound Conc DL Qual 2.3.7.8-TCDD ND 0.134 - 0.0259 - 0.0447 1.2.3.7.8-PCDD ND 0.226 - 0.0467 - 0.0457 1.2.3.7.8-HCDD ND 0.226 - 0.0529 Total PCDD ND 0.230 1.2.3.7.8-HCDD ND 0.250 - 0.0529 Total HCDD 0.573 J J 1.2.3.7.8-HCDF ND 0.1057 - 0.0200 1.44 Total HCDD 2.32 - J 1.2.3.4.7.8-HCDF ND 0.1057 - 0.0200 1.33 - 0.0339 0.144 Total HCDF D 0.0397 1.2.3.4.7.8-HCDF ND 0.207 - 0.0386 Total TCDF D 0.166 - 0.0397 - J - J - J D.166 - D.0186 - J D.357 <td< th=""><th>FAL ID: 6733-009-SA Client ID: LL-SB4-2-4-041911 Matrix: Soil Batch No: X2282</th><th>Date Amo</th><th>e Extracted: 09 e Received: 04 punt: 4.95 g solids: 86.80</th><th></th><th></th><th>CDDFAL3-3- Jumn: DB5 pg/g</th><th>7-11</th><th>Acquired: 0 2005 WHO</th><th></th><th>48</th></td<>	FAL ID: 6733-009-SA Client ID: LL-SB4-2-4-041911 Matrix: Soil Batch No: X2282	Date Amo	e Extracted: 09 e Received: 04 punt: 4.95 g solids: 86.80			CDDFAL3-3- Jumn: DB5 pg/g	7-11	Acquired: 0 2005 WHO		48
1.2.3.7.8-PeCDD ND 0.230 - 0.0434 1.2.3.7.8-PeCDD ND 0.226 - 0.0687 Total TCDD 0.544 - J 1.2.3.7.8-PeCDD ND 0.226 - 0.0687 Total TCDD 0.578 - J 1.2.3.7.8-PeCDD ND 0.220 - 0.00309 0.144 Total PCDD 2.92 - J 2.3.7.8-PeCDF ND 0.105 - 0.0302 - 0.0365 1.2.3.4.7.8-PeCDF ND 0.147 - 0.0365 - 0.0322 1.2.3.4.7.8-PeCDF ND 0.146 - 0.0365 - 0.0326 1.2.3.4.7.8+MCDF ND 0.202 - 0.0365 - 0.0328 1.2.3.4.6.7.8+MCDF ND 0.220 - 0.0393 Total TCDF ND 0.218 1.2.3.4.6.7.8+MCDF ND 0.225 - 0.0418 Total TCDF ND 0.225 Internal Standards % Rec QC Limits Qual - 0.156 - - 0.1	Compound	Cor	nc DL	Qual		MDL	Compound	Conc	DL	Qual
1,2,3,7,8,9+CDD ND 0.230 - 0.0437 1,2,3,7,8,7,8+HxCDD ND 0.287 - 0.0587 Total TCDD 0.544 - J 1,2,3,7,8,9+KxCDD ND 0.226 - 0.0529 Total HxCDD 0.578 - J 1,2,3,7,8,9+KxCDD ND 0.200 - 0.06529 Total HxCDD 0.578 - J 2,3,7,8,7-BCDF ND 0.105 - 0.0309 0.144 Total HxCDD 2.92 - J 1,2,3,7,8,7-BCDF ND 0.147 - 0.0306 - 0.0322 - J 1,2,3,4,7,8+KxCDF ND 0.207 - 0.0365 - 0.0328 - J 1,2,3,4,7,8+KxCDF ND 0.220 - 0.0393 Total TCDF ND 0.218 1,2,3,4,6,7,8+KxCDF ND 0.225 - 0.0418 Total TCDF ND 0.225 1,2,3,4,6,7,8+KxCDF ND 0.255 - 0.0418 Total TCDF ND 0.225 1,2,3,4,6,7,8+KxCDF	2.3.7.8-TCDD	N	D 0.134		-	0.0259				
12.3,6,7.8+xCDD ND 0.287 - 0.0587 Total TCDD 0.544 - J 12.3,7,8-PxCDD ND 0.250 - 0.0529 Total YCDD ND 0.230 1.2.3,4,6,7,8+hpCDD 1.17 - J 0.0117 0.0742 Total YCDD ND 0.230 1.2.3,4,6,7,8+hpCDF ND 0.105 - 0.0200 - J 2.3,7,8-PCDF ND 0.147 - 0.0304 - J J 1.2.3,4,7,8+hpCDF ND 0.207 - 0.0365 - J					-					
1,2,3,7,8,9+HxCDD ND 0.250 - 0.0529 Total PeCDD ND 0.230 1,2,3,7,8,9+HxCDD 1,03 - 0.00309 0.144 Total HxCDD 0.578 - J 2,3,7,8,9+CDF ND 0.105 - 0.00309 0.144 Total HxCDD 0.578 - J 2,3,7,8,9+CDF ND 0.117 0.00309 0.144 Total HxCDD 0.578 - J 2,3,7,8,9+CDF ND 0.1165 - 0.0320 - 0.0339 - 1.23,4,7,8,9+KCDF ND 0.202 - 0.0339 - 1.23,4,6,7,8+KCDF ND 0.220 - 0.0339 - 1.23,4,6,7,8+KCDF ND 0.220 - 0.0337 - 1.2,3,4,6,7,8+KCDF ND 0.220 - 0.0337 - 0.0156 - 0.0203 - J 1.2,3,4,6,7,8+KCDF ND 0.2218 - 0.0156 - 0.0156 - 0.0156 - 0.0156 - 0.0157 - 0.117 0.0156 - 0.0255 - 0.01					-					
1,2,3,4,6,7,8+hpcDD 1,17 - J 0.0117 0.0742 Total HxCDD 0.578 - J 2,3,7,8-TCDF ND 0.105 - 0.0309 0.144 Total HyCDD 2.92 - J 1,2,3,7,8-PeCDF ND 0.147 - 0.0304 - 0.0304 2,3,7,8-PeCDF ND 0.207 - 0.0365 - 0.0399 1,2,3,4,7,8-HxCDF ND 0.207 - 0.0399 - 1.2,3,4,7,8-HxCDF ND 0.203 - 0.0399 1,2,3,4,6,7,8-HxCDF ND 0.203 - 0.0393 Total TCDF 0.203 - J 1,2,3,4,6,7,8-HxCDF ND 0.220 - 0.0393 Total TCDF ND 0.218 0CDF ND 0.527 - 0.105 Total HyCDF ND 0.225 13C-1,2,3,7,8-PeCDD 84.1 25.0 - 164 13c-2.3,7,8-TCDF 82.2 2.0 - 178 3c-2.3 + 7,8-TCDF 92.2 2.4 0 - 169 P Presence of Diphenyl Ethers 13C-2,3,7,8-TCDF 92.2 2.					-				-	J
OCDD 10.3 - 0.00309 0.144 Total HpCDD 2.92 - J 2.3.7,8-PcOF ND 0.105 - 0.0200 - 0.0304 2.3.7,8-PcOF ND 0.147 - 0.0304 - 0.0322 1.2.3,4,7,8-PcOF ND 0.207 - 0.0357 - 0.0336 Total TCDF 0.203 - J 2.3.4,6,7.8-HxCDF ND 0.202 - 0.0336 Total TCDF 0.203 - J 1.2.3,4,6,7.8-HxCDF ND 0.2203 - 0.0336 Total TCDF 0.203 - J 1.2.3,4,6,7.8-HxCDF ND 0.2203 - 0.0037 - 0.0036 Total TCDF ND 0.218 1.2.3,4,6,7.8-HxCDF ND 0.220 - 0.0105 Total HxCDF ND 0.218 13C-1.2.3,4,7.8-HxCDF ND 0.527 - 0.105 Total HxCDF ND 0.255 13C-1.2.3,4,6,7.8-HxCDF					-					
2.3.7.8-TCDF ND 0.105 - 0.0200 1.2.3.7.8-PeCDF ND 0.147 - 0.0304 2.3.4.7.8-HxCDF ND 0.207 - 0.0385 1.2.3.4.7.8-HxCDF ND 0.202 - 0.0385 1.2.3.4.7.8-HxCDF ND 0.203 - 0.0393 1.2.3.4.7.8-HxCDF ND 0.203 - 0.0393 Total PeCDF ND 0.156 1.2.3.4.6.7.8-HxCDF ND 0.220 - 0.0393 Total PeCDF ND 0.218 0.CDF ND 0.527 - 0.0418 Total HpCDF ND 0.2255 1.2.3.4.6.7.8-HxCDD 84.1 25.0 - 164 - 0.105 Total HpCDF ND 0.255 1.3C-1.2.3.4.6.7.8-HxCDD 85.9 3.20 - 141 Balyte is present in Method Blank C Chemical Interference 1.3C-1.2.3.4.6.7.8-HxCDF 9.3 2.0 - 152 - Analyte concentration is above calibration range F 1.3C-1.2.3.4.6.7.8-HxCDF 9.5 2.60 - 152 - - - Analyte concentration is below calibration ran				J						
1.2.3.7.8-PeCDF ND 0.147 - 0.0304 2.3.4.7.8-PeCDF ND 0.166 - 0.0322 1.2.3.4.7.8-HxCDF ND 0.202 - 0.0387 2.3.4.6.7.8-HxCDF ND 0.203 - 0.0387 1.2.3.4.7.8-HxCDF ND 0.203 - 0.0387 1.2.3.4.7.8-HxCDF ND 0.203 - 0.0393 Total PeCDF ND 0.218 1.2.3.4.6.7.8-HxCDF ND 0.220 - 0.0393 Total PeCDF ND 0.218 OCDF ND 0.527 - 0.105 Total HpCDF ND 0.255 Internal Standards % Rec OC Limits Qual A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 B Analyte in persence of Diphenyl Ethers Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 B Analyte concentration is above calibration range 13C-1.2.3.4.6.7.8-HxCDF 90.5 22.0 141 B Analyte concentration is above calibration range 13C-1.2.3.4.6.7.8-HxCDF 91.3 24.0 152 Interference	OCDD	10	.3 -		0.00309	0.144	I otal HpCDL	2.92	-	J
2.3.4,7.8-PeCDF ND 0.166 - 0.0322 1.2.3.6,7.8-HxCDF ND 0.207 - 0.0365 1.2.3.4,6,7.8-HxCDF ND 0.202 - 0.0397 1.2.3.4,6,7.8-HxCDF ND 0.203 - 0.0397 1.2.3.4,6,7.8-HxCDF ND 0.203 - 0.0399 1.2.3.4,7.8-HxCDF ND 0.220 - 0.0393 Total TCDF 0.203 - J 1.2.3.4,7.8-HxCDF ND 0.225 - 0.0418 Total HxCDF ND 0.218 0.CDF ND 0.527 - 0.105 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - - 0.105 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - - 0.105 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - - - 0.105 Total HxCDF ND 0.255 Internal Standards		N	D 0.105		-	0.0200				
1.2.3.4,7.8+HxCDF ND 0.207 - 0.0365 1.2.3.6,7.8+HxCDF ND 0.202 - 0.0357 2.3.4,6,7.8+HxCDF ND 0.203 - 0.0386 Total TCDF 0.203 - J 1.2.3.4,6,7.8+HxCDF ND 0.220 - 0.0386 Total TCDF ND 0.156 1.2.3.4,6,7.8+HxCDF ND 0.2255 - 0.0418 Total HxCDF ND 0.218 OCDF ND 0.527 - 0.105 Total HxCDF ND 0.218 OCDF ND 0.527 - 0.105 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - - 0.105 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - - 0.105 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - - 0.105 Total HxCDF ND - - 0.156 - - - <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>					-					
12.3.6.7.8-HxCDF ND 0.202 - 0.0357 2.3.4.6.7.8-HxCDF ND 0.218 - 0.0399 1.2.3.7.8)-HxCDF ND 0.220 - 0.0393 Total PCDF ND 0.156 1.2.3.4.6.7.8-HxCDF ND 0.220 - 0.0393 Total PCDF ND 0.156 1.2.3.4.6.7.8-HxCDF ND 0.527 - 0.0398 Total PCDF ND 0.218 0CDF ND 0.527 - 0.105 Total HpCDF ND 0.218 13C-1.2.3.4.7.8-HxCDD 84.1 25.0 - 164 signal to noise ratio is >10:1 B A isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 13C-1.2.3.4.7.8-HxCDD 89.8 28.0 - 130 13C-1.2.3.4.7.8-HxCDD 91.3 24.0 - 169 13C-1.2.3.4.7.8-PeCDF 91.3 24.0 - 169 13C-1.2.3.4.7.8-PeCDF 85.5 21.0 - 178 13C-1.2.3.4.7.8-PeCDF 86.5 21.0 - 178 32.0 - 132 Analyte concentration is above calibration range 13C-1.2.3.4.7.8-PeCDF 89.5 28.0 - 136 13C-1.2.3.4.6.7.8+PCDF 90.9 90.0 - 147 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>					-					
2.34,67,8+HxCDF ND 0.218 - 0.0399 - 0.0399 - J 1.2.34,67,8+HxCDF ND 0.220 - 0.0399 Total TCDF ND 0.156 1.2.34,67,8+HxCDF ND 0.255 - 0.0418 Total HxCDF ND 0.218 0CDF ND 0.527 - 0.0399 Total HxCDF ND 0.218 0CDF ND 0.527 - 0.0418 Total HxCDF ND 0.218 13C-1,2,3,7,8-TCDD 84.1 25.0 - 164 - 0.105 Total HycDF ND 0.255 13C-1,2,3,7,8-TCDD 84.1 25.0 - 164 - 0.105 Total HycDF ND 0.255 13C-1,2,3,7,8-HxCDD 85.9 32.0 - 141 B Analyte is present in Method Blank C Chemical Interference 13C-1,2,3,4,7,8-HxCDF 92.2 24.0 - 169 4.000-112 Analyte concentration is above calibration range F Analyte concentration is below calibration range Maximum possible concentration ND Analyte concentration 13C-1,2,3,4,7,8-HxCDF 90.5										
1.2.3,7.8,9-HxCDF ND 0.203 - 0.0386 Total TCDF 0.203 - J 1.2.3,4,6.7,8-HpCDF ND 0.225 - 0.0393 Total TCDF ND 0.156 1.2.3,4,7.8,9-HpCDF ND 0.527 - 0.0393 Total TCDF ND 0.156 1.2.3,4,7,8-HpCDF ND 0.527 - 0.105 Total HpCDF ND 0.218 13C-1,2,3,7,8-TCDD 84.1 25.0 - 164 signal to noise ratio is >10:1 B A lsotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 B Analyte is present in Method Blank C Chemical Interference D Presence of Diphenyl Ethers E Analyte concentration is above calibration range F Analyte concentration is above calibration range Maximum possible concentration ND Analyte concentration <										
1.2.3.4.6.7.8-HpCDF ND 0.220 - 0.0333 Total PeCDF ND 0.156 1.2.3.4.7.8.9-HpCDF ND 0.527 - 0.0418 Total HxCDF ND 0.218 Internal Standards % Rec QC Limits Qual - 0.0418 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - 0.105 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - - 0.0418 Total HxCDF ND 0.255 Internal Standards % Rec QC Limits Qual - - 0.105 Total HxCDF ND 0.255 I3C-1.2.3.7.8-PCDD 84.1 25.0 - 164 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.202</td><td></td><td></td></td<>								0.202		
1.2.3.4.7.8.9-HpCDF OCDF ND 0.255 ND 0.527 0.0418 Total HxCDF ND ND 0.218 0.255 Internal Standards % Rec QC Limits Qual - 0.105 Total HpCDF ND 0.218 13C-2.3.7.8-TCDD 84.1 25.0 - 164 - 0.105 Total HpCDF ND 0.255 13C-1.2.3.7.8-PCDD 84.1 25.0 - 161 - - 0.105 Total HpCDF ND 0.255 13C-1.2.3.7.8-PCDD 84.1 25.0 - 161 -									0 156	J
OCDF ND 0.527 - 0.105 Total HpCDF ND 0.255 Internal Standards % Rec QC Limits Qual A 13C-12.37,8-TCDD 84.1 25.0 - 164 signal to noise ratio is >10:1 B Analyte is present in Method Blank C.Chemical Interference 13C-12.3,6,7,8-HxCDD 89.8 28.0 - 130 A Analyte is present in Method Blank C.Chemical Interference 13C-12,3,7,8-PeCDF 92.2 24.0 - 169 Presence of Diphenyl Ethers E Analyte concentration is above calibration range 13C-12,3,7,8-PeCDF 91.3 24.0 - 185 13.0 - 12.3, 4,7,8-HxCDF 89.5 28.0 - 132 13C-12,3,4,7,8-HxCDF 90.5 26.0 - 152 Analyte concentration is above calibration range 13C-12,3,4,7,8-HxCDF 90.5 28.0 - 136 ND Analyte with possible concentration 13C-1,2,3,4,7,8,9-HxCDF 90.9 29.0 - 147 J.Analyte Not Detected NP Not Provided 13C-1,2,3,4,7,8,9-HxCDF 90.9 29.0 - 138 Sample acceptance oriteria not met Sample acceptance oriteria not met Sample acceptance oriteria not met M										
Internal Standards % Rec QC Limits Qual 13C-2,3,7,8-TCDD 84.1 25.0 - 164 13C-1,2,3,7,8-PeCDD 78.4 25.0 - 181 13C-1,2,3,6,7,8-HxCDD 85.9 32.0 - 141 13C-1,2,3,6,7,8-HxCDD 89.8 28.0 - 130 13C-1,2,3,6,7,8-HxCDD 89.4 23.0 - 140 13C-1,2,3,7,8-PeCDF 92.2 24.0 - 169 13C-2,3,7,8-PeCDF 91.3 24.0 - 185 13C-1,2,3,4,7,8-HxCDF 92.2 24.0 - 169 13C-1,2,3,4,7,8-PeCDF 91.3 24.0 - 185 13C-1,2,3,4,7,8-PeCDF 91.3 24.0 - 185 13C-1,2,3,4,6,7,8-HxCDF 86.7 26.0 - 152 13C-1,2,3,4,6,7,8-HxCDF 90.5 26.0 - 123 13C-1,2,3,4,6,7,8-HxCDF 90.5 26.0 - 123 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HxCDF 90.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
13C-2,3,7,8-TCDD 84.1 25.0 - 164 13C-1,2,3,7,8-TCDD 78.4 25.0 - 181 13C-1,2,3,4,7,8-HxCDD 85.9 32.0 - 141 13C-1,2,3,4,7,8-HxCDD 89.8 28.0 - 130 13C-1,2,3,4,6,7,8-HxCDD 93.4 23.0 - 140 13C-1,2,3,7,8-TCDF 92.2 24.0 - 169 13C-2,3,7,8-PeCDF 91.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 91.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 91.3 24.0 - 169 13C-2,3,4,7,8-PeCDF 91.3 24.0 - 169 13C-2,3,4,7,8-PeCDF 95.2 26.0 - 152 13C-2,3,4,7,8-PeCDF 86.7 26.0 - 152 13C-2,3,4,7,8-HxCDF 89.5 28.0 - 136 13C-1,2,3,4,6,7,8-HxCDF 89.5 28.0 - 134 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HxCDF 80.6 143 13C-1,2,3,4,7,8-PeCDF 86.8 28.0 - 138 13C-1,2,3,4,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,7,8-HxCDF 80.6 26.0 - 138 13C-1,2,3,4,7,8-PeCDF 73.5 17.0 - 157 C	002.					0.100	rotarripobr	ne -	0.200	
13C-12.3,7,8-PeCDD 78.4 25.0 - 181 13C-12.3,3,7,8-PeCDD 85.9 32.0 - 141 13C-1,2,3,4,6,7,8-HxCDD 89.8 28.0 - 130 13C-1,2,3,4,6,7,8-HxCDD 99.4 23.0 - 140 13C-1,2,3,7,8-PCDD 93.4 23.0 - 140 13C-1,2,3,7,8-PCDF 92.2 24.0 - 169 13C-2,3,7,8-PeCDF 91.3 24.0 - 185 13C-2,3,7,8-PeCDF 91.3 24.0 - 185 13C-1,2,3,4,7,8-PeCDF 88.5 21.0 - 178 13C-1,2,3,4,7,8-HxCDF 86.7 26.0 - 152 13C-1,2,3,4,6,7,8-HxCDF 90.5 26.0 - 123 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HyCDF 106 26.0 - 138 13C-1,2,3,4,6,7,8-HyCDF 106 26.0 - 138 13C-1,2,3,4,6,7,8-HyCDF 106 26.0 - 138 13C-1,2,3,7,8-PCDF 79.2 35.0 - 197 X Matrix interferences * Result taken from dilution	Internal Standards	% Rec	QC Limits	Qual						
13C-1,2,3,7,8-PeCDD 78.4 25.0 - 181 13C-1,2,3,4,7,8-HxCDD 85.9 32.0 - 141 13C-1,2,3,4,6,7,8-HxCDD 89.8 28.0 - 130 13C-1,2,3,4,6,7,8-HxCDD 89.4 23.0 - 140 13C-1,2,3,4,6,7,8-HxCDD 69.4 17.0 - 157 13C-1,2,3,7,8-PeCDF 92.2 24.0 - 169 13C-1,2,3,4,7,8-PeCDF 91.3 24.0 - 185 13C-1,2,3,4,7,8-PeCDF 88.5 21.0 - 178 13C-1,2,3,4,6,7,8-HxCDF 86.7 26.0 - 152 13C-1,2,3,4,6,7,8-HxCDF 90.5 26.0 - 123 13C-1,2,3,4,6,7,8-HxCDF 90.5 26.0 - 138 13C-1,2,3,4,6,7,8-HyCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HyCDF 86.8 28.0 - 136 13C-1,2,3,4,6,7,8-HyCDF 106 26.0 - 138 13C-1,2,3,4,6,7,8-HyCDF 106 26.0 - 138 13C-1,2,3,4,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,7,8-TCDD 79.2 35.0 - 197		0/1	25.0 164			A Isotopic	Labeled Standa	rd outside C	C range b	ut
13C-1,2,3,4,7,8-HxCDD85.932.0 - 14113C-1,2,3,4,6,7,8-HxCDD89.828.0 - 13013C-1,2,3,4,6,7,8-HxCDD93.423.0 - 14013C-1,2,3,4,6,7,8-HxCDD93.423.0 - 14013C-2,2,3,7,8-TCDD92.224.0 - 16913C-1,2,3,7,8-PeCDF91.324.0 - 18513C-2,3,4,7,8-PeCDF88.521.0 - 17813C-1,2,3,4,7,8-PeCDF86.726.0 - 15213C-2,3,4,6,7,8-HxCDF80.528.0 - 13613C-1,2,3,4,6,7,8-HxCDF90.526.0 - 12313C-1,2,3,4,6,7,8-HxCDF90.929.0 - 14713C-1,2,3,4,6,7,8-HxCDF90.929.0 - 14713C-1,2,3,4,6,7,8-HxCDF86.828.0 - 14313C-1,2,3,4,6,7,8-HxCDF10626.0 - 13813C-1,2,3,4,6,7,8-HpCDF10626.0 - 13813C-1,2,3,4,6,7,8-HpCDF10626.0 - 13813C-1,2,3,4,6,7,8-HpCDF10626.0 - 13813C-1,2,3,4,6,7,8-HpCDF10626.0 - 13813C-1,2,3,4,6,7,8-HpCDF10626.0 - 13813C-1,2,3,4,7,8-HpCDF10626.0 - 13813C-1,2,3,7,8-TCDD79.235.0 - 197						Signal to	noise ratio is >	10:1	-	
13C-1,2,3,6,7,8-HxCDD 89.8 28.0 - 130 13C-1,2,3,4,6,7,8-HxCDD 93.4 23.0 - 140 13C-2,3,7,8-HxCDD 69.4 17.0 - 157 13C-2,3,7,8-TCDF 92.2 24.0 - 169 13C-1,2,3,7,8-PeCDF 91.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 91.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 91.3 24.0 - 152 13C-1,2,3,4,7,8-HxCDF 86.7 26.0 - 152 13C-1,2,3,4,7,8-HxCDF 89.5 26.0 - 152 13C-1,2,3,4,7,8-HxCDF 89.5 28.0 - 136 13C-1,2,3,4,7,8-HxCDF 89.5 28.0 - 136 13C-1,2,3,4,7,8-HxCDF 80.5 28.0 - 143 13C-1,2,3,4,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,7,8-HxCDF 86.8 28.0 - 143 13C-1,2,3,4,7,8-HxCDF 106 26.0 - 138 13C-1,2,3,4,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,7,8-TCDD 79.2 35.0 - 197						B Analyte	is present in Me	thod Blank		
13C-1,2,3,4,6,7,8-HpCDD 93.4 23.0 - 140 13C-2,2,3,7,8-TCDF 92.2 24.0 - 169 13C-1,2,3,7,8-PeCDF 91.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 91.3 24.0 - 185 13C-1,2,3,4,7,8-PeCDF 91.3 24.0 - 169 13C-1,2,3,4,7,8-PeCDF 86.5 21.0 - 178 13C-1,2,3,4,7,8-HxCDF 86.7 26.0 - 152 13C-1,2,3,4,7,8-HxCDF 80.7 26.0 - 123 13C-2,3,4,6,7,8-HxCDF 89.5 28.0 - 136 13C-1,2,3,4,6,7,8-HxCDF 80.8 28.0 - 143 13C-1,2,3,4,6,7,8-HxCDF 106 26.0 - 138 13C-1,2,3,4,6,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-2,3,7,8-TCDD 79.2 35.0 - 197						-	•			
ISC-OCDD69.417.0 - 15713C-1,2,3,7,8-TCDF92.224.0 - 16913C-1,2,3,7,8-PeCDF91.324.0 - 18513C-2,3,4,7,8-PeCDF88.521.0 - 17813C-1,2,3,4,7,8-HxCDF86.726.0 - 15213C-1,2,3,4,7,8-HxCDF90.526.0 - 12313C-1,2,3,4,7,8-HxCDF90.526.0 - 13613C-1,2,3,4,6,7,8-HxCDF90.929.0 - 14713C-1,2,3,4,6,7,8-HxCDF90.929.0 - 14713C-1,2,3,4,6,7,8-HpCDF86.828.0 - 14313C-1,2,3,4,7,8,9-HpCDF10626.0 - 13813C-1,2,3,4,7,8,9-HpCDF10626.0 - 13813C-2,3,7,8-TCDD79.235.0 - 197										
13C-2,3,7,8-TCDF 92.2 24.0 - 169 13C-1,2,3,7,8-PeCDF 91.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 88.5 21.0 - 178 13C-1,2,3,4,7,8-PeCDF 88.5 21.0 - 178 13C-1,2,3,4,7,8-HxCDF 86.7 26.0 - 152 13C-2,3,4,6,7,8-HxCDF 90.5 26.0 - 123 13C-1,2,3,7,8,9-HxCDF 90.5 28.0 - 136 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,6,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,6,7,8-HpCDF 106 26.0 - 138 13C-2,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-2,2,3,7,8-TCDD 79.2 35.0 - 197	· · · · · ·									
13C-1,2,3,7,8-PeCDF 91.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 88.5 21.0 - 178 13C-1,2,3,4,7,8-HxCDF 86.7 26.0 - 152 13C-1,2,3,4,6,7,8-HxCDF 90.5 26.0 - 123 13C-2,3,4,6,7,8-HxCDF 90.5 28.0 - 136 13C-1,2,3,7,8,9-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HxCDF 106 26.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-1,2,3,7,8-TCDD 79.2 35.0 - 197						-			0	e
13C-2,3,4,7,8-PeCDF 88.5 21.0 - 178 13C-1,2,3,4,7,8-HxCDF 86.7 26.0 - 152 13C-1,2,3,6,7,8-HxCDF 90.5 26.0 - 123 13C-2,3,4,6,7,8-HxCDF 90.5 28.0 - 136 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-2,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-2,2,3,4,7,8,9-HpCDF 106 26.0 - 157 X Matrix interferences * 13C-2,2,3,7,8-TCDD 79.2 35.0 - 197								-		
13C-1,2,3,4,7,8-HxCDF 86.7 26.0 - 152 13C-1,2,3,6,7,8-HxCDF 90.5 26.0 - 123 13C-2,3,4,6,7,8-HxCDF 89.5 28.0 - 136 13C-1,2,3,7,8,9-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HpCDF 86.8 28.0 - 143 13C-1,2,3,4,6,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-2,2,3,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-2,3,7,8-TCDD 79.2 35.0 - 197						J Analyte	concentration is	below calib	ration rang	e
13C-1,2,3,6,7,8-HxCDF 90.5 26.0 - 123 13C-2,3,4,6,7,8-HxCDF 89.5 28.0 - 136 13C-1,2,3,7,8,9-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HpCDF 86.8 28.0 - 143 13C-1,2,3,4,6,7,8-HpCDF 106 26.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-0CDF 73.5 17.0 - 157 Cleanup Surrogate * Result taken from dilution or reinjection						M Maximur	m possible conc	entration		
13C-2,3,4,6,7,8-HxCDF 89.5 28.0 - 136 13C-1,2,3,7,8,9-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HpCDF 86.8 28.0 - 143 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-0CDF 73.5 17.0 - 157 Cleanup Surrogate 37Cl-2,3,7,8-TCDD 79.2 35.0 - 197 35.0 - 197							•			
13C-1,2,3,7,8,9-HxCDF 90.9 29.0 - 147 13C-1,2,3,4,6,7,8-HpCDF 86.8 28.0 - 143 13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-0CDF 73.5 17.0 - 157 Cleanup Surrogate 37Cl-2,3,7,8-TCDD 79.2 35.0 - 197 35.0 - 197	13C-2,3,4,6,7,8-HxCDF					•				
13C-1,2,3,4,7,8,9-HpCDF 106 26.0 - 138 13C-0CDF 73.5 17.0 - 157 Cleanup Surrogate 37Cl-2,3,7,8-TCDD 79.2 35.0 - 197 Image: Cleanup Surrogate State	13C-1,2,3,7,8,9-HxCDF	90.9	29.0 - 147							
13C-OCDF 73.5 17.0 - 157 Cleanup Surrogate X Matrix interferences 37CI-2,3,7,8-TCDD 79.2 35.0 - 197		86.8	28.0 - 143			P Pre-filter	ed through a W	hatman 0.7ı	um GF/F fill	er
Cleanup Surrogate 37CI-2,3,7,8-TCDD 79.2 35.0 - 197	•	106				S Sample	acceptance crite	eria not met		
Cleanup Surrogate 37CI-2,3,7,8-TCDD 79.2 35.0 - 197	13C-OCDF	73.5	17.0 - 157			X Matrix in	terferences			
Cleanup Surrogate 37Cl-2,3,7,8-TCDD 79.2 35.0 - 197								n or reiniect	ion	
	Cleanup Surrogate				l					
Analyst: Reviewed By:	37CI-2,3,7,8-TCDD	79.2	35.0 - 197							
Analyst: Reviewed By:	_									
Anaryst: Reviewed By: /	Analysty I							_		
							Reviewed	^{by:}		

