Port of Seattle Lora Lake Apartments Site

Remedial Investigation/ Feasibility Study

Volume II

Appendix G Lora Lake Parcel Remedial Investigation Data Report

Attachment G.4 EcoChem Data Validation Reports

DATA VALIDATION REPORT

Port of Seattle Lora Lake Parcel RI/FS Subsurface Sediments

Revision 1

Prepared for:

Floyd/Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 710 Second Avenue, Suite 660 Seattle, Washington 98104

EcoChem Project: C15212-1

Date Revised: June 23, 2011

Approved for Release:

Christine Ransom Project Manager

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of data validation performed on sediment and quality control (QC) sample data for the Remedial Investigation/Feasibility Study at Lora Lake Parcel, Burien, WA. The dioxin data received full validation (EPA Stage 4); all other parameters received summary validation (EPA Stage 2B). A complete list of samples is provided in the **Sample Index**.

Frontier Analytical Laboratory (El Dorado Hills, California) performed the dioxin/furan analyses. Analytical Resources, Inc. (Tukwila, Washington) performed all other analyses. The analytical methods and EcoChem project chemists are listed in the table below.

Analysis	Method	Primary Review	Secondary Review	
Dioxin Furan Compounds	EPA 1613	M. Swanson		
Polynuclear Aromatic Hydrocarbons	SW8270D SIM	G. Esler		
Pentachlorophenol	SW8041	G. LSIEI	C. Ransom	
Metals	SW6010B			
Total Solids, Preserved Total Solids, Sulfide, TOC	EPA 160.3M, EPA 376.2 Plumb 1981	J. Maute		

The data were reviewed using guidance and quality control criteria documented in the analytical methods; *Port of Seattle Lora Lake Parcel, Remedial Investigation/Feasibility Study Work Plan* (February 11, 2011); *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 & 2004); *National Functional Guidelines for Organic Data Review* (USEPA 1999 & 2008); and *USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review* (USEPA, September 2005).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A**. A Qualified Data Summary Table is included in **APPENDIX B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

Sample Index Lora Lake Parcel RI/FS Subsurface Sediments Analytical Resources Inc.

SDG	Sample ID	Laboratory ID	PAH	РСР	Metals	TOC	Sulfide	Total Solids	Preserved Total Solids
	LL-SED3-0-36-031511	11-5925-SN54A	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	LL-SED3-36-141-031511	11-5926-SN54B	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	LL-SED3-141-167-031511	11-5927-SN54C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SN54	LL-SED2-0-56-031511	11-5928-SN54D	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
31034	LL-SED2-56-112-031511	11-5929-SN54E	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	LL-SED2-112-168-031511	11-5930-SN54F	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	LL-SED2-0-56-031511-D	11-5931-SN54G	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	LL-SED1-0-56-031511	11-5932-SN54H	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	

Sample Index Lora Lake Parcel RI/FS Subsurface Sediments Frontier Analytical Laboratory

SDG	Sample ID	Laboratory ID	Dioxins
	LL-SED3-0-36-031511	6678-001-SA	\checkmark
	LL-SED3-36-141-031511	6678-002-SA	\checkmark
	LL-SED3-141-167-031511	6678-003-SA	\checkmark
6678	LL-SED2-0-56-031511	6678-004-SA	\checkmark
0070	LL-SED2-56-112-031511	6678-005-SA	\checkmark
	LL-SED2-112-168-031511	6678-006-SA	\checkmark
	LL-SED2-0-56-031511-D	6678-007-SA	\checkmark
	LL-SED1-0-56-031511	6678-008-SA	\checkmark

DATA VALIDATION REPORT Lora Lake Parcel – Subsurface Sediments Polycyclic Aromatic Hydrocarbons by SW846 Method 8270D SIM

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SN54	8 Sediment

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1 Sample Receipt, Preservation, and Holding Times Matrix Spikes/Matrix Spike Duplicates (MS/MSD) **GC/MS Instrument Performance** 1 **Field Duplicates** Initial Calibration (ICAL) 2 Internal Standards Continuing Calibration (CCAL) Target Analyte List Laboratory Blanks 1 **Reporting Limits** Surrogate Compounds 2 **Reported Results** Laboratory Control Samples (LCS/LCSD)

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6° C. The cooler was received outside of these limits, with a temperature 1.5°C. The temperature outlier did not impact data quality and no data were qualified.

Field Duplicates

The field duplicate relative percent difference (RPD) control limit is 50% for concentrations greater than 5x the reporting limit (RL). For concentrations less than 5x the RL, the difference between the sample result and the duplicate result must be less than 2x the RL.

One field duplicate pair was submitted, LL-SED2-0-56-031511& LL-SED2-0-56-031511-D. All field precision criteria were met.

Internal Standards

The recoveries for the internal standard perylene-d12 were less than the lower control limit in the initial analyses and re-analyses of samples LL-SED2-112-168-031511, LL-SED2-0-56-031511-D, and LL-SED1-0-56-031511. The results for the associated compounds, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene from the initial analyses were estimated (J/UJ-19).

Reporting Limits

Percent moisture values were high in all samples. The reporting limits were adjusted accordingly.

Reported Results

The laboratory reanalyzed samples LL-SED2-112-168-031511, LL-SED2-0-56-031511-D, and LL-SED1-0-56-031511 at dilution to verify interference from the internal standard perylene-d12. Both sets of data were reported. Results from the initial analyses should be used. Results from the re-analyses were labeled do-not-report (DNR-11).

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample/laboratory control sample duplicate (LCS/LCSD), and matrix spike/matrix spike duplicate (MS/MSD) recoveries. Precision was also acceptable as demonstrated by the MS/MSD, LCS/LCSD, and field duplicate RPD values.

Data were estimated due to internal standard outliers. Results were labeled DNR to indicate which result, from multiple analyses, should not be used.

Data labeled as DNR should not be used for any purpose. All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Subsurface Sediments Pentachlorophenol by EPA Method 8041

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SN54	8 Sediment

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL) Continuing Calibration (CCAL) Laboratory Blanks Surrogate Compounds	1 2	Matrix Spikes/Matrix Spike Duplicates (MS/MSD) Field Duplicates Target Analyte List Compound Quantitation Reporting Limits
	Laboratory Control Samples (LCS)		Reported Results
	Eaboratory control samples (ECC)		Reported Results

¹ Quality control results are discussed below, but no data were qualified.

 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6° C. The cooler was received outside of these limits, with a temperature 1.5°C. The temperature outlier did not impact data quality and no data were qualified.

Field Duplicates

The field duplicate relative percent difference (RPD) control limit is 50% for concentrations greater than 5x the reporting limit (RL). For concentrations less than 5x the RL, the difference between the sample result and the duplicate result must be less than 2x the RL.

One field duplicate pair was submitted: LL-SED2-0-56-031511& LL-SED2-0-56-031511-D. Pentachlorophenol was not detected in either sample; field precision was acceptable.

Reporting Limits

Percent moisture values were high in all samples. The reporting limits were adjusted accordingly.

The reporting limit (RL) was elevated in Sample LL-SED1-0-56-031511 because of matrix interference. The laboratory flagged this result with a "Y". This "Y" flagged result was qualified as not-detected (U-22) to indicate that the compound was not detected at the elevated RL.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample, and matrix spike/matrix spike duplicate (MS/MSD) recoveries. Precision was also acceptable as demonstrated by the MS/MSD and field duplicate RPD values.

One reporting limit was elevated due to matrix interference.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Subsurface Sediments Dioxin/Furan Compounds by Method 1613

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Frontier Analytical Laboratory, El Dorado Hills, California. Full validation (EPA Stage 4) was performed on all data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
6678	8 Sediment

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements reviewed are summarized in the following table:

1	Sample Receipt, Preservation, and Holding Times		Ongoing Precision and Recovery (OPR)
	System Performance and Resolution Checks	1	Field Duplicates
	Initial Calibration (ICAL)		Target Analyte List
	Calibration Verification	2	Reported Results
	Method Blanks		Compound Identification
2	Labeled Compound Recovery	1	Calculation Verification
	Matrix Spike/Matrix Spike Duplicates (MS/MSD)		

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

The samples were transferred from Analytical Resources, Inc (ARI) to Frontier Analytical Laboratory. As stated in validation guidance documents, samples should be maintained within the advisory temperature range of 2°C to 6°C. The temperatures recorded by Frontier were as low as 0.0°C, which is less than the lower control limit. The temperature outliers did not impact data quality and no data were qualified.

Labeled Compound Recovery

The labeled compound percent recovery (%R) values were within the QAPP specified control limits of 70% - 130%, with the exceptions noted below. All recovery outliers were less than the lower control limit, indicating a potential low bias. Associated positive results and non-detects were estimated (J/UJ-13). Outliers in the following samples resulted in qualification of data.

Sample ID	Number of Outliers	Bias
LL-SED3-0-36-031511	1	Low
LL-SED3-141-167-031511	12	Low
LL-SED2-0-56-031511	10	Low
LL-SED2-0-56-031511-D	2	Low

Field Duplicates

The control limit for relative percent difference (RPD) is 30% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than 2x the RL.

The data for one field duplicate set, LL-SED2-0-56-031511 and LL-SED2-0-56-031511-D, were submitted. The RPD values for all analytes except 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, and 1,2,3,7,8,9-HxCDF were greater than the control limit. No data were qualified based on these outliers; however, users of the data should consider the impact of field precision on the reported results.

Reported Results

Several samples were reanalyzed at dilution due to analyte concentrations that exceeded the calibration range of the instrument. In each case, the laboratory reported only the most appropriate positive result for each congener from either the original or diluted analysis.

The laboratory assigned "D and/or M" flags to several of the reported homologue group totals to indicate that a diphenyl ether (D) or some other interference (M) was present, resulting in a high bias in the reported result. All analytes that were "D" and/or "M" flagged were estimated (J-14).

Calculation Verification

Several results were verified by recalculation from the raw data. No calculation or transcription errors were found.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the above noted exceptions, accuracy was acceptable, as demonstrated by the labeled compound, OPR, and matrix spike/matrix spike duplicate (MS/MSD) %R values. Precision was also acceptable as demonstrated by the MS/MSD and field duplicate RPD values, with the exceptions previously noted.

Data were estimated based on labeled compound recovery outliers and interference from diphenyl ether.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Subsurface Sediments Total Arsenic and Lead by EPA 6010B

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources Incorporated, Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all sediment data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SN54	8 Sediment

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Sample Receipt, Preservation, and Holding Times		Reference Materials
	Initial Calibration		Laboratory Duplicates
	Continuing Calibration Verification	1	Field Duplicates
	CRDL Standards		Interference Check Samples
	Laboratory Blanks		Target Analyte List
	Field Blanks	1	Reporting Limits
	Laboratory Control Samples (LCS)		Reported Results
	Matrix Spikes (MS)		

¹ Quality control results are discussed below, but no data were qualified

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6° C. One cooler was received with a temperature less than the lower control limit, at 1.5°C. The temperature outliers did not impact data quality and no data were qualified.

Field Duplicates

The relative percent difference (RPD) control limit is 20% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than two times the RL.

One set of field duplicates, LL-SED2-0-56-031511 and LL-SED2-0-56-031511-D, were submitted. All field precision criteria were met.

Reported Results

The reporting limits were elevated due to high moisture content. No action was taken on this basis.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the laboratory control sample and matrix spike sample percent recovery values. Precision was also acceptable as demonstrated by the laboratory and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Subsurface Sediments Total Solids and Preserved Total Solids by 160.3M, Sulfide by 376.2, and Total Organic Carbon by Plumb, 1981

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources Incorporated, Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SN54	8 Sediment

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- Sample Receipt, Preservation, and Holding Times Initial Calibration
 Calibration Verification
 Laboratory Blanks
 Laboratory Control Samples (LCS)
- 1 Reference Materials

- 2 Matrix Spikes/Matrix Spike Duplicates (MS/MSD) Laboratory Replicates
- 1 Field Duplicates
- 1 Reporting Limits Reported Results

¹ Quality control results are discussed below, but no data were qualified
 ² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6° C. One cooler was received with a temperature less than the lower control limit, at 1.5°C. The temperature outlier did not impact data quality and no data were qualified.

Reference Materials

The certified reference material NIST 1941B was analyzed with all TOC samples. All recoveries were within the certified acceptance ranges.

Matrix Spikes

The sulfide matrix spike (MS) analysis was performed using Sample LL-SED3-141-167-031511. The MS percent recovery (%R) for sulfide (62.8%) was less than the QAPP specified lower control limit of 80%. Sulfide was not detected in the associated samples; detection limits were estimated (UJ-8) to indicate a potential low bias.

Field Duplicates

The relative percent difference (RPD) value control limit is 20% for TOC and 25% for total solids. For results less than five times the RL, the difference between the sample and duplicate must be less than two times the RL.

One set of field duplicates, LL-SED2-0-56-031511 and LL-SED2-0-56-031511-D, were submitted. The RPD for TOC (35.6%) was greater than the control limit. No data were qualified based on the field duplicate precision outlier; however data users should consider the impact of field precision on the reported results.

Reported Results

The reporting limits were elevated due to high moisture content. No action was taken on this basis.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exception noted above, accuracy was acceptable as demonstrated by the laboratory control sample, matrix spike, and reference material percent recovery values. Precision was acceptable as demonstrated by the laboratory replicate and field duplicate RPD and percent relative standard deviation (%RSD) values, with the exception previously noted.

Sulfide detection limits were estimated based on a matrix spike %R outlier.

All data, as qualified, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

1	Holding Time/Sample Preservation
2	Chromatographic pattern in sample does not match pattern of calibration standard.
3	Compound Confirmation
4	Tentatively Identified Compound (TIC) (associated with NJ only)
5A	Calibration (initial)
5B	Calibration (continuing)
6	Field Blank Contamination
7	Lab Blank Contamination (e.g., method blank, instrument, etc.)
8	Matrix Spike(MS & MSD) Recoveries
9	Precision (all replicates)
10	Laboratory Control Sample Recoveries
11	A more appropriate result is reported (associated with "R" and "DNR" only)
12	Reference Material
13	Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)
14	Other (define in validation report)
15	GFAA Post Digestion Spike Recoveries
16	ICP Serial Dilution % Difference
17	ICP Interference Check Standard Recovery
18	Trip Blank Contamination
19	Internal Standard Performance (e.g., area, retention time, recovery)
20	Linear Range Exceeded
21	Potential False Positives
22	Elevated Detection Limit Due to Interference (i.e., laboratory, chemical and/or matrix)

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	$\label{eq:Water:} \begin{array}{l} \hline Water:\\ J(+)/UJ(-) \mbox{ if ext. > 7 and < 21 days}\\ J(+)/R(-) \mbox{ if ext. > 21 days} \mbox{ (EcoChem PJ)}\\ \hline Solids/Wastes:\\ J(+)/UJ(-) \mbox{ if ext. > 14 and < 42 days}\\ J(+)/R(-) \mbox{ if ext. > 42 days} \mbox{ (EcoChem PJ)} \end{array}$	1
Tuning Initial Calibration (Minimum 5 stds.)		J(+)/UJ(-) if analysis >40 days	
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05	5A
		If reporting limit > MDL: note in worksheet if RRF <0.05	
(Minimum 5 stds.)	%RSD < 30%	(EcoChem PJ, see TM-06) J(+) if %RSD > 30%	5A
 Continuing Calibration	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL:	5B
(Prior to each 12 hr.			
(Prior to each 12 hr. shift) If reporting limit > MDL: note in worksheet if RRF <0.05 (EcoChem PJ, see TM-06) %D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R-	5B	
	One per matrix per batch No results > CRQL	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank		U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) in parent sample if RPD > CL	9
LCS low conc. H2O SVOA	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL J(+)/R(-) assoc. cmpd if < LCL J(+)/R(-) all cmpds if half are < LCL	10
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) if %R < 10%	13
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J(+) if > 200% J(+)/UJ(-) if < 50% J(+)/R(-) if < 25% RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R(+) common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext/analyzed > HT J(+)/R(-) if ext/analyzed > 3X HT (EcoChem PJ)	1
Resolution Check	Beginning of ICAL Sequence Within RTW Resolution >90%	Narrate (Use Professional Judgement to qualify)	14
Instrument Performance (Breakdown)	DDT Breakdown: < 20% Endrin Breakdown: <20% Combined Breakdown: <30% Compounds within RTW	J(+) DDT NJ(+) DDD and/or DDE R(-) DDT - If (+) for either DDE or DDD J(+) Endrin NJ(+) EK and/or EA R(-) Endrin - If (+) for either EK or EA	5A
Retention Times	Surrogates: TCX (+/- 0.05); DCB (+/- 0.10) Target compounds: elute before heptachlor epoxide (+/- 0.05) elute after heptachlor epoxide (+/- 0.07)	NJ(+)/R(-) results for analytes with RT shifts For full DV, use PJ based on examination of raw data	5B
Initial Calibration	Pesticides: Low=CRQL, Mid=4X, High=16X Multiresponse - one point Calibration %RSD<20% %RSD<30% for surr; two comp. may exceed if <30% Resolution in Mix A and Mix B >90%	(-)LN/(+)L	5A
Continuing Calibration	Alternating PEM standard and INDA/INDB standards every 12 hours (each preceeded by an inst. Blank) %D < 25% Resolution >90% in IND mixes; 100% for PEM	J(+)/UJ(-) $J(+)R(-)$ if %D > 90% PJ for resolution	5B
Method Blank	One per matrix per batch No results > CRQL	U(+) if sample result is < CRQL and < 5X rule (raise sample value to CRQL) U(+) if sample result is > or equal to CRQL and < 5X rule (at reported sample value)	. 7
Instrument Blanks	Analyzed at the beginning of every 12 hour sequence No analyte > 1/2 CRQL	Same as Method Blank	7
Field Blanks	Not addressed by NFG No results > CRQL	Apply 5X rule; U(+) < action level	6

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One set per matrix per batch Method Acceptance Criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One set per matrix per batch Method Acceptance Criteria	J(+) in parent sample if RPD > CL	9
LCS	One per SDG Method Acceptance Criteria	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	TCX and DCB added to every sample %R = 30-150%	J(+)/UJ(-) if both %R = 10 - 60% J(+) if both >150% J(+)/R(-) if any %R <10%	13
Quantitation/ Identification	Quantitated using ICAL calibration factor (CF) RPD between columns <40%	J(+) if RPD = 40 - 60% NJ(+) if RPD >60% EcoChem PJ - See TM-08	3
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	11
Sample Clean-up	GPC required for soil samples Florisil required for all samples Sulfur is optional Clean-up standard check %R within CLP limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL	14
Field Duplicates	Use OAPP limits. If no OAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate (Qualifiy if required by project QAPP)	9

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids < 4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection <i>Note:</i> Under CWA, SDWA, and RCRA the HT for H2O is 7 days [*] Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext > 30 days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = $(x/y)^{100\%}$ x = ht. of TCDD y = baseline to bottom of valleyFor all isomers eluting near 2378-TCDD/TCDF isomers(TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound %D outliers. For native compound %D outliers: 8290: J(+)/UJ(-) if %D = 20% - 75% J(+)/R(-) if %D > 75% 1613: J(+)/UJ(-) if %D is outside Table 6 limits J(+)/R(-) if %D is +/- 75% of Table 6 limit	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or R(-)	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20%	J(+) in parent sample if RPD > CL	9

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	<i>Method 8290:</i> %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B:</i> %R must meet limits specified in Table 7, Method 1613	J(+)/R(-) if %R < 10%	
Quantitation/ Identification	lons for analyte, IS, and rec. std. must max w/in 2 sec. S/N >2.5 IA ratios meet limits in Table 9 of 1613B or Table 8 of 8290 RRTs w/in limits in Table 2 of 1613B	If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35%	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	OR absolute diff. < 1X RL (for results < 5X RL) Report only one result per analyte	"DNR" results that should not be used	11

EcoChem Validation Guidelines for Metals Analysis by ICP (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration Tissues: Frozen	EcoChem Professional Judgment - no qualification based on cooler temperature outliers J(+)/UJ(-) if pH preservation requirements are not met	1
Holding Time	180 days from date sampled Frozen tissues - HT extended to 2 years	J(+)/UJ(-) if holding time exceeded	1
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r > 0.995	J(+)/UJ(-) if r < 0.995 (multi point cal)	5A
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J(+)/UJ(-) if %R 75-89% J(+) if %R = 111-125% R(+) if %R > 125% R(+/-) if %R < 75%	5A
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run %R within ±10% of true value	J(+)/UJ(-) if %R = 75-89% J(+) if %R 111-125% R(+) if %R > 125% R(+/-) if %R < 75%	5B
Initial and Continuing Calibration Blank (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+) blanks, U(+) results < action level For (-) blanks, J(+)/UJ(-) results < action level (Refer to TM-02 for additional information)	7
Reporting Limit Standard	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Sb, Pb, TI)	R(-)/J(+) < 2x RL if %R <50% (< 30% Sb, Pb, Tl) J(+) < 2x RL, UJ(-) if %R 50-69% (30-49% Sb, Pb, Tl) J(+) < 2x RL if %R 130-180% (150-200% Sb, Pb, Tl) R(+) < 2x RL if %R > 180% (200% Sb, Pb, Tl)	14
Interference Check Samples (ICSA/ICSAB)	ICSAB %R 80 - 120% for all spiked elements ICSA < MDL for all unspiked elements except: K, Na	For samples with AI, Ca, Fe, or Mg > ICS levels R(+/-) if %R < 50% J(+) if %R >120% J(+)/UJ(-) if %R= 50 to 79% Use Professional Judgment for ICSA to determine if bias is present see TM-09 for additional details	17
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U(+) results < action level	7
	One per matrix per batch		
Laboratory Control Sample (LCS)	Blank Spike: %R within 80-120%	R(+/-) if %R < 50% J(+)/UJ(-) if %R = 50-79% J(+) if %R >120%	10
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J(+)/UJ(-) if < LCL, J(+) if > UCL	

EcoChem Validation Guidelines for Metals Analysis by ICP (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Matrix Spikes	One per matrix per batch 75-125% for samples less than 4x spike level	J(+) if %R > 125% J(+)/UJ(-) if %R < 75% J(+)/R(-) if %R < 30% or J(+)/UJ(-) if Post Spike %R 75-125% Qualify all samples in batch	8
Post-digestion Spike	If Matrix Spike is outside 75-125%, spike at twice the sample conc.	No qualifiers assigned based on this element	
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples >RL and < 5x RL (Diff < 2x RL for solids)	J(+)/UJ(-) if RPD > 20% or diff > RL (2x RL for solids) qualify all samples in batch	9
Serial Dilution	5x dilution one per matrix %D < 10% for original sample conc. > 50x MDL	J(+)/UJ(-) if %D >10% qualify all samples in batch	16
Field Blank	Blank < MDL	Action level is 5x blank conc. U(+) sample values < action level in associated field samples only	6
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J(+)/UJ(-) in parent samples only	9
Linear Range	Sample concentrations must fall within range	J values over range	20

EcoChem Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	EcoChem Professional Judgment - no qualification based on cooler temperature outliers J(+)/UJ(-) if pH preservation requirements are not met	1
Holding Time	180 days from date sampled Frozen tissues - HT extended to 2 years	J(+)/UJ(-) if holding time exceeded	1
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. <u><</u> 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J(+)/UJ(-) if tune criteria not met	5A
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J(+)/UJ(-) if r<0.995 (for multi point cal)	5A
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J(+)/UJ(-) if %R 75-89% J(+) if %R = 111-125% R(+) if %R > 125% R(+/-) if %R < 75%	5A
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J(+)/UJ(-) if %R = 75-89% J(+) if %R 111-125% R(+) if %R > 125% R(+/-) if %R < 75%	5B
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+) blanks, U(+) results < action level For (-) blanks, J(+)/UJ(-) results < action level refer to TM-02 for additional details	7
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R(-),(+) < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J(+) < 2x RL, UJ(-) if %R 50-69% (30%-49% Co,Mn, Zn) J(+) < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R(+) < 2x RL if %R > 180% (200% Co, Mn, Zn)	14
Interference Check Samples (ICSA/ICSAB)	Required by SW 6020, but not 200.8 ICSAB %R 80% - 120% for all spiked elements ICSA < IDL (MDL) for all unspiked elements	For samples with AI, Ca, Fe, or Mg > ICS levels R(+/-) if %R < 50% J(+) if %R >120% J(+)/UJ(-) if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present see TM-09 for additional details	17
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U(+) results < action level	7

EcoChem Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Laboratory Control	One per matrix per batch Blank Spike: %R within 80%-120%	R(+/-) if %R < 50% J(+)/UJ(-) if %R = 50-79% J(+) if %R >120%	10
Sample (LCS)	CRM: Result within manufacturer's certified acceptance range or project guidelines	J(+)/UJ(-) if < LCL, J(+) if > UCL	
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	Spike Duplicate75-125% for samples where results $J(+)/R(-)$ if %R<30% or		8
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element	
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5 x RL (Diff < 2x RL for solids)	J(+)/UJ(-) if RPD > 20% or diff > RL all samples in batch	9
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J(+)/UJ(-) if %D >10% All samples in batch	16
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J (+)/UJ (-) all analytes associated with IS outlier	19
Field Blank	Blank < MDL	Action level is 5x blank conc. U(+) sample values < AL in associated field samples only	6
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J(+)/UJ(-) in parent samples only	9
Linear Range	Sample concentrations must fall within range	J values over range	20

EcoChem Validation Guidelines for Mercury Analysis by CVAA (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE	
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	EcoChem Professional Judgment - no qualification based on cooler temperature outliers J(+)/UJ(-) if pH preservation requirements are not met	1	
Holding Time	28 days from date sampled Frozen tissues: HT extended to 6 months	J(+)/UJ(-) if holding time exceeded	1	
Initial Calibration	Blank + 4 standards, one at RL r > 0.995	J(+)/UJ(-) if r<0.995	5A	
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±20% of true value	calibration J(+) if %R = 121-135%		
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run %R within ±20% of true value	J(+)/UJ(-) if %R = 65%-79% J(+) if %R = 121-135% R(+/-) if %R < 65% R(+) if %R > 135%	5B	
Initial and Continuing Calibration Blanks (ICB/CCB)	after each ICV and CCV every ten samples and end of run blank < IDL (MDL)	end of run		
Reporting Limit Standard (CRA)	conc at RL - analyzed beginning of run R(-),(+)<2xRL if %R <50%		14	
Method Blank	thod Blank One per matrix per batch (batch not to exceed 20 samples) blank < MDL Action level is 5x blank concentration U(+) results < action level		7	
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80-120%	R(+/-) if %R < 50% J(+)/UJ(-) if %R = 50-79% J(+) if %R >120%	10	
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J(+)/UJ(-) if < LCL, J(+) if > UCL		
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 5% frequency 75-125% for samples less than 4x spike level	J(+) if %R>125% J(+)/UJ(-) if %R <75% J(+)/R(-) if %R<30% all samples in batch	8	
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5x RL (Diff < 2x RL for solids)	J(+)/UJ(-) if RPD > 20% or diff > RL all samples in batch	9	

EcoChem Validation Guidelines for Mercury Analysis by CVAA (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Field Blank	Blank < MDL	Action level is 5x blank conc. U(+) sample values < action level in associated field samples only	6
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5x RL: Water: Diff <rl 2x="" <="" diff="" rl<="" solid:="" td=""><td>J(+)/UJ(-) in parent samples only</td><td>9</td></rl>	J(+)/UJ(-) in parent samples only	9
Linear Range	Sample concentrations must be less than 110% of high standard	J values over range	20

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION ACCEPTANCE CRITERIA		ACTION	REASON CODE	
Cooler Temperature and Preservation	Cooler Temperature 4°C ±2°C Preservation: Method Specific	Use Professional Judgment to qualify based to qualify for coole temp outliers J(+)/UJ(-) if preservation requirements not met	1	
Holding Time	Method Specific	Method Specific Professional Judgment J(+)/UJ(-) if holding time exceeded J(+)/R(-) if HT exceeded by > 3X		
Initial Calibration	Method specific Use professional judgment r>0.995 J(+)/UJ(-) for r < 0.995			
Initial Calibration Verification (ICV)			5A	
Continuing Cal Verification (CCV)				
Initial and Continuing Cal Blanks (ICB/CCB)			7	
Method Blank	One per matrix per batch (not to exceed 20 samples) blank < MDLAction level is 5x absolute value of blank conc. For (+) blk value, U(+) results < action level For (-) blk value, J(+)/UJ(-) results < action level		7	
Laboratory Control Sample	Waters: R(+/-) if %R < 50% One per matrix per batch J(+)/UJ(-) if %R = 50-79% %R (80-120%) J(+) if %R >120%		10	
	Soils: One per matrix per batch Result within manufacturer's certified acceptance range	J(+)/UJ(-) if < LCL, J(+) if > UCL	10	
Matrix Spike	One per matrix per batch; 5% frequency 75-125% for samples less than 4 x spike level	J(+) if %R > 125% or < 75% UJ(-) if %R = 30-74% R(+/-) results < IDL if %R < 30%	8	
Laboratory Duplicate	One per matrix per batch RPD <20% for samples > 5x RL Diff <rl for="" samples="">RL and <5 x RL (may use RPD < 35%, Diff < 2X RL for solids)J(+)/UJ(-) if RPD > 20% or diff > RL all samples in batch</rl>			

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE	
Field Blank	blank < MDL	Action level is 5x blank conc. U(+) sample values < action level in associated field samples only	6	
Field Duplicate	For results > 5X RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff <rl 2x="" <="" diff="" rl<="" solid:="" td=""><td>J(+)/UJ(-) in parent samples only</td><td>9</td></rl>	J(+)/UJ(-) in parent samples only	9	

APPENDIX B QUALIFIED DATA SUMMARY TABLE

JC 06/14/95 10:12 AM I:\APPENDICES\APPENDIX.DOC

Qualified Data Summary Table Lora Lake Apartments RI/FS Groundwater Monitoring

							Lab	DV	DV
SDG	Sample ID	Laboratory ID	Method	Analyte	Result	Units	Qual	Qual	Reason
6678	LL-SED3-0-36-031511	6678-001-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDF	102	pg/g	D,M	J	14
6678	LL-SED3-0-36-031511	6678-001-SA	EPA 1613 D/F	OCDF	3280	pg/g	_ ,	J	13
6678	LL-SED3-0-36-031511	6678-001-SA	EPA 1613 D/F	Total TCDF	387	pg/g	D,M	J	14
6678	LL-SED3-0-36-031511	6678-001-SA	EPA 1613 D/F	Total PeCDF	627	pg/g	D,M	J	14
6678	LL-SED3-0-36-031511	6678-001-SA	EPA 1613 D/F	Total HxCDF	1590	pg/g	D,M	J	14
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	2,3,7,8-TCDD	0.93	pg/g	U	IJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDD	1.05	pg/g	U	UJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDD	1.27	pg/g	U	UJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	1,2,3,4,6,7,8-HpCDD	2.08	pg/g	U	IJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	OCDD	14.8	pg/g		J	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDF	0.812	pg/g	U	IJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	0.752	pg/g	U	UJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	2,3,4,6,7,8-HxCDF	0.82	pg/g	U	UJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	1,2,3,7,8,9-HxCDF	0.796	pg/g	U	UJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	1,2,3,4,6,7,8-HpCDF	1.13	pg/g	U	UJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	1,2,3,4,7,8,9-HpCDF	1.54	pg/g	U	UJ	13
6678	LL-SED3-141-167-031511	6678-003-SA	EPA 1613 D/F	OCDF	3.08	pg/g	U	UJ	13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	2,3,7,8-TCDD	7.13	pg/g	0		13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDD	28.2	pg/g			13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDD	104	pg/g		J	13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	2,3,7,8-TCDF	9.24	pg/g	F	J	13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDF	50.3	pg/g		J	13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	31.2	pg/g	D,M	J	13,14
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	2,3,4,6,7,8-HxCDF	34.3	pg/g	0,101	J	13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	1,2,3,7,8,9-HxCDF	5.91	pg/g	J	J	13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	1,2,3,4,6,7,8-HpCDF	693	pg/g	5	J	13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	OCDF	1780	pg/g		J	13
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	Total PeCDD	337	pg/g	М	J	10
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	Total TCDF	203	pg/g	D,M	J	14
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	Total PeCDF	315	pg/g	D,M	J	14
6678	LL-SED2-0-56-031511	6678-004-SA	EPA 1613 D/F	Total HxCDF	812	pg/g	D,M	J	14
6678	LL-SED2-0-56-031511-D	6678-007-SA	EPA 1613 D/F	OCDD	41000	pg/g	D,IVI		13
6678	LL-SED2-0-56-031511-D	6678-007-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDF	82.9	pg/g	D,M		10
6678	LL-SED2-0-56-031511-D	6678-007-SA	EPA 1613 D/F	OCDF	2630	pg/g	D,IVI		13
6678	LL-SED2-0-56-031511-D	6678-007-SA	EPA 1613 D/F	Total PeCDD	559	pg/g	М		10
6678	LL-SED2-0-56-031511-D	6678-007-SA	EPA 1613 D/F	Total TCDF	302	pg/g	D,M	J	14
6678	LL-SED2-0-56-031511-D	6678-007-SA	EPA 1613 D/F	Total PeCDF	492	pg/g	D,M	J	14
6678	LL-SED2-0-56-031511-D	6678-007-SA	EPA 1613 D/F	Total HxCDF	1310	pg/g	D,M	J	14
6678	LL-SED1-0-56-031511	6678-008-SA	EPA 1613 D/F	Total PeCDF	63.4	pg/g	D,M	J	14
6678	LL-SED1-0-56-031511	6678-008-SA	EPA 1613 D/F	Total HxCDF	187	pg/g	D,M	J	14
SN54	LL-SED3-36-141-031511	11-5926-SN54B	EPA 376.2	Sulfide	< 7.85	ug/kg	U	IJ	8
SN54	LL-SED3-141-167-031511	11-5927-SN54C	EPA 376.2	Sulfide	< 7.91	ug/kg	U	UJ	8
SN54	LL-SED1-0-56-031511	11-5932-SN54H	SW8041	Pentachlorophenol	110	ug/kg	Ŷ	U	22
SN54	LL-SED2-112-168-031511	11-5930-SN54F	SW8270D SIM	Benzo(a)pyrene	115	ug/kg	U	UJ	19
SN54	LL-SED2-112-168-031511	11-5930-SN54F	SW8270D SIM	Indeno(1,2,3-cd)pyrene	15	ug/kg	U	UJ	19
SN54	LL-SED2-112-168-031511	11-5930-SN54F	SW8270D SIM	Dibenz(a,h)anthracene	15	ug/kg	U	UJ	19
SN54	LL-SED2-112-168-031511	11-5930-SN54FDL	SW8270D SIM	Benzo(a)anthracene	150	ug/kg	U	DNR	17
SN54	LL-SED2-112-168-031511	11-5930-SN54FDL	SW8270D SIM	Chrysene	150	ug/kg	U	DNR	11
SN54	LL-SED2-112-168-031511	11-5930-SN54FDL	SW8270D SIM	Benzo(a)pyrene	150	ug/kg	U	DNR	11

Qualified Data Summary Table Lora Lake Apartments RI/FS Groundwater Monitoring

							Lab	DV	DV
SDG	Sample ID	Laboratory ID	Method	Analyte	Result	Units	Qual	Qual	Reason
SN54	LL-SED2-112-168-031511	11-5930-SN54FDL	SW8270D SIM	Indeno(1,2,3-cd)pyrene	150	ug/kg	U	DNR	11
SN54	LL-SED2-112-168-031511	11-5930-SN54FDL	SW8270D SIM	Dibenz(a,h)anthracene	150	ug/kg	U	DNR	11
SN54	LL-SED2-112-168-031511	11-5930-SN54FDL	SW8270D SIM	Total Benzofluoranthenes	150	ug/kg	U	DNR	11
SN54	LL-SED2-0-56-031511-D	11-5931-SN54G	SW8270D SIM	Benzo(a)pyrene	400	ug/kg		J	19
SN54	LL-SED2-0-56-031511-D	11-5931-SN54G	SW8270D SIM	Indeno(1,2,3-cd)pyrene	280	ug/kg		J	19
SN54	LL-SED2-0-56-031511-D	11-5931-SN54G	SW8270D SIM	Dibenz(a,h)anthracene	74	ug/kg		J	19
SN54	LL-SED2-0-56-031511-D	11-5931-SN54GDL	SW8270D SIM	Benzo(a)anthracene	240	ug/kg		DNR	11
SN54	LL-SED2-0-56-031511-D	11-5931-SN54GDL	SW8270D SIM	Chrysene	570	ug/kg		DNR	11
SN54	LL-SED2-0-56-031511-D	11-5931-SN54GDL	SW8270D SIM	Benzo(a)pyrene	330	ug/kg		DNR	11
SN54	LL-SED2-0-56-031511-D	11-5931-SN54GDL	SW8270D SIM	Indeno(1,2,3-cd)pyrene	270	ug/kg		DNR	11
SN54	LL-SED2-0-56-031511-D	11-5931-SN54GDL	SW8270D SIM	Dibenz(a,h)anthracene	96	ug/kg		DNR	11
SN54	LL-SED2-0-56-031511-D	11-5931-SN54GDL	SW8270D SIM	Total Benzofluoranthenes	1000	ug/kg		DNR	11
SN54	LL-SED1-0-56-031511	11-5932-SN54H	SW8270D SIM	Benzo(a)pyrene	55	ug/kg		J	19
SN54	LL-SED1-0-56-031511	11-5932-SN54H	SW8270D SIM	Indeno(1,2,3-cd)pyrene	38	ug/kg		J	19
SN54	LL-SED1-0-56-031511	11-5932-SN54H	SW8270D SIM	Dibenz(a,h)anthracene	5.8	ug/kg		J	19
SN54	LL-SED1-0-56-031511	11-5932-SN54HDL	SW8270D SIM	Benzo(a)anthracene	31	ug/kg		DNR	11
SN54	LL-SED1-0-56-031511	11-5932-SN54HDL	SW8270D SIM	Chrysene	70	ug/kg		DNR	11
SN54	LL-SED1-0-56-031511	11-5932-SN54HDL	SW8270D SIM	Benzo(a)pyrene	46	ug/kg		DNR	11
SN54	LL-SED1-0-56-031511	11-5932-SN54HDL	SW8270D SIM	Indeno(1,2,3-cd)pyrene	34	ug/kg		DNR	11
SN54	LL-SED1-0-56-031511	11-5932-SN54HDL	SW8270D SIM	Dibenz(a,h)anthracene	14	ug/kg	U	DNR	11
SN54	LL-SED1-0-56-031511	11-5932-SN54HDL	SW8270D SIM	Total Benzofluoranthenes	130	ug/kg		DNR	11

DATA VALIDATION REPORT

Port of Seattle Lora Lake Parcel RI/FS Surface Sediments

Revision 1

Prepared for:

Floyd/Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 710 Second Avenue, Suite 660 Seattle, Washington 98104

EcoChem Project: C15212-2

Date Revised: June 23, 2011

Approved for Release:

Christine Ransom Project Manager

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of data validation performed on sediment and quality control (QC) sample data for the Remedial Investigation/Feasibility Study at Lora Lake Parcel, Burien, WA. The dioxin data received full validation (EPA Stage 4); all other parameters received summary validation (EPA Stage 2B). A complete list of samples is provided in the **Sample Index**.

Frontier Analytical Laboratory (El Dorado Hills, California) performed the dioxin/furan analyses. Analytical Resources, Inc. (Tukwila, Washington) performed all other analyses. The analytical methods and EcoChem project chemists are listed in the table below.

Analysis	Method	Primary Review	Secondary Review		
Dioxin Furan Compounds	EPA 1613	M. Swanson			
Polynuclear Aromatic Hydrocarbons	SW8270D SIM	SW8270D SIM G. Esler			
Pentachlorophenol	SW8041	G. ESIEI			
Metals	SW6010B				
Total Solids, Preserved Total Solids	EPA 160.3M		C. Ransom		
Sulfide	EPA 376.2	J. Maute			
TOC	Plumb 1981	J. Maule			
N-Ammonia	EPA 350.1	EPA 350.1			
Grain Size	PSEP				

The data were reviewed using guidance and quality control criteria documented in the analytical methods; *Port of Seattle Lora Lake Parcel, Remedial Investigation/Feasibility Study Work Plan* (February 11, 2011); *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 & 2004); *National Functional Guidelines for Organic Data Review* (USEPA 1999 & 2008); and *USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review* (USEPA, September 2005).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A**. A Qualified Data Summary Table is included in **APPENDIX B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

Sample Index Lora Lake Parcel - Surface Sediments Analytical Resources Inc.

SDG	Sample ID	Laboratory ID	Matrix	VOC	SIM	PCP	Metals	Conventionals
SP34	LL-SED1-0-15-032911	11-6950-SP34A	Sediment	✓				✓
SP34	LL-SED2-0-15-032911	11-6951-SP34B	Sediment	✓				✓
SP34	LL-SED3-0-15-032911	11-6952-SP34C	Sediment	✓				\checkmark
SP34	LL-SED4-0-15-032911	11-6953-SP34D	Sediment	✓				✓
SP34	LL-SED1-0-15-032911-D	11-6954-SP34E	Sediment	✓				✓
SP34	LL-SED5-0-15-032911	11-6955-SP34F	Sediment	✓				✓
SP34	MC-SED1-0-10-032911	11-6956-SP34G	Sediment	✓	✓	✓	✓	✓
SP34	MC-SED2-0-10-032911	11-6957-SP34H	Sediment	✓	~	✓	✓	✓
SP34	MC-SED3-0-10-032911	11-6958-SP34I	Sediment	✓	~	✓	✓	✓
SP34	LL-SED-032911-TB	11-6960-SP34K	Water	✓				
SP34	LL-SED1-0-15-032911-ER	11-6959-SP34J	Water		~	✓	✓	
SQ22	LL-SED1-0-15-032911	11-7355-SQ22A	Sediment		~	✓	✓	✓
SQ22	LL-SED2-0-15-032911	11-7356-SQ22B	Sediment		~	✓	✓	✓
SQ22	LL-SED3-0-15-032911	11-7357-SQ22C	Sediment		~	✓	✓	✓
SQ22	LL-SED4-0-15-032911	11-7358-SQ22D	Sediment		~	✓	✓	✓
SQ22	LL-SED1-0-15-032911-D	11-7359-SQ22E	Sediment		✓	✓	✓	✓
SQ22	LL-SED5-0-15-032911	11-7360-SQ22F	Sediment		√	\checkmark	✓	✓

Sample Index Lora Lake Parcel - Surface Sediments Frontier Analytical Laboratory

SDG	Sample ID	Laboratory ID	Dioxins
6701	LL-SED1-0-15-032911	6701-001-SA	✓
6701	LL-SED2-0-15-032911	6701-002-SA	~
6701	LL-SED3-0-15-032911	6701-003-SA	~
6701	LL-SED4-0-15-032911	6701-004-SA	~
6701	LL-SED1-0-15-032911-D	6701-005-SA	~
6701	LL-SED5-0-15-032911	6701-006-SA	~
6701	MC-SED1-0-10-032911	6701-007-SA	~
6701	MC-SED2-0-10-032911	6701-008-SA	~
6701	MC-SED3-0-10-032911	6701-009-SA	√
6701	LL-SED1-0-15-032911-ER	6701-010-SA	✓

DATA VALIDATION REPORT Lora Lake Parcel – Surface Sediments Volatile Organic Compounds by SW846 Method 8260C

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all sediment data and compliance screening (EPA Stage 2A) was performed on all trip blank data. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples
SP34	9 Sediment & 1 Trip Blank

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times GC/MS Instrument Performance Check Initial Calibration (ICAL) Continuing Calibration (CCAL) Laboratory Blanks 1 Trip Blanks Surrogate Compounds Laboratory Control Samples (LCS/LCSD)
Matrix Spike/Matrix Spike Duplicate (MS/MSD)
1 Field Duplicates
1 Internal Standards
Target Analyte List
Reporting Limits

¹ Quality control results are discussed below, but no data were qualified.

Trip Blanks

One trip blank, LL-SED-032911-TB was submitted. No target analytes were detected in this blank.

Field Duplicates

The relative percent difference (RPD) value control limit is 50% for results greater than five times the reporting limit (RL). For results less than 5x the RL, the difference between the sample and duplicate must be less than 2x the RL.

One set of field duplicates, LL-SED1-0-15-032911 and LL-SED1-0-15-032911-D, was submitted. No target analytes were detected in either sample; field precision was acceptable.

Internal Standards

The percent recovery (%R) values for internal standard 1,4-dichlorobenzene-d4 were less than the lower control limit in Samples LL-SED1-0-15-032911 and LL-SED1-0-15-032911-D. This internal standard is only associated with a surrogate compound; no qualification of data was necessary.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample (LCS/LCSD), and matrix spike sample (MS/MSD) recovery values. Precision was also acceptable as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Surface Sediments Polycyclic Aromatic Hydrocarbons by SW846 Method 8270D SIM

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all sediment data. Compliance screening (EPA Stage 2A) was performed on all field blank data. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples
SP34	3 Sediment & 1 Equipment Rinsate
SQ22	6 Sediment

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times		Laboratory Control Samples (LCS/LCSD)
GC/MS Instrument Performance Check		Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
Initial Calibration (ICAL)	1	Field Duplicates
Continuing Calibration (CCAL)	2	Internal Standards
Laboratory Blanks		Target Analyte List
Field Blanks		Reporting Limits
Surrogate Compounds	1	Reported Results

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Field Blanks

1 2

SDG SP34: One equipment rinsate blank, LL-SED1-0-15-032911-ER, was submitted. No target analytes were detected in the field blank.

Surrogate Compounds

SDG SP34: The percent recovery (%R) value for 2-methylnaphthalene-d10 was less than the lower control limit in Sample MC-SED1-0-10-032911. No target analytes were detected in this sample; results were estimated (UJ-13) to indicate a potential low bias.

Field Duplicates

The field duplicate relative percent difference (RPD) control limit is 50% for concentrations greater than 5x the reporting limit (RL). For concentrations less than 5x the RL, the difference between the sample result and the duplicate result must be less than the RL.

Duplicate samples and any outliers are noted below. No data were qualified based on field duplicate precision outliers; however data users should consider the impact of field precision on the reported results.

SDG SQ22: The data for one set of field duplicates were submitted: LL-SED1-0-15-032911 and LL-SED1-0-15-032911-D. All field precision criteria were met.

Internal Standards

SDG SQ22: The responses for the internal standards naphthalene-d8, acenaphthene-d10, phenanthrene-d10, and chrysene-d12 were greater than the upper control limit in Sample LL-SED5-0-15-032911. The results for the associated compounds chrysene and benzo(a)anthracene were estimated (J-19) in this sample.

Reported Results

SDG SQ22: The samples in this SDG were centrifuged prior to extraction due to extremely high moisture content.

III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample/laboratory control sample duplicate (LCS/LCSD), and matrix spike/matrix spike duplicate (MS/MSD) %R values,. Precision was also acceptable as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values.

Data were estimated based on a surrogate %R outlier and internal standard outliers.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Surface Sediments Pentachlorophenol by EPA Method 8041A

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all sediment data. Compliance screening (EPA Stage 2A) was performed on all field blank data. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples					
SP34	3 Sediment & 1 Equipment Rinsate					
SQ22	6 Sediment					

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. **TECHNICAL DATA VALIDATION**

The QC requirements that were reviewed are listed below.

	Sample Receipt, Preservation, and Holding Times	1	Field Duplicates
	Initial Calibration (ICAL)		Retention Time Window
	Continuing Calibration (CCAL)		Target Analyte List
	Laboratory Blanks		Compound Identification
1	Field Blanks		Compound Quantitation
	Surrogate Compounds		Reporting Limits
	Laboratory Control Samples (LCS)	2	Reported Results
1	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)		

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Field Blanks

SDG SP34: One equipment rinsate blank, LL-SED1-0-15-032911-ER, was submitted. Pentachlorophenol was not detected in the field blank.

Matrix Spike/Matrix Spike Duplicates

SDG SQ22: Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed using Sample LL-SED2-0-15-032911. The relative percent difference (RPD) value was greater than the 50% control limit. Pentachlorophenol was not detected in the parent sample; therefore no qualification was necessary.

Field Duplicate

The field duplicate relative percent difference (RPD) control limit is 50% for concentrations greater than 5x the reporting limit (RL). For concentrations less than 5x the RL, the difference between the sample result and the duplicate result must be less than 2x the RL.

Duplicate samples and any outliers are noted below. No data were qualified based on field duplicate precision outliers; however data users should consider the impact of field precision on the reported results.

SDG SQ22: One set of field duplicates were submitted: LL-SED1-0-15-032911 & LL-SED1-0-15-032911-D. Pentachlorophenol was detected in the sample, but not detected in the duplicate. The difference between the positive result and the RL was less than 2x the RL; field precision was acceptable.

Reported Results

SDG SQ22: The samples in this SDG were centrifuged prior to extraction due to extremely high moisture content.

The pentachlorophenol result in Sample LL-SED1-0-15-032911 was "P" flagged by the laboratory to indicate that the percent difference (%D) between columns was greater than 40%. The pentachlorophenol result was estimated (J-3) for this sample.

Sample LL-SED2-0-15-032911 was at both 1x and 10x dilutions. Both sets of results were reported. Pentachlorophenol was not detected in either analysis. The result from the 10x dilution was qualified do-not-report (DNR-11); the result form the 1x dilution should be used.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the surrogate, laboratory control sample and MS/MSD recoveries. With the exception noted above, precision was also acceptable as demonstrated by the MS/MSD and field duplicate RPD values.

One result for pentachlorophenol was estimated based on a confirmation column %D outlier.

One result for pentachlorophenol was flagged DNR to indicate which result from multiple dilutions should not be used.

Data flagged as DNR should not be used for any purpose. All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Surface Sediments Dioxin/Furan Compounds by Method 1613

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Frontier Analytical Laboratory, El Dorado Hills, California. Full validation (EPA Stage 4) was performed on all sediment data. The equipment rinsate received a compliance level review (EPA Stage 2A). The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
6701	9 Sediment & 1 Equipment Rinsate

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements reviewed are summarized in the following table:

1	Sample Receipt, Preservation, and Holding Times		Matrix Spike/Matrix Spike Duplicates (MS/MSD)
	System Performance and Resolution Checks		Ongoing Precision and Recovery (OPR)
	Initial Calibration (ICAL)	1	Field Duplicates
	Calibration Verification (CVER)		Target Analyte List
	Method Blanks	2	Reported Results
1	Field Blanks		Compound Identification
2	Labeled Compound Recovery	1	Calculation Verification

¹ Quality control results are discussed below, but no data were qualified.
 ² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

The samples were transferred from Analytical Resources, Inc (ARI) to Frontier Analytical Laboratory. As stated in validation guidance documents, samples should be maintained within the advisory temperature range of 2° C to 6° C. The temperatures recorded by Frontier were as low as 0.0°C, which is less than the lower control limit. The temperature outliers did not impact data quality; therefore no action was taken.

Field Blanks

One equipment rinsate, Sample LL-SED1-0-15-032911-ER, was submitted. The target analyte OCDD was detected in this blank. To evaluate the effect on the sample data, an action level of 5x the blank concentration was established. All associated OCDD results were greater than the action level; therefore no qualification of data was necessary.

Labeled Compound Recovery

Several labeled compound percent recovery (%R) values were outside of the QAPP specified control limits of 70% - 130%. For recoveries less than the lower control limit, the results for the associated compounds were estimated (J/UJ-13) to indicate a potential low bias. For recoveries greater than the upper control limit, positive results for the associated compounds were estimated (J-13) to indicate a potential high bias. Outliers in the following samples resulted in qualification of data.

Sample ID	Number of Outliers	Bias
LL-SED1-0-15-032911	7	Low
LL-SED1-0-15-032911-D	1	High
MC-SED3-0-10-032911	4	Low
LL-SED1-0-15-032911-ER	9	Low

Field Duplicates

The RPD value control limit is 30% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than the RL. No data were qualified based on field duplicate precision outliers; however users of the data should consider the impact of field precision on the reported results.

The data for one field duplicate set, LL-SED1-0-15-032911 and LL-SED1-0-15-032911-D, were submitted. Field precision was acceptable for all analytes.

Reported Results

Several samples were reanalyzed at dilution due to analyte concentrations that exceeded the calibration range of the instrument. In each case, the laboratory reported only the most appropriate positive result for each congener from either the original or diluted analysis.

The laboratory assigned "D and/or M" flags to several of the reported homologue group totals to indicate that a diphenyl ether (D) or some other interference (M) was present, resulting in a high bias in the reported result. All analytes that were "D" and/or "M" flagged were estimated (J-14).

Calculation Verification

Several results were verified by recalculation from the raw data. No calculation or transcription errors were found.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the above noted exceptions, accuracy was acceptable as demonstrated by the labeled compound, OPR, and matrix spike/matrix spike duplicate (MS/MSD) %R values. Precision was also acceptable as demonstrated by the MS/MSD and field duplicate RPD values.

Data were estimated based on labeled compound recovery outliers and interference from diphenyl ether.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Surface Sediments Total Arsenic and Lead by EPA 6010B

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources Incorporated, Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all sediment data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SP34	3 Sediment & 1 Equipment Rinsate
SQ22	6 Sediment

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times		Reference Materials
Initial Calibration	1	Laboratory Duplicates
Continuing Calibration Verification	1	Field Duplicates
CRDL Standards		Interference Check Samples
Laboratory Blanks		Target Analyte List
Field Blanks		Reporting Limits
Laboratory Control Samples (LCS)	1	Reported Results
Matrix Spikes (MS)		

¹ Quality control results are discussed below, but no data were qualified

Field Blanks

1

1

SDG SP34: One equipment rinsate blank, LL-SED1-0-15-032911-ER, was submitted. No target analytes were detected in this blank.

Matrix Spikes

SDG SP34: Matrix spike samples (MS) were not analyzed for the rinsate blank sample. The laboratory control sample (LCS) was used to evaluate laboratory accuracy.

Laboratory Duplicates

SDG SP34: Laboratory duplicate samples were not analyzed for the rinsate blank sample. Laboratory precision could not be assessed.

Field Duplicates

The relative percent difference (RPD) control limit is 20% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than two times the RL.

SDG SQ22: One set of field duplicates, LL-SED1-0-15-032911 and LL-SED1-0-15-032911-D, were submitted. All field precision criteria were met.

Reported Results

SDG SQ22: The samples in this SDG were centrifuged prior to extraction due to extremely high moisture content.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the laboratory control sample and matrix spike sample percent recovery values. Precision was also acceptable as demonstrated by the laboratory and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Surface Sediments Total Solids and Preserved Total Solids by 160.3M, Total Organic Carbon by Plumb, 1981, Sulfide by Method EPA 376.2, N-Ammonia by Method EPA 350.1M, and Grain Size by Method PSEP

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources Incorporated, Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SP34	9 Sediment
SQ22	6 Sediment

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

	Sample Receipt, Preservation, and Holding Times	2	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
	Initial Calibration		Laboratory Replicates
	Calibration Verification	1	Field Duplicates
	Laboratory Blanks	1	Reporting Limits
	Laboratory Control Samples (LCS)	1	Reported Results
1	Reference Materials		

¹ Quality control results are discussed below, but no data were qualified ² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Reference Materials

The certified reference material NIST 1941B was analyzed with all TOC samples. The certified reference material SPEX 28-24AS was analyzed with all N-Ammonia samples. All recoveries were within the certified acceptance ranges.

Matrix Spikes/Matrix Spike Duplicates

SDG SQ22: The matrix spike (MS) analysis for total organic carbon (TOC) was performed using Sample LL-SED2-0-15-032911. The MS percent recovery (%R) for TOC (130.2%) was greater

than the QAPP specified upper control limit of 120%. All TOC results were estimated (J-8) to indicate a potential high bias.

Field Duplicates

The relative percent difference (RPD) value control limit is 20% for TOC and 25% for the remaining analyses. For results less than five times the RL, the difference between the sample and duplicate must be less than two times the RL. No data were qualified based on RPD outliers; however data users should take field precision into account when interpreting sample results.

SDGs SP34 & SQ22: One set of field duplicates were submitted: LL-SED1-0-15-032911 and LL-SED1-0-15-032911-D. The RPD value for coarse sand (37.5%) was greater than the control limit. Field precision was acceptable for all other analytes.

Reporting Limits

SDG SP34: The reporting limits were elevated due to high moisture content. No action was taken on this basis.

Reported Results

SDG SQ22: The sediment samples in this SDG were centrifuged prior to analysis of TOC due to high moisture content. All other analyses were reported in **SDG SP34**.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the laboratory control sample, matrix spike, and reference material percent recovery values; and recision was acceptable as demonstrated by the laboratory replicate and field duplicate RPD and percent relative standard deviation (%RSD) values.

Data were estimated based on an MS %R outlier.

All data, as qualified, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

1	Holding Time/Sample Preservation
2	Chromatographic pattern in sample does not match pattern of calibration standard.
3	Compound Confirmation
4	Tentatively Identified Compound (TIC) (associated with NJ only)
5A	Calibration (initial)
5B	Calibration (continuing)
6	Field Blank Contamination
7	Lab Blank Contamination (e.g., method blank, instrument, etc.)
8	Matrix Spike(MS & MSD) Recoveries
9	Precision (all replicates)
10	Laboratory Control Sample Recoveries
11	A more appropriate result is reported (associated with "R" and "DNR" only)
12	Reference Material
13	Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)
14	Other (define in validation report)
15	GFAA Post Digestion Spike Recoveries
16	ICP Serial Dilution % Difference
17	ICP Interference Check Standard Recovery
18	Trip Blank Contamination
19	Internal Standard Performance (e.g., area, retention time, recovery)
20	Linear Range Exceeded
21	Potential False Positives
22	Elevated Detection Limit Due to Interference (i.e., laboratory, chemical and/or matrix)

EcoChem Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C±2°C Water: HCl to pH < 2	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Hold Time	Waters: 14 days preserved 7 Days: unpreserved (for aromatics) Solids: 14 Days	J(+)/UJ(-) if hold times exceeded If exceeded by > 3X HT: $J(+)/R(-)$ (EcoChem PJ)	1
Tuning	BFB Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05	5A
	%RSD < 30%	(EcoChem PJ, see TM-06) J(+)	5A
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05	5B
	%D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R- If -90% to -26%: J+ (high bias) If 26% to 90%: J+/UJ- (low bias)	5B
	One per matrix per batch	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank	No results > CRQL	U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Storage Blank	One per SDG <crql< td=""><td>U(+) the specific analyte(s) results in all assoc.samples using the 5x or 10x rule</td><td>7</td></crql<>	U(+) the specific analyte(s) results in all assoc.samples using the 5x or 10x rule	7
Trip Blank	Frequency as per project QAPP	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned	18
Field Blanks (if required in QAPP)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

EcoChem Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) in parent sample if RPD > CL	9
LCS Iow conc. H2O VOA	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL J(+)/R(-) assoc. cmpd if < LCL J(+)/R(-) all cmpds if half are < LCL	10
LCS regular VOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Added to all samples Within method control limits	J(+) if %R >UCL J(+)/UJ(-) if %R <lcl but="">10% (see PJ¹) J(+)/R(-) if <10%</lcl>	13
Internal Standard (IS)	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J(+) if > 200% J(+)/UJ(-) if < 50% J(+)/R(-) if < 25% RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use OAPP limits. If no OAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R(+) common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

PJ¹ No action if there are 4+ surrogates and only 1 outlier.

