TCP/LUST KIT CO. Applied Geotechnology Inc.

A Report Prepared For

Burns Bros., Inc. 516 Southeast Morrison, Suite 1200 Portland, Oregon 97214

VOLUME I REMEDIAL INVESTIGATION REPORT BINGO FUEL STOP THORP, WASHINGTON

AGI Project No. 15,659.001

by:

David P. Dawson

Geologist

Peter P. Barry

Senior Hydrogeologist

APR - 4 1994

DE GETTINAL REGION OFFICE

APPLIED GEOTECHNOLOGY INC. 300 120th Avenue N.E. Building 4, Suite 215 Bellevue, Washington 98005 206/453-8383

March 31, 1994

TABLE OF CONTENTS

- 1																						
OLU	JME I																					
	ACRO	NYMS 1	AND ABBRE	VIATIONS	s		•	•	• .	•	. •	•	•	•	•	•	•	•	•	•	Ÿ:	Lii
	EXEC	UTIVE	SUMMARY			. • •	. •		•		•	•	•		•	•	•	•	•	•	•	. х
						-	٠															
	1.0	INTR	ODUCTION	• • •		. • •	•	•	•		•	•	•	•	•	•	•	•	•	•	•	1
		1.1	General					•	•		•		•	•	•	•	•	•	•	•	•	1
		1.2	Report O	rganiza	tion			•	•			•	•	•	•	•	• ,	•	•	•	•	2
		1.3	Previous	Work					•			•	•	•	•	•	•	•	•	•	•	2
		1.4	The Regul	lated C	leanu	ip Pr	:00	ess				•	•	•	•	•	•	٠	•	•	•	2
	•	1.5	Purpose,	Scope,	and	Auth	or	iza	ti	on	•	•	•	•	•	•	•	•	•	•	•	4
																					;	_
	2.0	SITE	FEATURES	AND HI	STORY		•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	5
		2 1	Site and	Surrou	ndino	a Are	a l	Des	cr	ipt	:io	n										5
		2.1	Site Fac	Juliou.	and vittori	11+i1]	ies		-F-				•								6
		2.2	Regional	and Si	te Hi	stor	v														•	6
		2.3	Demograp	hv and '	tand	lise	• 1	•													•	7
		2.4	Dellograp	ny ana .		000	Ĭ	•	•								-					
	3.0	TTT.	D INVESTI	GATTON									•			•						9
	3.0				,																	
		3.1	General					•	•			•	•	•	•	•	•	•	•	•	•	9
		3.2	Surface '	Water a	nd Se	edime	ent	8	•			•	•		•	•	•	•	•	•	•	9
		3.3	Soils .					•				•	•	•	•	•	•	•	•	•	•	9
		3.4	Groundwa	ter .		• • .			•			•	•	•	•	•	•	•	•	•	•	10
		3.5	Aquifer	Testing	•	• . • •		, •	•	•	• •	•	•	•	•	•	•	•	•	•	•	11
																٠						•
	4.0	GEOL	OGY		• •	• •	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	13
		4.1	Regional	Topogr	aphy	and	Ge	olo	gy	٠,		•	•	•	•	•	•	•	•	•	•	13
		4.2	Site Geo	logy .								•	•	•	•	•	•	•	•	•	•	13
		4.3	Soil Cla	ssifica	tion	and	Ph	isy	Lca	1 1	Pro	pe	rt	ie	3 '	Te	st:	Lng	J	•	•	14
-	5.0	HYDR	OLOGY	• • •	• •	• •	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	16
		5.1	Nearby S	urface	Wate	r Bo	die	s	•	•	• •	•	•	•	•	•	•	•	•	•	•,	16
		5.2	Regional	Hydrog	eolo	gy a	nd	Gro	oun	dwa	ate	r	۷s	e	•	٠	•	•	•	•	•	17
		5.3	Site Hvd	rogeolo	gy			•	•	•		•	•	•	•	٠	•	•	•	•	•	17
		5.4	Groundwa	ter Rec	harg	e an	d D	is	cha	rg	e.		•	•	•	•	•	•	•	•	•	19

TABLE OF CONTENTS

6.0	CONTAMINANT DISTRIBUTION AND MIGRATION
	6.1 General
	6.2 Soil
	6.3 Groundwater
	6.4 Surface Water
	6.5 Sediment
	6.6 Contaminant Sources and Migration
	DEVELOPMENT OF DEALT CITABILITY LEVELS
7.0	DEVELOPMENT OF DRAFT CLEANUP LEVELS
	7.1 Introduction
	7.2 Cleanup Level Development
	7.3 Cleanup Level Considerations
	7.4 Estimating Risk-Based Concentrations
	7.5 Summary of Draft Groundwater Cleanup Levels 3
	7.6 Summary of Draft Soil Cleanup Levels
	7.7 praft Groundwater and Soil Cleanup Levels 30
	7.8 Draft Cleanup Level Exceedances
8.0	USE OF THIS REPORT
9.0	REFERENCES
DIST	TRIBUTION
TABI	LES
FIGU	JRES
APPE	ENDICES
	Appendix A: Water Well Reports Appendix B: Field Investigation Procedures Appendix C: Boring Logs and Well Construction Summaries Appendix D: Physical Properties Analyses

VOLUME II: Laboratory Reports and Quality Assurance Reports

LIST OF TABLES

Table 2-1	Nearby Domestic Well Information
Table 2-2	Underground Storage Tank Specifications
Table 3-1	Well Construction Summary
Table 4-1	Physical Properties - Soil
Table 5-1	Mean Monthly Climatological Data, 1988 - 1992
Table 5-2	Groundwater Elevation Data
Table 5-3	Aquifer Test Results
Table 6-3	Chemical Analysis Schedule - Soil
Table 6-2	Hydrocarbons and Lead Detected in Soil
Table 6-3	Polycyclic Aromatic Hydrocarbon Results for Soil
Table 6-	Groundwater Sample Collection and Field Parameter Data
Table 6-	Chemical Analysis Schedule - Groundwater
Table 6-	Hydrocarbons, Lead, and Nitrate/Nitrite Detected in Groundwater
Table 6-	Polycyclic Aromatic Hydrocarbon Results for Groundwater
Table 6-	8 Chemical Analysis Schedule - Surface Water/Sediment
Table 6-	Analytical Results for Surface Water and Sediment
Table 7-	1 Chemicals of Concern
Table 7-	2 Toxicological Parameters for Chemicals of Concern
Table 7-	3 Groundwater and Surface Water ARARs for Chemicals of Concern
Table 7-	4 Groundwater and Surface Water Risk-Based Concentrations
Table 7-	5 Draft Groundwater Cleanup Level Summary
Table 7-	6 Draft Soil Cleanup Level Summary
Table 7-	7 Draft Cleanup Levels for Soil and Groundwater

Applied Geotechnology Inc.

LIST OF TABLES

Table	7-8	Summary of	f Draft Chemical Exceedances - Soil
Table	7-9	Summary of	f Draft Chemical Exceedances - Groundwater
Table	7–10	Summary of	f Method A TPH Exceedances in Soil
Table	7-11	Summary of	f Method A TPH Exceedances in Groundwater

LIST OF ILLUSTRATIONS

Figure 1-1	Vicinity Map
Figure 2-1	Adjacent Land Use Area Map
Figure 2-2	Nearby Well Location Map
Figure 2-3	Site Conditions Map
Figure 3-1	UST Removal Area Soil Sampling Location Map
Figure 4-1	Cross Section Location Map
Figure 4-2	Cross Section - A to A'
Figure 4-3	Cross Sections - B to B' and C to C'
Figure 5-1	Surface Water Flow Diagram
Figure 5-2	Groundwater Contour Map - July 7, 1993
Figure 5-3	Groundwater Contour Map - November 5, 1993
Figure 5-4	Groundwater Hydrographs MW3 & MW4
Figure 6-1	RI Soil Sampling Location Map
Figure 6-2	Groundwater Sampling Location Map
Figure 6-3	Surface Water & Sediment Sample Location Map
Figure 6-4	Extent of Impacted Media
Figure 7-1	Soil Cleanup Level Exceedance Locations
Figure 7-2	Groundwater Cleanup Level Exceedance Location Map
Plate B1	Water Level Drawdown Test-MW3
Plate B2	Water Level Recovery Test-MW3
Plate B3	Water Level Drawdown Test-MW4
Plate B4	Water Level Recovery Test-MW4
Plate Cl	Soil Classification/Legend
Plate C2	Description of Terms

LIST OF ILLUSTRATIONS (continued)

Plate C3	Monitoring Well Construction for MW1, MW2, MW4, MW5, MW6 and MW11
Plate C4	Monitoring Well Construction for MW7, MW8, MW9, MW10 and MW12
Plate C5	Monitoring Well Construction for MW3 and P21
Plates C6 thru Cl9	Logs of Monitoring Wells
Plates D1 thru D4	Particle Size Analysis
Plate D5	Plasticity Chart

LIST OF ACRONYMS

AGI Applied Geotechnology Inc.

ARAR Applicable or Relevant and Appropriate Requirement

AST above ground storage tank

ASTM American Society of Testing and Materials

ATI Analytical Technologies, Inc.

ATSDR Agency for Toxic Substances and Disease Registry

BCF bioconcentration factors

BETX benzene, ethylbenzene, toluene, and total xylenes

bgs below ground surface

CAP Cleanup Action Plan

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act

cm/sec centimeter per second

coc chemicals of concern

CPF cancer potency factors

Ecology Washington State Department of Ecology

gpm gallons per minute

K hydraulic conductivity

MCL maximum contaminant level

mg/kg milligrams per kilogram

mg/L milligrams per liter

μg/L micrograms per liter

MRL method reporting limit

MTCA Model Toxics Control Act

MW monitoring well

NOAA National Oceanic and Atmospheric Administration

PAH polycyclic aromatic hydrocarbons

Applied Geotechnology Inc.

OVM organic vapor meter

PID photoionization detector

ppm parts per million

PZ piezometer

QC quality control

RA Emergency Remedial Actions

RfD chronic reference doses

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

RME reasonable maximum exposure

s Sample

SG staff gauge

SR 90 State Route 90

TPH total petroleum hydrocarbons

UST underground storage tank

USEPA United States Environmental Protection Agency

VOC volatile organic compounds

WAC Washington Administrative Code

ws water sample

EXECUTIVE SUMMARY

This report presents the results of Applied Geotechnology Inc.'s (AGI) Remedial Investigation (RI) of the former Bingo Fuel Stop, located 1 mile southeast of the Town of Thorp in the Yakima River Valley in central Washington. The site is leased by and the facilities are owned by Burns Bros., Inc., and were used as an auto and truck fueling facility from approximately 1968 until January 1992.

The Washington State Department of Ecology (Ecology) conducted a site visit on February 7, 1992 and issued an enforcement order based on observations of hydrocarbon contamination and potential threats to human health and the environment. The Enforcement Order directed Emergency Remedial Actions (RA) to occur. AGI prepared and submitted an Emergency RA Work Plan, which was reviewed and approved by Ecology. Five USTs were excavated during the Emergency RA, and approximately 700 gallons of floating product were recovered from four recovery sumps. Results of the Emergency RA are described in our June 5, 1992 report.

Following completion of the Emergency RA, Ecology and Burns Bros., Inc. entered into an Agreed Order to conduct a Remedial Investigation/Feasibility Study (RI/FS) at the site. This report summarizes activities performed during the RI portion of the Order. As part of this RI, AGI gathered data regarding site conditions, the distribution of petroleum hydrocarbons, and surrounding land use in order to evaluate the impact of petroleum hydrocarbon compounds on the environment.

Twelve soil borings were drilled on or near the site during June, July, and October 1993. Boring locations were selected on the basis of targeted areas of suspected soil and groundwater contamination. Borings were completed as groundwater monitoring wells.

Surface water was investigated in the irrigation canal near the northeast boundary of the site, the swampy area south of the site, and the pond east of the site. Areas studied outside the boundary of the site are referred to as the "study area" in this text.

Sediment samples were collected from areas potentially affected by runoff from the site, including directly downstream of the east end of the culvert under Thorp Highway, from the west end of the culvert (a surface soil sample, as no sediment was evident), and from the north side of the swampy area to the south.

Aquifer testing was performed to evaluate hydraulic characteristics of the site's water-bearing strata. Testing was conducted using step-drawdown and constant rate pumping and recovery test procedures. Two hydrostratigraphic zones were identified below the site: the Upper and Lower Zones. Groundwater flow is northeasterly. Local and regional hydrogeology suggest the overall northeasterly flow direction is consistent throughout the year. Overall aquifer permeability and associated hydraulic conductivity are considered to be moderate to low due to the silty nature of much of the sediments below the site.

Soil samples were collected during the Emergency RA in March 1992 and RI in July and October 1993. During the Emergency RA, a total of 28 soil samples were collected from the UST excavations, product piping trenches, and beneath the fuel dispenser islands. During the RI, 20 soil samples were collected from the 12 soil borings. Borings were then completed as groundwater monitoring wells MW1 through MW12. Soil samples were analyzed for total petroleum hydrocarbons (TPH) quantified as gasoline, diesel, and oil; benzene, ethylbenzene, toluene, and total xylenes (BETX); total lead; polycyclic aromatic hydrocarbons (PAHs); and volatile organic compounds (VOCs).

During the Emergency RA, four groundwater samples (W-1 through W-4) were collected from four drinking water wells located within a 1/4-mile radius of the site. During the RI, 14 groundwater samples were collected from 11 of the 12 monitoring wells. Free product was present in two of the monitoring wells during RI sampling.

Groundwater samples were analyzed for TPH quantified as gasoline and diesel, BETX, total lead, PAHs, pesticides, nitrate/nitrite, gasoline, and VOCs.

During the Emergency RA, two surface water samples were collected within a 1/4-mile radius of the site. One sample was collected from a pond east of the site and the other from the swampy area south of the site. Surface water samples were analyzed for BETX and TPH quantified as gasoline. The only analyte detected in either sample was toluene at a concentration of 0.99 micrograms per liter in the sample from the swampy area.

Two sediment samples were collected during the RI. One sample was collected from the east end of the north culvert; the other one was collected from the swampy area south of the site. Samples were analyzed for BETX and TPH quantified as diesel. Toluene was detected in the sample collected from the north culvert, and TPH quantified as diesel was detected in both samples.

During the RI, site-specific characteristics and conditions were evaluated, as well as chemical-specific toxicity, that influence risk. Site-specific characteristics include land and groundwater use, as well as factors affecting chemical movement (e.g., soil type, depth to groundwater).

Groundwater cleanup levels were based on protection of groundwater quality for use as drinking water.

Soil and groundwater contamination is mainly limited to TPH-related compounds: gasoline, diesel, BETX, and occasionally PAHs. The UST and dispenser island release appear to be primary sources of contamination.

The presence of free product and elevated TPH compounds at wells downgradient of the source areas indicates TPH contamination has been transported by groundwater. The adjacent surface waters (the drainage ditch along the south boundary, the swampy area to the southeast, the pond to the east, and the irrigation canal along the east side of Thorp Highway) have not been significantly affected by TPH contamination originating from the site.

Sampling locations where soil and groundwater chemicals of concern (COC) concentrations exceeded selected site-specific draft cleanup levels are summarized below by medium.

Draft soil cleanup level exceedances include BETX in soil samples S7, S8, S10, S21, S22, S27, and S28 (collected from UST excavation sidewalls and piping trenches), and soil samples from MW6 at 17.5 feet and 22.5 feet below ground surface.

Draft groundwater cleanup level exceedances include benzene, ethylbenzene, and toluene concentrations in groundwater samples from MW5, MW6, and MW8. Lead concentrations are exceeded in samples from wells MW2 and MW3. Lead and nitrate/nitrite were exceeded in the sample from MW1.

1.0 INTRODUCTION

1.1 GENERAL

This report presents the results of Applied Geotechnology Inc.'s (AGI) Remedial Investigation (RI) of the former Bingo Fuel Stop in Thorp, Washington, owned by Burns Bros., Inc. The location of the Bingo Fuel Stop is shown on Figure 1-1, Vicinity Map. The site was used as an auto and truck fueling facility from approximately 1968 until January 1992. The Washington State Department of Ecology (Ecology) conducted a site visit on February 7, 1992 and issued an Enforcement Order based on observations of hydrocarbon contamination and potential threats to human health and the environment.

The order required implementation of an Emergency Remedial Action (RA). AGI performed the Emergency RA as described in our Emergency Remedial Action report (AGI, 1992c). Following completion of Enforcement Order requirements, Burns Bros., Inc. and Ecology entered into an Agreed Order to conduct a Remedial Investigation/Feasibility Study (RI/FS). This RI has been conducted in accordance with Agreed Order DE 93TC-C171 (Ecology, 1993a); with Washington Administrative Code (WAC) 173-340-350; and with AGI's Work Plan dated April 22, 1993 (AGI, 1993a). As part of this RI, AGI gathered data regarding site conditions, the distribution of petroleum hydrocarbons, and surrounding land use in order to evaluate the impact of petroleum hydrocarbon compounds on the environment. The FS will be initiated following completion of the RI.

The designated coordinators for this project are:

Ecology:

Ms. Susan Burgdorff
Washington Department of Ecology
Central Regional Office
106 South 6th Avenue
Yakima, Washington 98902-3387 (509)454-7835

Burns Bros., Inc.:

Primary Coordinator
Mr. L. Kirk French
Burns Bros., Inc.
516 Southeast Morrison, Suite 1200
Portland, Oregon 97214 (503)238-7393

Secondary Coordinator
Mr. Peter P. Barry
Applied Geotechnology Inc.
300 120th Avenue Northeast
Building 4, Suite 215
Bellevue, Washington 98005 (206)453-8383

Tertiary Coordinator
Mr. Patrick L. Schauer
Burns Bros., Inc.
516 Southeast Morrison, Suite 1200
Portland, Oregon 97214 (503)238-7393

1.2 REPORT ORGANIZATION

This report is arranged in nine sections. This introduction is followed by a description of site features and history in Section 2.0. RI field investigations are described in Section 3.0, and Sections 4.0 and 5.0 follow with discussions of geology, climate, and hydrology. Section 6.0 discusses contamination distribution and migration. Applicable regulatory requirements and draft site cleanup levels and exceedances are then presented in Section 7.0. Sections 8.0 and 9.0 provide information regarding use of this report and references. Figures and tables follow the references.

References are listed by the author, agency, or company, followed by the year of the publication, in parenthesis. Figures and tables are numbered by the section where first referenced, followed by sequential numbers. Appendices follow figures and tables, and contain Water Well Reports for wells potentially within a 1/2-mile radius of the site (Appendix A), a detailed description of the field investigation methods (Appendix B), boring logs and well construction summaries (Appendix C), physical properties analyses results (Appendix D), and laboratory reports and quality assurance reports (bound separately in Volume II).

1.3 PREVIOUS WORK

Ecology issued an Enforcement Order (Ecology, 1992a) on February 11, 1992 directing fuel dispensing activities at the site to stop and requiring preparation and implementation of an Emergency Remedial Action Work Plan. Five underground storage tanks (USTs) were temporarily taken out of service in February 1992 in compliance with the Ecology Enforcement Order. Ecology reiterated the requirement to prepare an adequate Work Plan in a February 26, 1992 letter (Ecology, 1992b).

AGI prepared and submitted an Emergency Remedial Action Work Plan on March 5, 1992 (AGI, 1992a). The Work Plan was reviewed and approved by Ecology, with several revisions, as described in our March 9, 1992 letter (AGI, 1992b). The five USTs were excavated during the Emergency RA, and approximately 700 gallons of floating product were recovered from four recovery sumps. Product was recovered to the maximum extent practicable. The results of the Emergency Remedial Action are summarized in our June 5, 1992 report (AGI, 1992c).

1.4 THE REGULATED CLEANUP PROCESS

In March 1989, a citizen-sponsored toxic waste cleanup law went into effect in Washington, changing site cleanup procedures statewide. Passed by voters as Initiative 97, this law is known as the Model Toxics Control Act (MTCA), Chapter 70.105, Revised Code of Washington. State regulations promulgated under MTCA (WAC 173-340) are known as the MTCA Cleanup Regulation. This regulation provides the framework for soil and groundwater remediation in Washington where "hazardous substances have come to be located." MTCA requires cleanup of hazardous substance releases and is thereby invoked when a hazardous substance release is discovered or suspected. The MTCA cleanup process includes:

- Discovery and Reporting. Any owner or operator who has information that a hazardous substance has been released to the environment and may be a threat to human health or the environment must report such information to Ecology's Toxics Cleanup Program within 24 hours of release confirmation. Contamination discovered at the site was reported to Ecology by Burns Bros., Inc. personnel.
- ▶ <u>Initial Investigation</u>. Ecology is required to perform an investigation within 90 days of discovery. Based on the initial investigation, further investigation or no further action may be required.
- ▶ <u>Site Hazard Assessment and Ranking</u>. Ecology conducts a hazard assessment to confirm the presence of hazardous substances and determine the relative risk the site poses to human health and the environment. The site is then ranked using the Washington Ranking Method. This method assigns a number to each site based on relative risk to human health and the environment. The Bingo Fuel Stop is ranked 2 on a scale of 1 (highest risk) to 5 (lowest risk).
- Remedial Investigation/Feasibility Study. The RI emphasizes data collection and site characterization and the FS emphasizes analysis and evaluation of cleanup actions. Specifically, the RI provides a mechanism for characterizing site conditions and the nature and extent of contaminants present, and assessing risk to human health and the environment. The FS develops, screens, and evaluates various potential remedial actions. This report presents the results of the RI conducted by AGI. The cleanup method is selected in the RI/FS phase. Methods available are termed Method A, Method B, and Method C. Method A is used when all hazardous substances detected at the site are found on the list of 25 chemicals contained in WAC 173-340-720 or -740. Method B, which uses site specific characteristics and contaminant distribution to determine cleanup levels, is applicable to all sites. Method C is only applicable to industrial sites.
- ▶ Interim Remedial Action. Interim RAs may be taken to reduce the threat to human health or the environment. Interim RAs are initiated before the RI/FS is complete, in contrast to remedial actions initiated after the FS is completed. Removal and treatment of groundwater containing dissolved petroleum hydrocarbons has been initiated as an interim RA.
- Selection of Cleanup Action. Based on information gathered during the RI/FS, the preferred cleanup alternative is identified and a Cleanup Action Plan (CAP) is developed. The CAP identifies preferred cleanup methods and specifies cleanup standards and other requirements at the site.
- ▶ <u>Site Cleanup</u>. Cleanup begins when the CAP is implemented. This includes design, construction, operation, and monitoring of cleanup actions.

1.5 PURPOSE, SCOPE, AND AUTHORIZATION

The purpose of this RI is to evaluate the nature, extent, concentration, and potential off-site migration of contamination in site soils and groundwater. During this investigation, chemicals of concern (COC) were identified by analysis of soil, sediment, surface water, and groundwater samples. Site-specific draft cleanup levels for each COC were then developed, based on information regarding their toxicity and contaminant pathways. Areas at the site where cleanup levels were exceeded, based on chemical analyses, were then identified for cleanup. The scope of work to accomplish this objective included:

- Collecting additional site background information.
- Drilling 12 exploratory borings and completing them as groundwater monitoring wells.
- ▶ Confirming groundwater flow directions obtained during the Emergency Remedial Action, which indicated flow toward the northeast.
- ▶ Further characterizing the nature and extent of petroleum hydrocarbon concentrations in soil and groundwater.
- ▶ Developing site-specific draft cleanup levels for soil and groundwater.
- ▶ Preparing this comprehensive RI report.

Details of these tasks are presented in our April 22, 1993 Work Plan (AGI, 1993a). The authorization to perform these tasks is contained in the Agreed Order, and in Ecology's April 28, 1993 (Ecology, 1993c) letter to Burns Bros., Inc.

2.0 SITE FEATURES AND HISTORY

2.1 SITE AND SURROUNDING AREA DESCRIPTION

The former Bingo Fuel Stop is located on Thorp Highway at its junction with State Route 90 (SR 90). The site is located in the southeast quarter of the northeast quarter of Section 14, Township 18 North, Range 17 East, Willamette Meridian. The legal description of the site, according to the Kittitas County Records Volume 244, Page 773, segments the site into two parcels as follows:

PARCEL 1:

That portion of the Southeast 1/4 of the Northeast 1/4 of Section 14, Township 18 North, Range 17 East, W.M., Kittitas County, Washington, described as follows:

Commencing at the intersection of the West boundary line of the Right of Way of Thorpe County Road and the Southwest boundary line of the Right of Way of Primary State Highway No. 3 (SR 90); thence South 00°07'45" East for 204.73 feet; thence North 89°52'15" East for 30 feet more or less to the West boundary line of Thorpe County Road; thence South 00°07'45" East for 95.27 feet; thence North 63°33'45" West for 257.14 feet; thence North 00°07'45" West for 284.99 feet; thence South 63°33' 45" East for 223.61 feet to the true point of beginning.

PARCEL 2:

That portion of the Southeast 1/4 of the Northeast 1/4 of Section 14, Township 18 North, Range 17 East, W.M., Kittitas County, Washington, described as follows:

Commencing at the intersection of West boundary line of the Right-of-Way of Thorpe County Road and the Southwest boundary line of the Right-of-Way of Primary State Highway No. 3 (SR 90); thence North 63°33'52" West 223.59 feet to the true point of beginning; thence North 63°33'52" West 5.68 feet; thence North 39°24'52" West 278.97 feet; thence South 0°07'47" East 465.40 feet; thence South 72°06'45" East 317.70 feet; thence North 63°33'45" West 134.62 feet; thence North 0°07'45" West 284.90 feet to the true point of beginning.

SUBJECT TO ALL EASEMENTS, RIGHTS OF WAY, ENCUMBRANCES AND OTHER RESTRICTIONS OF RECORD

For the purpose of this RI, the site is described as one property, not two parcels.

Land use in the surrounding area is predominantly agricultural as shown on Figure 2-1. One retail store is located within 2 miles of the site, across SR 90 to the northeast. The Puget Power Kittitas Service Center is located adjacent to the west of the site. One residence is present adjacent to the southern site boundary, and one residence is present adjacent to the eastern site boundary.

A review of Water Well Reports in Ecology's files and a door-to-door survey of houses nearby indicate nine domestic wells are located within a 1/2-mile radius of the site. Nearby water well locations are shown on Figure 2-2, and information about the wells is summarized in Table 2-1. Water Well Reports for wells potentially within a 1/2-mile radius are included in Appendix A; however, only one report is known to correspond to existing wells (Puget Power Well). Depths to water were not measured due to inaccessibility of the wells, except for Well 2 east of the site. Depth to water in Well 2 was approximately 2 feet below ground surface on March 18, 1994.

2.2 SITE FACILITIES AND UTILITIES

Site facilities and utilities are shown on Figure 2-3 and described in the following sections.

2.2.1 Aboveground Facilities and Utilities

The aboveground site facilities include one building with two canopies and a large storage trailer. The canopies formerly sheltered five of seven fuel dispensing islands served by five USTs and four aboveground storage tanks (ASTs). The ASTs have been out of service for at least 18 months. Aboveground utilities at the site include electrical power supply and telephone lines.

2.2.2 Underground Facilities and Utilities

Underground facilities include five USTs (formerly containing gasoline and diesel) and associated piping. UST characteristics are summarized in Table 2-2. The USTs and piping were removed in 1992, as described in our June 5, 1992 Emergency Remedial Action Report (AGI, 1992c). Two USTs, formerly containing heating oil and possibly used oil, are located adjacent to the south side of the building. These tanks were taken out of service in 1992. A water line connects the on-site domestic water supply well along the eastern boundary of the site with the building. A septic tank is present west of the building, and a septic drainfield is likely present in the northwest portion of the site. An underground culvert is present adjacent to the northeast boundary of the site. The culvert directs surface water runoff into the irrigation canal on the east side of Thorp Highway.

2.3 REGIONAL AND SITE HISTORY

2.3.1 General

A review of property ownership records at the Kittitas County Records office indicates agricultural activity in the region was occurring by the early 1900s. Agricultural activity in the region continues to be the primary economic activity today.

The site was part of a rural homesite prior to 1968. During the mid to late 1960s, SR 90 was constructed adjacent (north) to the property. Following completion of this portion of SR 90, the site use changed from rural/agricultural to a retail fueling facility. The site was initially leased by Standard Oil Company of California in 1968. The lease was then acquired by

True Value Oil Company, Inc. True Value Oil Company's interest on the lease was then assigned to Telum Inc. and/or Bingo Management, Inc. between 1976 and 1986. In 1986, Burns Bros., Inc. acquired the lease from Telum Inc. and Bingo Management.

2.3.2 Operational History

A review of Ecology records regarding releases from fueling operations at the site indicates several incidents have been reported within the past 3 years. No information prior to that time has been located.

Reports of suspected or confirmed releases are as follows:

- ▶ 11/27/89: Report of a 15-gallon diesel spill, dissipated by the time Thorp Fire Department arrived, reported by Bob Morgan, Thorp Fire Department.
- ▶ 04/19/90: Report of a 50-gallon release of diesel fuel, allegedly hosed into a nearby ditch/wetland area. Report of previous spill of 100 gallons cleaned up by excavating soil and placing it in nearby field; red color of diesel fuel additive visible in ditch, reported by (anonymous).
- ▶ 05/06/91: Granular substance reported to be spilled; investigation determined substance to be sand, reported by S. G. Panattoni, Kittitas County Sheriff's Department.
- ▶ 08/19/91: AST overfill reported by Kirk Mattoon, Burns Bros. Manager.
- ▶ 09/20/91: Report of contaminated surface gravel removal, improper disposal, leaking ASTs, improper storage of diesel fuel additive, no placards present on ASTs, reported by (anonymous).
- ▶ 10/01/91: Fuel barrel reported in irrigation canal; petroleum hydrocarbon contaminated soil reported to be stockpiled by site sign; discolored soil around tanks; storm drain leads into irrigation canal, reports cattle drink from canal, cattle are sick and not gaining weight, reported by (anonymous).
- ▶ 02/07/92: Explosive vapors in excavation; visible petroleum hydrocarbon contamination, reported by Jim Chulos, Ecology.
- ▶ 03/23/92: Report of three incidents, 4/15/89, 8/12/90 and 10/24/91; three surface spills cleaned up with absorbent material, reported by Keith Chandler, former Bingo Fuel Stop manager.

2.4 DEMOGRAPHY AND LAND USE

Population density in the area is sparse. It is estimated that fewer than 30 people reside within a 1/2-mile radius of the site.

The site is zoned for limited commercial use according to the Kittitas County Planning Department. Surrounding land zoning is agricultural.

Applied Geotechnology Inc.

Burns Bros., Inc. leases the Bingo Fuel Stop site from a group of landowners. An interview was conducted with the site owners' representative, Robert Dunnington, in May 1993 (AGI, 1993b). Mr. Dunnington indicated the site will likely be sold following site cleanup. Future site use is therefore unknown; however, it will likely be required to be in accordance with zoning restrictions.

3.0 FIELD INVESTIGATION

3.1 GENERAL

The purpose of AGI's field activities was to investigate soil and groundwater below the site and nearby surface water and sediments. Information obtained during the investigation was used to identify the nature and extent of contamination at the site, enabling the selection of a cleanup action alternative.

RI field activities were performed in general accordance with our April 1993 RI/FS Work Plan (AGI, 1993a). Field investigation procedures are discussed in Appendix B. Activities included collecting surface water and sediment samples, drilling and sampling 12 soil borings, completing the soil borings as groundwater monitoring wells, collecting samples from the wells, and conducting two aquifer tests.

3.2 SURFACE WATER AND SEDIMENTS

3.2.1 Surface Water Sampling and Chemical Analyses

Staff gauges were installed in the irrigation canal near the northeast boundary of the site, the swampy area south of the site, the pond east of the site, and the gasoline and diesel UST excavation to monitor fluctuations of surface water levels. Surface water level measurements were collected periodically in conjunction with groundwater level measurements.

Surface water samples were collected from the pond adjacent to the east, the swampy area adjacent to the south, the drainage ditch south and west of the site, and the irrigation ditch adjacent to MW8. A surface water sample was not collected from the collection grate on the west side of Thorp Highway as no surface water was present at that location during the RI field investigation. Surface water samples were analyzed by Washington State test method WTPH-D for total petroleum hydrocarbons (TPH) and by U.S. Environmental Protection Agency (EPA) Method 8020 for benzene, ethylbenzene, toluene, and total xylenes (BETX).

3.2.2 Sediment Sampling and Chemical Analyses

Sediment samples were collected directly downstream of the east end of the culvert under Thorp Highway, from the west end of the culvert (a surface soil sample, as no sediment was evident), and from the north side of the swampy area to the south. Sediment samples were analyzed by WTPH-D for TPH and by EPA Method 8020 for BETX.

3.3 SOILS

3.3.1 Surface

The site is predominantly covered with asphalt pavement except for the bermed area around the ASTs and the open area in the northwest portion of the site. Due to the presence of pavement in areas where fuel dispensers were located and surrounding the UST locations, no surface soil samples were collected.

3.3.2 Subsurface

Twelve soil borings were drilled on or near the site by air rotary or hollow-stem auger drilling methods during June, July, and October 1993. Figure 2-3 shows the locations of soil borings (MW5) at and near the site completed during the RI. All soil borings were completed as groundwater monitoring wells. Borings ranged in depth from 14 to 81 feet below ground surface (bgs). Subsurface soil samples were collected from each boring at 5-foot depth intervals. Additional samples were collected between the 5-foot intervals for a few of the borings. Boring locations were selected on the basis of targeted areas of suspected soil and groundwater contamination. Boring logs documenting subsurface conditions encountered during drilling are included in Appendix C.

3.3.3 Chemical Analysis

Soil samples were collected for chemical analysis from each of the borings during the RI. Soil sampling was performed to characterize the extent and concentration of hydrocarbons across the site and the lower topographic areas north, northeast, and east of the site. Soil samples were analyzed by EPA Methods 8020, 8015 Modified, 7421, and 8310 for BETX, TPH, lead, and polycyclic aromatic hydrocarbons (PAHs), respectively. At locations where hydrocarbons were detected by EPA Method 8015 Modified, the sample analyses were not intended to evaluate if concentrations were above or below cleanup levels, but to provide additional information regarding the character of the petroleum hydrocarbons. Soil sample analytical schedules and collection rationale are presented in Section 6.0. Sampling protocols are described in the Field Investigation description in Appendix B.

3.4 GROUNDWATER

The RI was designed to establish groundwater background (upgradient) conditions, and investigate the existence and areal extent of hydrocarbon, lead, and volatile organic compound (VOC) concentrations in groundwater across the site and the area downgradient of the site. Twelve groundwater monitoring wells were installed, developed, and sampled during the RI.

3.4.1 Monitoring Wells

A total of six groundwater monitoring wells (MW1 through MW5 and MW11) and one piezometer (PZ1) are currently located at the site. A total of six groundwater wells (MW6 through MW10 and MW12) are located north and east of the site. Individual well construction diagrams are presented with the boring logs in Appendix C. These diagrams are based on construction details recorded during well installation. Table 3-1 summarizes construction details for all wells and the piezometer.

Six of the borings (MW1 through MW6) were drilled at or adjacent to the site during June and July 1993 and completed as 4-inch-diameter groundwater monitoring wells. The boring for MW3 was drilled to a depth of 81 feet bgs to evaluate subsurface conditions at approximately the same elevation as the Yakima River, located 3,800 feet northeast of the site. The remaining borings were drilled 5 to 10 feet past the depth at which groundwater was encountered during drilling.

Due to the presence of petroleum hydrocarbons in MW4, MW5, and MW6, five additional borings (MW7 through MW10 and MW12) were drilled to the north and east of the site in October 1993. In addition, another well (MW11) was drilled on the site north of the AST locations at the request of Ecology. All six of these wells were drilled 5 feet past the depth at which groundwater was encountered during drilling. Monitoring well borings MW11 and MW12 were completed as 2-inch-diameter wells due to hard drilling conditions, which required a smaller diameter auger to complete the borings. All of the other wells were completed as 4-inch-diameter wells.

3.4.2 Chemical Analysis

Samples were collected from all monitoring wells except for MW4, which was not sampled because it contained free product. Groundwater samples were analyzed by EPA Methods 8020, 8015 Modified, 7421, 8310, and 8240 for BETX, TPH, lead, PAHs, and VOCs, respectively. The groundwater analytical schedule is presented in Section 6.0, and sampling protocols are described in Appendix R

3.5 AQUIFER TESTING

Aquifer testing was performed to determine hydraulic characteristics of the site's water-bearing strata. Aquifer test data are gathered in two phases: drawdown and recovery. Water level drawdown data are gathered during pumping. Water level recovery data are gathered immediately following the cessation of pumping. Hydraulic characteristics can be determined from drawdown data, and then checked using recovery data. Aquifer test data were analyzed by conventional methods for an unconfined aquifer. The aquifer test analyses results are presented in Section 5.4.3, Aquifer Hydraulic Properties.

3.5.1 Static Water Level Monitoring

To evaluate background water level trends, depths to water in MW3 and MW4 were monitored under static, or non-pumping, conditions. This monitoring was conducted for approximately 67 hours (4,000 minutes) during September 1993. This information is used to remove background "noise" from aquifer testing data.

3.5.2 Testing Procedures

Testing was conducted at MW3 and MW4 using step-drawdown and constant rate pumping and recovery test procedures. The step-drawdown test on Well MW3 indicated a constant rate test could be performed at a pumping rate of approximately 1 gallon per minute. The test at MW3 was conducted on July 14 and 15, 1993; the MW4 test was performed on July 21 and 22, 1993. Existing groundwater extraction pumps had been inactive for at least 21 days prior to beginning the tests. Water discharged from pumping wells during the tests was plumbed to the on-site groundwater treatment facility, where it was treated according to interim cleanup procedures. Water was not reintroduced during the tests in order to avoid recharge effects on test data.

Applied Geotechnology Inc.

Wells MW1 through MW6, the site domestic well, and the reintroduction area were used for water level observation. Recovery tests consisted of recording water levels in the same wells as they returned to prepumping conditions after cessation of pumping. Water levels were monitored by measuring depth to water at each of the referenced wells. Depths to water were measured with electronic water level indicators. Details of each test are discussed in the Field Investigation description in Appendix B.

4.0 GEOLOGY

Published papers on regional geology were reviewed as part of the RI and used to assist in the interpretation of site geology. No direct references for geology at the site were located. However, information obtained during drilling of soil borings at the site was used to interpret site geology. Both regional and site-specific geologic conditions have been reviewed to evaluate the distribution and migration of contaminants at the site. Physical properties testing was also performed to further evaluate the subsurface materials at the site.

4.1 REGIONAL TOPOGRAPHY AND GEOLOGY

The Bingo Fuel Stop site is in the Kittitas Valley in central Washington, as shown on Figure 1-1. The topography near the site slopes to the northeast toward the Yakima River.

Regional geology was interpreted primarily by review of studies published by Waitt (1979) and Porter (1976). The topographically higher areas southwest of the site are most likely comprised of Kittitas and Lakedale Drifts. The topographically higher areas north and northeast of Thorp are comprised of Thorp Gravel Deposits. The low area between the two topographically higher areas is most likely recent alluvium deposited by the Yakima River and possible outwash alluvium from the Kittitas and Lakedale Drifts at depth.

4.2 SITE GEOLOGY

Geologic conditions at or near the site were characterized based on information obtained from the subsurface explorations (MW1 through MW12) conducted during the RI and a review of Water Well Reports from Ecology's files. Geologic cross sections were prepared using soil boring information and interpretation. Locations of cross sections are shown on Figure 4-1, and the cross sections are show on Figures 4-2, 4-3, and 4-4.

The most predominant material encountered in every exploration was a well-graded gravel with sand and cobbles. In addition, a wide variety of material was encountered in the explorations varying from clay, silt, sandy silt, silty sand, silty gravel, and poorly graded and well-graded sands and gravels. The varying thickness and wide diversity of material encountered suggest that the material is one geologic unit, and was placed while the Yakima River meandered through the Kittitas Valley. The materials encountered during drilling are shown on the monitoring well logs in Appendix C and are described in detail below.

Gravelly Clay: Brown gravelly clay, which was encountered from 2.5 to 25 feet bgs only in the boring drilled for MW6, was most likely fill material placed to construct Thorp Highway.

Silt: Black and brown, soft to very stiff silt was encountered in all borings drilled in the lower topographic areas north to east of the site (MW7, MW8, MW10, and MW12). The silt was encountered at depths ranging from 3 to 12 feet bgs. The black coloring encountered in MW7, MW8, and MW12 is attributed to organic material within the silt.

Sandy Silt: Black, very stiff to hard sandy silt was encountered directly below the crushed rock asphalt subgrade in MW1 and MW4 borings. Brown, loose to hard sandy silt was encountered at ground surface for all borings drilled in the lower topographic areas north to east of the site. This material was also encountered at depth (58 to 60 feet bgs) in MW3 and may act as an aquitard. A clay layer approximately 3 feet thick at approximately 10 lower in elevation was noted in a boring drilled by the Bonneville Power Administration approximately 3/4 mile to the northeast.

silty Sand: Brown to gray, dense, silty sand with gravel and cobbles was encountered near ground surface in borings MW2, MW4, and MW11 and at depth in MW3. MW6 encountered a gray, very dense silty sand below the gravel clay fill material at 25 feet bgs.

sand: Gray, dense, poorly graded sand was encountered in only one of the shallow borings (MW9). Yellow to brown, very dense, poorly graded sand was encountered from 52 to 55 feet bgs in MW3. Gray, dense, well-graded sand was encountered in only one of the shallow borings (MW12). Brown, very dense, well graded sand with gravel was encountered from 49 to 52 feet bgs in MW3.

Gravel: Brown, very dense, poorly graded fine gravel with sand, interbedded with poorly graded sand with gravel, was encountered from 64 feet bgs to the total depth of 81 feet bgs in MW3. This material was not encountered in any of the other explorations. Brown, very dense, well-graded gravel with sand and cobbles was the most predominant lithologic unit and was encountered in all borings. In some areas, the material had a gray color, likely due to a reducing environment caused by petroleum hydrocarbons.

Silty Gravel: A 1- to 2-foot-thick layer of brown, very dense, silty gravel was encountered at 15 feet bgs in both MW3 and MW11 borings, and may be a localized aquitard in this area. This material was also encountered at 48 to 49 feet bgs in MW3.

In summary, the variety of materials encountered, and the proximity to the Yakima River, suggest site geology is alluvial in origin.

4.3 SOIL CLASSIFICATION AND PHYSICAL PROPERTIES TESTING

Five soil samples were submitted for physical properties testing to supplement field soil classification and define soil physical and/or hydraulic properties. The samples are considered to be from the same geologic unit. Laboratory physical properties tests included moisture content, dry density, specific gravity, porosity, particle size, pH, and plasticity indices. Table 4-1 summarizes test results. Appendix D contains the laboratory reports for physical properties testing.

All soil samples were visually examined by an AGI geologist or engineer at the time of sample collection. Sample classifications were based on the Unified Soil Classification System (American Society of Testing and Materials [ASTM] D-2488-909).

Moisture content and dry density were calculated for four of the samples. These tests were performed to determine in situ moisture content and associated bulk unit weight. Moisture content was calculated in accordance with ASTM D-2216-90; dry density was calculated on the basis of sample moisture content and volume.

Specific gravity tests were performed on four of the samples in accordance with ASTM D-854-83. The measured specific gravity test results were used in conjunction with moisture content and dry density data to calculate total porosity values using the following formula:

$$n = 1 - [\gamma_d/G_s(\gamma_w)]$$

where:

n = total porosity

 γ_d = dry density (pounds per cubic foot [pcf])

G. = specific gravity of the soil sample

y = unit weight of water (62.4 pcf)

Particle size analyses were performed on four of the samples by sieve and hydrometer methods. Sieve analyses were performed on coarse-grained samples; combined sieve and hydrometer analyses were performed on those samples which were principally fine grained.

Particle size analyses were conducted to more accurately classify samples and supplement field classifications. Plates C-1 through C-4 show particle size analysis curves.

Plasticity index tests were performed on two of the samples in accordance with ASTM D-4318 to supplement field classification. Plate C-5 summarizes plasticity index testing results.

The results of physical properties testing are consistent with field observations of the variety of material encountered, and support the supposition that the material was deposited by the Yakima River system.

5.0 HYDROLOGY

Nearby surface water bodies, regional hydrogeology and groundwater use, site hydrogeology, and areas of groundwater recharge and discharge were evaluated during the RI. Understanding water movement through the hydrologic cycle assists in the process of identifying potential receptors and contaminant migration pathways.

Temperature and precipitation in the Thorp area is measured by the City of Ellensburg, approximately 5 miles east of the site. Seasonal temperature variations from 1988 to 1992 ranged between an average monthly temperature of 22.9°F during December and 67.8°F during July.

Annual precipitation from 1989 to 1992 ranged between 6.76 and 9.17 inches per year (National Oceanic and Atmospheric Administration [NOAA]; 1989 and 1992). Seasonal precipitation variations are minor; however, September has the least precipitation during the years measured. Mean monthly precipitation and temperatures for the Thorp area are summarized in Table 5-1.

5.1 NEARBY SURFACE WATER BODIES

The prominent surface water body in the Kittitas Valley is the Yakima River. The headwaters of the Yakima River are regulated by dams on Lake Keechelus, Lake Kachess, and Cle Elum Lake, approximately 30 miles to the northeast. The Yakima River flows through the Kittitas Valley from the northwest toward the southeast to the town of Ellensburg, passing within approximately 3/4 mile to the northeast of the site. From there, it flows southward toward the City of Yakima, then southeast into the Columbia River, and eventually to the Pacific Ocean.

Surface waters adjacent to the site include a drainage ditch along the southern boundary of the site, a swampy area adjacent to the southeast, a small pond to the east across Thorp Highway, and an irrigation canal southeast of the site, crossing under Thorp Highway and continuing northward along the east side of Thorp Highway. We understand the drainage ditch along the southern boundary of the site was installed by farmers to collect shallow groundwater from nearby agricultural fields. This was done to dewater the fields and increase agricultural productivity (Panattoni, 1994). Water in the ditch flows eastward into the irrigation canal at the southwest corner of the site, as shown on Figure 5-1. The irrigation canal routes water north (through the canal) or northeast (through subsurface piping). Some of the water flows east through subsurface piping along the south side of SR 90. The remainder of the water flows northeast through piping below SR 90 to one of two fields. Excess irrigation water from this series of canals is routed into a pond on the south side of Depot Road or into the Ellensburg Power Canal (which eventually reenters the Yakima River). The pond appears to have been excavated sometime between 1966 and 1979, based on a review of aerial photographs.

5.2 REGIONAL HYDROGEOLOGY AND GROUNDWATER USE

The site resides in the approximately 30-mile-long, southeast-trending Kittitas Valley. The valley is bordered on the south by the Manastash Ridge and to the north by the Wenatchee Mountains. Hydrologically, this area is known as the Kittitas Basin and is within the Yakima River Basin.

Groundwater resources in the Kittitas basin are plentiful due to high precipitation and runoff in the Cascade Mountains where the Yakima River watershed originates. Snowmelt and rainfall provide most of the watershed's runoff throughout the fall, winter, and spring. Meltwater from glaciers in the western area of the watershed also sustains flows throughout the spring and summer. Permeable Yakima River alluvium throughout the basin provides reliable supplies of groundwater to wells. Nearby domestic and irrigation wells withdraw water from depths of 30 to 350 feet according to the Water Well Report files at Ecology. Well logs are included in Appendix C.

Most groundwater withdrawn throughout the basin is pumped from Yakima River alluvium. These sediments are several hundred feet thick in many places in the basin. Most groundwater flow through the basin likely travels through these sediments. Groundwater in the Kittitas basin is used for irrigation associated with agriculture. Most groundwater withdrawal occurs during the growing season from April through September. Groundwater is typically encountered in low-lying areas of the Kittitas Valley at depths of less than 20 feet bgs.

5.3 SITE HYDROGEOLOGY

Site hydrogeology was studied during the RI, to evaluate the impact of petroleum hydrocarbons on groundwater. Groundwater elevation maps were prepared based on depth to water measurements in groundwater monitoring wells. Groundwater flow directions were determined based on groundwater contours. Two aquifer tests were performed to evaluate hydraulic conductivity and velocity.

5.3.1 Groundwater Occurrence

We have identified two hydrostratigraphic zones below the site, termed the Upper and Lower Zones. The uppermost groundwater zone occurs under unconfined (water table) conditions within the alluvial sediments described in Section 4.0. Eleven groundwater monitoring wells are screened in this zone. Depth to the water table generally varies approximately 22 feet across the study area. One on-site monitoring well (MW3) is screened in the Lower Zone, below silty sands, silty gravels, and a thin silt layer. The groundwater zone screened by MW3 exhibits lower hydraulic head than the overlying groundwater zone screened by the shallow PZ1 completion (consistently about 5 feet between PZ1 and MW3). This hydraulic head difference and the low permeability of overlying sediments suggest the deeper groundwater zone screened by MW3 (70 to 80 feet bgs) can be identified separately from the shallow groundwater.

5.3.2 Groundwater Elevations and Flow Directions

Water levels in monitoring wells MW1 through MW6 have been measured on a weekly basis since July, and MW7 through MW12 levels have been measured on a weekly basis since November 1993. These data indicate groundwater elevations are consistently highest in the southwest portion of the site area, and gradually decrease to the northeast. Total change in water table elevation across the study area on November 5, 1993 was approximately 22 feet between MW11 and MW12 (approximately 720 feet apart), with a resulting groundwater gradient of approximately 0.03 foot per foot of horizontal distance. Horizontal groundwater flow is thus northeasterly toward the Yakima River. Depths to the water table and groundwater elevations for July 7 and November 5, 1993 are summarized in Table 5-2. Measurements on July 7 were collected when site wells were not being pumped; on November 5, measurements were collected when recovery sumps were being pumped. The groundwater flow directions are fairly consistent, indicating that pumping the recovery sumps has no net effect on flow direction.

The northeasterly groundwater flow direction has been consistent through each of the referenced measurement rounds. Figures 5-2 and 5-3 show groundwater elevation contours and flow directions measured on July 7 and November 5, 1993, respectively. Winter or spring water level conditions have not been characterized at the site; however, local and regional hydrogeology suggest the overall northeasterly flow direction is consistent throughout the year.

At the PZ1 location, hydraulic head in the shallow zone well is higher than the head in MW3, indicating at least partial separation of the two zones, and the potential for limited downward flow from the Upper to the Lower Zone in this location. Vertical flow direction is not known elsewhere across the site.

Water level fluctuations at MW3 and MW4 under static (non-pumping) conditions are shown in the groundwater hydrographs on Figure 5-4. The maximum water level change exhibited during this monitoring period was approximately 0.05 foot at MW3 and 0.04 foot at MW4. Cyclic fluctuations evident in the data from MW3 may be attributed to pumping at a groundwater extraction well pumping large volumes of water at 6-hour intervals in the vicinity. The absence of a well-defined cycle in the data form MW4 further suggests the existence of two hydrogeologic zones.

5.3.3 Aquifer Hydraulic Properties

Aquifer testing was performed on the site on July 14, 15, 21, and 22. Testing procedures are described in the Field Procedures description in Appendix B. Data gathered during the testing were analyzed using different methods developed by Theis, Jacob, Lohman, and Thiem. Assumptions regarding the use and limitations of these analysis methods are discussed in the Field Procedures description in Appendix B.

The results of aquifer test data analysis provide values for transmissivity and hydraulic conductivity for the Upper and Lower Zones based on recovery data for the Lower Zone, and drawdown and recovery data for the Upper Zone. Aquifer test results are shown in Table 5-3. The results indicate hydraulic conductivity (K) of the Lower Zone is approximately 10⁻³ centimeters per second (cm/sec). The value of K for the Upper Zone is approximately 10⁻³ cm/sec, and

assuming a porosity of approximately 0.30, average liner flow velocity is estimated to be approximately 0.3 feet/day. The gradient flow velocity was not calculated for the Lower Zone since the water level is only known in one location.

Aquifer test results for the Upper and Lower Zone are consistent with silty sand and silty gravel conditions; the Lower Zone results indicate a significantly lower permeability than the Upper Zone. Hydraulic communication between the zones appears to be minor based on: the relatively low hydraulic conductivity of the lower zone at MW3 compared to the upper zone; the difference in static water levels between well MW3 (lower zone) and piezometer PZ1 (upper zone); and lower conductivity and higher pH measured in water sampled from MW3 compared to other wells.

5.4 GROUNDWATER RECHARGE AND DISCHARGE

Groundwater below most of the site appears to be recharged by the unlined drainage ditch west and south of the site (Figure 2-3). The ditch is partially dammed south of the site, creating the swampy area. Overflow from the swampy area flows into an irrigation canal fed by the West Side Canal. The irrigation canal crosses under Thorp Highway in a culvert. A portion of the flow is then channeled into the pond east of Thorp Highway by an adjustable distribution box. Most of the flow proceeds north along the east side of Thorp Highway (or through subsurface piping across the adjacent field), then east along the SR 90 eastbound on-ramp or northeast under SR 90.

The swampy area south of the site is likely recharging groundwater in the vicinity of MW5, based on the elevation of water in the swampy area measured at staff gauge 3 (SG3) and groundwater elevation in MW5. The elevation of water in the swampy area was 6 feet higher than groundwater elevation in MW5 on November 12, 1993.

The small pond east of Thorp Highway likely recharges groundwater in the eastern portion of the study area, based on the elevation of the pond surface measured at SG2 compared to groundwater elevation at nearby well MW7. The pond elevation was approximately 5 feet higher than groundwater elevation in MW7 on November 12, 1993. The irrigation canal east of Thorp Highway and south of the eastbound on ramp to SR 90 is likely recharging groundwater in the vicinity of MW8, based on the canal water level at SG1 compared to the elevation of groundwater at MW8. The canal water level was approximately 8 feet higher than groundwater elevation in MW8 on November 12, 1993.

One groundwater discharge (seep) area was observed along the hillslope immediately north of recovery sump RS-2 during our January 28, 1993 site visit. The seep was also observed by Ecology personnel in November 1992 and January 1993, who stated the seep had a petroleum odor and sheen. This seepage likely resulted from shallow groundwater in the Upper Zone intersecting the ground surface. Seepage has not been observed since the groundwater recovery and treatment system restarted pumping from RS-2 in late January 1993.

6.0 CONTAMINANT DISTRIBUTION AND MIGRATION

6.1 GENERAL

This section presents chemical analysis results for soil, groundwater, surface water, and sediment samples collected during the Emergency Remedial Action in March 1992 and Remedial Investigation in July, October, and November 1993. The section also discusses contaminant distribution, sources, and migration. Because the site has a history of storing and handling large volumes of fuels, fuel hydrocarbons were the focus of the investigations. Lead, pesticide, and fertilizer distribution was also investigated at the request of Ecology. Collection protocols for groundwater and surface and subsurface soil samples are outlined in the field procedures description in Appendix B.

Laboratory reports for the RI sample analyses are presented in Volume II. Analyses were performed by Analytical Technologies, Inc. in accordance with Ecology and EPA methodologies. Each laboratory data package was reviewed by AGI upon receipt for technical accuracy, precision, and completeness. Quality assurance reports summarizing results of these reviews are presented with the laboratory reports in Volume II. Specific analytes and method reporting limits (MRLs) for each method utilized during the investigations are included in the analytical summary tables introduced in the following discussions.

6.2 SOIL

Soil samples were collected during the Emergency RA in March 1992 and RI in July and October 1993. During the Emergency RA, a total of 28 soil samples were collected from the UST excavations, product piping trenches, beneath the fuel dispenser islands, and the soil stockpile.

During the RI, 20 soil samples were collected from 12 soil borings. Borings were then completed as groundwater monitoring wells MW1 through MW12. At least one sample was collected from each boring near the water table and up to two additional samples were collected from various interval(s) of the boring if evidence of contamination was noted during drilling. A field duplicate sample was collected from MW6 at 22.5 feet bgs. One soil sample was collected from near the drain box at the west end of the north culvert. Sample collection locations during the Emergency RA and soil boring locations are shown on Figures 3-1 and 6-1, respectively.

6.2.1 Analytical Schedule

Soil samples were analyzed for selected compounds, including TPH quantified as gasoline and diesel by EPA Method 8015 Modified (to characterize the hydrocarbons type and treatability, not evaluate whether concentrations were above or below cleanup levels); TPH quantified as oil by EPA Method 418.1 Modified; BETX by EPA Method 8020; total lead by EPA Method 7421; PAHs by EPA Method 8310; VOCs by EPA Method 8240; and TPH quantified as diesel by Washington State Method WTPH-D. The analytical schedule for soil samples is summarized in Table 6-1.

6.2.2 Contaminant Distribution, TPH and BETX

The following sections discuss soil sample results from the Emergency RA and the RI. Sample locations, depths, dates, and laboratory results are summarized in Tables 6-2 and 6-3. The distribution of TPH and BETX is discussed below.

TPH: All soil samples were analyzed for TPH. During the Emergency RA, elevated TPH as gasoline concentrations ranging up to 21,000 milligrams per kilogram (mg/kg) were detected in samples collected from UST removal areas, piping trenches, and dispenser islands. The extent of TPH contamination was not delineated since only surficial soil samples were collected at that time.

During the RI, soil samples were collected from subsurface on and off site, providing a more comprehensive delineation of lateral and vertical extend of TPH contamination in soil.

TPH was not detected in soil samples from borings MW1, MW2, MW4, MW7, MW8, MW9, MW10, MW11, and MW12. Gasoline and diesel concentrations were detected at 310 mg/kg and 3,100 mg/kg, respectively, in a sample collected from boring MW3 at 9 feet bgs, and diesel was detected at 34 mg/kg in a sample collected at 42.5 feet bgs. Low levels of TPH were detected in samples collected from boring MW5 at 7.5 feet bgs and MW6 at 17.5 and 22.5 feet bgs. The TPH concentrations ranged from 10 to 160 mg/kg.

A sample collected from near the drain box at the west end of the north culvert (see Figure 6-1) contained 340 mg/kg diesel-range TPH (Sample S32).

Oil: Samples collected from the east and south sidewalls of the former heating oil UST excavation (S15 and S16) during the Emergency RA were analyzed for oil-range TPH. Oil was detected in sample S15 at 22 mg/kg, but was not detected in sample S16.

BETX: All soil samples were analyzed for BETX except S3, S15, and S16, collected during the Emergency RA. In the UST removal area, elevated BETX concentrations were detected in samples collected from the north and east sidewalls of the former regular gasoline UST excavation, from the piping trenches, and beneath dispenser islands 6 and 7 (Samples S7, S8, S10, S27 and S28). The ranges of BETX concentrations in these samples are from 6.5 to 92 mg/kg (benzene), 19 to 300 mg/kg (ethylbenzene), 69 to 1,000 mg/kg (toluene), and 170 to 1,800 mg/kg (total xylenes).

During the RI, BETX was not detected in samples collected from MW1, MW2, MW7, MW8, MW10, MW11, MW12, and near the drain box at the west end of the north culvert. The highest BETX concentrations were in a sample collected from MW6 at 22.5 feet bgs. BETX concentrations in this sample were 3.5 mg/kg (benzene), 3.6 mg/kg (ethylbenzene), 17 mg/kg (toluene), and 21 mg/kg (total xylenes). BETX was detected in samples from MW3, MW4, and MW5 at lower concentrations.

6.2.3 Contaminant Distribution, PAHs, Lead, and Vinyl Acetate

PAHs: Soil samples collected during the Emergency RA were not analyzed for PAHs. All soil samples collected from borings during the RI were analyzed for PAHs. Naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, fluorene, and/or phenanthrene were detected in samples collected from MW3, MW5, and MW6. However, carcinogenic PAH compounds were not detected in any analyzed soil samples.

Lead: Surficial soil samples S5, S6, S7, S8, S20, S26, S27, and S28 and all samples collected during the RI were analyzed for total lead. Lead concentrations ranged from not detected to 21 mg/kg. No elevated lead concentrations were identified.

Vinyl Acetate: Two soil samples (S1 and S3) which contained elevated (up to 12,000 mg/kg) concentrations of diesel were analyzed for volatile organic hydrocarbons, including vinyl acetate, a component of Burns Red additive in diesel fuel. Vinyl acetate was not detected in either sample. The only volatile organic hydrocarbons detected in samples S1 and S3 were low concentrations of total xylenes.

6.3 GROUNDWATER

During the Emergency RA, a total of four water samples (W-1 through W-4) were collected from four drinking water wells located within a 1/4-mile radius of the site. During the RI, 14 groundwater samples were collected from 11 of the 12 monitoring wells (MW1 through MW12 except MW4), including field duplicate samples collected from MW2 and MW11. All well locations are shown on Figure 6-2. Free product was present in MW4 and MW6 during July 1993 sampling and, therefore, samples were not collected from these two wells at that time. However, a sample was collected from MW6 in November for selected chemical analyses.

During the RI groundwater sampling, pH, conductivity, and temperature were measured and recorded to monitor parameter stabilization while purging wells. This procedure provides a cursory field assessment of groundwater chemistry, and promotes collection of samples representative of in situ groundwater conditions. Field parameters measured during groundwater sampling are summarized in Table 6-4.

6.3.1 Analytical Schedule

Groundwater samples were analyzed for TPH quantified as gasoline and diesel by EPA Method 8015 Modified (to characterize hydrocarbon types and treatability, not to evaluate if concentrations were above or below cleanup levels), BETX by EPA Method 8020, total lead by EPA Method 7421, PAHs by EPA Method 8310, pesticides by EPA Method 8080, nitrate/nitrite by EPA Method 353.2/354.1, gasoline by Washington State Method WTPH-G, and VOCs by EPA Method 8240. The analytical schedule for groundwater samples is summarized in Table 6-5.

6.3.2 Contaminant Distribution, TPH and BETX

The following sections discuss groundwater sample results from the Emergency RA and the RI. Sample locations, dates, and laboratory results are summarized in Tables 6-6 and 6-7. The distribution of TPH and BETX is discussed below.

TPH: Samples collected from Puget Power Service Center and the Thorp Antique and Fruit Mall during the Emergency RA were analyzed by Washington State Method WTPH-G. No hydrocarbons were detected. All groundwater monitoring well samples collected during the RI were analyzed by EPA Method 8015 Modified, except for the sample from MW6. The sample collected from MW6 was used to evaluate the concentration of vinyl acetate in groundwater, as described in Section 6.3.3. Samples collected from MW1, MW2, MW3, MW7, MW9, MW10, MW11, and MW12 did not contain detectable concentrations of hydrocarbons.

TPH quantified as gasoline was detected in MW5 at 34 milligrams per liter (mg/L) and MW8 at 3 mg/L. TPH quantified as diesel was detected in MW5 at 2 mg/L.

BETX: BETX was not detected in the four drinking water wells sampled during the Emergency RA. BETX was not detected in samples collected from wells MW1, MW7, MW9, MW10, MW11, and MW12 during the RI. Elevated BETX concentrations (ranging up to 12,000 micrograms per liter $[\mu g/L]$ total xylenes) were detected in samples collected from MW5, MW6, and MW8. Low levels of BETX (slightly above detection limits) were detected in samples collected from MW2 and MW3.

6.3.3 <u>Contaminant Distribution - PAHs, Lead, Vinyl Acetate, and Agrichemical Chemicals</u>

PAHs: Samples collected during the Emergency RA were not analyzed for PAHs, lead, or agricultural chemicals. Elevated levels of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected in samples collected from MW5 and MW8 during the RI. Trace levels of fluorene, phenanthrene, and anthracene were also detected at MW5. Samples collected from MW2 and MW3 contained lower levels of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, fluorene, phenanthrene, and/or anthracene. Carcinogenic PAH compounds were not detected in any groundwater samples.

Lead: Total lead was detected in groundwater samples collected from MW1 (0.013 mg/L), MW2 (0.005 mg/L), and MW3 (0.004 mg/L). No other groundwater samples contained detectable levels of lead.

Vinyl Acetate: The sample collected from MW6 during the RI was analyzed for VOCs, including vinyl acetate, a Burns Red fuel additive. Vinyl acetate was not detected in the sample.

Nitrate/Nitrite: The sample collected from MWl during the RI was analyzed for nitrate and nitrite. Nitrate was detected at a concentration of 6.25 mg/L and nitrite at 0.15 mg/L.

Pesticides: Samples collected from MW1 and MW6 during the RI were analyzed for chlorinated pesticides. Pesticides were not detected in either sample.

6.4 SURFACE WATER

During the Emergency RA, surface water samples were collected from all surface water bodies within a 1/4-mile radius of the site. One sample was collected from a pond east of the site, from the swampy area south of the site, from the drainage ditch south and west of the site, and from the irrigation ditch adjacent to MW8 (see Figure 6-3).

Surface water samples were analyzed by some or all of the following: EPA Method 8020 for BETX and Washington State Method WTPH-G and WTPH-D for TPH quantified as gasoline and diesel. Results of chemical analysis are shown in Table 6-8. The only analyte detected in either sample was toluene at 0.99 $\mu g/L$ in the sample from the swampy area.

6.5 SEDIMENT

Sediment samples were collected during the RI from areas where potentially impacted sediment was expected to accumulate. One sample was collected from the east end of the north culvert; the other one was collected from the swampy area south of the site (see Figure 6-3). Samples were analyzed for BETX and TPH quantified as diesel. Results of chemical analyses are shown in Table 6-8. TPH quantified as diesel was detected at 2,100 mg/kg and toluene at 0.42 mg/kg in the sample collected from the east end of the north culvert (Sample S31). The hydrocarbon concentrations may be the result of surface run-off water or groundwater seepage from the subsurface near RS2, discharged from the culvert, since diesel-range compounds were also detected in the soil near the drain box at the west end of the culvert (Sample S32). The impacted sediment did not likely result from impacted shallow groundwater directly, based on a comparison of the lower static water level in MW8 and the elevation of the irrigation canal (approximately 8 feet of difference in November 1993).

The sample collected from the southern swampy area (Sample S30) contained 57 mg/kg TPH as diesel, but no detectable BETX. The detected diesel may be attributable to run-off water from the aboveground tank area transported via the irrigation canal, or possibly to run-off water from the east portion of the site. The laboratory chromatogram indicates the presence of diesel and longer chain hydrocarbons similar to motor oil or asphalt. The most likely source of oil or asphalt is the paved area north of the swampy area.

6.6 CONTAMINANT SOURCES AND MIGRATION

The following sections summarize the distribution and potential sources for petroleum hydrocarbons detected during the Emergency RA and the RI.

6.6.1 Contaminant Sources and Migration - Soil

The Emergency RA soil investigation was limited to surface soils adjacent to the UST excavations, associated pipelines, and dispenser islands. TPH concentrations identified in this investigation were believed to be the result of vertical leaching from surface spills and/or releases from the UST systems. For instance, elevated TPH concentrations in soil samples collected

from piping trenches may be related to piping corrosion and leaking fittings observed during the UST removal. TPH concentrations in soils beneath dispenser islands were probably caused by fuel leaks/drips from fuel pumps above and/or fuel spilled during pump maintenance.

Elevated TPH concentrations detected in the soil sample collected during the RI from MW3 at 9 feet bgs likely resulted from surface spills at or upslope of this location. However, contaminants may have originated from the UST and dispenser island areas and migrated with groundwater. Similarly, TPH found at MW5 may have originated from surface spills migrating downward and/or UST release transported by groundwater. TPH present in MW6 may have resulted from surface spills upslope or UST release transported by groundwater.

Diesel found in a soil sample collected from the drain box at the west end of the north culvert is likely a result of run-off water from the site.

6.6.2 Contaminant Sources and Migration - Groundwater

The general groundwater flow direction across the site is to the northeast, as described in Section 5.4.2. TPH and BETX were either not detected or were at trace levels at upgradient locations (MW1, MW2, MW11). In contrast, free product or high concentrations of TPH and BETX were present at downgradient wells (MW4, MW5, and MW6), indicating the USTs and service islands were probably sources of TPH concentrations in groundwater.

Farther from the source area, hydrocarbons were not detected in Wells MW7, MW9, and MW10. MW8, however, contained elevated levels of dissolved hydrocarbons. These concentrations appear to have migrated from the source area to the northeast with groundwater. Farther downgradient from MW8 to the northeast, hydrocarbons were not detected in MW12.

6.6.3 Contaminant Sources and Migration - Surface Water

Surface water has not been impacted from petroleum hydrocarbons at the site based on surface water sample analyses.

6.6.4 Contaminant Sources and Migration - Sediment

Sediment in the swampy area appears to have been impacted by hydrocarbons from the site, based on the result of Sample S30. These hydrocarbons have likely been transported by surface runoff, as the surface water body is hydraulically above shallow groundwater.

Sediment in the irrigation canal adjacent to MW8 has likely been impacted by surface runoff via the culvert near the northeast corner of the site.

6.6.5 Contaminant Sources and Migration Summary

In summary, soil and groundwater contamination is mainly limited to TPH-related compounds: gasoline, diesel, BETX, and occasionally PAHs. The UST and dispenser island releases appear to be primary sources of contamination. Another significant source may be surface fuel spills in the dispenser island areas during dispensing operations and maintenance. The extent of impacted soil, sediment, surface water, and groundwater is shown on Figure 6-4.

Applied Geotechnology Inc.

The presence of free product and elevated TPH concentrations at downgradient wells indicate TPH contamination has been transported with or by groundwater. The extent of this contamination off site toward the northeast has been delineated, evidenced by downgradient wells with nondetectable hydrocarbon concentrations. The adjacent surface waters (swampy area to the south and the pond to the east) have apparently not been significantly affected by TPH contamination originating from the site.

7.0 DEVELOPMENT OF DRAFT CLEANUP LEVELS

7.1 INTRODUCTION

This section presents the rationale used to develop site-specific, risk-based draft cleanup levels for Bingo Fuel Stop. Development of draft cleanup levels follows Washington State regulations as issued under the Model Toxics Control Act, WAC 173-340-700. This section is organized into the following headings:

- ▶ <u>Cleanup Level Development</u> provides a general overview of the development of risk-based cleanup levels under MTCA guidance.
- Cleanup Level Considerations identifies chemicals representative of site contamination, assesses their potential exposure to human and ecological receptors, and evaluates their toxicity, regulatory criteria, and other appropriate toxicological factors.
- ▶ Estimating Risk-Based Concentrations uses MTCA guidance to develop medium-specific, risk-based concentrations that protect human health and the environment.
- ▶ <u>Selection of Draft Groundwater Cleanup Levels</u> documents the selection of appropriate chemical-specific groundwater cleanup levels.
- ▶ <u>Selection of Draft Soil Cleanup Levels</u> documents the selection of appropriate chemical-specific soil cleanup levels.

7.2 CLEANUP LEVEL DEVELOPMENT

MTCA presents three options to establish specific cleanup levels for sites contaminated by hazardous substances. These options are termed Methods A, B, and C; however, their order does not reflect an order of application.

MTCA Method B was used in developing cleanup levels for the site. Method B is the standard method used to establish cleanup levels for groundwater, surface water, soil, and air and is applicable to all sites. WAC 173-340-705(1) states Method B shall be used to develop cleanup levels unless one or more of the conditions for using Method A or Method C are demonstrated to exist, and the person conducting the cleanup action elects to utilize that method. The method requires calculation of risk-based cleanup levels using the risk equations and parameters listed in the regulations. Risk-based concentrations are then compared to any applicable federal or state regulations.

Method B takes into account the combined effects of multiple toxicants and exposure pathways. The calculated risk-based cleanup levels are then compared to modifying criteria, such as analytical MRLs, background concentrations, and actual exposure pathways, to establish site-specific cleanup levels. Method B is appropriate for determining cleanup levels at Bingo Fuel Stop due to the presence of hazardous substances not listed in Method A cleanup tables.

7.3 CLEANUP LEVEL CONSIDERATIONS

7.3.1 General

Site-specific cleanup level development begins by identifying chemicals representative of site contamination, referred to as chemicals of concern (COCs). COCs are then evaluated for their potential to cause adverse human and/or ecological effects. Using this information, risk-based concentrations are calculated to protect human and/or other populations from exposure to unacceptable COC concentration levels.

To develop risk-based cleanup levels, several steps are involved:

- ▶ Identifying chemicals detected during the RI as COCs.
- ▶ Identifying potential human and ecological receptors by characterizing contaminant transport and potential receptor exposure pathways.
- ▶ Compiling all available human health toxicity information for COCs on human and other receptors. This information is used in calculating risk-based concentrations.
- ▶ Compiling all Applicable or Relevant and Appropriate Requirements (ARARs). Groundwater and surface water quality criteria are the most applicable ARARs for use at this site; rationale for their use is discussed below.

7.3.2 <u>Identification of COCs</u>

Site history and fueling operations were considered when developing a list of potential COCs. Soil and groundwater samples were analyzed for the presence of potential COCs. All chemicals detected in soil and groundwater samples are included on the list of COCs, Table 7-1.

7.3.3 Potential Receptors and Exposure Pathways

Potential receptors may include human and animal populations as well as groundwater and surface water bodies. Exposure pathways describe the mechanism of contaminant transport to receptors and include airborne dusts, migration in groundwater, soil and water ingestion, and direct dermal contact, among others. Evaluation of potential pathways and receptors is necessary to determine which populations and resources will be impacted by contamination.

Exposure to contamination through ingestion of groundwater is the primary exposure pathway since area groundwater is currently used as drinking water sources for some private residences within a 1/2-mile radius.

Currently, access to contaminated soil is limited by fencing. On-site workers could contact chemicals in exposed soil through dermal absorption, incidental ingestion, and inhalation of soil that has been entrained as dust.

Hydrogeologic information indicates that groundwater can potentially discharge to the Yakima River, or to irrigation canals that eventually discharge to the Yakima River. Therefore, freshwater aquatic organisms could be exposed to chemicals migrating in groundwater. The Yakima River is not a source of drinking water in the vicinity and it is unlikely that river water would be used as a future drinking water source. However, during recreational use of the river, humans could be exposed to chemicals that have migrated from groundwater to surface water or could consume aquatic organisms that have bioaccumulated contaminants. Protection of aquatic life and against human exposure during recreational use or ingestion of fish are also elements of cleanup level development. The most likely transport pathway to this surface water body is site groundwater.

7.3.4 Compilation of Toxicity Information and ARARs

Toxicity Information: Toxicity factors for chemicals detected in soil and groundwater were compiled from standard EPA reference sources. These include the EPA Integrated Risk Information System (EPA, 1993a) and the Health Effects Assessment Summary Tables (EPA, 1993b). Toxicological information is presented in Table 7-2. Where available, primary toxicological information, including cancer potency factors (CPF) and chronic reference doses (RfD), is presented. Table 7-2 also lists primary (and some secondary) adverse toxicological endpoints of COCs, and apportionment factors. Apportionment factors, used in the downward adjustment of cleanup levels to reflect multiple chemical exposures, are further discussed in Section 7.4.3.

Specific toxicity information is not available for the following chemicals detected on site:

- ▶ lead
- ▶ 1-methylnaphthalene
- ▶ 2-methylnaphthalene
- ▶ phenanthrene

Cleanup levels cannot be developed for chemicals lacking toxicity information. However, these chemicals are similar in environmental fate and mobility to chemicals detected on site that possess well-characterized toxicological parameters. Compound concentrations will be compared to developed cleanup levels for chemically similar COCs.

A standard toxicity factor has not been developed for lead because of unique issues in evaluating lead exposure and toxicity. However, risk-based criteria have been established for lead-contaminated media and are discussed.

Compilation of ARARs: Possible ARARs include federal or state standards and proposed standards for chemicals in soil or groundwater.

▶ <u>Soil</u>: No soil ARARS are available for chemicals detected. However, issues related to lead in soil are addressed by EPA. An interim cleanup level of 500 to 1,000 mg total lead per kg soil at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (Superfund) sites characterized as residential is in the process of being finalized by EPA (EPA, 1992a, 1990, and 1989).

MTCA requires that concentrations of contaminants allowed to remain in soils not degrade groundwater quality (WAC 173-340-740[3][a][ii][A]); therefore, ARARs for chemicals detected in soil are relevant to groundwater ARARs. ARARs for groundwater are discussed below.

- ► Groundwater: Federal water quality maximum contaminant levels (MCLs) are ARARs for groundwater that is used as a source of drinking water. Current residential properties within a 1-mile radius of Bingo Fuel Stop use groundwater as a source of drinking water; therefore, groundwater MCLs are applicable in developing Method B cleanup levels. Federal MCLs are listed in Table 7-3. Site hydrogeology indicates that groundwater traversing site boundaries has the potential to discharge to the Yakima River. In consideration of the potential for cross-media contamination (i.e., soil contaminants leaching into groundwater and subsequently being transported into surface water), surface water ARARs are identified (where possible) for chemicals detected in groundwater.
- ▶ <u>Surface Water</u>: Ecology is presently adopting the National Toxics Rule (EPA, 1992b) as an ARAR for surface water (McCormick, 1993). The National Toxics Rule establishes legally enforceable federal standards for select priority toxic pollutants in surface water. The Rule will bring all states into compliance with the requirements of Section 303(c)(2)(B) of the Clean Water Act.

Until the National Toxics Rule is adopted, freshwater criterion (continuous concentration) for the protection of both aquatic life and human health from the consumption of aquatic organisms are preeminent. Chronic Freshwater Quality Criteria for COCs are presented in Table 7-3.

The criterion for consumption of aquatic organisms considers human ingestion of 6.5 grams of fish per day and accounts for trophic level bioaccumulation. A separate criterion for ingestion of surface water as a drinking water source, with subsequent consumption of aquatic organisms, is not considered relevant because the Yakima River is not used as a drinking water source.

7.3.5 Petroleum Hydrocarbon Components

In accordance with WAC 173-340-740(3)(a)(ii)(B), cleanup levels were developed for individual toxic TPH constituents (i.e., BETX and PAHs) and compared to the Method A cleanup level for the mixture of constituents commonly referred to as TPH. The listed regulation section states that "the person undertaking the cleanup may elect to make this determination of appropriate cleanup goals on the basis of data on individual hazardous substances that comprise the total petroleum hydrocarbon."

TPH mixtures commonly include individual components that range in toxicity from nonhazardous chemicals to those presenting carcinogenic risks. Under Method B, separate risk-based cleanup levels may be derived for each chemical component detected so that cleanup levels more accurately reflect the degree of risk posed by each detected chemical present in a particular TPH mixture.