Date: 5/5/11____

Date: 5/6//

FAL ID: 6733-009-MS/MSD Client ID: LL-SB4-2-4-041911 Matrix: Soil

Date Extracted: 05-02-2011 Date Received: 04-22-2011 Sample Amount: 4.95 g MS Amount: 4.96 g MSD Amount: 5.06 g

ICal: PCDDFAL3-3-7-11 Batch No: X2282 Units: pg/g

MS Acquired: 2011-05-04 MSD Acquired: 2011-05-04 GC Column: DB5

Compound	Amount Spiked (pg)	Sample Amount	MS Amount	MSD Amount	% RSD	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	200 1000 1000 1000 1000 1000 2000	- - 1.17 10.3	34.5 189 177 178 184 185 371	34.8 187 180 175 177 184 370	2.88 0.956 3.69 0.339 1.88 1.42 1.66	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	200 1000 1000 1000 1000 1000 1000 1000		38.8 186 175 177 173 179 176 178 350	38.8 186 185 171 179 174 174 175 179 340	2.06 1.93 1.40 0.346 3.14 2.53 0.905 1.48 2.57 1.16	
Internal Standards		% Rec	% Rec	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	2000 2000 2000 2000 4000 2000 2000 2000	84.1 78.4 85.9 89.8 93.4 69.4 92.2 91.3 88.5 86.7 90.5 89.5 90.9 86.8 106	97.4 95.0 95.8 101 111 89.6 103 106 105 96.1 97.6 96.4 99.9 99.0 124	98.0 92.6 94.5 100 105 78.9 102 107 105 96.3 96.8 94.6 100 95.8	$\begin{array}{c} 25.0 - 164\\ 25.0 - 181\\ 32.0 - 141\\ 28.0 - 130\\ 23.0 - 140\\ 17.0 - 157\\ 24.0 - 169\\ 24.0 - 185\\ 21.0 - 178\\ 26.0 - 152\\ 26.0 - 152\\ 26.0 - 123\\ 28.0 - 136\\ 29.0 - 147\\ 28.0 - 147\\ 28.0 - 138\\ \end{array}$	
13C-OCDF	4000	73.5	91.4	115 83.1	26.0 - 138 17.0 - 157	
Cleanup Surrogate						
37CI-2,3,7,8-TCDD	800	79.2	93.2	93.4	35.0 - 197	
Analyst:	_				Review	ed By:
Date: 575/11					Date:	Slutp

FAL ID: 6733-010-SA Client ID: LL-SB3-0-0.5-041911 Matrix: Soil Batch No: X2283	Date Amo	ate Extracted: 05-05-2011 ICal: PCDDFAL3-3-7-11 ate Received: 04-22-2011 GC Column: DB5 nount: 5.00 g Units: pg/g Solids: 85.48						Acquired: 05-07-2011 2005 WHO TEQ: 5.17			
Compound	Con	c DL (Qual	2005 WHO Tox		MDL	Compound	Conc	DL Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	2.1 0.63 0.94 3.6 1.9 82. 66	7 - 1 - 7 - 1 - 6 -	Մ Մ Մ	2.11 0.637 0.0941 0.367 0.191 0.826 0.200		0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144	Total TCDD Total PeCDD Total HxCDD Total HpCDD	6.00 8.66 28.0 162	- - -		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.78 NI 0.66 1.0 0.76 1.1 NI 15. 1.1 47.	D 0.333 4 - 4 - 0 - 1 - D 0.323 6 - 1 -	J J J J	0.0785 0.199 0.104 0.0760 0.111 		0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDF Total PeCDF Total HxCDF Total HpCDF	12.4 12.9 18.6 43.7	- - - -		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-0,2,5,7,8-DFCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,5,7,8-TCDD	% Rec 92.1 98.3 91.9 98.2 102 70.7 99.4 108 100 96.6 95.5 94.8 102 115 72.6 87.8	QC Limits 0 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157 35.0 - 197	Qual		B C C C C C C C C C C C C C C C C C C C	signal to Analyte is Chemical Presence Analyte o Analyte o Analyte o Maximum Analyte N Not Provi Pre-filtere Sample a Matrix int	Labeled Standar noise ratio is >1 s present in Met l Interference e of Diphenyl Et concentration is confirmation on s concentration is n possible conce Not Detected ided ed through a Whacceptance crite cerferences ken from dilution	0:1 hod Blank ners above calibr secondary c below calibr entration natman 0.7u ria not met	ration range olumn ation range m GF/F filter		
Analyst: Date:	-						Reviewed I	3y: [9]17			

