INDEPENDENT REMEDIAL ACTION REPORT

EAGLE HARDWARE AND GARDEN, INC. STORE NO. 453

WENATCHEE, WASHINGTON

FEBRUARY, 1997

Prepared By: J-U-B ENGINEERS, Inc.
2810 W. Clearwater Avenue, Suite 210
Kennewick, WA 99336
(509) 783-2144

INDEPENDENT REMEDIAL ACTION REPORT

EAGLE HARDWARE AND GARDEN, INC. STORE NO. 453

WENATCHEE, WASHINGTON

FEBRUARY, 1997

[rones $5 \cdot 2 / 47$
Prepared By:
J-U-B ENGINEERS, Inc.
2810 W. Clearwater Avenue, Suite 210
Kennewick, WA 99336
(509) 783-2144

TABLE OF CONTENTS

Page No.

Section 1.0 - Project Background and Site Description 3
Section 1.0.1 - Location 3
Section 1.0.2 - Topography and Geology 3
Figure 1 - Location Map 5
Figure 2 - Previous Site Conditions and Phase II EA Soil Sampling 7
Figure 3 - Final Site Development 9
Section 1.1 - Release Information and Site Characterization 10
Section 1.2 - Previous Investigations 11
Section 1.3 - Selection of Clean-up Standards 11
Table 1 - Phase I/II E.A. Soil Sample Results 12
Section 1.4 - Remedial Actions Taken 13
Section 1.5 - Institutional Controls 15
Section 1.6 - Sampling and Analysis 16
Table 2 - Confirmation Soil Sampling 16
Figure 4 - Confirmation Soil Sampling 17
Section 2.0 - Conclusions 18
REFERENCES 19
APPENDIX 20APPENDIX A - SITE DEVELOPMENT MAPAPPENDIX B - SITE DEVELOPMENT GEOTECHNICAL INVESTIGATIONAPPENDIX C - GASOLINE UST REMOVAL REPORTAPPENDIX D - LEAD AND ASBESTOS PAINT SURVEY FOR PREVIOUSSTRUCTURES
APPENDIX E-RESTRICTIVE COVENANT
APPENDIX F - SAMPLE RESULTS AND CHAIN OF CUSTODY
APPENDIX G - PHOTO LOG
APPENDIX H - PERTINENT FIELD REPORTS

This report was prepared in accordance with the State of Washington Department of Ecology's 1994 "Draft Guidance on Preparing Independent Action Reports under the Model Toxics Control Act, Chapter 70.105D RCW". The documentation should be sufficient to demonstrate protection for human health and the environment and warrant a "No Further Action" (NFA) determination by WDOE.

Section 1.0 - Project Background and Site Description

This section of the Independent Remedial Action Program (IRAP) report describes the Eagle Hardware and Garden, Inc. (Eagle) site in Wenatchee, Washington. This section also provides background information to document the previous site conditions which necessitated the preparation of this IRAP report.

Section 1.0.1-Location

Eagle is a commercial operation selling hardware, building materials, and home landscape supplies located at 1200 Walla Walla Avenue, Wenatchee, Washington 98801. The subject property consists of 9.8 acres and is located in Chelan County, as shown on Figure 1. Eagle's On-Site Operations Manager is Mr. Wes Simpson who can be reached at (509) 663-4530. Eagle's Corporate contact is Mr. Peter Gallina, Store Development Coordinator. Mr. Gallina can be contacted by writing 981 Powell Avenue Southwest, Renton, WA 98055 or by calling (206) 227-5740.

Section 1.0.2 - Topography and Geology

The subject property is located in Northeastern Wenatchee, approximately 0.25 mile West of the Columbia River. The River has a normal pool elevation of 606 feet above
mean sea level, at River Mile 467 (USGS datum). At a floor elevation of approximately 658 feet, the subject site is above the 500 year flood elevation. The area is noted for its deep, well drained, medium textured and moderately textured sandy loam and loam soils of the Burch Series (U.S. Soil Conservation Service, 1980). The Burch Soils formed on terraces in valley fill and are of sand stone origin with some mixture of wind blown loess. Depth to the basalt bedrock in the area can vary dramatically but is generally greater than 30 feet. In some areas, it is believed that the basalt bedrock may have been completely scoured out, leaving only the poorly sorted outwash materials to over 1,000 feet deep. The areas soils are among the most important fruit producing soils in North Central Washington and have been extensively used for apple, pear and soft fruit orchards. Permeability is moderate and runoff is very slow in these soils. Consequently, the erosion potential is slight and the soils are generally not conductive to lateral migration of pollutants onto adjacent properties.

Groundwater level at the site is generally at or near the elevation of the Columbia River in the Columbia River Aquifer. At a normal summer pool elevation of 606, (U.S.G.S. Datum), the depth to groundwater is approximately 50 feet with a general gradient from West to East, toward the river, due to recharge from the higher elevations. No water well records were available nor was surface evidence apparent for private wells within one mile of the subject property. Some private wells may have been installed before records were required by the State and before the City began serving the area with domestic water in the 1950's. A single geotechnical test well record for the area reported groundwater at 34 feet deep (elevation of approximately 620 feet) in wet, brown, silty sand approximately 0.75 mile to the Northwest. No bedrock or contamination was reported for that test well.