Primary TPH COCs detected on site are in the aromatic fraction. BETX and PAHs are typically used in characterizing potential risks and cleanup requirements for petroleum-contaminated sites; these chemicals include the most toxic known compounds likely present in TPH and exhibit a broad range of

physical and chemical properties that influence environmental toxicity and mobility (Kostecki and Calabrese, 1989). BETX and PAHs can serve as indicators of overall site risk and remediation needs. Remediation based on cleanup levels for these individual TPH COCs will also result in cleanup of other substances with similar environmental fate properties.

7.4 ESTIMATING RISK-BASED CONCENTRATIONS

7.4.1 Introduction

Risk-based concentrations estimated under Method B allow media-specific concentrations that protect public health and the environment to be established. Development of these concentrations take into account site-specific factors that influence the nature of risk posed by the site (i.e., land use) and factors that affect the movement of chemicals in the environment (i.e., soil type, depth to groundwater, rainfall). Media-specific risk-based concentrations are then compared to other applicable contaminant concentrations and cleanup levels are selected.

7.4.2 Target Risk Levels

Under MTCA Method B, the total target risk level from exposure to all carcinogenic substances occurring on site following cleanup should not exceed 1×10^{-5} (i.e., a 1 in 100,000 incremental risk of developing cancer over a lifetime from a 30-year exposure period). The total target risk level from exposure to any individual carcinogen should not exceed 1×10^{-6} . For noncarcinogenic health effects, the target hazard index is 1.0 (i.e., an estimated exposure level at the RfD) for combined exposures to all noncarcinogenic substances eliciting the same type of toxic response.

7.4.3 Apportionment of Risk-Based Concentrations

Risk-based concentrations estimated using the approach presented in MTCA must be adjusted downward to reflect consideration of potential additive risks as a result of multiple exposures. Such adjustments ensure that total risks presented by site exposures following cleanup do not exceed the target levels established in MTCA.

The toxicological endpoints of the COCs are listed in Table 7-2; these are used in setting the apportionment factor, also listed in the table (WAC 173-340-708[5]). Apportionment factors are used in the downward adjustment of cleanup levels to reflect multiple chemical exposures.

For example, two site COCs are liver toxicants; development of soil and groundwater cleanup levels for these liver toxicants are therefore adjusted (apportioned) downward by a factor of 2 to account for multiple chemical exposures. Noncarcinogenic COCs affecting only one toxicological endpoint do not have apportionment factors indicated; cleanup levels for these are based on unapportioned hazard.

Only one COC detected in soil and groundwater is listed as a carcinogen. Because unadjusted risk-based cleanup levels under Method B for individual carcinogens are calculated to protect against cancer risks at 1 x 10^{-5} , and because the total cancer risk is less than or equal to 1 x 10^{-5} , adjustment of risk-based cleanup concentrations is unnecessary.

Risk-based concentrations for contaminants in surface water, groundwater, and soil were derived assuming exposure only to a single chemical, and are listed in Table 7-4 as "Unapportioned Risk-Based Concentrations". Values listed as "Apportioned Risk-Based Concentrations" have been adjusted, as described above, to account for exposures to multiple chemicals via multiple exposure routes.

7.5 SUMMARY OF DRAFT GROUNDWATER CLEANUP LEVELS

Groundwater cleanup levels were primarily based on protection of groundwater quality for use as drinking water. MTCA guidance suggests that groundwater concentrations also meet relevant surface water cleanup levels at the point of discharge to prevent surface water contamination; cleanup levels were developed to assess potential concerns about groundwater migration and discharge to the Yakima River. Cleanup levels based on estimated risk and ARARs are discussed below and presented in Table 7-5.

7.5.1 Groundwater and Surface Water Risk-Based Concentrations

Groundwater: Groundwater risk-based concentrations are those concentrations that protect human health from chemical-specific unacceptable risks or hazards resulting from the ingestion of contaminated drinking water.

Following the standard reasonable maximum exposure (RME) approach presented in WAC 173-340-720, risk-based groundwater concentrations were developed assuming ingestion of chemicals in contaminated drinking water. This includes an inhalation correction factor for VOCs "which takes into account exposure to hazardous substances which are volatilized and inhaled during showering and other domestic activities" (WAC 173-340-720[7]).

Table 7-4 lists Method B groundwater risk-based concentrations. As discussed, these concentrations were also apportioned to reflect consideration of potential additive risks from exposures to multiple substances.

Surface Water: Surface water risk-based concentrations are those concentrations that protect human health from chemical-specific unacceptable risks or hazards resulting from the ingestion of contaminated fish.

Following the standard RME approach presented in WAC 173-340-730, risk-based surface water concentrations were developed assuming ingestion of chemicals that have bioaccumulated in edible fish or shellfish. Calculating risk-based surface water cleanup levels under MTCA guidance requires the use of chemical-specific fish bioconcentration factors (BCF). BCFs are published by Ecology (Ecology, 1993d) and are also used in deriving EPA ambient water quality criteria (i.e., the National Toxics Rule).

Risk-based cleanup levels calculated for surface water assume that an exposed individual will obtain one-half of his/her total fish intake from the vicinity of the site over a period of 30 years. This assumption will likely overestimate actual exposures because of the relatively small site size and distance to water source. Use of these conservative exposure assumptions increases the protectiveness of calculated surface water cleanup levels.

Table 7-4 lists Method B surface water risk-based concentrations. As discussed, these concentrations were also apportioned to reflect consideration of potential additive risks from exposures to multiple substances.

Table 7-4 lists the selected risk-based value by comparing both groundwater and surface water concentrations. The most stringent value is used as the selected risk-based concentration.

7.5.2 Groundwater and Surface Water ARARs

Groundwater and surface water ARARs are listed in Table 7-3. The most stringent ARARs are presented in Table 7-5 as the selected groundwater and surface water criteria.

7.5.3 Selection of Draft Groundwater Cleanup Levels

The selection of groundwater cleanup levels begins by comparing apportioned risk-based concentrations to their respective ARARs. The most stringent value is used as the selected cleanup level unless the natural background concentration or the MRL is greater, in which case that value is used. Table 7-5 presents the selected groundwater cleanup levels.

The most stringent groundwater criterion for benzene is its risk-based concentration; however, the selected groundwater cleanup level is 5 ug/L--the MCL for benzene. Ecology allows MCLs to be used as cleanup levels if they are sufficiently protective under MTCA regulations. The MCL for benzene, a carcinogen, is considered sufficiently protective since this concentration represents less than the 1 x 10^{-5} target risk level under MTCA (Ecology, 1993a). In addition, since only one carcinogen was detected on site, the total target risk using the MCL is also less than 1 x 10^{-5} .

7.5.4 Uncertainty Analysis: Groundwater Cleanup Levels

Evaluation of Groundwater Cleanup Levels for TPH Constituents: Cleanup levels for TPH constituents were developed under MTCA Method B guidelines. Currently, Ecology suggests using Method A cleanup levels for TPH because Method B cleanup levels are based on an incomplete toxicological characterization of unidentified TPH constituents and may not be protective of human health and the environment. Method A cleanup levels for TPH in groundwater are listed under WAC 173-340-720(2); these levels should be used as interim cleanup goals until Ecology finalizes additional guidance.

Qualitative Evaluation of Groundwater Contaminants Lacking Cleanup Levels: Groundwater contaminants without standardized toxicity factors or ARARs were evaluated qualitatively by comparing them to structurally similar COCs for which cleanup levels were developed. Potential cleanup levels for these chemicals can be compared to COCs that have cleanup levels and are chemically similar (listed below) to chemicals that have well characterized oral toxicity factors:

No Cleanup Level

- ▶ 1-methylnaphthalene
- 2-methylnaphthalene
- phenanthrene

Structurally Similar Chemical of Concern

- naphthalene
- naphthalene
- anthracene

Detected on-site concentrations of chemicals without developed cleanup levels were in no instance above the developed cleanup level for structurally similar COCs. Remediation of any COC, if necessary, would likely promote additional attenuation of non-COCs, assuring adequate protection of human and/or ecological receptors.

7.6 SUMMARY OF DRAFT SOIL CLEANUP LEVELS

Soil cleanup levels were calculated under the residential exposure scenario. Soil cleanup levels were estimated by assuming ingestion of soil can occur; cleanup levels also take into consideration protection of groundwater and surface water resources. Cleanup levels based on estimated risk, ARARs, and background concentrations are discussed below and presented in Table 7-6.

7.6.1 Soil Risk-Based Concentrations

Risk-based soil cleanup levels were calculated assuming incidental soil ingestion. Under Method B guidance outlined in WAC 173-340-740(3)(a), the RME scenario assumes the receptor is a young child living in a residential area. Table 7-6 lists apportioned Method B soil risk-based concentrations; these concentrations reflect consideration of potential additive risks from exposures to multiple substances.

7.6.2 Soil ARARS

No soil ARARS are available for any COC detected at the site. Issues related to lead have been discussed. Ecology established 250 mg lead/kg soil and 1,000 mg lead/kg soil as the Method A residential and industrial soil cleanup levels, respectively (WAC 173-340-740[2] and -745[2]). These are presented as the selected soil lead cleanup level as indicated in Table 7-7.

7.6.3 Soil Cleanup Levels Protective Against Cross-Media Contamination

MTCA requires that cleanup levels consider the potential for cross-media contamination. Site-specific cross-media contamination could occur if contaminants in soil reach groundwater and then potentially discharge into the irrigation ditch or Yakima River surface water. Thus, soil cleanup levels protective of both groundwater and surface water quality have been calculated. The fraction of soil contaminants able to reach groundwater is termed the chemical leaching potential.

The MTCA default leaching potential for all chemicals is 100; 1/100 (1 percent) of the chemical's concentration in soil will leach into ground-water; this value was used for all chemicals detected at the site.

Leaching potential factors were applied to the most stringent ARAR or risk-based target groundwater and surface water concentration to establish the soil cleanup level protective of groundwater quality. Soil cleanup levels protective of groundwater quality are also listed in Table 7-6.

7.6.4 Background Soil Concentrations and MRLs

Washington State background soil concentrations at the 90th percentile are listed in Table 7-6.

Soil MRLs are also listed in Table 7-6. These levels represent best available technology using current analytical methodology.

7.6.5 Selection of Draft Soil Cleanup Levels

The selection of soil cleanup levels under Method B begins by comparing apportioned risk-based concentrations to their respective ARARS (if they exist) and soil concentrations protective of groundwater quality. The most stringent value is used as the selected cleanup level unless the natural background concentration or the MRL is greater, in which case that value is used. Table 7-6 presents the selected soil cleanup levels.

7.6.6 Uncertainty Analysis: Soil Cleanup Levels

Evaluation of Soil Cleanup Levels for TPH Constituents: Cleanup levels for TPH constituents were developed under MTCA Method B guidelines. Currently, Ecology suggests using Method A cleanup levels for TPH because Method B cleanup levels are based on an incomplete toxicological characterization of unidentified TPH constituents and may not be protective of human health and the environment. Method A cleanup levels for TPH in residential soil are listed under WAC 173-340-740(2); these levels should be used as interim cleanup goals until Ecology finalizes additional guidance.

Qualitative Evaluation of Soil Contaminants Lacking Cleanup Levels: Soil contaminants without standardized toxicity factors or ARARs were evaluated qualitatively by comparing them to structurally similar COCs for which cleanup levels were developed. Soil risk-based cleanup levels were developed for anthracene, listed in Table 7-6; however, this level was not listed in the summary Table 7-7 because anthracene was never detected in soil. Soil cleanup levels for the following chemicals were not developed; potential cleanup levels for these chemicals can be compared to COCs that have cleanup levels and are chemically similar (also listed) or to chemicals that have well characterized oral toxicity factors:

No Cleanup Level

- ▶ 1-methylnaphthalene
- ▶ 2-methylnaphthalene
- ▶ phenanthrené

Structurally Similar Chemical of Concern

- naphthalene
- naphthalene
- anthracene

Detected on-site concentrations of chemicals without developed cleanup levels were in no instance above the developed cleanup level for structurally similar COCs. Remediation of any COC, if necessary, would likely promote additional attenuation of non-COCs, assuring adequate protection of human and/or ecological receptors.

7.7 DRAFT GROUNDWATER AND SOIL CLEANUP LEVELS

Groundwater and soil summary cleanup levels are presented in Sections 7.5 and 7.6, respectively. Draft cleanup levels for soil and groundwater are summarized in Table 7-7, along with the rationale for their selection.

All groundwater cleanup levels developed for organic chemicals (VOCs and semivolatile organic compounds) are primarily based on risk-based groundwater concentrations. All soil cleanup levels developed for these chemicals are based on protection of groundwater quality.

7.8 DRAFT CLEANUP LEVEL EXCEEDANCES

This section identifies sampling locations where soil and groundwater COC concentrations exceed draft Method B cleanup levels. A limited number of exceedances were identified; these are summarized below by medium and spatially illustrated in Figures 7-1 and 7-2. Draft soil and groundwater cleanup levels are listed on Table 7-7, and exceedance locations for soil and groundwater are listed on Tables 7-8 and 7-9.

Soil: Chemical concentrations in soil exceeding Method B cleanup levels are listed below by location:

- ▶ Soil samples S7, S8, S10, and S27 exceeded draft cleanup levels for benzene, ethylbenzene, and toluene; soil boring S8 also exceeded the cleanup level for total xylenes.
- ▶ Soil samples S21, S22, S28, MW6 @ 17.5', and MW6 @ 22.5' exceeded draft cleanup levels for benzene only.
- ▶ Soil sample S8 exceeded the draft cleanup level for xylenes.
- ▶ No soil sample exceeded draft cleanup levels for any PAH or lead.

Groundwater: Chemical concentrations in groundwater exceeding draft Method B cleanup levels are listed below by location:

- ▶ Monitoring wells MW5 and MW6 exceeded draft cleanup levels for benzene, ethylbenzene, and toluene.
- ▶ Monitoring well MW8 exceeded draft cleanup levels for benzene and ethylbenzene.
- ▶ Monitoring wells MW1, MW2, and MW3 exceeded draft cleanup levels for lead; monitoring well MW1 also exceeded the cleanup level for nitrate/nitrite.

Uncertainty: Lead exceeded draft groundwater cleanup levels in three monitoring wells. The highest concentration of lead detected on site occurred in the southernmost (upgradient) well, MW1. This concentration, 13 ug/L, is above the draft cleanup level of 3.2 ug/L (based on surface water criteria); however, it is below the federal MCL of 15 ug/L. Lead is the only chemical detected on site where its cleanup level is based on its surface water criteria; this may be inappropriate since natural attenuation and dilution will occur during groundwater transport from the Bingo Fuel Stop to

the Yakima River. Further investigation of background groundwater quality may be appropriate if exceedances of lead in groundwater represent unacceptable risks to human health and the environment.

Method A TPH Cleanup Levels: As discussed in Sections 7.5.4 and 7.6.6, Ecology currently suggests using Method A or the Matrix Evaluation to develop cleanup levels for a TPH mixture in contrast to using the Method B risk-based approach as outlined in WAC 173-340-705. Ecology's belief, stated in a January 28, 1994 internal memorandum (Ecology, 1994), indicates that development of Method B risk-based cleanup levels is based on an incomplete toxicological characterization of all TPH constituents and may not be protective of human health and the environment. This current internal policy may change as existing and additional toxicological information is accepted concerning the risks to human health and the environment resulting from TPH and its constituents. If the regulations governing establishment of TPH cleanup levels are revised in the future, cleanup of TPH will be modified in accordance with the new regulations.

Method A cleanup levels for TPH-contaminated soil and water are outlined under WAC 173-340-740(2) and -720(2), respectively, and listed in Tables 7-10 and 7-11.

8.0 USE OF THIS REPORT

This report has been prepared exclusively for Burns Bros., Inc. and its other consultants for this project only. The analyses, conclusions, and recommendations in this report are based on data described herein and our experience and professional judgment. The data were either made available to AGI or reasonable obtained within the practical constraints of our scope of services. AGI cannot be responsible for the interpretation by others of the data contained herein.

Our work has been performed in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the area. No other warranty, express or implied, is made.

9.0 REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR). 1990. Toxicological Profile for Polycyclic Aromatic Hydrocarbons, Draft. U.S. Public Health Service, Atlanta, GA.

Applied Geotechnology Inc. (AGI). 1992a. Emergency Remedial Action Plan for Bingo Fuel Stop in Accordance with Washington State Department of Ecology Enforcement Order No. DE 92TC-C109, March 5, 1992.

AGI. 1992b. Letter from AGI to Burns Bros., Inc. dated March 9, 1992.

AGI. 1992c. Emergency Remedial Action Report for Bingo Fuel Stop in Accordance with Washington State Department of Ecology Enforcement Order No. DE 92TC-C109, June 5, 1992.

AGI. 1993a. Work Plan, Remedial Investigation/Feasibility Study, Bingo Fuel Stop, Thorp, Washington, April 22, 1993.

AGI. 1993b. Personal Communication, Peter Barry and Robert Dunnington, May 19, 1993.

Kostecki, P.T., and E.J. Calabrese. 1989. Petroleum contaminated soil. Volume 3. C.E. Bell (ed). University of Massachusetts, School of Public Health, Environmental Health Sciences Program, Amherst, MA. Lewis Publishers.

McCormick, C. 1993. Telephone conversation with Craig McCormick, Toxics Cleanup Program, Washington State Department of Ecology, on August 11, 1993. Ecology will follow the National Toxics Rule 40 CFR 131 for surface water quality criteria.

Panattoni, Gene, 1994. Meeting with Gene Panattoni, West Side Canal, March 18, 1994.

Porter, S.C. 1976. Pleistocene glaciation in the southern part of the North Cascade Range, Washington. Geological Society of American Bulletin V. 87: p.p. 61-75.

U.S. Environmental Protection Agency. 1993. Drinking Water Regulations and Health Advisors. Office of Water, Washington D.C.

- U.S. Environmental Protection Agency. 1993a. Integrated Risk Information System, On-line. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH.
- U.S. Environmental Protection Agency. 1993b. Health Effects Assessment Summary Tables, Annual Update. Office of Solid Waste and Emergency Response, 9200.6-303(93-1), EPA 540-R-93-058, Cincinnati, OH.
- U.S. Environmental Protection Agency. 1992a. Review of Draft Directive on OSWER Soil Lead Cleanup Guidance, from D.R. Clay, Assistant Administrator, Office of Solid Waste and Emergency Response, Washington, D.C.
- U.S. Environmental Protection Agency. 1992b. Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants; States' Compliance; Final Rule. Federal Register 57(246):60848-60922.
- U.S. Environmental Protection Agency. 1992c. Memorandum, Oral Reference Doses and Oral Slope Factors for JP-4 (CAS No. not identified), JP-5 (CAS No. not identified; similar to kerosene, CAS No. 8008-20-6), Diesel Fuel (CAS No. 68334-30-5), and Gasoline (CAS No. 8006-61-9)(AVGAS)[McChord AFB (Wash Rack/Treatment)/Tacoma, WA]. Joan S. Dollarhide, Associate Director, Superfund Health Risk Technical Support Center, Chemical Mixtures Assessment Branch.
- U.S. Environmental Protection Agency. 1990. Supplement to Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites. OSWER Directive No. 9355.4-O2A.
- U.S. Environmental Protection Agency. 1989. Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites, from H.L. Longest, II, Director, Office of Emergency and Remedial Response. OSWER Directive, 9355.4-02, Washington, D.C.
- U.S. Geological Survey. 1993. Status Report on Washington State Hazardous Waste Project Studies Conducted by U.S.G.S. Correspondence to Washington State Department of Ecology, January 26, 1993.
- Waitt, R.B., Jr. 1979. Late Cenozoic Deposits, Landforms, Stratigraphy, and Tectonism in Kittitas Valley, Washington. Geological Survey Professional Paper 1127.
- Washington Department of Ecology. 1992c. Memorandum, June 30, 1992 Cleanup Standards Update. Leslie Keill, Toxics Cleanup Program.
- Washington Department of Ecology. 1993a. Memorandum, Guidance on the Use of MCLs as Cleanup Levels, Carol Kraege, Toxics Cleanup Program, March 15, 1993.

Applied Geotechnology Inc.

Washington Department of Ecology. 1993b. Agreed Order No. DE 93TC-C171, March 17, 1993.

Washington Department of Ecology. 1993c. Ecology letter to Burns Bros., Inc. dated April 28, 1993.

Washington Department of Ecology. 1993d. Memorandum, July 1993 Update to the Model Toxics Control Act (MTCA) Cleanup Standards Database, Barb Huether, Toxics Cleanup Program, July 9, 1993.

Washington Department of Ecology. 1994. Memorandum, TPH Cleanup Levels and Method B. Carol Fleskes, Toxics Cleanup Program.

Washington Department of Ecology. 1992a. Enforcement Order No. DE 92TC-C109, February 11, 1992.

Washington Department of Ecology. 1992b. Ecology letter to Burns Bros., Inc. dated February 26, 1992.

DISTRIBUTION

4 Copies

Burns Bros., Inc.

516 S.E. Morrison Street, Suite 1200

Portland, Oregon 97214

Attention: Mr. L. Kirk French

3 Copies

Department of Ecology Central Regional Office 106 South 6th Avenue

Yakima, Washington 98902-3387

Quality Assurance/Technical Review by:

Gary Laakso

Remediation Services Manager

DPD/PPB/jlh

Table 2-1 Nearby Domestic Well Information Burns Bros./Bingo Fuel Stop Thorp, Washington

Well Number	Location	Name	Depth of Well (Below Ground Surface)
1	Thorp Hwy. residence south of Bingo Fuel Stop	Brain Residence	Uknown
2	Thorp Hwy. residence east of Bingo Fuel Stop	Howry Residence	9
3	West of Bingo Fuel Stop	Puget Power	350
4	Depot Rd. residence east of Antique Mall	Rowley Residence	125+
5	Depot Road	Thorp Antique Mall	100+
6	Depot Rd. residence NW of Antique Mall	Unknown	Unknown
7	East side of Thorp Hwy., north of Depot Rd.	Gibson Residence	"Shallow"
8	West side of Thorp Hwy. north of Depot Rd.	George Residence	, 285
9 .	Depot Rd., 1/2 mile west of Thorp Hwy.	Unknown	Unknown

Table 2-2 Underground Storage Tank Specifications Burns Bros./Bingo Fuel Stop Thorp, Washington

Storage	Capacity		Installation
Tank	(gal)	Contents	Date
1*	10,000	Diesel	1972
2*	10,000	Unleaded Gasoline	1972
3*	5,000	Unleaded Gasoline	1972
4*	12,000	Leaded Gasoline	1977
5*	10,000	Leaded Gasoline	1977
6**	1,000 ?	Heating Oil	?
7**	550 ?	Heating Oil	?

^{*}Removed from site in 1992.

^{**}Out of service, remaining on site.

Well Construction Summary Burns Bros./Bingo Fuel Stop Thorp, Washington Table 3-1

Measuring Point Elevation [®] (ft. above MSL)	1644.44	1644.69	1641.38	1640.32	1642.14	1639.34	1624.25	1626.66	1626.16	1628.27	1645.73	1623.53	1641.38
Screened Interval (ft. bgs)	3.0-18.5	5.5-18.5	70.5-80.5	5.5-17.5	3.0-18.5	4.0-29.5	4.0-14.0	4.0-14.0	6.0-16.0	6.0-16.0	4.0-17.0	4.0-14.0	6.5-18.0
Screen Type	0.020-inch slot PVC c	0.020-inch slot PVC	0.020—inch slot PVC	0.020-inch slot PVC	0.020-inch slot PVC	0.020-inch slot PVC	Hand slotted						
Well Diameter (inches)	4	4	4	4	4	4	4	4	4	4	8	8	-
Drilled Depth (ft. bgs)	18.5	18,5	6.08	17.5	18.5	30.5	14.0	14.5	16.5	16.5	17.5	14.5	6
Drilling Method	Air Rotary ^b	Air Rotary	6.25-inch ID HSA	6.25-inch ID HSA	6.25-inch ID HSA	6.25 - inch ID HSA	4.25-inch ID HSA	4.25-inch ID HSA	Air Rotary				
Date Completed	07/02/93	07/02/93	66/30/93	07/06/93	07/01/93	07/06/93	10/26/93	10/27/93	10/27/93	10/28/93	10/29/93	10/28/93	66/06/90
General Well Location	On Site	On Site	On Site	On Site	On Site	Off Site	Off Site	Off Site	Off Site	Off Site	On Site	Off Site	On Site
Well Designation	MW1	MW2	MW3 d	MW4	MW5	MWe	MW7	MW8	MW9	MW10	MW11	MW12	PZ1 q

a) Measuring point is north side of top of PVC well casing; survey datum: standard disk number U245.1944, Elevation 1637.484.
b) Air rotary rig using an 8.6-inch inside diameter steel drill casing.
c) PVC - Schedule 40 polyvinyl chloride plastic pipe with milled slots.
d) MW3 and PZ1 is a dual completion.

ft. bgs - Feet below ground surface. MSL - Mean Sea Level.

Table 4-1 Physical Properties - SoilBurns Bros./Bingo Fuel Stop

Thorp, Washington

[6550:00000040000000000000000000000000000				
nmary Percent > #200 Sieve	9.54	7.05	54.07	68.29
F P P P	0	7	72	89
rsis S mt eve sieve				_
Size Analysis S Percent <#4 Sieve	15.97	62.82	21.48	31.71
Size				
Particle Size Analysis Summary Percent Percer > #4 < #4 Sieve > #200 Sieve Sieve	74.49	30.13	24.45	0.0
P P V S	· 2	ਲ 	Ñ	
sity al)	96	6	16	22
Porosity (total)	0.196	0.329	0.391	0.505
Ž V				
Specific	2.66	2.69	2.82	2.90
Dry Density (pcf)	33.4	112.6	107.1	89.6
Ď.	•	•	•	
Moisture Content (%)	7.4	16.2	14.5	28.6
	7	9	1	8
SS	(GW)	(sw)	E)	(M)
USCS	Gravel ((Sand (S	Clay (C	Sandy Silt (ML)
Cla	ট	Ø	J	San
Sample Depth (ft. bgs)	13	20	12.5	13
Sai Tř.	•	/	12	•
l I.D.	စ္	စ္မ	ဖွ	10
Boring I.D	MW3	MW3	MW6	MW10

ft. bgs – Feet below ground surface.
pcf – Pounds per cubic foot.
USCS – Unified Soil Classification System.
#4 Sieve – Equivalent to 5 millimeters.
#200 Sieve – Equivalent to 0.1 millimeters.

Table 5-1
Mean Monthly Climatological Data, 1988 - 1992
Burns Bros./Bingo Fuel Stop
Thorp, Washington

Month	Mean Monthly ^a Precipitation (inches)	
		•
January	0.66	29.6
February	0.52	33.2
March	0.79	40.5
April	0.79	48.9
May	0.54	54.6
June	0.89	62.1
July	0.56	67.8
August	0.57	67.3
September	0.04	60.2
October	0.46	48.2
November	1.05	38.0
December	0.72	22.9
Annual Precipitation	7.59	

a) Mean of 1988 - 1992 data (NOAA; 1988, 1989, 1990, 1991, 1992).

Table 5-2
Groundwater Elevation Data
Burns Bros./Bingo Fuel Stop
Thorp, Washington

		07/0	7/93	11/0!	5/93
	Reference Elevation	Depth to Groundwater	Groundwater Elevation	Depth to Groundwater	
Well I.D.	(ft MSL)	ft, btc	ft. MSL	ft. btc	ft, MSL
MW1	1644.44	7.10	1637.34	7.00	1637.44
MW2	1644.69	8.05	1636.64	8.25	1636.44
MW3	1641.38	14.20	1627.18	15.44	1625.94
PZ1	1641.38	8.91	1632.47	10.19	1631.19
MW4	1640.32	8.21	1632.11	9.01	1631.31 *
MW5	1642.14	6.55	1635. 59	7.67	1634.47
MW6	1639.34	20.85	1618.49	22.99	1616.42 *
MW7	1624.25	N/A	N/A	7.16	1617.09
MW8	1626.66	N/A	N/A	10.52	1616.14
MW9	1626.16	N/A	N/A	10.13	1616.03
MW10	1628.27	N/A	N/A	11.34	1616.93
MW11	1645.73	N/A	N/A	8.37	1637.36
MW12	1623.53	N/A	N/A_	7.99	1615.54

July 7, 1993 data obtained when groundwater was not being pumped at the site. November 5, 1993 data obtained when groundwater was being pumped at the site.

*Corrected for the presence of free product using:

Corrected depth to water = (measured depth to water) - (product thickness) x 0.8.

ft. btc - Feet below top of casing.

ft. MSL - Feet above Mean Sea Level.

N/A - Not available.

Table 5-3 **Aquifer Test Results** Burns Bros./Bingo Fuel Stop Thorp, Washington

		Hydra	ulic Conductiv	rity (K) ^a
Solution Method	Transmissivity (T) (ft²/min)	(ft/min)	(cm/sec)	(gal/day-ft ²)
MW3 Recovery Data Theis (Recovery)	3.8 x 10 ⁻³	1.1 x 10 ⁻⁴	5.5 x 10 ⁻⁵	1.2
MW4 Drawdown Data Jacob-Lohman (Variable Discharge) Thiem (Distance-Drawdown)	3.5 x 10 ⁻¹ 1.9 x 10 ⁻¹	8.3 x 10 ⁻³ 4.5 x 10 ⁻³	4.3 x 10 ⁻³ 2.3 x 10 ⁻³	91.1 48.7
MW4 Recovery Data Theis (Recovery)	1.7 x 10 ⁻¹	4.0 x 10 ⁻³	2.1 x 10 ⁻³	44.5

a) Based on saturated thickness of 35 feet for the Lower Zone and 42 feet for the Upper Zone. cm/sec - Centimeters per second.

ft/min — Feet per minute.

ft²/min — Square feet per minute.

gal/day—ft² — Gallons per day per square foot.

Table 6-1 Chemical Analysis Schedule - Soil Burns Bros./Bingo Fuel Stop Thorp, Washington

		ı	EPA Metho	đ		Washing: Meti	ıod
Sample ID	8020 BETX	8015M TPH	7421 Lead	8310 PAHs	8240 VOCs	WTPH-D TPH-D	WTPH- 418.1 TPH
S1	X X	×			X		
S2	X	X					
S 3		X			X		
S4	X X	X	Y				
S5 S6	· · · · · · · · · · · · · · · · · · ·	X	X X				
S 7		1 x 1	X		****		
S8	X	X	X				
S9	X	X					
S10	X	X					
S11 S12	X	X					
S12	X						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
814	Χ	X					
S15		X			***********		X
S16		X					X
S17	X X	X	***********				
S18							
S19 S20	X	X	X				
S21	X	χ	·····		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
S22	Χ	X					
S23	X	X					
S24	X	X					
S26	X	X	X X				
\$27	X X	X	X				
S28 S29	· · · · · · · · · · · · · · · · · · ·	Î Â	^				
S31	X	•	******************		***************************************	X	***************************************
S32	X					X	
MW1 @ 7.5'	X	X	X	X			
MW2 @ 7.5'	X		X				
MW3 @ 9.0'	X	X	X	X			
MW3 @ 42.5' MW4 @ 7.5'	X X	X	X	X			
MW4 @ 17.5	x	X	Ŷ	X			
MW5 @ 7.5'	X	x	X	X			
MW5 @ 10.0'	X	X	X	X			
MW6 @ 17.5'	X	X	X X	X			
NW6 @ 50'	X	X	X	X			1
MW5 @ 22.5'	X	X	X	X			
MW8 @ 30' MW7 @ 4.5'	X	X	X	X			**************************************
MW8 @ 8.5'	×	x	X	X			
MW9 @ 8'	X	1 x 1	X	x `			
MW10@8'	X	X	Χ	X			
MW10 @ 50'	X X	X	X X	X X			
MW11@3.5'		X		X			
MW11 @ 7.5' MW12 @ 3.5'	X X	X	X X	X			

TPH - Total petroleum hydrocarbons, quanitifed as gasoline and diesel-range fuel hydrocarbons.

PAHs - Polycyclic aromatic hydrocarbons. VOCs - Volatile organic compounds.

Table 6–2
Hydrocarbons and Lead Detected in Soil
Burns Bros./Bingo Fuel Stop
Thorp, Washington

						EP.	EPA Test Methods				EPA
					BETX –	8020	Total	TPH	8015M	HATM	7421
		el cares	Sample	Benzene	Ethylbenzene	Toluene	Xylenes	Gasoline	Diesel	418.1M	Lead
Sample ID	Sample Location	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mk/kg)	(mg/kg)
6	S WALL EXCAV1 @ 8'	α	08/11/02	0.032	0.28	0.13	2.8	086	12,000	¥	¥
- S	EWALL EXCAV. 60	ο σ	03/11/92	0.22	6.	2.1	2	1,200	8,700	¥	ž
70	N WALL EXCAV 1 @8"	, α	03/11/92	Ž	Ž	ž	¥	1,600	10,000	ž	ž
3 8	W WALL EXCAVIOR	ο α	03/11/92	<0.028	0.23	<0.028	2.2	5	540	ž	Ą.
2 0	S WALL EXCAV 2 @7 5"	7.5	03/12/92	<0.030	<0.030	<0.030	<0.030	Λ 13.	<25	¥ Z	× 5.8
G 4	W WALL EXCAV.2 @8'		03/12/92	<0.029	0.10	<0.029	0.034	ଷ	35	¥	<5.6
2 6	N WALL EXCAV 2 @8'	000	03/12/92	8	6	210	470	2,500	420	¥	<5.6
) o	F WALL EXCAV.2 @8'	0 00	03/12/92	92	900	1,000	1,800	10,000	009	¥	<5.4
8 8	EXC 2 W PIPING 8'	, es	03/12/92	<0.028	<0.028	<0.028	<0.028	7	~ 52	ž	¥ Z
6 6	DIDING TRENCH @ 4"	- -	03/13/92	22	8	200	410	1,000	<u>5</u>	ž	¥
2 2	PIPING TRENCH @ 3.	· 00	03/13/92	<0.032	0.40	0.056	5.6	240	2,000	¥ Ž	ž
- 6	PIPING TRENCH @ 3'	, es	03/13/92	<0.031	<0.031	<0.031	<0.031	< 5	<25	ž	ž
1 0	PIPING TRENCH (8.3)		03/13/92	<0.035	<0.035	<0.035	<0.035		<22	¥	≰
218 218	PIPING TRENCH @ 4'	4	03/13/92	<0.030	<0.030	<0.030	<0.030	7	320	ž	₹
. u	EWALL EXCAVA @ 7"	_	03/13/92	Ž	¥	¥	ž	1 <u>0</u>	~ 52	ង	¥ —
2 4	S WALL EXCAV 3 @ 8'	. 00	03/13/92	ž	¥	¥	¥	\$ \$	<22 <	8	₹
2.7	PIPING TRENCH @ 2"	۰ ۵	03/17/92	0.037	<0.028	990'0	0.039		<22	¥	ž
- W	DISPEN ISI 1 @ 2'		03/13/92	<0.027	<0.027	0.032	0.029	<25	2,100	¥	₹
90	DISPEN ISL 2 @ 2.5'	2.5	03/13/92	<0.030	0.070	<0.030	0.61	430	18,000	ž	∢ Z
23	DISPEN ISL 3 @ 5	ıo	03/16/92	0.039	1.4	0.48	7.9	280	2,200	₹ Z	<5.6
23.	DISPEN ISI 4 95	יט פ	03/16/92	0.67	1.8	0.80	0.6	2,500	21,000	¥ Z	¥ Z
33	DISPEN ISL 50 5	מו	03/16/92	0,59	7	0.91	6.1	740	9,100	¥ Z	₹
223	PIPING TRENCH @ 5'		03/16/92	<0.028	0.81	0.080	6.1	086	3,100	ž	₹ Z
824	PIPING TRENCH @ 5'	О	03/16/92	<0.028	<0.028	<0.028	<0.028	, 5	87	ž	₹ Z
88	PIPING TRENCH @ 3	ო	03/17/92	0.44	3.6	5.6	52	300	72	Ž:	<6.0
827	DISPEN, ISL.7 @ 3'	ო	03/17/92	6.5	4	130	830	1,100	9	¥ Z	<5.6
808	DISPEN ISLE®3	e	03/17/92	2	6	8	170	1,600	8	₹	=
8 8	SOII STOCKPII E	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	03/18/92	<0.028	<0.028	<0.028	<0.028	9	210	ž	₹ Z
283	Drain Box	0.25	06/29/93	<0.029	<0.029	<0.029	<0.029	¥	340	ž	₹
MW1 @ 7 5'	MM	7.5	07/02/93	<0.027	<0.027	<0.027	<0.027	~	<27	₹	2.1
MW2 @ 7.5'	MWO	7.5	07/02/93	<0.026	<0.026	<0.026	<0.026	× 2	9Z ~ S	₹ Z	e. 6.
MW3 @ 9 O'	MW3	0.6	06/28/93	<0.026	1.0	0.055	5.9	310	3,100	ž	2.0
MW3 @ 42.5	MW3	42.5	06/29/93	<0.028	<0.028	<0.028	0.041	9>	9	¥	2.3
MW4 @ 7 5'	NAW 4	7.5	07/06/93	<0.026	0.17	0.11	6.1	, 5	95 ~	¥ Z	3.0
MM4 @ 17 5'	_	17.5	07/06/93	<0.027	<0.027	<0.027	<0.027	<5	<27	¥ Z	2.1
	1							į			

Hydrocarbons and Lead Detected in Soil Burns Bros./Bingo Fuel Stop Thorp, Washington Table 6-2

						EP/	EPA Test Methods				EPA
			l		BETX	8020	Total	TPH - 801	- 8015M	HELE	7421
		Semple.	Sample	Benzene	Ethylbenzene	Toluene	Xylenes	Gasoline	Dissel	418.1M	
Sample 10	Semple Location	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mk/kg)	(mg/kg)
AMIE © 7.5	A MAYE	7.5	07/01/98	00000>	0.12	080	0.50	160	43	¥Z	2:1
MW3 (6 7.3	SAME I	5	07/01/93	<0.028	<0.028	<0.028	<0.028	9	<28	₹	1.3
MW3 @ 10.0	SAME -	17.5	07/06/93	0.64	1.5	0.55	4.3	10	<31	₹ Z	7
MW6 @ 17.3		17.5	07/06/93	0.48	0.79	0.40	2.8	12	06 ×	¥	19
MW6 @ 30 F.	WW.	2 %	07/06/93	3.5	9.6	17	2	8	88	ž	8.9
MW6 @ 25.3		S	07/06/93	<0.026	<0.026	<0.026	<0.026	<5>	9 2 ×	¥	1.2
MW7 @ 45	_	4.5	10/26/93	<0.036	<0.036	<0.036	<0.036	1 >	>36	ž	3.4
	LAWA	, c	10/27/93	<0.029	<0.029	<0.029	<0.029	9>	& >	¥	2.6
MW0 @ 0.3	_	} «	10/27/93	<0.027	<0.027	<0.027	<0.027	\$	<27	₹	<1.7
MW10 @ 8'	_	00	10/28/93	<0,038	<0.038	<0.038	<0.038	8 2	× 38	¥	2.4
MM10 @ 50'	MW10 Dunlicate	00	10/28/93	<0.035	<0.035	<0.035	<0.035	L >	< 35	¥	2.4
MW 10 (6)	MW11	8. 8.	10/29/93	<0.031	<0.031	<0.031	<0.031	9	<31	¥	8.8
MW11 @ 5.3	MW11	7.5	10/29/93	<0.032	<0,032	<0.032	<0.032	9	<32	¥	3.6
MW12 @ 55	MW12	3.5	10/28/93	<0.031	<0.031	<0.031	<0.031	9>	<31	¥	3.0
1 mm											

Sample Number S25 does not exist – this identification number was bypassed during sample collection. Samples S30 and S31 are sediment samples, included on Table 6–9.

*Analyzed by Washington State Method WTPH-D. mg/kg - Milligrams per kilogram.
TPH - Total petroleum hydrocarbons.

NA - Not analyzed. < - Indicates compound not detected at stated detection limit.

Table 6-3
Polycyclic Aromatic Hydrocarbon Results for Soil
Burns Bros./Bingo Fuel Stop
Thorp, Washington

	Method				Sample	Sample I.D. and Depth (ft. bgs)	Depth (ft	(sBq					
	Reporting	MW1 7.5	MW2 7.5	EWN 9.0	**************************************	MW 7.5	17.5	MW5 7.5	10.0	17.5	MW6 17.5*	6 22.5	30
Analyte	(mg/kg, dry wt.)					kg.	dry wt.						
Acenaphthene	0.021	Q	Q	QN	QN	NON	QN	Q	2	2	N	Q	2
Acengohthylene	0.21	2	2	2	Q Z	Q	2	2	2	2	Q	2	2
Anthracene	0.021	2	2	2	2	Q	2	2	2	2	2	Q	2
Benzo (a) anthracene	0.021	2	2	Q	2	Q.	2	2	2	皇	Q	Q	Q
Benzo (b) fluoranthene	0.021	2	9	2	2	2	2	2	2	2	Q	2	2
Benzo (k) fluoranthene	0.021	2	Q	2	2	2	2	2	2	2	Q	2	2
Benzo (g,h,l) perylene	0.021	2	Q	Q.	2	2	2	2	2	2	Q	2	2
Benzo (a) pyrene	0.021	2	2	Q	2	2	2	2	2	ᄝ	2	2	2
Chrysene	0.021	2	2	2	2	2	Q	Q	2	9	2	Q	2
Dibenzo (a,h) anthracene	0.042	2	Q.	2	2	2	2	Q	2	2	ջ	Q	2
Fluoranthene	0:021	2	Q	2	2	2	2	2	2	2	ջ	2	2
Fluorene	0.010	9	2	-:	9	2	2	2	2	2	9	0.044	2
Indeno (1.2.3 – cd) pyrene	0.021	2	2	9	9	2	2	ᄝ	2	2	2	2	Q
1 - Methylnaphthalene	0.21	2	2	9.5	2	2	2	0.30	2	2	2	0.26	Q
2 - Methylnaphthalene	0.21	2	2	9	Q.	Q	2	1.0	2	2	9	0.59	2
Nachthalene	0.10	2	2	2.3	Q	2	Q	0.44	2	2	2	0.28	2
Phenanthrene	0.010	2	2	2.8	0.023	2	2	0.041	2	2	9	2	Q
Pyrene	0.021	2	2	Q	9	Q	Q	2	2	2	Q	2	Q N

Polycyclic Aromatic Hydrocarbon Results for Soil Burns Bros./Bingo Fuel Stop Thorp, Washington Table 6-3

	Method			Sam	Sample I.D. and Depth (R. bgs)	Depth (ft.	bgs)		
	Reporting	MW7	MW8 8.5	MW9 8.0	MW10 8.0	10 8.0*	MW11	11 7.5	MW12 8.5
Analyte	(mg/kg, dry wt.)				mg/kg, dry wt	dry wt.			
Acenaphthene	0.021	Q	S	2	Q	Q	Q	2	9
Acenaphthylene	0.21	2	Q	9	2	2	9	2	2
Anthracene	0.021	Q	Q	2	2	Q	Q	2	2
Benzo (a) anthracene	0.021	2	Q	g	2	2	2	2	2
Benzo (b) fluoranthene	0.021	2	2	2	Q	2	2	2	2
Benzo (k) fluoranthene	0.021	2	2	Ş	2	2	2	2	2
Benzo (g,h,l) perylene	0.021	2	ã	Q	Q	2	운	2	2
Benzo (a) pyrene	0.021	Q	Ş	2	Q	2	2	2	2
Chrysene	0.021	Q	S	Q	Q	2	2	2	2
Dibenzo (a.h) anthracene	0.042	2	Q	Q	2	윉	2	2	2
Fluoranthene	0.021	2	Š	Q	2	2	2	2	2
Fluorene	0.010	Q	2	9	2	2	2	2	<u>Q</u>
Indeno (1.2.3 - cd) pyrene	0.021	Q	Q	2	2	Q	2	2	2
1 - Methylnaphthalene	0.21	Q	Q	2	2	Q	2	2	2
2-Methylnaphthalene	0.21	Q	2	9	2	2	2	2	Q
Naphthalana	0.10	Q	Q	2	2	2	2	2	Q
Phenanthrene	0.010	Q	2	Q	Q	오	2	2	Q
Pyrene	0.021	2	2	2	2	Q	2	2	2

*Field duplicate.

Method reporting limit may vary with sample moisture content, matrix interference, etc.

ft. bgs - Feet below ground surface.

mg/kg - Milligrams per kilogram. ND -- Not detected.

Groundwater Sample Collection and Field Parameter Data Burns Bros./Bingo Fuel Stop Thorp, Washington Table 6-4

Comments (Sample Appearance, Odor, etc.)	Turbid/no odor.	Slightly turbid.	Clear/no odor.	Clear/hydrocarbon odor.	Very turbid with sediment/no odor.	Very turbid with sediment/slight	hydrocarbon odor.	Very turbid/yellowish-brown	Light milky white color/no odor.	Light brown milky color/no odor.	Very turbid with sediment/no odor.
Hd	90'2	9.79	7.92	6.84	7.8	6.78		6.8	6.39	6.17	6.83
Field Parameters	475	533	287	370	382	220	·	402	968	980	443
Temperati	13.5	13.2	13.8	14.9	12.8	12.3		12.8	12.3	1.8	13.5
Purge Method	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer		Bailer	Bailer	Bailer	Bailer
Volume Purged (gallons)	25	52	54	4	9	9		8	84	4	₹
Well Casing Volume (gallons)	7.1	6.7	42.9	7.3	5.2	3.7		4.98	4.6	1.3	5.36
Depth to Static Water Level (ft bmp)	7.05	8.01	4.34	6.57	6.95	10.26		9.85	11.19	8.25	7.70
Well Depth (ft bmp)	17.95	18.25	80.35	17.75	15.00	15.99	-	17.50	16.50 a	17.50 a	15.95
Date Collected	07/08/93	07/08/93	07/08/93	07/08/93	10/29/93	10/29/93		10/29/93	11/01/93	11/01/93	10/29/93
Well I.D.	MW1	MW2	MW3	MW5	WW7	WW8		6AW	MW10	MW-1	MW12

Wells MW4 and MW6 parameters were not measured due to presence of free product in the wells.

a) Depth below ground surface.
 ft. bmp – Feet below measuring point; top of PVC casing used as measuring point.

Table 6-5 Chemical Analysis Schedule - Groundwater Burns Bros./Bingo Fuel Stop Thorp, Washington

				E	PA Metho	d			Washington State Method
Sample ID	8020 BETX	8015M * TPH	7421 Lead	8310 PAHe	8240 VOC#	353.2 354.1 Nitrite/Nitrate	8080 Pesticides	8010 VOCs	WTPH-G Gazoline
MW1 -7/93	X	х	Χ.	X		x	X		
MW2-7/93 MW3-7/93	X	X	X	X X					
MW4-7/93 MW5-7/93	X	Χ	X	X					
MW6-11/93	X	Х	X	X	X		X	X	
MW7-10/93 MW8-10/93	X	X	X	X					
MW9-10/93 MW10-10/93	X X	X	X X	X X					
MW11-10/93 MW12-10/93	X X	X	X X	X X					
W-1 W-2	X X								X
W-3 W-4	X X								x

a) Quantified for both gasoline and diesel-range hydrocarbons.
 TPH - Total petroleum hydrocarbons.
 PAH - Polycyclic aromatic hydrocarbons.
 VOC - Volatile organic compounds.

Hydrocarbons, Lead, and Nitrate/Nitrite Detected in Groundwater Burns Bros./Bingo Fuel Stop Thorp, Washington Table 6–6

						EPA Tes	EPA Test Methods				
				BETX	- 8020		TPH - 8015 M	15 K	7421	353.2	354.1
	Sample	Sample	Benzene	Ethylbenzene Toluens	Toluene	Xylenes	TPH as Gasoline D	S Diesei	Lead	Nitrate/Nitrite	Nitrite
Sample ID	Location	Date		µg/L	Ψ				mg/L		
MW1-7/93	MW1	86/80/20	QN	QN	2	2	2	2	0.013	6.4	0.15
MW2-7/93	MW2	07/08/93	0.7	Q	Q	2	2	2	0.005	¥	ď Z
MW50-7/93	MW2, Duplicate	07/08/93	9.0	Q	2	2	2	2	0.004	¥	۷ Z
MW3-7/93	MW3	07/08/93	4.1	6.0	2	5.1	2	2	0.004	₹ Z	¥ Z
MW4-7/93	MW4	07/08/93	SN	SN	SN	SN	SN	SR	SN	¥	¥ Z
MW5-7/93	MW5	07/08/93	1,300	840	4,500	2,000	8	·0	2	¥	¥ Z
MW6-11/93	MW6	11/22/93	6,800	3,400	21,000	20,000	¥	¥	¥ Z	₹ Ž	¥ Z
MW7-10/93	MW7	10/29/93	9	2	Q	2	2	2	2	¥	¥ Z
MW8-10/93	MW8	10/29/93	2,800	410	79	920	တ	2	2	¥ X	¥ Z
MW9-10/93	ММЭ	10/29/93	2	2	2	2	Q	2	<u>Q</u>	¥	¥ Z
MW10-10/96	MW10	11/01/93	9	2	Q	2	2	2	2	¥	Š
MW11-10/96	MW11	11/01/93	2	9	Q	2	2	2	2	Ą	¥ Z
MW100-10/96	MW11, Duplicate	11/01/93	Q	2	Q	2	Q	2	Q	¥	ž
MW12-10/93	MW12	10/29/93	2	2	Q	2	2	2	2	¥	¥
W-1	Puget Power Service Center	03/26/92	2	2	Q	Q	* Q	Y Z	¥	¥	¥
W-2	House Adjacent to South	03/26/92	9	2	2	2	¥ Z	¥	¥	¥	¥
W-3	House Adjacent to East	03/26/92	9	9	Q	2	¥	¥	¥	¥	¥ X
W-4	Thorp Antique Mall	03/26/92	QV	ON	9	Q	* ON	Ϋ́	NA	AN	Ϋ́
Method Reporting Limit	ng Limit		0.5	0.5	0.5	0.5	1	-	0.003	0.01	0.001
-		-									

*Analyzed by Washington State Method WTPH-G. mg/L - Milligrams per liter.

μg/L - Micrograms per liter.

NA - Not analyzed.

ND - Not detected. NS - Not sampled due to the presence of free product.

Table 6-7
Polycyclic Aromatic Hydrocarbon Results for Groundwater
Burns Bros,/Bingo Fuel Stop
Thorp, Washington

	Method				3	Sample I.D.				
	Reporting Limit	I.WM	MW2	Dup MW2	NW3	MW4	MWS	MWG	ZWM.	MWB
Analyte	(J/G/J					µg/L				
Acenaphthene	0.50	9	9	2	2	SN	2	SZ	Q	QN
Acenaphthylene	1.0	2	2	2	2	စ္က	2	SZ	Q	2
Anthracene	0.05	2	2	2	2	S N	0.075	SZ	2	2
Benzo (a) anthracene	0.10	2	2	2	2	S N	Ž	SZ	2	2
Benzo (b) fluoranthene	0.10	2	2	2	2	SZ.	2	SZ	2	2
Benzo (k) fluoranthene	0.10	2	2	2	9	SZ	2	SZ	9	2
Benzo (g,h,i) perylene	0.10	2	2	Q	2	SN	2	S	2	2
Benzo (a) pyrene	0.10	2	2	2	2	SZ	2	SZ	2	2
Chrysene	0.10	2	2	2	2	SN	2	Š	2	2
Dibenzo (a,h) anthracene	0.20	2	2	2	2	S	2	S N	2	2
Fluoranthene	0.10	2	2	2	2	SN	2	SZ	2	2
Fluorene	0.10	2	0.29	0.36	0.35	SN	0.59	SN	2	2
Indeno (1,2,3-cd) pyrene	0.10	2	2	2	2	SN	Q	SN	2	2
1 - Methylnaphthalene	0.50	2	0.58	0.71		SN	22	SN	2	5.8
2-Methylnaphthalene	0.50	2	96.0	1.2	9	SZ	26	SN	2	4.7
Naphthalene	0.50	2	2	2	9	S	190	S N	2	27
Phenanthrene	0.05	2	2	2	0.13	S S	0.45	SN	2	2
Pyrene	0.10	2	2	2	2	S S	2	S	2	2
•										

Polycyclic Aromatic Hydrocarbon Results for Groundwater Burns Bros./Bingo Fuel Stop Thorp, Washington Table 6-7

	Method			Sample I.D.		
	Reporting Limit	WWB	MW10	MW11	Dup MW11	MW12
Analyte	(vg/L)			ng/L		
Acenaphthene	0.50	2	2	Q	Q	Q
Acenaphthylene	1.0	2	2	2	2	2
Anthracene	0.05	2	2	2	Q	2
Benzo (a) anthracene	0.10	2	2	2	2	2
Benzo (b) fluoranthene	0.10	2	2	2	2	2
Benzo (k) fluoranthene	0.10	2	2	2	2	2
Benzo (g,h,i) perylene	0.10	Q	2	2	Q	2
Benzo (a) pyrene	0.10	Q	2	2	2	2
Chrysene	0.10	2	2	2	2	2
Dibenzo (a,h) anthracene	0.20	2	2	2	2	2
Fluoranthene	0.10	2	2	2	2	2
Fluorene	0.10	Q	2	2	2	2
Indeno (1,2,3-cd) pyrene	0.10	Q	2	2	2	2
1-Methylnaphthalene	0.50	Q	2	Ş	2	2
2-Methylnaphthalene	0.50	Q	2	2	2	2
Naphthalene	0.50	2	2	2	2	2
Phenanthrene	0.05	2	2	<u>Q</u>	2	2
Pyrene	0.10	2	Q	2	2	2

Method reporting limit may vary due to dilution, matrix interference, etc.

Dup - Duplicate sample.

ND - Not detected. NS - Not sampled.

μg/L - Micrograms per liter.

Table 6-8
Chemical Analysis Schedule - Surface Water/Sediment
Burns Bros./Bingo Fuel Stop
Thorp, Washington

	EPA Method	Washington (State Method
	8020	WTPH-G	WTPH-D
Sample ID	BETX	Gasoline	Dilesel
Surface Water			
W-5 W-6	X X	Х	
Irrig. Canal, Near S31 Drainage Ditch, west of site	X X	X	X
Sediment			
530 S31	X X		X X

Table 6-9
Analytical Results for Surface Water and Sediment
Burns Bros./Bingo Fuel Stop
Thorp, Washington

				EPA Test Methods	Vethods		Washington State Test Methods	on State
Sample 10	Sample Location	Sample Date	Benzene	BETX - 8020 Ethylbenzene Tolu	8020 Toluene	Xylenes	WTPH Gasoline Diesel	WTPH ne Diesel
Surface Water			. 1	T/BH		ļ	mg/L	
W -5	Pond Adjacent to East	03/26/92	Λ Ο Λ ο σ	0.5 5.5	2.05 2.05 2.05	0.5 0.5 50.5	₹ 6	Ψ Z Z
Irrig. Canal,	Adjacent to north culvert,	03/01/94	<0.5	<0.5	<0.5	<0.5	6 0.1	<0.25
Near S31 Drainage Ditch.	east of Thorp highway Adjacent to Puget Power Cattle	03/01/94	<0.5	<0.5	<0.5	· <0.5	<0.1	<0.25
west of site	Guard							
		_		mg/kg	kg		BWI .	mg/kg
Sediment S30	Swampy Area Adjacent to South	06/29/93	<0.10	<0.10	<0.10	<0.10	¥	57
S31	(0.25 π. in deptn) East Culvert (0.25 ft. in depth)	06/29/93	<0.086	>0.086	0.42	<0.086	¥ Z	2,100

mg/kg - Milligrams per kilogram. mg/L - Milligrams per liter.

µg/L – Micrograms per liter.
 NA – Not analyzed.
 - Indicates compound not detected at stated detection limit.

Table 7-1
Chemicals of Concern
Burns Bros./Bingo Fuel Stop
Thorp, Washington

Chemical	Soil	Groundwater
Volatile Organic Compounds	+	
Benzene	X	X
Ethylbenzene	X	X
Toluene	X	X
Total Xylenes	X	X
Polycyclic Aromatic Hydrocarbons		
Anthracene		X
Fluorene	X	X
1-Methylnaphthalene	X	X
2-Methylnaphthalene	X	X
Naphthalene	X	X
Phenanthrene	×	X
Inorganics		
Lead	X	X
Nitrate/Nitrite		X

X - Chemical was detected at least once in this medium.

Table 7-2 **Toxicological Parameters for Chemicals of Concern** Burns Bros./Bingo Fuel Stop Thorp, Washington

		ological arameters		
Chemical	Oral CPF*	Chronic Oral RfD**	Toxicological Endpoint	Apportionment Factor
Volatile Organic Compounds				
Benzene	0.029 i	· · [Carcinogen	1
Ethylbenzene		0.1 i	Liver, kidney	2
Toluene		0.2 i	Liver, kidney	2
Total Xylenes		2 i	Body weight	2
Polycyclic Aromatic Hydrocarbons				
Anthracene		0.3 i	None Observed	1
Fluorene		0.04 i	Blood	2
1 - Methylnaphthalene				,
2-Methylnaphthaiene			 ,	
Naphthalene		0.04 h	Body Weight	2 .
Phenanthrene				- -
Inorganics	•			
Lead				
Nitrate/Nitrite		0.1 i	Blood	2

^{*}Cancer Potency Factor (mg/kg-day)⁻¹.
**Chronic Reference Dose (mg/kg-day).

i - EPA Integrated Risk Information System (IRIS).

h - EPA Health Effects Assessment Summary Tables (HEAST).

⁻⁻ Toxicological parameters not available.

Table 7-3 Groundwater and Surface Water ARARs for Chemicals of Concern Burns Bros./Bingo Fuel Stop Thorp, Washington

	Federal Maximum Contaminant		c Freshwater Criteria (µg/L)**
Chemical	Level* (µg/L)	Surface Water	Consumption of Organisms
Volatile Organic Compounds			•
Benzene	5		71
Ethylbenzene	700	·	29,000
Toluene	1,000		200,000
Total Xylenes	10,000		→
Polycyclic Aromatic Hydrocarbons			
Anthracene			110,000
Fluorene		·	14,000
1-Methylnaphthalene			
2-Methylnaphthalene			
Naphthalene			·
Phenanthrene			
Inorganics			
Lead	15	3.2	
Nitrate/Nitrite***	10,000		 '

 μ g/L – Micrograms per liter.

^{*} Maximum contaminant level (MCL) obtained from Office of Water (EPA, 1993).

^{**} National Toxics Rule criterion; 40 CFR Part 131.

^{***}ARAR based on nitrate + nitrite (as N).

⁻⁻ ARAR not available.

Table 7-4
Groundwater and Surface Water Risk-Based Concentrations
Burns Bros./Bingo Fuel Stop
Thorp, Washington

		Ме	thod B Risi	k−Based Conce	ntration (µg/	/L)
		Unapportio	ned Value	Apportions	ed Value	
Chemical	BCF*	Groundwater	Surface Water	Groundwater	Surface Water	Selected Value
Volatile Organic Comp	ounds					
Benzene	5.2	1.5	43	1.5	43	1.5
Ethylbenzene	37.5	800	6,914	400	3,457	400
Toluene	10.7	1,600	48,460	800	24,230	800
Total Xylenes	22.5 **	16,000	230,453	8,000	115,226	8,000
Polycyclic Aromatic Hy	drocarbons					
Anthracene	30	4,800	25,926	4,800	25,926	4,800
Fluorene	30	640	3,457	320	1,728	320
1 - Methylnaphthalene						
2-Methylnaphthalene						
Naphthalene	10.5	640	9,877	320	4,938	320
Phenanthrene						
Inorganics .						
Lead						
Nitrate/Nitrite***		1,600		800		800

Shaded value indicates selected risk-based concentration.

^{*}BCF - Bioconcentration factor; obtained from ambient water quality criteria documents (Ecology).

^{**}Obtained from previously issued document (Ecology).

^{***}Risk-based concentrations based on nitrite.

⁻⁻ Not available.

 $[\]mu$ g/L – Micrograms per liter.

Table 7-5
Draft Groundwater Cleanup Level Summary
Burns Bros./Bingo Fuel Stop
Thorp, Washington

		Groundw	ater Concentrati	ion (µg/L)	
Chemical	Method Reporting Limit	Selected Groundwater Criterion	Selected Surface Water Criterion	Selected Risk-Based Concentration	Selected Groundwater Cleanup Level
Volatile Organic Compounds					
Benzene	0.5	5	71	1.5	5.0 *
Ethylbenzene	0.5	700	29,000	400	400
Toluene	0.5	1,000	200,000	800	800
Total Xylenes	2	10,000		8,000	8,000
Polycyclic Aromatic Hydrocarbon	S				
Anthracene	0.0091		110,000	4,800	4,800
Fluorene	0.018	`	14,000	320	320
1 - Methylnaphthalene	0.5				
2-Methylnaphthalene	0.5				
Naphthalene	0.045			320	320
Phenanthrene	0.05				
Inorganics					
Lead	3	15	3.2		3.2
Nitrate/Nitr	0.01	10,000		800	800 **

Shaded value indicates selected groundwater cleanup level.

 μ g/L - Micrograms per liter.

^{*}Selected groundwater cleanup level set at federal maximum contaminant level; see text for discussion.

^{**}Groundwater cleanup level based on nitrite.

⁻⁻ Not available.

Table 7-6
Draft Soil Cleanup Level Summary
Burns Bros./Bingo Fuel Stop
Thorp, Washington

		Soil C	Concentration (m	ig/kg)	
Chemical	Method Reporting Limit	Background	Selected* Risk-Based Concentration	Protective of Groundwater	
Volatile Organic Compounds					
Benzene	0.025	- -	34.5	0.5	0.5
Ethylbenzene	0.025		4,000	40	40
Toluene	0.025		8,000	80	80
Total Xylenes	0.025		80,000	800	800
Polycyclic Aromatic Hydrocarbon	ıs .				
Anthracene	0.021		24,000	480	480
Fluorene	0.010		1,600	32	32
1 - Methylnaphthalene	0.17				
2-Methylnaphthalene	0.17	·			
Naphthalene	0.10		1,600	32	32
Phenanthrene	0.0083				
Inorganics					
Lead	0,15	18 ws	250 **	0.32	250
Nitrate/Nitrite	NA		4,000	80	80

Shaded value indicates selected soil cleanup level.

-- Not available.

mg/kg - Milligrams per kilogram.

NA - Chemical not analyzed in soil.

ws - Washington State background (USGS, 1993).

^{*}Apportioned risk-based concentration.

^{**}Method A residential cleanup level for lead.

Draft Cleanup Levels for Soil and GroundwaterBurns Bros./Bingo Fuel Stop
Thorp, Washington Table 7-7

Chemical	Soil (mg/kg)	Basis for Selection	Groundwater (µg/L)	Basis for Selection
Volatile Organic Compounds Benzene	0.5	Cross media (groundwater ARAR)	5.0	Groundwater ARAR
Ethylbenzene Toluene	4 8	Cross media (groundwater risk-based) Cross media (groundwater risk-based)	800 800	Risk-based: groundwater Risk-based: groundwater
Total Xylenes	800	Cross media (groundwater risk-based)	8,000	Risk-based: groundwater
Polycyclic Aromatic Hydrocarbons Anthracene	Ž		4,800	Risk-based: groundwater
Fluorene	32	Cross media (groundwater risk-based)	320	Risk-based: groundwater
1-Methylnaphthalene 2-Methylnaphthalene	빌 빌		뷜	
Naphthalene Phenanthrene	32 NE	Cross media (groundwater risk-based)	320 NE	Risk-based: groundwater
Semivolatile Organic Compounds Lead Nitrate/Nitrite	250 NA	Risk Based	3.2	Surface water ARAR Risk-based: groundwater

Cleanup levels have been rounded to two significant digits.

mg/kg – Milligrams per kilogram.

µg/L – Micrograms per liter.

NA – Chemical not analyzed in soil.

ND – Chemical not detected in soil.

NE – Not established.

Table 7-8 Summary of Draft Chemical Exceedances - Soil Burns Bros./Bingo Fuel Stop Thorp, Washington

					EPA Test	Method	
Sample ID	Sample Location	Sample Depth	Sample Date	Benzene (mg/kg)	BETX — Ethylbenzene (mg/kg)	8020 Toluene (mg/kg)	Total Xylenes (mg/kg)
S7	N.WALL, EXCAV.2 @8'	8	03/12/92	26	61	210	470
S8	E.WALL, EXCAV.2 @ 8'	8	03/12/92	92	300	1,000	1,800
S10	PIPING TRENCH @ 4'	4	03/13/92	21	69	200	410
S21	DISPEN. ISL.4 @ 5'	5	03/16/92	0.67	1.8	0.80	9.0
S22	DISPEN. ISL.5 @ 5'	5	03/16/92	0.59	1.1	0.91	6.1
S27	DISPEN. ISL.7 @ 3'	3	03/17/92	6.5	44	130	330
S28	DISPEN. ISL.6 @ 3'	3	03/17/92	10	19	69	170
MW6 @ 17.5'	MW6	17.5	07/06/93	0.64	1.2	0.55	4.3
MW6 @ 22.5'	MW6	22.5	07/06/93	3.5	3.6	17	21

Shaded values exceed draft Method B cleanup levels.

mg/kg — Milligrams per kilogram. TPH — Total petroleum hydrocarbons.

NA - Not analyzed.

ND - Not detected.

< - Indicates compound not detected at stated detection limit.

Summary of Draft Chemical Exceedances - Groundwater Burns Bros./Bingo Fuel Stop Table 7-9

Thorp, Washington

\$ \$ \$ \$ \$

Nitrite

Nitrite

.40 8

354.1

0.001

0.01

Notes:

Shaded values exceed draft Method B cleanup levels. *Analyzed by Washington State Method WTPH-G.

mg/L – Milligrams per liter. µg/L – Micrograms per liter.

NA - Not analyzed.

ND – Not detected. NS – Not sampled due to the presence of free product.

Summary of Method A TPH Exceedances in Soil Burns Bros,/Bingo Fuel Stop Thorp, Washington **Table 7-10**

						EPA	EPA Test Methods			
Sample ID	Sample Location	Sample Depth	Sample Date	Benzene (mg/kg)	BETX — Ethylbenzene (mg/kg)	8020 Toluene (mg/kg)	Total Xylenes (mg/kg)	TPH – E Gasoline (mg/kg)	BO15M Diesei (mg/kg)	7421 Lead (mg/kg)
	S WALL EXCAV 1 @ 8'	œ	03/11/92	0.032	0.28	0.13	2.8	930	12,000	¥
. S	EWALL EXCAV.1 @9'	ග	03/11/92	0.22	6.1	2.7	0	1,200	8,700	¥
SS	N.WALL, EXCAV.1 @8'	∞	03/11/92	¥	¥	¥	ž	1,600	10,000	₹
8	W.WALL, EXCAV.1 @8'	80	03/11/92	<0.028	0.23	<0.028	2.2	140	₹ 9	Š
S7	N.WALL, EXCAV.2 @8'	60	03/12/92	82	6	210	470	2,500	420	~5.6
88	E.WALL, EXCAV.2 @ 8'	80	03/12/92	92	900	1,000	1,800	10,000	909	<5.4
810	PIPING TRENCH @ 4'	4	03/13/92	2	8	200	410	1,000	8	ž
811	PIPING TRENCH @ 3'	n	03/13/92	<0.032	0.40	0.056	5.6	240	2,000	¥
S14	PIPING TRENCH @ 4'	4	03/13/92	<0.030	<0.030	<0.030	<0.030	7	350	¥
818	DISPEN. ISL.1 @ 2'	O.	03/13/92	<0.027	<0.027	0.032	0.029	<25	2,100	¥
819	DISPEN. ISL.2 @ 2.5"	2.5	03/13/92	<0.030	0.070	<0.030	0.61	430	18,000	₹
820	DISPEN. ISL.3 @ 5'	ĸ	03/16/92	0.039	4.1	0.48	7.9	280	2,200	<5.6
S21	DISPEN. ISL.4 @ 5'	ß	03/16/92	29.0	1.8	0.80	9.0	2,500	21,000	¥Z
822	DISPEN. ISL.5 @ 5'	ıo	03/16/92	0.59	Ξ	0.91	6.1	740	9,100	₹
S23	PIPING TRENCH @ 5'	ı,	03/16/92	<0.028	0.81	00'0	6.1	086	3,100	∢ Z
826	PIPING TRENCH @ 3'	ø	03/17/92	0.44	3.6	5.6	52	900	72	<6.0
S27	DISPEN, ISL.7 @ 3	တ	03/17/92	6.5	4	130	330	1,100	9	<5.6
828	DISPEN, ISL.6 @ 3'	. Ø	03/17/92	9	6	8	170	1,600	300	Ξ
829	SOIL STOCKPILE	!	03/18/92	<0.028	<0.028	<0.028	<0.028	₽,	210	¥
S32	Drain Box	0.25	06/29/93	<0.029	<0.029	<0.029	<0.029	¥	340 *	¥.
MW3 @ 9.0'	MW3	9.0	06/28/93	<0.026	1.0	0.055	5.9	310	3,100	2.0
MW5 @ 7.5'	MW5	7.5	07/01/93	<0.030	0.12	0.080	0.50	160	84	2.1
Method A TPF	Method A TPH Cleanup Level *							100	200	

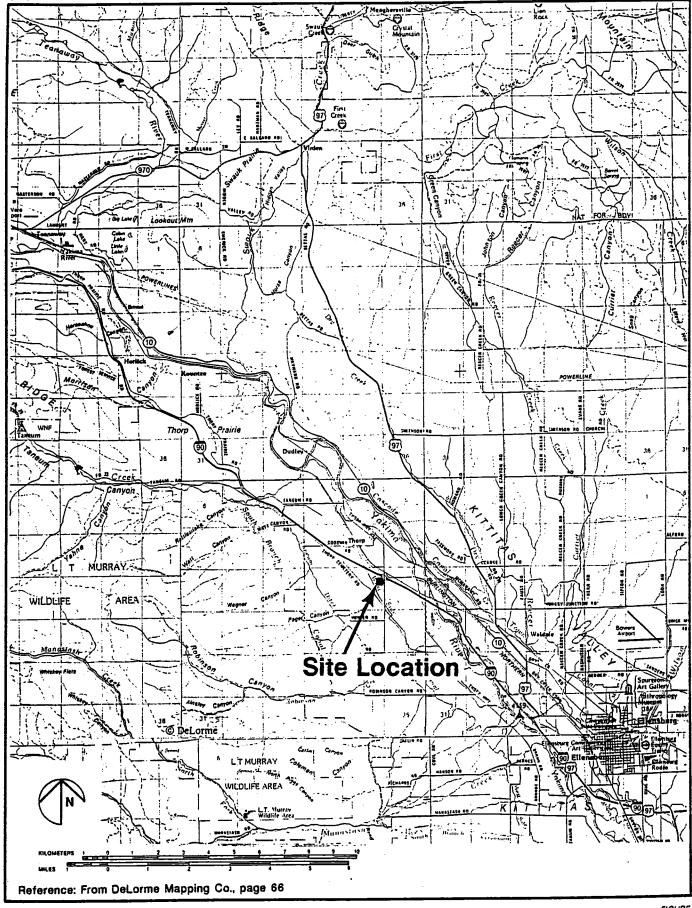
Sample Number S25 does not exist — this identification number was bypassed during sample collection. Samples S30 and S31 are sediment samples, included on Table 6—9.
*Analyzed by Washington State Method WTPH—D.
mg/kg — Milligrams per kilogram.
TPH — Total petroleum hydrocarbons.

NA-Not analyzed. < - Indicates compound not detected at stated detection limit.

Summary of Method A TPH Exceedances in Groundwater Burns Bros./Bingo Fuel Stop Thorp, Washington **Table 7-11**

						EPA Te	EPA Test Methods		
				BETX - 8020	- 8020		TPH - 8015 M	015 M	7421
	Sample	Sample	Benzene	Benzene Ethylbenzene Toluene		Xvlenes	TPH as Gasoline Diesel	ns Diesel	Lead
Sample ID	Location	Date		Лgи				mg/L	
MW5-7/93	MW5	07/08/93	1,300	840	4,500	7,000	98	2	Q
MW8-10/93	MW8	10/29/93	2,800	410	79	950	8	Q	Q
Method Reporting Limit	J Limit		0.5	6.0	0.5	0.5	1	-	0.003
Method A TPH Cleanup Level	eanup Level ^a						1.0	1.0	

*Analyzed by Washington State Method WTPH-G.


a) Method A suggested cleanup level for groundwater promulgated under Washington Administrative Code Chapter 173-340, Model Toxics Control Cleanup Act Regulation.

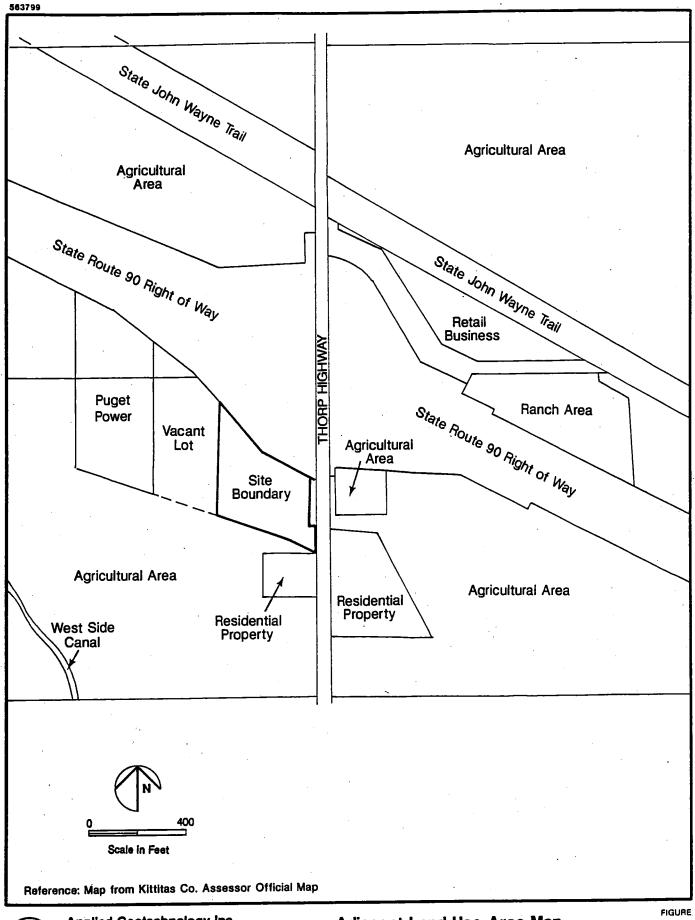
mg/L – Milligrams per liter. μg/L – Micrograms per liter.

NA - Not analyzed.

ND - Not detected.

NS - Not sampled due to the presence of free product.