000017 of 000726 5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

FAL ID: 6733-011-SA Client ID: LL-SB3-1.5-2-041911 Matrix: Soil Batch No: X2283	Date Re Amount	xtracted: 05-05-20 eceived: 04-22-20 t: 5.04 g ls: 90.35		PCDDFAL3-3- olumn: DB5 pg/g		cquired: 05- 005 WHO T	
Compound	Conc	DL Qual	2005 WHO Tox		Compound	Conc	DL Qual
2,3,7,8-TCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	0.567 ND 0.828 0.679 21.3 150 ND ND ND ND ND 0.411 ND 3.58 ND 9.58	- J 0.277 0.258 - J - J - J - 0.215 0.235 0.260 0.225 0.222 0.225 0.222 - J 0.245 - J 0.245 - J 0.245 - J 0.245 - J 0.245 - J	0.0828 0.0679 0.213 0.0450 	0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144 0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDD Total PeCDD Total HxCDD Total HpCDD	2.17 1.12 7.40 42.5 1.71 4.14 5.09 10.1	- J - - - J - J -
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-0CDF Cleanup Surrogate	101 2 98.0 3 105 2 102 2 62.7 1 98.6 2 101 2 105 2 105 2 105 2 105 2 104 2 96.3 2 103 2 66.6 1	5.0 - 164 5.0 - 181 2.0 - 141 8.0 - 130 3.0 - 140 7.0 - 157 4.0 - 169 4.0 - 185 1.0 - 178 6.0 - 152 6.0 - 123 8.0 - 136 9.0 - 147 8.0 - 143 6.0 - 138 7.0 - 157 5.0 - 197		A signal to B Analyte ii C Chemica D Presence E Analyte of F Analyte of J Analyte of M Maximum ND Analyte N NP Not Prov P Pre-filter S Sample a X Matrix int	ided ed through a Wh acceptance criter	D:1 nod Blank ers above calibra econdary co below calibra ntration ntration atman 0.7un ia not met	ation range lumn tion range n GF/F filter
Analyst: Date:					Reviewed B	y: } 9/1/	

Reviewed By: Date:

FAL ID: 6733-012-SA Client ID: LL-SB3-2-4-041911 Matrix: Soil Batch No: X2283				PCDDFAL3-3-7 olumn: DB5 pg/g		cquired: 05- 005 WHO TI	
Compound	Conc	DL Qual	2005 WHO Tox	MDL	Compound	Conc	DL Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF	0.888 ND ND 1.70 0.902 35.2 239 0.378	- J 0.381 0.364 - J - J - - -	0.888 - 0.170 0.0902 0.352 0.0717 0.0378	0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144 0.0200	Total TCDD Total PeCDD Total HxCDD Total HpCDD	2.57 1.67 11.7 68.3	- J - J -
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND 0.366 0.496 0.405 0.506 ND 5.52 ND 14.8	0.260 - J - J - J 0.331 - 0.488 -	0.110 0.0496 0.0405 0.0506 - 0.0552 - 0.00444	0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDF Total PeCDF Total HxCDF Total HpCDF	5.20 6.54 8.51 15.0	- - -
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	93.0 25 91.7 25 91.4 32 94.4 28 83.3 23 41.8 17 97.4 24 103 24 97.5 21 94.8 26 99.2 26 84.3 28 81.9 29 86.7 28 91.5 26	C Limits Qual .0 - 164 .0 - 181 .0 - 141 .0 - 130 .0 - 140 .0 - 157 .0 - 169 .0 - 185 .0 - 185 .0 - 185 .0 - 178 .0 - 152 .0 - 123 .0 - 136 .0 - 147 .0 - 143 .0 - 138 .0 - 157		A signal to B Analyte i C Chemica D Presence E Analyte o J Analyte o J Analyte o M Maximum ND Analyte 1 NP Not Prov P Pre-filter S Sample a X Matrix in	ided ed through a Wha acceptance criter terferences):1 nod Blank ers nbove calibra econdary co pelow calibra ntration ntration atman 0.7un ia not met	ation range Iumn Ition range n GF/F filter
Cleanup Surrogate 37Cl-2,3,7,8-TCDD Analyst:	83.3 35	.0 - 197		* Result ta	ken from dilution	or reinjectio	n
Analyst. Date: 5/9/11					Date: 5	1911,	

000019 of 000726 5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

FAL ID: 6733-013-SA Client ID: LL-SB2-0-0.5-0419 Matrix: Soil Batch No: X2283	11 Date Amo	e Extracted: 08 e Received: 04 ount: 5.01 g olids: 87.78		ICal: F GC Co Units:	olumi		7-11	Acquired: 05 2005 WHO		
Compound	Con	nc DL	Qual	2005 WHO Tox		MDL	Compound	d Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	7.8 1.1 1.7 5.3 2.6 11 97 1.4 0.78 1.8 2.2 1.7 2.7 0.43 27. 2.1 72.	9 - 9 - 13 - 13 - 9 - 13 - 11 - 12 - 12 - 12 - 12 - 12 - 12 - 13 - 14 - 15 - 16 - QC Limits	J J J J J J J J J Qual	7.82 1.19 0.172 0.533 0.263 1.19 0.293 0.149 0.0236 0.546 0.546 0.222 0.172 0.272 0.0434 0.274 0.0211 0.0218		0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144 0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDE Total PeCDE Total HxCDE Total HpCDE Total PeCDE Total PeCDE Total HxCDE Total HxCDE	0 15.1 0 15.1 0 43.8 0 245 = 47.0 = 51.7 = 52.5 = 78.5	-	D,M D,M
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF Cleanup Surrogate 37Cl-2,3,7,8-TCDD	76.7 79.9 87.0 92.9 77.0 40.4 73.2 89.3 75.1 95.2 93.3 67.7 71.6 88.1 76.0 46.2	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157 35.0 - 197			B C D E F J M D P S	Analyte i Chemica Presence Analyte o Analyte o Maximum Analyte N Not Prov Pre-filter Sample a Matrix in	noise ratio is > s present in Me e of Diphenyl E concentration is confirmation on concentration is n possible cond Not Detected ided ed through a W acceptance crit terferences ken from dilutio	ethod Blank thers s above calib s secondary of s below calib centration /hatman 0.70 reria not met	column ration rang um GF/F filt	e

Analyst: ______ Date: ________

Reviewed By: _____ Date: ______

FAL ID: 6733-014-SA Client ID: LL-SB2-1.5-2-04191 Matrix: Soil Batch No: X2283	1 Date Amo	e Extracted: 04 Received: 04 punt: 5.04 g olids: 91.52			olum	DFAL3-3-7 n: DB5 I	7-11	Acquired: 0 2005 WHO		7
Compound	Con	nc DL	Qual	2005 WHO Tox		MDL	Compound	d Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	N N N 1.8 13. N N N N N N N N N	D 0.273 D 0.286 D 0.367 D 0.319 37 - 3 - D 0.173 D 0.202 D 0.215 D 0.212 D 0.208	J	- - - 0.0187 0.00399 - - - - - - - - - - - - - - - - - -		$\begin{array}{c} 0.0259\\ 0.0434\\ 0.0467\\ 0.0587\\ 0.0529\\ 0.0742\\ 0.144\\ \end{array}$	Total TCDE Total PeCDE Total HxCDE Total HxCDE) ND) ND	0.273 0.367	J
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	N 0.49 N N	D 0.222 97 - D 0.396	J	- - 0.00497 - -		0.0399 0.0386 0.0393 0.0418 0.105	Total TCDF Total PeCDF Total HxCDF Total HpCDF	= ND = ND	0.173 0.215 0.234 -	J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 95.8 103 91.8 99.9 96.2 58.4 102 114 112 98.7 100 95.3 95.1 96.9 103 62.9	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		C D E F J M NE NF P S	signal to Analyte i: Chemica Presence Analyte o Analyte o Maximum Analyte o Not Prov Pre-filter Sample a Matrix in	Labeled Standa noise ratio is > s present in Me e of Diphenyl E concentration is confirmation on concentration is n possible con- Not Detected ided ed through a W acceptance crit terferences ken from dilutio	10:1 ethod Blank s above calib s secondary s below calib centration /hatman 0.7 reria not met	oration rang column oration rang um GF/F fil	e
37Cl-2,3,7,8-TCDD	88.0	35.0 - 197								

Analyst:_____

Reviewed By 5/9 Date:

FAL ID: 6733-015-SA Client ID: LL-SB2-2-3.5-04191 Matrix: Soil Batch No: X2283	1 Date Amo	e Extracted: 04 e Received: 04 ount: 5.23 g olids: 90.43		ICal: P GC Cc Units:	olumn	FAL3-3-7 : DB5		Acquired: 05 2005 WHO		53
Compound	Cor	nc DL	Qual	2005 WHO Tox		MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	N N N N 1.7 15	D 0.210 D 0.245 D 0.319 D 0.275 '1 -	J	- - - 0.0171 0.00459	- (((0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND	0.210 0.319 -	J J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	N N N N N 0.36 N N	D 0.157 D 0.175 D 0.168 D 0.167 D 0.183 D 0.172 S5 - D 0.290	J	- - - - - - - - - - - - - - - - - - -		0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND	0.133 0.175 0.183 -	J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 101 110 98.4 103 102 66.0 104 118 101 102 99.7 99.2 101 119 71.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A B C C C C C C C C C C C C C C C C C C	signal to Analyte is Presence Analyte c Analyte c Analyte c Maximun Analyte N Not Prov Pre-filter Sample a Matrix inf	abeled Standa noise ratio is > s present in Me I Interference of Diphenyl E concentration is confirmation on concentration is n possible conc Not Detected ided ed through a W acceptance crite cerferences ken from dilutic	10:1 thod Blank above calib secondary c below calib centration hatman 0.7u eria not met	ration rang column ration rang um GF/F fil:	e
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	92.4	35.0 - 197								

Analyst:______ Date:______**5/9/11**_____

Reviewed By: 5 Date:

FAL ID: 6733-016-SA Client ID: LL-SB1-0-0.5-041911 Matrix: Soil Batch No: X2283	I Date Amo	e Extracted: 06 Received: 04 ount: 5.08 g olids: 92.85			CDDFAL3-3-7 umn: DB5 g/g		Acquired: 05 2005 WHO		57
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI NI NI 2.5 18.	D 0.278 D 0.291 D 0.364 D 0.320 3 -	J	- - 0.0253 0.00558	0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND	0.278 0.364 -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NI NI NI NI NI 0.48 NI NI	D 0.231 D 0.243 D 0.177 D 0.181 D 0.192 D 0.184 33 - D 0.379	J	- - - 0.00483 - -	$\begin{array}{c} 0.0200\\ 0.0304\\ 0.0322\\ 0.0365\\ 0.0357\\ 0.0399\\ 0.0386\\ 0.0393\\ 0.0418\\ 0.105\\ \end{array}$	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND	0.243 0.192	j J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-0CDF Cleanup Surrogate 37CI-2,3,7,8-TCDD	% Rec 83.8 89.0 80.6 87.9 84.9 57.5 86.5 95.6 93.9 88.4 86.7 85.8 84.0 85.4 94.0 60.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157 35.0 - 197	Qual		A signal to B Analyte is C Chemica D Presence E Analyte of F Analyte of J Analyte of M Maximum ND Analyte N NP Not Prov P Pre-filter S Sample a X Matrix int	ided ed through a W acceptance crit	10:1 ethod Blank thers above calib secondary of below calibi centration /hatman 0.7u eria not met	ration rang column ration rang um GF/F filt	e

Analyst:______ Date:_______ Reviewed By:

FAL ID: 6733-017-SA Client ID: LL-SB1-0-0.5-041911-D Matrix: Soil Batch No: X2283		Date Extracted: 05-05-2011 Date Received: 04-22-2011 Amount: 5.01 g % Solids: 93.20					Acquired: 05-07-2011 2005 WHO TEQ: 0.0860			
Compound	Con	c DL	Qual	2005 WHO Tox		MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	NE NE NE 6.11	0.252 0.261 0.331 0.289 8		- - - 0.0618		0.0259 0.0434 0.0467 0.0587 0.0529 0.0742	Total TCDD Total PeCDD Total HxCDD	ND ND	0.252 0.496	J
OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	61.9 NE NE NE NE	D0.157D0.166D0.176D0.155		0.0186 - - - -		0.144 0.0200 0.0304 0.0322 0.0365 0.0357	Total HpCDD	11.3	-	
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NE 0.56: NE NE	D 0.160 2 - D 0.322	J	- 0.00562 - -		0.0399 0.0386 0.0393 0.0418 0.105	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND 0.660	0.176 - -	J J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF	% Rec 96.8 106 93.5 99.4 96.8 61.9 99.5 114 113 99.6 98.5 95.5 95.8 97.5 111 63.6	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		C D E F J M NE N P S	signal to Analyte i Chemica Presence Analyte o Analyte o Maximum Analyte o Not Prov Pre-filter Sample a Matrix int	abeled Standa noise ratio is > s present in Me I Interference of Diphenyl Ef- concentration is confirmation on concentration is n possible concentration ided ed through a W acceptance crite terferences ken from dilutio	10:1 thod Blank above calib secondary c below calibr entration hatman 0.7u eria not met	ration rang column ration rang	e
37CI-2,3,7,8-TCDD	92.8	35.0 - 197								

Analyst: ______ Date: _______

Reviewed By:_____ Date:_____

FAL ID: 6733-018-SA Client ID: LL-SB1-1.5-2-0419 Matrix: Soil Batch No: X2283				7-11	Acquired: 05- 2005 WHO T					
Compound	Con	ic DL	Qual	2005 WHO Tox		MDL	Compound	d Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	0.61 NI 0.94 0.65 16. 11	D 0.377 D 0.320 2 - 3 - 1 -	J J	0.611 		0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144	Total TCDE Total PeCDE Total HxCDE Total HpCDE	0 1.17 0 6.12	- - -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	N N N 0.49 N 3.2 N 7.1	D 0.246 D 0.284 D 0.260 D 0.251 0 - D 0.257 0 - D 0.388	J J J	- - - 0.0490 - 0.0320 - - 0.00215		0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDF Total PeCDF Total HxCDF Total HxCDF	= 2.82 = 4.48		J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-0CDF	% Rec 98.5 105 93.0 96.9 102 66.7 101 115 110 96.8 97.6 93.9 95.6 98.3 113 68.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A B C D E F J M D P S X	signal to Analyte i Chemica Presence Analyte o Analyte o Maximur Analyte o Maximur Analyte o Not Prov Pre-filter Sample a Matrix in	Labeled Standa noise ratio is > s present in Me l Interference e of Diphenyl E concentration is confirmation on concentration is n possible cone Not Detected ided ed through a W acceptance crit terferences iken from dilutio	 10:1 ethod Blank thers s above calibration s below calibration vhatman 0.7under 	ation rang olumn ation rang m GF/F fil	e

37CI-2,3,7,8-TCDD

93.5 35.0 - 197

Analyst: C Date:

Reviewed By:_____ Date:______

FAL ID: 6733-019-SA Client ID: LL-SB1-2-4-041911 Matrix: Soil Batch No: X2283	Date Amo	Extracted: 05 Received: 04 ount: 5.01 g olids: 90.89		ICal: PCDDFAL3-3-7-11 GC Column: DB5 Units: pg/g				Acquired: 05-07-2011 2005 WHO TEQ: 1.77		
Compound	Con	c DL	Qual	2005 WHO Tox		MDL	Compound	Conc	DL Qua	al
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-P4CDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.67 NI 0.52 1.4 0.90 33. 25 0.38 NI 0.43 0.45 0.45 0.68 N 6.3 N 15.	D 0.314 4 - 1 - 8 - 1 - 1 - 9 - D 0.204 3 - 1 - 0 0.204 3 - 1 - 8 - 1 - 2 0.248 - 2 - D 0.490		0.671 0.0524 0.141 0.0908 0.331 0.0753 0.0389 - 0.130 0.0586 0.0451 0.0688 - 0.0632 - 0.00456		0.0259 0.0434 0.0467 0.0587 0.0529 0.0742 0.144 0.0200 0.0304 0.0322 0.0365 0.0357 0.0399 0.0386 0.0393 0.0418 0.105	Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF	2.27 11.2 64.2 6.03 8.41 10.2	- - - - - - - - -	J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1	% Rec 93.7 98.1 98.7 107 95.4 53.5 93.1 105 92.7 108 106 81.9 88.6 103 98.7 58.4 84.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		C D E F J M D P S	signal to Analyte i Chemica Presence Analyte o Analyte o Analyte o Maximur Analyte I Not Prov Pre-filter Sample a Matrix in	Labeled Standa noise ratio is > s present in Me I Interference e of Diphenyl Et concentration is confirmation on concentration is n possible conc Not Detected ided ed through a W acceptance crite terferences iken from dilutio	10:1 thod Blank thers above calib secondary below calib centration hatman 0.7 eria not met	oration range column ration range um GF/F filter	

Analyst:______ Date:___________

Reviewed By: Date:

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 04/20/11

ARI Client: Floyd Snider Laboratory: Frontier Analytical Laboratory Project ID: Lora Lake Parcel Lab Contact: BRAD SILVERBUSH ARI PM: Sue Dunnihoo Lab Address: 5172 Hillsdale Circle Phone: 206-695-6207 El Dorado Hills, CA 95762 Fax: 206-695-6201 Phone: 916-934-0900 Fax: 916-934-0999 Requested Turn Around:

Analytical Protocol: In-house Special Instructions:

Email Results (Y/N): Yes

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
11-8654-SS71A	LL-SB6-0-0.5-041811	04/18/11 14:50 /	Soil	1	Dioxin/Furans 1613(Sub)
Special Instruc	ctions: None				
11-8655-SS71B	LL-SB6-1.5-2-041811	04/18/11 15:05 -		1	Dioxin/Furans 1613(Sub)
Special Instru	ctions: None				
11-8656-SS71C	LL-SB6-2-4-041811	04/18/11 15:15	Soil	1	Dioxin/Furans 1613(Sub)
Special Instru	ctions: None				
11-8657-SS71D	LL-SB5-0-0.5-041811	04/18/11 16:00 -	Soil	1	Dioxin/Furans 1613(Sub)
Special Instru	ctions: None				
11-8658-SS71E	LL-SB5-1.5-2-041811	04/18/11 16:15 -		1	Dioxin/Furans 1613(Sub)
Special Instru	ctions: None				
11-8659-SS71F	LL-SB5-2-4-041811	04/18/11 16:30 -		1	Dioxin/Furans 1613(Sub)
Special Instru	ctions: None				
11-8660-SS71G	LL-SB4-0-0.5-041911	04/19/11 09:10 -		1	Dioxin/Furans 1613(Sub)
Special Instru	ctions: None				

148E	DD		
	128326950	150704505 SMAI 8695	,
Carrier UPS	Airbill 1283219501	50738687	Date 4/21/11
Relinguished by	Company ARI	Date 4/21/11	Time 1543
Received by	Company	Date 4-22-11	Time UZO
	Subcontractor Custody I Page 1 of		000027 of 0

SUBCONTRACTOR AI CUSTODY TRANSFEI	NALYSIS REQUEST R 04/20/11	ANALYTICA RESOURCI INCORPOR	ES 🤍 🛛 🕔	32 1	ARI Project: SS71		
Laboratory: From Lab Contact: BR	ntier Analytical Labora AD SILVERBUSH		I Client: pject ID:	Floyd Sn: POS-LL	ider		
ARI Sample ID	Client Sample ID/ Add'l Sample ID	Sampled	Matrix	Bottles	Analyses		
11-8661-SS71H	LL-SB4-1.5-2-041911	04/19/11 09:25 -		1	Dioxin/Furans 1613(Sub)		
Special Instruc	tions: None	09.23					
11-8662-SS71I	LL-SB4-2-4-041911	04/19/11		3	Dioxin/Furans 1613(Sub)		
Special Instruc	tions: MS/MSD 🏏	09.45					
11-8663-SS71J	LL-SB3-0-0.5-041911	04/19/11 11:20/	Soil	1	Dioxin/Furans 1613(Sub)		
Special Instruc	tions: None						
11-8664-SS71K	LL-SB3-1.5-2-041911	04/19/11 11:30		1	Dioxin/Furans 1613(Sub)		
Special Instruc	tions: None						
11-8665-SS71L	LL-SB3-2-4-041911	04/19/11		1	Dioxin/Furans 1613(Sub)		
Special Instruc	tions: None						
11-8666-SS71M	LL-SB2-0-0.5-041911	04/19/11 13:45 ✓		1	Dioxin/Furans 1613(Sub)		
Special Instruc	ctions: None	10.10-					
11-8667-SS71N	LL-SB2-1.5-2-041911	04/19/11 14:00 -		1	Dioxin/Furans 1613(Sub)		
Special Instruc	ctions: None	11.00					
11-8668-SS710	LL-SB2-2-3.5-041911	04/19/11 14:15		1	Dioxin/Furans 1613(Sub)		
Special Instruc	ctions: None	11 . 10 .					
11-8669-SS71P	LL-SB1-0-0.5-041911	04/19/11 15:10	Soil	1	Dioxin/Furans 1613(Sub)		
Special Instruc	ctions: None	10.108			ч.		
11-8670-SS71Q	LL-SB1-0-0.5-041911-D	04/19/11 15:15 -	Soil	1	Dioxin/Furans 1613(Sub)		
Special Instructions: None							
11-8671-SS71R	LL-SB1-1.5-2-041911	04/19/11 15:35	Soil	1	Dioxin/Furans 1613(Sub)		
Special Instruc	ctions: None						

LyaEDD

Carrier UPS	Airbill		Date 4-21-11
Relinquished by	ellos Company ART	Date 4-21-11	^{Time} 1543
Received by	2pp Compañy Jon til	Date 4-2211	Time /UZO
	Subcontractor Custody Fo Page 2 of 3		000028 of 0

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 04/20/11

04/19/11 Soil

15:50

ARI Project: SS71

1 Dioxin/Furans 1613(Sub)

Laboratory: Front Lab Contact: BRAD	ier Analytical Laborat SILVERBUSH	-	I Client: oject ID:		der
	Client Sample ID/ Add'l Sample ID	Sampled	Matrix	Bottles	Analyses

Special Instructions: None

11-8672-SS71S LL-SB1-2-4-041911

Ly a EDD

Carrier UBS	Airbill	P	Date 4/21/11
Relinguished by	Company ARI	Date 4/21/11	Timé 1543
Rederved by	Company CONTRO	Date 4-22-11	Time 1020
	Subcontractor Custody F Page 3 of		000029 of 0

8

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 6733

Client:	Analytical Resources Inc. Sue Dunnihoo
Client Project ID:	SS71
Date Received:	04/22/2011
Time Received:	10:20 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	19
Duplicates:	0
Storage Location:	R2

lethod of Delivery:	UPS
racking Number:	1Z8326950150704505
hipping Container Received Intact	Yes
Custody seals(s) present?	Yes
Custody seals(s) intact?	Yes
ample Arrival Temperature (C)	0
Cooling Method	Ice
hain Of Custody Present?	Yes
leturn Shipping Container To Client	Yes
est for residual Chlorine	No
hiosulfate Added	No
arliest Sample Hold Time Expiration	04/17/2012
dequate Sample Volume	Yes
H Range	N/A
nomalies or additional comments:	

Frontier Analytical Laboratory PROJECT REQUEST SHEET

Project #:	<u>6733</u>	Sample #:	-9 1-19 <i>5</i> N 5.2.11	Client Manager:	BS
Client:	Analytical Resource	<u>s Inc. Sue Dunnihoo</u>		Hold Time:	04/17/2012
Matrix:	Soil	Extraction Batch:	2282	Due Date:	05/16/2011
Method:	EPA 1613 D/F			Storage:	<u>R2</u>

SOP: SOPs: EP2A Rev.9 IP2A Rev.10

COMMENTS/INSTRUCTIONS:

Msimso requested on sample 6733.009.5A.

Results:

6733

 Instrument:
 Falls

 DB5

 DB225

 DB1

 Other

Extract/s located in box: "wind mill"

Standards: <u>4733</u>

000033 of 000726

Frontier Analytical Laboratory Percent Solids

FAL Project: 6733

-1.32 -1.32 -1.31 -1.33 -1.33 -1.33 -1.33 -1.33 -1.33 -1.32 -	Sample ID 6733-001-0001-SA 6733-002-0001-SA 6733-003-0001-SA 6733-005-0001-SA 6733-005-0001-SA 6733-007-0001-SA 6733-009-0001-SA 6733-009-0002-MSD 6733-010-0001-SA 6733-011-0001-SA 6733-012-0001-SA 6733-014-0001-SA 6733-015-0001-SA 6733-018-0001-SA 6733-019-0001-SA 6733-019-0001-SA		Date 04-26-11	Wet Sample Weight (g) 3.03 3.2 7.02 7.03 9.48 8.59 6.89 8.93 8.93 8.56 7.24 9.49 4.96 6.32 7.16 9.25 6.96 8.78 6.99 6.99 6.99 6.18	Dry Sample Weight (g) $\sqrt[5]{07.27}$ 7.20 6.34 5.17 8.09 7.08 5.47 8.06 7.43 6.29 7.98 4.24 5.71 6.37 8.12 6.37 7.94 6.49 5.76 8.37 5.59	% Solids 84.24 88.43 90.31 73.02 85.34 82.42 79.39 90.26 86.80 86.80 86.80 86.80 86.80 86.80 86.80 86.80 86.80 86.97 85.48 90.35 88.97 87.78 91.52 90.43 92.85 93.20 91.98 90.89	10g Equiv 11.87 11.31 11.07 13.69 11.72 12.13 12.60 11.72 11.51 11.52 11.51 11.52 11.51 11.89 11.70 11.07 11.24 11.39 10.73 10.73 10.87 11.00
- 1.32	6733-019-0001-SA	V	V	6.15	5.59	40.89	11.00

% Solids Summary:

Non-Filtered Determination

- 1. Place an aliquot of sample into a pre-weighed aluminum weighing boat. Use approximately two to ten grams for solid samples, approximately 10 mL for aqueous samples.
- 2. Record the weight.
- 3. Dry sample overnight at approximately 110 C.

Filtered Determination

- 1. Pre-weigh a glass fiber filter of appropriate pore size and pressure filter a sample aliquot (200-1000mL) through it.
- 2. Air dry the filter and record the dry weight.

Frontier Analytical Laboratory **EXTRACTION SHEET**

Project #:

Extraction Date: 2011-05-02

Extraction Chemist: DV

Method/Analysis: EPA 1613 D/F

6733

Procedure: SOX/SDS Solvent: Toluene

				IS			NS		CSS	5
			Amt:	10	.0uL	Amt:	10.0uL	Amt:		0.0uL
			ID:	10	0511A	ID:	100511B	ID:	1	00511C
Sample ID	Wet wt.	Dry wt.	Vial:	5		Vial:	5	Vial:	5	
	(g/L)	(g/L)	Chemi	st/Witne	ess/Date	Chem	ist/Witness/Date	Chemis	st/Witnes	s/Date
2282-001-0001-MB	(رە5.0)	(5.00g)	DN	WM	5.2.1)		~/A	DN	4N	5.3.11
2282-001-0001-OPR	(5.005)	(5.00 {)				DIV	WM 5.2.11		(
6733-001-0001-SA	5.97	5.03 5					NA			
6733-002-0001-SA	5.70	5.045								
6733-003-0001-SA	5.49	4.96								
6733-004-0001-SA	6.89	5.034								
6733-005-0001-SA	5.81	4.965								
6733-006-0001-SA	6.13	5,05								
6733-007-0001-SA	6.33	5.035								
6733-008-0001-SA	5.46	4.93								
6733-009-0001-SA	5.70	4.95					<u> </u>			
6733-009-0002-MS	5.71	4.965				DIN	WM 5.2.11			
6733-009-0002-MSD	6.02	5.06		1					\mathbf{V}	
		· · ·								

AX-21 Charcoal Cleaned	082510	Acetone	107203	Acid Alumina	A0284730	Hexane	110182
Hydrochloric Acid	B08505	Methanol	106063	Methylene Chloride (DCM)	51042	Silica Gel	TA1592834
Sodium Hydroxide	0062836	Sodium Sulfate	1750C277	Sulfuric Acid	110205	Tetradecane	086237
Toluene	108273	Water	50321	C-18 Empore Discs	320555	Cyclohexane	50204

Frontier Analytical Laboratory CLEANUP SHEET

Project #: <u>6733</u>

v , ş

Method/Analysis: EPA 1613 D/F

Splits:0Split Date:N/AFinal Volume:20.0uL

	Cleanup 1	Cleanup 2	Cleanup 3	RS
			. 8	Amt: 10.0uL
	MSONAA	دد	NA	ID: 100511D
Sample ID				Vial: 8
	Chemist/Date	Chemist/Date	Chemist/Date	Chemist/Witness/Date
2282-001-0001-MB	DAV 5.3.11	BN 5.3.11	~/A	DN GN 5.3.11
2282-001-0001-OPR	((
6733-001-0001-SA				
6733-002-0001-SA				
6733-003-0001-SA				
6733-004-0001-SA)			
6733-005-0001-SA	1			
6733-006-0001-SA				
6733-007-0001-SA				
6733-008-0001-SA				
6733-009-0001-SA				
6733-009-0002-MS				
6733-009-0002-MSD	\downarrow		\checkmark	

Frontier Analytical Laboratory PROJECT REQUEST SHEET

			10-19		
Project #:	<u>6733</u>	Sample #:	- <u>1-19</u> ~DN 5.2.11	Client Manager:	BS
Client:	Analytical Resource	<u>s Inc. Sue Dunnihoo</u>		Hold Time:	04/17/2012
Matrix:	Soil	Extraction Batch:	2283	Due Date:	<u>05/16/2011</u>
Method:	EPA 1613 D/F			Storage:	<u>R2</u>

COMMENTS/INSTRUCTIONS:

SOP:

SOPs: EP2A Rev.9 IP2A Rev.10

Results: 6733-10

Extract/s loca	ار ted in box:	Wind	Mill"	
Standards:	6733			

Instrument:	
DB5	FAL-3
DB225	
DB1	
Other	

Frontier Analytical Laboratory Percent Solids

FAL Project: 6733

-1.32 6733-017-0001-SA 6.18 5.76 93.20 10.73	5.47 5.53 5.39 5.37 5.44
-1.326733-019-0001-SA V V 6.15 5.59 90.89 11.00	5.50

% Solids Summary:

Non-Filtered Determination

- 1. Place an aliquot of sample into a pre-weighed aluminum weighing boat. Use approximately two to ten grams for solid samples, approximately 10 mL for aqueous samples.
- 2. Record the weight.
- 3. Dry sample overnight at approximately 110 C.

Filtered Determination

- 1. Pre-weigh a glass fiber filter of appropriate pore size and pressure filter a sample aliquot (200-1000mL) through it.
- 2. Air dry the filter and record the dry weight.

