TECHNICAL MEMORANDUM

TO: Mohsen Kourehdar, P.E., Washington State Department of Ecology

FROM: Lawrence D. Beard, P.E., L.G., and Christine Kimmel, L.G.

DATE: January 27, 2015

RE: GROUNDWATER QUALITY RESULTS

DRY SEASON 2014 LONG-TERM COMPLIANCE MONITORING

CASCADE POLE SITE, OLYMPIA, WASHINGTON

At the request of Mr. Don Bache of the Port of Olympia, we are providing the Washington State Department of Ecology (Ecology) with the results of the Dry Season sampling event conducted in September 2014, along with two focused verification sampling events conducted in June and October 2014. Groundwater sampling was conducted as part of the Long-Term Groundwater Compliance Monitoring (LTGCM) program for the Cascade Pole site in Olympia, Washington.

GROUNDWATER MONITORING

Groundwater elevation measurements were collected on September 23, 2014 (prior to sampling activities), and are presented in Table 1. All interior perimeter well groundwater elevations achieved the current short-term hydraulic control goals indentified for the site.

A total of 15 samples (14 wells and 1 quality assurance sample) were collected during the September 2014 groundwater sampling event. Samples were collected from the following well pairs: PZ-12 and PZ-13; LW-3 and PZ-17; LW-4R and PZ-18; and MW-02S and PZ-19. Samples were also collected from interior monitoring wells MW-01S, MW-01D, MW-02D, MW-05S, MW-05D, and CW-13. The locations of the sampled wells are shown on Figures 1 and 2.

In addition to the routine Dry Season sampling event (September 2014), two verification sampling events occurred since the 2013 Groundwater Monitoring Report (Landau Associates 2014). In June 2014, a verification sample was collected from well LW-3 after evidence of surface water runoff into the well was observed due to an accidental removal of the well cap. The well was subsequently redeveloped using aggressive purging methods and, once the suspended material was sufficiently removed from LW-3, an accurate depth-to-water was recorded and a groundwater sample was collected. The groundwater sample was submitted to Spectra Laboratories located in Tacoma, Washington and analyzed for the project constituent list. A verification sample was also collected from well PZ-17 in October 2014 based on elevated concentrations of total petroleum hydrocarbons (TPH) in the diesel and creosote ranges detected in samples collected during the routine September 2014 sampling event. The October verification sample was analyzed for diesel-, oil-, and creosote-range petroleum hydrocarbons (Method NWTPH-Dx).

Groundwater samples collected in September and October 2014 events were submitted to Analytical Resources Inc. (ARI) Laboratory located in Tukwila, Washington for analysis of polycyclic aromatic hydrocarbons (PAHs) using U.S. Environmental Protection Agency (EPA) Method 8270D, with selected ion monitoring (SIM); follow-up pentachlorophenal (PCP) analysis was conducted using EPA Method 8041 if PCP results from initial analyses using EPA Method 8270D(SIM) were nondetect at the higher reporting limit; gasoline-range petroleum hydrocarbons (TPH-G) using Method NWTPH-G; and TPH-O using Method NWTPH-Dx.

ANALYTICAL RESULTS

Analytical results for TPH-G and TPH-Dx were compared to Model Toxics Control Act (MTCA) Method A cleanup levels and the PCP and PAH results were compared to the MTCA Method B cleanup levels for protection of marine surface water. To evaluate the analytical data for the carcinogenic PAHs (cPAHs), the toxicity equivalency quotients (TEQ) of individual cPAHs were calculated and summed for comparison to the benzo(a)pyrene cleanup level using the methodology established in Washington Administrative Code (WAC) 173-340-708. To calculate the TEQ, the toxicity equivalency factor (TEF) for a given cPAH compound was multiplied by the compound concentration, or half the reporting limit for compounds that were not detected above the laboratory reporting limit, and the resulting values were summed. The analytical results for the Dry Season sampling event (September 2014) and the two focused verification sampling events (June and October 2014) are summarized in Table 2. Analytical data were reviewed for reliability using a data validation process. The results of the validation indicate that data is acceptable for monitoring purposes and no data was rejected. The laboratory reports are included in Attachment 1.

The June verification sampling conducted after well redevelopement activities at LW-3 indicated low level concentrations of naphthalene, 1-methylnapthalene, gasoline-range petroleum hydrocarbons (TPH-G), and diesel-range petroleum hydrocarbons (TPH-D); however, the concentrations were all below the respective cleanup screening levels and the well was found to be usable for continued groundwater monitoring purposes.

The September 2014 analytical results indicate shallow groundwater conditions outside of the slurry wall at PZ-18 and interior wells CW-13 and LW-4R were below the respective laboratory reporting limits. Low level concentrations were reported at interior wells PZ-12, LW-3, MW-01D, MW-02S, MW-02D, MW-05S, and MW-05D; however, the concentrations were below their respective cleanup screening levels. Low level naphthalene concentrations were reported at exterior wells PZ-13 (5.9 μ g/L) and PZ-19 (3.8 μ g/L) during the September event; however, these concentrations are well below the cleanup screening level (4,900 μ g/L). Analytical results from shallow interior well MW-01S indicate the following compounds were reported at concentrations greater than the respective cleanup screening levels: TPH-G (52,000 μ g/L), diesel-range petroleum hydrocarbons (11,000 μ g/L), motor oil-range

hydrocarbons (690 μ g/L), and creosote-range hydrocarbons (59,000 μ g/L), along with individual PAH compounds (PCP at 4,900 μ g/L and naphthalene at 10,000 μ g/L) and TEQ value for total cPAH (0.326 μ g/L). Analytical results indicate concentrations above cleanup screening levels at exterior shallow well PZ-17 for motor oil-range hydrocarbons (640 μ g/L) and above laboratory reporting limits for diesel-range hydrocarbons (110 μ g/L) and creosote-range hydrocarbons (310 μ g/L). The PZ-17 verification sample results (October 2014) indicate concentrations of these three analytes were not detected above the laboratory reporting limits.

NEXT SCHEDULED PLANNED ACTIVITIES

The next semiannual sampling event is planned for early 2015. The event will include the collection of groundwater quality samples from the following well pairs: PZ-12 and PZ-13, LW-3 and PZ-17, LW-4R and PZ-18, and MW-02S and PZ-19. Samples from interior shallow and deep wells MW-01S, MW-01D, MW-02S, MW-02D, MW-05S, MW-05D, and CW-13 will also be collected during the next semiannual event. Groundwater elevations will be collected from each of the selected wells monthly to evaluate the continued hydraulic control for the site. The potential for surface water migration at LW-3 will continue to be monitored on a monthly basis. If further signs of surface water effects are observed at this well, then the well may be considered for replacement.

The results of the Dry Season sampling event (September) and the two verification sampling events (June and October 2014), along with the pending Wet Season sampling event (early 2015) will be presented in an annual progress report that will summarize the LTGCM program.

TABLE 1 GROUNDWATER ELEVATIONS CASCADE POLE SITE PORT OF OLYMPIA, WASHINGTON

Well Pair	Collection Date	Well ID	Depth to Groundwater (ft) (a)	Top of Well Casing Elevation (MLLW)		Groundwater Elevation (MLLW) (a)	Maximum Elevation Goal (b)	Goal Exceeded?
1	9/23/2014 9/23/2014	PZ-13 PZ-12	7.32 6.20	19.50 19.00		12.18 12.80	 15.50	No
2	9/23/2014 9/23/2014	PZ-17 LW-3	9.38 6.71	20.48 19.83	(c)	11.10 13.12	 15.50	No
3	9/23/2014 9/23/2014	PZ-18 LW-4R	7.23 6.65	21.20 22.02		13.97 15.37	 15.50	No
4	9/23/2014 9/23/2014	PZ-19 MW-02S	13.34 17.69	23.67 31.96		10.33 14.27	 15.50	No
5	9/23/2014 9/23/2014	MW-02S MW-02D	17.69 19.11	31.96 31.81	(d)(e) (d)(e)	14.27 12.70		
6	9/23/2014 9/23/2014	MW-01S MW-01D	8.25 7.88	21.64 21.72	(f)	13.39 13.84		
7	9/23/2014 9/23/2014	MW-05S MW-05D	14.79 13.18	29.45 26.50	(d) (d)	14.66 13.32	16.50 	No

MLLW = Mean low low water.

- (a) Below top of PVC well casing.
- (b) Short-term hydraulic control goal is 15.5 ft along the majority of the cutoff wall alignment and 16.5 ft adjacent to Budd Inlet.
- (c) Well LW-3 casing modified and re-surveyed January 2009. On 7/28/10, the well casing at LW-3 cut down 0.2 ft to make room for new well monument lid. Elevation was adjusted from 20.03 to 19.83.
- (d) Wells MW-02S, MW-02D, MW-05S, and MW-05D were modified during construction activities and re-surveyed in February 2009.
- (e) MW-02D and MW-02S inner north rim elevations were modified in September 2011.
- (f) On 12/8/11, the inner well casing was cut down at MW-01D by 0.15 ft. The outer casing was cut down corresponding amount. New MW-01D measuring point elevation is 21.72 ft MLLW.

NOTE: Groundwater elevations determined by subtracting depth to groundwater below top of casing (ft) from top of well casing elevation (MLLW, ft).

TABLE 2 SUMMARY OF CURRENT ANALYTICAL RESULTS GROUNDWATER COMPLIANCE MONITORING CASCADE POLE SITE PORT OF OLYMPIA, WASHINGTON

POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) (μg/L) EPA Method SW8270D / SW8270D-SIM Naphthalene	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U				9/24/2014	9/23/2014	ZF85A 10/16/2014	ZB62F 9/23/2014	ZB62L 9/24/2014	PZ-12 ZB62K 9/24/2014	Cleanup Screening Levels (a)	
Naphthalene 4900 2.7 5.9 1.0 U NA 1.0 U 3.8 0.539 2-Methylnaphthalene 1.0 U 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U Acenaphthylene 1.0 U 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U Acenaphthene 1.0 U 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U Dibenzofuran 1.0 U 1.0 U 1.0 U NA 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U										I PAHs) (μg/L)	POLYCYCLIC AROMATIC HYDROCARBONS (
2-Methylnaphthalene 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U Acenaphthylene 1.0 U <	1.0 U 1.0 U 1.0 U 1.0 U										1	EPA Method SW8270D / SW8270D-SIM
Acenaphthylene 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 1.0 U 0.100 U 1.0 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 1.0 U 0.100 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 1.0 U 0.100 U 0	1.0 U 1.0 U										4900	Naphthalene
Acenaphthene 1.0 U												2-Methylnaphthalene
Dibenzofuran 1.0 U 1.0												
The contract of the contract	1.0 U 1.0 U	1.0 U	1.0 U	0.100 U 1.0						1.0 U		
Pentachlorophenol 3 10 UJ 10 UJ 10 UJ NA 10 UJ 10 UJ 10 UJ 0.100 U Phenanthrene 1.0 U 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U Anthracene 1.0 U 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U Fluoranthene 1.0 U 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U Pyrene 2600 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U	1.0 U 1.0 U											Dibenzofuran
Phenanthrene 1.0 U 0.100 U	1.0 U 1.0 U											
Anthracene 1.0 U 0.100 U <td>10 UJ 10 U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td>	10 UJ 10 U										3	
Fluoranthene 1.0 U 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U Pyrene 2600 1.0 U 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U	1.0 U 1.0 U											
Pyrene 2600 1.0 U 1.0 U NA 1.0 U 1.0 U 0.100 U	1.0 U 1.0 U											
	1.0 U 1.0 U											
	1.0 U 1.0 U										2600	
Benzo(a)Anthracene 0.10 U 0.10 U 0.11 U NA 0.11 U 0.10 U 0.100 U	0.12 U 0.11 U											
Chrysene 0.10 U 0.10 U 0.11 U NA 0.11 U 0.10 U 0.100 U	0.12 U 0.11 U											•
Benzo(a)Pyrene 0.10 U 0.10 U 0.11 U NA 0.11 U 0.10 U 0.100 U	0.12 U 0.11 U											() ,
Benzo(g,h,i)Perylene 1.0 U 1.0 U 1.0 U 1.0 U 0.100 U	1.0 U 1.0 U											(6, , ,
1-Methylnaphthalene 1.0 U 1.0 U NA 1.0 U 1.0 U 0.168	1.0 U 1.0 U											
Total Benzofluoranthenes 0.10 U 0.10 U 0.11 U NA 0.11 U 0.10 U 0.100 U	0.12 U 0.11 U											
cPAH TEQ (b) 0.1 (c) ND ND NA ND ND ND	ND ND											()
cPAH TEQ (b) (Using 1/2 RL for ND) 0.1 (c) 0.071 0.071 0.078 NA 0.078 0.071 0.071	0.085 0.078	0.085	0.085	0.071 0.08	0.071	0.078	NA	0.078	0.071	0.071	0.1 (c)	cPAH TEQ (b) (Using 1/2 RL for ND)
PENTACHLOROPHENOL (μg/L)												PENTACHLOROPHENOL (µg/L)
EPA Method SW8041												EPA Method SW8041
Pentachlorophenol 3 0.25 U 0.25 U 0.25 U NA 0.25 U 0.25 U	0.25 U 0.25 U	0.25 U	0.25 U	0.29	0.25 U	0.25 U	NA	0.25 U	0.25 U	0.25 U	3	Pentachlorophenol
PETROLEUM HYDROCARBONS												PETROLEUM HYDROCARBONS
Method NWTPH-G (µg/L)												
Gasoline 1,000 250 U 250 U NA 250 U 250 U 189	250 U 250 U	250 U	250 U	189 250	250 U	250 U	NA	250 U	250 U	250 U	1,000	
Method NWTPH-Dx (µg/L)												Method NWTPH-Dy (ug/L)
Diesel 500 100 U 100 U 110 U 100 U 100 U 247	100 U 100 U	100 11	100 11	247 100	100 H	100 11	100 11	110	100 11	100 11	500	
Motor Oil 500 200 U 200 U 200 U 200 U 200 U 500 U												
S00	200 U 200 U	200 0	200 0	200 0	200 0	200 0	200 0	070				