Applied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology **Vicinity Map**


Burns Bros./Bingo Fuel Stop Thorp, Washington FIGURE

1-1

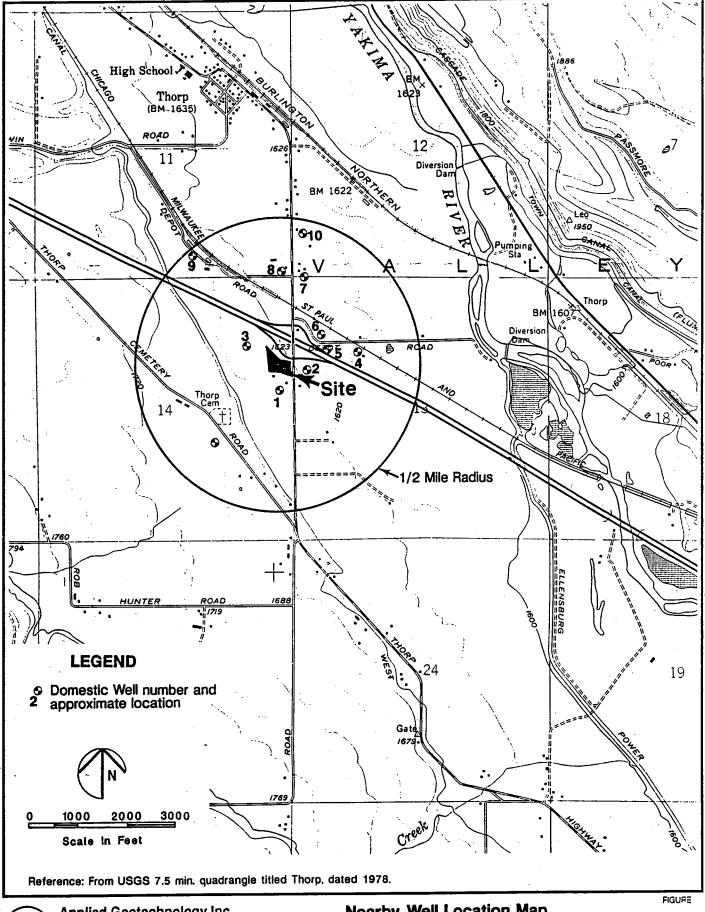
JOB NUMBER DRAWN
15,659.001 DFF

APPROVED

DATE 3 Mar 92 REVISED DATE

Applied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology Adjacent Land Use Area Map

Burns Bros./Bingo Fuel Stop Thorp, Washington 2-1


JOB NUMBER 15,659.001 DRAWN

APPROVED PPB

= 131/94

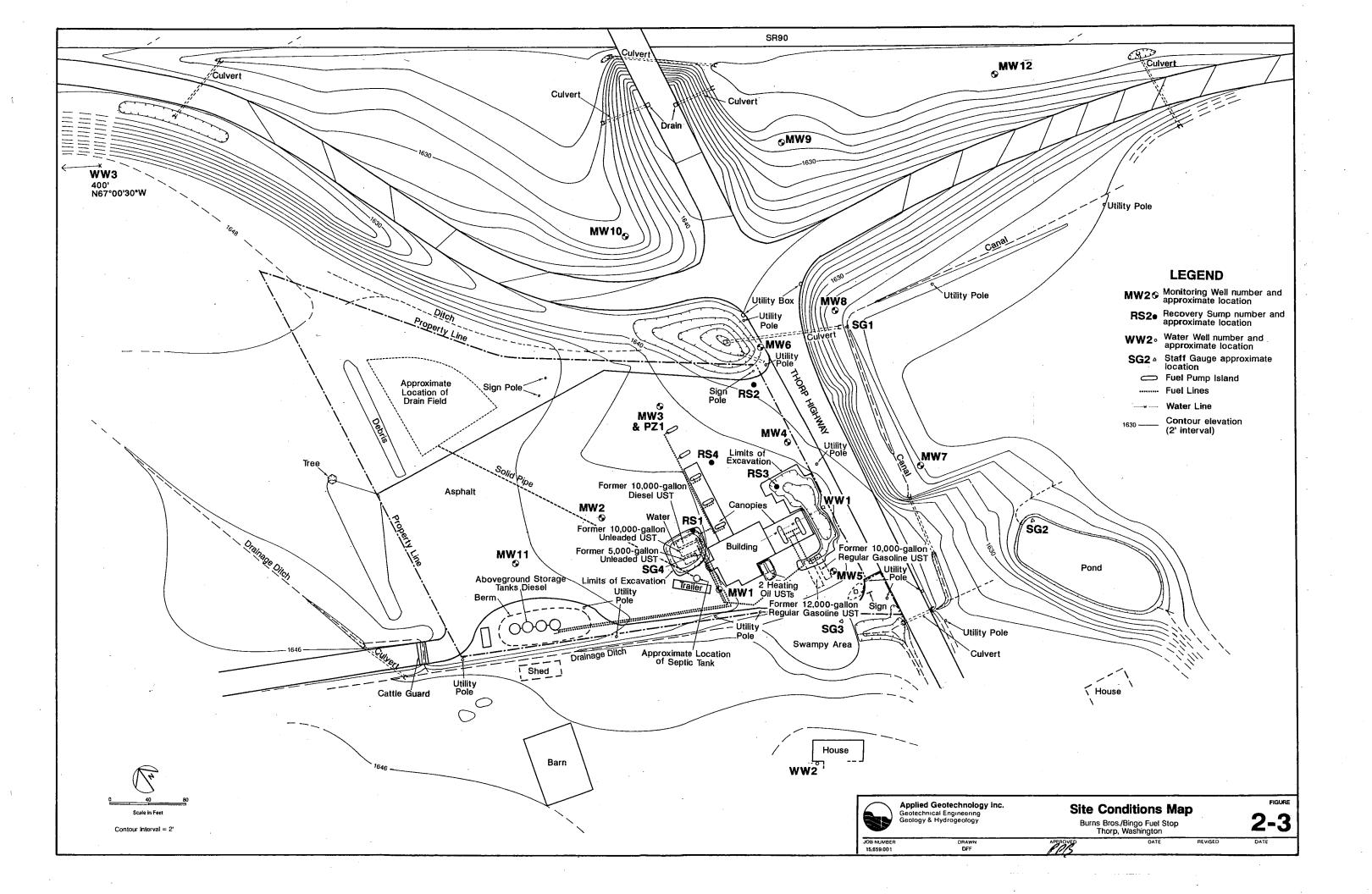
REVISED

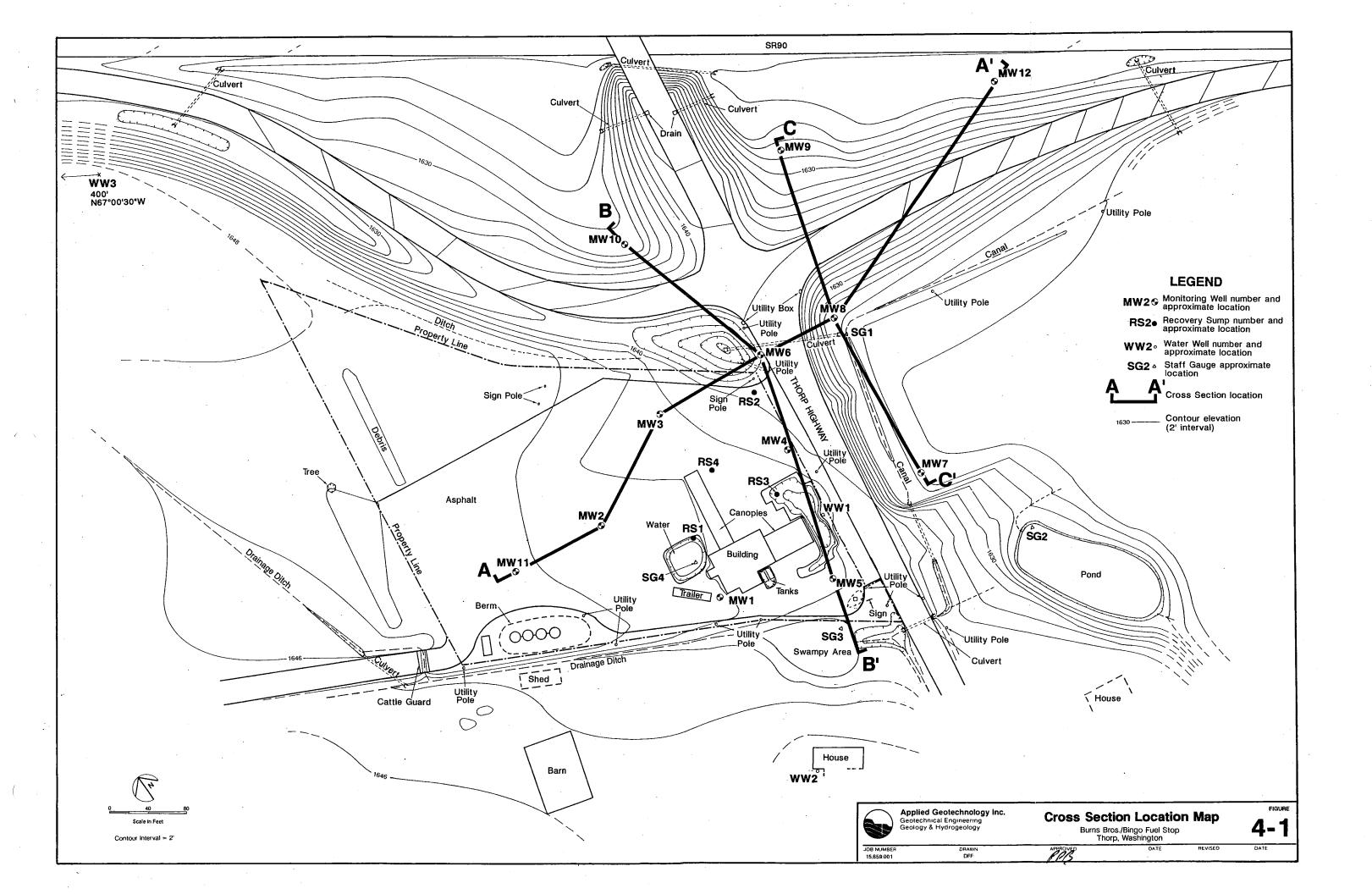
DATE

Applied Geotechnology Inc.

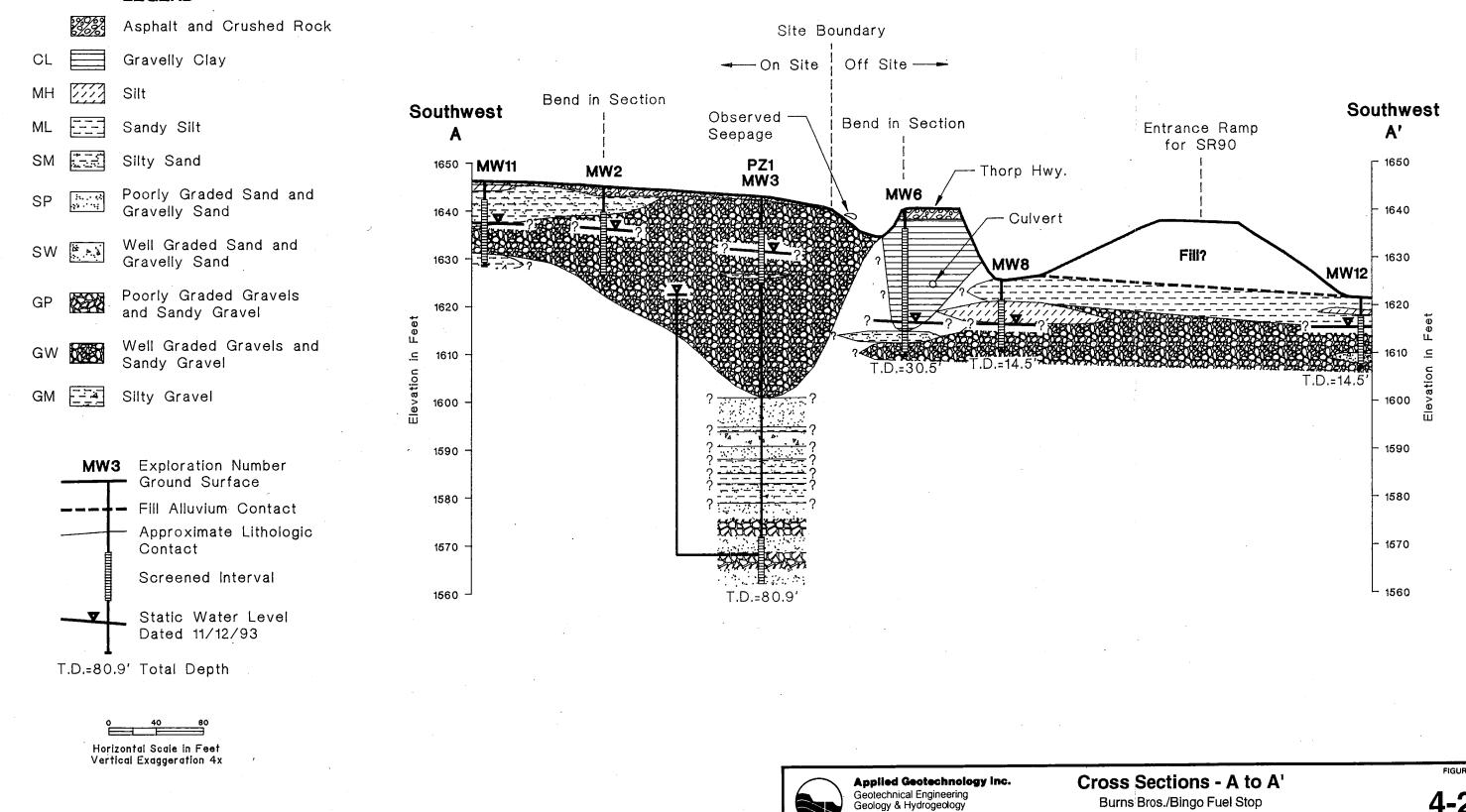
Geotechnical Engineering Geology & Hydrogeology

Nearby Well Location Map


Burns Bros./Bingo Fuel Stop Thorp, Washington


JOB NUMBER 15,659.001 DRAWN DFF

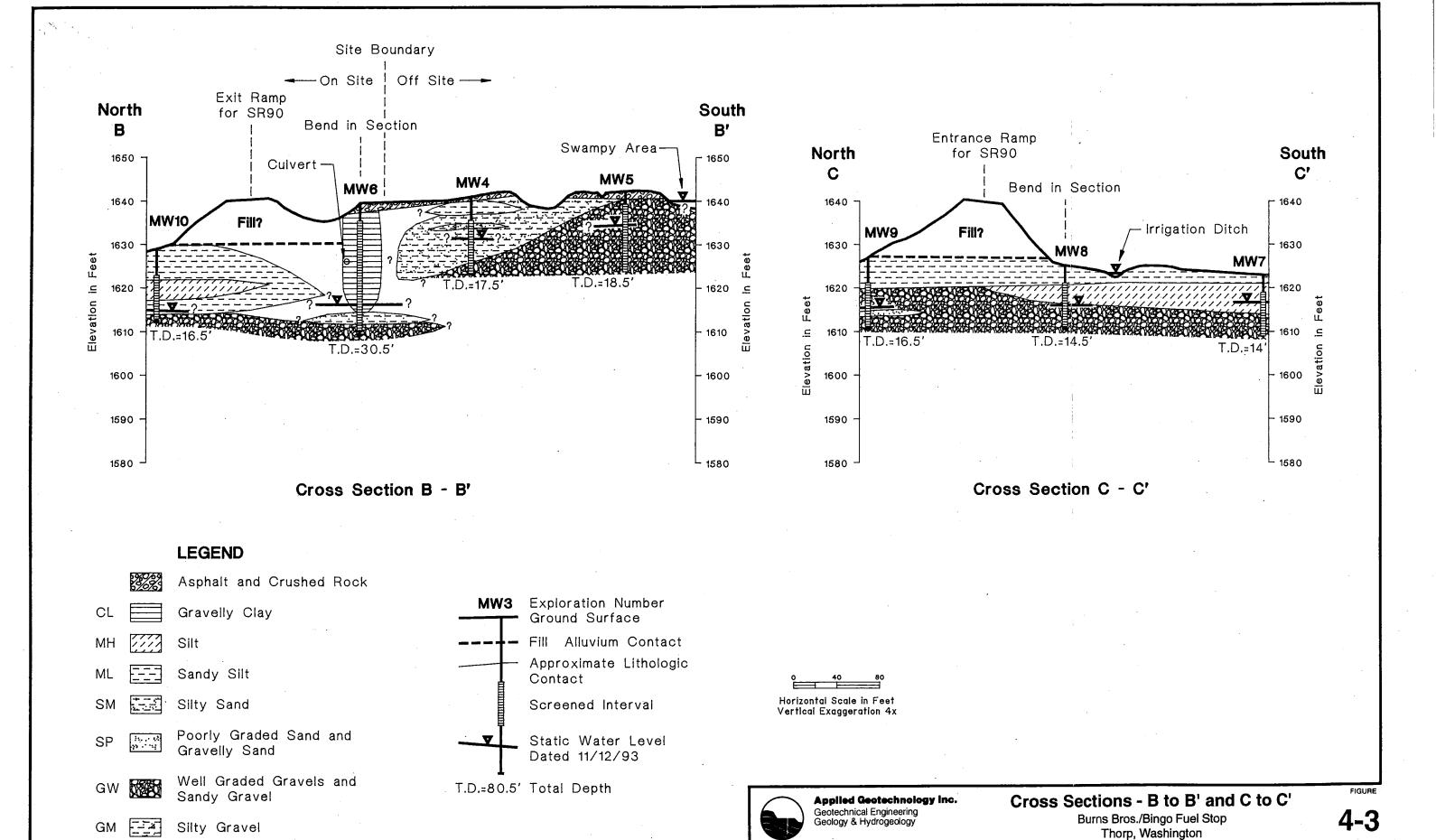
APPROVED PPB


REVISED

DATE

LEGEND

4-2


JOB NUMBER DRAWN APPROVED
15,659.001 JFL

DATE 6 Dec. 93

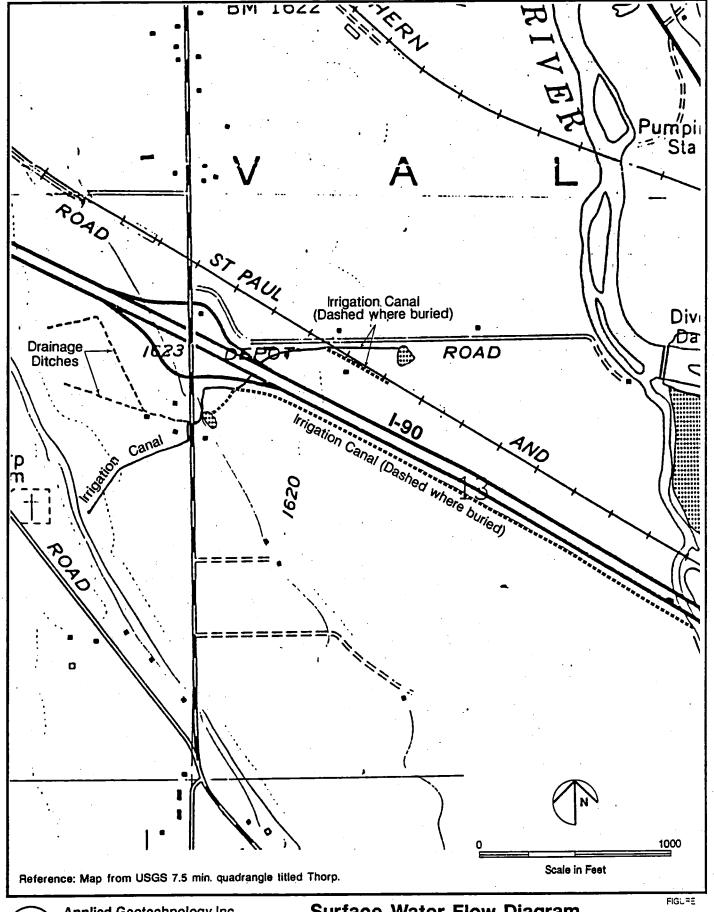
Thorp, Washington

REVISED DAT

8

JOB NUMBER

15,659.001

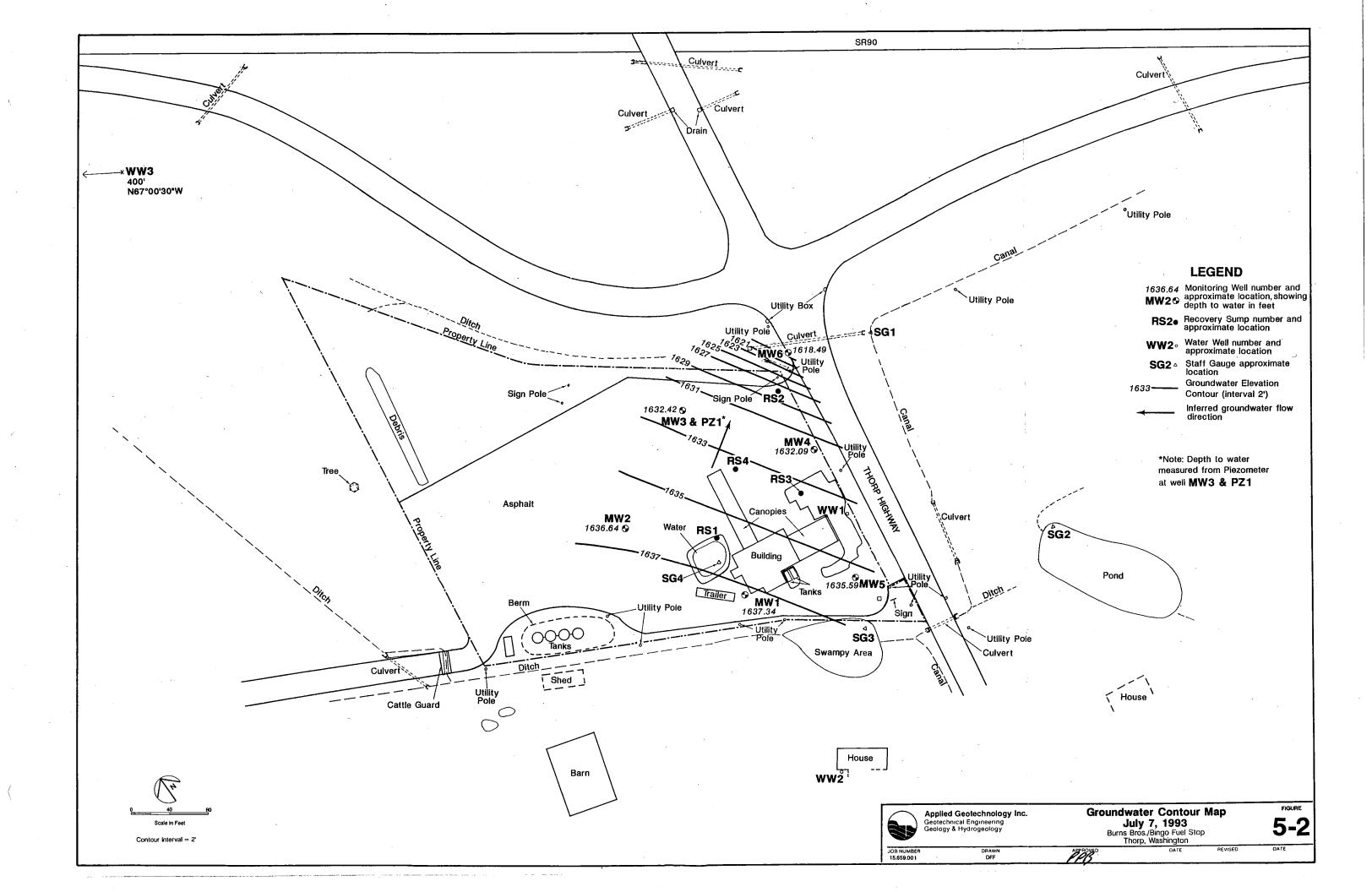

DRAWN

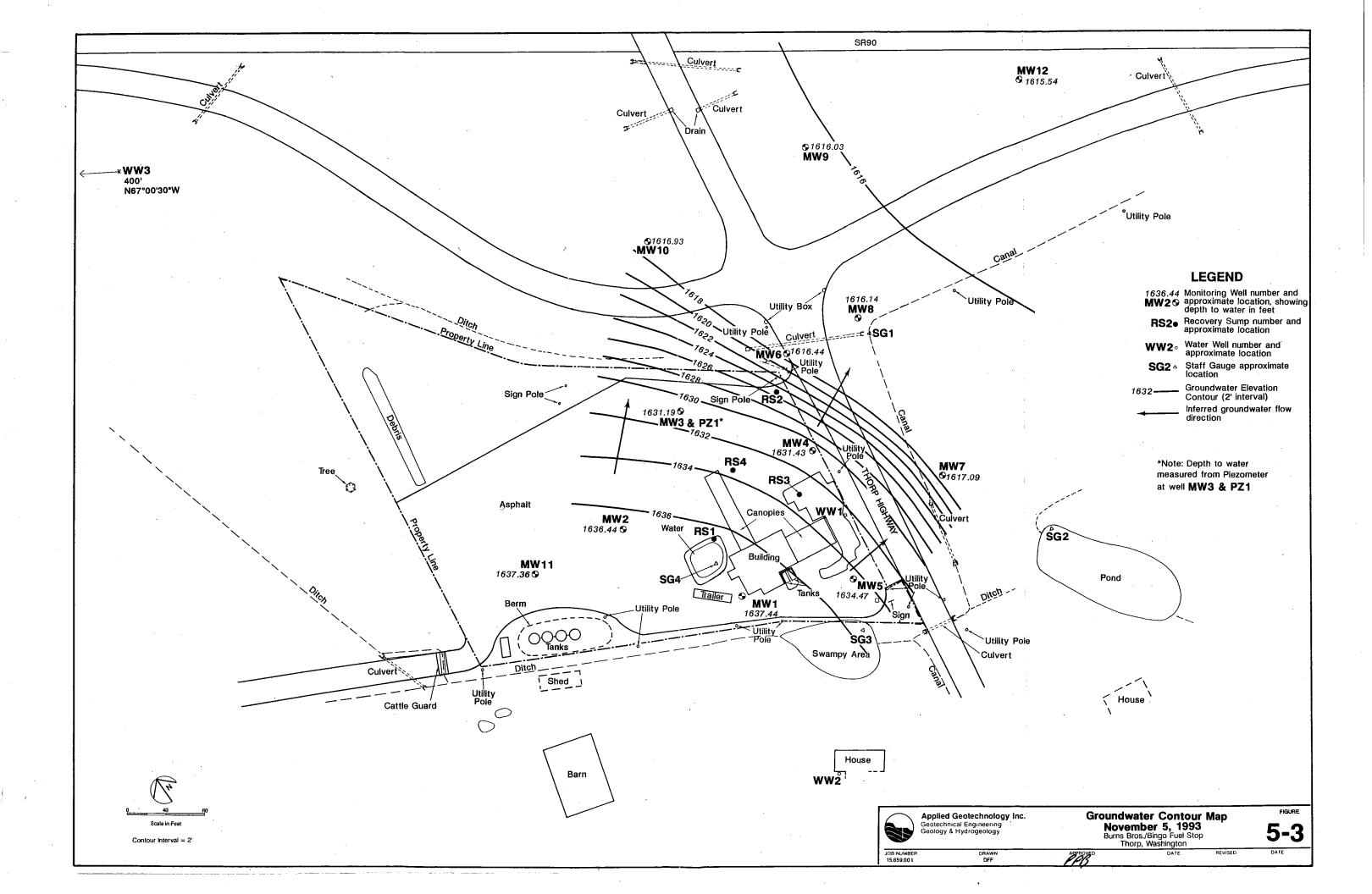
JFL

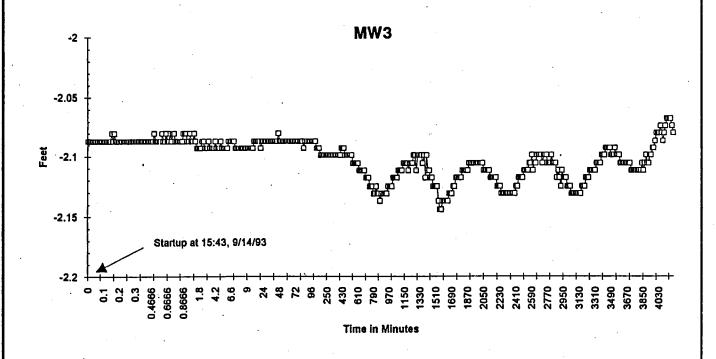
DATE

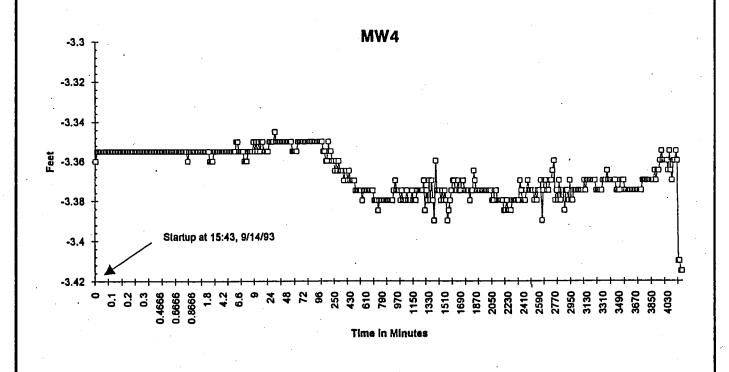
6 Dec. 93

RC






Applied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology **Surface Water Flow Diagram**


Burns Bros./Bingo Fuel Stop Thorp, Washington 5-1

JOB NUMBER DRAWN APPROVED DATE REVISED DATE 15,659.001 DFF 3/31/94

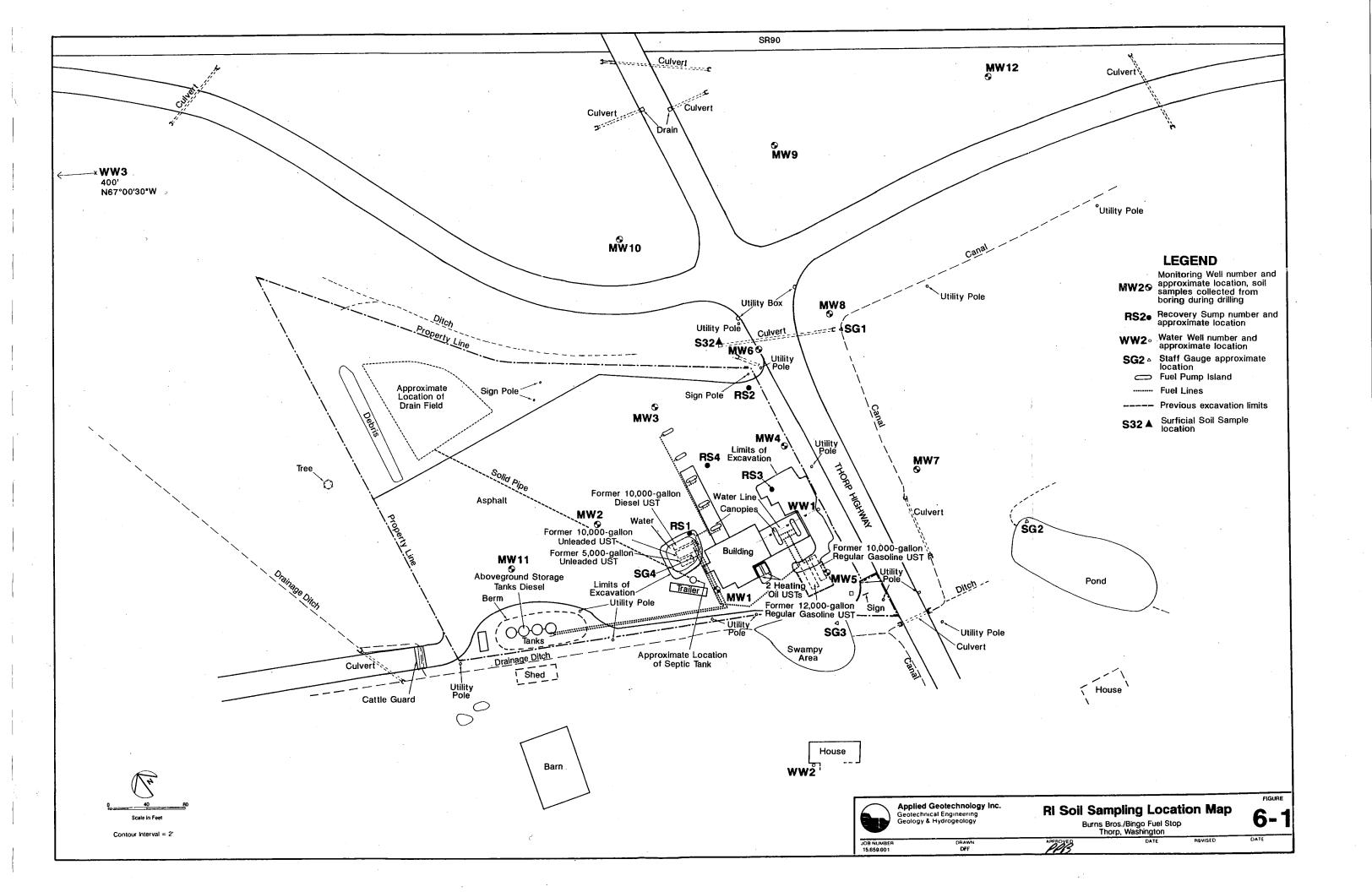
Applied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology

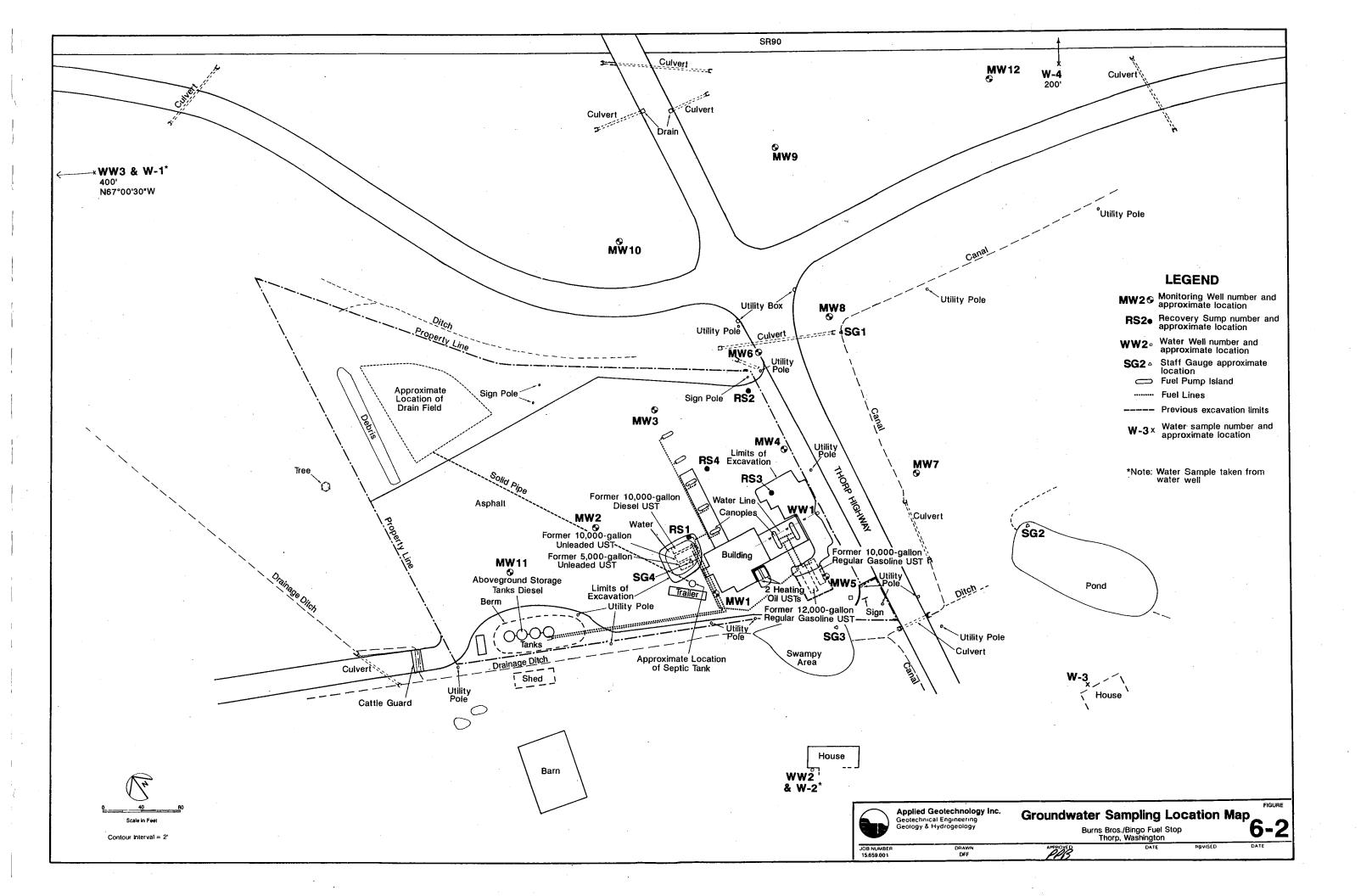
Groundwater Hydrographs MW3 & MW4

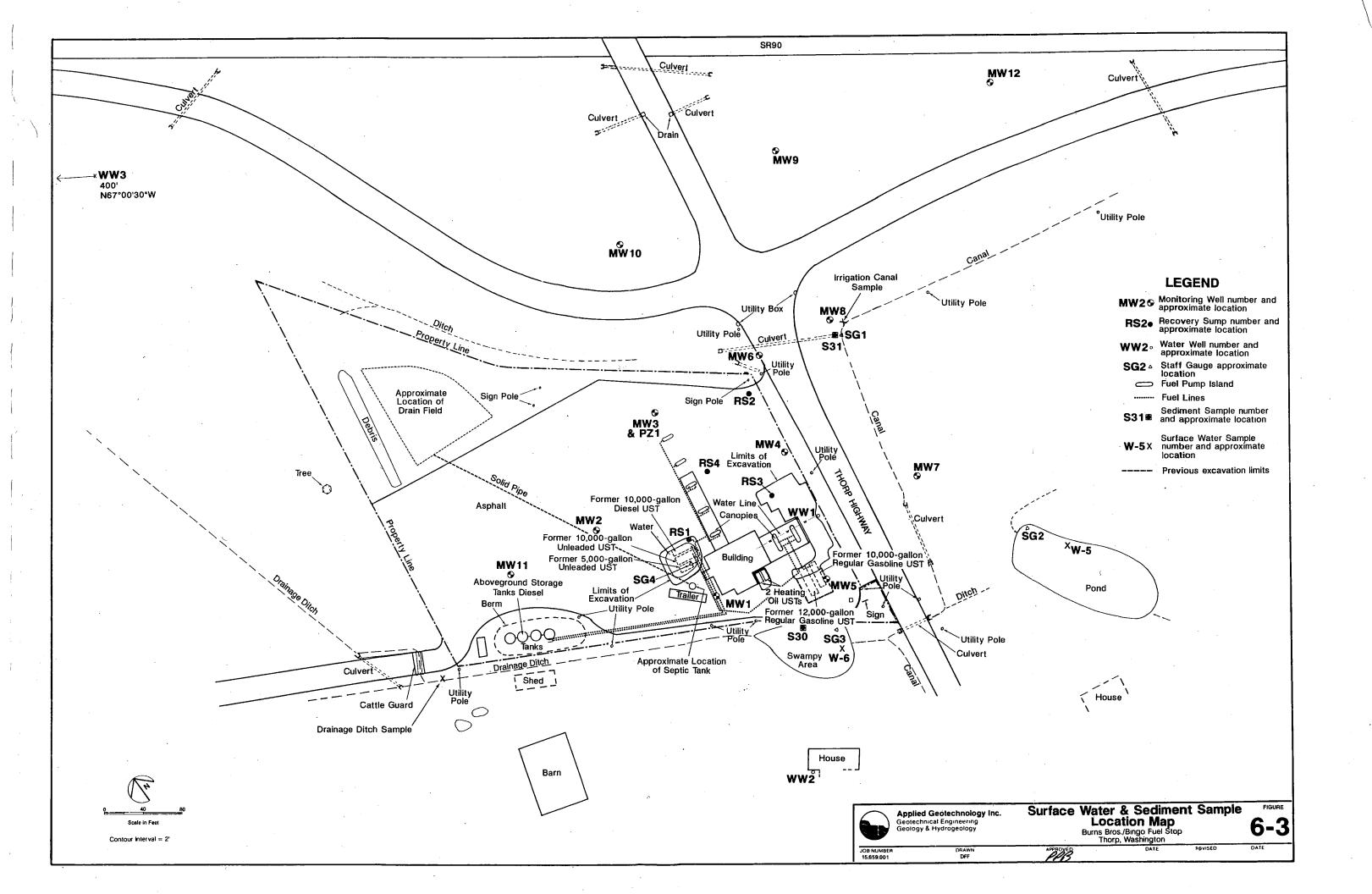
Burns Bros./Bingo Fuel Stop Thorp, Washington

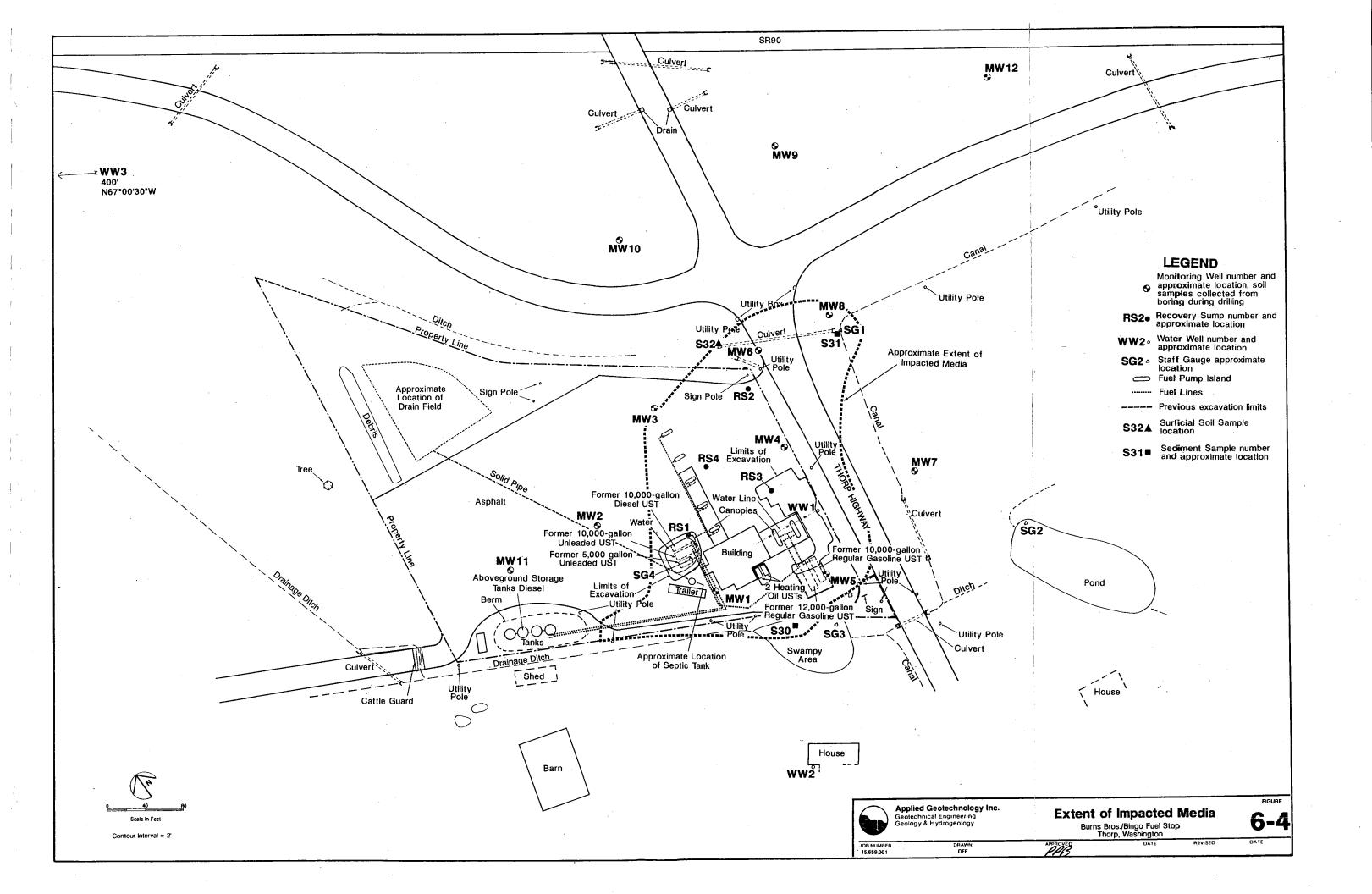
FIGURE

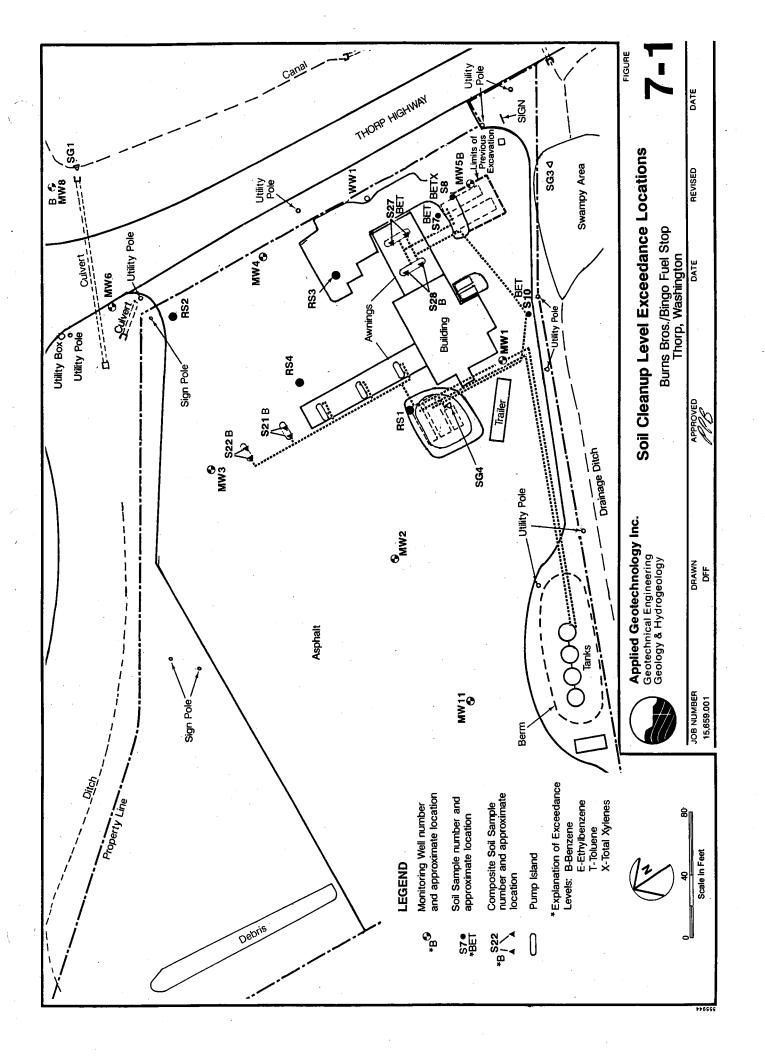
5-4

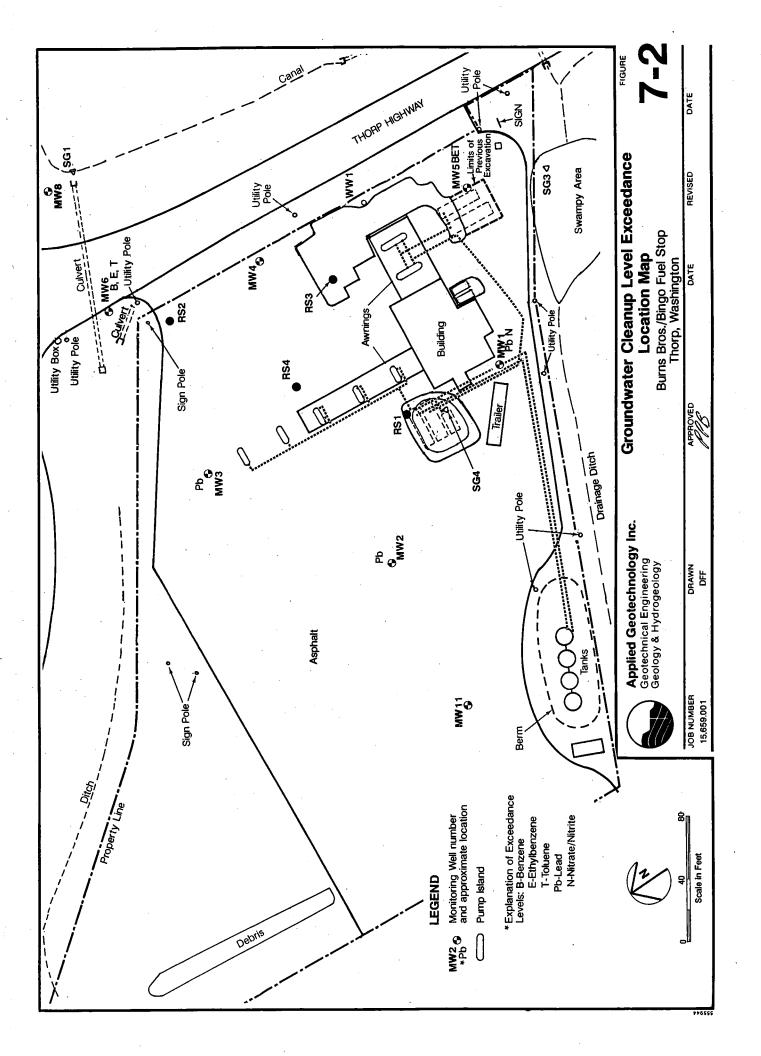

15,659.001


DRAWN DFF


APPROVED


REVISED


DATE



.

\[\]

APPENDIX A

Water Well Reports

WATER WELL REPORT

Application No.

	WASHINGTON Permit No.		
OWNER: Name FRANK TURNER	Address THOOP, WASH.		
LOCATION OF WELL: County Sources			
ng and distance from section or subdivision corner	79		
	(10) WELL LOG:		
PROPOSED USE: Domestic M Industrial Municipal Intrigation Test Well Other	Formation: Describe by color, character, size of materi	al and stru	cture, an
	show thickness of aquifers and the kind and nature of stratum penetrated, with at least one entry for each	the mater	iai in eac
TYPE OF WORK: Owner's number of well (if more than one)	MATERIAL	FROM	TO
New well Method: Dug Bored Deepened Cable Method: Driven Cable Method: D	TOPSOLL-BIRT	0'	10
Reconditioned Rotary Jetted	GRAVEL & COBBLEL ZOUR	10	23/
DIMENSIONS: Diameter of well inches.	SAND) HZL	23'	401
Drilled /// ft. Depth of completed well /// ft.	BROWN CLAY & GRAVE	10'	95
CONSTRUCTION DETAILS:	600	95'	1000
Casing installed: 6 "Diam from 6 tt. to /// tt.	SAND	75	101.
Threaded ft. to ft.	SAND & GNAVEL	107	111
Welded Diam. from ft. to ft.	and a man	7	
Perforations: Yes No X			
Type of perforator used		 	 .
perforations from ft. to ft.	<u></u>	 	<u>:</u>
ft. to ft.		 	<u> </u>
perforations from ft. to ft.		,	
Screens: Yes No 💆			
Manufacturer's Name			
Diam. Slot size from ft. to ft.		-	
Diam Slot size from ft. to ft.		-	
Gravel packed: Yes No M Size of gravel:		 	
Gravel placed from ft. to ft.		<u> </u>	
Surface seal: Yes No No To what depth? 2/ tt.			
Material used in seal BEDTONITE Did any strata contain unusable water? Yes No			
Type of water SURFACE Depth of strata 13-40' Method of sealing strata of CLAY STRATA		ļ	! .———
Method of sealing strata of		-	
PUMP: Manufacturer's Name	7.	 	
Туре: Н.Р		200 300	<u> </u>
		1	
WATER LEVELS: Land-surface elevation above mean sea level			
c level 10 above mean sea level ft.			
c level 10			
above mean sea level			
above mean sea level			10.77
above mean sea level	Work started 3-20- 19 79. Completed:		, 19.77.
above mean sea level			, 19.77
above mean sea level	Work started 3-20- 19 79 Completed:		, 19
above mean sea level	Work started 3-20- 19 79 Completed WELL DRILLER'S STATEMENT:		, 19.77, report i
above mean sea level	Work started 3-20- 19.79. Completed:		, 19.77,
above mean sea level	Work started 3-20- 19 79 Completed WELL DRILLER'S STATEMENT: This well was drilled under my jurisdiction true to the best of my knowledge and belief.		
above mean sea level	Work started 3-20- 19.79. Completed:	and this	
above mean sea level	Work started 3-20	and this	
above mean sea level. ft. below top of well Date 420-79 sian pressure lbs. per square inch Date. Artesian water is controlled by (Cap, valve, etc.) WELL TESTS: Drawdown is amount water level is lowered below static level a pump test made? Yes No H yes, by whom? i: gal./min. with ft. drawdown after hrs. """ """ """ """ """ """ """	Work started 3-20- 19 79 Completed WELL DRILLER'S STATEMENT: This well was drilled under my jurisdiction true to the best of my knowledge and belief. NAME (Person, firm, or corporation) Address 7 A Box 24 (Signed)	and this	
above mean sea level. ft. below top of well Date \$\frac{1}{2}\top-77\$ sian pressure	Work started 3-20- 19.79. Completed:	and this	
above mean sea level	Work started 3-20- 19 79 Completed WELL DRILLER'S STATEMENT: This well was drilled under my jurisdiction true to the best of my knowledge and belief. NAME (Person, firm, or corporation) Address 7 A Box 24 (Signed)	and this	

File Original and First Copy with criment of Ecology

et al Copy — Owner's Copy

Copy — Driller's Copy

WATER WELL REPORT

Application No.

Copy — Driller's Copy STATE OF	WASHINGTON Permit No	/
OWNER: Name LLOYD HATFIELD	Address THORD LEPOT KOAD - HOR	
OCATION OF WELL: County KITTITAS	-541 45 E 4 Sec/1 T/8	n., r/7Ew.m
and distance from section or subdivision corner		
PROPOSED USE: Domestic & Industrial Municipal	(10) WELL LOG:	
Irrigation Test Well Other	Formation: Describe by color, character, size of material an show thickness of aquifers and the kind and nature of the stratum penetrated, with at least one entry for each chan	material in each
TYPE OF WORK: Owner's number of well (if more than one)		ROM TO
New well ☐ Method: Dug ☐ Bored ☐ Deepened ☐ Cable ☑ Driven ☐ Reconditioned ☐ Rotary ☐ Jetted ☐	BROWN DIRTHROCK	0' 7'
DIMENSIONS: 2' STICK-UP biameter of well binches.	TARAVEL 7	11 22
Drilled3/ft. Depth of completed well3/ft.	GRAVEL-SOMEHIO	2Z 30'
CONSTRUCTION DETAILS: Casing installed: 6 "Diam. from tt. to 3/ ft. Threaded "Diam. from ft. to ft. Welded "Diam. from ft. to ft.	STANAUSI-COTS OF HOD 3	30' 3/
Perforations: Yes □ No ★ Type of perforator used		
Screens: Yes No Manufacturer's Name Model No Mo		
Gravel placed from ft. to ft. Surface seal: Yes Not To what depth? ft. Material used in seal DENTENTE Did any strata contain unusable water? Yes No X Type of water? Depth of strata Method of sealing strata off.		
PUMP: Manufacturer's Name		
Type: H.P.		
WATER LEVELS: Land-surface elevation above mean sea level		
Artesian water is controlled by(Cap, valve, etc.)		
Sundana to approximate level to		
WELL IESIS. lowered below static level	Work started 1-25 - 19.79 Completed 1-34	<u> </u>
pump test made? Yes No If yes, by whom?	WELL DRILLER'S STATEMENT:	•
9 n n	This well was drilled under my jurisdiction and	d this report i
	true to the best of my knowledge and belief.	•
ery data (time taken as zero when pump turned off) (water level easured from well top to water level) e Water Level Time Water Level Time Water Level	NAME (Person, firm, or corporation) (Type	pe or print)
	Address S.T. 4 BOX 24 Foller	15B1126
ate of test /-30-79 test/47 gal/min. with 0 ft. drawdown after	[Signed] (Well Driller)	
an flowg.p.m. Dateerature of water Was a chemical analysis made? Yes No	License No. C. T.C. Date Z-4	//
	SHEETS IF NECESSARY)	-

WATER WELL REPORT

Start Card No. 1703

STATE OF WASHINGTON

Oni	
	1,
Water Dight Permit No.	1

	OWNER: Name Bouns Brothers	Address		
(1)	OWNER: Name 130 un () n of Le 6			
	LOCATION OF WELL: County Kittitas	NW SE 1 Sec 2 T. 18 N	, <u>R_/Z_</u> w.м.	
2a)	74.40	High way 14		
·		(10) WELL LOG OF ABANDONMENT PROCEDURE DE	ECRIPTION	
(3)	Irrigation			
_	☐ DeWater Test Well ☐ Other ☐	Formation: Describe by color, character, size of material and structhickness of aquifers and the kind and nature of the material in each structure.	iture, and show itum penetrated.	
4)	TYPE OF WORK: Owner's number of well (If more than one)	with at least one entry for each change of information.		
	Abandoned New well & Method: Dug Bored	MATERIAL FROM		
	Deepened 🗀 Cable 🗔 Driven 🗔	Overbunden C		
	Reconditioned 🗆 Rotary 🕱 Jetted 🗆	Doract	290	
. 5)		quavel 60	270	
	Drilled 290 feet. Depth of completed well 290 ft.		- 	
6)	CONSTRUCTION DETAILS:		- · · -	
-,	Casing installed: 6 Diam. from 72 ft. to 280 ft.			
	Welded ✓ Diam. from ft. to ft. Liner installed ✓ Diam. from ft. to ft. Threaded ✓ Diam. from ft. to ft.			
	Perforations: Yes No S			
	SIZE of perforations in. by in.			
	perforations fromtt. tott.		i	
	perforations fromft. toft.		1	
	perforations fromft. toft.			
	Screens: Yes No X	And the second s		
	Manufacturer's Name		<u> </u>	
	Type Model No	and the second of the second o		
	Diam. Slot size from ft. to ft.			
	Diamft. toft.			
	Gravel packed: Yes No Size of gravel			
	and the second s			
	Surface seal: Yes No No To what depth? 20 ft.			
	Material used in seel Benonite			
٠	Did any strata contain unusable water? Yes No		<u>i</u>	
	Type of water?Depth of strata		_ !	
	Method of sealing strata off			
7)	PUMP: Manufacturer's Name			
	Type:H.P			
(8)	WATER LEVELS: Land-surface elevation above mean sea level ft.			
•	Static level 50 ft. below top of well Date			
	Artesian pressurelbs. per square inch Date			
	Artesian water is controlled by(Cap, valve, etc.))	1/= 7/2 Cara 1		
31	WELL TESTS: Drawdown is amount water level is lowered below static level	Work started, 19. Completed	. 19	
	Was a pump test made? Yes No If yes, by whom?	WELL CONSTRUCTOR CERTIFICATION:		
	Yield: gal./min. with ft. drawdown after hrs.	I constructed and/or accept responsibility for construction	n of this well	
	0 0	and its compliance with all Washington well constructi	on standards.	
_	0 0 0 0	Materials used and the information reported above are tri knowledge and belief.	ue to my best	
	Recovery data (time taken as zero when pump turned off) (water level measured from well top to weter level)	kilowiedge alid ballat.		
	Time Water Level Time Water Level Time Water Level	NAME American Duilling		
			PE OR PRINT)	
		Address Po Box 398 Che C	Lun	
		11 1 1 1		
	Date of test	(Signed) Manual License No.	741	
	Bailer test gal./min. with ft. drawdown after hrs.	(Signed) (WELL DRILLER) Contractor's		
	Airtest 40 gal./min. with stem set at 280 ft. for 1 hrs.	Registration ()	. 3-9	
	Artesian flow g.p.m. Date	No. AMVICE TO Date 4	, 19 <u>_</u> 0_ (
	Temperature of water Was a chemical analysis made? Yes No 💹	(USE ADDITIONAL SHEETS IF NECESSARY	')	

WATER WELL REPORT STATE OF WASHINGTON

		14-77141
Application	No.	G4-21141

3

Permit No. ...

1	OWNER: Name Puget Power and Light	Address ELLENSbary		
,	CATION OF WELL: County K, H, +A, 5	_ E 14 NE1 Sec 14 T 1	IN., RI	.7 w.m.
ear	ing and distance from section or subdivision corner		R	/ -
2	PROPOSED USE: Domestic I Industrial I Municipal I	(10) WELL LOG:		9
	Irrigation Test Well Other	Formation: Describe by color, character, size of material show thickness of aquifers and the kind and nature of the stratum penetrated, with at least one entry for each characteristics.		
4	TYPE OF WORK: Owner's number of well (if more than one)	MATERIAL	FROM	то
	New weil Method: Dug Bored Deepened Cable Driven	Pirt		10
	Deepened ☐ Cable ☐ Driven ☐ Reconditioned ☐ Rotary ☑ Jetted ☐		10	135
_	DIMENSIONS: Diameter of well inches.	CEMENT GRAVEL - COBBLES	10	730
5,	DIMENSIONS: Diameter of well inches. Drilled	SANDSTONE	135	150
6	CONSTRUCTION DETAILS:	CEMENT GRAVE	150	130
	Casing installed: rt. to ft. to ft.		19.7	205
	Threaded "" Diam. from ft. to ft. welded Threaded Threaded	MEDILLA BASAH	180	-215
		SANDSTONE Brown	205	170
	Perforations: yes □ No 🗹	<u> </u>		-
	Type of perforator used in. by in.	C-AY SANDSTONE	270	330
	perforations from ft. to ft.	1290M		ļ
	perforations from ft. to ft			-
	perforations from	BrownsANdstone	330	350
	Screens: Yes No 🗹	2591M		
	Manufacturer's Name		 	
	Diam Slot size from from ft. to ft.			
	Diam. Slot size from ft. to ft.			
	Gravel packed: Yes No 🗹 Size of gravel:] 	
	Gravei placed from ft. to ft.	- TRABIVE		<u>-</u> !
	Surface seal: Yes No To what depth? 7.5 ft.	Magazini III	 	
	Material used in seal BENONITE	101 -11 9 1986	 	
	Did any strata contain unusable water? Yes No Type of water? Depth of strata	111 331 5	†	
	Method of sealing strata off	A ESCUCY		
		DEPARTMENT OF ECOLOGY	↓	
(PUMP: Manufacturer's Name		 	
	Total curion playation		 	
('n,	WATER LEVELS. above mean sea level		 	
S	ic levelft. below top of well Date			
APU	Artesian water is controlled by(Cap, valve, etc.)			
_	to the level de		<u> </u>	<u> </u>
(.	WELL TESTS: Drawdown is amount water level is lowered below static level	Work started 6 - 7 19.86 Completed 6	<u>-/></u>	19.86
	s a pump test made? Yes No If yes, by whom?	WELL DRILLER'S STATEMENT:		
Ā.	d: gal./min. with ft. drawdown after his.	This well was drilled under my jurisdiction	and this	s report is
		true to the best of my knowledge and belief.		
Red	overy data (time taken as zero when pump turned off) (water level measured from well top to water level) ime Water Level Time Water Level Time Water Level	NAME Bach Dailling Co- (Person, firm, or corporation)	(Type or	print)
	Date of test		,	
Ba	ler test 25 gal/min. with ft. drawdown after hrs	1		_
- د	esian flow	1 - 3 2 2 - Data 62 -	-/2	, 19.86
-	Was a chemical adalysis made; les 🔲 No C	• ;		

F	Original and First Copy with
D	artment of Ecology
Sti	and Copy — Owner's Copy
Th	ird Copy — Driller's Copy

WATER WELL REPORT STATE OF WASHINGTON

Application	No.	
•		/ -
Permit No.		

OWNER: Name Irwin Loucks, Porothy	Address Rt, 1 Box 255 Thor,	<u>, E</u>	
OCATION OF WELL: County Kittas	_ NE 14 NU 14 Sec 13 T.	SN., R.4.	7w.m.
ring and distance from section or subdivision corner			
PROPOSED USE: Domestic F Industrial Municipal	(10) WELL LOG:		
Irrigation Test Well Other	Formation: Describe by color, character, size of materia show thickness of aquifers and the kind and nature of stratum penetrated, with at least one entry for each continuous c		
TYPE OF WORK: Owner's number of well (if more than one)	MATERIAL	FROM	TO
New well Method: Dug Bored Despend Cable Driven □	cobblES - GrAVE	- 6	15
Deepened ☐ Cable ☐ Driven ☐ Reconditioned ☐ Rotary ☐ Jetted ☐	CEMENT GRAVEL	15	190
	Clay - Saudstone MIXEd	190	250
Drilled 280 ft. Depth of completed well 280 ft.	SAUdSTONE with water	250	280
CONSTRUCTION DETAILS:			
Casing installed: 6 " Diam. from 6 ft. to 200 ft.			
Threaded Diam. from ft. to ft.			
Welded Diam. from ft, to ft.			!
Perforations: Yes D No D		 -	 -
Type of perforator used		 	
SIZE of perforations in. by in.			<u> </u>
perforations from ft. to ft			
perforations from ft. to ft.			
		$\dot{+}$	
Screens: Yes No Manufacturer's Name			<u> </u>
Manufacturer's Name		 	
Diam Slot size from ft. to ft.			
Diam. Slot size from ft. to ft.	-		
Gravel packed: Yes No Size of gravel:ft.			
Surface seal: Yes W No D To what depth? 25 ft.			<u> </u>
Material used in seal			<u> </u>
Type of water? Depth of strata			!
Method of sealing strata off	DEOEM/EN-		
7) PUMP: Manufacturer's Name			
Type:		 -	 -
	SEP 1		
WATER LEVELS: Land-surface elevation above mean sea level			
atic level 5.5 ft. below top of well Date	DEPARTMENT OF ELECTION		†
tesian pressurelbs. per square inch Date	CENTRAL HEGION		
Artesian water is controlled by(Cap, valve, etc.)			
Drawdown is amount water level is lowered below static level	Work started 7-1, 19.86. Completed	7 - 2	19.8.6
as a pump test made? Yes No If yes, by whom?		<u>·</u>	
eld: gal./min. with ft. drawdown after hrs.	WELL DRILLER'S STATEMENT:		
	This well was drilled under my jurisdictio true to the best of my knowledge and belief.	n and thi	s report 19
n n n	true to the best of my knowledge and benefit		
ecovery data (time taken as zero when pump turned off) (water level measured from well top to water level)	WAR BACK DOLLING CO.		
Time Water Level Time Water Level Time Water Level	NAME BACK DA, 11, 24 Co. (Person, firm, or corporation)	(Type or	print)
	Address Rt. 5, Box 1010, EL	ENSE	urg
		100000000000000000000000000000000000000	7
	[Signed] Nilse Back		
Date of test	[Signed] (Well Driller)	·••••	
-torion flow	7.7	8	1080
emperature of water	License No2.2	¥	, 13
	1	•	

APPENDIX B

Field Investigation Procedures

APPENDIX B

Field Investigation Procedures

DRILLING

Groundwater monitoring well borings were drilled by Holt Drilling of Puyallup, Washington using two different drilling techniques. A Speed Star SD 300 air rotary drill rig equipped with an 8-inch inside-diameter steel casing was used to drill MW1 through MW6. A Mobil B-61 drill rig equipped with a 4- and 6-inch inside-diameter hollow-stem auger was used to drill MW7 through MW12. The drilling method used for each boring is shown on Table 3-1. All borings were continuously monitored by an AGI representative who carefully logged the exploration, examined and classified the materials and contaminants encountered, obtained representative soil samples, and directed field operations.

SOIL SAMPLING

Soil samples were obtained by driving a Dames and Moore split-barrel sampler into undisturbed soil ahead of the drill casing. Samples to be submitted for chemical analysis were placed in laboratory-approved glass jars; other grab samples were stored in plastic, resealable bags.

Organic vapor concentrations in sample headspace were measured with an organic vapor meter (OVM) Model 580A, equipped with a photoionization detector (PID). This instrument measures vapor concentrations in parts per million (ppm). Results from the odor and the organic vapor monitoring are recorded on the soil boring logs in Appendix C. The OVM calibration was checked daily using a 100 ppm isobutylene gas.

Soil samples selected for chemical analysis were stored with frozen Blue Ice during field activities and hand delivered to Analytical Technologies, Inc. (ATI) in Renton, Washington.

MONITORING WELL INSTALLATION

The monitoring wells were installed by Holt Drilling immediately after completion of drilling. The general procedure used for well construction is described below. Minor departures from prescribed construction techniques were occasionally required. As-built well construction diagrams are presented in Appendix C.

Monitoring Well Installation for Borings Drilled by Air Rotary Method (MW1 through MW6)

The well screen and blank PVC sections were joined together at land surface and lowered through the steel casing. PVC well casing was 4-inch-diameter flush-threaded Schedule 40 PVC pipe. Screens were 10 to 25 feet in length of 0.020-inch-wide milled slots. Bottom caps were flush threaded; top caps where slip on, except for MW3 which was flush threaded; and all caps were 4-inch-diameter.

- The annulus between the steel and PVC well casing was backfilled with silica sand or equivalent, bentonite chips, and concrete surface seal, as described below. MW3 was also filled with cement grout with bentonite powder due to the length of annulus space which had to be filled. The depth to the top of backfill materials within the annulus was measured frequently with a tape to maintain control of the well construction and prevent overfilling the steel casing.
- The annulus surrounding the slotted well screen was backfilled using silica sand (No. 10-20). The sand was placed in 2 to 3-foot lifts as the steel casing was withdrawn. Sand was placed from land surface at a controlled rate to avoid bridging. This method minimized the potential for native materials collapsing into the boring and possibly plugging the well screen slots.
- After the annulus surrounding the slotted portion of the well casing was backfilled, the hole was sealed from possible surface water contamination with a bentonite chip seal at least 2 feet thick, except for MW1 and MW5 where the seal was 1.5 feet thick.
- ▶ Flush-mounted monument cases were installed over the PVC well casing. Monuments were set in fresh concrete.
- ▶ A permanent mark or notch was made on the north side of the top of the PVC well casing, which served as the point from which all water level measurements were made.
- ▶ The boring drilled to install MW3 was also used to install a shallow piezometer (PZ1). A 1-inch-diameter Schedule 40 PVC pipe with a 11.5-foot length of hand-slotted screen section was installed at 18 feet bgs in the boring for MW3.

Monitoring Well Installation for Borings Drilled by Hollow Stem Auger Method (MW7 through MW12)

- Five completed boreholes (MW8 through MW12) were backfilled to achieve the desired base depth for the PVC screen. Silica sand (No. 10-20) was used as backfill below the well casings. The backfill depth was generally 0.5 foot.
- The well screen and blank section were joined together at land surface and lowered through the hollow auger stem. Well casing was 2- or 4-inch-diameter, flush-threaded Schedule 40 PVC pipe. Screens were 10-foot lengths of 0.020-inch-wide milled slots, except for MW11 which had a 13-foot length screen. Bottom caps were flush-threaded, except for MW11 which had a bottom slip cap secured to the PVC screen by stainless steel screws. All well top caps were slip on.
- ▶ Wells were backfilled with silica sand or equivalent, bentonite chips, and concrete surface seal, as described below. The depth to the top of backfill materials within the annulus was measured frequently with a steel tape to maintain control of the well construction and prevent overfilling the hollow-stem auger casing.

- The annulus surrounding the slotted well screen was backfilled using silica sand (No. 10-20). The sand was placed in 2 to 3-foot lifts as the auger was withdrawn. Sand was placed from land surface at a controlled rate to avoid bridging. This method minimized the potential for native materials collapsing into the boring and possibly plugging the well screen slots.
- ▶ After the annulus surrounding the slotted portion of the well casing was backfilled, the hole was sealed from possible surface water contamination with a bentonite chip seal at least 2 feet thick, except for MW7 where the seal was 1 foot thick.
- A flush-mounted monument case was installed over the PVC well casing for MW11. Five-foot-long steel surface casings were installed over the PVC well casing for MW7 through MW10 and MW12. The steel surface casings and the monument were set in fresh concrete.
- ▶ A permanent mark or notch was made on the north side of the top of the well casing, which served as a point from which all water level measurements were made.

WELL DEVELOPMENT

The 4-inch monitoring wells were developed by swabbing and bailing using a 4-inch-diameter PVC swab block equipped with a rubber gasket and a 3-inch PVC bailer. The 2-inch monitoring wells were developed by bailing using a 2-inch stainless steel bailer. Equipment used in well development activities was decontaminated prior to placement in each well in accordance with the procedures outlined in this appendix. Wells were bailed until the turbidity of the discharge water stabilized and the water was relatively sediment-free. Indicator parameters including pH, conductivity, and temperature were measured and recorded to assure stabilization before completion of development. The pH meter was calibrated daily to pH of 4.00 and 7.00, before being used to check the pH parameter.

VERTICAL ELEVATION SURVEY

The top of the PVC casings for monitoring wells MW1 through MW6 were surveyed by graduate students from Portland State University when they were developing the topographic and plan view map for the site. They used a standard disk number U245.1944 as a reference benchmark which has a known elevation of 1,637.484 feet.

The top of the casings for MW7 through MW12 were surveyed in by representatives of AGI using known surveyed elevations from the top of MW1 and MW6 well casings.

GROUNDWATER SAMPLING

Prior to purging wells for sampling, depth to groundwater was measured to the nearest 0.01 foot using a SINCO electronic water level indicator. Wells were purged using decontaminated stainless steel or PVC bailers lowered by a nylon or stainless steel cord. A minimum of three well casing volumes were extracted prior to sampling at all wells except MW3. Purge water was dispensed into the bioreactor which is actively treating groundwater on the site.

Indicator parameters including pH, conductivity, and temperature were measured and recorded to assure stabilization while purging wells prior to sampling. This procedure allowed us to verify the collection of samples representative of *in situ* groundwater conditions.

Groundwater samples were collected with stainless steel bailers immediately after purging. Samples were then discharged directly from the bailer to the sample container. Sample odor and appearance were noted and recorded during sample collection.

SAMPLE CONTROL/PROJECT RECORDS

A careful record of field activities and observations was maintained by an AGI field representative. Records were maintained on the following forms:

- ▶ Daily Field Investigation Report
- ▶ Field Log of Boring
- ▶ Soil Sample Record
- ▶ Groundwater Monitor Well Development Record
- ▶ Groundwater Sample Record

Sample control was maintained by careful labeling and following chain-of-custody procedures. Each sample container was labeled identifying sample contents with the following information:

- ▶ Project name
- ▶ Sample identification
- Analysis to be performed
- Date and time of collection

Chain of Custody records accompanied shipment of all samples to the laboratory.

DECONTAMINATION PROCEDURES

All drilling equipment was decontaminated with a high-pressure steam cleaner prior to drilling the first boring, between subsequent borings, and after completing the final boring.

All equipment used for soil and water sample collection and groundwater purging was decontaminated before each sampling event in the following sequence:

- ▶ Potable water rinse
- ▶ Alconox soap and potable water wash
- ▶ Distilled water rinse
- ▶ Isopropyl alcohol rinse
- ▶ Distilled water rinse
- ▶ HNO, rinse
- ▶ Distilled water rinse

SOIL CUTTINGS DISPOSAL

Borehole soil cuttings were placed on the soil treatment area at the site where soil excavated during the removal of the USTs is undergoing remediation by Solid Phase techniques.

QUALITY CONTROL

Quality control (QC) for this sampling round included collection of rinsates and duplicate samples. Specifically, these samples included:

- ▶ A rinsate from soil and groundwater sampling equipment.
- ▶ Groundwater and soil sample duplicates.
- One trip blank was provided by ATI (analytical laboratory) with each ice chest containing samples to be analyzed for volatile organic compounds, benzene, ethylbenzene, toluene, and total xylenes (BETX).

AQUIFER TESTING

MW3 Testing

Testing: Two tests were performed at the deep completion (MW3) screened in the lower hydrostratigraphic unit. Results of these tests are thus assumed to reflect hydraulic conditions of the lower zone. The first test, conducted July 14, was performed to determine aquifer and well discharge capabilities. Based on results of this test, a constant rate of approximately 1 gallon per minute (gpm) was used for the second test. The latter test was performed July 14 and 15 upon near full recovery of the MW3 water level from the effects of the first test. Duration of the second, constant rate test was approximately 900 minutes (15 hours). Wells MW1 through MW6 were used for water level monitoring during the test at MW3.

Results: MW3 drawdown and recovery data are plotted on Plates A-1 and A-2. Total water level drawdown in MW3 during the constant rate test reached 46 feet (46 feet below the static, pre-pumping level). Water table drawdown in neighboring shallow zone wells during the test was minor. These fluctuations appear to be independent of the effect of pumping at MW3 because they continued to decline in most wells until nearly 24 hours after pumping stopped. These declines are therefore not definitively attributable to the groundwater withdrawal at MW3, but rather were likely the effect of external influences such as pumping at nearby off site well(s).

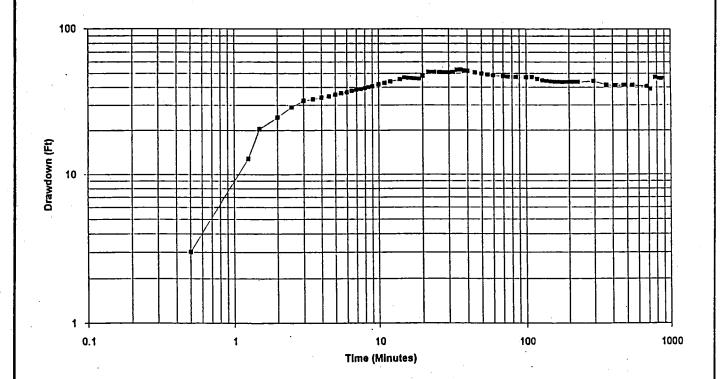
The water level in the pumped well (MW3) recovered to within 0.9 foot of the pre-step-drawdown test water level, and fully recovered from the second test, within 5 hours after pumping stopped. No recovery from pumping was observed in the shallow observation wells. Drawdown data from the pumped well were used to determine a hydraulic conductivity (K) of approximately 10.5 cm/sec for the lower zone.

MW4 Testing

Testing: One test was conducted in the upper hydrostratigraphic zone at MW4 on July 21 and 22, 1993. Duration of this test was 300 minutes (5 hours). Pumping rate for this test was ramped from approximately 1-1/2 to 5 gpm over the 300 minute period of pumping. For the test at MW4, wells MW1 through MW6 were monitored for water level change.

Results: MW4 drawdown and recovery data are plotted on Plates A-3 and A-4. During the test, fluctuations in all observation wells except PZ1, were minor, ranging from 0.03 to 0.05 foot. PZ1 exhibited a 0.3 foot decline. Despite their minor magnitudes, declines observed in the shallow observation wells during the test appear to be attributable to MW4 (upper zone) pumping because most shallow zone wells' water levels recovered to their pre-pumping levels after the test. The water level response in PZ1 is most reliably attributed to this pumping; the PZ1 data were therefore the only drawdown data used besides the pumping well for MW4 aquifer test analysis. Drawdown in the pumped well and drawdown versus distance from the pumped well to PZ1 were used to determine a K of approximately 2 x 10⁻³ cm/sec for the upper zone. Water level change observed in the deep zone well (MW3) during this test appeared to be independent of the shallow zone (MW4) pumping.

Water level recovery in the pumped well (MW4) occurred within approximately one hour after pumping stopped. This water level continued to rise to approximately 0.1 foot above the pre-pumped water level after 3 hours of recovery.


Data Analysis

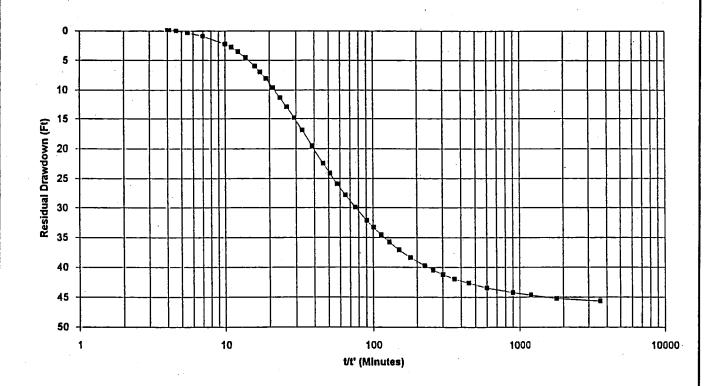
Data analysis was performed using several methods commonly applied to unconfined aquifers. Results from application of methods developed by Jacob, Theis, Lohman, and Thiem-Dupuit were compared. These methods require several assumptions concerning hydraulic characteristics of the aquifer. Specifically, these are:

- ▶ The aquifer has a seemingly infinite areal extent.
- ▶ The aquifer is homogeneous, isotropic, and of uniform thickness over the area influenced by the pumping test.
- ▶ Prior to pumping, the water table is nearly horizontal over the area influenced by the pumping test.
- > The aquifer is pumped at a constant discharge rate.
- > The pumped well penetrates the entire aquifer and thus receives water from the entire thickness of the aquifer by horizontal flow.

For methods that assume unsteady conditions (i.e., drawdown and hydraulic gradient changes with time), additional assumptions include:

- ▶ Water removed from storage is discharged instantaneously with decline of head.
- ▶ The diameter of the pumped well is very small so that storage in the well can be neglected.