Frontier Analytical Laboratory EXTRACTION SHEET

Project #: 6733 Extraction Date: 2011-05-05 Extra

Extraction Chemist: GN

Method/Analysis: EPA 1613 D/F

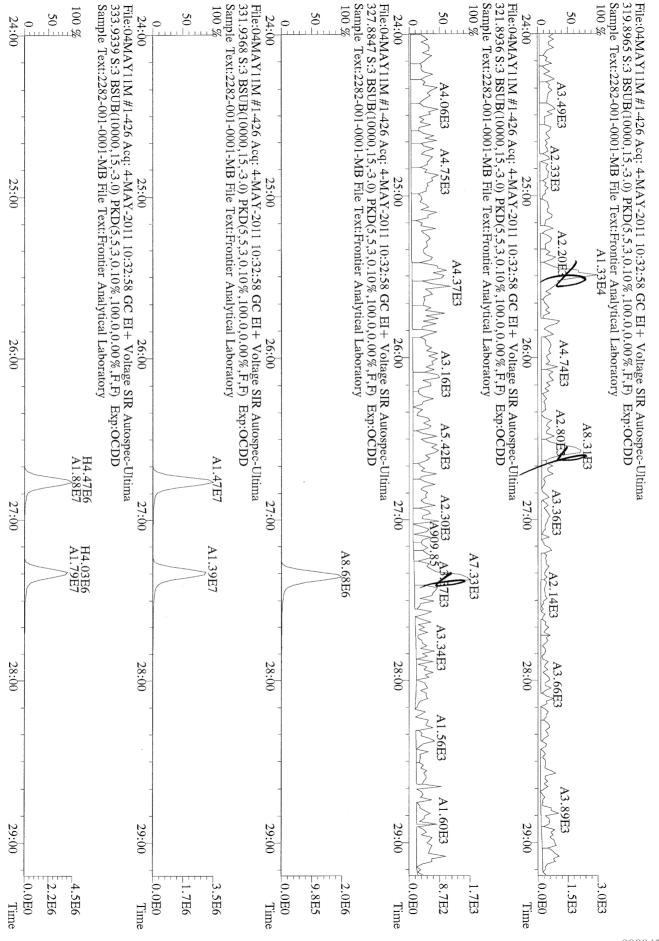
Procedure: SOX/SDS

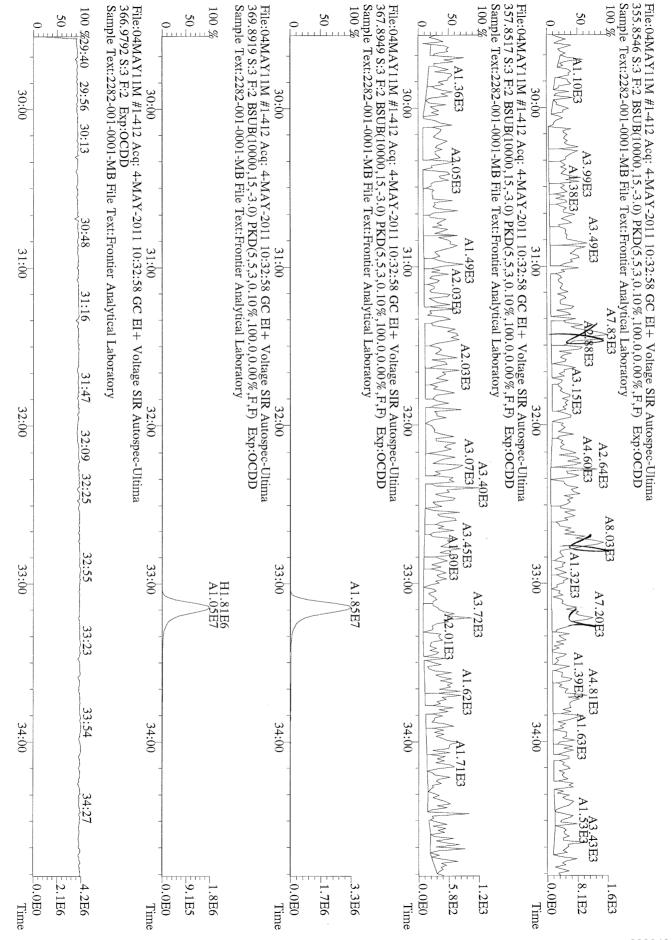
Solvent: Toluene

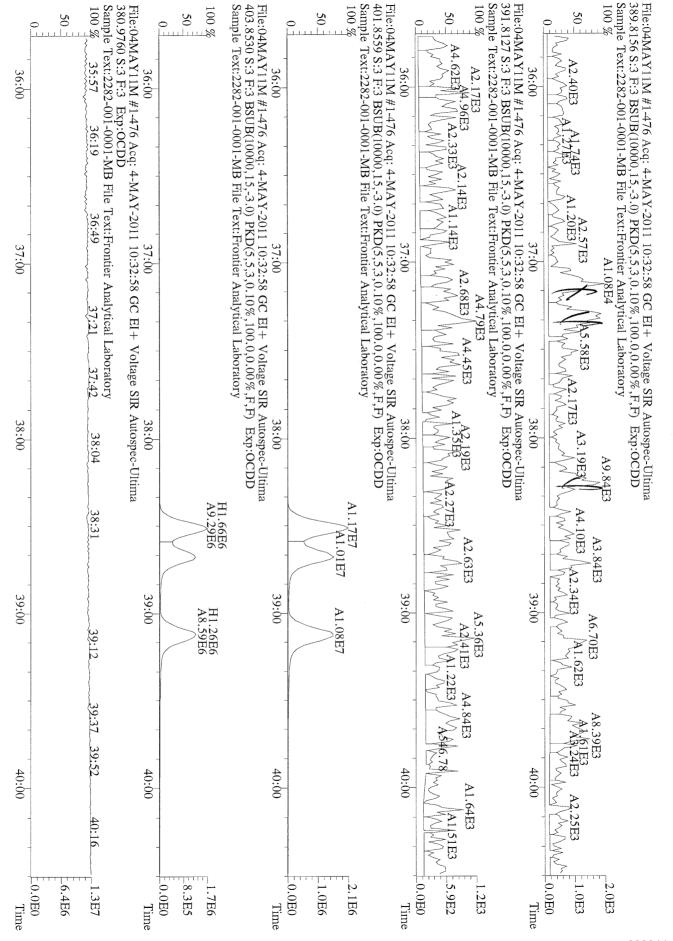
			IS			NS	CSS		
			Amt:	10.0uL	Amt:	10.0uL	Amt:	10.0uL	
			ID:	100511A	ID:	100511B	ID:	100511C	
Sample ID	Wet wt.	Dry wt.	Vial:	5	Vial:	\$ 6 SIS/1	Vial:	5	
	(g/L)	(g/L)	Chemist/W	/itness/Date	Cherr	nist/Witness/Date	Chemist/Witn	ess/Date	
2283-001-0001-MB	(5.00)	(5.00)	GN WI	<u>n s s 1</u>		NA	GN C	- 5/u/11	
2283-001-0001-OPR	(5.00)	(5.00)			6N	UM SISI			
6733-010-0001-SA	5.85	5.00				NA			
6733-011-0001-SA	5.58	5.04							
6733-012-0001-SA	5.63	5.01							
6733-013-0001-SA	5.71	5.01							
6733-014-0001-SA	5.5/	5.04							
6733-015-0001-SA	5.78	5.23							
6733-016-0001-SA	5.47	5.08							
6733-017-0001-SA	5.38	5.01				4-745-7-			
6733-018-0001-SA	5.46	5.02							
6733-019-0001-SA	5.5/	5.01					,	/	
						MM 8 M 8			
					+				
					J		1		

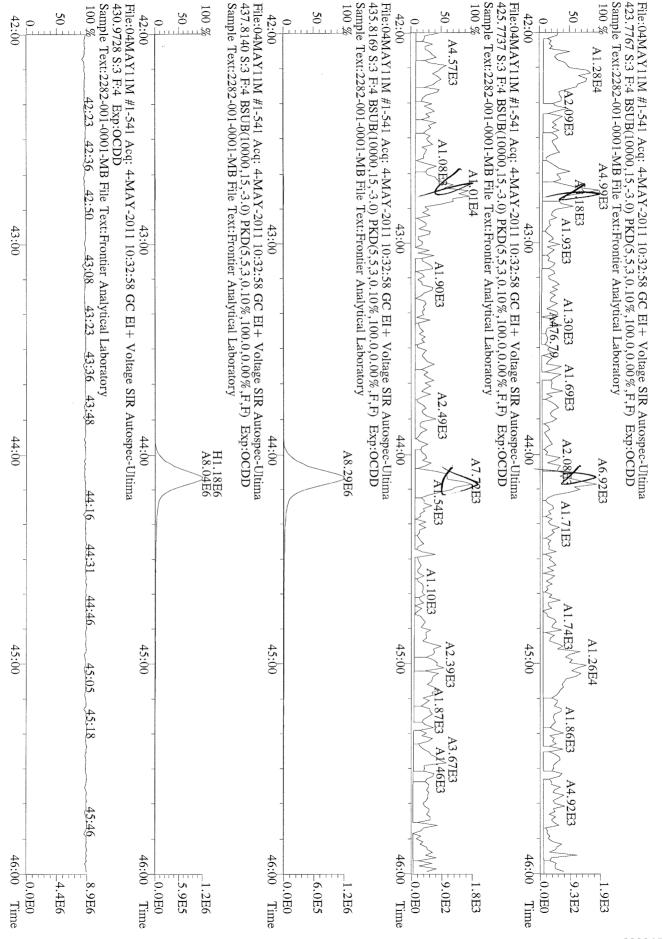
AX-21 Charcoal Cleaned	082510	Acetone	107203	Acid Alumina	A0284730	Hexane	110182
Hydrochloric Acid	B08505	Methanol	106063	Methylene Chloride (DCM)	51042	Silica Gel	TA1592834
Sodium Hydroxide	0062836	Sodium Sulfate	1750C277	Sulfuric Acid	110205	Tetradecane	086237
Toluene	108273	Water	50321	C-18 Empore Discs	320555	Cyclohexane	50204

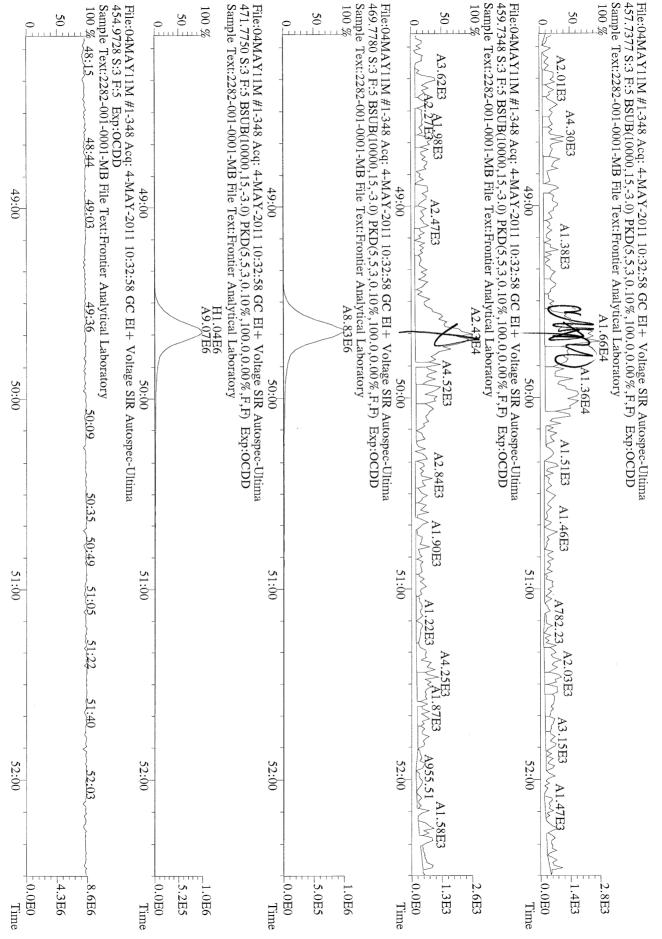
Frontier Analytical Laboratory CLEANUP SHEET

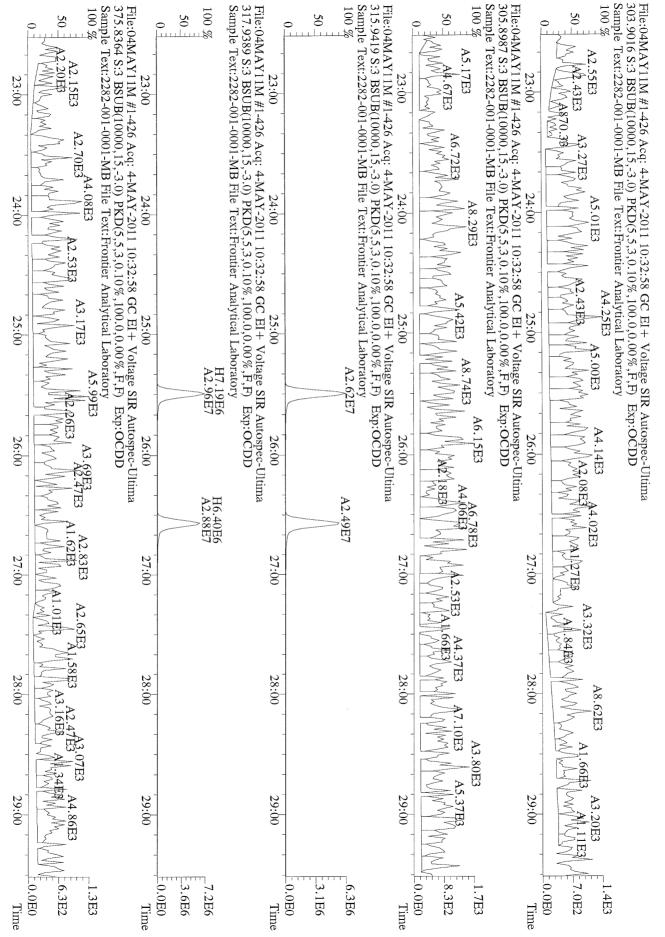

Project #: <u>6733</u>

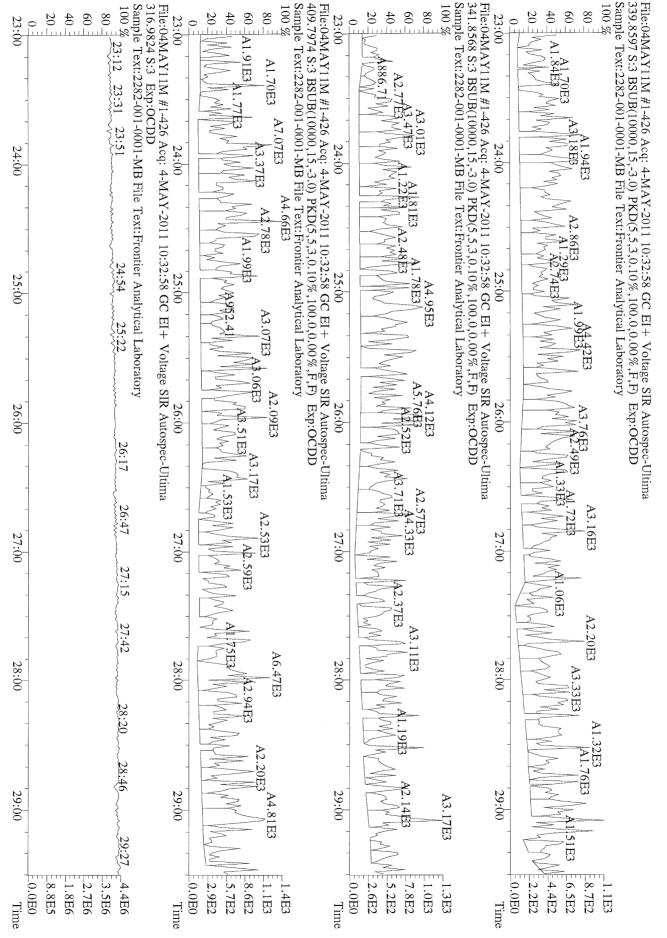

Method/Analysis: EPA 1613 D/F

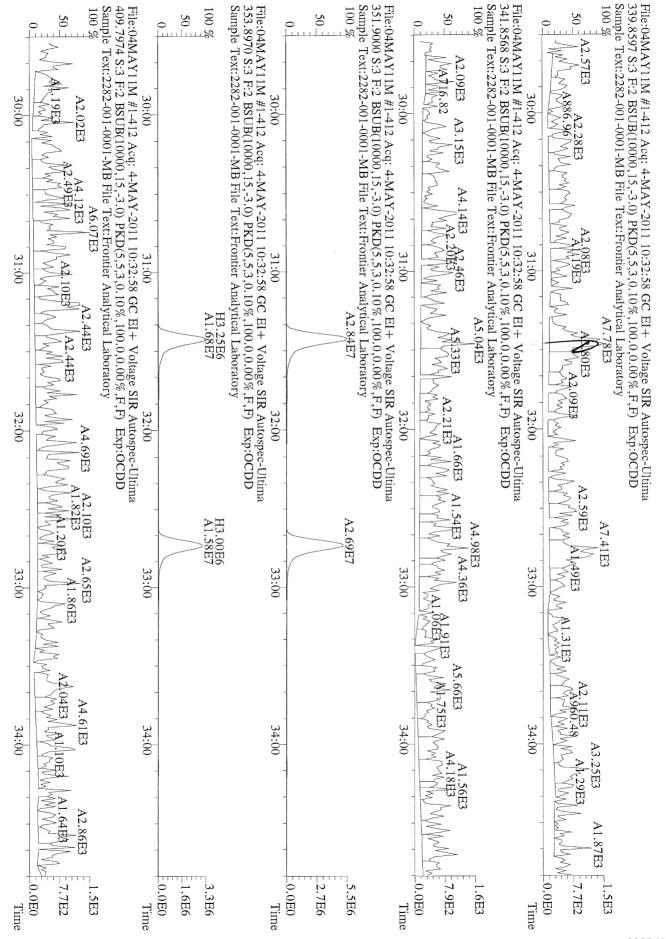

Splits:	0 Spl	lit Date	e:	N/A		Final Vo	olume:	<u>20.0uL</u>
•	- ·							
	Cleanup	1	4	eanup 2	Clea	nup 3	RS Amt: 10.0 ID: 100 Vial: 8 Chemist/Witnes	
	MSGIAA		Cha	rcoal	Ν	AL	_ID:	10.0uL 100511D
Sample ID	Chemist/Da	ate	Che	emist/Date	Chem	iist/Date	Chemist/	Witness/Date
2283-001-0001-MB	4N 5/6/11		6N5/6/11		1	(A	RS Amt: 10.0u ID: 10051 Vial: 8 Chemist/Witness/I	M 5/6/11
2283-001-0001-OPR	<u>\</u>					<u> </u>		<u> </u>
6733-010-0001-SA				-				
6733-011-0001-SA								
6733-012-0001-SA						[·		
6733-013-0001-SA								
6733-014-0001-SA								
6733-015-0001-SA						-		
6733-016-0001-SA								
6733-017-0001-SA								
6733-018-0001-SA								
6733-019-0001-SA		,				/	\	
								•
				Curr.				Alexandre († 1999) 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1