Meteorlogic conditions in the semi-arid Wenatchee area include generally westerly to northwesterly prevailing winds. Extreme wind velocities can reach 60 mph every two years. Precipitation occurs mostly in the late fall through early spring and averages 9.1 inches annually. The total snow fall averages about 30 inches and remains on the ground for an average of forty-five days annually. Annual Class A pan evaporation averages about 50 inches, which points out the need for extensive irrigation of the cultivated land in the region. Temperature inversions are not common in the area but they generally occur for a few nights in the winter during outbreaks of cold arctic air from Canada.

Figure 2 shows the previous site conditions prior to construction of the Wenatchee Eagle store in 1996. The area was relatively flat, sloping approximately 10 feet from the Northwest to the Southeast. All but the extreme Southeast corner of the subject property had been cultivated extensively as a pear orchard since the late 1800's, according to the previous owner. Lead arsenate was historically applied to other pear orchards in the vicinity as a pesticide against the coddling moth and pearisilla. The pesticide DDT was also commonly used in orchards prior to 1970. Both of these chemicals tend to accumulate in the top twelve inches of the soil column, although they migrate deeper, with excessive irrigation or deep cultivate practices.

For the January, 1996 Phase I/II Environmental Assessment (EA), J-U-B ENGINEERS, Inc. sampled the soil in several locations throughout the orchard. Soil was sampled at $6 ", 12-18^{\prime \prime}, 36$ " and 60 " deep with samples locations shown on Figure 2. The resulting detectable sample concentrations for total lead, total arsenic and chlorinated pesticides are listed in Table 1. Samples as deep as 12-18" showed lead, arsenic and DDT above the Washington Department of Ecology (WDOE) Method A Soil Regulatory Limit (WAC, Chapter 173-340). Soil samples at 36 " deep resulted in all lead and four of seven arsenic soil contamination levels at less than the Method A Soil Regulatory Limit.

LEGEND
(A) SOIL SAMPLE LOCATION
AND IDENTIFICATION

EAGLE HARDWARE - WENATCHEE INDEPENDENT REMEDIAL ACTION REPORT FIGURE 2- PREVIOUS SITE CONDITIONS AND PHASE II E.A. SOIL SAMPLING

Engineers Surveyors Planners	$J-\cup-B$ ENGINEERS, INC.				
	ACAD.OWG FILE: 89007-F2.DWG PLT.SC. $\quad(1=100)$				
	DE. PAK	DR. JP	CK. PAK	SHE	OF
SCALE: AS SHown	DATE:	december	, 1996	DWG.No.	

The three samples which exceeded Method A arsenic levels were located in the central and southeastern quadrant of the site. Samples taken at 60 " deep were all below Method A limits for arsenic lead and chlorinated pesticides. Consequently, the boundaries of contamination at the subject site were determined to be limited by the property lines and to a depth of approximately 36 " along the North side and in the Southwest quadrant. The central orchard and Southeast quadrant were assumed to be contaminated with arsenic to a depth of 48 ".

All surface features from the existing property were removed prior to the 1996 construction of the Eagle store. Figure 3 shows the completed site development of the Eagle site in Wenatchee. The site is now mostly covered with building and asphalt or concrete pavement. Stormwater is piped directly from driveway and parking lot surfaces to the City of Wenatchee's storm drain system. A detailed Site Development Map is included as Appendix A for further reference. With the exception of underground utilities such as water, sewer and storm drainage service from the City of Wenatchee, no underground piping or structures remain on the finished site.

Soil boring logs contained in the Site Development Geotechnical Investigation are also included as Appendix B to characterize soils at the Eagle site.

Surrounding sites do not contain any sensitive areas such as wetlands or potential endangered species habitat. The Eagle site development included the preparation and approval of an Environmental Checklist through the State Environmental Policy Act (SEPA) process (Chapter 4321 C, RCW). Surrounding land uses include primarily commercial establishments to the West, South and East. Orchard property is mixed with residential and commercial establishments to the North and Northeast.

NOTE:
PLANTERS FILLED WITH CLEAN SOIL TO DEPTH OF 3' BELOW ORIGINAL GROUND SURFACE (TYP.) EXCEPT IN SE. QUADRANT WHERE FILLED TO DEPTH OF 4'. CLEAN SOIL MINED FROM SITE AT 3 ' OR GREATER BELOW ORIGINAL GROUND SURFACE. IF DEPTH COULD NOT BE ACHIEVED DUE TO SITE GRADING, GEOTEXTILE FABRIC PLACED UNDER CLEAN PLANTER FILL AS BARRIER.

EAGLE HARDWARE - WENATCHEEINDEPENDENT REMEDIAL ACTION REPORTFIGURE 3 - FINAL SITE DEVELOPMENT					
	$\checkmark-\cup ー B$ ENGINEERS, INC.				
	ACAD.DWG FILE: $89007-$ F3.DWG PLT.SC. ($1=100$)				
Enginoera Survorora	DE. PAK	DR. JP	CK. PAK	SHEE	OF
SCALE: AS SHOWN	DATE:	DECEMBER,	1996	DWG.No.	

Section 1.1 - Release Information and Site Characterization

As stated in the previous Section, the contaminants of concern for this site have resulted from the agronomic application of pesticides for the cultivation of a pear orchard, dating back to the 1800's. In the Phase I/II EA, arsenic, lead, DDT, DDT daughter products, Dieldrin, and Endosulfan were detected at the site above the Method A Soil Regulatory Limits. Dieldrin and Endosulfan are not listed under Method A, but were detected in several locations and therefore, were reported. The contaminants were relatively uniform areally throughout the site and rapidly decreased in concentration with depth. Table 1 gives the soil test results obtained for these components at the 6 ", 12-18", 36 ", and $60^{\prime \prime}$ depths. Sampling locations were shown previously on Figure 2.