Geotechnical Engineering Geology & Hydrogeclogy Water Level Drawdown Test-MW3


Burns Bros./Bingo Fuel Stop Thorp, Washington PLA*E

B1

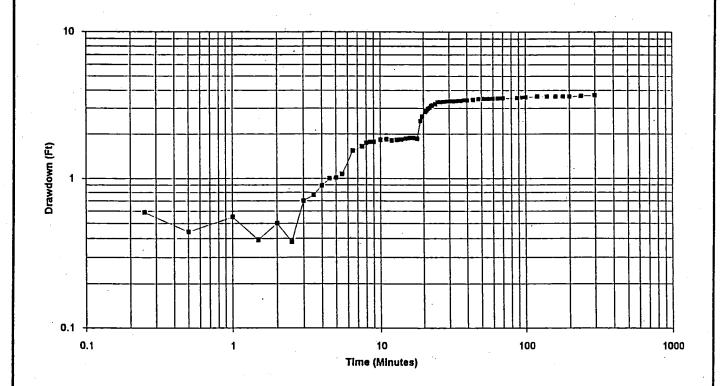
JCB NUMBER 15,659.001 DFF

APPROVED POR

DATE 1 Apr 94 REVISED

Geotechnical Engineering Geology & Hydrogeology

Water Level Recovery Test-MW3


Burns Bros./Bingo Fuel Stop Thorp, Washington

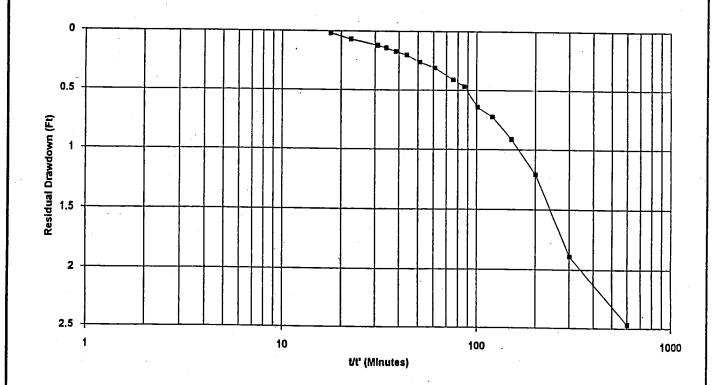
JCB NUMBER 15,659.001 DRAWN DFF

APPROVED

DATE

RE4ISED

Applied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology


Water Level Drawdown Test-MW4

Burns Bros./Bingo Fuel Stop Thorp, Washington

JOB NUMBER 15,659.001 DFF

CAPPROVED

CATE 1 Apr 94 REVISED

Applied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology

Water Level Recovery Test-MW4

Burns Bros./Bingo Fuel Stop Thorp, Washington

JCB NUMBER 15,659.001 DFF

APPROVED PAS

DATE 1 Apr 94 FE. SED

.

.

APPENDIX C

Boring Logs and Well Construction Summaries

	UNIFIED SOIL CLASSIFICATION SYSTEM				
MAJOR DIVISIONS				TYPICAL NAMES	
		CLEAN GRAVELS WITH	GW	0.00	WELL GRADED GRAVELS, GRAVEL-SAND MIXTURES
	GRAVELS MORE THAN HALF	LESS THAN 5% FINES	GP		POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES
COARSE	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH OVER 12% FINES	GM		SILTY GRAVELS. POORLY GRADED GRAVEL-SAND- SILT MIXTURES
GRAINED SOILS			GC		CLAYEY GRAVELS, POORLY GRADED GRAVEL-SAND- CLAY MIXTURES
MORE THAN HALF IS LARGER	SANDS	CLEAN SANDS WITH LESS THAN 5% FINES	sw		WELL GRADED SANDS, GRAVELLY SANDS
THAN NO. 200 SIEVE	MORE THAN HALF		SP		POORLY GRADED SANDS, GRAVELLY SANDS
,	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH OVER 12% FINES	SM		SILTY SANDS, POORLY GRADED SAND-SILT MIXTURES
			တ		CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURES
	SILTS AND CLAYS FINE LIQUID LIMIT LESS THAN 50 GRAINED SOILS		ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS, OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE			CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASITICITY, GRAVELLY CLAYS. SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
GRAINED SOILS			OL		ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50		мн		INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
HALF IS SMALL- ER THAN NO. 200 SIEVE			СН		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
OIL V L			ОН	***	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIG	HLY ORGANIC SO	DILS	PT		PEAT AND OTHER HIGHLY ORGANIC SOILS

	LEGEND		
SAMPLE "Undisturbed" Bulk/Grab Not Recovered Recovered, Not Retained BLOWS/FOOT Hammer is 140 pounds with 30-inch drop, unless otherwise noted S - SPT Sampler (2.0-Inch O.D.) T - Thin Wall Sampler (2.8-Inch Sample) H - Split Barrel Sampler (2.4-Inch Sample)		LABORATORYTESTS Consol - Consolidation LL - Liquid Limit PL - Plastic Limit Gs - Specific Gravity SA - Size Analysis	
		TxS - Triaxial Shear TxP - Triaxial Permeability Perm - Permeability Po - Porosity MD - Moisture/Density DS - Direct Shear	
MOISTURE DESCRIPTION Dry - Considerably less the Moist - Near optimum moistory with the Moist - Over optimum moistory saturated - Below water table, in	VS - Vane Shear Comp - Compaction UU - Unconsolidated, Undraine CU - Consolidated, Undrained CD - Consolidated, Drained		

Soil Classification/Legend

Burns Bros./Bingo Fuel Stop Thorp, Washington PLATE

C1

JOB NUMBER 15,659.001 DRAWN SES APPROVED 6 Dec 93 DATE

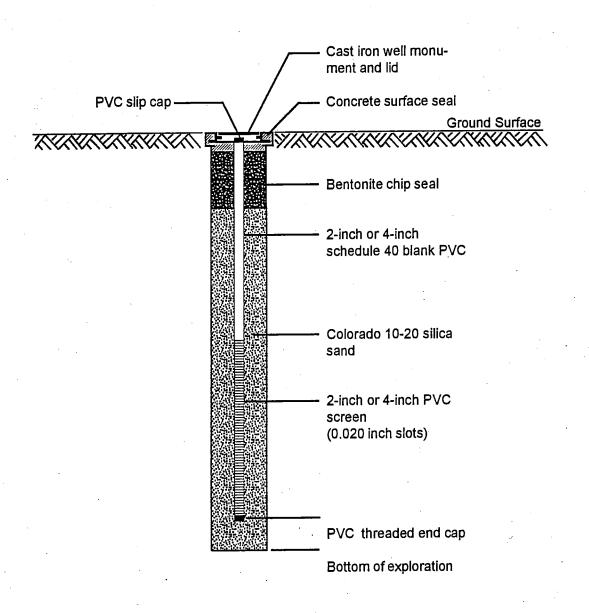
REVISED

DATE 1 Apr 94

Organic Vapor Meter

Concentrations of photoionizable organic gases (e.g., gasoline vapors) in the headspace of soil sample containers were determined in the field with an OVM Air Analyzer and recorded as parts per million (ppm) of petroleum product. The recorded concentrations are only an approximate value for organic gas concentrations in the soil pore spaces (soil gas). Actual values are within the range of \pm 50 to 100%.

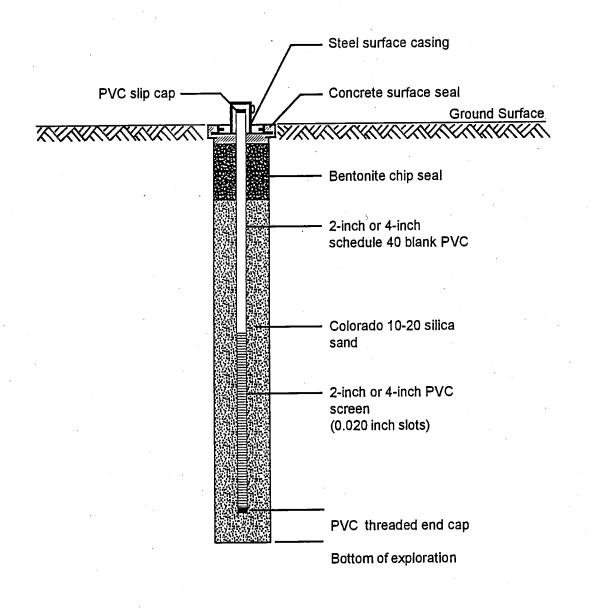
For unsaturated, coarse grained soils such as gravels, it is possible to detect hydrocarbons in the gas phase using an OVM and not in the whole sample using EPA Method 8015M (TPH) or 8020M (BETX). For these samples, the majority of the hydrocarbons are present in the pore space and are present at concentrations too low to detect when the whole sample is analyzed. For saturated samples and for fine grained samples such as silts and clays, a larger percentage of the hydrocarbons are present and adsorbed to the soil particle or dissolved in the pore water. For these samples, detectable OVM readings will correlate well with measured soil concentrations using EPA 8015M or 8020M.



Applied Geotechnology Inc.

Description of Terms

Burns Bros./Bingo Fuel Stop Thorp, Washington PLATE

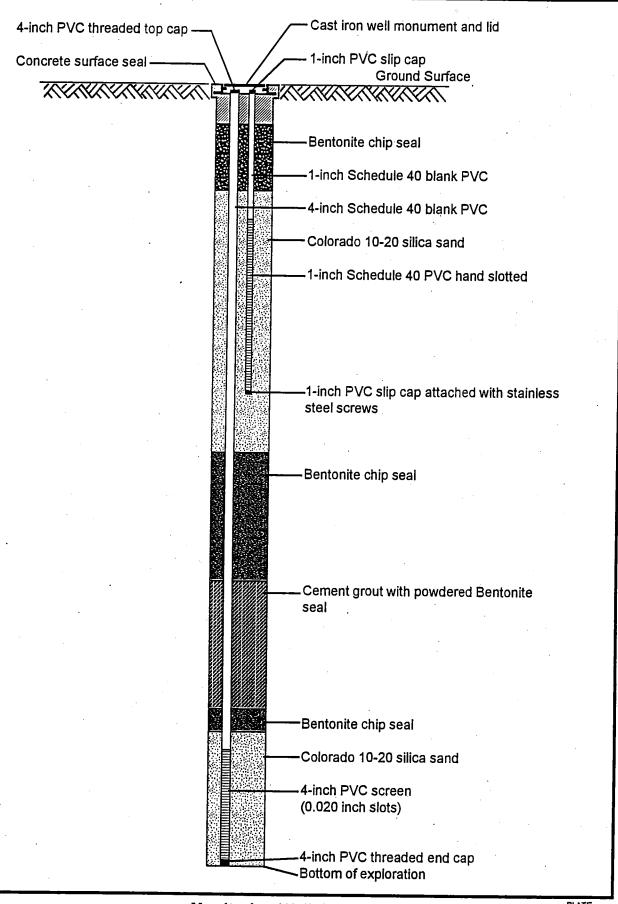

C₂

Monitoring Well Construction for MW1, MW2, MW4, MW5, MW6 and MW11 Burns Bros./Bingo Fuel Stop Thorp, Washington PLATE

C3

Monitoring Well Construction for MW7, MW8, MW9, MW10 and MW12 Burns Bros./Bingo Fuel Stop

Thorp, Washington

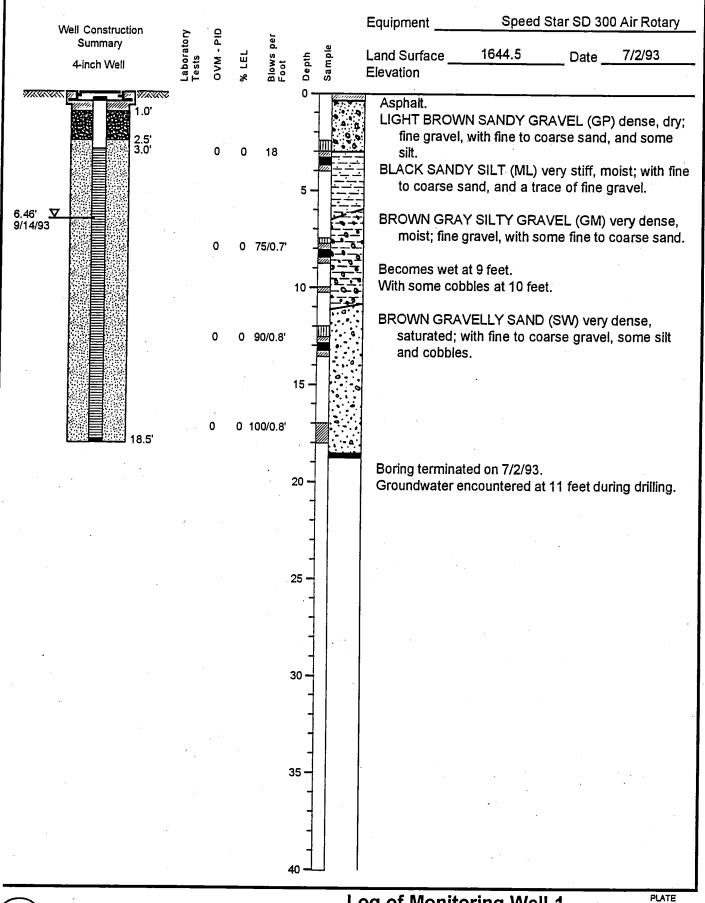

6 Dec 93

DATE

PLATE

DATE

REVISED



Monitoring Well Construction for MW3 and P21

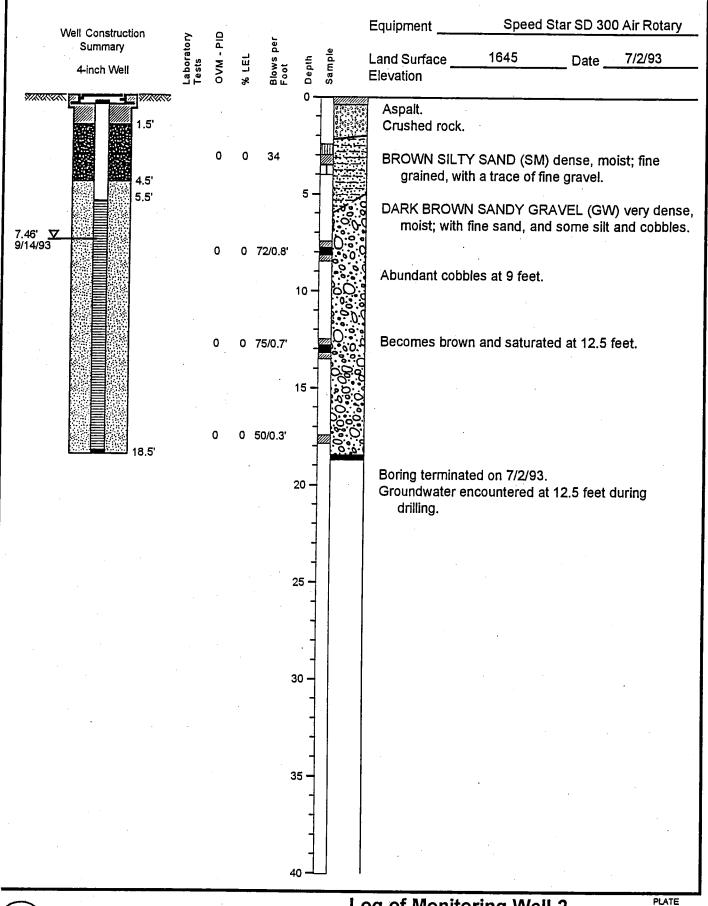
Burns Bros./Bingo Fuel Stop Thorp, Washington

C5

JOB NUMBER DRAWN APPROVED DATE REVISED DATE 15,659,001 KM POR 6 Dec 93

Log of Monitoring Well 1

Burns Bros./Bingo Fuel Stop Thorp, Washington

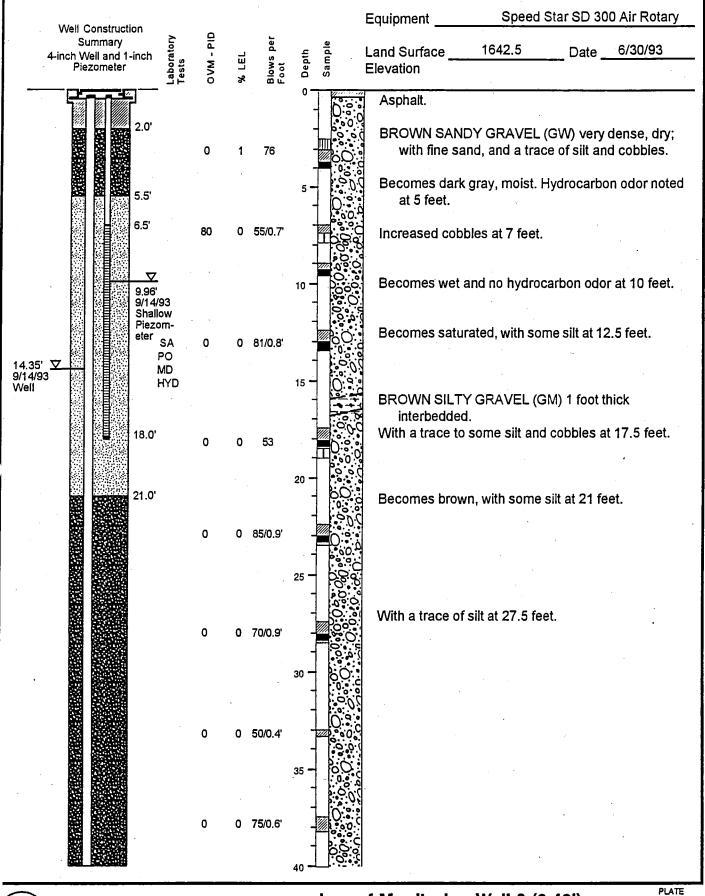

JOB NUMBER 15,659.001

DRAWN SES/KM

APPROVED

DATE 6 Dec 93

REVISED


Log of Monitoring Well 2

Burns Bros./Bingo Fuel Stop Thorp, Washington

JOB NUMBER 15,659,001

DRAWN SES/KM APPROVED

DATE 6 Dec 93 REVISED

Log of Monitoring Well 3 (0-40')

Burns Bros./Bingo Fuel Stop Thorp, Washington PORTE

C8

JOB NUMBER DRAWN APPROVED DATE REVISED DATE 15,659.001 SES 6 Dec 93

Log of Monitoring Well 3 (40-80')

Burns Bros./Bingo Fuel Stop Thorp, Washington

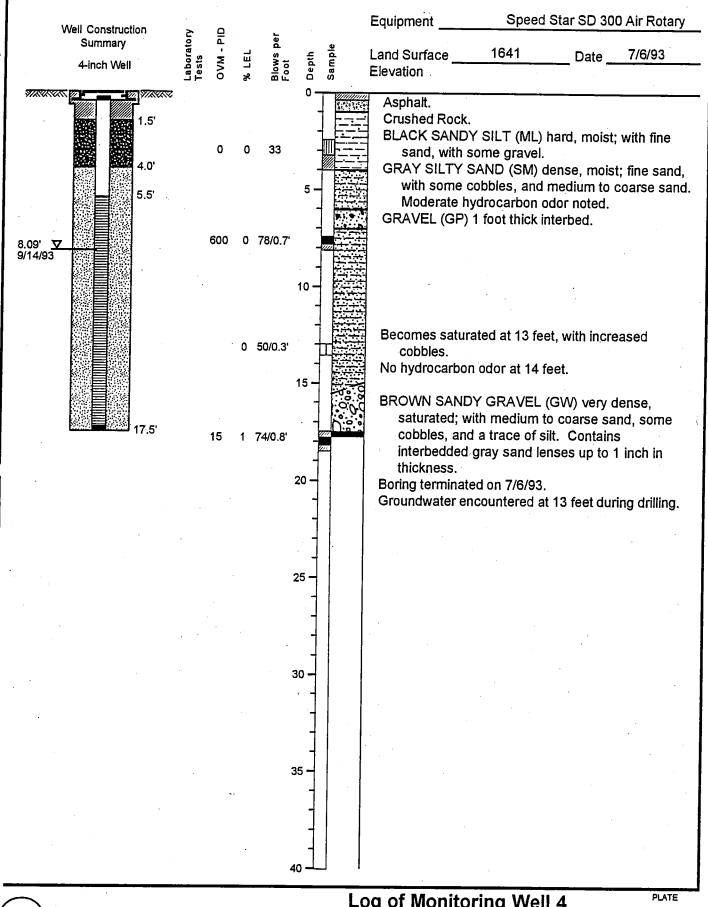
PLATE

JOB NUMBER 15,659.001

DRAWN SES

APPROVED

DATE 6 Dec 93 REVISED

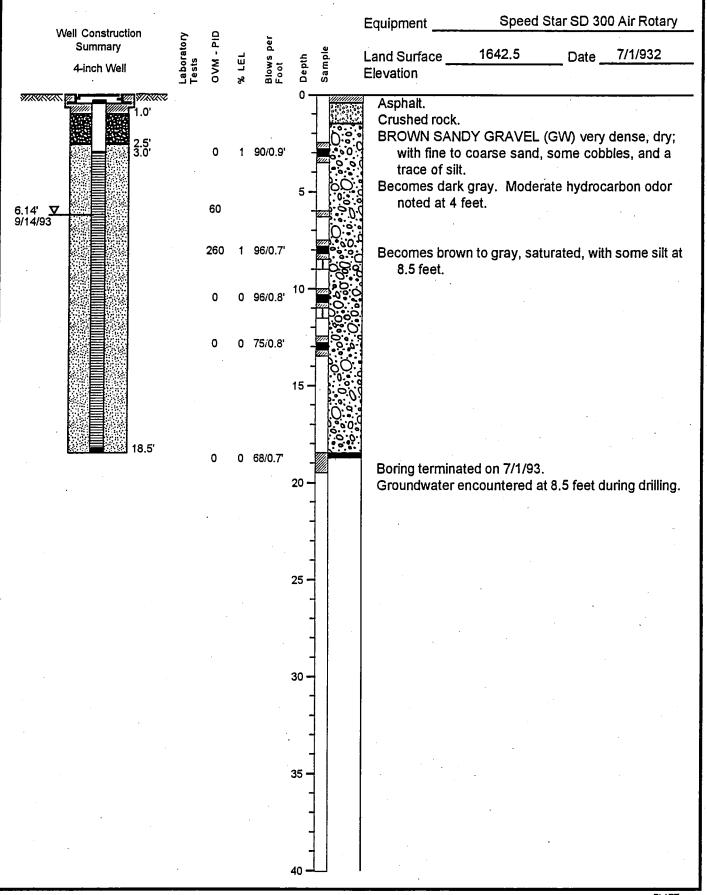

Equipment Speed Star Well Construction OVM - PID Blows per Foot Depth Sample Summary % LEL 1642.5 Land Surface 6/30/93 Date 4-inch Well Elevation Boring terminatd on 6/30/93. Groundwater encountered at 12.3 feet during drilling. 85 90 100 105 110 PLATE

Applied Geotechnology Inc. Log of Monitoring Well 3 (80'-80.9')

Thorp, Washington

APPROVED DATE JOB NUMBER DRAWN REVISED DATE 15,659.001 SES 6 Dec 93

Log of Monitoring Well 4


Burns Bros./Bingo Fuel Stop Thorp, Washington

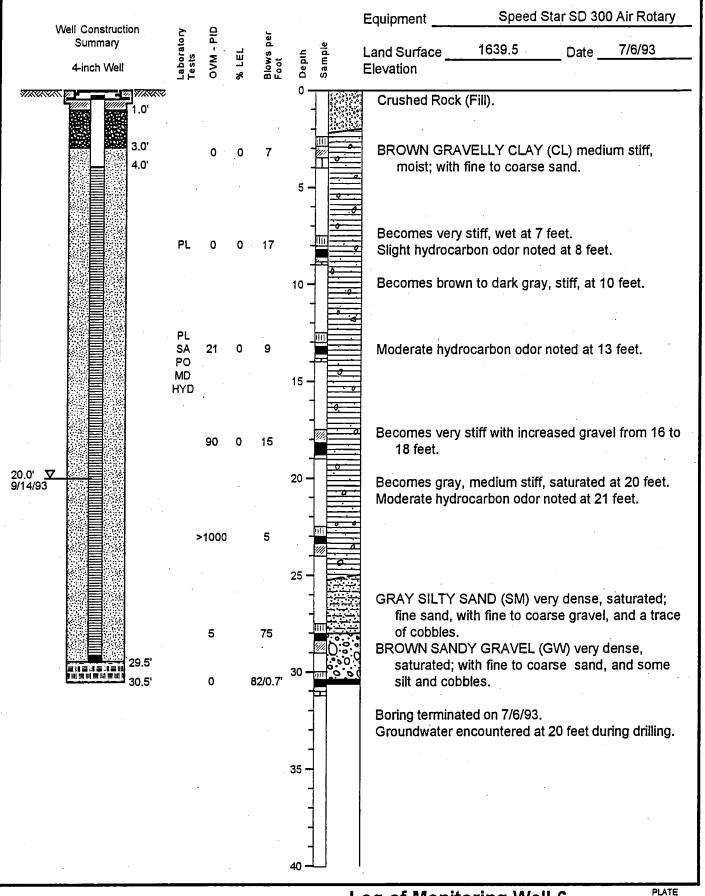
JOB NUMBER 15,659.001

DRAWN SES/KM APPROVED

DATE 6 Dec 93

REVISED

Log of Monitoring Well 5

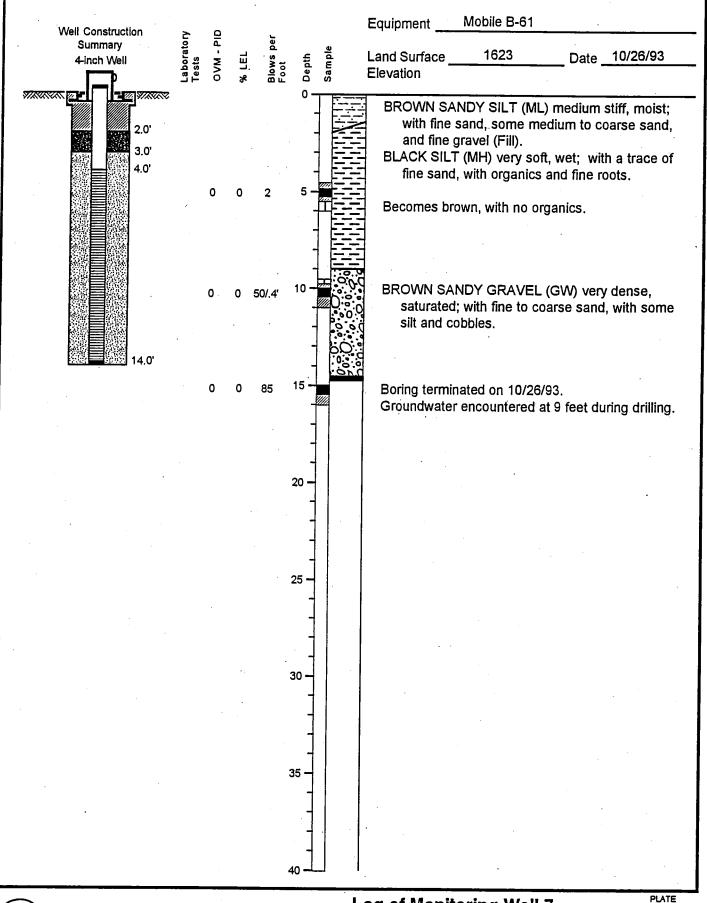

Burns Bros./Bingo Fuel Stop Thorp, Washington PLATE

C₁₂

JOB NUMBER 15,659.001 DRAWN SES/KM APPROVED

DATE 6 Dec 93

REVISED



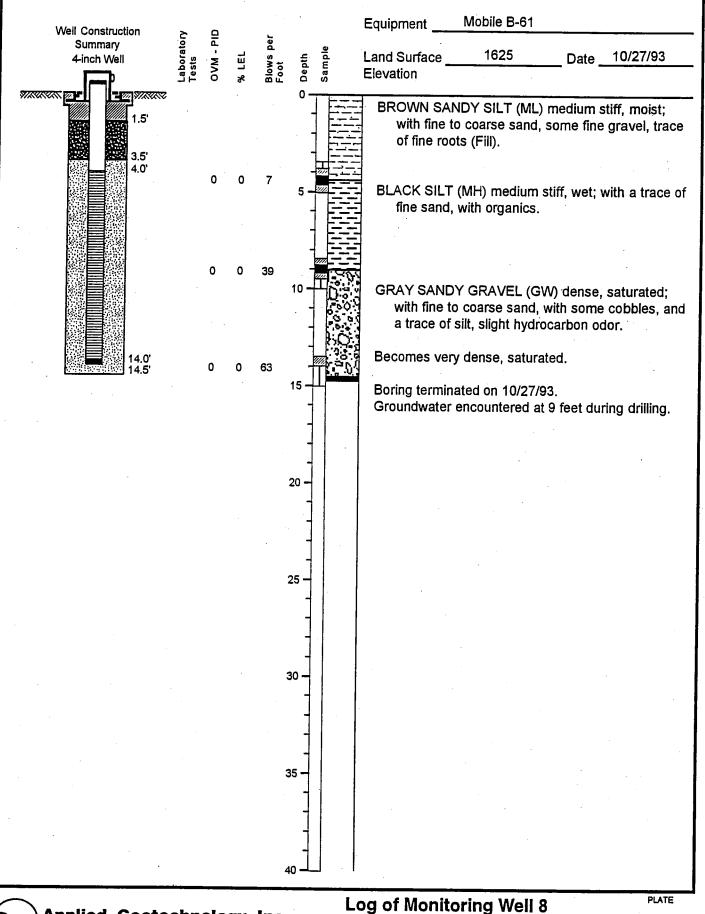
Log of Monitoring Well 6

Burns Bros./Bingo Fuel Stop Thorp, Washington

DRAWN JOB NUMBER 15,659,001 SES/KM APPROVED

DATE 6 Dec 93 REVISED

Log of Monitoring Well 7

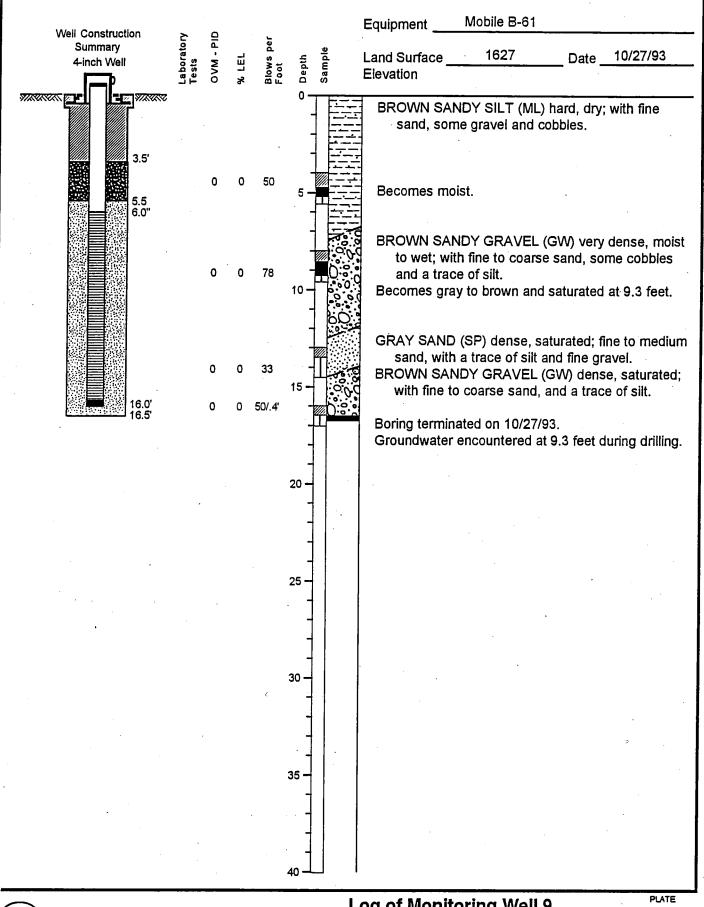

Burns Bros./Bingo Fuel Stop Thorp, Washington

JOB NUMBER 15,659,001

DRAWN SES/KM

DATE 6 Dec 93

REVISED


Burns Bros./Bingo Fuel Stop Thorp, Washington

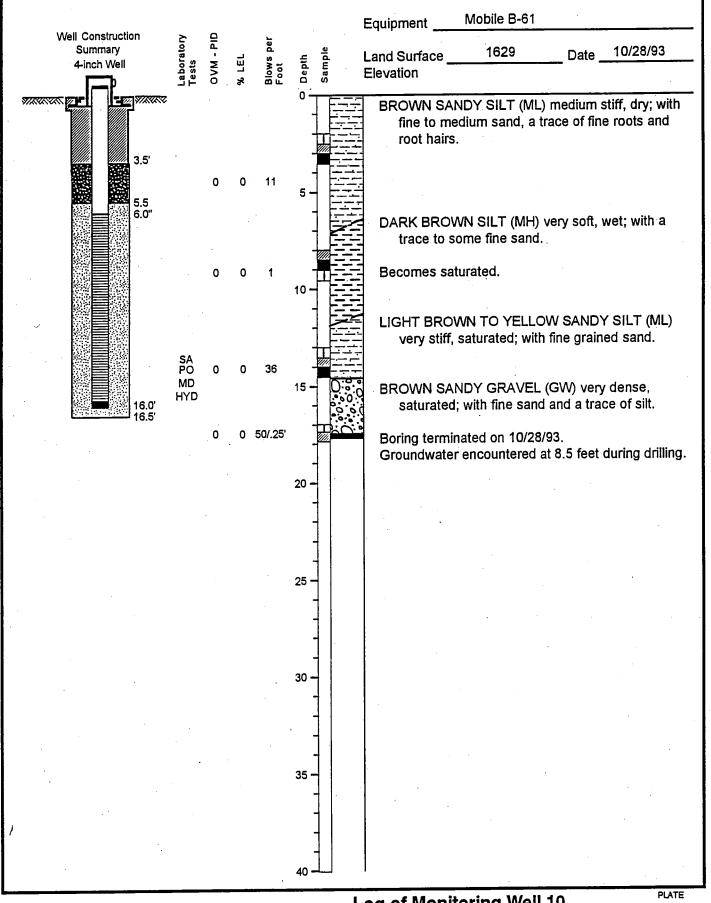
JOB NUMBER 15,659.001

DRAWN SES/KM APPROVED

DATE 6 Dec 93

REVISED

Log of Monitoring Well 9

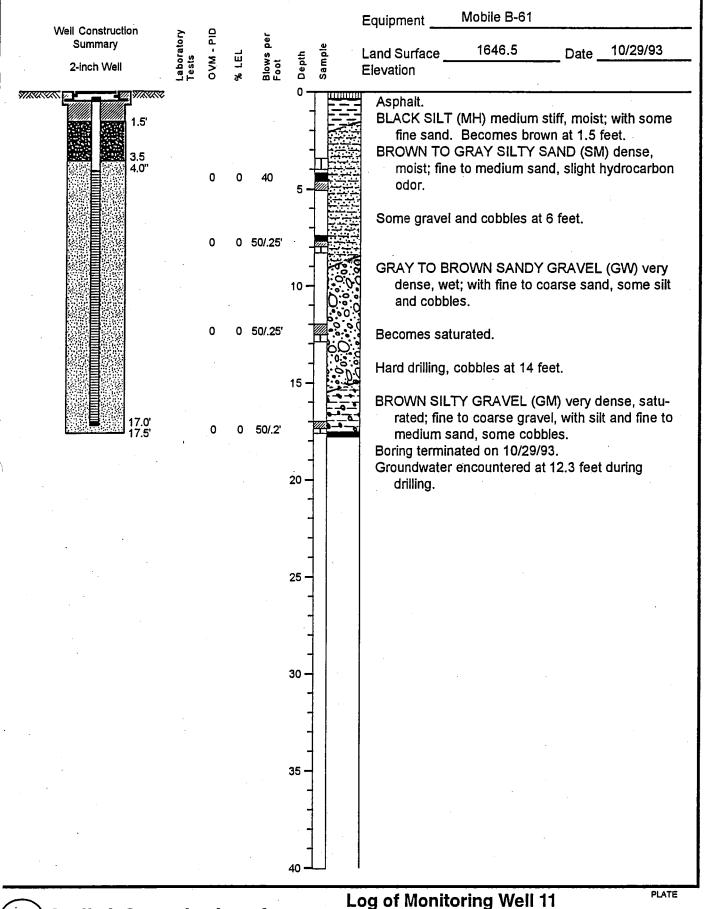

Burns Bros./Bingo Fuel Stop Thorp, Washington

C16

JOB NUMBER 15.659.001

DRAWN SES/KM APPROVED PAR

DATE 6 Dec 93 REVISED

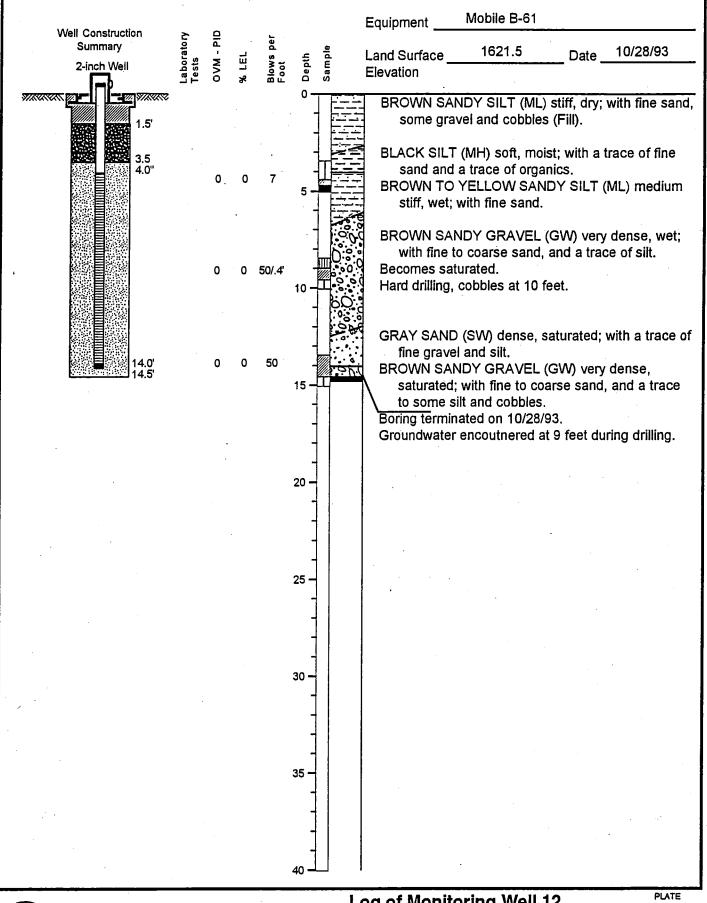

Log of Monitoring Well 10

Burns Bros./Bingo Fuel Stop Thorp, Washington

JOB NUMBER 15,659.001

DRAWN SES/KM APPROVED

DATE 6 Dec 93 REVISED



Burns Bros./Bingo Fuel Stop Thorp, Washington

JOB NUMBER 15,659.001

DRAWN SES/KM APPROVED

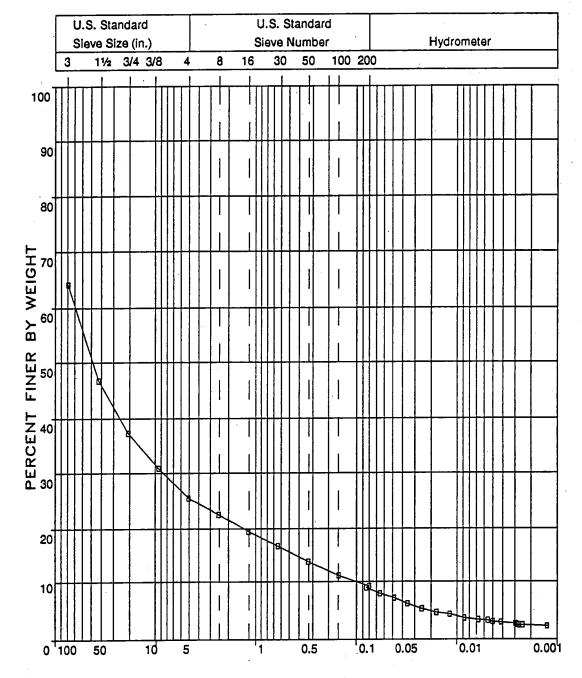
DATE 6 Dec 93 REVISED

Log of Monitoring Well 12

Burns Bros./Bingo Fuel Stop Thorp, Washington

JOB NUMBER 15,659.001

DRAWN SES/KM APPROVED


DATE 6 Dec 93 REVISED

•

{

APPENDIX D

Physical Properties Analyses

COBBLES GRAVEL SAND SILT OF CLAY

Sample Source	Classification			
MW3 @ 13.0 ft.	GRAVEL (GW-GM) with sand and some silt			
_				

Applied Geotechnology Inc.

Geotechnical Engineering Geology & Hydrogeology Particle Size Analysis

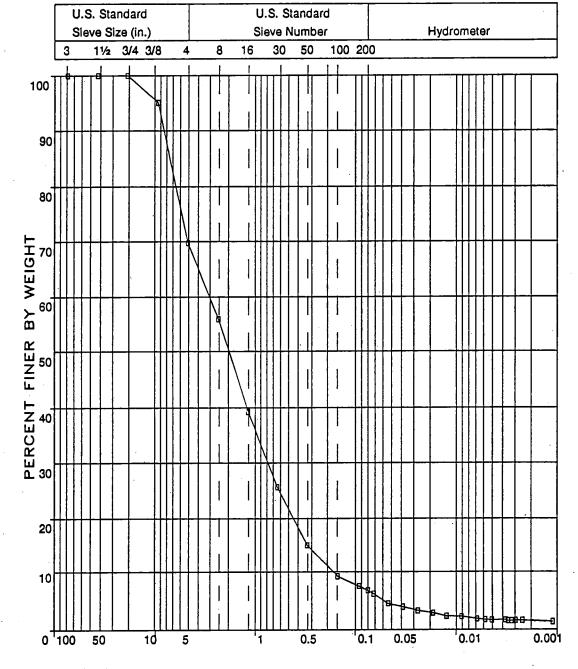
Burns Bros./Bingo Fuel Stop Thorp, Washington PLATE **D1**

JOB NUMBER

DRAWN

APPROVED

DATE


REVISED

DATE

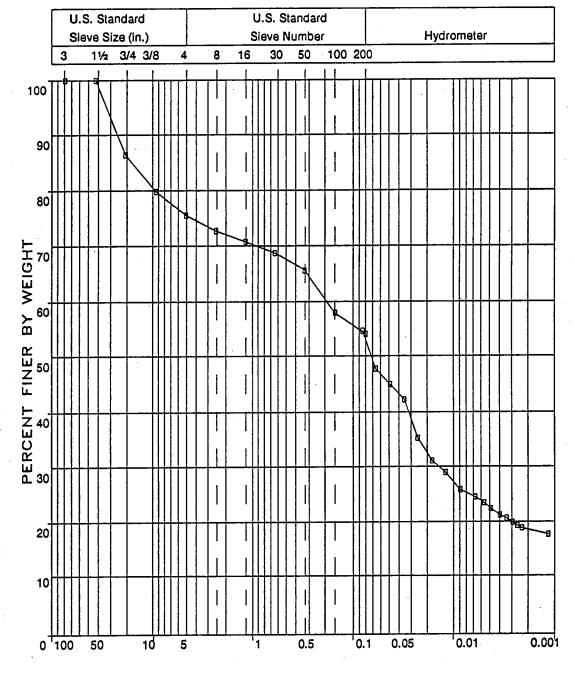
15,659.001

LKM

6 Dec 93

_	COARSE	FINE	CRSE	MEDIUM	FINE	
COBBLES	GRA	VEL		SAND		SILT or CLAY

Sample Source	Classification
MW3 @ 50.0 ft.	SAND (SW-SM) with gravel and some silt
	· ·



Applied Geotechnology Inc.

Geotechnical Engineering Geology & Hydrogeology

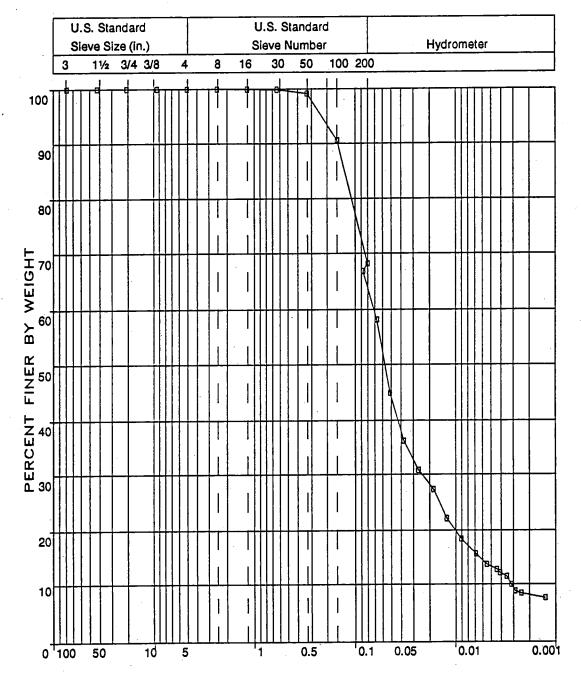
Particle Size Analysis
Burns Bros./Bingo Fuel Stop
Thorp, Washington

PPROVED DATE REVISED DATE DRAWN JCB NUMBER 6 Dec 93 15,659.001 <u>LKM</u>

· -	COARSE	FINE	CRSE	MEDIUM	FINE	
COBBLES	GRA	VEL	<u> </u>	SAND		SILT or CLAY

Sample Source	Classification
MW6 @ 12.5 ft.	GRAVELLY CLAY (CL) with sand

Applied Geotechnology Inc.


Geotechnical Engineering Geology & Hydrogeology

Particle Size Analysis Burns Bros./Bingo Fuel Stop

Thorp, Washington

PLATE

APPROVED GEV-SED DRAWN JCB NUMBER 6 Dec 93 LKM 15,659.001

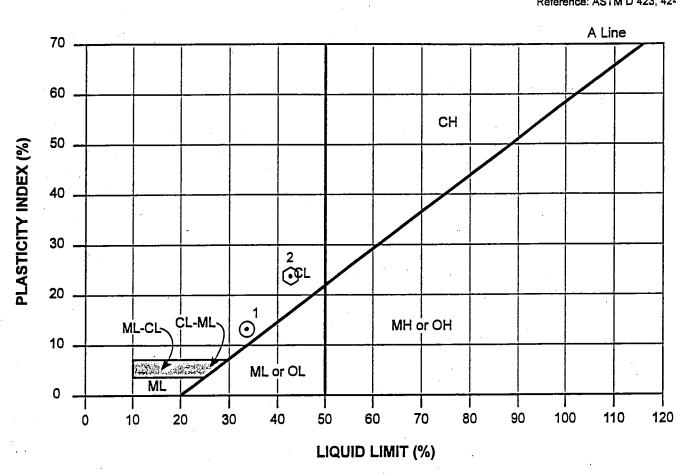
_	COARSE	FINE	CRSE	MEDIUM	FINE	· .
CORRIES	GRA	VEL		SAND		SILT or CLAY

Sample Source	Classification
MW10 @ 13.0 ft.	SANDY SILT (ML)

Applied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology

Particle Size Analysis

Burns Bros./Bingo Fuel Stop Thorp, Washington


PLATE

JCB NUMBER DRAWN 15,659.001 LKM

APPROVED

DATE 6 Dec 93 REV∶SED

Reference: ASTM D 423, 424

Symbol	Source	Classification	Natural M.C. (%)	Liquid Limit (%)	Plasticity Index (%)	% Passing #200 Sieve
O 1	MW6 @ 7.5'	Lean Clay (CL)	17.2	33	13	
○ ²	MW6 @ 12.5'	Lean Clay (CL)	18.3	43	23	
	·	·	:			
	•					
·		·				
			,			

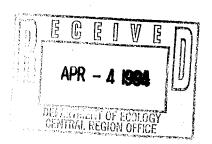
Applied Geotechnology Inc.

Plasticity Chart

Burns Bros./Bingo Fuel Stop Thorp, Washington

PLATE

JOB NUMBER	DRAWN	APPROVED	DATE	REVISED	DATE
15,659.001	LKM	FR3	6 Dec 93		


A Report Prepared For

Burns Bros., Inc. 516 Southeast Morrison, Suite 1200 Portland, Oregon 97214

VOLUME II
LABORATORY REPORTS AND
QUALITY ASSURANCE REPORTS
REMEDIAL INVESTIGATION REPORT
BINGO FUEL STOP
THORP, WASHINGTON
AGI Project No. 15,659.001

APPLIED GEOTECHNOLOGY INC. 300 120th Avenue N.E. Building 4, Suite 215 Bellevue, Washington 98005 206/453-8383

March 31, 1994

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9306-304

Sample No.: MW3 @9.0', MW3 @ 42.5', S30-SWAMPY AREA, S31-EAST CULVERT,

S32-DRAIN BOX

Matrix: Soil

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable.

ANALYTICAL METHODS

<u>Parameter</u>	Technique	Method
BETX	GC/PID	EPA 8020
Fuel Hydrocarbons	GC/FID	EPA 8015 Modified
TPH-Diesel	GC/FID	WTPH-D
Polycyclic Aromatic Hydrocarbons	HPLC/UV/Fluor	EPA 8310
Lead	AA/GF	EPA 7421
Moisture	Gravimetric	CLP SOW ILMO1.0

TIMELINESS

Parameter	Date <u>Sampled</u>	Date Extracted	Date <u>Analyzed</u>	Time Until Extraction	Time Until <u>Analysis</u>
PAHs	6/29/93°	7/02/93	7/06/93	3(14)	4(40)
BETX	6/29/93	7/01/93	7/08/93 ^b	2	9(14)
Fuel Hydrocarbons	6/29/93	7/06/93	7/06/93	7	7(14)
TPH-D	6/29/93	7/02/93	7/03/93°	4(14)	5(30)
Lead	6/29/93	7/06/93	7/09/93	7	10(180)
Moisture	6/29/93	NA	7/01/93	NA	2

NA - Not Applicable; extraction not required.

Numbers in parentheses indicate recommended holding times in days for soil.

All samples were analyzed within recommended holding times for soil.

a - Sample MW3 @ 9.0' was collected 6/28/93.

b - BETX analysis dates were 7/6/93 through 7/8/93.

c - TPH-D analysis dates were 7/2/93 through 7/3/93.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9306-304

Sample No.: MW3 @9.0', MW3 @ 42.5', S30-SWAMPY AREA, S31-EAST CULVERT,

S32-DRAIN BOX

FUEL HYDROCARBON CHROMATOGRAPHY

EPA 8015 Modified: Gasoline (C7 - C12) and diesel (C12 - C24) range petroleum hydrocarbons were detected in sample MW3 @ 9.0'. Diesel range petroleum hydrocarbons were detected in sample MW3 @ 42.5'. These detections were supported by the sample chromatograms.

TPH-D: Diesel (C12 - C24) range petroleum hydrocarbons were detected in samples S30-SWAMPY AREA, S31-EAST CULVERT, and S32-DRAIN BOX. These detections are supported by sample chromatograms.

FIELD QUALITY CONTROL SAMPLES

Field Blank: None collected.

Field Duplicates: None collected.

Rinsate: None collected.

Trip Blank: None collected.

LAB QUALITY CONTROL SAMPLES

Reagent Blank: No analytes were detected at or above the method report-

ing limit (MRL) by the following methods:

EPA 8310 EPA 8020

EPA 8015 Modified

WTPH-D EPA 7421

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9306-304

Sample No.: MW3 @9.0', MW3 @ 42.5', S30-SWAMPY AREA, S31-EAST CULVERT,

S32-DRAIN BOX

Matrix Spikes:

Matrix spike (MS) and MS duplicate (MSD) percent recovery and relative percent difference (RPD) data are within ATI's control limit criteria for the following methods:

EPA 8020
EPA 7421 (only a MS was analyzed)

WTPH-D: Two MS/MSD analyses were performed, one with acceptable results and the other with an MS percent recovery of 60; outside ATI's laboratory control limits of 63 to 131 percent. RPD for this analysis was acceptable. Since this MS was only slightly below the lower control limit and other spiked sample recoveries were acceptable, sample results are not qualified.

EPA 8310: MS and MSD percent recovery of phenanthrene exceeded ATI's control limits due to a high concentration of this analyte in the sample used for MS/MSD preparation. Phenanthrene RPD was acceptable, and blank spike recovery of this analyte is also acceptable. Sample results are therefore accepted without qualification.

EPA 8015 Modified: MS and MSD percent recovery of the diesel spike exceeded ATI's control limits due to the high concentration of diesel range petroleum hydrocarbons in the sample used for MS/MSD analysis. RPD was acceptable and blank spike recovery of diesel was acceptable. Sample results are therefore accepted without qualification.

Duplicates:

Sample/sample duplicate RPD is within ATI's control limits for the following methods:

EPA 7421 CLP SOW ILMO1.0

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9306-304

Sample No.: MW3 @9.0', MW3 @ 42.5', S30-SWAMPY AREA, S31-EAST CULVERT,

S32-DRAIN BOX

Duplicates: (cont.)

EPA 8015 Modified: The RPD at 23 slightly exceeded ATI's control limit criterion of 20. The sample used for this analysis contained a high concentration of diesel range petroleum hydrocarbons and was diluted for analysis. The error introduced through dilution and subsequent back-calculation may have affected reproducibility. Sample results are not considered compromised and are accepted without qualification.

WTPH-D: Two duplicate sample analyses were performed, one with acceptable results and the second with an out of control RPD of 28. ATI's control limit is 20. Since this RPD is only slightly above the control limit and one of the sample results is < 5% the MRL, sample results are accepted without qualification.

Blank Spikes:

Blank spike percent recovery is within ATI's control limits for the following methods:

EPA 8310 EPA 8020

EPA 8015 Modified

WTPH-D (Blank spike and blank spike duplicate analyzed.)

EPA 7421

Surrogates:

All surrogate spike percent recoveries are within ATI's control limit criteria for the following methods:

EPA 8310 EPA 8020 WTPH-D

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9306-304

Sample No.: MW3 @9.0', MW3 @ 42.5', S30-SWAMPY AREA, S31-EAST CULVERT,

S32-DRAIN BOX

Surrogates: (cont.)

EPA 8020/WTPH-G: Recoveries of bromofluorobenzene and trifluorotoluene from sample S11:07' were above ATI's upper control limit due to dilution of the sample extract during analysis. This sample contained high concentrations of target analytes. Sample results are considered acceptable without qualification.

SIGNATURES

Prepared by Katherine Bourbonais Date 6123193

necked by GeVLC Compe Date 8-23-93

QUALITY ASSURANCE REPORT SUPPLEMENTAL PAGE

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9306-304

Sample No.: MW3 @9.0', MW3 @ 42.5', S30-SWAMPY AREA, S31-EAST CULVERT,

S32-DRAIN BOX

Matrix: Soil

FUEL HYDROCARBON CHEMISTRY

EPA 8015 Modified: Chromatogram profiles for both samples indicate diesel fuel; the presence of gasoline is not indicated.

WTPH-D: Chromatogram profiles indicate the presence of a mixture of petroleum hydrocarbon products. There appears to be high concentrations of diesel fuel in samples S31-EAST CULVERT and S32-DRAIN BOX, as well as low to moderate concentrations of a motor-oil range product. Sample S30-SWAMPY AREA appears to contain diesel fuel and motor oil components but the profile is highly atypical of either of these two products.

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335

Karen L. Mixon, Laboratory Manager

RECEIVED

ATI I.D. # 9306-304

· JUL 22 1898

APPLIED GENTEGANOLOGY INC.

July 20, 1993

Applied Geotechnology, Inc. P.O. Box 3885 allevue WA 98009

Attention : Peter Barry

Project Number: 15659.001

Project Name : Burns Bros/Bingo Fuel Stop

ear Mr. Barry:

On June 30, 1993, Analytical Technologies, Inc. (ATI), received five samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

.ncerely,

Donna M. McKinney Senior Project Manager

DMM/hal/elf

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9306-304-1 9306-304-2 9306-304-3 9306-304-4 9306-304-5	MW3 @ 9.0' MW3 @ 42.5' S30-SWAMPY AREA S31-EAST CULVERT S32-DRAIN BOX	06/28/93 06/29/93 06/29/93 06/29/93 06/29/93	SOIL SOIL SOIL SOIL

---- TOTALS ----

MATRIX # SAMPLES
SOIL 5

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled isposal date.

ANALYTICAL SCHEDULE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
POLYNUCLEAR AROMATIC HYDROCARBONS	HPLC/UV/FLUOR	EPA 8310	R
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
OTAL PETROLEUM HYDROCARBONS	GC/FID	WA DOE WTPH-D	R
LEAD	AA/GF	EPA 7421	R
MOISTURE	GRAVIMETRIC	CLP SOW ILM01.0	R

ATI - Renton R

ATI - San Diego

PHX =

PNR =

ATI - Phoenix ATI - Pensacola ATI - Fort Collins FC =

JB = Subcontract

CASE NARRATIVE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS

Two (2) soil samples were received by Analytical Technologies, Inc. (ATI), on June 30, 1993, for the following analysis: EPA method 8310.

The percent recoveries for phenanthrene in the matrix spike/matrix spike duplicate (MS/MSD) were not calculable due to high amounts of this analyte already present in the sample. The appropriate results were flagged with a 7"; out of limits due to high levels of target analytes in sample.

All other corresponding quality assurance and quality control results defined as blank spike (BS), method blank, and surrogate recoveries were within the established control limits.

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/02/93 : 07/06/93 : mg/Kg
COMPOUNDS	RESULTS	
COMPOUNDS		
1-METHYLNAPHTHALENE -METHYLNAPHTHALENE -CENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRACENE CHRYSENE ENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE BENZO (A) PYRENE DIBENZO (A, H) ANTHRACENE	<0.17 <0.17 <0.17 <0.17 <0.017 <0.0083 <0.0083 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017	
	<0.017	
INDENO(1,2,3-CD)PYRENE	<0.017	•
SURROGATE PERCENT RECOVERY		LIMITS .
2-CHLOROANTHRACENE	79	25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW3 @ 9.0' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	0 : 06/30/93 ED : 07/02/93 0 : 07/06/93 : mg/Kg
COMPOUNDS	RESULTS	
NAPHTHALENE	2.3	
ACENAPHTHYLENE	<0.18	
1-METHYLNAPHTHALENE	9.2	
-METHYLNAPHTHALENE	10	•
CENAPHTHENE	<0.18	•
FLUORENE	1.1	
PHENANTHRENE	2.8	
ANTHRACENE	<0.0087	• .
FLUORANTHENE	<0.018	
PYRENE	<0.018	
BENZO (A) ANTHRACENE	<0.018	
THRYSENE	<0.018	
ENZO(B) FLUORANTHENE		
BENZO(K) FLUORANTHENE	<0.018	
BENZO (A) PYRENE	<0.018	
DIBENZO(A, H) ANTHRACENE	<0.035	
BENZO(G,H,I)PERYLENE	<0.018	
INDENO(1,2,3-CD)PYRENE	<0.018	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	116	25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW3 @ 42.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE ANALYZED UNITS DILUTION FACTOR	: 06/30/93 : 07/02/93 : 07/06/93 : mg/Kg
COMPOUNDS		
NAPHTHALENE ACENAPHTHYLENE 1-METHYLNAPHTHALENE -METHYLNAPHTHALENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRACENE HRYSENE ENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE	<0.092 <0.19 <0.19 <0.19 <0.019 <0.019	
SURROGATE PERCENT RECOVERY	·	IMITS
2-CHLOROANTHRACENE	82 2	25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9306-304-1 PROJECT # : 15659.001 DATE EXTRACTED : 07/02/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/06/93 SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
	<0.170 2.73 <0.0170 <0.0170 <0.0340	0.333	4.18 2.67 0.268 0.315 0.271	84 G 80 95 81	4.18 2.17 0.256 0.321 0.277	84 G 77 96 83	0 21 5 2 2
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE TYRENE ENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				33 - 1 20 - 1 20 - 1 25 - 1 20 - 1	54 47 44		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2-CHLOROANTHRACENE		102		99		25 - 1	34

⁼ Out of limits due to high level of target analytes in sample.

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 07/02/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 07/06/93

SAMPLE MATRIX : SOIL

UNITS

: mg/Kg

EPA METHOD

: 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE YRENE SENZO (K) FLUORANTHENE DIBENZO (A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333 0.333	3.55 0.276 0.243 0.308 0.292	71 83 73 92 88	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE ENZO (K) FLUORANTHENE DIBENZO (A, H) ANTHRACENE	* .			28 - 1 40 - 1 43 - 1 43 - 1 37 - 1	30 43 38		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		80		N/A		25 - 1	34

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : 07/01/93 : 07/02/93 : mg/Kg : 1
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.025 <0.025 <0.025 <0.025	
SURROGATE PERCENT RECOVERY	L	IMITS
BROMOFLUOROBENZENE	105 5	2 - 116

		·	
CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD RESULTS ARE C	: APPLIED GEOTECHNOLOGY, INC. : 15659.001 : BURNS BROS/BINGO FUEL STOP : MW3 @ 9.0' : SOIL : 8020 (BETX) ORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/08/93 : mg/Kg
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE)TAL XYLENES		<0.026 1.0 0.055 5.9	
s	URROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBE	NZENE	114	52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW3 @ 42.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 06/29/93 DATE RECEIVED : 06/30/93 DATE EXTRACTED : 07/01/93 DATE ANALYZED : 07/06/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.028 <0.028 <0.028 0.041
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	88 52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : S30-SWAMPY AREA SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 06/29/93 : 06/30/93 : 07/01/93 : 07/06/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.10 <0.10 <0.10 <0.10	
SURROGATE PERCENT RECOVERY	I	IMITS
BROMOFLUOROBENZENE	92 5	52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : S31-EAST CULVERT SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 06/29/93 DATE RECEIVED : 06/30/93 DATE EXTRACTED : 07/01/93 DATE ANALYZED : 07/07/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES SURROGATE PERCENT RECOVERY	<0.086 <0.086 0.42 <0.086
SURROGATE PERCENT RECOVERT	HIMI 15
BROMOFIJIOROBENZENE	91 - 52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, I PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL ST CLIENT I.D. : S32-DRAIN BOX SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTR	DATE RECEIVED : 06/30/93 TOP DATE EXTRACTED : 07/01/93 DATE ANALYZED : 07/06/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.029 <0.029 <0.029
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	90 52 - 116

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT SAMPLE I.D. # : 9306-302-6

PROJECT # : 15659.001 DATE EXTRACTED : 07/01/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP SAMPLE MATRIX : SOIL DATE ANALYZED : 07/02/93

: mg/Kg UNITS

EPA METHOD : 8020 (BETX)

•							
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE OTAL XYLENES	<0.0250 <0.0250 <0.0250	1.00 1.00 2.00	0.684 0.803 1.70	68 80 85	0.737 0.787 1.58	74 79 79	7 2 7
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES		. •		35 - 1 43 - 1 46 - 1	07		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		98		75		52 - 1	16

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT # : 15659.001 DATE EXTRACTED : 07/01/93

DATE ANALYZED : 07/02/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP SAMPLE MATRIX : SOIL

UNITS .

: mg/Kg

EPA METHOD

: 8020 (BETX)

					DUP.	DUP.	
	SAMPLE	SPIKE	SPIKED	%	SPIKED	8	
COMPOUNDS .	RESULT	ADDED	RESULT	REC.	SAMPLE	REC.	RPD
BENZENE	<0.0250	1.00	0.911	91	N/A	N/A	N/A
TOLUENE	<0.0250	1.00	1.04	104	N/A	N/A	N/A
OTAL XYLENES	<0.0250	2.00	2.14	107	N/A	N/A	N/A
CONTROL LIMITS			•	% REC.			RPD
BENZENE				63 - 1	.15		20
TOLUENE				75 - 1	.10		20
TOTAL XYLENES				79 - 1	.09	*.	20
SURROGATE RECOVERIES	3	SPIKE		DUP. S	PIKE	LIMITS	3
BROMOFLUOROBENZENE		110		N/A		52 - 1	.16

~-TERPHENYL

ATI I.D. # 9306-304

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED : N/A DATE EXTRACTED : 07/06/93 DATE ANALYZED : 07/06/93 UNITS : mg/Kg
COMPOUNDS	RESULTS
FUEL HYDROCARBONS	<5
HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	C7 - C12 GASOLINE
.UEL HYDROCARBONS HYDROCARBON RANGE	<25 C12 - C24
HYDROCARBON QUANTITATION USING	DIESEL
SURROGATE PERCENT RECOVERY	LIMITS

95

52 - 143

`-TERPHENYL

ATI I.D. # 9306-304-1

52 - 143

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW3 @ 9.0' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 06/28/93 DATE RECEIVED : 06/30/93 DATE EXTRACTED : 07/06/93 DATE ANALYZED : 07/06/93 UNITS : mg/Kg DILUTION FACTOR : 10
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	310 C7 - C12 GASOLINE
rUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	3100 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS

124

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW3 @ 42.5' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 06/29/9 DATE RECEIVED : 06/30/9 DATE EXTRACTED : 07/06/9 DATE ANALYZED : 07/06/9 UNITS : mg/Kg DILUTION FACTOR : 1	93 93
COMPOUNDS	RESULTS	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<6 C7 - C12 GASOLINE	
UEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	31 C12 - C24 DIESEL	
SURROGATE PERCENT RECOVERY	LIMITS	
?-TERPHENYL	93 52 - 143	

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9306-304-1 PROJECT # : 15659.001 DATE EXTRACTED : 07/06/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/06/93 SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8015 (MODIFIED)

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
DIESEL	2940	2330	23G	500	2730	G	2740	G	0
CONTROL	LIMITS				•	% REC	•	¥	RPD
DIESEL						56 -	137		20
SURROGATE RECOVERIES			SPIKE		DUP.	SPIKE	LIMIT	S	
O-TERPHENYL		•		130		121		52 -	143

⁼ Out of limits due to high level of target analytes in sample.

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC.

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 07/06/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED

: 07/06/93

SAMPLE MATRIX : SOIL

UNITS

: mg/Kg

EPA METHOD : 8015 (MODIFIED)

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
DIESEL	<25.0	500	446	89	N/A	N/A	N/A
CONTROL LIMITS				% REC.			RPD
DIESEL				67 - 1	35		20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
O-TERPHENYL		94		N/A		52 - 1	43

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL METHOD : WA DOE WTPH-D RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : 07/02/93 : 07/02/93 : mg/Kg
COMPOUND	RESULTS	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<10 C12 - C24 DIESEL	
SURROGATE PERCENT RECOVERY	I	LIMITS
O-TERPHENYL	90	50 - 150

ATI I.D. # 9306-304

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 DATE SAMPLED : N/A DATE RECEIVED : N/A PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE EXTRACTED : 07/02/93 DATE ANALYZED : 07/02/93 CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL UNITS : mg/Kg METHOD : WA DOE WTPH-D DILUTION FACTOR: 1 RESULTS ARE CORRECTED FOR MOISTURE CONTENT COMPOUND RESULTS FUEL HYDROCARBONS C12 - C24 HYDROCARBON RANGE DIESEL HYDROCARBON QUANTITATION USING SURROGATE PERCENT RECOVERY LIMITS

109

50 - 150

ATI I.D. # 9306-304-3

50 - 150

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

DATE SAMPLED : 06/29/93 : APPLIED GEOTECHNOLOGY, INC. CLIENT PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE RECEIVED : 06/30/93 DATE EXTRACTED : 07/02/93 DATE ANALYZED : 07/03/93 CLIENT I.D. : S30-SWAMPY AREA UNITS : mg/Kg SAMPLE MATRIX : SOIL DILUTION FACTOR: 1 METHOD : WA DOE WTPH-D RESULTS ARE CORRECTED FOR MOISTURE CONTENT COMPOUND **- - - -** - - - - **-**57 FUEL HYDROCARBONS C12 - C24 HYDROCARBON RANGE HYDROCARBON QUANTITATION USING DIESEL LIMITS SURROGATE PERCENT RECOVERY

97

ATI I.D. # 9306-304-4

50 - 150

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. DATE SAMPLED : 06/29/93 PROJECT # : 15659.001 DATE RECEIVED : 06/30/93 DATE RECEIVED : 06/30/93 DATE EXTRACTED : 07/02/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : S31-EAST CULVERT DATE ANALYZED : 07/03/93 SAMPLE MATRIX : SOIL UNITS : mg/Kg : WA DOE WTPH-D DILUTION FACTOR: 1 RESULTS ARE CORRECTED FOR MOISTURE CONTENT COMPOUND RESULTS FUEL HYDROCARBONS 2100 HYDROCARBON RANGE C12 - C24 HYDROCARBON QUANTITATION USING DIESEL SURROGATE PERCENT RECOVERY LIMITS

111

ATI I.D. # 9306-304-5

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC.
PROJECT # : 15659.001 DATE SAMPLED : 06/29/93
DATE RECEIVED : 06/30/93
DATE EXTRACTED : 07/02/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/03/93 CLIENT I.D. : S32-DRAIN BOX : mg/Kg UNITS SAMPLE MATRIX : SOIL DILUTION FACTOR: 1 METHOD : WA DOE WTPH-D RESULTS ARE CORRECTED FOR MOISTURE CONTENT RESULTS COMPOUND 340 FUEL HYDROCARBONS C12 - C24 HYDROCARBON RANGE DIESEL HYDROCARBON QUANTITATION USING LIMITS SURROGATE PERCENT RECOVERY 50 - 150 113 O-TERPHENYL

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT PROJECT # PROJECT NAME SAMPLE MATRIX METHOD	: 15659.	BROS/BIN		·	D)		RACTED :	9306- 07/02 07/02 mg/Kg	2/93 2/93
COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKE		DUP. SPIKED RESULT	DUP. % REC.	RPD
DIESEL	121	134	10	N/A	N/A	N/A	N/A	N/A	N/A
CONTROL	LIMITS					% REC	·		RPD
DIESEL						N/A			20
SURROGAT	TE RECOVE	RIES		SAMPLE	r	SAMPI	LE DUP.	LIMIT	rs
O-TERPHENYL				103		100		50 -	150

ATI I.D. # 9306-304

97

50 - 150

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9306-286-5
PROJECT # : 15659.001 DATE EXTRACTED : 07/02/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/02/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg : WA DOE WTPH-D METHOD SAMPLE SAMPLE DUP. SPIKE SPIKED SPIKED % RESULT RESULT RPD ADDED RESULT REC. RESULT REC. RPD 45.7 60.7 28F 200 222 88 213 84 DIESEL % REC. RPD CONTROL LIMITS 63 - 131 20 DIESEL DUP. SPIKE LIMITS SPIKE SURROGATE RECOVERIES

102

⁼ Out of limits due to matrix interference.

ATI I.D. # 9306-304

88 50 - 150

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9306-297-4
PROJECT # : 15659.001 DATE EXTRACTED : 07/02/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/02/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg
METHOD : WA DOE WTPH-D

SAMPLE DUP. SPIKE SPIKED % SPIKED %
COMPOUND RESULT RESULT RPD ADDED RESULT REC. RESULT REC. RPD

DIESEL 216 204 6 200 335 60F 345 65 3

CONTROL LIMITS % REC. RPD

DIESEL SURROGATE RECOVERIES SPIKE DUP. SPIKE LIMITS

92

⁼ Out of limits due to matrix interference.