TABLE 2 SUMMARY OF CURRENT ANALYTICAL RESULTS GROUNDWATER COMPLIANCE MONITORING CASCADE POLE SITE PORT OF OLYMPIA, WASHINGTON

	Cleanup Screening Levels (a)	MW-01S ZB62M 9/24/2014	MW-02S ZB62A 9/23/2014	MW-05S ZB62B 9/23/2014	Dup of MW-05S PZ-30 ZB62C 9/23/2014	MW-01D ZB62N 9/24/2014	MW-02D ZB62I 9/23/2014	MW-05D ZB62J 9/23/2014	CW-13 ZB62H 9/23/2014
POLYCYCLIC AROMATIC HYDROCARBONS (I PAHs) (μg/L)								
EPA Method SW8270D / SW8270D-SIM									
Naphthalene	4900	10,000	1.0 U	1.7	1.4	1.9	1.0 U	1.1	1.0 U
2-Methylnaphthalene		550	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acenaphthylene		10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.3	1.0 U	1.0 U
Acenaphthene		240	1.0	8.6	9.4	1.0 U	3.8	2.5	1.0 U
Dibenzofuran		71	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Fluorene		66	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0 U
Pentachlorophenol	3	4,900 J	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
Phenanthrene		68	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Anthracene		17	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Fluoranthene		10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Pyrene	2600	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzo(a)Anthracene		0.83	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.11 U	0.11 U
Chrysene		0.82	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.11 U	0.11 U
Benzo(a)Pyrene		0.3 U	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.11 U	0.11 U
Benzo(g,h,i)Perylene		10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1-Methylnaphthalene Total Benzofluoranthenes		450	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 0.11 U
	0.4(1)	0.55 0.146	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.11 U	
cPAH TEQ (b)	0.1 (c)	0.146	ND 0.078	ND 0.078	ND	ND 0.078	ND 0.078	ND 0.078	ND 0.078
cPAH TEQ (b) (Using 1/2 RL for ND)	0.1 (c)	0.326	0.078	0.078	0.085	0.078	0.078	0.078	0.078
PENTACHLOROPHENOL (μg/L) EPA Method SW8041									
Pentachlorophenol	3	NA	0.83	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
PETROLEUM HYDROCARBONS Method NWTPH-G (μg/L) Gasoline	1,000	52, 000	250 U	250 U	250 U	250 U	250 U	250 U	250 U
	,	, , , , , , ,							
Method NWTPH-Dx (μg/L)									
Diesel	500	11,000	100 U	100 U	100 U	100 U	100 U	100 U	100 U
Motor Oil	500	690	200 U	200 U	200 U	400	200 U	200 U	200 U
Creosote Oil	500	59,000	100 U	100	130	290	130	100 U	100 U

μg/L = micrograms per liter

U = Indicates the compound was undetected at the given reporting limit.

Bold indicates detected compound. Box indicates exceedance of screening levels.

Box indicates exceedance of screening level.

SIM = select ion monitoring

EPA = U.S. Environmental Protection Agency

MTCA = Model Toxics Control Act

RL = Reporting Limit

WAC = Washington Administrative Code

cPAH = carcinogenic polycyclic aromatic hydrocarbon

PCP = pentachlorophenol

NWTPH-Dx = total petroleum hydrocarbons diesel range

NWTPH-Gx = TPH gasoline range

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

ND = Not Detected.

 ⁽a) Groundwater screening levels are MTCA Method B for marine surface water for cPAHs and PCP; MTCA Method A for TPH-G/TPH-Dx.

⁽b) TEQ = toxicity equivalency factor as described in WAC 173-340-708 (8).

⁽c) cPAH cleanup screening levels based on practical quantitation limit (PQL) for individual cPAHs.

Laboratory Reports

2221 Ross Way • Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com

7/1/2014

Port of Olympia Chris Kimmel 915 Washington St. N.E.

Olympia, WA 98501

Project: Cascade Pole

Client ID: LW-3-20140611

Sample Matrix: Water Date Sampled: 6/11/2014 Date Received: 6/12/2014 Spectra Project: 2014060297

Spectra Number:

<u>Analyte</u>	<u>Results</u>	<u>Units</u>	<u>Method</u>	<u>Analyte</u>	Results	<u>Units</u>	<u>Method</u>
Diesel**	247**	μg/L	NWTPH-D	Benzo(ghi)PeryleneSIM	< 0.100	μg/L	SW846 8270D-
Oil	<500	μg/L	NWTPH-D				SIM
Gasoline*	189	μg/L	NWTPH-G	Benzo(k)FluorantheneSIM	<0.100	μg/L	SW846 8270D- SIM
1-MethylnaphthaleneSIM	0.168	μg/L	SW846 8270D- SIM	ChryseneSIM	<0.100	μg/L	SW846 8270D- SIM
2-MethylnaphthaleneSIM	<0.100	μg/L	SW846 8270D- SIM	Dibenz(a,h)AnthraceneSIM	<0.100	μg/L	SW846 8270D- SIM
AcenaphtheneSIM	<0.100	μg/L	SW846 8270D- SIM	FluorantheneSIM	<0.100	μg/L	SW846 8270D- SIM
AcenaphthyleneSIM	<0.100	μg/L	SW846 8270D- SIM	FluoreneSIM	<0.100	μg/L	SW846 8270D- SIM
AnthraceneSIM	<0.100	μg/L	SW846 8270D- SIM	Indeno(1,2,3-cd)PyreneSIM	<0.100	μg/L	SW846 8270D- SIM
Benzo(a)AnthraceneSIM	<0.100	μg/L	SW846 8270D- SIM	NaphthaleneSIM	0.539	μg/L	SW846 8270D- SIM
Benzo(a)PyreneSIM	<0.100	μg/L	SW846 8270D- SIM	PentachlorophenolSIM	<0.100	μg/L	SW846 8270D- SIM
Benzo(b)FluorantheneSIM	<0.100	μg/L	SW846 8270D- SIM	PhenanthreneSIM	<0.100	μg/L	SW846 8270D- SIM
				PyreneSIM	<0.100	μg/L	SW846 8270D- SIM
<u>Surrogate</u>	Recovery		<u>Method</u>	<u>Surrogate</u>	Recovery		<u>Method</u>
p-Terphenyl	131		NWTPH-D	4-Bromofluorobenzene	125		NWTPH-G
Toluene-d8	110		NWTPH-G	2-FluorobiphenylSIM	69		846 8270D-SIM
Nitrobenzene-d6SIM	96	SW	7846 8270D-SIM	2,4,6-TribromophenolSIM	83	SW	846 8270D-SIM

^{*}Gasoline-range organics do not appear to be true gasoline, but rather two distinct compounds: Toluene and Indane.

SW846 8270D-SIM

Pentachlorophenol result of <0.100 confirmed by Method SW 846-8041.

90

Sample analyzed by Method 8270-D in both scan and SIM modes for PAH's and Pentachlorophenol, as requested, to provide broad calibration range and lowest reporting limits.

SPECTRA LABORATORIES

p-Terphenyl-d14--SIM

Steve Hibbs, Laboratory Manager

^{**}Sample contains one distinct peak within the diesel range. GC Mass Spec analysis indicates the presense of retene, CAS# 483-65-8.

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

June 27, 2014

Port of Olympia 915 Washington St. N.E. Olympia, WA 98501 Spectra Project # 2014060297
Sample Spiked: Method Blank
Date Extracted: 6/17/2014
Date Analyzed: 6/18/2014
Units: ug/L
Applies to Spectra #'s: #1

GCMS Semi-Volatile Organic Analysis Method 625/8270 Blank Spike (LCS) Results

Compound	Sample	Spike	MS	MS
	Conc.	Added	Conc.	%Rec
Phenol	<2.50	75	52.6	70
2-Chlorophenol	<2.50	75	46.9	63
1,4-Dichlorobenzene	<2.50	50	25.0	50
N-Nitroso-Di-N-Propylamine	<2.50	50	41.3	83
1,2,4-Trichlorobenzene	<2.50	50	27.0	54
4-Chloro-3-Methylphenol	<2.50	75	62.3	83
Acenaphthene	<1.00	50	31.2	62
2,4-Dinitrotoluene	<2.50	50	30.5	61
4-Nitrophenol	<2.50	75	63.6	85
Pentachlorophenol	<2.50	75	51.5	69
Pyrene	<1.00	50	37.7	75

Surrogates	MS%Rec
2-Fluorophenol	72
Phenol-d5	86
Nitrobenzene-d5	96
2-Fluorobiphenyl	69
2,4,6-Tribromophenol	83
p-Terphenyl-d14	90

Steven G. Hibbs

Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

June 27, 2014

Port of Olympia 915 Washington St. N.E. Olympia, WA 98501

Project: Cascade Pole Sample matrix: Water Spectra Project: 2014060297 Method 625/8270-SIM

Date Extracted: Date Analyzed: Applies to Samples: 06/17/14 06/19/14

< = less than

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

Method Blank

Compound	Blank Result, ug/L
Naphthalene	<0.10
2-Methylnaphthalene	<0.10
1-Methylnaphthalene	<0.10
Acenaphthylene	<0.10
Acenaphthene	<0.10
Fluorene	<0.10
Phenanthrene	<0.10
Anthracene	<0.10
Fluoranthene	<0.10
Pyrene	<0.10
Benzo(a)Anthracene	<0.10
Chrysene	<0.10
Benzo(b)Fluoranthene	<0.10
Benzo(k)Fluoranthene	<0.10
Benzo(a)Pyrene	<0.10
Indeno(1,2,3-cd)Pyrene	<0.10
Dibenzo(a,h)Anthracene	<0.10
Benzo(g,h,i)Perylene	<0.10
Pentachlorophenol	<0.10
SURROGATE RECOVERIES	%Rec
Nitrobenzene-d5	100
2-Fluorobiphenyl	65
p-Terphenyl-d14	95
2,4,6-Tribromophenol	84

Steven G. Hibbs Laboratory Manager

www.spectra-lab.com info@spectra-lab.com (253) 272-4850 Fax (253) 572-9838 2221 Ross Way, Tacoma, WA 98421

SPECIAL INSTRUCTIONS/COMMENTS:

ther Runall Sample for ACP using onisther runger by godi \$270, IF VES-14 = NP Return Samples: Y (N)

6
<u></u>
່ເກ
$\ddot{\Rightarrow}$
<u></u>
li .
<u></u>
$\stackrel{\smile}{=}$
Z
4
I
O
1

RUSH SPECTRA PROJECT 20/4060 STANDARD

ð

OTHER

METALS

ORGANICS

HYDROCARBONS

8

PROJECT: CASCAL

CLIENT: Part of ONIMAGE

CONTACT: Chris Kimme!