The primary concern in converting this site from an agricultural use to a commercial use is the potential for direct human ingestion of these soils. Since the subject site was to be fully developed with buildings and paved parking and access areas, it was determined that it would be most appropriate to retain all contaminants on site underneath these impervious surface caps rather than remove all soils contaminated above the Method A Regulatory Limits.

Two potential petroleum releases were also investigated at the subject site. The first was associated with an unregulated underground storage tank (UST) located near the original shop building in the Southeast corner of the site. That UST was removed with confirmatory samples in April, 1996, as documented in Appendix C. An above-ground heating oil tank was also removed from the site by the previous owner. The associated surface spill was small in volume and not remediated. These issues are discussed in more detail in Section 1.4.

Section 1.2 - Previous Investigations

On February 16, 1996, J-U-B ENGINEERS, Inc. transmitted a copy of the January, 1996 Phase I/II EA to Mr. Mark Peterschmidt of the Central Region WDOE office. The EA described site conditions prior to development of the Eagle Hardware and Garden Store. It also provided documentation of the soil sampling conducted to determine appropriate actions relative to contaminants found on the site. This report and its recommendations were subsequently discussed by telephone with representatives of J-U-B and Eagle Hardware, as documented in the follow-up letter dated February 28, 1996 to Mr. Mark Peterschmidt. Additional investigative reports of interest are attached and include the gasoline UST removal report, included as Appendix C and the Lead and Asbestos Paint Survey included for the previous structures on the site included as Appendix D.

Section 1.3 - Selection of Clean-up Standards

Due to historical agronomic application of pesticides and experiences documented at similar sites in the Wenatchee area, soil tests were conducted for total lead, total arsenic and chlorinated pesticides at 6 ", 12-18" and 60 " below ground surface (bgs) prior to development of the Eagle store. Additionally, lead and arsenic concentrations were analyzed at the same locations at a depth of 36 " below ground surface. Method A clean-up levels are the most conservative for any single contaminant of concern and were used as a benchmark to measure contamination levels in the orchard soils. Soils exceeding (Method A) concentrations were proposed for use as on-site fill underneath impervious surfaces such as buildings and roadways. Soil tests confirmed the presence of lead, arsenic and DDT with the majority of the contamination occurring within the top eighteen inches throughout the subject site. The levels of contamination, as previously listed in Table 1, did not trigger any additional regulatory requirements

[^0]Table 1 - Phase I/II E.A. Soil Sample Results

Soil Test Results at 6" Deep (mg/kg)					Endosulfan Endosulfan			
Sample I.D.	Arsenic	4,4-DDD	4,4-DDE	4,4-DDT	Dieldrin	II	Sulfate	Lead
A1A	52.9	N/D	2.367	2.371	0.204	N/D	0.711	458
A2A	118	N/D	3.221	3	0.502	N/D	0.215	977
A3A	70.4	N/D	1.8	2.531	0.189	N/D	0.363	425
A4A	75.6	N/D	3.405	4.078	0.344	N/D	N/D	550
A5A	121	N/D	3.282	4.426	N/D	N/D	0.501	949
A6A	133	0.233	2.599	6.675	0.706	0.186	N/D	724
MEAN	95.150	0.233	2.779	3.847	0.389	0.186	0.448	680.500
STD.DEV.	32.872	N/A	0.633	1.613	0.218	N/A	0.211	242.369
Soil Test Results at 12"-18" Deep (mg/kg)								
A1B	48.1	N/D	1.308	1.123	N/D	N/D	0.26	274
A2B	63.3	N/D	0.703	0.76	N/D	N/D	N/D	87.7
A3B	59.5	N/D	0.377	0.487	N/D	N/D	N/D	108
A4B	58.3	N/D	0.788	0.817	N/D	N/D	N/D	247
A5B	119	N/D	0.741	0.866	N/D	N/D	N/D	481
A6B	52.6	N/D	0.672	1.91	0.151	N/D	N/D	215
MEAN	66.800	N/A	0.765	0.994	N/A	N/A	N/A	235.450
STD.DEV.	26.130	N/A	0.303	0.493	N/A	N/A	N/A	141.708
Soil Test Results at 36" Deep (mg/kg)								
A1-36	11.3	N/A	N/A	N/A	N/A	N/A	N/A	9.9
A2-36	35	N/A	N/A	N/A	N/A	N/A	N/A	9.5
A3-36	17	N/A	N/A	N/A	N/A	N/A	N/A	10
A4-36	14	N/A	N/A	N/A	N/A	N/A	N/A	11
A5-36	40.3	N/A	N/A	N/A	N/A	N/A	N/A	10
A7-36	62.9	N/A	N/A	N/A	N/A	N/A	N/A	9.9
A8-36	15.8	N/A	N/A	N/A	N/A	N/A	N/A	9.1
MEAN	28.043	N/A	N/A	N/A	N/A	N/A	N/A	9.914
STD.DEV.	18.987	N/A	N/A	N/A	N/A	N/A	N/A	0.581
Soil Test Results at 60" Deep (mg/kg)								
A1-60	9.3	N/D	N/D	N/D	N/D	N/D	N/D	0.3
A2-60	9	N/D	N/D	N/D	N/D	N/D	N/D	15.6
A3-60	9.1	N/D	N/D	N/D	N/D	N/D	N/D	15.2
A4-60	9.3	N/D	N/D	N/D	N/D	N/D	N/D	13.3
A5-60	9.1	N/D	N/D	N/D	N/D	N/D	N/D	28.8
A7-60	13.9	N/D	N/D	N/D	N/D	N/D	N/D	9.5
A8-60	9.5	N/D	N/D	N/D	N/D	N/D	N/D	9.5
MEAN	9.886	N/A	N/A	N/A	N/A	N/A	N/A	13.171
STD.DEV.	1.778	N/A	N/A	N/A	N/A	N/A	N/A	8.631
WDOE Soil Regulatory Limit per WAC Chapter 173-340 (mg/kg)								
Method A	20	N/A	N/A	1	N/A	N/A	N/A	250
Method B	1.43	4.17	2.94	2.94	0.0625	N/A	N/A	250
Method C	57	167	118	118	2.5	N/A	N/A	250
Industrial	188	547	386	386	8.2	N/A	N/A	1000
Soil Test Results for Gasoline and Diesel ($\mathrm{mg} / \mathrm{kg}$)								
Sample ID	Depth	WTPH-G	WTPH-D					
P1W	6 '	N/A	31.3					
P1E	6 "	N/A	2330					
P2A	$6 "$	N/D	N/A		N/D $=$ No	tectabl	laborator	
P2B	$18^{\prime \prime}$	N/D	N/A		N/A $=$ Not	plicable	ot availa	