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED

: 07/02/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED

: 07/02/93

SAMPLE MATRIX : SOIL

UNITS

METHOD

: WA DOE WTPH-D

: mg/Kg

							
COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
DIESEL	<10.0	200	207	103	206	103	0
CONTROL LIMITS				% REC			RPD
DIESEL				69 - 3	122		20
SURROGATE RECOVER	IES	SPIKE		DUP.	SPIKE	LIMITS	}
O-TERPHENYL		106		113		50 - 1	.50

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

DATE EXTRACTED : 07/02/93

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 07/02/93

SAMPLE MATRIX : SOIL

UNITS

: mg/Kg

METHOD

: WA DOE WTPH-D

									
СОМРО	UND	4.1	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
DIESE	L		<10.0	200	195	98	189	95	3
	CONTROL LIM	IITS				% REC.			RPD
DIESE	L					69 - 1	22	•	20
	SURROGATE R	ECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
O-TER	PHENYL			89		91		50 - 1	50

METALS ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC.
PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

MATRIX : SOIL

LEAD

07/06/93

07/09/93

METALS ANALYSIS DATA SUMMARY

PROJECT # : PROJECT NAME :	APPLIED GEOTECHNOLOG 15659.001 BURNS BROS/BINGO FUE RECTED FOR MOISTURE C	L STOP	MATRIX UNITS	: SOIL : mg/Kg
ATI I.D. #	CLIENT I.D.	LEAD		
9306-304-1 9306-304-2 METHOD BLANK	MW3 @ 9.0' MW3 @ 42.5'	2.0 2.3 <0.15		

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

MATRIX : SOIL

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

UNITS : mg/Kg

	1				3		_'
ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	9306-285-1	0.87	0.85	2	1.93	1.24	85
LEAD	BLANK	<0.15	N/A	N/A	1.09	1.25	87

% Recovery = (Spike Sample Result - Sample Result) ----- **x** 100 Spike Concentration

RPD (Relative % Difference) = (Sample Result - Duplicate Result) Average Result

GENERAL CHEMISTRY ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001

MATRIX : SOIL

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

MOISTURE

07/01/93

GENERAL CHEMISTRY ANALYSIS DATA SUMMARY

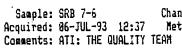
CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL PROJECT # : 15659.001

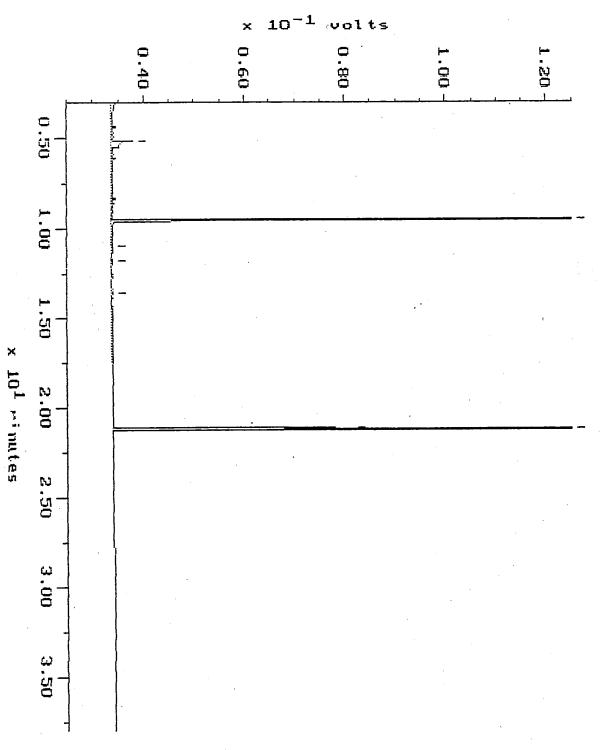
PROJECT NAME	: BURNS BROS/BINGO F	JEL STOP	UNITS : %
ATI I.D. #	CLIENT I.D.	MOISTURE	
9306-304-1 9306-304-2	MW3 @ 9.0' MW3 @ 42.5'	4.0 9.9	
9306-304-3 9306-304-4 9306-304-5	S30-SWAMPY AREA S31-EAST CULVERT S32-DRAIN BOX	75 71 13	

GENERAL CHEMISTRY ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL

PROJECT # : 15659.001

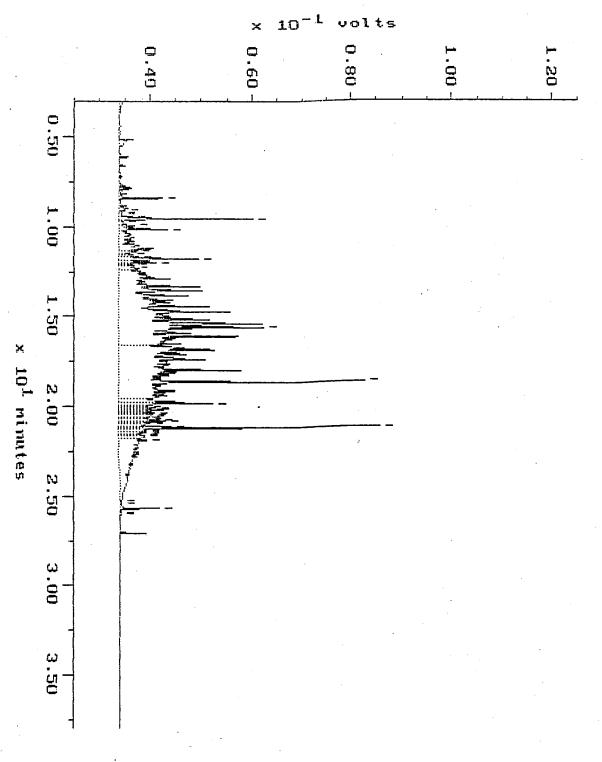

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : %


SAMPLE DUP SPIKED SPIKE %
PARAMETER ATI I.D. RESULT RESULT RPD RESULT ADDED REC

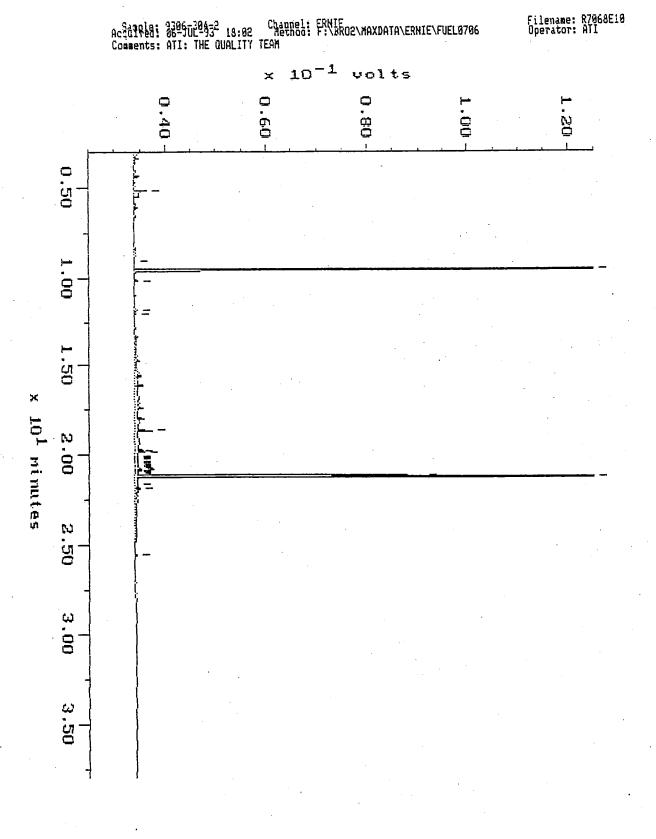
MOISTURE 9306-304-2 9.9 9.6 3 N/A N/A N/A

Filename: R7068E03 Operator: ATI

Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL0706



EPA 8015 Modified


Sample: 9386-384-1DIL Chacquired: 06-JUL-93 14:57 Mollution: 1:18.000 Comments: ATI: THE QUALITY TEAM

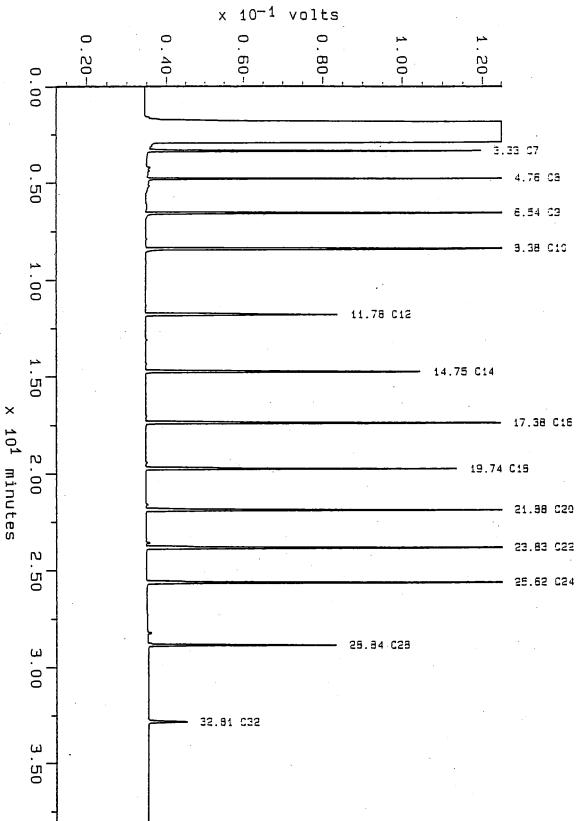
Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL8706

Filename: R7068E06 Operator: ATI

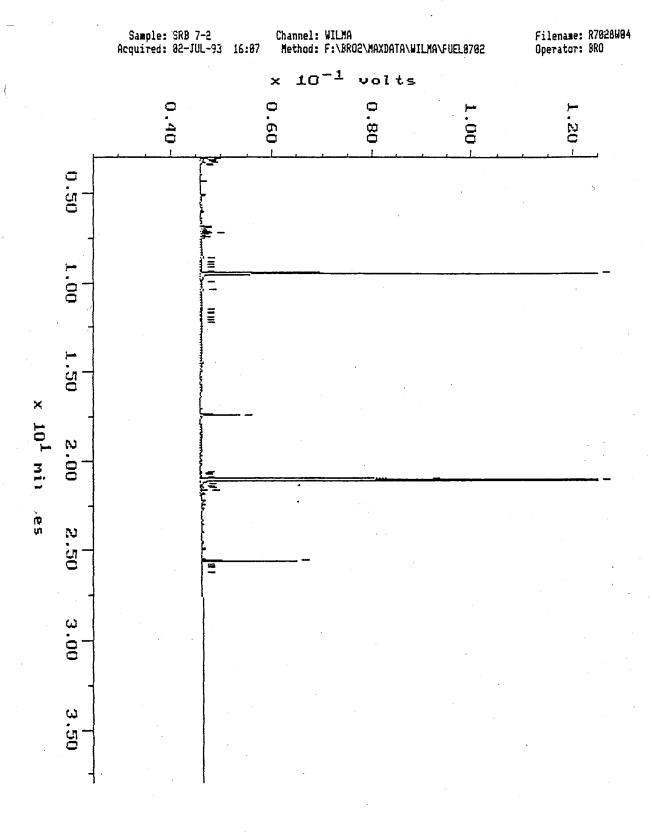

EPA 8015 Modified

Continuing Calibration

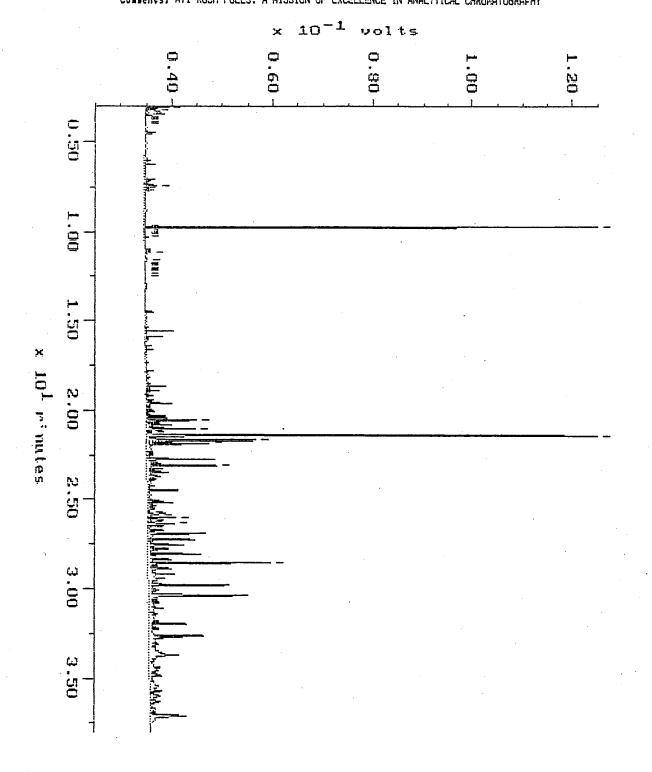
Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL0706


Filename: R7068E02 Operator: ATI

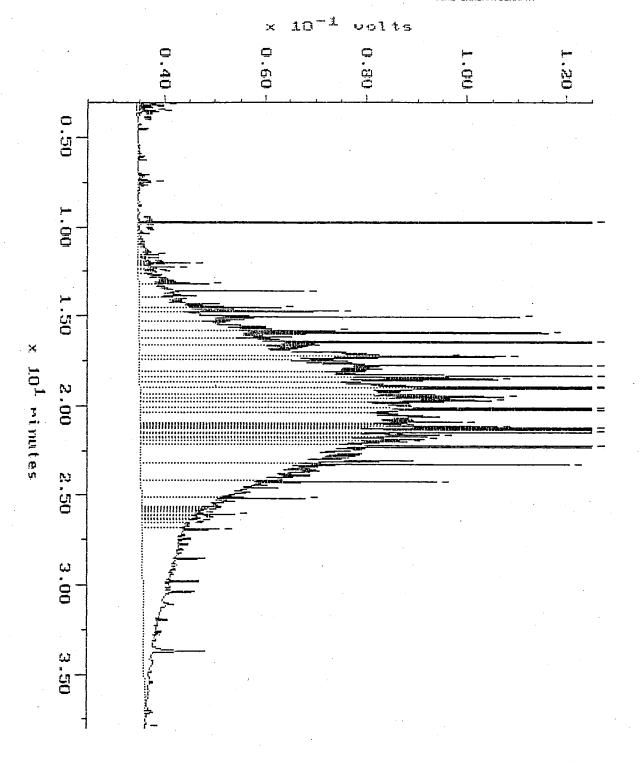

Sample: ALKANE Channel: ERNIE
Acquired: 25-MAY-93 11:20 Method: F:\BRO2\MAXDATA\ERNIE\FUELO525
Inj Vol: 1.00

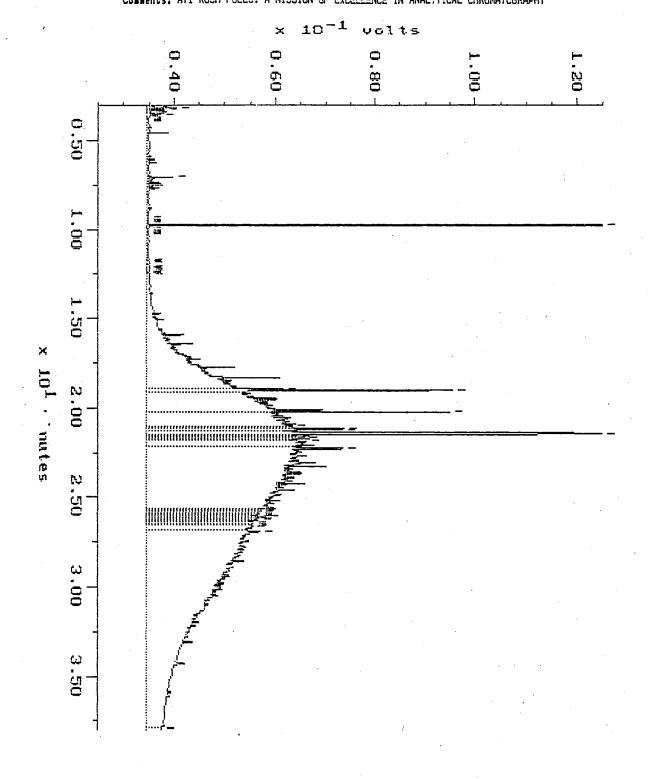

Filename: r5258e02 Operator: ATI

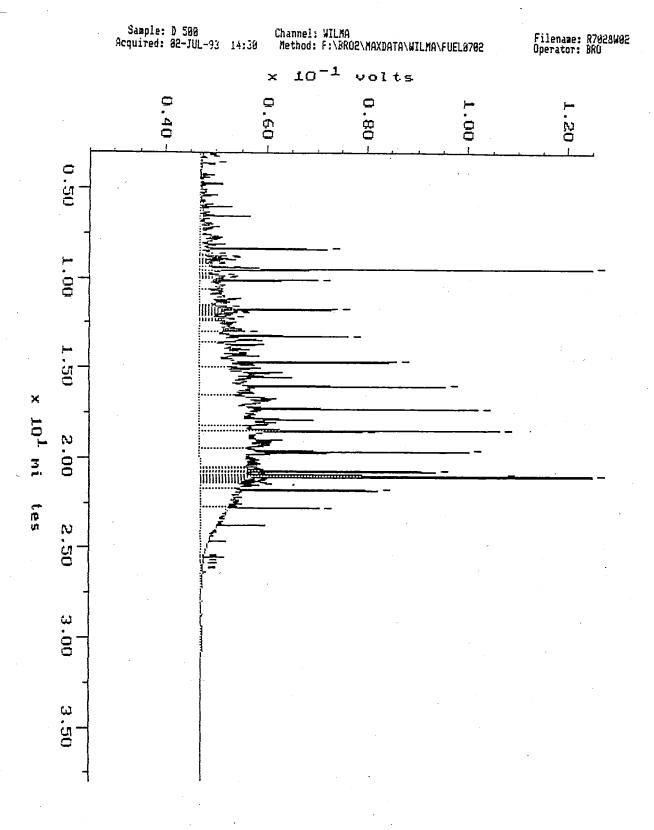
Alkane



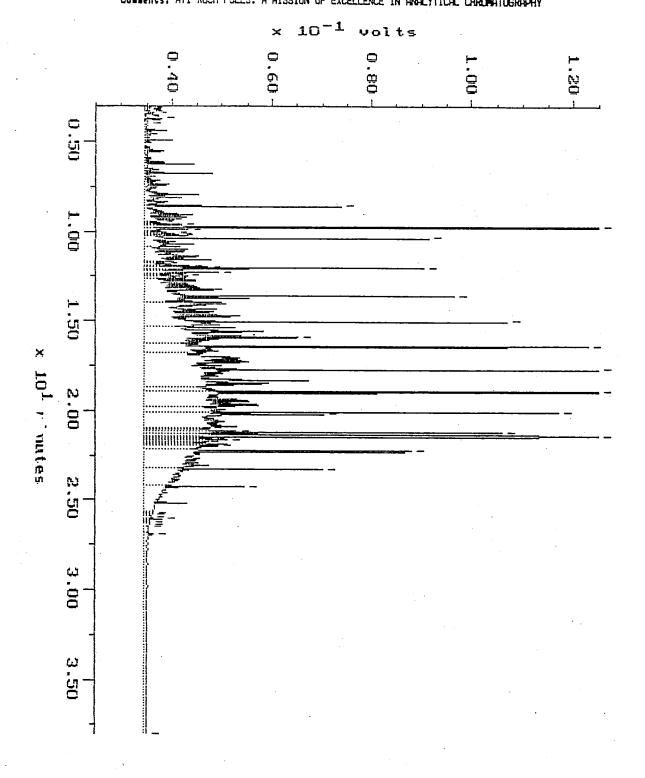
Blank Filename: R7028D03 Operator: ATI Sample: SRBB 7-2 Channel: DEMITRI F
Acquired: 02-JUL-93 18:23 Method: F:\BRO2\MAXDATA\SERGE-D\FUEL0702 O
Comments: ATI RUSH FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATOGRAPHY




Sample: 9306-304-3 Channel: DEMITRI
Acquired: 03-JUL-93 19:02 Method: F:\BRO2\MAXDATA\SERGE-D\FUEL0702 Operator: ATI
Comments: ATI RUSH FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATOGRAPHY

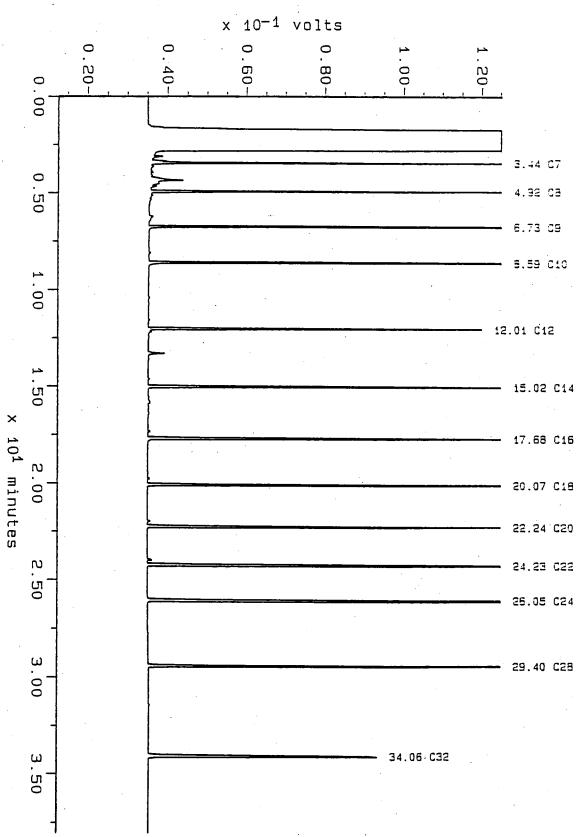

Sample: 9306-304-4 Channel: DEMITRI Acquired: 93-JUL-93 19:48 Channel: DEMITRI Method: F:\8R02\MAXDATA\SERGE-D\FUEL0702 Demator: ATI
Comments: ATI RUSH FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATOGRAPHY

Sample: 9306-304-5 Channel: DEMITRI Filename: R7023D37
Acquired: 03-JUL-93 20:35 Method: F:\BR02\MAXDATA\SERGE-D\FUEL0702 Operator: ATI
Comments: ATI RUSH FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATOGRAPHY



Continuing Calibration

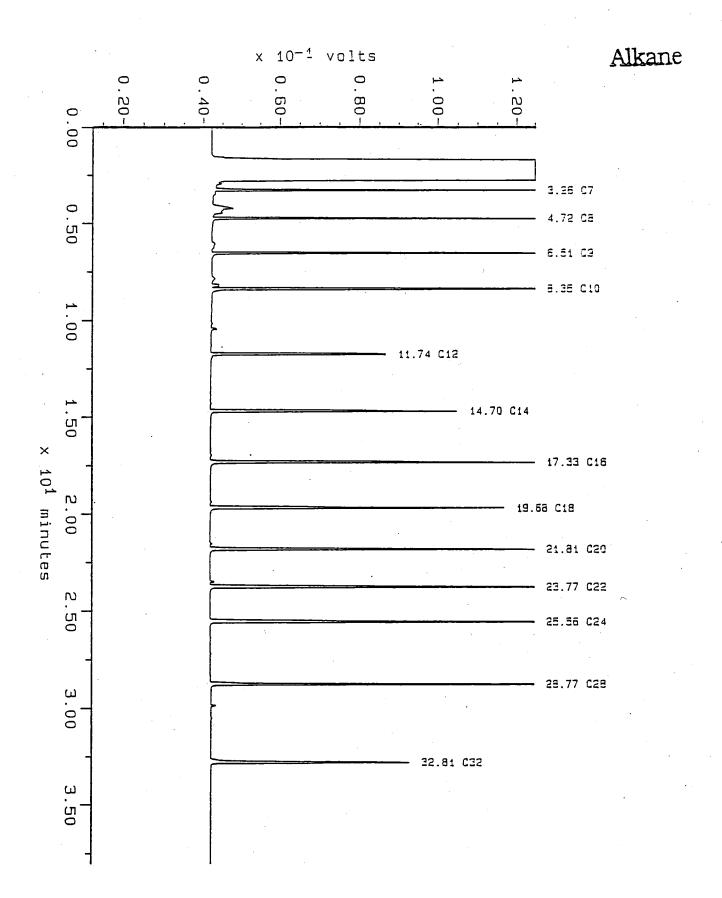
Continuing Calibration


Sample: 0 500 Channel: DEMITRI Filename: R7028D02
Acquired: 02-JUL-93 17:36 Method: F:\BRO2\MAXDATA\SERGE-D\FUEL0782 Operator: ATI
Comments: ATI RUSH FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATOGRAPHY

Sample: ALKANE Channel: DEMITRI
Acquired: 23-JUN-93 21:41 Method: F:\BRG2\MAXCATA\SERGE-O\FUEL0623
In; Vol: 1.00

Filename: r6235d11 Operator: ATI

Alkane



Inj Val: 1.00

Sample: ALKANE Channel: WILMA Acquired: G8-APR-93 14:13 Method: F:\ERG2\MAXCATA\WILMA\FUELG468

Filename: 84038W02

Operator: 280

CHAIN-OF-~JSTODY

₹

4

6-79

Date

NUMBER OF CONTAINERS OTHER TCLP - Metals LEACHING TCLP - Pesticides TCLP - Semivolatiles TCLP - Volatiles (ZHE) MFSP - Metals (Wa) DWS - Metals Priority Poll. Metals (13) TCL Metals (23) Organic Lead (Ca) んのよ **ANALYSIS REQUEST** Total Lead (Wa) Selected metals: list DWS - Herb/pest PESTS/PCB's 8150 OC Herbicides 8140 OP Pesticides 8080M PCBs only 8080 OC Pest/PCBs DWS - Volatiles and Semivol. COMPOUNDS 8040 Phenois 8310 HPLC PAHs 8270 GCMS Semivol. 8240 GCMS Volatiles HYDROCARBONS ORGANIC × 8020M - BETX only 8020 Aromatic VOCs Laboratory Number: 8010 Halogenated VOCs 8015M PETROLEUM 418.1 State: TPH Special Instructions TPH-D State: TPH-G State: TPH-ID State: MATRIX | LAB ID □Special $|\mathcal{U}|$ ζ) Sampled By: DP D 3 7 Š 7.8 195 ☐AGI Std. QC INFORMATION (check one) Disposal Date: 区 Lab Disposal (return if not indicated) DISPOSAL INFORMATION TIME PROJECT INFORMATION 1335 2021 ره کور 011 101/ ひかれる 15,659.00 ☐ Screening Eb. 62-5 Bros. 6-24.93 8-52-93 6-28-93 DATE 6-34.93 ν 3 Pater Burns S30-Submpy Area Therp - East Culveri S32-Drain Box 9.0 42.5 SAMPLE ID Disposal Method: Project Manager: Project Number: Project Name:_ Site Location: Disposed by: □SW-846 Ø 0 mmx MW 3 531

DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to AGI Project Files; Gold to AGI Disposal Files Date: က Time: Date: ΒΥ: RECEIVED Printed Name: Signature: Company: Signature: يح O 205 Tipper તાં RECEIVED BY: 971111 VEXX 12 / CT. Pfinted Name; Signalities Company: (3/2) 15 9 2 0/1/ Date: RECEIVED BY: eter bac Printed Nar Company: _____ .¥. 15 PRIOR AUTHORIZATION IS REQUIRED FOR RUSH DATA Received in Good Condition/Cold: Chain of Custody Seals: Y/N/NA □72 hr. Total Number of Containers: Pleasanton: (415) 460-5495 □ 48 hr. Tacoma: (206) 383-4380 Intact?: Y/N/NA □24 hr. **的**Standard ALD Bellevue: (206) 453-8383 Portland: (503) 222-2820 LAB INFORMATION Neches 3 Special Instructions: Turn Around Time: 260 AT Course Re~ 4~ Lab Address: AGI OFFICES: Lab Name: Sia: ı,

BY: 3.

RELINGUISHED

RELINGUISHED BY: 2.

RELINGUISHED BY: 1.

SAMPLE RECEIPT

plied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology

ŗ

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

15,169.001 Project No.:

Analytical Technologies, Inc. (ATI), Renton, Washington Lab Name:

9307-038 Lab Number:

MW5 @7.5', MW5 @10.0', MW1 @7.5', MW2 @7.5'(Soil), Rinsate 1, Sample No.:

Trip Blank (Water)

Matrix:

4 Soil, 2 Water

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable.

ANALYTICAL METHODS

<u>Parameter</u>	Technique	Method
BETX Fuel Hydrocarbons Polycyclic Aromatic Hydrocarbons Lead Moisture	GC/PID GC/FID HPLC/UV/Fluor AA/GF Gravimetric	EPA 8020 EPA 8015 Modified EPA 8310 EPA 7421 CLP SOW ILMO1.0

TIMELINESS) Dáte	Date	Date	Time Until	Time Until
<u>Parameter</u>	Sampled	Extracted	Analyzed	<u>Extraction</u>	<u>Analysis</u>
PAHs (water) PAHs (soil) PAHs (soil) BETX (water) BETX (soil) Fuel Hydrocarbons Fuel Hydrocarbons	(soil) 7/02/93	7/07/93 7/06/93 7/13/93 ^b NA 7/07/93 7/08/93 7/07/93	7/13/93 7/12/93 7/16/93 7/07/93 7/08/93 7/08/93	5(7) 4(14) 11(14) NA 5 6	6(40) 6(40) 3(40) 5(14) 6(14) 6(14) 5(180)
Lead (water) Lead (soil)	7/02/93 7/02/93	7/06/93 7/08/93	7/07/93 7/09/93	4 6	7(180) 4
Moisture	7/02/93	NA	7/06/93	NA	•• '

NA - Not Applicable; extraction not required.

a - Samples MW5 @ 7.5' and MW5 @10.0' collected July 1, 1993.

Numbers in parentheses indicate recommended holding times in days for soil

All samples were analyzed within recommended holding times.

b - Sample MW5 @7.5'.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9307-038

Sample No.: MW5 @7.5', MW5 @10.0', MW1 @7.5', MW2 @7.5'(Soil), Rinsate 1,

Trip Blank (Water)

Matrix: 4 Soil, 2 Water

FUEL HYDROCARBON CHROMATOGRAPHY

EPA 8015 Modified: Gasoline (C7 - C12) and diesel (C12 - C24) range petroleum hydrocarbons were detected in sample MW5 @ 7.5'. These detections were supported by the sample chromatogram.

FIELD QUALITY CONTROL SAMPLES

Field Blank: None collected.

Field Duplicates: None collected.

Rinsate: Sample Rinsate 1 was analyzed by EPA 8310, EPA 8015

Modified, EPA 7421, and EPA 8020. No analytes were detected at or above the method reporting limit (MRL) by EPA 8310, 8015 Modified, or 7421. Toluene and xylenes were detected by EPA 8020 at 0.7 and 0.6 micrograms per liter (μ g/L), respectively; both results are within 0.2 μ g/L of the MRLs for these analytes. Sample results are not considered compromised by the possibility of carry-

over contamination at these levels.

Trip Blank: Sample Trip Blank was analyzed by EPA 8020. Toluene was

detected at 0.7 μ g/L. The MRL for this analyte is 0.5 μ g/L; the associated method blank was free of contamination. Low concentrations of toluene can be seen as a contaminant in distilled water. Sample results are not considered compromised by detections at this concentra-

tion.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9307-038

Sample No.: MW5 @7.5', MW5 @10.0', MW1 @7.5', MW2 @7.5'(Soil), Rinsate 1,

Trip Blank (Water)

Matrix: 4 Soil, 2 Water

LAB QUALITY CONTROL SAMPLES

Reagent Blank:

No analytes were detected at or above the MRL by the following methods:

EPA 8310 (water)

EPA 8020 (soil and water)

EPA 8015 Modified (soil and water)

EPA 7421 (soil and water)

EPA 8310 (soil): Phenanthrene and fluoranthene were detected at 0.026 and 0.081 milligrams per kilogram, respectively, in the method blank extracted on July 6, 1993. This blank is associated with all soil samples except MW5 07.5'. Neither of these analytes were detected in associated samples. Data are accepted without qualification.

Matrix Spikes:

Matrix spike (MS) and MS duplicate (MSD) percent recovery and relative percent difference (RPD) data are within ATI's control limit criteria for the following methods:

EPA 8020 (soil and water)

EPA 7421 (soil and water) (only a MS was analyzed)

EPA 8015 Modified (soil and water)

EPA 8310 (water): MS/MSD analyses were not performed; a blank spike and blank spike duplicate were substituted. Data are not considered compromised.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9307-038

Sample No.: MW5 @7.5', MW5 @10.0', MW1 @7.5', MW2 @7.5'(Soil), Rinsate 1,

Trip Blank (Water)

Matrix: 4 Soil, 2 Water

Matrix Spikes:
 (cont.)

EPA 8310 (soil): MS and MSD percent recoveries of all spiked analytes were within ATI's control limit criteria; however, all RPDs exceeded ATI's control limits for the samples extracted July 6, 1993. MSD results were consistently 60 percent of MS results indicating a laboratory error. RPDs ranged from 51 to 54; control limits range from 20 to 35. The MS/MSD sample extracted July 13, 1993 had acceptable recoveries and RPDs. Due to the possibility of laboratory error and some acceptable associated QC data for this parameter, results are accepted without qualification.

Duplicates:

Sample/sample duplicate RPD is within ATI's control limits for the following methods:

EPA 7421 (soil and water)

EPA 8015 Modified (soil and water)

CLP SOW ILMO1.0

Blank Spikes:

Blank spike percent recovery is within ATI's control limits for the following methods:

EPA 8310 (water) - Blank spike and blank spike duplicate

analyzed.

EPA 8310 (soil)

EPA 8020 (soil and water)

EPA 8015 Modified (soil and water)

EPA 7421 (soil and water)

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

15,169.001 Project No.:

Analytical Technologies, Inc. (ATI), Renton, Washington Lab Name:

9307-038 Lab Number:

MW5 @7.5', MW5 @10.0', MW1 @7.5', MW2 @7.5'(Soil), Rinsate 1, Sample No.:

Trip Blank (Water)

4 Soil, 2 Water Matrix:

All surrogate spike percent recoveries are within ATI's Surrogates:

control limit criteria for the following methods:

EPA 8310 (soil and water) EPA 8020 (soil and water)

EPA 8015 Modified (soil and water)

SIGNATURES

Date 8123/93 Prepared by

Date 8-23-93 Checked by

QUALITY ASSURANCE REPORT SUPPLEMENTAL PAGE

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,169.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton, Washington

Lab Number: 9307-038

Sample No.: MW5 @7.5', MW5 @10.0', MW1 @7.5', MW2 @7.5'(Soil), Rinsate 1,

Trip Blank (Water)

Matrix: 4 Soil, 2 Water

FUEL HYDROCARBON CHEMISTRY

EPA 8015 Modified: Chromatogram profile for sample MW5 @7.5' appears to indicate either an extremely aged or biodegraded gasoline or other light petroleum product, or possibly a mixture of light products. Diesel fuel is not indicated.

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

RECEIVED

JUL 15 1996

ATI I.D. # 9307-038

APPEAR OF TELESCOPERATE THE

July 23, 1993

Applied Geotechnology, Inc. P.O. Box 3885 Bellevue WA 98009

Attention : Peter Barry

Project Number: 15659.001

Project Name : Burns Bros/Bingo Fuel Stop

Dear Mr. Barry:

On July 2, 1993, Analytical Technologies, Inc. (ATI), received six samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Sincerely,

Donna M. McKinney Senior Project Manager

DMM/hal/ff

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9307-038-1	MW5 @ 7.5'	07/01/93	SOIL
9307-038-2	MW5 @ 10.0'	07/01/93	SOIL
9307-038-3	MW1 @ 7.5'	07/02/93	SOIL
9307-038-4	RINSATE 1	07/02/93	WATER
9307-038-5	MW2 @ 7.5'	07/02/93	SOIL
307-038-6	TRIP BLANK	N/A	WATER

TOTALS ----

MATRIX	# SAMPLES
,	
SOIL	4
WATER	2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled isposal date.

ANALYTICAL SCHEDULE

: APPLIED GEOTECHNOLOGY, INC. CLIENT

: 15659.001 PROJECT #

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
POLYNUCLEAR AROMATIC HYDROCARBONS	HPLC/UV/FLUOR	EPA 8310	R
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
∟EAD	AA/GF	EPA 7421	R
MOISTURE	GRAVIMETRIC	CLP SOW ILM01.0	R

ATI - Renton

ATI - San Diego SD =

ATI - Phoenix PHX =

PNR =

ATI - Pensacola ATI - Fort Collins FC =

Subcontract

CASE NARRATIVE

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS

Four (4) soil samples and one water sample were received by Analytical Technologies, Inc. (ATI), on July 2, 1993 for the following analysis: EPA method 8310.

Fluoranthene and phenanthrene were confirmed to be present in the soil method blank extracted on July 6, 1993 at levels above the detection limit. oil method blank extracted on July 13, 1993, as well as the water blank, was rree of target analytes.

The relative percent differences (RPDs) in the matrix spike/matrix spike duplicate (MS/MSD) for sample 9307-038-5 (MW2 @ 7.5') were all outside ATI limits and were flagged with an "H"; out of limits.

All other corresponding quality assurance and quality control results defined s blank spike (BS), matrix spike/matrix spike duplicate (MS/MSD), method lank and surrogate recoveries were within the established control limits.

	DATE ANALYZED UNITS DILUTION FACTO	0 : 07/07/93 : 07/13/93 : ug/L
COMPOUNDS	RESULTS	
1-METHYLNAPHTHALENE -METHYLNAPHTHALENE	<1.0 <0.50 <0.50	
ACENAPHTHENE FLUORENE	<0.50 <0.10	
FLUORANTHENE	<0.050 <0.10	
BENZO (A) ANTHRACENE CHRYSENE	<0.10 <0.10	
ENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE BENZO (A) PYRENE	<0.10 <0.10	
DIBENZO (A, H) ANTHRACENE BENZO (G, H, I) PERYLENE INDENO (1, 2, 3-CD) PYRENE	<0.20 <0.10 <0.10	
SURROGATE PERCENT RECOVERY		LIMITS
2 - CHLOROANTHRACENE	88	33 - 123

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : RINSATE 1 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE ANALYZED : 07/13/93 UNITS : ug/L DILUTION FACTOR : 1	
COMPOUNDS	RESULTS	
1-METHYLNAPHTHALENE -METHYLNAPHTHALENE -MCENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRACENE -HRYSENE ENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE BENZO (A) PYRENE	<0.94 <0.47 <0.47 <0.47 <0.094 <0.047 <0.047 <0.094 <0.094 <0.094 <0.094	
SURROGATE PERCENT RECOVERY	LIMITS	
2-CHLOROANTHRACENE	79 33 - 123	

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 07/07/93

DATE ANALYZED : 07/13/93

SAMPLE MATRIX : WATER

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

EPA METHOD

: 8310

: ug/L UNITS

· · · · · · · · · · · · · · · · · · ·					DUP.	DUP.	
COMPOUNDS	SAMPLE RESULT	SPIKE	SPIKED RESULT	% REC.	SPIKED SAMPLE	% REC.	RPD
CONTOONED							
				•			
ACENAPHTHYLENE	<1.00	30.0	22.2	74	18.6	62	18
HENANTHRENE	<0.0500	2.00	1.79	90	1.74	87	. 3
-YRENE	<0.100	2.00	1.62	81	1.48	74	9
BENZO (K) FLUORANTHENE	<0.100	2.00	2.11	106	1.93	97	9
DIBENZO (A, H) ANTHRACENE	<0.200	2.00	2.18	109	1.93	97	12
				9. DEG			מממ
CONTROL LIMITS	*			% REC.			RPD
ACENAPHTHYLENE				35 - 1	04		32
PHENANTHRENE				47 - 1			30
YRENE				31 - 1	55		30
BENZO (K) FLUORANTHENE				39 - 1	45		29
DIBENZO(A, H) ANTHRACENE				34 - 1	35	-	26
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	}
2 - CHLOROANTHRACENE		83		68		33 - 1	23
Z-CHLOKOMNIHKACENE		0.3		00		JJ - 1	.2

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE ANALYZED UNITS DILUTION FACT	: N/A D : 07/06/93 : 07/12/93 : mg/Kg	
COMPOUNDS			
			-
NAPHTHALENE			
ACENAPHTHYLENE	<0.17		
1-METHYLNAPHTHALENE METHYLNAPHTHALENE	<0.17		
	<0.17		
ACENAPHTHENE	<0.17		
FLUORENE	<0.017		
PHENANTHRENE	0.026		
ANTHRACENE	<0.0083	•	
FLUORANTHENE	0.081		
PYRENE			
BENZO (A) ANTHRACENE	<0.017		
THRYSENE	<0.017	,	
ENZO (B) FLUORANTHENE			
BENZO (K) FLUORANTHENE	<0.017		
BENZO (A) PYRENE DIBENZO (A, H) ANTHRACENE	<0.017		
	<0.034		
BENZO(G, H, I) PERYLENE	<0.017		
INDENO(1,2,3-CD)PYRENE	<0.017		
SURROGATE PERCENT RECOVERY		LIMITS	
2-CHLOROANTHRACENE	77	25 - 134	

SAMPLE MATRIX : SOIL EPA METHOD : 8310	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/13/93 : 07/16/93 : mg/Kg R : 1
COMPOUNDS	RESULTS	
NAPHTHALENE	<0.083 <0.17	
1-METHYLNAPHTHALENE	<0.17	
- METHYLNAPHTHALENE - METHYLNAPHTHALENE	<0.17	
ACENAPHTHENE	<0.17	
FLUORENE	<0.017	
PHENANTHRENE		
ANTHRACENE	<0.0083	
FLUORANTHENE PYRENE	<0.017	
	<0.017	
BENZO (A) ANTHRACENE	<0.017	
CHRYSENE ENZO(B) FLUORANTHENE	<0.017	
	<0.017	
BENZO (K) FLUORANTHENE	<0.017	•
BENZO (A) PYRENE	<0.017	
DIBENZO(A, H) ANTHRACENE BENZO(G, H, I) PERYLENE	<0.017	
INDENO(1,2,3-CD) PYRENE	<0.017	× .
INDENO(1,2,3°CD) PIRENE	(0.017	•
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	85	25 - 134

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW5 @ 7.5' SAMPLE MATRIX : SOIL	DATE RECEIVED DATE EXTRACTE	: 07/02/93 D : 07/13/93 : 07/16/93 : mg/Kg
COMPOUNDS	RESULTS	
•		
NAPHTHALENE	0.44	
ACENAPHTHYLENE	<0.21	
1-METHYLNAPHTHALENE	0.30	
1-METHYLNAPHTHALENE -METHYLNAPHTHALENE	1.0	
CENAPHTHENE	<0.21	
FLUORENE PHENANTHRENE	<0.021	
PHENANTHRENE	0.041	
ANTHRACENE	<0.010	
FLUORANTHENE	<0.021	
PYRENE	<0.021	
	<0.021	•
CHRYSENE	<0.021	
ENZO(B) FLUORANTHENE	<0.021	
22120 (11) 2 20012111111	<0.021	-
BENZO(A) PYRENE DIBENZO(A, H) ANTHRACENE	<0.021	
	<0.041	•
	<0.021	
INDENO(1,2,3-CD)PYRENE	<0.021	
SURROGATE PERCENT RECOVERY		LIMITS
2 - CHLOROANTHRACENE	85	25 - 134

PROJECT NAME : BURNS BROS/BINGO FUEL STOP	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/02/93) : 07/06/93 : 07/13/93 : mg/Kg
COMPOUNDS	RESULTS	
NAPHTHALENE		•
	<0.19	
	<0.19	
-METHYLNAPHTHALENE	<0.19	
CENAPHTHENE	<0.19	
FLUORENE PHENANTHRENE	<0.019	
PHENANTHRENE	<0.0092	•
	<0.0092	
FLUORANTHENE PYRENE	<0.019	
PYRENE		
BENZO (A) ANTHRACENE "HRYSENE	<0.019	
ENZO (B) FLUORANTHENE	<0.019	*.
BENZO (K) FLUORANTHENE BENZO (K) FLUORANTHENE	<0.019	
BENZO (A) PYRENE	<0.019	
DIBENZO(A, H) ANTHRACENE	<0.019	•
	<0.038	
INDENO(1,2,3-CD) PYRENE	<0.019	
TINDERO (1,2,3-OD) ETREME	70.019	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	77	25 - 134

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW1 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT		: 07/02/93 D : 07/06/93 : 07/13/93
COMPOUNDS	RESULTS	
NAPHTHALENE	<0.090	
1-METHYLNAPHTHALENE -METHYLNAPHTHALENE -CENAPHTHENE -CENAPHTHENE FLUORENE	<0.18	
PLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE	<0.0091	
PYRENE BENZO(A) ANTHRACENE ^HRYSENE ENZO(B) FLUORANTHENE	<0.018	
BENZO (K) FLUORANTHENE BENZO (A) PYRENE DIBENZO (A, H) ANTHRACENE	<0.018 <0.018 <0.037	
BENZO(G, H, I) PERYLENE INDENO(1, 2, 3 - CD) PYRENE	<0.018 <0.018	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	83	25 - 134

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW2 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/02/93 : 07/06/93 : 07/13/93 : mg/Kg
COMPOUNDS	RESULTS	
1-METHYLNAPHTHALENE -METHYLNAPHTHALENE -ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRACENE CHRYSENE ENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE	<0.18 <0.18 <0.18 <0.18 <0.018 <0.0088 <0.0088 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018	
INDENO(1,2,3-CD) PYRENE	<0.018	
SURROGATE PERCENT RECOVERY	I	IMITS
2-CHLOROANTHRACENE	82 2	25 - 134

UNITS

: mg/Kg

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9306-295-8
PROJECT # : 15659.001 DATE EXTRACTED : 07/06/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/12/93

SAMPLE MATRIX : SOIL EPA METHOD : 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE	<0.170	5.00	3.65	73	3.86	77	6
PHENANTHRENE	<0.00833	0.333	0.323	97	0.318	95	2
YRENE	<0.0170		0.271	81	0.265	80	2
LENZO (K) FLUORANTHENE	<0.0170		0.295	89	0.300	90	2
DIBENZO (A, H) ANTHRACENE	<0.0340		0.275	83	0.284	85	3
DIBBINDO (FI, II, III III III III III	70.05.20	0.000	012/5		••-•	,••	. —
CONTROL LIMITS	e*			% REC.			RPD
ACENAPHTHYLENE				33 - 1	16		20
PHENANTHRENE			•	20 - 1	54		35
TYRENE		•		20 - 1			34
ENZO(K) FLUORANTHENE				25 - 1		•	34
DIBENZO (A, H) ANTHRACENE				20 - 1			33
DIDENZO (A, II) ANTINACENE	•			20 1			-
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		82		81		25 - 1	34

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: 9307-038-5 DATE EXTRACTED : 07/06/93

PROJECT #

: 15659.001

DATE ANALYZED

: 07/13/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

SAMPLE MATRIX : SOIL

UNITS

: mg/Kg

: 8310 EPA METHOD

,							
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE YRENE JENZO (K) FLUORANTHENE DIBENZO (A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333 0.333	4.10 0.300 0.267 0.331 0.319	82 90 80 99 96	2.43 0.175 0.153 0.193 0.185	49 53 46 58 56	51H 53H 54H 53H 53H
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE ENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				33 - 1 20 - 1 20 - 1 25 - 1 20 - 1	54 47 44		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		85		49		25 - 1	34

ч = Out of limits.

ATI I.D. # 9307-038

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. : 9306-295-7 CLIENT SAMPLE I.D. # PROJECT # : 15659.001 DATE EXTRACTED : 07/13/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/16/93 : mg/Kg UNITS

SAMPLE MATRIX : SOIL EPA METHOD : 8310

			·		·		
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE YRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333 0.333	3.51 0.308 0.268 0.325 0.304	70 92 80 98 91	3.77 0.343 0.284 0.313 0.299	75 103 85 94 90	7 11 6 4 2
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE YRENE .ENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	1.4			33 - 1 20 - 1 20 - 1 25 - 1 20 - 1	54 47 44		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		83		87		25 - 1	34

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC.

SAMPLE I.D. # : BLANK

PROJECT # : 15659.001

DATE EXTRACTED : 07/06/93 DATE ANALYZED : 07/12/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

UNITS : mg/Kg

SAMPLE MATRIX : SOIL EPA METHOD : 8310

•				i .			
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE YRENE LENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	<0.170 0.0262 <0.0170 <0.0170 <0.0340	5.00 0.333 0.333 0.333	3.87 0.289 0.245 0.315 0.296	77 79 74 95 89	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE ENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				28 - 1 40 - 1 43 - 1 43 - 1 37 - 1	30 43 38		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		80		N/A		25 - 1	34

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK PROJECT # : 15659.001 DATE EXTRACTED : 07/13/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/16/93 SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8310

/					•		
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE YRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333	3.57 0.271 0.248 0.332 0.309	71 81 74 100 93	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE YRENE ENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				28 - 1 40 - 1 43 - 1 43 - 1 37 - 1	30 43 38		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		82		N/A		25 - 1	34

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : N/A DATE ANALYZED : 07/03/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUND	RESULT
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	. <0.5 <0.5 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	105 76 - 120

EPA METHOD COMPOUND	: APPLIED GEOTECHNOLOGY, INC. : 15659.001 : BURNS BROS/BINGO FUEL STOP : METHOD BLANK : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR RESULT	: N/A : 07/07/93 : ug/L
TOLUENE TOTAL XYLENES	RROGATE PERCENT RECOVERY	<0.5 <0.5 <0.5 <0.5	LIMITS
BROMOFLUOROBEN	IZENE	105	76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : RINSATE 1 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/02/93 : 07/02/93 : N/A : 07/07/93 : ug/L
COMPOUND	RESULT	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.5 <0.5 0.7 0.6	
SURROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE	108	76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : TRIP BLANK SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : 07/02/93 : N/A : 07/07/93 : ug/L : 1
COMPOUND	RESULT	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.5 <0.5 0.7 <0.5	
SURROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE	104	76 - 120

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9307-015-2

PROJECT # : 15659.001 DATE EXTRACTED : N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/03/93

EPA METHOD : 8020 (BETX) UNITS : ug/L

SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE OTAL XYLENES	<0.5 1.04 <0.5	20.0 20.0 40.0	20.3 22.2 42.5	102 106 106	20.2 22.2 42.2	101 106 106	0 0 1
CONTROL LIMITS				% REC	! . ·		RPD
BENZENE TOLUENE TOTAL XYLENES	·			72 -	112 113 110		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP.	SPIKE	LIMIT	S
BROMOFLUOROBENZENE		104		105		76 -	120

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 07/03/93

EPA METHOD : 8020 (BETX)

UNITS : ug/L

SAMPLE MATRIX : WATER

·							
COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE)TAL XYLENES	<0.5 <0.5 <0.5	20.0 20.0 40.0	21.7 22.1 43.1	109 111 108	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS		* **		% REC	! .		RPD
BENZENE TOLUENE TOTAL XYLENES				78 -	111 111 114		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP.	SPIKE	LIMIT	'S
BROMOFLUOROBENZENE		99		N/A		76 -	120

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK

PROJECT # : 15659.001 DATE EXTRACTED : N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/07/93 EPA METHOD : 8020 (BETX) UNITS : ug/L

SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE)TAL XYLENES	<0.5 <0.5 <0.5	20.0 20.0 40.0	20.6 21.4 42.8	103 107 107	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS				% REC	•		RPD
BENZENE TOLUENE TOTAL XYLENES				78 -	111 111 114		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP.	SPIKE	LIMIT	S
BROMOFLUOROBENZENE		101		N/A		76 -	120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 07/07/93 DATE ANALYZED : 07/07/93 UNITS : mg/Kg DILUTION FACTOR : 1
# · · ·	
BENZENE	<0.025 <0.025 <0.025 <0.025
BROMOFLUOROBENZENE	99 52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW5 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/01/93 : 07/02/93 : 07/07/93 : 07/08/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TAL XYLENES	<0.030 0.12 0.080 0.50	JIMITS
SURROGATE PERCENT RECOVERY		ITMITIS
BROMOFLUOROBENZENE	92 5	2 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW5 @ 10.0' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/01/93 : 07/02/93 : 07/07/93 : 07/08/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TAL XYLENES	<0.028 <0.028 <0.028 <0.028	
SURROGATE PERCENT RECOVERY	I	IMITS
BROMOFLUOROBENZENE	85 5	2 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW1 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/02/93 DATE RECEIVED : 07/02/93 DATE EXTRACTED : 07/07/93 DATE ANALYZED : 07/08/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TAL XYLENES SURROGATE PERCENT RECOVERY	<0.027 <0.027 <0.027 <0.027
SURROGATE PERCENT RECOVERT	
BROMOFLUOROBENZENE	82 52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW2 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/02/93 DATE RECEIVED : 07/02/93 DATE EXTRACTED : 07/07/93 DATE ANALYZED : 07/08/93 UNITS : mg/Kg DILUTION FACTOR : 1	
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TAL XYLENES	<0.026 <0.026 <0.026 <0.026	
SURROGATE PERCENT RECOVERY	LIMITS	
BROMOFLUOROBENZENE	91 52 - 116	

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC.
PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP SAMPLE I.D. # : 9307-004-5 DATE EXTRACTED : 07/07/93

DATE ANALYZED : 07/07/93

SAMPLE MATRIX : SOIL

UNITS

: mg/Kg

EPA METHOD : 8020 (BETX)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TAL XYLENES	<0.0250 <0.0250 <0.0250	1.00 1.00 2.00	0.789 0.846 1.79	79 85 90	0.810 0.867 1.83	81 87 92	3 2 2
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES		•		-	13 07 14		20 20 20
SURROGATE RECOVERIES	5	SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		86		85		52 - 1	16

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK
PROJECT # : 15659.001 DATE EXTRACTED : 07/07/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/07/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8020 (BETX)

COMPOUNDS		SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TAL XYLENES		<0.0250 <0.0250 <0.0250	1.00 1.00 2.00	0.923 1.04 2.20	92 104 110	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL	LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES					63 - 1: 75 - 1: 79 - 1:			20 20 20
SURROGAT	TE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
BROMOFILIOROBEN	IZENE		111		N/A		52 - 1	16

· TERPHENYL

ATI I.D. # 9307-038

FUEL HYDROCARBONS DATA SUMMARY

DATE SAMPLED : N/A
DATE RECEIVED : N/A : APPLIED GEOTECHNOLOGY, INC. DATE SAMPLED CLIENT CLIENT : APPLIED GEOTECHNOLOGY, INC. DATE SAMPLED : N/A
PROJECT # : 15659.001 DATE RECEIVED : N/A
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE EXTRACTED : 07/08/93
CLIENT I.D. : METHOD BLANK DATE ANALYZED : 07/08/93 UNITS : mg/L SAMPLE MATRIX : WATER DILUTION FACTOR: 1 EPA METHOD : 8015 (MODIFIED) RESULTS COMPOUNDS FUEL HYDROCARBONS <1 C7 - C12 HYDROCARBON RANGE HYDROCARBON QUANTITATION USING GASOLINE JEL HYDROCARBONS <1 C12 - C24 HYDROCARBON RANGE DIESEL HYDROCARBON OUANTITATION USING SURROGATE PERCENT RECOVERY LIMITS 109 68 - 144

FUEL HYDROCARBONS DATA SUMMARY

SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE RECEIVED : 07/02/93
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING LUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE <1 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
^ TERPHENYL	109 68 - 144

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9307-038-4
PROJECT # : 15659.001 DATE EXTRACTED : 07/08/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/08/93*
SAMPLE MATRIX : WATER UNITS : mg/L

EPA METHOD : 8015 (MODIFIED)

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
GASOLINE	<1.00	<1.00	NC	50.0	40.4	81	41.5	83	3
CONTROL	LIMITS				•	% REC	•		RPD
GASOLINE						64 -	118		20
SURROGATE RECOVERIES				SPIKE		DUP.	SPIKE	LIMIT	'S
O-TERPHENYL				107		110		68 -	144

⁼ Not Calculable.

^{*} Sample duplicate was run on July 12, 1993.

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 07/08/93

DATE ANALYZED : 07/08/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

SAMPLE MATRIX : WATER

UNITS

: mg/L

EPA	METHOD	:	8015	(MODIFIED)	١
-----	--------	---	------	------------	---

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
GASOLINE	<1.00	50.0	42.2	84	N/A	N/A	N/A
CONTROL LIMITS				% REC.			RPD
GASOLINE				52 - 1	24		20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
O-TERPHENYL		111		N/A		68 - 1	44 .

FUEL HYDROCARBONS DATA SUMMARY

PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: BURNS BROS/BINGO FUEL STOP : METHOD BLANK X : SOIL	DATE RECEIVED	: N/A : 07/07/93 : 07/08/93 : mg/Kg
COMPOUNDS		RESULTS	
FUEL HYDROCAL HYDROCARBON I HYDROCARBON (RANGE	<5 C7 - C10 GASOLINE	
IJEL HYDROCAI HYDROCARBON I HYDROCARBON (<25 C10 - C28 DIESEL	
5	SURROGATE PERCENT RECOVERY		LIMITS
^ TERPHENYL		110	52 - 143

ATI I.D. # 9307-038-1

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW5 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/01/93 DATE RECEIVED : 07/02/93 DATE EXTRACTED : 07/07/93 DATE ANALYZED : 07/08/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	160 C7 - C10 GASOLINE
LUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	43 C10 - C28 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
↑ TERPHENYL	110 52 - 143

TERPHENYL

ATI I.D. # 9307-038-2

FUEL HYDROCARBONS DATA SUMMARY

SAMPLE MATRIX : SOIL	DATE RECEIVED : 07/02/93
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<6 C7 - C10 GASOLINE
FJEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<28 C10 - C28 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS

101

52 - 143

ATI I.D. # 9307-038-3

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW1 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT		0 : 07/02/93 ED : 07/07/93 0 : 07/08/93 : mg/Kg
COMPOUNDS	RESULTS	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C7 - C10 GASOLINE	
FJEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<27 C10 - C28 DIESEL	
SURROGATE PERCENT RECOVERY		LIMITS
C TERPHENYL	97	52 - 143

TERPHENYL

ATI I.D. # 9307-038-5

52 - 143

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW2 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED : 07/02/93
COMPOUNDS	RESULTS
FUEL HYDROCARBONS	<5
HYDROCARBON RANGE	C7 - C10 GASOLINE
HYDROCARBON QUANTITATION USING	GASCHINE
FJEL HYDROCARBONS	<26
HYDROCARBON RANGE	C10 - C28
HYDROCARBON QUANTITATION USING	DIESEL
SURROGATE PERCENT RECOVERY	LIMITS

106

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9307-038-5
PROJECT # : 15659.001 DATE EXTRACTED : 07/07/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/08/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8015 (MODIFIED)

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
,			···						-
DIESEL	<25.0	<25.0	NC	500	471	94	480	96	2
CONTROL LIMITS						% REC	! .		RPD
DIESEL						56 -	137		20
SURROGAT	E RECOVE	RIES		SPIKE		DUP.	SPIKE	LIMIT	S
O-TERPHENYL				110		108		52 -	143

⁼ Not Calculable.

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC.

SAMPLE I.D. # : BLANK

PROJECT # : 15659.001

DATE EXTRACTED : 07/07/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 07/08/93 UNITS : mg/Kg

SAMPLE MATRIX : SOIL

EPA METHOD : 8015 (MODIFIED)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
DIESEL	<25.0	500	486	97	N/A	N/A	N/A
CONTROL LIMITS				% REC.			RPD
DIESEL				67 - 1	35		20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
O-TERPHENYL		110		N/A		52 - 1	43

METALS ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

LEAD

07/06/93

07/07/93

METALS ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001

MATRIX : WATER

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/L

ATI I.D. # CLIENT I.D.

 \mathtt{LEAD}

9307-038-4 RINSATE 1

<0.0030

METHOD BLANK

<0.0030

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/L

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	9307-017-6	<0.0030	<0.0030	NC	0.0293	0.0250	117
LEAD	BLANK	<0.0030	N/A	N/A	0.0257	0.0250	103

NC = Not Calculable.

RPD (Relative % Difference) = (Sample Result - Duplicate Result)
----- x 100
Average Result

METALS ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE PREPARED

DATE ANALYZED

LEAD

07/08/93

07/09/93

METALS ANALYSIS DATA SUMMARY

PROJECT # : PROJECT NAME :	: APPLIED GEOTECHNO : 15659.001 : BURNS BROS/BINGO RRECTED FOR MOISTUR	FUEL STOP	MATRIX UNITS	: SOIL : mg/Kg	
ATI I.D. #	CLIENT I.D.	LEAD	 		
9307-038-1 9307-038-2 9307-038-3 9307-038-5 METHOD BLANK	MW5 @ 7.5' MW5 @ 10.0' MW1 @ 7.5' MW2 @ 7.5'	2.1 1.3 2.1 1.9 <0.15			

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/Kg

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	9307-038-3	2.1	1.8	15	3.63	1.40	109
LEAD	BLANK	<0.15	N/A	N/A	1.03	1.25	82

RPD (Relative % Difference) = (Sample Result - Duplicate Result)

Average Result

GENERAL CHEMISTRY ANALYSIS

PARAMETER

MOISTURE

07/06/93

GENERAL CHEMISTRY ANALYSIS DATA SUMMARY

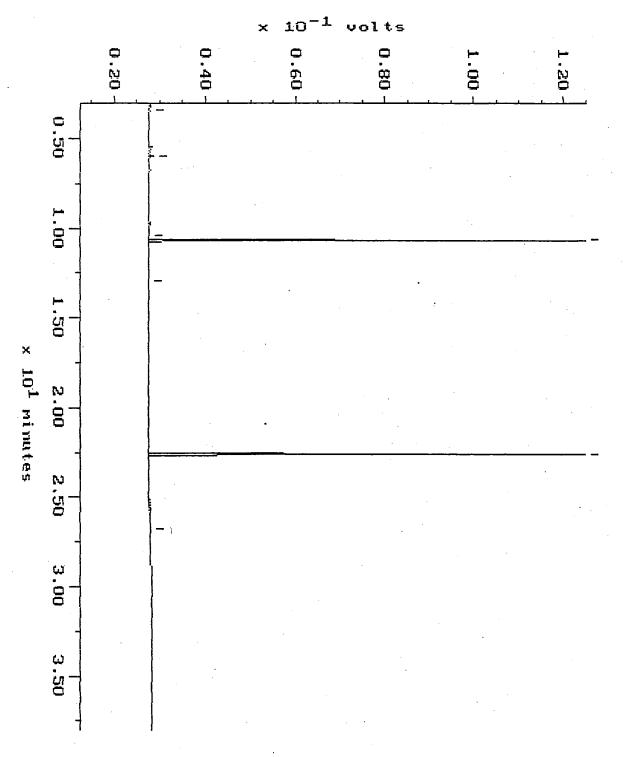
CLIENT PROJECT # PROJECT NAME	: APPLIED GEOTECHNOLOG : 15659.001 : BURNS BROS/BINGO FUE	·	MATRIX UNITS	•	SOIL %
ATI I.D. #	CLIENT I.D.	MOISTURE			
9307-038-1 9307-038-2 9307-038-3 9307-038-5	MW5 @ 7.5' MW5 @ 10.0' MW1 @ 7.5' MW2 @ 7.5'	18 9.6 8.0 5.6			

ATI I.D.

ATI I.D. # 9307-038

GENERAL CHEMISTRY ANALYSIS QUALITY CONTROL DATA

: 15659.001 : BURNS BROS/BINGO FUEL STOP	UNITS : %	
SAMPLE DUP	SPIKED SPIKE	ક

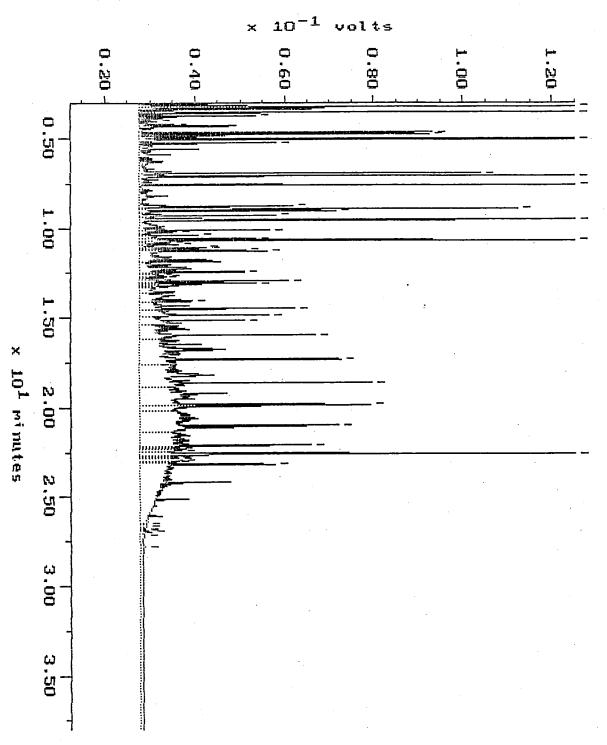

RESULT RESULT RPD

MOISTURE 9306-295-8 19 18 5 N/A N/A

EPA 8015 Modified Channel: BERT 17:43 Method: F:\BRO2\MAXDATA\BERT\FUEL0708

Sample: WRB 7-8 Characteristics Characteristics Comments: ATI: THE QUALITY TEAM

Filename: R7088B03 Operator: ATI

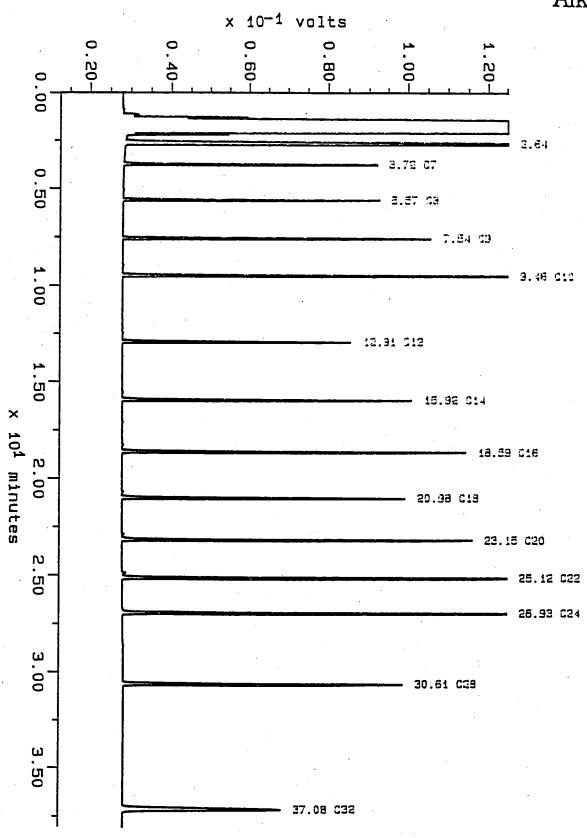


Continuing Calibration

Channel: BERT
Method: F:\BRO2\MAXDATA\BERT\FUEL8708

Filename: R7088B02 Operator: ATI

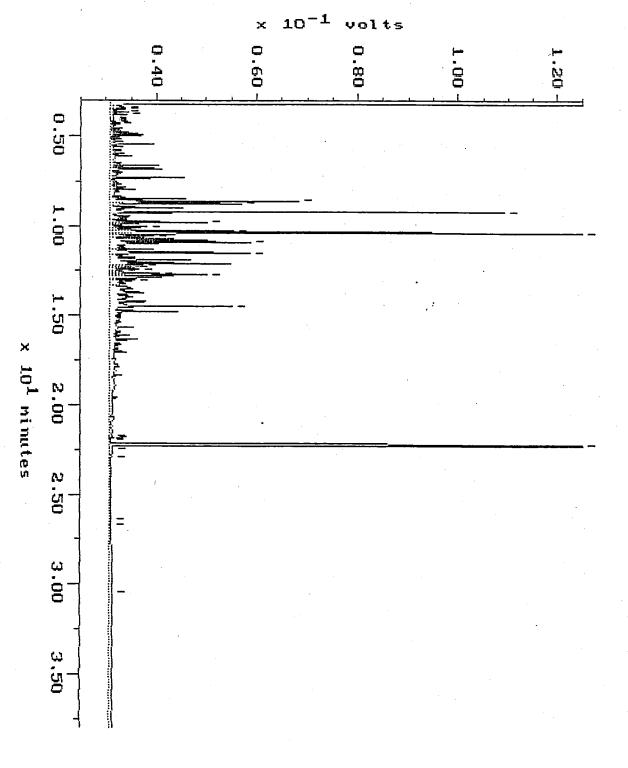
Sample: DG 490 Cha Acquired: 08-JUL-93 16:56 Me Comments: ATI: THE QUALITY TEAM



Sample: ALKANE Acquired: 24-MAR-92 22: 39 Inj Vol: 1.30

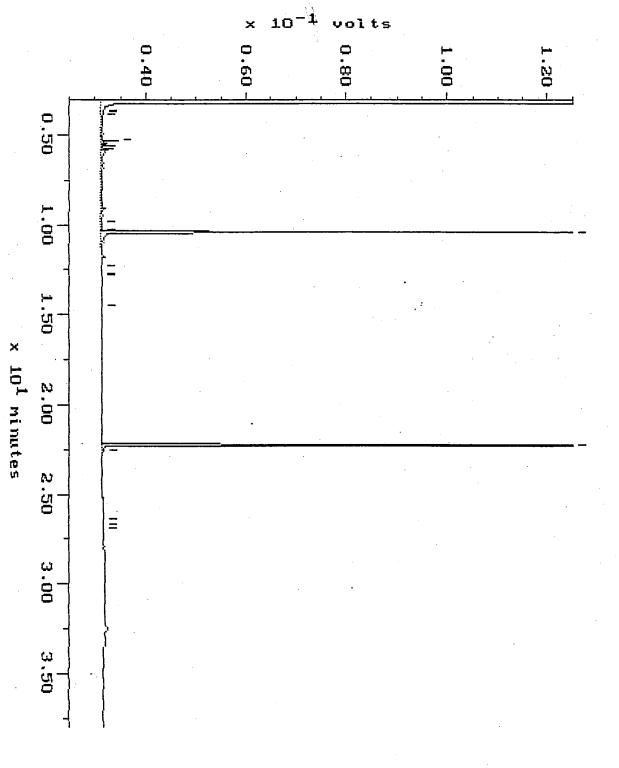
Channel: EERT
Method: F: \ERDS\MAXEATA\EERT\FUEL0324

Filename: A3248603 Operator: ATI

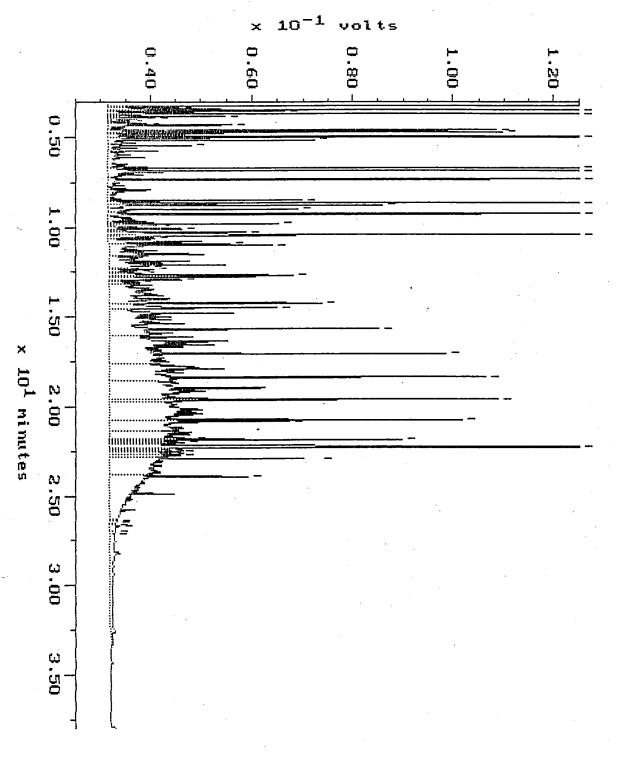

Alkane

EPA 8015 Modified

Filename: R7988N09 Operator: ATI

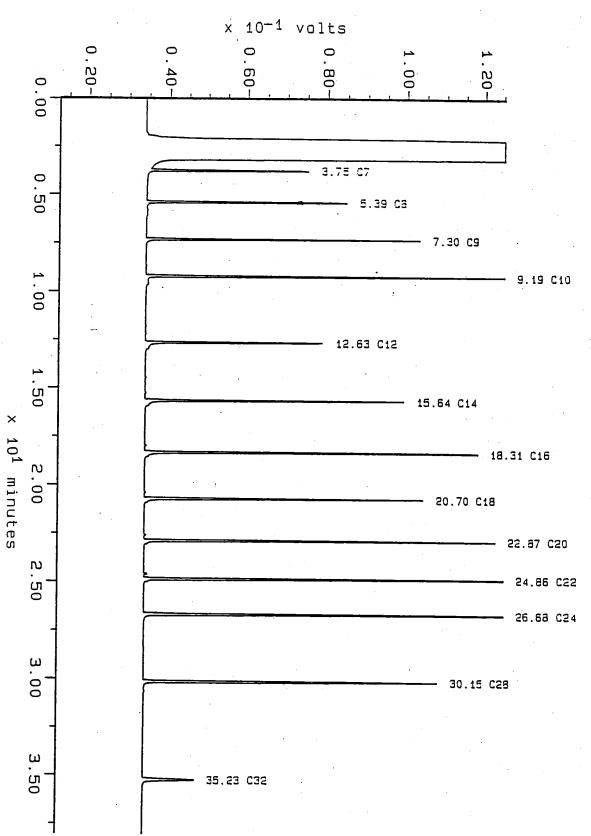

Sample: 9397-938-1 Channel: NANCY Fi
Acquired: 98-JUL-93 14:52 Method: F:\BRO2\MAXDATA\NANCY\FUEL9798 Op
Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

EPA 8015 Modified


Filename: R7088N03 Operator: ATI

Sample: SRB 7-7 Channel: NANCY Fi
Acquired: 08-JUL-93 10:07 Method: F:\BRO2\MAXDATA\NANCY\FUEL0708 Op
Comments: ATI RUSH FUELS:\PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

Continuing Calibration


Sample: DG 400 Channel: NANCY Filename: R7088N02
Acquired: 08-JUL-93 8:48 Method: F:\BRO2\MAXDATA\NANCY\FUEL0708 Operator: ATI
Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

Sample: ALKANE Channel: NANCY
Acquired: 16-APR-93 13:35 Method: F:\EROZ\MAXCATA\NANCY\FUEL0416
Inj Vol: 1.00

Filename: R4168AC2 Operator: ATI

Alkane

CHAIN-OF-~JSTODY

ō

Page_

7-2-93

Date__

٤

Geotechnical Engineering Geology & Hydrogeology

The second control of the second control of

			N	UMBI	ER C	FC	TAC	AINE	RS		_		_	-	72	_	7			ကြ
		E	_									_	_	-	\dashv			\prec		∺
1		ОТНЕВ	\vdash						_			-	\dashv				_			RELINGUISHED BY:
ļ		Ö	\vdash	<u>ل در</u>		h.	. 5	PA	74	21	寸	ᅱ	됫	ᆽ	되					/吊
		5	TO	CLP -	Met	als `	} ~	<u> </u>	. 7								abla			
		LEACHING TESTS	TO	CLP -	Pes	ticide	s					·								Ιğ
l	-	TES T	T	CLP -								_	_		_					
		-	T	CLP -			<u> </u>	_			_	_		_						
		٠.		FSP			Wa)						\dashv		\dashv				-	2.
		, n		WS -			ale (13)					- +	-		-			_	
	ŀ	METALS	_	CL M		_		10)				一	\dashv	$\neg \dagger$	一			1		RELINGUISHED BY:
	<u> </u>			rgani			_				\dashv	$\neg \dagger$	\dashv						/	
	ES	_	_	otal L																<u> </u>
	3		s	electe	ed m	etals	: list												<u> </u>	=
1,1	\ #	, s	_	ws -							_							<u> </u>	<u> </u>	<u>S</u>
10	√ જ	2	_	150 C		_							\dashv					_	-	
$ \langle \rangle $	₹	TS/	_	140 C									-		_		-	-		~
15	ANALYSIS REQUEST	PESTS/PCB's		080M		_										_	\vdash	\vdash	1	
12	AN			ws -					nivol.					_			T			. اا
921-1756	1	ORGANIC COMPOUNDS	—	040 F																BEI INOITISHED BY: 1
(A	١.	હ	8	310 F	IPLC	PAI	-ls					X	X	У	Y	٨				6
Q	7	⊠		270 C														_	-	
		O		240 (s	_						λ		L	\vdash	}—	╢┋
İ	ľ	Z		020M		_						×	>		(>	┝		∥ž
ie		l Ba		020 A				_								\vdash		-	-	<u>u</u>
Ĕ			_	015M		Cita						X	×	>=	×	>		T		╢ª
Laboratory Number:		PETROLEUM HYDROCABBONS	4	18.1		te:			_											
	`	PETROLEUM	Ŧ	PH S	peci	al Ins	struc	tions	3											1
rat		E 5	I	PH-C		_										<u> </u>	$ \rangle$	\	<u> </u>	<u> </u>
를 교		F 6	Ţ	PH-C		_								<u> </u>	_		-	\vdash	\leftarrow	╢╏
닏		<u> </u>	; T	PH-II	S	tate:			. 1			ļ <u> </u>		_		\vdash	-	┼	+	ij
		1					-	[=	01 8									
1	1	ĺ	.	Y		1				☐Special	LAE	_	4	8	J	$ \setminus $	0			
				A			l			Spe	_	<u> </u>		-	-	-	<u>' </u>	-	╀	CAMPIE
-	.			<u>.</u>		•					쏥	_	_			_	10			
				9 P							MATRIX	5.1	18	5	160	2.				11 "
		4		ple					<u>(e</u>	Std	Ž	1	ر	'n		ΓŅ	77			$\ \ $
2		20		Sampled By: DP	S	ted)ate	j	☐AGI Std.	ш	,	^	-	1	8				
ĮĔ		1		S.	F	ig		alC	100	<u> </u>	TIME	1035	1107	1240	5101	1355				
M	1		0		≩	ij		SOC:	[迈			100	ニ	0	バ	<u> ``</u>		_		╢.
PRO IFCT INFORMATION	Barry	Bros. 1 Therp	O		DISPOSAL INFORMATION	X Lab Disposal (return if not indicated)		Disposal Date:	QC INFORMATION (check one)	gu	<u></u>					1	1			$\ \cdot \ $
	: 8	20	5	4	Ž	Ē		ا	ΙĔ	eni	DATE	7-1-93	7-1-53	7.2.15	7.2.93	7.1.13	"	\downarrow	~	_
		8	15	7	7			.	Ĭ₹	cre	DA	-	:	7	1	7	18.73	\	1	
1 =		0	7	-	SS	<u>e</u>		.	8		<u> </u>	1,	1	<u> </u>	1	1	1	1	+>	∤ [
2		3	W	\$	3PC	sal			 발											
1 9	: "	2		70	👸	ď			5	5		١.	N	١,						
	er:		Ή.	1		Dis	ö	ł	O	임		1	0.0	*		1,	1			
ĺ	Jag	ne:	nbe	Ë		ap	eth	.;		٦	1	1	ド	۱,	· _	7	113	ř		9
	 ar	Jan	Ž	atic		ΔĹ	Σ	ďb		46	SAMPLE ID	0	8	િ		0	18	1		-
	덫	ğ	듗	ဝ		🔀	osa	ose		№ -8	S	\script{v}	15	-	5. 7		0	1)		
	Project Manager: De Lee	Project Name: But 2	Project Number: 15,659.00	Site Location: Then WA		ļ	Disposal Method:	Disposed by:	1	□SW-846 □CLP □Screening		MUS @ 7.5	MWSE	MW 1 @ 7.5-	Rinsake	MW3 @ 7,5	7.10 Ble. h		`	}
	اهَ	₫	₫	Ś		Ŀ	Δ	۵		Ľ		٤	13	Σ	×	≥	۱۱	\perp		⅃ᄔ
-															_					

LABINFORMATION	SAMPLE RECEIPT		RELINGUISHED BY: 1. NELINGUISHED BY: 2: NEEINGOISHED BY: 3:	חבבוועם סוטוובם ביי	5
Lab Name: A77	Total Number of Containers:	Time:	Signature: Time:	Signature:	Time:
Lab Address: 560 Naches Ave	Chain of Custody Seals: Y/N/NA		Printed Name: Date:	Printed Name:	Date:
Western Wa	Intact?: Y/N/NA	y 2.15 12 mm 7.3.43			
Via: - Fredere-1 (2017 55 - 1017)	Received in Good Condition/Cold:	Company T	Company:	Сотралу:	-
Turn Around Time: IX Standard □ 24 hr. □ 48 hr. □ 72 hr. □ 1 wk.	24 hr. □ 48 hr. □ 72 hr. □1	I WK. RECEIVED BY: , 1.	RECEIVED BY: 2.	RECEIVED BY:	რ
PRIOR AUTHORIZATION IS	PRIOR AUTHORIZATION IS REQUIRED FOR RUSH DATA	Signalure:	Signature: 7	Signature:	Тіте:
Special Instructions:		Printed Name: Date:	Printed Name: Date:	Printed Name:	Date:
		Company: HITUM	Company:	Company:	
· AGI OFFICES: Bellevue: (206) 453-8383 Tacoma: (206) 383-4380	coma: (206) 383-4380	DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to AGI Project Files; Gold to AGI Disposal Files	lytical Laboratory; Pink to AGI Proje	ct Files; Gold to AGI Disposa	I Files

· AGI OFFICES: Bellevue: (206) 453-8383 Portland: (503) 222-2820

Tacoma: (206) 383-4380 Pleasanton: (415) 460-5495

Rev. 4/92

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, Washington

Lab Number: 9307-068

Sample No.: MW6@17.5', MW6@22.5', MW6@30', MW6@50', MW4@7.5', MW4@17.5'

Matrix: Soil

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable for use.

ANALYTICAL METHODS

<u>Parameter</u>	Technique	Method
PAH ^a	HPLC/UV/FLUOR	EPA 8310
BETX	GC/PID	EPA 8020
TPH ^b	GC/FID	EPA 8015 Modified
Lead	AA/GF	EPA 7421
Moisture	Gravimetric	CLP SOW ILM01.0

a - Polycyclic aromatic hydrocarbons.

TIMELINESS

<u>Parameter</u>	Date <u>Sampled</u>	Date Extracted	Date <u>Analyzed</u>	Time Until Extraction	Time Until <u>Analysis</u>
РАН	07/06/93	07/13/93°	07/16/93	7(14)	3 (40)
BETX .	07/06/93	07/09/93 ^d	07/10/93	3	4(14)
TPH	07/06/93	07/13/93	07/14/93	7	8(14)
Lead	07/06/93	07/13/93	07/16/93	7	10(180)
Moisture	07/06/93	NA	07/12/93	NA	6 (NA)

NA - Not applicable.

Numbers in parentheses indicate recommended holding times in days.

- c Sample MW4017.5' analyzed July 17, 1993.
- d Sample MW407.5' analyzed July 13, 1993.

All samples were extracted and analyzed within recommended holding times.

b - Fuel hydrocarbons, analyzed for gasoline $(C_7 - C_{12})$ and diesel $(C_{12} - C_{24})$ range total petroleum hydrocarbons (TPH).

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, Washington

Lab Number: 9307-068

Sample No.: MW6017.5', MW6022.5', MW6030', MW6050', MW407.5', MW4017.5'

Matrix: Soil

FUEL HYDROCARBON CHROMATOGRAMS

Gasoline range (C_7 - C_{12}) TPH were detected in samples MW6@17.5', MW6@22.5', and MW6@50'; diesel range (C_{12} - C_{24}) TPH were detected in sample MW6@22.5' by EPA 8015M. These detections are supported by sample chromatograms for this method.

FIELD QUALITY CONTROL SAMPLES

Field Duplicates: Sample MW6@50' is a duplicate of MW6@17.5'. Both samples

were analyzed by EPA Methods 8015 Modified, 8020, 8310, and 7421. No analytes were detected at or above their MRLs by EPA 8310, indicating acceptable precision. Relative percent differences (RPDs) ranged from 10 percent (EPA 7421) to 42 percent for total xylenes (EPA 8020). Some field and/or laboratory variability is indicated by RPDs as high as 42 percent; however, variability is likely due to the inherent difficulty in obtaining true field duplicates of soil samples. Data

are accepted without qualification.

Rinsate: None collected.

Trip Blank: None collected.

LAB QUALITY CONTROL SAMPLES

Method Blank: No analytes were detected at or above their method

reporting limits (MRLs) in method blanks for the follow-

ing methods:

EPA 8310 EPA 8020 EPA 8015M EPA 7421

Matrix Spikes: Matrix spike percent recovery for EPA 7421 is within

ATI's control limit criteria.

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.:

15659.001

Lab Name:

Analytical Technologies, Inc. (ATI) - Renton, Washington

Lab Number:

9307-068

Sample No.:

MW6@17.5', MW6@22.5', MW6@30', MW6@50', MW4@7.5', MW4@17.5'

Matrix:

Matrix Spikes:

(cont.)