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	$\label{eq:Water:} \begin{array}{l} \hline Water:\\ J(+)/UJ(-) \mbox{ if ext. > 7 and < 21 days}\\ J(+)/R(-) \mbox{ if ext. > 21 days} \mbox{ (EcoChem PJ)}\\ \hline Solids/Wastes:\\ J(+)/UJ(-) \mbox{ if ext. > 14 and < 42 days}\\ J(+)/R(-) \mbox{ if ext. > 42 days} \mbox{ (EcoChem PJ)} \end{array}$	1
		J(+)/UJ(-) if analysis >40 days	
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05	5A
Initial Calibration (Minimum 5 stds.)		If reporting limit > MDL: note in worksheet if RRF <0.05	
	%RSD < 30%	(EcoChem PJ, see TM-06) J(+) if %RSD > 30%	5A
Continuing Calibration	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL:	5B
(Prior to each 12 hr.		note in worksheet if RRF <0.05	
shift)	%D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R- If -90% to -26%: J+ (high bias) If 26% to 90%: J+/UJ- (low bias)	5B
	One per matrix per batch	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank	No results > CRQL	U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) in parent sample if RPD > CL	9
LCS low conc. H2O SVOA	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL J(+)/R(-) assoc. cmpd if < LCL J(+)/R(-) all cmpds if half are < LCL	10
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) if %R < 10%	13
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J(+) if > 200% J(+)/UJ(-) if < 50% J(+)/R(-) if < 25% RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R(+) common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext/analyzed > HT J(+)/R(-) if ext/analyzed > 3X HT (EcoChem PJ)	1
Resolution Check	Beginning of ICAL Sequence Within RTW Resolution >90%	Narrate (Use Professional Judgement to qualify)	14
Instrument Performance (Breakdown)	DDT Breakdown: < 20% Endrin Breakdown: <20% Combined Breakdown: <30% Compounds within RTW	J(+) DDT NJ(+) DDD and/or DDE R(-) DDT - If (+) for either DDE or DDD J(+) Endrin NJ(+) EK and/or EA R(-) Endrin - If (+) for either EK or EA	5A
Retention Times	Surrogates: TCX (+/- 0.05); DCB (+/- 0.10) Target compounds: elute before heptachlor epoxide (+/- 0.05) elute after heptachlor epoxide (+/- 0.07)	NJ(+)/R(-) results for analytes with RT shifts For full DV, use PJ based on examination of raw data	5B
Initial Calibration	Pesticides: Low=CRQL, Mid=4X, High=16X Multiresponse - one point Calibration %RSD<20% %RSD<30% for surr; two comp. may exceed if <30% Resolution in Mix A and Mix B >90%	(-)LN/(+)L	5A
Continuing Calibration	Alternating PEM standard and INDA/INDB standards every 12 hours (each preceeded by an inst. Blank) %D < 25% Resolution >90% in IND mixes; 100% for PEM	J(+)/UJ(-) $J(+)R(-)$ if %D > 90% PJ for resolution	5B
Method Blank	One per matrix per batch No results > CRQL	U(+) if sample result is < CRQL and < 5X rule (raise sample value to CRQL) U(+) if sample result is > or equal to CRQL and < 5X rule (at reported sample value)	. 7
Instrument Blanks	Analyzed at the beginning of every 12 hour sequence No analyte > 1/2 CRQL	Same as Method Blank	7
Field Blanks	Not addressed by NFG No results > CRQL	Apply 5X rule; U(+) < action level	6

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One set per matrix per batch Method Acceptance Criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One set per matrix per batch Method Acceptance Criteria	J(+) in parent sample if RPD > CL	9
LCS	One per SDG Method Acceptance Criteria	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	TCX and DCB added to every sample %R = 30-150%	J(+)/UJ(-) if both %R = 10 - 60% J(+) if both >150% J(+)/R(-) if any %R <10%	13
Quantitation/ Identification	Quantitated using ICAL calibration factor (CF) RPD between columns <40%	J(+) if RPD = 40 - 60% NJ(+) if RPD >60% EcoChem PJ - See TM-08	3
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	11
Sample Clean-up	GPC required for soil samples Florisil required for all samples Sulfur is optional Clean-up standard check %R within CLP limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL	14
Field Duplicates	Use OAPP limits. If no OAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate (Qualifiy if required by project QAPP)	9

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids < 4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection <i>Note:</i> Under CWA, SDWA, and RCRA the HT for H2O is 7 days [*] Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext > 30 days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = $(x/y)^{100\%}$ x = ht. of TCDD y = baseline to bottom of valleyFor all isomers eluting near 2378-TCDD/TCDF isomers(TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound %D outliers. For native compound %D outliers: 8290: J(+)/UJ(-) if %D = 20% - 75% J(+)/R(-) if %D > 75% 1613: J(+)/UJ(-) if %D is outside Table 6 limits J(+)/R(-) if %D is +/- 75% of Table 6 limit	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or R(-)	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20%	J(+) in parent sample if RPD > CL	9

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	<i>Method 8290:</i> %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B:</i> %R must meet limits specified in Table 7, Method 1613	J(+)/R(-) if %R < 10%	15
Quantitation/ Identification			21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Use QAPP limits. If no QAPP: Solids: RPD <50%		Narrate and qualify if required by project (EcoChem PJ)	9
OR absolute diff. < 1X RL (for results < 5X RL) Two analyses for one sample Report only one result per analyte		"DNR" results that should not be used	11

EcoChem Validation Guidelines for Metals Analysis by ICP (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE	
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration Tissues: Frozen	EcoChem Professional Judgment - no qualification based on cooler temperature outliers J(+)/UJ(-) if pH preservation requirements are not met	1	
Holding Time	180 days from date sampled Frozen tissues - HT extended to 2 years	J(+)/UJ(-) if holding time exceeded	1	
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r > 0.995	J(+)/UJ(-) if r < 0.995 (multi point cal)	5A	
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J(+)/UJ(-) if %R 75-89% J(+) if %R = 111-125% R(+) if %R > 125% R(+/-) if %R < 75%	5A	
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run %R within ±10% of true value	J(+)/UJ(-) if %R = 75-89% J(+) if %R 111-125% R(+) if %R > 125% R(+/-) if %R < 75%	5B	
Initial and Continuing Calibration Blank (ICB/CCB)After each ICV and CCV every ten samples and end of run blank < IDL (MDL)		Action level is 5x absolute value of blank conc. For (+) blanks, U(+) results < action level For (-) blanks, J(+)/UJ(-) results < action level (Refer to TM-02 for additional information)	7	
Reporting Limit2x RL analyzed beginning of runStandardNot required for AI, Ba, Ca, Fe, Mg, Na, K%R = 70%-130% (50%-150% Sb, Pb, Tl)		R(-)/J(+) < 2x RL if %R <50% (< 30% Sb, Pb, Tl) J(+) < 2x RL, UJ(-) if %R 50-69% (30-49% Sb, Pb, Tl) J(+) < 2x RL if %R 130-180% (150-200% Sb, Pb, Tl) R(+) < 2x RL if %R > 180% (200% Sb, Pb, Tl)	14	
Interference Check Samples (ICSA/ICSAB) ICSAB %R 80 - 120% for all spiked elements (ICSA/ICSAB)		For samples with AI, Ca, Fe, or Mg > ICS levels R(+/-) if %R < 50% J(+) if %R >120% J(+)/UJ(-) if %R= 50 to 79% Use Professional Judgment for ICSA to determine if bias is present see TM-09 for additional details	17	
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U(+) results < action level	7	
Laboratory Control Sample (LCS)	One per matrix per batch			
	Blank Spike: %R within 80-120%	R(+/-) if %R < 50% J(+)/UJ(-) if %R = 50-79% J(+) if %R >120%	10	
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J(+)/UJ(-) if $< LCL$, J(+) if $> UCL$		

EcoChem Validation Guidelines for Metals Analysis by ICP (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Matrix Spikes	One per matrix per batch 75-125% for samples less than 4x spike level	J(+) if %R > 125% J(+)/UJ(-) if %R < 75% J(+)/R(-) if %R < 30% or J(+)/UJ(-) if Post Spike %R 75-125% Qualify all samples in batch	8
Post-digestion Spike	If Matrix Spike is outside 75-125%, spike at twice the sample conc.	No qualifiers assigned based on this element	
Laboratory Duplicate (or MS/MSD)			9
Serial Dilution	5x dilution one per matrix %D < 10% for original sample conc. > 50x MDL	J(+)/UJ(-) if %D >10% qualify all samples in batch	16
Field Blank Blank < MDL		Action level is 5x blank conc. U(+) sample values < action level in associated field samples only	6
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: J(+)/UJ(-) in parent samples only	
Linear Range	Sample concentrations must fall within range	J values over range	20

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE	
Cooler Temperature and Preservation	Cooler Temperature 4°C ±2°C Preservation: Method Specific	Use Professional Judgment to qualify based to qualify for coole temp outliers J(+)/UJ(-) if preservation requirements not met	1	
Holding Time	Method Specific	Professional Judgment J(+)/UJ(-) if holding time exceeded J(+)/R(-) if HT exceeded by > 3X	1	
Initial Calibration	Method specific r>0.995	Use professional judgment J(+)/UJ(-) for r < 0.995	5A	
Initial Calibration Verification (ICV)	Where applicable to method Independent source analyzed immediately after calibration %R method specific, usually 90% - 110%	R(+/-) if %R significantly < LCL J(+)/UJ(-) if %R < LCL J(+) if %R > UCL R(+) if %R significantly > UCL	5A	
Continuing Cal Verification (CCV)	Where applicable to method Every ten samples, immed. following ICV/ICB and end of run %R method specific, usually 90% - 110%	R(+/-) if %R significantly < LCL J(+)/UJ(-) if %R < LCL J(+) if %R > UCL R(+) if %R significantly > UCL	5B	
Initial and ContinuingWhere applicable to methodInitial and ContinuingAfter each ICV and CCV every tenCal Blanks (ICB/CCB)samples and end of run blank < MDL		Action level is 5x absolute value of blank conc. For (+) blanks, U(+) results < action level For (-) blanks, J(+)/UJ(-) results < action level refer to TM-02 for additional details	7	
One per matrix per batch Method Blank (not to exceed 20 samples) blank < MDL		Action level is 5x absolute value of blank conc. For (+) blk value, U(+) results < action level For (-) blk value, J(+)/UJ(-) results < action level	7	
Laboratory Control	Waters: One per matrix per batch %R (80-120%)	R(+/-) if %R < 50% J(+)/UJ(-) if %R = 50-79% J(+) if %R >120%	10	
Sample	Sample Soils: One per matrix per batch Result within manufacturer's certified acceptance range	J(+)/UJ(-) if < LCL, J(+) if > UCL	10	
Matrix Spike	One per matrix per batch; 5% frequency 75-125% for samples less than 4 x spike level	J(+) if %R > 125% or < 75% UJ(-) if %R = 30-74% R(+/-) results < IDL if %R < 30%	8	
Laboratory Duplicate	One per matrix per batch RPD <20% for samples > 5x RL Diff <rl for="" samples="">RL and <5 x RL (may use RPD < 35%, Diff < 2X RL for solids)</rl>	J(+)/UJ(-) if RPD > 20% or diff > RL all samples in batch	9	

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Field Blank	blank < MDL	Action level is 5x blank conc. U(+) sample values < action level in associated field samples only	6
For results > 5X RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff <rl 2x="" <="" diff="" rl<="" solid:="" td=""><td>J(+)/UJ(-) in parent samples only</td><td>9</td></rl>		J(+)/UJ(-) in parent samples only	9

APPENDIX B QUALIFIED DATA SUMMARY TABLE

JC 06/14/95 10:12 AM I:\APPENDICES\APPENDIX.DOC

Qualified Data Summary Table Lora Lake Parcel - Surface Sediments

									DV
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qual	DV Qual	Reason
SP34	MC-SED1-0-10-032911	11-6956-SP34G	SW8270D SIM	Benzo(a)anthracene	4.6	ug/kg	U	UJ	13
SP34	MC-SED1-0-10-032911	11-6956-SP34G	SW8270D SIM	Chrysene	4.6	ug/kg	U	UJ	13
SP34	MC-SED1-0-10-032911	11-6956-SP34G	SW8270D SIM	Benzo(a)pyrene	4.6	ug/kg	U	UJ	13
SP34	MC-SED1-0-10-032911	11-6956-SP34G	SW8270D SIM	Indeno(1,2,3-cd)pyrene	4.6	ug/kg	U	UJ	13
SP34	MC-SED1-0-10-032911	11-6956-SP34G	SW8270D SIM	Dibenz(a,h)anthracene	4.6	ug/kg	U	UJ	13
SP34	MC-SED1-0-10-032911	11-6956-SP34G	SW8270D SIM	Total Benzofluoranthenes	4.6	ug/kg	U	UJ	13
SQ22	LL-SED1-0-15-032911	11-7355-SQ22A	SW8041	Pentachlorophenol	50	ug/kg	Р	J	3
SQ22	LL-SED1-0-15-032911	11-7355-SQ22A	Plumb,1981	Total Organic Carbon	8	Percent		J	8
SQ22	LL-SED2-0-15-032911	11-7356-SQ22B	SW8041	Pentachlorophenol	33	ug/kg	U	DNR	11
SQ22	LL-SED2-0-15-032911	11-7356-SQ22B	Plumb,1981	Total Organic Carbon	7.16	Percent		J	8
SQ22	LL-SED3-0-15-032911	11-7357-SQ22C	Plumb,1981	Total Organic Carbon	9.18	Percent		J	8
SQ22	LL-SED4-0-15-032911	11-7358-SQ22D	Plumb,1981	Total Organic Carbon	8.86	Percent		J	8
SQ22	LL-SED1-0-15-032911-D	11-7359-SQ22E	Plumb,1981	Total Organic Carbon	8.42	Percent		J	8
SQ22	LL-SED5-0-15-032911	11-7360-SQ22F	Plumb,1981	Total Organic Carbon	1.3	Percent		J	8
SQ22	LL-SED5-0-15-032911	11-7360-SQ22F	SW8270D SIM	Benzo(a)anthracene	25	ug/kg		J	19
SQ22	LL-SED5-0-15-032911	11-7360-SQ22F	SW8270D SIM	Chrysene	66	ug/kg		J	19
6701	LL-SED1-0-15-032911	6701-001-SA	EPA 1613 D/F	2,3,7,8-TCDD	4.31	pg/g		J	13
6701	LL-SED1-0-15-032911	6701-001-SA	EPA 1613 D/F	1,2,3,7,8-PeCDD	20.7	pg/g		J	13
6701	LL-SED1-0-15-032911	6701-001-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDD	53.8	pg/g		J	13
6701	LL-SED1-0-15-032911	6701-001-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDD	188	pg/g		J	13
6701	LL-SED1-0-15-032911	6701-001-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	42.3	pg/g		J	13
6701	LL-SED1-0-15-032911	6701-001-SA	EPA 1613 D/F	2,3,4,6,7,8-HxCDF	56.4	pg/g		J	13
6701	LL-SED1-0-15-032911	6701-001-SA	EPA 1613 D/F	OCDF	3830	pg/g		J	13
6701	LL-SED1-0-15-032911	6701-001-SA	EPA 1613 D/F	Total HxCDF	1500	pg/g	D,M	J	14
6701	LL-SED2-0-15-032911	6701-002-SA	EPA 1613 D/F	Total HxCDF	1680	pg/g	D,M	J	14
6701	LL-SED3-0-15-032911	6701-003-SA	EPA 1613 D/F	Total TCDF	293	pg/g	D,M	J	14
6701	LL-SED3-0-15-032911	6701-003-SA	EPA 1613 D/F	Total PeCDF	394	pg/g	D,M	J	14
6701	LL-SED3-0-15-032911	6701-003-SA	EPA 1613 D/F	Total HxCDF	1080	pg/g	D,M	J	14
6701	LL-SED4-0-15-032911	6701-004-SA	EPA 1613 D/F	Total HxCDF	1120	pg/g	D,M	J	14
6701	LL-SED1-0-15-032911-D	6701-005-SA	EPA 1613 D/F	OCDD	67000	pg/g	*	J	13
6701	LL-SED1-0-15-032911-D	6701-005-SA	EPA 1613 D/F	Total HxCDF	1500	pg/g	D,M	J	14
6701	MC-SED3-0-10-032911	6701-009-SA	EPA 1613 D/F	2,3,7,8-TCDD	0.159	pg/g	U	UJ	13
6701	MC-SED3-0-10-032911	6701-009-SA	EPA 1613 D/F	1,2,3,7,8-PeCDD	0.204	pg/g	U	UJ	13
6701	MC-SED3-0-10-032911	6701-009-SA	EPA 1613 D/F	OCDD	5.93	pg/g	J	J	13
6701	MC-SED3-0-10-032911	6701-009-SA	EPA 1613 D/F	OCDF	0.646	pg/g	U	UJ	13
6701	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	2,3,7,8-TCDD	1.56	pg/L	U	UJ	13
6701	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	1,2,3,7,8-PeCDD	1.53	pg/L	U	UJ	13
6701	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDD	1.44	pg/L	U	UJ	13
6701	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	OCDD	15.3	pg/L	J	J	13
6701	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	1,2,3,4,7,8-HxCDF	1.14	pg/L	U	UJ	13
	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	1.12	pg/L	U	UJ	13
6701	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	2,3,4,6,7,8-HxCDF	1.1	pg/L	U	UJ	13
6701	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	1,2,3,7,8,9-HxCDF	1.22	pg/L	U	UJ	13
6701	LL-SED1-0-15-032911-ER	6701-010-SA	EPA 1613 D/F	OCDF	4.82	pg/L	U	UJ	13

DATA VALIDATION REPORT

Port of Seattle Lora Lake Parcel RI/FS Soils

Prepared for:

Floyd/Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 710 Second Avenue, Suite 660 Seattle, Washington 98104

EcoChem Project: C15212-4

July 5, 2011

Approved for Release:

Christine Ransom Project Manager EcoChem, Inc.

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of data validation performed on soil and quality control (QC) sample data for the Remedial Investigation/Feasibility Study at Lora Lake Parcel, Burien, WA. The dioxin data received full validation (EPA Stage 4); all other parameters received summary validation (EPA Stage 2B). A complete list of samples is provided in the **Sample Index**.

Frontier Analytical Laboratory (El Dorado Hills, California) performed the dioxin/furan analyses. Analytical Resources, Inc. (Tukwila, Washington) performed all other analyses. The analytical methods and EcoChem project chemists are listed in the table below.

Analysis	Method	Primary Review	Secondary Review
Dioxin Furan Compounds	EPA 1613	M. Swanson	
Volatile Organic Compounds	SW8060C		
BTEX	SW8021-Mod		
Polycyclic Aromatic Hydrocarbons	SW8270D-SIM	M. Brindle	
Pentachlorophenol	SW8041		C. Ransom
Total Petroleum Hydrocarbons – Diesel Range Organics	NWTPH-Dx		C. Kalisulli
Total Petroleum Hydrocarbons – Gasoline Range Organics	NWTPH-Gx		
Metals	SW6010B		
Total Organic Carbon	Plumb, 1981	J. Maute	
Total Solids	EPA 160.3		

The data were reviewed using guidance and quality control criteria documented in the analytical methods; *Port of Seattle Lora Lake Parcel, Remedial Investigation/Feasibility Study Work Plan* (February 11, 2011); *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 & 2004); *National Functional Guidelines for Organic Data Review* (USEPA 1999 & 2008); and *USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review* (USEPA, September 2005).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A**. A Qualified Data Summary Table is included in **APPENDIX B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

Sample Index Lora Lake Parcel - Soil Analytical Resources Inc.

SDG	Sample ID	Laboratory ID	Matrix	VOC	PAH	PCP	BTEX	TPH-Gx	TPH-Dx	Metals	TOC/TS
SS71	LL-SB6-0-0.5-041811	11-8654-SS71A	Soil	✓	✓	✓	✓	✓	√	✓	\checkmark
SS71	LL-SB6-1.5-2-041811	11-8655-SS71B	Soil	✓	✓	✓	✓	✓	✓	✓	✓
SS71	LL-SB6-2-4-041811	11-8656-SS71C	Soil	~	~	~	~	✓	~	✓	\checkmark
SS71	LL-SB5-0-0.5-041811	11-8657-SS71D	Soil	~	~	~	~	\checkmark	~	~	\checkmark
SS71	LL-SB5-1.5-2-041811	11-8658-SS71E	Soil	~	~	~	~	\checkmark	~	~	\checkmark
SS71	LL-SB5-2-4-041811	11-8659-SS71F	Soil	\checkmark	~	~	~	\checkmark	~	~	\checkmark
SS71	LL-SB4-0-0.5-041911	11-8660-SS71G	Soil	\checkmark	~	~	~	\checkmark	~	~	\checkmark
SS71	LL-SB4-1.5-2-041911	11-8661-SS71H	Soil	~	~	~	~	\checkmark	~	~	\checkmark
SS71	LL-SB4-2-4-041911	11-8662-SS71I	Soil	\checkmark	~	~	~	\checkmark	~	~	\checkmark
SS71	LL-SB3-0-0.5-041911	11-8663-SS71J	Soil	\checkmark	~	~	~	\checkmark	~	~	\checkmark
SS71	LL-SB3-1.5-2-041911	11-8664-SS71K	Soil	\checkmark	~	~	~	\checkmark	~	~	\checkmark
SS71	LL-SB3-2-4-041911	11-8665-SS71L	Soil	\checkmark	~	~	~	\checkmark	~	~	✓
SS71	LL-SB2-0-0.5-041911	11-8666-SS71M	Soil	\checkmark	~	~	~	\checkmark	~	~	✓
SS71	LL-SB2-1.5-2-041911	11-8667-SS71N	Soil	\checkmark	~	~	~	\checkmark	~	~	✓
SS71	LL-SB2-2-3.5-041911	11-8668-SS710	Soil	\checkmark	~	~	~	\checkmark	~	~	✓
SS71	LL-SB1-0-0.5-041911	11-8669-SS71P	Soil	✓	~	~	~	✓	√	~	√
SS71	LL-SB1-0-0.5-041911-D	11-8670-SS71Q	Soil	\checkmark	~	~	~	✓	√	~	\checkmark
SS71	LL-SB1-1.5-2-041911	11-8671-SS71R	Soil	✓	✓	✓	✓	√	√	✓	✓
SS71	LL-SB1-2-4-041911	11-8672-SS71S	Soil	\checkmark	✓	✓	✓	✓	✓	✓	✓
SS71	LL-ER-041911	11-8673-SS71T	Rinsate		\checkmark	\checkmark			\checkmark	\checkmark	

Sample Index Lora Lake Parcel - Soil Frontier Analytical Laboratory

SDG	Sample ID	Laboratory ID	Matrix	Dioxins
6733	LL-SB6-0-0.5-041811	6733-001-SA	Soil	✓
6733	LL-SB6-1.5-2-041811	6733-002-SA	Soil	✓
6733	LL-SB6-2-4-041811	6733-003-SA	Soil	✓
6733	LL-SB5-0-0.5-041811	6733-004-SA	Soil	✓
6733	LL-SB5-1.5-2-041811	6733-005-SA	Soil	✓
6733	LL-SB5-2-4-041811	6733-006-SA	Soil	\checkmark
6733	LL-SB4-0-0.5-041911	6733-007-SA	Soil	\checkmark
6733	LL-SB4-1.5-2-041911	6733-008-SA	Soil	\checkmark
6733	LL-SB4-2-4-041911	6733-009-SA	Soil	\checkmark
6733	LL-SB3-0-0.5-041911	6733-010-SA	Soil	\checkmark
6733	LL-SB3-1.5-2-041911	6733-011-SA	Soil	\checkmark
6733	LL-SB3-2-4-041911	6733-012-SA	Soil	\checkmark
6733	LL-SB2-0-0.5-041911	6733-013-SA	Soil	✓
6733	LL-SB2-1.5-2-041911	6733-014-SA	Soil	\checkmark
6733	LL-SB2-2-3.5-041911	6733-015-SA	Soil	\checkmark
6733	LL-SB1-0-0.5-041911	6733-016-SA	Soil	\checkmark
6733	LL-SB1-0-0.5-041911-D	6733-017-SA	Soil	✓
6733	LL-SB1-1.5-2-041911	6733-018-SA	Soil	✓
6733	LL-SB1-2-4-041911	6733-019-SA	Soil	✓

DATA VALIDATION REPORT Lora Lake Parcel - Soils Volatile Organic Compounds by SW846 Method 8260C

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SS71	19 Soil

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Sample Receipt, Preservation, and Holding Times		Matrix Spike/Matrix Spike Duplicate (MS/MSD)
	GC/MS Instrument Performance Check	1	Field Duplicates
	Initial Calibration (ICAL)	1	Internal Standards
	Continuing Calibration (CCAL)		Target Analyte List
	Laboratory Blanks		Reporting Limits
1	Field Blanks		Compound Identification
	Surrogate Compounds		Reported Results
	Laboratory Control Samples (LCS/LCSD)		

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample coolers should arrive at the laboratory within the advisory temperature range of 2° C to 6° C. Several coolers were received with temperatures less than the lower limit, ranging down to 1.6° C. The temperature outliers did not impact data quality; therefore no action was taken.

Field Blank

No field blanks were submitted.

Field Duplicates

The relative percent difference (RPD) control limit is 50% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than 2x the RL.

One set of field duplicates were submitted: LL-SB-0-0.5-0041911 and LL-SB-0-0.5-0041911-D. No target analytes were detected in either sample; field precision was acceptable.

Internal Standards

The recoveries for the internal standard 1,4-dichlorobenzene-d4 were less than the lower control limit in Samples LL-SB5-0-0.5-041811, LL-SB5-2-4-041811, and LL-SB4-0-0.5-041911. This internal standard was not used to quantitate the analytes of interest for this project. No qualifiers were required.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample/laboratory control sample (LCS/LCSD), and matrix spike/matrix spike duplicate (MS/MSD) recovery values. Precision was also acceptable as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel - Soils Polycyclic Aromatic Hydrocarbons by SW846 Method 8270D- SIM

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all soil data. Compliance screening (EPA Stage 2A) was performed on all field blank data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples	
SS71	19 Soil, 1 Equipment Rinsate	

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- Sample Receipt, Preservation, and Holding Times GC/MS Instrument Performance Initial Calibration (ICAL) Continuing Calibration (CCAL) Laboratory Blanks
 Field Blanks
- 2 Surrogate Compounds Laboratory Control Samples (LCS/LCSD)
- Matrix Spikes/Matrix Spike Duplicates (MS/MSD) 1 Field Duplicates Internal Standards Target Analyte List Reporting Limits Compound Identification

Reported Results

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample coolers should arrive at the laboratory within the advisory temperature range of 2° C to 6° C. Several coolers were received with temperatures less than the lower limit, ranging down to 1.6° C. The temperature outliers did not impact data quality; therefore no action was taken.

Field Blanks

One equipment rinsate blank, LL-ER-041911, was submitted. No target analytes were detected in this blank.

Surrogate Compounds

The percent recovery (%R) value for dibenzo(a,h)anthracene-d14 was less than the lower control limit of 40% in Sample LL-SB5-0-0.5-041811. The %R value for 2-methylnaphthalene-d10 was less than the control limit in Sample LL-SB3-1.5-2-041911. All results for these samples were estimated (J/UJ-13) to indicate a potential low bias.

Field Duplicates

The field duplicate relative percent difference (RPD) control limit is 50% for concentrations greater than 5x the reporting limit (RL). For concentrations less than 5x the RL, the difference between the sample result and the duplicate result must be less than 2x the RL.

One set of field duplicates were submitted: LL-SB-0-0.5-0041911 and LL-SB-0-0.5-0041911-D. No target analytes were detected in either sample; field precision was acceptable.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the MS/MSD, LCS/LCSD, and field duplicate RPD values.

Data were estimated due to surrogate recovery outliers.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel - Soils Pentachlorophenol by EPA Method 8041A

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all soil data and compliance screening (EPA Stage 2A) was performed on all field blank data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples	
SS71	19 Soil, 1 Equipment Rinsate	

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Sample Receipt, Preservation, and Holding Times	1	Field Duplicates
	Initial Calibration (ICAL)		Retention Time Window
	Continuing Calibration (CCAL)		Target Analyte List
	Laboratory Blanks		Compound Identification
1	Field Blanks		Compound Quantitation
	Surrogate Compounds		Reporting Limits
	Laboratory Control Samples (LCS)		Reported Results
	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)		

¹ Quality control results are discussed below, but no data were qualified. ² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample coolers should arrive at the laboratory within the advisory temperature range of 2° C to 6° C. Several coolers were received with temperatures less than the lower limit, ranging down to 1.6° C. The temperature outliers did not impact data quality; therefore no action was taken.

Field Blanks

One equipment rinsate, LL-ER-041911, was submitted. No target analytes were detected in this blank.

Field Duplicates

The field duplicate relative percent difference (RPD) control limit is 50% for concentrations greater than 5x the reporting limit (RL). For concentrations less than 5x the RL, the difference between the sample result and the duplicate result must be less than 2x the RL.

One set of field duplicates were submitted: LL-SB-0-0.5-0041911 and LL-SB-0-0.5-0041911-D. No target analytes were detected in either sample; field precision was acceptable.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample/laboratory control sample duplicate (LCS/LCSD), and matrix spike/matrix spike duplicate (MS/MSD) recoveries. Precision was also acceptable as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel - Soils Diesel Range Organics by NWTPH-Dx

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory quality control (QC) samples. Samples were analyzed by Analytical Resources Incorporated, Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all soil data and compliance screening (EPA Stage 2A) was performed on all field blank data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SS71	19 Soil, 1 Equipment Rinsate

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

 Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL) Continuing Calibration (CCAL) Laboratory Blanks
 Field Blanks Surrogate Compounds Laboratory Control Samples (LCS/LCSD)
 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
 Field Duplicates
 Reporting Limits
 Reported Results

¹ Quality control results are discussed below, but no data were qualified.

 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample coolers should arrive at the laboratory within the advisory temperature range of 2° C to 6° C. Several coolers were received with temperatures less than the lower limit, ranging down to 1.6° C. The temperature outliers did not impact data quality; therefore no action was taken.

Field Blanks

One equipment rinsate, LL-ER-041911, was submitted. No target analytes were detected in this blank.

Field Duplicates

The relative percent difference (RPD) value control limit is 50% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than two times the RL.

One set of field duplicates were submitted: LL-SB-0-0.5-0041911 and LL-SB-0-0.5-0041911-D. No target analytes were detected in either sample; field precision was acceptable.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, matrix spike/matrix spike duplicate (MS/MSD), and laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries. Precision was also acceptable as demonstrated by the MS/MSD, LCS/LCSD, and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel -Soil BETX by Method SW8021B Mod and Gasoline Range Organics by NWTPH-Gx

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources Incorporated, Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples	
SS71	19 Soil	

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL)		Laboratory Control Samples (LCS) Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
	Continuing Calibration (CCAL)	1	Field Duplicates
	Blanks		Target Analyte List
1	Field Blanks		Reporting Limits
	Surrogate Compounds		Reported Results

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample coolers should arrive at the laboratory within the advisory temperature range of 2° C to 6° C. Several coolers were received with temperatures less than the lower limit, ranging down to 1.6° C. The temperature outliers did not impact data quality and no action was taken.

Field Blanks

No field blanks were submitted.

Field Duplicate

The RPD value control limit is 50% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than 2x the RL.

One set of field duplicates were submitted: LL-SB-0-0.5-0041911 and LL-SB-0-0.5-0041911-D. No target analytes were detected in either sample; field precision was acceptable.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, matrix spike/matrix spike duplicate (MS/MSD) and laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries. Precision was acceptable as demonstrated by the MS/MSD, LCS/LCSD, and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Soils Dioxin/Furan Compounds by Method 1613

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Frontier Analytical Laboratory, El Dorado Hills, California. Full validation (EPA Stage 4) was performed on all soil data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples	
6733	19 Soil	

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements reviewed are summarized in the following table:

1	Sample Receipt, Preservation, and Holding Times		Matrix Spike/Matrix Spike Duplicates (MS/MSD)
	System Performance and Resolution Checks		Ongoing Precision and Recovery (OPR)
	Initial Calibration (ICAL)	1	Field Duplicates
	Calibration Verification (CVER)		Target Analyte List
	Method Blanks	2	Reported Results
1	Field Blanks		Compound Identification
2	Labeled Compound Recovery	1	Calculation Verification

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

The samples were transferred from Analytical Resources, Inc (ARI) to Frontier Analytical Laboratory. As stated in validation guidance documents, samples should be maintained within the advisory temperature range of 2° C to 6° C. The temperatures recorded by Frontier were as low as 0.0°C, which is less than the lower control limit. The temperature outliers did not impact data quality; therefore no action was taken.

Field Blanks

No equipment rinsate samples were submitted with this data package.

Labeled Compound Recovery

Several labeled compound percent recovery (%R) values were outside of the QAPP specified control limits of 70% - 130%. For recoveries less than the lower control limit, the results for the associated compounds were estimated (J/UJ-13) to indicate a potential low bias. For recoveries greater than the upper control limit, positive results for the associated compounds were estimated (J-13) to indicate a potential high bias. Outliers in the following samples resulted in qualification of data.

Sample ID	Labeled Compounds	Bias
LL-SB5-0-0.5-041811	13C-1,2,3,4,7,8,9-HpCDF	High
LL-SB4-2-4-041911	13C-OCDD	Low
LL-SB2-2-3.5-041911	130-0000	LUW
LL-SB3-1.5-2-041911		
LL-SB3-2-4-041911		
LL-SB2-1.5-2-041911		
LL-SB1-0-0.5-041911	13C-OCDD & 13C-OCDF	Low
LL-SB1-0-0.5-041911-D		
LL-SB1-1.5-2-041911		
LL-SB1-2-4-041911		
LL-SB2-0-0.5-041911	13C-OCDD, 13C-OCDF, & 13C-2,3,4,6,7,8-HxCDF	Low

Field Duplicates

The RPD value control limit is 30% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than 2x the RL.

The data for one field duplicate set, LL-SB1-0-0.5-041911 and LL-SB1-0-0.5-041911-D, were submitted. The RPD values for OCDD and total HpCDD were greater than the control limit, at 107.6% and 73.9%, respectively. No data were qualified based on field duplicate precision outliers; however users of the data should consider the impact of field precision on the reported results.

Reported Results

The laboratory assigned "D and/or M" flags to several of the reported homologue group totals to indicate that a diphenyl ether (D) or some other interference (M) was present, resulting in a high bias in the reported result. All analytes that were "D" and/or "M" flagged were estimated (J-14).

Calculation Verification

Several results were verified by recalculation from the raw data. No calculation or transcription errors were found.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the above noted exceptions, accuracy was acceptable as demonstrated by the labeled compound, ongoing precision and recovery (OPR) standard, and matrix spike/matrix spike duplicate (MS/MSD) %R values; and precision was acceptable as demonstrated by the MS/MSD and field duplicate RPD values.

Data were estimated based on labeled compound recovery outliers and interference from diphenyl ether.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Soils Total Arsenic and Lead by EPA 6010B

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources Incorporated, Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all soil data. Compliance screening (EPA Stage 2A) was performed on all field blank data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SS71	19 Soil, 1 Equipment Rinsate

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Sample Receipt, Preservation, and Holding Times		Reference Materials
	Initial Calibration		Laboratory Duplicates
	Continuing Calibration Verification	1	Field Duplicates
	CRDL Standards		Interference Check Samples
	Laboratory Blanks		Target Analyte List
1	Field Blanks		Reporting Limits
	Laboratory Control Samples (LCS)		Reported Results
	Matrix Spikes (MS)		

¹ Quality control results are discussed below, but no data were qualified

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, Holding Times

As stated in validation guidance documents, sample coolers should arrive at the laboratory within the advisory temperature range of 2° C to 6° C. Several coolers were received with temperatures less than the lower limit, the lowest at 1.6° C. The temperature outliers did not impact data quality and no action was taken.

Field Blanks

One equipment rinsate blank, LL-ER-041911, was submitted. No target analytes were detected in the field blank.

Field Duplicates

The relative percent difference (RPD) control limit is 20% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and duplicate must be less than two times the RL.

One set of field duplicates, LL-SB1-0-0.5-041911 and LL-SB1-0-0.5-041911-D, were submitted. All field precision criteria were met.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the laboratory control sample and matrix spike sample percent recovery values. Precision was also acceptable as demonstrated by the laboratory and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Lora Lake Parcel – Soils Total Solids by 160.3M & Total Organic Carbon by Plumb, 1981

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources Incorporated, Tukwila, Washington. Summary validation (EPA Stage 2B) was performed on all data. The **Sample Index** contains a complete list of samples.

SDG	Number of Samples
SS71	19 Soil

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

 Sample Receipt, Preservation, and Holding Times Initial Calibration Calibration Verification Laboratory Blanks Laboratory Control Samples (LCS)
 Reference Materials Matrix Spikes/Matrix Spike Duplicates (MS/MSD) Laboratory Replicates

1 Field Duplicates Reporting Limits Reported Results

¹ Quality control results are discussed below, but no data were qualified

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, Holding Times

As stated in validation guidance documents, sample coolers should arrive at the laboratory within the advisory temperature range of 2° C to 6° C. Several coolers were received with temperatures less than the lower limit, the lowest at 1.6° C. The temperature outliers did not impact data quality and no action was taken.

Reference Materials

The certified reference material NIST 1941B was analyzed with the TOC samples. The reference material recovery was within the certified acceptance ranges.

Field Duplicates

The relative percent difference (RPD) value control limit is 20% for TOC and 25% for total solids. For results less than five times the RL, the difference between the sample and duplicate must be less than two times the RL.

One set of field duplicates, LL-SB1-0-0.5-041911 and LL-SB1-0-0.5-041911-D, was submitted. All field precision criteria were met.

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the laboratory control sample, matrix spike, and reference material percent recovery values. Precision was acceptable as demonstrated by the laboratory replicate percent relative standard deviation (%RSD) and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

1	Holding Time/Sample Preservation
2	Chromatographic pattern in sample does not match pattern of calibration standard.
3	Compound Confirmation
4	Tentatively Identified Compound (TIC) (associated with NJ only)
5A	Calibration (initial)
5B	Calibration (continuing)
6	Field Blank Contamination
7	Lab Blank Contamination (e.g., method blank, instrument, etc.)
8	Matrix Spike(MS & MSD) Recoveries
9	Precision (all replicates)
10	Laboratory Control Sample Recoveries
11	A more appropriate result is reported (associated with "R" and "DNR" only)
12	Reference Material
13	Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)
14	Other (define in validation report)
15	GFAA Post Digestion Spike Recoveries
16	ICP Serial Dilution % Difference
17	ICP Interference Check Standard Recovery
18	Trip Blank Contamination
19	Internal Standard Performance (e.g., area, retention time, recovery)
20	Linear Range Exceeded
21	Potential False Positives
22	Elevated Detection Limit Due to Interference (i.e., laboratory, chemical and/or matrix)

EcoChem Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C±2°C Water: HCl to pH < 2	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Hold Time	Waters: 14 days preserved 7 Days: unpreserved (for aromatics) Solids: 14 Days	J(+)/UJ(-) if hold times exceeded If exceeded by > 3X HT: $J(+)/R(-)$ (EcoChem PJ)	1
Tuning	BFB Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05	5A
	%RSD < 30%	(EcoChem PJ, see TM-06) J(+)	5A
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05	5B
	%D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R- If -90% to -26%: J+ (high bias) If 26% to 90%: J+/UJ- (low bias)	5B
	One per matrix per batch	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank	No results > CRQL	U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Storage Blank	One per SDG <crql< td=""><td>U(+) the specific analyte(s) results in all assoc.samples using the 5x or 10x rule</td><td>7</td></crql<>	U(+) the specific analyte(s) results in all assoc.samples using the 5x or 10x rule	7
Trip Blank	Frequency as per project QAPP	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned	18
Field Blanks (if required in QAPP)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

EcoChem Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) in parent sample if RPD > CL	9
LCS low conc. H2O VOA	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL J(+)/R(-) assoc. cmpd if < LCL J(+)/R(-) all cmpds if half are < LCL	10
LCS regular VOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Added to all samples Within method control limits	J(+) if %R >UCL J(+)/UJ(-) if %R <lcl but="">10% (see PJ¹) J(+)/R(-) if <10%</lcl>	13
Internal Standard (IS)	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J(+) if > 200% J(+)/UJ(-) if < 50% J(+)/R(-) if < 25% RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use OAPP limits. If no OAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R(+) common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

PJ¹ No action if there are 4+ surrogates and only 1 outlier.

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	$\label{eq:Water:} \begin{array}{l} \hline Water:\\ J(+)/UJ(-) \mbox{ if ext. > 7 and < 21 days}\\ J(+)/R(-) \mbox{ if ext. > 21 days} \mbox{ (EcoChem PJ)}\\ \hline Solids/Wastes:\\ J(+)/UJ(-) \mbox{ if ext. > 14 and < 42 days}\\ J(+)/R(-) \mbox{ if ext. > 42 days} \mbox{ (EcoChem PJ)} \end{array}$	1
		J(+)/UJ(-) if analysis >40 days	
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05	5A
Initial Calibration (Minimum 5 stds.)		If reporting limit > MDL: note in worksheet if RRF <0.05	
	%RSD < 30%	(EcoChem PJ, see TM-06) J(+) if %RSD > 30%	5A
Continuing Calibration	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL:	5B
(Prior to each 12 hr.			
Smit)	Image: shift) note in worksheet if RRF <0.05 (EcoChem PJ, see TM-06) If > +/-90%: J+/R- %D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R-	5B
	One per matrix per batch	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank	No results > CRQL	U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) in parent sample if RPD > CL	9
LCS low conc. H2O SVOA	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL J(+)/R(-) assoc. cmpd if < LCL J(+)/R(-) all cmpds if half are < LCL	10
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL J(+)/UJ(-) if %R <lcl J(+)/R(-) if %R < 10% (EcoChem PJ)</lcl 	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) if %R < 10%	13
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J(+) if > 200% J(+)/UJ(-) if < 50% J(+)/R(-) if < 25% RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R(+) common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext/analyzed > HT J(+)/R(-) if ext/analyzed > 3X HT (EcoChem PJ)	1
Resolution Check	Beginning of ICAL Sequence Within RTW Resolution >90%	Narrate (Use Professional Judgement to qualify)	14
Instrument Performance (Breakdown)	DDT Breakdown: < 20% Endrin Breakdown: <20% Combined Breakdown: <30% Compounds within RTW	J(+) DDT NJ(+) DDD and/or DDE R(-) DDT - If (+) for either DDE or DDD J(+) Endrin NJ(+) EK and/or EA R(-) Endrin - If (+) for either EK or EA	5A
Retention Times	Surrogates: TCX (+/- 0.05); DCB (+/- 0.10) Target compounds: elute before heptachlor epoxide (+/- 0.05) elute after heptachlor epoxide (+/- 0.07)	NJ(+)/R(-) results for analytes with RT shifts For full DV, use PJ based on examination of raw data	5B
Initial Calibration	Pesticides: Low=CRQL, Mid=4X, High=16X Multiresponse - one point Calibration %RSD<20% %RSD<30% for surr; two comp. may exceed if <30% Resolution in Mix A and Mix B >90%	(-)LN/(+)L	5A
Continuing Calibration	Alternating PEM standard and INDA/INDB standards every 12 hours (each preceeded by an inst. Blank) %D < 25% Resolution >90% in IND mixes; 100% for PEM	J(+)/UJ(-) $J(+)R(-)$ if %D > 90% PJ for resolution	5B
Method Blank	One per matrix per batch No results > CRQL	U(+) if sample result is < CRQL and < 5X rule (raise sample value to CRQL) U(+) if sample result is > or equal to CRQL and < 5X rule (at reported sample value)	. 7
Instrument Blanks	Analyzed at the beginning of every 12 hour sequence No analyte > 1/2 CRQL	Same as Method Blank	7
Field Blanks	Not addressed by NFG No results > CRQL	Apply 5X rule; U(+) < action level	6

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One set per matrix per batch Method Acceptance Criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One set per matrix per batch Method Acceptance Criteria	J(+) in parent sample if RPD > CL	9
LCS	One per SDG Method Acceptance Criteria	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	TCX and DCB added to every sample %R = 30-150%	J(+)/UJ(-) if both %R = 10 - 60% J(+) if both >150% J(+)/R(-) if any %R <10%	13
Quantitation/ Identification	Quantitated using ICAL calibration factor (CF) RPD between columns <40%	J(+) if RPD = 40 - 60% NJ(+) if RPD >60% EcoChem PJ - See TM-08	3
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	11
Sample Clean-up	GPC required for soil samples Florisil required for all samples Sulfur is optional Clean-up standard check %R within CLP limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL	14
Field Duplicates	Use OAPP limits. If no OAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate (Qualifiy if required by project QAPP)	9

EcoChem Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range (Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Dx, June 1997, Wa DOE & Oregon DEQ)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature & Preservation	4°C±2°C Water: HCl to pH < 2	J(+)/UJ(-) if greater than 6 deg. C	1
Holding Time	Ext. Waters: 14 days preserved 7 days unpreserved Ext. Solids: 14 Days Analysis: 40 days from extraction	J(+)/UJ(-) if hold times exceeded J(+)/R(-) if exceeded > 3X (EcoChem PJ)	1
Initial Calibration	5 calibration points (All within 15% of true value)	Narrate if fewer than 5 calibration levels or if %R >15%	5A
	Linear Regression: $R^2 \ge 0.990$ If used, RSD of response factors $\le 20\%$	J(+)/UJ(-) if R ² <0.990 J(+)/UJ(-) if %RSD > 20%	54
Mid-range Calibration	Analyzed before and after each analysis shift & every 20 samples.	Narrate if frequency not met.	
Check Std.	Recovery range 85% to 115%	J(+)/UJ(-) if %R < 85% J(+) if %R >115%	5B
Method Blank	At least one per batch (< <u>2</u> 0 samples)	U (at the RL) if sample result is < RL & < 5X blank result.	7
	No results >RL	U (at reported sample value) if sample result is > RL and < 5X blank result	7
Field Blanks (if required by project)	No results > RL	Action is same as method blank for positive results remaining in the field blank after method blank qualifiers are assigned.	6
MS samples (accuracy) (if required by project)	%R within lab control limits	Qualify parent only, unless other QC indicates systematic problems. J(+) if both %R > upper control limit (UCL) J(+)/UJ(-) if both %R < lower control limit (LCL) No action if parent conc. >5X the amount spiked. Use PJ if only one %R outlier	8
Precision: MS/MSD or LCS/LCSD or sample/dup	At least one set per batch (≤10 samples) RPD <u><</u> lab control limit	J(+) if RPD > lab control limits	9
LCS (not required by method)	%R within lab control limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL J(+)/R(-) if any %R <10% (EcoChem PJ)	10

EcoChem Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range (Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Dx, June 1997, Wa DOE & Oregon DEQ)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Surrogates	2-fluorobiphenyl, p-terphenyl, o-terphenyl, and/or pentacosane added to all samples (inc. QC samples). %R = 50-150%	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL J(+)/R(-) if any %R <10% No action if 2 or more surrogates are used, and only one is outside control limits. (EcoChem PJ)	13
Pattern Identification	Compare sample chromatogram to standard chromatogram to ensure range and pattern are reasonable match. Laboratory may flag results which have poor match.	J(+)	2
Field Duplicates	Use project control limits, if stated in QAPP EcoChem default: water: RPD < 35% solids: RPD < 50%	Narrate (Use Professional Judgement to qualify)	9
Two analyses for one sample (dilution)	Report only one result per analyte	"DNR" (or client requested qualifier) all results that should not be reported. (See TM-04)	11

EcoChem Validation Guidelines for Total Petroleum Hydrocarbons-Gasoline Range

(Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Gx, June 1997, Wa DOE & Oregon DEQ)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature & Preservation	4°C±2°C Water: HCl to pH < 2	J(+)/UJ(-) if greater than 6 deg. C	1
Holding Time	Waters: 14 days preserved 7 days unpreserved Solids: 14 Days	J(+)/UJ(-) if hold times exceeded J(+)/R(-) if exceeded > 3X (EcoChem PJ)	1
Initial Calibration	5 calibration points (All within 15% of true value) Linear Regression: R ² ≥0.990	Narrate if fewer than 5 calibration levels or if %R >15% J(+)/UJ(-) if R ² <0.990	5A
	If used, RSD of response factors <20%	J(+)/UJ(-) if %RSD > 20%	
Mid-range Calibration	Analyzed before and after each analysis shift & every 20 samples.	Narrate if frequency not met.	
Check Std.	Recovery range 80% to 120%	J(+)/UJ(-) if %R < 80% J(+) if %R >120%	5B
Method Blank	At least one per batch (≤10 samples)	U (at the RL) if sample result is < RL & < 5X blank result.	7
	No results >RL	U (at reported sample value) if sample result is \geq RL and < 5X blank result	7
Trip Blank (if required by project)	No results >RL	Action is same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned.	18
Field Blanks (if required by project)	No results > RL	Action is same as method blank for positive results remaining in field blank after method and trip blank qualifiers are assigned.	6
MS samples (accuracy) (if required by project)	%R within lab control limits	Qualify parent only, unless other QC indicates systematic problems. J(+) if both %R > upper control limit (UCL) J(+)/UJ(-) if both %R < lower control limit (LCL) No action if parent conc. >5X the amount spiked. Use PJ if only one %R outlier	8
Precision: MS/MSD or LCS/LCSD or sample/dup	At least one set per batch (\leq 10 samples) RPD \leq lab control limit	J(+) if RPD > lab control limits	9

EcoChem Validation Guidelines for Total Petroleum Hydrocarbons-Gasoline Range

(Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Gx, June 1997, Wa DOE & Oregon DEQ)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
LCS (not required by method)	%R within lab control limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL J(+)/R(-) if any %R <10% (EcoChem PJ)	10
Surrogates	Bromofluorobenzene and/or 1,4-difluorobenzene added to all samples (inc. QC samples). %R = 50-150%	J(+)/UJ(-) if %R < LCL J(+) if %R >UCL J(+)/R(-) if any %R <10% No action if 2 or more surrogates are used, and only one is outside control limits. (EcoChem PJ)	13
Pattern Identification	Compare sample chromatogram to standard chromatogram to ensure range and pattern are reasonable match. Laboratory may flag results which have poor match.	J(+)	2
Field Duplicates	Use project control limits, if stated in QAPP EcoChem default: water: RPD < 35% solids: RPD < 50%	Narrate outliers If required by project, qualify with J(+)/UJ(-)	9
Two analyses for one sample (e.g., dilution)	Report only one result per analyte	"DNR" (or client requested qualifier) all results that should not be reported. (See TM-04)	11

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids < 4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection <i>Note:</i> Under CWA, SDWA, and RCRA the HT for H2O is 7 days [*] Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext > 30 days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = $(x/y)^{100\%}$ x = ht. of TCDD y = baseline to bottom of valleyFor all isomers eluting near 2378-TCDD/TCDF isomers(TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	5A
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound %D outliers. For native compound %D outliers: 8290: J(+)/UJ(-) if %D = 20% - 75% J(+)/R(-) if %D > 75% 1613: J(+)/UJ(-) if %D is outside Table 6 limits J(+)/R(-) if %D is +/- 75% of Table 6 limit	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or R(-)	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20%	J(+) in parent sample if RPD > CL	9

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	<i>Method 8290:</i> %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B:</i> %R must meet limits specified in Table 7, Method 1613	J(+)/R(-) if %R < 10%	
Quantitation/S/N >2.5IdentificationIA ratios meet limits in Table 9 of 1613B or Table 8 of 8290 RRTs w/in limits in Table 2 of 1613B		If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35%	Narrate and qualify if required by project (EcoChem PJ)	9
Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)		"DNR" results that should not be used	11

EcoChem Validation Guidelines for Metals Analysis by ICP (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration Tissues: Frozen	EcoChem Professional Judgment - no qualification based on cooler temperature outliers J(+)/UJ(-) if pH preservation requirements are not met	1
Holding Time	180 days from date sampled Frozen tissues - HT extended to 2 years	J(+)/UJ(-) if holding time exceeded	1
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r > 0.995	J(+)/UJ(-) if r < 0.995 (multi point cal)	5A
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J(+)/UJ(-) if %R 75-89% J(+) if %R = 111-125% R(+) if %R > 125% R(+/-) if %R < 75%	5A
Continuing CalibrationEvery ten samples, immediately following ICV/ICB and at end of run %R within ±10% of true value		J(+)/UJ(-) if %R = 75-89% J(+) if %R 111-125% R(+) if %R > 125% R(+/-) if %R < 75%	5B
Initial and ContinuingAfter each ICV and CCVCalibration Blankevery ten samples and end of run(ICB/CCB) blank < IDL (MDL)		Action level is 5x absolute value of blank conc. For (+) blanks, U(+) results < action level For (-) blanks, J(+)/UJ(-) results < action level (Refer to TM-02 for additional information)	7
Reporting Limit Standard	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Sb, Pb, TI)	R(-)/J(+) < 2x RL if %R <50% (< 30% Sb, Pb, Tl) J(+) < 2x RL, UJ(-) if %R 50-69% (30-49% Sb, Pb, Tl) J(+) < 2x RL if %R 130-180% (150-200% Sb, Pb, Tl) R(+) < 2x RL if %R > 180% (200% Sb, Pb, Tl)	14
Interference Check Samples (ICSA/ICSAB)	ICSAB %R 80 - 120% for all spiked elements ICSA < MDL for all unspiked elements except: K, Na	For samples with AI, Ca, Fe, or Mg > ICS levels R(+/-) if %R < 50% J(+) if %R >120% J(+)/UJ(-) if %R= 50 to 79% Use Professional Judgment for ICSA to determine if bias is present see TM-09 for additional details	17
One per matrix per batch Method Blank (batch not to exceed 20 samples) blank < MDL		Action level is 5x blank concentration U(+) results < action level	7
	One per matrix per batch		
Laboratory Control Sample (LCS)	Blank Spike: %R within 80-120%	R(+/-) if %R < 50% J(+)/UJ(-) if %R = 50-79% J(+) if %R >120%	10
r · / · · /	CRM: Result within manufacturer's certified acceptance range or project guidelines	J(+)/UJ(-) if < LCL, J(+) if > UCL	

EcoChem Validation Guidelines for Metals Analysis by ICP (Based on Inorganic NFG 1994 & 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
One per matrix per batch Matrix Spikes 75-125% for samples less than 4x spike level		J(+) if %R > 125% J(+)/UJ(-) if %R < 75% J(+)/R(-) if %R < 30% or J(+)/UJ(-) if Post Spike %R 75-125% Qualify all samples in batch	8
Post-digestion Spike	Spike If Matrix Spike is outside 75-125%, spike at twice the sample conc. No qualifiers assigned based on this element		
Laboratory Duplicate (or MS/MSD)One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples >RL and < 5x RL (Diff < 2x RL for solids)J(+)/UJ(-)		J(+)/UJ(-) if RPD > 20% or diff > RL (2x RL for solids) qualify all samples in batch	9
Serial Dilution5x dilution one per matrix %D < 10% for original sample conc. > 50x MDL		J(+)/UJ(-) if %D >10% qualify all samples in batch	16
Field Blank	Blank < MDL	Action level is 5x blank conc. U(+) sample values < action level in associated field samples only	6
Field Duplicate For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL		J(+)/UJ(-) in parent samples only	9
Linear Range	Sample concentrations must fall within range	J values over range	20

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature and PreservationCooler Temperature 4°C ±2° Preservation: Method Specific		Use Professional Judgment to qualify based to qualify for coole temp outliers J(+)/UJ(-) if preservation requirements not met	1
Holding Time	Method Specific	Professional Judgment J(+)/UJ(-) if holding time exceeded J(+)/R(-) if HT exceeded by > 3X	1
Initial Calibration	Method specific r>0.995	Use professional judgment J(+)/UJ(-) for r < 0.995	5A
Initial Calibration Verification (ICV)	Where applicable to method Independent source analyzed immediately after calibration %R method specific, usually 90% - 110%	R(+/-) if %R significantly < LCL J(+)/UJ(-) if %R < LCL J(+) if %R > UCL R(+) if %R significantly > UCL	5A
Continuing Cal Verification (CCV)	Where applicable to method Every ten samples, immed. following ICV/ICB and end of run %R method specific, usually 90% - 110%	R(+/-) if %R significantly < LCL J(+)/UJ(-) if %R < LCL J(+) if %R > UCL R(+) if %R significantly > UCL	5B
Initial and Continuing Cal Blanks (ICB/CCB)	Where applicable to method After each ICV and CCV every ten samples and end of run blank < MDL	Action level is 5x absolute value of blank conc. For (+) blanks, U(+) results < action level For (-) blanks, J(+)/UJ(-) results < action level refer to TM-02 for additional details	7
Method Blank	One per matrix per batch (not to exceed 20 samples) blank < MDL	Action level is 5x absolute value of blank conc. For (+) blk value, U(+) results < action level For (-) blk value, J(+)/UJ(-) results < action level	7
Laboratory Control	Waters: One per matrix per batch %R (80-120%)	R(+/-) if %R < 50% J(+)/UJ(-) if %R = 50-79% J(+) if %R >120%	10
Sample	Soils: One per matrix per batch Result within manufacturer's certified acceptance range	J(+)/UJ(-) if < LCL, J(+) if > UCL	10
Matrix Spike One per matrix per batch; 5% frequency 75-125% for samples less than 4 x spike level		J(+) if %R > 125% or < 75% UJ(-) if %R = 30-74% R(+/-) results < IDL if %R < 30%	8
Laboratory Duplicate	One per matrix per batch RPD <20% for samples > 5x RL Diff <rl for="" samples="">RL and <5 x RL (may use RPD < 35%, Diff < 2X RL for solids)</rl>	J(+)/UJ(-) if RPD > 20% or diff > RL all samples in batch	9

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

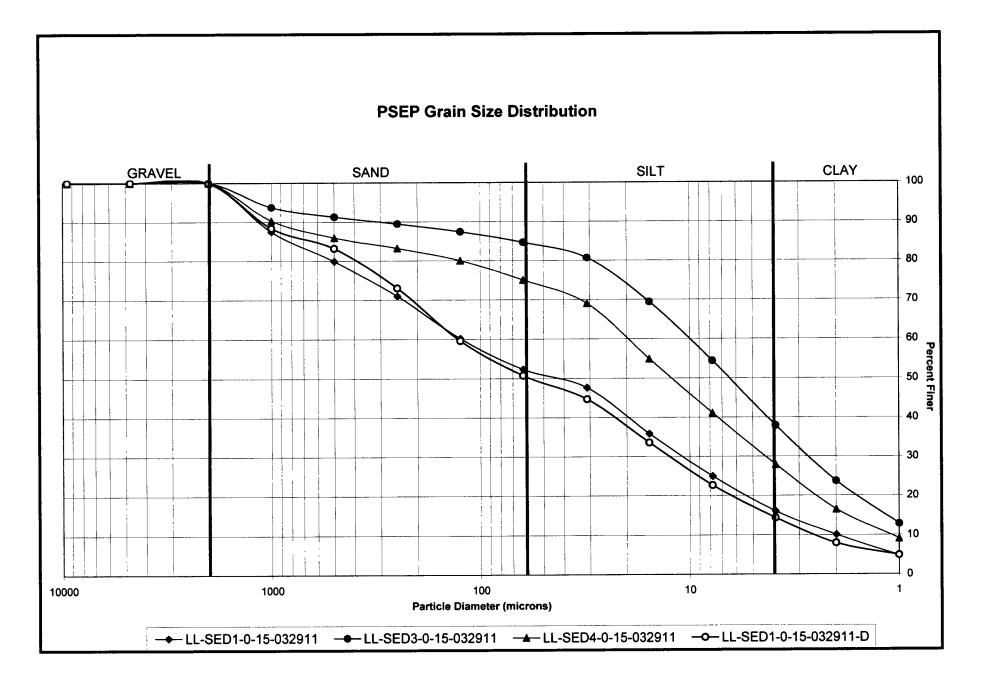
VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Field Blank	blank < MDL	Action level is 5x blank conc. U(+) sample values < action level in associated field samples only	6
Field Duplicate	For results > 5X RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff <rl 2x="" <="" diff="" rl<="" solid:="" td=""><td>J(+)/UJ(-) in parent samples only</td><td>9</td></rl>	J(+)/UJ(-) in parent samples only	9

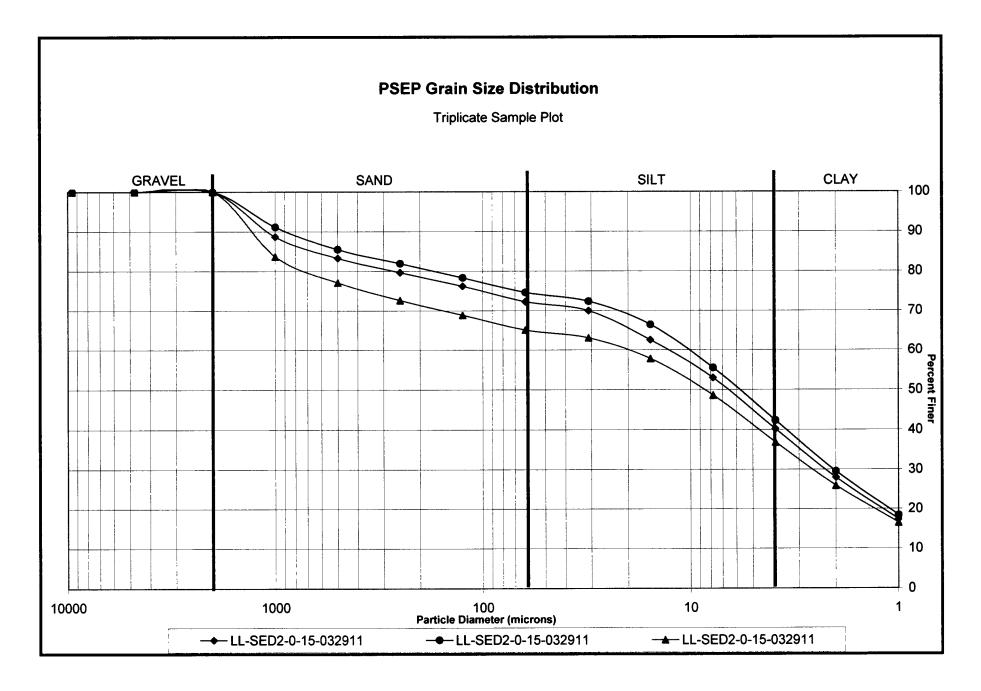
APPENDIX B QUALIFIED DATA SUMMARY TABLE

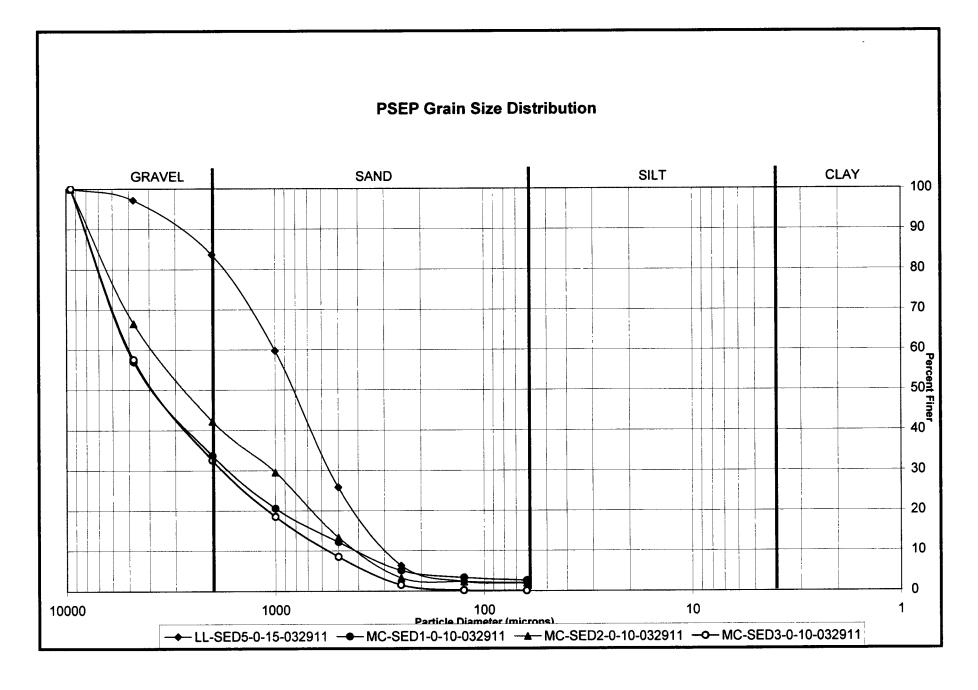
JC 06/14/95 10:12 AM I:\APPENDICES\APPENDIX.DOC

Qualified Data Summary Table Lora Lake Parcel - Soils

							Lab	DV	
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Qual	Qual	DV Reason
SS71	LL-SB5-0-0.5-041811	11-8657-SS71D	SW8270D SIM	Benzo(a)anthracene	12	ug/kg		J	13
SS71	LL-SB5-0-0.5-041811	11-8657-SS71D	SW8270D SIM	Benzo(a)pyrene	17	ug/kg		J	13
SS71	LL-SB5-0-0.5-041811	11-8657-SS71D	SW8270D SIM	Chrysene	37	ug/kg		J	13
SS71	LL-SB5-0-0.5-041811	11-8657-SS71D	SW8270D SIM	Dibenz(a,h)anthracene	4.5	ug/kg	U	UJ	13
SS71	LL-SB5-0-0.5-041811	11-8657-SS71D	SW8270D SIM	Indeno(1,2,3-cd)pyrene	7.2	ug/kg		J	13
SS71	LL-SB5-0-0.5-041811	11-8657-SS71D	SW8270D SIM	Total Benzofluoranthenes	61	ug/kg		J	13
SS71	LL-SB3-1.5-2-041911	11-8664-SS71K	SW8270D SIM	Benzo(a)anthracene	4.5	ug/kg	U	UJ	13
SS71	LL-SB3-1.5-2-041911	11-8664-SS71K	SW8270D SIM	Benzo(a)pyrene	4.5	ug/kg	U	UJ	13
SS71	LL-SB3-1.5-2-041911	11-8664-SS71K	SW8270D SIM	Chrysene	4.5	ug/kg	U	UJ	13
SS71	LL-SB3-1.5-2-041911	11-8664-SS71K	SW8270D SIM	Dibenz(a,h)anthracene	4.5	ug/kg	U	UJ	13
SS71	LL-SB3-1.5-2-041911	11-8664-SS71K	SW8270D SIM	Indeno(1,2,3-cd)pyrene	4.5	ug/kg	U	UJ	13
SS71	LL-SB3-1.5-2-041911	11-8664-SS71K	SW8270D SIM	Total Benzofluoranthenes	4.5	ug/kg	U	UJ	13
6733	LL-SB5-0-0.5-041811	6733-004-SA	EPA 1613 D/F	1,2,3,4,7,8,9-HpCDF	2.03	pg/g	J	J	13
6733	LL-SB4-2-4-041911	6733-009-SA	EPA 1613 D/F	OCDD	10.3	pg/g		J	13
6733	LL-SB3-1.5-2-041911	6733-011-SA	EPA 1613 D/F	OCDD	150	pg/g		J	13
6733	LL-SB3-1.5-2-041911	6733-011-SA	EPA 1613 D/F	OCDF	9.58	pg/g	J	J	13
6733	LL-SB3-2-4-041911	6733-012-SA	EPA 1613 D/F	OCDD	239	pg/g		J	13
6733	LL-SB3-2-4-041911	6733-012-SA	EPA 1613 D/F	OCDF	14.8	pg/g		J	13
6733	LL-SB2-0-0.5-041911	6733-013-SA	EPA 1613 D/F	2,3,4,6,7,8-HxCDF	2.72	pg/g	J	J	13
6733	LL-SB2-0-0.5-041911	6733-013-SA	EPA 1613 D/F	OCDD	978	pg/g		J	13
6733	LL-SB2-0-0.5-041911	6733-013-SA	EPA 1613 D/F	OCDF	72.6	pg/g		J	13
6733	LL-SB2-0-0.5-041911	6733-013-SA	EPA 1613 D/F	Total PeCDF	51.7	pg/g	D,M	J	14
6733	LL-SB2-0-0.5-041911	6733-013-SA	EPA 1613 D/F	Total TCDF	47	pg/g	D,M	J	14
6733	LL-SB2-1.5-2-041911	6733-014-SA	EPA 1613 D/F	OCDD	13.3	pg/g		J	13
6733	LL-SB2-1.5-2-041911	6733-014-SA	EPA 1613 D/F	OCDF	1.51	pg/g	U	UJ	13
6733	LL-SB2-2-3.5-041911	6733-015-SA	EPA 1613 D/F	OCDD	15.3	pg/g		J	13
6733	LL-SB1-0-0.5-041911	6733-016-SA	EPA 1613 D/F	OCDD	18.6	pg/g		J	13
6733	LL-SB1-0-0.5-041911	6733-016-SA	EPA 1613 D/F	OCDF	1.18	pg/g	U	UJ	13
6733	LL-SB1-0-0.5-041911-D	6733-017-SA	EPA 1613 D/F	OCDD	61.9	pg/g		J	13
6733	LL-SB1-0-0.5-041911-D	6733-017-SA	EPA 1613 D/F	OCDF	1.31	pg/g	U	UJ	13
6733	LL-SB1-1.5-2-041911	6733-018-SA	EPA 1613 D/F	OCDD	112	pg/g		J	13
6733	LL-SB1-1.5-2-041911	6733-018-SA	EPA 1613 D/F	OCDF	7.18	pg/g	J	J	13
6733	LL-SB1-2-4-041911	6733-019-SA	EPA 1613 D/F	OCDD	251	pg/g		J	13
6733	LL-SB1-2-4-041911	6733-019-SA	EPA 1613 D/F	OCDF	15.2	pg/g		J	13


Port of Seattle Lora Lake Apartments Site


Remedial Investigation/ Feasibility Study


Volume II

Appendix G Lora Lake Parcel Remedial Investigation Data Report

Attachment G.5 Surface Sediment Grain Size Distribution Curves

BEZAG HEAS

Port of Seattle Lora Lake Apartments Site

Remedial Investigation/ Feasibility Study

Volume II

Appendix G Lora Lake Parcel Remedial Investigation Data Report

Attachment G.6 Bioassay Reports

FINAL

Port of Seattle Lora Lake Remedial Investigation/Feasibility Study Sediment Characterization – Toxicological Results

Final Report

Report date: June 21, 2011

Submitted to:

Washington Laboratory 5009 Pacific Hwy East Suite 2 Tacoma, WA 98424

Floyd Snider Inc. 601 Union St. Ste. 600 Seattle, WA 98101

TABLE OF CONTENTS

TAE	BLE O	DF CONTENTS	I
SIGI	NATL	URE PAGE	III
1.0	INT	IRODUCTION	1
2.0	SAN	MPLES	2
3.0	CHI	IRONOMUS DILUTUS TEST	
	3.1	Methods	
	3.2	Results	
	3.3	QA/QC	6
	3.4	Discussion	
4.0	ΗYA	ALELLA AZTECA TEST	9
	4.1	Methods	9
	4.2	Results	
	4.3	QA/QC	
	4.4	Discussion	
5.0	MIC	CROTOX® TEST	
	5.1	Methods	
	5.2	Results	
	5.3	QA/QC	
	5.4	Discussion	
6.0	CON	NCLUSIONS	
7.0	REF	FERENCES	

TABLE OF CONTENTS

LIST OF TABLES

Table 1	Acceptability criteria for bioassays	.1
Table 2	Summary of sample collection and test initiation dates	.2
Table 3	Summary of methods for the 20-day test with Chironomus dilutus	.5
Table 4	Results of Chironomus dilutus tests. Samples with statistically reduced survival	or
	growth are underlined, and values failing two-hit RSET criteria are shaded gra	y,
	while samples failing one-hit RSET criteria are bold. ^{1, 2}	.6
Table 5	Summary of water quality parameters for C. dilutus tests (means and ranges	s).
	Required values are shown in brackets	.7
Table 6	<i>C. dilutus</i> reference toxicant test results	.8
Table 7	Summary of methods for the 10-day test with <i>Hyalella azteca</i>	1
Table 8	Results of <i>Hyalella azteca</i> tests.	12
Table 9	Summary of water quality parameters for H. azteca analyses (means and ranges	5).
	Required values are shown in brackets	13
Table 10	Summary of methods for the Microtox test	15
Table 11	Results of Microtox tests	16
Table 12	Summary of sites water quality parameters for Microtox analyses	16
Table 13	Microtox reference toxicant test results	Ι7
Table 14	One-hit/Two-hit criteria summary results table	17

LIST OF APPENDICES

- **APPENDIX A Results Summaries**
- APPENDIX B Statistical Analyses
- APPENDIX C Water Quality Summaries
- **APPENDIX D** Laboratory Bench Sheets
- APPENDIX E Reference Toxicant Tests
- APPENDIX F Chain-of-Custody Forms

SIGNATURE PAGE

Cat Curron

Cat Curran, M.S. Washington Laboratory Manager

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

1.0 INTRODUCTION

On March 29th, 2011 Floyd Snider collected freshwater sediments from Lora Lake and Miller Creek at the Port of Seattle's Lora Lake Parcel for biological testing. Floyd Snider contracted with Nautilus Environmental to provide toxicity-testing services for the project. The seven sediment samples selected for testing included samples LL-SED1-0-15-032911 (LL-SED1), LL-SED2-0-15-032911 (LL-SED2), LL-SED3-0-15-032911 (LL-SED3), LL-SED4-0-15-032911 (LL-SED4), MC-SED1-0-10-032911 (MC-SED1), MC-SED2-0-10-032911 (MC-SED3). No reference sample was collected in conjunction with this project. The freshwater sediment samples were tested for toxicity using the *Chironomus dilutus* (aka *tentans*) 20-day survival and growth bioassay (USEPA 2000 and ASTM 2000), the *Hyalella azteca* 10-day survival bioassay (USEPA 2000 and ASTM 2000), and the 15-minute 100 percent porewater Microtox[®] bacteria bioluminescence test. The *Hyalella azteca* and microtox tests met negative control criteria, as did *Chironomus dilutus* survival. However, *C. dilutus* growth did not meet negative control criteria. Protocol deviations that occurred were not expected to have impacted the results and are discussed later in this report.