Eagle Hardware and Garden
Wenatchee, Washington
beyond WDOE the Model Toxics Control Act (MTCA). Points for compliance with the Method A clean-up levels were any location that was not covered by an impervious surface and, therefore, has potential for human exposure to excessive levels of lead, arsenic and DDT.

Section 1.4 -Remedial Actions Taken

The single contaminated media at the Eagle site in Wenatchee was soil, generally the uppermost 24-36 inches. Constituents of concern included lead, arsenic and DDT derivatives from the historic agronomic applications of pesticides to a pear orchard. To assure protection to human health and the environment, protective capping of the contaminated soil was the chosen remedial action for the subject site. In areas where soil was to remain exposed due to landscape plantings, the native soils were excavated to a depth of at least 36 " and used as backfill under impervious surfaces elsewhere on the site. Fruit trees, roots, grasses and other organic debris were burned at the subject site prior to development of the Eagle Store. The residues from the on-site burning were spread throughout the site, incorporating them into the native soils

Since the soil sampling indicated that the contaminants of concern were limited to the upper 36 " of the soil column, groundwater investigations were not performed at the subject site. The groundwater is estimated at approximately 50 feet bgs, which provides adequate separation between the contaminated soils and the groundwater. Additionally, the constituents of concern are not generally mobile within the soil column. Stormwater infiltration has been limited to the clean soil in the planter areas which occupy about 6.5% of the site, or 0.65 acres. The majority of the stormwater is piped directly to the City's stormwater conveyance system.

The Southeast Quadrant of the site appeared to be contaminated to a slightly deeper level than the rest of the site (to approximately 48"). Consequently, native soils in this
area were removed to a depth of $48^{\prime \prime}$ below original ground surface. Due to the regrading of the Eagle site, the interior planters between the East side of the new building and the property line could not be excavated to a depth of four feet below original ground surface. In those areas, the planters were excavated to a depth of three feet below finish grade and a layer of geotextile fabric was placed at the bottom of the excavation to indicate a separation between clean fill material and potentially contaminated native soils.

Clean soil was mined from on-site by stripping the native soil to a depth of at least 36 " before mining soils for the planter areas. Soils were mined at convenient locations around the site, primarily on the North half and western perimeters.

Contaminated soil excavated from the planter areas was utilized as fill material elsewhere on the site and placed under an impermeable surface. Although some structural fill materials were imported onto the Eagle site for building foundations, slabs, and rods, no native soil was removed from the site.

In addition to the agronomic pesticide contamination, Eagle's Wenatchee site contained an unregulated above-ground storage tank (AST) for heating oil and an unregulated unleaded gasoline UST. The location of each tank was noted on Figure 2. The UST removal was observed by representatives of Earth Consultants, Inc. (ECI) of Bellevue, Washington. ECI took confirmatory soil samples from the bottom of the UST excavation and did not find contamination above the WDOE limit for gasoline total petroleum hydrocarbons (TPH), diesel range TPH, or motor oil range TPH. ECI's full report is included here as Appendix C.

The previous owner removed the fuel oil AST prior to Eagle's purchase of the site. The stained soil at the East end of the AST reported in the 1996 EA was not excavated or separated during construction of the Eagle store. However, no petroleum

Eagle Hardware and Garden Wenatchee, Washington
contamination was noted in the field reports when the planters were excavated to a depth of four feet and four feet wide along the southern property line. Since the contamination source was removed and the general area of the tank was either excavated or covered with asphalt paving, the relatively minor quantity of heating oil contamination should not pose any risk to human health or the environment.