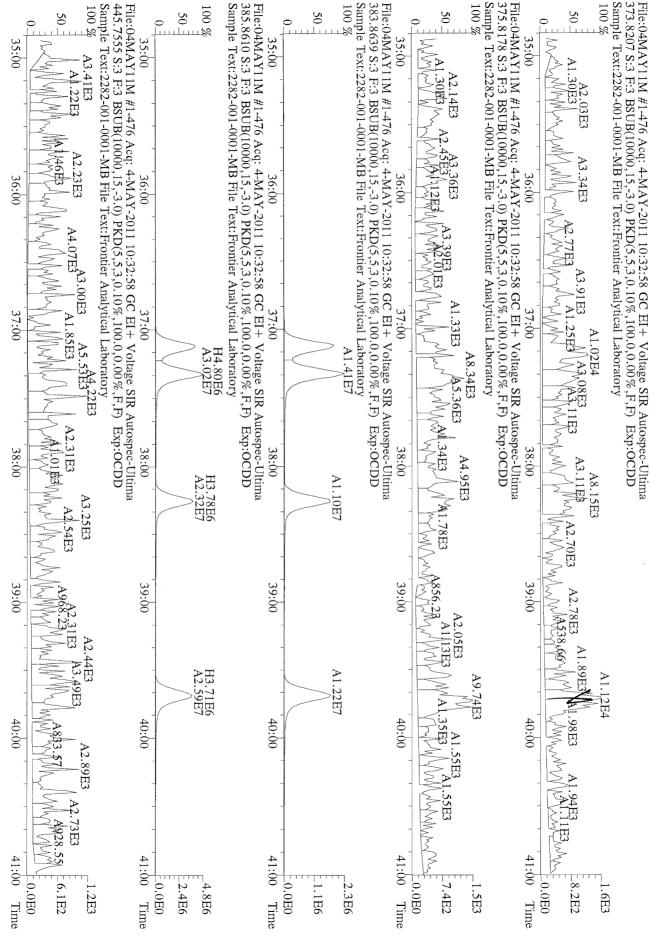

lient ID: Method Blank					nCal: ST05041		dCal: ST05		
esults: 2282 GC	Column: DE	35 Amour	nt: 5.000	NATO 1989					
				WHO 1998			0 2005 Tox		
Name	Resp	RA	RT RRF	Conc	Qual Fac	Noise-1	Noise-2	DL	
2,3,7,8-TCDD	*	* n Notl	nd 1.13	*	2.50	540	596	0.142	
	*	* n Noti			2.50	576	476	0.203	
1,2,3,7,8-PeCDD	*	* n Noti		•	2.50	636	552	0.219	
1,2,3,4,7,8-HxCDD					2.50	636	552	0.288	
1,2,3,6,7,8-HxCDD	*	* n Notl				636	552	0.247	
1,2,3,7,8,9-HxCDD	*	* n Notl			2,50			0.341	
1,2,3,4,6,7,8-HpCDD	*	* n Notl			2.50	524	536		
OCDD	*	* n Notl	nd 1.45	*	2.50	612	624	0.834	
2,3,7,8-TCDF	*	* n Notl	nd 1.15	*	2.50	780	804	0.115	
1,2,3,7,8-PeCDF	*	* n Not			2.50	588	628	0.157	
2,3,4,7,8-PeCDF	*	* n Not			2.50	588	628	0.169	
1,2,3,4,7,8-HxCDF	*	* n Not			2.50		536	0.179	
	*	* n Not			2.50	524	536	0.168	
1,2,3,6,7,8-HxCDF	*	* n Noti * n Noti			2.50	524	536	0.190	
2,3,4,6,7,8-HxCDF				-			536	0.190	
1,2,3,7,8,9-HxCDF	*	* n Not		•	2.50			0.178	
1,2,3,4,6,7,8-HpCDF	*	* n Not		•	2.50		508		
1,2,3,4,7,8,9-HpCDF	*	* n Not			2,50		508	0.292	
OCD F	*	* n Not	nd 0.84	*	2.50	544	620	0.648	
								Rec	
13C-2 ,3,7, 8-TCDD	3.18e+07	0.78 y 27	19 1.03	369				92.2	
13C-1,2,3,7,8-PeCDD	2.89e+07	1.77 y 33	:09 1.01	342				85.5	
13c-1,2,3,4,7,8-HxCDD	2.10e+07	1.26 y 38	:31 1.19	364				91.1	
	1.81e+07	1.26 y 38	.41 0.94	401				100	
		1.03 y 44		3 409				102	
		0.97 y 49		609				76.2	
470 0 7 7 0 TODE	F 77-+07	0 97 26	7/ 0.00	3 394				98.4	
13C-2,3,7,8-TCDF								97.7	
		1.69 y 31							·
13C-2,3,4,7,8-PeCDF								95.4	
13C-1,2,3,4,7,8-HxCDF								95.9	
13C-1,2,3,6,7,8-HxCDF								99.9	
13C-2,3,4,6,7,8-HxCDF								95.1	
		0.47 y 39						99.2	
		0.46 y 42		9 372				93.0	
13c-1,2,3,4,7,8,9-HpCDF	1.70e+07	0.45 y 45	.01 0.77	7 459				115	
		0.95 y 50		7 638				79.7	
37cl-2,3,7,8-TCDD	8.68e+06	27	21 0.73	3 142				88.8	
13C-1,2,3,4-TCDD	3.35e+07	0.78 v 26	- 46	17.6					
13C-1,2,3,4-TCDF				- 15.5					
		1.25 y 39							
136 1,2,3,1,0,7 11,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Fac	Noise-1	Noise-2	DL	#1
Total Tetra-Dioxins	*	Not	nd 1.13	ς *	2.50			0.142	0
Total Penta-Dioxins	*	. Not			2.50			0.203	0
	*			-	2.50			0.288	0
Total Hexa-Dioxins	*	Not			2.50			0.341	0
Total Hepta-Dioxins	~	Not	Fnd 1.30	, ^	2.00	J24	000	0.341	U
Total Tetra-Furans	*	Not			2.50			0.115	0
1st Fn. Tot Penta-Furans	*	Not	Fnd 0.89) *	2.50	588		0.169 PeCDF	0
Total Penta-Furans	*	Not	Fnd 0.89) *	2.50	588	628	0.169 *	0
	*	Not	Fnd 1.00) *	2.50	524	536	0.190	0
Total Hexa-Furans		NOU							
Total Hexa-Furans Total Hepta-Furans	*	Not			2.50		508	0.292	0

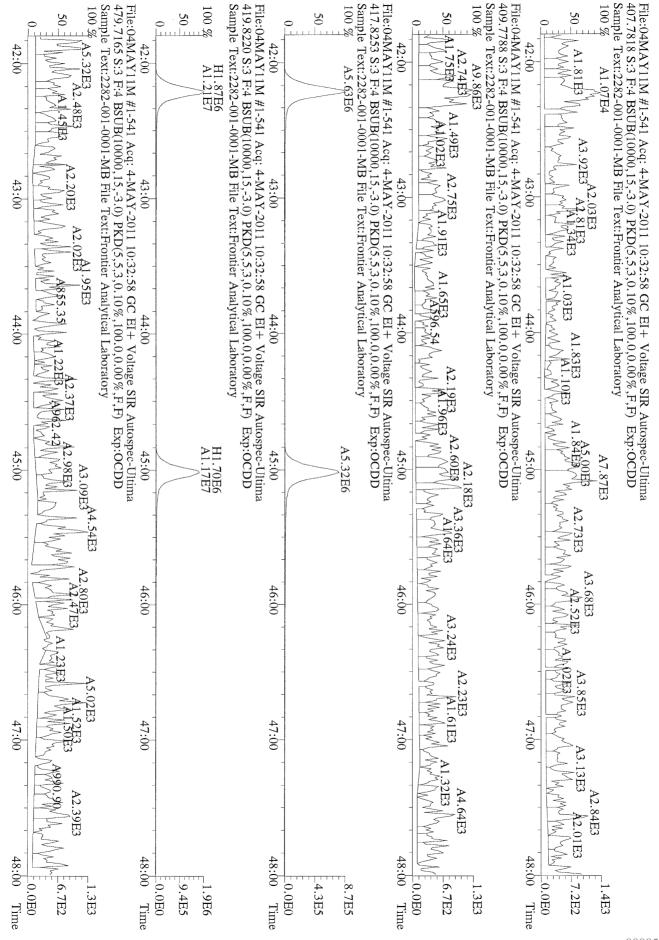

Analyst:______ Date:_________

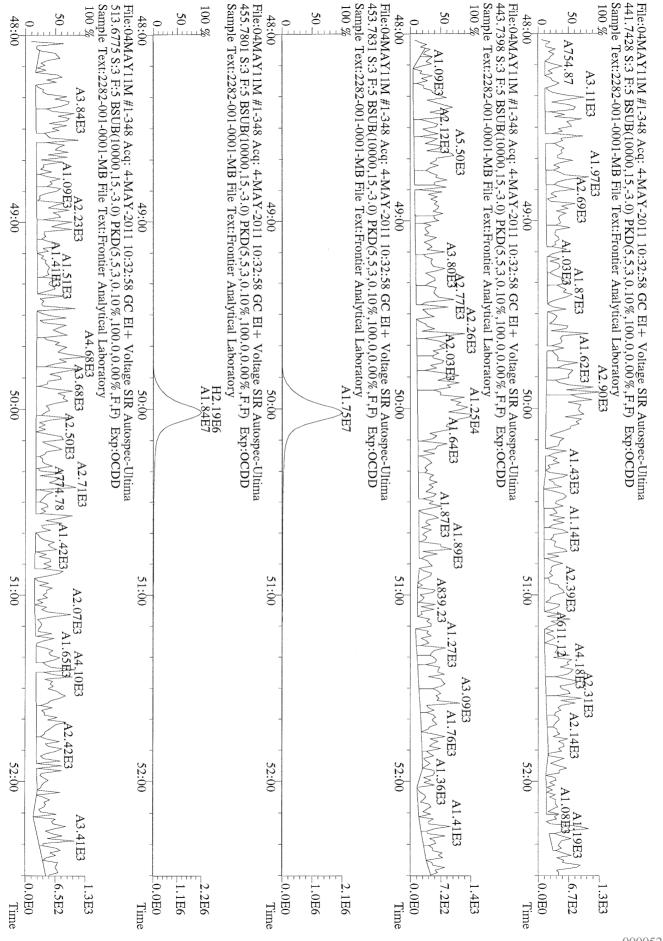












000052 of 000726

USEPA - ITD

FORM 8A

PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

Lab Name: Frontier Analytical Laboratory	Episode No.:
Contract No.:	SAS No.:
Matrix (aqueous/solid/leachate): Soil	OPR Data Filename: 04MAY11M Sam:2
Ext. Date: 5/2/11 Shift: Day	Analysis Date: 4-MAY-11 09:37:40

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT.

	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS (1) (ng/mL)
NATIVE ANALYTES			
2,3,7,8-TCDD	10	8.24	6.70 - 15.8
1,2,3,7,8-PeCDD	50	45.7	35.0 - 71.0
1,2,3,4,7,8-HxCDD	50	43.0	35.0 - 82.0
1,2,3,6,7,8-HxCDD	50	41.9	38.0 - 67.0
1,2,3,7,8,9-HxCDD	50	43.8	32.0 - 81.0
1,2,3,4,6,7,8-HpCDD	50	45.5	35.0 - 70.0
OCDD	100	88.6	78.0 - 144
2,3,7,8-TCDF	10	9.63	7.50 - 15.8
1,2,3,7,8-PeCDF	50	45.6	40.0 - 67.0
2,3,4,7,8-PeCDF	50	46.0	34.0 - 80.0
1,2,3,4,7,8-HxCDF	50	42.9	36.0 - 67.0
1,2,3,6,7,8-HxCDF	50	42.6	42.0 - 65.0
2,3,4,6,7,8-HxCDF	50	41.4	35.0 - 78.0
1,2,3,7,8,9-HxCDF	50	42.4	39.0 - 65.0
	50	10.7	(1.0. (1.0.
1,2,3,4,6,7,8-HpCDF	50	42.7	41.0 - 61.0
1,2,3,4,7,8,9-HpCDF	50	43.5	39.0 - 69.0
OCDF	100	83.6	63.0 - 170

(1) Contract-required concentration limits for OPR as specified in Table 6, Method 1613

Analyst:_____ Date:______

USEPA - ITD

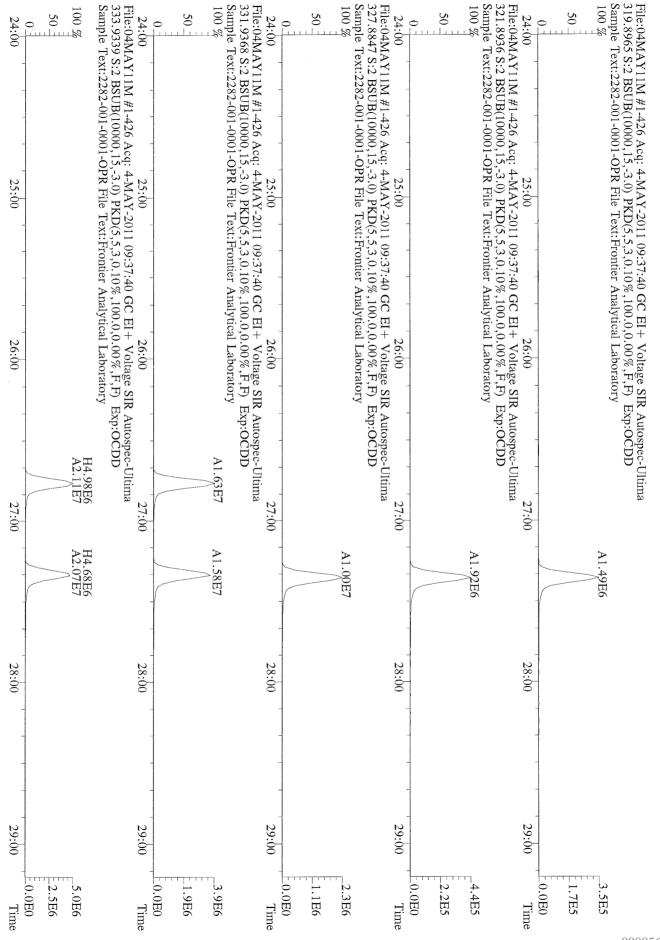
FORM 8B

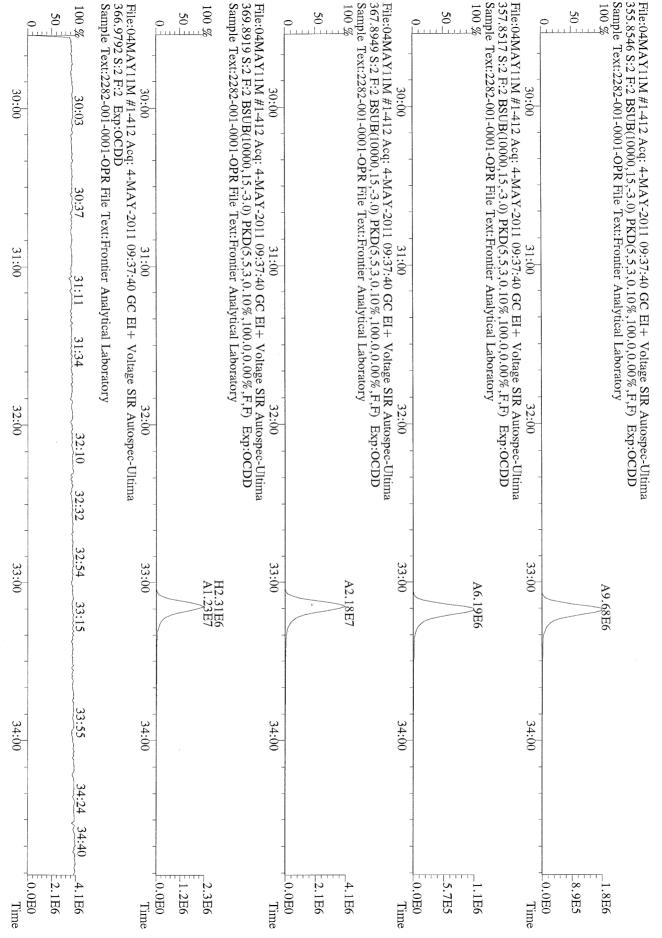
PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

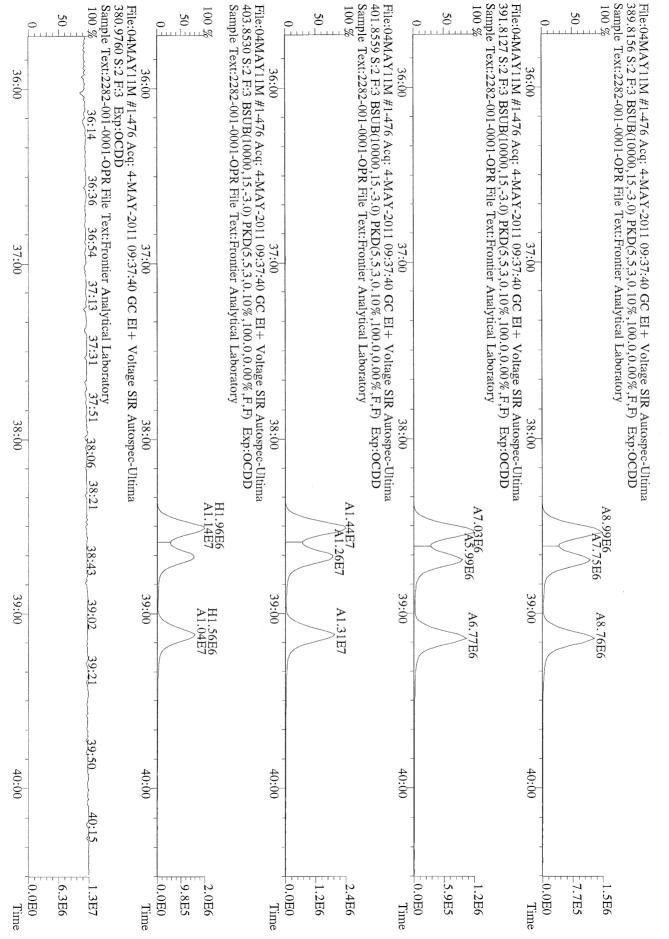
Lab Name: Frontier Analytical Laboratory	Episode No.:
Contract No.:	SAS No.:
Matrix (aqueous/solid/leachate): Soil	OPR Data Filename: 04MAY11M Sam:2
Ext. Date: 5/2/11 Shift: Day	Analysis Date: 4-MAY-11 09:37:40

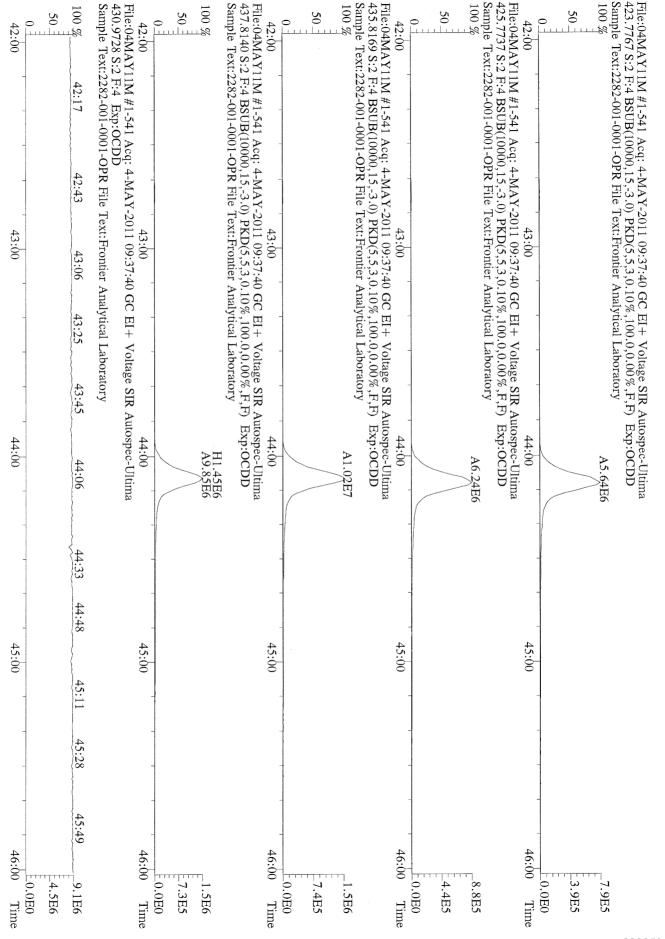
ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT.