Results were evaluated by comparing test data to the criteria in the Sediment Evaluation Framework for the Pacific Northwest (RSET 2009) guidance document. *C. dilutus, H. azteca,* and Microtox results were compared to control results, and examined for statistically significant effects ($\alpha = 0.05$). Acceptability criteria from the literature are summarized in Table 1.

Test Type	C. dilutus 20-Day	H. azteca 10-Day	Microtox
Endpoint	Survival and Growth	Survival	Luminescence
Source	RSET 2009	RSET 2009	RSET 2009
Test Criteria	One-hit failure is mortality > control mortality + 25% <u>and/or</u> biomass <60% of control biomass <u>and</u> significant difference	One-hit failure is mortality > control mortality + 25% <u>and</u> significant difference	One-hit failure is Luminescence <75% of control luminescence <u>and</u> significant difference
	Two-hit failure is mortality > control mortality + 15% <u>and/or</u> biomass <75% of control biomass <u>and</u> significant difference	Two-hit failure is mortality > control mortality + 10% <u>and</u> significant difference	Two-hit failure is Luminescence <85% of control luminescence <u>and</u> significant difference
Control Criteria	Negative control ≤32% mortality and growth ≥0.48 mg/ind. ash- free dry weight ¹	Negative control ≤20% mortality	Negative control final light output > 72% of initial output

Table 1Acceptability criteria for bioassays

¹Criteria is based on testing at 23°C

2.0 SAMPLES

Upon receipt of samples from Floyd Snider, samples were matched with the chain-of-custody form and inspected. Samples were stored at $4 \pm 2^{\circ}$ C in the dark prior to test initiation. Toxicity tests were initiated within 2 weeks of collection (Table 2). Total ammonia levels in the porewater ranged from <1.0 to 11.9 milligrams per liter (mg/L), while sulfides in the porewater ranged from 0.016 to 0.561 mg/L. Both overlying ammonia and sulfides were also measured during testing, and the results are reported in the QA/QC sections for each test.

Sample ID	Collection Date	<i>C. dilutus</i> Test Initiation Date	<i>H. azteca</i> Test Initiation Date	Microtox Test Initiation Date
LL-SED1-0-15-				
032911				
LL-SED2-0-15-				
032911				
LL-SED3-0-15-				Marsh 21, 2011
032911			A	
LL-SED4-0-15-	March 20, 2011			
032911	March 29, 2011	April 13, 2011	April 5, 2011	March 31, 2011
MC-SED1-0-10-				
032911				
MC-SED2-0-10-				
032911				
MC-SED3-0-10-				
032911				

Table 2Summary of sample collection and test initiation dates

3.0 CHIRONOMUS DILUTUS TEST

3.1 Methods

C. dilutus were exposed to test sediments for 20 days to determine the effects of site sediment on survival and growth. These tests were conducted according to methods presented in USEPA (2000) and ASTM (2000), with modifications from the Lora Lake Parcel RI/FS Workplan (RI/FS workplan; Floyd Snider 2011), and are summarized in Table 3. Per the RI/FS workplan, tests were to be started within a week of sample collection, and every effort was made to meet that requirement. However, the organisms used to start that test appeared to be of low quality due to a low hatching rate and, to prevent waiting 20 days until results confirmed that suspicion, a second test was initiated a week later on April 13,2011 with a different batch of organisms. Sample holding time is 8 weeks, so while this delayed start was outside the RI/FS Workplan, it was within sample holding time requirements. It is this second test that is reported here, as the initial test started April 6th did not meet control requirements.

C. dilutus egg cases were obtained from Aquatic BioSystems (Fort Collins, Colorado) and arrived at the laboratory on April 12, 2011. The egg cases were transported in insulated containers in oxygen-saturated water contained in 500-mL plastic bottles. Upon arrival at the laboratory, water quality parameters were measured and observations of organism condition were made. The egg cases were 20°C at receipt, and were cultured at 20°C. The organisms emerged from the egg cases on April 13th and tests were initiated the same day.

One day prior to test initiation (Day –1), the sediment samples were homogenized, 100-ml of sediment was distributed to each of eight labeled test chambers for each of the samples, and 175-ml diluted mineral water (prepared by diluting two parts Perrier[®] into eight parts deionized water) was added to each container. Control sediment consisted of clean, rinsed silica sand (50/50 mix of #30 and #70) mixed with peat moss (1/2 Tbsp) that was rinsed overnight in diluted mineral water. Eight test chambers were also prepared for the control sediment. An additional replicate was included for each sediment sample and the control sediment as a sacrificial test chamber for routine water quality measurements.

The test chambers were randomized and the sediments were left to settle overnight. On Day 0, overlying ammonia, sulfide, hardness, alkalinity, dissolved oxygen (DO), pH, conductivity, and

temperature were measured. Twelve organisms were directly added to each test chamber, in random order.

Each test chamber was provided 1.5 mL of food daily (after the second renewal) starting on Day -1. The food consisted of a mixture of 4 g ground Tetrafin[®] flakes mixed with 1 L diluted mineral water. The feeding regime was reduced if the presence of excess food was observed on the sediment surface in several test chambers; however, this never occured. Abnormal conditions or unusual animal behavior, if observed, were noted daily.

Temperature, DO, pH, and conductivity were monitored daily in the water quality replicate for each sample, while alkalinity, hardness, ammonia and sulfides were measured on Days 5, 10, and 15. Water was renewed twice daily.

At test termination, subsamples of overlying water were collected from each water quality replicate for ammonia, hardness, alkalinity, and sulfide analyses. The contents of each test chamber were gently mixed to suspend the sediment and poured through a 0.5-mm Nitex screen. The sediment was rinsed through the screen using dechlorinated tap water. Animals were removed from the screen and the number of survivors counted and recorded. Presence of pupae, flies, or exuviae (molts) were noted. The larvae were rinsed with deionized water and placed into pre-ashed, pre-weighed weigh boats. The weigh boats were placed in an oven at 60°C for at least 24-hours, then placed in a dessicator until dry weight could be measured. The weigh boats were then placed in a muffle furnace at 550°C for two hours, placed in a dessicator to cool, then weighed again to determine the ash weight. The ash weight was subtracted from the dry weight to determine the ash-free dry weight (AFDW). The number and AFDW of surviving chironomids were evaluated statistically by one-tailed t-test, or one-tailed Mann-Whitney U-test, as appropriate, to determine whether the samples exhibited a significant decrease in survival or growth relative to the control (p<0.05). Survival data were arcsine transformed, while growth data was either square root or log transformed as needed to stabilize the variances and improve normality of the data prior to performing the t-test. Data that failed to meet parametric assumptions even after transformations were analyzed with the nonparametric Mann-Whitney U-test. Site performance was evaluated against the sediment acceptability criteria outlined in RSET 2009 (Table 1). The criteria for acceptable test performance were an average of ≤32 percent mortality of control organisms, and an average of at least 0.48 mg/individual AFDW per surviving control organism.

A 96-hour reference toxicant test using copper chloride (CuCl₂) was conducted concurrently with the tests on the sediments to determine whether the sensitivity of the test organisms was appropriate. This test was run with four replicates, ten animals per replicate, in diluted mineral water at 23°C (for comparison with control charts), with a small amount of clean control sand as a substrate. Tetrafin[®] slurry (1.25 mL of 4 g/L Tetrafin) was added to each chamber on days 0 and 2.

Test initiation date	April 13, 2011		
Test termination date	May 3, 2011		
Test organism source	Aquatic BioSystems; Fort Collins, Colorado		
Organism age at test initiation	< 4 hours post-emergence from egg case		
	1.5 mL of 4.0 g/L Tetrafin mixture every day;		
Feeding	frequency reduced if excess food observed		
Test chamber	475-mL glass beaker		
Test sediment volume	100 mL		
Dilution water type & volume	175 mL diluted mineral water		
Water renewal	Twice daily		
Control sediment	Sand mixed with peat (1/2 Tbsp)		
Number of organisms/replicate	12		
Number of replicates/sample	8 plus water quality surrogates		
Test temperature	$20\pm 1^{\circ}C^{1}$		
Illumination	16 hours light : 8 hours dark		
Aeration	None		
Reference toxicant	Copper chloride		
Acceptability Criteria	≤32% mortality, 0.48 mg/individual AFDW		

Table 3Summary of methods for the 20-day test with Chironomus dilutus

¹ Test temperature below the EPA recommended 23°C in order to prevent molting, per the RI/FS workplan

3.2 Results

The results of toxicity tests conducted using *C. dilutus* are provided in Table 4. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Table 4Results of Chironomus dilutus tests. Samples with statistically reduced
survival or growth are underlined, and values failing two-hit RSET criteria are
shaded gray, while samples failing one-hit RSET criteria are bold.1,2

Sample	Percent Mortality (Mean ± SD)	Mortality Percent Difference From	Ash-Free Dry Weight per Org (mg)	Ash-Free Dry Weight Percent of Control
Control	7.3 ± 5.3		0.41 ± 0.06	
LL-SED1	31.3 ± 33.6	24.0	1.02 ± 0.35	247
LL-SED2	<u>77.1 ± 18.2</u>	69.8	0.85 ± 0.46	206
LL-SED3	<u>30.2 ± 27.8</u>	22.9	1.41 ± 0.29	341
LL-SED4	<u>31.3 ± 19.3</u>	24.0	1.01 ± 0.53	245
MC-SED1	<u>25.0 ± 12.6</u>	17.7	1.19 ± 0.36	287
MC-SED2	20.8 ± 10.9	13.5	1.22 ± 0.22	294
MC-SED3	<u>30.2 ± 10.9</u>	22.9	1.28 ± 0.21	310

¹Criteria for one-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 25% of control (RSET 2009), ²Criteria for two-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 15% of control (RSET 2009)

3.3 QA/QC

The C. dilutus were received in good condition for the April 13, 2011 test. All water quality parameters remained within acceptable ranges throughout the tests. A summary of the water quality parameters is presented in Table 5. The test was run at 20°C, as agreed to in the RI/FS workplan to prevent molting of larvae into pupae (Floyd Snider 2011). The control growth did not meet the acceptability criteria of 0.48 mg/individual AFDW. However, that growth requirement is based at a test temperature of 23°C, and cooler temperatures are known to reduce growth in organisms, therefore, it does not directly apply to tests run at 20°C. In the past, Nautilus has conducted testing at 20°C for other biological testing programs and met control criteria. However, these previous tests were conducted with clean beach sand as the control instead of the silica sand used in this test. The likely difference between the two control sands is the amount of added organic material the washed beach sand would contain over pure silica. Regardless, in the current test all test sediment organisms grew more than the minimum required, and more than the control. This growth in the test sediments may suggest a lack of extra food source in the clean control sand relative to the test sediments. Historically for this laboratory, the controls often exhibit reduced growth compared with non-toxic sites. Based on this information, it would appear that the organisms responded appropriately at the reduced test temperature. There were no other deviations from the protocols. The toxicity test for mortality with this species met the control acceptability criterion (<32 percent mortality).

Analyte	Control	LL-SED1	LL-SED2	LL-SED3	LL-SED4	MC- SED1	MC- SED2	MC- SED3
				Me	ean	JLDI	JLDZ	JLDJ
					-Max)			
T_{omn} (°C)	19.7	19.6	19.7	19.7	19.6	19.6	19.6	19.7
Temp. (°C) [20 ± 1°C]	(19.4-	(19.5-	(19.4-	(19.4-	(19.4-	(19.3-	(19.3-	(19.4-
	19.9)	19.8)	19.9)	19.9)	19.8)	19.8)	19.8)	19.9)
DO								
(mg/L)	5.7	5.1	5.2	5.8	5.2	5.7	5.9	6.0
[>2.5	(4.0-8.1)	(3.9-7.0)	(4.1-6.3)	(4.1-6.8)	(4.0-6.6)	(4.0-6.9)	(4.0-7.3)	(4.2-7.8)
mg/L]	7.12	7.12	7.04	7.14	7.16	7.15	7.20	7.25
pH [6-9]	(6.75-	(6.90-	(6.89-	(6.91-	(6.84-	(6.93-	(6.90-	(6.96-
p11[0-9]	(0.75-	(0.90-7.40)	(0.89-	7.35)	7.53)	(0.95-	(0.90-7.40)	(0.90- 7.48)
Cond.	,	,		,	,	,	,	,
(µS/cm)	163 (127-	172 (166-	163 (148-	165 (156-	169 (151-	166 (160-	165 (134-	166 (155-
[NA]	221)	188)	179)	172)	179)	176)	175)	179)
Alkalinity								
(mg/L	70	78	74	71	82	78	85	86
CaCO ₃)	(52-80)	(72-88)	(64-84)	(68-76)	(76-88)	(72-80)	(76-96)	(76-100)
[<50%	(02 00)	(12 00)	(0101)	(00 70)	(10.00)	(12 00)	(10)0)	(70 100)
variable]								
Hardness								
(mg/L)	86	93	87	95	94	102	97	90
CaCO ₃) [<50%	(68-96)	(84-100)	(76-104)	(88-100)	(8-100)	(88-120)	(88-104)	(80-100)
variable]								
Total								
Overlying								
NH3	1.5ª	1.4ª	4.3ª	1.4ª	1.5ª	1.4ª	1.3ª	1.5ª
(mg/L)	(<1.0-3.2)	(<1.0-3.0)	(<1.0-9.5)	(<1.0-3.1)	(<1.0-3.4)	(<1.0-2.9)	(<1.0-2.6)	(<1.0-3.3)
[<50%								
variable]								
Total								
Overlying	0.011ª	0.010 ^a	0.015 ^a	0.017 ^a	0.017 ^a	< 0.010	< 0.010	0.011ª
Sulfides	(<0.010-	(<0.010-	(<0.010-	(<0.010-	(<0.010-	(<0.010-	(<0.010-	(<0.010-
(mg/L)	0.015)	0.011)	0.036)	0.033)	0.029)	<0.010)	<0.010)	0.015)
[NA]	1							

Table 5Summary of water quality parameters for *C. dilutus* tests (means and ranges).Required values are shown in brackets.

^a estimated value

The result of the reference toxicant test conducted in conjunction with this testing program is provided in Table 6. Bench sheets and control charts are provided in Appendix E. This test was run with the same batch of organisms used in the testing program. The result of this test fell within the range of mean ± two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

Species	Test date	Toxicant	LC50	Acceptable Range	CV (%)
Chironomus dilutus	May 2, 2011	Cu	714 µg/L	373 - 1100 μg/L	24.7

Table 6 C. dilutus reference toxicant test results.

3.4 Discussion

Mortality in the samples ranged from 20.8 to 77.1 percent, compared with 7.3 percent in the control. All sediment samples except LL-SED1 and MC-SED2 were significantly different from control and were more than 15 percent higher than the control, failing the two-hit criterion for survival. LL-SED2 was more than 25 percent higher than the control, failing the one-hit criterion for survival. Survival in LL-SED1 was not significantly different from the control, due to high variability in the sample. Growth in the samples ranged from 0.85 to 1.41 mg/individual AFDW, compared with 0.41 mg/individual AFDW in the control. As all samples were greater than the control, no statistical analysis was performed, and the samples do not meet the one- or two- hit criteria.

Upon termination of the test it was discovered that 7 of the 8 replicates of LL-SED2 contained Chaoborus sp., known as the "invisible midge". It is most likely the eggs and larvae of this organism were present in this sediment sample. Chaoborus are carnivorous and could have been responsible for the mortality of *C. dilutus* observed in this sample and, therefore, were possibly the reason the sediment from LL-SED2 failed the one-hit criterion and was found to be more toxic that other Lora Lake sediments. A repeat test of sample LL-SED2 is currently being conducted, using sieved sediments to remove any remaining Chaoborus. Results from this repeated test will be presented under separate cover.

Analytical testing of the sediment samples showed that total fines in the LL samples ranged from approximately 51 to 85 percent, while the total fines in the MC samples tested ranged from 0.1 to 2.6 percent. Total organic carbon (TOC) also varied considerably between the LL and MC samples, with the LL samples having TOC range from 5.8 to 10.6 percent, while the MC samples had TOC range from 0.1 to 0.5 percent. There was also a difference in percent fines in the control compared to the test sediments in the current study. However, during a reference site investigation conducted by Washington State Department of Ecology (Ecology), 27 different samples were tested with the 20-day C. dilutus test. In the Ecology comparison, percent fines of the samples ranged from 0-100 percent, and no correlation was found between percent fines and toxicity (Ecology 2009). Nautilus Environmental 8

Washington Laboratory

The total ammonia level reached 9.5 mg/L in the test sediments, which was well below the reported 4-day lethal concentration for 50% of test organisms (LC₅₀) range for *C. dilutus* of 82 to 370 mg/L (USEPA 2000). LL-SED2 had the highest ammonia concentrations of the test sediments, however, with the confounding factor of the *Chaoborus sp.*, it is difficult to say whether the ammonia was related to the toxicity. While sulfide toxicity thresholds are not available for this species, they were measured as part of the Ecology reference site study (Nautilus 2008), and samples with porewater sulfide values similar (0.226 to >0.600 mg/L) to the values found in the current study (0.016 to 0.561 mg/L) did not result in measurable effects. Therefore, it is unlikely that ammonia or sulfide levels caused the observed increases in mortality in the test sediments.

4.0 HYALELLA AZTECA TEST

4.1 Methods

H. azteca were exposed to test sediments for 10 days to determine the effects of site sediments on survival. These tests were conducted according to methods presented in USEPA (2000) and ASTM (2000), and are summarized in Table 7.

H. azteca were obtained from Aquatic Indicators (St. Augustine, Florida) and arrived at the laboratory on April 1, 2011. The organisms were transported in insulated boxes in oxygen-saturated water contained in plastic bags with fine screens as a substrate. Upon arrival at the laboratory, water quality parameters were measured and observations of animal condition were made. The organisms were acclimated to test conditions prior to test initiation over a 96-hour time period. During the acclimation period, the animals were observed for any indication of stress or significant mortality and any observations were recorded.

One day prior to test initiation (Day -1), the sediment samples were homogenized, 100-ml sediment was distributed to each of eight labeled test chambers for each of the samples, and 175-ml diluted mineral water (prepared by diluting two parts Perrier[®] into eight parts deionized water) was added to each container. Control sediment consisted of clean, rinsed silica sand (50/50 mix of #30 and #70) mixed with peat moss (1/2 Tbsp) that was rinsed overnight in diluted mineral water. Eight test chambers were also prepared for the control

sediment. An additional replicate was included for each sediment sample and the control sediment as a sacrificial test chamber for routine water quality measurements.

The test chambers were randomized and the sediments were left to settle overnight. On Day 0, overlying ammonia, sulfide, hardness, alkalinity, dissolved oxygen (DO), pH, conductivity, and temperature were measured. Organisms were carefully separated into groups of 5 amphipods in 30 mL cups containing diluted mineral water. The number of organisms was then recounted and any animals exhibiting signs of stress were replaced. The organisms were then gently added to the test chambers, two cups for each test chamber for a total of 10 organisms per chamber.

Temperature, DO, pH, and conductivity were monitored daily in the water quality replicate for each sample, while overlying ammonia, sulfide, hardness, and alkalinity were monitored on Day 5. Water was renewed twice daily in all chambers. Abnormal conditions or unusual animal behavior, if observed, were also noted daily. Each test chamber was fed 1 ml of Yeast Trout Chow (YTC) daily after the second renewal.

At test termination, subsamples of overlying water were collected for ammonia, hardness, alkalinity, and sulfides analyses, from each water quality replicate. The contents of each test chamber were gently mixed to suspend the sediment and poured through a 0.5-mm Nitex screen. The sediment was rinsed through the screen using dechlorinated tap water. The screen was then placed in diluted mineral water and the number of survivors counted and recorded. The number of surviving amphipods was evaluated statistically by one-tailed t-test, or one-tailed Mann-Whitey U-test, as appropriate, to determine whether the samples exhibited a significant decrease in survival relative to the control (p<0.05). Survival data was arcsin transformed as needed to stabilize the variances and improve normality of the data. Site performance was evaluated against sediment acceptability criteria outlined by the Northwest Regional Sediment Evaluation Framework (RSET 2009), as presented in Table 1.

A 96-hour reference toxicant test using copper chloride (CuCl₂) was conducted concurrently with the sediment tests to determine whether the sensitivity of the test organisms was within the range typically observed. The test was run with four replicates, ten animals per replicate, in diluted mineral water with a square of nitex screen as a substrate.

Test initiation date	April 5, 2011
Test termination date	April 15, 2011
Test organism source	Aquatic Indicators, St. Augustine, Florida
Organism age at test initiation	8 days
Feeding	1 ml of YTC daily
Test chamber	475-ml glass beaker
Test sediment volume	100 ml
Dilution water type & volume	175 ml diluted mineral water
Water renewal	Twice daily
Control sediment	Sand mixed with peat (1/2 Tbsp)
Number of organisms/replicate	10
Number of replicates/sample	8 plus water quality surrogate
Test temperature	23 ± 1°C
Illumination	16 hours light: 8 hours dark
Aeration	None
Reference toxicant	Copper chloride
Acceptability criterion for control	≥80% survival

Table 7Summary of methods for the 10-day test with Hyalella azteca.

4.2 Results

The results of toxicity tests conducted using *H. azteca* are provided in Table 8. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Sample	Percent Mortality (Mean ± SD)	Mortality Percent Difference from Control
Control	3.8 ± 5.2	
LL-SED1	5.0 ± 7.6	1.3
LL-SED2	3.8 ± 5.2	0
LL-SED3	3.8 ± 5.2	0
LL-SED4	0.0 ± 0.0	-3.8
MC-SED1	6.3 ± 7.4	2.5
MC-SED2	3.8 ± 5.2	0
MC-SED3	8.8 ± 6.4	5.0

Table 8Results of Hyalella azteca tests.

4.3 QA/QC

The *H. azteca* were received in good condition and the toxicity tests with this species met the control acceptability criterion (<20 percent mortality). A summary of the water quality parameters is provided in Table 9. Test temperature at the start of the test was just below the criteria of $23 \pm 1^{\circ}$ C; however, this was thought to be due to the delay in taking water temperature. When temperatures were still below range on Day 1, the room temperature was increased and all temperatures remained in range from that point forward. This deviation is not expected to have affected the results of the test. All other water quality parameters remained within acceptable ranges throughout the tests. There were no deviations from the protocol.

Results of reference toxicant tests conducted in conjunction with this testing program did not meet control requirements, with only 82.5% survival in the control (90% is the acute requirement) and exhibited no dose-response curve, with almost complete mortality in all concentrations containing copper. The datasheet for this test is included in Appendix E. While we have no conclusive explanation for these results, possible causes include unclean test containers used for reference toxicant testing or improperly calculated test concentrations. This test was run with the same batch of organisms used in the testing program, but the error in testing was not discovered until after all test organisms had been used, so it was not possible to restart the test. As there was no evidence of toxicity in the test sediments and the associated control, and the organisms in the reference toxicant test were clearly sensitive, the sediment toxicity test results should still be considered valid.

Analyte	Control	LL-SED1	LL-SED2	LL-SED3	LL-SED4	MC- SED1	MC- SED2	MC- SED3
					ean -Max)	0201	0222	0220
Temp. (°C) [23 ± 1°C] DO	22.5 (21.0- 23.1)	22.6 (21.2- 23.0)	22.6 (21.2- 23.0)	22.6 (21.2- 23.1)	22.5 (21.2- 23.0)	22.6 (21.3- 23.1)	22.6 (21.2- 23.1)	22.6 (21.2- 23.2)
DO (mg/L) [>2.5 mg/L]	6.7 (5.8- 8.4)	5.6 (4.7- 7.2)	5.3 (4.8- 6.6)	5.4 (4.8- 6.8)	5.4 (4.8- 6.8)	6.0 (5.3- 7.2)	6.4 (5.8- 7.8)	6.5 (5.9- 7.8)
рН [6-9]	6.87 (6.54- 7.06)	7.16 (7.02- 7.33)	7.00 (6.90- 7.19)	7.13 (7.04- 7.32)	7.17 (7.07- 7.37)	7.20 (7.11- 7.37)	7.28 (7.16- 7.47)	7.31 (7.19- 7.46)
Cond. (µS/cm) [NA] Alkalinity	148 (122- 163)	172 (167- 175)	169 (161- 179)	169 (164- 172)	170 (160- 173)	170 (163- 174)	171 (162- 175)	167 (159- 173)
(mg/L CaCO ₃) [<50% variable] Hardness	40 (40- 40)	72 (72- 72)	73 (68- 80)	73 (72- 76)	77 (76- 80)	77 (72- 80)	76 (68- 80)	77 (68- 84)
(mg/L CaCO ₃) [<50% variable]	65 (65- 68)	89 (88- 92)	105 (104- 108)	85 (76- 90)	87 (84- 88)	95 (92- 96)	97 (92- 100)	85 (84- 88)
Total Overlying NH3 (mg/L) [<50% variable] Total	1.0ª (<1.0- <1.0)	1.0ª (1.1- <1.0)	1.67 ^a (<1.0-2.0)	1.07ª (<1.0-1.2)	1.17ª (<1.0-1.5)	1.0ª (<1.0- <1.0)	1.0ª (<1.0- <1.0)	1.0ª (<1.0- <1.0)
Overlying Sulfides (mg/L) [<50% variable]	0.010ª (<0.010- 0.010)	0.018 ^a (<0.010- 0.035)	0.024ª (<0.010- 0.053)	0.029ª (<0.010- 0.068)	0.025ª (<0.010- 0.056)	0.010 ^a (<0.010- <0.010)	0.010ª (<0.010- 0.013)	0.010 ^a (<0.010- <0.010)

Table 9	Summary of water quality parameters for <i>H. azteca</i> analyses (means and
	ranges). Required values are shown in brackets.

^aestimated value

4.4 Discussion

Mortality in the samples ranged from 0 to 8.8 percent, compared with 3.8 percent in the control. No samples were significantly different from the controls; therefore, none of them meet the oneor two- hit criteria for survival.

5.0 MICROTOX® TEST

5.1 Methods

The luminescent marine bacterium *Vibrio fischeri* was used as the test organism for the Microtox test. The bacteria were exposed to porewater extracted from sediment samples and light readings were measured after 5 and 15 minutes of exposure. Test equipment included the Microtox Model 500 Analyzer, which measures light output and is equipped with a 15°C chamber to maintain test temperature in the samples and a 4°C chamber to keep the rehydrated bacteria chilled.

Vials of freeze-dried bacteria (Microtox[®] Acute Reagent Lot #s 10K1032, expiration dates 10/2012) were obtained from Strategic Diagnostics, Inc. and stored at -20°C until use. On the day of the test, a vial was rehydrated with 1.0 ml of Microtox Reconstitution Solution, mixed thoroughly, and allowed to equilibrate for 30 minutes at 4°C. The bacteria were used within 2 hours of rehydration.

The tests were conducted in accordance with Ecology (2008) test protocol; these methods are summarized in Table 10. Approximately 50 ml of porewater was extracted from each sample by centrifuging for 30 minutes at 4500 G. Each porewater extract was adjusted to a salinity of 20 parts per thousand (ppt) with Crystal Sea Marine Mix artificial seasalt. The DO ranged from 7.7 to 7.9 mg/L in the adjusted samples. Since the DO in each sample was between 50 and 100 percent saturation (5.0 to 10.2 mg/L), the samples did not require aeration. The pH was adjusted to 7.8 to 8.2 using NaOH or HCl. None of the porewater samples were diluted below 90 percent. The control was deionized water adjusted to 20 ppt with artificial seasalt. Each porewater was tested within 3 hours of extraction.

Tests were conducted using five replicates. Disposable glass cuvettes were placed in the Microtox test wells and 1 ml of salinity-adjusted porewater was added. The rehydrated bacteria (reagent) were thoroughly mixed and 10 µl was added to each test cuvette, with mixing after each addition. After an initial incubation period of 5 minutes, the control cuvette was placed in the read chamber of the Microtox Analyzer to set the instrument. Initial light readings (I₀) were then taken by placing each cuvette in the read chamber of the Microtox Analyzer and measurements were recorded on a data sheet. Light output was measured at 5 minutes (I₅) and 15 minutes (I₁₅) of exposure after the initial light reading (I₀).

Test acceptability criteria were final mean control light output greater than or equal to 72 percent of initial control mean output, and test mean output not greater than 110 percent of control mean output. The data were evaluated statistically by conducting one-tailed t-tests or Mann-Whitney U-tests on the change in output over time for test sediment porewaters compared to the control porewater (where light output was lower than the control). Sediment performance was evaluated against sediment acceptability criteria outlined by the Northwest Regional Sediment Evaluation Framework (RSET 2009), as presented in Table 1.

A reference toxicant test using phenol was conducted in conjunction with the sediment tests to ensure that the sensitivity of the test was within the acceptable range of historical values determined in this laboratory.

Test dates	March 31, 2011					
Test organism source	Strategic Diagnostics					
Batch number and expiration date	Lot#10K1032, Expiration 10/2012					
Control	Saltwater (20 ppt) prepared with Crystal Sea artificial seasalt					
Sample preparation	Centrifugation at 4500 G for 30 minutes; salinity adjustment to					
	20 ppt using Crystal Sea salt; pH adjustment to 7.8-8.2 ppt; DO					
	5.0 to 10.2 mg/L					
Test chamber	Glass cuvette					
Test volume	1 mL					
Volume of inoculum/replicate	10 μL					
Number of replicates/sample	5					
Test temperature	15 ± 1°C					
Aeration	None					
Reference toxicant	Phenol					
Acceptability criteria	Final control light output ≥72% initial; test output ≤110% control					

Table 10Summary of methods for the Microtox test.

5.2 Results

The results of toxicity tests conducted using Microtox are provided in Table 11. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Sample	<u>5 minute</u>	15 minute reading			
<u>Test 1: LL SED</u>	Mean % of initial light output	Significantly different relative to the control	Mean % of initial light output	Significantly different relative to the control	
Control	93 ± 2		83 ± 3		
LL-SED1	92 ± 3	No	83 ± 4	No	
LL-SED2	94 ± 1	No	88 ± 2	No	
LL-SED3	94 ± 2	No	82 ± 3	No	
LL_SED4	95 ± 3	No	83 ± 4	No	
Test 2: MC SED					
Control	94 ± 2		89 ± 5		
MC-SED1	94 ± 3	No	87 ± 4	No	
MC-SED2	98 ± 1	No	90 ± 2	No	
MC-SED3	96 ± 3	No	88 ± 2	No	

Table 11Results of Microtox tests.

5.3 QA/QC

A summary of the water quality parameters for the Microtox tests is provided in Table 12. The Microtox tests met control acceptance criteria and there were no deviations from protocol.

Analyte	Mean (st.dev)	Minimum	Maximum	Number of Readings	Met Requirements
Initial Salinity (ppt)	0.01 (0.04)	0.0	0.1	7	N/A
Final Salinity (ppt)	20.0 (0.7)	19.2	20.8	7	Y
Initial DO (mg/L)	7.8 (0.1)	7.7	7.9	7	N/A
Final DO (mg/L)	7.8 (0.1)	7.7	7.9	7	Y
Initial pH	7.9 (0.3)	7.4	8.3	7	N/A
Final pH	8.0 (0.1)	7.9	8.2	7	Y
Final Concentration (%)	99.9 (0.0)	99.8	100	7	Y
Total NH3 (mg/L)	$5.1 (4.7)^1$	<1.0	11.9	7	N/A
Total Sulfides (mg/L)	0.24 (0.22)	0.016	0.561	7	N/A
Turbidity (NTU)	44.7 (34.3)	5.5	95.9	7	N/A

 Table 12
 Summary of sites water quality parameters for Microtox analyses

¹estimated value

Results of the reference toxicant test conducted in conjunction with this testing program are provided in Table 13. Bench sheets and control charts are provided in Appendix E. The test was run with the same batch of organisms used in the testing program. The results of this test fell within the range of mean ± two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

Species	Test date	Toxicant	EC50	Acceptable Range (mean ± 2 S.D.)	CV (%)
Microtox	March 31, 2011	Phenol	5 min: 40.8 mg/L 15 min: 82.6 mg/L	5 min: 25.7 – 55.2 15 min: 31.3 – 93.4	18.2 24.9

Table 13Microtox reference toxicant test results.

5.4 Discussion

Change in light output in the samples at 15 minutes ranged from 82 to 90 percent, compared with 83 and 89 percent in the controls. No samples were significantly different from the controls; therefore, none of them meet the one-or two- hit criteria for luminescence.

6.0 CONCLUSIONS

Only sample LL-SED2 failed the one-hit criterion for *C. dilutus* survival (RSET 2009). The mortality in LL-SED2 is currently being confirmed, as it may have been caused by the *Chaoborus* in the sample and not by the chemistry of the sample. All samples, except LL-SED1 and MC-SED2, failed the two-hit criterion for *C. dilutus* survival (RSET 2009); as these samples did not have a second hit in *C. dilutus* growth, the *H. azteca* or Microtox tests, these samples are considered unlikely to cause adverse impacts to ecological receptors. LL-SED2 failed the one-hit criterion for *C. dilutus* survival, but that test is currently being repeated due to concerns over native organisms present in the sample which may have affected the outcome.

Site	C. <i>dilutus</i> Survival	C. dilutus Growth	H. azteca Survival	Microtox Luminescence
LL-SED1	None	None	None	None
LL-SED2	One-hit	None	None	None
LL-SED3	Two-hit	None	None	None
LL-SED4	Two-hit	None	None	None
MC-SED1	Two-hit	None	None	None
MC-SED2	None	None	None	None
MC-SED3	Two-hit	None	None	None

Table 14One-hit/Two-hit criteria summary results table

7.0 **REFERENCES**

- American Society of Testing and Materials (ASTM). 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM Designation E 1706-00.
- Floyd Snider. 2011. Port of Seattle, Lora Lake Parcel, Remedial Investigation/Feasibility Study Work Plan
- Nautilus Environmental. 2008. Evaluation of Candidate Freshwater Sediment Reference Sites-Toxicological Results. Final Report.
- Regional Sediment Evaluation Team (RSET). 2009. Sediment Evaluation Framework for the Pacific Northwest. May 2009.
- U.S. Environmental Protection Agency (USEPA). 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.
- Washington Department of Ecology. 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards Publication No. 03-09-043. Revised February 2008.
- Washington Department of Ecology. 2009. Baseline Characterization of Nine Proposed Freshwater Sediment Reference Sites, 2008. Publication Number 09-03-032.

APPENDIX A – Results Summaries

Appendix A-1. 20-Day Solid Phase *Chironomous dilutus* Survival & Growth Port of Seattle Lora Lake RIFS Sediment Characterization

Test Initiation: April 13, 2011

^aNumber of pupae and flies

^bAFDW = Ash-Free Dry Weight. Weights are for larvae only, not pupated animals

^c One-tailed t-test. Survival data arcsine square-root transformed prior to analysis. Growth data either square root or log transformed prior to analysis Alpha = 0.05 Shaded values fail RSET one-hit criteria (Test sediment mortality - Control sediment mortality >25% and significantly different; Test sediment Growth/Control sediment Growth <0.7 and significantly different)

Replicates colored blue had Chaoborus in the samples

						Mean	St	Total org	AFDW per	Mean AFDW	St	Significant Compared t	
0.11-	Denlinete	Dud Ma		# Pupated ^a	0/ M		Dev	AFDW (mg) ^b	•			•	
Site	Replicate	Rnd. No.	# Alive		% Mortality	% Mortality	Dev	-	Org (mg)	per Org (mg)	Dev	Survival	Growth
	1	153 130	11 12	0 0	8.3 0.0			3.68 4.67	0.33 0.39				
	2	150	12	0	8.3			4.67 5.55	0.39				
	3	144	12	0	0.3 0.0			5.55 4.72	0.50				
Control	5	138	11	0	8.3	7.3	5.3	3.81	0.35	0.41	0.06		
	6	148	11	0	8.3			4.45	0.40				
	7	163	11	0	8.3			5.16	0.40				
	8	116	10	0	16.7			4.65	0.47				
	1	139	5	0	58.3			4.25	0.85				
	2	122	2	0	83.3			2.94	1.47				No
	3	158	9	0	25.0			8.20 0.91	0.91				
LL- SED 1	4	107	4	0	66.7	31.3	33.6	6.62	1.66	1.02	0.35	No	
LL- SED I	5	108	12	0	0.0		11.8 9.5 8.6 7.5	11.88	0.99			NO	
	6	119	12	0	0.0			9.57	0.80				
	7	140	12	0	0.0			8.68	0.72				
	8	136	10	0	16.7			7.56	0.76				
	1	101	2	0	83.3			1.32	0.66				
	2	141	1	0	91.7			0.39	0.39				
	3	128	1	0	91.7			0.23	0.23				
LL- SED 2	4	154	7	0	41.7	77.1	18.2	3.87	0.55	0.85	0.46	Yes	No
	5	161	5	0	58.3			5.37	1.07	0.00	0110		
	6	155	3	0	75.0			3.08	1.03				
	7	146	1	0	91.7			1.39	1.39				
	8	131	2	0	83.3			2.97	1.49				
	1	112	8	0	33.3			13.30	1.66				
	2	117	4	0	66.7			7.47	1.87				
	3	115	11	0	8.3			15.27	1.39				
LL- SED 3	4	113	11	0	8.3	30.2	27.8	13.13	1.19	1.41	0.29	Yes	No
	5	156	4	0	66.7			5.86	1.47				
	6	124	11	0	8.3			12.62	1.15				
	7	157	12	0	0.0			11.74	0.98				
	8	111	6	0	50.0			9.49	1.58				

Appendix A-1. 20-Day Solid Phase *Chironomous dilutus* Survival & Growth Port of Seattle Lora Lake RIFS Sediment Characterization

Test Initiation: April 13, 2011

^aNumber of pupae and flies

^bAFDW = Ash-Free Dry Weight. Weights are for larvae only, not pupated animals

^c One-tailed t-test. Survival data arcsine square-root transformed prior to analysis. Growth data either square root or log transformed prior to analysis Alpha = 0.05 Shaded values fail RSET one-hit criteria (Test sediment mortality - Control sediment mortality >25% and significantly different; Test sediment Growth/Control sediment Growth <0.7 and significantly different)

Replicates colored blue had Chaoborus in the samples

						Maan	C 1	Tatal ann			St	Significant	
	-			# Dumeted ^a		Mean	St	Total org AFDW (mg) ^b	AFDW per	Mean AFDW		Compared t	
Site	Replicate	Rnd. No.	# Alive	# Pupated ^a	% Mortality	% Mortality	Dev	(0)	Org (mg)	per Org (mg)	Dev	Survival	Growth
	1	162	9	0	25.0			4.22	0.47				
	2	135	8	0	33.3			3.46	0.43				
	3	126	7	0	41.7			7.78	1.11				
LL- SED 4	4	102	5	0	58.3	31.3	19.3	10.59	2.12	1.01	0.53	Yes	No
	5	118	12	0	0.0			10.27	0.86				
	6	132	7	0	41.7			8.42	1.20				
	7	110	11	0	8.3			10.59	0.96				
	8	123	7	0	41.7			6.53	0.93				
	1	147	7	0	41.7			8.96	1.28				
	2	125	8	0	33.3			12.38	1.55				
	3	160	8	0	33.3			7.84	0.98				
MC- SED 1	4	137	9	0	25.0	25.0	12.6	12.75	1.42	1.19	0.36	Yes	No
	5	145	11	0	8.3			10.41	0.95				
	6	159	10	0	16.7			10.13	1.01				
	7	152	11	0	8.3			6.71	0.61				
	8	104	8	0	33.3			13.59	1.70				
	1	121	9	0	25.0			12.33	1.37				
	2	164	9	0	25.0			9.19	1.02				
	3	151	8	0	33.3			8.87	1.11				
MC- SED 2	4	103	8	0	33.3	20.8	10.9	11.14	1.39	1.22	0.22	Yes	No
	5	114	10	0	16.7			15.86	1.59				
	6 7	127	10	0	16.7			10.84	1.08				
	,	129	10	0	16.7			9.44	0.94				
	8	109	12	0	0.0			14.74	1.23				
	9	120	8	0	33.3			10.60	1.33				
	10	149	10	0	16.7			10.75	1.08				
	11	143	9	0	25.0			8.98	1.00				
MC- SED 3	12	142	9	0	25.0	30.2	10.9	10.95	1.22	1.28	0.21	Yes	No
	13	133	6	0	50.0			9.83	1.64				
	14	134	7	0	41.7			10.39	1.48				
	15	105	9	0	25.0			12.04	1.34				
	16	106	9	0	25.0			10.69	1.19				

Appendix Table A-2. *Hyalella azteca* 10-day Survival Port of Seattle Lora Lake RIFS Sediment Characterization

Test Initiation: April 5, 2011

		#		Mean		Significant Decrease Compared to
Site	Rep	Alive	% Mortality	% Mortality	St. Dev.	Control ^a
	1	10	0			
	2	9	10			
	3	10	0			
Control	4 5	10 10	0 0	3.8	5.2	
	6	9	10			
	7	10	0			
	8	9	10			
	1	9	10			
	2 3	10 10	0 0			
	4	10	0			
LL-SED 1	5	9	10	5.0	7.6	
	6	10	0			
	7	10	0			
	8	8	20			
	1 2	10 10	0 0			
	3	10	0			
LL-SED 2	4	9	10	20	5.2	
LL-SED 2	5	9	10	3.8	5.2	
	6	9	10			
	7 8	10 10	0 0			
	1	10	0			
	2	9	10			
	3	10	0			
LL-SED 3	4	10	0	3.8	5.2	
	5	10	0	0.0	5.2	
	6 7	9 10	10 0			
	8	9	10			
	1	10	0			
	2	10	0			
	3	10	0			
LL-SED 4	4	10	0	0.0	0.0	
	5 6	10 10	0 0			
	7	10	0			
	8	10	0			
	1	10	0			
	2	10	0			
	3	9	10			
MC-SED 1	4 5	9 10	10 0	6.3	7.4	
	6	10	0			
	7	9	10			
	8	8	20			
	1	10	0			
	2 3	10 9	0 10			
	3	9 9	10			
MC-SED 2	5	10	0	3.8	5.2	
	6	10	0			
	7	10	0			
	8	9	10			
	1 2	9 9	10 10			
	2 3	9 10	10 0			
	4	9	10	0.0	0.4	
MC-SED 3	5	8	20	8.8	6.4	
	6	9	10			
	7	10	0			
	8	9	10			

Appendix Table A-3. Microtox 100 Percent Sediment Porewater Test Port of Seattle Lora Lake RIFS Sediment Characterization Client Floyd-Snider Test Date: 3/31/2011

										Quality Co	ntrol Steps
				Light F	Reading					control light readings	Evaluation of initial light
Site				Replicate					T _(mean) /	compared to initial control	output in site sediments
	Reading	1	2	3	4	5	Mean	St.Dev.	C _(mean)	F _{c(mean)} /I _{c(mean)}	(_{0)T(mean)} /I _{(0)C(mean}
	I ₍₀₎	99	105	106	112	110	106				
	I ₍₅₎	93	99	97	106	100	99			0.93	
CON	I ₍₁₅₎	82	91	87	94	87	88			0.83	
	C ₍₅₎	0.94	0.94	0.92	0.95	0.91	0.93	0.02			
	C ₍₁₅₎	0.83	0.87	0.82	0.84	0.79	0.83	0.03			
	I ₍₀₎	91	83	85	86	70	83				0.78
	I ₍₅₎	83	78	81	79	62	77				
LL Sed 1	I ₍₁₅₎	73	69	75	68	58	69				
	T ₍₅₎	0.91	0.94	0.95	0.92	0.89	0.92	0.03	0.99		
	T (15)	0.80	0.83	0.88	0.79	0.83	0.83	0.04	1.00		
	I ₍₀₎	66	61	62	70	65	65				0.61
	I ₍₅₎	63	57	59	65	62	61				
LL Sed 2	I ₍₁₅₎	59	54	55	60	56	57				
	T ₍₅₎	0.95	0.93	0.95	0.93	0.95	0.94	0.01	1.02		
	T ₍₁₅₎	0.89	0.89	0.89	0.86	0.86	0.88	0.02	1.06		
	I ₍₀₎	80	77	76	79	77	78				0.73
	I ₍₅₎	75	75	69	73	72	73				
LL Sed 3	l ₍₁₅₎	68	60	61	66	65	64				
	T ₍₅₎	0.94	0.97	0.91	0.92	0.94	0.94	0.02	1.01		
	T ₍₁₅₎	0.85	0.78	0.80	0.84	0.84	0.82	0.03	0.99		
	I ₍₀₎	67	76	70	68	67	70				0.65
	I ₍₅₎	65	70	65	68	63	66				
LL Sed 4	I ₍₁₅₎	59	60	56	58	56	58				
	T ₍₅₎	0.97	0.92	0.93	1.00	0.94	0.95	0.03	1.02		
	T ₍₁₅₎	0.88	0.79	0.80	0.85	0.84	0.83	0.04	1.00		

 $I_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

C(t), R(t), and T(t) are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. Is control final mean output greater than or equal to 72% control initial mean output?

I ₍₅₎ :F _{c(mean)} /I _{c(mean):}	93%	YES
I ₍₁₅₎ :F _{c(mean)} /I _{c(mean)} :	83%	YES

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (use reference sediment for statistical analysis if available).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

LL Sed 1	I _{T(mean)} /I _{C(mean}):	78%	NO
LL Sed 2	I _{T(mean)} /I _{C(mean}):	61%	NO
LL Sed 3	I _{T(mean)} /I _{C(mean}):	73%	NO
LL Sed 4	I _{T(mean)} /I _{C(mean}):	65%	NO

INVALD: If the test sediment is greater than 110%, the results in uninterpretable

YES: If test sediment is reference, reference is acceptable

Appendix Table A-3. Microtox 100 Percent Sediment Porewater Test Port of Seattle Lora Lake RIFS Sediment Characterization Client Floyd-Snider Test Date: 3/31/2011

										Quality Co	ntrol Steps
				Light R	Reading					control light readings compared to	Evaluation of initial light output in site
Site				Replicate					T _(mean) /	initial control	sediments
	Reading	1	2	3	4	5	Mean	St.Dev.	C _(mean)	F _{c(mean)} /I _{c(mean)}	l _{(0)T(mean)} /l _{(0)C(mean)}
	I ₍₀₎	94	98	96	99	94	96				
	I ₍₅₎	90	91	89	90	91	90			0.94	
CON	I ₍₁₅₎	91	89	84	84	82	86			0.89	
	C ₍₅₎	0.96	0.93	0.93	0.91	0.97	0.94	0.02			
	C ₍₁₅₎	0.97	0.91	0.88	0.85	0.87	0.89	0.05			
	I ₍₀₎	100	94	89	97	94	95				0.99
	I ₍₅₎	89	91	85	90	91	89				
MC Sed 1	I ₍₁₅₎	82	86	79	83	81	82				
	T ₍₅₎	0.89	0.97	0.96	0.93	0.97	0.94	0.03	1.00		
	T ₍₁₅₎	0.82	0.91	0.89	0.86	0.86	0.87	0.04	0.97		
	I ₍₀₎	88	85	86	85	86	86				0.89
	I ₍₅₎	86	83	83	82	86	84				
MC Sed 2	I ₍₁₅₎	79	76	77	76	81	78				
	T ₍₅₎	0.98	0.98	0.97	0.96	1.00	0.98	0.01	1.04		
	T ₍₁₅₎	0.90	0.89	0.90	0.89	0.94	0.90	0.02	1.01		
	I ₍₀₎	89	90	90	90	85	89				0.92
	I ₍₅₎	84	85	87	90	79	85				
MC Sed 3	l ₍₁₅₎	77	80	77	79	76	78				
	T ₍₅₎	0.94	0.94	0.97	1.00	0.93	0.96	0.03	1.02		
	T ₍₁₅₎	0.87	0.89	0.86	0.88	0.89	0.88	0.02	0.98		
	I ₍₀₎						#DIV/0!				#DIV/0!
	I ₍₅₎						#DIV/0!				
	I ₍₁₅₎						#DIV/0!				
	T ₍₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!		
	T ₍₁₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!		

 $I_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

C(t), R(t), and T(t) are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. Is control final mean output greater than or equal to 72% control initial mean output?

I ₍₅₎ :F _{c(mean)} /I _{c(mean)} :	94%	YES
I ₍₁₅₎ :F _{c(mean)} /I _{c(mean)} :	89%	YES

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (use reference sediment for statistical analysis if available).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

MC Sed 1	I _{T(mean)} /I _{C(mean}):	99%	YES
MC Sed 2	I _{T(mean)} /I _{C(mean}):	89%	YES
MC Sed 3	I _{T(mean)} /I _{C(mean}):	92%	YES
(I _{T(mean)} /I _{C(mean}):	#DIV/0!	#DIV/0!