Asbestos-containing materials (ACM) was identified in the residence and shop buildings demolished for the Eagle store construction. Lead-based paint (LBP) was also identified on the residence. The ACM and LBP was identified in the February, 1996 Shannon and Wilson report included here as Appendix D. Appendix D also contains the April 3, 1996 letter verifying proper ACM and LBP removal and disposal by The Lambert Group. No other contamination was identified for the Wenatchee Eagle site.

Section 1.5 - Institutional Controls

Since contamination of the soils exceeded the Method A clean-up levels, institutional controls were required at this site. All soils which exceeded the Method A clean-up levels were placed underneath impermeable surfaces, such as slab-on-grade buildings and asphalt or concrete parking lots. These institutional controls will prevent the exposure of humans or animals to the contaminants of concern and eliminate potential migration of those soils to other locations on the site or off the site.

In addition, the Owner will execute a Restrictive Covenant and record it with Chelan County upon WDOE approval. The proposed Restrictive Covenant is contained in Appendix E and will assure that future property owners are notified of the contamination left on-site as well as the institutional controls required to protect human health and the environment at this site.

Section 1.6 - Sampling and Analysis

In addition to the sampling performed for the Phase I/II EA, J-U-B conducted confirmation sampling within the planter areas at the Wenatchee Eagle site following the construction of the Eagle store. Figure 4 shows the location and designation of each of these sample areas while Table 2 provides the results of the sampling effort. Total lead and total arsenic were used as indicator contaminants to verify that clean native soil was utilized in each of the planter areas.

Table 2 - Confirmation Soil Sampling

Planter Soil Tests at 6" $\mathbf{- 1 2 "}$ Deep (mg/kg)		
Sample I.D.	Arsenic	Lead
SE	<4.0	43.9
SF	<4.0	31.7
SCF	<4.0	12.3
SW	<4.0	<4.0
WC	<4.0	<4.0
NW	<4.0	13.2
NF	<4.0	16.7
NE	<4.0	4.4
NCF	<4.0	22.9
NC	<4.0	49.4
SC	<4.0	21.0

Soil samples were obtained within the top $12^{\prime \prime}$ in representative planter locations dispersed throughout the site. Using a standard digging shovel, each sample was placed in a clean, 4 ounce jar with a teflon lid. Samples were then placed on ice and transferred under Chain of Custody to SVL Analytical Laboratory for analysis. Full sample results and Chain of Custody are included as Appendix F. Soil samples confirm that the planter soils are within the Method A soil regulatory limits.

In addition, photographs of the final site development were taken and are contained in the Photo Log attached at Appendix G. The site photographs confirm the conditions of the pavements and buildings on the subject site, following development of the Eagle Store. Appendix H contains pertinent field reports documenting the plant excavation and soil mining.

Section 2.0 - Conclusions

Based on the information presented in this report, the Wenatchee Eagle site should be eligible and hereby requests a "No Further Action" letter from the WDOE.

REFERENCES

J-U-B ENGINEERS, Inc.; Phase I/II Environmental Assessment for Eagle Hardware and Garden, Inc., Wenatchee, Washington, January, 1996.
J-U-B ENGINEERS, Inc.; Letter to Mr. Mark Peterschmidt, February 28, 1996.
Washington State Department of Ecology, The Model Toxics Control Act Cleanup regulation, Chapter 173-340 WAC, Publication No. 94-06, Amended December, 1993.

Washington State Department of Ecology, Toxics Clean-up Program, Guidance on Sampling and Data Analysis Methods, Publication No. 94-49, January, 1995.
Washington State Department of Ecology, Toxics Clean-up Program, Guidance on Preparing Independent Remedial Action Reports under the Model Toxics Control Act, Chapter 70.105D RCW, Draft, March 1, 1994, Publication No. 94-18.
J-U-B ENGINEERS, Inc. files, Coeur d'Alene, Idaho.
Personal Interview:
Mr. Mark Peterschmidt, WDOE, February 22, 1996.

APPENDIX

A. Site Development Map
B. Site Development Geotechnical Investigation
C. Gasoline UST Removal Report
D. Lead and Asbestos Paint Survey for Previous Structures
E. Restrictive Covenant
F. Sample Results and Chain of Custody
G. Photo Log
H. Pertinent Field Reports

APPENDIX A - SITE DEVELOPMENT MAP

\section*{ $\square \square \square \square \square \square \square$

ALL SPOT ELEVATIONS ARE TO TOP OF ASPHALT UNLESS OTHERWISE NOTED.
PARKING SPACES ARE $9^{\prime} \times 19^{\prime}$ UNLESS OTHERWISE NOTED.
REMOVE 2 " TO $4^{\prime \prime}$ AS REQUIRED OF SURFACE VEGETATION AND TOPSOIL TO REMOVE
ALL ORGANIC MATERIAL.
ANY SOFT OR OTHERWISE UNSUITABLE SOIL ZONES MUST BE REMOVED TO A DEPTH OF
2 FEET AND REPLACED WITH GRANULAR FILL.
REFERENCE LANDSCAPE PLAN L1 FOR GRADING AND TOPSOIL REQUIREMENTS IN ALL
PLANTER AREAS.
 EXIST GROUND CONTOUR INTERVAL $=1$ FOOT. BASIS OF ELEVATIONS IS THE EAST CAP
BOLT OF A FIRE HYDRANT ON THE WEST SIDE OF WALLA WALLA AVENUE APPROXIMATELY
100 SOUTH OF THE CENTER LINE OF RIVER PARK. ELEVATION $=651.40$ PER CITY OF
10NS