Matrix spike and matrix spike duplicate percent

recoveries and RPDs are within ATI's control limit

criteria for the following methods:

EPA 8310 EPA 8020 EPA 8015M

Duplicates:

Duplicate sample RPDs are within ATI's control limit

criteria for the following methods:

EPA 7421

CLP SOW ILM01.0

EPA 8015M: Analytes were not detected in either sample or duplicate sample at or above their MRLs. Reproduci-

bility of this method is acceptable.

Blank Spikes:

Blank spike percent recoveries are within ATI's control

limit criteria for the following methods:

EPA 8310 **EPA 8015M** EPA 7421 **EPA 8020**

Surrogates:

Surrogate spike percent recoveries are all within ATI's

control limit criteria for the following methods:

EPA 8310 EPA 8020 EPA 8015M

S	I	G	N	Α	T	U	R	Œ	S

Prepared by

Date

July 28, 1993

Applied Geotechnology, Inc. P.O. Box 3885 Bellevue WA 98009

Attention : Peter Barry

Project Number: 15659.001

Project Name : Burns Bros/Bingo Fuel Stop

Dear Mr. Barry:

On July 8, 1993, Analytical Technologies, Inc. (ATI), received six samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Sincerely,

Senior Project Manager

DMM/hal/ff

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9307-068-1 9307-068-2 9307-068-3 9307-068-4 9307-068-5 307-068-6	MW6 @ 17.5' MW6 @ 22.5' MW6 @ 30' MW6 @ 50' MW4 @ 7.5' MW4 @ 17.5'	07/06/93 07/06/93 07/06/93 07/06/93 07/06/93 07/06/93	SOIL SOIL SOIL SOIL SOIL

---- TOTALS ----

MATRIX # SAMPLES
SOIL 6

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled sposal date.

ANALYTICAL SCHEDULE

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
POLYNUCLEAR AROMATIC HYDROCARBONS	HPLC/UV/FLUOR	EPA 8310	R
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
LEAD	AA/GF	EPA 7421	R
MOISTURE	GRAVIMETRIC	CLP SOW ILM01.0	R

R ATI - Renton

ATI - San Diego SD =

PHX = ATI - Phoenix PNR = ATI - Pensacola FC = ATI - Fort Collins

'B = Subcontract

CASE NARRATIVE

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS

Six (6) soil samples were received by Analytical Technologies, Inc. (ATI), on July 8, 1993, for the following analysis: EPA method 8310.

All corresponding quality assurance and quality control results defined as blank spike (BS), matrix spike/matrix spike duplicate (MS/MSD), method blank and surrogate recoveries were within the established control limits.

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: N/A D : 07/13/93 : 07/16/93 : mg/Kg DR : 1
	PESIII.TS	
NAPHTHALENE	<0.083	
ACENAPHTHYLENE	<0.17	
1-METHYLNAPHTHALENE METHYLNAPHTHALENE	<0.17	
METHYLNAPHTHALENE	<0.17	
		•
FLUORENE	<0.017	
PHENANTHRENE	<0.0083	
ANTHRACENE	<0.0083	
FLUORANTHENE PYRENE	<0.017	
PYRENE		
	<0.017	
THRYSENE LINZO (B) FLUORANTHENE	<0.017	
ENZO(B) FLUORANTHENE	<0.017 <0.017	
BENZO(K) FLUORANTHENE BENZO(A) PYRENE	<0.017	
DIBENZO(A, H) ANTHRACENE	<0.017	
BENZO (G, H, I) PERYLENE	<0.034	
BENZO (G, H, I) PERYLENE INDENO (1, 2, 3-CD) PYRENE	<0.017	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	81	25 - 134

ATI I.D. # 9307-068-1

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED : 07 DATE EXTRACTED : 07	/16/93 /Kg
COMPOUNDS	· · · · · · · · · · · · · · · · · · ·	
NAPHTHALENE	<0.10	
ACENAPHTHYLENE	<0.21	
1-METHYLNAPHTHALENE	<0.21	
METHYLNAPHTHALENE	<0.21	
ACENAPHTHENE	<0.21	
FLUORENE	<0.021	
PHENANTHRENE	<0.010	
	<0.010	
FLUORANTHENE	<0.021	
PYRENE		
· ·	<0.021	•
"YRYSENE	<0.021	
INZO (B) FLUORANTHENE		
BENZO(K) FLUORANTHENE	<0.021	•
BENZO (A) PYRENE	<0.021	
DIBENZO(A, H) ANTHRACENE		
BENZO (G, H, I) PERYLENE	<0.021	
INDENO(1,2,3-CD)PYRENE	<0.021	
SURROGATE PERCENT RECOVERY	LIMITS	
2-CHLOROANTHRACENE	74 25 - 1	34

ATI I.D. # 9307-068-2

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 22.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/08/93 D : 07/13/93 : 07/16/93 : mg/Kg	
COMPOUNDS	RESULTS		
1-METHYLNAPHTHALENE METHYLNAPHTHALENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRACENE "4RYSENE LNZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE BENZO (A) PYRENE DIBENZO (A, H) ANTHRACENE BENZO (G, H, I) PERYLENE INDENO (1, 2, 3 - CD) PYRENE	<pre><0.23</pre>		
SURROGATE PERCENT RECOVERY		LIMITS	
2-CHLOROANTHRACENE	78	25 - 134	

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 30' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	UNITS DILUTION FACT	: 07/08/93 D: 07/13/93 : 07/16/93 : mg/Kg
COMPOUNDS	RESULTS	
NAPHTHALENE	<0.086	
	<0.18	
1-METHYLNAPHTHALENE	<0.18	•
METHYLNAPHTHALENE	<0.18	
acenaphthene	<0.18	
FLUORENE	<0.018	
PHENANTHRENE	<0.0087	
ANTHRACENE	<0.0087	
FLUORANTHENE	<0.018	
PYRENE		
BENZO (A) ANTHRACENE	<0.018	
THRYSENE	<0.018	
LNZO (B) FLUORANTHENE		•
BENZO (K) FLUORANTHENE	<0.018	
BENZO (A) PYRENE	<0.018	
BENZO(A) PYRENE DIBENZO(A, H) ANTHRACENE		
BENZO(G,H,I)PERYLENE	<0.018	
INDENO(1,2,3-CD)PYRENE	<0.018	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	80	25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 50' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED • 07/08/93
COMPOUNDS	RESULTS
NAPHTHALENE	
	<0.20
1-METHYLNAPHTHALENE	<0.20
METHYLNAPHTHALENE	
CENAPHTHENE	<0.20
FLUORENE	<0.020
PHENANTHRENE	
	<0.0099
FLUORANTHENE PYRENE	<0.020
BENZO (A) ANTHRACENE	<0.020 <0.020
CHRYSENE	<0.020
INIO (B) FLUORANTHENE	<0.020
BENZO (K) FLUORANTHENE	<0.020
BENZO (A) PYRENE	<0.020
DIBENZO (A, H) ANTHRACENE	<0.040
BENZO(G,H,I) PERYLENE	<0.020
INDENO(1,2,3-CD) PYRENE	<0.020
SURROGATE PERCENT RECOVERY	LIMITS
2-CHLOROANTHRACENE	76 25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW4 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/08/93 : 07/13/93 : 07/16/93 : mg/Kg
COMPOUNDS	RESULTS	
1 - ΜΕΤΉΥΙ.ΝΑ ΟΗΤΉΑΙ.ΕΝΕ	<0.17 <0.17	
METHYLNAPHTHALENE	<0.17	
ACENAPHTHENE	<0.17	
FLUORENE	<0.017	
PHENANTHRENE		,
ANTHRACENE	<0.0085	
FLUORANTHENE PYRENE	<0.017	
	<0.017	•
221120 (11/12111111111111111111111111111111111	<0.017	
HRYSENE	<0.017	
£NZO(B) FLUORANTHENE		
BENZO (K) FLUORANTHENE	<0.017	
BENZO (A) PYRENE	<0.017	
DIBENZO(A, H) ANTHRACENE		
BENZO(G,H,I)PERYLENE	<0.017	
INDENO(1,2,3-CD)PYRENE	<0.017	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	83	25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW4 @ 17.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/06/93 DATE RECEIVED : 07/08/93 DATE EXTRACTED : 07/13/93 DATE ANALYZED : 07/17/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
NAPHTHALENE	
	<0.18
1-METHYLNAPHTHALENE	<0.18
	<0.18
CENAPHTHENE	<0.18
FLUORENE	<0.018
PHENANTHRENE	
ANTHRACENE	<0.0090
	<0.018
PYRENE	
BENZO(A)ANTHRACENE "YRYSENE	<0.018 <0.018
£NZO(B) FLUORANTHENE	<0.010
BENZO(K) FLUORANTHENE BENZO(K) FLUORANTHENE	<0.018
BENZO(A) PYRENE	<0.018
DIBENZO(A, H) ANTHRACENE	<0.016
	<0.037
INDENO(1,2,3-CD) PYRENE	<0.018
INDENO(1,2,3-CD) FIREME	<0.018
SURROGATE PERCENT RECOVERY	LIMITS
2-CHLOROANTHRACENE	82 25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : 9307-068-5

PROJECT #

: 15659.001

DATE EXTRACTED : 07/13/93

DATE ANALYZED : 07/16/93

SAMPLE MATRIX : SOIL

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

UNITS : mg/Kg

EPA METHOD : 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE 'RENE LENZO (K) FLUORANTHENE DIBENZO (A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333	3.77 0.287 0.253 0.321 0.299	75 86 76 96	3.61 0.304 0.262 0.321 0.299	72 91 79 96 90	4 6 3 0
CONTROL LIMITS		e.		% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE LNZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				33 - 1 20 - 1 20 - 1 25 - 1 20 - 1	54 47		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		82		82		25 - 1	34

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK
PROJECT # : 15659.001 DATE EXTRACTED : 07/13/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/16/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE ''RENE LENZO (K) FLUORANTHENE DIBENZO (A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333 0.333	3.56 0.289 0.251 0.310 0.292	71 87 75 93 88	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE YRENE INZO (K) FLUORANTHENE DIBENZO (A, H) ANTHRACENE				28 - 1 40 - 1 43 - 1 43 - 1 37 - 1	30 43 38		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		79		N/A		25 - 1	34

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 07/09/93 DATE ANALYZED : 07/09/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE)TAL XYLENES SURROGATE PERCENT RECOVERY	<0.025 <0.025 <0.025 <0.025
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	110 52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 17.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLIDATE RECEIVED DATE EXTRACTED ANALYZED UNITS DILUTION FOR	VED : 07/08/93 CTED : 07/09/93 ZED : 07/10/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	. 0.64 1.2 0.55	
SURROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE	95	52 - 116

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 22.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED : 0 DATE EXTRACTED : 0 DATE ANALYZED : 0	07/06/93 07/08/93 07/09/93 07/10/93 mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TAL XYLENES	3.5 3.6 17 D4 21 D4	
SURROGATE PERCENT RECOVERY	LIMI	rs
BROMOFLUOROBENZENE	86 52 -	116

D4 = Value from a ten fold diluted analysis.

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 30' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/06/93 : 07/08/93 : 07/09/93 : 07/10/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.026 <0.026 <0.026 <0.026	
SURROGATE PERCENT RECOVERY	:	LIMITS
BROMOFIJIOROBENZENE	99	52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 50' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/06/93 : 07/08/93 : 07/09/93 : 07/10/93 : mg/Kg : 1
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	0.48 0.79 0.40 2.8	
SURROGATE PERCENT RECOVERY	L	IMITS
BROMOFLUOROBENZENE	92 5	2 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW4 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/06/93 DATE RECEIVED : 07/08/93 DATE EXTRACTED : 07/09/93 DATE ANALYZED : 07/10/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE)TAL XYLENES SURROGATE PERCENT RECOVERY	<0.026 0.17 0.11 1.3 LIMITS
BROMOFLUOROBENZENE	108 52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW4 @ 17.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/10/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.027 <0.027 <0.027 <0.027	
SURROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE	96	52 - 116

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: 9307-079-5

PROJECT #

DATE EXTRACTED : 07/09/93

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP SAMPLE MATRIX : SOIL

DATE ANALYZED : 07/09/93

UNITS

: mg/Kg

EPA METHOD : 8020 (BETX)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE OTAL XYLENES	<0.0250 <0.0250 <0.0250	1.00 1.00 2.00	0.808 0.913 1.85	81 91 93	0.864 0.991 1.94	86 99 97	7 8 5
CONTROL LIMITS			•	% REC.		•	RPD
BENZENE TOLUENE TOTAL XYLENES				-	13 07 14		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	;
BROMOFLUOROBENZENE		91		94		52 - 1	.16

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 07/09/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 07/09/93

SAMPLE MATRIX : SOIL

UNITS : mg/Kg

EPA METHOD : 8020 (BETX)

•							
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE)TAL XYLENES	<0.0250 <0.0250 <0.0250	1.00 1.00 2.00	0.940 1.04 2.04	94 104 102	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				63 - 1 75 - 1 79 - 1	_ _		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE ·	LIMITS	
BROMOFLUOROBENZENE		100		N/A		52 - 1	16

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK	DATE RECEIVED : N/A DATE EXTRACTED : 07/13/93 DATE ANALYZED : 07/13/93 UNITS : mg/Kg
COMPOUND	RESULT
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING LUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C7 - C12 GASOLINE <25 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
^-TERPHENYL	116 52 - 143

CLIENT : PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX : METHOD : RESULTS ARE COR	15659.001 BURNS BRO MW6 @ 17. SOIL 8015 (MOI	DS/BINGO .5' DIFIED)	FUEL STOP	DATE DATE DATE UNITS	SAMPLED RECEIVED EXTRACTED ANALYZED ION FACTOR	:	07/13/93 07/14/93 mg/Kg
COMPOUND				RESUL	T		
FUEL HYDROCARBOI HYDROCARBON RANG HYDROCARBON QUAI	GE	USING		10 C7 - GASOL			
JEL HYDROCARBON HYDROCARBON RANG HYDROCARBON QUAI	GE	USING		<31 C12 - DIESE	C24		
:	SURROGATE	PERCENT	RECOVERY			LIN	MITS
↑-TERPHENYL				111	!	52	- 143

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 22.5' SAMPLE MATRIX : SOIL METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/06/93 DATE RECEIVED : 07/08/93 DATE EXTRACTED : 07/13/93 DATE ANALYZED : 07/14/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUND	RESULT
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	99 C7 - C12 GASOLINE
UEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	38 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
↑-TERPHENYL	107 52 - 143

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 30' SAMPLE MATRIX : SOIL METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/06/93 DATE RECEIVED : 07/08/93 DATE EXTRACTED : 07/13/93 DATE ANALYZED : 07/14/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUND	RESULT
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C7 - C12 GASOLINE
LUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<26 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
-TERPHENYL	107 52 - 143

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW6 @ 50' SAMPLE MATRIX : SOIL	DATE RECEIVED	: 07/08/93 : 07/13/93 : 07/14/93 : mg/Kg
COMPOUND	RESULT	·
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING LUEL HYDROCARBONS HYDROCARBON RANGE	12 C7 - C12 GASOLINE <30 C12 - C24	
	DIESEL	
SURROGATE PERCENT RECOVERY		LIMITS
`-TERPHENYL	103	52 - 143

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW4 @ 7.5' SAMPLE MATRIX : SOIL	DATE RECEIVED	: 07/13/93 : mg/Kg
COMPOUND	RESULT	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C7 - C12 GASOLINE	
LUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<26 C12 - C24 DIESEL	
SURROGATE PERCENT RECOVERY		LIMITS
~-TERPHENYL	108	52 - 143

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW4 @ 17.5' SAMPLE MATRIX : SOIL METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE ANALYZED UNITS	: 07/08/93 : 07/13/93 : 07/14/93 : mg/Kg : 1
COMPOIND	RESULT	
COMPOUND		
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<5 C7 - C12 GASOLINE	
11121001112011 122102	<27 C12 - C24 DIESEL	
SURROGATE PERCENT RECOVERY		LIMITS
^-TERPHENYL	102	52 - 143

113

52 - 143

FUEL HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9307-068-5 CLIENT

PROJECT # : 15659.001 DATE EXTRACTED : 07/13/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/13/93 : mg/Kg : 8015 (MODIFIED) UNITS

SAMPLE MATRIX : SOIL

									'	
COMPOUND		SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
DIESEL		<25.0	<25.0	NC	500	456	91	476	95	4
CONTROL LIMITS					•	% REC		• * ,	RPD	
DIESEL							56 -	137		20
· · · ·	SURR	OGATE RE	COVERIES		SPIKE		DUP.	SPIKE	LIMIT	S

104

O-TERPHENYL

_.C = Not Calculable.

N/A

52 - 143

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK

PROJECT # : 15659.001 DATE EXTRACTED : 07/13/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/13/93

METHOD : 8015 (MODIFIED) UNITS : mg/Kg

SAMPLE MATRIX : SOIL

O-TERPHENYL

COMPOUND		SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
DIESEL		<25.0	500	477	95	N/A	N/A	N/A
	CONTROL LIMITS				% REC	! .		RPD
DIESEL					67 -	135		20
	SURROGATE RECOVER	IES	SPIKE		DUP.	SPIKE	LIMIT	S

113

METALS ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001

MATRIX : SOIL

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ELEMENT DATE PREPARED DATE ANALYZED

LEAD

07/13/93

07/16/93

METALS ANALYSIS DATA SUMMARY

PROJECT # : PROJECT NAME :	APPLIED GEOTECHNOLOG 15659.001 BURNS BROS/BINGO FUE RECTED FOR MOISTURE C	L STOP	MATRIX : SOIL UNITS : mg/Kg
ATI I.D. #	CLIENT I.D.	LEAD	
9307-068-1 9307-068-2	MW6 @ 17.5' MW6 @ 22.5'	21 6.8	
9307-068-3 9307-068-4 9307-068-5	MW6 @ 30' MW6 @ 50' MW4 @ 7.5'	1.2 19 3.0	
9307-068-6 THOD BLANK	MW4 @ 17.5'	2.1 <0.15	

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/Kg

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	9307-068-5	3.0	2.5	18	4.38	1.32	104
LEAD	BLANK	<0.15	N/A	N/A	1.31	1.25	105

RPD (Relative % Difference) = (Sample Result - Duplicate Result)

Average Result

GENERAL CHEMISTRY ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL PROJECT # : 15659.001 : BURNS BROS/BINGO FUEL STOP

PARAMETER

DATE ANALYZED

MOISTURE

07/12/93

GENERAL CHEMISTRY ANALYSIS DATA SUMMARY

MATRIX : SOIL CLIENT : APPLIED GEOTECHNOLOGY, INC.
PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

UNITS : %

	·			
ATI I.D. #	CLIENT I.D.	MOISTURE		
9307-068-1	MW6 @ 17.5'	19		
9307-068-2	MW6 @ 22.5'	27	•	
9307-068-3	MW6 @ 30'	3.7		
9307-068-4	MW6 @ 50'	16		
9307-068-5	MW4 @ 7.5'	2.5		
307-068-6	MW4 @ 17.5'	7.2		•

GENERAL CHEMISTRY ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : %

PARAMETER	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
MOISTURE	9307-047-6	22	21	5	N/A	N/A	N/A
MOISTURE	9307-102-2	11	11	0	N/A	N/A	N/A

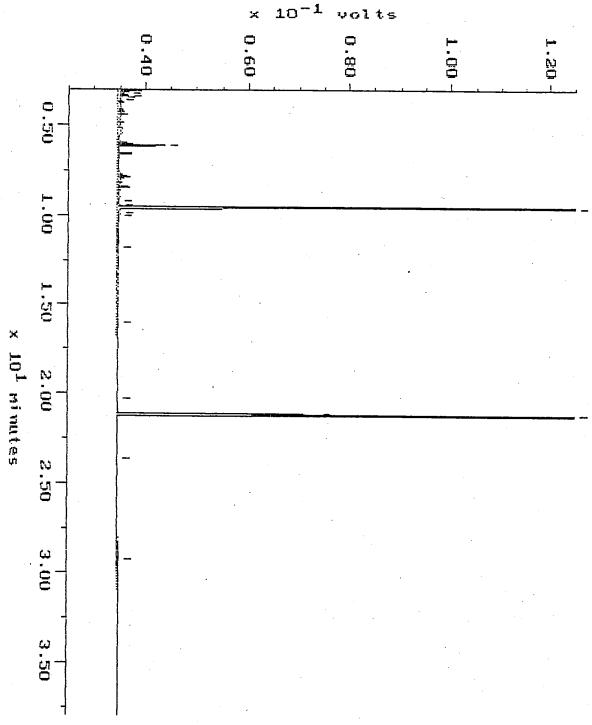
% Recovery = (Spike Sample Result - Sample Result)

Spike Concentration

RPD (Relative % Difference) = (Sample Result - Duplicate Result)

----- x 100

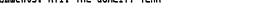

Average Result

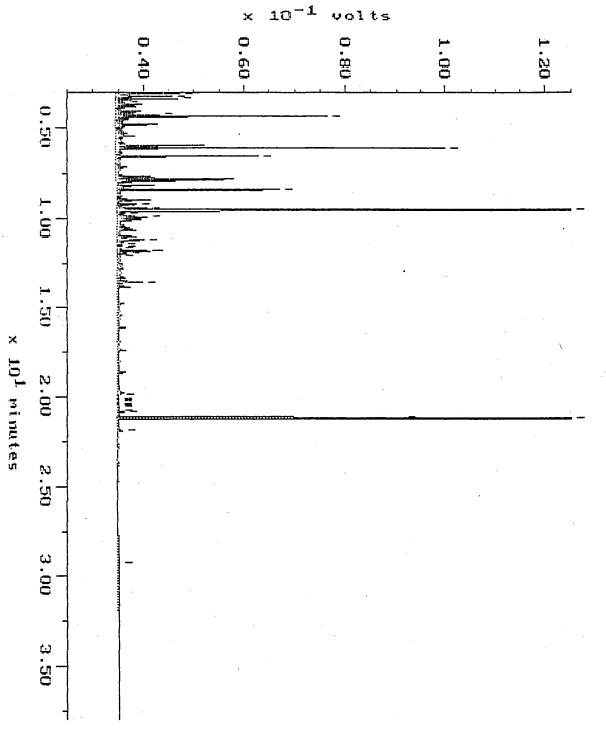

EPA 8015 Modified

Channel: ERNIE
Method: F:\BROZ\MAXDATA\ERNIE\FUELØ713

Filename: R7138E19 Operator: ATI

Sample: 9307-068-1 Characteristics Characteristics Comments: ATI: THE QUALITY TEAM

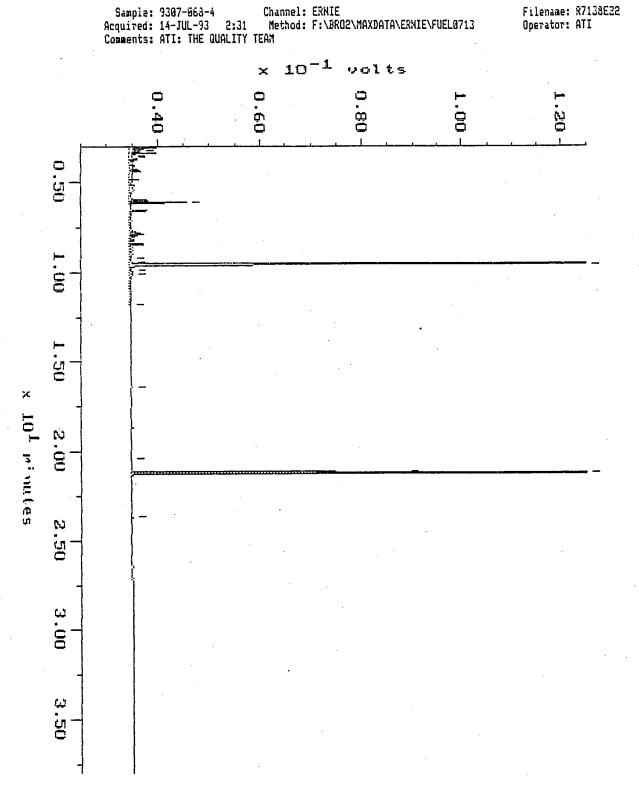


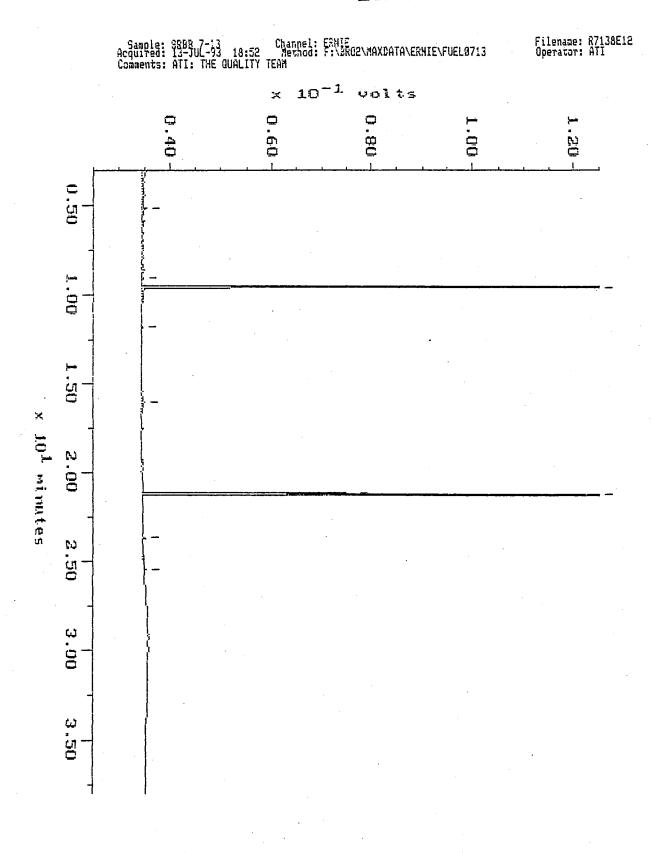

EPA 8015 Modified

Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL0713

Filename: R7138E29 Operator: ATI

Sample: 9307-968-2 Characteristics Acquired: 14-JUL-93 1:00 MacComments: ATI: THE QUALITY TEAM

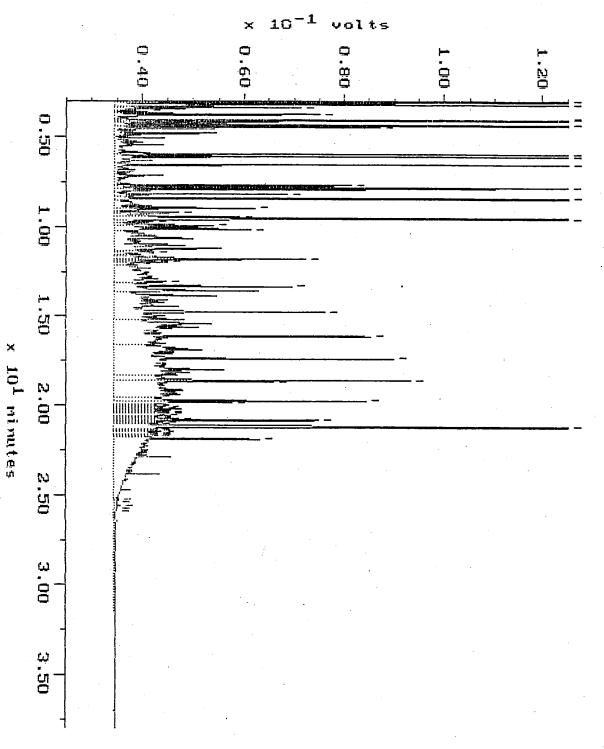



EPA 8015 Modified

Filename: R7138E22 Operator: ATI

Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL8713

Blank

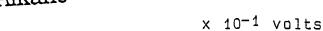


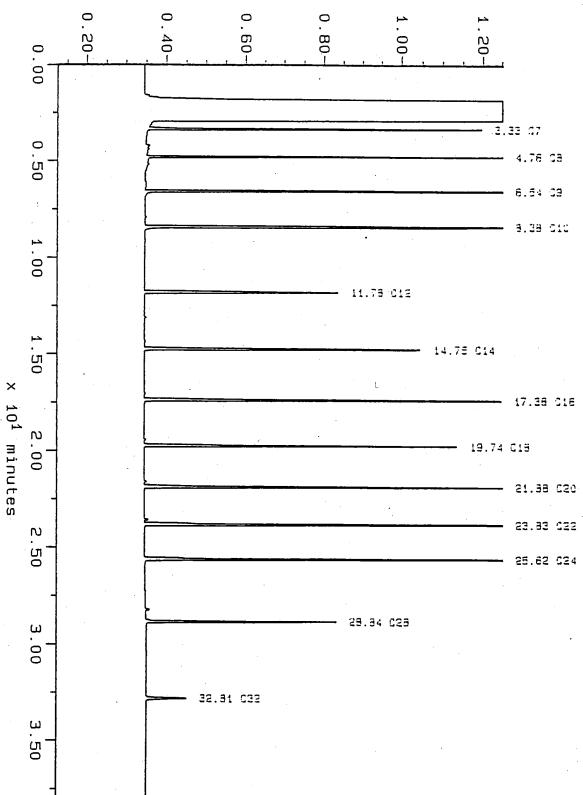
Continuing Calibration

Filename: R7138E92 Operator: ATI

Sample: DG 400 Cha Acquired: 13-JUL-93 11:01 Me Comments: ATI: THE QUALITY TEAM

Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL0713




Sample: ALKANE Acquired: 25-MAY-93 :1:20 Inj Vol: 1.00

Channel: ERMIE
Method: F:\ERC2\MAXCATA\ERMIE\FUEL3525

Filename: r5369e02 Operator: ATI

Alkane

Geology & Hydrogeology

Tacoma: (206) 383-4380 Pleasanton: (415) 460-5495 AGI OFFICES: Bellevue: (206) 453-8383 Portland: (503) 222-2820

DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to AGI Project Files; Gold to AGI Disposal Files

Rev. 4/92

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, Washington

Amtest - Redmond, Washington

Lab Number: 9307-088

Sample No.: MW1-7/93, MW2-7/93, MW3-7/93, MW5-7/93, MW50-7/93,

Rinsate 2, Trip Blank

Matrix: Water

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable for use.

ANALYTICAL METHODS

Parameter	<u>Technique</u>	Method
Pesticides/PCBs*	GC/ECD	EPA 8080
PAH ^b	HPLC/UV/FLUOR	EPA 8310
BETX	GC/PID	EPA 8020
TPH°	GC/FID	EPA 8015 Modified
Lead	AA/GF	EPA 7421
Nitrate/Nitrite as Nitrogend	Colorimetric	EPA 353.2
Nitrite as Nitrogend	Colorimetric	EPA 354.1

Sample Rinsate 2 was analyzed for EPA 8310 and EPA 8020; sample Trip Blank was analyzed for EPA 8020 only.

- a Organochlorine pesticides and PCBs; analyzed for sample MW1-7/93 only.
- b Polycyclic aromatic hydrocarbons.
- c Fuel hydrocarbons, analyzed for gasoline $(C_7 C_{12})$ and diesel $(C_{12} C_{24})$ range TPH.
- d Analyzed for sample MW1-7/93 only.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, Washington

Amtest - Redmond, Washington

Lab Number: 9307-088

Sample No.: MW1-7/93, MW2-7/93, MW3-7/93, MW5-7/93, MW50-7/93,

Rinsate 2, Trip Blank

Matrix: Water

TIMELINESS

<u>Parameter</u>	Date Sampled	Date Extracted	Date <u>Analyzed</u>	Time Until Extraction	Time Until <u>Analysis</u>
Pesticides/PCBs	07/08/93	07/15/93	07/19/93	7(7)	4(40)
PAH	07/08/93	07/13/93	07/17/93	5(7)	4(40)
BETX	07/08/93	NA	07/13/93°	NA	5(14)
TPH	07/08/93	07/13/93	07/14/93	5	6(14)
Lead	07/08/93		07/13/93	5	5(180)
Nitrate/Nitrite	07/08/93	NA	07/21/93f	NA ·	13(28)
Nitrite	07/08/93	and the second s	07/21/93 ^t	NA	13(28)

NA - Not applicable.

Numbers in parentheses indicate recommended holding times in days.

- e Sample MW1-7/93, Rinsate 2, and Trip Blank were analyzed July 12, 1993.
- f The date on which analytical report was issued is used to verify holding time compliance.

All samples were extracted and analyzed within recommended holding times.

FUEL HYDROCARBON CHROMATOGRAMS

Gasoline (C_7 - C_{12}) and diesel range (C_{12} - C_{24}) TPH were detected in sample MW5-7/93 by EPA 8015M, and the detections are supported by the sample chromatogram for this method.

FIELD QUALITY CONTROL SAMPLES

Field Duplicates:

Sample MW50-7/93 is a duplicate of MW2-7/93. Both samples were analyzed by EPA Methods 8015 Modified, 8020, 8310, and 7421. No analytes were detected at or above their MRL by EPA 8015 Modified, indicating acceptable precision. Relative percent differences (RPDs) ranged from 18 percent (EPA 7421) to 22 percent (EPA 8310). Acceptable precision is indicated.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15,659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, Washington

Amtest - Redmond, Washington

Lab Number: 9307-088

Sample No.: MW1-7/93, MW2-7/93, MW3-7/93, MW5-7/93, MW50-7/93,

Rinsate 2, Trip Blank

Matrix: Water

Rinsate: Sample (Rinsate 2) was analyzed for EPA 8310 and EPA 8020. No analytes were detected at or above their method

reporting limits by these methods. No carry-over

contamination was identified.

Trip Blank: Sample Trip Blank was analyzed by EPA 8020. Toluene,

which is a common laboratory contaminant, was detected at 1.1 μ g/L. Since toluene was not detected in any field samples except sample MW5-7/93 (4500 μ g/L), it is unlikely that cross-contamination has occurred. Data are

acceptable without qualification.

LAB QUALITY CONTROL SAMPLES

Method Blank: No analytes were detected at or above their MRLs in

method blanks for the following methods:

EPA 8080

EPA 8310

EPA 8020

EPA 8015M

EPA 7421

EPA 353.2

EPA 354.1

Matrix Spikes: Matrix spike percent recoveries are within acceptance

control limit criteria for the following methods:

EPA 7421

EPA 353.2

EPA 354.1

Matrix spike and matrix spike duplicate percent recoveries and relative percent differences (RPDs) are within ATI's control limit criteria for the following methods:

EPA 8020

EPA 8015M

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.: 15

15,659.001

Lab Name:

Analytical Technologies, Inc. (ATI) - Renton, Washington

Amtest - Redmond, Washington

Lab Number:

9307-088

Sample No.:

MW1-7/93, MW2-7/93, MW3-7/93, MW5-7/93, MW50-7/93,

Rinsate 2, Trip Blank

Matrix:

Water

Duplicates:

Duplicate sample RPDs are within ATI's control limit cri-

teria for the following methods:

EPA 8015M EPA 353.2 EPA 354.1

Blank Spikes:

Blank spike percent recoveries are within ATI's control

limit criteria for the following methods:

EPA 8020 EPA 8015M EPA 7421

Blank spike and blank spike duplicate percent recoveries and RPDs are within ATI's control limit criteria for EPA

8080.

EPA 8310: Blank spike and blank spike duplicate RPD for acenaphthylene of 38 percent exceeds ATI's control limit criteria of 32 percent. Sample results are considered not affected since other quality control parameters for

this method are all within acceptance criteria.

Standard Reference: Standard Reference Material percent recoveries are within

Amtest control limit criteria for EPA 353.2 and EPA

354.1.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros./Bingo Fuel Stop

Project No.:

15,659.001

Lab Name:

Analytical Technologies, Inc. (ATI) - Renton, Washington

Amtest - Redmond, Washington

Lab Number:

9307-088

Sample No.:

MW1-7/93, MW2-7/93, MW3-7/93, MW5-7/93, MW50-7/93,

Rinsate 2, Trip Blank

Matrix:

Water

Surrogates:

Surrogate spike percent recoveries are all within ATI's control limit criteria for the following methods:

EPA 8310 EPA 8020 EPA 8015M

EPA 8080: Surrogate spike recoveries for decachlorobiphenyl and dibutylchlorendate of 20 and 42 percent were slightly below ATI's lower control limit criteria of 22 and 43 percent for sample MW1-7/93 analysis. Since the exceedances are minor and other quality control parameters for this method are all within acceptance criteria, sample results are acceptable.

SIGNATURES

		minata Rin	Date	8123193
Checked by	Katherine	Dourbonais	Date	8123193

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335

Karen L. Mixon, Laboratory Manager

ATI I.D. # 9307-088

RECEIVED

就是 32、程第

July 30, 1993

APPLIED GEOTECHNOLOGY INC

Applied Geotechnology, Inc. P.O. Box 3885 Bellevue WA 98009

Attention : Peter Barry

Project Number: 15659.001

Project Name : Burns Bros/Bingo Fuel Stop

Dear Mr. Barry:

On July 9, 1993, Analytical Technologies, Inc. (ATI), received seven samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

The analysis for nitrate/nitrite as nitrogen and nitrite as nitrogen ere performed by a subcontractor. Their report is included as an appendix.

Sincerely,

Senior Project Manager

DMM/hal/ff

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9307-088-1 9307-088-2 9307-088-3 9307-088-4 9307-088-5 307-088-6	MW1-7/93 MW2-7/93 MW3-7/93 MW5-7/93 MW50-7/93 RINSATE 2 TRIP BLANK	07/08/93 07/08/93 07/08/93 07/08/93 07/08/93 07/08/93 N/A	WATER WATER WATER WATER WATER WATER WATER WATER

---- TOTALS ----

MATRIX # SAMPLES
----WATER 7

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled isposal date.

ANALYTICAL SCHEDULE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
ORGANOCHLORINE PESTICIDES & PCBs	GC/ECD	EPA 8080	R
POLYNUCLEAR AROMATIC HYDROCARBONS	HPLC/UV/FLUOR	EPA 8310	R
BETX	GC/PID	EPA 8020	R .
_UEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
LEAD	AA/GF	EPA 7421	R
NITRATE/NITRITE AS NITROGEN	COLORIMETRIC	EPA 353.2	SUB
NITRITE AS NITROGEN	COLORIMETRIC	EPA 354.1	SUB

R ATI - Renton

ATI - San Diego ATI - Phoenix SD = PHX =

ATI - Pensacola

FC = ATI - Fort Collins

JB = Subcontract

CASE NARRATIVE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: ORGANOCHLORINE PESTICIDES AND PCB ANALYSIS

One (1) water sample was received by Analytical Technologoes, Inc. (ATI), on July 9, 1993, for the analysis of chlorinated pesticides.

The surrogate recoveries for sample 9307-088-1 (MW1-7/93) were above the established control limits for the chlorinated pesticide analysis. These esults have been flagged with the letter "H", and footnoted in the analytical report.

All corresponding quality assurance and quality control results defined as matrix spike/matrix spike duplicate (MS/MSD), blank spike (BS) and method blank recoveries were within the established control limits.

ORGANOCHLORINE PESTICIDES AND PCB ANALYSIS DATA SUMMARY

CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8080	DATE ANALYZED UNITS DILUTION FACTO	: N/A D : 07/15/93 : 07/19/93 : ug/L
COMPOUNDS	i i	
ALDRIN ALPHA-BHC BETA-BHC AMMA-BHC (LINDANE) _ELTA-BHC CHLORDANE (TOTAL) P,P'-DDD P,P'-DDE P,P'-DDT DIELDRIN ENDOSULFAN I NDOSULFAN II NDOSULFAN SULFATE ENDRIN	<0.050 <0.050 <0.050 <0.050 <0.050 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	
PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	<1.0 <1.0 <1.0	
SURROGATE PERCENT RECOVERY	•	LIMITS
DECACHLOROBIPHENYL DIBUTYLCHLORENDATE	57 102	22 - 131 43 - 154

ORGANOCHLORINE PESTICIDES AND PCB ANALYSIS DATA SUMMARY

CLIENT	:	APPLIED GEOTECHNOLOGY, IN			07/08/93
PROJECT #		15659.001	DATE RECEIVED		
PROJECT NAME	:	BURNS BROS/BINGO FUEL STO	DATE EXTRACTED		
CLIENT I.D.			DATE ANALYZED	:	07/19/93
SAMPLE MATRIX	:	WATER	UNITS	:	ug/L
EPA METHOD	:	8080	DILUTION FACTOR	:	1

COMPOUNDS	RESULTS
ALDRIN	10 047
	<0.047
ALPHA-BHC BETA-BHC	<0.047
AMMA-BHC (LINDANE)	
ELTA-BHC	<0.047
CHLORDANE (TOTAL)	<0.47
P, P' - DDD	
P, P'-DDE	<0.094
P, P'-DDT	<0.094
DIELDRIN	
ENDOSULFAN I	<0.047
NDOSULFAN II	<0.094
NDOSULFAN SULFATE	<0.094
ENDRIN	<0.094
ENDRIN ALDEHYDE	<0.094
ENDRIN KETONE	<0.094
HEPTACHLOR	<0.047
HEPTACHLOR EPOXIDE	<0.047
METHOXYCHLOR	
TOXAPHENE	<0.94
JB 1016	<0.94
PCB 1221	
PCB 1232	<0.94
PCB 1242	<0.94
PCB 1248	
PCB 1254	<0.94
PCB 1260	<0.94
SURROGATE PERCENT RECOVERY	LIMITS
DECACHLOROBIPHENYL	20 H 22 - 131
DIBUTYLCHLORENDATE	42 H 43 - 154
DIDOLINONDINDUID	

H = Out of limits.

ORGANOCHLORINE PESTICIDES AND PCB ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 07/15/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED

61

102

: 07/19/93

22 - 131

43 - 154

SAMPLE MATRIX : WATER

UNITS

DECACHLOROBIPHENYL

IBUTYLCHLORENDATE

: ug/L

EPA METHOD

: 8080

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ALDRIN GAMMA-BHC (LINDANE) P'-DDT LIELDRIN ENDRIN HEPTACHLOR	<0.0500 <0.0500 <0.100 <0.100 <0.100 <0.0500	0.250 0.250 0.500 0.500 0.500	0.201 0.221 0.483 0.509 0.520 0.232	80 88 97 102 104 93	0.203 0.215 0.479 0.508 0.510 0.227	81 86 96 102 102 91	1 3 1 0 2
CONTROL LIMITS				% REC.			RPD
ALDRIN AMMA-BHC (LINDANE) ,P'-DDT DIELDRIN ENDRIN HEPTACHLOR				- - -	22 50		35 25 35 34 32 35
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	

52

102

CASE NARRATIVE

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS

Six (6) water samples were received by Analytical Technologies, Inc. (ATI), on July 9, 1993, for the following analysis: EPA method 8310.

The relative percent difference (RPD) for acenaphthylene in the blank spike/blank spike duplicate (BS/BSD) was outside ATI limits and was flagged with an "H"; out of limits.

.11 other corresponding quality assurance and quality control results defined as blank spike/blank spike duplicate (BS/BSD), method blank, and surrogate recoveries were within the established control limits.

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE ANALYZED UNITS DILUTION FACTO	: 07/13/93 : 07/17/93 : ug/L R : 1	
	RESILTS		
NAPHTHALENE ACENAPHTHYLENE 1-METHYLNAPHTHALENE -METHYLNAPHTHALENE -METHYLNAPHTHALENE -METHYLNAPHTHALENE -METHYLNAPHTHALENE -METHYLNAPHTHALENE FLUORENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRACENE THRYSENE -INZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE BENZO (A) PYRENE DIBENZO (A, H) ANTHRACENE	<0.50 <1.0 <0.50 <0.50 <0.50 <0.10 <0.050 <0.050 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10		
SURROGATE PERCENT RECOVERY		LIMITS	
2-CHLOROANTHRACENE	69 ⁻	33 - 123	

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW1-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE ANALYZED UNITS DILUTION FACTOR	: 07/13/93 : 07/17/93 : ug/L
COMPOUNDS		
1-METHYLNAPHTHALENE METHYLNAPHTHALENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE	<0.94 <0.47 <0.47 <0.47 <0.094 <0.047 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094	
SURROGATE PERCENT RECOVERY	L	IMITS
2-CHLOROANTHRACENE	70 3:	3 - 123

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW2-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE SAMPLED : 07/08/93 DATE RECEIVED : 07/09/93 DATE EXTRACTED : 07/13/93 DATE ANALYZED : 07/17/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
PYRENE BENZO(A) ANTHRACENE HRYSENE ENZO(B) FLUORANTHENE BENZO(K) FLUORANTHENE BENZO(A) PYRENE DIBENZO(A, H) ANTHRACENE BENZO(G, H, I) PERYLENE INDENO(1, 2, 3 - CD) PYRENE	<0.94 0.58 0.96 <0.47 0.29 <0.047 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094
SURROGATE PERCENT RECOVERY	LIMITS
2-CHLOROANTHRACENE	50 33 - 123

PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: BURNS BROS/BINGO FUEL STOP : MW3-7/93 : WATER : 8310	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/09/93 : 07/13/93 : 07/17/93 : ug/L
COMPOINING		RESULTS	
NAPHTHALENE ACENAPHTHYLENI 1-METHYLNAPHTH METHYLNAPHTH ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRA THRYSENE ENZO (B) FLUORA BENZO (A) PYRENI DIBENZO (A, H) AND BENZO (G, H, I) PH INDENO (1, 2, 3-0)	E HALENE HALENE HALENE ACENE ANTHENE E NTHRACENE ERYLENE CD) PYRENE	<0.47 <0.95	
S	URROGATE PERCENT RECOVERY		IMITS
2 - CHLOROANTHR	ACENE	73 3	3 - 123

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW5-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE EXTRACTI	0 : 07/09/93 ED : 07/13/93 0 : 07/17/93 : ug/L
COMPOUNDS	RESULTS	
NAPHTHALENE	190 D4	1
NAPHTHALENE ACENAPHTHYLENE	<0.95	±
1-METHYLNAPHTHALENE	50	
-METHYLNAPHTHALENE	97 D4	1
acenaphthene	<0.48	•
	0.59	
FLUORENE PHENANTHRENE	0.45	
FLUORANTHENE	0.075 <0.095	
PYRENE	<0.095	
	<0.095	
THRYSENE	<0.095	
ZNZO(B) FLUORANTHENE	<0.095	
BENZO (K) FLUORANTHENE	<0.095	
BENZO (A) PYRENE	<0.095	
DIBENZO (A, H) ANTHRACENE	<0.19	
BENZO(G,H,I)PERYLENE	<0.095	
INDENO(1,2,3-CD)PYRENE	<0.095	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	76	33 - 123

D4 = Value from a ten fold diluted analysis.

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW50-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/09/93 0 : 07/13/93 : 07/17/93 : ug/L
COMPOUNDS		
	<0.47 <0.94 0.71	
1-METHYLNAPHTHALENE	1.2	
ACENAPHTHENE	<0.47	
FILIORENE	0.36	
PHENANTHRENE	<0.047	
ANTHRACENE	<0.047	
FLUORANTHENE	<0.094	
PYRENE		
BENZO (A) ANTHRACENE	<0.094 <0.094	
THRYSENE ENZO(B) FLUORANTHENE		
ENZO(B) FLUORANTHENE	<0.094	•
BENZO(A) PYRENE	<0.094	
DIBENZO(A, H) ANTHRACENE		
BENZO (G, H, I) PERYLENE	<0.094	
INDENO(1,2,3-CD) PYRENE	<0.094	
SURROGATE PERCENT RECOVERY		LIMITS
2 - CHLOROANTHRACENE	40	33 - 123

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : RINSATE 2 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE ANALYZED UNITS DILUTION FACTOR	: 07/09/93 : 07/13/93 : 07/17/93 : ug/L
COMPOUNDS	RESULTS	
NAPHTHALENE	<0.48	
ACENAPHTHYLENE	<0.95	
1-METHYLNAPHTHALENE	<0.48	
METHYLNAPHTHALENE		
ACENAPHTHENE	<0.48	
FLUORENE	<0.095	
PHENANTHRENE		
ANTHRACENE	<0.048	
FLUORANTHENE PYRENE	<0.095 <0.095	
PYRENE BENZO(A) ANTHRACENE	<0.095	
HRYSENE	<0.095	*
ENZO (B) FLUORANTHENE		
BENZO(K) FLUORANTHENE	<0.095	
BENZO (A) PYRENE	<0.095	
	<0.19	
BENZO(G,H,I) PERYLENE	<0.095	
INDENO(1,2,3-CD) PYRENE	<0.095	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	58	33 - 123

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 07/13/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 07/17/93 UNITS

SAMPLE MATRIX : WATER

: ug/L

EPA METHOD

: 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
· ·	<1.00 <0.0500 <0.100 <0.100 <0.200	2.00	21.9 1.72 1.48 1.91 1.74	73 86 74 96 87	14.9 1.56 1.41 1.82 1.69	50 78 71 91 85	38H 10 5 5
CONTROL LIMITS	•			% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE TYRENE ENZO (K) FLUORANTHENE DIBENZO (A, H) ANTHRACENE				35 - 1 47 - 1 31 - 1 39 - 1 34 - 1	47 55 45		32 30 30 29 26
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	}
2 - CHLOROANTHRACENE		78		63		33 - 1	.23

H = Out of limits.

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : N/A DATE ANALYZED : 07/12/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.5 <0.5 <0.5 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	104 76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : N/A DATE ANALYZED : 07/13/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.5 <0.5 <0.5 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	100 76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW1-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : 07/08/93 DATE RECEIVED : 07/09/93 DATE EXTRACTED : N/A DATE ANALYZED : 07/12/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.5 <0.5 <0.5 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	106 76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, I PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL S' CLIENT I.D. : MW2-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE RECEIVED : 07/09/93
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TAL XYLENES	0.7 <0.5 <0.5 <0.5 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	102 76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW3-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : 07/08/93 DATE RECEIVED : 07/09/93 DATE EXTRACTED : N/A DATE ANALYZED : 07/13/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE)TAL XYLENES	0.9 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	105 76 - 120

PROJECT # : 15 PROJECT NAME : BU CLIENT I.D. : MW SAMPLE MATRIX : WA	PPLIED GEOTECHNOLOGY, INC. 6659.001 JRNS BROS/BINGO FUEL STOP N5-7/93 ATER D20 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/13/93 : ug/L
COMPOUNDS		RESULTS	
		1300	
ETHYLBENZENE TOLUENE		840 4500	
TAL XYLENES		7000	
SURROG	SATE PERCENT RECOVERY		LIMITS
BROMOFIJUOROBENZENE		104	76 - 120

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: BURNS BROS/BINGO FUEL STOP : MW50-7/93	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : 07/13/93 : ug/L
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE)TAL XYLENES		0.6 <0.5 <0.5 <0.5	
sı	URROGATE PERCENT RECOVERY	;	LIMITS
BROMOFLUOROBEI	NZENE	105	76 - 120

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: APPLIED GEOTECHNOLOGY, INC. : 15659.001 : BURNS BROS/BINGO FUEL STOP : RINSATE 2 : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/08/93 : 07/09/93 : N/A : 07/12/93 : ug/L
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE)TAL XYLENES		<0.5 <0.5 <0.5 <0.5	
su	RROGATE PERCENT RECOVERY	I	LIMITS
BRCMOFLUOROBEN	ZENE	104	76 - 120

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: APPLIED GEOTECHNOLOGY, INC. : 15659.001 : BURNS BROS/BINGO FUEL STOP : TRIP BLANK : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/12/93 : ug/L
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE)TAL XYLENES		<0.5 <0.5 1.1 <0.5	
st	JRROGATE PERCENT RECOVERY	•	LIMITS
BROMOFLUOROBEN	VZENE	102	76 - 120

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. #: 9307-082-1

PROJECT # : 15659.001 DATE EXTRACTED : N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/12/93

SAMPLE MATRIX: WATER UNITS: ug/L

EPA METHOD : 8020 (BETX)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE OTAL XYLENES	<0.500 <0.500 <0.500	20.0 20.0 40.0	19.7 20.4 41.2	99 102 103	20.1 21.1 42.5	101 106 106	2 3 3
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				72 - 1	.12 .13 .10		20 20 20
SURROGATE RECOVERIE	ES	SPIKE		DUP. S	PIKE	LIMITS	;
BROMOFLUOROBENZENE		105	•	104		76 - 1	.20

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. : 15659.001 CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

DATE EXTRACTED : N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 07/12/93

SAMPLE MATRIX : WATER

UNITS

: ug/L

: 8020 (BETX) EPA METHOD

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE OTAL XYLENES	<0.500 <0.500 <0.500	20.0 20.0 40.0	20.1 21.1 41.6	101 106 104	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES					11 11 14	•	20 20 20
SURROGATE RECOVERIES	•	SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		104		N/A	•	76 - 1	20

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE EXTRACTED : N/A

DATE ANALYZED : 07/13/93

SAMPLE MATRIX : WATER

UNITS

: ug/L

EPA METHOD : 8020 (BETX)

COMPOU	NDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZEN TOLUEN OTAL		<0.500 <0.500 <0.500	20.0 20.0 40.0	20.9 21.3 41.7	105 107 104	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
. (CONTROL LIMITS				% REC			RPD
BENZEN: TOLUEN: TOTAL	_				80 - 1 78 - 1 80 - 1	L11		20 20 20
;	SURROGATE RECOVI	ERIES	SPIKE		DUP. S	SPIKE	LIMITS	
BROMOF	LUOROBENZENE	•	100	•	N/A		76 - 1	.20

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 07/13/93 DATE ANALYZED : 07/14/93 UNITS : mg/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE	<1 C7 - C12
HYDROCARBON QUANTITATION USING	GASOLINE
_ JEL HYDROCARBONS	<1
HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
^-TERPHENYL	118 68 - 144

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: 15659.001 : BURNS BROS/BINGO FUEL STOP : MW1-7/93	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/09/93 : 07/13/93 : 07/14/93 : mg/L
COMPOUNDS		RESULTS	
FUEL HYDROCAL HYDROCARBON I HYDROCARBON (<1 C7 - C12 GASOLINE	
JEL HYDROCAL HYDROCARBON I HYDROCARBON (<1 C12 - C24 DIESEL	
S	SURROGATE PERCENT RECOVERY	I	LIMITS
^-TERPHENYL		113	58 - 144

CLIENT : APPLIED PROJECT # : 15659.0 PROJECT NAME : BURNS B CLIENT I.D. : MW2-7/9 SAMPLE MATRIX : WATER EPA METHOD : 8015 (M	ROS/BINGO FUEL STOP 3	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/09/93) : 07/13/93 : 07/14/93 : mg/L
COMPOUNDS		RESULTS	
FUEL HYDROCARBONS HYDROCARBON RANGE		<1 C7 - C12	
HYDROCARBON QUANTITATIO	N USING	GASOLINE	
.UEL HYDROCARBONS		<1	
HYDROCARBON RANGE HYDROCARBON QUANTITATION	N USING	C12 - C24 DIESEL	
~			•
SURROGATE P	ERCENT RECOVERY	•	LIMITS
^-TERPHENYL		110	68 - 144

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW3-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE SAMPLED : 07/08/9 DATE RECEIVED : 07/09/9 DATE EXTRACTED : 07/13/9 DATE ANALYZED : 07/14/9 UNITS : mg/L DILUTION FACTOR : 1)3)3
COMPOUNDS	RESULTS	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE	
JEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C12 - C24 DIESEL	
SURROGATE PERCENT RECOVERY	LIMITS	
^-TERPHENYL	114 68 - 144	

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW5-7/93 SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE RECEIVED : 07/09/93 DATE EXTRACTED : 07/13/93 DATE ANALYZED : 07/14/93 UNITS : mg/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	34 C7 - C12 GASOLINE
LUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	2 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
^-TERPHENYL	115 68 - 144

CLIENT : APPLIED GEOTECHNOLOGY, INCOMPROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STORMS IN THE STOR	DATE RECEIVED : 07/09/93
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE
LUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
^-TERPHENYL	119 68 - 144

FUEL HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT SAMPLE I.D. # : 9307-088-4 PROJECT # : 15659.001 DATE EXTRACTED : 07/13/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 07/14/93 : mg/L

SAMPLE MATRIX : WATER UNITS

EPA METHOD : 8015 (MODIFIED)

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD			
GASOLINE	33.7	34.5	2	50.0	73.2	79	72.8	78	1			
CONTROL	LIMITS					% REC	! .		RPD			
GASOLINE						64 -	118		20			
SURROGAT	E RECOVE	RIES		SPIKE		DUP.	SPIKE	LIMITS				
O-TERPHENYI	•			114		116		68 -	144			

FUEL HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 07/13/93

DATE ANALYZED : 07/14/93

SAMPLE MATRIX : WATER

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

UNITS

: mg/L

EPA METHOD

: 8015 (MODIFIED)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
GASOLÜNE	<1.00	50.0	39.8	80	N/A	N/A	N/A
CONTROL LIMITS				% REC.			RPD
GASOLINE				52 - 1	24		20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
O-TERPHENYL		117		N/A		68 - 1	44

METALS ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE PREPARED

LEAD

07/13/93

07/13/93

METALS ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/L

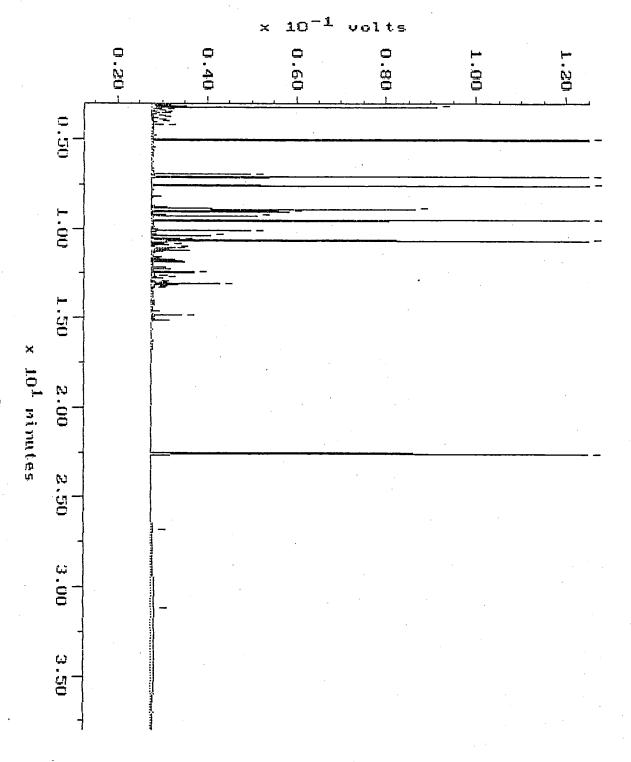
ATI I.D. #	CLIENT I.D.	LEAD	
9307-088-1	MW1-7/93	0.013	
9307-088-2	MW2-7/93	0.0049	•
9307-088-3	MW3-7/93	0.0036	
9307-088-4	MW5-7/93	<0.0030	
9307-088-5	MW50-7/93	0.0041	
METHOD BLANK	<u>-</u>	<0.0030	

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/L

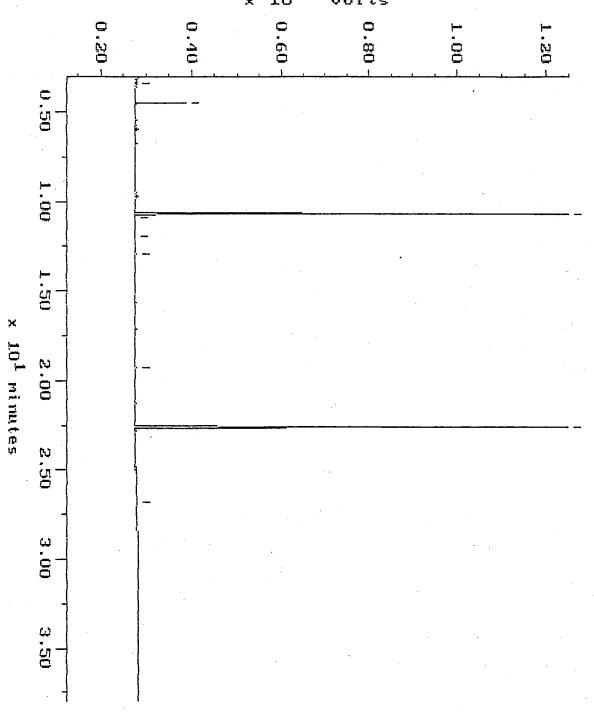

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	9306-041-5T	0.041	N/A	N/A	0.0712	0.0250	121
LEAD	BLANK	<0.0030	N/A	N/A	0.0264	0.0250	106

EPA 8015 Modified

Channel: BERT
Method: F:\BRO2\MAXDATA\BERT\FUEL0714

Filename: R7148B05 Operator: ATI

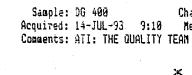
Sample: 9307-988-4 Cha Acquired: 14-JUL-93 12:19 Me Comments: ATI: THE QUALITY TEAM

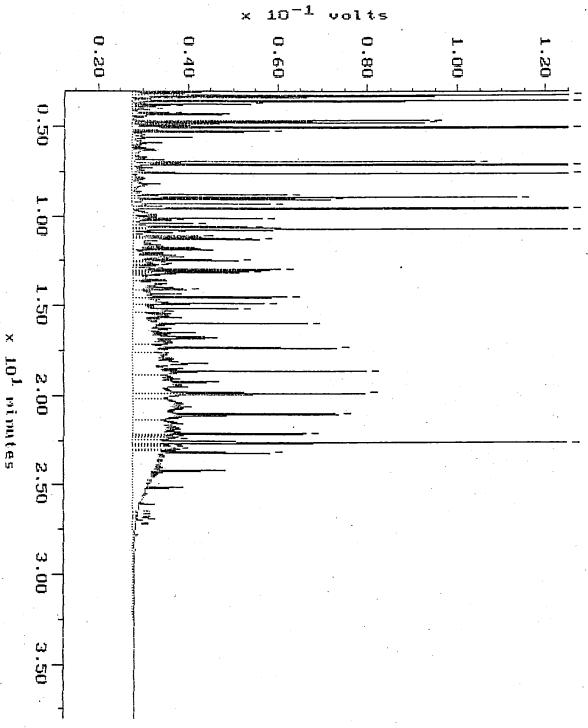


Blank

Filename: R7148803 Operator: ATI

Sample: WRB 7-13 Channel: BERT
Acquired: 14-JUL-93 10:47 Hethod: F:\BRO2\MAXDATA\BERT\FUEL0714
Comments: ATI: THE QUALITY TEAM

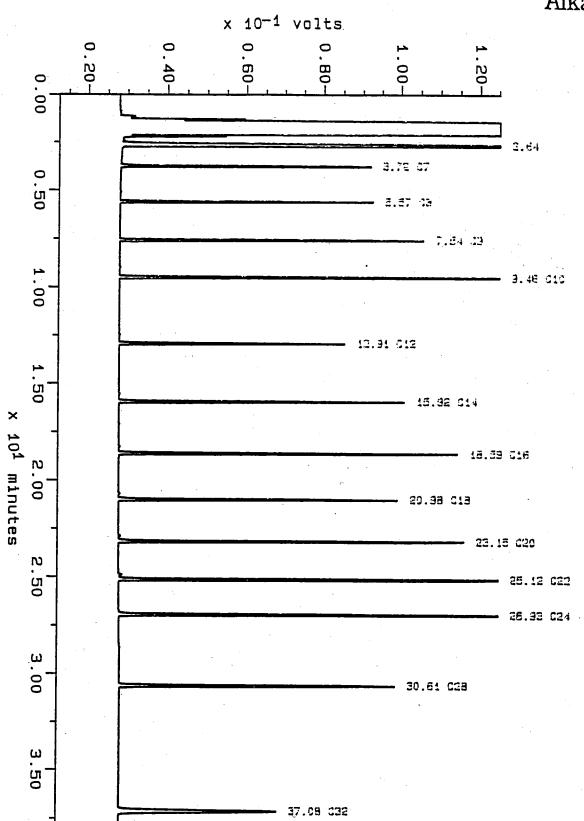

 \times 10^{-1} volts



Continuing Calibration

Filename: R7148B02 Operator: ATI

Channel: BERT Method: F:\8RO2\MAXDATA\8ERT\FUEL0714



Sample: ALKANZ Acquired: 24-446-32 32:23 Inj Vol: 1.20

Channel: BERT
Method: F:\BROS\MAXDATA\BERT\FUZL0394

Filename: A3248E03 Operator: ATI

Alkane

CHAIN-OF-~JSTODY

o

Page

Date __

<u>1</u> 2		
logy		
hno	eering	ology
lied Geotechnology Inc	Geotechnical Engineering	Geology & Hydrogeolog
ed G	hnical	y& Hy
Edy.	Seotec	Seolog
/	<u>ٽ</u>	Ď
		///

			N	IUMBER OF CONTAINERS							·	~	77	M	2	2	ω	_		3.	Time:	Date:			ю.	Time:	Date:	,
		<u> </u>	L											_	_					BY:	-							
		OTHER	\vdash								-					-		-	\dashv	DE								
		5	-	-				:4.:	1 /	1.1		₹							ᅱ	뽀		}			ВУ		l	
		U	T	CLP	- Met	als	<u>. N</u>	***	<u> </u>	N 14.										SI				İ	Ð			
}		HIN	T		- Pes		es													١₫		ame:			≥		ame:	
		LEACHING TESTS	T	CLP	- Sen	nivol	atile	s										1		RELINQUISHED	Signature:	Printed Name:	1	Company:	RECEIVED BY	Signature:	Printed Name:	Company:
		<u> </u>	<u> T</u>		- Vol		_								_	_		_	_	뮖	Sign	Pi	- ,	S	뿐	Sign	Pair	ខ្ម
					- Me		(Wa)							\dashv					<u> </u>			寸		2	<u></u>	<u></u>	
		10	·		Meta		tolo	(12)	_		-			-	\dashv			-		2	Time:	Date:			~	Time:	Date:	ļ
		ALS	_		y Poll letals		_	(13)			-				一	_			\dashv	B.							ŀ	
	H	WETALS	_		ic Le						\dashv									B			-					
	ES	_	_		ead		,	14.	2 1			`*	Χ	_	>	V				其					6			
	2				ed m				_											👸		۱.,		-	囧		<u>پر</u>	
	퓚	3,s			- Heri															12		lame	-	خ	<u></u>	ë	Nam.	خ
	ANALYSIS REQUEST	PESTS/PCB's	_	8150 OC Herbicides 8140 OP Pesticides												$\vdash \vdash$		\vdash	RELINQUISHED	Signature:	Printed Name:		Company:	RECEIVED BY:	Signature;	Printed Name:	Company:	
	Υ.	TS/			OP P	_		<u> </u>		<u> </u>	_						\vdash			E	g.			රී	표	ığ		
130	M	PES			OC P		_					×	\vdash					_	\vdash	-	(C	ë	43		1.	ë ~ ^	() () () () () () () ()	1
9307-088	A	L					_	d Sen	nivol											:	Time:	Q	19/93			Signature: Cank Kel3	Primed Name: Pro(A 7/1/1/42	1
		ORGANIC COMPOUNDS	18		Phen	_														NOUISHED BY:	_		7		.: 375	Y	🔰	+
14		<u>8</u>	8	310 I	HPLC	PAI	_					×	>~		X	X	X		Щ	유	,		3	<u>اسا</u>	.: :	4	12	Υ.
10		MO	٤	_	GCM															등	3	<u> </u>	3	7	RECEIVED BY:	2	1	-
5		00	8		GCM					·		_								支	7			8	Æ	7		1
		A	١		1 - BE			_				>	×		۲	<u>×</u>	7			<u>ĕ</u>	100	Printed Name		ž		1/2		Company:
er:		P.B.	٦	8020 Aromatic VOCs 8010 Halogenated VOCs													-			교	Signature	g (David)	Company:	EC	Pag /	18/) g
<u> </u>				8015M								\times	~	×	><	>				<u> </u>	5	<u>} ~</u>	Ă.	ŏ	<u>«</u>	io /≀	1,54	10
Laboratory Number:		PETROLEUM HYDROCARBONS		418.1 State:							-	-		_						İ		4	4					
ory		PETROLEUM			_		struc	ctions	3											1	8	\Rightarrow	?	//	□1 wk.			
rat		E 6	3[PH-[ate:								<u>_</u>				<u> </u>						۲	7			
apo			5]	PH-		ate:						<u> </u>			<u> </u>		 			ᆸ				انا	ш	¥		
تــــــــــــــــــــــــــــــــــــــ		1		PH-I	D S	tate:			-	-	_	-	_	_				 	-	一页		Š		Ç	hr.	DA		
1		- 1								_	9			İ						RECEIPT	ners:	۶		ition/Cold:	72	SH DATA		
										Special	LAB LAB		N	3	7	5	ف	1			tain	Chain of Custody Seals: Y/N/NA		ibuc	☐ 72 hr.			
				DAD						န္တ		<u> </u>					<u> </u>	<u> </u>	\vdash	SAMPLE	S	Se		ğ		Œ		
1				′∵ '≍					1	Ö	MATRIX						١,			A	ō	g	Ϋ́	80	☐ 48 hr.	임		
		0		d B						١.	F	1120		<u> </u>			\vdash	ł		၂ တ	age	Sing	Ž	Ë	4	읪	4	
		2		pe					e e	St	≥	H		}			1			╢.	Ž	٥	.:	ķ		E		
Z		14000		Sampled By:	N	ted		Disposal Date:	ō	☐AGI Std.	111					\					Total Number of Contain	hail	Intact?: Y/N/NA	Received in Good Cond	□24 hr.	5		
١Ĕ				Ś	Ę	ica			5	A	TIME	1935	0	0/7/11	1120	1730	1835					0	_	ш.	24	ᆱ		
ΙŞ	1		<u>_</u> c		Ž	ind		So	[5		-	6	010	11	11	17	2								╽□	<u>S</u>		
18	5	1	0		Ö	ğ)isp	Z	g		~								1					ج	N	*	
PROJECT INFORMATION	Basty	Bros.	v.	7	DISPOSAL INFORMATION	Œ			QC INFORMATION (check one)	Screening	DATE	7-8-93	1							_		54.			区 Standard	PRIOR AUTHORIZATION IS REQUIRED FOR RU		
I	띡	α	659.	Na	1				M	cre	D	0%					7	1		8					tan	121		
	5	S	•	ĺ	SS	E E			<u> </u>	S	_	1	_	<u> </u>	├	_		-	<u> </u>	LAB INFORMATION		S	_	-	S [6		
13	17	2	N	9	Ĭ	ğ			드 드	1										Ž		411	13	. ٧٥ ١٠		F		
H H	A	3	_	101	ä	lä		.	5	CCLP	_		١,	M	~	10				פָּ	1	7		-	<u></u>	A	Suc	
1	er:	ଠା	<u>:</u>	F		Pis	Ö		a	임		~	14,	0	7193	7/1				ΙŻ	1	0	>	الم	<u>⊨</u>	E E	Ċţi	
	lag	ne:	ą	Ĕ		ap	et	چ			1	19	7/93	1		1	H	14		9	A	ท	70	-	ᇢ	E	stru	
	Mar	Nar	Ž	atic		Lab Disposal (return if not indicated)	Σ	ă		146	SAMPLE ID	1,		i	16	0	10	3/4]	66	ess	6	land	5	 	۳	
	뒿	텇	ij	ခို		12	osa	ose		N-8	S	-	3	5,2	12	12	32	2			am	Addr	*	T	Ę		Cia	٠,
	Project Manager: חלילבי	Project Name: Burns	Project Number:	Site Location: 74019			Disposal Method:	Disposed by:		□SW-846		MM 1-7/93	- CWM	MW 3-	MW S.	MW 50-	Rinsute	Trio Black			Lab Name: ATI	Lab Address: 560 Noches		Via:	Turn Around Time:		Special Instructions:	7,0
	۵	₫	مَ	Ś			٥					12	2		oxdot	1	2	1	<u> </u>				L_					
	_																											

DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to AGI Project Files; Gold to AGI Disposal Files Rev. 4/92

Tacoma: (206) 383-4380 Pleasanton: (415) 460-5495 1. - AGI OFFICES: Bellevue: (206) 453-8383 Portland: (503) 222-2820

PLEASE FAX A SIGNED COPY OF THIS COC TO THE PROJECT MAHAGER ASAP

TO PENSACOLA, FL TO AMTEST

DATE 7/13/43 PAGE 1 OF 1

Analytical Technologies, Inc.

Chain of Custody LABORATORY NUMBER: 560 Naches Avenue SW, Sulte 101 Renton, WA 98055 (206)228-8335

													 		_	_	_			_	_	_	_				
	ЭЕ СЭЙТАІЙЕРБЯ	MBERC	NN .	-									. -		е,	Eme:		Dale:			က	1830	.	Date:	7/13/53	Analyticat Feelprohmins, Inc.	~
															ľ						(B)	1			7	بازيد آ	4
															BY:						RECEIVED BY: (LAB)		E S		,	뒭	=
					Ī	Ī								71	RELINGUISHED BY			 .:	1) BY	'	1	 •	Seore Mass	137	DISTRIBUTION: White, Canary - ATI • Pink · ORIGIL
-					1									7	SIN	 Ø		Date: Printed Name: 		اخ	VEC	:0	¥	Printed Kame:	ă	껆	ξ.
İ	URE	LSION	ا ۾												NS.	Signature:		5		Company	ECE	Signature:	Kores	<u> </u>	3	K	ġ
	, total	ENOFE	Hd												E E	<u>ğ</u>	i	<u> </u>		Ö 		Sig	_	_	<u>എ</u>	Ę	7
	08	08 ď	IDI													Ime:	\	310: _			ે	Time:	,	Date:		Ì	٠.
-[05	T8 4	IOI											_		=	1	ä				Ë	l	۵			ana
	07	Z8 4.	IOT											_									l			Ì	to, C
<u>.</u>	40 (ZHE)	Z8 47	IOI											$\perp \parallel$	0 0				-		د . د نورو						ž
<u>"</u>	TALS	T WE	IOI											╝	RELINGUISHED BY			je:			ЭΒУ			.: ::	Ì	١	Ë
E	ETALS	M XO	EbJ												ä	 		Printed Name:		چَ	RECEIVED	JLB:	- 1	Printed Name		Сотрапу:	5
5		META	_												Š	Signature:				Company:	ECE	mat	- 1	nted		ğ	31BL
S	\NITRITE	3TAST	LIN	\checkmark		1								_		<u>5</u>		<u> </u>	2	රී	롣	ૹ૽ૼ				<u>8</u>	IST
ANALYSIS NEQUE		S	MBA											_	ៀ		زا ي	Cate:	3		1	Time: Signature:		Date:		'	Ġ
4		NIDE	CXD												,	- ;	70,53	_ `	19/13	47				_		ł	ġ.
		(coc												BY:				24	IJ					ŀ		4-10
្ឋា		.(BOD								ا_ا				ED		3	•	~ 0.00y	4	ij					- 1	4)47
	. 0	206	XOT												RELINGUISHED BY:	Ź	1	Printed Name:	الد	Company: 47,	RECEIVED BY:	<u>.</u> .		Printed Name:		اخ	ansacola (904)474-100,
	0	906	COT												ğ.	Spature		Z Ş	D, MCK	pan		Signature:		ᄝ		Company:	cola
	prcjqes		S T 8												딡,		3		à	통	HEC	ğ		륟		હ્ર	ınsa
	υŢλ	10 S,	bcs							<u> </u>				_			7			<u> </u>		<u> </u>	<u>_</u>	_			.,
	sf\bcB, s					_								4												1	335
	CC PNA's					_	_			<u> </u>				4		(0)										ł	8.8
	WS BNA's		728			<u> </u>	_			<u> </u>			1	4	IPI	Ë	ار	2									6)25
ၭ	elitalov 2M	/၁၅ 0								<u> </u>			-	41	ĘĊ	ᢓ	Š	8									3 (20
1	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		CABID											-	SAMPLE RECEIPT	TOTAL NUMBER OF CONTAINERS	COC SEALS/INTACT? Y/N/NA	RECEIVED GOOD COND/COLD									Seattle (206)228-8335
															퇸	FC	CI	00								l	š.
	[3 W 2		TRIX											H	SA	E	Ş	Ø	¥								
	_	E	MATI	H20		ĺ								H		JMB	ls.	ρœ	I Q								8-15
3		☐ Return	_	Н						<u> </u>				4		Z	SEA	IVE	IVE								2)43
\mathbf{S}	1 C		TIME:			- 1				Ì						OIA	ö	ECE	RECEIVED VIA:								(90
$\bar{\mathcal{I}}$	INC 101	2				_				ļ	<u> </u>			-		ř	Ö	Ш	H							- [ěnj
Š	TECHNOLOGIES, INC. AVE SW, SUITE 101 98055 -8335	<u> </u>	ш	7/9/43		.																					San Diego (619)458-9141 • Phoenix (602)438-15
۲,	E CIE	<u> </u>	DATE	12									. }													İ	<u>.</u>
	S	Ì	-	7											8	\									₩.	·	914
8	Z, Z														¥	8									Ì		458
X	INC SS	5													PROJECT INFORMATION	1307-088						1	22	1	:: ::		519)
Š	30:30:30:35									ł	ļ			Н	먇	60				i,	7	\mathfrak{F}	7	-	DISC:	2	og.
ا ننم	11 A 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>a</u>	ے ا	1			Ì				}				=	13			\mathcal{Q}	NO.	ſ	,	1.	l	Ω.	OF	Die
GE	NE SS SS SS SS SS SS SS SS SS SS SS SS SS	8	SAMPLEID	8								ļ)EC	1 1	١MΕ		29	5		<u></u>	<u>.</u>	:		E	San
Š	2 HH C2	SE	₽	Ó							ľ	l			윤	**	Ξ	RO	75	I.E.		DO	2	5]	1	Ę	.so
_	()()				. 1	. 1		1		1	1		. 1		10		_	ایعا	\ V	- 22			>	. •		∵.	
≥	VAC ON,	F	S	7							ļ			- } }		ő	ည်	_	ı.	=		LS	٦	•			Υ,
JECT N	NLYTI NAC TON,	SA □ ATI Disposal	8	207					ŀ						-	PROJ #:	PROJ NAME:	EN.L	40	CIALIN		BALS	הטטם		CE:		A:
PROJECT MANAGER: CONTO MO FINN CH	ANALYTICAL TECHNOLOGIES, INC 560 NACHES AVE SW, SUITE 101 RENTON, WA 98055 (206) 228-8335	TA 🗆	<i>S</i>	9307-088-												ATI PRO	ATI PRO.	CLIENT PROJ:	PS# 34280	SPECIAL INSTRUCTIONS		VERBALS DUE: 1/63	HARDCOPY DHE.		PRICE: 318	DIGET ON MEEDED?	Ai .c

APPENDIX

ANALYSIS REPORT

AmTest Inc.