SAMPLED BY: Sieur Mott

PHONE:

ADDRESS:

ADDRESS

(PCP (8041) SOLIDS (SPECIFY)

TUIO9 HSAJF **YTIGI8AUT** TX/TOX/EOX St06/0t06 Hd

BOD

929

TCLP METALS (SPECIFY)

TOLP METALS RORA 8

8 AROFI SLATEM LATOT

8560 CHLOR SOLVENTS

CPAH SI 8082/608 PCB

AMP/HA9 07S8 8270-625 SEMI VOA

AOV 4S8/08S8

1664 HEM (FOG) (H9T) MEH-TDS 4881

> **NWTPH-Dx** D-H9TWN B-H9TWN/X3TB

> > имтрн-нспр

NUMBER OF CONTAINERS

Prefer FAX or e-MAIL

e-MAIL: CKimme 10 land auint. wo

PURCHASE ORDER #

SAMPLE ID

BTEX

MATRIX

SAMPLED SAMPLED

Hro

C/N/H 1703

LW3-20240611

ထ

LO.

ന 4 ω o

TOTAL METALS (SPECIFY)

Payment Terms: Net 30 days. Past due accounts subject to 1 1/2% per month interest. Customer agrees to pay all costs of collection including reasonable

attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co., WA venue. Spectra Laboratories, LLC

41/2/19

Siem Mots

DATE

COMPANY

PRINTED NAME

SIGNATURE

RELINQUISHED BY

Courier Client

LAB USE ONLY

9

Shipped Via: Fed Ex

UPS

US Mail

RECEIVED BY

Envelope None

Box

Shipping Container:

RELINQUISHED BY

RECEIVED BY

Intact: Y

Custody Seals: Y_N

Tracking #

Cooler Temp. 9.3 Sample Temp. 9.7

October 8, 2014

Chris Kimmel Landau Associates, Inc. 130 2nd Avenue S. Edmonds, WA 98020

RE: Project: Port of Olympia, 21039.110.111

ARI Job No: ZB62

Dear Chris:

Please find enclosed the original Chain-of-Custody record (COC), sample receipt documentation, and final results for the project referenced above. Analytical Resources, Inc. accepted fifteen water samples and a trip blank in good condition on September 24, 2014.

The samples were analyzed for NWTPH-Gx, NWTPH-Dx, cPAHs by method SW8270 SIM, PAHs by method SW8270, and pentachlorophenol on select samples by method SW8041, as requested on the COC.

Please refer to the Case Narrative for details regarding requested analyses.

An electronic copy of this report and all associated ARI raw data will be kept on file with ARI. Should you have any questions or problems, please feel free to contact me at any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager

-For-

Kelly Bottem

Client Services Manager

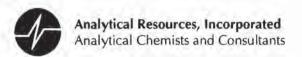
(206) 695-6211

Enclosures

Chain-of-Custody Record

4/16	of
9 (2	9
Date	Page

meters Turnaround Time	XStandard Accelerated			/ / Observations/Comments	X Allow water samples to settle, collect	aliquot from clear portion	X NWTPH-Dx - run acid wash/silica gel cleanup		run samples standardized to	product	Analyze for EPH if no specific	product identified	VOC/BTEX/VPH (soll):	non-preserved	preserved w/sodium bisulfate	Freeze upon receipt	Dissolved metal water samples field filtered	Other Run all Semons for PCP	70. It	Then your PCP by 80411		Shipment OND OFF	Received by	Signature	Printed Name	Company	Date
Testing Parameters	CIP CATALOGY SANDERS	18 18 18 18 18 18 18 18 18 18 18 18 18 1	THE ST.	Hd Hd	1	XXXXX	XXXX	XXXXX	XXXXX	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXX	XXXX	XXXXX	XXXX		XXXX			Relinquished by	Signature	Printed Name	Company	
Project No. 21034. 110. 111	le, Dry Season		seh /2	No. of Containers	X		X 0 171	X 01 / 1871	(61) 10 X	1720 10 X	1422 10 10 1	1123 1 (0 X)	X 0 / SIH	1231 / 10 7	1063 10 XX	1030	Z 0 1	X 01 9811	X - 1 - 1	924 H20 10 X		WITH ICE	Received by	Signature Transfer the the	Printed Name	Company	1321 1350
Project Name Port of Alarmoica	Project Location/Event Cascade Pole, Dry Season	Project Contact Chris Kimme	Send Results To Chris Kimmel, Anne Halvon	Sample I.D. Date	MW-025-20140923 9/23/14	. ^	12-30-20140923	.w-3-20140923	W-4R-20140923	3	3		MW-020-20140923	4W-050-20140923 1	PZ-12-20140924 9/24/14	PZ -13 - 20140924	MW-015-20140924	MW-010-20140924	7KS 9/9/14	12-19-201-1092-1 9/24/H	Openion Observed Handling	or Storage Requirements (00/6/1			Arkovi. Ler		9/24/14 - 1352


WHITE COPY - Project File

ZB62:00002

PINK COPY - Client Representative

YELLOW COPY - Laboratory

Rev 8/09

Cooler Receipt Form

ARI Client:	dav	Project Name:	Port	of O	lymp	16
COC No(s).		Delivered by: Fed-E	x UPS Cour	ier Hand Delive	red Other:	
Assigned ARI Job No:	ZB62)	Tracking No.				NA.
Preliminary Examination Phase): ::					
Were intact, properly signed and	d dated custody seals attached to	the outside of to cooler?		,	/ES	ad
	with the cooler?				ES	NO
	illed out (ink, signed, etc.)				ES	NO
	recommended 2 0-6.0 °C for chem		4.5 5	4 36	1/3	7.5
If cooler temperature is out of co	ompliance fill out form 00070F			Temp Gun ID#	908	7195
Cooler Accepted by:	7	Date: 4.24-1	V Time.	135	2	
	Complete custody forms a					
Log-In Phase:						
	led in the cooler?	0			YES	NO
What kind of packing material	was used? Bubble Wrap	Wellce Gel Packs Bag	gies Foand	Block Paper O		
	priate)?			NA	YES	NO
	dual plastic bags?				YES	NO
	ndition (unbroken)?				YES	NO
	and legible?				YES	NO
	ted on COC match with the number				YES	NO
	ree with custody papers?				YES	NO
	the requested analyses?			-	XES	NO
	require preservation? (attach pres		VOCs)	(NA)	YES	NO
	ibbles?			NA	YES	NO
	e sent in each bottle?				YES	NO
[1] [1] [1] 이 시민([1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	at ARI			NA	9.9	-101
Was Sample Split by ARI:	YES Date/Time	Equipmer	nt:		Split by:	
Samples Logged by:	13 Date:	9. 24-14	Time:	- 1	415	
	** Notify Project Manager	of discrepancies or cor	ncerns **			
Sample ID on Bottle	Sample ID on COC	Sample ID on B	ottle	Sampl	e ID on CC	ОС
Additional Notes, Discrepanci	ies, & Resolutions:		-			
	(118 25	. 1			
11		718 251 3 4 pB				
Ву: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ate. 9-74, 14					
Small Air Bubbles Peabub	DARGE AN BUDDIES	Small → "sm" (<2 mm)	-			
+-2mm 2-4 m		Peabubbles → "pb" (2 to				
•		Large → "lg" (4 to < 6 mr				
		Headspace → "hs" (>6 n	nm)			

0016F 3/2/10 Cooler Receipt Form

Revision 014

Case Narrative

Project: 21039.110.111 ARI Job No.: ZB62 October 8, 2014 Page 1 of 2

Sample Receipt

Please find enclosed the original Chain of Custody (COC) record and analytical results for the project referenced above. Analytical Resources, Inc. accepted fifteen water samples and a trip blank in good condition on February 20, 2014. The samples were received at cooler temperatures between 2.0 and 5.3°C. Please see the Cooler Receipt Form for further details. Per Landau Associates, select samples were allowed to settle and sample volume was collected from the clear portion.

The following tests were performed on selected samples, as requested on the Chain of Custody.

Semivolatile Organics by method 8270D Water

The samples were extracted on 9/30/14. The samples were analyzed on 10/2/14 and 10/3/14 - within the method recommended holding time.

Samples: There were no anomalies associated with these samples.

Surrogates: The surrogate percent recovery of 2,4,6-Tribromophenol fell outside the control limits low for sample MW-05D-20140923. All other percent recoveries were within control limits. No corrective action was taken.

LCS/LSCD (s): The LCS and LCSD percent recoveries were within control limits.

Method Blank: The method blank was free of contamination.

Continuing Calibrations: The continuing calibrations (CCALs) on 10/2/14 and 10/3/14 fell outside the 20% control limit low for Pentachlorophenol. All detected results for this compound have been flagged with a "Q" qualifier. No further corrective action was taken.

SIM cPAHs by method 8270-SIM Water

The samples were extracted on 9/26/14. The extracts were analyzed on 9/30/14 and 10/1/14 - within the method recommended holding time.

Samples: There were no anomalies associated with these samples.

Surrogates: The surrogate percent recoveries were within control limits.

LCS/LSCD (s): The LCS and LCSD percent recoveries were within control limits.

Method Blank: The method blank was free of contamination.

Continuing Calibrations: The continuing calibrations were within control limits.

Case Narrative

Project: 21039.110.111 ARI Job No.: ZB62 October 8, 2014 Page 2 of 2

PCP Only by method 8041

The samples were extracted on 9/27/14 and analyzed on 10/6/14 - within the method recommended holding time.

Samples: There were no anomalies associated with these samples.

Surrogates: The surrogate percent recoveries were within control limits.

LCS/LSCD (s): The LCS and LCSD percent recoveries were within control limits.

Method Blank: The method blank was free of contamination.

Continuing Calibrations: The continuing calibrations were within control limits.

NWTPH-Dx

The samples were extracted on 9/26/14 and analyzed on 10/3/14 - within the method recommended holding time.

Samples: There were no anomalies associated with these samples.

Surrogates: The surrogate percent recoveries were within control limits.

LCS/LSCD (s): The LCS and LCSD percent recoveries were within control limits.

Method Blank: The method blank was free of contamination.

Continuing Calibrations: The continuing calibrations were within control limits.

NWTPH-Gx

The samples were analyzed on 10/2/14, 10/3/14, and 10/6/14 - within the method recommended holding time.

Samples: There were no anomalies associated with these samples.

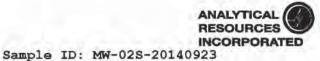
Surrogates: The surrogate percent recoveries were within control limits.

LCS/LSCD (s): The LCS and LCSD percent recoveries were within control limits.

Method Blank: The method blank was free of contamination.

Continuing Calibrations: The continuing calibrations were within control limits.