INVALD: If the test sediment is greater than 110%, the results in uninterpretable

YES: If test sediment is reference, reference is acceptable

APPENDIX B – Statistical Analyses

Sample:	x1	Ref Samp:	x2
Samp ID:	LL-Sed1	Ref ID:	Control
Alias:	Chironomid Mortality	Alias:	Chironomid Mortality
Replicates:	8	Replicates:	8
Mean:	31.25	Mean:	7.275
SD:	33.548	SD:	5.344
Tr Mean:	28.067	Tr Mean:	13.48
Trans SD:	26.715	Trans SD:	8.701

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	22.037	Statistic:	Approximate t
Residual SD:	17.054	Test Residual SD:	12.599	Balanced Design:	Yes
SS:	5525.904	Ref. Residual Mean:	6.74	Transformation:	ArcSin
K:	8	Ref. Residual SD:	4.877		
b:	71.776	Deg. of Freedom:	14		
				Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.9323	Calculated Value:	3.2025	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
Normally		Variances		Degrees	of Freedom: 8
Distributed:	Yes	Homogeneous:	No	Experimental	Alpha Level: 0.05
				Calc	ulated Value: 1.4684
Override Option:	N/A			C	Critical Value: >= 1.860
				Accept Nul	l Hypothesis: Yes
					Power:
				Min. Differend	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	58.3	49.778	8.3	16.744	21.711	3.264			-28.067
2	83.3	65.879	0	0	37.813	13.48			-28.067
3	25	30	8.3	16.744	1.933	3.264			-28.067
4	66.7	54.756	0	0	26.689	13.48			-13.48
5	0	0	8.3	16.744	28.067	3.264			-13.48
6	0	0	8.3	16.744	28.067	3.264			-3.946
7	0	0	8.3	16.744	28.067	3.264			1.933
8	16.7	24.12	16.7	24.12	3.946	10.64			3.264
9									3.264
10									3.264
11									3.264
12									3.264
13									10.64
14									21.711
15									26.689
16									37.813

Sample:	x1
Samp ID:	LL-Sed2
Alias:	Chironomid Mortality
Replicates:	8
Mean:	77.088
SD:	18.234
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	9.518	Statistic:	Mann-Whitney
Residual SD:	9.073	Test Residual SD:	6.647	Balanced Design:	Yes
SS:	1563.927	Ref. Residual Mean:	6.74	Transformation:	rank-order
K:	8	Ref. Residual SD:	4.877		
b:	36.139	Deg. of Freedom:	14		
				Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.8351	Calculated Value:	0.9531	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
				Mann	-Whitney N1: 8
				Mann	-Whitney N2: 8
Normally		Variances		Degrees	of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental	Alpha Level: 0.05
				Calci	ulated Value: 64
Override Option:	Not Invoked			C	Critical Value: >= 49.000
				Accept Nul	I Hypothesis: No
					Power:
				Min. Difference	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	83.3	12.5	8.3	5	3.189	3.264	1.5		-22.468
2	91.7	15	0	1.5	10.565	13.48	1.5		-13.48
3	91.7	15	8.3	5	10.565	3.264	5		-13.48
4	41.7	9	0	1.5	22.468	13.48	5		-12.913
5	58.3	10	8.3	5	12.913	3.264	5		-2.691
6	75	11	8.3	5	2.691	3.264	5		3.189
7	91.7	15	8.3	5	10.565	3.264	5		3.189
8	83.3	12.5	16.7	8	3.189	10.64	8		3.264
9							9		3.264
10							10		3.264
11							11		3.264
12							12.5		3.264
13							12.5		10.565
14							15		10.565
15							15		10.565
16							15		10.64

Sample:	x1
Samp ID:	LL-Sed3
Alias:	Chironomid Mortality
Replicates:	8
Mean:	30.2
SD:	27.818
Tr Mean:	29.998
Trans SD:	20.373

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	13.48
Trans SD:	8.701

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	17.44	Statistic:	Approximate t
Residual SD:	13.446	Test Residual SD:	8.212	Balanced Design:	Yes
SS:	3435.261	Ref. Residual Mean:	6.74	Transformation:	ArcSin
K:	8	Ref. Residual SD:	4.877		
b:	56.415	Deg. of Freedom:	14		
		-		Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.9265	Calculated Value:	3.169	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
Normally		Variances		Degrees	of Freedom: 9
Distributed:	Yes	Homogeneous:	No	J. J	Alpha Level: 0.05
		Ŭ		Calc	ulated Value: 2.109
Override Option:	N/A			C	Critical Value: >= 1.833
				Accept Nul	l Hypothesis: No
					Power:
				Min. Differen	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	33.3	35.244	8.3	16.744	5.246	3.264			-29.998
2	66.7	54.756	0	0	24.757	13.48			-13.48
3	8.3	16.744	8.3	16.744	13.254	3.264			-13.48
4	8.3	16.744	0	0	13.254	13.48			-13.254
5	66.7	54.756	8.3	16.744	24.757	3.264			-13.254
6	8.3	16.744	8.3	16.744	13.254	3.264			-13.254
7	0	0	8.3	16.744	29.998	3.264			3.264
8	50	45	16.7	24.12	15.001	10.64			3.264
9									3.264
10									3.264
11									3.264
12									5.246
13									10.64
14									15.001
15									24.757
16									24.757

Sample:	x1
Samp ID:	LL-Sed4
Alias:	Chironomid Mortality
Replicates:	8
Mean:	31.25
SD:	19.294
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	11.98	Statistic: Mann-Whitney	
Residual SD:	11.046	Test Residual SD:	9.565	Balanced Design: Yes	
SS:	2318.443	Ref. Residual Mean:	6.74	Transformation: rank-order	
K:	8	Ref. Residual SD:	4.877		
b:	44.941	Deg. of Freedom:	14		
				Experimental Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x2	
Calculated Value:	0.8711	Calculated Value:	1.3803	Alternate: x1 > x2	
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
				Mann-Whitney N1: 8	
				Mann-Whitney N2: 8	
Normally		Variances		Degrees of Freedom:	
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.0	5
		_		Calculated Value: 53.	5
Override Option:	Not Invoked			Critical Value: >=	49.000
				Accept Null Hypothesis: No	
				Power:	
				Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	25	11	8.3	6.5	1.554	3.264	2		-31.554
2	33.3	12	0	2	3.69	13.48	2		-14.81
3	41.7	14	8.3	6.5	8.668	3.264	2		-13.48
4	58.3	16	0	2	18.224	13.48	6.5		-13.48
5	0	2	8.3	6.5	31.554	3.264	6.5		-1.554
6	41.7	14	8.3	6.5	8.668	3.264	6.5		3.264
7	8.3	6.5	8.3	6.5	14.81	3.264	6.5		3.264
8	41.7	14	16.7	10	8.668	10.64	6.5		3.264
9							6.5		3.264
10							10		3.264
11							11		3.69
12							12		8.668
13							14		8.668
14							14		8.668
15							14		10.64
16							16		18.224

Sample:	x1	Ref Samp:	x2
Samp ID:	MC-Sed1	Ref ID:	Control
Alias:	Chironomid Mortality	Alias:	Chironomid Mortality
Replicates:	8	Replicates:	8
Mean:	24.988	Mean:	7.275
SD:	12.605	SD:	5.344
Tr Mean:	N/A	Tr Mean:	N/A
Trans SD:	N/A	Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	7.494	Statistic: Mann-Whitney
Residual SD:	7.601	Test Residual SD:	4.114	Balanced Design: Yes
SS:	1097.734	Ref. Residual Mean:	6.74	Transformation: rank-order
K:	8	Ref. Residual SD:	4.877	
b:	30.434	Deg. of Freedom:	14	
				Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x2
Calculated Value:	0.8438	Calculated Value:	0.3344	Alternate: $x1 > x2$
Critical Value:	<= 0.887	Critical Value:	>= 1.761	
				Mann-Whitney N1: 8
				Mann-Whitney N2: 8
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.05
		_		Calculated Value: 56.5
Override Option:	Not Invoked			Critical Value: >= 49.000
				Accept Null Hypothesis: No
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	41.7	16	8.3	6	11.027	3.264	1.5		-13.48
2	33.3	14	0	1.5	6.049	13.48	1.5		-13.48
3	33.3	14	8.3	6	6.049	3.264	6		-12.451
4	25	12	0	1.5	0.805	13.48	6		-12.451
5	8.3	6	8.3	6	12.451	3.264	6		-5.075
6	16.7	10.5	8.3	6	5.075	3.264	6		0.805
7	8.3	6	8.3	6	12.451	3.264	6		3.264
8	33.3	14	16.7	10.5	6.049	10.64	6		3.264
9							6		3.264
10							10.5		3.264
11							10.5		3.264
12							12		6.049
13							14		6.049
14							14		6.049
15							14		10.64
16							16		11.027

Sample:	x1
Samp ID:	MC-Sed2
Alias:	Chironomid Mortality
Replicates:	8
Mean:	20.838
SD:	10.895
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	7.266	Statistic:	Mann-Whitney
Residual SD:	8.633	Test Residual SD:	8.14	Balanced Design:	Yes
SS:	1416.094	Ref. Residual Mean:	6.74	Transformation:	rank-order
K:	8	Ref. Residual SD:	4.877		
b:	34.222	Deg. of Freedom:	14		
				Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.827	Calculated Value:	0.1567	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
				Mann	Whitney N1: 8
				Mann	Whitney N2: 8
Normally		Variances		Degrees	of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental	Alpha Level: 0.05
				Calc	ulated Value: 55.5
Override Option:	Not Invoked			C	Critical Value: >= 49.000
				Accept Nul	Hypothesis: No
					Power:
				Min. Difference	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	25	13.5	8.3	6	4.644	3.264	2		-25.356
2	25	13.5	0	2	4.644	13.48	2		-13.48
3	33.3	15.5	8.3	6	9.888	3.264	2		-13.48
4	33.3	15.5	0	2	9.888	13.48	6		-1.236
5	16.7	10.5	8.3	6	1.236	3.264	6		-1.236
6	16.7	10.5	8.3	6	1.236	3.264	6		-1.236
7	16.7	10.5	8.3	6	1.236	3.264	6		3.264
8	0	2	16.7	10.5	25.356	10.64	6		3.264
9							10.5		3.264
10							10.5		3.264
11							10.5		3.264
12							10.5		4.644
13							13.5		4.644
14							13.5		9.888
15							15.5		9.888
16							15.5		10.64

Sample:	x1
Samp ID:	MC-Sed3
Alias:	Chironomid Mortality
Replicates:	8
Mean:	30.213
SD:	10.852
Tr Mean:	33.073
Trans SD:	6.719

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	13.48
Trans SD:	8.701

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	5.312	Statistic:	Student's t	
Residual SD:	6.672	Test Residual SD:	3.592	Balanced Design:	Yes	
SS:	845.908	Ref. Residual Mean:	6.74	Transformation:	ArcSin	
K:	8	Ref. Residual SD:	4.877			
b:	28.02	Deg. of Freedom:	14			
				Experiment	al Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2	
Calculated Value:	0.9282	Calculated Value:	0.6671	Alternate:	x1 > x2	
Critical Value:	<= 0.887	Critical Value:	>= 1.761			
Normally		Variances		Degrees	of Freedom:	14
Distributed:	Yes	Homogeneous:	Yes	Experimental	Alpha Level:	0.05
		_		Calc	ulated Value:	5.0412
Override Option:	N/A			0	Critical Value:	>= 1.761
				Accept Nul	I Hypothesis:	No
					Power:	
				Min. Differen	ce for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	33.3	35.244	8.3	16.744	2.171	3.264			-13.48
2	16.7	24.12	0	0	8.953	13.48			-13.48
3	25	30	8.3	16.744	3.073	3.264			-8.953
4	25	30	0	0	3.073	13.48			-3.073
5	50	45	8.3	16.744	11.927	3.264			-3.073
6	41.7	40.222	8.3	16.744	7.149	3.264			-3.073
7	25	30	8.3	16.744	3.073	3.264			-3.073
8	25	30	16.7	24.12	3.073	10.64			2.171
9									3.264
10									3.264
11									3.264
12									3.264
13									3.264
14									7.149
15									10.64
16									11.927

Sample:	x1
Samp ID:	LL-Sed-1
Alias:	Hyalella Mortality
Replicates:	8
Mean:	5
SD:	7.559
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Hyalella Mortality
Replicates:	8
Mean:	3.75
SD:	5.175
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	9.912	Statistic:	Mann-Whitne	ey
Residual SD:	8.943	Test Residual SD:	3.712	Balanced Design:	Yes	
SS:	1519.604	Ref. Residual Mean:	8.641	Transformation:	rank-order	
K:	8	Ref. Residual SD:	2.385			
b:	32.924	Deg. of Freedom:	14			
				Experiment	al Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2	
Calculated Value:	0.7133	Calculated Value:	0.8143	Alternate:	x1 < x2	
Critical Value:	<= 0.887	Critical Value:	>= 1.761			
				Mann	-Whitney N1:	8
				Mann	-Whitney N2:	8
Normally		Variances		Degrees	of Freedom:	
Distributed:	No	Homogeneous:	Yes	Experimental	Alpha Level:	0.05
		-		Calc	ulated Value:	30.5
Override Option:	Not Invoked			(Critical Value:	>= 49.000
				Accept Nul	I Hypothesis:	Yes
					Power:	
				Min. Differen	ce for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	10	13	0	5.5	10.506	6.913	5.5		-7.929
2	0	5.5	10	13	7.929	11.522	5.5		-7.929
3	0	5.5	0	5.5	7.929	6.913	5.5		-7.929
4	0	5.5	0	5.5	7.929	6.913	5.5		-7.929
5	10	13	0	5.5	10.506	6.913	5.5		-7.929
6	0	5.5	10	13	7.929	11.522	5.5		-6.913
7	0	5.5	0	5.5	7.929	6.913	5.5		-6.913
8	20	16	10	13	18.636	11.522	5.5		-6.913
9							5.5		-6.913
10							5.5		-6.913
11							13		10.506
12							13		10.506
13							13		11.522
14							13		11.522
15							13		11.522
16							16		18.636

Sample:	x1
Samp ID:	MC-Sed1
Alias:	Amphipod Mortality
Replicates:	8
Mean:	6.25
SD:	7.44
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Amphipod Mortality
Replicates:	8
Mean:	3.75
SD:	5.175
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	10.234	Statistic: Mann-Whitney
Residual SD:	8.958	Test Residual SD:	2.661	Balanced Design: Yes
SS:	1524.616	Ref. Residual Mean:	8.641	Transformation: rank-order
K:	8	Ref. Residual SD:	2.385	
b:	34.894	Deg. of Freedom:	14	
				Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x2
Calculated Value:	0.7986	Calculated Value:	1.2603	Alternate: $x1 > x2$
Critical Value:	<= 0.887	Critical Value:	>= 1.761	
				Mann-Whitney N1: 8
				Mann-Whitney N2: 8
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.05
				Calculated Value: 37.5
Override Option:	Not Invoked			Critical Value: >= 49.000
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0	5	0	5	10.234	6.913	5		-10.234
2	0	5	10	12.5	10.234	11.522	5		-10.234
3	10	12.5	0	5	8.201	6.913	5		-10.234
4	10	12.5	0	5	8.201	6.913	5		-10.234
5	0	5	0	5	10.234	6.913	5		-6.913
6	0	5	10	12.5	10.234	11.522	5		-6.913
7	10	12.5	0	5	8.201	6.913	5		-6.913
8	20	16	10	12.5	16.331	11.522	5		-6.913
9							5		-6.913
10							12.5		8.201
11							12.5		8.201
12							12.5		8.201
13							12.5		11.522
14							12.5		11.522
15							12.5		11.522
16							16		16.331

Sample:	x1	
Samp ID:	MC-Sed3	
Alias:	Amphipod Mortality	
Replicates:	8	
Mean:	8.75	
SD:	6.409	
Tr Mean:	8.75	
Trans SD:	6.409	

Ref Samp:	x2
Ref ID:	Control
Alias:	Amphipod Mortality
Replicates:	8
Mean:	3.75
SD:	5.175
Tr Mean:	3.75
Trans SD:	5.175

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	4.375	Statistic:	Student's t
Residual SD:	5	Test Residual SD:	4.381	Balanced Design:	Yes
SS:	475	Ref. Residual Mean:	4.688	Transformation:	No Transformation
K:	8	Ref. Residual SD:	1.294		
b:	21.03	Deg. of Freedom:	14		
				Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.931	Calculated Value:	0.1935	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
Normally		Variances		Degrees	of Freedom: 14
Distributed:	Yes	Homogeneous:	Yes	Experimental	Alpha Level: 0.05
				Calc	ulated Value: 1.7168
Override Option:	N/A				Critical Value: >= 1.761
				Accept Nul	I Hypothesis: Yes
					Power:
				Min. Differen	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	10	10	0	0	1.25	3.75			-8.75
2	10	10	10	10	1.25	6.25			-8.75
3	0	0	0	0	8.75	3.75			-3.75
4	10	10	0	0	1.25	3.75			-3.75
5	20	20	0	0	11.25	3.75			-3.75
6	10	10	10	10	1.25	6.25			-3.75
7	0	0	0	0	8.75	3.75			-3.75
8	10	10	10	10	1.25	6.25			1.25
9									1.25
10									1.25
11									1.25
12									1.25
13									6.25
14									6.25
15									6.25
16									11.25

APPENDIX C – Water Quality Summaries

				Control				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)
•	10.0		0.75	101	50	00		0.045
0	19.6	8.1	6.75	131	52	68	<1.0	0.015
1	19.9	7.0	6.84	127				
2	19.7	6.8	7.09	145				
3	19.6	6.5	7.12	137				
4	19.5	6.4	7.11	139				
5	19.6	6.3	7.11	140	64	92	<1.0	<0.010
6	19.7	7.2	7.38	165				
7	19.8	5.7	7.24	173				
8	19.8	5.3	7.30	175				
9	19.6	5.4	7.10	178				
10	19.7	5.9	7.28	174	72	88	1.2	<0.010
11	19.4	6.0	7.48	171				
12	19.7	6.7	7.44	170				
13	19.8	5.7	7.10	175				
14	19.9	4.8	7.09	171				
15	19.8	4.6	7.07	165	80	96	<1.0	<0.010
16	19.7	4.3	7.06	166			<1.0	<0.010
17	19.8	4.3	7.10	166				
18	19.8	4.3	7.07	168				
	-		-					
19	19.8	4.0	6.88	221				
20	19.9	4.0	6.93	176	80	88	3.2	<0.010
Mean	19.7	5.7	7.12	163	70	86	nc	nc
Min	19.4	4.0	6.75	127	52	68	<1.0	<0.010
Max	19.9	8.1	7.48	221	80	96	3.2	0.015

				LL-SED-1				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)
0	10.5	7.0	7.27	100	76	00	1.0	0.011
0	19.5	7.0		169	-	96	<1.0	0.011
1	19.7	5.7	7.05	171				
2	19.6	5.7	7.08	173				
3	19.6	5.8	7.10	173				
4	19.5	5.7	7.12	177				
5	19.6	5.8	7.11	174	76	84	<1.0	<0.010
6	19.7	5.8	7.16	166				
7	19.8	3.9	7.03	171				
8	19.7	5.0	7.15	172				
9	19.6	5.0	7.00	173				
10	19.6	5.0	7.21	169	72	88	<1.0	<0.010
11	19.5	5.4	7.34	169				
12	19.7	5.4	7.40	169				
13	19.7	5.6	7.07	175				
14	19.7	4.6	7.30	172				
15	19.7	5.0	7.06	172	76	96	<1.0	<0.010
16	19.6	4.5	7.10	171				
17	19.8	4.3	7.08	172				
18	19.7	4.2	7.10	172				
19	19.6	4.2	6.99	188				
20	19.6	4.0	6.90	173	88	100	3.0	<0.010
Mean	19.6	5.1	7.12	172	78	93	nc	nc
Min	19.5	3.9	6.90	166	72	84	<1.0	<0.010
Max	19.8	7.0	7.40	188	88	100	3.0	0.011

	LL-SED-2									
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)		
•	107		7.10	174	24	101	0.4	0.000		
0	19.7	6.1	7.12	174	84	104	6.1	0.036		
1	19.9	4.6	6.89	179						
2	19.7	4.9	6.96	173						
3	19.6	4.8	7.01	174						
4	19.5	4.9	7.02	175						
5	19.6	4.9	6.96	174	72	88	9.5	<0.010		
6	19.7	5.6	7.05	166						
7	19.9	5.1	7.09	168						
8	19.7	5.2	7.09	167						
9	19.5	5.6	7.02	166						
10	19.6	5.3	7.12	161	64	76	2.1	<0.010		
11	19.4	5.9	7.24	161						
12	19.8	5.8	7.23	159						
13	19.6	6.3	7.05	160						
14	19.6	5.8	7.11	155						
15	19.7	5.6	7.06	150	76	76	<1.0	0.010		
16	19.6	5.0	6.95	148						
17	19.8	4.8	6.99	149						
18	19.7	4.6	7.00	150						
19	19.7	4.4	6.97	158						
20	19.7	4.1	6.90	156	76	92	2.7	<0.010		
Mean	19.7	5.2	7.04	163	74	87	nc	nc		
Min	19.4	4.1	6.89	148	64	76	<1.0	<0.010		
Max	19.9	6.3	7.24	179	84	104	9.5	0.036		

				LL-SED-3				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)
0	19.6	6.8	7.29	165	72	100	<1.0	0.020
1	19.9	6.3	7.10	166				
2	19.7	6.3	7.12	166				
3	19.6	6.2	7.11	167				
4	19.6	6.3	7.12	167				
5	19.6	6.2	7.09	166	72	96	<1.0	<0.010
6	19.8	6.3	7.20	166				
7	19.8	5.8	7.21	169				
8	19.8	6.0	7.20	171				
9	19.7	5.6	7.12	172				
10	19.5	6.1	7.29	166	68	88	<1.0	<0.010
11	19.4	6.0	7.35	165				
12	19.6	6.3	7.31	164				
13	19.6	6.6	7.09	166				
14	19.7	6.0	7.22	163				
15	19.6	6.1	7.13	158	68	100	<1.0	0.033
16	19.6	4.7	6.97	156				
17	19.7	4.8	7.06	159				
18	19.8	4.8	7.00	156				
19	19.6	4.2	6.91	166				
20	19.6	4.1	6.95	161	80	96	3.1	<0.010
Mean	19.7	5.8	7.14	165	72	96	nc	nc
Min	19.4	4.1	6.91	156	68	88	<1.0	<0.010
Max	19.9	6.8	7.35	172	80	100	3.1	0.033

				LL-SED-4				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Overlying Sulfides (mg/l)
0	19.5	6.6	7.35	165	76	96	<1.0	0.029
1	19.8	5.3	7.08	162				
2	19.7	5.7	7.12	169				
3	19.6	5.4	7.14	168				
4	19.7	5.5	7.13	169				
5	19.6	5.2	7.11	170	80	100	<1.0	<0.010
6	19.7	5.8	7.19	169				
7	19.6	5.0	7.19	171				
8	19.7	5.2	7.23	171				
9	19.6	4.9	7.10	151				
10	19.6	5.2	7.30	171	76	88	<1.0	0.013
11	19.4	5.4	7.53	174				
12	19.7	6.2	7.28	168				
13	19.7	5.3	7.23	179				
14	19.6	5.0	7.27	174				
15	19.5	4.6	7.10	169	88	88	<1.0	0.023
16	19.5	4.7	7.07	164				
17	19.6	4.6	7.16	170				
18	19.7	4.7	7.09	166				
19	19.6	4.2	6.84	176				
20	19.6	4.0	6.84	171	88	100	3.4	<0.010
Mean	19.6	5.2	7.16	169	82	94	nc	nc
Min	19.4	4.0	6.84	151	76	88	<1.0	<0.010
Max	19.8	6.6	7.53	179	88	100	3.4	0.029

				MC-SED-1				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH_3 (mg/l)	Total Overlying Sulfides (mg/l)
0	19.6	6.9	7.35	160	72	96	<1.0	<0.010
1	19.6	6.5	7.20	160				
2	19.6	6.6	7.18	164				
3	19.6	6.4	7.17	165				
4	19.6	6.5	7.19	163				
5	19.7	6.4	7.22	166	76	100	<1.0	<0.010
6	19.7	6.5	7.23	165				
7	19.7	5.9	7.23	171				
8	19.7	6.0	7.23	172				
9	19.6	5.9	7.13	176				
10	19.6	6.1	7.25	164	80	88	<1.0	<0.010
11	19.3	6.3	7.21	169				
12	19.7	6.1	7.23	168				
13	19.6	6.1	7.10	169				
14	19.7	5.3	7.19	164				
15	19.6	4.9	7.13	162	80	120	<1.0	<0.010
16	19.7	4.4	7.05	162				
17	19.7	4.5	7.05	165				
18	19.8	4.4	7.00	166				
19	19.7	4.0	6.93	173				
20	19.6	4.1	6.93	167	80	104	2.9	<0.010
Mean	19.6	5.7	7.15	166	78	102	nc	nc
Min	19.3	4.0	6.93	160	72	88	<1.0	<0.010
Max	19.8	6.9	7.35	176	80	120	2.9	0.000

				MC-SED-2				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Overlying Sulfides (mg/l)
0	19.7	7.3	7.40	134	80	88	<1.0	<0.010
1	19.6	6.8	7.26	163				
2	19.6	7.1	7.26	166				
3	19.5	7.0	7.27	167				
4	19.4	7.0	7.27	165				
5	19.7	6.8	7.26	166	96	104	<1.0	<0.010
6	19.7	7.2	7.29	164				
7	19.8	6.4	7.26	169				
8	19.7	6.0	7.23	171				
9	19.6	6.0	7.13	175				
10	19.5	6.2	7.30	170	76	92	<1.0	<0.010
11	19.3	6.1	7.31	168				
12	19.7	6.0	7.33	168				
13	19.5	5.5	7.12	170				
14	19.7	5.2	7.22	165				
15	19.6	4.7	7.13	160	88	100	<1.0	<0.010
16	19.6	4.5	7.09	158				
17	19.6	4.5	7.12	160				
18	19.7	4.6	7.09	159				
19	19.6	4.0	6.90	174				
20	19.6	4.0	6.94	167	84	100	2.6	<0.010
Mean	19.6	5.9	7.20	165	85	97	nc	nc
Min	19.3	4.0	6.90	134	76	88	<1.0	<0.010
Max	19.8	7.3	7.40	175	96	104	2.6	<0.010

				MC-SED-3				
Day	Temp	D.O.	рН	Conductivity	Alkalinity	Hardness	Total Overlying	Total Overlying
-	(° °)	(mg/l)	(units)	(umhos/cm)	(mg/L CaCO3)	(mg/L CaCO3)	NH ₃ (mg/l)	Sulfides (mg/l)
0	19.8	7.8	7.43	155	80	88	<1.0	0.015
1	19.9	7.2	7.33	157				
2	19.7	7.4	7.33	163				
3	19.5	7.1	7.27	162				
4	19.4	7.0	7.29	161				
5	19.7	6.8	7.33	163	76	96	<1.0	<0.010
6	19.8	7.4	7.48	169				
7	19.8	6.3	7.34	173				
8	19.8	5.8	7.28	175				
9	19.6	5.1	7.15	179				
10	19.5	5.4	7.28	174	88	88	<1.0	<0.010
11	19.4	6.0	7.45	169				
12	19.7	6.4	7.41	170				
13	19.7	6.1	7.16	170				
14	19.7	5.9	7.27	164				
15	19.7	5.5	7.19	160	100	80	<1.0	<0.010
16	19.6	4.7	7.12	159				
17	19.7	4.8	7.16	162				
18	19.8	4.6	7.11	166				
19	19.7	4.2	6.97	175				
20	19.6	4.2	6.96	170	84	100	3.3	<0.010
Mean	19.7	6.0	7.25	166	86	90	nc	nc
Min	19.4	4.2	6.96	155	76	80	<1.0	<0.010
Max	19.9	7.8	7.48	179	100	100	3.3	0.015

Initiated April 5, 2011

				Control				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Overlying NH ₃ (mg/l)	Overlying Sulfides (mg/l)
0	21.2	8.4	6.54	122	40	68	<1.0	<0.010
1	21.0	7.7	6.90	133				
2	23.1	5.8	6.55	131				
3	22.8	6.3	6.86	150				
4	22.7	6.5	6.77	147				
5	22.8	6.4	6.84	149	40	64	<1.0	<0.010
6	22.9	6.1	6.98	161				
7	22.8	6.7	7.06	152				
8	22.9	6.7	7.05	158				
9	22.9	6.4	7.02	163				
10	22.8	6.5	7.03	161	40	64	<1.0	0.010
Mean	22.5	6.7	6.87	148	40	65	nc	nc
Min	21.0	5.8	6.54	122	40	64	<1.0	<0.010
Max	23.1	8.4	7.06	163	40	68	<1.0	0.010
NC = Not Calculable	e							

LL-SED-1 D.O. Day Temp pН Conductivity Alkalinity Hardness Total Overlying (units) (umhos/cm) (mg/L CaCO3) (mg/L CaCO3) Overlying NH₃ Sulfides (mg/l) (°C) (mg/l) 21.2 7.2 167 72 0 7.33 88 1.1 0.035 1 21.2 7.0 7.33 167 --------------2 5.3 7.04 175 23.0 ----------------3 22.9 4.7 7.07 173 ---------------4 22.8 5.3 7.02 172 ----------------5 22.9 5.2 7.05 174 72 92 <1.0 <0.010 6 22.9 5.2 7.19 171 --------------7 22.9 5.6 7.19 167 --------------8 22.9 5.5 7.20 173 --------------9 22.9 5.4 7.16 174 -------------22.8 7.21 175 72 10 5.6 88 <1.0 <0.010 7.16 72 Mean 22.6 5.6 172 89 nc nc Min 21.2 4.7 7.02 167 72 88 <1.0 <0.010 Max 23.0 7.2 7.33 175 72 92 1.1 0.035

	Initiated April 5, 2011 LL-SED-2									
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)		
0	21.2	6.6	7.15	172	80	104	2.0	0.053		
1	21.2	6.6	7.19	172		104	2.0	0.055		
2	23.0	4.8	6.91	172						
3	23.0	4.8	6.99	179						
4	23.0	4.8	6.90	174						
	22.0	4.8		172	68					
5	22.9	4.8 4.9	6.92	=		108	2.0	<0.010		
6	-	-	7.02	164						
7	23.0	4.9	6.93	162						
8	22.9	5.3	6.94	166						
9	23.0	5.4	6.99	163						
10	22.8	5.3	7.02	161	72	104	<1.0	<0.010		
Mean	22.6	5.3	7.00	169	73	105	nc	nc		
Min	21.2	4.8	6.90	161	68	104	<1.0	<0.010		
Max	23.0	6.6	7.19	179	80	108	2.0	0.053		

NC = Not Calculable

				LL-SED-3				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)
0	21.2	6.4	7.20	164	76	76	1.2	0.068
1	21.2	6.8	7.32	165	70	-		
1			-					
2	23.1	5.0	7.09	170				
3	22.9	5.3	7.12	171				
4	22.7	5.5	7.06	170				
5	22.8	5.4	7.10	172	72	90	<1.0	< 0.010
6	22.9	5.0	7.19	171				
7	22.8	4.8	7.15	169				
8	22.7	5.2	7.15	171				
9	23.0	5.2	7.05	170				
10	22.8	5.1	7.04	167	72	90	<1.0	<0.010
Mean	22.6	5.4	7.13	169	73	85	nc	nc
Min	21.2	4.8	7.04	164	72	76	<1.0	<0.010
Max	23.1	6.8	7.32	172	76	90	1.2	0.068

	Initiated April 5, 2011 LL-SED-4									
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH_3	Overlying Sulfides (mg/l)		
0	21.4	6.0	7.26	160	76	88	1.5	0.056		
1	21.4	6.8	7.20	166	76		1.5	0.056		
2	23.0	5.7	7.16	173						
3	22.9	5.3	7.17	173						
4	22.7	5.5	7.07	173						
5	22.7	5.3	7.11	173	80	88	<1.0	<0.010		
6	22.8	5.2	7.17	172			<1.0	<0.010		
7	22.9	4.9	7.15	168						
8	22.9	4.9	7.19	170						
9	22.7	5.0	7.09	170						
10	22.8	4.8	7.10	170	76	84	<1.0	<0.010		
Mean	22.5	5.4	7.17	170	77	87	nc	nc		
Min	21.2	4.8	7.07	160	76	84	<1.0	<0.010		
Мах	23.0	6.8	7.37	173	80	88	1.5	0.056		

NC = Not Calculable

				MC-SED-1				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)
0	21.4	6.9	7.35	164	72	92	<1.0	<0.010
0				-		-		
1	21.3	7.2	7.37	163				
2	23.1	5.9	7.11	169				
3	22.9	6.0	7.23	170				
4	22.6	6.1	7.11	173				
5	22.8	6.0	7.18	174	80	96	<1.0	<0.010
6	22.9	5.8	7.22	173				
7	22.8	5.8	7.16	172				
8	22.9	5.5	7.23	173				
9	22.7	5.5	7.14	170				
10	22.8	5.3	7.13	173	80	96	<1.0	<0.010
Mean	22.6	6.0	7.20	170	77	95	nc	nc
Min	21.3	5.3	7.11	163	72	92	<1.0	<0.010
Max	23.1	7.2	7.37	174	80	96	<1.0	<0.010

	Initiated April 5, 2011 MC-SED-2									
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH_3	Overlying Sulfides (mg/l)		
0	21.3	7.8	7.44	163	68	92	<1.0	<0.010		
1	21.2	7.5	7.47	162						
2	23.1	6.2	7.25	170						
3	22.8	6.0	7.28	171						
4	22.7	6.4	7.16	171						
5	22.7	6.2	7.21	173	80	100	<1.0	<0.010		
6	22.9	6.2	7.29	171						
7	23.0	5.9	7.27	171						
8	23.0	5.8	7.30	175						
9	23.0	5.9	7.22	175						
10	22.8	6.0	7.24	175	80	100	<1.0	0.013		
Mean	22.6	6.4	7.28	171	76	97	nc	nc		
Min	21.2	5.8	7.16	162	68	92	<1.0	<0.010		
Max	23.1	7.8	7.47	175	80	100	<1.0	0.013		

NC = Not Calculable

				MC-SED-3				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)
0	21.3	7.8	7.39	159	68	84	<1.0	<0.010
1	21.2	7.5	7.46	161				
2	23.2	6.4	7.27	166				
3	22.9	6.1	7.28	167				
4	22.7	6.5	7.19	167				
5	22.7	6.4	7.21	166	84	88	<1.0	<0.010
6	22.9	6.4	7.33	169				
7	23.0	6.2	7.32	168				
8	22.9	6.4	7.39	171				
9	23.1	6.1	7.30	173				
10	22.9	5.9	7.30	172	80	84	<1.0	<0.010
Mean	22.6	6.5	7.31	167	77	85	nc	nc
Min	21.2	5.9	7.19	159	68	84	<1.0	<0.010
Max	23.2	7.8	7.46	173	84	88	<1.0	<0.010

APPENDIX D – Laboratory Bench Sheets

20 Day Toxicity Test Data Sheet - Nautilus Environmental

Freshwater Sediment 20 day Survival

Client: <u>Flogd Snider</u> Test #: <u>1104-5018 1011 1104-1024</u>

Start Date & Time: 4/13/11 End Date & Time: 5/3/11 1330 5/3/11 13.3D Test Organism: Chironomus dilutus

	Rep	Cont			Surviva	l Day 20		
Site	#	#	Day 0	total	#larvae	#pupae	#flies	Initials/Comments
LON	1	153	12	11	11	0	0	
	2	130	12	12	12		1	(m)
	3	150	12		11			CC.
and the second	4	144	12	12	12			SP
1	5	138	12	11				X
	6	148	12	11				R
	7	163	12	11	11			CC/
	8	116	12	10	10			X
LSED 1	1	139	12	5	5			ce *
	2	122	12	2	2			CE *
	3	158	12	9*	9			BP
	4	107	12	4	4			Km
	5	108	12	124				185
	6	119	12	12	12			CC
	7	140	12	12	12			BP
	8	136	12	10*	10			(N)
LL-SED 2	1	101	12	2	2			(W)
	2	141	12	1,	1			OP XI
	3	128	12	PB1	POI			X I
	4	154	12	7	7			1 20 1
Anna anna	5	161	12	5	5			691
	6	155	12	az 3	3			1 30
	7	146	12		1			
	8	131	12	2	2			1001
L SED3	1	112	12	8	8			OP
	2	117	12	4	4			ac 1
	3	115	12	1	1			8
	4	113	12	11	li			BP
	5	156	12	4	4			R
	6	124	12	l	1			8P BP
	7	157	12	12	12			BP
	8	111	12	086	aB6			¢.
LL SED4	1	162	12	9	.0	1.22		N ×
'	2	135	12	8	8			(m) *
	3	126	12	7	7	2.1.1		CP CC
	4	102	12	5	5			œ
	5	118	12	IL	2			
	6	132	12	7	7		1	BP
	7	110	12	11	11			(R)
	8	123	12	7	7			N
11-8EDI	1	147	12	7	7	-	All and the	CC
	2	125	12	78	878			OP
	3	160	12	8	8			(m)
	4	13,7	12	9	1	-		(m) SP
	5	145	12	11	11		-	BP
	6	159	12	10	10			$\wedge r$
	7	152	12	11	11			(R) BP
	8	104	12	8	8	1	1	SP

* Nematodes present 1) invisible midge larvae present

QA Check:

20 Day Toxicity Test Data Sheet - Nautilus Environmental

Freshwater Sediment 20 day Survival

Client: Floyd Snider Test #: 104-1018 thru, 104-1024

 Start Date & Time:
 4/13/11
 1330

 End Date & Time:
 5/3/11
 1330

 Test Organism:
 Chironomus dilutus

	Rep	Cont			Surviva	I Day 20		
Site	#	#	Day 0	total	#larvae	#pupae	#flies	Initials/Comments
UC SED 2	1	121,	12	9	9	0	0	X
	2	164	12	9	9	1	1	ce
	3	151	12	8	8			(M)
Laure and	4	103.	12	8	8			OP
	5	114	12	0	10			8
	6	127	12	10	10			CC SP
in the second	7	129	12	12	10			BP
111.0	8	109	12		12			(R)
MC SED3	1	120	12	8	8			(R)
	2	149	12	10	10			ce
	3	143	12	ġ	9			BP
	4	142	12	1				GP GQ
	5	133	12	6	6			
Lange Contraction	6	134	12	7				à
	7	105	12	9	9			a
	8	106	12	9	9			BP
3	1		12					
	2		12					
	3		12					
	4		12					
	5		12	100				
	6		12					
	7		12				_	
	8		12					
	1		12					
	2		12					
	3 4		12					1. 1
	5		12 12					
	6		12					
	7		12	-				
	8		12				(and the second	
							and the second	NUT.
	1 2		12 12					
	3		12		-			
	4		12					
	5		12				Carl Inc.	
	6		12					
	7		12					
	8		12					
	1		12				-	
	2		12				-	
	3		12					
	4		12					
	5		12					
	6		12					
	7		12					
	8		12					and the second second second second

QA Check:

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy., E. Suite 2 Tacoma, WA 98424

Client: <u>Floyd Swiden</u> Test-2 Organism: <u>Chironomus tentans</u> Test no.: <u>1104-7029</u> Hune 1104-7024

	Rep	Cont	Pan wt.	Dry wt.	Ash wt.	Ash free	No. organisms	Avg. per site (mg)
Site	#	#	(gm)	(gm)	(gm)	dry wt. (gm)	organisms	Site (ing)
ON	1	153	0.05970	0.06371	0.06/003			
	2	130	0.07691	0.08229	0.07762		12	
	3	150	0.08019	0.08822	0.08267		11	
	4	144	0.07368	0.07950	0.07478		12	
	5	138	0.06826	0.07250	0.06869			
	6	148	0.06940	0.07592	0.07147'	days and	<u> </u>	
	7	163	0.07678	0.08304	0.07788		11	
	8	116	0.06442	0.06968	0.06503		10	
LSED-1	1	139	0.07868	0.08385	0.0785960		5	
	2	122	0.05783	0.06133	0.05839		2	
	3	158	0.06495	0.07585	0.06765		9	
	4	107	0.07197	0.08000	0.07338		4	
	5	108	0.06563	0.08027	0.06839		12	
	6	119	0.06542	0.07702	0.06745		12	
	7	140	0.07892	0.08914	0.08046		12	
	8	136	0.06620	0.07510	0.06754		10	
LSED-2	1	101	0.06993	0.07143	0.07011		2	
	2	141	006629	0.06682	0.06643	194		
	3	128	0.07639	0.07666	0.07643		1	
	4	154	0.06495	0.06949	0.06562		7	
	5	161	0.07069	0.07699	0.07162		5	
	6	155	0.07146	0.07526	0.07218	5	3	
	7	146	0.08130	0.08290	0.08151		1	
	8	13/	0.06563	0,06901	0.06604	Sec. 1	2	
LISED-3	1	112	0.06650	0.08339	0.07009		8	
	2	117	0.06055	0.06973	0.06226		4	
	3	115	0.06598	0.08410	0.06883		11	
	4	113	0.07066	0.08781	0.07458		11	
	5	156	0.05937	0.06628	0.06042		4	
	6	124	0.06220	0.07750	0.06488		11	
	7	15.7	0.06675	0.08158	50.06984		12	
	8	111	0.06134	0,07320			6	
LLSED-4		162	0.07398	0.07958	0.07536		9	
TUST	2	135	0.08148	0.08564	0.08218		8	
	3	126	0.06876	0.07844	0.07066		7	
	4	102	0.07088	0.08454	0,07395		5	
	5	118	0.06613	0.08072	0.07045		12	
Contraction of	6	132	0.06874	0.07961	0.07119		7	1
	7	(10	0.06744	0.08097			41	
	8	123	0.06864	0,07749		ø	7	
		ech Initia	and the second data with the	CC	10		CQ/	
1) D						rnace date/time in	1: 5-6-1 0900	T° 550
		e/time in:	5 511 133	1.5		nace date/time ou		State Parties
Dest sut	Date/ti	me out:	h: CC	1 41	-	Furnace tech	(A.	As the set of the set

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy., E. Suite 2 Tacoma, WA 98424

Site	Rep #	Cont #	Pan wt. (gm)	Dry wt.	Ash wt.	Ash free	No.	Avg. per
M(SED-)	# 1	#	0.07078	(gm) (), 08209	(gm)	dry wt. (gm)	organisms	site (mg)
MUSEDT	2	125			0.07313		2	
	3	160	0.06568	0.08866			8	
	4	137	0.07016		0,07323		8	
	5			0.09665			9	
	6	145	0.07571		0.07812		11	
	7	152	0.06049	0.08654	0.07641		10	
	8	104	0.07776	1.09475			11	a le line bie
MC-SED2	1	121	and the second se	0.09529	0,001.0		8	
IL SCOR	2		0.07167				a	
	3	164		0.08480	0.07561			
	4	151 103	0.07287		0.07511		8	
	5	114	0.06223	0.07668	0.06554		8	
	6		0.06723	0.11515	0.09809		10	
	7	127	0.05970	0.07451	0.06367		10	
	8	129	0.07153	0.08297	0.07353		10	
la con d		109	0.07407	0.09586	0.082960		12	
MC-SED3	1 2	120	0.06555	0.07955	0.06895		8	
	3	149	0.07413	0.08947	0.07872			
		143	0.05881	0.07054	0.06156		9	
	4	142	0.06911	0.08594	0.07499		9	
	5	133	0.07295	0.10676	0.09693		6	
	6	134	0,06165	0.12446	0.11407		7	
	7	105	0.07799	0.09267	0,08063		9	
	8	106	0.07264	0.08511	0.07442		9	
	1							
	2							
	3							
	4							
	5							
	6							
	7							
	8							
	1							
	2							
	3							
	4							
	5							
	6							
	7							1192356
	8			<i>A a</i>				
		1 Initials	et	æ	CC		QU I	
Dry wt.			5311 1330	T° 6(2) Furnad	ce date/time in.	5-5-11 5-611 T	550
ry wt. Da			5-5-11 1300	Т° 64	Furnace	e date/time out:	5-10-11 1100 T	-550
	Dry w	rt. Tech:	ce	\bigcirc	0.08112	Furnace tech:	QA Check:	-

1

20 Day Toxicity Test Data Sheet -- Nautilus Environmental

Freshwater Sediment 20 Day Water Chemistries

		t: Floyd 4 :: Gon		_ Test #		entans	- Tust 2	Start Date & End Date &	& Time & Time	4	13/11 3/11	1330 1330	Test2
Day		Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Ren	ewed		Tech.	
	(mg/L)	(mg/L)	(mg/L as	s CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
0	<1.0	0.015	52	68	6.75	131	8.1	19.6	1	V		XS	
1			100		6.84	127	7.0	19.9	V			X	
2					7.09	145	4.8	19.7	V	1	1	2	
3					7.12	137	6.5	19.6	1	~	1	C+	· · ·
4					7.1)	139	6.4	19.5	1	V	1	4	
5	<1.0	40,010	64	92	7.11	140	4.3	19.6		V	1	P	
6					7.38	165	7.2	19.7	~	~	V	X	
7					7.24	173	5,7	19.8	1	~	~	BP	
8					7.30	175	5.3	19.8	1	V	V	R	
9					7.10	178	5.4	19.6	1	1	1	IF	
10	1.2	<0.010	72	88	7.28	174	5.9	19.7	/	1	1	NF	
11		i der t			7.48	171	6.0	19.4	V	/	1	MF	
12					7,44	170	6,7	19.7.	V	V	/	BR	
13			and the		7.10	175	5.7	19.8	/	1	~	X	
14					7.09	171	4.8	19.9	1	1	-	X	
15	<1.0	<0.010	80	96	7.07	165	4.6	19.8	~	1		X	
16					7.06	166	4.3	19.7	V	1	1	BP	
17					7.10	144	4.3	19.8	V	-	V		
18					7.07	168	4.4	19.7	1	/	~	m	
19	2				6.88	221	4.0	19.8	V	1	1	BP	
20	3.2	20.010	80	88	6.93	176	4.0	19.9	-	-	-	BP	
			QA Check:					Te	est Cha	mber:	Pm.a	1/	

20 Day Toxicity Test Data Sheet -- Nautilus Environmental

Freshwater Sediment 20 Day Water Chemistries

	Client: Site:	Floyd S LL-SEDI	mider Te	Test #:	1104–TC Chironomus ter			Start Date & End Date &			1	133D 133D	To
Day	NH ₃	Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Reno			Tech.	
	(mg/L)	(mg/L)	(mg/L as		(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
0	21.0	0.011	76	94	7.27	169	7.0	19.5	~	V	-	Q X	
1					7.05	(7(5.7	19.7	N	V	V	$\hat{\boldsymbol{\omega}}$	
2					7.08	173	5.7	19.6	~	V	1	82	
3					7,10	173	5.8	19.6	1	1	U	24	
4					7.12	177	5.7	19.5	1	1	-	87	
5	<1.0	<0.010	no	84	7.11	174	5.8	19.6	\checkmark	V	1	m	
6					7.16	166	5.8	19.7	1	V	~	S	
7					7.03	171	3.9	19.8	V	V	-	BP	
8					7.15	172	5.0	19.7	1	1	V	(m)	
9	- Alexandre				7.00	173	5.0	19.6	1	V	1	IF	
10	<1.D	<0.010	72	88	7.21	169	5.0	19.6	5	V	1	IF	
11					7.34	169	5.4	19.5	\checkmark	1	1	IF	
12					7.40	169	5,4	19.7	1	V	1	3P	
13					7.07	175	5.6	19.7	V	1	1	X	1
14					7.30	172	4.6			V	V	X	1
15	<1.0	40.010	76	96	7.06	172	5.0	19.7	1	V	V	85	1
16			Y	14	7.10	171	4.5	19.6	V	1	1	BP	1
17					7.08	172	4.3	19.8	V	1	~	m	1
18					7.10	172	4.2	19.7		1	1	m	1
19					6.99	188	4.2	19,6	1	1	1	BP	1
20	3.0	<0.010	88	100	6.90	173	4.0	19.6	-	-		BP	1
20	0.0	110-01-0	OA Check		0.10	1 13			Fest Ch	amber	·· 0.	mu	L

QA Check:

Test Chamber: _____RM_C

20 Day Toxicity Test Data Sheet -- Nautilus Environmental

Freshwater Sediment 20 Day Water Chemistries

NH3 Sulfide (mg/L) Alk Hard (mg/L) pH (mg/L) Conductivity (units) Dissolved 0, (mg/L) Temp, (mg/L) Renewed and pm Tech. 0 $(e, 1)$ $0.03(e$ 64 104 7.12 174 $(e, 1)$ 19.7 \checkmark		Client: Site:	ELL-SEC			<u> </u>			Start Date & End Date &				1330 1330	-
(mg/l)	Day			Alk	Hard	рН	Conductivity	Dissolved O ₂	Town					
1 0.66 0.69 (179) 4.6 (1.7) 0.7		(mg/L)	(mg/L)			(units)	(umhos/cm)			am	pm	Fed	Initials	
1 0.89 $(79$ 4.6 $P.9$ \checkmark		6.1	0.036	84	104	7.12	174	6.1	19.7	1	~	~	xs	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					6.69	179	4.6	19.9	V	1	1		1
3 7.01 174 4.8 $R.6$ $\sqrt{-7}$ $\sqrt{94}$ 4 7.02 175 1.9 19.5 $\sqrt{-7}$ $\sqrt{94}$ 5 9.5 <0.010 72 93 6.910 174 4.9 19.6 $\sqrt{-7}$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td>6.96</td><td>173</td><td>4.9</td><td>19.7</td><td>1</td><td>V</td><td>1</td><td>- Cal</td><td>1</td></td<>						6.96	173	4.9	19.7	1	V	1	- Cal	1
4 7.02 175 4.9 195 \checkmark \checkmark 9 5 9.5 <0.010	3					7.01	174		19.6	V	1	1		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.1				7.02	175	4.9		2	V	V		1
6 7.05 100 5.6 19.7 \vee		9.5	<0.010	22	88	6.96	174	4.9		V	~	1	-	
7 1.09 168 5.1 19.9 \checkmark \checkmark \lor \bullet <						7.05				1	V	~	-	1
8 7.09 107 5.2 19.7 $$ $$ $$ 9 7.02 166 5.6 19.5 $$ $$ $$ 10 2.1 <0.010 64 76 7.12 161 5.3 19.6 $$ <										1	V	V		
9 7.02 166 7.6 19.5 7.7	8					7.09				1	~	~	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9					7.02				1	1	V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2.1	<0.010	64	76	7.12	161	5.3		1	1	1	<i>FY</i>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11					7.24	161	5.9		1	1	1		
13 7.05 160 6.3 19.6 $\sqrt{-1}$ $\sqrt{80}$ 14 7.11 155 5.8 19.6 $\sqrt{-1}$ $\sqrt{80}$ 15 <1.0 0.010 74 76 706 150 5.8 19.6 $\sqrt{-1}$ $\sqrt{80}$ 15 <1.0 0.010 74 76 706 150 5.6 19.6 $\sqrt{-1}$	12					7.23	159			1		~		
14 7.11 155 5.8 19.6 \checkmark <th< td=""><td>13</td><td></td><td></td><td></td><td></td><td></td><td>and a second second</td><td></td><td>and the second second second</td><td>V</td><td>/</td><td>1</td><td>X</td><td></td></th<>	13						and a second		and the second second second	V	/	1	X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14									1	V	V	X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	<1.0	0.010	76	76	7.06		5.10		1		1/	X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16									/	V	~	RP	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17								19.8	~	~	V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18									1			0	
	19									~	U	-		
	20	2.7	<0.010	7(e	92	6.90	156	4.1	19.7	-	-		BP	

Test Chamber: KmC

Freshwater Sediment 20 Day Water Chemistries

		Eloyd		. Test #:	<u> 1104 –</u> <u>Chironomus te</u>			Start Date & End Date &	z Time: z Time:	4	13 3 1)	11 1330 1330	Te
Day	NH ₃	Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Ren	ewed		Tech.	
	(mg/L)	(mg/L)	(mg/L as	CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
0	<1.0	0.020	72	100	7.29	165	6.8	19.6	V	V	~	5	
1					7.10	166	6.3	19.9	/	V	/	85	
2					7.12	166	6.3	19.7	V	1	1	\Diamond	
3					7,11	167	6.2	19.6	1	1	~	8+	
4					7.12	167	6.3	19.6	~	V	/	84	
5	<1.0	<0.010	72	96	7.09	160	10.2	19:6	~	1	1	m	
6					7.20	166	6.3	19.8	1	V	V	X	
7					7.21	169	5.8	19,8	1	~	~	BP	
8					7.20	171	6.0	19.8	1	~	/	m,	
9					7.12	172	5.6	19.7	1	~	1	IF	
10	<1.0	<0.010	68	88	7.29	166	6.1	19.5	1	5	1	MF	
11					7.35	165	6.0	19.4	\checkmark	\checkmark	1	NF	
12					7,31	164	(0,3	19,10	~	V	~	BP.	
13					7.09	160	6.6	19.6	\checkmark	~	/	X	
14					7.22	163	6.0	19.7	V	~	1	X	
15	<1.0	0.033	64	100	7.13	158	(0.1	19.6	V	V		85	
16					6.97	150	4,7	19.6	V	1	1	GP	
17					7.06	159	4.8	19.7	~	V	~	m	
18					7.00	15Ce	4.8	19.8	V	1	~	R	
19	The lat				6.91	166	4.2	19.6	V	1	V	GP	
20	3.1	< 0.010	80	96	6.95	Ilel	4.1	19.6				SP	
			QA Check:	R				T	est Cha	mber:	Rm	V	-

Freshwater Sediment 20 Day Water Chemistries

	Client:	Floyd	Smiden		1104 T	Day Water		Start Data 8	т:	.11	12/11	1700	
	Site:	Floyd	24 T	est Organism:	Chironomus te			End Date &	Time:	5	2/11	1330	-Tes
				<u> </u>					- Time.		<u>> </u>	1990	-
Dere	NH ₃	Sulfide	Alk	Hard									
Day	(mg/L)	(mg/I)			рН	Conductivity	Dissolved O ₂	Temp.	Ren	ewed		Tech.	
0		(mg/L)		CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
	<1.0	0.029	76	94	7.35	165	6.6	19.5	V	V	V	X	
1					7.08	162	5.3	19.8	1	V	V	S	
2					7.12	169	5.7	19.7	V	/	1	S	
3					7.14	168	5.4	19.6	1	1	1	87	
4			2015		7.13	169	55	19.7	C	1	~	24	
5	<1.0	<0.010	80	100	7.11	170	5.2	19.6	1	/	1	m	
6					7.19	169	5.8	19.7	1	~	1	X	
7					7,19	171	5,0	19.6	1	V	V	GP	
8					7.23	171	5.2	19.7		~	~	(P)	
9					7.10	151	4.9	19.6	1	/	/	IF	
10	50.<1.0	0.013	76	88	7.30	171	5.2	19.6	1	1	1	IF	
11					7.53	174	5.4	19.4	1	1	1	IF	
12					7,28	168	6.2	19.7	~	~	1	BP	
13					7.23	179	5.3	19.7	V	~	./	X	
14					7.27	174	5.0	19.6	1	0	/	X	
15	<1.0	D.023	88	88	7.10	169	4.6	19.5	V	N	1/	R	
16									~	1	/	0	
17					7.07 7.16	164	4.7 4.6	19.5	~	-	-	GP	
18						170			/	~	~	m	
19					7.09	llele	4.7	19.7	/	1	-	m	
	3.4	<0.010	81	100	6.84	176	4.2	19.6	V	-	-	BP	
	7.1	10.010	OA Check:	100	6.84	171	4.0	19.6			-	GP	

QA Check:

Freshwater Sediment 20 Day Water Chemistries

		Floyd MC-SEC	<u>Gnidly</u> 1 Te	Test #:	<u>1104–T</u> Chironomus te		-	Start Date & End Date &			1 1	1330	Test 2
Day	NH ₃ (mg/L)	Sulfide (mg/L)	Alk (mg/L as	Hard	pH (units)	Conductivity (umhos/cm)	Dissolved O ₂	Temp.		ewed		Tech.	
0	<1.0	<0.01	72920	96	7.35	140	(mg/L)	(°C)	am	pm	Fed	Initials	
1			1010-		7.20	160	6.9	19.6	/		-	R	
2					7.18	164	4.6		1	2		$\overline{\mathbf{x}}$	
3					7.17	165		19.4		./	~	D Dt	
4					7.19	163	6.4 6.5	19.6	v ,	0	V	et.	
5	<1.0	<0.010	He	100	7.22				V	-	-	-	
6			TICK	100	7.23	llole	6.4	19.7	V	V	1	R	
7					7.23	165	5,9		v	V	1	D	
8					7.23	172		19,7	,	V	V	BP	
9					7.13	176	<u>6.0</u> 5.9	19.7 19.6	V /	1	1	(P)	
10	<1.0	<0.010	80	88	7.29	164	6.1	19.6	~	1	-	M	
11					7.21	169	6.3	19.3	/	V		MF MF	
12					7.23	168	(e.1	19.7	V	V	~	BP	
13					7.10	169	6.1	19.6	V	1	-	X	
14					7.19	164	5.3	19.7	1	1	5	X	
15	\$0<1.0	<0.010	80	120	7.13	162	4.9	19.6	/	~	V	X	
16					7.05	162	4.4	19.7	1	1		CP CP	
17					7.05	145	4.5	19.7	V	- /	~	B	
18					7.00	166	4.4	19.8	~	/	~	R	
19					6.93	173	4.0	19.7	V	1	1	BP	
20	2.9	<0.010	80	104	6.93	167	4.1	19.10	-			BP	

QA Check:

Freshwater Sediment 20 Day Water Chemistries

	01	Floud	Giden	Freshwate	er Sediment 2	20 Day Water	Chemistries				1		
	Client	- rwya	main	Test #:	<u>1104 -</u> T	023	-	Start Date &	& Time	:4	13	11 1330	Test 2
	Site	· MC· DU)	2 1	est Organism:	Chironomus te	entans	-	End Date &	& Time	5	3/1	1 1330	
	NH ₃	Sulfide	Alk	Hard									1
Day	(mg/L)				pH	Conductivity	Dissolved O ₂	Temp.	Ren	newed		Tech.	
0		(mg/L)		CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
	<1.0	<0.010	80	44	7.40	134	7.3	19.7	1	V	~	8	
1					7.26	163	6.8	19.6	V	1	V	35	
2					7.26	160	7.(19.6	\checkmark	1	1	X	
3					7.27	167	7.0	19.5	V	~	V	24	
4		10.014			7.27	165	7.0	19.4	1	~	1	et	
5	<1.0	<0.010	96	104	7.24	166	6.8	19.7	1	1	1	m	
6					7.29	164	7.2	19.7	1	1	~	X	
7					7.26	169	SP. 2. 6.4	19,8	V	V	/	BP	
8					7.23	171	6.0	19.7	1	V	1	(M)	
9					7.13	175	6.0	19.6	1	/	~	IF	
10	<1.0	<0.010	76	92	7.30	170	6.2	19.5	\checkmark	1	/	IF	
11		ALC: NO			7.31	168	6.1	19.3	1	1	V	MF	
12					7.33	168	6.5	19.7	~	V	V	OP	
13					7.12	170	5.5	19.5	~	V	/	X	
14					7.22	165	5.2	19.7	V	~	1	X	
15	51.0	50.010	88	100	7.13	160465	4.7	19.6	V	1	1	X	
16			THE REAL		7.09	158	4,5	19.6	V	1	1	BP	
17					7.12	140	4.5	19.6	V	V	V		
18					7.09	159	4.6	19.7	-	V	-	m	
19					6.90	174	4.0	19.6	V	/	~	R SP	
20	2.6	50.010	84	100	6.94	167	4.0	19.6	_		-	BP	

QA Check:

Test Chamber: Rm.C

				Freshwate	r Sediment 2	Deet Nautil Day Water		nental				
		: Floyd : MC-SOC	interest in the second s		ll04-T Chironomus te	the second se		Start Date & End Date &				11 1330 TO 1 1330
Day	NH ₃	Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Ren	ewed		Tech.
0	(mg/L)	(mg/L)		CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials
0	<1.0	0.015	80	88	7.43	155	7.8	19.8	V	V	rv	- X
1					7.33	157	7.2,	19.9	\checkmark	V	V	X)
2					7.33	163	7.4	9.7		1	-	S
3					7.27	162	7.1	19.5	5	~	~	24
4	<10				7.29	161	7.0	19.4	1	V	/	et
5	<1.0	<0.010	The	910	7.33	163	6.8	19.7	V	1	1	A
6					7.48	169	7.4	19.8	V	V	V	X
7					7.34	173	6.3	19.8	V	~	~	BP
8					7.28	175	5.8	19.8	V	~	V	R
9	11.5				7.19	179	5.1	19.6	1	1	1	IF
10	<1.0	<0.010	88	88	7.28	174	5.4	19.5	\checkmark	\checkmark	\checkmark	MF
11					7.45	169	6.0	19.4	~	\checkmark	\checkmark	NF
12					7,41	170	6.4	19,7	~	~	1	BP
13					7.16	170	6.1	19.7	1	~	~	x
14				in the second	7.27	164	5.9	19.7	/	1	/	X
the manage of	51.0	<0.010	676100	80	7.19	160	5.5	19.7	V	~	V	D
16					7.12	159	4,7	19.6	V	~	/	BP
17					7.14	162	4.8	19.7	~	~	~	m
18					7.11	146	4. Le	19.8	~	~	V	m
19					6.97	175	4,2	19.7	~	5	/	GP
20	3.3	<0.010	84	100	6.96	170	4.2	19.60	_			BP
			QA Check:	D				Т	est Cha	amber:	Rm	.1/

Feshwater Sediment 20 day Observations

Client: Floyd Snider

Test #:	1104	- 7018	thru	1024
			and the second se	

Start Date & Time: <u>4/13//1 1330</u> End Date & Time: <u>5/8/11 1330</u> Test Organism: <u>Chironomous tentans</u>

 N = normal
 L = anoxic surface

 B= no burrows
 F= fungal patches

 M= dead on surface
 D= no air flow (DO?)