SITE UTILITIES TO BUILDING SHALL STOP 5' FROM BUILDING FACE. ALL UTILITIES
SHE
THE CONTRACTOR SHALL MAKE A WATERTIGHT CONNECTION BETWEEN THE STORM DRAIN SION TVINGWNOUINN

APPENDIX B - SITE DEVELOPMENT GEOTECHNICAL INVESTIGATION

December 19, 1995

J-U-B Engineers, Inc.
2810 West Clearwater Avenue, Suite 201
Kennewick, Washington 99336
Atan: Mr. Vince Loftus, P.E.
RE: GEOTECHNICAL ENGINEERING SERVICES FOR THE EAGLE HARDWARE AND GARDEN STORE; WENATCAEE, WASHIENGTON

This report presents the results of a geotecinnical study for the proposed Eagle Hardware and Garden store to be located in Wenatchee, Washington. It summarizes the field exploration program, engineering analyses, and recommendations for the design and construction of the proposed development.

The scope of woik included observing excavation of four exploratory test pits, conducting engineering analyses for foundation design, and preparing this report.

SITE AND PROJECT DESCRIPTION

The 10 -acre site is located at 1200 Walla Walla Avenue in Wenatchee, Washington. The site is currently an orchard. The southeast comer of the site is occupied by a residential structure, shop building, and several minor outbuildings (Figure 1). The site is bordered on the west by a railroad right-of-way belonging to the Burlington Northem/Santa Fe Railroad, with two tracks trending parailel to the west side of the site.

Proposed construction includes the 110,000 -square-foot main store structure, associated loading dock features, and asphait-paved parking and delivery pavements. The main store building will be constructed using concrete till-up exterior panels and a steel-framed interior. Based on our experience with previous structures such as this, we assume that wall loads will vary from about 3 to 5 kips per linear foot, with column loads varying from about 50 to 150 kips.

H-1282-01

Elevations on the property vary from about elevation 660 at the west side of the site down to elevation 650 near the east edge of the site. At the time of this report, tentative finish floor elevation had been set at elevation 656. This fimish floor elevation and the planned driveway across the west side of the site will require either a retaining wall or sloped, rock-faced surface to accommodate the grade change from the proposed driveway elevation up to the existing site elevations.

Paved parking will be made available for about 800 vebicies. Based on information provided by J-U-B Engineers, Inc., typical traffic loads can be expected to be about 5,800 trips per day in the main traffic area. We also estimate that (based on discussions with Kennewick, Washington, Eagle Hardware management) truck passages at the proposed store will be 8 to 10 per day.

SUBSURFACE EXPLORATIONS

On December 6, 1995, four backhoe test pits were excavated at selected locations in the proposed construction area to observe subsurface conditions. Because acquisition of the property had not been finalized at the time of our exploration, impacts to the operating orchard had to be minimized; therefore, the number and location of test pits was determined by access between tree rows. The test pits were excavated by Goodfellow Brothers of East Wenatchee, Washington, under subcontract to Shannon \& Wilson, Inc.

The test pit logs indicate approximate stratigraphic boundaries of the soil strata. The material encountered in the test pits, as indicated on the logs, should be considered schematic. The logs represent soil conditions observed in the test pit excavations but actual soil conditions may vary between test pits. The approximate test pit locations are shown on Figure 1, and the test pit logs are presented on Figures 2 through 5.

The test pits were loosely backfilled at the time of exploration and should be re-excavated and filled with compacted fill during construction.

J-U-B Engineers, Inc.
Atto: Mr. Vince Loftus, P.E.
December 19, 1995
Page 3

SUBSURFACE CONDITIONS

The subsurface conditions observed in the test pits consisted of alternating layers of sand, silt, and sandy lean clay, extending from the surface to depths of 9 to 11 feet. Test pit TP-3 was terminated at a depth of 10 feet in very dense cobbles. Tree roots were encountered as deep as 8 feet but no groundwater was encountered at the site.

At the time of our exploration, the subsurface soils were moist to very wet to a depth of up to 6 feet, with most of the moisture evident in the silt and clay soils. The property owner indicated that the moisture source was probably due to recent rainfall in the area.

ENGINEERING RECOMMENDATIONS

This section presents our geotechnical engineering recommendations for the site grading, foundation design, slab-on-grade construction, pavement design, and retaining wall/grade change design for the proposed development.

Site Grading

All of the topsoil with organics, including grass, should be stripped from the proposed construction area. The stripped soil may be stockpiled and used in areas not requiring structural fill, provided all organic material is absent from the soil. In addition, all of the trees and most of the root system. should be removed from the site to a depth of at least 5 feet below proposed excavation grade or finish grade, whichever is deeper. Our past experience indicates that a large excavator fitted with a thumb may be used to puil the trees and root system from the ground. We also recommend that an industrial strength herbicide (not a simple soil sterilant) be applied to the remaining root system to prevent the root system from growing back.