Sample ID Cross Reference Report


ARI Job No: ZB62

Client: Landau Associates, Inc. Project Event: 21039.110.111 Project Name: Port of Olympia

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW-02S-20140923	ZB62A	14-19783	Water	09/23/14 13:11	09/24/14 13:52
2.	MW-05S-20140923	ZB62B	14-19784	Water	09/23/14 11:35	09/24/14 13:52
3.	PZ-30-20140923	ZB62C	14-19785	Water	09/23/14 11:41	09/24/14 13:52
4.	LW-3-20140923	ZB62D	14-19786	Water	09/23/14 17:31	09/24/14 13:52
5.	LW-4R-20140923	ZB62E	14-19787	Water	09/23/14 16:17	09/24/14 13:52
6.	PZ-17-20140923	ZB62F	14-19788	Water	09/23/14 17:20	09/24/14 13:52
7.	PZ-18-20140923	ZB62G	14-19789	Water	09/23/14 14:22	09/24/14 13:52
8.	CW-13-20140923	ZB62H	14-19790	Water	09/23/14 11:23	09/24/14 13:52
9.	MW-02D-20140923	ZB62I	14-19791	Water	09/23/14 14:15	09/24/14 13:52
10.	MW-05D-20140923	ZB62J	14-19792	Water	09/23/14 12:31	09/24/14 13:52
11.	PZ-12-20140924	ZB62K	14-19793	Water	09/24/14 10:03	09/24/14 13:52
12.	PZ-13-20140924	ZB62L	14-19794	Water	09/24/14 10:30	09/24/14 13:52
13.	MW-01S-20140924	ZB62M	14-19795	Water	09/24/14 11:13	09/24/14 13:52
14.	MW-01D-20140924	ZB62N	14-19796	Water	09/24/14 11:36	09/24/14 13:52
15.	PZ-19-20140924	ZB620	14-19797	Water	09/24/14 09:24	09/24/14 13:52
16.	Trip Blanks	ZB62P	14-19798	Water	09/23/14	09/24/14 13:52

Printed 09/24/14 Page 1 of 1

ZB62 00006

Page 1 of 1

Lab Sample ID: ZB62A

LIMS ID: 14-19783 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/02/14 19:25 Instrument/Analyst: NT6/JZ QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	< 1.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	1.0
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

THE REST. IN ADDRESS OF A SHAPE OF A SHAPE OF THE PARTY O	Market Control
2-Fluorobiphenyl	65.2%
d14-p-Terphenyl	57.6%
2,4,6-Tribromophenol	67.5%

Page 1 of 1

Lab Sample ID: ZB62B

LIMS ID: 14-19784 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/02/14 19:59 Instrument/Analyst: NT6/JZ SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

91-20-3 91-57-6 208-96-8	Naphthalene 2-Methylnaphthalene	1.0	1.7
		1 0	
200-06-0		1.0	< 1.0 U
200-30-0	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	8.6
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	61.6%
d14-p-Terphenyl	57.2%
2,4,6-Tribromophenol	64.3%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62C

LIMS ID: 14-19785 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/02/14 20:32 Instrument/Analyst: NT6/JZ

Sample ID: PZ-30-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	1.4
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	9.4
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	65.6%
d14-p-Terphenyl	63.2%
2,4,6-Tribromophenol	72.8%

Page 1 of 1

Lab Sample ID: ZB62D

LIMS ID: 14-19786 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/02/14 21:06 Instrument/Analyst: NT6/JZ Sample ID: LW-3-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	< 1.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	68.0%
d14-p-Terphenyl	56.4%
2.4.6-Tribromophenol	83.7%

Page 1 of 1

Lab Sample ID: ZB62E

LIMS ID: 14-19787 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/02/14 21:40 Instrument/Analyst: NT6/JZ Sample ID: LW-4R-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	< 1.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	61.6%
d14-p-Terphenyl	54.4%
2,4,6-Tribromophenol	67.7%

FORM I ZB62:00011

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62F

LIMS ID: 14-19788 Matrix: Water

Data Release Authorized: /

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/02/14 22:14 Instrument/Analyst: NT6/JZ Sample ID: PZ-17-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	< 1.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	66.8%
d14-p-Terphenyl	74.4%
2,4,6-Tribromophenol	69.3%

FORM I ZB62:00012

Page 1 of 1

Lab Sample ID: ZB62G

LIMS ID: 14-19789 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/02/14 22:47 Instrument/Analyst: NT6/JZ Sample ID: PZ-18-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	< 1.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a) pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	63.2%
d14-p-Terphenyl	67.6%
2,4,6-Tribromophenol	72.3%

Page 1 of 1

Lab Sample ID: ZB62H LIMS ID: 14-19790

Matrix: Water

Data Release Authorized:

Reported: 10/06/14

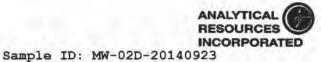
Date Extracted: 09/30/14 Date Analyzed: 10/02/14 23:21 Instrument/Analyst: NT6/JZ

SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14


Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	< 1.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	54.4%
d14-p-Terphenyl	54.4%
2,4,6-Tribromophenol	63.2%

Page 1 of 1

Lab Sample ID: ZB62I

LIMS ID: 14-19791 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 12:47 Instrument/Analyst: NT6/JZ

QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	< 1.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	2.3
83-32-9	Acenaphthene	1.0	3.8
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	1.0
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	4.0
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	55.6%
d14-p-Terphenyl	68.8%
2,4,6-Tribromophenol	62.9%

Page 1 of 1

Lab Sample ID: ZB62J

LIMS ID: 14-19792 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 13:22 Instrument/Analyst: NT6/JZ Sample ID: MW-05D-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	1.1
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	2.5
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	54.4%
d14-p-Terphenyl	73.6%
2,4,6-Tribromophenol	46.1%

FORM I

Page 1 of 1

Lab Sample ID: ZB62K

LIMS ID: 14-19793 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 13:56 Instrument/Analyst: NT6/JZ QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	2.7
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	55.2%
d14-p-Terphenyl	55.6%
2,4,6-Tribromophenol	59.5%

ANALYTICAL RESOURCES INCORPORATED
Sample ID: PZ-13-20140924

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62L

LIMS ID: 14-19794 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 14:31 Instrument/Analyst: NT6/JZ

SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	5.9
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	63.2%
d14-p-Terphenyl	70.4%
2,4,6-Tribromophenol	54.7%

M I ZB62:00018

Page 1 of 1

Lab Sample ID: ZB62M LIMS ID: 14-19795

Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 16:13 Instrument/Analyst: NT6/JZ Sample ID: MW-01S-20140924 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 10.0

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	10	3,100 ES
91-57-6	2-Methylnaphthalene	10	550
208-96-8	Acenaphthylene	10	< 10 U
83-32-9	Acenaphthene	10	240
132-64-9	Dibenzofuran	10	71
86-73-7	Fluorene	10	66
87-86-5	Pentachlorophenol	100	6,000 ESQ
85-01-8	Phenanthrene	10	68
86-74-8	Carbazole	10	100
120-12-7	Anthracene	10	17
206-44-0	Fluoranthene	10	< 10 U
129-00-0	Pyrene	10	< 10 U
56-55-3	Benzo(a)anthracene	10	< 10 U
218-01-9	Chrysene	10	< 10 U
50-32-8	Benzo(a)pyrene	10	< 10 U
193-39-5	Indeno(1,2,3-cd)pyrene	10	< 10 U
53-70-3	Dibenz(a,h)anthracene	10	< 10 U
191-24-2	Benzo(g,h,i)perylene	10	< 10 U
90-12-0	1-Methylnaphthalene	10	450
TOTBFA	Total Benzofluoranthenes	20	< 20 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	65.2%
d14-p-Terphenyl	55.6%
2,4,6-Tribromophenol	74.9%

M I ZB52:00019

Page 1 of 1

Lab Sample ID: ZB62M

LIMS ID: 14-19795 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 16:54 Instrument/Analyst: NT6/JZ Sample ID: MW-01S-20140924 DILUTION

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 100

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	100	8,200 E
91-57-6	2-Methylnaphthalene	100	600
208-96-8	Acenaphthylene	100	< 100 U
83-32-9	Acenaphthene	100	240
132-64-9	Dibenzofuran	100	< 100 U
86-73-7	Fluorene	100	< 100 U
87-86-5	Pentachlorophenol	1,000	4,900 Q
85-01-8	Phenanthrene	100	< 100 U
86-74-8	Carbazole	100	110
120-12-7	Anthracene	100	< 100 U
206-44-0	Fluoranthene	100	< 100 U
129-00-0	Pyrene	100	< 100 U
56-55-3	Benzo(a) anthracene	100	< 100 U
218-01-9	Chrysene	100	< 100 U
50-32-8	Benzo(a)pyrene	100	< 100 U
193-39-5	Indeno(1,2,3-cd)pyrene	100	< 100 U
53-70-3	Dibenz(a,h)anthracene	100	< 100 U
191-24-2	Benzo(g,h,i)perylene	100	< 100 U
90-12-0	1-Methylnaphthalene	100	480
TOTBFA	Total Benzofluoranthenes	200	< 200 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	D
d14-p-Terphenyl	D
2,4,6-Tribromophenol	D

FORM I ZB62:00020

Page 1 of 1

Lab Sample ID: ZB62M

LIMS ID: 14-19795 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 17:28 Instrument/Analyst: NT6/JZ

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia

DILUTION2

21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 300

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	300	10,000
91-57-6	2-Methylnaphthalene	300	640
208-96-8	Acenaphthylene	300	< 300 U
83-32-9	Acenaphthene	300	< 300 U
132-64-9	Dibenzofuran	300	< 300 U
86-73-7	Fluorene	300	< 300 U
87-86-5	Pentachlorophenol	3,000	5,300 Q
85-01-8	Phenanthrene	300	< 300 U
86-74-8	Carbazole	300	< 300 U
120-12-7	Anthracene	300	< 300 U
206-44-0	Fluoranthene	300	< 300 U
129-00-0	Pyrene	300	< 300 U
56-55-3	Benzo(a) anthracene	300	< 300 U
218-01-9	Chrysene	300	< 300 U
50-32-8	Benzo(a)pyrene	300	< 300 U
193-39-5	Indeno(1,2,3-cd)pyrene	300	< 300 U
53-70-3	Dibenz(a,h)anthracene	300	< 300 U
191-24-2	Benzo(g,h,i)perylene	300	< 300 U
90-12-0	1-Methylnaphthalene	300	510
TOTBFA	Total Benzofluoranthenes	600	< 600 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	D
d14-p-Terphenyl	D
2.4.6-Tribromophenol	D

FORM I ZB62:00021

ANALYTICAL RESOURCES INCORPORATED Sample ID: MW-01D-20140924

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62N

LIMS ID: 14-19796 Matrix: Water

Data Release Authorized: /

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 15:05 Instrument/Analyst: NT6/JZ

SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	1.9
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	70.0%
d14-p-Terphenyl	76.8%
2.4.6-Tribromophenol	68.5%

Page 1 of 1

Lab Sample ID: ZB620

LIMS ID: 14-19797 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/03/14 15:39 Instrument/Analyst: NT6/JZ

Sample ID: PZ-19-20140924 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	3.8
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	52.8%
d14-p-Terphenyl	73.2%
2,4,6-Tribromophenol	58.9%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia 21039.110.111

Client ID		FBP	TPH	TBP TO	T OUT
MB-093014		58.8%	76.8%	57.1%	0
LCS-093014		73.6%	78.8%	83.2%	0
LCSD-093014		69.68	77.2%	80.0%	0
MW-02S-20140923	3	65.2%	57.6%	67.5%	0
MW-05S-20140923		61.6%	57.2%	64.3%	0
PZ-30-20140923		65.6%	63.2%	72.8%	0
LW-3-20140923		68.0%	56.4%	83.7%	0
LW-4R-20140923		61.6%	54.48	67.7%	0
PZ-17-20140923		66.8%	74.4%	69.3%	0
PZ-18-20140923		63.2%	67.6%	72.3%	0
CW-13-20140923		54.4%	54.4%	63.2%	0
MW-02D-20140923		55.6%	68.8%	62.9%	0
MW-05D-20140923	8.	54.4%	73.6%	46.1%*	1
PZ-12-20140924		55.2%	55.6%	59.5%	0
PZ-13-20140924		63.2%	70.4%	54.7%	0
MW-01S-20140924		65.2%	55.6%	74.9%	0
MW-01S-20140924	DL	D	D	D	0
MW-01S-20140924	RE	D	D	D	0
MW-01D-20140924		70.0%	76.8%	68.5%	0
PZ-19-20140924		52.8%	73.2%	58.9%	0

			LCS/MB LIMITS	QC LIMITS
(FBP)	=	2-Fluorobiphenyl	(33-120)	(33-120)
(TPH)	=	d14-p-Terphenyl	(28-130)	(28-130)
(TBP)	=	2,4,6-Tribromophenol	(52-131)	(52-131)