 A= avoidance
 U= excess food

		Day 1	Day 2	Day 3	Day 4	4 Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
	Initials	5	82	24	81	R	8)	BP	R	MF	IF
LL-SED2	101	A	U	11	li	N/U	L	N	N/U.	N/4	4
LL-SED4	102				1	in the	1		N/U	N/19	
MC-SED2	103	1			1				† 	+	<u>+</u> /
MC-SED1	104					· · · · · · · · · · · · · · · · · · ·	1		†		
MC-SED3	105				·· []			·	· • · · · • • • • • • • • • • • • • • •		
MC-SED3	106				·····	· •			+		
LL-SED1	107					· • • • • • • • • • • • • • • • • • • •		·····	÷	······	
LL- SED1	108	+				· •			÷	·	
MC-SED2	109					· •	++-		+	· · · · · · · · · · · · · · · · · · ·	
LL-SED4	110					+	+		÷		
LL-SED3	111	+			·····	· · · · · · · · · · · · · · · · · · ·			ET.		
LL-SED3	112				·····	•••••••••••••••••••••••••••••••••••••••	2		Elu.	211	
LL-SED3	113				· • • • • • • • • • • • • • • • • • • •	+	E	ž	E/U		15
MC-SED2	114				·•••••	+	E	- F	FIN		5
LL-SED3	115				·····	·+	E	<u> </u>	E/M	<u> </u>	VF.
CON	116					·	F	ŗ	FIN	F	E.
LL-SED3	117				·	+	F		12 /u	N	N F
LL-SED4	118			•••••••		·	A	N	- I'v	E/U	F
LL- SED1	119					·			NZU	N	<u> </u>
MC-SED3	120				·	+			÷		
MC-SED2	120				<u></u>	+					
LL- SED1	122				·	·•	·			- V	
LL-SED4	122	4		-+						N/U	
LL-SED3	123	+		·		÷	ž	-	GL	N,	V
MC-SED1	125	+		··		·	F	F	F/u	F/U	U/F
LL-SED4	125	+		··••			<u>N</u>	N	N/U	<u>/</u>	И
MC-SED2	120	4			·				N/M		
LL-SED2	127					÷			N/U	Y	
MC-SED2	120	4					·····		F/u	F	¥,F
CON	130	+	· · · · · · · · · · · · · · · · · · ·		·				N/M	N	N.
LL-SED2	130	+	······	+		<u> </u>			N/U	Ŋ	N/U
LL-SED2	132	·		·					F/U	F	F
									N/u	N/U	N/U
MC-SED3	133				ļ	ļ					
MC-SED3	134					Į					
LL-SED4	135	+									
LL-SED1	136				ļ						
MC-SED1	137	+		+		ļ					
CON LL- SED1	138 139						·····				
LL- SED1	139			ł							
						ļ					
LL-SED2	141										
MC-SED3	142			· • · · · · · · · · · · · · · · · · · ·							
MC-SED3	143										
CON	144									N	
MC-SED1	145									N/N	
LL-SED2	146										
MC-SED1	147										
CON	148										
MC-SED3	149	V	1	1		·····	N		······		
CON	150		¥	I.V.	4	V	V	V	×	V	1

20 Day Toxicity Test Data Sheet - Nautilus Environmental Feshwater Sediment 20 day Observations

Client: Flo			
Test #: 104	- 1018 1	m T	24
N = normal B= no burrows M= dead on surface	L = anoxic su F= fungal pat	rface ches w (DO?)	- '
	Da	v 1	Day 2

Start Date & Time: <u>4//3/// 1330</u> End Date & Time: <u>5/3/// 1330</u> Test Organism: <u>Chironomous tentans</u>

		Day 1	Day 2	Day 3	Day 4	4 Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
	Initials	3?	S	Gr	13	m	P	BP	W	IF	NF
MC-SED2	151	N	V	U	LU1	N/11	21	N	N/4	1	N
MC-SED1	152	1	1	/	1	1	E	F	1	E/M	NIK
CON	153		1	1		1	N	N		Ň	A/
LL-SED2	154		1	1	1	1		1		N	Y
LL-SED2	155				1		A	1	U U	N	
LL-SED3	156	1					F	F	F/4	F	EIN
LL-SED3	157					1	A	N	Flu	F	FIL
LL- SED1	158					1	1	······	NI/IA	Ē	FIN
MC-SED1	159					1				N	AITIA
MC-SED1	160		1			1				1	1 1
LL-SED2	161	1	1			1	1	1		-	· · · · · · · · · · · · · · · · · · ·
LL-SED4	162			Ť		1					++
CON	163			1.1.	11	1			1	1	++
MC-SED2	164	V	V	V			V			N N	1 V

20 Day Toxicity Test Data Sheet - Nautilus Environmental Feshwater Sediment 20 day Observations

Client: Floyd Snider Test #: 1104-7008 1000 1024 Start Date & Time: 4/13/11 1330 End Date & Time: 5/3/11 1330 Test Organism: Chironomous tentans

		Day 11	Day 12	Day 13	Day 14	Day 15	Day 16	Day 17	Day 18	Day 19	Day 20
	Initials	IF	BP	120	N N	N N	BP	(m)	(m)	OP	OP
LL-SED2	101	N	N	N	N	N	N	N	N	N	N
LL-SED4	102	1	1		1		1	1	1	1	1
MC-SED2	103			~	V.	K	1	V V			4
MC-SED1	104	- V	L L	E.	F	F.	F	F	F	F	F
MC-SED3		F	F	-	F	F	F			1	1
MC-SED3	106	F	F	Ŧ	F	F	F		V	L	
LL- SED1	107	N	N	N	N	N	N	N	N	N	Ň
LL- SED1	108		1	1	1	1	1	1	1	1	1
MC-SED2	109										1
LL-SED4	110			L L	1	V	1		V	1	T T
LL-SED3	111	F	F	F	F	F	F	F	F	F	F
LL-SED3	112	F	1	1	ſ	[1	1		1	1
LL-SED3	113	F									
MC-SED2	114	F									
LL-SED3	115	F	1	V.		V		V	V	L	V
CON	116	Ņ	N	N	N	A	I N	N	N	I N	N
LL-SED3	117	F	F	F	F	Ē	F	F	F	F	F
LL-SED4	118	N	N	N	N	N	T Ŵ	Ň	N	N	Ň
LL-SED1	119	N	N	N	N	N	Ň	N	N	Ň	Ň
MC-SED3	120	F	F	Ņ	F	F	F	P	F	F	F
MC-SED2	121	N	N	N	N	N	N	Ň	N	Ň	N
LL- SED1	122	N	N	N	1	1	1	1	1	1	1
LL-SED4	123	N F	N	N	J/	×		V	V		1-
LL-SED3	124	F	F	F	P	F	F	F	F	Ē	F
MC-SED1	125	N	N	N	N	N	N	N	N	N	N
LL-SED4	126	N	N	(1	1	1	1	1	1 1	1
MC-SED2	127	N	N	V	I V	V	T J	V	J.		V
LL-SED2	128	F	F	E	7	F	F	P	F	Ê	F
MC-SED2	129	N	N	N	N	N	N	N	Ň	NIU	Ň
CON	130	N	N	N	N	N	N	N	N	N	Ň
LL-SED2	131	F	F	Ē	F	F	F	P	F	Ê	F
LL-SED4	132	T N	N	4		N	N	Ň	N	N	N
MC-SED3	133	N	4	,	1.0	1	1	1	1	1	1
MC-SED3	134	N			1					1 1	1
LL-SED4	135	N								T	
LL-SED1	136	N,								1	
MC-SED1	137	N									
CON	138	N									
LL- SED1	139	N									
LL- SED1	140	Ń									
LL-SED2	141	N									1
MC-SED3	142	Ν,									
MC-SED3	143	N.		N	1	k					
CON	144	N,		V	V	V	$\downarrow \downarrow$	I V		\vee	V
MC-SED1	145	<u>N</u>		F	P,	F	F	F	F	F	F
LL-SED2	146	N		N	N	N	N	N	N	N	Ň
MC-SED1	147	N						1	1	1	1
CON	148	N.			V	\checkmark	L L		1		
MC-SED3	149	N			t,	F	F	I F	E	I F	F
CON	150	N.		ļļ.,	N	N	N	N	N	I N	N.
MC-SED2	151	N	V	<u> </u>	N	N	N N	N	N	N	Ŵ
MC-SED1	152	F.	F	F	É)	F	F.	F	F	F	P.
CON	153	1 N	N	N	N	N	I N	6	N	N	Ň

20 Day Toxicity Test Data Sheet - Nautilus Environmental Feshwater Sediment 20 day Observations

Start Date & Time: 4/13/11 1330 End Date & Time: 5/3/11 1330 Test Organism: Chironomous tentans

Client: Floyd Snider Test #: UD4-TOIS THAT TO24 N = normal L = anoxic surface B= no burrows F= fungal patches M= dead on surface D= no air flow (DO?) A= avoidance U= excess food

		Day 11	Day 12	Day 13	Day 14	Day 15	Day 16	Day 17	Day 18	Day 19	Day 20
	Initials	NF	BP	X	P	Ø	BP	(m)	(n)	SP	BP
LL-SED2	154	N	N	N	N)	A	N	N	N	N	N
LL-SED2	155	N	N	N	N	N	N	N	N	N	N
LL-SED3	156	TF	F	F	F	F	F	F	F	F	F
LL-SED3	157	F	F	F	F	Ê	F	F	1	1	1
LL- SED1	158	F	F	F	r.	F	F	F	L L	T	1-
MC-SED1	159	T N	N	A	N	N	N	N	N	N	N
MC-SED1	160	N	1	1	1				1	1	1
LL-SED2	161	N									
LL-SED4	162	N									
CON	163	N					1				
MC-SED2	164	N				V		J			

Nautilus Environmental 5009 Pacific Hwy E Suite 2 Tacoma, WA 98424 Physical and Chemical Measurements of Overlying Water Sediment Bioassay

Overlying Ammonia

Client: Floyd Snider

Species: Chironomus tentans Test Date: 4/6/2011 4/13/11

Test #s: 1104 T018 thru 1104-T027

TEST#2 (1104-TO18 three 1104-T024)

	D	ay 0	D	ay 5	Da	y 10	Da	y 15	Da	y 20
Site	NH ₃ (mg/L)	S" (mg/L)	NH ₃ (mg/L)	S ⁻ (mg/L)	NH ₃ (mg/L)	S ⁻ (mg/L)	NH ₃ (mg/L)	S [.] (mg/L)	NH ₃ (mg/L)	S ⁻ (mg/L)
CON	21.0	0.015	21.0	<0.010	1.2	KO.010	21.0	<0.010	3.2	20.010
LL-SED1	21.0	0.011	21.0	<0.010	K1.0			<0.010		<0.010
LL-SED2	6.1	0.036	9.5	KO.010	2.1	<0.010	<1.0	0.010	2.7	<0.010
LL-SED3	21.0	0.020	×1.0	<0.010	21.0	<0.01D	<1.0	0.033	3.1	20.010
U-SED4	21.0	0.029	×1.0	<0.010	<1.0	0.013	<1.0	0.023	3.4	<0.010
MC-SED 1	21.0	20.01	<1.0	<0.010	<1.0	<0.010	<1.0	<0.010	2.9	40.010
MC-SED2	-	<0.01	<1.0	<0.010	<1.0	<0.010	<1.0	<0.010		10.010
MC-SED3	< 1.0	0.015	<1.0	KO.010	<1.0	<0.010	< 1.0	<0.010	3.3	20.010
			-							
				-						
					1					
										1. 3.
									-	
L. D.	Sh. h.	Wull.	elu hi	4/10/11	5/11/1	4/28/11	Eluli	(AR)	5h.L.	C In In
analysis Date:	V/11/1	YAIII	3/11/11	A A		110011	3/11/11	4/20/11	5/11/11	5/4/11
'ech:				UN I	(Je		(nv)	1911	VIV.	M

	Sample I.D.	NH3 (mg/L)	Sample Dup	Spike (mg/L)	RPD	% Recovery
Day	Blank	0.0	NA	11.0	NA	90.2
U-7893		0.0	0.09	P.11.7	0	97.5
Day 15	Blank	0.0	NA	12.2	NA	IDD
U-SED3	-	0.4	0.6	12.9	40	105.7

Comments:

QA Check:

Freshwater Sediment 10 day Survival

Client: Floud Swidly Start Date & Time: 4/5/11 1445 Test #: 1104-708-1000 1104-7014 End Date & Time: 4/15/11 1500 Test Organism: H. azteca

Conc.	Cont.		ırvival
or site	#	Day 0	Day 10
LON	29	10	10
	64	10	9
	14	10	10
	39	10	10
	43	10	10
	31	10	9
	37,	10	10
Contraction of the second second	54	10	9
LL-SED I	63	10	- 9
	49	10	10
and the second	27	10	10
	16	10	10
	4	10	9
	51	10	10
	55	10	10
	17	.10	8
LL-SEDZ	52	10	10
	18	10	10
	44	10	10
	22	10	9
	46	10	9
	10	10	9
	13	10	10
	Al	10	10
LL-SED 3	33	10	0
	50	10	9
	56	10	01
	19	10	10
	6	10	10
	35	10	9
	12	10	10
-	40	10	9
LL-SED4	11	10	10
	58 28	10	0
	28	10	DI DI
	25	10	M
	34	10	10
and the second	21 2	10	10
	2	10	0
	5	10	10
		10	
		10,	
1 PAL	Tech Initials	as/m	9+

natic

a

Animal Source: _____ Date Received: _____ Age at test initiation: _____

QA Check:

10 Day Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 10 day Survival

Client: Floyd Snidly Test #: 1104-7908 Hnru 1104-7014

Start Date & Time: <u>4/5/11</u> 1445 End Date & Time: <u>4/15/11</u> 1500 Test Organism: <u>H. azteca</u>

Conc.	Cont.		ırvival		
orsite	#	Day 0	Day 10		
MC-SED 1	24	10	10		
	32	10	10		
	60	10	9		
	8	10	9		
	57	10	10		
		. 10	10		
	3	10	9		
110 0 50	30	10	8		
MC-SED2	1	10	10		
	38	10	10		
	36	10	9		
	61	10	9		
	7	10	10		
	42	10	10		
	59	10	10		
ALL CERT	20	10	9		
MC.SED3	47	10			
	23 24	10	9		
	10	10	10		
	48	10	9		
	45	10	8		
	15	10			
	62	10	10		
	53	10 10	9		
		10			
		10			
		10			
		10			
		10			
		10			
		10			
100 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200		10			
		10			
		10			
		10	+		
		10			
		10			
		10			
		10			
		10			
		10			
CC T	ech Initials	25 m	9t		

Animal Source: _____ Date Received: _____ Age at test initiation: _____

4/1/1

9 day

QA Check: _____

Joyd Snider A

Conc. or Site: Test #:

Client:

Start Date & Time: <u>4|5|11</u> 14代 End Date & Time: <u>4-15-11 15</u>00 Test Organism: H. azteca

Technician	Initials	X	*	30	RP	20	5 (14)	××	X		2 to
Comment	COMMENTS										
Red	CP)		SP	E	BP	59	B	X	K	M	5
Temp (°C)	21.2	21.00	23.1	22.8	7.22	32.8	22.9	22.8	22.9	122.91	32.8
Dissolved O ₂ (mg/L)	84	7.7	5.8	(e. 3	6.5	10.4	le.1	6.7	6.7	10.01	6.5
Conductivity (umhos/cm)	122	133	131	150	LHT	149	101	(52	158	103	151
pH (units)	4:24	06.0	6.22	le. 81e	LE.JJ	18'9	10.98	010.L	20.2	20.7	7.03
Sulfide (mg/L)	10.02					10.01					0.010
AlkHardAmmoniamg/L as CaCQ3(mg/L)	<1.0					0.11					0.15
Hard Is CaCQ3	B					Lan I				L'u	10
	\$				- 11	ar				F	2
Day	•		7 6	9 4	v	9	2			10	-

Test Chamber: RM. B

QA Check:

Floyd Smidur LLJSEDI

> Conc. or Site: Test #:

Client:

8aau-2011

Start Date & Time: <u>4/5/|| 1</u>4/5 End Date & Time: <u>4-15-1| 15</u>00

Test Organism: H. azteca

e							1	1				
Technician	Initials	R	R	R	50	BP	39	3	8	R	R	to
	Comments											
	Fed	S	(A)	R	٩	SP	BP	G	8	54	AH	5
Temp	(°C)	21.2	2.120	23.0	22.9	32.8	22.9	22.0	22.9	22.9	22.9	33.6
Dissolved O ₂	(mg/L)	7.2	7.0	5.3	Ч,1	5.3	5.2	5.2	5.6	5	5.4	5.6
Conductivity	(umhos/cm)	1-01	101	115	113	211	HL1	14	167	173	174	175
Hd	(units)	7.33	7.33	10.L	Lo.L	La.L	7.05	4.19	7.19	7.20	91.7	16.7
Sulfide	(mg/L)	0.035					10.02					10.0X
Alk Hard Ammonia	(mg/L)	1,1					0.12					0'12
Hard	mg/L as CaCO3	44					92					88
1.000	mg/L as	12					73					72
Day		0	1	2	3	4	s	9	7	~	6	10

O Test chamber turned of temperature turned of

QA Check:

Floud Smidur 11/SED2 1104-TD09

Conc. or Site: Test #:

Client:

Test Organism: H. azteca

l echnician Initiale	TITUAIS	22	R	R	BP	BP	BP	E	R	X	2	sta
	Comments											
- F	Fed	S	(M)	2	E	30	S	È	K	R	M	5
Temp	() ⁰	21.2	U21.2	23.0	13.0	22.8	22.9	22.9	23.0	6:22	23.0	33.8
Dissolved O ₂	(mg/L)	0.0	0:0	4.8	4.8	4.8	4.8	4.9	4.9	.10	5.4	5.3
Conductivity	(umhos/cm)	172	211	1011	HL1	221	EL1	1104	102	11010	103	161
Hd	(units)	7.15	7.19	16.01	6.99	(0.90	(0.97	201	(093	10.94	10:00	20.7
	(mg/L)	0.053					10.07					10.02
Alk Hard Ammonia	(mg/L as CaCO3 (mg/L)	1.0					2.0					10,020,1200 401
Hard	CaCO3	104	2				100 105 AN					104
Alk	mg/L as	80					100	707				er L
Day		0	-	2		4	S	9	-	~	6	10

Test Chamber: RM. B

O Test chamber turned temperature turned up

QA Check:

Floud Snider

Conc. or Site: Test #:

Client:

1104-T010

Start Date & Time: <u>4/5/11 14</u>45 End Date & Time: <u>4-15-11 1</u>500

Test Organism: H. azteca

	-	-	T	-		T	Т	T	-		
Initials	8	R	R	36	36	BP	E	R	8	Si	Þ
Comments											-
Fed	S	Ś	3	(A)	CP CP	98	E	R	8)	3
Temp (°C)	2.12	V21.2	23.	22.9	7.22	33.8	12.9	22.8	1.22	23.0	33.8
Dissolved O ₂ (mg/L)	10.4	6.0)	5.0	5.3	5,5	5.4	5.0	8.7	5.2	5.2	5.1
Conductivity (umhos/cm)	llout	105	170	111	110	211	141	6011	171	110	167
pH (units)	7.20	7.32	1.09	712	ola. L	01.1	1 10	715	7.15	-1-	40.2
Sulfide (mo/L)	0.063					10.0>					10.02
Alk Hard Ammonia						<1.0 <1					21.0
Alk Hard	110	+				00	2				06
	710	2				51	×				LT.
Day	0	-			4	r v			- ~		10

Test Chamber: RM. B

O test chamber temperature increased

QA Check: (1)

Freshwater Sediment 10 day Water Chemistries

Floyd Snidur

Conc. or Site: Test #:

Client:

1107-4011

Start Date & Time: <u>4/5/II 1</u>445 End Date & Time: <u>イー/5-/I</u> 1500

Test Organism: H. azteca

			1					1				
Technician	Initials	R	R	R	BP	BP	60	C	R	5	R	Ct Ct
	Comments											
	Fed	CC	È	E.	E	BP	SP	(M)	<i>y</i> e	R	M	5
Temp	(°C)	21.4	021.2	23.0	22.9	13.7	22.7	8.22	22.9	22.9	Litt	33.8
Dissolved O ₂	(mg/L)	(0.0)	6.2	1.3	5,3	5,5	5,3	5.2	5.7	4.9	2:0	4.9
Conductivity	(umhos/cm)	100	100	173	173	173	211	4	168	0LI	011	121
Hd	(units)	7.26	7.37	7.16	LI'L	Lo.L	17.1	4.4	7.15	P1.19	P0.1	710
Sulfide	(mg/L)	0.056					10.07					<0.01
Alk Hard Ammonia	mg/L as CaCO3 (mg/L)	5					RE CLO					012
Hard	CaCO3	44	2									478
Alk	me/L as	710	-				20	0				75
Day		0	1	2	3	4	5	9	2	~	6	10

Test Chamber: $\mathbb{Z}M$, \mathcal{B}

Otest chamber turned Temperature turned Ş

QA Check:

Freshwater Sediment 10 day Water Chemistries

Floyd Smidur MC-SEDI

Conc. or Site: Test #:

Client:

1104-T012

Start Date & Time: 4/5/11 1445 End Date & Time: 4-15-11 1500

Test Organism: H. azteca

	Hard	Alk Hard Ammonia	Sulfide	Hd	Conductivity	Dissolved O ₂	Temp			Technician
	aCO3	(mg/L as CaCO3) (mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	()°C)	Fed	Comments	Initials
	26	0'1>	10.0>	7.35	104	6.01	21.4	00		Q
120				7.87	163	7.2	021.3	(n)		\$
				7.11	1001	0.0	23.1	30		R
				7.23	170	(e,n	72.9	W		<i>bp</i>
				11.1	173	(e.1	22, Le	50		BP
08	gle	0.12	10.0>	21.18	174	(e, r)	32.8	SP		BP
				21.F	173	5.8	22.9	Č		(m)
				2.16	172	5.8	22.8	R		X
				7.23	173	5.2	22.9	Q		R
TAN COL				7.14	011	5.0	22.7	NH		R
	7621	51.0	10.07	7.13	173	5.3	23.8	ct.		G
	36									
Test Chamber:	KM	RM. B	e	1. Mamber	Per .		QA Check:	E		

Orest chamber

QA Check:

Freshwater Sediment 10 day Water Chemistries

Floyd Snider

Conc. or Site:

Test #:

Client:

1104-7013

Test Organism: H. azteca

Technician	Initials	R	R	R	BP	BP	BP	R	2	R	8	t,
	Comments										×.	
	Fed	C	(MI)	RP .	(m))5	09	E	R	4	HY	5
Temp	(°C)	21.3	V21.2	23.1	22.8	22.7	7.22	22.9	23.0	23.0	23.0	રાગ, ૬
Dissolved O ₂	(mg/L)	7.8	1.5	\$ 170 6.2	le.o	6. H	(0.3	<i>b.2</i>	2.0	5.8	5.9	6.0
Conductivity	(umhos/cm)	163	1102	170	171	111	113	141	171	175	175	175
Hd	(units)	7.44	したし	7.25	82.L	7.16	12.1	7.29	12.L	7.30	22.1	7.24
Sulfide	(mg/L)	10.02					<0.01					0.013
Alk Hard Ammonia	mg/L, as CaCO3 (mg/L)	0'1>					28. <1.0 <0.01					<1.0
Hard	s CaCO3	32					100					100
	mg/L as	80					80					80
Day		0	1	2	3	4	S	9	7	8	6	10

O Test chamber temperature increased

QA Check:

Freshwater Sediment 10 day Water Chemistries

Flayd Smidur NCI-SED3

Conc. or Site: Test #:

Client:

1104-TO14

Start Date & Time: <u>4 ら川</u> 1445 End Date & Time: 4 15/11 1500 End Date & Time: 4/15//1 Test Organism: H. azteca

Technician	Initials	X	X	R	S	BP	59	S.	R	4	35	6t
	Comments											
	Fed	CC	(M)	X	W	SP	30	E	R	R	XA	-to
Temp	()°C)	21.3	U21.2	23.2	32.9	22.7	7.22	22.9	23.0	22.9	23.	33.9
Dissolved O ₂	(mg/L)	7.8	7.5,	6.4	[e,]	(e, 5	(o, H	10.4	10.2.	10.01	1.01	5.9
Conductivity	(umhos/cm)	159	101	166	[Le]	167	1 Lelo	169	108	121	173	172
Hq	(units)	7.39	7.40	1.27	3C.L	7,19	1.21	7.33	7.32	7.39	7.30	7.30
Sulfide	(mg/L)	10.02					<0.01					010.03
Alk Hard Ammonia	(mg/L as CaCO3) (mg/L)	0'1>					21.0					21.2
Hard	CaCQ3	94					88					84
Alk	(mg/L as	80)					84					80
Day		0	1	7	3	4	5	9	7	×	6	10

OTest chamber increased temperature increased

QA Check:

Freshwater Sediment 10 day Observations

Client: Floyd Snider Test #: 1104-1008 Hnru 1104-1014 Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500 Test Organism: *H. azteca*

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
	Initials	X	82	GP	BP	BP	m	$ \rangle$	184	
MC-SED2	1	A	N	N	N	N	N	N	N	Ň
LL-SED4	2	1	1	1	1	1	1		1	
MC-SED1	3			1				1	1	1
LL-SED1	4		· · · · ·			•••••••				1
LL-SED4	5									
LL-SED3	6					1		1		
MC-SED2	7	-	1	1				1		1
MC-SED1	8	-					1			
MC-SED1	9			1		1				
LL-SED2	10			1		1		1		
LL-SED4	11						1			
LL-SED3	12				1	••••••				-
LL-SED2	13									
CON	14					†				
MC-SED3	15			1		••••••				
LL-SED1	16			1		İ				
LL-SED1	17			1		1		++-		
LL-SED2	18			· •		•••••••				
LL-SED3	19	-		1						
MC-SED2	20	-						-		
LL-SED4	21	-								
LL-SED2	22	-		+ +						++
MC-SED3	23	-		++						
MC-SED1	24	-								
LL-SED4	25	-		+						
MC-SED3	26	-		-						
LL-SED1	27	-								
LL-SED4	28	-		1			1			
CON	29	-								
MC-SED1	30	-					1	1		
CON	31		1	1						
MC-SED1	32	-								
LL-SED3	33	-		1			1	1		
LL-SED4	34			1				1		
LL-SED3	35	-						1		
MC-SED2	36	-					1	1		
CON	37			1			1	1		
MC-SED2	38									
CON	39							1		1
LL-SED3	40	1					1			1
LL-SED2	41		1				1	1		1
MC-SED2	42			1						1
CON	43			1						1
LL-SED2	44			1				1		
MC-SED3	45		1	1			1			
LL-SED2	46			1			1	1		1
MC-SED3	47		V		~	5/2	T J	V	V	V

10 Day Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 10 day Observations

Client: Floyd Snider Test #: 1104-1008 - 1104- 1014 Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500 Test Organism: *H. azteca*

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
in the second	Initials	XS	TO	SP	BP	BP	(m)	S	84	82
MC-SED3	48	NI	N	N	N	N2	N	N	N	12/1
LL-SED1	49		1	1	1		1	1	1	
LL-SED3	50									
LL-SED1	51						1			
LL-SED2	52						1	1		1
MC-SED3	53		1	1		1	T T	1		
CON	54			1				1		
LL-SED1	55			1 1						
LL-SED3	56			T T T						
MC-SED1	57							1		
LL-SED4	58			1				1	1	
MC-SED2	59			1 T			1	1		
MC-SED1	60						1			
MC-SED2	61			T						
MC-SED3	62						1			
LL-SED1	63		1			1				
CON	64	V	V	V	V	V		V	V	V

Nautilus Environmental 5009 Pacific Hwy E Suite 2 Tacoma, WA 98424

Physical and Chemical Measurements of Overlying Water Sediment Bioassay

Overlying Ammonia

Client: Floyd Snider

Species: Hyallela azteca 4/8/2011

Test #s: 1104 1104-TOD8 thru 1104-TO14

	D	ay O	D	ay 5	Da	y 10
Site	Ammonia (mg/L)	Sulfide (mg/L)	Ammonia (mg/L)	Sulfide (mg/L)	Ammonia (mg/L)	Sulfide (mg/L)
CON	<1.0	<0.01	<1.0	20.010	<1.0	0.010
LL-SED1	1.1	0.035	<1.0	< 0.010	<1.0	20.010
LL-SED2	2.0	0.053	2.0	<0.010	< 1.0	20.010
LL-SED3	1.2	0.068	<1.0	<0.010	< 1.0	<0.010
LL-SED4	1.5	0.050	<1.0	<0.010	< 1.0	<0.010
MC-SED1	21.0	<0.01	<1.0	<0.010	<1.0	20.010
MC-SED2	< 1.0	< 0.01	<1.0	< 0.010	<1.0	0.013
MC-SED3	21.0	<0.01	<1.0	<0.010	<1.0	< 0.010
	-					
Analysis Date: Fech:	4/14/11	4/8/11 (N)	4/14/11	4/12/11	4/28/11	4/15/11

Sample LD	Sample I.D.	NH3 (mg/L)	Sample Dup	Spike (mg/L)	RPD	% Recovery
	Blank	0.0	NA	12.0	NA	98.4
U-SEDS DAY D	@1.2	1.2	1.2	12.8	0.0	95,1
4-5803	Blank	0.0	NA	11.9	NA	97.5
DID	1////	0.0	0.0	11.7	0.0	95.1

Comments:

QA Check:

m

Freshwater Sediment 10 day Survival

Client: Floud Swidly Start Date & Time: 4/5/11 1445 Test #: 1104-708-1000 1104-7014 End Date & Time: 4/15/11 1500 Test Organism: H. azteca

Conc.	Cont.		ırvival
or site	#	Day 0	Day 10
LON	29	10	10
	64	10	9
	14	10	10
	39	10	10
	43	10	10
	31	10	9
	37,	10	10
Contraction of the second second	54	10	9
LL-SED I	63	10	- 9
	49	10	10
and the second	27	10	10
	16	10	10
	4	10	9
	51	10	10
	55	10	10
	17	.10	8
LL-SEDZ	52	10	10
	18	10	10
	44	10	10
	22	10	9
	46	10	9
	10	10	9
	13	10	10
	Al	10	10
LL-SED 3	33	10	0
	50	10	9
	56	10	01
	19	10	10
	6	10	10
	35	10	9
	12	10	10
-	40	10	9
LL-SED4	11	10	10
	58 28	10	0
	28	10	DI DI
	25	10	M
	34	10	10
and the second	21 2	10	10
	2	10	0
	5	10	10
		10	
		10,	
1 PAL	Tech Initials	as/m	9+

natic

a

Animal Source: _____ Date Received: _____ Age at test initiation: _____

QA Check:

10 Day Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 10 day Survival

Client: Floyd Snidly Test #: 1104-7908 Hnru 1104-7014

Start Date & Time: <u>4/5/11</u> 1445 End Date & Time: <u>4/15/11</u> 1500 Test Organism: <u>H. azteca</u>

Conc.	Cont.		rvival
orsite	#	Day 0	Day 10
MC-SED 1	24	10	10
	32	10	10
	60	10	9
	8	10	9
	57	10	10
		. 10	10
	3	10	9
110 0 50	30	10	8
MC-SED2	1	10	10
	38	10	10
	36	10	9
	61	10	9
	7	10	10
	42	10	10
	59	10	10
ALL CERT	20	10	9
MC.SED3	47	10	
	23 24	10	9
	10	10	10
	48	10	9
	45	10	8
	15	10	
	62	10	10
	53	10 10	9
		10	
		10	
		10	
		10	
		10	
		10	
		10	
100 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200		10	
		10	
		10	
		10	+
		10	
		10	
		10	
		10	
		10	
		10	
CC T	ech Initials	25 m	9t

Animal Source: _____ Date Received: _____ Age at test initiation: _____

4/1/1

9 day

QA Check: _____

Freshwater Sediment 10 day Water Chemistries

Client:

Test #:

Conc. or Site:

Snider

5/11 1445 Start Date & Time: 4 End Date & Time: 4-15-11 1500

Test Organism: H. azteca

Day	Alk mg/L as	Hard	Ammonia (mg/L)	Sulfide	pH	Conductivity	Dissolved O ₂	Temp	1 M		Technician
0	40	68		(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
	10	0.0	<1.0	<0.01	6.54	122	8.4	21.2	œ		
1					6.90	133	7.7	21.00	(m)		2
2					6.55	131	5.8	23.1	GP		R
3					6.84	150					<u> </u>
4		All And			Le. 77	147	6.3	12.8	m		BP
5	40	64	<1.0	10.01		Share and the state of the	6.5	22,7	BP		BP
6					6.84	149	6.4	22.8	BP		BP
7					4.98	161	le.1	22.9	R		m
8					7.06	(52	6.7	22.8	X		~
				化建造者	7.05	158	6.7	22.9	X		2
9	lid				7.02	163	10.0	22.9	141		00
10	40	64	51.0	0.010	7.03	161	6.5	22.8	MH Et		4

Test Chamber: <u>RM. B</u>

QA Check:

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

FLOU	d Snider	
LLY	SEDI	
111	4-1008	

Start Date & Time: <u>4/5/11 1445</u> End Date & Time: <u>4-15-11 15</u>00

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity	Dissolved O ₂	Temp			Technician
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	72	88	1.1	0.035	7.33	167	7.2	21.2	ec		N
1					7.33	167	7.0	021.2	m.		X
2					7.04	175	5.3	23.0	BP		80
3					7.07	173	4.7	22.9	R		BP
4					7.02	172	5,3	22.8	SP		BP
5	72	92	<1.0	<0.01	7.05	174	5.2	22.9	BP		BP
6					7.19	171	5.2	22.0	P		m
7					7.19	167	5.6	22.9	X		(1)
8					7.20	173	5.5	22.9	82		CX
9					7.16	174	5.4	22.9	SHA		X
10	72	88	<1.0	50.01	7.21	175	5.6	22.8	13		4

QA Check:

() Test chamber temperature turned up

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

oud Snider 1104-7009

Start Date & Time: 4/5/11 1445 1500 End Date & Time: 4-15-11

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pН	Conductivity	Dissolved O ₂	Temp			Technician
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	80	104	2.0	0.053	7.15	172	6.6	21.2	R		22
1					7.19	172	6.6	021.2	m.		20
2					6.91	179	4.8	23.0	31		X
3					6.99	174	4.8	13.0	\bigcirc		BP
4					6.90	172	4.8	22.8	BP	and the second	BP
5	(28	108	2.0	50.01	6.92	172	4.8	22.9	SP		BP
6	120	100			7.02	164	4.9	22.9	m		(M)
7					6.93	162	4.9	23.0	82		20
8					6.94	160	5.3	22.9	8		(X)
9					6.99	1103	5.4	23.0	M		CK
10	72	104	10×1.0	(0.0)	7.02	161	5.3	22.8	et		क्ष

QA Check:

1) Test chamber turned temperature UP

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

Snider 1104-TOID

Start Date & Time: 4/5/11 1445 End Date & Time: 4-15-11 1500

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity (umhos/cm)	Dissolved O ₂ (mg/L)	Temp (°C)	Fed	Comments	Technician Initials
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)						X
0	76	76	1.2	0.068	7.20	1.64	6.4	21.2	R		~
1		1			7.32	165	6.8	21.2	m		0
2					7.09	170	5.0	23.1	SP		CC
3					7.12	171	5.3	22.9	m		BP
4					7.06	170	5,5	22.7	SP		BP
5	72	90	<1,D	<0.01	7.10	172	5.4	22.8	BP		BP
6	1				7.19	171	5.0	22.9	M		m
7					7.15	1109	4.8	22.8	2		est and a second
8					7.15	171	5.2	22.7	XX		- A
9					7.05	170	5.2	23.0	MA		X
10	72	90	<1.0	(0.0)	7.04	167	5.1	22.8	87		D D

QA Check:

O Test chamber temperature increased

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

Flor	.1	C.	div	,
FWI	100	on	ian	
		D4	•	
1104	- TO	DII		

Start Date & Time: <u>4/5/11 144</u>5 End Date & Time: <u>4-15-11</u>1500

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity	Dissolved O ₂	Temp			Technician
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	710	44	1.5	0.056	7.26	160	6.0	21.4	CR		\mathcal{D}
1					7.37	166	6.8	021.2	m		82
2					7.16	173	5.7	23.0	BP		82
3					7.17	173	5.3	22.9	m		BP
4					7.07	173	5,5	22.7	BP		BP
5	80	88	<1.0	50.01	1.1	172	5.3	22.7	SP		SP
6					7.17	171,	5.2	22.8	(N)		(m)
7					7.15	168	4.9	22.9	85		X
8		-			7.19	170	4.9	22.9	X		82
9					7.09	170	5.0	22.7			CX
10	76	84	<1.0	<0.01	7.10	171	4.8	22.8	Ct		84

QTest chamber Temperature turned UP

QA Check:

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

Floyd Snider MC-SEDI 1104-TO12

Start Date & Time: 46/11 1445 End Date & Time: 4-15-11 1500 Test Organism: H. azteca

Technician Conductivity **Dissolved O**₂ Hard Sulfide pH Temp Alk Ammonia Day Fed Initials (umhos/cm) (mg/L)(°C) Comments mg/L as CaCO3 (mg/L)(units) (mg/L)X 6.9 2 œ 7.35 92 <1.0 <0.01 104 .4 72 0 21.3 163 1 7.37 7.2 m JP 7.11 169 5.9 23. 2 OP 22.9 m 3 170 7.23 6.0 BP BP 4 173 22,6 11.1 6.1 SP BP 5 96 <1.0 <0.01 80 22.8 7.18 174 6.D m 6 7.22 173 5.8 22.9 m 8 5.8 172 22.8 7.16 7 X 5.5 22.9 173 8 7.23 22.7 5.5 7.14 170 SH 9 Et 96 < 1.0 et 22.8 80 (0.01 7.13 173 5.3 10

Test Chamber: RM. B

Grest chamber rest chamber reatured

QA Check:

Freshwater Sediment 10 day Water Chemistries

Client:

Test #:

Conc. or Site:

Floyd Snider MC-SED2 1104-TO13

Start Date & Time: 4/5/11 1445 End Date & Time: 4-15-11 1500 Test Organism: H. azteca

Day Alk Hard Ammonia Sulfide pH Conductivity **Dissolved O**₂ Technician Temp mg/L as CaCO3 (mg/L)(mg/L)(umhos/cm) (mg/L)(°C) Fed Initials (units) Comments 68 R 92 7.8 0 <1.0 10.01 7.44 163 21.3 221.2 7.47 1 1.5 m 102 \$ 170 6.2 2 7.25 23.1 SP 170 BP 3 6.0 7.28 171 22.8 m BP 4 BP 7.16 171 6.4 22.7 50. <1.0 <0.01 OP BP 5 80 100 22.7 7.21 173 6.2 N 6 m 6.2 22.9 7.29 171 5.9 N 7 7.27 171 23.0 あ 5.8 8 7.30 175 23.0 9 5.9 23.0 7.22 175 SH 2+ 80 <1.0 0.013 7.24 175 6.0 8t 10 100 22.8

Test Chamber: RM. B

@ Test chamber +emperature increased

QA Check:

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

FLOMO	d Snider	
MQ-	SED 3	
1104-	T014	
1104 -	1014	-

Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity	Dissolved O ₂	Temp			Technician
	(mg/L as	E 1	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	68	84	<1.0	20.01	7.39	159	7.8	21.3	Cl/		X)
1					7.46	161	7.5,	221.2	(m)		X
2					7.27	166	6.4	23.2	SP		X
3					7.28	167	6.1	22.9	m		SP
4					7,19	167	6.5	22.7	GP		BP
5	84	88	<1.0	<0.01	7.21	1 Lele	(0.4	22.7	GP		BP
6					7.33	169	10.4	22.9	P		R
7					7.32	165	6.2.	23.0	B		X
8					7.39	171	6.4	22.9	B		X
9					7.30	173	6.1	23.1	SH		×5
10	80	84	51.0	KO.010	7.30	172	5.9	22.9	Q-		- Et

O Test chamber increased

QA Check:

Freshwater Sediment 10 day Observations

Client: Floyd Snider Test #: 1104-1008 Hnru 1104-1014 Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500 Test Organism: *H. azteca*

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
	Initials	X	82	GP	BP	BP	(m)	N	184	
MC-SED2	1	A	N	N	N	N	N	N	N	N
LL-SED4	2	1	1	1	1	1	1		T	1
MC-SED1	3			1	İ		1	1	1	1
LL-SED1	4			1	•••••	1				1
LL-SED4	5						1			
LL-SED3	6			1		1	1	1	1	
MC-SED2	7		1	1			1		1	1
MC-SED1	8			1			1		1	1
MC-SED1	9			1		Î	1			
LL-SED2	10		1	1		1	1	1		1
LL-SED4	11			1			1			
LL-SED3	12				1	`	1	1		1
LL-SED2	13	-		1			1	1		1
CON	14						1			1
MC-SED3	15					1				1
LL-SED1	16			1		1				1
LL-SED1	17	-		1	1			1		
LL-SED2	18					••••••	1			
LL-SED3	19						1			
MC-SED2	20	-					1			
LL-SED4	21		1							
LL-SED2	22	-	1	1			1	1	1	1
MC-SED3	23	-		1			1			1
MC-SED1	24						1			1
LL-SED4	25									
MC-SED3	26						1			
LL-SED1	27		1							
LL-SED4	28		1				1		1	
CON	29			1		· · · · · · · · · · · · · · · · · · ·	1			
MC-SED1	30							1		1
CON	31									
MC-SED1	32									
LL-SED3	33		1					1		
LL-SED4	34									
LL-SED3	35									
MC-SED2	36							1		
CON	37							1		
MC-SED2	38									
CON	39									
LL-SED3	40									1
LL-SED2	41									
MC-SED2	42									
CON	43				I					
LL-SED2	44									I
MC-SED3	45									I
LL-SED2	46									
MC-SED3	47		V	\downarrow	\checkmark	Y	V		V	V

10 Day Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 10 day Observations

Client: Floyd Snider Test #: 1104-1008 - 1104- 1014 Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500 Test Organism: *H. azteca*

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
	Initials	XS	TO	SP	BP	BP	(m)	S	84	82
MC-SED3	48	NI	N	N	N	N2	N	N	N	12/1
LL-SED1	49		1	1	1		1	1	1	
LL-SED3	50									
LL-SED1	51						1			
LL-SED2	52						1	1		1
MC-SED3	53		1	1			T T	1		
CON	54			1				1		
LL-SED1	55			1 1						
LL-SED3	56			T T T						
MC-SED1	57							1		
LL-SED4	58			1				1	1	
MC-SED2	59			1 T			1	1		
MC-SED1	60						1			
MC-SED2	61			T						
MC-SED3	62						1			
LL-SED1	63					1				
CON	64	V	V	V	V	V		V	V	V

Nautilus Environmental 5009 Pacific Hwy E Suite 2 Tacoma, WA 98424

Physical and Chemical Measurements of Overlying Water Sediment Bioassay

Overlying Ammonia

Client: Floyd Snider

Species: Hyallela azteca 4/8/2011

Test #s: 1104 1104-TOD8 thru 1104-TO14

Site	Da	ay O	D	ay 5	Day 10		
	Ammonia (mg/L)	Sulfide (mg/L)	Ammonia (mg/L)	Sulfide (mg/L)	Ammonia (mg/L)	Sulfide (mg/L)	
CON	<1.0	<0.01	<1.0	20.010	<1.0	0.010	
LL-SED1	1.1	0.035	<1.0	< 0.010	< 1.0	20.010	
LL-SED2	2.0	0.053	2.0	<0.010	< 1.0	20.010	
LL-SED3	1.2	0.068	<1.0	<0.010	< 1.0	<0.010	
LL-SED4	1.5	0.050	<1.0	<0.010	< 1.0	<0.010	
MC-SED1	21.0	<0.01	<1.0	<0.010	<1.0	20.010	
MC-SED2	< 1.0	< 0.01	<1.0	< 0.016	<1.0	0.013	
MC-SED3	21.0	<0.01	<1.0	<0.010	<1.0	< 0.010	
	-						
Analysis Date:	4/14/11	4/8/11	4/14/11	4/12/11	1/2/11	4/15/11	
Tech:	(m)	(N)	R	M		7/15/11	

Sample LD	Sample I.D.	NH3 (mg/L)	Sample Dup	Spike (mg/L)	RPD	% Recovery
	Blank	0.0	NA	12.0	NA	98.4
U-SEDS DAY D	@1.2	1.2	1.2	12.8	0.0	95,1
4-5803	Blank	0.0	NA	11.9	NA	97.5
DID	1////	0.0	0.0	11.7	0.0	95.1

Comments:

QA Check:

m

Raw Data Sheet Microtox 100% Sediment Porewater Toxicity

Client Name:	Floyd &	nider		Test Date: 3/3////					
Sample ID:				Test No.: 1103-T061, 1103-T062					
oumpie inte	LLSED3, LL	SED4		1103-T063, 1103-T064					
	Light				Replicate				
Site	Reading	Time	1	2	3	4	5		
	I ₍₀₎	5 min	99	105	106	112	110		
		10min	93	99	97	106	100		
CON	I ₍₁₅₎	20 min	82	91	87	94	87		
	I ₍₀₎	5 min	91	83		86	70		
	I ₍₅₎	10min	83	78		79	62		
LLSED 1		20 min	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-58					
	I ₍₀₎	5 min	66	61		70	65		
	I ₍₅₎	10min	63	57	59		62		
LLSED 2	I ₍₁₅₎	20 min	59	54	55	60	56		
Sample ID: $ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
	I ₍₀₎	5 min	80	77		79	77		
		10min	75	75	69	73	72		
LLSED 3		20 min	68	60	61	66	GS		
			The second second				ALC: NOT		
	I ₍₀₎	5 min	67	76	70		67		
	I ₍₅₎	10min		70	And and a state of the state of		63		
LLSED 4		20 min	Replicate Time 1 2 3 4 5 min 99 105 106 11λ 1 10min 93 99 97 106 10λ 1 10min 93 99 97 106 11λ 1 20 min 8λ 91 87 94 1 5 min 91 83 78 81 79 2 20 min 73 69 75 68 1 91 83 57 51 65 10min 65 61 6λ 70 68 10min 59 54 55 60 51 5 min 67 76 79 73 20 68 60 61 65 20 min 68 60 61 66 68 77 76 79 10min <th>56</th>	56					
			a sector and the sector of the						
	I(0)								
	I ₍₁₅₎	20 min							

Comments:

pc. check - m

Raw Data Sheet Microtox 100% Sediment Porewater Toxicity

Client Name:

Floyd Inide

Test Date: 3/31/11

Sample ID:

MCSEDI, MCSEDZ, MCSEDJ

Test No.: 1103-T065, 1103-T066 1103-T067

	Light				Replicate		
Site	Reading	Time	1	2	3	4	5
	I ₍₀₎	5 min	94	98	96	99	94
	I ₍₅₎	10min	90	91	89	90	91
CON	I ₍₁₅₎	20 min	91	89	84	84	82
		Contraction of the second			and the second	Contraction of	
	I _(o)	5 min	100	94	89	97	94
	I ₍₅₎	10min	89	91	85	90	91
MCSED 1	I ₍₁₅₎	20 min	82	86	79	83	81
							THE REAL
	I ₍₀₎	5 min	88	85	86	85	86
	I ₍₅₎	10min	86	83	83	82	86
MC SED 2	I ₍₁₅₎	20 min	79	76	77	76	81
			Line Line	1 Martin			
	I ₍₀₎	5 min	89	90	90	90	85
	I ₍₅₎	10min	84	85	87	90	79
MC SED 3	I ₍₁₅₎	20 min	77	80	77	79	76
	I ₍₀₎	5 min					
	I ₍₅₎	10min					
	I ₍₁₅₎	20 min					
Willie Martine							
	I(0)	5 min					
	I ₍₅₎	10min					
	I ₍₁₅₎	20 min					

Comments:

RC chuck - @

Physical and Chemical Measurements of Porewaters Sediment Bioassays

Analyst: U Test Date: 3/31/11

Client: <u>Floyd & nide</u> Test No: <u>1103-T061, -T</u>067

Test Type: Microtox 100% Porewater Toxicity Test

Test Species: Vibrio fischeri

Site	Initial Salinity (ppt)	Final Salinity (ppt)	Initial D.O. (mg/L)	Final D.O (mg/L)	Initial pH	Adjusted pH	NaOH or HCl Vol. Used	Final Porewater Conc.	Ammonia
CON	19.4	19.4	7.9	7.9	8.17	7	-	_	P
MCSEDI	0.0	20.6	7.7	7.7	8.19	-	-	1	
MCSEDI	0.0	20.8	7.8	7.8	8.03	-	-	_	
MCSED3	0.0	19.2	7.8	7.8	8.29	8.16	20/11 O.I NHCI	99.9%	
LLSED)	0.0	19.4	7.7	7.7	7.92	-	-	_	
LLSEDQ	0.0	20.5	7.9	7.9	7.37	7.93	50 ML O.IN Nooth	99.8%	
LLSED3	0.1	19.2	7.9	7.9	7.66	8.00	30,44 0.1 N NaOl-	99.8%	

Sample Description: _____

Comments:

See Sample Oheck in

QA Check:

Physical and Chemical Measurements of Porewaters Sediment Bioassays

Analyst:	4	
Test Date:	3/31/11	

Client: <u>Flayd Inder</u> Test No: <u>1103-T061-T0</u>67

Test Type: Microtox 100% Porewater Toxicity Test

Test Species: Vibrio fischeri

Initial Salinity (ppt)	Final Salinity (ppt)	Initial D.O. (mg/L)	Final D.O (mg/L)	Initial pH	Adjusted pH	NaOH or HCl Vol. Used	Porewater Conc.	Ammonia
	20.2	7.9	7.9	7.85	8.01	10,111 Na01+	99.9%	Sample
		t.						
		Salinity Salinity (ppt) (ppt)	Salinity (ppt)Salinity (ppt)D.O. (mg/L)O,OQO.Q7.9	Salinity (ppt)Salinity (ppt)D.O. (mg/L)D.O (mg/L)O,OQO,Q7.97.9	Initial Salinity (ppt)Initial Salinity (ppt)Initial D.O. (mg/L)D.O (mg/L)OrO20.27.97.97.85	Initial Salinity (ppt)Initial D.O.D.O. D.OD.O (mg/L)pH0,020.27.97.97.858.01	Initial SalinityFinal D.O.Initial D.O.Final PHInitial PHor HCl Vol. Used(ppt)(ppt)(mg/L)(mg/L)II O_rO $2O.2$ 7.9 7.9 7.85 8.01 $0./N$ MaOH	Initial SalinityFinal D.O.Initial D.O.Pin D.O.pHpHor HClPorewater Conc.(ppt)(ppt)(mg/L)(mg/L) mg/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L 0,0 20.2 7.97.97.85 8.01 $0./N$ MaOH 99.9%

Sample Description: _____

Comments:

QA Check: (N)

Nautilus Environmental 5009 Pacific Hwy E Suite 2 Tacoma, WA 98424

+ >

Physical and Chemical Measurements of Interstitial Porewaters Sediment Bioassay

Analysis Date: 3/30/11

Interstitial Ammonia and Sulfide Client: PR Floyd Sm Floyd Snuder Chironomids Species: Microto Test Date: Test Day: Sample Check-in 1104- 7024 thous Test #s: 1104

Site	Sulfide (mg/L)	Ammonia (mg/L)
LLSEDI	0.243	1.2
LLSED2	0.561	11.9
LLSED 3	0.408	4.6
LLSED4	0.375	2.8
MCSEDI	0.016	<1.0
MESEDA	0.040	< 1.0
MCSED3	0.036	<1.0
		1
Tech	Et.	(m)

NA	12.2	NA	100	
33	13.9	14.3	90.9	
	NA 3.3	NA 12.2 3.3 13.9	NA 12.2 NA 3.3 13.9 14.3	NA 12.2 NA 100 3.3 13.9 14.3 90.9

DI Blank:_____ Seawater Blank:_____

QA Check:

Comments: * Samples. dark

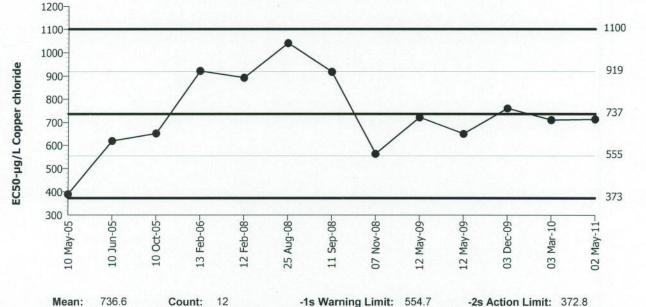
Turbidity Measurements

Client: Floyd & mide Date: 3/31/11 Analyst: 27

Sample ID	Measurement (NTU)
Standard 0-10	4,92
Standard 0-100	49.8 491
Standard 0-1000	491
DI	0.07
Ort CON	0.60
LLSEDI	ରା.6
LLSEDZ	78,4
LLSEN3	34.1 95,9
LLSED 4	95,9
MCSEDI	5,5
MCSED2	18.7
MCSED3	18.5
Standard 0-10	4.91
Standard 0-100	49,7
Standard 0-1000	484
DI	0.10

Measure standards and DI at beginning and end of analysis.

QA Check: @


APPENDIX E – Reference Toxicant Tests

06 May-11 14:51 (1 of 1) Report Date:

CETIS QC Plot

Chironomu	is 96-h Acute Survival Test				Nautilus Environmental WA
Test Type:	Survival (96h)	Organism:	Chironomus tentans (Midge)	Material:	Copper chloride
Protocol:	EPA/600/R-99/064 (2000)	Endpoint:	96h Survival Rate	Source:	Reference Toxicant-REF

moun		oount.		to training Linne.	001.1	Lo Motion Linne.	0.1.0	
Sigma:	181.9	CV:	24.70%	+1s Warning Limit:	918.5	+2s Action Limit:	1100	

Quality Control Data

Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2005	May	10	389.8	-346.8	-1.907	(-)		03-9785-3768	06-1599-1620
2		Jun	10	619.3	-117.3	-0.6446			08-3314-6775	08-1540-4607
3		Oct	10	651.6	-84.96	-0.4671			08-1025-4680	04-9254-8883
4	2006	Feb	13	921.9	185.3	1.019	(+)		08-9851-1226	07-3219-0331
5	2008		12	892.6	156	0.8574			15-6976-5200	18-3934-0764
6		Aug	25	1040	303.3	1.667	(+)		06-6119-9769	09-7546-4295
7		Sep	11	917.7	181.1	0.9959			12-5480-0473	10-6515-6515
3		Nov	7	563	-173.6	-0.9545			11-4948-7713	17-3277-7072
9	2009	May	12	721.9	-14.71	-0.08084			07-7016-2012	11-9025-1031
10			12	650.3	-86.31	-0.4745			10-1811-8659	15-1190-7362
11		Dec	3	760.9	24.26	0.1334			06-1499-1772	06-0264-7224
12	2010	Mar	3	710.4	-26.21	-0.1441			17-7743-6517	09-5758-4695
13	2011	May	2	713.8	-22.83	-0.1255			05-0735-0656	07-1751-6097

CETIS Sum	nmary Repo	ort						Report Date Test Code:		06 May-11 14: \050211CT 0			
Chironomus 9	6-h Acute Surv	vival Tes	st						Na	utilus Environ	mental WA		
Batch ID: Start Date: Ending Date: Duration:	10-9064-4993 02 May-11 14:0 06 May-11 14:0 96h	00 00	Test Type: Protocol: Species: Source:	ecies: Chironomus tentans				Analyst: Diluent: Brine: Age:	Cat Curran Diluted Mine 23in	eral Water (8:2)		
Sample ID: Sample Date: Receive Date: Sample Age:			Code: Material: Source: Station:	RA020511CT Copper chloric Reference Tox		Project:			Reference T	ference Toxicant Test			
Comparison S Analysis ID	Summary Endpoint		NOEL	LOEL	TOEL	PMSD	ти	Meth	od				
05-9024-2029		ate	375	750	530.3	22.7%	10	07/1961/10	Many-One F	ank Test			
Analysis ID 07-1751-6097 96h Survival F	Endpoint 96h Survival Ra Rate Summary	ate	Level EC50	µg/L 713.8	95% LCL 557.5	95% UCL 913.8	TU	Meth Trimr	od ned Spearma	an-Kärber			
Conc-µg/L	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std D	ev CV%	%Effect		
0	Dilution Water	4	1	1	1	1	1	0	0	0.0%	0.0%		
187.5		4	0.85	0.7785	0.9215	0.6	1	0.095			15.0%		
375		4	0.85	0.7785	0.9215	0.6	1	0.095	0.191	22.53%	15.0%		
750		4	0.45	0.3785	0.5215	0.2	0.6	0.095			55.0%		
1500		4	0.15	0.1127	0.1873	0	0.2	0.05	0.1	66.67%	85.0%		
3000		4	0	0	0	0	0	0	0		100.0%		
96h Survival R	ate Detail												
Conc-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4								
0	Dilution Water	1	1	1	1			Policie No.					
187.5		0.8	1	0.6	1								
375		0.8	1	1	0.6								
750		0.4	0.2	0.6	0.6								
1500		0.2	0	0.2	0.2								
1500													

96 Hour Reference Toxicity Test Data Sheet - Nautilus Environmental

Freshwater Sediment 96-hr Chronic

Client: Sample ID: Test #:	CUC	12		t								End D	Date &	Time:	5/2 5/6) Chiron	11	1400 1400 tentan	s					
Conc.	Cont.		vival)issolv	ed O ₂	(mg/L	.)		pH	l (unit	s)			Cor	nd. μS					eratur		
CuCl ₂	#	0	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
0 ug/L	22	5	5	7.2	8.1	7.3	8.1	7.9	7.62	7,34	7.43	7.63	7.63	162	172	177	168	172	23.0	22.6	23.5	20.0	0,1
o ugi L	90	S	S																				
-	2	5	5						2														
	18	5	5								14						110	les	22.4	11	22.0	.00	201
187.5 ug/l		5	4	8.5	8.3	7.2	\$.0	7.7	7.75	7.42	7.41	7.64	7.66	161	169	174	163	68	22.2	22.8	23,8	19.9	20.2
	14	5	5																				
- Same	21	5	3																				
	11	5	5				1.		1				36	16.0		12	110	100	221	10-	224	200	2011
375 ug/L	23	S	4	8.4	8.6	8.0	8.2	8.0	7.79	7.46	7.43	7.68	1.69	162	169	174	162	166	22.1	dd. I	23,0	20.0	20.4
	3	5	5			122101																	
	13	5	5													No. Contraction			10000				
	16	5	3	The second		Control of					200	711	7/0	100		174	112	m	22.2	1177	230	20.7	20.4
750 ug/L	9	5	a	8.4	8.7	7.6	\$.1	7.8	7.77	7.46	1,53	t.66	1.69	158	170	115	163	166	did.d	44,1	036	20.6	aU.T
	5	5				1. 194																532	
	12	5	3						-22														
	24	5	3		Sellin .		-		200		301		700	102	1.20	1711	163	ICC	22.2	1177	128	203	20.4
1500 ug/	L 19	5	1	8.2	8.7	8.0	8.3	7.8	7.65	1,40	1.64	7.70	1.66	163	110	114	169	100	old'a	hd, (0.20	20.5	OU,T
	17	5	0																				
	6	5									7152												
1000	10	5	1					GI	200	200	207		7/0	102	1~1	170	163	166	222	122	229	10 9	20.2
3000 ug/	L7	5	0	8.7	8,7	8.0	8.4	8.1	1.43	1,38	1.6 (1.16	1.69	103	171	175	163	106	daid	00+0	93.1	1.6	GV.d
	1	5	0																				
	4	5	0																				
	15	5	0						100								1				1		

Tech. Initials: St BP St MF 84

Test Chamber: Room A

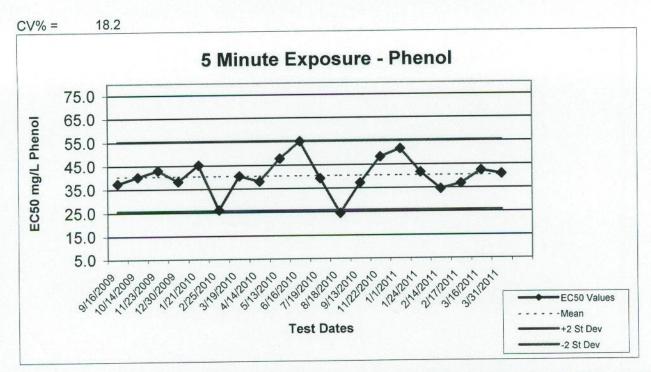
Comments:

QA Check: Animal Source: ABS

Date Received: 4/12/11

Age at test initiation: 2nd-3nd Inestan

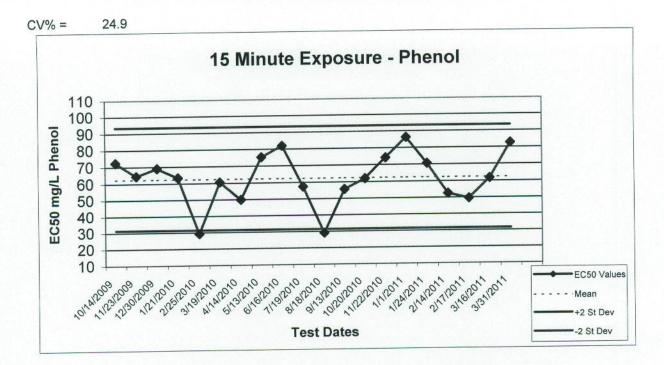
CETIS Sun	nmary Repo	ort						Report Date Test Code:			Jun-11 08:4 0511HA 12	
Acute Amphip	ood Survival Tes	st								Nautilu	us Environi	mental W/
Batch ID: Start Date: Ending Date: Duration:	15-8530-2608 05 Apr-11 14:44 09 Apr-11 14:14 95h	5	Test Type: Protocol: Species: Source:	Survival ASTM E1706- Hyalella aztec: Aquatic Indica	a			Analyst: Diluent: Brine: Age:	-	n Feuk I Mineral	Water (8:2)	
and the second second second second	18-2228-7009 05 Apr-11 14:45 05 Apr-11 14:45 N/A	5	Code: Material: Source: Station:	RA040511HA Copper chlorid Reference Tox				Client: Project:	Refere	nce Toxi	cant Test	
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od			
12-7655-6547	Survival Rate		<187.	5 187.5	N/A	14.3%		Steel	I Many-C	One Rank	Test	
Point Estimate	e Summary		2 2 C Y								and the second	
Analysis ID	Endpoint		Level	µg/L	95% LCL	95% UCL	TU	Meth	od			
19-5580-0324	Survival Rate		EC25	0	N/A	0		Linea	ar Interpo	olation (I	CPIN)	
		_	EC50	0	N/A	0						
Survival Rate	Summary											
Conc-µg/L	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std E	Err S	Std Dev	CV%	%Effect
0	Dilution Water	4	0.825	0.7892	0.8608	0.7	0.9	0.047	787 0	.09574	11.61%	0.0%
187.5		4	0.1	0.05688	0.1431	0	0.2	0.057	774 0	.1155	115.5%	87.88%
375		4	0	0	0	0	0	0	0	1.		100.0%
750		4	0	0	0	0	0	0	0			100.0%
1500		4	0	0	0	0	0	0	0			100.0%
3000	distantizione en	4	0	0	0	0	0	0	0		S. A. S. S.	100.0%
Survival Rate	Detail										1000	
Conc-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Dilution Water	0.9	0.8	0.7	0.9			Contraction of the second				100000
187.5		0.2	0	0	0.2							
375		0	0	0	0							
		0	0	0	0							
750												
750 1500		0	0	0	0							


CETIS™ v1.8.0.8

96 Hour Reference Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 96-hr Chronic

Client:	Reference Toxicant
Sample ID:	3000 ug 12 Cucl2 RA040511 Ha
Test #:	RAD40511 Ha

Start Date & Time:	4	15	111	1445
End Date & Time:	4	191	1	1415
Test Organism:	H. a	zteca		

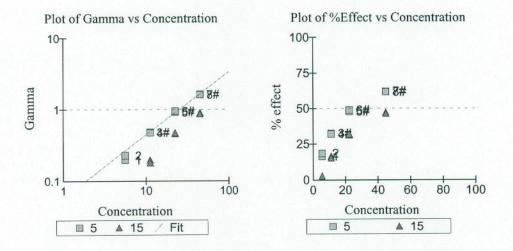

Conc.	Cont.	Surv	vival	I	Dissol	ved O	2 (mg/l	L)								Temp	eratui	e (°C)					
CuCl ₂	#	0	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
0 ug/L	2	10	9	8.8	8.5	79	7.5	7.6	7.77	1.89	7.49	7.79	7.59	165	170	182	196	207	21.3	209	22.56	227	22.7
	24	10	8																-1.5			and I	Sail
	23	10	٦																				
	21	10	9																				
187.5	6	10	2	8.4	8.5	7.8	7.6	7.5	7.74	7.91	7.90	7.84	7,60	165	170	182	188	191	21.4	21,0	22.8	22.8	227
	16	10	0																			0.0.70	
	1	10	0																				
	11	10	2																				
375	14	10	6	8.6	8.4	7.9	7.6	7.2	7.71	7.89	7.90	7.85	7.55	165	169	181	187	189	21.4	21.1	229	119	22.8
	7	10	0										100					10 1				0.0.1	0.0.00
	5	10	0																				
	3	10	0																				
750	12	10	0	8.7	8.5	7.4	7,7	7,7	7.105	7.87	7.87	7.84	7.57	165	170	163	190	192	21.3	21.2	12.8	118	277
	18	10	0			A DE						11						110				5.040	0011
	15	10	0																1986				
	22	10	0							- end b													
1500	13	10	0	8.7	8.4	7.8	7,7	7.7	7.48	7.77	7.8D	1,71	7.51	165	169	181	187	190	21.2	211	22.8	229	227
	8	10	0															110			22.0		0000
	10	10	0													1							
	20	10	0							100	1									Mana			
3000	17	10	0	8.7	83	8.D	79	7.5	7.25	7.82	7.83	7.80	7.57	166	172	185	193	195	21.1	21.0	22.8	118	22 6
	4	10	0																TEX.				20.0
	19	10	0																				
	9	10	0								10-1						13.7						
Tech	Initials:	20	1 GP	5	8	B	BP	BP															
Animal S	Source:	Aau				0				Comn	nents:												
Date Re	ceived:	4	1,11		Dil	ution V	Water:	8:2	017						5.54						1		
Age at te	est initiat	ion:		of da	45				Те	st Cha	mber:	Rm	·B	51.8			50 K (44)	-	QAC	heck:	X	>	
					J								~						10558118.04-5				

Reference Toxicant Control Chart Microtox 5-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Phenol ^a	Mean	StDev	-2 SD	+2 SD
9/16/2009	1229	22.0	37.4	40.4	7.4	25.7	55.2
10/14/2009	926	23.7	40.2	40.4	7.4	25.7	55.2
11/23/2009	1011	25.3	43.0	40.4	7.4	25.7	55.2
12/30/2009	911	22.5	38.3	40.4	7.4	25.7	55.2
1/21/2010	1015	26.6	45.2	40.4	7.4	25.7	55.2
2/25/2010	1223	15.3	26.0	40.4	7.4	25.7	55.2
3/19/2010	833	23.8	40.5	40.4	7.4	25.7	55.2
4/14/2010	934	23.8	38.1	40.4	7.4	25.7	55.2
5/13/2010	939	29.9	47.8	40.4	7.4	25.7	55.2
6/16/2010	912	34.4	55.0	40.4	7.4	25.7	55.2
7/19/2010	830	24.5	39.2	40.4	7.4	25.7	55.2
8/18/2010	1018	15.3	24.4	40.4	7.4	25.7	55.2
9/13/2010	1214	23.3	37.3	40.4	7.4	25.7	55.2
11/22/2010	1100	30.2	48.3	40.4	7.4	25.7	55.2
1/1/2011	1436	32.3	51.7	40.4	7.4	25.7	55.2
1/24/2011	829	26.0	41.7	40.4	7.4	25.7	55.2
2/14/2011	1339	21.6	34.5	40.4	7.4	25.7	55.2
2/17/2011	1010	23.0	36.8	40.4	7.4	25.7	55.2
3/16/2011	812	26.5	42.3	40.4	7.4	25.7	55.2
3/31/2011	1154	25.5	40.8	40.4	7.4	25.7	55.2

a - Highest concentration of Phenol is 160 mg/L

Reference Toxicant Control Chart Microtox 15-Minute Exposure


Date	Time	EC50 %	EC50 mg/L Phenol ^a	Mean	StDev	-2 SD	+2 SD
10/14/2009	926	42.6	72.4	62.4	15.5	31.3	93.4
11/23/2009	1011	37.9	64.4	62.4	15.5	31.3	93.4
12/30/2009	911	40.6	69.0	62.4	15.5	31.3	93.4
1/21/2010	1015	37.3	63.3	62.4	15.5	31.3	93.4
2/25/2010	1223	17.2	29.2	62.4	15.5	31.3	93.4
3/19/2010	833	35.6	60.5	62.4	15.5	31.3	93.4
4/14/2010	934	31.2	49.9	62.4	15.5	31.3	93.4
5/13/2010	939	47.0	75.2	62.4	15.5	31.3	93.4
6/16/2010	912	51.2	81.9	62.4	15.5	31.3	93.4
7/19/2010	830	35.9	57.4	62.4	15.5	31.3	93.4
8/18/2010	1018	18.2	29.1	62.4	15.5	31.3	93.4
9/13/2010	1214	34.8	55.7	62.4	15.5	31.3	93.4
10/20/2010	904	38.7	61.9	62.4	15.5	31.3	93.4
11/22/2010	1100	46.4	74.2	62.4	15.5	31.3	93.4
1/1/2011	1436	53.9	86.2	62.4	15.5	31.3	93.4
1/24/2011	829	44.1	70.5	62.4	15.5	31.3	93.4
2/14/2011	1339	32.9	52.6	62.4	15.5	31.3	93.4
2/17/2011	1010	31.0	49.6	62.4	15.5	31.3	93.4
3/16/2011	812	38.5	61.6	62.4	15.5	31.3	93.4
3/31/2011	1154	51.6	82.6	62.4	15.5	31.3	93.4

a - Highest concentration of Phenol is 160 mg/L

MicrotoxOmni Test Report

Date: 03/31/2011 11:54 AM

Test Protocol: Basic Test Sample: 160mg/L Phenol Toxicant: 160mg/L Phenol Reagent Lot no.: 10K1032 Test description: Reference Toxicant Test name: RT033111VF Database file: C:\Program Files\MicrotoxOmni\Edge Analytical.mdb

			5	Mins Data	a:	15	Mins Dat	a:
Sample	Conc	Io	It	Gamma	% effect	It	Gamma	% effect
Control	0.000	95.21	91.27	0.9586 #		62.45	0.6559 #	
Control	0.000	95.78	90.90	0.9490 #		62.23	0.6497 #	
1	5.625	95.01	75.83	0.1951	16.32%	61.24	0.0128 *	1.264%
2	5.625	99.24	77.17	0.2266	18.48%	62.94	0.0293 *	2.849%
3	11.25	97.10	62.66	0.4781 #	32.35%	52.98	0.1965	16.42%
4	11.25	97.94	63.59	0.4691 #	31.93%	54.22	0.1792	15.20%
5	22.50	100.26	50.05	0.9107 #	47.66%	44.96	0.4558 #	31.31%
6	22.50	101.02	49.36	0.9521 #	48.77%	44.90	0.4688 #	31.92%
7	45.00	99.27	36.02	1.629 #	61.96%	34.25	0.8921 #	47.15%
8	45.00	100.13	36.63	1.607 #	61.65%	35.00	0.8676#	46.46%

- used in calculation; * - invalid data; D - deleted from calcs. Autocalc has been used.