J-U-B Engineers, inc.
Attm: Mr. Vince Loftus, P.E.
Decernber 19, 1995
Page 4

The proposed grading for the building will include excavating within the western half of the building footprint and filling on the eastern half of the footprint to accommodate the proposed finish floor elevation of 656 feet. Where the site is to be filled for the building, we recommend that the upper foot of stripped subgrade be compacted to 95 percent of the maximum dry density as determined by ASTM D 1557. Likewise, when excavation on the west side of the building is completed, we recommend that the upper foot of that finished surface be compacted to 95 percent of the maximum dry density as determined by ASTM D 1557. In addition, all fill placed in the eastern half of the building should be placed in lifts less than 9 inches loose thickness and should be compacted to 95 percent of the maximurn dry density as determined by ASTM D 1557. All fill material should be moisture-conditioned to near its optimum moisture content prior to compaction of fill.

Depending on the time of year that construction is stanted, the site soils could be very wet and may require aeration or some other form of drying to reduce the in-place moisture content to near optimum. At the existing in-place moisture content, the soils could be very difficult to handle, and could be expected to rut badly under rubber-tired traffic loads. Construction under these conditions could require the use of only imported fill and only tracked vehicles for fill placement. If wet weather conditions are expected during construction, we recommend that the contractor consider placing a geotechnical fabric as a separation barrier between mative soil and imported fill. The fabric should have a minimum weight of 8 ounces per square yard, should be a non-woven fabric, and should be installed in accordance with the manufacturer's recommendations. If imported fill is required during wet weather, we recommend a clean sand/gravel material with 100 percent passing the 3 -inch screen and less than 5 percent (based on the $3 / 4$-inch minus material) passing the number 200 screen. The fill should be compacted in loose lifts less than 9 inches thick to a dry density of at least 95 percent of the maximum laboratory dry density as determined by ASTM D 1557.

We anticipate that excavation and filling at the site would result in shrinkage of the soil volume ranging from about 15 to 25 percent, depending on the type of soil (sand versus clay).

J-U-B Engineers, Inc.
Atto: Mr. Vince Loftus, P.E.
December 19, 1995
Page 5

Foundation Design

Based on our observations and engineering analyses, it is our opinion that footings for walls and columns should be supported in structural fill in accordance with the sketch shown on Figure 6. In addition, our analysis indicates that the top foot of the excavated subgrade should be compacted to 95 percent of the maximum dry density as determined by ASTM D 1557. Our experience and analysis indicates that the native soils encountered at the site are suitable for structural fill, as long as weather conditions allow the soil to be moisture-conditioned to near optimum moisture content (by either addition of moisture or by drying). It is critical that the native soils be moisture-conditioned to near optimum moisture content, especially for the silt and clay soils. If the silt and clay soils have moisture contents more than about 2 percentage points over optimum, the soils may become difficult to compact, may be expected to rut, and may not achieve the specified density, no matter how much compactive effort is exerted. If wet weather conditions are encountered, then the recommendations for geotechnical fabric and imported fill (discussed above) should be used in all footing areas.

When structural fill is placed beneath the footings in accordance with the sketch shown in Figure 6, our analysis indicates that the allowable bearing pressure would be 3,000 pounds per square foot (psf). Our analysis also indicates that footings placed on compacted structural fill and designed for an allowable bearing pressure of 3,000 psf would undergo total settlements less than $1 / 2$ inch.
Differential settlement over a 20 -foot span is expected to be less than $1 / 4$ inch. The majority of the settlement should occur simultaneously with the load application. The bottom of exterior footings should be at least 36 inches below the lowest exterior grade as protection from frost effects. All continuous footings should be at least 18 inches wide, and all isolated column footings should be at least 24 inches wide.

Slab-On-Grade Construction

The compacted natural soil surface or structural fill should provide suitable support for slab-on-grade construction, provided the following recommendations are followed. After the topsoil containing organics has been removed, the exposed slab subgrade should be moisture-conditioned and compacted to a depth of at least 12 inches. The subgrade should be compacted to a dry density of at

J-U-B Engineers, Inc.
Atn: Mr. Vince Loftus, P.E.
December 19, 1995
Page 6
compacted to a depth of at least 12 inches. The subgrade should be compacted to a dry density of at least 95 percent of the maximum laboratory dry density as determined by ASTM D 1557.

Pavement Design

Based on the traffic data provided by J-U-B and Eagle persomel, we analyzed two pavement sections: a light-duty section for passenger vehicles only, and a heavy-duty section for passenger vehicles and trucks. The heavy-duty section was further divided into both asphalt and concrete pavernents (where asphalt may be used outside) but the concrete may be used inside (in the drivethrough area) and at truck bays. Traffic loads used in the desigu included 5,800 passenger vehicle trips (provided by J-U-B) and 8 to 10 truck delivery truck trips (provided by Eagle Persomel). We also assumed that the concrete pavement would have a minimum compressive strength of 3,500 pounds per square inch (psi) at 28 days, and that the pavement would be unreinforced. With higher concrete strength or some type of reinforcement, the required thickness of concrete pavement could be reduced.

Based on the above traffic assumptions, we recommend the following pavement sections.

TABLE 1. PAVEMENT SURFACING RECOMMENDATIONS

Pavement Component	Light-Duty Pavement, Asphait	Heavy-Duty Pavement, Asphalt	Heavy-Duty Pavement, Concrete
Thickness, Inches			
WSDOT Class B Asphalt Concrete	2	3.5	8
$5 / 8^{\prime \prime}$ Crushed Surfacing	4	6	6
Compacted Natural Subgrade	12	12	12

J-U-B Engineers, Inc.
Atto: Mr. Vince Loftus, P.E.
December 19, 1995
Page 7

All of the granular base and subgrade should be compacted to 95 percent of the maximum dry density as deterroined by ASTM D 1557. The asphaltic concrete pavement should be compacted to a minimum of 91 percent of the maximum theoretical Rice's density.