Prep Method: SW3520C

Log Number Range: 14-19783 to 14-19797

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 1 of 1

Sample ID: LCS-093014 LCS/LCSD

Lab Sample ID: LCS-093014

LIMS ID: 14-19783 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Date Extracted LCS/LCSD: 09/30/14 Sample Amount LCS: 500 mL

LCSD: 500 mL Final Extract Volume LCS: 0.50 mL Date Analyzed LCS: 10/02/14 13:10

LCSD: 0.50 mL

LCSD: 10/02/14 13:44 Instrument/Analyst LCS: NT6/JZ Dilution Factor LCS: 1.00 LCSD: NT6/JZ

LCSD: 1.00

GPC Cleanup: NO

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	20.1	25.0	80.4%	20.2	25.0	80.8%	0.5%
2-Methylnaphthalene	14.4	25.0	57.6%	13.7	25.0	54.8%	5.0%
Acenaphthylene	20.7	25.0	82.8%	21.4	25.0	85.6%	3.3%
Acenaphthene	22.3	25.0	89.2%	21.3	25.0	85.2%	4.6%
Dibenzofuran	16.3	25.0	65.2%	15.2	25.0	60.8%	7.0%
Fluorene	22.6	25.0	90.4%	22.1	25.0	88.4%	2.2%
Pentachlorophenol	61.4 Q	75.0	81.9%	68.6	Q 75.0	91.5%	11.1%
Phenanthrene	24.0	25.0	96.0%	24.5	25.0	98.0%	2.1%
Carbazole	25.4	25.0	102%	24.0	25.0	96.0%	5.7%
Anthracene	22.0	25.0	88.0%	24.0	25.0	96.0%	8.7%
Fluoranthene	22.6	25.0	90.4%	26.2	25.0	105%	14.8%
Pyrene	21.9	25.0	87.6%	22.3	25.0	89.2%	1.8%
Benzo(a) anthracene	24.2	25.0	96.8%	23.7	25.0	94.8%	2.1%
Chrysene	23.2	25.0	92.8%	23.7	25.0	94.8%	2.1%
Benzo(a) pyrene	26.2	25.0	105%	25.7	25.0	103%	1.9%
Indeno(1,2,3-cd)pyrene	24.4	25.0	97.6%	21.6	25.0	86.4%	12.2%
Dibenz(a,h)anthracene	26.5	25.0	106%	23.0	25.0	92.0%	14.1%
Benzo(g,h,i)perylene	21.0	25.0	84.0%	19.5	25.0	78.0%	7.4%
1-Methylnaphthalene	21.6	25.0	86.4%	21.4	25.0	85.6%	0.9%
Total Benzofluoranthenes	53.8	50.0	108%	52.5	50.0	105%	2.4%

Semivolatile Surrogate Recovery

	LCS	LCSD
2-Fluorobiphenyl	73.6%	69.6%
d14-p-Terphenyl	78.8%	77.2%
2,4,6-Tribromophenol	83.2%	80.0%

Results reported in µg/L RPD calculated using sample concentrations per SW846.

FORM III

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: MB-093014

LIMS ID: 14-19783 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Date Extracted: 09/30/14 Date Analyzed: 10/02/14 12:36 Instrument/Analyst: NT6/JZ

Sample ID: MB-093014 METHOD BLANK

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

21039.110.111

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	1.0	< 1.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	10	< 10 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U
TOTBFA	Total Benzofluoranthenes	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

2-Fluorobiphenyl	58.8%
d14-p-Terphenyl	76.8%
2,4,6-Tribromophenol	57.1%

FORM I ZB62:00026

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62A

LIMS ID: 14-19783

Matrix: Water Data Release Authorized:/

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 18:02

Instrument/Analyst: NT8/JZ

Sample ID: MW-02S-20140923

SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

Event: 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 450 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.11	< 0.11 U
218-01-9	Chrysene	0.11	< 0.11 U
50-32-8	Benzo(a) pyrene	0.11	< 0.11 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
53-70-3	Dibenz(a,h)anthracene	0.11	< 0.11 U
TOTBFA	Total Benzofluoranthenes	0.11	< 0.11 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.0% d14-Dibenzo(a,h)anthracene 32.7%

FORM I

Page 1 of 1

Lab Sample ID: ZB62B

LIMS ID: 14-19784 Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 18:29 Instrument/Analyst: NT8/JZ

Event: 21039.110.111 Date Sampled: 09/23/14 Date Received: 09/24/14

Project: Port of Olympia

QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Sample Amount: 450 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a) anthracene	0.11	< 0.11 U
218-01-9	Chrysene	0.11	< 0.11 U
50-32-8	Benzo(a)pyrene	0.11	< 0.11 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
53-70-3	Dibenz(a,h)anthracene	0.11	< 0.11 U
TOTBFA	Total Benzofluoranthenes	0.11	< 0.11 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	61.7%	
d14-Dibenzo(a,h)anthracene	52.3%	

Page 1 of 1

Lab Sample ID: ZB62C LIMS ID: 14-19785

Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 18:57 Instrument/Analyst: NT8/JZ

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia

SAMPLE

Event: 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 420 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a) anthracene	0.12	< 0.12 U
218-01-9	Chrysene	0.12	< 0.12 U
50-32-8	Benzo(a)pyrene	0.12	< 0.12 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.12	< 0.12 U
53-70-3	Dibenz(a,h)anthracene	0.12	< 0.12 U
TOTBFA	Total Benzofluoranthenes	0.12	< 0.12 U

Reported in ug/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.7% d14-Dibenzo(a,h)anthracene 63.7%

Page 1 of 1

Lab Sample ID: ZB62D

LIMS ID: 14-19786 Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 19:25 Instrument/Analyst: NT8/JZ Sample ID: LW-3-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia Event: 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 400 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.12	< 0.12 U
218-01-9	Chrysene	0.12	< 0.12 U
50-32-8	Benzo(a)pyrene	0.12	< 0.12 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.12	< 0.12 U
53-70-3	Dibenz(a,h)anthracene	0.12	< 0.12 U
TOTBFA	Total Benzofluoranthenes	0.12	< 0.12 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 69.7% d14-Dibenzo(a,h)anthracene 27.3%

FORM I ZB62:00030

Page 1 of 1

Lab Sample ID: ZB62E

LIMS ID: 14-19787 Matrix: Water

Data Release Authorized: 2

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 19:53

Instrument/Analyst: NT8/JZ

Sample ID: LW-4R-20140923

QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia Event: 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 450 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Analyte	LOQ	Result
Benzo(a)anthracene	0.11	< 0.11 U
Chrysene	0.11	< 0.11 U
Benzo(a) pyrene	0.11	< 0.11 U
Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
	0.11	< 0.11 U
Total Benzofluoranthenes	0.11	< 0.11 U
	Benzo(a) anthracene Chrysene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene	Benzo(a)anthracene 0.11 Chrysene 0.11 Benzo(a)pyrene 0.11 Indeno(1,2,3-cd)pyrene 0.11 Dibenz(a,h)anthracene 0.11

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 68.7% d14-Dibenzo(a,h)anthracene 64.3%

> FORM I ZB62:00031

ANALYTICAL RESOURCES INCORPORATED
Sample ID: PZ-17-20140923

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62F LIMS ID: 14-19788

Matrix: Water

Data Release Authorized: /

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 20:21 Instrument/Analyst: NT8/JZ

SAMPLE

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia

roject: Port of Olympia Event: 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 450 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.11	< 0.11 U
218-01-9	Chrysene	0.11	< 0.11 U
50-32-8	Benzo(a)pyrene	0.11	< 0.11 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
53-70-3	Dibenz(a,h)anthracene	0.11	< 0.11 U
TOTBFA	Total Benzofluoranthenes	0.11	< 0.11 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	61.3%	
d14-Dibenzo(a,h)anthracene	78.0%	

FORM I ZB62:00032

ANALYTICAL RESOURCES INCORPORATED Sample ID: PZ-18-20140923

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62G LIMS ID: 14-19789

Matrix: Water

Data Release Authorized:

Reported: 10/01/14

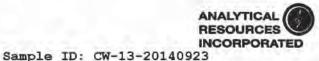
Date Extracted: 09/26/14 Date Analyzed: 09/30/14 20:49 Instrument/Analyst: NT8/JZ

SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia Event: 21039.110.111 Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 450 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00


CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.11	< 0.11 0
218-01-9	Chrysene	0.11	< 0.11 U
50-32-8	Benzo(a)pyrene	0.11	< 0.11 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
53-70-3	Dibenz(a,h)anthracene	0.11	< 0.11 U
TOTBFA	Total Benzofluoranthenes	0.11	< 0.11 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 67.3% d14-Dibenzo(a,h)anthracene 64.0%

> FORM I ZB62:00033

Page 1 of 1

Lab Sample ID: ZB62H

LIMS ID: 14-19790 Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 21:17 Instrument/Analyst: NT8/JZ QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia

Event: 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 460 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.11	< 0.11 U
218-01-9	Chrysene	0.11	< 0.11 U
50-32-8	Benzo(a) pyrene	0.11	< 0.11 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
53-70-3	Dibenz(a,h)anthracene	0.11	< 0.11 U
TOTBFA	Total Benzofluoranthenes	0.11	< 0.11 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 62.7% d14-Dibenzo(a,h)anthracene 73.7%

FORM I

ANALYTICAL RESOURCES INCORPORATED
Sample ID: MW-02D-20140923

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62I LIMS ID: 14-19791

Matrix: Water

Data Release Authorized: /

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 21:45 Instrument/Analyst: NT8/JZ QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia Event: 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 450 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.11	< 0.11 U
218-01-9	Chrysene	0.11	< 0.11 U
50-32-8	Benzo(a) pyrene	0.11	< 0.11 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
53-70-3	Dibenz(a,h)anthracene	0.11	< 0.11 U
TOTBFA	Total Benzofluoranthenes	0.11	< 0.11 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 61.7% d14-Dibenzo(a,h)anthracene 74.3%

FORM I ZB62:00035

ANALYTICAL RESOURCES INCORPORATED
Sample ID: MW-05D-20140923

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62J

LIMS ID: 14-19792 Matrix: Water

Data Release Authorized:

Reported: 10/01/14

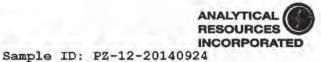
Date Extracted: 09/26/14 Date Analyzed: 09/30/14 22:13 Instrument/Analyst: NT8/JZ QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia Event: 21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 460 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00


CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.11	< 0.11 U
218-01-9	Chrysene	0.11	< 0.11 U
50-32-8	Benzo(a)pyrene	0.11	< 0.11 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
53-70-3	Dibenz(a,h)anthracene	0.11	< 0.11 U
TOTBFA	Total Benzofluoranthenes	0.11	< 0.11 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 65.7% d14-Dibenzo(a,h)anthracene 79.3%

FORM I

Page 1 of 1

Lab Sample ID: ZB62K LIMS ID: 14-19793

Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 22:41 Instrument/Analyst: NT8/JZ Charles and Charles and Charles and Charles

SAMPLE

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia

Event: 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
50-32-8	Benzo(a) pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
TOTBFA	Total Benzofluoranthenes	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	66.7%
d14-Dibenzo(a,h)anthracene	74.0%

FORM I ZB62:00037

Page 1 of 1

Lab Sample ID: ZB62L LIMS ID: 14-19794

Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 23:09

Instrument/Analyst: NT8/JZ

Sample ID: PZ-13-20140924 SAMPLE

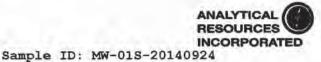
QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

Event: 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00


Analyte	LOQ	Result
Benzo(a) anthracene	0.10	< 0.10 U
Chrysene	0.10	< 0.10 U
Benzo(a)pyrene	0.10	< 0.10 U
Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
Dibenz(a,h)anthracene	0.10	< 0.10 U
Total Benzofluoranthenes	0.10	< 0.10 U
	Benzo(a) anthracene Chrysene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene	Benzo(a) anthracene 0.10 Chrysene 0.10 Benzo(a) pyrene 0.10 Indeno(1,2,3-cd) pyrene 0.10 Dibenz(a,h) anthracene 0.10