Professional Analytical

Services

Analytical Technologies, Inc. 560 Naches Avenue SW

Date Received:

14603 N.E. 87th St. 7/13/93 Redmond, WA

7/21/93

98052

Suite 101

Date Reported:

Fax: 206 883 3495

Renton, WA

Tel: 206 885 1664

98055 Attention: Donna McKinney

Project #: 9307-088

Date Sampled: 7/8/93

PARAMETER	UNITS	RESULT
93-A010978 Client ID: 9307-088-1 Nitrate + Nitrite Nitrite Nitrogen	mg/l mg/l	6.4 0.15

Reported by

AMIEST

METHODOLOGY REPORT

AmTest Inc.

Professional Analytical Services

14603 N.E. 87th St. Redmond, WA 98052

Fax: 206 883 3495

Tel: 206 885 1664

ANALYTE	METHOD	METHOD REFERENCE	DETECTION LIMIT	DATE ANALYZED
AM TEST IDENTIFICATION NUM	 BER 93-A0			
Nitrate + Nitrite Nitrite Nitrogen	353.2 354.1	EPA EPA	0.010	7/16/93 7/16/93

Analytical Technologies, Inc. Donna McKinney

Date Received: 07/13/93 Date Reported: 07/21/93 Project No.: 9307-088

QUALITY CONTROL - METHOD BLANK

AM TEST Sample Number Client Identification	BLANK		
ANALYTES	RESULTS (mg/l)	•	
Nitrate + Nitrite Nitrogen	ND	,	
Nitrite Nitrogen	ND		

QUALITY CONTROL - STANDARD REFERENCE MATERIAL

ANALYTES/SRM NOS.	TRUE VALUE (mg/l)	DETERMINATION (mg/l)	RECOVERY
Nitrate + Nitrite Nitrogen 8035	8.69	8.83	98.
Nitrite Nitrogen CK STD	0.0263	0.0250	105.

ND = Not Detected

ANALYSIS REPORT

AVIEST

Analytical Technologies, Inc. Donna McKinney

Date Received: 07/13/93 Date Reported: 07/21/93 Project No.: 9307-088

QUALITY CONTROL - DUPLICATE ANALYSIS

ANALYTES/SAMPLE NOS.	SAMPLE VALUE (mg/l)	DUPLICATE VALUE (mg/l)	RELATIVE PERCENT DIFFERENCE (%)
Nitrate + Nitrite Nitrogen 93-A011052	0.044	0.045	2.2
Nitrite Nitrogen 93-A011052	0.018	0.018	0.

QUALITY CONTROL - SPIKE RECOVERIES

NALYTES/SAMPLE NOS.	SAMPLE VALUE (mg/l)	SAMPLE + SPIKE (mg/l)	SPIKE CONCENTRATION (mg/l)	RECOVERY (%)
Nitrate + Nitrite Nitrog	en			
93 - A011053	0.36	0.64	0.25	112.
Nitrite Nitrogen				* ,
93-Ā011053	0.066	0.089	0.025	92.

REPORTED BY

Kathy Fugie

KF/pb

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number: 9310-269

Sample No.: MW7@4.5', MW8@8.5', MW9@8', MW10@8', MW10@50'

Matrix: Soil

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable for use.

ANALYTICAL METHODS

<u>Parameter</u>	Technique	Method
PAH*	HPLC/UV/FLUOR	EPA 8310
BETX	GC/PID	EPA 8020
TPH ^b	GC/FID	EPA 8015 Modified
Lead	ICAP	EPA 6010
Moisture	Gravimetric	CLP SOW ILM01.0

a - Polycyclic aromatic hydrocarbons.

TIMELINESS

<u>Parameter</u>	Date <u>Sampled</u>	Date Extracted	Date <u>Analyzed</u>	Time Until Extraction	Time Until <u>Analysis</u>
PAH	10/26/93	11/03/93	11/09/93°	8 (14)	6 (40)
BETX	10/26/93	10/29/93	11/01/93°	3	6 (14)
TPH	10/26/93	11/02/93	11/02/93	7	7 (14)
Lead	10/26/93	11/05/93	11/09/93	10	14 (180)
Moisture	10/26/93	NA	11/01/93	NA	6 (NA)

Samples were collected 10/26, 10/27, and 28/1993; 10/26/93 was used as sample collection date to verify holding time compliance.

NA - Not applicable.

All samples were extracted and analyzed within recommended holding times.

b - Fuel hydrocarbons, analyzed for gasoline $(C_7 - C_{12})$ and diesel $(C_{12} - C_{24})$ range TPH.

^{() -} Numbers in parentheses indicate recommended holding times in days.

c - The date on which the last sample extraction or analysis was completed was used to verify holding time compliance.

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number: 9310-269

Sample No.: MW704.5', MW808.5', MW908', MW1008', MW10050'

Matrix: Soil

FUEL HYDROCARBON CHROMATOGRAMS

Gasoline or diesel range TPH were not detected at or above their method reporting limits (MRLs) by EPA 8015M in any samples documented under this report.

FIELD QUALITY CONTROL SAMPLES

Field Duplicates: Sample MW10@50' is a duplicate of MW10@8'. Both

samples were analyzed by EPA Methods 8015 Modified, 8020, 8310, and 6010. No analytes were detected at or above their MRLs by EPA Methods 8015M, 8020, and 8310, and EPA 6010 has a relative percent difference (RPD) of 0 indicating acceptable precision for these

methods.

Rinsate: None collected.

Trip Blank: None collected.

LAB QUALITY CONTROL SAMPLES

Method Blank: No analytes were detected at or above their MRLs in

the method blanks for the following methods:

EPA 8310 EPA 8020 EPA 8015M EPA 6010

Matrix Spikes: Matrix spike percent recovery for EPA 6010 is within

ATI's control limit criteria.

Matrix spike and matrix spike duplicate percent recoveries and RPDs are within ATI's control limit

criteria for the following methods:

EPA 8310 EPA 8020 EPA 8015M

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15

15659.001

Lab Name:

Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number:

9310-269

Sample No.:

MW704.5', MW808.5', MW908', MW1008', MW10050'

Matrix:

Soil

Duplicates:

Duplicate sample RPDs are within ATI's control

limit criteria for the following methods:

EPA 8015M

EPA 6010

CLP SOW ILM01.0

Blank Spikes:

Blank spike percent recoveries are within ATI's

control limit criteria for the following methods:

EPA 8310

EPA 8015M

EPA 8020

EPA 6010

Surrogates:

Surrogate spike percent recoveries are all within

ATI's control limit criteria for the following

methods:

EPA 8310

EPA 8020

EPA 8015M

SIGNATURES

Prepared by

migta him

Date /2/0//93

Checked by

Katherine Bourbonais

Date _ 12/193

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

ATI I.D. # 9310-269

November 22, 1993

Applied Geotechnology, Inc. P.O. Box 3885 Bellevue WA 98009

Attention : Peter Barry

Project Number: 15659.001

Project Name : Burns Bros/Bingo Fuel Stop

ear Mr. Barry:

On October 29, 1993, Analytical Technologies, Inc. (ATI), received five samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Sincerely,

Victoria L. Bayly Project Manager

VLB/hal/ff

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9310-269-1	MW7 @ 4.5'	10/26/93	SOIL
9310-269-2	MW8 @ 8.5'	10/27/93	SOIL
9310-269-3	MW9 @ 8'	10/27/93	SOIL
9310-269-4	MW10 @ 8'	10/28/93	SOIL
9310-269-5	MW10 @ 50'	10/28/93	SOIL

---- TOTALS ----

MATRIX # SAMPLES
SOIL 5

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled isposal date.

ANALYTICAL SCHEDULE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
POLYNUCLEAR AROMATIC HYDROCARBONS	. HPLC/UV/FLUOR	EPA 8310	R. j
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
LEAD	ICAP	EPA 6010	R
MOISTURE	GRAVIMETRIC	CLP SOW ILM01.0	R

R = ATI - Renton

SD = ATI - San Diego

PHX = ATI - Phoenix

PNR = ATI - Pensacola

FC = ATI - Fort Collins

B = Subcontract

CASE NARRATIVE

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS

Five (5) soil samples were received by ATI on October 29, 1993, for the following analysis: EPA method 8310.

All corresponding quality assurance and quality control results defined as matrix spike/matrix spike duplicate (MS/MSD), blank spike (BS), method blank and surrogate recoveries were within the established control limits.

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL	DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	: N/A D : 11/03/93 : 11/08/93 : mg/Kg
COMPOUNDS		
FLUORENE PHENANTHRENE ANTHRACENE	<0.17 <0.17 <0.17 <0.17 <0.017 <0.0083 <0.0083	
PYRENE	<0.017 <0.017 <0.017 <0.017	
ENZO(B) FLUORANTHENE BENZO(K) FLUORANTHENE DENZO(A) DARRENE	<0.017 <0.017	
DIBENZO(A, H) ANTHRACENE BENZO(G, H, I) PERYLENE INDENO(1,2,3-CD) PYRENE	<0.034 <0.017 <0.017	
SURROGATE PERCENT RECOVERY		LIMITS
2 - CHLOROANTHRACENE	80	25 - 134

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW7 @ 4.5'	DATE RECEIVED : 10/29/93 DATE EXTRACTED : 11/03/93 DATE ANALYZED : 11/08/93
COMPOUNDS	
NAPHTHALENE ACENAPHTHYLENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	
2-METHYLNAPHTHALENE	<0.24
	<0.24 <0.024
FLUORENE PHENANTHRENE	<0.024
	<0.012
FLUORANTHENE	<0.024
FLUORANTHENE PYRENE	<0.024
BENZO (A) ANTHRACENE	
	<0.024
NZO(B) FLUORANTHENE	<0.024
BENZO(K) FLUORANTHENE	<0.024
BENZC (A) PYRENE	<0.024
DIBENZO(A, H) ANTHRACENE	
	<0.024
INDENO(1,2,3-CD)PYRENE	<0.024
SURROGATE PERCENT RECOVERY	LIMITS
2-CHLOROANTHRACENE	74 25 - 134

	DATE SAMPLED : 10/27/93 DATE RECEIVED : 10/29/93 DATE EXTRACTED : 11/03/93 DATE ANALYZED : 11/08/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
	·
NAPHTHALENE	
	<0.20
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	<0.20
	<0.20 <0.020
PHENANTHRENE	
	<0.0097
*	
FLUORANTHENE PYRENE BENZO(A) ANTHRACENE	<0.020
BENZO (A) ANTHRACENE	<0.020
CHRYSENE LNZO(B) FLUORANTHENE	<0.020
RENZO (K) ELLIOPANTHENE	-0 020
BENZO (A) PYRENE DIBENZO (A, H) ANTHRACENE	<0.020
DIBENZO(A, H) ANTHRACENE	<0.040
BENZO(G,H,I)PERYLENE	<0.020
INDENO(1,2,3-CD)PYRENE	<0.020
SURROGATE PERCENT RECOVERY	LIMITS
2-CHLOROANTHRACENE	78 25 - 134

	DATE SAMPLED DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	D : 10/29/93 ED : 11/03/93 D : 11/09/93 : mg/Kg
COMPOUNDS	RESULTS	
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHENE FLUORENE PHENANTHRENE	<0.18 <0.18 <0.18 <0.18 <0.018 <0.0090 <0.0090	
NZO (B) FLUORANTHENE	<0.018	
BENZO (K) FLUORANTHENE	<0.018	
BENZO (A) PYRENE	<0.018	•
DIBENZO (A, H) ANTHRACENE		
BENZO(G, H, I) PERYLENE INDENO(1,2,3-CD) PYRENE	<0.018 <0.018	
THOUSE (T, 2, 3 - CD) EIRDING	~U.UIU	•
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	82	25 - 134

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW10 @ 8' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	: 10/29/93 D : 11/03/93 : 11/09/93 : mg/Kg
COMPOUNDS	RESULTS	
NAPHTHALENE	<0.13	•
ACENAPHTHYLENE	<0.26	
1-METHYLNAPHTHALENE	<0.26	
2-METHYLNAPHTHALENE	<0.26	
ACENAPHTHENE	<0.26	
FLUORENE	<0.026	
PHENANTHRENE		
ANTHRACENE	<0.013	
FLUORANTHENE	<0.026	
PYRENE	<0.026	
BENZO (A) ANTHRACENE	<0.026	
CHRYSENE	<0.026	•
ENZO (B) FLUORANTHENE		
BENZO(K) FLUORANTHENE	<0.026	:
BENZO (A) PYRENE	<0.026	
DIBENZO(A, H) ANTHRACENE	<0.052	
BENZO (G, H, I) PERYLENE	<0.026	
INDENO(1,2,3-CD) PYRENE	<0.026	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	77	25 - 134

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW10 @ 50' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED	: 10/29/93 D : 11/03/93 : 11/09/93 : mg/Kg
COMPOUNDS	RESULTS	
NAPHTHALENE	<0.12	
ACENAPHTHYLENE	<0.24	
1-METHYLNAPHTHALENE	<0.24	
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	<0.24	•
ACENAPHTHENE	<0.24	•
FLUORENE	<0.024	•
PHENANTHRENE		
	<0.012	
FLUORANTHENE PYRENE	<0.024	,
	<0.024	
CHRYSENE LNZO(B) FLUORANTHENE	<0.024	
	<0.024	
DIBENZO(A, H) ANTHRACENE	<0.024	
BENZO (G, H, I) PERYLENE		•
INDENO(1,2,3-CD) PYRENE	<0.024	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	77	25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK
PROJECT # : 15659.001 DATE EXTRACTED : 11/03/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/08/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333 0.333	2.49 0.256 0.276 0.275 0.280	75 77 83 83	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE INZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				48 - 1 47 - 1 59 - 1 50 - 1 54 - 1	37 22 26		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DÚP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		81		N/A	· .	25 - 1	34

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC.

: 9311-001-2 SAMPLE I.D. #

PROJECT # : 15659.001 DATE EXTRACTED : 11/03/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED

: 11/08/93

SAMPLE MATRIX : SOIL

UNITS

: mg/Kg

EPA METHOD : 8310

					·		
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333	2.46 0.265 0.288 0.285 0.285	74 80 86 86 86	2.26 0.254 0.280 0.276 0.281	68 76 84 83	8 4 3 3
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE INZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE			•	50 - 1 14 - 1 25 - 1 36 - 1 34 - 1	62 43 43		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		82		80		25 - 1	34

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 10/29/93 DATE ANALYZED : 10/29/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES SURROGATE PERCENT RECOVERY	<0.025 <0.025 <0.025 <0.025
SURROGATE PERCENT RECOVERS	TIMLIS
BROMOFLUOROBENZENE	101 52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW7 @ 4.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/26/93 : 10/29/93 : 10/29/93 : 11/01/93 : mg/Kg : 1
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.036 <0.036 <0.036 <0.036	
SURROGATE PERCENT RECOVERY	L	IMITS
BROMOFLUOROBENZENE	94 5	2 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW8 @ 8.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 10/27/93 DATE RECEIVED : 10/29/93 DATE EXTRACTED : 10/29/93 DATE ANALYZED : 10/30/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.029 <0.029 <0.029 <0.029
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	88 52 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW9 @ 8' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 10/27/93 DATE RECEIVED : 10/29/93 DATE EXTRACTED : 10/29/93 DATE ANALYZED : 10/30/93 UNITS : mg/Kg DILUTION FACTOR : 1	
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	. <0.027 <0.027 <0.027 . <0.027	
SURROGATE PERCENT RECOVERY	LIMITS	
BROMOFLUOROBENZENE	80 52 - 116	

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW10 @ 8' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/28/93 : 10/29/93 : 10/29/93 : 10/30/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES SURROGATE PERCENT RECOVERY	<0.038 <0.038 <0.038	LIMITS
BROMOFLUOROBENZENE	69 5	52 - 116

CLIENT I.D. : MW10 @ 50' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE ANALYZED UNITS DILUTION FACTO	: 10/30/93 : mg/Kg R : 1
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.035 <0.035 <0.035 <0.035	I TMTTC
SURROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE	77	52 - 116

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT #

: 15659.001

: 10/29/93 DATE EXTRACTED

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED

: 10/29/93

SAMPLE MATRIX : SOIL

UNITS

: mg/Kg

EPA METHOD

: 8020 (BETX)

•							
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.0250 <0.0250 <0.0250	1.00 1.00 2.00	0.957 1.02 2.08	96 102 104	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS		•		% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				63 - 1 75 - 1 79 - 1	10		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		97		N/A	6	52 - 1	16

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. #

: 9310-263-2

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE EXTRACTED : 10/29/93

DATE ANALYZED

: 10/29/93

SAMPLE MATRIX : SOIL

UNITS

: mg/Kg

EPA METHOD : 80	20 (BETX)	
-----------------	-----------	--

	-						
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE FOLUENE TOTAL XYLENES	<0.0250 <0.0250 <0.0250	1.00 1.00 2.00	0.948 0.995 2.02	95 100 101	0.939 0.996 2.02	94 100 101	1 0 0
CONTROL LIMITS				% REC.	e te		RPD
BENZENE TOLUENE TOTAL XYLENES				35 - 1 43 - 1 46 - 1			20 20 20
SURROGATE RECOVERIES	S	SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		90	•	92		52 - 1	16

FUEL HYDROCARBONS DATA SUMMARY

PROJECT # PROJECT NAM CLIENT I.D. SAMPLE MATR EPA METHOD	E : BURNS BROS/BINGO FUEL STOP : METHOD BLANK IX : SOIL	DATE RECETVED	: N/A D : 11/02/93 : 11/02/93 : mg/Kg DR : 1
COMPOUNDS			
FUEL HYDROC HYDROCARBON HYDROCARBON FUEL HYDROC HYDROCARBON	ARBONS RANGE QUANTITATION USING ARBONS RANGE	<5 C7 - C12 GASOLINE <25 C12 - C24	
HYDROCARBON	QUANTITATION USING SURROGATE PERCENT RECOVERY	DIESEL	LIMITS
O-TERPHENYL		96	52 - 143

-TERPHENYL

ATI I.D. # 9310-269-1

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW7 @ 4.5' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED : 10/29/93 DATE EXTRACTED : 11/02/93 DATE ANALYZED : 11/02/93 UNITS : mg/Kg
COMPOUNDS	RESULTS
·	
FUEL HYDROCARBONS	<7 C7 - C12
HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<36 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS

101

52 - 143

^-TERPHENYL

ATI I.D. # 9310-269-2

52 - 143

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW8 @ 8.5' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED : 10/29/93
COMPOUNDS	RESULTS
FUEL HYDROCARBONS	<6 C7 - C12
HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	GASOLINE
FUEL HYDROCARBONS	<29
HYDROCARBON RANGE	C12 - C24
HYDROCARBON QUANTITATION USING	DIESEL
SURROGATE PERCENT RECOVERY	LIMITS

99

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHN PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO CLIENT I.D. : MW9 @ 8' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTO) FUEL STOP	DATE RECEIVED	: 11/02/93 : mg/Kg
COMPOUNDS		RESULTS	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING		<5 C7 - C12 GASOLINE	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING		<27 C12 - C24 DIESEL	
SURROGATE PERCENT RE	ECOVERY	L	IMITS
-TERPHENYL		101 5	2 - 143

ATI I.D. # 9310-269-4

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTE PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BI CLIENT I.D. : MW10 @ 8' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIE RESULTS ARE CORRECTED FOR MODIFIE	INGO FUEL STOP	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 10/29/93 : 11/02/93 : 11/02/93 : mg/Kg
COMPOUNDS		RESULTS	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USIN	1G	<8 C7 - C12 GASOLINE	
HYDROCARBON RANGE HYDROCARBON QUANTITATION USIN	1G	C12 - C24 DIESEL	
SURROGATE PERCENT			LIMITS
O-TERPHENYL		98	52 - 143

TERPHENYL

ATI I.D. # 9310-269-5

52 - 143

100

FUEL HYDROCARBONS DATA SUMMARY

DATE SAMPLED : 10/28/93 DATE RECEIVED : 10/29/93 CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 DATE EXTRACTED : 11/02/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/02/93 CLIENT I.D. : MW10 @ 50' : mg/Kg UNITS SAMPLE MATRIX : SOIL DILUTION FACTOR: 1 EPA METHOD : 8015 (MODIFIED) ESULTS ARE CORRECTED FOR MOISTURE CONTENT COMPOUNDS <7 FUEL HYDROCARBONS C7 - C12 HYDROCARBON RANGE HYDROCARBON QUANTITATION USING GASOLINE <35 FUEL HYDROCARBONS C12 - C24 HYDROCARBON RANGE DIESEL HYDROCARBON QUANTITATION USING LIMITS SURROGATE PERCENT RECOVERY

FUEL HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

DATE EXTRACTED : 11/02/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

: 15659.001

DATE ANALYZED : 11/02/93

UNITS

: mg/Kg

SAMPLE MATRIX : SOIL

EPA METHOD : 8015 (MODIFIED)

							
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
DIESEL	<25.0	500	511	102	N/A	N/A	N/A
CONTROL LIMITS				% REC.		•	RPD
DIESEL				67 - 1	.35		20
SURROGATE RECOVERIES	5	SPIKE		DUP. S	PIKE	LIMITS	
O-TERPHENYI		98	. •	N/A		52 - 1	43

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9310-269-5
PROJECT # : 15659.001 DATE EXTRACTED : 11/02/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/02/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8015 (MODIFIED)

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
DIESEL	<25.0	<25.0	NC	500	505	101	476	95	6
CONTROL	LIMITS					% RE	C.		RPD
DIESEL			-			56 -	137		20
SURROGAT	E RECOVE	RIES		SPIKE	•	DUP.	SPIKE	LIMI	TS
O-TERPHENYL				101		93		52 -	143

NC = Not Calculable.

METALS ANALYSIS

: APPLIED GEOTECHNOLOGY, INC. CLIENT

MATRIX : SOIL

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE PREPARED

LEAD

11/05/93

11/09/93

METALS ANALYSIS DATA SUMMARY

PROJECT # : PROJECT NAME :	APPLIED GEOTECHNOLOG 15659.001 BURNS BROS/BINGO FUE RECTED FOR MOISTURE C	L STOP	MATRIX UNITS	: SOIL : mg/Kg
ATI I.D. #	CLIENT I.D.	LEAD		
9310-269-1 9310-269-2 9310-269-3 9310-269-4 9310-269-5 METHOD BLANK	MW7 @ 4.5' MW8 @ 8.5' MW9 @ 8' MW10 @ 8' MW10 @ 50'	3.4 2.6 <1.7 2.4 2.4		

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/Kg

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	BLANK	<1.5	N/A	N/A	43.8	50.0	88
LEAD	9310-251-14	3.2	3.8	17	57.1	62.5	86

GENERAL CHEMISTRY ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001

MATRIX : SOIL

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

MOISTURE

11/01/93

GENERAL CHEMISTRY ANALYSIS DATA SUMMARY

CLIENT	: APPLIED	GEOTECHNOLOGY,	INC.	MATRIX :	SOIL

PROJECT # : 15659.001

MW10 @ 50'

9310-269-5

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : %

ATI I.D. #	CLIENT I.D.	MOISTURE
		
9310-269-1	MW7 @ 4.5'	30
9310-269-2	MW8 @ 8.5′	14
9310-269-3	MW9 @ 8'	7.8
9310-269-4	MW10 @ 8'	34

28

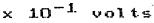
GENERAL CHEMISTRY ANALYSIS QUALITY CONTROL DATA

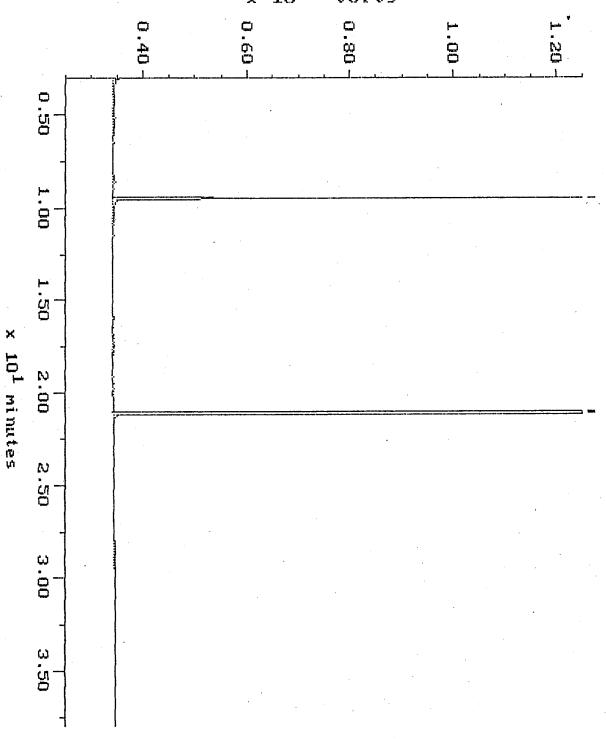
CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 MATRIX : SOIL

PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS

SAMPLE DUP SPIKED SPIKE RESULT RESULT RPD RESULT ADDED ATI I.D.

18 5 N/A N/A N/A9310-265-4 19 MOISTURE

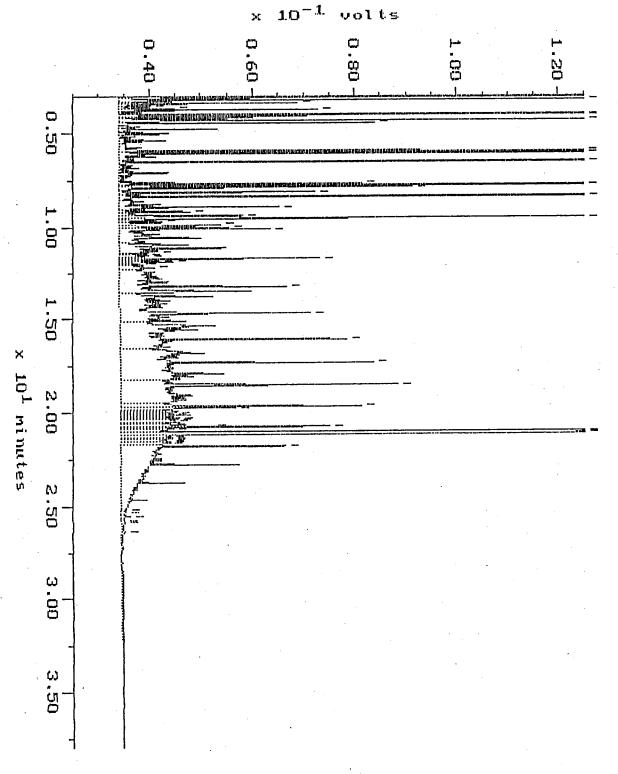

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration


RPD (Relative % Difference) = | (Sample Result - Duplicate Result) | Average Result

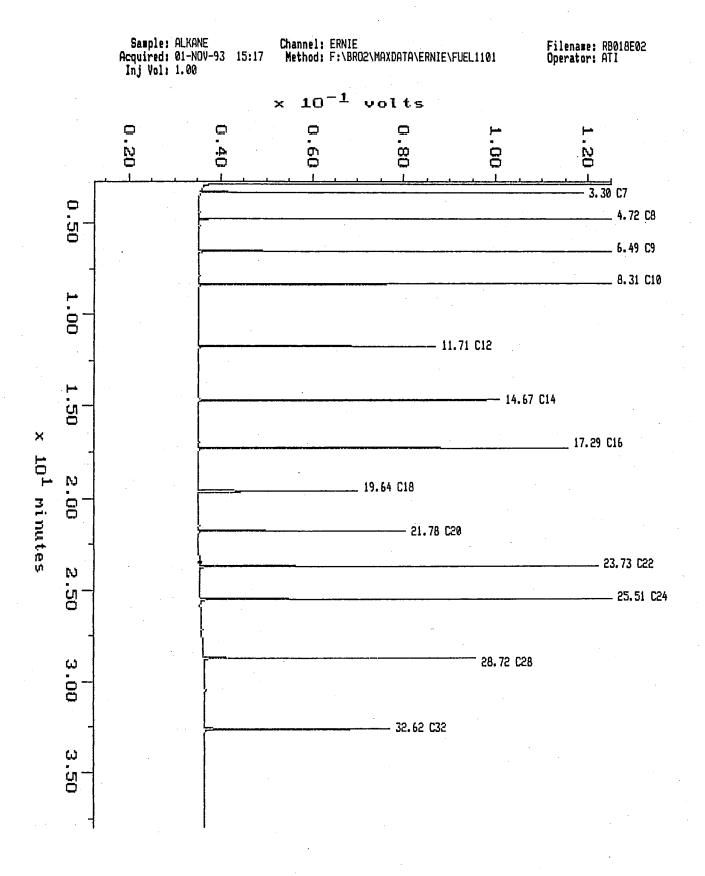
Filename: RB028E03 Operator: ATI

Sample: SRB 11-2 8015 Cha Acquired: 02-NOV-93 14:19 Me Comments: ATI: THE QUALITY TEAM

Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL1102


Continuing Calibration

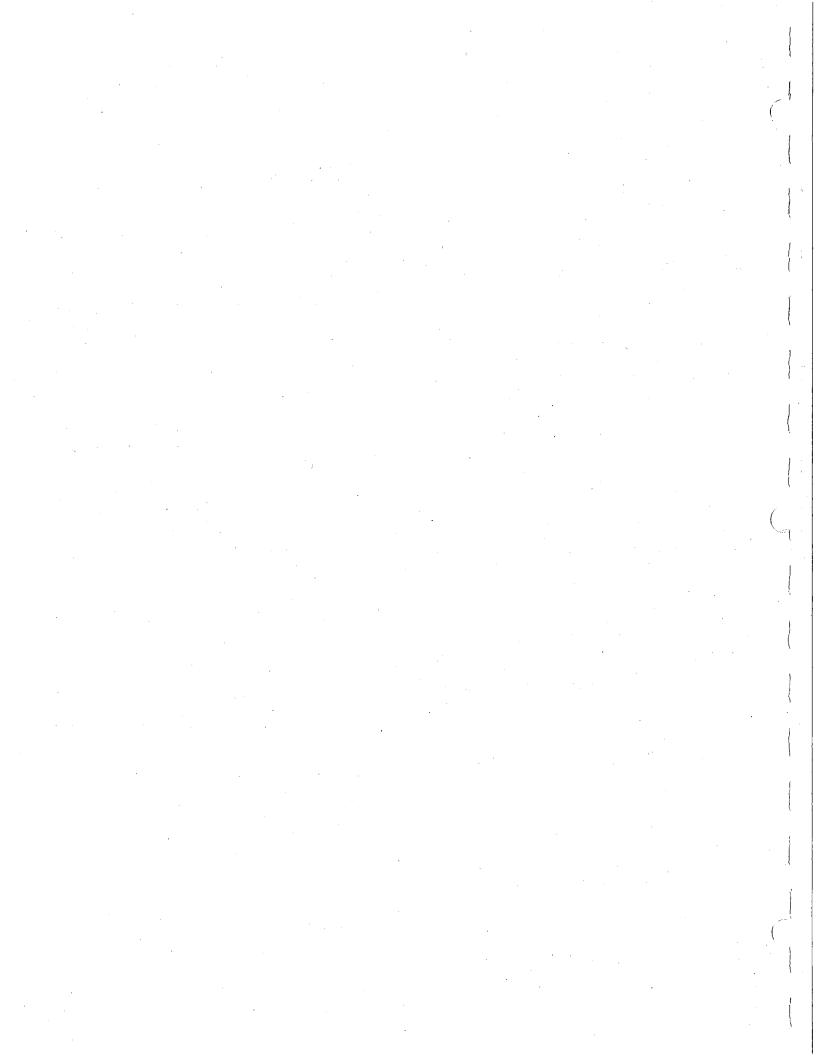
Filename: RB028E02' Operator: ATI


Sample: DG 400 Cha Acquired: 02-HOV-93 13:33 Me Comments: ATI: THE QUALITY TEAM

Channel: ERNIE
Method: F:\BKO2\MAXDATA\ERNIE\FUEL1102

Alkane

SOUTH CHAIN-OF-C TODY


10-28-93

. Date

/ | Geotechnology Inc.
Geotechnical Engineering
Geology & Hydrogeology

PROJEC	PROJECT INFORMATION	ATION			Laboratory Number:	ry Nur	nber:							İ									
Project Manager: Pe 1er	Barry	37							,	Æ	ALY	ANALYSIS REQUEST	Eau	EST					لحو				
		140.0			PETROLEUM HYDROCARBONS	EUM	ORGANIC	NIC CO	COMPOUNDS		ESTS	PESTS/PCB's	<u> </u>	¥	METALS	"		EACHIN	LEACHING TESTS		OTHER		
Project Number: $1 > 6$	59.001 Wa	Samp	Sampled By: DPD		TPH- TPH-	8015 418.1 TPH	8020 8010	8240 8020	8310 8270	DWS 8040	8080	8150 8140	Selec	Orgai Total	TCL I	DWS Priori	TCLF	TCLF	TCLF	<u> </u>		NUM	
/SOASIQ	DISPOSAL INFORMATION	MATION			D S G S	Sta	Halo	GCM M - B	HPL	- Vol	м РС	OC H	ted n		Metal		_					BER	
☐ Lab Disposal (return if not indicated)	urn if not in	dicated)			tate: tate:			IS Vo	C PA	atiles	Bs o	lerbi	netals		s (23							OF C	
Disposal Method:						; etruc		olatile only		_	nly	cides	S: list)	tale			les		-	ONT	
Disposed by:	Dispo	Disposal Date:				tions		s	ÿ Ol.					121	(10)	(12)	_					AIN	- 4 +4 1
QC INFORMATION (check one)	MATION (c	heck one	(6	-1			s			nivol					-		-					ERS	
□SW-846 □CLP □S	Screening	□AGI Std.		Special															•			·	
SAMPLEID	DATE	TIME	MATRIX	LAB ID							.(
MIN D 4,5 10	10-26-43 1	1331	50,1	_		×		7-	Х					X									
0 × × °	-	5480		j,		>		>-	*					×									_
2 0 5	 	1510		w		X		×	乄					×								_	
, × 0 0	1	0060		4		 		>	>					×								_	
6 no.	8	0010	>	λ		<u>></u>	_	٧.	>					×								-	
													_					Z					
												$\overline{\ }$											
			CAME	FOID E DECEIO	TOI		מעו	DEI INOLIIGHED		>	_	DEI INOTITICHED		֡֟֝֟֝֟֝֟֟֝֟֟֝֟֝֟֟֝ ֡	Ş.		1	Z	=	BEI INDITISHED BY:	3	۳. ز	
3	2		JAME	יייי דיייייייייייייייייייייייייייייייי		1				: ⁵	+	Signstrue			5	1 :5	Ü	Signature.				1 (=	T
Lab Name: ATZ		Total	Total Number of Containers:	ontainers:		4	Signature.	on the	£	1 × 0		gnature:				<u>.</u>	Ď.	lature					
Lab Address: 560 Nochr	Bul	Chain	Chain of Custody Seals: Y/N/NA	seals: Y/N/r	≰	.>	Printed Name	dame:		Date:		Printed Name:	me:			Date:	Pri	Printed Name	:eu			Dato:	
for the blu		Intact	Intact :: Y/N/NA		$\frac{1}{1}$	<i></i>	Company:	4	~ 1		╀	Company:					වී	Company:					$\overline{}$
Via: Cource Cor		Receiv	Received in Good Condition/Cold:	Condition/C	_	>		AG	<u>'-'</u>								_	`					T
*:	☑ Standard [☐24 hr.	☐ 48 hr.	☐ 72 hr.		wk.	RECE	RECEIVED BY:	ΒΥ:	•	÷.	RECEIVED	VED	BY:		6	~	띩	RECEIVED	BY:		က်	[
PRIOR AUTHORIZATION IS REQUIRED FOR RUSH DATA	IZATION IS	S REQUI	RED FOR	RUSH D	ATA		Signature:	. ·	,	Time:		Signature:				Time:	Sig.	Signature:				Time:	
Special Instructions:							Printed Name:	dame:		Date:	-	Printed Name:) ::			Date:	Pair	Printed Name:	:		,	Date:	
							Company:	× -			٥	Company:					<u>ਲ</u>	Сопрапу:					
AGI OFFICES: Bellevue: (206) 453-8383 Portland: (503) 222-2820		coma: (206 sasanton: (Tacoma: (206) 383-4380 Pleasanton: (415) 460-5495	35		DISTRI	BUTIO	DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to AGI Project Files; Gold to AGI Disposal Files Rev. 4/92	Canar	y to An	alytica	Labo	ratory;	Pink	o AG	l Proj	ect Fi	les; G	sold to	AGI [Dispo	sal Files Rev. 4/92	es /92

N A

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number: 9311-001

Sample No.: MW1203.5', MW1103.5', MW1107.5', MW7-10/93, MW8-10/93,

MW9-10/93, MW12-10/93, Rinsate-10/93, TB

Matrix: Water/Soil (MW1203.5', MW1103.5', MW1107.5')

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable for use.

ANALYTICAL METHODS

<u>Parameter</u>	<u>Technique</u>	Method
PAH*	HPLC/UV/FLUOR	EPA 8310
BETX	GC/PID	EPA 8020
TPH ^b	GC/FID	EPA 8015
Lead°	ICAP	EPA 6010
Lead	AA/GF	EPA 7421
Moisture	Gravimetric	CLP SOW ILM01.0

Sample Rinsate 10/93 was analyzed by EPA 8310, EPA 8015M, and EPA 8020; sample TB was analyzed by EPA 8020 only.

- a Polycyclic aromatic hydrocarbons.
- b Fuel hydrocarbons, analyzed for gasoline $(C_7 C_{12})$ and diesel $(C_{12} C_{24})$ range TPH.
- c Analyzed for soil samples.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number: 9311-001

MW12@3.5', MW11@3.5', MW11@7.5', MW7-10/93, MW8-10/93, Sample No.:

MW9-10/93, MW12-10/93, Rinsate-10/93, TB

Water/Soil (MW12@3.5', MW11@3.5', MW11@7.5') Matrix:

TIMELINESS

Parameter	Date <u>Sampled</u>	Date Extracted	Date <u>Analyzed</u>	Time Until Extraction	Time Until <u>Analysis</u>
PAH ^e	10/28/93°	11/03/93	11/09/93	6 (14)	6 (40)
PAHd	10/29/93	11/02/93	11/04/93	5 (7)	2 (40)
BETX°	10/28/93	11/03/93	11/08/93	6	11 (14)
BETX ^d	10/29/93	NA	11/04/93	NA .	6 (14)
TPH°	10/28/93	11/02/93	11/03/93	5	6 (14)
TPH	10/29/93	11/01/93	11/02/93	3	4 (14)
Lead	10/28/93	11/09/93	11/10/93	12	13 (180)
$\mathtt{Lead}^\mathtt{d}$	10/29/93	11/03/93	11/04/93	5	6 (180)
Moisture	10/28/93	NA	11/02/93	NA	5 (NA)

NA - Not applicable.

- () Numbers in parentheses indicate recommended holding times in days.
- d Analyzed for water samples.
- e Soil samples were collected 10/28 and 29/93; 10/28/93 was used as sample collection date to verify holding time compliance.

All samples were extracted and analyzed within recommended holding times.

FUEL HYDROCARBON CHROMATOGRAMS

Gasoline range $(C_7 - C_{12})$ TPH were detected in sample MW8-10/93 by EPA 8015M, and the detections is supported by the sample chromatogram for this method.

FIELD QUALITY CONTROL SAMPLES

Field Duplicates:

None collected.

Rinsate:

Sample Rinsate-10/93 was analyzed by EPA 8310, EPA 8015M, and EPA 8020. No analytes were detected at or above their method reporting limits (MRLs) by No carry-over contamination was these methods. identified.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number: 9311-001

Sample No.: MW1203.5', MW1103.5', MW1107.5', MW7-10/93, MW8-10/93,

MW9-10/93, MW12-10/93, Rinsate-10/93, TB

Matrix: Water/Soil (MW12@3.5', MW11@3.5', MW11@7.5')

Trip Blank:

Sample (Trip Blank) was analyzed by EPA 8020. Analytes were not detected at or above their MRLs in this sample.

Cross-contamination was not identified.

LAB QUALITY CONTROL SAMPLES

Method Blank:

No analytes were detected at or above their MRLs in method blanks for the following methods:

EPA 8310 EPA 8020 EPA 8015M EPA 7421 EPA 6010

Matrix Spikes:

Matrix spike percent recoveries are within acceptance control limit criteria for EPA 7421 and EPA 6010.

Matrix spike and matrix spike duplicate percent recoveries and relative percent differences (RPDs) are within ATI's control limit criteria for EPA 8020.

EPA 8310: The matrix spike and matrix spike duplicate associated with water samples had acenaphthylene percent recoveries of 319 and 321 percent, and benzo(k)-fluoranthene and dibenzo(a,h)anthracene recoveries ranging from 21 to 28 percent, which exceeded ATI's control limit criteria due to matrix interference. The spiked sample was not collected from the same site as that of the associated samples and other QC parameters for this method are within acceptance criteria. Sample results are not qualified on this basis.

EPA 8015M: The matrix spike and matrix spike duplicate associated with water samples had gasoline percent recoveries of 22 and 58 percent, which exceeded ATI's lower control limit criteria of 68 percent due to high concentrations of analytes in the sample. Since other QC parameters for this method are within acceptance criteria, sample results are not qualified on this basis.

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.:

15659.001

Lab Name:

Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number:

9311-001

Sample No.:

MW12@3.5', MW11@3.5', MW11@7.5', MW7-10/93, MW8-10/93,

MW9-10/93, MW12-10/93, Rinsate-10/93, TB

Matrix:

Water/Soil (MW12@3.5', MW11@3.5', MW11@7.5')

Duplicates:

Duplicate sample RPDs are within ATI's control limit

criteria for the following methods:

EPA 8015M EPA 7421 EPA 6010

CLP SOW ILM01.0

Blank Spikes:

Blank spike percent recoveries are within ATI's control

limit criteria for the following methods:

EPA 8310 EPA 8015M EPA 7421 EPA 6010

Blank spike and blank spike duplicate percent recoveries and RPDs are within ATI's control limit criteria for EPA

8020.

Surrogates:

Surrogate spike percent recoveries are all within ATI's

control limit criteria for the following methods:

EPA 8310 EPA 8020 EPA 8015M

SIGNATURES

Prepared by

Mingla Lin

Date /2/0//93

Checked by

Katherine Bourk

Bourbonais

Date 12/1/13

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

ATI I.D. # 9311-001

November 22, 1993

Applied Geotechnology, Inc. P.O. Box 3885 Bellevue WA 98009

Attention : Peter Barry

Project Number: 15659.001

Project Name : Burns Bros/Bingo Fuel Stop

Dear Mr. Barry:

On November 1, 1993, Analytical Technologies, Inc. (ATI), received nine samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Sincerely,

Victoria L. /Bayly Project Manager

VLB/hal/ff

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9311-001-1	MW12 @ 3.5′	10/28/93	SOIL
9311-001-2	MW11 @ 3.5'	10/29/93	\mathtt{SOIL}
9311-001-3	MW11 @ 7.5'	10/29/93	SOIL
9311-001-4	MW7-10/93	10/29/93	WATER
9311-001-5	MW8-10/93	10/29/93	WATER
9311-001-6	MW9-10/93	10/29/93	WATER
9311-001 - 7	MW12-10/93	10/29/93	WATER
9311-001-8	RINSATE-10/93	10/29/93	WATER
9311-001-9	TB	N/A	WATER

---- TOTALS ----

SAMPLES
3
6

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled 'sposal date.

ANALYTICAL SCHEDULE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
POLYNUCLEAR AROMATIC HYDROCARBONS	HPLC/UV/FLUOR	EPA 8310	R
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
LEAD	AA/GF	EPA 7421	R
LEAD	ICAP	EPA 6010	R
MOISTURE	GRAVIMETRIC	CLP SOW ILM01.0	R

ATI - Renton

SD = ATI - San Diego
PHX = ATI - Phoenix
PNR = ATI - Pensacola
FC = ATI - Fort Collins

JB = Subcontract

CASE NARRATIVE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS

Five (5) water samples were received by ATI on November 1, 1993, for the following analysis: EPA method 8310.

The percent recovery for acenaphthylene in the matrix spike/matrix spike duplicate (MS/MSD) was outside ATI limits due to a nearby peak interfering with the acenaphthylene peak. The result was flagged with an "F"; out of limits due to matrix interference.

The percent recoveries for benzo(k)fluoranthene and dibenzo(a,h)anthracene in the (MS/MSD) were outside ATI limits. The results were flagged with an "F"; out of limits due to matrix interference. The results from the blank spike (BS) associated with this sample set were within limits.

"11 other corresponding quality assurance and quality control results defined 3 MS/MSD, BS, method blank and surrogate recoveries were within the established control limits.

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: N/A) : 11/02/93 : 11/04/93 : ug/L)R : 1
	י סקנווייים	
NAPHTHALENE		
	<1.0	
	<0.50	
2-METHYLNAPHTHALENE		
***	<0.50	
	<0.10	
PHENANTHRENE		
	<0.050	
	<0.10	•
PYRENE	<0.10	•
CUDYCENE	-0.10	1
INZO(B) FLUORANTHENE	<0.10	
	<0.10	
221120 (11) - 20 C12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	<0.10	•
DIBENZO (A, H) ANTHRACENE		
	<0.10	
	<0.10	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	89	33 - 123

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW7-10/93 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE ANALYZED : 11/04/93 UNITS : ug/L DILUTION FACTOR : 1	
COMPOUNDS	RESULTS	
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	<0.94 <0.47 <0.47 <0.47 <0.094 <0.047 <0.047 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094	
SURROGATE PERCENT RECOVERY	LIMITS	
2-CHLOROANTHRACENE	82 33 - 123	

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW8-10/93 SAMPLE MATRIX : WATER	DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 11/02/93 : 11/04/93 : ug/L
	PESIITTS	
NAPHTHALENE		
110011111 11111 100110	<0.94	
1-METHYLNAPHTHALENE	5.8 4.7	
ACENAPHTHENE	<0.47	
FLUORENE	<0.094	
PHENANTHRENE	<0.047	
	<0.047	
	<0.094	
PYRENE	<0.094	
BENZO (A) ANTHRACENE	<0.094	
	<0.094	
ENZO (B) FLUORANTHENE	<0.094	
BENZO(K) FLUORANTHENE	<0.094 <0.094	
	<0.094	
DIBENZO (A, H) ANTHRACENE		
DENEO (0 / 11 / 1 / 1 ZH 1 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	<0.094	
INDENO(1,2,3-CD)PYRENE	<0.094	
SURROGATE PERCENT RECOVERY	ΓI	MITS
2-CHLOROANTHRACENE	59 33	- 123

SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE ANALYZED : 11/04/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRACENE THRYSENE LNZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE	<0.94 <0.47 <0.47 <0.047 <0.094 <0.047 <0.047 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094 <0.094 <0.19
SURROGATE PERCENT RECOVERY	LIMITS
2-CHLOROANTHRACENE	75 33 - 123

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW12-10/93 SAMPLE MATRIX : WATER EPA METHOD : 8310	UNITS DILUTION FACTOR	: 11/01/93 : 11/02/93 : 11/04/93 : ug/L
COMPOUNDS	RESULTS	
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO (A) ANTHRACENE CHRYSENE	<0.94 <0.47 <0.47 <0.094 <0.047 <0.047 <0.094 <0.094 <0.094	
INZO(B) FLUORANTHENE BENZO(K) FLUORANTHENE BENZO(A) PYRENE DIBENZO(A, H) ANTHRACENE BENZO(G, H, I) PERYLENE INDENO(1, 2, 3-CD) PYRENE	<0.094 <0.094	
SURROGATE PERCENT RECOVERY	. · · L	IMITS
2-CHLOROANTHRACENE	56 . 3	3 - 123

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : RINSATE-10/93 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE SAMPLED DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	: 11/01/93 D : 11/02/93 : 11/04/93 : ug/L
COMPOUNDS	RESULTS	
COMPOUNDS		
BBN20 (II) IRVIIII dio BN2	<0.94 <0.47 <0.47 <0.47 <0.094 <0.047 <0.047	
CHRYSENE LNZO(B) FLUORANTHENE	<0.094	
BENZO(K) FLUORANTHENE	<0.094	
BENZO (A) PYRENE	<0.094	•
DIBENZO(A, H) ANTHRACENE	<0.19	
BENZO(G, H, I) PERYLENE	<0.094	
INDENO(1,2,3-CD)PYRENE	<0.094	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	79	33 - 123

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK CLIENT

PROJECT # : 15659.001

DATE EXTRACTED : 11/02/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP SAMPLE MATRIX : WATER

DATE ANALYZED : 11/04/93

N/A

33 - 123

2 - CHLOROANTHRACENE

UNITS

: ug/L

EPA METHOD

: 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	<1.00 <0.0500 <0.100 <0.100 <0.200	20.0 2.00 2.00 2.00 2.00	14.4 1.52 1.70 1.66 2.10	72 76 85 83 105	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE ENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE		٠.		32 - 1 58 - 1 50 - 1 50 - 1 56 - 1	20 20 20		32 30 30 29 26
SURROGATE RECOVERIES		SPIKE	•	DUP. S	PIKE	LIMITS	

86

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9310-279-4
PROJECT # : 15659.001 DATE EXTRACTED : 11/02/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/04/93
SAMPLE MATRIX : WATER UNITS : ug/L

EPA METHOD : 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	0.0990 <0.0980 <0.0980	1.96	60.6 1.32 0.929 0.537 0.502	319F 64 49 28F 26F	61.0 1.29 0.829 0.430 0.408	321F 63 44 23F 21F	1 2 11 22 21
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE YRENE LNZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				31 - 1 31 - 1 37 - 1 39 - 1 31 - 1	43 40 31		32 30 30 29 26
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		45		40		33 - 1	23

F = Out of limits due to matrix interference.

CASE NARRATIVE

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS

Three (3) soil samples were received by ATI on November 1, 1993, for the

following analysis: EPA method 8310.

All corresponding quality assurance and quality control results defined as matrix spike/matrix spike duplicate (MS/MSD), blank spike (BS), method blank and surrogate recoveries were within the established control limits.

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8310	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	0 : 11/03/93 : 11/08/93 : mg/Kg DR : 1
COMPOUNDS	RESULTS	
NAPHTHALENE	<0.083	
ACENAPHTHYLENE	<0.17	
1-METHYLNAPHTHALENE	<0.17	
2-METHYLNAPHTHALENE	<0.17	
ACENA PHTHENE	<0.17	
FLUORENE	<0.017	
PHENANTHRENE	<0.0083	
	<0.0083	
FLUORANTHENE	<0.017	
PYRENE	<0.017	
BENZO (A) ANTHRACENE	<0.017	
CHRYSENE	<0.017	
<pre>INZO(B) FLUORANTHENE</pre>	<0.017	
BENZO(K) FLUORANTHENE	<0.017	
BENZO (A) PYRENE	<0.017	
DIBENZO(A, H) ANTHRACENE	<0.034	
BENZO(G, H, I) PERYLENE	<0.017	
INDENO(1,2,3-CD) PYRENE	<0.017	
SURROGATE PERCENT RECOVERY	-	LIMITS
2-CHLOROANTHRACENE	80	25 - 134

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW12 @ 3.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED : : DATE EXTRACTED : : DATE ANALYZED : :	11/03/93 11/09/93 mg/Kg 1
		,
NAPHTHALENE	<0.10	
ACENAPHTHYLENE	<0.21	
1-METHYLNAPHTHALENE	<0.21	
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	<0.21	
a conta differente	-n 21	
FLUORENE PHENANTHRENE ANTHRACENE	<0.021	
PHENANTHRENE	<0.010	
ANTHRACENE	<0.010	
FLUORANTHENE PYRENE	<0.021	
PYRENE	<0.021	
BENZO (A) ANTHRACENE	<0.021	
CHRYSENE LNZO(B) FLUORANTHENE	<0.021	•
INZO(B) FLUORANTHENE	<0.021	
BENZO(K) FLUORANTHENE	<0.021	
BENZO(A) PYRENE DIBENZO(A, H) ANTHRACENE	<0.021	
DIBENZO(A, H) ANTHRACENE	<0.043	•
BENZO(G,H,I)PERYLENE		
INDENO(1,2,3-CD)PYRENE	<0.021	
SURROGATE PERCENT RECOVERY	LIMI	TS
2 - CHLOROANTHRACENE	85 25 -	134

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW11 @ 3.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	: 11/01/93 D: 11/03/93 : 11/08/93 : mg/Kg
COMPOUNDS	RESULTS	
NAPHTHALENE	<0.10	
= · · · · · · · · · · · · · · · · · · ·	<0.21	
	<0.21	•
2-METHYLNAPHTHALENE	<0.21	
ACENAPHTHENE	<0.21	
FLUORENE	<0.021	
PHENANTHRENE		
ANTHRACENE	<0.010	
FLUORANTHENE	<0.021	
PYRENE		
BENZO (A) ANTHRACENE	<0.021	
CHRYSENE	<0.021	
£NZO(B) FLUORANTHENE	<0.021	
BENZO(K) FLUORANTHENE	<0.021	
BENZO (A) PYRENE	<0.021	
DIBENZO (A, H) ANTHRACENE		
BENZO (G, H, I) PERYLENE	<0.021	
INDENO(1,2,3-CD)PYRENE	<0.021	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	84	25 - 134

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW11 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8310	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 11/01/93 D : 11/03/93 : 11/09/93 : mg/Kg
COMPOUNDS		
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHENE	<0.22	
PHENANTHRENE	<0.011	
	<0.011 <0.022	
PYRENE BENZO (A) ANTHRACENE CHRYSENE	<0.022 <0.022 <0.022	
INZO(B) FLUORANTHENE BENZO(K) FLUORANTHENE BENZO(A) PYRENE	<0.022 <0.022 <0.022	
DIBENZO(A, H) ANTHRACENE BENZO(G, H, I) PERYLENE INDENO(1, 2, 3-CD) PYRENE	<0.043 <0.022 <0.022	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	86	25 - 134

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK
PROJECT # : 15659.001 DATE EXTRACTED : 11/03/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/08/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg

SAMPLE MATRIX : SOIL EPA METHOD : 8310

		•		•			
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333	2.49 0.256 0.276 0.275 0.280	75 77 83 83	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE INZO (K) FLUORANTHENE DIBENZO (A, H) ANTHRACENE				48 - 1 47 - 1 59 - 1 50 - 1 54 - 1	37 22		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE	·	DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE	,	81		N/A		25 - 1	34

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

CLIENT: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9311-001-2

PROJECT # : 15659.001 DATE EXTRACTED : 11/03/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/08/93

SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8310

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE	<0.170 <0.00833 <0.0170 <0.0170 <0.0340	0.333 0.333	2.46 0.265 0.288 0.285 0.285	74 80 86 86 86	2.26 0.254 0.280 0.276 0.281	68 76 84 83 84	8 4 3 3
CONTROL LIMITS		÷ .		% REC.			RPD
ACENAPHTHYLENE PHENANTHRENE PYRENE ENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				50 - 1 14 - 1 25 - 1 36 - 1 34 - 1	62 43 43		20 35 34 34 33
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		82		80		25 - 1	34

PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX :	APPLIED GEOTECHNOLOGY, INC. 15659.001 BURNS BROS/BINGO FUEL STOP METHOD BLANK WATER 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : N/A : 11/03/93 : ug/L : 1
COMPOUND		RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
SUR	ROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZ	ENE	111	76 - 120

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: APPLIED GEOTECHNOLOGY, INC. : 15659.001 : BURNS BROS/BINGO FUEL STOP : METHOD BLANK : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : N/A : 11/05/93 : ug/L : 1
COMPOUND		RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
,st	JRROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBEI	NZENE	112	76 - 120

PROJECT # : 15 PROJECT NAME : BU CLIENT I.D. : MW SAMPLE MATRIX : WA	PPLIED GEOTECHNOLOGY, INC. 5659.001 JRNS BROS/BINGO FUEL STOP W7-10/93 ATER D20 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/28/93 : 11/01/93 : N/A : 11/04/93 : ug/L : 1
COMPOUND		RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
SURROG	SATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE	3	113	76 - 120

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: APPLIED GEOTECHNOLOGY, INC. : 15659.001 : BURNS BROS/BINGO FUEL STOP : MW8-10/93 : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/29/93 : 11/01/93 : N/A : 11/03/93 : ug/L : 1
COMPOUND		RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		2800 D6 4100 D6 79 950 D6	
St	JRROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBE	ZENE	102	76 - 120

^{5 =} Value from a 50 fold diluted analysis.

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: APPLIED GEOTECHNOLOGY, INC. : 15659.001 : BURNS BROS/BINGO FUEL STOP : MW9-10/93 : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/29/93 : 11/01/93 : N/A : 11/04/93 : ug/L : 1
COMPOUND		RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
SU	JRROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBE	NZENE	111	76 - 120

PROJECT # : 15659.0	BROS/BINGO FUEL STOP 0/93	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/29/93 : 11/01/93 : N/A : 11/04/93 : ug/L : 1
COMPOUND		RESULT	
ETHYLBENZENE TOLUENE		<0.5 <0.5 <0.5 <0.5	
SURROGATE E	PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE	·	112	76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : RINSATE-10/93 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/29/93 : 11/01/93 : N/A : 11/04/93 : ug/L : 1
COMPOUND	RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5	T.TMTTPC
SURROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE	112	76 - 120

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: 8020 (BETX)	DILUTION FACTOR	-
COMPOUND		RESULT	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
r - st	JRROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBE	NZENE	110	76 - 120

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK CLIENT PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE EXTRACTED : N/A

DATE ANALYZED : 11/03/93

111

76 - 120

EPA METHOD : 8020 (BETX)

UNITS : ug/L

SAMPLE MATRIX : WATER

BROMOFLUOROBENZENE

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5	20.0 20.0 40.0	19.1 21.0 42.4	96 105 106	18.6 20.0 40.5	93 100 101	3 5 5
CONTROL LIMITS				% REC	•		RPD
BENZENE TOLUENE TOTAL XYLENES				78 -	111 111 114		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP.	SPIKE	LIMIT	S

110

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT # : 15659.001

DATE EXTRACTED : N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 11/05/93

EPA METHOD : 8020 (BETX)

UNITS : ug/L

SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5	20.0 20.0 40.0	18.5 20.0 41.0	93 100 102	18.5 20.1 40.7	93 101 102	0 0 1
CONTROL LIMITS				% REC	•		RPD
BENZENE TOLUENE TOTAL XYLENES				78 -	111 111 114		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP.	SPIKE	LIMIT	'S
BROMOFLUOROBENZENE		112		109		76 -	120

VOLATILE ORGANIC ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC.

SAMPLE I.D. # : 9310-284-4

PROJECT # : 15659.001

DATE EXTRACTED : N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 11/03/93 UNITS : ug/L

EPA METHOD : 8020 (BETX)
SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5	20.0 20.0 40.0	18.6 19.9 41.5	93 100 104	18.7 19.6 40.3	94 98 101	1 2 3
CONTROL LIMITS				% REC	: •		RPD
BENZENE TOLUENE TOTAL XYLENES			· .	72 -	112 113 110		20 20 20
SURROGATE RECOVERIES	•	SPIKE		DUP.	SPIKE	LIMIT	'S
BROMOFLUOROBENZENE		111		113		76 -	120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : 11/03/93 : 11/04/93 : mg/Kg : 1
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.025 <0.025 <0.025 <0.025	•
SURROGATE PERCENT RECOVERY	Li	IMITS
BROMOFLUOROBENZENE	98 5:	2 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW12 @ 3.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/28/93 : 11/01/93 : 11/03/93 : 11/04/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.031 <0.031 <0.031 <0.031	
SURROGATE PERCENT RECOVERY	I	IMITS
BROMOFLUOROBENZENE	88 5	2 - 116

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW11 @ 3.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	D : 11/03/93 : 11/08/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES SURROGATE PERCENT RECOVERY	<0.031 <0.031 <0.031 <0.031	LIMITS
DDOMODI HODODENIZENE	88	52 - 116
BROMOFLUOROBENZENE	00	27 - 770

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW11 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/29/93 : 11/01/93 : 11/03/93 : 11/05/93 : mg/Kg
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.032 <0.032 <0.032 <0.032	
SURROGATE PERCENT RECOVERY	I	IMITS
BROMOFLUOROBENZENE	94 5	2 - 116

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

DATE EXTRACTED

PROJECT # : 15659.001

DATE ANALYZED : 11/04/93

: 11/03/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

UNITS

: mg/Kg

SAMPLE MATRIX : SOIL EPA METHOD

: 8020 (BETX)

		•					
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.0250 <0.0250 <0.0250	1.00 1.00 2.00	0.980 1.03 2.12	98 103 106	0.993 1.05 2.18	99 105 109	1 2 3
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				63 - 1 75 - 1 79 - 1	10		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	I .
BROMOFLUOROBENZENE		99		102		52 - 1	.16

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

SAMPLE I.D. # : 9310-282 DATE EXTRACTED : 11/03/93 CLIENT · : APPLIED GEOTECHNOLOGY, INC. : 9310-282-2

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/04/93

SAMPLE MATRIX : SOIL : mg/Kg UNITS

EPA METHOD : 8020 (BETX)

							
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.0250 <0.0250 0.0480	1.00 1.00 2.00	0.959 1.03 2.14	96 103 105	0.968 1.04 2.18	97 104 107	1 1 2
CONTROL LIMITS	•			% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				43 - 1	13 07 14		20 20 20
SURROGATE RECOVERIES	3	SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		99		95		52 - 1	16

ATI I.D. # 9311-001

FUEL HYDROCARBONS DATA SUMMARY

PROJECT # : 1 PROJECT NAME : E CLIENT I.D. : M SAMPLE MATRIX : V	APPLIED GEOTECHNOLOGY, INC. 15659.001 BURNS BROS/BINGO FUEL STOP METHOD BLANK WATER 8015 (MODIFIED)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 11/01/93 : mg/L
COMPOUND		RESULT	
FUEL HYDROCARBONS	s	<1	
HYDROCARBON RANGE HYDROCARBON QUANT	E	C7 - C12 GASOLINE	,
FUEL HYDROCARBONS HYDROCARBON RANGE	S	<1 C12 - C24	
HYDROCARBON QUANT		DIESEL	
SU	URROGATE PERCENT RECOVERY		LIMITS
O-TERPHENYL		115	68 - 144

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW7-10/93 SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 11/01/93 D : 11/01/93 : 11/02/93 : mg/L
COMPOUND	RESULT	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C12 - C24 DIESEL	
SURROGATE PERCENT RECOVERY		LIMITS
O-TERPHENYL	113	68 - 144

FUEL HYDROCARBONS DATA SUMMARY

SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE ANALYZED : 11/02/93 UNITS : mg/L DILUTION FACTOR : 1
COMPOUND	RESULT
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	3 C7 - C12 GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
O-TERPHENYL	114 68 - 144

FUEL HYDROCARBONS DATA SUMMARY

PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: 15659.001 : BURNS BRO : MW9-10/93	l OS/BI N GO 3	OLOGY, INC. FUEL STOP	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 11/01/93 : 11/01/93 : 11/02/93 : mg/L
COMPOUND		· ·	-	RESULT	
FUEL HYDROCARBO				<1 C7 - C12	
HYDROCARBON QUA		USING		GASOLINE	
FUEL HYDROCARBO	ONS			<1	
HYDROCARBON RAI HYDROCARBON QUA		HIGTNO		C12 - C24 DIESEL	
HIDROCARBON QUA	MILIATION	DNIGO	•		
	SURROGATE	PERCENT	RECOVERY		LIMITS
O-TERPHENYL				112	68 - 144

FUEL HYDROCARBONS DATA SUMMARY

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: 15659.001 : BURNS BROS/B: : MW12-10/93	ECHNOLOGY, INC. INGO FUEL STOP ED)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 11/01/93 : 11/01/93 : 11/02/93 : mg/L
COMPOUND		·	RESULT	
FUEL HYDROCAR: HYDROCARBON RI HYDROCARBON QI	BONS	,	<1 C7 - C12 GASOLINE	
FUEL HYDROCARI HYDROCARBON RI HYDROCARBON Q		1G	<1 C12 - C24 DIESEL	
	SURROGATE PER	CENT RECOVERY	•	LIMITS
^-TERPHENYL			112	68 - 144

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : RINSATE-10/93 SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE RECEIVED : 11/01/93
COMPOUND	RESULT
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
O-TERPHENYL	112 68 - 144

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK

PROJECT # : 15659.001 DATE EXTRACTED : 11/01/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/01/93

EPA METHOD : 8015 (MODIFIED) UNITS : mg/L

SAMPLE MATRIX : WATER

COMPOUND		SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
GASOLINE		<1.0	50.0	40.4	81	N/A	N/A	N/A
	CONTROL LIMITS				% REC	! .		RPD
GASOLINE					52 -	124		20
	SURROGATE RECOVER	IES	SPIKE		DUP.	SPIKE	LIMIT	'S
Ö-TERPHEN	YT.		116		N/A		68 -	144

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9310-271-1 PROJECT # : 15659.001 DATE EXTRACTED : 11/01/93

PROJECT # : 15659.001 DATE EXTRACTED : 11/01/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/02/93

EPA METHOD : 8015 (MODIFIED) UNITS : mg/L

SAMPLE MATRIX : WATER

COMPOUND		SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
GASOLINE	<u>-</u> -	327	307	6	50.0	338	22G	298	58G	13
	CONT	ROL LIMI	TS				% REC	•		RPD
GASOLINE							64 -	118		20
	SURR	OGATE RE	COVERIES		SPIKE		DUP.	SPIKE	LIMIT	S
O-TERPHENYL				122		123		68 -	144	

G = Out of limits due to high levels of target analytes in sample.

FUEL HYDROCARBONS DATA SUMMARY

PROJECT # PROJECT NAM CLIENT I.D. SAMPLE MATR EPA METHOD	E : BURNS BROS/BINGO FUEL STOP : METHOD BLANK IX : SOIL	DATE RECEIVED	: N/A D : 11/02/93 : 11/02/93 : mg/Kg
COMPOUNDS		RESULTS	-,
FUEL HYDROCZ HYDROCARBON	RANGE QUANTITATION USING ARBONS	<5 C7 - C12 GASOLINE <25 C12 - C24 DIESEL	
	SURROGATE PERCENT RECOVERY		LIMITS
O-TERPHENYL		96	52 - 143

FUEL HYDROCARBONS DATA SUMMARY

SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE RECEIVED : 11/01/93
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<6 C7 - C12 GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE	<31 C12 - C24
HYDROCARBON QUANTITATION USING	DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
O-TERPHENYL	97 52 - 143

FUEL HYDROCARBONS DATA SUMMARY

PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIEPA METHOD	X : SOIL	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 11/01/93 : 11/02/93 : 11/02/93 : mg/Kg
COMPOUNDS		RESULTS	
FUEL HYDROCA	RANGE QUANTITATION USING ARBONS	<6 C7 - C12 GASOLINE	
HYDROCARBON HYDROCARBON	RANGE QUANTITATION USING	C12 - C24 DIESEL	
	SURROGATE PERCENT RECOVERY		LIMITS
O-TERPHENYL		110	52 - 143

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW11 @ 7.5' SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 10/29/93 DATE RECEIVED : 11/01/93 DATE EXTRACTED : 11/02/93 DATE ANALYZED : 11/03/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<6 C7 - C12 GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<32 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
O-TERPHENYI.	102 52 - 143

FUEL HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP SAMPLE MATRIX : SOIL

DATE EXTRACTED : 11/02/93 DATE ANALYZED : 11/02/93

UNITS

: mg/Kg

EPA METHOD : 8015 (MODIFIED)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
DIESEL	<25.0	500	511	102	N/A	N/A	N/A
CONTROL LIMITS				% REC.			RPD
DIESEL				67 - 1	35		20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	!
O-TERPHENYL		98		N/A		52 - 1	.43

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9310-269-5
PROJECT # : 15659.001 DATE EXTRACTED : 11/02/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/02/93
SAMPLE MATRIX : SOIL UNITS : mg/Kg

EPA METHOD : 8015 (MODIFIED)

COMPOUN	ID	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
					_					
DIESEL		<25.0	<25.0	NC	500	505	101	476	95	6 .
C	ONTROL 1	LIMITS					% RE	c.		RPD
DIESEL							56 -	137		20
SURROGATE RECOVERIES				SPIKE		DUP.	SPIKE	LIMI	TS	
O-TERPHENYL			101		93		52 -	143		

NC = Not Calculable.

METALS ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC.
PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

MATRIX : WATER

DATE PREPARED DATE ANALYZED ELEMENT

LEAD

11/03/93

11/04/93

METALS ANALYSIS DATA SUMMARY

: APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER CLIENT

PROJECT # : 15659.001

PROJECT NAME	: BURNS BROS/BINGO	FUEL STOP	υ	NITS	: mg/L	
ATI I.D. #	CLIENT I.D.	LEAD				
9311-001-4	MW7-10/93	<0.0030				
9311-001-5	MW8-10/93	<0.0030				
9311-001 - 6	MW9-10/93	<0.0030				
9311-001-7	MW12-10/93	<0.0030				
9311-001-8	RINSATE-10/93	<0.0030				
METHOD BLANK	-	<0.0030				

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/L

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	BLANK	<0.0030	N/A	N/A	0.0274	0.0250	110
LEAD	9311-020-1	0.0037	0.0037	0	0.0347	0.0250	124

% Recovery = (Spike Sample Result - Sample Result) 100 Spike Concentration

RPD (Relative % Difference) = |(Sample Result - Duplicate Result)| Average Result

METALS ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE PREPARED

DATE ANALYZED

LEAD

11/09/93

11/10/93

METALS ANALYSIS DATA SUMMARY

PROJECT # : PROJECT NAME :	APPLIED GEOTECHNOLOG 15659.001 BURNS BROS/BINGO FUE RECTED FOR MOISTURE C	L STOP	MATRIX : SOIL UNITS : mg/Kg
ATI I.D. #	CLIENT I.D.	LEAD	
9311-001-1	MW12 @ 3.5′	3.0	
9311-001-2 9311-001-3	MW11 @ 3.5' MW11 @ 7.5'	3.8 3.6	
METHOD BLANK		<1.5	

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP MATRIX : SOIL

UNITS : mg/Kg

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	BLANK	<1.5	N/A	N/A	45.2	50.0	90
LEAD	9311-232-29	14	11	24	66.7	61.8	85

% Recovery = (Spike Sample Result - Sample Result) 100 Spike Concentration RPD (Relative % Difference) = |(Sample Result - Duplicate Result)|

Average Result

GENERAL CHEMISTRY ANALYSIS

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

PARAMETER

DATE ANALYZED

MOISTURE

11/02/93

GENERAL CHEMISTRY ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC.
PROJECT # : 15659.001 MATRIX : SOIL

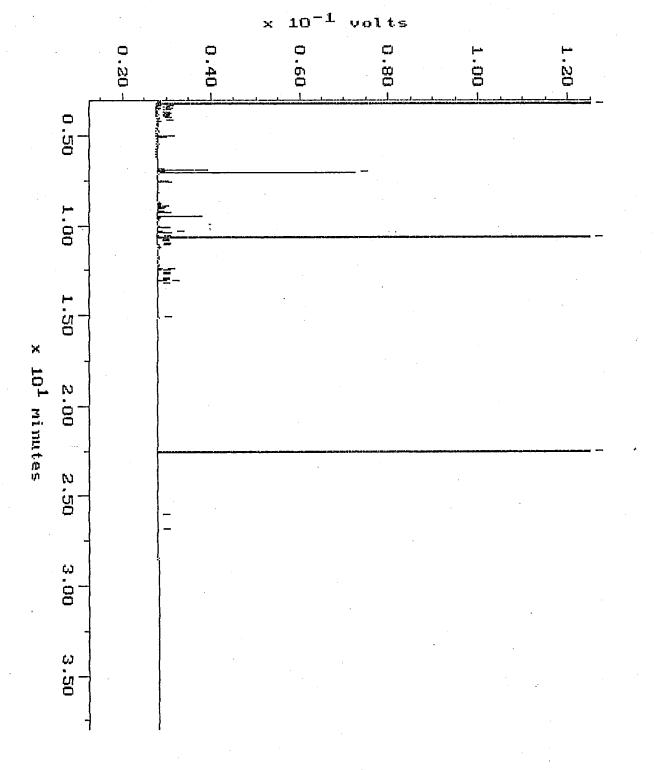
PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : %

ATI I.D. #	CLIENT I.D.	MOISTURE	
9311-001-1	MW12 @ 3.5'	20	
9311-001-2	MW11 @ 3.5'	20	
9311-001-3	MW11 @ 7.5'	21	

GENERAL CHEMISTRY ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : SOIL

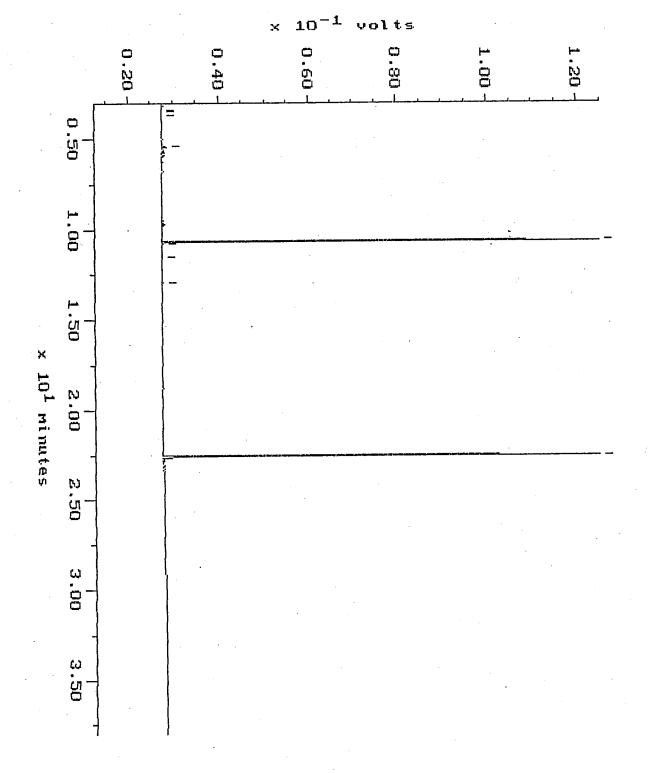
PROJECT # : 15659.001


PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : %

PARAMETER	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	 % REC
MOISTURE	9311-001-3	21	20	5	N/A	N/A	N/A

EPA 8015 Modified

Sample: 9311-001-5 Cha Acquired: 02-NOV-93 2:01 Me Comments: ATI: THE QUALITY TEAM

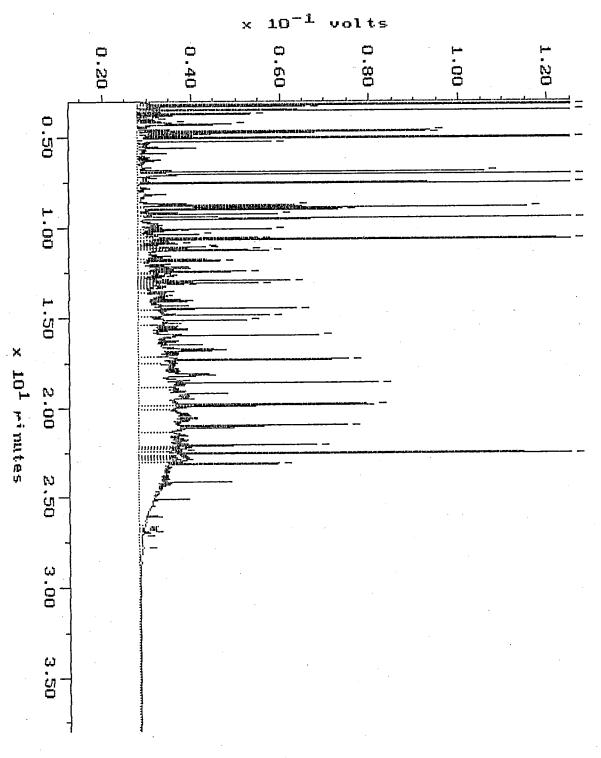


Blank

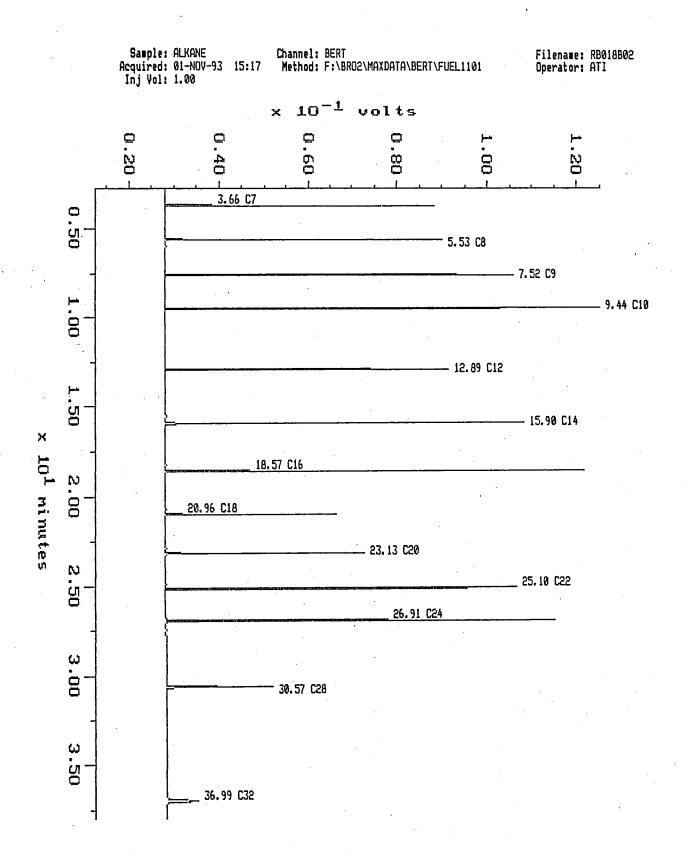
Channel: BERT
Method: F:\BRO2\MAXDATA\BERT\FUEL1101

Sample: WRB 11-1 Cha Acquired: 01-HOV-93 17:35 Me Comments: ATI: THE QUALITY TEAM

Filename: RB018B04 Operator: ATI

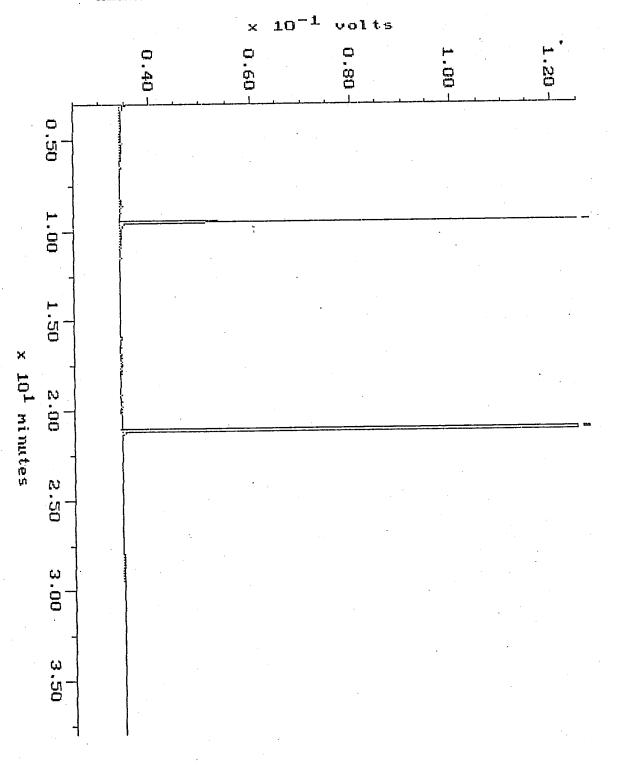


Continuing Calibration


Filename: RB018B03 Operator: ATI

Sample: DG 400 Cha Acquired: 01-NOV-93 16:03 Ma Comments: ATI: THE QUALITY TEAM

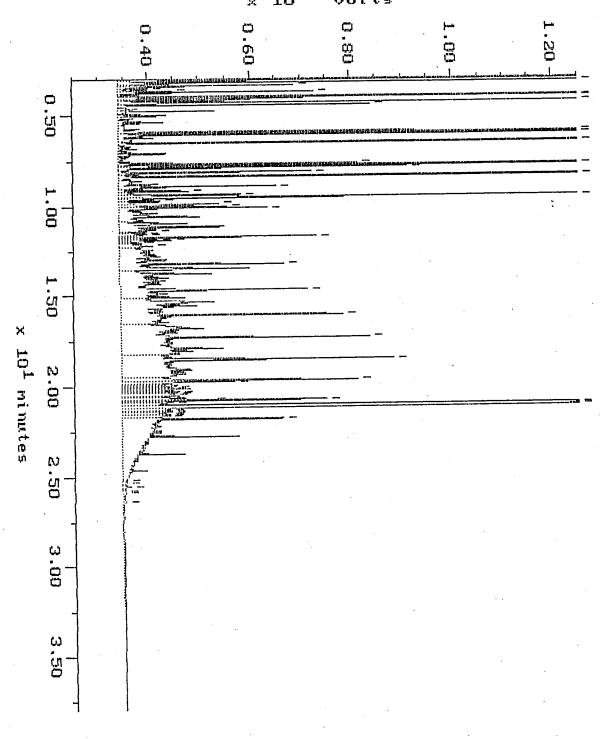
Channel: BERT
Method: F:\BRO2\MAXDATA\BERT\FUEL1101


Alkane

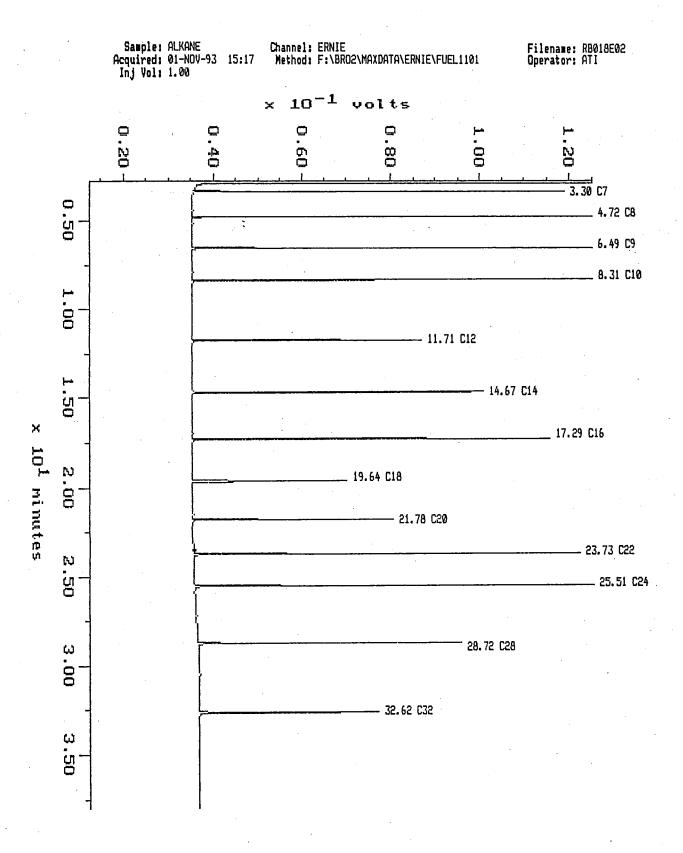
Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL1102

Filename: RB028E03 Operator: ATI

Sample: SRB 11-2 8015 Cha Acquired: 02-NOV-93 14:19 Me Comments: ATI: THE QUALITY TEAM


Continuing Calibration

Sample: DG 400 Cha Acquired: 02-NOV-93 13:33 Me Comments: ATI: THE QUALITY TEAM


Channel: ERNIE
Method: F:\BRO2\MAXDATA\ERNIE\FUEL1102

Filename: RB028E02 Operator: ATI

10-1 volts

Alkane

CHAIN-OF-C STODY

400 Date

led Geotechnology Inc.