Calculations on 5 Mins data: EC50 Concentration:25.53% (95% confidence range: 24.24 to 26.90) 95% Confidence Factor: 1.054 Estimating Equation:LOG C =1.124 x LOG G +1.407 Coeff. of Determination (R²):0.9958 Slope: 0.8863 Correction Factor: 0.9538

Calculations on 15 Mins data: EC50 Concentration:51.61% (95% confidence range: 47.70 to 55.83) 95% Confidence Factor: 1.082 EC50 value was calculated from extrapolated data. Estimating Equation:LOG C =1.075 x LOG G +1.713 Coeff. of Determination (R²):0.9981 Slope: 0.9286 **APPENDIX F –** Chain-of-Custody Forms

		and the state of the state of the state of the state of the state of the state of the state of the state of the	California 5550 Morehous San Diego, CA 9 Phone 858.587.	e Drive, Suite 150 92121 .7333	See Check Box) Soo9 Pacific Highway East, Suite 2 Tacoma, WA 98424 Phone 253.922.4296 Fax 253.922.5814	8664 Comme Burnaby, Briti Phone 604.42	rce Court ish Colum 20.8773	ibia, Cana	da V5A 4N	3		1			
Floyd	Snider							0	ANAL	SES REC	UIR				Γ
Seattle, Enn B 206-20	oyd Snid Square, Gol WA 9810 meckel 92-2078	Union st, 5	Comp Addre City/S Conta Phone	oany ess State/Zip act e	Same		latella a	Enemus	ictotox Bacher						Receipt Temperature (°C)
DATE	TIME	MATRIX	CONTAINER	NO. OF	COMMENTS										Receil
411 411 2411 2411 2411	14:05 12:00 11:10 13:10 16:50 16:35 16:15	Sediment	Plashic Jour	m m m m	Extra volume collecte	. ک 				511 S11 S11 S11	- 0 - 0 - 0 - 0 - 0 - 0	41	-		5.9 7.9 8.2 9.0
ATION	SA	MPLE RECEIP	т		RELINOUISHED BY (CLIENT)										
6/COMMENTS	Received Go Matches Te	ood Condition?	15	(Signature) Entry M (Printed Name)	Brucho	10:40 (Date) (Pi 3/30/11 (Ci (Time) (Si	ompany) gnature)	e)		0			r)	(Date)	2
	Flayd Enn B. Seattle, Enn B. Seattle, Enn B. ZOG-20 enn.kc DATE 206-20 enn.kc DATE 2011 2011 2011 2011 2011 2011 2011 201	Flayd Snider Enn Brechel Enn Brechel Floyd Snid Two Union Square, Goi Seattle, WA 9810 Enn Breckel 206-297-2078 enn Breckel 2061 12:00 911 12:00 9211 13:10 2911 16:35 87911 16:15 87911 16:15 8 16:15 8 16:15 8 16:15 8 <td>Elayd Snider Enn Brechal Z06-2972-2078 enn brechal @ floyd snin DATE TIME MATRIX Saline Atten 14:05 Sediment 11:10 2411 12:200 411 12:200 411 12:200 411 12:200 411 13:10 2411 16:35 813 16:35 814 16:35 815 816 817 16:35 818 819 <</td> <td>Ealifornia S550 Morehous San Diego, CA Phone 858, 587, 39 Flayd Snider Enn Brecked Invoice Seattle, wa 98101 Good Enn Breckel Containers 206-297-2078 Phone Enn Breckel Containers 201 14:05 Sediment Plashc Still 16:50 Still 16:50 Still 16:50 Still 16:50 Still 15 Atton Sample Atton Sample Breached 15 Atton Matches Test Schedule? </td> <td>California S500 Morehouse Drive, Suite 150 San Diego, CA 92121 Phone 858.587.7333 Fax 97.500 Fax 97.500</td> <td>California S50 Morehuse Drive, Suite 150 S00 Pradit, Highmay East, Suite 2 S50 Morehuse Drive, Suite 150 S00 Pradit, Highmay East, Suite 2 Phone 885:87.7333 Pracess Fax 585:87.7361 Fracess Fax 585:887.3961 Fracess Fax 58:887.3961 Fracess Fax 59:897.3961 Fracess</td> <td>California Soft Partohouse Drive, Subte 150 Boot Parton, WA 19843 Boot Partohouse Drive, Subte 150 Boot Partohouse Drive, Subte 150</td> <td>California Simologo, Ca 9223 Simologo, Ca 9233 Simologo, Ca 933 Simologo, Ca 93</td> <td>California Sen Diego, California Sen Diego, California</td> <td>Date Time Matrix Org. California Date Date</td> <td>California Sin Dego, G. 92121 Proce 685807.333 Proce 53.922.496 Proce 58.987.733 Proce 53.922.496 Proce 58.987.733 Proce 58.927.735 Proce 58.987.733 Proce 58.927.735 Proce 58.987.733 Proce 58.927.735 Proce 58.987.735 Proce 58.927.735 Proce 58.997.735 Proce 58.927.735 Proce 58.997.735 Proce 58.927.735 Proce 58.997.735 Proce 58.927.735 Proce 58.997.735 Proce 58.927.735 Proce 58.927.725</td> <td>Date California Disson Deepo, GA3213 Disson Deepo, GA3213</td> <td>California Sign Meshage how, Sule 19 Sign Meshage how</td> <td>California Some Ministreen Some</td> <td>California South Andres Denke, Sale 150 South And</td>	Elayd Snider Enn Brechal Z06-2972-2078 enn brechal @ floyd snin DATE TIME MATRIX Saline Atten 14:05 Sediment 11:10 2411 12:200 411 12:200 411 12:200 411 12:200 411 13:10 2411 16:35 813 16:35 814 16:35 815 816 817 16:35 818 819 <	Ealifornia S550 Morehous San Diego, CA Phone 858, 587, 39 Flayd Snider Enn Brecked Invoice Seattle, wa 98101 Good Enn Breckel Containers 206-297-2078 Phone Enn Breckel Containers 201 14:05 Sediment Plashc Still 16:50 Still 16:50 Still 16:50 Still 16:50 Still 15 Atton Sample Atton Sample Breached 15 Atton Matches Test Schedule?	California S500 Morehouse Drive, Suite 150 San Diego, CA 92121 Phone 858.587.7333 Fax 97.500 Fax 97.500	California S50 Morehuse Drive, Suite 150 S00 Pradit, Highmay East, Suite 2 S50 Morehuse Drive, Suite 150 S00 Pradit, Highmay East, Suite 2 Phone 885:87.7333 Pracess Fax 585:87.7361 Fracess Fax 585:887.3961 Fracess Fax 58:887.3961 Fracess Fax 59:897.3961 Fracess	California Soft Partohouse Drive, Subte 150 Boot Parton, WA 19843 Boot Partohouse Drive, Subte 150 Boot Partohouse Drive, Subte 150	California Simologo, Ca 9223 Simologo, Ca 9233 Simologo, Ca 933 Simologo, Ca 93	California Sen Diego, California	Date Time Matrix Org. California Date Date	California Sin Dego, G. 92121 Proce 685807.333 Proce 53.922.496 Proce 58.987.733 Proce 53.922.496 Proce 58.987.733 Proce 58.927.735 Proce 58.987.733 Proce 58.927.735 Proce 58.987.733 Proce 58.927.735 Proce 58.987.735 Proce 58.927.735 Proce 58.997.735 Proce 58.927.735 Proce 58.997.735 Proce 58.927.735 Proce 58.997.735 Proce 58.927.735 Proce 58.997.735 Proce 58.927.735 Proce 58.927.725	Date California Disson Deepo, GA3213 Disson Deepo, GA3213	California Sign Meshage how, Sule 19 Sign Meshage how	California Some Ministreen Some	California South Andres Denke, Sale 150 South And

DISTRIBUTION: WHITE - Nautilus Environmental, COLOR - Originator

APPENDIX A – Results Summaries

Appendix A-1. 20-Day Solid Phase *Chironomous dilutus* Survival & Growth Port of Seattle Lora Lake RIFS Sediment Characterization

Test Initiation: April 13, 2011

^aNumber of pupae and flies

^bAFDW = Ash-Free Dry Weight. Weights are for larvae only, not pupated animals

^c One-tailed t-test. Survival data arcsine square-root transformed prior to analysis. Growth data either square root or log transformed prior to analysis Alpha = 0.05 Shaded values fail RSET one-hit criteria (Test sediment mortality - Control sediment mortality >25% and significantly different; Test sediment Growth/Control sediment Growth <0.7 and significantly different)

Replicates colored blue had Chaoborus in the samples

						Mean	St	Total org	AFDW per	Mean AFDW	St	Significant Compared t	
0.11-	Denlinete	Dud Ma		# Pupated ^a	0/ M		Dev	AFDW (mg) ^b	•			•	
Site	Replicate	Rnd. No.	# Alive		% Mortality	% Mortality	Dev	-	Org (mg)	per Org (mg)	Dev	Survival	Growth
	1	153 130	11 12	0 0	8.3 0.0			3.68 4.67	0.33 0.39				
	2	150	12	0	8.3			4.67 5.55	0.39				
	3	144	12	0	0.3 0.0			5.55 4.72	0.50				
Control	5	138	11	0	8.3	7.3	5.3	3.81	0.35	0.41	0.06		
	6	148	11	0	8.3			4.45	0.40				
	7	163	11	0	8.3			5.16	0.40				
	8	116	10	0	16.7			4.65	0.47				
	1	139	5	0	58.3			4.25	0.85				
	2	122	2	0	83.3			2.94	1.47				
	3	158	9	0	25.0			8.20	0.91				
LL- SED 1	4	107	4	0	66.7	31.3	33.6	6.62	1.66	1.02	0.35	No	No
LL- SED I	5	108	12	0	0.0	31.3	33.0	11.88	0.99	1.02	0.35	INO	INO
	6	119	12	0	0.0			9.57	0.80				
	7	140	12	0	0.0			8.68	0.72				
	8	136	10	0	16.7			7.56	0.76				
	1	101	2	0	83.3			1.32	0.66				
	2	141	1	0	91.7			0.39	0.39				
	3	128	1	0	91.7			0.23	0.23				
LL- SED 2	4	154	7	0	41.7	77.1	18.2	3.87	0.55	0.85	0.46	Yes	No
	5	161	5	0	58.3			5.37	1.07	0.00	0110		
	6	155	3	0	75.0			3.08	1.03				
	7	146	1	0	91.7			1.39	1.39				
	8	131	2	0	83.3			2.97	1.49				
	1	112	8	0	33.3			13.30	1.66				
	2	117	4	0	66.7			7.47	1.87				
	3	115	11	0	8.3			15.27	1.39				
LL- SED 3	4	113	11	0	8.3	30.2 2	27.8	13.13	1.19	1.41	0.29	Yes	No
	5	156	4	0	66.7			5.86	1.47				
	6	124	11	0	8.3			12.62	1.15				
	7	157	12	0	0.0			11.74	0.98				
	8	111	6	0	50.0			9.49	1.58				

Appendix A-1. 20-Day Solid Phase *Chironomous dilutus* Survival & Growth Port of Seattle Lora Lake RIFS Sediment Characterization

Test Initiation: April 13, 2011

^aNumber of pupae and flies

^bAFDW = Ash-Free Dry Weight. Weights are for larvae only, not pupated animals

^c One-tailed t-test. Survival data arcsine square-root transformed prior to analysis. Growth data either square root or log transformed prior to analysis Alpha = 0.05 Shaded values fail RSET one-hit criteria (Test sediment mortality - Control sediment mortality >25% and significantly different; Test sediment Growth/Control sediment Growth <0.7 and significantly different)

Replicates colored blue had Chaoborus in the samples

						Maan	C 1	Tatal ann			St	Significant	
	-			# Dumeted ^a		Mean	St	Total org AFDW (mg) ^b	AFDW per	Mean AFDW		Compared t	
Site	Replicate	Rnd. No.	# Alive	# Pupated ^a	% Mortality	% Mortality	Dev	(0)	Org (mg)	per Org (mg)	Dev	Survival	Growth
	1	162	9	0	25.0			4.22	0.47				
	2	135	8	0	33.3			3.46	0.43				
	3	126	7	0	41.7			7.78	1.11				
LL- SED 4	4	102	5	0	58.3	31.3	19.3	10.59	2.12	1.01	0.53	Yes	No
	5	118	12	0	0.0			10.27	0.86				
	6	132	7	0	41.7			8.42	1.20				
	7	110	11	0	8.3			10.59	0.96				
	8	123	7	0	41.7			6.53	0.93				
	1	147	7	0	41.7			8.96	1.28				
	2	125	8	0	33.3			12.38	1.55				
	3	160	8	0	33.3			7.84	0.98				
MC- SED 1	4	137	9	0	25.0	25.0	12.6	12.75	1.42	1.19	0.36	Yes	No
	5	145	11	0	8.3			10.41	0.95				
	6	159	10	0	16.7			10.13	1.01				
	7	152	11	0	8.3			6.71	0.61				
	8	104	8	0	33.3			13.59	1.70				
	1	121	9	0	25.0			12.33	1.37				
	2	164	9	0	25.0			9.19	1.02				
	3	151	8	0	33.3			8.87	1.11				
MC- SED 2	4	103	8	0	33.3	20.8	10.9	11.14	1.39	1.22	0.22	Yes	No
	5	114	10	0	16.7			15.86	1.59				
	6 7	127	10	0	16.7			10.84	1.08				
	,	129	10	0	16.7			9.44	0.94				
	8	109	12	0	0.0			14.74	1.23				
	9	120	8	0	33.3			10.60	1.33				
	10	149	10	0	16.7			10.75	1.08				
	11	143	9	0	25.0			8.98	1.00				
MC- SED 3	12	142	9	0	25.0	30.2	10.9	10.95	1.22	1.28	0.21	Yes	No
	13	133	6	0	50.0			9.83	1.64				
	14	134	7	0	41.7			10.39	1.48				
	15	105	9	0	25.0			12.04	1.34				
	16	106	9	0	25.0			10.69	1.19				

Appendix Table A-2. *Hyalella azteca* 10-day Survival Port of Seattle Lora Lake RIFS Sediment Characterization

Test Initiation: April 5, 2011

		#		Mean		Significant Decrease Compared to
Site	Rep	Alive	% Mortality	% Mortality	St. Dev.	Control ^a
	1	10	0			
	2	9	10			
	3	10	0			
Control	4 5	10 10	0 0	3.8	5.2	
	6	9	10			
	7	10	0			
	8	9	10			
	1	9	10			
	2 3	10 10	0 0			
	4	10	0			
LL-SED 1	5	9	10	5.0	7.6	
	6	10	0			
	7	10	0			
	8	8	20			
	1 2	10 10	0 0			
	3	10	0			
LL-SED 2	4	9	10	20	5.2	
LL-SED 2	5	9	10	3.8	5.2	
	6	9	10			
	7 8	10 10	0 0			
	1	10	0			
	2	9	10			
	3	10	0			
LL-SED 3	4	10	0	3.8	5.2	
	5	10	0	0.0	5.2	
	6 7	9 10	10 0			
	8	9	10			
	1	10	0			
	2	10	0			
	3	10	0			
LL-SED 4	4	10	0	0.0	0.0	
	5 6	10 10	0 0			
	7	10	0			
	8	10	0			
	1	10	0			
	2	10	0			
	3	9	10			
MC-SED 1	4 5	9 10	10 0	6.3	7.4	
	6	10	0			
	7	9	10			
	8	8	20			
	1	10	0			
	2 3	10 9	0 10			
	3	9 9	10			
MC-SED 2	5	10	0	3.8	5.2	
	6	10	0			
	7	10	0			
	8	9	10			
	1 2	9 9	10 10			
	2 3	9 10	10 0			
	4	9	10	0.0	0.4	
MC-SED 3	5	8	20	8.8	6.4	
	6	9	10			
	7	10	0			
	8	9	10			

Appendix Table A-3. Microtox 100 Percent Sediment Porewater Test Port of Seattle Lora Lake RIFS Sediment Characterization Client Floyd-Snider Test Date: 3/31/2011

										Quality Co	ntrol Steps
				Light F	Reading					control light readings	Evaluation of initial light
Site				Replicate					T _(mean) /	compared to initial control	output in site sediments
	Reading	1	2	3	4	5	Mean	St.Dev.	C _(mean)	F _{c(mean)} /I _{c(mean)}	l _{(0)T(mean)} ∕I _{(0)C(mean}
	I ₍₀₎	99	105	106	112	110	106				
	I ₍₅₎	93	99	97	106	100	99			0.93	
CON	I ₍₁₅₎	82	91	87	94	87	88			0.83	
	C ₍₅₎	0.94	0.94	0.92	0.95	0.91	0.93	0.02			
	C ₍₁₅₎	0.83	0.87	0.82	0.84	0.79	0.83	0.03			
	I ₍₀₎	91	83	85	86	70	83				0.78
	I ₍₅₎	83	78	81	79	62	77				
LL Sed 1	I ₍₁₅₎	73	69	75	68	58	69				
	T ₍₅₎	0.91	0.94	0.95	0.92	0.89	0.92	0.03	0.99		
	T (15)	0.80	0.83	0.88	0.79	0.83	0.83	0.04	1.00		
	I ₍₀₎	66	61	62	70	65	65				0.61
	I ₍₅₎	63	57	59	65	62	61				
LL Sed 2	I ₍₁₅₎	59	54	55	60	56	57				
	T ₍₅₎	0.95	0.93	0.95	0.93	0.95	0.94	0.01	1.02		
	T ₍₁₅₎	0.89	0.89	0.89	0.86	0.86	0.88	0.02	1.06		
	I ₍₀₎	80	77	76	79	77	78				0.73
	I ₍₅₎	75	75	69	73	72	73				
LL Sed 3	l ₍₁₅₎	68	60	61	66	65	64				
	T ₍₅₎	0.94	0.97	0.91	0.92	0.94	0.94	0.02	1.01		
	T ₍₁₅₎	0.85	0.78	0.80	0.84	0.84	0.82	0.03	0.99		
	I ₍₀₎	67	76	70	68	67	70				0.65
	I ₍₅₎	65	70	65	68	63	66				
LL Sed 4	I ₍₁₅₎	59	60	56	58	56	58				
	T ₍₅₎	0.97	0.92	0.93	1.00	0.94	0.95	0.03	1.02		
	T ₍₁₅₎	0.88	0.79	0.80	0.85	0.84	0.83	0.04	1.00		

 $I_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

C(t), R(t), and T(t) are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. Is control final mean output greater than or equal to 72% control initial mean output?

I ₍₅₎ :F _{c(mean)} /I _{c(mean):}	93%	YES
I ₍₁₅₎ :F _{c(mean)} /I _{c(mean)} :	83%	YES

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (use reference sediment for statistical analysis if available).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

LL Sed 1	I _{T(mean)} /I _{C(mean}):	78%	NO
LL Sed 2	I _{T(mean)} /I _{C(mean}):	61%	NO
LL Sed 3	I _{T(mean)} /I _{C(mean}):	73%	NO
LL Sed 4	I _{T(mean)} /I _{C(mean}):	65%	NO

INVALD: If the test sediment is greater than 110%, the results in uninterpretable

YES: If test sediment is reference, reference is acceptable

Appendix Table A-3. Microtox 100 Percent Sediment Porewater Test Port of Seattle Lora Lake RIFS Sediment Characterization Client Floyd-Snider Test Date: 3/31/2011

										Quality Co	ntrol Steps
				Light F	Reading					control light readings compared to	Evaluation of initial light output in site
Site				Replicate					T _(mean) /	initial control	sediments
	Reading	1	2	3	4	5	Mean	St.Dev.	C _(mean)	F _{c(mean)} /I _{c(mean)}	l _{(0)T(mean)} /l _{(0)C(mean)}
	I ₍₀₎	94	98	96	99	94	96				
	I ₍₅₎	90	91	89	90	91	90			0.94	
CON	I ₍₁₅₎	91	89	84	84	82	86			0.89	
	C ₍₅₎	0.96	0.93	0.93	0.91	0.97	0.94	0.02			
	C ₍₁₅₎	0.97	0.91	0.88	0.85	0.87	0.89	0.05			
	I ₍₀₎	100	94	89	97	94	95				0.99
	I ₍₅₎	89	91	85	90	91	89				
MC Sed 1	I ₍₁₅₎	82	86	79	83	81	82				
	T ₍₅₎	0.89	0.97	0.96	0.93	0.97	0.94	0.03	1.00		
	T ₍₁₅₎	0.82	0.91	0.89	0.86	0.86	0.87	0.04	0.97		
	I ₍₀₎	88	85	86	85	86	86				0.89
	I ₍₅₎	86	83	83	82	86	84				
MC Sed 2	I ₍₁₅₎	79	76	77	76	81	78				
	T ₍₅₎	0.98	0.98	0.97	0.96	1.00	0.98	0.01	1.04		
	T ₍₁₅₎	0.90	0.89	0.90	0.89	0.94	0.90	0.02	1.01		
	I ₍₀₎	89	90	90	90	85	89				0.92
	I ₍₅₎	84	85	87	90	79	85				
MC Sed 3	l ₍₁₅₎	77	80	77	79	76	78				
	T ₍₅₎	0.94	0.94	0.97	1.00	0.93	0.96	0.03	1.02		
	T ₍₁₅₎	0.87	0.89	0.86	0.88	0.89	0.88	0.02	0.98		
	I ₍₀₎						#DIV/0!				#DIV/0!
	I ₍₅₎						#DIV/0!				
	I ₍₁₅₎						#DIV/0!				
	T ₍₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!		
	T ₍₁₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!		

 $I_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

C(t), R(t), and T(t) are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. Is control final mean output greater than or equal to 72% control initial mean output?

I ₍₅₎ :F _{c(mean)} /I _{c(mean)} :	94%	YES
I ₍₁₅₎ :F _{c(mean)} /I _{c(mean)} :	89%	YES

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (use reference sediment for statistical analysis if available).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

MC Sed 1	I _{T(mean)} /I _{C(mean}):	99%	YES
MC Sed 2	I _{T(mean)} /I _{C(mean}):	89%	YES
MC Sed 3	I _{T(mean)} /I _{C(mean}):	92%	YES
(I _{T(mean)} /I _{C(mean}):	#DIV/0!	#DIV/0!

INVALD: If the test sediment is greater than 110%, the results in uninterpretable

YES: If test sediment is reference, reference is acceptable

APPENDIX B – Statistical Analyses

Sample:	x1	Ref Samp:	x2
Samp ID:	LL-Sed1	Ref ID:	Control
Alias:	Chironomid Mortality	Alias:	Chironomid Mortality
Replicates:	8	Replicates:	8
Mean:	31.25	Mean:	7.275
SD:	33.548	SD:	5.344
Tr Mean:	28.067	Tr Mean:	13.48
Trans SD:	26.715	Trans SD:	8.701

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	22.037	Statistic:	Approximate t
Residual SD:	17.054	Test Residual SD:	12.599	Balanced Design:	Yes
SS:	5525.904	Ref. Residual Mean:	6.74	Transformation:	ArcSin
K:	8	Ref. Residual SD:	4.877		
b:	71.776	Deg. of Freedom:	14		
				Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.9323	Calculated Value:	3.2025	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
Normally		Variances		Degrees	of Freedom: 8
Distributed:	Yes	Homogeneous:	No	Experimental	Alpha Level: 0.05
				Calc	ulated Value: 1.4684
Override Option:	N/A			C	Critical Value: >= 1.860
				Accept Nul	l Hypothesis: Yes
					Power:
				Min. Differend	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	58.3	49.778	8.3	16.744	21.711	3.264			-28.067
2	83.3	65.879	0	0	37.813	13.48			-28.067
3	25	30	8.3	16.744	1.933	3.264			-28.067
4	66.7	54.756	0	0	26.689	13.48			-13.48
5	0	0	8.3	16.744	28.067	3.264			-13.48
6	0	0	8.3	16.744	28.067	3.264			-3.946
7	0	0	8.3	16.744	28.067	3.264			1.933
8	16.7	24.12	16.7	24.12	3.946	10.64			3.264
9									3.264
10									3.264
11									3.264
12									3.264
13									10.64
14									21.711
15									26.689
16									37.813

Sample:	x1
Samp ID:	LL-Sed2
Alias:	Chironomid Mortality
Replicates:	8
Mean:	77.088
SD:	18.234
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	9.518	Statistic:	Mann-Whitney
Residual SD:	9.073	Test Residual SD:	6.647	Balanced Design:	Yes
SS:	1563.927	Ref. Residual Mean:	6.74	Transformation:	rank-order
K:	8	Ref. Residual SD:	4.877		
b:	36.139	Deg. of Freedom:	14		
				Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.8351	Calculated Value:	0.9531	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
				Mann	-Whitney N1: 8
				Mann	-Whitney N2: 8
Normally		Variances		Degrees	of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental	Alpha Level: 0.05
				Calci	ulated Value: 64
Override Option:	Not Invoked			C	Critical Value: >= 49.000
				Accept Nul	I Hypothesis: No
					Power:
				Min. Difference	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	83.3	12.5	8.3	5	3.189	3.264	1.5		-22.468
2	91.7	15	0	1.5	10.565	13.48	1.5		-13.48
3	91.7	15	8.3	5	10.565	3.264	5		-13.48
4	41.7	9	0	1.5	22.468	13.48	5		-12.913
5	58.3	10	8.3	5	12.913	3.264	5		-2.691
6	75	11	8.3	5	2.691	3.264	5		3.189
7	91.7	15	8.3	5	10.565	3.264	5		3.189
8	83.3	12.5	16.7	8	3.189	10.64	8		3.264
9							9		3.264
10							10		3.264
11							11		3.264
12							12.5		3.264
13							12.5		10.565
14							15		10.565
15							15		10.565
16							15		10.64

Sample:	x1
Samp ID:	LL-Sed3
Alias:	Chironomid Mortality
Replicates:	8
Mean:	30.2
SD:	27.818
Tr Mean:	29.998
Trans SD:	20.373

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	13.48
Trans SD:	8.701

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	17.44	Statistic:	Approximate t
Residual SD:	13.446	Test Residual SD:	8.212	Balanced Design:	Yes
SS:	3435.261	Ref. Residual Mean:	6.74	Transformation:	ArcSin
K:	8	Ref. Residual SD:	4.877		
b:	56.415	Deg. of Freedom:	14		
		-		Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.9265	Calculated Value:	3.169	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
Normally		Variances		Degrees	of Freedom: 9
Distributed:	Yes	Homogeneous:	No	J. J. J. J. J. J. J. J. J. J. J. J. J. J	Alpha Level: 0.05
		Ŭ		Calc	ulated Value: 2.109
Override Option:	N/A			C	Critical Value: >= 1.833
				Accept Nul	l Hypothesis: No
					Power:
				Min. Differen	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	33.3	35.244	8.3	16.744	5.246	3.264			-29.998
2	66.7	54.756	0	0	24.757	13.48			-13.48
3	8.3	16.744	8.3	16.744	13.254	3.264			-13.48
4	8.3	16.744	0	0	13.254	13.48			-13.254
5	66.7	54.756	8.3	16.744	24.757	3.264			-13.254
6	8.3	16.744	8.3	16.744	13.254	3.264			-13.254
7	0	0	8.3	16.744	29.998	3.264			3.264
8	50	45	16.7	24.12	15.001	10.64			3.264
9									3.264
10									3.264
11									3.264
12									5.246
13									10.64
14									15.001
15									24.757
16									24.757

Sample:	x1
Samp ID:	LL-Sed4
Alias:	Chironomid Mortality
Replicates:	8
Mean:	31.25
SD:	19.294
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	11.98	Statistic: Mann-Whitney	
Residual SD:	11.046	Test Residual SD:	9.565	Balanced Design: Yes	
SS:	2318.443	Ref. Residual Mean:	6.74	Transformation: rank-order	
K:	8	Ref. Residual SD:	4.877		
b:	44.941	Deg. of Freedom:	14		
				Experimental Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x2	
Calculated Value:	0.8711	Calculated Value:	1.3803	Alternate: x1 > x2	
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
				Mann-Whitney N1: 8	
				Mann-Whitney N2: 8	
Normally		Variances		Degrees of Freedom:	
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.0	5
		_		Calculated Value: 53.	5
Override Option:	Not Invoked			Critical Value: >=	49.000
				Accept Null Hypothesis: No	
				Power:	
				Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	25	11	8.3	6.5	1.554	3.264	2		-31.554
2	33.3	12	0	2	3.69	13.48	2		-14.81
3	41.7	14	8.3	6.5	8.668	3.264	2		-13.48
4	58.3	16	0	2	18.224	13.48	6.5		-13.48
5	0	2	8.3	6.5	31.554	3.264	6.5		-1.554
6	41.7	14	8.3	6.5	8.668	3.264	6.5		3.264
7	8.3	6.5	8.3	6.5	14.81	3.264	6.5		3.264
8	41.7	14	16.7	10	8.668	10.64	6.5		3.264
9							6.5		3.264
10							10		3.264
11							11		3.69
12							12		8.668
13							14		8.668
14							14		8.668
15							14		10.64
16							16		18.224

Sample:	x1	Ref Samp:	x2
Samp ID:	MC-Sed1	Ref ID:	Control
Alias:	Chironomid Mortality	Alias:	Chironomid Mortality
Replicates:	8	Replicates:	8
Mean:	24.988	Mean:	7.275
SD:	12.605	SD:	5.344
Tr Mean:	N/A	Tr Mean:	N/A
Trans SD:	N/A	Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	7.494	Statistic: Mann-Whitney
Residual SD:	7.601	Test Residual SD:	4.114	Balanced Design: Yes
SS:	1097.734	Ref. Residual Mean:	6.74	Transformation: rank-order
K:	8	Ref. Residual SD:	4.877	
b:	30.434	Deg. of Freedom:	14	
				Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x2
Calculated Value:	0.8438	Calculated Value:	0.3344	Alternate: $x1 > x2$
Critical Value:	<= 0.887	Critical Value:	>= 1.761	
				Mann-Whitney N1: 8
				Mann-Whitney N2: 8
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.05
		_		Calculated Value: 56.5
Override Option:	Not Invoked			Critical Value: >= 49.000
				Accept Null Hypothesis: No
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	41.7	16	8.3	6	11.027	3.264	1.5		-13.48
2	33.3	14	0	1.5	6.049	13.48	1.5		-13.48
3	33.3	14	8.3	6	6.049	3.264	6		-12.451
4	25	12	0	1.5	0.805	13.48	6		-12.451
5	8.3	6	8.3	6	12.451	3.264	6		-5.075
6	16.7	10.5	8.3	6	5.075	3.264	6		0.805
7	8.3	6	8.3	6	12.451	3.264	6		3.264
8	33.3	14	16.7	10.5	6.049	10.64	6		3.264
9							6		3.264
10							10.5		3.264
11							10.5		3.264
12							12		6.049
13							14		6.049
14							14		6.049
15							14		10.64
16							16		11.027

Sample:	x1
Samp ID:	MC-Sed2
Alias:	Chironomid Mortality
Replicates:	8
Mean:	20.838
SD:	10.895
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	7.266	Statistic:	Mann-Whitney
Residual SD:	8.633	Test Residual SD:	8.14	Balanced Design:	Yes
SS:	1416.094	Ref. Residual Mean:	6.74	Transformation:	rank-order
K:	8	Ref. Residual SD:	4.877		
b:	34.222	Deg. of Freedom:	14		
				Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.827	Calculated Value:	0.1567	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
				Mann	Whitney N1: 8
				Mann	Whitney N2: 8
Normally		Variances		Degrees	of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental	Alpha Level: 0.05
				Calc	ulated Value: 55.5
Override Option:	Not Invoked			C	Critical Value: >= 49.000
				Accept Nul	Hypothesis: No
					Power:
				Min. Difference	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	25	13.5	8.3	6	4.644	3.264	2		-25.356
2	25	13.5	0	2	4.644	13.48	2		-13.48
3	33.3	15.5	8.3	6	9.888	3.264	2		-13.48
4	33.3	15.5	0	2	9.888	13.48	6		-1.236
5	16.7	10.5	8.3	6	1.236	3.264	6		-1.236
6	16.7	10.5	8.3	6	1.236	3.264	6		-1.236
7	16.7	10.5	8.3	6	1.236	3.264	6		3.264
8	0	2	16.7	10.5	25.356	10.64	6		3.264
9							10.5		3.264
10							10.5		3.264
11							10.5		3.264
12							10.5		4.644
13							13.5		4.644
14							13.5		9.888
15							15.5		9.888
16							15.5		10.64

Sample:	x1
Samp ID:	MC-Sed3
Alias:	Chironomid Mortality
Replicates:	8
Mean:	30.213
SD:	10.852
Tr Mean:	33.073
Trans SD:	6.719

Ref Samp:	x2
Ref ID:	Control
Alias:	Chironomid Mortality
Replicates:	8
Mean:	7.275
SD:	5.344
Tr Mean:	13.48
Trans SD:	8.701

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	5.312	Statistic:	Student's t	
Residual SD:	6.672	Test Residual SD:	3.592	Balanced Design:	Yes	
SS:	845.908	Ref. Residual Mean:	6.74	Transformation:	ArcSin	
K:	8	Ref. Residual SD:	4.877			
b:	28.02	Deg. of Freedom:	14			
				Experiment	al Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2	
Calculated Value:	0.9282	Calculated Value:	0.6671	Alternate:	x1 > x2	
Critical Value:	<= 0.887	Critical Value:	>= 1.761			
Normally		Variances		Degrees	of Freedom:	14
Distributed:	Yes	Homogeneous:	Yes	Experimental	Alpha Level:	0.05
		_		Calc	ulated Value:	5.0412
Override Option:	N/A			0	Critical Value:	>= 1.761
				Accept Nul	I Hypothesis:	No
					Power:	
				Min. Differen	ce for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	33.3	35.244	8.3	16.744	2.171	3.264			-13.48
2	16.7	24.12	0	0	8.953	13.48			-13.48
3	25	30	8.3	16.744	3.073	3.264			-8.953
4	25	30	0	0	3.073	13.48			-3.073
5	50	45	8.3	16.744	11.927	3.264			-3.073
6	41.7	40.222	8.3	16.744	7.149	3.264			-3.073
7	25	30	8.3	16.744	3.073	3.264			-3.073
8	25	30	16.7	24.12	3.073	10.64			2.171
9									3.264
10									3.264
11									3.264
12									3.264
13									3.264
14									7.149
15									10.64
16									11.927

Sample:	x1
Samp ID:	LL-Sed-1
Alias:	Hyalella Mortality
Replicates:	8
Mean:	5
SD:	7.559
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Hyalella Mortality
Replicates:	8
Mean:	3.75
SD:	5.175
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	9.912	Statistic:	Mann-Whitne	ey
Residual SD:	8.943	Test Residual SD:	3.712	Balanced Design:	Yes	
SS:	1519.604	Ref. Residual Mean:	8.641	Transformation:	rank-order	
K:	8	Ref. Residual SD:	2.385			
b:	32.924	Deg. of Freedom:	14			
				Experiment	al Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2	
Calculated Value:	0.7133	Calculated Value:	0.8143	Alternate:	x1 < x2	
Critical Value:	<= 0.887	Critical Value:	>= 1.761			
				Mann	-Whitney N1:	8
				Mann	-Whitney N2:	8
Normally		Variances		Degrees	of Freedom:	
Distributed:	No	Homogeneous:	Yes	Experimental	Alpha Level:	0.05
		-		Calc	ulated Value:	30.5
Override Option:	Not Invoked			(Critical Value:	>= 49.000
				Accept Nul	I Hypothesis:	Yes
					Power:	
				Min. Differen	ce for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	10	13	0	5.5	10.506	6.913	5.5		-7.929
2	0	5.5	10	13	7.929	11.522	5.5		-7.929
3	0	5.5	0	5.5	7.929	6.913	5.5		-7.929
4	0	5.5	0	5.5	7.929	6.913	5.5		-7.929
5	10	13	0	5.5	10.506	6.913	5.5		-7.929
6	0	5.5	10	13	7.929	11.522	5.5		-6.913
7	0	5.5	0	5.5	7.929	6.913	5.5		-6.913
8	20	16	10	13	18.636	11.522	5.5		-6.913
9							5.5		-6.913
10							5.5		-6.913
11							13		10.506
12							13		10.506
13							13		11.522
14							13		11.522
15							13		11.522
16							16		18.636

Sample:	x1
Samp ID:	MC-Sed1
Alias:	Amphipod Mortality
Replicates:	8
Mean:	6.25
SD:	7.44
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	Amphipod Mortality
Replicates:	8
Mean:	3.75
SD:	5.175
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	10.234	Statistic: Mann-Whitney
Residual SD:	8.958	Test Residual SD:	2.661	Balanced Design: Yes
SS:	1524.616	Ref. Residual Mean:	8.641	Transformation: rank-order
K:	8	Ref. Residual SD:	2.385	
b:	34.894	Deg. of Freedom:	14	
				Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x2
Calculated Value:	0.7986	Calculated Value:	1.2603	Alternate: $x1 > x2$
Critical Value:	<= 0.887	Critical Value:	>= 1.761	
				Mann-Whitney N1: 8
				Mann-Whitney N2: 8
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.05
				Calculated Value: 37.5
Override Option:	Not Invoked			Critical Value: >= 49.000
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0	5	0	5	10.234	6.913	5		-10.234
2	0	5	10	12.5	10.234	11.522	5		-10.234
3	10	12.5	0	5	8.201	6.913	5		-10.234
4	10	12.5	0	5	8.201	6.913	5		-10.234
5	0	5	0	5	10.234	6.913	5		-6.913
6	0	5	10	12.5	10.234	11.522	5		-6.913
7	10	12.5	0	5	8.201	6.913	5		-6.913
8	20	16	10	12.5	16.331	11.522	5		-6.913
9							5		-6.913
10							12.5		8.201
11							12.5		8.201
12							12.5		8.201
13							12.5		11.522
14							12.5		11.522
15							12.5		11.522
16							16		16.331

Sample:	x1	
Samp ID:	MC-Sed3	
Alias:	Amphipod Mortality	
Replicates:	8	
Mean:	8.75	
SD:	6.409	
Tr Mean:	8.75	
Trans SD:	6.409	

Ref Samp:	x2
Ref ID:	Control
Alias:	Amphipod Mortality
Replicates:	8
Mean:	3.75
SD:	5.175
Tr Mean:	3.75
Trans SD:	5.175

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	4.375	Statistic:	Student's t
Residual SD:	5	Test Residual SD:	4.381	Balanced Design:	Yes
SS:	475	Ref. Residual Mean:	4.688	Transformation:	No Transformation
K:	8	Ref. Residual SD:	1.294		
b:	21.03	Deg. of Freedom:	14		
				Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2
Calculated Value:	0.931	Calculated Value:	0.1935	Alternate:	x1 > x2
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
Normally		Variances		Degrees	of Freedom: 14
Distributed:	Yes	Homogeneous:	Yes	Experimental	Alpha Level: 0.05
				Calc	ulated Value: 1.7168
Override Option:	N/A			(Critical Value: >= 1.761
				Accept Nul	I Hypothesis: Yes
					Power:
				Min. Differen	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	10	10	0	0	1.25	3.75			-8.75
2	10	10	10	10	1.25	6.25			-8.75
3	0	0	0	0	8.75	3.75			-3.75
4	10	10	0	0	1.25	3.75			-3.75
5	20	20	0	0	11.25	3.75			-3.75
6	10	10	10	10	1.25	6.25			-3.75
7	0	0	0	0	8.75	3.75			-3.75
8	10	10	10	10	1.25	6.25			1.25
9									1.25
10									1.25
11									1.25
12									1.25
13									6.25
14									6.25
15									6.25
16									11.25

APPENDIX C – Water Quality Summaries

Appendix Table B-1. Twenty-Day Solid-Phase Results (*Chironomus tentans*) Port of Seattle Lora Lake RIFS Sediment Characterization Water Quality Data

Initiated 13 April 2011

				Control				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)
<u> </u>	10.0		0.75	101	50	00	1.0	0.045
0	19.6	8.1	6.75	131	52	68	<1.0	0.015
1	19.9	7.0	6.84	127				
2	19.7	6.8	7.09	145				
3	19.6	6.5	7.12	137				
4	19.5	6.4	7.11	139				
5	19.6	6.3	7.11	140	64	92	<1.0	<0.010
6	19.7	7.2	7.38	165				
7	19.8	5.7	7.24	173				
8	19.8	5.3	7.30	175				
9	19.6	5.4	7.10	178				
10	19.7	5.9	7.28	174	72	88	1.2	<0.010
11	19.4	6.0	7.48	171				
12	19.7	6.7	7.44	170				
13	19.8	5.7	7.10	175				
14	19.9	4.8	7.09	171				
15	19.8	4.6	7.07	165	80	96	<1.0	<0.010
16	19.7	4.3	7.06	166				
17	19.8	4.3	7.10	166				
18	19.7	4.4	7.07	168				
19	19.8	4.0	6.88	221				
20	19.9	4.0	6.93	176	80	88	3.2	<0.010
Mean	19.7	5.7	7.12	163	70	86	nc	nc
Min	19.4	4.0	6.75	127	52	68	<1.0	<0.010
Max	19.9	8.1	7.48	221	80	96	3.2	0.015

	LL-SED-1									
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)		
0	10.5	7.0	7.27	100	76	00	1.0	0.011		
0	19.5	7.0		169	-	96	<1.0	0.011		
1	19.7	5.7	7.05	171						
2	19.6	5.7	7.08	173						
3	19.6	5.8	7.10	173						
4	19.5	5.7	7.12	177						
5	19.6	5.8	7.11	174	76	84	<1.0	<0.010		
6	19.7	5.8	7.16	166						
7	19.8	3.9	7.03	171						
8	19.7	5.0	7.15	172						
9	19.6	5.0	7.00	173						
10	19.6	5.0	7.21	169	72	88	<1.0	<0.010		
11	19.5	5.4	7.34	169						
12	19.7	5.4	7.40	169						
13	19.7	5.6	7.07	175						
14	19.7	4.6	7.30	172						
15	19.7	5.0	7.06	172	76	96	<1.0	<0.010		
16	19.6	4.5	7.10	171						
17	19.8	4.3	7.08	172						
18	19.7	4.2	7.10	172						
19	19.6	4.2	6.99	188						
20	19.6	4.0	6.90	173	88	100	3.0	<0.010		
Mean	19.6	5.1	7.12	172	78	93	nc	nc		
Min	19.5	3.9	6.90	166	72	84	<1.0	<0.010		
Max	19.8	7.0	7.40	188	88	100	3.0	0.011		

	LL-SED-2									
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)		
•	107		7.10	174	24	101	0.4	0.000		
0	19.7	6.1	7.12	174	84	104	6.1	0.036		
1	19.9	4.6	6.89	179						
2	19.7	4.9	6.96	173						
3	19.6	4.8	7.01	174						
4	19.5	4.9	7.02	175						
5	19.6	4.9	6.96	174	72	88	9.5	<0.010		
6	19.7	5.6	7.05	166						
7	19.9	5.1	7.09	168						
8	19.7	5.2	7.09	167						
9	19.5	5.6	7.02	166						
10	19.6	5.3	7.12	161	64	76	2.1	<0.010		
11	19.4	5.9	7.24	161						
12	19.8	5.8	7.23	159						
13	19.6	6.3	7.05	160						
14	19.6	5.8	7.11	155						
15	19.7	5.6	7.06	150	76	76	<1.0	0.010		
16	19.6	5.0	6.95	148						
17	19.8	4.8	6.99	149						
18	19.7	4.6	7.00	150						
19	19.7	4.4	6.97	158						
20	19.7	4.1	6.90	156	76	92	2.7	<0.010		
Mean	19.7	5.2	7.04	163	74	87	nc	nc		
Min	19.4	4.1	6.89	148	64	76	<1.0	<0.010		
Max	19.9	6.3	7.24	179	84	104	9.5	0.036		

				LL-SED-3				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)
0	19.6	6.8	7.29	165	72	100	<1.0	0.020
1	19.9	6.3	7.10	166				
2	19.7	6.3	7.12	166				
3	19.6	6.2	7.11	167				
4	19.6	6.3	7.12	167				
5	19.6	6.2	7.09	166	72	96	<1.0	<0.010
6	19.8	6.3	7.20	166				
7	19.8	5.8	7.21	169				
8	19.8	6.0	7.20	171				
9	19.7	5.6	7.12	172				
10	19.5	6.1	7.29	166	68	88	<1.0	<0.010
11	19.4	6.0	7.35	165				
12	19.6	6.3	7.31	164				
13	19.6	6.6	7.09	166				
14	19.7	6.0	7.22	163				
15	19.6	6.1	7.13	158	68	100	<1.0	0.033
16	19.6	4.7	6.97	156				
17	19.7	4.8	7.06	159				
18	19.8	4.8	7.00	156				
19	19.6	4.2	6.91	166				
20	19.6	4.1	6.95	161	80	96	3.1	<0.010
Mean	19.7	5.8	7.14	165	72	96	nc	nc
Min	19.4	4.1	6.91	156	68	88	<1.0	<0.010
Max	19.9	6.8	7.35	172	80	100	3.1	0.033

				LL-SED-4				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Overlying Sulfides (mg/l)
0	19.5	6.6	7.35	165	76	96	<1.0	0.029
1	19.8	5.3	7.08	162				
2	19.7	5.7	7.12	169				
3	19.6	5.4	7.14	168				
4	19.7	5.5	7.13	169				
5	19.6	5.2	7.11	170	80	100	<1.0	<0.010
6	19.7	5.8	7.19	169				
7	19.6	5.0	7.19	171				
8	19.7	5.2	7.23	171				
9	19.6	4.9	7.10	151				
10	19.6	5.2	7.30	171	76	88	<1.0	0.013
11	19.4	5.4	7.53	174				
12	19.7	6.2	7.28	168				
13	19.7	5.3	7.23	179				
14	19.6	5.0	7.27	174				
15	19.5	4.6	7.10	169	88	88	<1.0	0.023
16	19.5	4.7	7.07	164				
17	19.6	4.6	7.16	170				
18	19.7	4.7	7.09	166				
19	19.6	4.2	6.84	176				
20	19.6	4.0	6.84	171	88	100	3.4	<0.010
Mean	19.6	5.2	7.16	169	82	94	nc	nc
Min	19.4	4.0	6.84	151	76	88	<1.0	<0.010
Max	19.8	6.6	7.53	179	88	100	3.4	0.029

				MC-SED-1				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH_3 (mg/l)	Total Overlying Sulfides (mg/l)
0	19.6	6.9	7.35	160	72	96	<1.0	<0.010
1	19.6	6.5	7.20	160				
2	19.6	6.6	7.18	164				
3	19.6	6.4	7.17	165				
4	19.6	6.5	7.19	163				
5	19.7	6.4	7.22	166	76	100	<1.0	<0.010
6	19.7	6.5	7.23	165				
7	19.7	5.9	7.23	171				
8	19.7	6.0	7.23	172				
9	19.6	5.9	7.13	176				
10	19.6	6.1	7.25	164	80	88	<1.0	<0.010
11	19.3	6.3	7.21	169				
12	19.7	6.1	7.23	168				
13	19.6	6.1	7.10	169				
14	19.7	5.3	7.19	164				
15	19.6	4.9	7.13	162	80	120	<1.0	<0.010
16	19.7	4.4	7.05	162				
17	19.7	4.5	7.05	165				
18	19.8	4.4	7.00	166				
19	19.7	4.0	6.93	173				
20	19.6	4.1	6.93	167	80	104	2.9	<0.010
Mean	19.6	5.7	7.15	166	78	102	nc	nc
Min	19.3	4.0	6.93	160	72	88	<1.0	<0.010
Max	19.8	6.9	7.35	176	80	120	2.9	0.000

				MC-SED-2				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Overlying Sulfides (mg/l)
0	19.7	7.3	7.40	134	80	88	<1.0	<0.010
1	19.6	6.8	7.26	163				
2	19.6	7.1	7.26	166				
3	19.5	7.0	7.27	167				
4	19.4	7.0	7.27	165				
5	19.7	6.8	7.26	166	96	104	<1.0	<0.010
6	19.7	7.2	7.29	164				
7	19.8	6.4	7.26	169				
8	19.7	6.0	7.23	171				
9	19.6	6.0	7.13	175				
10	19.5	6.2	7.30	170	76	92	<1.0	<0.010
11	19.3	6.1	7.31	168				
12	19.7	6.0	7.33	168				
13	19.5	5.5	7.12	170				
14	19.7	5.2	7.22	165				
15	19.6	4.7	7.13	160	88	100	<1.0	<0.010
16	19.6	4.5	7.09	158				
17	19.6	4.5	7.12	160				
18	19.7	4.6	7.09	159				
19	19.6	4.0	6.90	174				
20	19.6	4.0	6.94	167	84	100	2.6	<0.010
Mean	19.6	5.9	7.20	165	85	97	nc	nc
Min	19.3	4.0	6.90	134	76	88	<1.0	<0.010
Max	19.8	7.3	7.40	175	96	104	2.6	<0.010

				MC-SED-3				
Day	Temp	D.O.	рН	Conductivity	Alkalinity	Hardness	Total Overlying	Total Overlying
-	(° °)	(mg/l)	(units)	(umhos/cm)	(mg/L CaCO3)	(mg/L CaCO3)	NH₃ (mg/l)	Sulfides (mg/l)
0	19.8	7.8	7.43	155	80	88	<1.0	0.015
1	19.9	7.2	7.33	157				
2	19.7	7.4	7.33	163				
3	19.5	7.1	7.27	162				
4	19.4	7.0	7.29	161				
5	19.7	6.8	7.33	163	76	96	<1.0	<0.010
6	19.8	7.4	7.48	169				
7	19.8	6.3	7.34	173				
8	19.8	5.8	7.28	175				
9	19.6	5.1	7.15	179				
10	19.5	5.4	7.28	174	88	88	<1.0	<0.010
11	19.4	6.0	7.45	169				
12	19.7	6.4	7.41	170				
13	19.7	6.1	7.16	170				
14	19.7	5.9	7.27	164				
15	19.7	5.5	7.19	160	100	80	<1.0	<0.010
16	19.6	4.7	7.12	159				
17	19.7	4.8	7.16	162				
18	19.8	4.6	7.11	166				
19	19.7	4.2	6.97	175				
20	19.6	4.2	6.96	170	84	100	3.3	<0.010
Mean	19.7	6.0	7.25	166	86	90	nc	nc
Min	19.4	4.2	6.96	155	76	80	<1.0	<0.010
Max	19.9	7.8	7.48	179	100	100	3.3	0.015

Initiated April 5, 2011

				Control				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Overlying NH ₃ (mg/l)	Overlying Sulfides (mg/l)
0	21.2	8.4	6.54	122	40	68	<1.0	<0.010
1	21.0	7.7	6.90	133				
2	23.1	5.8	6.55	131				
3	22.8	6.3	6.86	150				
4	22.7	6.5	6.77	147				
5	22.8	6.4	6.84	149	40	64	<1.0	<0.010
6	22.9	6.1	6.98	161				
7	22.8	6.7	7.06	152				
8	22.9	6.7	7.05	158				
9	22.9	6.4	7.02	163				
10	22.8	6.5	7.03	161	40	64	<1.0	0.010
Mean	22.5	6.7	6.87	148	40	65	nc	nc
Min	21.0	5.8	6.54	122	40	64	<1.0	<0.010
Max	23.1	8.4	7.06	163	40	68	<1.0	0.010
NC = Not Calculable	e							

LL-SED-1 D.O. Day Temp pН Conductivity Alkalinity Hardness Total Overlying (units) (umhos/cm) (mg/L CaCO3) (mg/L CaCO3) Overlying NH₃ Sulfides (mg/l) (°C) (mg/l) 21.2 7.2 167 72 0 7.33 88 1.1 0.035 1 21.2 7.0 7.33 167 --------------2 5.3 7.04 175 23.0 ----------------3 22.9 4.7 7.07 173 ---------------4 22.8 5.3 7.02 172 ----------------5 22.9 5.2 7.05 174 72 92 <1.0 <0.010 6 22.9 5.2 7.19 171 --------------7 22.9 5.6 7.19 167 --------------8 22.9 5.5 7.20 173 --------------9 22.9 5.4 7.16 174 -------------22.8 7.21 175 72 10 5.6 88 <1.0 <0.010 7.16 72 Mean 22.6 5.6 172 89 nc nc Min 21.2 4.7 7.02 167 72 88 <1.0 <0.010 Max 23.0 7.2 7.33 175 72 92 1.1 0.035

			Ini	tiated April 5, 2	011					
	LL-SED-2									
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)		
0	21.2	6.6	7.15	172	80	104	2.0	0.053		
1	21.2	6.6	7.19	172		104	2.0	0.055		
2	23.0	4.8	6.91	172						
3	23.0	4.8	6.99	179						
4	23.0	4.8	6.90	174						
	22.0	4.8		172	68					
5	22.9	4.8 4.9	6.92	=		108	2.0	<0.010		
6	-	-	7.02	164						
7	23.0	4.9	6.93	162						
8	22.9	5.3	6.94	166						
9	23.0	5.4	6.99	163						
10	22.8	5.3	7.02	161	72	104	<1.0	<0.010		
Mean	22.6	5.3	7.00	169	73	105	nc	nc		
Min	21.2	4.8	6.90	161	68	104	<1.0	<0.010		
Max	23.0	6.6	7.19	179	80	108	2.0	0.053		

NC = Not Calculable

	LL-SED-3								
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)	
0	21.2	6.4	7.20	164	76	76	1.2	0.068	
1	21.2	6.8	7.32	165	70	-			
1			-						
2	23.1	5.0	7.09	170					
3	22.9	5.3	7.12	171					
4	22.7	5.5	7.06	170					
5	22.8	5.4	7.10	172	72	90	<1.0	< 0.010	
6	22.9	5.0	7.19	171					
7	22.8	4.8	7.15	169					
8	22.7	5.2	7.15	171					
9	23.0	5.2	7.05	170					
10	22.8	5.1	7.04	167	72	90	<1.0	<0.010	
Mean	22.6	5.4	7.13	169	73	85	nc	nc	
Min	21.2	4.8	7.04	164	72	76	<1.0	<0.010	
Max	23.1	6.8	7.32	172	76	90	1.2	0.068	

			Ini	tiated April 5, 20	011					
	LL-SED-4									
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH_3	Overlying Sulfides (mg/l)		
0	21.4	6.0	7.26	160	76	88	1.5	0.056		
1	21.4	6.8	7.20	166	76	00	1.5	0.056		
2	23.0	5.7	7.16	173						
3	22.9	5.3	7.17	173						
4	22.7	5.5	7.07	173						
5	22.7	5.3	7.11	173	80	88	<1.0	<0.010		
6	22.8	5.2	7.17	172			<1.0	<0.010		
7	22.9	4.9	7.15	168						
8	22.9	4.9	7.19	170						
9	22.7	5.0	7.09	170						
10	22.8	4.8	7.10	170	76	84	<1.0	<0.010		
Mean	22.5	5.4	7.17	170	77	87	nc	nc		
Min	21.2	4.8	7.07	160	76	84	<1.0	<0.010		
Мах	23.0	6.8	7.37	173	80	88	1.5	0.056		

NC = Not Calculable

				MC-SED-1				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)
0	21.4	6.9	7.35	164	72	92	<1.0	<0.010
0				-		-		
1	21.3	7.2	7.37	163				
2	23.1	5.9	7.11	169				
3	22.9	6.0	7.23	170				
4	22.6	6.1	7.11	173				
5	22.8	6.0	7.18	174	80	96	<1.0	<0.010
6	22.9	5.8	7.22	173				
7	22.8	5.8	7.16	172				
8	22.9	5.5	7.23	173				
9	22.7	5.5	7.14	170				
10	22.8	5.3	7.13	173	80	96	<1.0	<0.010
Mean	22.6	6.0	7.20	170	77	95	nc	nc
Min	21.3	5.3	7.11	163	72	92	<1.0	<0.010
Max	23.1	7.2	7.37	174	80	96	<1.0	<0.010

			Ini	tiated April 5, 2	011			
				MC-SED-2				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH_3	Overlying Sulfides (mg/l)
0	21.3	7.8	7.44	163	68	92	<1.0	<0.010
1	21.2	7.5	7.47	162				
2	23.1	6.2	7.25	170				
3	22.8	6.0	7.28	171				
4	22.7	6.4	7.16	171				
5	22.7	6.2	7.21	173	80	100	<1.0	<0.010
6	22.9	6.2	7.29	171				
7	23.0	5.9	7.27	171				
8	23.0	5.8	7.30	175				
9	23.0	5.9	7.22	175				
10	22.8	6.0	7.24	175	80	100	<1.0	0.013
Mean	22.6	6.4	7.28	171	76	97	nc	nc
Min	21.2	5.8	7.16	162	68	92	<1.0	<0.010
Max	23.1	7.8	7.47	175	80	100	<1.0	0.013

NC = Not Calculable

				MC-SED-3				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)
0	21.3	7.8	7.39	159	68	84	<1.0	<0.010
1	21.2	7.5	7.46	161				
2	23.2	6.4	7.27	166				
3	22.9	6.1	7.28	167				
4	22.7	6.5	7.19	167				
5	22.7	6.4	7.21	166	84	88	<1.0	<0.010
6	22.9	6.4	7.33	169				
7	23.0	6.2	7.32	168				
8	22.9	6.4	7.39	171				
9	23.1	6.1	7.30	173				
10	22.9	5.9	7.30	172	80	84	<1.0	<0.010
Mean	22.6	6.5	7.31	167	77	85	nc	nc
Min	21.2	5.9	7.19	159	68	84	<1.0	<0.010
Max	23.2	7.8	7.46	173	84	88	<1.0	<0.010

APPENDIX D – Laboratory Bench Sheets

Freshwater Sediment 20 day Survival

Client: <u>Flogd Snider</u> Test #: <u>1104-5018 1011 1104-1024</u>

Start Date & Time: 4/13/11 End Date & Time: 5/3/11 1330 5/3/11 13.3D Test Organism: Chironomus dilutus

	Rep	Cont	Sector States		Surviva	l Day 20		
Site	#	#	Day 0	total	#larvae	#pupae	#flies	Initials/Comments
LON	1	153	12	11	11	0	0	
	2	130	12	12	12		1	(m)
	3	150	12		11			CC.
	4	144	12	12	12			SP
200 Mar 100	5	138	12	11				X
	6	148	12	11				R CON
	7	163	12	11	11			CC/
	8	116	12	10	10			X
LSEO 1	1	139	12	5	5			ce *
	2	122	12	2	2			CE *
	3	158	12	9*	9			BP
	4	107	12	4	4			Km
	5	108	12	124				(8)
	6	119	12	12	12			CC
	7	140	12	12	12			BP
	8	136	12	10*	10			R
1-8ED 2	1	101	12	2	2			(W)
	2	141	12	1	1			09 *1
	3	128	12	POI	POI			X I
	4	154	12	7	7			X I
	5	161	12	5	5			6P 1
	6	155	12	az 3	3			0C 1
	7	146	12					
	8	131	12	2	2			1 XI
LL SED3	1	112	12	8	8			OP
	2	117	12	4	4			ac 1
	3	115	12		1			8
	4	113	12	11	11			BP
	5	156	12	4	4			æ
	6	124	12		1			8P BP
	7	157	12	12	12			BP
1.020.11	8	111	12		aB6			¢.
LL SEDY	1	162	12	9	.0	1.1		Ø ×
	2	135	12	8	8			@ *
	3	126	12		7			CP CC
	4	102	12	5	5		_	CC
	5	118	12	IL	2	-		
	6	132	12	7	7		-	BP
	7	110	12	1	11			(R)
11,87.01	8	123	12	7	7			No.
UC-SEDI	1	147	12		8-1-		and the second	CC.
	2	125	12	78	878		-	SP
	3	160	12	8	8			1 million
	4 5	Pel	12 12		1			A SP
	6	145	12	11	11		-	Dr
	7	152	12	10	10			œ
	8	104	12	8	8			(TTQ) BP