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 62.0% d14-Dibenzo(a,h)anthracene 65.7%

FORM I

Page 1 of 1

Lab Sample ID: ZB62M

LIMS ID: 14-19795 Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 23:36 Instrument/Analyst: NT8/JZ

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia Event: 21039.110.111 Date Sampled: 09/24/14

SAMPLE

Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 3.00

CAS Number	Analyte	FOO	Result
56-55-3	Benzo (a) anthracene	0.30	0.83
218-01-9	Chrysene	0.30	0.82
50-32-8	Benzo(a)pyrene	0.30	< 0.30 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.30	< 0.30 U
53-70-3	Dibenz(a,h)anthracene	0.30	< 0.30 U
TOTBFA	Total Benzofluoranthenes	0.30	0.55

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 39.0% d14-Dibenzo(a,h)anthracene 27.0%

FORM I

ANALYTICAL RESOURCES INCORPORATED Sample ID: MW-01D-20140924

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB62N LIMS ID: 14-19796

Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 10/01/14 00:04 Instrument/Analyst: NT8/JZ

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia

SAMPLE

Event: 21039,110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 460 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.11	< 0.11 U
218-01-9	Chrysene	0.11	< 0.11 U
50-32-8	Benzo(a)pyrene	0.11	< 0.11 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.11	< 0.11 U
53-70-3	Dibenz(a,h)anthracene	0.11	< 0.11 U
TOTBFA	Total Benzofluoranthenes	0.11	< 0.11 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 69.7% d14-Dibenzo(a,h)anthracene 68.0%

FORM I

ANALYTICAL RESOURCES INCORPORATED
Sample ID: PZ-19-20140924

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: ZB620

LIMS ID: 14-19797 Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 10/01/14 00:32 Instrument/Analyst: NT8/JZ QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia

Event: 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
TOTBFA	Total Benzofluoranthenes	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 72.0% d14-Dibenzo(a,h)anthracene 82.3%

SIM SW8270 SURROGATE RECOVERY SUMMARY

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia 21039.110.111 Matrix: Water

Client ID	MNP	DBA	TOT OUT
MB-092614	62.7%	92.3%	0
LCS-092614	67.3%	87.3%	0
LCSD-092614	68.3%	84.0%	0
MW-02S-20140923	63.0%	32.7%	0
MW-05S-20140923	61.7%	52.3%	0
PZ-30-20140923	63.7%	63.7%	0
LW-3-20140923	69.7%	27.3%	0
LW-4R-20140923	68.7%	64.3%	0
PZ-17-20140923	61.3%	78.0%	0
PZ-18-20140923	67.3%	64.0%	0
CW-13-20140923	62.7%	73.7%	0
MW-02D-20140923	61.7%	74.3%	0
MW-05D-20140923	65.7%	79.3%	0
PZ-12-20140924	66.7%	74.0%	0
PZ-13-20140924	62.0%	65.7%	0
MW-01S-20140924	39.0%	27.0%	0
MW-01D-20140924	69.7%	68.0%	0
PZ-19-20140924	72.0%	82.3%	0

		LCS/MB LIMITS	QC LIMITS
(MNP)	= d10-2-Methylnaphthalene	(31-120)	(31-120)
(DBA)	= d14-Dibenzo(a,h)anthracene	(10-125)	(10-125)

Prep Method: SW3520C

Log Number Range: 14-19783 to 14-19797

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: LCS-092614

LIMS ID: 14-19783

Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted LCS/LCSD: 09/26/14

Date Analyzed LCS: 09/30/14 16:10

LCSD: 09/30/14 16:38

Instrument/Analyst LCS: NT8/JZ

LCSD: NT8/JZ

Sample ID: LCS-092614

LAB CONTROL SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia Event: 21039.110.111

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL
Final Extract Volume LCS: 0.50 mL
LCSD: 0.50 mL
Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(a) anthracene	2.76	3.00	92.0%	2.77	3.00	92.3%	0.4%
Chrysene	2.74	3.00	91.3%	2.72	3.00	90.7%	0.7%
Benzo(a)pyrene	2.51	3.00	83.7%	2.68	3.00	89.3%	6.6%
Indeno(1,2,3-cd)pyrene	2.79	3.00	93.0%	2.89	3.00	96.3%	3.5%
Dibenz (a, h) anthracene	2,73	3.00	91.0%	2.80	3.00	93.3%	2.5%
Total Benzofluoranthenes	8.87	9.00	98.6%	8.94	9.00	99.3%	0.8%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	67.3%	68.3%
d14-Dibenzo(a,h)anthracene	87.3%	84.0%

FORM III

Page 1 of 1

Lab Sample ID: MB-092614

LIMS ID: 14-19783 Matrix: Water

Data Release Authorized:

Reported: 10/01/14

Date Extracted: 09/26/14 Date Analyzed: 09/30/14 15:42

Instrument/Analyst: NT8/JZ

Sample ID: MB-092614 METHOD BLANK

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia Event: 21039.110.111

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
TOTBFA	Total Benzofluoranthenes	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	62.7%	
d14-Dibenzo(a,h)anthracene	92.3%	

Page 1 of 1

Lab Sample ID: ZB62A LIMS ID: 14-19783

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 15:04 Instrument/Analyst: ECD8/YZ

SAMPLE

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia

21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	0.25	0.83
	Reported in µg/L (ppb)	
	Chlorophenol Surrogate I	Recovery	
	2,4,6-Tribromophenol	Recovery 81.2%	

Page 1 of 1

Lab Sample ID: ZB62B LIMS ID: 14-19784

Matrix: Water

Data Release Authorized:

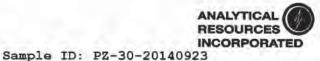
Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 15:40

Instrument/Analyst: ECD8/YZ

Sample ID: MW-05S-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.


Project: Port of Olympia

21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

0.25 µg/L (ppb)	< 0.2	5 0
µg/L (ppb)		
rogate Recovery		
287.2%		
		The state of the s

Page 1 of 1

Lab Sample ID: ZB62C LIMS ID: 14-19785

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14
Date Analyzed: 10/06/14 16:15
Instrument/Analyst: ECD8/YZ

: A

4

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

Date Sampled: 09/23/14

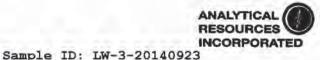
Date Received: 09/24/14

Project: Port of Olympia

QC Report No: ZB62-Landau Associates, Inc.

21039.110.111

SAMPLE


CAS Number Analyte RL Result

87-86-5 Pentachlorophenol 0.25 < 0.25 U

Reported in µg/L (ppb)

Chlorophenol Surrogate Recovery

2,4,6-Tribromophenol 80.8%

Page 1 of 1

Lab Sample ID: ZB62D LIMS ID: 14-19786

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 16:51 Instrument/Analyst: ECD8/YZ QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia

21039.110.111 ed: 09/23/14

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

37-86-5	Pentachlorophenol	0.25	< 0.25 U
	Reported in µg/L (p	opb)	
	Chlorophenol Surrogate I	Recovery	
	2,4,6-Tribromophenol	85.2%	

SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

21039.110.111

Project: Port of Olympia

76.0%

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041 Extraction Method: SW3510C

Page 1 of 1

Lab Sample ID: ZB62E LIMS ID: 14-19787

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 17:26

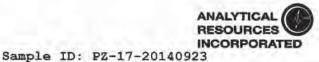
Instrument/Analyst: ECD8/YZ

13

2,4,6-Tribromophenol

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

Date Sampled: 09/23/14


Date Received: 09/24/14

CAS Number Analyte RL Result

87-86-5 Pentachlorophenol 0.25 < 0.25 U

Reported in µg/L (ppb)

Chlorophenol Surrogate Recovery

Page 1 of 1

Lab Sample ID: ZB62F LIMS ID: 14-19788

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 18:01

Instrument/Analyst: ECD8/YZ

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia 21039.110.111

SAMPLE

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	0.25	< 0.25 U

Reported in µg/L (ppb)

Chlorophenol Surrogate Recovery

2,4,6-Tribromophenol 84.48

Page 1 of 1

Lab Sample ID: ZB62G LIMS ID: 14-19789

Matrix: Water

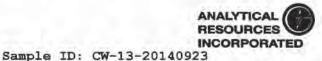
Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 18:37

Instrument/Analyst: ECD8/YZ

SAMPLE


QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

21039.110.111 Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	0.25	< 0.25 U
	Reported in µg/L (p	anhl	
	reported in hg/H (F	PD1	
	Chlorophenol Surrogate I		

Page 1 of 1

Lab Sample ID: ZB62H LIMS ID: 14-19790

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 19:12 Instrument/Analyst: ECD8/YZ QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia

21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

83.6%

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	0.25	< 0.25 U
	Reported in µg/L (ppb)		

Chlorophenol Surrogate Recovery

2,4,6-Tribromophenol

FORM I

ZB52:00052

Page 1 of 1

Lab Sample ID: ZB62I LIMS ID: 14-19791

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 19:48

Instrument/Analyst: ECD8/YZ

Sample ID: MW-02D-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	0.25	< 0.25 U
	Reported in µg/L (p	pb)	
	Chlorophenol Surrogate R	ecovery	
	2,4,6-Tribromophenol	91.2%	

Sample ID: MW-05D-20140923 SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

21039.110.111

Lab Sample ID: ZB62J LIMS ID: 14-19792

Matrix: Water

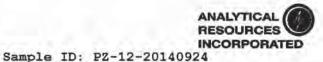
Data Release Authorized: /

Reported: 10/07/14

Date Extracted: 09/27/14

Instrument/Analyst: ECD8/YZ

Sample Amount: 500 mL Final Extract Volume: 50 mL


Date Sampled: 09/23/14

Date Received: 09/24/14

Project: Port of Olympia

Date Analyzed: 10/06/14 20:23 Dilution Factor: 1.00

CAS Number Analyte RL Result 87-86-5 Pentachlorophenol 0.25 < 0.25 U Reported in µg/L (ppb) Chlorophenol Surrogate Recovery 2,4,6-Tribromophenol 82.0%

Page 1 of 1

Lab Sample ID: ZB62K LIMS ID: 14-19793

Matrix: Water

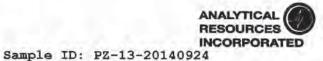
Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14
Date Analyzed: 10/06/14 21:34
Instrument/Analyst: ECD8/YZ

QC Report No: ZB62-Landau Associates, Inc.

SAMPLE


Project: Port of Olympia

21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

87-86-5	Pentachlorophenol	0.25	< 0.25 U
	Reported in µg/L (p	opb)	
	Chlorophenol Surrogate I	Recovery	
	2,4,6-Tribromophenol	87.6%	

Page 1 of 1

Lab Sample ID: ZB62L LIMS ID: 14-19794

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 22:09

Instrument/Analyst: ECD8/YZ

SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia 21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL

Dilution Factor: 1.00

0.25	< 0.25 U
very	
88.0%	

Page 1 of 1

Lab Sample ID: ZB62N LIMS ID: 14-19796

Matrix: Water

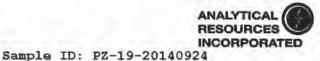
Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14
Date Analyzed: 10/06/14 22:45
Instrument/Analyst: ECD8/YZ

QC Report No: ZB62-Landau Associates, Inc.

SAMPLE


Project: Port of Olympia

21039.110.111

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

87-86-5	Pentachlorophenol	0.05	
	renedentorophonor	0.25	< 0.25 0
	Reported in µg/L (r	(dqq	
	Chlorophenol Surrogate Recovery		
	2,4,6-Tribromophenol	83.2%	

Page 1 of 1

Lab Sample ID: ZB620

LIMS ID: 14-19797 Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14
Date Analyzed: 10/06/14 23:20
Instrument/Analyst: ECD8/YZ

QC Report No: ZB62-Landau Associates, Inc.