Geotechnical Engineering Geology & Hydrogeology

NUMBER OF CONTAINERS OTHER Disalland Lead 7421 TCLP - Metals LEACHING TCLP - Pesticides TCLP - Semivolatiles TCLP - Volatiles (ZHE) MFSP - Metals (Wa) DWS - Metals Priority Poll. Metals (13) TCL Metals (23) Organic Lead (Ca) **ANALYSIS REQUEST** Total Lead (Wa) 7421 > Selected metals: list DWS - Herb/pest 8150 OC Herbicides 8140 OP Pesticides 8080M PCBs only 8080 OC Pest/PCBs ORGANIC COMPOUNDS DWS - Volatiles and Semivol. 8040 Phenois 8310 HPLC PAHs 8270 GCMS Semivol. 8240 GCMS Volatiles 8020M - BETX only 8020 Aromatic VOCs Laboratory Number: 8010 Halogenated VOCs HYDROCARBONS 8015M > PETROLEUM 418.1 State: TPH Special Instructions TPH-D State: TPH-G State: TPH-ID State: □Special DPD Ŋ l U 1 و J MATRIX Sampled By: 20:1 Ŋ 'n ☐Screening ☐AGI Std. QC INFORMATION (check one) Disposal Date: **DISPOSAL INFORMATION** 凶 Lab Disposal (return if not indicated) PROJECT INFORMATION 45 TIME 0655 14341 1825 50 1510 0110 1645 U V 10-28-53 10.2253 10.28.53 60+0-01 DATE Bres. 1'e ter Thorns Burns Project Manager: SAMPLE 1D Disposal Method: - 70/13 10/01--15/12 Project Number: 6 5/01-· 10/3 Project Name: Site Location: Disposed by: 0 □SW-846 MW 12 _; 3 ¥ 71 W 17 K. N. MM 9 X ⊗ MW !! K B M

LAB INFORMATION	SAMPLE RECEIPT	بأور	RELINQUISHED BY: 1.	FELINQUISHED BY: 1. RELINQUISHED BY: 2. RELINQUISHED BY: 3.	RELINQUISHED BY:	
Lab Name: A71	Total Number of Containers:	24	:emil / C//emilengis	Signature: Time:	Signature: Time:	
Lab Address: 5/2 1/2 01 /	Chain of Custody Seals: Y/N/NA	7	There is		\dashv	Т
Roster 1.1.	Intact?: Y/N/NA		The state of the s	Printed Name: Date:	Printed Name: Date:	
Via: Courte	Received in Good Condition/Cold:	7	Company: AG I	Company:	Company:	!
Turn Around Time:	□24 hr. □48 hr. □72 hr. □	1 wk.	RECEIVED BY: 1.	RECEIVED BY: 2.	RECEIVED BY:	٠. ا
PRIOR AUTHORIZATION IS REQUIRED FOR RUSH	S REQUIRED FOR RUSH DATA		Signature:	Signature:	Signature: Time:	<u> </u>
Special Instructions:		•	Plujed Name: Date: Printed Name:	Printed Name: Date:	Printed Name: Date:	٦
		٠.	Company:	Company:	Company:	Τ_
AGI OFFICES: Bellevue: (206) 453-8383 Ta Portland: (503) 222-2820 Pie	Tacoma: (206) 383-4380 Pleasanton: (415) 460-5495	DISTRI	BUTION: White, Canary to Analyt	DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to AGI Project Files; Gold to AGI Disposal Files	act Files; Gold to AGI Disposal F	al Files

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number: 9311-017

Sample No.: MW10-10/96, MW11-10/96, MW100-10/96, Trip Blank

Matrix: Water

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable for use.

ANALYTICAL METHODS

Parameter	<u>Technique</u>	Method
PAH* BETX	HPLC/UV/FLUOR GC/PID	EPA 8310 EPA 8020
TPH ^b	GC/FID	EPA 8015
Lead	AA/GF	EPA 7421

Sample Trip Blank was analyzed by EPA 8020 only.

a - Polycyclic aromatic hydrocarbons.

b - Fuel hydrocarbons, analyzed for gasoline $(C_7 - C_{12})$ and diesel $(C_{12} - C_{24})$ range TPH.

TIMELINESS

<u>Parameter</u>	Date <u>Sampled</u>	Date Extracted	Date Analyzed	Time Until Extraction	Time Until <u>Analysis</u>
PAH	11/01/93	11/04/93	11/08/93	3 (7)	4 (40)
BETX	11/01/93	NA	11/04/93	NA	3 (14)
TPH	11/01/93	11/04/93	11/04/93	. 3	3 (14)
Lead	11/01/93	11/04/93	11/10/93	3	9 (180)

NA - Not applicable.

All samples were extracted and analyzed within recommended holding times.

FUEL HYDROCARBON CHROMATOGRAMS

Gasoline (C_7 - C_{12}) and diesel range (C_{12} - C_{24}) TPH were not detected by EPA 8015 Modified in any samples documented by this report.

^{() -} Numbers in parentheses indicate recommended holding times in days.

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number: 9311-017

Sample No.: MW10-10/96, MW11-10/96, MW100-10/96, Trip Blank

Matrix: Water

FIELD QUALITY CONTROL SAMPLES

Field Duplicates: Sample MW100-10/96 is a duplicate of MW11-10/96. Both

samples were analyzed by EPA Methods 8015, 8020, 8310, and 7421. No analytes were detected at or above their method reporting limits (MRLs) by these methods, indicat-

ing acceptable precision.

Rinsate: None collected.

Trip Blank: Sample Trip Blank was analyzed by EPA 8020. Analytes

were not detected at or above their MRLs in this sample.

Cross-contamination is not identified.

LAB QUALITY CONTROL SAMPLES

Method Blank: No analytes were detected at or above their MRLs in the

method blanks for the following methods:

EPA 8310 EPA 8020 EPA 8015M EPA 7421

Matrix Spikes: Matrix spike percent recoveries are within acceptance

control limit criteria for EPA 7421.

Matrix spike and matrix spike duplicate percent recoveries and relative percent differences (RPDs) are within ATI's control limit criteria for EPA 8020 and EPA 8015M.

Duplicates: Duplicate sample RPDs are within ATI's control limit

criteria for EPA 8015M and EPA 7421.

Blank Spikes: Blank spike percent recoveries are within ATI's control

limit criteria for EPA 8015M and EPA 7421.

Blank spike and blank spike duplicate percent recoveries and RPDs are within ATI's control limit criteria for EPA

8310 and EPA 8020.

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Bros/Bingo Fuel Stop

Project No.: 15659.001

Lab Name:

Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number:

9311-017

Sample No.:

MW10-10/96, MW11-10/96, MW100-10/96, Trip Blank

Matrix:

Water

Surrogates:

Surrogate spike percent recoveries are all within ATI's

control limit criteria for the following methods:

EPA 8310 EPA 8020 EPA 8015M

SIGNATURES

Prepared by

Date ___/2/01/93

Checked by

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

ATI I.D. # 9311-017

November 22, 1993

Applied Geotechnology, Inc. P.O. Box 3885
Bellevue WA 98009

Attention : Peter Barry

Project Number: 15659.001

Project Name : Burns Bros/Bingo Fuel Stop

Dear Mr. Barry:

On November 2, 1993, Analytical Technologies, Inc. (ATI), received four samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Sincerely,

Victoria L. Bayly Project Manager

VLB/hal/ms

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9311-017-1 9311-017-2 9311-017-3 9311-017-4	MW10 - 10/96 MW11 - 10/96 MW100 - 10/96 TRIP BLANK	11/01/93 11/01/93 11/01/93 N/A	WATER WATER WATER WATER

---- TOTALS ----

MATRIX # SAMPLES
----WATER 4

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, lease contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

: APPLIED GEOTECHNOLOGY, INC. CLIENT

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
POLYNUCLEAR AROMATIC HYDROCARBONS	HPLC/UV/FLUOR	EPA 8310	R
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
LEAD	AA/GF	EPA 7421	R

ATI - Renton R

ATI - San Diego

PHX = ATI - Phoenix

PNR = ATI - Pensacola ! = ATI - Fort Collins

SUB = Subcontract

CASE NARRATIVE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS

Three (3) water samples were received by ATI on November 2, 1993, for the following analysis: EPA method 8310.

All corresponding quality assurance and quality control results defined as matrix spike/matrix spike duplicate (MS/MSD), blank spike (BS), method blank and surrogate recoveries were within the established control limits.

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 11/04/93 DATE ANALYZED : 11/08/93 UNITS : ug/L DILUTION FACTOR : 1	
	DECILOC	
COMPOUNDS		
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE 'NZO (A) ANTHRACENE CHRYSENE BENZO (B) FLUORANTHENE BENZO (K) FLUORANTHENE BENZO (A) PYRENE DIBENZO (A, H) ANTHRACENE	<1.0 <0.50 <0.50 <0.10 <0.050 <0.050 <0.10 <0.10 <0.10 <0.10	
SURROGATE PERCENT RECOVERY	LIMITS	
2-CHLOROANTHRACENE	80 33 - 123	

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW10 - 10/96 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	D: 11/02/93 ED: 11/04/93 D: 11/08/93 : ug/L
NAPHTHALENE	<0.49	
ACENAPHTHYLENE	<0.98	
1-METHYLNAPHTHALENE	<0.49	
2-METHYLNAPHTHALENE	<0.49	
ACENAPHTHENE	<0.49	
1 2 0 0 1 1 2 1 2	<0.098	
PHENANTHRENE		
ANTHRACENE	<0.049	
FLUORANTHENE PYRENE	<0.098	
	<0.098	
1120 (11) 121210111	<0.098	
JARYSENE	<0.098	
BENZO(B) FLUORANTHENE		
BENZO(K, FLUORANTHENE	<0.098	
BENZO (A) PYRENE	<0.098	
DIBENZO(A, H) ANTHRACENE		
BENZO (G, H, I) PERYLENE	<0.098	
INDENO(1,2,3-CD)PYRENE	<0.098	•
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	87	33 - 123

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW11 - 10/96 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE SAMPLED : 11/01/93 DATE RECEIVED : 11/02/93 DATE EXTRACTED : 11/04/93 DATE ANALYZED : 11/08/93 UNITS : ug/L DILUTION FACTOR : 1	
COMPOUNDS		
NAPHTHALENE	<0.47	
ACENAPHTHYLENE	<0.94	
	<0.47	
2-METHYLNAPHTHALENE	<0.47	
ACENAPHTHENE	<0.47	
FLUORENE	<0.094	
PHENANTHRENE		
ANTHRACENE	<0.047	
FLUORANTHENE PYRENE	<0.094	
FNZO (A) ANTHRACENE	<0.094	
JARYSENE	<0.094	
BENZO(B) FLUORANTHENE	<0.094	
BENZO (K) FLUORANTHENE	<0.094	
BENZO (A) PYRENE	<0.094	
CIBENZO (A, H) ANTHRACENE	<0.19	
BENZO(G,H,I)PERYLENE	<0.094	
INDENO(1,2,3-CD) PYRENE	<0.094	
SURROGATE PERCENT RECOVERY	LIMITS	
2 - CHLOROANTHRACENE	89 33 - 123	

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW100 - 10/96 SAMPLE MATRIX : WATER EPA METHOD : 8310	DATE ANALYZED UNITS DILUTION FACTO	: 11/02/93 D: 11/04/93 : 11/08/93 : ug/L DR: 1
COMPOUNDS		
NAPHTHALENE ACENAPHTHYLENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE	<0.47 <0.94 <0.47 <0.47 <0.47 <0.094 <0.047 <0.047 <0.094	
ENZO (A) ANTHRACENE CHRYSENE BENZO (B) FLUORANTHENE	<0.094 <0.094 <0.094	
DIBENZO (A, H) ANTHRACENE	<0.094 <0.094 <0.19 <0.094	
INDENO(1,2,3-CD) PYRENE	<0.094	
SURROGATE PERCENT RECOVERY		LIMITS
2-CHLOROANTHRACENE	74	33 - 123

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

SAMPLE I.D. #

: BLANK

DATE EXTRACTED : 11/04/93
DATE ANALYZED : 11/08/93

SAMPLE MATRIX : WATER

EPA METHOD

: 8310

MITIS	:	ug/ь

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
		-:					
	<1.00 <0.0500 <0.100 <0.100 <0.200	2.00	14.7 1.59 1.78 1.84 2.06	74 80 89 92 103	15.7 1.62 1.79 1.81 2.05	78 81 90 91 102	7 2 1 2
CONTROL LIMITS	en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co			% REC.		•	RPD
ACENAPHTHYLENE IENANTHRENE YRENE BENZO(K) FLUORANTHENE DIBENZO(A, H) ANTHRACENE				32 - 1 58 - 1 50 - 1 50 - 1 56 - 1	20 20 20 20		32 30 30 29 26
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
2 - CHLOROANTHRACENE		89		87		33 - 1	23

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : N/A DATE ANALYZED : 11/02/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	91 76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : N/A : 11/03/93 : ug/L : 1
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5	
SURROGATE PERCENT RECOVERY	L	IMITS
BROMOFLUOROBENZENE	95 7	6 - 120

PROJECT # : 15659.00	ROS/BINGO FUEL STOP 10/96	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 11/04/93 : ug/L
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	•	<0.5 <0.5 <0.5 <0.5	
SURROGATE PE	ERCENT RECOVERY		LIMITS
BROMOFLUOROBENZENE		95	76 - 120

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW11 - 10/96 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : 11/01/93 DATE RECEIVED : 11/02/93 DATE EXTRACTED : N/A DATE ANALYZED : 11/04/93 UNITS : ug/L DILUTION FACTOR : 1	
COMPOUNDS	RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5	
SURROGATE PERCENT RECOVERY	LIMITS	
BROMOFLUOROBENZENE	92 76 - 120	

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW100 - 10/96 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : 11/01/93 DATE RECEIVED : 11/02/93 DATE EXTRACTED : N/A DATE ANALYZED : 11/04/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	89 76 - 120

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD	: APPLIED GEOTECHNOLOGY, INC. : 15659.001 : BURNS BROS/BINGO FUEL STOP : TRIP BLANK : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : 11/02/93 : N/A : 11/04/93 : ug/L : 1
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
SU	RROGATE PERCENT RECOVERY	L	IMITS
BROMOFLUOROBEN	IZENE	91 7	6 - 120

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : BLANK CLIENT

DATE EXTRACTED : N/A
DATE ANALYZED : 11/02/93

: 15659.001 PROJECT # PROJECT NAME : BURNS BROS/BINGO FUEL STOP

SAMPLE MATRIX : WATER

UNITS

: ug/L

EPA METHOD : 8020 (BETX)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.500 <0.500 <0.500	20.0 20.0 40.0	19.4 20.4 42.0	97 102 105	19.5 20.7 42.6	98 103 107	1 1 1
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				80 - 1 78 - 1 80 - 1	.11		20 20 20
SURROGATE RECOVERIE	S	SPIKE		DUP. S	PIKE	LIMITS	}
BROMOFLUOROBENZENE	• .	97		98	•	76 - 1	.20

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : N/A

DATE ANALYZED : 11/03/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP SAMPLE MATRIX : WATER

UNITS

: ug/L

EPA METHOD : 8020 (BETX)

	 						
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.500 <0.500 <0.500	20.0 20.0 40.0	19.1 20.4 42.5	96 102 106	19.3 20.6 43.1	97 103 108	1 1 1
CONTROL LIM	ITS			% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				78 - 1	11 11 14		20 20 20
SURROGATE RE	ECOVERIES	SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE	₹	97		100		76 - 1	20

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

SAMPLE I.D. # : 9310-277-2

DATE EXTRACTED : N/A

DATE ANALYZED : 11/03/93

CLIENT : APPLIED GEOTECHNOLOGY, INC.
PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP
SAMPLE MATRIX : WATER UNITS : ug/L

EPA METHOD : 8020 (BETX)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.500 <0.500 <0.500	20.0 20.0 40.0	19.3 20.7 42.0	97 103 105	20.2 21.5 43.4	101 108 109	1 1 1
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES		•		72 - 1	12 13 10		20 20 20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		98	٠.	102		76 - 1	20

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 11/04/93 DATE ANALYZED : 11/04/93 UNITS : mg/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS	<1
HYDROCARBON RANGE	C7 - C12
HYDROCARBON QUANTITATION USING	GASOLINE
•	
FUEL HYDROCARBONS	<1
HYDROCARBON RANGE	C12 - C24
HYDROCARBON QUANTITATION USING	DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
-TERPHENYL	106 68 - 144

PROJECT #	: BURNS BROS/BINGO FUEL STOP : MW10 - 10/96	DATE RECEIVED : DATE EXTRACTED : DATE ANALYZED :	11/01/93 11/02/93 11/04/93 11/04/93 mg/L
COMPOUNDS		RESULTS	
FUEL HYDROCA HYDROCARBON HYDROCARBON		<1 C7 - C12 GASOLINE	
FUEL HYDROCA	ARBONS	<1	
HYDROCARBON	RANGE QUANTITATION USING	C12 - C24 DIESEL	
MIDROCARDON	QUARTITITION COLING		
• •	SURROGATE PERCENT RECOVERY	LIM	IITS
TERPHENYL		108 68	- 144

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW11 - 10/96 SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE SAMPLED DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	11/02/93 D: 11/04/93 D: 11/04/93 : mg/L
COMPOUNDS	RESULTS	
FUEL HYDROCARBONS HYDROCARBON RANGE	<1 C7 - C12	
HYDROCARBON QUANTITATION USING	GASOLINE	
FUEL HYDROCARBONS	<1	
HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	C12 - C24 DIESEL	
SURROGATE PERCENT RECOVERY		LIMITS
-TERPHENYL	108	68 - 144

ATI I.D. # 9311-017-3

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW100 - 10/96 SAMPLE MATRIX : WATER EPA METHOD : 8015 (MODIFIED)	DATE SAMPLED : 11/01/93 DATE RECEIVED : 11/02/93 DATE EXTRACTED : 11/04/93 DATE ANALYZED : 11/04/93 UNITS : mg/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C7 - C12 GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<1 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
TERPHENYL	107 68 - 144

FUEL HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED : 11/04/93

DATE ANALYZED : 11/04/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

UNITS

SAMPLE MATRIX : WATER

: mg/L

METHOD : 8015 (MODIFIED)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
GASOLINE	<1.00	50.0	35.0	70	N/A	N/A	N/A
CONTROL LIMITS				% REC.			RPD
GASOLINE			•	52 - 1	24		20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
O-TERPHENYL		109		N/A		68 - 1	44

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9311-017-1 PROJECT # : 15659.001 DATE EXTRACTED : 11/04/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/04/93 SAMPLE MATRIX : WATER UNITS : mg/L SAMPLE MATRIX : WATER METHOD : 8015 (MODIFIED) DUP. DUP. SAMPLE SPIKE SPIKED % SPIKED % SAMPLE DUP. RESULT RESULT RPD ADDED RESULT REC. RESULT REC. RPD GASOLINE <1.00 <1.00 NC 50.0 38.1 76 40.4 81 6 RPD % REC. CONTROL LIMITS 20 64 - 118 GASOLINE DUP. SPIKE LIMITS SPIKE SURROGATE RECOVERIES 112 112 68 - 144

NC = Not Calculable.

O-TERPHENYL

METALS ANALYSIS

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

MATRIX : WATER

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

LEAD

11/04/93

11/10/93

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9311-017-1 PROJECT # : 15659.001 DATE EXTRACTED : 11/04/93 PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 11/04/93 SAMPLE MATRIX : WATER UNITS : mg/L

METHOD : 8015 (MODIFIED)

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
GASOLINE	<1.00	<1.00	NC	50.0	38.1	76	40.4	81	6
CONTROL	LIMITS					% RE	C.		RPD
GASOLINE						64 -	118		20
SURROGAT	E RECOVE	RIES		SPIKE		DUP.	SPIKE	LIMI	TS
O-TERPHENYL				112		112		68 -	144

NC = Not Calculable.

METALS ANALYSIS

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

MATRIX : WATER

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

LEAD

11/04/93

11/10/93

METALS ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER PROJECT # : 15659.001

	BURNS BROS/BINGO	FUEL STOP	UNITS	:	mg/L
ATI I.D. #	CLIENT I.D.	LEAD	 		
9311-017-1 9311-017-2 9311-017-3 METHOD BLANK	MW10 - 10/96 MW11 - 10/96 MW100 - 10/96	<0.0030 <0.0030 <0.0030 <0.0030			

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT

MATRIX : WATER : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP UNITS : mg/L

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	BLANK	<0.0030	N/A	N/A	0.0240	0.0250	96
LEAD	9311-027-2D	<0.0030	<0.0030	NC	0.0223	0.0250	89

NC = Not Calculable.

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative % Difference) = | (Sample Result - Duplicate Result) | Average Result

METALS ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER PROJECT # : 15659.001

	BURNS BROS/BINGO FU	JEL STOP	UNITS : mg/L
ATI I.D. #	CLIENT I.D.	LEAD	
9311-017-1 9311-017-2 9311-017-3 METHOD BLANK	MW10 - 10/96 MW11 - 10/96 MW100 - 10/96	<0.0030 <0.0030 <0.0030 <0.0030	

METALS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. MATRIX : WATER

PROJECT #

: 15659.001

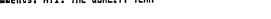
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

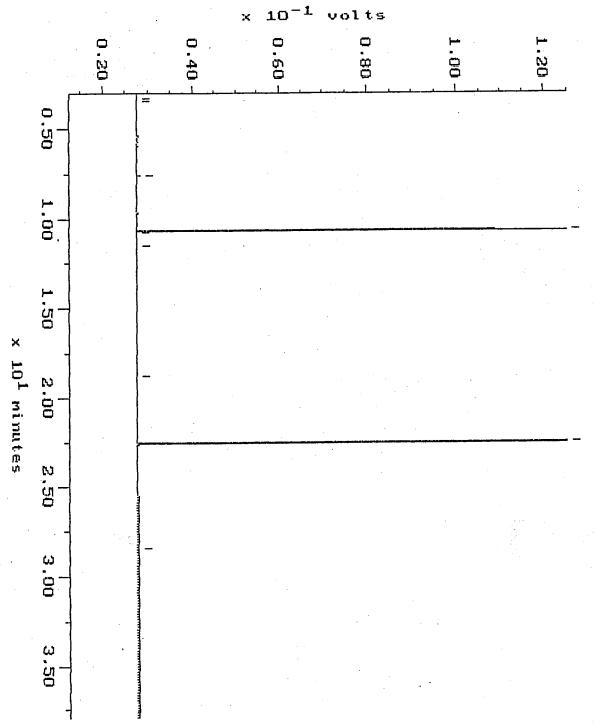
UNITS : mg/L

ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	BLANK	<0.0030	N/A	N/A	0.0240	0.0250	96
LEAD	9311-027-2D	<0.0030	<0.0030	NC	0.0223	0.0250	89

NC = Not Calculable.

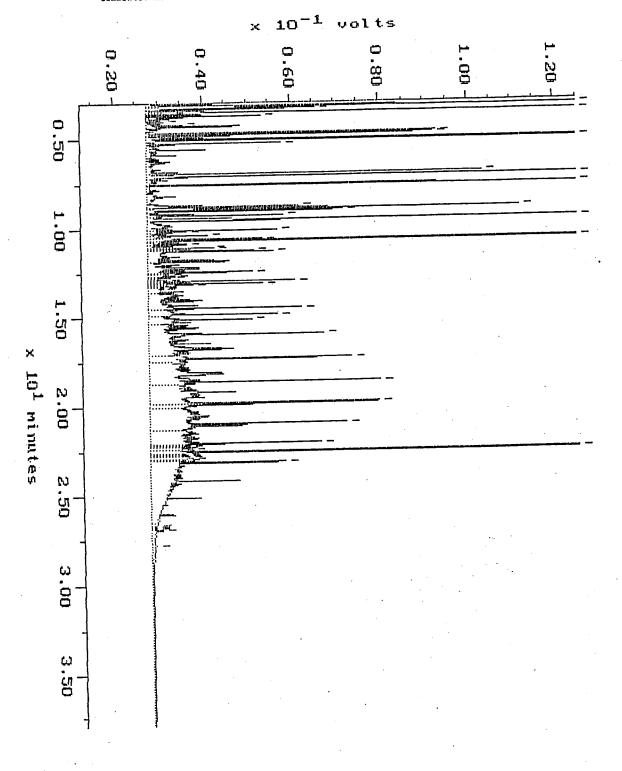
% Recovery = (Spike Sample Result - Sample Result) x 100 Spike Concentration


RPD (Relative % Difference) = | (Sample Result - Duplicate Result) | Average Result

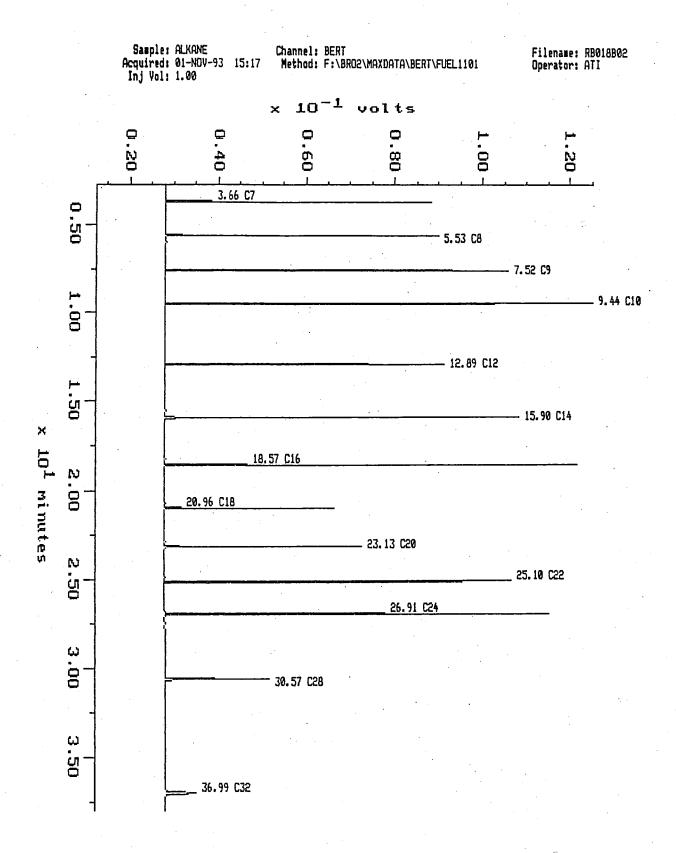

Channel: BERT
Method: F:\BRO2\MAXDATA\BERT\FUEL1104

Filename: RB048B03 Operator: ATI

Sample: WRB 11-4 Cha Acquired: 04-HOV-93 13:10 Me Comments: ATI: THE QUALITY TEAM



Continuing Calibration


Channel: BERT Method: F:\BRO2\MAXDATA\BERT\FUEL1104

Filename: RB048B02 Operator: ATI

Sample: DG 400 Cha Acquired: 04-NOV-93 12:23 Me Comments: ATI: THE QUALITY TEAM

Alkane

CHAIN-OF-CUSTODY

ō

Applied Geotechnology Inc. Geotechnical Engineering Geology & Hydrogeology

	Page
	1/93
,	///
	Date

PROJE	PROJECT INFORMATION	MATION			Laboratory Number:	1	0311-617	1							
Project Manager: 1/e/e/	el Barry	<i>,</i>				•	A	NALY	SIS RE	ANALYSIS REQUEST					
Project Name: // // / / / / / / / / / / / / / /	Luis 1	Jany			PETROLEUM HYDROCABRONS		ORGANIC COMPOUNDS	PESTS/PCB's	PCB's	METALS		LEACHING	OTHER	EB	
Project Number: 156,7,600	1.601				T T T		8 8 8	8	8	T 0 T	Μ	T T	\perp	+	N
Site Location: There will be a	h. A	Sam	Sampled By: 갥	6	PH S	020N 020 / 010 I 015N	040 F 310 F 270 G	080N	150 (CL M rgan otal I		CLP CLP	01.0	OWIL	UME
DISPO	DISPOSAL INFORMATION	MATION			Speci O SI	Arom Halog	- Voli Phen HPLO GCM	A PC	- Her OC F	y Pol fetal: ic Le Lead red m	- Me	- Pe	- Me		BER (
☑ Lab Disposal (return if not indicated)	eturn if not	indicated	<u>(</u>		al In	ETX atic gena	ols C PA S Se	Bs o	lerbi	s (23 ad ((Wa		sticic mivo			OF C
Disposal Method:						only VOC	Hs emive	nly	cides) Ca))	(Wa	latile			ON.
Disposed by:	Disp	Disposal Date:_	ii		tions	s	ol.)				TAIN
QC INFO	QC INFORMATION (check one)	(check or	ne)		· · ·	s	nivol			e/v -					ERS
SW-846 CLP Screening	Screening	□AGI Std.	Std. Spe	pecial			•			J Le					
SAMPLE ID	DATE	TIME	MATRIX	LAB ID											
86/01 - 01 MW.	11/1/43	1600	1600 Veter	1		×	×			X	•			9	9
	26/1/11	1700	Water	. 2		X	×			×					
	11/1/93	1700	Lake	~		×	X			X	_		<u> </u>	9	V
Trip Blank			woke	r . ļ		×					-				-
-															
														·	
	,														
LAB INFORMATION	TION		SAMPL	PLE RECEIPT	.IPT	RELINGU	RELINQUISHED BY:	- R	LING	RELINQUISHED BY:	2.	RELINQUISHED BY:	SHED	1 1	69
Lab Name: ATI		Total	Total Number of Cont	ontainers:	0	Signature:		Time: Sig	Signature:	=	Time:	Signature:		Time:	ĕ
Lab Address:		Chai	Chain of Custody Seals: Y/N/NA	Seals: Y/N/N	· >	Printed Name		Je.	Printed Name		Date:	Printed Name:		Date	ءِ ا

DISTRIBUTION: White, Canary to Analytical Laboratory, Pink to AGI Project Files; Gold to AGI Disposal Files Date: Printed Name: Signature: Company 10113 1V1/1/221A Company: Printed Name PRIOR AUTHORIZATION IS REQUIRED FOR RUSH DATA Tacoma: (206) 383-4380 Pleasanton: (415) 460-5495 AGI OFFICES: Bellevue: (206) 453-8383 Portland: (503) 222-2820 Special Instructions:

Rev. 4/92

Time:

က်

RECEIVED BY:

તં

RECEIVED BY:

RECEIVED BY:

☐1 wk.

Turn Around Time: Standard □24 hr. □48 hr. □72 hr.

Time:

Signature:

Time:

Date:

Printed Name:

Date:

Printed Name:

Сопрану

FULLIAND GOVUE

Company:

Received in Good Condition/Cold:

Intact?: Y/N/NA

Krylon WA

Via: (", () +

Printed Name:

Company:

Date:

Printed Name:

Company:

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Brothers/Bingo Fuel Stop

Project No.: 15,659.001

Lab Name:

Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number:

9311-228

Sample No.:

Matrix:

MW6 Water

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable for use.

ANALYTICAL METHODS

<u>Parameter</u>	<u>Technique</u>	<u>Method</u>
VOCs*	GC/MS	EPA 8240
Pesticides & PCBs	GC/ECD	EPA 8080
Halogenated VOCs	GC/ECD	EPA 8010

Volatile organic compounds.

TIMELINESS

Parameter	Date <u>Sampled</u>	Date <u>Extracted</u>	Date <u>Analyzed</u>	Time Until Extraction	Time Until Analysis
VOCs	11/22/93	NA	11/30/93	NA	8 (14)
Pesticides/PCBs	11/22/93	11/22/93	11/23/93	1 (14)	1 (40)
Halogenated VOCs	11/22/93	NA	11/23/93	NA ,	1 (14)

NA - Not applicable.

() - Numbers in parentheses indicate recommended holding times in days.

Sample was extracted and analyzed within recommended holding times.

FIELD QUALITY CONTROL SAMPLES

Rinsate: None collected.

Trip Blank: None collected.

Duplicate:

None collected.

Field Blank: None collected.

OUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Brothers/Bingo Fuel Stop

Project No.: 15,659.001

Lab Name: Analytical Technologies, Inc. (ATI) - Renton, WA

Lab Number: 9311-228

Sample No.: MW6 Matrix: Water

LAB QUALITY CONTROL SAMPLES

Method Blank: No analytes were detected at or above their method reporting

limit (MRL) in method blanks for the following methods:

EPA 8240 EPA 8080 EPA 8010

Matrix Spikes: Matrix spike and matrix spike duplicate percent recoveries and

relative percent differences (RPDs) are within ATI's control

limit criteria for EPA 8240 and EPA 8010.

Duplicate sample analysis was not performed for any method Duplicates:

documented by this report.

Blank Spikes: Blank spike percent recoveries are within ATI's control limit

criteria for EPA 8240 and EPA 8010.

Blank spike and blank spike duplicate percent recoveries and

RPDs are within ATI's control limit criteria for EPA 8080.

Surrogate spike percent recoveries are all within ATI's Surrogates:

control limit criteria for EPA 8080 and EPA 8010.

EPA 8240: Surrogate spike (toluene-d₈) recovery from the matrix spike duplicate sample of 113 percent is slightly above ATI's upper control limit of 111 percent. This exceedance is minor and other QC parameters associated with this analysis are all acceptable. Sample results are not qualified on this

basis.

<u>SIGNATURES</u>			
Prepared by	hugta him	Date	12/23/93
Checked by	Kirmonini Boyumais	Date	12/23/193

tatroniai Do arbonais

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

RECEIVED

DEC 10 1993

ATI I.D. # 9311-228

APPLIED GEOTECHNOLOGY INC.

December 9, 1993

Applied Geotechnology, Inc. O. Box 3885 Lellevue WA 98009

Attention: Peter Barry

Project Number: 15659.001

roject Name : Burns Bros/Bingo Fuel Stop

Dear Mr. Barry:

On November 22, 1993, Analytical Technologies, Inc. (ATI), received one sample for analysis. The sample was analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Sincerely,

Victoria L. Bayly Project Manager

VLB/hal/elf

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9311-228-1	MW 6	11/22/93	WATER

---- TOTALS ----

MATRIX # SAMPLES
----WATER 1

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled sposal date.

ANALYTICAL SCHEDULE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
VOLATILE ORGANIC COMPOUNDS	GCMS	EPA 8240	R
PURGEABLE HALOCARBONS	GC/ELCD	EPA 8010	R
ORGANOCHLORINE PESTICIDES & PCBs	GC/ECD	EPA 8080	R

R = ATI - Renton

SD = ATI - San Diego

PHX = ATI - Phoenix

PNR = ATI - Pensacola

"C = ATI - Fort Collins

JB = Subcontract

CASE NARRATIVE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE : VOLATILE ORGANICS ANALYSIS

The sample associated with this accession number was analyzed using EPA method 8240.

The method blank was free of all analytes of interest. All surrogate percent recoveries were within ATI control limits. The matrix spike/matrix spike duplicate (MS/MSD) recoveries and relative percent differences (RPDs) are within ATI control limits with the exception of toluene-D8 in the MSD. Since all other quality control data were within limits, no further action was taken. All blank spike (BS) recoveries were within ATI control limits. All sample analytical hold times were met.

In the initial calibration standards, the relative standard deviations were below 30% for all calibration check compounds. In the continuing calibration, the percent differences were below 25% for all continuing alibration check compounds. The relative response factors were above the minimum for all system performance check compounds in the initial and continuing calibration standards.

The daily tuning and mass calibration met all EPA criteria for this method. All sample internal standard areas were within 50% and 200% of the daily continuing calibration internal standard areas.

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK	DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	: N/A D : N/A : 11/30/93 : ug/L OR : 1
COMPOUNDS		
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM COMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE	<10 <1 <1 <5 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	
SURROGATE PERCENT RECOVERY		LIMITS
1,2-DICHLOROETHANE-D4)LUENE-D8 BROMOFLUOROBENZENE	105 99 100	86 - 120 85 - 111 81 - 114

TENTATIVELY IDENTIFIED COMPOUNDS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 DATE SAMPLED : N/A DATE RECEIVED : N/A PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE EXTRACTED : N/A

DATE ANALYZED : 11/30/93 UNITS : ug/L CLIENT I.D. : METHOD BLANK

SAMPLE MATRIX : WATER

EPA METHOD : 8240 DILUTION FACTOR: 1

COMPOUNDS

NO NON-HSL COMPOUNDS FOUND > 10% OF NEAREST INTERNAL STANDARD

ATI I.D. # 9311-228-1

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

EFA METHOD . 0210	UNITS : ug/L DILUTION FACTOR : 50
COMPOUNDS	RESULTS
COMPOUNDS	
ACETONE	<500
	6800
BENZENE BROMODICHLOROMETHANE BROMOFORM	<50
BROMOFORM	<250
OMOMETHANE	<500
2-BUTANONE (MEK)	<500
CARBON DISULFIDE	<50 <50
$C_{A}DDOM$ $DC_{A}CHPORTOR$	~ 50
CHLOROBENZENE CHLOROETHANE	<50
CHLOROETHANE	<50
CHLOROFORM	-500
CHLOROMETHANE TBROMOCHLOROMETHANE	<50
	<50
	<50
1,2-DICHLOROETHENE 1,1-DICHLOROETHENE	<50
1,1-DICHLOROETHENE (TOTAL)	<50
1 2-DICHLOROPROPANE	<50
1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE	<50
TRANS-1,3-DICHLOROPROPENE	<50
	3400
THYLBENZENE -HEXANONE (MBK)	<500
4.METHYL-2-PENTANONE (MIBK)	<500
METHYLENE CHLORIDE	<250
METHYLENE CHLORIDE STYRENE	<50
1,1,2,2-TETRACHLOROETHANE	<50 <50
TETRACHLOROETHENE	21000 D8
TOLUENE	<50
1,1,1-TRICHLOROETHANE	<50
1,1,2-TRICHLOROETHANE TRICHLOROETHENE	
	<500
VINYL ACETATE VINYL CHLORIDE	<50
TOTAL XYLENES	20000
TOTAL ATHENES	
SURROGATE PERCENT RECOVERY	LIMITS
1,2-DICHLOROETHANE-D4	108 86 - 120
AT TIENE - DQ	101 85 - 111
BROMOFLUOROBENZENE	100 81 - 114
	•
D8 = Value from a 250 fold diluted analysis.	

ATI I.D. # 9311-228-1

TENTATIVELY IDENTIFIED COMPOUNDS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. DATE SAMPLED : 11/22/93
PROJECT # : 15659.001 DATE RECEIVED : 11/22/93
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE EXTRACTED : N/A
CLIENT I.D. : MW 6 DATE ANALYZED : 11/30/93
SAMPLE MATRIX : WATER UNITS : ug/L
EPA METHOD : 8240 DILUTION FACTOR : 50

AROMATIC HYDROCARBON 34.03 650 34.33 BENZENE, 1-ETHYL-2-METHYL- 3800

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP
SAMPLE MATRIX : WATER

SAMPLE I.D. #

: BLANK

DATE EXTRACTED : N/A

N/A

DATE ANALYZED : 11/30/93

81 - 114

UNITS

: ug/L

EPA METHOD

ROMOFLUOROBENZENE

: 8240

COMPOUNDS		SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE		<1.00	50.0	51.9	104	N/A	N/A	N/A
CHLOROBENZENE ,1-DICHLOROETHENE		<1.00 <1.00	50.0 50.0	50.9 45.7	102 91	N/A N/A	N/A N/A	N/A N/A
TOLUENE TRICHLOROETHENE	•	<1.00 <1.00	50.0 50.0	48.9 50.6	98 101	N/A N/A	N/A N/A	N/A N/A
CONTROL LIMITS					% REC.			RPD
BENZENE CHLOROBENZENE ,1-DICHLOROETHENE _OLUENE TRICHLOROETHENE					83 - 1 86 - 1 73 - 1 84 - 1 84 - 1	33 35 29		20 20 20 20 20 20
SURROGATE RECOVI	ERIES		SPIKE		DUP. S	PIKE	LIMITS	3
1,2-DICHLOROETHANE-D4 TOLUENE-D8			103 98		N/A N/A		86 - 1 85 - 1	

98

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC.

SAMPLE I.D. # : 9311-236-1

PROJECT # : 15659.001

DATE EXTRACTED : N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED : 11/30/93

SAMPLE MATRIX : WATER

UNITS

: ug/L

EPA METHOD : 8240

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE CHLOROBENZENE ,1-DICHLOROETHENE 1'OLUENE TRICHLOROETHENE	<1.00 <1.00 <1.00 <1.00 <1.00	50.0 50.0 50.0 50.0	52.1 50.8 46.1 48.4 50.8	104 102 92 97 102	60.0 58.0 51.7 54.9 58.1	120 116 103 110 116	14 13 11 13 13
CONTROL LIMITS				% REC.			RPD
BENZENE CHLOROBENZENE ,1-DICHLOROETHENE OLUENE TRICHLOROETHENE		٠.		74 - 1 90 - 1 74 - 1 69 - 1 84 - 1	26 28 38	•	20 20 20 20 20
SURROGATE RECOVERIES	S	SPIKE	·	DUP. S	PIKE	LIMITS	S
1,2-DICHLOROETHANE-D4 TOLUENE-D8 PROMOFLUOROBENZENE		101 98 98		120 113H 113		86 - 1 85 - 1 81 - 1	.11

H = Out of limits.

. en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de .

CASE NARRATIVE

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: VOLATILE ORGANICS ANALYSIS

One (1) water sample was received by ATI on November 22, 1993, for the following analysis: EPA method 8010.

Sample 9311-228-1 (MW 6) was analyzed at a 100 fold dilution due to the high concentration of hydrocarbons present.

ll corresponding quality assurance and quality control results defined as matrix spike/matrix spike duplicate (MS/MSD), blank spike (BS), method blank and surrogate recoveries were within the established control limits.

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8010	DIH011011 11101) : N/A D : N/A) : 11/22/93 : ug/L OR : 1
COMPOUNDS	RESULTS	
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE ARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROMETHANE 1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE ,4-DICHLOROBENZENE ,1DICHLOROMETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE	<0.2 <0.2 <1.0 <0.2 <0.5 <1.0 <0.2 <2.0 <0.5 <0.5 <0.5 <0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	
TRICHLOROETHENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE	<0.2 <0.5 <1.0	
SURROGATE PERCENT RECOVERY		LIMITS
BROMOCHLOROMETHANE	98	58 - 126

ATI I.D. # 9311-228-1

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

	DATE SAMPLED : 11/22/93 DATE RECEIVED : 11/22/93 DATE EXTRACTED : N/A DATE ANALYZED : 11/23/93 UNITS : ug/L DILUTION FACTOR : 100
COMPOUNDS	
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE ARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	<20 <100 <20 <50 <100
CHLOROFORM	<20
CHLOROMETHANE (EDB)	<200
1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE	<50
1,3-DICHLOROBENZENE	<50
4-DICHLOROBENZENE	<50
JIBROMOCHLOROMETHANE	<20
1,1-DICHLOROETHANE	<20
1,2-DICHLOROETHANE	<20
1,1-DICHLOROETHENE	<20
CIS-1,2-DICHLOROETHENE	<20
TRANS-1,2-DICHLOROETHENE	<20
1,2-DICHLOROPROPANE	<20
CIS-1,3-DICHLOROPROPENE	<20 <20
RANS-1,3-DICHLOROPROPENE RANS-1,3-DICHLOROPROPENE METHYLENE CHLORIDE	<200
METHYLENE CHLORIDE	<20
1,1,2,2-TETRACHLOROETHANE	<20
TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE	<20
1,1,2-TRICHLOROETHANE	<20
TRICHLOROETHENE	<20
TRICHLOROFLUOROMETHANE	<50
VINYL CHLORIDE	<100
SURROGATE PERCENT RECOVERY	LIMITS
BROMOCHLOROMETHANE	99 58 - 126

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

DATE EXTRACTED : N/A

DATE ANALYZED : 11/22/93

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP

SAMPLE MATRIX : WATER

UNITS

: ug/L

A	WE.I.HOD	:	80T0

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
CHLOROBENZENE 1,1-DICHLOROETHENE RICHLOROETHENE	<0.500 <0.200 <0.200	8.00 8.00 8.00	7.53 7.55 8.22	94 94 103	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE				79 - 1 56 - 1 72 - 1	.58		33 22 21
SURROGATE RECOVERIES	.	SPIKE		DUP. S	PIKE	LIMITS	
BROMOCHLOROMETHANE		104		N/A		58 - 1	26

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9311-199-3 PROJECT # : 15659.001 DATE EXTRACTED : N/A

DATE ANALYZED : 11/22/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

: ug/L

121

SAMPLE MATRIX : WATER

BROMOCHLOROMETHANE

UNITS

58 - 126

EPA METHOD

: 8010

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
	·						
CHLOROBENZENE 1,1-DICHLOROETHENE RICHLOROETHENE	<0.500 <0.200 13.9	8.00 8.00 8.00	7.99 7.95 21.7	100 99 97	7.88 7.79 21.8	99 97 99	1 2 0
CONTROL LIMITS				% REC.			RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE		·		61 - 1 37 - 1 61 - 1			33 22 21
SURROGATE RECOVER	RIES	SPIKE		DUP. S	SPIKE	LIMITS	

106

CASE NARRATIVE

CLIENT

: APPLIED GEOTECHNOLOGY, INC.

PROJECT #

: 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

CASE NARRATIVE: ORGANOCHLORINE PESTICIDES AND PCB ANALYSIS

One (1) water sample was received by ATI on November 22, 1993, for the analysis of organochlorine pesticides and PCBs.

All corresponding quality assurance and quality control results defined as blank spike/blank spike duplicate (BS/BSD), method blank, and surrogate recoveries were within the established control limits.

DIBUTYLCHLORENDATE

ATI I.D. # 9311-228

ORGANOCHLORINE PESTICIDES AND PCB ANALYSIS DATA SUMMARY

PROJECT NA CLIENT I.I SAMPLE MAT EPA METHOI	TRIX: WATER 0: 8080	DATE ANALYZED UNITS DILUTION FACTOR	: N/A : 11/22/93 : 11/23/93 : ug/L
COMPOUNDS		RESULTS	
ALDRIN ALPHA-BHC BETA-BHC AMMA-BHC DELTA-BHC CHLORDANE P,P'-DDD P,P'-DDT DIELDRIN ENDOSULFAN NDOSULFAN ENDRIN ALI ENDRIN ALI ENDRIN ALI ENDRIN KET HEPTACHLON METHOXYCHI TOXAPHENE CB 1016 PCB 1221 PCB 1242 PCB 1248	(LINDANE) (TOTAL) V I V II V SULFATE DEHYDE TONE R R EPOXIDE	<0.050 <0.050 <0.050 <0.050 <0.050 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <1.10 <0.050 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	
PCB 1254 PCB 1260		<1.0 <1.0	
	SURROGATE PERCENT RECOVERY	I	IMITS
DECACHLOR(2 - 131

93

ATI I.D. # 9311-228-1

ORGANOCHLORINE PESTICIDES AND PCB ANALYSIS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : MW 6 SAMPLE MATRIX : WATER EPA METHOD : 8080	DATE ANALYZED : 11/23/93 UNITS : ug/L DILUTION FACTOR : 1	
COMPOUNDS		
BETA-BHC AMMA-BHC (LINDANE) DELTA-BHC CHIODDANE (TOTAL)	<0.047 <0.047 <0.047 <0.047	
P, P'-DDD P, P'-DDE P, P'-DDT	<0.094 <0.094	
DIELDRIN ENDOSULFAN I 'NDOSULFAN II _NDOSULFAN SULFATE	<0.047	
ENDRIN	<0.094	
ENDRIN KETONE	<0.047	
HEPTACHLOR EPOXIDE METHOXYCHLOR	<0.047 <0.47 <0.94	
CB 1016 PCB 1221	<0.94 <0.94	
PCB 1232 PCB 1242 PCB 1248	<0.94 <0.94 <0.94	
	<0.94 <0.94	
SURROGATE PERCENT RECOVERY	LIMITS	
DECACHLOROBIPHENYL DIBUTYLCHLORENDATE	42 22 - 131 62 43 - 154	

ORGANOCHLORINE PESTICIDES AND PCB ANALYSIS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

: 15659.001 PROJECT #

DATE EXTRACTED : 11/22/93

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED

55

88

: 11/23/93

22 - 131

43 - 154

SAMPLE MATRIX : WATER

DECACHLOROBIPHENYL

IBUTYLCHLORENDATE

EPA METHOD

: 8080

UNITS : ug/L

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
ALDRIN GAMMA-BHC (LINDANE) ,P'-DDT DIELDRIN ENDRIN HEPTACHLOR	<0.0500 <0.0500 <0.100 <0.100 <0.100 <0.0500	0.250 0.250 0.500 0.500 0.500 0.250	0.193 0.207 0.427 0.480 0.488 0.229	77 83 85 96 98 92	0.197 0.208 0.411 0.474 0.495 0.237	79 83 82 95 99	2 0 4 1 1 3
CONTROL LIMITS				% REC.		-	RPD
ALDRIN AMMA-BHC (LINDANE) .,P'-DDT DIELDRIN ENDRIN HEPTACHLOR		·		40 - 1 38 - 1 52 - 1 49 - 1 44 - 1 54 - 1	22 50 52 66		35 25 35 34 32 35
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	

48

93

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

ATI I.D. # 9403-011

March 9, 1994

RECEIVED

MAR 1 1 1994

APPLIED GEOTECHNOLOGY INC.

Applied Geotechnology, Inc. P.O. Box 3885
Pellevue WA 98009

Attention : Peter Barry

Project Number: 15659.001

Project Name : Burns Bros/Bingo Fuel Stop

ear Mr. Barry:

On March 2, 1994, Analytical Technologies, Inc. (ATI), received two samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

incerely,

Victoria L. Bayly Project Manager

VLB/hal/ff

Enclosure

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Brothers/Bingo Fuel Stop

15,659.001 Project No.:

Analytical Technologies, Inc. (ATI), Renton Lab Name:

Lab Number: 9403-011

Irrig. Canal West of Site, Irrig. Canal Near S31 Sample No.:

Matrix: Water

QUALITY ASSURANCE SUMMARY

All data are of known quality and acceptable for use.

ANALYTICAL METHODS

Parameter	<u>Technique</u>	Method		
BETX TPH-Gasoline ^a TPH-Diesel ^b	GC/PID GC/FID GC/FID	EPA 8020 WTPH-G WTPH-D		

TIMELINESS

<u>Parameter</u>	Date <u>Sampled</u>	Date Extracted	Date Analyzed	Time Until Extraction	Time Until <u>Analysis</u>
BETX	03/01/94	NA	03/03/94	NA	2 (14)
TPH-G	03/01/94	NA	03/03/94	- NA	2- (14)
TPH-D	03/01/94	03/02/94	03/03/94	1 (7)	2 (30)

a - Quantify toluene to dodecane range petroleum hydrocarbons. b - Quantify C_{12} to C_{24} range petroleum hydrocarbons.

All samples were extracted and analyzed within recommended holding times.

FUEL HYDROCARBON CHROMATOGRAMS

WTPH-G: Gasoline range petroleum hydrocarbons were not detected at or above their method reporting limit (MRL) in samples documented by this report.

WTPH-D: Diesel range petroleum hydrocarbons were not detected at or above their MRL in samples documented by this report.

NA - Not applicable.

^{() -} Numbers in parentheses indicate recommended holding times in days.

QUALITY ASSURANCE REPORT

PROJECT AND SAMPLE INFORMATION

Project Name: Burns Brothers/Bingo Fuel Stop

Project No.: 15,659.001

Lab Name: Analytical Technologies, Inc. (ATI), Renton

Lab Number: 9403-011

Sample No.: Irrig. Canal West of Site, Irrig. Canal Near S31

FIELD QUALITY CONTROL SAMPLES

Field Blank: None collected.

Field Duplicates: None collected.

Rinsate: None collected.

Trip Blank: None collected.

LAB QUALITY CONTROL SAMPLES

Method Blank: No analytes were detected at or above their MRL by EPA

8020, WTPH-G, and WTPH-D.

Matrix Spikes: Matrix spike and matrix spike duplicate percent recover-

ies and relative percent differences (RPDs) are within

ATI's control limit criteria for EPA 8020 and WTPH-G.

Duplicates: Duplicate sample RPDs are within ATI's control limit

criteria for WTPH-G and WTPH-D.

Blank Spikes: Blank spike and blank spike duplicate (WTPH-D only)

percent recoveries and RPDs are within ATI's control

limit criteria for EPA 8020, WTPH-G, and WTPH-D.

Surrogates: Surrogate spike percent recoveries are within ATI's

control limit criteria for EPA 8020, WTPH-G, and

WTPH-D.

SIGNATURES

Prepared by Minglo hi Date 03/30/1994

Checked by Katherine Bourbonais Date 3)30/94

SAMPLE CROSS REFERENCE SHEET

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ATI #		DESCRIPTION	DATE SAMPLED	MATRIX
9403-011-1	IRRIG.	CANAL WEST OF SITE	03/01/94	WATER
9403-011-2		CANAL NEAR S31	03/01/94	WATER

---- TOTALS ----

MATRIX # SAMPLES
WATER 2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled lisposal date.

ANALYTICAL SCHEDULE

CLIENT : APPLIED GEOTECHNOLOGY, INC.

PROJECT # : 15659.001

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

ANALYSIS	TECHNIQUE	REFERENCE	LAB
BETX	GC/PID	EPA 8020	R
TOTAL PETROLEUM HYDROCARBONS	GC/FID	WA DOE WTPH-G	R
TOTAL PETROLEUM HYDROCARBONS	GC/FID	WA DOE WTPH-D	R

ATI - Renton

SD ATI - San Diego

ATI - Phoenix PHX =

PNR = ATI - Pensacola FC = ATI - Fort Collins

NUB = Subcontract

BETX - GASOLINE DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER METHOD : WA DOE WTPH-G/8020(BETX)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : N/A DATE ANALYZED : 03/02/94 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES	<0.5 <0.5 <0.5 <0.5
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<100 TOLUENE TO DODECANE GASOLINE
SURROGATE PERCENT RECOVERY	LIMITS
JROMOFLUOROBENZENE	106 76 - 120 99 50 - 150

ATI I.D. # 9403-011-1

BETX - GASOLINE DATA SUMMARY

CLIENT I.D. SAMPLE MATRIX METHOD	: WATER : WA DOE WTPH-G/8020(BETX)	DATE ANALYZED UNITS DILUTION FACT	: 03/02/94 D : N/A : 03/03/94 : ug/L OR : 1
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
FUEL HYDROCARI HYDROCARBON RI HYDROCARBON QI		<100 TOLUENE TO DO GASOLINE	DECANE
S	URROGATE PERCENT RECOVERY		LIMITS
ROMOFLUOROBE TRIFLUOROTOLU		104 100	76 - 120 50 - 150

ATI I.D. # 9403-011-2

BETX - GASOLINE DATA SUMMARY

PROJECT # : 15659.001 PROJECT NAME : BURNS BROS CLIENT I.D. : IRRIG. CAN SAMPLE MATRIX : WATER	NAL NEAR S31 PH-G/8020(BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 03/01/94 : 03/02/94 : N/A : 03/03/94 : ug/L
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE OTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION U	JSING	<100 TOLUENE TO DODE GASOLINE	CANE
SURROGATE PERC	ENT RECOVERY	I	IMITS
JROMOFLUOROBENZENE	•••••		6 - 120 0 - 150

BETX - GASOLINE QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. #

: BLANK

PROJECT #

: 15659.001

DATE EXTRACTED

: N/A

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

DATE ANALYZED

: 03/02/94

UNITS

: ug/L

SAMPLE MATRIX : WATER METHOD

: WA DOE WTPH-G/8020(BETX)

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE OTAL XYLENES JASOLINE	<0.500 <0.500 <0.500 <100	20.0 20.0 40.0 1000	19.5 20.0 39.1 965	98 100 98 97	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES GASOLINE		,		89 - 1 89 - 1	.10 .13 .11 .16		10 10 10 20
SURROGATE RECOVERIE	S	SPIKE		DUP. S	PIKE	LIMITS	3
BROMOFLUOROBENZENE TRIFLUOROTOLUENE		105 102		N/A N/A		76 - 1 50 - 1	.20 .50

BETX - GASOLINE QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # CLIENT

UNITS

: 9403-011-1

: ug/L

: 15659.001 PROJECT #

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

: N/A DATE EXTRACTED : 03/02/94 DATE ANALYZED

SAMPLE MATRIX : WATER

METHOD

: WA DOE WTPH-G/8020 (BETX)

COMPOUNDS	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
GASOLINE	<100	<100	NC	N/A	N/A	N/A	N/A	N/A	N/A
CONTROL LIMITS					% RE	C.		RPD	
GASOLINE					N/A			20	
SURROGATE RECOVERIES			SAMPLE DUP.		LE DUP.	LIMI	TS		
TRIFILIOROTOLIENE				.100	100 101 50 - 15			150	

NC = Not Calculable.

BETX - GASOLINE QUALITY CONTROL DATA

SAMPLE I.D. # : 9403-018-2 : APPLIED GEOTECHNOLOGY, INC. CLIENT PROJECT #

DATE EXTRACTED : N/A

PROJECT # : 15659.001
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 03/02/94

SAMPLE MATRIX : WATER UNITS : ug/L

: WA DOE WTPH-G/8020(BETX) METHOD

COMPOUNDS	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
BENZENE TOLUENE OTAL XYLENES JASOLINE	<0.500 <0.500 0.700 <100	N/A N/A N/A <100	N/A N/A N/A NC	20.0 20.0 40.0 1000	19.5 19.7 39.5 952	98 99 97 95	19.9 19.8 39.8 901	100 99 98 90	2 1 1 6
CONTROL	LIMITS					% REC	•		RPD
BENZENE TOLUENE TOTAL XYLENES ~ASOLINE						87 - 85 -	113 114 113 113		10 10 10 20
SURROGAT	E RECOVE	RIES		SPIKE		DUP.	SPIKE	LIMIT	S
BROMOFLUOROBEN TRIFLUOROTOLUE				106 101		106 100			120 150

NC = Not Calculable.

O-TERPHENYL

ATI I.D. # 9403-011

100

50 - 150

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. DATE SAMPLED PROJECT # : 15659.001 DATE RECEIVED : N/A PROJECT # : 15659.001 DATE RECEIVED : N/A
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE EXTRACTED : 03/02/94
CLIENT I.D. : METHOD BLANK DATE ANALYZED : 03/03/94 UNITS : mg/L UNITS SAMPLE MATRIX : WATER DILUTION FACTOR: 1 : WA DOE WTPH-D RESULTS <0.25 FUEL HYDROCARBONS C12 - C24 HYDROCARBON RANGE HYDROCARBON QUANTITATION USING DIESEL LIMITS SURROGATE PERCENT RECOVERY

ATI I.D. # 9403-011-1

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. PROJECT # : 15659.001 PROJECT NAME : BURNS BROS/BINGO FUEL STOP CLIENT I.D. : IRRIG. CANAL WEST OF SITE SAMPLE MATRIX : WATER METHOD : WA DOE WTPH-D	DATE SAMPLED : 03/01/94 DATE RECEIVED : 03/02/94 DATE EXTRACTED : 03/02/94 DATE ANALYZED : 03/03/94 UNITS : mg/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<0.25 C12 - C24 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
O-TERPHENYL	104 50 - 150

ATI I.D. # 9403-011-2

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT : APPLIED GEOTECHNOLOGY, INC. DATE SAMPLED : 03/01/94
PROJECT # : 15659.001 DATE RECEIVED : 03/02/94
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE EXTRACTED : 03/02/94
CLIENT I.D. : IRRIG. CANAL NEAR S31 DATE ANALYZED : 03/03/94
SAMPLE MATRIX : WATER UNITS : mg/L
METHOD : WA DOE WTPH-D

METHOD : WA DOE WTPH-D

RESULTS COMPOUNDS

FUEL HYDROCARBONS <0.25 C12 - C24 HYDROCARBON RANGE DIESEL HYDROCARBON QUANTITATION USING

> LIMITS SURROGATE PERCENT RECOVERY

50 - 150 112 O-TERPHENYL

SAMPLE DUP. LIMITS

50 - 150

103

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT : APPLIED GEOTECHNOLOGY, INC. SAMPLE I.D. # : 9403-011-1
PROJECT # : 15659.001 DATE EXTRACTED : 03/02/94
PROJECT NAME : BURNS BROS/BINGO FUEL STOP DATE ANALYZED : 03/03/94
SAMPLE MATRIX : WATER UNITS : mg/L

METHOD : WA DOE WTPH-D

SAMPLE DUP. SPIKE SPIKED % SPIKED %
COMPOUNDS RESULT RESULT RPD ADDED RESULT REC. RESULT REC. RPD

DIESEL <0.250 <0.250 NC N/A N/A N/A N/A N/A N/A N/A

CONTROL LIMITS % REC. RPD

SAMPLE

104

AC = Not Calculable.

O-TERPHENYL

SURROGATE RECOVERIES

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

: APPLIED GEOTECHNOLOGY, INC. CLIENT

SAMPLE I.D. # : BLANK

: 15659.001 PROJECT #

DATE EXTRACTED : 03/02/94

PROJECT NAME : BURNS BROS/BINGO FUEL STOP

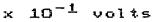
DATE ANALYZED : 03/03/94

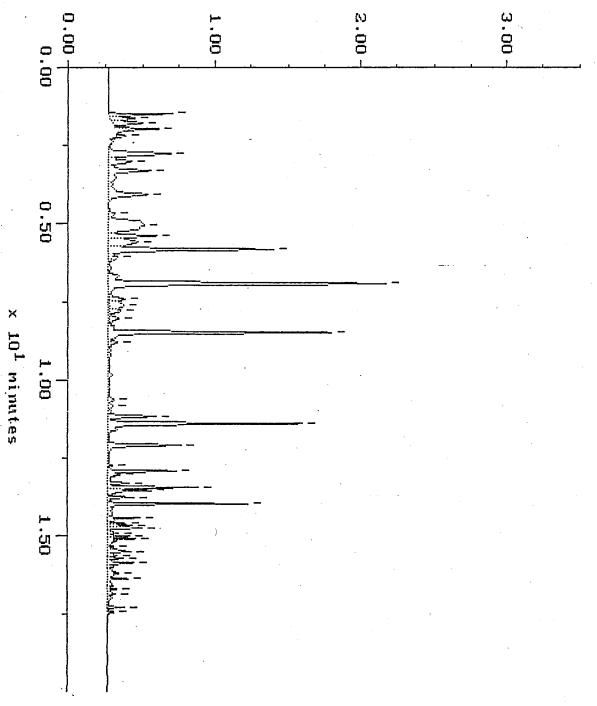
SAMPLE MATRIX : WATER

UNITS

: mg/L

METHOD

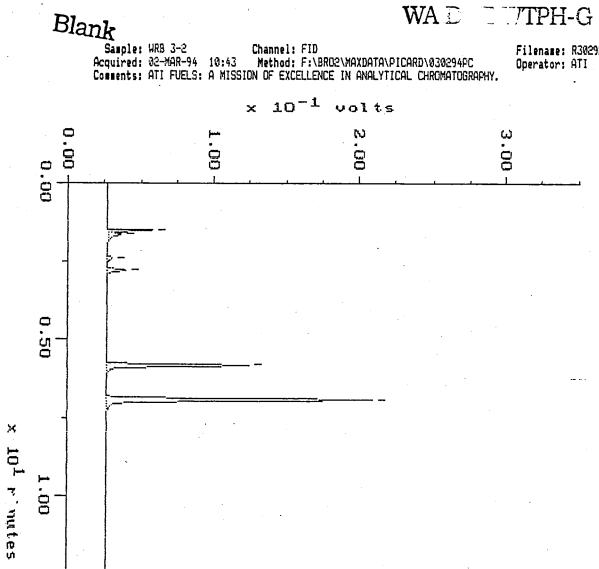

: WA DOE WTPH-D


COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
DIESEL	<0.250	2.50	2.17	87	2.27	91	5
CONTROL LIMIT	rs			% REC.			RPD
DIESEL	•			70 - 1	14	,	20
SURROGATE REG	COVERIES	SPIKE		DUP. S	SPIKE	LIMITS	, ,
O-TERPHENYL		101		105		50 - 1	.50

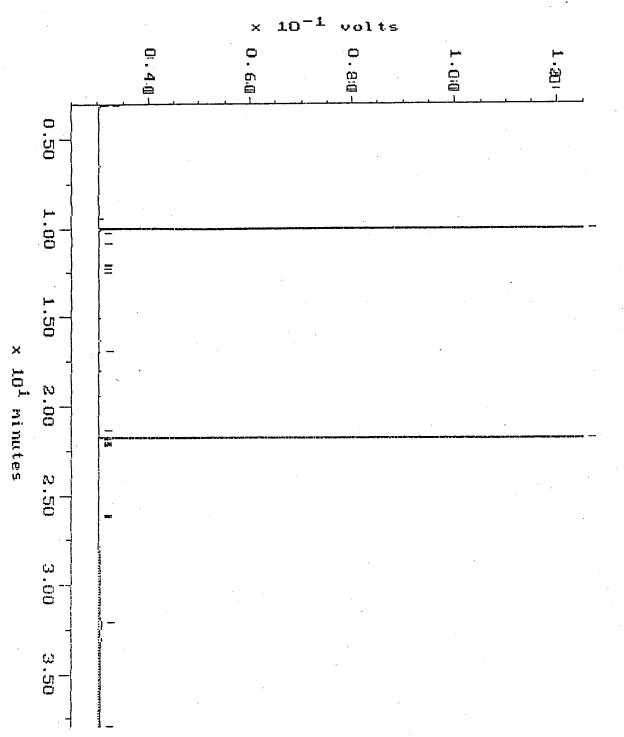
Continuing Calibration

Sample: STD-C G Channel: FID
Acquired: 02-MAR-94 9:03 Method: F:\BRO2\MAXDATA\PICARD\030294PC
Comments: ATI FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATOGRAPHY.

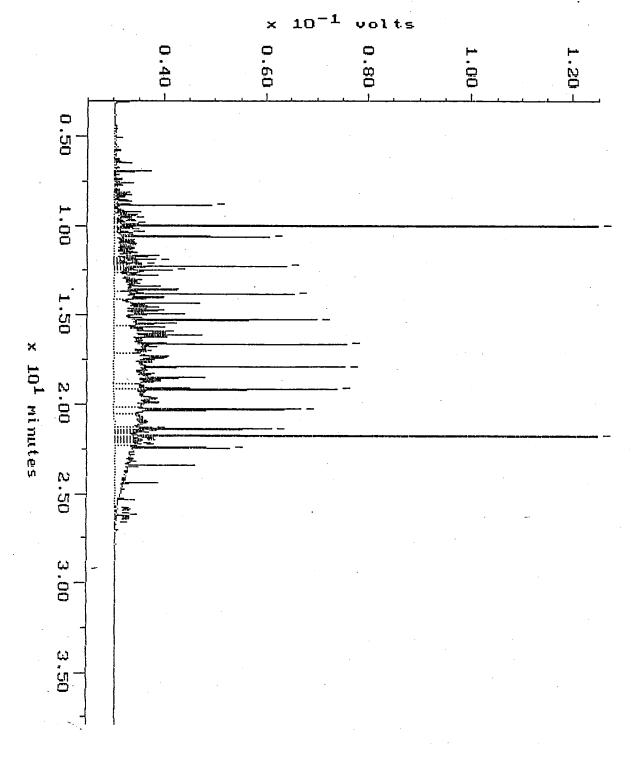
Filename: R3029P01 Operator: ATI

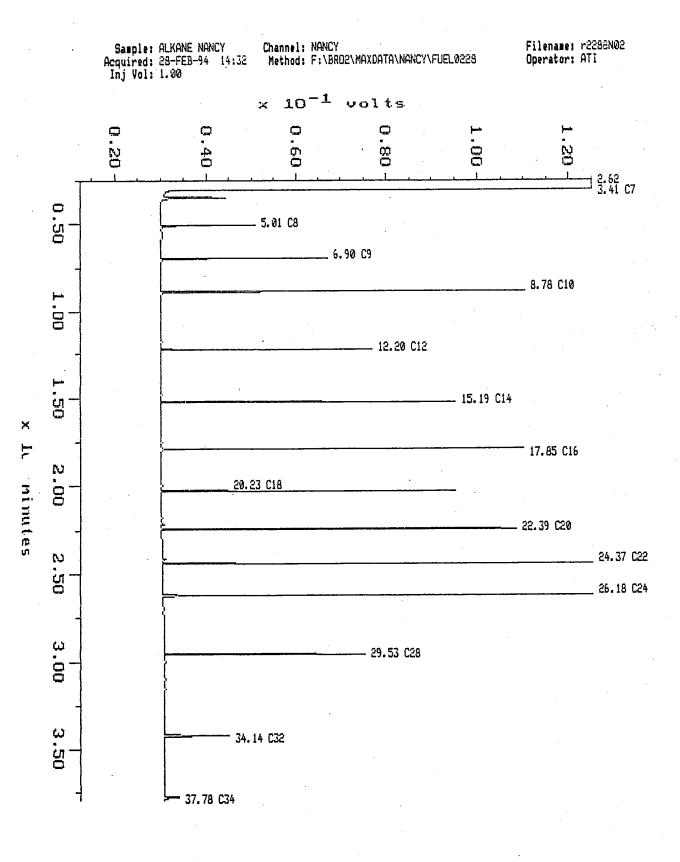


1.50


WAD TITPH-G

Filename: R3029P03 Operator: ATI


Blank


Sample: WRB 3-2 Channel: NANCY Filename: R3028N22
Acquired: 03-MAR-94 3:88 Method: F:\BRO2\MAXDATA\MANCY\FUEL0382 Operator: ATI
Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

Filename: R3028N05 Operator: ATI

Sample: D 500 Channel: MANCY Fi Acquired: 02-MAK-94 13:40 Method: F:\BRO2\MAXDATA\MANCY\FUEL0302 Op Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

CHAIN-OF-CUSTODY

Applied Geotechnology Inc. Geotechnical Engineering

Geology & Hydrogeology

Date: NUMBER OF CONTAINERS ७७ က က ij Date: <u>=</u> RELINQUISHED BY: OTHER RECEIVED BY: **TCLP - Metals** LEACHING TCLP - Pesticides Printed Name Printed Name Signature: Signature: Company: Company: **TCLP - Semivolatiles** TCLP - Volatiles (ZHE) MFSP - Metals (Wa) DWS - Metals RELINQUISHED BY: 2. તં Date: Date: Priority Poll. Metals (13) TCL Metals (23) Organic Lead (Ca) **ANALYSIS REQUEST** ₽ Total Lead (Wa) RECEIVED Selected metals: list DWS - Herb/pest Printed Name: Printed Name: PESTS/PCB's Company: Signature: Company: 8150 OC Herbicides Signature 8140 OP Pesticides 10:00 8080M PCBs only 2887 1788 RELINQUISHED BY: 1. 8080 OC Pest/PCBs Date: DWS - Volatiles and Semivol. **ORGANIC COMPOUNDS** 8040 Phenols 8310 HPLC PAHs RECEIVED BY: 8270 GCMS Semivol. 8240 GCMS Volatiles 8020M - BETX only × 8020 Aromatic VOCs Laboratory Number: 8010 Halogenated VOCs 8015M HYDROCARBONS PETROLEUM' 418.1 State: □1 wk. TPH Special Instructions TPH-D State: X X TPH-G State: X PRIOR AUTHORIZATION IS REQUIRED FOR RUSH DATA SAMPLE RECEIPT Received in Good Condition/Cold: TPH-ID State: Chain of Custody Seals: Y/N/NA ☐72 hr. Sampled By: GL1/PPB LAB ID Total Number of Containers: ☐ Special MATRIX ☐ 48 hr. Intact?: Y/N/NA ☐Screening ☐AGI Std. QC INFORMATION (check one) Disposal Date: □ Lab Disposal (return if not indicated) DIŚPOSAL INFORMATION PROJECT INFORMATION □24 hr. TIME Project Name: Bucas Bros/Bings **X**Standard DATE ATI-Renton **LAB INFORMATION** Site Location: Thack, MA Project Manager: 224e M Lering Cond West of Site Special Instructions: Turn Around Time: SAMPLE ID Disposal Method: Project Number: Disposed by: □SW-846 Lab Address: Lab Name: Via:

Pellevue: (206) 453-8383 'ortland: (503) 222-2820 AG! OFFICE

Tacoma: (206) 383-4380 Pleasanton: (415) 460-5-

DISTP'PUTION: White, Canary to Analytical Laboratory; Pink to AGI Project Files; Gold to An Disposal Files