* Nematodes present 1) invisible midge larvae present

QA Check:

Freshwater Sediment 20 day Survival

Client: Floyd Snider Test #: 104-1018 thru, 104-1024

 Start Date & Time:
 4/13/11
 1330

 End Date & Time:
 5/3/11
 1330

 Test Organism:
 Chironomus dilutus

	Rep	Cont			Surviva	I Day 20	-17.4	
Site	#	#	Day 0	total	#larvae	#pupae	#flies	Initials/Comments
UC SED 2	1	121,	12	9	9	0	0	N N
	2	164	12	9	9		1	ce
	3	151	12	8	8			R
Laure and	4	103.	12	8	8			OP
	5	114	12	0	10			8
	6	127	12	10	10			CC SP
in the second	7	129	12	182	10			BP
1110	8	109	12		12			(R)
MC SED3	1	120	12	8	8			(R)
	2	149	12	10	10			ce
	3	143	12	g	9			BP
	4	142	12	9				GP GQ
	5	133	12	6	6			
La constante	6	134	12	2	1			à
	7	105	12	9	9			a
	8	106	12	9	9			BP
3	1		12					
	2		12					
	3		12					
	4		12					
	5		12					
	6		12				1.35.15	
	7		12					
	8		12					
	1		12					
	2		12					
	3		12		1.0			
	4		12					
	5		12					
	6		12					
	7		12				and the second	
	8		12					101
	1		12					
	2		12					
	3		12					
	4		12				Service Inc.	
	5		12					
	6		12				-	
	7		12					
	8		12			1.1.	and the	
	1		12				-	
	2		12					
	3		12					
	4		12					
	5		12					
	6		12					
	7		12					
No. of Contraction	8		12					

QA Check:

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy., E. Suite 2 Tacoma, WA 98424

Client: <u>Floyd Swiden</u> Test-2 Organism: <u>Chironomus tentans</u> Test no.: <u>1104-7029</u> Hune 1104-7024

	Rep	Cont	Pan wt.	Dry wt.	Ash wt.	Ash free	No. organisms	Avg. per site (mg)
Site	#	#	(gm)	(gm)	(gm)	dry wt. (gm)	organisms	Site (ing)
ON	1	153	0.05970	0.06371	0.06/003			
	2	130	0.07691	0.08229	0.07762		12	
	3	150	0.08019	0.08822	0.08267		11	
	4	144	0.07368	0.07950	0.07478		12	
	5	138	0.06826	0.07250	0.06869			
	6	148	0.06940	0.07592	0.07147'	days and	<u> </u>	
	7	163	0.07678	0.08304	0.07788		11	
	8	116	0.06442	0.06968	0.06503		10	
LSED-1	1	139	0.07868	0.08385	0.078960		5	
	2	122	0.05783	0.06133	0.05839		2	
	3	158	0.06495	0.07585	0.06765		9	
	4	107	0.07197	0.08000	0.07338		4	
	5	108	0.06563	0.08027	0.06839		12	
	6	119	0.06542	0.07702	0.06745		12	
	7	140	0.07892	0.08914	0.08046		12	
	8	136	0.06620	0.07510	0.06754		10	
LSED-2	1	101	0.06993	0.07143	0.07011		2	
	2	141	006629	0.06682	0.06643	194		
	3	128	0.07639	0.07666	0.07643		1	
	4	154	0.06495	0.06949	0.06562		7	
	5	161	0.07069	0.07699	0.07162		5	
	6	155	0.07146	0.07526	0.07218	5	3	
	7	146	0.08130	0.08290	0.08151		1	
	8	13/	0.06563	0,06901	0.06604	the second second	2	
LISED-3	1	112	0.06650	0.08339	0.07009		8	
	2	117	0.06055	0.06973	0.06226		4	
	3	115	0.06598	0.08410	0.06883		11	
	4	113	0.07066	0.08781	0.07458		11	
	5	156	0.05937	0.06628	0.06042		4	
	6	124	0.06220	0.07750	0.06488		11	
	7	15.7	0.06675	0.08158	0.06984		12	
	8	111	0.06134	0,07320			6	
LLSED-4		162	0.07398	0.07958	0.07536		9	
TUST	2	135	0.08148	0.08564	0,08218		8	
	3	126	0.06876	0.07844	0.07066		7	
	4	102	0.07088	0.08454	0,07395		5	
	5	118	0.06613	0.08072	0.07045		12	
Contraction of the	6	132	0.06874	0.07961	0.07119		7	1
	7	(10	0.06744	0.08097			41	
	8	123	0.06864	0,07749		ø	7	
		ech Initia	and the second data with the second data with the second data with the second data with the second data with the	CC	1C		CQ/	
1) D						rnace date/time in	1: 5-6-1 0900	T° 550
		e/time in:	5 511 133	1.5		nace date/time ou		State Parties
Dest saft	Date/ti	me out:	h: CC	1 41	-	Furnace tech	(A.	Action free pail of the

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy., E. Suite 2 Tacoma, WA 98424

Site	Rep #	Cont	Pan wt. (gm)	Dry wt.	Ash wt.	Ash free	No.	Avg. per
M(SED-)	# 1	#	0.07078	(gm) (), 08209	(gm)	dry wt. (gm)	organisms	site (mg)
MUSEDT	2	125			0.07313		2	
	3	160	0.06568	0.08866			8	
	4	137	0.07016		0,07323		8	
	5			0.09665			9	
	6	145	0.07571		0.07812		11	
	7	152	0.06049	0.08654	0.07641		10	
	8	104	0.07776	1.09475			11	a le line bie
MC-SED2	1	121	and the second second second second second second second second second second second second second second second	0.09529	0,001.0		8	
IL SCOR	2		0.07167				a	
	3	164		0.08480	0.07561			
	4	151 103	0.07287		0.07511		8	
	5	114	0.06223	0.07668	0.06554		8	
	6		0.06723	0.11515	0.09809		10	
	7	127	0.05970	0.07451	0.06367		10	
	8	129	0.07153	0.08297	0.07353		10	
la con d		109	0.07407	0.09586	0.082960		12	
MC-SED3	1 2	120	0.06555	0.07955	0.06895		8	
	3	149	0.07413	0.08947	0.07872			
		143	0.05881	0.07054	0.06156		9	
	4	142	0.0 6911	0.08594	0.07499		9	
	5	133	0.07295	0.10676	0.09693		6	
	6	134	0,06165	0.12446	0.11407		7	
	7	105	0.07799	0.09267	0,08063		9	
	8	106	0.07264	0.08511	0.07442		9	
	1							
	2							
	3							
	4							
	5							
	6							
	7							
	8							
	1							
	2							
	3							
	4							
	5							
	6							
	7							- A - A - A - A - A - A - A - A - A - A
	8							
		n Initials	थ	æ	CC		Q2	
Dry wt.			5311 1330	T° 6(2) Furnad	ce date/time in.	5-5-11 5-611 T	550
ry wt. Da			5-5-11 1300	Т° 64	Furnace	e date/time out:	5-10-11 1100 T	-550
	Dry w	rt. Tech:	ce	()	0.08112	Furnace tech:	QA Check:	

1

20 Day Toxicity Test Data Sheet -- Nautilus Environmental

Freshwater Sediment 20 Day Water Chemistries

		t: Floyd 4 :: Gon		_ Test #		entans	- Tost 2	Start Date & End Date &	& Time & Time	4	13/11 3/11	1330 1330	Test2
Day		Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Ren	ewed		Tech.	
	(mg/L)	(mg/L)	(mg/L as	s CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
0	<1.0	0.015	52	68	6.75	131	8.1	19.6	1	V		XS	
1			100		6.84	127	7.0	19.9	V			X	
2					7.09	145	4.8	19.7	V	1	1	2	
3					7.12	137	6.5	19.6	1	V	1	C+	· · ·
4					7.1)	139	6.4	19.5	1	V	1	4	
5	<1.0	40,010	64	92	7.11	140	4.3	19.6		V.	1	P	
6					7.38	165	7.2	19.7	~	~	V	X	
7					7.24	173	5,7	19.8	1	~	~	BP	
8					7.30	175	5.3	19.8	1	V	V	R	
9					7.10	178	5.4	19.6	1	1	1	IF	
10	1.2	<0.010	72	88	7.28	174	5.9	19.7	/	1	1	NF	
11		and i			7.48	171	6.0	19.4	V	/	1	MF	
12					7,44	170	6,7	19.7.	V	V	/	BR	
13			and the		7.10	175	5.7	19.8	/	1	~	X	
14					7.09	171	4.8	19.9	1	1	-	X	
15	<1.0	<0.010	80	96	7.07	165	4.6	19.8	1	1	i	X	
16					7.06	166	4.3	19.7	1	1	1	BP	
17					7.10	144	4.3	19.8	V	-	V		
18					7.07	168	4.4	19.7	1	/	~	m	
19	2				6.88	221	4.0	19.8	V	1	1	BP	
20	3.2	20.010	80	88	6.93	176	4.0	19.9	-		-	BP	
			QA Check:					Te	est Cha	mber:	Pm.a	1/	

Freshwater Sediment 20 Day Water Chemistries

	Client: Site:	Floyd S LL-SEDI	mider Te	Test #:	1104–TC Chironomus ter			Start Date & End Date &		11	1	133D 133D	To
Day	NH ₃	Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Reno			Tech.	
	(mg/L)	(mg/L)	(mg/L as		(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
0	21.0	0.011	76	94	7.27	169	7.0	19.5	~	V	-	Q X	
1					7.05	171	5.7	19.7	N	V	V	$\hat{\boldsymbol{\omega}}$	
2					7.08	173	5.7	19.6	~	V	1	82	
3					7,10	173	5.8	19.6	1	1	U	24	
4					7.12	177	5.7	19.5	1	1	-	87	
5	<1.0	<0.010	no	84	7.11	174	5.8	19.6	\checkmark	V	1	m	
6					7.16	166	5.8	19.7	1	V	1	S	
7					7.03	171	3.9	19.8	V	V	/	BP	
8					7.15	172	5.0	19.7	1	1	V	(m)	
9					7.00	173	5.0	19.6	1	V	1	IF	
10	<1.D	<0.010	72	88	7.21	169	5.0	19.6	5	\bigvee	1	IF	
11					7.34	169	5.4	19.5	\checkmark	1	1	IF	
12					7.40	169	5,4	19.7	1	V	1	3P	
13					7.07	175	5.6	19.7	V	1	1	X	0
14					7.30	172	4.6			V	V	X	
15	<1.0	40.010	76	96	7.06	172	5.0	19.7	1	V	V	85	1
16			¥	14	7.10	171	4.5	19.6	V	1	1	BP	
17					7.08	172	4.3	19.8	V	~	~	m	
18					7.10	172	4.2	19.7		1	1	M	1
19					6.99	188	4.2	19,6	V	1	1	BP	1
20	3.0	<0.010	88	100	6.90	173	4.0	19.6	-	-		BP	

QA Check:

Test Chamber: _____RM_C

Freshwater Sediment 20 Day Water Chemistries

NH, (mg/L) Sulfide (mg/L) Alk Hard (mg/L) pH (mils) Conductivity (mhos/cm) Dissolved 0, (mg/L) Temp, (°C) Renewed and pm Tech. Initials 0 6.1 0.036 64 104 7.12 174 6.1 19.7 \checkmark <		Client: Site:	ELL-SEC			<u> </u>			Start Date & End Date &				1330 1330	-
(mg/l) (mg/L)	Day			Alk	Hard	рН	Conductivity	Dissolved O ₂	Town					
1 1		(mg/L)	(mg/L)			(units)	(umhos/cm)			am	pm	Fed	Initials	
1 0.89 $(79$ 4.6 9.9 $\sqrt{7}$ $\sqrt{5}$ 2 0.96 $(73$ 4.9 9.7 $\sqrt{7}$ $\sqrt{5}$ 3 7.01 174 4.3 9.6 $\sqrt{7}$ $\sqrt{7}$ $\sqrt{7}$ $\sqrt{7}$ 4 7.01 175 4.9 9.7 $\sqrt{7}$ $\sqrt{7}$ $\sqrt{7}$ 5 9.5 <0.010 72 93 6.40 174 4.9 19.5 $\sqrt{7}$ $\sqrt{7}$ 6 7 7 7.05 1.09 1.95 1.91 7.7 $\sqrt{7}$		6.1	0.036	84	104	7.12	174	6.1	19.7	1	~	~	xs	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					6.69	179	4.6	19.9	V	1	1		1
3 7.01 174 4.8 9.6 7 7 7 4 7.03 175 4.9 19.5 7						6.96	173	4.9	19.7	1	V	1	64	
4 7.02 175 4.9 195 \checkmark \checkmark 94 5 9.5 <0.010	3					7.01	174		19.6	V	1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.1				7.02	175	4.9		2	V	V		
6 7	-	9.5	<0.010	22	88	6.96	174	4.9		V	~	1		
7 1.09 168 5.1 19.9 \checkmark \checkmark \circlearrowright <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>V</td> <td>~</td> <td>and the second s</td> <td>1</td>										1	V	~	and the second s	1
8 7.09 107 5.2 19.7 $\sqrt{\sqrt{-0}}$ 9 7.02 166 5.6 19.5 $\sqrt{\sqrt{-0}}$ 10 2.1 <0.010 64 76 7.12 166 5.6 19.5 $\sqrt{-\sqrt{-100}}$ 11 7.02 166 5.6 19.5 $\sqrt{-\sqrt{-1000}}$ $\sqrt{-\sqrt{-1000}}$ 11 7.24 161 5.3 19.6 $\sqrt{-\sqrt{-1000}}$ $\sqrt{-\sqrt{-1000}}$ 12 7.24 161 5.9 19.4 $\sqrt{-\sqrt{-1000}}$ $\sqrt{-\sqrt{-1000}}$ 13 7.05 1600 6.3 19.6 $\sqrt{-\sqrt{-1000}}$ 39.6 14 7.05 1600 6.3 19.6 $\sqrt{-\sqrt{-1000}}$ 39.6 14 7.01 155 5.6 19.6 $\sqrt{-\sqrt{-1000}}$ 39.6 $\sqrt{-\sqrt{-1000}$ 39.6 $-\sqrt$										1	V	V		
9 7.02 166 7.6 19.5 $$ $$ $$ 10 2.1 <0.010 64 7.6 7.12 166 5.6 19.5 $$						7.09				1	~	1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9					7.02				1	1	V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2.1	<0.010	64	76	7.12	161	5.3		1	1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						7.24	161	5.9		1	1	V		
13 7.05 160 6.3 19.6 $\sqrt{-1}$ $\sqrt{8}$ 14 7.11 155 5.8 19.6 $\sqrt{-1}$ $\sqrt{8}$ 15 $\sqrt{10}$ 7.11 155 5.8 19.6 $\sqrt{-1}$ $\sqrt{8}$ 15 $\sqrt{10}$ 7.06 150 5.6 19.6 $\sqrt{-1}$ $\sqrt{8}$ 16 6.95 148 5.0 19.6 $\sqrt{-1}$ $\sqrt{8}$ 16 6.95 148 5.0 19.6 $\sqrt{-1}$ $\sqrt{8}$ 17 6.95 148 5.0 19.6 $\sqrt{-1}$ $\sqrt{8}$ 18 7.00 150 4.6 19.7 $\sqrt{-1}$ $\sqrt{8}$ 19 6.97 158 4.4 19.7 $\sqrt{-1}$ $\sqrt{8}$ 20 27 $\sqrt{0}$ 80 $\sqrt{-1}$ $\sqrt{10}$ <	12					7.23	159			1		~		
14 7.11 155 5.8 19.4 7.7 7	13						and a second second second second second second second second second second second second second second second		and the second second second	V	/	1	X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14									1	V	5	X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	<1.0	0.010	76	76					1		1/	X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16									/	V	~	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17								19.8	~		~		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18									1			0	
	19									~	U	-		
	20	2.7	<0.010	76	92	6.90	156	4.1	19.7	-	-		BP	

Test Chamber: KmC

Freshwater Sediment 20 Day Water Chemistries

		Eloyd		. Test #:	<u> 1104 –</u> <u>Chironomus te</u>			Start Date & End Date &	z Time: z Time:	4	13 3 1)	11 1330 1330	Te
Day	NH ₃	Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Ren	ewed		Tech.	
	(mg/L)	(mg/L)	(mg/L as	CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
0	<1.0	0.020	72	100	7.29	165	6.8	19.6	V	V	~	5	
1					7.10	166	6.3	19.9	/	V	/	85	
2					7.12	166	6.3	19.7	V	1	1	\Diamond	
3					7,11	167	6.2	19.6	1	1	~	8+	
4					7.12	167	6.3	19.6	~	V		84	
5	<1.0	<0.010	72	96	7.09	160	10.2	19:6	~	1	1	m	
6					7.20	166	6.3	19.8	1	V	V	X	
7					7.21	169	5.8	19,8	1	~	~	BP	
8					7.20	171	6.0	19.8	1	~	/	m,	
9					7.12	172	5.6	19.7	1	~	1	IF	
10	<1.0	<0.010	68	88	7.29	166	6.1	19.5	1	5	1	MF	
11					7.35	165	6.0	19.4	\checkmark	\checkmark	1	NF	
12					7,31	164	(0,3	19,10	~	V	~	BP.	
13					7.09	160	6.6	19.6	\checkmark	~	/	X	
14					7.22	163	6.0	19.7	V	~	1	X	
15	<1.0	0.033	64	100	7.13	158	(0.1	19.6	V	V		85	
16					6.97	150	4,7	19.6	V	1	1	GP	
17					7.06	159	4.8	19.7	~	V	~	m	
18					7.00	15Ce	4.8	19.8	V	1	~	R	
19	The lat				6.91	166	4.2	19.6	V	1	V	GP	
20	3.1	< 0.010	80	96	6.95	Ilel	4.1	19.6				SP	
			QA Check:	R				T	est Cha	mber:	Rm	V	-

Freshwater Sediment 20 Day Water Chemistries

	Client:	Floyd	Smiden		1104 T	Day Water		Start Data 8	т:	.11	12/11	1700	
	Site:	Floyd	24 T	est Organism:	Chironomus te			End Date &	Time:	5	2/11	1330	-Tes
				<u> </u>					- Time.		<u>> </u>	1990	-
Der	NH ₃	Sulfide	Alk	Hard									
Day	(mg/L)	(mg/I)			рН	Conductivity	Dissolved O ₂	Temp.	Ren	ewed		Tech.	
0		(mg/L)		CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
	<1.0	0.029	76	94	7.35	165	6.6	19.5	V	V	V	X	
1					7.08	162	5.3	19.8	1	V	V	S	
2					7.12	169	5.7	19.7	V	/	1	S	
3					7.14	168	5.4	19.6	1	1	1	87	
4			2015		7.13	169	55	19.7	C	1	~	24	
5	<1.0	<0.010	80	100	7.11	170	5.2	19.6	1	/	1	m	
6					7.19	169	5.8	19.7	1	~	1	X	
7					7,19	171	5,0	19.6	1	V	V	GP	
8					7.23	171	5.2	19.7		~	~	(P)	
9					7.10	151	4.9	19.6	1	/	/	IF	
10	50.<1.0	0.013	76	88	7.30	171	5.2	19.6	1	1	1	IF	
11					7.53	174	5.4	19.4	1	1	1	IF	
12					7,28	168	6.2	19.7	~	~	1	BP	
13					7.23	179	5.3	19.7	V	~	./	X	
14					7.27	174	5.0	19.6	1	0	/	X	
15	<1.0	D.023	88	88	7.10	169	4.6	19.5	V	N	1/	R	
16									~	1	/	0	
17					7.07 7.16	164	4.7 4.6	19.5	~	-	-	GP	
18						170			/	~	~	m	
19					7.09	llele	4.7	19.7	/	1	-	m	
	3.4	<0.010	81	100	6.84	176	4.2	19.6	V	-	-	BP	
	7.1	10.010	OA Check:	100	6.84	171	4.0	19.6			-	GP	

QA Check:

Test Chamber: RM V

Freshwater Sediment 20 Day Water Chemistries

		Floyd MC-SEC	<u>Gnidly</u> 1 Te	Test #:	<u>1104–T</u> Chironomus te		-	Start Date & End Date &			1 1	1330	Test 2
Day	NH ₃ (mg/L)	Sulfide (mg/L)	Alk (mg/L as	Hard	pH (units)	Conductivity (umhos/cm)	Dissolved O ₂	Temp.		ewed		Tech.	
0	<1.0	<0.01	72920	96	7.35	140	(mg/L)	(°C)	am	pm	Fed	Initials	
1			1010-		7.20	160	6.9	19.6	/		-	R	
2					7.18	164	4.6		1	2		$\overline{\mathbf{x}}$	
3					7.17	165		19.4		./	~	D Dt	
4					7.19	163	6.4 6.5	19.6	v ,	0	V	et.	
5	<1.0	<0.010	He	100	7.22				V	-	-	-	
6			TICK	100	7.23	llole	6.4	19.7	V	V	1	R	
7					7.23	165	5,9		v	V	1	D	
8					7.23	172		19,7	,	V	V	BP	
9					7.13	176	<u>6.0</u> 5.9	19.7 19.6	V /	1	1	(P)	
10	<1.0	<0.010	80	88	7.29	164	6.1	19.6	~	1	-	M	
11					7.21	169	6.3	19.3	/	V		MF MF	
12					7.23	168	(e.1	19.7	V	V	~	BP	
13					7.10	169	6.1	19.6	V	1	-	X	
14					7.19	164	5.3	19.7	1	1	5	X	
15	\$0<1.0	<0.010	80	120	7.13	162	4.9	19.6	/	~	V	X	
16					7.05	162	4.4	19.7	1	1		CP CP	
17					7.05	145	4.5	19.7	V	- /	~	B	
18					7.00	166	4.4	19.8	~	/	~	R	
19					6.93	173	4.0	19.7	V	1	1	BP	
20	2.9	<0.010	80	104	6.93	167	4.1	19.10	-			BP	

QA Check:

Test Chamber: RM. (

Freshwater Sediment 20 Day Water Chemistries

	01	Floud	Giden	Freshwate	er Sediment 2	20 Day Water	Chemistries				1		
	Client	- rwya	main	Test #:	<u>1104 -</u> T	023	-	Start Date &	& Time	:4	13	11 1330	Test 2
	Site	· MC· DU)	2 1	est Organism:	Chironomus te	entans	-	End Date &	& Time	5	3/1	1 1330	
	NH ₃	Sulfide	Alk	Hard									1
Day	(mg/L)				pH	Conductivity	Dissolved O ₂	Temp.	Ren	newed		Tech.	
0		(mg/L)		CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
-	<1.0	<0.010	80	44	7.40	134	7.3	19.7	1	V	~	8	
1					7.26	163	6.8	19.6	V	1	V	35	
2					7.26	160	7.(19.6	\checkmark	1	1	X	
3					7.27	167	7.0	19.5	V	~	V	24	
4	11.0	10.014			7.27	165	7.0	19.4	1	~	1	et	
5	<1.0	<0.010	96	104	7.26	166	6.8	19.7	1	1	1	m	
6					7.29	164	7.2	19.7	1	1	~	X	
7					7.26	169	SP. 2. 6.4	19,8	V	V	/	BP	
8					7.23	171	6.0	19.7	1	V	1	(M)	
9					7.13	175	6.0	19.6	1	/	~	IF	
10	<1.0	<0.010	76	92	7.30	170	6.2	19.5	\checkmark	1	/	IF	
11		ALC: NO			7.31	168	6.1	19.3	1	1	V	MF	
12					7.33	168	6.5	19.7	~	V	V	OP	
13					7.12	170	5.5	19.5	~	V	/	X	
14					7.22	165	5.2	19.7	V	~	1	X	
15	51.0	50.010	88	100	7.13	160465	4.7	19.6	V	1	1	X	
16			THE REAL		7.09	158	4,5	19.6	V	1	1	BP	
17					7.12	140	4.5	19.6	V	V	V		
18					7.09	159	4.6	19.7	-	V	-	m	
19					6.90	174	4.0	19.6	V	/	~	R SP	
20	2.6	50.010	84	100	6.94	167	4.0	19.6	_		-	BP	

QA Check:

Test Chamber: Rm.C

				Freshwate	r Sediment 2	Deet Nautil Day Water		nental				
		: Floyd : MC-SOC	interest in the second s		ll04–T Chironomus te	the second second second second second second second second second second second second second second second se		Start Date & End Date &				11 1330 TO 1 1330
Day	NH ₃	Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Ren	ewed		Tech.
0	(mg/L)	(mg/L)		CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials
0	<1.0	0.015	80	88	7.43	155	7.8	19.8	V	V	rv	- X
1					7.33	157	7.2,	19.9	\checkmark	V	V	X)
2					7.33	163	7.4	9.7		1	-	S
3					7.27	162	7.1	19.5	5	~	~	24
4	<10				7.29	161	7.0	19.4	1	V	/	et
5	<1.0	<0.010	The	910	7.33	163	6.8	19.7	V	~	1	A
6					7.48	169	7.4	19.8	V	V	V	X
7					7.34	173	6.3	19.8	V	~	~	BP
8					7.28	175	5.8	19.8	V	~	V	R
9	11.5				7.19	179	5.1	19.6	1	1	1	IF
10	<1.0	<0.010	88	88	7.28	174	5.4	19.5	\checkmark	\checkmark	\checkmark	MF
11					7.45	169	6.0	19.4	~	\checkmark	\checkmark	NF
12					7,41	170	6.4	19,7	~	~	1	BP
13					7.16	170	6.1	19.7	1	~	~	x
14				in the second	7.27	164	5.9	19.7	/	1	/	X
the manage of	51.0	<0.010	676100	80	7.19	160	5.5	19.7	V	~	V	D
16					7.12	159	4,7	19.6	V	~	/	BP
17					7.14	162	4.8	19.7	~	~	~	m
18					7.11	146	4. Le	19.8	~	~	V	m
19					6.97	175	4,2	19.7	~	5	/	GP
20	3.3	<0.010	84	100	6.96	170	4.2	19.60	_			BP
			QA Check:	B				Т	est Cha	amber:	Rm	.1/

Feshwater Sediment 20 day Observations

Client: Floyd Snider

Test #:	1104	- 1018	thru	1024
			and the second se	

Start Date & Time: <u>4/13//1 1330</u> End Date & Time: <u>5/8/11 1330</u> Test Organism: <u>Chironomous tentans</u>

 N = normal
 L = anoxic surface

 B= no burrows
 F= fungal patches

 M= dead on surface
 D= no air flow (DO?)

 A= avoidance
 U= excess food

		Day 1	Day 2	Day 3	Day 4	4 Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
	Initials	5	82	24	81	R	8	BP	R	MF	IF
LL-SED2	101	A	U	11	li	N/U	L	N	N/U.	N/4	4
LL-SED4	102				1	in the	1		N/U	N/19	
MC-SED2	103	1			1				† 	+	<u>+</u> /
MC-SED1	104						1		†		
MC-SED3	105				·····			·····	· • · · · • • • • • • • • • • • • • • •		
MC-SED3	106				·····	· •			+		+
LL-SED1	107					· • • • • • • • • • • • • • • • • • • •		·····	÷	······	
LL- SED1	108	+				· •			÷	·	
MC-SED2	109					· •	++-		+	·	
LL-SED4	110					+	+		÷		
LL-SED3	111	+			·····	· · · · · · · · · · · · · · · · · · ·			ET.		
LL-SED3	112				·····	•••••••••••••••••••••••••••••••••••••••	2		Elu.	2 11	
LL-SED3	113				·····	+	E	ž	E/U		15
MC-SED2	114				·•••••••••••••••••••••••••••••••••••••	+	E	- F	FIN		5
LL-SED3	115				·····	·+	E	<u> </u>	E/M	<u> </u>	VF.
CON	116					·	F	ŗ	FIN	F	E.
LL-SED3	117					+	F		12 /u	N	N F
LL-SED4	118			•••••••		·	A	N	- I'v	E/U	F
LL- SED1	119					·			NZU	N	<u> </u>
MC-SED3	120				·	+			÷		
MC-SED2	120					+					
LL- SED1	122				·	·•	·			- V	
LL-SED4	122	4		-+						N/U	
LL-SED3	123	+		·		÷	ž	-	GL	N,	V
MC-SED1	125	+		··•		·	F	F	P/u	F/U	U/F
LL-SED4	125	+		··••			<u>N</u>	N	N/U	<u>/</u>	И
MC-SED2	120	4							N/M		
LL-SED2	127					÷			N/U	Y	
MC-SED2	120	4					·····		F/u	F	¥,F
CON	130	+	· · · · · · · · · · · · · · · · · · ·		·				N/M	N	N.
LL-SED2	130	+	······	+		<u> </u>			N/U	Ŋ	N/U
LL-SED2	132	·		·					F/U	F	F
									N/u	N/U	N/U
MC-SED3	133				ļ	ļ					
MC-SED3	134					Į					
LL-SED4	135	÷									
LL-SED1	136				ļ						
MC-SED1	137	+		+		ļ					
CON LL- SED1	138 139						·····				
LL- SED1	139			ł							
						ļ					
LL-SED2	141										
MC-SED3	142			· • · · · · · · · · · · · · · · · · · ·							
MC-SED3	143										
CON	144									N	
MC-SED1	145									N/N	
LL-SED2	146										
MC-SED1	147										
CON	148										
MC-SED3	149	V	1	1		·····	N		······		
CON	150		¥	I V	4	V	V	V	×	V	1

20 Day Toxicity Test Data Sheet - Nautilus Environmental Feshwater Sediment 20 day Observations

Client: Flo			
Test #: 104	- 1018 1	m T	24
N = normal B= no burrows M= dead on surface	L = anoxic su F= fungal pat	rface ches w (DO?)	- '
	Da	v 1	Day 2

Start Date & Time: <u>4//3/// 1330</u> End Date & Time: <u>5/3/// 1330</u> Test Organism: <u>Chironomous tentans</u>

		Day 1	Day 2	Day 3	Day 4	4 Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
	Initials	3?	S	Gr	13	m	P	BP	W	IF	NF
MC-SED2	151	N	V	U	LU1	N/11	21	N	N/4	1	N
MC-SED1	152	1	1	/	1	1	E	F	1	E/M	NIK
CON	153		1	1	1	1	N	N		Ň	A/
LL-SED2	154		1	1	1	1		1		N	Y
LL-SED2	155				1	1	V	L	U U	N/	1
LL-SED3	156	1					F	F	F/4	F	EIN
LL-SED3	157					1	A	N	Flu	F	FIL
LL- SED1	158					1	1	······	NI/IA	Ē	FIN
MC-SED1	159					1				N	AITIA
MC-SED1	160		1			1				1	1 1
LL-SED2	161	1	1			1	1	1		-	· · · · · · · · · · · · · · · · · · ·
LL-SED4	162			Ť		1					++
CON	163			1.1.	11	1			1	1	++
MC-SED2	164	V	V	V			V			N N	1 V

20 Day Toxicity Test Data Sheet - Nautilus Environmental Feshwater Sediment 20 day Observations

Client: Floyd Snider Test #: 1104-7008 1000 1024 Start Date & Time: 4/13/11 1330 End Date & Time: 5/3/11 1330 Test Organism: Chironomous tentans

		Day 11	Day 12	Day 13	Day 14	Day 15	Day 16	Day 17	Day 18	Day 19	Day 20
	Initials	IF	BP	120	N N	N N	BP	(m)	(m)	OP	OP
LL-SED2	101	N	N	N	N	N	N	N	N	N	N
LL-SED4	102	1	1		1		1	1	1	1	1
MC-SED2	103			~	V.	K	1	V V			4
MC-SED1	104	- V	L L	E.	F	F.	F	F	F	F	F
MC-SED3		F	F	-	F	F	F			1	1
MC-SED3	106	F	F	Ŧ	F	F	F		V	L	
LL- SED1	107	N	N	N	N	N	N	N	N	N	Ň
LL- SED1	108		1	1	1	1	1	1	1	1	1
MC-SED2	109										1
LL-SED4	110			L L	1	V	1		V	1	T T
LL-SED3	111	F	F	F	F	F	F	F	F	F	F
LL-SED3	112	F	1	1	ſ	[1	1		1	1
LL-SED3	113	F									
MC-SED2	114	F									
LL-SED3	115	F	1	V.		V		V	V	L	1
CON	116	Ņ	N	N	N	A	I N	N	N	I N	N
LL-SED3	117	F	F	F	F	Ē	F	F	F	F	F
LL-SED4	118	N	N	N	N	N	T Ŵ	Ň	N	N	Ň
LL-SED1	119	N	N	N	N	N	Ň	N	N	Ň	Ň
MC-SED3	120	F	F	Ņ	F	F	F	P	F	F	F
MC-SED2	121	N	N	N	N	N	N	Ň	N	Ň	N
LL- SED1	122	N	N	N	1	1	1	1	1	1	1
LL-SED4	123	N F	N	N	J/	×		V	V		1-
LL-SED3	124	F	F	F	P	F	F	F	F	Ē	F
MC-SED1	125	N	N	N	N	N	N	N	N	N	N
LL-SED4	126	N	N	(1	1	1	1	1	1 1	1
MC-SED2	127	N	N	V	I V	V	T J	V	J.		V
LL-SED2	128	F	F	E	7	F	F	P	F	Ê	F
MC-SED2	129	N	N	N	N	N	N	N	Ň	NIU	Ň
CON	130	N	N	N	N	N	N	N	N	N	Ň
LL-SED2	131	F	F	Ē	F	F	F	P	F	Ê	F
LL-SED4	132	T N	N	4		N	N	Ň	N	N	N
MC-SED3	133	N	4	,	1.0	1	1	1	1	1	1
MC-SED3	134	N			1					1	1
LL-SED4	135	N								T	
LL-SED1	136	N,								1	
MC-SED1	137	N									
CON	138	N									
LL- SED1	139	N									
LL- SED1	140	Ń									
LL-SED2	141	N									1
MC-SED3	142	Ν,									
MC-SED3	143	N.		N	1	k					
CON	144	N,		V	V	V	$\downarrow \downarrow$	I V		\vee	V
MC-SED1	145	<u>N</u>		F	P,	F	F	F	F	F	F
LL-SED2	146	N		N	N	N	N	N	N	N	Ň
MC-SED1	147	N						1	1	1	1
CON	148	N.			V	\checkmark	L L		1		
MC-SED3	149	N			t,	F	F	I F	E	I F	F
CON	150	N.		ļļ.,	N	N	N	N	N	I N	N.
MC-SED2	151	N	V	<u> </u>	N	N	N N	N	N	N	Ŵ
MC-SED1	152	F.	F	F	É)	Fi	F.	F	F	F	P.
CON	153	1 N	N	N	N	N	I N	6	N	N	Ň

20 Day Toxicity Test Data Sheet - Nautilus Environmental Feshwater Sediment 20 day Observations

Start Date & Time: 4/13/11 1330 End Date & Time: 5/3/11 1330 Test Organism: Chironomous tentans

Client: Floyd Snider Test #: UD4-TOIS THAT TO24 N = normal L = anoxic surface B= no burrows F= fungal patches M= dead on surface D= no air flow (DO?) A= avoidance U= excess food

		Day 11	Day 12	Day 13	Day 14	Day 15	Day 16	Day 17	Day 18	Day 19	Day 20
	Initials	NF	BP	X	P	Ø	BP	(m)	(n)	SP	BP
LL-SED2	154	N	N	N	N)	A	N	N	N	N	N
LL-SED2	155	N	N	N	N	N	N	N	N	N	N
LL-SED3	156	TF	F	F	F	F	F	F	F	F	F
LL-SED3	157	F	F	F	F	Ê	F	F	1	1	1
LL- SED1	158	F	F	F	r.	F	F	F	L L	T	1-
MC-SED1	159	T N	N	A	N	N	N	N	N	N	N
MC-SED1	160	N	1	1	1				1	1	1
LL-SED2	161	N									
LL-SED4	162	N									
CON	163	N					1				
MC-SED2	164	N				V		J			

Nautilus Environmental 5009 Pacific Hwy E Suite 2 Tacoma, WA 98424 Physical and Chemical Measurements of Overlying Water Sediment Bioassay

Overlying Ammonia

Client: Floyd Snider

Species: Chironomus tentans Test Date: 4/6/2011 4/13/11

Test #s: 1104 T018 thru 1104-T027

TEST#2 (1104-TO18 three 1104-T024)

	D	ay 0	D	Day 5		y 10	Da	y 15	Da	y 20
Site	NH ₃ (mg/L)	S" (mg/L)	NH ₃ (mg/L)	S ⁻ (mg/L)	NH ₃ (mg/L)	S ⁻ (mg/L)	NH ₃ (mg/L)	S [.] (mg/L)	NH ₃ (mg/L)	S ⁻ (mg/L)
CON	21.0	0.015	21.0	<0.010	1.2	KO.010	21.0	<0.010	3.2	20.010
LL-SED1	21.0	0.011	21.0	<0.010	K1.0			<0.010		<0.010
LL-SED2	6.1	0.036	9.5	KO.010	2.1	<0.010	<1.0	0.010	2.7	<0.010
LL-SED3	21.0	0.020	×1.0	<0.010	21.0	<0.01D	<1.0	0.033	3.1	20.010
U-SED4	21.0	0.029	×1.0	<0.010	<1.0	0.013	<1.0	0.023	3.4	<0.010
MC-SEDI	21.0	20.01	<1.0	<0.010	<1.0	<0.010	<1.0	<0.010	2.9	40.010
MC-SED2	-	<0.01	<1.0	<0.010	<1.0	<0.010	<1.0	<0.010		10.010
MC-SED3	< 1.0	0.015	<1.0	KO.010	<1.0	<0.010	< 1.0	<0.010	3.3	20.010
			-							
				-						
					1					
										1. 3.
L. D.	Sh. h.	Wull	elu hi	4/10/11	5/11/1	4/28/11	Eluli	(AR)	5h.L.	C In In
analysis Date:	V/11/1	YAIII	3/11/11	A A		110011	3/11/11	4/20/11	5/11/11	5/4/11
'ech:				UN I	(Je		(nv)	1911	UN I	M

	Sample I.D.	NH3 (mg/L)	Sample Dup	Spike (mg/L)	RPD	% Recovery
Day	Blank	0.0	NA	11.0	NA	90.2
U-3893		0.0	0.09	P.11.7	0	97.5
Day 15	Blank	0.0	NA	12.2	NA	IDD
U-SED3	-	0.4	0.6	12.9	40	105.7

Comments:

QA Check:

Freshwater Sediment 10 day Survival

Client: Floud Swidly Start Date & Time: 4/5/11 1445 Test #: 1104-708-1000 1104-7014 End Date & Time: 4/15/11 1500 Test Organism: H. azteca

Conc.	Cont.		ırvival
or site	#	Day 0	Day 10
LON	29	10	10
	64	10	9
	14	10	10
	39	10	10
	43	10	10
	31	10	9
	37,	10	10
	54	10	9
LL-SED I	63	10	- 9
	49	10	10
and the second	27	10	10
	16	10	10
	4	10	9
	51	10	10
	55	10	10
	17	.10	8
LL-SEDZ	52	10	10
	18	10	10
	44	10	10
	22	10	9
	46	10	9
	10	10	9
	13	10	10
	Al	10	10
LL-SED 3	33	10	0
	50	10	9
	56	10	01
	19	10	10
	6	10	10
	35	10	9
	12	10	10
-	40	10	9
LL-SED4	11	10	10
	58 28	10	0
	28	10	DI DI
	25	10	M
	34	10	10
and the second	21 2	10	10
	2	10	0
	5	10	10
		10	
		10,	
1 PAL	Tech Initials	as/m	9+

natic

a

Animal Source: _____ Date Received: _____ Age at test initiation: _____

QA Check:

10 Day Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 10 day Survival

Client: Floyd Snidly Test #: 1104-7908 Hnru 1104-7014

Start Date & Time: <u>4/5/11</u> 1445 End Date & Time: <u>4/15/11</u> 1500 Test Organism: <u>H. azteca</u>

Conc.	Cont.		rvival
orsite	#	Day 0	Day 10
MC-SED 1	24	10	10
	32	10	10
	60	10	9
	8	10	9
	57	10	10
		. 10	10
	3	10	9
110 0 50	30	10	8
MC-SED2	1	10	10
	38	10	10
	36	10	9
	61	10	9
	7	10	10
	42	10	10
	59	10	10
ALL CERT	20	10	9
MC.SED3	47	10	
	23 24	10	9
	10	10	10
	48	10	9
	45	10	8
	15	10	
	62	10	10
	53	10 10	9
		10	
		10	
		10	
		10	
		10	
		10	
		10	
100 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200		10	
		10	
		10	
		10	+
		10	
		10	
		10	
		10	
		10	
		10	
CC T	ech Initials	25 m	9t

Animal Source: _____ Date Received: _____ Age at test initiation: _____

4/1/1

9 day

QA Check: _____

Joyd Snider A

Conc. or Site: Test #:

Client:

Start Date & Time: <u>4|5|11</u> 14代 End Date & Time: <u>4-15-11 15</u>00 Test Organism: H. azteca

Technician	Initials	X	*	30	RP	20	5 (14)	××	X		2 to
	Comments										
Had	06		SP	E	BP	59	٩	X	K	HA	5
Temp	21.2	21.00	23.1	22.8	7.22	22.8	22.9	22.8	22.9	122.91	32.8
Dissolved O ₂ (mg/L)	84	7.7	5.8	(e. 3	6.5	10.4	le.1	6.7	6.7	10.01	6.5
Conductivity (umhos/cm)	122	133	131	150	LHT	149	101	(52	158	103	151
pH (units)	45.9	06.0	6.22	le. 81e	LE.JJ	h8 0	10.98	010.L	20.2	20.7	7.03
Sulfide (mg/L)	10.02					10.01					010.0
AlkHardAmmoniamg/L as CaCQ3(mg/L)	<1.0					0.11 40				4	0.12
Hard Is CaCQ3	z					401				T.	10
	\$				-11	or				1FU	2
Day	•		7 6	9 4	v	2	2			10	-

Test Chamber: RM. B

QA Check:

Floyd Smidur LLJSEDI

> Conc. or Site: Test #:

Client:

8aau-2011

Start Date & Time: <u>4/5/|| 1</u>4/5 End Date & Time: <u>4-15-1| 15</u>00

Test Organism: H. azteca

e							1	1				
Technician	Initials	R	R	R	50	BP	39	3	8	R	R	to
	Comments											
	Fed	S	(m)	R	3	SP	BP	G	8	54	AH	5
Temp	(°C)	21.2	2.120	23.0	22.9	32.8	22.9	22.0	22.9	22.9	1229	33.6
Dissolved O ₂	(mg/L)	7.2	7.0	5.3	Ц, Т	5.3	5.3	5.2	5.6	5	5:4	5.6
Conductivity	(umhos/cm)	1-01	101	115	173	211	HL1	14	167	173	174	175
Hd	(units)	7.33	7.33	10.1	1.01	La.L	7.05	4.19	7.19	7.20	91.7	16.7
Sulfide	(mg/L)	0,035					10.02					10.07
Alk Hard Ammonia	(mg/L)	1.1					0.12					0'1>
Hard	mg/L as CaCO3	44					92					88
Contraction of the	mg/L as	72					73					72
Day		0	1	2	3	4	s	9	7	~	6	10

Test Chamber: ZM . B

O Test chamber turned of temperature turned of

QA Check:

Floud Smidur 11/SED2 1104-TD09

Conc. or Site: Test #:

Client:

Test Organism: H. azteca

l echnician Initiale	TITUALS	22	R	R	BP	BP	BP	E	R	X	2	sta
	Comments											
- F	Fed	S	(M)	2	E	30	S	È	K	R	M	5
Temp	() ⁰	21.2	U21.2	23.0	13.0	22.8	22.9	22.9	23.0	6:22	23.0	33.8
Dissolved O ₂	(mg/L)	0.0	0:0	4.8	4.8	4.8	4.8	4.9	4.9	.10	5.4	5.3
Conductivity	(umhos/cm)	172	211	1011	HL1	221	EL1	1104	102	11010	103	161
Hd	(units)	7.15	7.19	16.01	6.99	(0.90	(0.97	201	(093	10.94	10:00	20.7
	(mg/L)	0.053					10.07					10.02
Alk Hard Ammonia	(mg/L as CaCO3 (mg/L)	1.0					2.0					10,020,1200 401
Hard	CaCO3	104	2				100 105 AN					104
Alk	mg/L as	80					100	707				er L
Day		0	-	2		4	S	9	-	~	6	10

Test Chamber: RM. B

O Test chamber turned temperature turned up

QA Check:

Floud Snider

Conc. or Site: Test #:

Client:

1104-T010

Start Date & Time: <u>4/5/11 14</u>45 End Date & Time: <u>4-15-11 1</u>500

Test Organism: H. azteca

	-	-	T	-	-	T	Т	T	Т		
Initials	8	R	R	66	36	BP	E	R	8	Si	Þ
Comments											-
Fed	J.	Ś	3	M	CP CP	98	E	R	5)	3
Temp (°C)	2.12	V21.2	23.	22.9	7.22	33.8	22.9	22.8	1.22	23.0	23.8
Dissolved O ₂ (mg/L)	10.01	6.0)	5.0	5.3	5,5	5.4	5.0	8.7	5.2	5.2	5.1
Conductivity (umhos/cm)	1 lout	105	170	111	110	211	14	6011	121	110	167
pH (units)	7.20	7.32	1.09	712	ola. L	01.1	1 10	715	7.15	-1-	40.2
Sulfide (mo/L)	0.063					10.0>					10.02
Alk Hard Ammonia						<1,0					21.0
Alk Hard	710	+				00	2				06
	710	9				51	<u><</u>				LT.
Day	-	-			V	- 4	2		~ ~	0	10

Test Chamber: RM. B

O test chamber temperature increased

QA Check: (1)

Freshwater Sediment 10 day Water Chemistries

Floyd Snidur

Conc. or Site: Test #:

Client:

1107-4011

Start Date & Time: <u>4/5/II 1</u>445 End Date & Time: <u>イー/5-/I</u> 1500

Test Organism: H. azteca

			1					1				
Technician	Initials	R	R	R	BP	BP	60	C	R	\$	R	æ
	Comments											
	Fed	CC	E	E((M)	BP	SP	R)?	R	AN	5
Temp	(°C)	21.4	021.2	23.0	22.9	1.22	22.7	8.22	22.9	12.9	Lizz	33.8
Dissolved O ₂	(mg/L)	(0.0)	6.2	2.7	5,3	5,5	5,3	2.5	5.7	4.9	2:0	4.9
Conductivity	(umhos/cm)	001	100	173	173	173	211	4	168	0LI	011	121
Hd	(units)	7.26	7.37	7.16	LI'L	Lo.L	17.1	4.4	7.15	P1.19	P0.1	710
Sulfide	(mg/L)	0.056					10.02					<0.01
Alk Hard Ammonia	mg/L as CaCO3 (mg/L)	5.1					RE CI.D					0.12
Hard	CaCO3	44	2									44
Alk	mg/L as	710					C/X	2				70
Day		0	1	2	3	4	5	9	7	~	6	10

Test Chamber: $\mathbb{Z}M$, \mathcal{B}

Otest chamber turned Temperature turned Ş

QA Check:

Freshwater Sediment 10 day Water Chemistries

Floyd Smidur MC-SEDI

Conc. or Site: Test #:

Client:

1104-T012

Start Date & Time: 4/5/11 1445 End Date & Time: 4-15-11 1500

Test Organism: H. azteca

	Hard	Alk Hard Ammonia	Sulfide	Hd	Conductivity	Dissolved O ₂	Temp			Technician
	aCO3	(mg/L as CaCO3) (mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	()°C)	Fed	Comments	Initials
	26	0'1>	10.0>	7.35	104	6.01	21.4	00		Q
120				7.87	163	7.2	021.3	(n)		\$
				7.11	1001	0.9	23.1	30		R
				7.23	170	(e,n	72.9	W		<i>bp</i>
				11.1	173	(e.1	22, Le	50		BP
08	gle	0.12	10.0>	21.18	174	(e, r)	32.8	SP		BP
				20.F	173	5.8	22.9	Č		(m)
				2.16	172	5.8	22.8	R		X
				7.23	173	5.2	22.9	Q		R
TAN COL				7.14	011	5.0	22.7	NH		R
	7621	51.0	10.07	7.13	173	5.3	23.8	ct.		G
	36									
Test Chamber:	KM	RM. B	e	1. Mamber	Per .		QA Check:	E		

Orest chamber

QA Check:

Freshwater Sediment 10 day Water Chemistries

Floyd Snider

Conc. or Site:

Test #:

Client:

1104-7013

Test Organism: H. azteca

Technician	Initials	R	R	R	BP	BP	BP	R	2	R	8	t,
	Comments										×.	
	Fed	C	(MI)	RP .	(m))5	09	E	R	4	HY	5
Temp	(°C)	21.3	V21.2	23.1	22.8	22.7	7.22	22.9	23.0	23.0	23.0	રાગ, ૬
Dissolved O ₂	(mg/L)	7.8	1.5	\$ 170 6.2	le.o	le, 4	(0.3	10.2	2.0	5.8	5.9	6.0
Conductivity	(umhos/cm)	163	1102	170	171	111	113	141	171	175	175	175
Hd	(units)	7.44	したし	7.25	82.L	7.16	12.1	7.29	1.2.L	7.30	22.1	7.24
Sulfide	(mg/L)	10.02					<0.01					0.013
Alk Hard Ammonia	mg/L, as CaCO3 (mg/L)	0'1>					28. <1.0 <0.01					<1.0
Hard	s CaCO3	32					100					100
	mg/L as	80					80					80
Day		0	1	2	3	4	S	9	7	8	6	10

O Test chamber temperature increased

QA Check:

Freshwater Sediment 10 day Water Chemistries

Flayd Smidur NCI-SED3

Conc. or Site: Test #:

Client:

1104-TO14

Start Date & Time: <u>4 ら川</u> 1445 End Date & Time: 4 15/11 1500 End Date & Time: 4/15//1 Test Organism: H. azteca

Technician	Initials	X	X	R	S	BP	59	S.	R	4	35	6t
	Comments											
	Fed	CC	(M)	X	W	SP	30	E	R	R	XA	-to
Temp	()°C)	21.3	U21.2	23.2	32.9	22.7	7.22	22.9	23.0	22.9	23.	33.9
Dissolved O ₂	(mg/L)	7.8	7.5,	6.4	[e,]	(e, 5	(o, H	10.4	10.2.	10.01	1.01	5.9
Conductivity	(umhos/cm)	159	101	166	[Le]	1107	1 Lelo	169	108	121	173	172
Hq	(units)	7.39	7.40	1.27	3C.L	7,19	1.21	7.33	7.32	7.39	7.30	7.30
Sulfide	(mg/L)	10.02					<0.01					010.03
Alk Hard Ammonia	(mg/L as CaCO3) (mg/L)	0'1>					21.0					21.2
Hard	CaCQ3	94					88					84
Alk	(mg/L as	80)					84					80
Day		0	1	7	3	4	5	9	7	×	6	10

OTest chamber increased temperature increased

QA Check:

Freshwater Sediment 10 day Observations

Client: Floyd Snider Test #: 1104-1008 Hnru 1104-1014 Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500 Test Organism: *H. azteca*

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
	Initials	X	82	GP	BP	BP	m	$ \rangle$	184	
MC-SED2	1	A	N	N	N	N	N	Ň	N	Ň
LL-SED4	2	1	1	1	1	1	1		1	
MC-SED1	3			1				1	1	1
LL-SED1	4		· · · · ·			•••••••				1
LL-SED4	5							1		
LL-SED3	6					1		1		
MC-SED2	7	-	1	1				1		1
MC-SED1	8	-					1			
MC-SED1	9			1		1				
LL-SED2	10			1		1		1		
LL-SED4	11						1			
LL-SED3	12				1	••••••				-
LL-SED2	13									
CON	14					†				
MC-SED3	15	-		1		••••••				
LL-SED1	16			1		İ				
LL-SED1	17			1		1				
LL-SED2	18			· •		•••••••				
LL-SED3	19	-		1						
MC-SED2	20	-								
LL-SED4	21	-								
LL-SED2	22	-		+ +						++
MC-SED3	23	-		++						
MC-SED1	24	-								
LL-SED4	25	-		+						
MC-SED3	26	-		-						
LL-SED1	27	-								
LL-SED4	28	-		1			1			
CON	29	-								
MC-SED1	30	-						1		
CON	31		1	1						
MC-SED1	32	-								
LL-SED3	33	-		1			1	1		
LL-SED4	34			1				1		
LL-SED3	35	-						1		
MC-SED2	36	-					1	1		
CON	37			1			1	1		
MC-SED2	38									
CON	39							1		1
LL-SED3	40	1					1			1
LL-SED2	41		1				1	1		1
MC-SED2	42			1						1
CON	43			1						1
LL-SED2	44			1				1		
MC-SED3	45		1	1			1			
LL-SED2	46			1			1	1		1
MC-SED3	47		V		~	5/2	T J	V	V	V

10 Day Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 10 day Observations

Client: Floyd Snider Test #: 1104-1008 - 1104- 1014 Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500 Test Organism: *H. azteca*

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
in the second	Initials	XS	TO	SP	BP	BP	(m)	S	84	82
MC-SED3	48	NI	N	N	N	N2	N	N	N	12/1
LL-SED1	49		1	1	1		1	1	1	
LL-SED3	50									
LL-SED1	51						1			
LL-SED2	52						1	1		1
MC-SED3	53		1	1		1	T T	1		
CON	54			1 1				1		
LL-SED1	55			1 1						
LL-SED3	56			T T T						
MC-SED1	57							1		
LL-SED4	58			1				1	1	
MC-SED2	59			1 T			1	1		
MC-SED1	60						1			
MC-SED2	61			T						
MC-SED3	62						1			
LL-SED1	63		1.			1				
CON	64	V	V	V	V	V		V	V	V

Nautilus Environmental 5009 Pacific Hwy E Suite 2 Tacoma, WA 98424

Physical and Chemical Measurements of Overlying Water Sediment Bioassay

Overlying Ammonia

Client: Floyd Snider

Species: Hyallela azteca 4/8/2011

Test #s: 1104 1104-TOD8 thru 1104-TO14

	D	ay O	D	ay 5	Da	y 10
Site	Ammonia (mg/L)	Sulfide (mg/L)	Ammonia (mg/L)	Sulfide (mg/L)	Ammonia (mg/L)	Sulfide (mg/L)
CON	<1.0	<0.01	<1.0	20.010	<1.0	0.010
LL-SED1	1.1	0.035	<1.0	< 0.010	< 1.0	20.010
LL-SED2	2.0	0.053	2.0	<0.010	< 1.0	20.010
LL-SED3	1.2	0.068	<1.0	<0.010	< 1.0	<0.010
LL-SED4	1.5	0.050	<1.0	<0.010	< 1.0	<0.010
MC-SED1	21.0	<0.01	<1.0	<0.010	<1.0	20.010
MC-SED2	< 1.0	< 0.01	<1.0	< 0.010	<1.0	0.013
MC-SED3	21.0	<0.01	<1.0	<0.010	<1.0	< 0.010
	-					
Analysis Date: Fech:	4/14/11	4/8/11 (N)	4/14/11	4/12/11	4/28/11	4/15/11

Sample LD	Sample I.D.	NH3 (mg/L)	Sample Dup	Spike (mg/L)	RPD	% Recovery
	Blank	0.0	NA	12.0	NA	98.4
U-SEDS DAY D	@1.2	1.2	1.2	12.8	0.0	95,1
4-5803	Blank	0.0	NA	11.9	NA	97.5
DID	1////	0.0	0.0	11.7	0.0	95.1

Comments:

QA Check:

m

Freshwater Sediment 10 day Survival

Client: Floud Swidly Start Date & Time: 4/5/11 1445 Test #: 1104-708-1000 1104-7014 End Date & Time: 4/15/11 1500 Test Organism: H. azteca

Conc.	Cont.		ırvival
or site	#	Day 0	Day 10
LON	29	10	10
	64	10	9
	14	10	10
	39	10	10
	43	10	10
	31	10	9
	37,	10	10
	54	10	9
LL-SED I	63	10	- 9
	49	10	10
and the second	27	10	10
	16	10	10
	4	10	9
	51	10	10
	55	10	10
	17	.10	8
LL-SEDZ	52	10	10
	18	10	10
	44	10	10
	22	10	9
	46	10	9
	10	10	9
	13	10	10
	Al	10	10
LL-SED 3	33	10	0
	50	10	9
	56	10	01
	19	10	10
	6	10	10
	35	10	9
	12	10	10
-	40	10	9
LL-SED4	11	10	10
	58 28	10	0
	28	10	DI DI
	25	10	M
	34	10	10
and the second	21 2	10	10
	2	10	0
	5	10	10
		10	
		10,	
1 PAL	Tech Initials	as/m	9+

natic

a

Animal Source: _____ Date Received: _____ Age at test initiation: _____

QA Check:

10 Day Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 10 day Survival

Client: Floyd Snidly Test #: 1104-7908 Hnru 1104-7014

Start Date & Time: <u>4/5/11</u> 1445 End Date & Time: <u>4/15/11</u> 1500 Test Organism: <u>H. azteca</u>

Conc.	Cont.		rvival
orsite	#	Day 0	Day 10
MC-SED 1	24	10	10
	32	10	10
	60	10	9
	8	10	9
	57	10	10
		. 10	10
	3	10	9
110 0 50	30	10	8
MC-SED2	1	10	10
	38	10	10
	36	10	9
	61	10	9
	7	10	10
	42	10	10
	59	10	10
ALL CERT	20	10	9
MC.SED3	47	10	
	23 24	10	9
	10	10	10
	48	10	9
	45	10	8
	15	10	
	62	10	10
	53	10 10	9
		10	
		10	
		10	
		10	
		10	
		10	
		10	
100 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200		10	
		10	
		10	
		10	+
		10	
		10	
		10	
		10	
		10	
		10	
CC T	ech Initials	25 m	9t

Animal Source: _____ Date Received: _____ Age at test initiation: _____

4/1/1

9 day

QA Check: _____

Freshwater Sediment 10 day Water Chemistries

Client:

Test #:

Conc. or Site:

Snider

5/11 1445 Start Date & Time: 4 End Date & Time: 4-15-11 1500

Test Organism: H. azteca

Day	Alk mg/L as	Hard	Ammonia (mg/L)	Sulfide	pH	Conductivity	Dissolved O ₂	Temp	1 M		Technician
0	40	68		(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
	10	0.0	<1.0	<0.01	6.54	122	8.4	21.2	œ		
1					6.90	133	7.7	21.00	(m)		22
2					6.55	131	5.8	23.1	GP		R
3					6.84	150					<u> </u>
4		All And			Le. 77	147	6.3	12.8	m		BP
5	40	64	<1.0	10.01		Share and the state of the	6.5	22,7	BP		BP
6					6.84	149	6.4	22.8	BP		BP
7					4.98	161	le.1	22.9	R		m
8					7.06	(52	6.7	22.8	X		~
				化建造者	7.05	158	6.7	22.9	X		2
9	lid				7.02	163	10.0	22.9	141		00
10	40	64	51.0	0.010	7.03	161	6.5	22.8	MH Et		4

Test Chamber: <u>RM. B</u>

QA Check:

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

FLOU	d Snider	
LLY	SEDI	
111	4-1008	

Start Date & Time: <u>4/5/11 1445</u> End Date & Time: <u>4-15-11 15</u>00

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity	Dissolved O ₂	Temp			Technician
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	72	88	1.1	0.035	7.33	167	7.2	21.2	ec		N.
1					7.33	167	7.0	021.2	m.		X
2					7.04	175	5.3	23.0	BP		80
3					7.07	173	4.7	22.9	R		BP
4					7.02	172	5,3	22.8	SP		BP
5	72	92	<1.0	<0.01	7.05	174	5.2	22.9	BP		BP
6					7.19	171	5.2	22.0	P		m
7					7.19	167	5.6	22.9	X		(1)
8					7.20	173	5.5	22.9	82		CX
9					7.16	174	5.4	22.9	SHA		X
10	72	88	<1.0	50.01	7.21	175	5.6	22.8	13		4

QA Check:

() Test chamber temperature turned up

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

oud Snider 1104-7009

Start Date & Time: 4/5/11 1445 1500 End Date & Time: 4-15-11

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pН	Conductivity	Dissolved O ₂	Temp			Technician
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	80	104	2.0	0.053	7.15	172	6.6	21.2	R		22
1					7.19	172	6.6	021.2	m.		20
2					6.91	179	4.8	23.0	31		X
3					6.99	174	4.8	13.0	\bigcirc		BP
4					6.90	172	4.8	22.8	BP	and the second	BP
5	(28	108	2.0	50.01	6.92	172	4.8	22.9	SP		BP
6	120	100			7.02	164	4.9	22.9	m		(M)
7					6.93	162	4.9	23.0	82		20
8					6.94	160	5.3	22.9	8		(X)
9					6.99	1103	5.4	23.0	MH		CK
10	72	104	10×1.0	(0.0)	7.02	161	5.3	22.8	et		क्ष

QA Check:

1) Test chamber turned temperature UP

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

Snider 1104-TOID

Start Date & Time: 4/5/11 1445 End Date & Time: 4-15-11 1500

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity (umhos/cm)	Dissolved O ₂ (mg/L)	Temp (°C)	Fed	Comments	Technician Initials
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)						X
0	76	76	1.2	0.068	7.20	1.64	6.4	21.2	R		~
1		1			7.32	165	6.8	21.2	m		0
2					7.09	170	5.0	23.1	SP		CC
3					7.12	171	5.3	22.9	m		BP
4					7.06	170	5,5	22.7	SP		BP
5	72	90	<1,D	<0.01	7.10	172	5.4	22.8	BP		BP
6	1				7.19	171	5.0	22.9	M		m
7					7.15	1109	4.8	22.8	2		est and a second
8					7.15	171	5.2	22.7	XX		- A
9					7.05	170	5.2	23.0	MA		X
10	72	90	<1.0	(0.0)	7.04	167	5.1	22.8	87		D D

QA Check:

O Test chamber temperature increased

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

Flor	.1	C.	div	,
FWI	100	on	ian	
		D4	•	
1104	- TO	DII		

Start Date & Time: <u>4/5/11 144</u>5 End Date & Time: <u>4-15-11</u>/500

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity	Dissolved O ₂	Temp			Technician
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	710	44	1.5	0.056	7.26	160	6.0	21.4	CR		\mathcal{D}
1					7.37	166	6.8	021.2	m		82
2					7.16	173	5.7	23.0	BP		82
3					7.17	173	5.3	22.9	m		BP
4					7.07	173	5,5	22.7	BP		BP
5	80	88	<1.0	50.01	1.1	172	5.3	22.7	SP		SP
6					7.17	171,	5.2	22.8	(N)		(m)
7					7.15	168	4.9	22.9	85		X
8		-			7.19	170	4.9	22.9	X		82
9					7.09	170	5.0	22.7			CX
10	76	84	<1.0	<0.01	7.10	171	4.8	22.8	Ct		84

QTest chamber Temperature turned UP

QA Check:

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

Floyd Snider MC-SEDI 1104-TO12

Start Date & Time: 46/11 1445 End Date & Time: 4-15-11 1500 Test Organism: H. azteca

Technician Conductivity **Dissolved O**₂ Hard Sulfide pH Temp Alk Ammonia Day Fed Initials (umhos/cm) (mg/L)(°C) Comments mg/L as CaCO3 (mg/L)(units) (mg/L)X 6.9 2 œ 7.35 92 <1.0 <0.01 104 .4 72 0 21.3 163 1 7.37 7.2 m JP 7.11 169 5.9 23. 2 OP 22.9 m 3 170 7.23 6.0 BP BP 4 173 22,6 11.1 6.1 SP BP 5 96 <1.0 <0.01 80 22.8 7.18 174 6.D m 6 7.22 173 5.8 22.9 m 8 5.8 172 22.8 7.16 7 X 5.5 22.9 173 8 7.23 22.7 5.5 7.14 170 SH 9 Et 96 < 1.0 et 22.8 80 (0.01 7.13 173 5.3 10

Test Chamber: RM. B

Grest chamber rest chamber reatured

QA Check:

Freshwater Sediment 10 day Water Chemistries

Client:

Test #:

Conc. or Site:

Floyd Snider MC-SED2 1104-TO13

Start Date & Time: 4/5/11 1445 End Date & Time: 4-15-11 1500 Test Organism: H. azteca

Day Alk Hard Ammonia Sulfide pH Conductivity **Dissolved O**₂ Technician Temp mg/L as CaCO3 (mg/L)(mg/L)(umhos/cm) (mg/L)(°C) Fed Initials (units) Comments 68 R 92 7.8 0 <1.0 10.01 7.44 163 21.3 221.2 7.47 1 1.5 m 102 \$ 170 6.2 2 7.25 23.1 SP 170 BP 3 6.0 7.28 171 22.8 m BP 4 BP 7.16 171 6.4 22.7 50. <1.0 <0.01 OP BP 5 80 100 22.7 7.21 173 6.2 N 6 m 6.2 22.9 7.29 171 5.9 N 7 7.27 171 23.0 あ 5.8 8 7.30 175 23.0 9 5.9 23.0 7.22 175 SH 2+ 80 <1.0 0.013 7.24 175 6.0 8t 10 100 22.8

Test Chamber: RM. B

@ Test chamber +emperature increased

QA Check:

Freshwater Sediment 10 day Water Chemistries

Client:

Conc. or Site:

Test #:

FLOMO	d Snider	
MQ-	SED 3	
1104-	T014	
1104 -	1014	

Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity	Dissolved O ₂	Temp			Technician
	(mg/L as	E 1	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	68	84	<1.0	20.01	7.39	159	7.8	21.3	Cl/		X)
1					7.46	161	7.5,	221.2	(m)		X
2					7.27	166	6.4	23.2	SP		X
3					7.28	167	6.1	22.9	m		SP
4					7,19	167	6.5	22.7	GP		BP
5	84	88	<1.0	<0.01	7.21	1 Lele	(0.4	22.7	BP		BP
6					7.33	169	10.4	22.9	P		R
7					7.32	165	6.2.	23.0	B		X
8					7.39	171	6.4	22.9	B		X
9					7.30	173	6.1	23.1	SH		×5
10	80	84	51.0	KO.010	7.30	172	5.9	22.9	Q-		- Et

O Test chamber increased

QA Check:

Freshwater Sediment 10 day Observations

Client: Floyd Snider Test #: 1104-1008 Hnru 1104-1014 Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500 Test Organism: *H. azteca*

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
	Initials	X	82	GP	BP	BP	(m)	$ \rangle$	184	
MC-SED2	1	A	N	N	N	N	N	N	N	Ň
LL-SED4	2	1	1	1	1	1	1		1	
MC-SED1	3			1				1	1	1
LL-SED1	4		· · · · ·			•••••••				1
LL-SED4	5									
LL-SED3	6					1		1		
MC-SED2	7	-	1	1				1		1
MC-SED1	8	-					1			
MC-SED1	9			1		1				
LL-SED2	10			1		1		1		
LL-SED4	11						1			
LL-SED3	12				1	••••••				-
LL-SED2	13									
CON	14					†				
MC-SED3	15			1		••••••				
LL-SED1	16			1		İ				
LL-SED1	17			1		1		++-		
LL-SED2	18			· •		•••••••				
LL-SED3	19	-		1						
MC-SED2	20	-								
LL-SED4	21	-								
LL-SED2	22	-		+ +						++
MC-SED3	23	-		++						
MC-SED1	24	-								
LL-SED4	25	-		+						
MC-SED3	26	-		-						
LL-SED1	27	-								
LL-SED4	28	-		1			1			
CON	29	-								
MC-SED1	30	-						1		
CON	31			1						
MC-SED1	32	-								
LL-SED3	33	-		1			1	1		
LL-SED4	34			1				1		
LL-SED3	35	-						1		
MC-SED2	36	-					1	1		
CON	37			1			1	1		
MC-SED2	38									
CON	39							1		1
LL-SED3	40	1					1			1
LL-SED2	41		1				1	1		1
MC-SED2	42			1						1
CON	43			1						1
LL-SED2	44			1				1		
MC-SED3	45		1	1			1			
LL-SED2	46			1			1	1		1
MC-SED3	47		V		~	5/2	T J	V	V	V

10 Day Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 10 day Observations

Client: Floyd Snider Test #: 1104-1008 - 1104- 1014 Start Date & Time: 4/5/11 1445 End Date & Time: 4/15/11 1500 Test Organism: *H. azteca*

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
in the second	Initials	XS	TO	SP	BP	BP	(m)	S	84	82
MC-SED3	48	NI	N	N	N	N2	N	N	N	12/1
LL-SED1	49		1	1	1		1	1	1	
LL-SED3	50									
LL-SED1	51						1			
LL-SED2	52						1	1		1
MC-SED3	53		1	1		1	T T	1		
CON	54			1 1				1		
LL-SED1	55			1 1						
LL-SED3	56			T T T						
MC-SED1	57									
LL-SED4	58			1				1	1	
MC-SED2	59			1 T			1	1		
MC-SED1	60						1			
MC-SED2	61			T						
MC-SED3	62						1			
LL-SED1	63		1			1				
CON	64	V	V	V	V	V		V	V	V

Nautilus Environmental 5009 Pacific Hwy E Suite 2 Tacoma, WA 98424

Physical and Chemical Measurements of Overlying Water Sediment Bioassay

Overlying Ammonia

Client: Floyd Snider

Species: Hyallela azteca 4/8/2011

Test #s: 1104 1104-TOD8 thru 1104-TO14

	D	ay O	D	ay 5	Day 10		
Site	Ammonia (mg/L)	Sulfide (mg/L)	Ammonia (mg/L)	Sulfide (mg/L)	Ammonia (mg/L)	Sulfide (mg/L)	
CON	<1.0	<0.01	<1.0	20.010	<1.0	0.010	
LL-SED1	1.1	0.035	<1.0	< 0.010	<1.0	20.010	
LL-SED2	2.0	0.053	2.0	<0.010	< 1.0	20.010	
LL-SED3	1.2	0.068	<1.0	<0.010	< 1.0	<0.010	
LL-SED4	1.5	0.050	<1.0	<0.010	< 1.0	<0.010	
MC-SED1	21.0	<0.01	<1.0	<0.010	<1.0	20.010	
MC-SED2	< 1.0	< 0.01	<1.0	< 0.010	<1.0	0.013	
MC-SED3	21.0	<0.01	<1.0	<0.010	<1.0	< 0.010	
	-						
Analysis Date: Fech:	4/14/11	4/8/11 (N)	4/14/11	4/12/11	4/28/11	4/15/11	

Sample LD	Sample I.D.	NH3 (mg/L)	Sample Dup	Spike (mg/L)	RPD	% Recovery
	Blank	0.0	NA	12.0	NA	98.4
U-SEDS DAY D	@1.2	1.2	1.2	12.8	0.0	95,1
4-5803	Blank	0.0	NA	11.9	NA	97.5
DID	1////	0.0	0.0	11.7	0.0	95.1

Comments:

QA Check:

m

Raw Data Sheet Microtox 100% Sediment Porewater Toxicity

Client Name:	Floyd &	nider		Test Date:	3/31/11				
Sample ID:				Test No.:	1103-TO	61, 1103-7	7062		
oumpie inte	LLSEDI, LL LLSED3, LL	SED4			<u>1103-To</u> 1103 -To	63,1103-	-7064		
	Light		Replicate						
Site	Reading	Time	1	2	3	4	5		
	I ₍₀₎	5 min	99	105	106	112	110		
	I ₍₅₎	10min	93	99	97	106	100		
CON	I ₍₁₅₎	20 min	82	91	87	94	87		
	I ₍₀₎	5 min	91	83	85	86	70		
	I ₍₅₎	10min	83	78	81	79	62		
LLSED 1	I ₍₁₅₎	20 min	73	69	75	68	-58		
	I ₍₀₎	5 min	66	61	62	70	65		
	I ₍₅₎	10min	63	57	59	65	62		
LLSED 2	I ₍₁₅₎	20 min	59	54	55	60	56		
						1			
	I ₍₀₎	5 min	80	77	76	79	77		
	I ₍₅₎	10min	75	75	69	73	72		
LLSED 3	I ₍₁₅₎	20 min	68	60	61	66	6S		
			The second second				ALC: NOT		
	I ₍₀₎	5 min	67	76	70	68	67		
	I ₍₅₎	10min	65	70	65	68	63		
LLSED 4	I ₍₁₅₎	20 min	59	60	56	58	56		
			a sector and the sector of the						
	I(0)	5 min							
	I ₍₅₎	10min							
	I ₍₁₅₎	20 min							

Comments:

pc. check - m

Raw Data Sheet Microtox 100% Sediment Porewater Toxicity

Client Name:

Floyd Inide

Test Date: 3/31/11

Sample ID:

MCSEDI, MCSEDZ, MCSEDJ

Test No.: 1103-T065, 1103-T066 1103-T067

	Light				Replicate		
Site	Reading	Time	1	2	3	4	5
	I ₍₀₎	5 min	94	98	96	99	94
	I ₍₅₎	10min	90	91	89	90	91
CON	I ₍₁₅₎	20 min	91	89	84	84	82
		Contraction of the second			and the second	Contraction of	
	I _(o)	5 min	100	94	89	97	94
	I ₍₅₎	10min	89	91	85	90	91
MCSED 1	I ₍₁₅₎	20 min	82	86	79	83	81
							THE REAL
	I ₍₀₎	5 min	88	85	86	85	86
	I ₍₅₎	10min	86	83	83	82	86
MC SED 2	I ₍₁₅₎	20 min	79	76	77	76	81
			Line Line	1 Martin			
	I ₍₀₎	5 min	89	90	90	90	85
	I ₍₅₎	10min	84	85	87	90	79
MC SED 3	I ₍₁₅₎	20 min	77	80	77	79	76
	I ₍₀₎	5 min					
	I ₍₅₎	10min					
	I ₍₁₅₎	20 min					
Willie Martine							
	I(0)	5 min					
	I ₍₅₎	10min					
	I ₍₁₅₎	20 min					

Comments:

RC chuck - @

Physical and Chemical Measurements of Porewaters Sediment Bioassays

Analyst: U Test Date: 3/31/11

Client: <u>Floyd & nide</u> Test No: <u>1103-T061, -T</u>067

Test Type: Microtox 100% Porewater Toxicity Test

Test Species: Vibrio fischeri

Site	Initial Salinity (ppt)	Final Salinity (ppt)	Initial D.O. (mg/L)	Final D.O (mg/L)	Initial pH	Adjusted pH	NaOH or HCl Vol. Used	Final Porewater Conc.	Ammonia
CON	19.4	19.4	7.9	7.9	8.17	7	-	_	P
MCSEDI	0.0	20.6	7.7	7.7	8.19	-	-	-	
MCSEDI	0.0	20.8	7.8	7.8	8.03	-	-	_	
MCSED3	0.0	19.2	7.8	7.8	8.29	8.16	20/11 O.I NHCI	99.9%	
LLSED)	0.0	19.4	7.7	7.7	7.92	-	-	_	
LLSEDQ	0.0	20.5	7.9	7.9	7.37	7.93	50 ML O.IN Nooth	99.8%	
LLSED3	0.1	19.2	7.9	7.9	7.66	8.00	30,44 0.1 N NaOl-	99.8%	

Sample Description: _____

Comments:

See Sarmple Oheck in

QA Check:

Physical and Chemical Measurements of Porewaters Sediment Bioassays

Analyst:	4	
Test Date:	3/31/11	

Client: <u>Floryd Inider</u> Test No: <u>1103-T061-T0</u>67

Test Type: Microtox 100% Porewater Toxicity Test

Test Species: Vibrio fischeri

Initial Salinity (ppt)	Final Salinity (ppt)	Initial D.O. (mg/L)	Final D.O (mg/L)	Initial pH	Adjusted pH	NaOH or HCl Vol. Used	Porewater Conc.	Ammonia
	20.2	7.9	7.9	7.85	8.01	10,111 Na01+	99.9%	Sample
		t.						
		Salinity Salinity (ppt) (ppt)	Salinity (ppt)Salinity (ppt)D.O. (mg/L)O,OQO.Q7.9	Salinity (ppt)Salinity (ppt)D.O. (mg/L)D.O (mg/L)O,OQO,Q7.97.9	Initial Salinity (ppt)Initial Salinity (ppt)Initial D.O. (mg/L)D.O (mg/L)OrO20.27.97.97.85	Initial Salinity (ppt)Initial D.O.D.O. D.OD.O (mg/L)pH0,020.27.97.97.858.01	Initial SalinityFinal D.O.Initial D.O.Final PHInitial PHor HCl Vol. Used(ppt)(ppt)(mg/L)(mg/L)II O_rO $2O.2$ 7.9 7.9 7.85 8.01 $0./N$ MaOH	Initial SalinityFinal D.O.Initial D.O.Pin D.O.pHpHor HClPorewater Conc.(ppt)(ppt)(mg/L)(mg/L) mg/L ng/L <td< td=""></td<>

Sample Description: _____

Comments:

QA Check: (N)

Nautilus Environmental 5009 Pacific Hwy E Suite 2 Tacoma, WA 98424

+ >

Physical and Chemical Measurements of Interstitial Porewaters Sediment Bioassay

Analysis Date: 3/30/11

Interstitial Ammonia and Sulfide Client: PR Floyd Sm Floyd Snuder Chironomids Species: Microto Test Date: Test Day: Sample Check-in 1104- 7024 thous Test #s: 1104

Site	Sulfide (mg/L)	Ammonia (mg/L)
LLSEDI	0.243	1.2
LLSED2	0.561	11.9
LLSED 3	0.408	4.6
LLSED4	0.375	2.8
MCSEDI	0.016	<1.0
MESEDA	0.040	< 1.0
MCSED3	0.036	<1.0
		1
Tech	Et.	(m)

NA	12.2	NA	100	
33	13.9	14.3	90.9	
	NA 3.3	NA 12.2 3.3 13.9	NA 12.2 NA 3.3 13.9 14.3	NA 12.2 NA 100 3.3 13.9 14.3 90.9

DI Blank:_____ Seawater Blank:_____

QA Check:

Comments: * Samples. dark

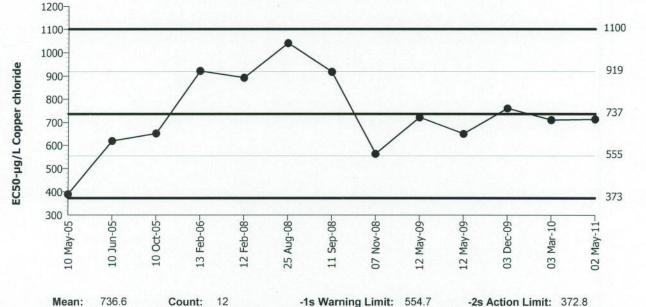
Turbidity Measurements

Client: Floyd & mide Date: 3/31/11 Analyst: 27

Sample ID	Measurement (NTU)
Standard 0-10	4,92
Standard 0-100	49.8 491
Standard 0-1000	491
DI	0.07
Ort CON	0.60
LLSEDI	ରା.6
LLSEDZ	78,4
LLSEN3	34.1 95,9
LLSED 4	95,9
MCSEDI	5,5
MCSED2	18.7
MCSED3	18.5
Standard 0-10	4.91
Standard 0-100	49,7
Standard 0-1000	484
DI	0.10

Measure standards and DI at beginning and end of analysis.

QA Check: @


APPENDIX E – Reference Toxicant Tests

06 May-11 14:51 (1 of 1) Report Date:

CETIS QC Plot

Chironomu	is 96-h Acute Survival Test				Nautilus Environmental WA
Test Type:	Survival (96h)	Organism:	Chironomus tentans (Midge)	Material:	Copper chloride
Protocol:	EPA/600/R-99/064 (2000)	Endpoint:	96h Survival Rate	Source:	Reference Toxicant-REF

moun		oount.		to training Linne.		Lo Motion Linne.	0.1.0	
Sigma:	181.9	CV:	24.70%	+1s Warning Limit:	918.5	+2s Action Limit:	1100	

Quality Control Data

Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2005	May	10	389.8	-346.8	-1.907	(-)		03-9785-3768	06-1599-1620
2		Jun	10	619.3	-117.3	-0.6446			08-3314-6775	08-1540-4607
3		Oct	10	651.6	-84.96	-0.4671			08-1025-4680	04-9254-8883
4	2006	Feb	13	921.9	185.3	1.019	(+)		08-9851-1226	07-3219-0331
5	2008		12	892.6	156	0.8574			15-6976-5200	18-3934-0764
6		Aug	25	1040	303.3	1.667	(+)		06-6119-9769	09-7546-4295
7		Sep	11	917.7	181.1	0.9959			12-5480-0473	10-6515-6515
3		Nov	7	563	-173.6	-0.9545			11-4948-7713	17-3277-7072
9	2009	May	12	721.9	-14.71	-0.08084			07-7016-2012	11-9025-1031
10			12	650.3	-86.31	-0.4745			10-1811-8659	15-1190-7362
11		Dec	3	760.9	24.26	0.1334			06-1499-1772	06-0264-7224
12	2010	Mar	3	710.4	-26.21	-0.1441			17-7743-6517	09-5758-4695
13	2011	May	2	713.8	-22.83	-0.1255			05-0735-0656	07-1751-6097

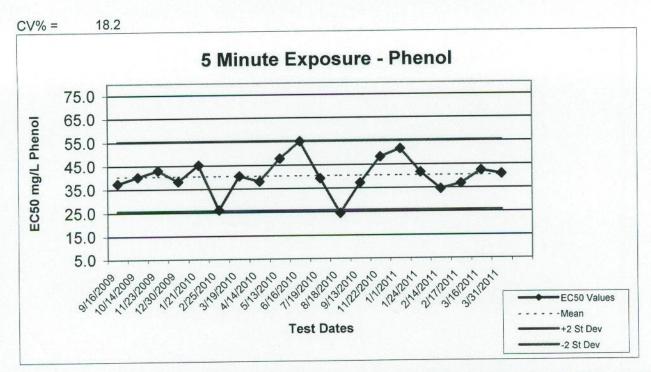
CETIS Sum	nmary Repo	ort						Report Date Test Code:		06 May-11 14: \050211CT 0		
Chironomus 9	6-h Acute Surv	vival Tes	st						Na	utilus Environ	mental WA	
Batch ID: Start Date: Ending Date: Duration:	10-9064-4993 02 May-11 14:0 06 May-11 14:0 96h	00 00	Test Type: Protocol: Species: Source:	Survival (96h) EPA/600/R-99 Chironomus te Aquatic Biosys	entans			Analyst: Diluent: Brine: Age:	Cat Curran Diluted Mine 23in	eral Water (8:2)	
Sample ID: Sample Date: Receive Date: Sample Age:			Code: Material: Source: Station:	RA020511CT Copper chloric Reference Tox				Client: Project:	Reference Toxicant Test			
Comparison S Analysis ID	Summary Endpoint		NOEL	LOEL	TOEL	PMSD	ти	Meth	od			
05-9024-2029		ate	375	750	530.3	22.7%	10	07/10/06/10/0	Many-One F	ank Test		
Analysis ID 07-1751-6097 96h Survival F	Endpoint 96h Survival Ra Rate Summary	ate	Level EC50	µg/L 713.8	95% LCL 557.5	95% UCL 913.8	TU	Meth Trimr	od ned Spearma	an-Kärber		
Conc-µg/L	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std D	ev CV%	%Effect	
0	Dilution Water	4	1	1	1	1	1	0	0	0.0%	0.0%	
187.5		4	0.85	0.7785	0.9215	0.6	1	0.095			15.0%	
375		4	0.85	0.7785	0.9215	0.6	1	0.095	0.191	22.53%	15.0%	
750		4	0.45	0.3785	0.5215	0.2	0.6	0.095			55.0%	
1500		4	0.15	0.1127	0.1873	0	0.2	0.05	0.1	66.67%	85.0%	
3000		4	0	0	0	0	0	0	0		100.0%	
96h Survival R	ate Detail											
Conc-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Dilution Water	1	1	1	1			Policie No.				
187.5		0.8	1	0.6	1							
375		0.8	1	1	0.6							
750		0.4	0.2	0.6	0.6							
1500		0.2	0	0.2	0.2							
1500												

96 Hour Reference Toxicity Test Data Sheet - Nautilus Environmental

Freshwater Sediment 96-hr Chronic

Client: Sample ID: Test #:	CUC	12		t								End D	Date &	Time:	5/2 5/6) Chiron	11	1400 1400 tentan	s					
Conc.	Cont.		vival)issolv	ed O ₂	(mg/L	.)		pH	l (unit	s)			Cor	nd. μS					eratur		
CuCl ₂	#	0	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
0 ug/L	22	5	5	7.2	8.1	7.3	8.1	7.9	7.62	7,34	7.43	7.63	7.63	162	172	177	168	172	23.0	22.6	23.5	20.0	0,1
o ugi L	90	S	S																				
-	2	5	5						2														
	18	5	5								14						110	les	22.4	11	22.0	.00	201
187.5 ug/l	A COLORED ON THE OWNER	5	4	8.5	8.3	7.2	\$.0	7.7	7.75	7.42	7.41	7.64	7.66	161	169	174	163	68	22.2	22.8	23,8	19.9	20.2
	14	5	5																				
- Strategie	21	5	3																				
	11	5	5				1.		1				36	16.0		12	110	100	221	10-	224	200	2011
375 ug/L	23	S	4	8.4	8.6	8.0	8.2	8.0	7.79	7.46	7.43	7.68	1.69	162	169	174	162	166	22.1	dd. I	23,0	20.0	20.4
	3	5	5			122101																	
	13	5	5													No. Contraction			10000				
	16	5	3	The set		Control of					200	711	70	100		174	112	m	22.2	127	230	207	20.4
750 ug/L	9	5	a	8.4	8.7	7.6	\$.1	7.8	7.77	7.46	1,53	t.66	1.69	158	170	115	163	166	did.d	44,1	036	20.6	aU.T
	5	5				1. 194																532	
	12	5	3						-22														
	24	5	3		Sellin .		-		200		301		700	102	1.20	1711	163	ICC	22.2	1177	128	203	20.4
1500 ug/	L 19	5	1	8.2	8.7	8.0	8.3	7.8	7.65	1,40	1.64	7.70	1.66	163	110	114	169	100	old'a	hd, (0.20	20.5	OU,T
	17	5	0																				
	6	5									7152												
1000	10	5	1					GI	200	200	207		7/0	102	1~1	170	163	166	222	122	229	10 9	20.2
3000 ug/	L7	5	0	8.7	8,7	8.0	8.4	8.1	1.43	1,38	1.6 (1.16	1.69	103	171	175	163	106	daid	00+0	93.1	1.6	GV.d
	1	5	0																				
	4	5	0																				
	15	5	0						100								1				1		

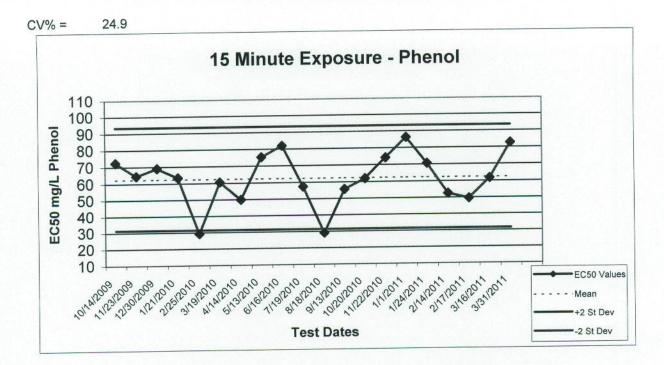
Tech. Initials: St BP St MF 84


Test Chamber: Room A

Comments:

QA Check: Animal Source: ABS

Date Received: 4/12/11

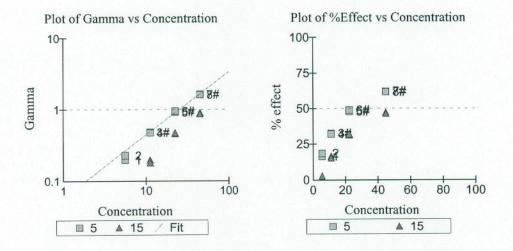

Age at test initiation: 2nd-3nd Inestan

Reference Toxicant Control Chart Microtox 5-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Phenol ^a	Mean	StDev	-2 SD	+2 SD
9/16/2009	1229	22.0	37.4	40.4	7.4	25.7	55.2
10/14/2009	926	23.7	40.2	40.4	7.4	25.7	55.2
11/23/2009	1011	25.3	43.0	40.4	7.4	25.7	55.2
12/30/2009	911	22.5	38.3	40.4	7.4	25.7	55.2
1/21/2010	1015	26.6	45.2	40.4	7.4	25.7	55.2
2/25/2010	1223	15.3	26.0	40.4	7.4	25.7	55.2
3/19/2010	833	23.8	40.5	40.4	7.4	25.7	55.2
4/14/2010	934	23.8	38.1	40.4	7.4	25.7	55.2
5/13/2010	939	29.9	47.8	40.4	7.4	25.7	55.2
6/16/2010	912	34.4	55.0	40.4	7.4	25.7	55.2
7/19/2010	830	24.5	39.2	40.4	7.4	25.7	55.2
8/18/2010	1018	15.3	24.4	40.4	7.4	25.7	55.2
9/13/2010	1214	23.3	37.3	40.4	7.4	25.7	55.2
11/22/2010	1100	30.2	48.3	40.4	7.4	25.7	55.2
1/1/2011	1436	32.3	51.7	40.4	7.4	25.7	55.2
1/24/2011	829	26.0	41.7	40.4	7.4	25.7	55.2
2/14/2011	1339	21.6	34.5	40.4	7.4	25.7	55.2
2/17/2011	1010	23.0	36.8	40.4	7.4	25.7	55.2
3/16/2011	812	26.5	42.3	40.4	7.4	25.7	55.2
3/31/2011	1154	25.5	40.8	40.4	7.4	25.7	55.2

a - Highest concentration of Phenol is 160 mg/L

Reference Toxicant Control Chart Microtox 15-Minute Exposure


Date	Time	EC50 %	EC50 mg/L Phenol ^a	Mean	StDev	-2 SD	+2 SD
10/14/2009	926	42.6	72.4	62.4	15.5	31.3	93.4
11/23/2009	1011	37.9	64.4	62.4	15.5	31.3	93.4
12/30/2009	911	40.6	69.0	62.4	15.5	31.3	93.4
1/21/2010	1015	37.3	63.3	62.4	15.5	31.3	93.4
2/25/2010	1223	17.2	29.2	62.4	15.5	31.3	93.4
3/19/2010	833	35.6	60.5	62.4	15.5	31.3	93.4
4/14/2010	934	31.2	49.9	62.4	15.5	31.3	93.4
5/13/2010	939	47.0	75.2	62.4	15.5	31.3	93.4
6/16/2010	912	51.2	81.9	62.4	15.5	31.3	93.4
7/19/2010	830	35.9	57.4	62.4	15.5	31.3	93.4
8/18/2010	1018	18.2	29.1	62.4	15.5	31.3	93.4
9/13/2010	1214	34.8	55.7	62.4	15.5	31.3	93.4
10/20/2010	904	38.7	61.9	62.4	15.5	31.3	93.4
11/22/2010	1100	46.4	74.2	62.4	15.5	31.3	93.4
1/1/2011	1436	53.9	86.2	62.4	15.5	31.3	93.4
1/24/2011	829	44.1	70.5	62.4	15.5	31.3	93.4
2/14/2011	1339	32.9	52.6	62.4	15.5	31.3	93.4
2/17/2011	1010	31.0	49.6	62.4	15.5	31.3	93.4
3/16/2011	812	38.5	61.6	62.4	15.5	31.3	93.4
3/31/2011	1154	51.6	82.6	62.4	15.5	31.3	93.4

a - Highest concentration of Phenol is 160 mg/L

MicrotoxOmni Test Report

Date: 03/31/2011 11:54 AM

Test Protocol: Basic Test Sample: 160mg/L Phenol Toxicant: 160mg/L Phenol Reagent Lot no.: 10K1032 Test description: Reference Toxicant Test name: RT033111VF Database file: C:\Program Files\MicrotoxOmni\Edge Analytical.mdb

			5	Mins Data	a:	15 Mins Data:					
Sample	Conc	Io	It	Gamma	% effect	It	Gamma	% effect			
Control	0.000	95.21	91.27	0.9586 #		62.45	0.6559 #				
Control	0.000	95.78	90.90	0.9490 #		62.23	0.6497 #				
1	5.625	95.01	75.83	0.1951	16.32%	61.24	0.0128 *	1.264%			
2	5.625	99.24	77.17	0.2266	18.48%	62.94	0.0293 *	2.849%			
3	11.25	97.10	62.66	0.4781 #	32.35%	52.98	0.1965	16.42%			
4	11.25	97.94	63.59	0.4691 #	31.93%	54.22	0.1792	15.20%			
5	22.50	100.26	50.05	0.9107 #	47.66%	44.96	0.4558 #	31.31%			
6	22.50	101.02	49.36	0.9521 #	48.77%	44.90	0.4688 #	31.92%			
7	45.00	99.27	36.02	1.629 #	61.96%	34.25	0.8921 #	47.15%			
8	45.00	100.13	36.63	1.607 #	61.65%	35.00	0.8676#	46.46%			

- used in calculation; * - invalid data; D - deleted from calcs. Autocalc has been used.

Calculations on 5 Mins data: EC50 Concentration:25.53% (95% confidence range: 24.24 to 26.90) 95% Confidence Factor: 1.054 Estimating Equation:LOG C =1.124 x LOG G +1.407 Coeff. of Determination (R²):0.9958 Slope: 0.8863 Correction Factor: 0.9538

Calculations on 15 Mins data: EC50 Concentration:51.61% (95% confidence range: 47.70 to 55.83) 95% Confidence Factor: 1.082 EC50 value was calculated from extrapolated data. Estimating Equation:LOG C =1.075 x LOG G +1.713 Coeff. of Determination (R²):0.9981 Slope: 0.9286 **APPENDIX F –** Chain-of-Custody Forms

	vironmen	and the second second second second second second second second second second second second second second second	TESTING LOCATION (Please Check Box) California 5550 Morehouse Drive, Suite 150 San Diego, CA 92121 Phone 858.587.7333 Fax 858.587.3961 British Co 8664 Comm Burnaby, Bri Phone 253.922.4296 Fax 253.922.5814					mmerce Court , British Columbia, Canada V5A 4N3 04.420.8773 357 1361							Custody		
Sample Collection By:	Floyd	Snider							0	ANALY	SES REC	UIR	ED			Γ	
AddressTwo Union Square, Gol Union St., SuiteAddressCity/State/ZipSeattle, WA 98101GooCity.ContactEnn BreckelContPhone206-2972-2078Phone					npany <u>Same</u> ress //State/Zip			acute amphipod (Hyalella attea)	100 % poreuver	icho tax Bachen						Receipt Temperature (°C)	
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NO. OF CONTAINERS	COMMENTS			Lo ci							Receil	
LL-SEDI-0-15-03; LL-SEDZ-0-15-032 LL-SEDJ-0-15-032 LL-SEDH-0-15-03 MC-SEDJ-0-10-03 MC-SEDJ-0-10-03	911 2(1) 2(1) 2(1) 2(1)	14:05 12:00 11:10 13:10 16:50 16:35 16:15	Sediment	Plashic Jour	m m m m	Extra volume collecte					511 511 511 511 511 51 51	- 0 - 0 1-0 1-0	39 41 42 43 44 44 44 44 5	-		5.0 7.0 (e.2 8.2 9.0	
PROJECT INFORM	RMATION SAMPLE RECEI		т	RELINQUISHED BY (CLIENT)													
Client: Total No. of Containers PO No.: Received Good Condition? Shipped Via: Matches Test Schedule? SPECIAL INSTRUCTIONS/COMMENTS:			15	(Signature) Erin Johnullo (Printed Name) (Date) (Date) (Date) (Date) (Date) (Company) Flayd Snider RECEIVED BY (COURIER) (Signature) (Time) (Course) (Time) (Course) (Cour			(Printed Name) (Date)								>		

DISTRIBUTION: WHITE - Nautilus Environmental, COLOR - Originator

Nautilus Environmental

May 16, 2011

Ms. Erin Breckel Floyd Snider Inc. 601 Union St. Ste 600 Seattle, WA 98101

Subject:

Repeat Testing for LL Sed 2

Dear Erin,

As discussed previously, Lora Lake sediment from sampling location LL Sed 2 was found to be toxic (77% mortality compared to only 7% in the control) during recent sediment bioassays, with the species *Chironomus dilutus*. However, it was noted during test termination that *Chaoborus sp.* known as the "invisible midge", was found in 7 of the 8 replicates run for this sample with reduced survival of the *Chironomus dilutus*. *Chaoborus* are carnivorous and could have been responsible for the mortality of *Chironomus dilutus* observed in this sample and therefore, possibly the reason the sediment was found to be toxic.

As we cannot be certain the *Chaoborus* are the cause of the toxicity, we recommend repeating the testing on this sample after sieving the sediment through a 0.5 mm sieve to remove any *Chaoborus* larvae or eggs. This will help determine if the *Chaoborus* did in fact alter the toxicity of the sample.

A photo of the *Chaoborus* is below. It was taken of an organism found within one of the replicates.

Please call if you have any questions.

Sincerely. ran

Cat Curran, M.S. Washington Laboratory Manager

California 5550 Morehouse Drive Suite 150 San Diego, California 92121 858.587.7333 fax: 858.587.3961

Washington

5009 Pacific Highway East Suite 2 Tacoma, Washington 98424 253.922.4296 fax: 253.922.5814

British Columbia

8664 Commerce Court Burnaby, British Columbia V5A 4N7 604.603.9381 fax: 604.603.9381

Nautilus Environmental

June 27, 2011

Ms. Erin Breckel Floyd Snider Inc. 601 Union St. Ste 600 Seattle, WA 98101

Subject:

Repeat Testing for LLSED-2

Dear Erin,

Enclosed are the results from the repeat testing using *Chironomus dilutus* conducted on sample LLSED-2 in June 2011, due to the presence of *Chaoborus.sp.* in the initial testing of this sample. The sample was sieved prior to the repeat testing to remove any remaining organisms. While there was less mortality in the sample compared to the initial testing, the sample does still meet the RSET one-hit criteria for mortality.

Please let me know if there are any questions.

Sincerely,

man

Cat Curran, M.S. Washington Laboratory Manager

California

4340 Vandever Ave San Diego, California 92120 858.587.7333 fax: 858.587.3961

Washington 5009 Pacific Highway East Suite 2 Tacoma, Washington 98424 253.922.4296 fax: 253.922.5814

British Columbia

8664 Commerce Court Burnaby, British Columbia V5A 4N7 604.603.9381 fax: 604.603.9381

Client: Floyd Snider Sample Id: LL-SED2-0-15-032911 (LL-SED2)

INTRODUCTION AND METHODS:

This report summarizes additional biological toxicity testing conducted on Lora Lake sediment sample LL-SED2-0-15-032911 (LL-SED2), collected within the Port of Seattle's Lora Lake Parcel on March 29th, 2011. During testing originally conducted on this sample in April 2011 using the test species *Chironomus dilutus*, this sample was found to contain *Chaoborus sp.*, in conjunction with low survival (77.1 % mortality). The presence of *Chaoborus*, which are carnivorous and could have been responsible for the mortality of *C. dilutus* observed in this sample, could therefore have been the reason the sediment from LL-SED2 failed the one-hit criterion and was found to be more toxic than compared to the other Lora Lake sediment samples tested. In an attempt to confirm or rule out those initial results, the *C. dilutus* 20-day survival and growth bioassay with LL-SED2 was repeated with the sample sieved (0.5 mm) prior to test initiation to remove the *Chaoborus*. The repeat testing was initiated on May 18, 2011, within the 8-week holding time, which expired on May 24, 2011. Details of test procedures are summarized in Table 1. Performance in the test sample was compared to a negative control.

Test initiation date	May 18, 2011
Test termination date	June 7, 2011
Test organism source	Aquatic BioSystems; Fort Collins, Colorado
Organism age at test initiation	< 4 hours post-emergence from egg case
Feeding	1.5 mL of 4.0 g/L Tetrafin mixture every day; frequency reduced if excess food observed
Test chamber	475-mL glass beaker
Test sediment volume	100 mL
Dilution water type & volume	175 mL diluted mineral water
Water renewal	Twice daily
Control sediment	Sand mixed with peat $(1/2 \text{ Tbsp})$
Number of organisms/replicate	12
Number of replicates/sample	8 plus water quality surrogates
Test temperature	$20\pm 1^{\circ}C^{1}$
Illumination	16 hours light : 8 hours dark
Aeration	Initiated day 7
Reference toxicant	Copper chloride
Acceptability Criteria	≤32% mortality, ≥0.48 mg/individual AFDW

Table 1. Summary	y of methods for the 20-da	ay test with Chironomus dili	utus
------------------	----------------------------	------------------------------	------

¹ Test temperature below the EPA recommended 23°C in order to prevent molting, per the RI/FS workplan

TOXICITY RESULTS:

The test met negative control criteria. Mortality and growth results are summarized in Table 2.

Mean mortality was 10.4 percent in the control, and 51.0 percent in LL-SED2. There were no *Chaoborus*, observed in the sample replicates upon termination of this test. This 40.6 percent difference between LL-SED2 and the control was significantly different. These results are consistent with the initial testing.

Mean growth was 0.81 mg/individual ash-free dry weight (AFDW) in the control and 0.75 mg/individual AFDW in LL-SED2. This difference was not significantly different from the control and is consistent with the initial testing.

Table 2. Results of *Chironomus dilutus* tests. Samples with statistically reduced survival or growth are underlined, and values failing one-hit RSET criteria are shaded gray.¹

			Ash-Free Dry	
		Mortality Percent	Weight per Org	Ash-Free Dry
	Percent Mortality	Difference from	(mg) (Mean ±	Weight Percent
Sample	$(Mean \pm SD)$	Control	SD)	of Control
Control	10.4 ± 9.7		0.81 ± 0.19	
LL-SED2	51.0 ± 31.0	40.6	0.75 ± 0.44	92.5

¹Criteria for one-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 25% of control (RSET 2009)

QA/QC:

The *C. dilutus* were received in good condition. All water quality parameters remained within acceptable ranges throughout the tests. Aeration was initiated in all test chambers starting on Day 7, due to concerns the dissolved oxygen levels might fall below the criterion. A summary of the water quality parameters is presented in Table 3. The test was run at 20°C, as agreed to in the RI/FS workplan to prevent molting of larvae into pupae (Floyd Snider 2011). There were no other deviations from the protocols. The toxicity test with this species met the control acceptability criterion (\leq 32 percent mortality, \geq 0.48 mg/ind AFDW).

Analyte	Control	LL-SED2
	Μ	lean
	(Mir	n-Max)
Temp. (°C) [20 ± 1°C]	20.0 (19.5-20.7)	19.8 (19.5-20.2)
DO (mg/L) [>2.5 mg/L]	7.6 (4.0-9.3)	7.2 (4.2-9.2)
pH [6-9]	7.36 (6.58-8.31)	7.28 (6.81-8.19)
Cond. (µS/cm) [NA]	184 (119-253)	174 (162-190)
Alkalinity (mg/L CaCO ₃) [<50%	68	70
variable]	(44-80)	(64-76)
Hardness (mg/L CaCO ₃)	78	94
[<50% variable]	(56-88)	(84-124)
Total Overlying NH3 (mg/L) [<50% variable]	2.1ª (<1.0-3.3)	2.5 (1.5-2.9)
Total Overlying Sulfides (mg/L) [NA]	0.012 ^a (<0.010-0.015)	0.015ª (<0.010-0.033)

Table 3. Summary of water quality parameters for *C. dilutus* tests (means and ranges). Required values are shown in brackets.

^a estimated value

The result of the reference toxicant test conducted in conjunction with this testing program is provided in Table 4. This test was run with the same batch of organisms used in the testing program. The result of this test fell within the range of mean \pm two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

 Table 4.
 C. dilutus reference toxicant test results.

Species	Test date	Toxicant	LC50	Acceptable Range	CV (%)
Chironomus dilutus	June 2, 2011	Cu	750 µg/L	386 - 1083 μg/L	23.7

DISCUSSION

The extent and degree of toxicity observed in the initial round of testing was slightly reduced in the current test (Mortality 77 percent compared with 51 percent, respectively), so it appears the *Chaoborus* being present did impact the results but only to a limited extent. Ammonia and sulfide concentrations were comparable between the control and LL-SED2, suggesting these were not responsible for the increase in toxicity. Based on current results, sample LL-SED2 does fail the RSET one-hit criteria of mortality greater than 25 percent of controls and significantly different.

REFERENCES

- American Society of Testing and Materials (ASTM). 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM Designation E 1706-00.
- Floyd Snider. 2011. Port of Seattle, Lora Lake Parcel, Remedial Investigation/Feasibility Study Work Plan
- Regional Sediment Evaluation Team (RSET). 2009. Sediment Evaluation Framework for the Pacific Northwest. May 2009.
- U.S. Environmental Protection Agency (USEPA). 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.

Appendix A-1. 20-Day Solid Phase *Chironomous dilutus* Survival & Growth Port of Seattle Lora Lake RIFS Sediment Characterization

Test Initiation: May 18, 2011

^aNumber of pupae and flies

^bAFDW = Ash-Free Dry Weight. Weights are for larvae only, not pupated animals

^c One-tailed t-test. Survival data arcsine square-root transformed prior to analysis. Growth data either square root or log transformed prior to analysis Alpha = 0.05 Shaded values fail RSET one-hit criteria (Test sediment mortality - Control sediment mortality >25% and significantly different; Test sediment Growth/Control sediment Growth <0.7 and significantly different)

						Mean	St	Total org	AFDW per	Mean AFDW	St	Significant Compared t	
Site	Replicate	Rnd. No.	# Alive	# Pupated ^a	% Mortality	% Mortality	Dev	AFDW (mg) ^b	Org (mg)	per Org (mg)	Dev	Survival	Growth
	1	9	10	0	16.7			6.12	0.61				
	2	6	9	0	25.0			4.97	0.55				
	3	15	10	0	16.7			9.20	0.92				
Control	4	11	12	0	0.0	10.4	9.7	8.33	0.69	0.81	0.19		
Control	5	5	12	0	0.0	10.4	9.7	11.31	0.94	0.01	0.19		
	6	16	11	0	8.3			8.11	0.74				
	7	14	10	0	16.7			9.62	0.96				
	8	3	12	0	0.0			12.82	1.07				
	1	1	4	0	66.7			4.81	1.20				
	2	2	10	0	16.7			14.28	1.43				
	3	10	10	0	16.7			5.91	0.59				
LL- SED 2	4	8	1	0	91.7	51.0	31.0	0.40	0.40	0.75	0.44	Yes	No
LL- SED 2	5	12	9	0	25.0	51.0	31.0	6.75	0.75	0.75	0.44	Tes	NU
	6	4	1	0	91.7			0.12	0.12				
	7	7	7	0	41.7			3.33	0.48				
	8	13	5	0	58.3			4.97	0.99				

Project Name: Port of Seattle Lora Lake RIFS Sediment Characterization

Sample:	x1
Samp ID:	LL-SED2 repeat
Alias:	Chironomid Mortality
Replicates:	8
Mean:	51.063
SD:	31.003
Tr Mean:	46.188
Trans SD:	20.083

Ref Samp:	x2
Ref ID:	Control Repeat
Alias:	Chironomid Mortality
Replicates:	8
Mean:	10.425
SD:	9.718
Tr Mean:	14.888
Trans SD:	12.831

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	16.573	Statistic:	Student's t	
Residual SD:	14.465	Test Residual SD:	9.456	Balanced Design:	Yes	
SS:	3975.704	Ref. Residual Mean:	11.166	Transformation:	ArcSin	
K:	8	Ref. Residual SD:	4.706			
b:	60.386	Deg. of Freedom:	14			
		-		Experiment	al Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 <= x2	
Calculated Value:	0.9172	Calculated Value:	1.4477	Alternate:	x1 > x2	
Critical Value:	<= 0.887	Critical Value:	>= 1.761			
Normally		Variances		Degrees	of Freedom:	14
Distributed:	Yes	Homogeneous:	Yes	J. J. J. J. J. J. J. J. J. J. J. J. J. J	Alpha Level:	
		Ŭ			ulated Value:	
Override Option:	N/A			C	Critical Value:	>= 1.761
				Accept Nul	I Hypothesis:	No
					Power:	
				Min. Difference	ce for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	66.7	54.756	16.7	24.12	8.567	9.232			-22.068
2	16.7	24.12	25	30	22.068	15.112			-22.068
3	16.7	24.12	16.7	24.12	22.068	9.232			-16.189
4	91.7	73.256	0	0	27.067	14.888			-14.888
5	25	30	0	0	16.189	14.888			-14.888
6	91.7	73.256	8.3	16.744	27.067	1.856			-14.888
7	41.7	40.222	16.7	24.12	5.966	9.232			-5.966
8	58.3	49.778	0	0	3.589	14.888			1.856
9									3.589
10									8.567
11									9.232
12									9.232
13									9.232
14									15.112
15									27.067
16									27.067

Project Name: Port of Seattle Lora Lake RIFS Sediment Characterization

Sample:	x1
Samp ID:	LL-SED2 repeat
Alias:	Chironomid Growth
Replicates:	8
Mean:	0.745
SD:	0.438
Tr Mean:	0.23
Trans SD:	0.111

Ref Samp:	x2
Ref ID:	Control Repeat
Alias:	Chironomid Growth
Replicates:	8
Mean:	0.81
SD:	0.187
Tr Mean:	0.256
Trans SD:	0.045

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.088	Statistic: Approximate t	
Residual SD:	0.073	Test Residual SD:	0.059	Balanced Design: Yes	
SS:	0.1	Ref. Residual Mean:	0.039	Transformation: Log10 (x + 1.0)	
K:	8	Ref. Residual SD:	0.017		
b:	0.314	Deg. of Freedom:	14		
		-		Experimental Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 <= x2	
Calculated Value:	0.9835	Calculated Value:	2.248	Alternate: x1 > x2	
Critical Value:	<= 0.887	Critical Value:	>= 1.761		
Normally		Variances		Degrees of Freedom: 9	
Distributed:	Yes	Homogeneous:	No	Experimental Alpha Level: 0.05	
		-		Calculated Value: -0.61	44
Override Option:	N/A			Critical Value: >= 1.	833
				Accept Null Hypothesis: Yes	
				Power:	
				Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	1.2	0.342	0.61	0.207	0.113	0.049			-0.18
2	1.43	0.386	0.55	0.19	0.156	0.065			-0.083
3	0.59	0.201	0.92	0.283	0.028	0.028			-0.065
4	0.4	0.146	0.69	0.228	0.083	0.028			-0.059
5	0.75	0.243	0.94	0.288	0.013	0.032			-0.049
6	0.12	0.049	0.74	0.241	0.18	0.015			-0.028
7	0.48	0.17	0.96	0.292	0.059	0.037			-0.028
8	0.99	0.299	1.07	0.316	0.069	0.06			-0.015
9									0.013
10									0.028
11									0.032
12									0.037
13									0.06
14									0.069
15									0.113
16									0.156

Appendix Table B-1. Twenty-Day Solid-Phase Results (*Chironomus tentans*) Port of Seattle Lora Lake RIFS Sediment Characterization Water Quality Data

Initiated 18 May 2011

				Control				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)
_								
0	20.7	7.6	6.58	119	44	56	<1.0	0.015
1	19.9	6.8	6.82	140				
2	19.7	6.9	7.07	158				
3	19.7	6.9	7.00	156				
4	20.1	6.1	7.00	179				
5	19.9	6.0	6.87	180	60	80	1.2	<0.010
6	20.0	5.8	7.01	175				
7	19.8	4.0	6.88	175				
8	19.5	5.1	7.40	171				
9	19.9	8.2	7.60	171				
10	19.9	8.3	7.59	179	76	80	1.8	0.011
11	20.1	8.6	7.65	185				
12	20.0	8.4	7.55	188				
13	20.0	8.3	7.67	194				
14	19.9	8.9	7.77	199				
15	19.9	8.8	8.31	236	80	84	3.1	<0.010
16	19.9	9.1	7.37	253				
17	20.0	9.0	7.47	200				
18	19.9	9.1	7.57	234				
19	20.3	9.0	7.65	194				
20	20.7	9.3	7.70	176	80	88	3.3	0.013
Mean	20.0	7.6	7.36	184	68	78	nc	nc
Min	19.5	4.0	6.58	119	44	56	<1.0	<0.010
Max	20.7	9.3	8.31	253	80	88	3.3	0.015

Appendix Table B-1. Twenty-Day Solid-Phase Results (*Chironomus tentans*) Port of Seattle Lora Lake RIFS Sediment Characterization Water Quality Data

Initiated 18 May 2011

				LL-SED-2				
Day	Temp (℃)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)
•				100		101		0.040
0	20.2	6.3	6.87	162	64	124	2.4	0.010
1	19.8	5.6	6.81	171				
2	19.6	6.0	6.94	170				
3	19.7	5.8	6.99	172				
4	19.9	6.5	6.91	182				
5	19.9	5.8	6.89	172	76	84	2.9	0.033
6	19.8	5.9	6.95	177				
7	19.7	5.2	6.89	176				
8	19.5	5.1	7.29	178				
9	19.8	8.2	7.51	169				
10	19.8	8.1	7.56	170	64	84	2.7	0.011
11	19.8	8.5	7.56	170				
12	20.0	8.3	7.55	166				
13	20.0	8.2	7.26	188				
14	19.8	4.2	7.02	190				
15	19.9	8.8	8.19	171	76	84	2.8	<0.010
16	19.9	9.2	7.33	178				
17	19.8	9.0	7.45	176				
18	19.9	9.1	7.56	176				
19	19.9	8.4	7.84	170				
20	20.0	9.1	7.48	167	68	96	1.5	0.010
Mean	19.8	7.2	7.40	174	70	94	2.5	nc
Min	19.5	4.2	6.81	162	64	84	1.5	<0.010
Max	20.2	4.2 9.2	8.19	190	76	124	2.9	0.033

			20 Day	Toxicity T	Test Data Sho	eet Nautilu	s Environm	ental					
	Client:	FloydSn			Sediment 20	Day Water C		Start Date & 7	Time: _	51	8/11	1215	
		CON		st Organism:	Chironomus ter	ntans		End Date &	Time:	6[244	100	1
Day	NH ₃	Sulfide	Alk	Hard	pH	Conductivity	Dissolved O ₂	Temp.	Rene	wed	Fed	Tech. Initials	
	(mg/L)	(mg/L)	(mg/L as		(units)	(umhos/cm)	(mg/L)	(°C)	am	V		XS	
0	<1.0	0.015	44	56	6.58	119	7.6	20.7	/	1		X	
1					6.82	140	6.8	19.9	V	1	1	BP	
2					7.07	158	69	19.7	V	-		100	
3					7.00	150	4.9	19.7	V	~	V	(N) (N)	
4					7.00	179	U.1.	20.1	V	V	V		1
5	1.2	20.01	100	8D	6.87	@ 182 18	6.0	19.9	V	V	-	BP IF	
6					7.01	179	5.\$	20.0		V	-	1	
7					6.88	178	4.0	19.8	K	V	L	94	- `
8					7.40	171	5.1	19.5	V	V	V	8t	-
9					7.60	171	\$.Z	19.9	V	1	1V	MF	-
10	1.8	0.011	76	80	1.59	179	8.3	19.9	V	V	1	CC	-
11	1.5	0.011			7.65	185	8.6	20.1	V	1		ec	-
12					7.55	188	8.4	20.0	~	1	-	m	
13					7.67	194	8.3	20.0	1	V	V	IF	
14					7.77	199	8.9	19.9	V	V	V	(D)	
15	3.1	40.010	\$0	84	8.31	236	\$.\$	19.9	V	1	11	MF	_
16		401010			7,37	253	9.1	19.9	V	V	~~~	BP	4
17			R. S. M.		7,47	200	9.0	20.0	V	V	V	BP	_
18					7.57	234	9,1	19,9	V	V	1	BP	_
19	- AND AND AND				7.65	194	9.0	20.3		- /	1	8t	_
20	-	<0.010	90	88	7.70	176	9.3	20.7	_		-	1 W	
		0.013	QA Check		- 00	Skippede	Veras- C	6	Test C	hambe	er: <u>Ro</u>	om B	_

@ Skipped-excess food D Aeration between days

	Client: Site:	Floyd. U-Sed	Snider	Freshwater Test #:) Day Water (しろ		ental Start Date & End Date &			18	11 12 5 11 124	10.10
Day	NH ₃ (mg/L)	Sulfide	Alk	Hard	pH (units)	Conductivity (umhos/cm)	Dissolved O ₂ (mg/L)	Temp. (°C)	Rene	ewed	Fed	Tech. Initials	
0	(IIIg/L) 2.4	(mg/L) (),010	(mg/L as	124	6.87	(unitos/cm)	(0.3	20.2			100	X	1
1	6.9	0.010	09	124	6.61	171	5.6	19.8		1/	1	X	
2					6.94	170	(0.0	19.6	1	./	1	BP	1
3					6.99	172	5.8	19.7	~	V	~	m	1
4					6.91	182	4.5	19.9	V	V	V	N	
5	2.9	0.033	76	84	(e, 89	172	5.8	19.9	V	1	-	BP	
6			14		\$.6.95	177	5.9	19.8	V	\checkmark		NF.	
7					6.89	176	5.2	19.7	1	~		N	2
8					7.29	178	5.1	19.5	1	1	V	Ŭ	
9					7.51	169	8.Z	19.8	\checkmark	~	/	IF	
10	2.7	0.011	64	84	7.56	170	8.1	19.8	V	1/	/	a	
11					7.56	170	8.5	19.8	V	-	Q	œ	
12					7.55	1610	8.3	20.0	V	~	1	m	
13					7.26	188	8.2	20.0	1	V	V	IF	
14					7.02	190	4.2	19.8	V	1	1	80	_
15	Z.\$	20.010	76	84	8.19	171	8.8	19.9	1	V	1	MF	_
16					7.33	178	9,2	19.9	V	V	V	BP	100
17					7,45	176	9,0	19.8	V	V	0	BP	_
18					7.56	176	9.1	19.9	V	V		BP	_
19					7.84	171	8.4	19.9	-	L	~	24	_
20	1.9	0.010	68	96	7.48	167	9.1	20.0		-		105	
			QA Check	(m)	05	kipped ex Aerahian	cess food	k	Test Ch	lamber	<u> </u>		_

20 Day Toxicity Test Data Sheet - Nautilus Environmental

Freshwater Sediment 20 day Survival

Client: Floyd Snider Test #: 105+T063

Start Date & Time: 5/8/11 12/5 End Date & Time: 6/7/11 124 Test Organism: *Chironomus dilutus*

	Rep	Cont			Surviva	l Day 20		
Site	#	#	Day 0	total	#larvae	#pupae	#flies	Initials/Comments
CON	1	9	12	10	10 9	0	0	CX
0.	2		12	a	9	1	Ĭ	1
	3	15	12	in	10			
	4	11	12	10,	10			
	5	3	12	12	12			
	6	16	12	1	11	the state		
	7	14	12	10	10			
	8	3	12	12	12			
LLSed2	1	1	12	4	4			
	2	2	12	. 10	4			
	3	10	12	\$ 9/10	0910	1. A. A. A. A. A. A. A. A. A. A. A. A. A.	200 100	
	4	8	12	1	1			
	5	12	12	9	9			
	6	4	12		1			
	7	7	12	1	1			,
	8	13	12	5	5	V	V	V
	1		12			2. 1.		
	2		12				14	
	3		12					
	4		12	1.1.1.1.1.1			18	
	5		12					
	6		12				1	
	7	-	12					1
	8		12					
	1		12					
	2		12	1				8
	3		12					
	4		12					
	5		12			10.00		2 May
	6	-	12					
	7		12					
	8		12					
	1		12	-			-	
	2		12					
	3 4		12 12					
			12					
	5		12					
	7		12					
	8		12					
	0		12					
	2		12					
	3		12					
	4		12				-	
	5		12					
	6		12					
	7		12					
	8		12					

QA Check:

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy., E. Suite 2 Tacoma, WA 98424

Client:	Flor	nd S	nidly
Organism:			

Test no.: 1105-TD/03

Rep Cont Pan wt. Dry wt. Ash wt. Ash free No. Avg. per Site dry wt. (gm) organisms site (mg) # (gm) (gm) # (gm) 9 1 0.07899 0.07287 10 0.07139 10 0 2 0.07906 0.08792 0.08295 n 3 K 0.10259 0.08176 0.09339 10 4 11 0.09748 0.09980 0.09147 12 5 0.07779 0.09847 0.08716 5 12 6 0.10436 16 0.08589 0.09625 11 0.0008410.970.0972 7 0.08549 14 ID 8 3 0.07618 0.10502 0.09220 12 1 LSEDI 0.08464 0.07983 0.07889 4 1 2 2 0.07839 0.09650 0.08222 10 3 0.07943 0.08640 0.08049 10 ID 4 g 0.08325 0.08375 0.08335 ĺ 5 9 12 0.08312 0.09/30 0.09455 0.07962 0.07950 6 0.07939 1 4 7 7 1 0.07970 0.07637 0.07545 8 13 0.08470 0.07973 5 0.07900 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Tech Initials 4 9t 2 6/9/11 100T° 550 6/11 nut 1) Dry wt. Date/time in: Tº 63 2) Furnace date/time in: Furnace date/time out: 6/9/11 1330 T° 550 Dry wt. Date/time out: 68111530 T° 67 4J Dry wt. Tech: Furnace tech: QA Check:

20 Day Toxicity Test Data Sheet - Nautilus Environmental Feshwater Sediment 20 day Observations

Test #:	Floyd Sn	ider -1063	_	Start End	Date & Time Date & Time est Organism	5/8	n 12 11 120	15			
N = normal B= no burrows M= dead on su A= avoidance	F= fund	gal patches air flow (DO?) ess food		Ie	est Organism	: Chironom	ious tent	ans	-		
		Day 1	Day 2	Day 3	Day 4	4 Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
	Initials	83	BP	N	R	BP	ME	S	1 Et	IF	et
LL-SED2	1	N	N	N	N/U	N/U	N/N	NIU	N/a	N/U	N/V
LL-SED2	2		l l	1		1 I			1	1	1
CON	3										
LL-SED2	4										
CON	5										
CON	6 7	_	<u> </u>								
LL-SED2 LL-SED2	8			_				V		V	Ě
CON	9			_				- 5	F	F	
LL-SED2	10		-					NIA	N/U AI/U	N/U N/U	N/U N/a
CON	11							NIA		F	F
LL-SED2	12	-						NIN	Fila	NIN	.p/u
LL-SED2	13							NIN	101.02	1	1
CON	14				1				1 1		1
CON	15										
CON	16	V	V	J			V	V	V	V	V
			**************************************	1		1					
										1	1
	N 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4										
		-				1	-				
			-								
	-	-	1	+			<u> </u>				
							+				
		-	1				1				
				-							
				ļ			ļ				
				<u> </u>			ļ				
	-	-	1	+			ļ				
		-									
	1.1.1									1	
		1									
	1000										
		I		L	1						

20 Day Toxicity Test Data Sheet - Nautilus Environmental Feshwater Sediment 20 day Observations

Client: Flo	yu Shider
Test #:	05-1063
N = normal B= no burrows M= dead on surface A= avoidance	L = anoxic surface F= fungal patches D= no air flow (DO?) U= excess food

Day 17 Day 18 Day 19 Day 20 Day 14 Day 15 Day 16 Day 11 Day 12 Day 13 SP IF SIN BP 1F 1F Initials R ce F/U Fly F/U N/U N/U N/W U LL-SED2 1 NU F/M Flu Flu LL-SED2 2 CON 3 u 4 И Flu F/U FIL LL-SED2 4 L 4 u CON 5 4 F/u L. u CON 6 ₽ Flu 1 Flu LL-SED2 7 F/u N/u F FIL F F LL-SED2 Flu 8 F F NIN F/U CON NIU N/U NIU u u 4 9 NIU N/N Flu F/4 LL-SED2 YF 10 NIU N/N U F/U F/n F u CON 11 F u F N/N NIA N/M Flu FILL LL-SED2 12 NIN 4 F/U Flu Flu LL-SED2 13 4 U u CON 14 1 15 1 CON 1 CON 16 1 1

Start Date & Time: <u>5-18-11</u> 1215 End Date & Time: <u>1014/11</u> 1245 Test Organism: <u>Chironomous tentans</u>