SAMPLE

Project: Port of Olympia

21039.110.111 ed: 09/24/14

Date Sampled: 09/24/14 Date Received: 09/24/14

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	0.25	< 0.25 U
	Reported in µg/L (p	opb)	
	Chlorophenol Surrogate F	Recovery	
	2,4,6-Tribromophenol	82.4%	

SW8041 CHLOROPHENOLICS SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia 21039.110.111

Client ID	TBP	TOT OUT
MB-092714	50.4%	0
LCS-092714	80.8%	0
LCSD-092714	86.0%	0
MW-02S-20140923	81.2%	0
MW-05S-20140923	87.2%	0
PZ-30-20140923	80.8%	0
LW-3-20140923	85.2%	0
LW-4R-20140923	76.0%	0
PZ-17-20140923	84.4%	0
PZ-18-20140923	87.6%	0
CW-13-20140923	83.6%	0
MW-02D-20140923	91.2%	0
MW-05D-20140923	82.0%	0
PZ-12-20140924	87.6%	0
PZ-13-20140924	88.0%	0
MW-01D-20140924	83.2%	0
PZ-19-20140924	82.4%	0

QC LIMITS

(TBP) = 2,4,6-Tribromophenol

(26-120)

Prep Method: SW3510C

Log Number Range: 14-19783 to 14-19797

10.0%

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041

Page 1 of 1

Sample ID: LCS-092714

LCS/LCSD

Lab Sample ID: LCS-092714

LIMS ID: 14-19783

Matrix: Water

Data Release Authorized:

Date Extracted LCS/LCSD: 09/27/14

Date Analyzed LCS: 10/06/14 13:53

Instrument/Analyst LCS: ECD8/YZ

LCSD: 10/06/14 14:29

LCSD: ECD8/YZ

Reported: 10/07/14

Pentachlorophenol

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

21039.110.111

Date Sampled: 09/23/14

Date Received: 09/24/14

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 50 mL

1.26

LCSD: 50 mL

50.48

Dilution Factor LCS: 1.00

LCSD: 1.00

2.50

LCS Spike Spike LCSD Analyte Added-LCS Recovery LCSD Added-LCSD Recovery RPD

2.50

Chlorophenols Surrogate Recovery

45.6%

LCSD LCS

2,4,6-Tribromophenol 80.8% 86.0%

Results reported in µg/L

RPD calculated using sample concentrations per SW846.

1.14

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041 Extraction Method: SW3510C

Page 1 of 1

Lab Sample ID: MB-092714

LIMS ID: 14-19783

Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Extracted: 09/27/14 Date Analyzed: 10/06/14 13:18

Instrument/Analyst: ECD8/YZ

Sample ID: MB-092714 METHOD BLANK

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

21039.110.111

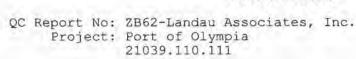
Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 50 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	0.25	< 0.25 U
	Reported in µg/L (g	opb)	
	Chlorophenol Surrogate F	Recovery	
	2,4,6-Tribromophenol	50.4%	

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS


NWTPHD by GC/FID-Silica and Acid Cleaned

Extraction Method: Page 1 of 2

Matrix: Water

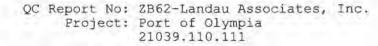
Data Release Authorized:

Reported: 10/06/14

Reported.	10700714						
ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DF	Range/Surrogate	RL	Result
MB-092614 14-19783	Method Blank HC ID:	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U < 100 U 86.3%
ZB62A 14-19783	MW-02S-20140923 HC ID:	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U < 100 U 110%
ZB62B 14-19784	MW-05S-20140923 HC ID: DRO	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U 100 76.5%
ZB62C 14-19785	PZ-30-20140923 HC ID: DRO	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U 130 105%
ZB62D 14-19786	LW-3-20140923 HC ID: DRO	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U 270 115%
ZB62E 14-19787	LW-4R-20140923 HC ID:	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U < 100 U 108%
ZB62F 14-19788	PZ-17-20140923 HC ID: DRO/MOTOR OIL	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	110 640 310 99.9%
ZB62G 14-19789	PZ-18-20140923 HC ID:	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U < 100 U 110%
ZB62H 14-19790	CW-13-20140923 HC ID:	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U < 100 U 113%
ZB62I 14-19791	MW-02D-20140923 HC ID: DRO	09/26/14	10/03/14 FID3B	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U 130 115%

FORM I

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS


NWTPHD by GC/FID-Silica and Acid Cleaned

Extraction Method:

Page 2 of 2 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

Reported in ug/L (ppb)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. Creosote range quantitation on total peaks in the range from C8 to C22. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

FORM I

CLEANED TPHD SURROGATE RECOVERY SUMMARY

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia 21039.110.111 Matrix: Water

Client ID	OTER	TOT OUT
MB-092614	86.3%	0
LCS-092614	106%	0
LCSD-092614	107%	0
MW-02S-20140923	110%	0
MW-05S-20140923	76.5%	0
PZ-30-20140923	105%	0
LW-3-20140923	115%	0
LW-4R-20140923	108%	0
PZ-17-20140923	99.9%	0
PZ-18-20140923	110%	0
CW-13-20140923	113%	0
MW-02D-20140923	115%	0
MW-05D-20140923	95.2%	0
PZ-12-20140924	75.3%	0
PZ-13-20140924	109%	0
MW-01S-20140924	120%	0
MW-01S-20140924 DL	D	0
MW-01D-20140924	83.6%	0
PZ-19-20140924	106%	0

LCS/MB	LIMITS	QC	LIMITS

(OTER) = o-Terphenyl (50-150)(50 - 150)

Prep Method: SW3510C

Log Number Range: 14-19783 to 14-19797

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: LCS-092614 LCS/LCSD

Lab Sample ID: LCS-092614

LCSD: 10/03/14 17:34

LIMS ID: 14-19783 Matrix: Water

Data Release Authorized:

Reported: 10/06/14

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

21039.110.111

Date Sampled: 09/23/14 Date Received: 09/24/14

Date Extracted LCS/LCSD: 09/26/14 Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 10/03/14 17:09 Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Instrument/Analyst LCS: FID/JLW Dilution Factor LCS: 1.00 LCSD: FID/JLW

LCSD: 1.00

Spike LCS Spike Range LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD Diesel 2300 3000 76.78 1.78 2340 3000 78.0%

TPHD Surrogate Recovery

LCSD LCS

o-Terphenyl

106% 107%

Results reported in ug/L RPD calculated using sample concentrations per SW846.

FORM III

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: ZB62

Matrix: Water Project: Port of Olympia
Date Received: 09/24/14 21039.110.111

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
14-19783-092614MB1	Method Blank	500 mL	1.00 mL	09/26/14
14-19783-092614LCS1	Lab Control	500 mL	1.00 mL	09/26/14
14-19783-092614LCSD1	Lab Control Dup	500 mL	1.00 mL	09/26/14
14-19783-ZB62A	MW-02S-20140923	500 mL	1.00 mL	09/26/14
14-19784-ZB62B	MW-05S-20140923	500 mL	1.00 mL	09/26/14
14-19785-ZB62C	PZ-30-20140923	500 mL	1.00 mL	09/26/14
14-19786-ZB62D	LW-3-20140923	500 mL	1.00 mL	09/26/14
14-19787-ZB62E	LW-4R-20140923	500 mL	1.00 mL	09/26/14
14-19788-ZB62F	PZ-17-20140923	500 mL	1.00 mL	09/26/14
14-19789-ZB62G	PZ-18-20140923	500 mL	1.00 mL	09/26/14
14-19790-ZB62H	CW-13-20140923	500 mL	1.00 mL	09/26/14
14-19791-ZB62I	MW-02D-20140923	500 mL	1.00 mL	09/26/14
14-19792-ZB62J	MW-05D-20140923	500 mL	1.00 mL	09/26/14
14-19793-ZB62K	PZ-12-20140924	500 mL	1.00 mL	09/26/14
14-19794-ZB62L	PZ-13-20140924	500 mL	1.00 mL	09/26/14
14-19795-ZB62M	MW-01S-20140924	500 mL	1.00 mL	09/26/14
14-19796-ZB62N	MW-01D-20140924	500 mL	1.00 mL	09/26/14
14-19797-ZB620	PZ-19-20140924	500 mL	1.00 mL	09/26/14

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG Matrix: Water

Data Release Authorized: Reported: 10/07/14

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia Event: 21039.110.111

Client ID	Analysis Date	DL	Range	Result
Method Blank	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 96.2% 97.2%
MW-02S-20140923	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 0 97.6% 98.3%
MW-05S-20140923	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 98.4% 97.6%
PZ-30-20140923	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 to 95.6% 96.8%
LW-3-20140923	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 t 95.8% 96.2%
LW-4R-20140923	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 to 96.8% 97.8%
PZ-17-20140923	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 0 96,2% 95,1%
PZ-18-20140923	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 to 92.6% 93.4%
CW-13-20140923	10/02/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 t 93.1% 92.3%
MW-02D-20140923	10/03/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 to 96.2% 96.5%
	MW-02S-20140923 MW-05S-20140923 PZ-30-20140923 LW-3-20140923 PZ-17-20140923 PZ-18-20140923 CW-13-20140923	Method Blank 10/02/14 PID1 MW-02S-20140923 10/02/14 PID1 MW-05S-20140923 10/02/14 PID1 PZ-30-20140923 10/02/14 PID1 LW-3-20140923 10/02/14 PID1 LW-4R-20140923 10/02/14 PID1 PZ-17-20140923 10/02/14 PID1 PZ-18-20140923 10/02/14 PID1 CW-13-20140923 10/02/14 PID1 MW-02D-20140923 10/02/14 PID1 MW-02D-20140923 10/03/14	Method Blank 10/02/14 PID1 1.0 MW-02S-20140923 10/02/14 PID1 1.0 MW-05S-20140923 10/02/14 PID1 1.0 PZ-30-20140923 10/02/14 PID1 1.0 LW-3-20140923 10/02/14 PID1 1.0 LW-4R-20140923 10/02/14 PID1 1.0 PZ-17-20140923 10/02/14 PID1 1.0 PZ-18-20140923 10/02/14 PID1 1.0 CW-13-20140923 10/02/14 PID1 1.0 MW-02D-20140923 10/02/14 PID1 1.0	Method Blank 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene MW-02S-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene MW-05S-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene PZ-30-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene LW-3-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene LW-4R-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene PZ-17-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene PZ-18-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene CW-13-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene CW-13-20140923 10/02/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene MW-02D-20140923 10/03/14 PID1 1.0 Gasoline HC ID Trifluorotoluene Bromobenzene

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Matrix: Water

Data Release Authorized: //

Reported: 10/07/14

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia Event: 21039.110.111

ARI ID	Client ID	Analysis Date	DL	Range	Result
MB-100314 14-19792	Method Blank	10/03/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 95.1% 94.8%
ZB62J 14-19792	MW-05D-20140923	10/03/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 94.9% 94.6%
ZB62K 14-19793	PZ-12-20140924	10/03/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 87.6% 87.8%
ZB62L 14-19794	PZ-13-20140924	10/03/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 93.0% 93.0%
MB-100614 14-19795	Method Blank	10/06/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 96.7% 95.8%
ZB62M 14-19795	MW-01S-20140924	10/06/14 PID1	20	Gasoline HC ID Trifluorotoluene Bromobenzene	52000 GRO 102% 101%
ZB62N 14-19796	MW-01D-20140924	10/06/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 100% 99.8%
ZB620 14-19797	PZ-19-20140924	10/06/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 102% 99.8%
ZB62P 14-19798	Trip Blanks	10/03/14 PID1	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 250 U 97.8% 97.4%

Gasoline values reported in µg/L (ppb)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

FORM I

TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: ZB62 Matrix: Water

QC Report No: ZB62-Landau Associates, Inc. Project: Port of Olympia Event: 21039.110.111