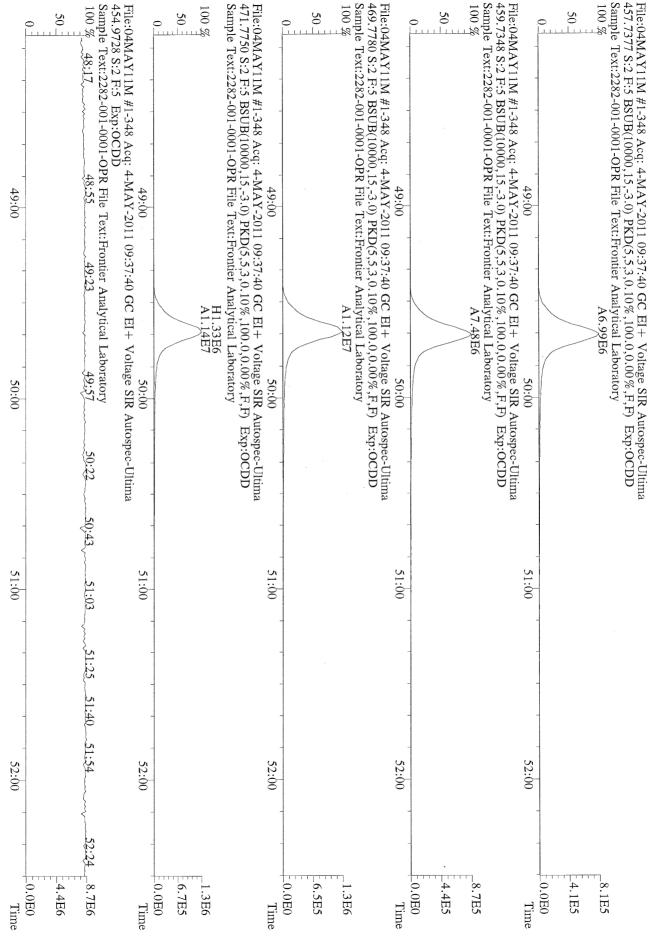
	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS (1) (ng/mL)
LABELED COMPOUNDS			
13c-2,3,7,8-TCDD	100	95.0	20.0 - 175
13c-1,2,3,7,8-PeCDD	100	90.3	21.0 - 227
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	100 100	92.0 103	21.0 - 193 25.0 - 163
13c-1,2,3,4,6,7,8-HpCDD	100	103	26.0 - 166
13c-ocdd	200	158	26.0 - 397
13C-2,3,7,8-TCDF	100	101	22.0 - 152
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	100 100	101 98.6	21.0 - 192 13.0 - 328
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	100 100 100 100	97.1 101 97.7 98.2	19.0 - 202 21.0 - 159 22.0 - 176 17.0 - 205
13с-1,2,3,4,6,7,8-НрСDF 13с-1,2,3,4,7,8,9-НрСDF	100 100	94.7 122	21.0 - 158 20.0 - 186
13C-OCDF	200	167	26.0 - 397
CLEANUP STANDARD			

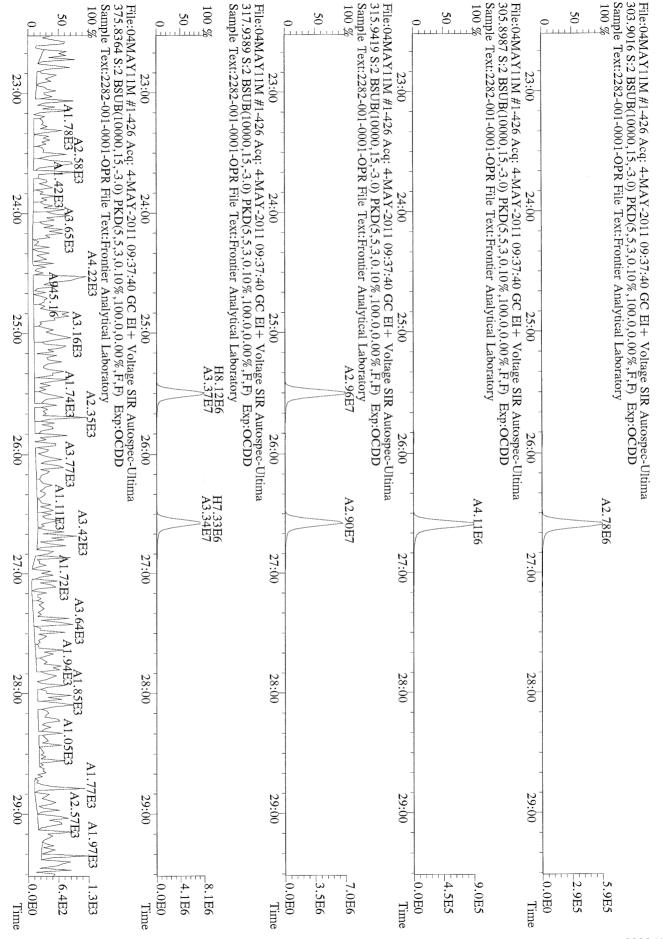

37Cl-2,3,7,8-TCDD 40 36.8 12.4 - 76.4

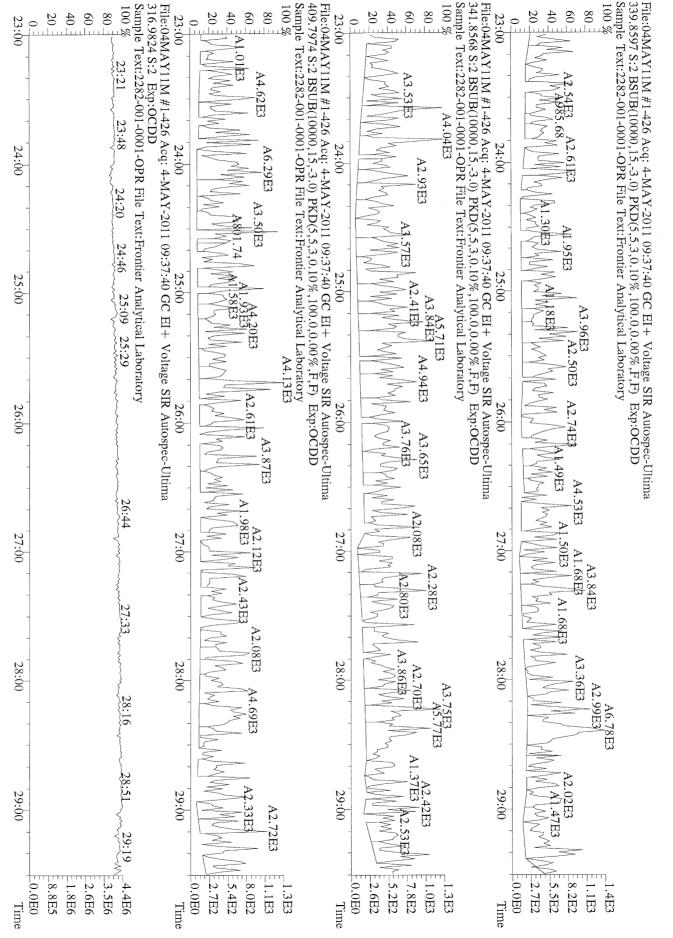

(1) Contract-required concentration limits for OPR as specified in Table 6, Method 1613 Labeled compound concentration limits are based on required percent recovery of 25%-150%.

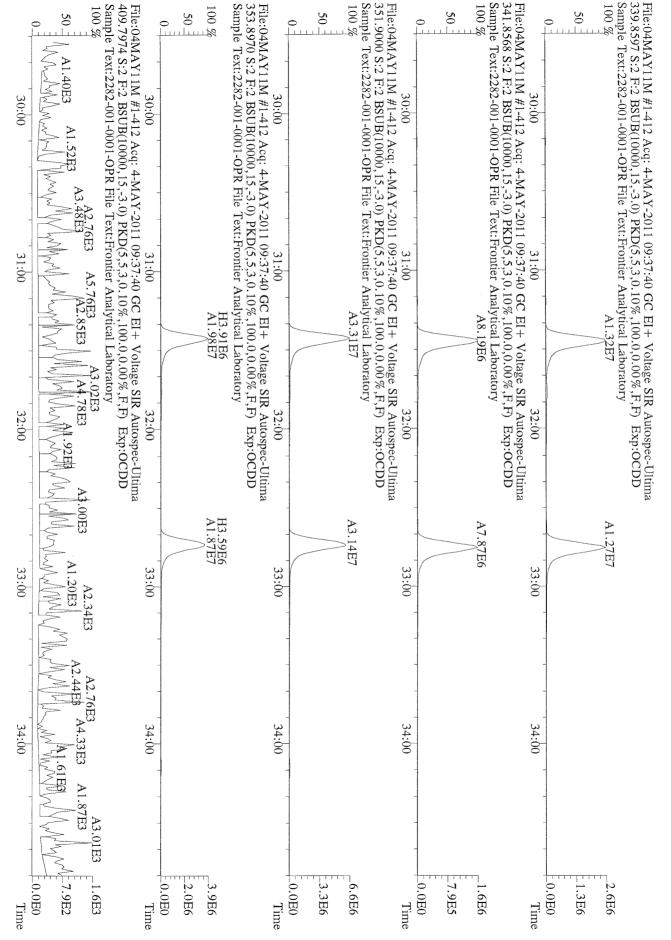

Analyst: _____ Date: _____

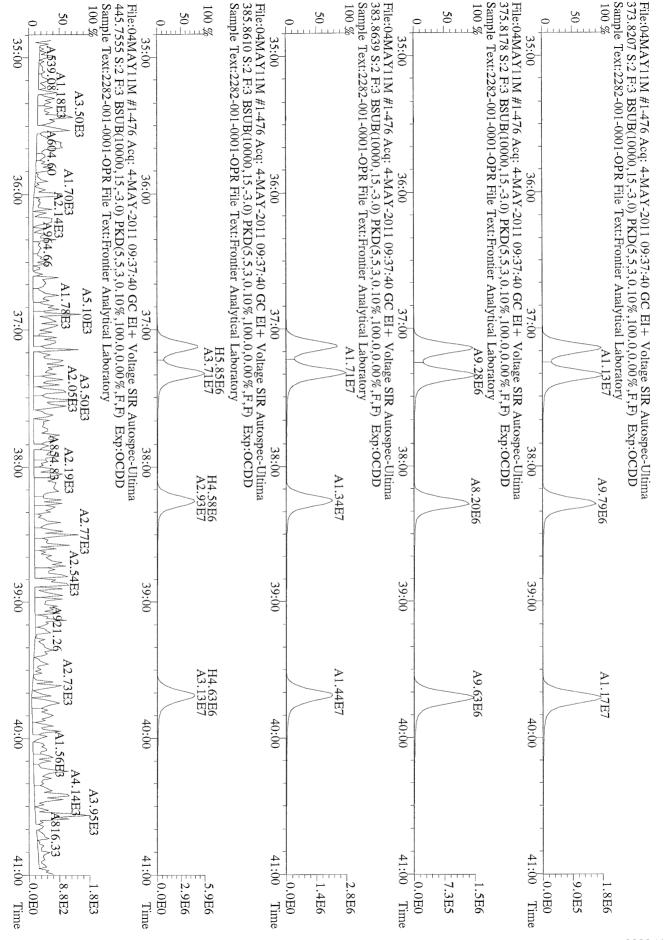

FAL ID: 2282-001-0001-OPR Client ID: OPR	Filena	me: 04	MAY11M	Sam:2	Acquired: 4 Con		09:37:4 050411M		PCDDFAL3-3 Cal: ST0504		
	Column: D	в5	Amount:	1.000	NATO 1989		88.6				
					WHO 1998	Tox:	111	WHO	2005 Tox:	101	
Name	Resp	RA	RT	RRF	Conc	Qual	Fac N	loise-1	Noise-2	DL	
2,3,7,8-TCDD	3.42e+06	0.78	y 27:21	1.13	8.24		2.50	-	-	*	
1,2,3,7,8-PeCDD	1.59e+07	1.56	y 33:11	1.02	45.7		2.50	-	-	*	
1,2,3,4,7,8-HxCDD	1.60e+07	1.28	y 38:32	1.45	43.0		2.50	-	-	*	
1,2,3,6,7,8-HxCDD	1.37e+07	1.29	y 38:42	1.45	41.9		2.50	-	-	*	
1,2,3,7,8,9-HxCDD	1.55e+07	1.29	y 39:09	1.47	43.8		2.50	-	-	*	
1,2,3,4,6,7,8-HpCDD	1.19e+07	0.90	y 44:08	1.30	45.5		2.50	-	-	*	
OCDD	1.45e+07	0.94	y 49:40	1.45	88.6		2.50	-	-	*	
2,3,7,8-TCDF	6.89e+06	0.68	y 26:36	1.15	9.63		2.50	-	-	*	
1,2,3,7,8-PeCDF	2.13e+07	1.61	y 31:27	0.89	45.6		2.50	-	-	*	
2,3,4,7,8-PeCDF	2.06e+07	1.62	y 32:45	0.89	46.0		2.50	-	-	*	
1,2,3,4,7,8-HxCDF	1.82e+07	1.24	y 37:09	1.01	42.9		2.50	-	-	*	
1,2,3,6,7,8-HxCDF	2.06e+07	1.22	y 37:21	0.89	42.6		2.50	-	-	*	
2,3,4,6,7,8-HxCDF	1.80e+07	1.19	y 38:17	1.02	41.4		2.50	-	-	*	
1,2,3,7,8,9-HxCDF	2.14e+07	1.22	y 39:43	1.10	42.4		2.50	-	-	*	
	1.39e+07			1.48	42.7		2.50	-	-	*	
	1.37e+07	1.05	y 45:02	1.43	43.5		2.50	-	-	*	
	1.61e+07	0.92	y 50:03	0.84	83.6		2.50	-	-	*	
										Rec	
13c-2,3,7,8-TCDD	3.66e+07	0.76	y 27:20	1.03	95.0					95.0	
13C-1,2,3,7,8-PeCDD				1.01	90.3					90.3	
13C-1,2,3,4,7,8-HxCDD				1.19	92.0					92.0	
13C-1,2,3,6,7,8-HxCDD	2,25e+07			0.94	103					103	
13C-1,2,3,4,6,7,8-HpCDD	2.01e+07			0.83	103					103	
13C-OCDD	2.25e+07			0.61	158					79.0	
13C-2,3,7,8-TCDF	6.24e+07	0.87	y 26:35	0.98	101					101	
	5.28e+07			0.83	101					101	
13C-2,3,4,7,8-PeCDF	5.01e+07	1.68	y 32:44	0.80	98.6					98.6	
13C-1,2,3,4,7,8-HxCDF	4.20e+07	0.47	y 37:08	1.84	97.1					97.1	
13C-1,2,3,6,7,8-HxCDF	5.42e+07	0.46	y 37:20	2.29	101					101	
13C-2,3,4,6,7,8-HxCDF	4.27e+07	0.46	y 38:15	1.86	97.7					97.7	
13C-1,2,3,7,8,9-HxCDF	4.57e+07	0.46	y 39:41	1.98	98.2					98.2	
13C-1,2,3,4,6,7,8-HpCDF	2.20e+07	0.46	y 42:13	0.99	94.7					94.7	
13C-1,2,3,4,7,8,9-HpCDF	2.20e+07	0.45	y 45:01	0.77	122					122	
	4.56e+07			1.17	167					83.4	
37cl-2,3,7,8-TCDD	1.00e+07		27:21	0.73	36.8					92.0	
13c-1,2,3,4-TCDD					98.5						
13c-1,2,3,4-TCDF	6.33e+07	0.88	y 25:30	-	87.9						
13C-1,2,3,7,8,9-HxCDD	2.35e+07	1.26	y 39:07	-	94.7						
								loise-1	Noise-2	DL	#Hom
Total Tetra-Dioxins	3.51e+06		23:11	1.13	8.47		2.50	-	-	*	16
Total Penta-Dioxins	1.60e+07		33:11	1.02	46.2		2.50	-	-	*	12
Total Hexa-Dioxins	4.56e+07		38:32		130		2,50	- '	-	*	13
Total Hepta-Dioxins	1.21e+07		42:46	1.30	46.2		2.50	-	-	*	17
				<u> </u>			0.5			.t.	-7
Total Tetra-Furans	6.98e+06		23:20		9.75		2,50	-	-	*	7
1st Fn. Tot Penta-Furans	1.29e+05		22:47		0.281		2.50	-	-	* PeCDF	
Total Penta-Furans	4.27e+07		30:12		93.3		2.50	-	-	* 93.6	11
	7.82e+07		35:29		169		2.50	-	-	*	6
Total Hepta-Furans	2.78e+07		42:14	1.46	87.0		2.50	-	-	*	12
						•					