Client ID	TFT	BBZ	TOT OUT
MB-100214	96.2%	97.2%	0
LCS-100214	97.7%	98.1%	0
LCSD-100214	92.7%	92.3%	0
MW-02S-20140923	97.6%	98.3%	0
MW-05S-20140923	98.4%	97.6%	0
PZ-30-20140923	95.6%	96.8%	0
LW-3-20140923	95.8%	96.2%	0
LW-4R-20140923	96.8%	97.8%	0
PZ-17-20140923	96.2%	95.1%	0
PZ-18-20140923	92.6%	93.4%	0
CW-13-20140923	93.1%	92.3%	0
MW-02D-20140923	96.2%	96.5%	0
MB-100314	95.1%	94.8%	0
LCS-100314	98.0%	97.0%	0
LCSD-100314	94.2%	94.4%	0
MW-05D-20140923	94.9%	94.68	0
PZ-12-20140924	87.6%	87.8%	0
PZ-13-20140924	93.0%	93.0%	0
MB-100614	96.7%	95.8%	0
LCS-100614	103%	102%	0
LCSD-100614	100%	99.4%	0
MW-01S-20140924	102%	101%	0
MW-01D-20140924	100%	99.8%	0
PZ-19-20140924	102%	99.8%	0
Trip Blanks		97.4%	0

			LCS/MB LIMITS	QC LIMITS
(TFT)	=	Trifluorotoluene	(80-120)	(80-120)
(BBZ)	=	Bromobenzene	(80-120)	(80-120)

Log Number Range: 14-19783 to 14-19798

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-100214

LIMS ID: 14-19783 Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Analyzed LCS: 10/02/14 10:47

LCSD: 10/02/14 11:16

Instrument/Analyst LCS: PID1/PKC

LCSD: PID1/PKC

Sample ID: LCS-100214

LAB CONTROL SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia Event: 21039.110.111

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Dilution Factor LCS: 1.0

LCSD: 1.0

LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
1010	1000	101%	930	1000	93.0%	8.2%
Repor	ted in ug/	'L (ppb)				
centrati	ons per SW	1846.				
	1010 Repor	1010 1000 Reported in ug/		1010 1000 101% 930 Reported in ug/L (ppb)	1010 1000 101% 930 1000 Reported in ug/L (ppb)	1010 1000 101% 930 1000 93.0% Reported in ug/L (ppb)

TPHG	Surrogate	Recovery
------	-----------	----------

	LCS	LCSD
Trifluorotoluene	97.7%	92.7%
Bromobenzene	98.1%	92.3%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-100314

LIMS ID: 14-19792 Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Analyzed LCS: 10/03/14 11:14

LCSD: 10/03/14 11:44

Instrument/Analyst LCS: PID1/PKC

LCSD: PID1/PKC

Sample ID: LCS-100314

LAB CONTROL SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia Event: 21039.110.111

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Dilution Factor LCS: 1.0

LCSD: 1.0

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	
Gasoline Range Hydrocarbons	960	1000	96.0%	900	1000	90.0%	6.5%	
	Repor	rted in ug/	'L (ppb)					
RPD calculated using sample c	oncentrati	ons per SW	1846.					

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	98.0%	94.2%
Bromobenzene	97.0%	94.48

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-100614

LIMS ID: 14-19795 Matrix: Water

Data Release Authorized:

Reported: 10/07/14

Date Analyzed LCS: 10/06/14 10:41 LCSD: 10/06/14 11:10 Instrument/Analyst LCS: PID1/PKC

LCSD: PID1/PKC

Sample ID: LCS-100614

LAB CONTROL SAMPLE

QC Report No: ZB62-Landau Associates, Inc.

Project: Port of Olympia

Event: 21039.110.111

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Dilution Factor LCS: 1.0

LCSD: 1.0

		Recovery	LCSD	Added-LCSD	Recovery	RPD
1040	1000	104%	1020	1000	102%	1.9%
Repor	ted in ug/	L (ppb)				
	Repor	Reported in ug/	1040 1000 104% Reported in ug/L (ppb) centrations per SW846.	Reported in ug/L (ppb)	Reported in ug/L (ppb)	Reported in ug/L (ppb)

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	103%	100%
Bromobenzene	102%	99.48

FORM III

October 21, 2014

Chris Kimmel Landau Associates, Inc. 130 2nd Avenue S. Edmonds, WA 98020

RE: Project: Port of Olympia, 21039.110.111

ARI Job No: ZF85

Dear Chris:

Please find enclosed the original Chain-of-Custody record (COC), sample receipt documentation, and final results for the project referenced above. Analytical Resources, Inc. accepted one water sample in good condition on October 17, 2014.

The sample was analyzed for NWTPH-Dx, as requested on the COC.

Please refer to the Case Narrative for details regarding requested analyses.

An electronic copy of this report and all associated ARI raw data will be kept on file with ARI. Should you have any questions or problems, please feel free to contact me at any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager

(206) 695-6211

Enclosures

Chain of Custody Record & Laboratory Analysis Request
큣
E
S
ys
nal
V
5
atc
0
ab
_
9
5
00
æ
7
ŏ
ns
O
0
ä
봈

ARI Client Company: Candley Client Contact: Chief Project Name: Client Project #: Client Project #:	Phone:				200 /200 / 10
pole Samplers	115-778-09C	67	10/16/11	lce Present?	Tukwila, WA 98168
Pole			No. of Coolers;	Cooler Temps:	www.arilabs.com
Samp			2.	Analysis Requested	Notes/Comments
	Sieve Mott		1-HY 1020		
Sample ID Date	Time Matrix	No Containers	NWT		
P2-17-20141016 10/10/14/1657	1657 H20	7	X		Please bill
					Don Buche
					at Part of
					Digmpia
Comments/Special Instructions	4	Received by	Ç	Relinquished by	Received by
To cooler, on (Signature) DR	(Signature) Setund New	(Signature)	4-14/	(Signature) the Co	(Signature)
	MOH	Bethanie	Bethanie Roberts	Bethanie Roberts	A
to pick	,	Landau	Landau Assaiates	Company	
(0/1)/ O	708/11/11/	Date & Time.	8.02	Sp:01 4/41/C)	Date & Time 10/17/14 16 45

signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Sample ID Cross Reference Report

ARI Job No: ZF85

Client: Landau Associates, Inc. Project Event: 21039.110.111 Project Name: Cascade Pole

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR	
1.	PZ-17-20141016	ZF85A	14-22178	Water	10/16/14 16:57	10/17/14 10:45	

Printed 10/23/14 Page 1 of 1

ZF85: 3R 9c 10/23/14

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	0	ID on COC
	** Notify Project Manager of	of discrepancies or concerns **		
Samples Logged by:	Date:		1250	_
Skirt) All	ling		10 - 10)
Was Sample Split by ARI	YES Date/Time	Equipment		plit by:
Was sufficient amount of sample Date VOC Trip Blank was made			(NA)	YES NO
Were all VOC vials free of air but			(NA)	YES NO
Do any of the analyses (bottles)			(NA)	YES NO
Were all bottles used correct for t				YES') NO
Did all bottle labels and tags agree				YES NO
		of containers received?		YES NO
Were all bottle labels complete a	nd legible?			YES NO
Did all bottles arrive in good cond	lition (unbroken)?	and the following the financians and		YES NO
Were all bottles sealed in individu	ual plastic bags?	***************************************		YES (NO)
Was sufficient ice used (if approp	oriate)?		NA (YES NO
Was a temperature blank include What kind of packing material		Wet Ice Gel Packs Baggies Foam	Block Paper Othe	YES (NO)
	a sheava e			0
Log-In Phase:	Complete custody forms an	d attach all shipping documents		
Cooler Accepted by:			1045	
If cooler temperature is out of cool	mpliance fill out form 00070F	10/12/11	Temp Gun ID#:_	708 179
Time: 1120	ecommended 2.0-6.0 °C for chemis	stry)		5.5
	ed out (ink, signed, etc.)		Œ	S NO
	ith the cooler?		YE	
	dated custody seals attached to the		CYE	
Preliminary Examination Phase:			- Carlo	7 1
Assigned ARI Job No:	8.0	Tracking No:		(NA)
COC No(s):	7 Z (NA)	Delivered by: Fed-Ex UP\$ Cou	rier Hand Delivere	0
Trad Glorici	_	Project Name: CUSCUC	7100	750
ARICHAND Landa		- Caspar	do Polo	
	on an improve a company	A		
Analytical Chemi	sts and Consultants	Cooler Rec	eihr Lo	IIII

dditional Notes, D	iscrepancies, & F	Resolutions:		
/:	Date:			
	Date:	LARGE Air Bubbles	Small → "sm" (<2 mm)	
		LARGE Air Bubbles	Small → "sm" (<2 mm) Peabubbles → "pb" (2 to < 4 mm)	
y: Small Air Bubbles ~2mm	Peabubbles'			

ZF85:00004

Case Narrative

Project: 21039.110.111 ARI Job No.: ZF85 October 21, 2014 Page 1 of 1

Sample Receipt

Please find enclosed the original *Chain of Custody (COC)* record and analytical results for the project referenced above. Analytical Resources, Inc. accepted one water sample in good condition on October 17, 2014. The samples were received at a cooler temperature of 5.5°C. Please see the *Cooler Receipt Form* for further details. Per Landau Associates, select samples were allowed to settle and sample volume was collected from the clear portion.

The following tests were performed on selected samples, as requested on the Chain of Custody.

NWTPH-Dx

The samples were extracted on 10/17/14 and analyzed on 10/21/14 - within the method recommended holding time.

Samples: There were no anomalies associated with these samples.

Surrogates: The surrogate percent recoveries were within control limits.

LCS/LSCD (s): The LCS and LCSD percent recoveries were within control limits.

Method Blank: The method blank was free of contamination.

Continuing Calibrations: The continuing calibrations were within control limits.

ZF85:00005

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Extraction Method:

Page 1 of 1

Matrix: Water

Data Release Authorized: \

Reported: 10/23/14

QC Report No: ZF85-Landau Associates, Inc. Project: Cascade Pole

21039.110.111

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DF	Range/Surrogate	RL	Result
MB-101714 14-22178	Method Blank HC ID:	10/17/14	10/21/14 FID9	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U < 100 U 91.3%
ZF85A 14-22178	PZ-17-20141016 HC ID:	10/17/14	10/21/14 FID9	1.00	Diesel Range Motor Oil Range Creosote Range o-Terphenyl	100 200 100	< 100 U < 200 U < 100 U 89.9%

Reported in ug/L (ppb)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. Creosote range quantitation on total peaks in the range from C12 to C22. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

FORM I

2F85: 6R BC 1923/14

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: ZF85-Landau Associates, Inc.

Project: Cascade Pole

21039.110.111

Client ID	OTER	TOT OUT
MB-101714	91.3%	0
LCS-101714	90.5%	O
LCSD-101714	94.4%	0
PZ-17-20141016	89.9%	0

LCS/MB LIMITS QC LIMITS (50-150)

= o-Terphenyl

Prep Method: SW3510C

Log Number Range: 14-22178 to 14-22178

FORM-II TPHD

Page 1 for ZF85

ZF 85: 72 BC 1923/14

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: LCS-101714

LCS/LCSD

Lab Sample ID: LCS-101714

LIMS ID: 14-22178

Matrix: Water

Data Release Authorized:

Reported: 10/21/14

QC Report No: ZF85-Landau Associates, Inc.

Project: Cascade Pole

21039.110.111

Date Sampled: 10/16/14 Date Received: 10/17/14

Date Extracted LCS/LCSD: 10/17/14

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 10/21/14 11:41

Final Extract Volume LCS: 1.0 mL

LCSD: 10/21/14 12:02

LCSD: 1.0 mL

Instrument/Analyst LCS: FID/JLW

Dilution Factor LCS: 1.00

LCSD: FID/JLW

LCSD: 1.00

1000: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2380	3000	79.3%	2620	3000	87.3%	9.6%

TPHD Surrogate Recovery

o-Terphenyl 90.5% 94.4%

Results reported in ug/L RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

Matrix: Water Date Received: 10/17/14 ARI Job: ZF85 Project: Cascade Pole 21039.110.111

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
14-22178-101714MB1	Method Blank	500 mL	1.00 mL	10/17/14
14-22178-101714LCS1	Lab Control	500 mL	1.00 mL	10/17/14
14-22178-101714LCSD1	Lab Control Dup	500 mL	1.00 mL	10/17/14
14-22178-ZF85A	PZ-17-20141016	500 mL	1.00 mL	10/17/14

2585: 92 3 1923/4