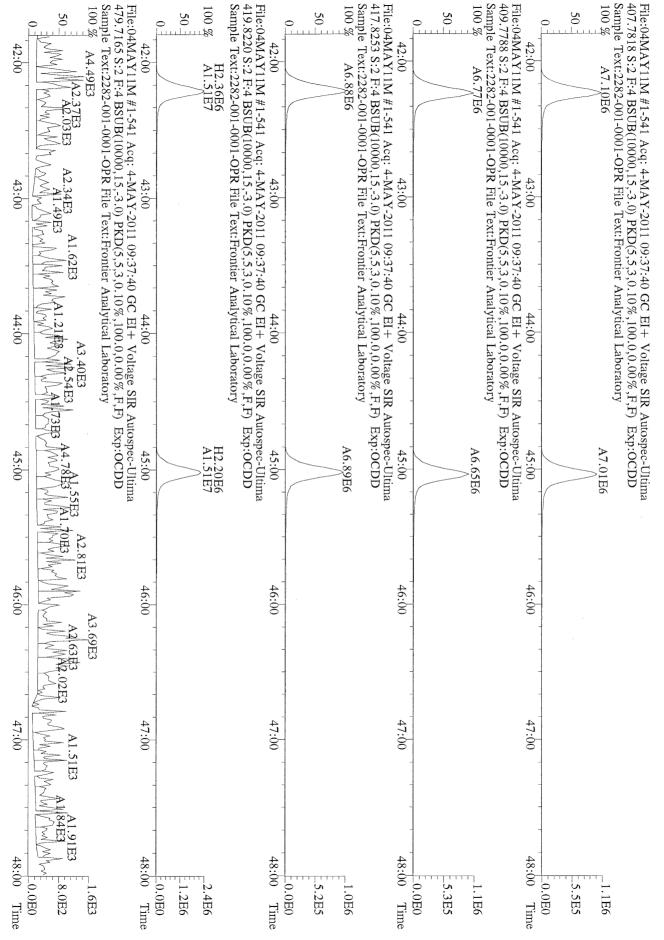

Analyst:_____ Date:______

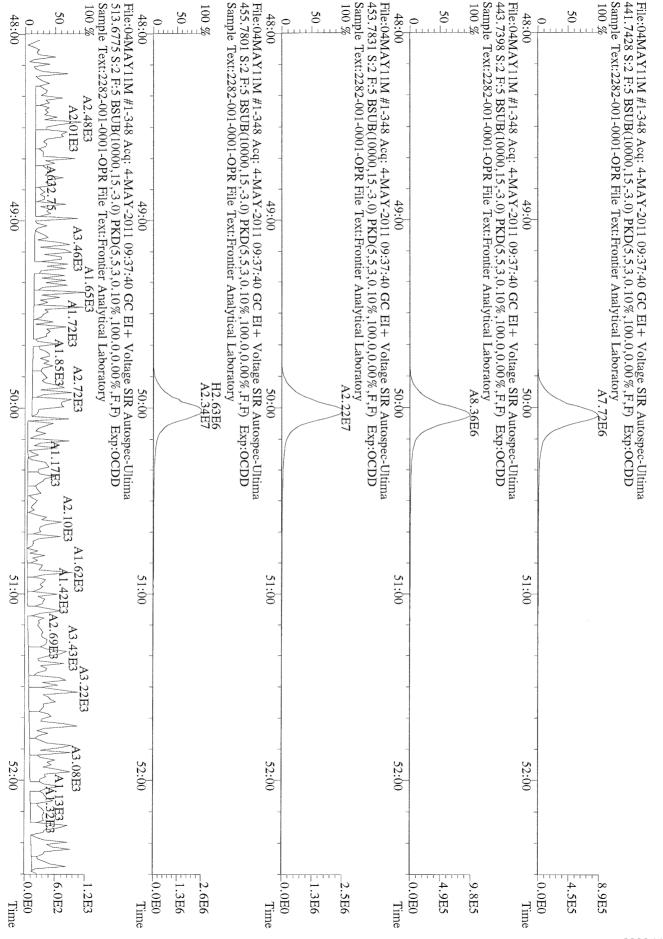


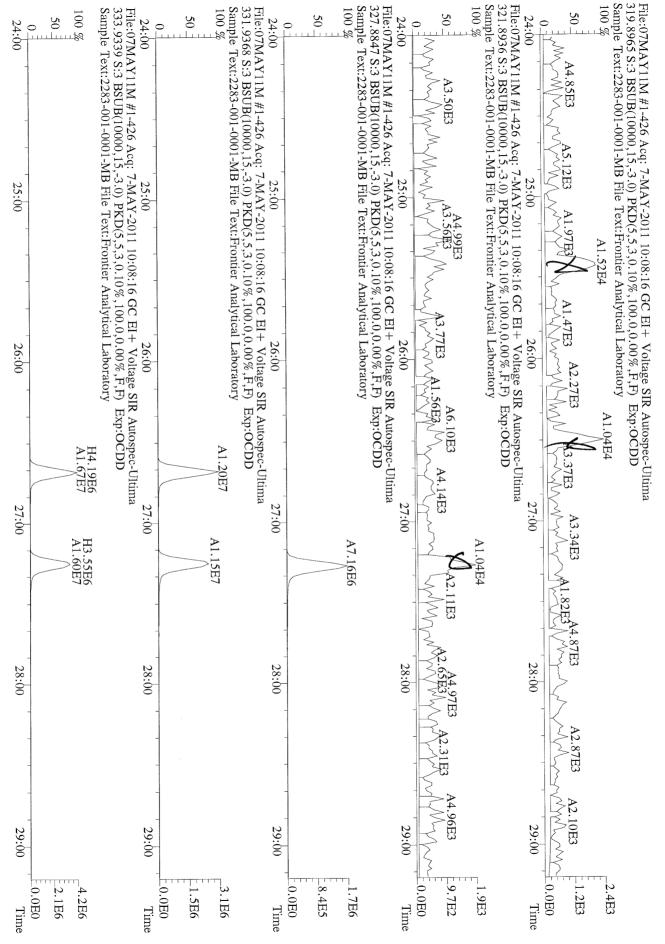


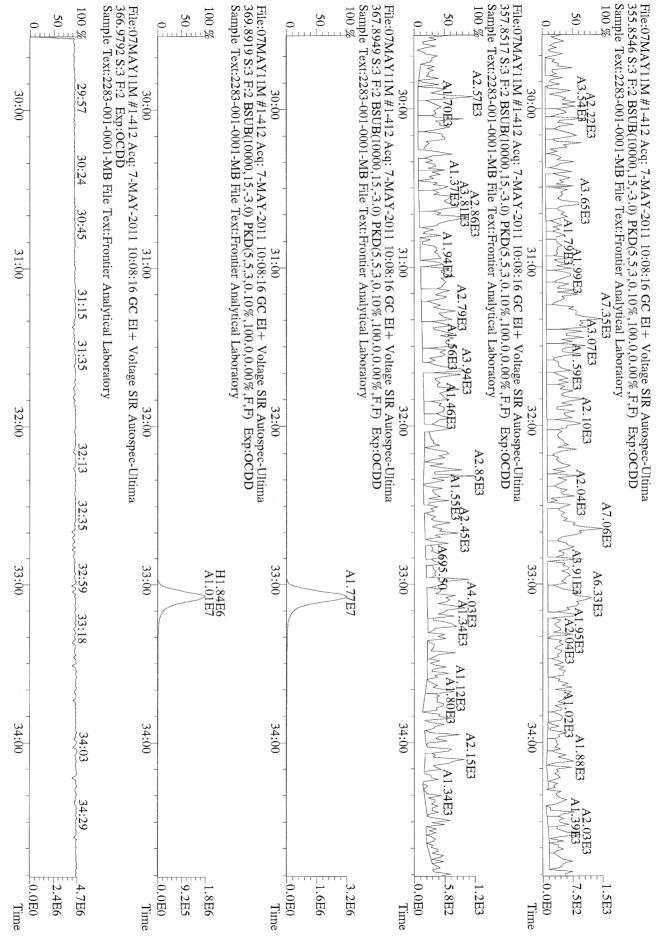


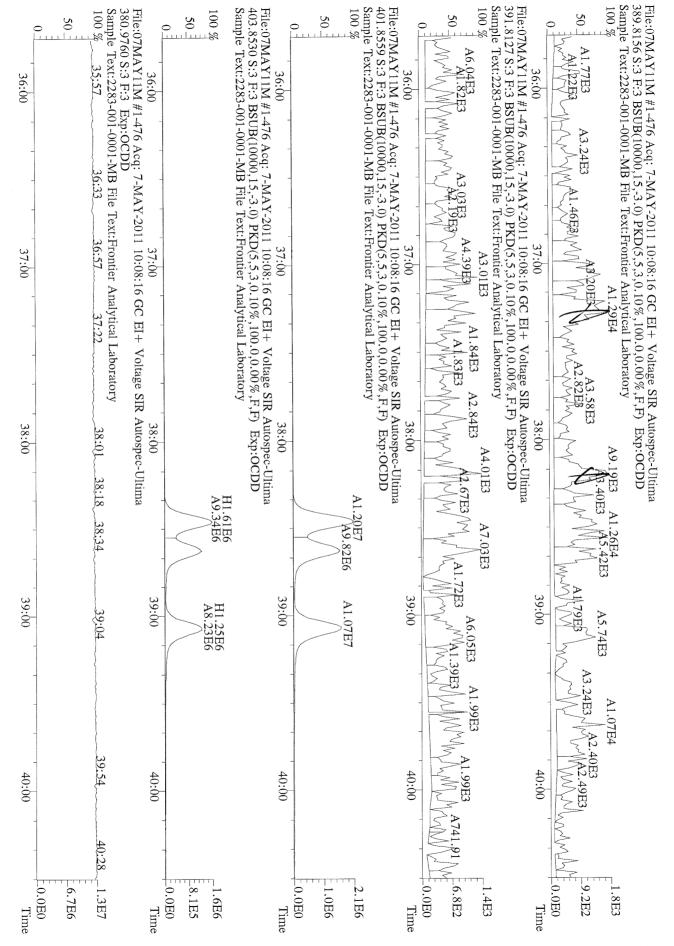


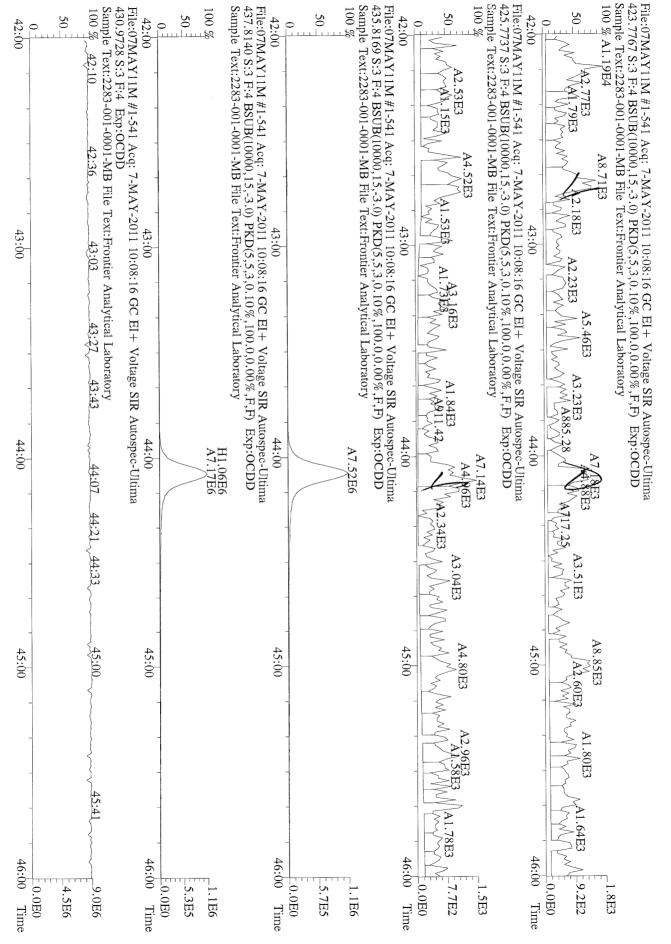


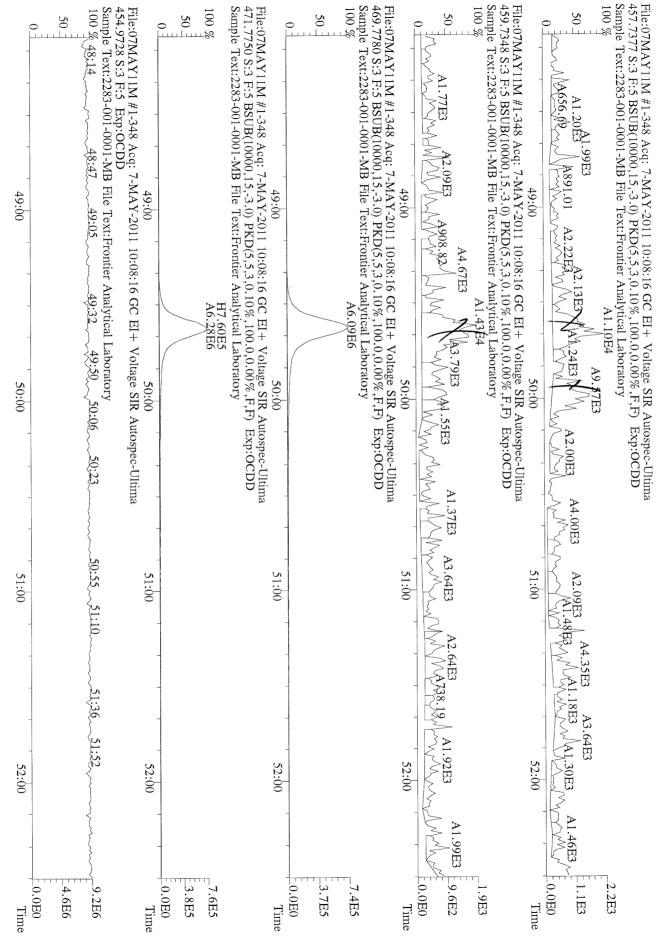









FAL ID: 2283-001-0001-MB Client ID: Method Blank	Filena	me: 07	MAY11M	Sam:3	Acquired:		10:08:16 050711M1		: PCDDFAL3 Cal: ST05			
	Column: Di	DE	Amount:	5 000	NATO 198		0.00	Enc		01 1 1112		
Results: 2283 GC	cotumn: D	55	Amount	J.000		98 Tox:	0.00	инс	0 2005 Tox		0.00	
Name	Resp	RA	RT	RRF	Conc		Fac No		Noise-2		DL	
Nallie	Kesp	KA	K1	KKI	Conc	Quar	100 110					
2,3,7,8-TCDD	*	*	n NotFnd	1.13	*		2.50	455	411	0.	126	
1,2,3,7,8-PeCDD	*		n NotFnd				2.50	597	476		209	
	*		n NotFnd				2.50	636	692		250	
1,2,3,4,7,8-HxCDD	*		n NotFnd				2.50	636	692		322	
1,2,3,6,7,8-HxCDD	*						2.50	636	692		279	
1,2,3,7,8,9-HxCDD	*		n NotFnd				2.50	640	572		424	
1,2,3,4,6,7,8-HpCDD	*		n NotFnd				2.50	612	616		.13	
OCDD	^	^	n NotFnd	1.45			2.00	UIL	010		. 15	
2,3,7,8-TCDF	*	*	n NotFnd	1.15	*		2.50	678	759	0.	115	
	*		n NotFnd				2.50	606	677		170	
1,2,3,7,8-PeCDF	*		n NotFnd				2.50	606	677		186	
2,3,4,7,8-PeCDF	*		n NotFnd				2.50	760	664		228	
1,2,3,4,7,8-HxCDF	*						2.50	760	664		234	
1,2,3,6,7,8-HxCDF			n NotFnd					760	664		261	
2,3,4,6,7,8-HxCDF	*		n NotFnd				2.50 2.50	760	664		246	
1,2,3,7,8,9-HxCDF			n NotFnd					760 560	552		263	
1,2,3,4,6,7,8-HpCDF	*		n NotFnd				2.50		552		335	
1,2,3,4,7,8,9-HpCDF	*		n NotFnd				2.50	560				
OCDF	*	*	n NotFnd	0.84	*		2.50	572	608		905	
					770					Rec		
13C-2,3,7,8-TCDD										93.1		
13C-1,2,3,7,8-PeCDD										95.7		
13C-1,2,3,4,7,8-HxCDD										94.5		
13C-1,2,3,6,7,8-HxCDD										98.9		
	1.47e+07									93.8		
13c-ocdd	1.24e+07	0.97	y 49:38	0.61	430					53.7		
13C-2,3,7,8-TCDF										98.1		
13C-1,2,3,7,8-PeCDF	4.36e+07									105		
13C-2,3,4,7,8-PeCDF	4.08e+07									101		
	3.44e+07									98.6		
13C-1,2,3,6,7,8-HxCDF			y 37:16							101		
13C-2,3,4,6,7,8-HxCDF										94.2		
13C-1,2,3,7,8,9-HxCDF										93.9		
	1.74e+07		y 42:10							93.0		
13C-1,2,3,4,7,8,9-HpCDF										108		
13C-OCDF	2.59e+07	0.95	y 49:59	9 1.17	470	I				58.7		
37cl-2,3,7,8-TCDD	7 16e+06		27:16	0.73	137					85.4		
5/62 2,5,7,6 1000					.57					_ * • 1		
13C-1,2,3,4-TCDD	2.87e+07	0.72	y 26:41	-	15.1							
13C-1,2,3,4-TCDF												
13C-1,2,3,7,8,9-HxCDD												
· · · · · · · · · · · · · · · · · · ·							Fac No	ise-1	Noise-2	DL		#Hor
Total Tetra-Dioxins	*		NotFnd	1.13	*		2.50	455	411	0.126		0
Total Penta-Dioxins	*		NotFnd				2.50	597		0.209		0
Total Hexa-Dioxins	*		NotFnd				2.50	636		0.322		0
Total Hepta-Dioxins	*		NotFnd				2.50	640		0.424		0
Total Tetra-Furans	*		NotFnd	1.15	*		2.50	678	759	0.115		0
	*		NotFnd				2.50	606			PeCDF	0
								200	011			
1st Fn. Tot Penta-Furans	*		NotEnd		*		2 50	606	677	0 186	*	0
1st Fn. Tot Penta-Furans Total Penta-Furans	*		NotFnd				2.50 2.50	606 760			*	0 0
1st Fn. Tot Penta-Furans			NotFnd NotFnd NotFnd	1.00	*		2.50 2.50 2.50	606 760 560	664	0.186 0.261 0.335	*	0 0 0


Analyst:_____ Date:______