Retaining Walls and Slopes

Retaining walls would be used in the truck dock areas, and could be used as a grade change structure along the property line at the west side of the site. As an aiternative to a retaining wall along the west side of the site, a sloped, rock-covered slope could be installed.

We analyzed both walls and slopes assuming a backfill/natural soil friction angle of 32 degrees for a sand-silt-clay mixture composed of the on-site materials. This friction angle is lower than would normally be expected for a backfill composed entirely of granular soils, but in our opinion, it is applicable for the potential mixture of on-site soils. We also assumed that an in-place unit weight of the wail backfill would be 120 pounds per cubic foot (pcf). Because both the truck docks and the proposed retaining wall at the back of the site would be relatively short and rigid, they would tend to be acted on by at-rest earth pressures. For truck docks, we recommend that an at-rest earth pressure of 55 psf per foot of depth be used in design. Retaining wall footings could be designed using the same $3,000 \mathrm{psf}$ vertical bearing pressure as the main building wall footings, as long as the footing subgrade preparation guidelines shown in Figure 6 are followed. In addition, we recommend that a friction coefficient of 0.3 be used to calculate sliding resistance on the base of the retaining wall footing and a passive pressure of 200 psf per foot depth be used to design for the passive pressure resistance on the front of the retaining wall footing.

The retaining wall at the back of the site receives additional earth pressures from an upward-sioping backfill. Because of these pressures and because the railroad tracks are so close, surcharge pressures from railroad loads must also be added to the above earth pressure criteria. Our analysis indicates that the upward-sloping backfill (which includes the railroad embankment) would contribute an additional 15 psf per foot of depth, and that railroad loads (from passing trains) would also contribute an additional 15 psf per foot of depth, for total earth pressures of 85 psf per foot of depth. Wall construction on the west side of the site will have to accommodate runoff from the railroad
embankment, most likely from snowmelt. We recommend that a wall drainage system be instailed behind the wall, in accordance with the sketcin shown in Figure 7. If the retaining wall concept is selected, we recommend that the construction include daily observation of the adjacent railroad tracks to observe any movement of the tracks toward the wall excavation. Even if construction does not extend into the railroad right-of-way, we recommend that the railroad company be informed of the planned construction, and that a preconstruction survey of the railroad tracks be coordinated and performed with the railroad's consent to establish the preconstruction location of the rails.

As an altemative to a retaining wall, we were asked to evaluate the use of a rock-covered slope using 1 Horizontal:1Vertical (1H:IV) or 1-1/2H:IV slopes, or a landscaped $2 \mathrm{H}: 1 \mathrm{~V}$ slope. Our analysis included slope stability analysis using the computer program PCSTABLS from Purdue University. Our analysis indicated that the proposed 1H:1V slope would be unstable and wouid fail under the soil and railroad surcharge loads at the proposed west property line location. Our analysis also indicated that the slope, with the crest at the west property tine, could be $1-1 / 2 \mathrm{H}: 1 \mathrm{~V}$, or flatter, and that the slope should be covered by a minimum of 2.0 feet of cobbles or boulders, in accordance with the sketch shown in Figure 8. The 1-1/2H:IV slope with rock cover will have a factor of safety against failure of 1.8. Without the rock cover, which forms a buttress for the slope, the factor of safety for the slope is less than 1 ; indicating slope failure. Our analysis of the landscaped $2 \mathrm{H}: 1 \mathrm{~V}$ slope indicated that without any rock cover, the slope will have a factor of safety against slope failure of 1.4.

We anticipate that runoff from snowmelt on the railroad right-of-way could impact the $2 \mathrm{H}: 1 \mathrm{~V}$ slope. In heavy snow years, spring rumoff could be significant. Therefore, landscaping and slope protection should be designed accordingly. Our analysis also indicated that the top of either slope configuration should be no further west than the property line. Slope crests any farther west than the west property line would have to be designed in accordance with railroad design criteria, and specific permission would have to be obtained from the railroad prior to entering its property for construction.

For grade changes on the north and south sides of the site, where backfill slopes are relatively level and no railroad surcharge loads are present, a conventional retaining wall may be designed using the 55 psf per foot of depth earth pressure discussed above, with the footing preparation the same as that

J-U-B Engineers, Inc.
discussed above and shown on Figure 6. As an alternative, a $1-1 / 2 \mathrm{H}: 1 \mathrm{~V}$ slope may be used for a grade change feature.

Excavations

All excavations should be made in accordance with the safety requirements of the Washington State Department of Labor and Industries (DLI) Part. N Excavation, Trenching, and Shoring Standards (Chapter 296-155 Washington Administrative Code [WAC]).

LiMITATIONS

The analyses, conclusions, and recommendations contained in this report are based on șite conditions as they presently exist. They further assume that the exploratory test pits are representative of the subsurface conditions under all portions of the proposed structure; i.e., the subsurface conditions are not significantly different from those disclosed by the field explorations.

If subsurface conditions different from those encountered in the field explorations are observed or appear to be present beneath the excavations, during construction, we should be advised at once so that we can review these conditions and reconsider our recommendations where necessary.

If there is a substantial lapse of time between the submission of this report and the start of work at the site, or if conditions have changed because of natural processes or construction at the site, we . recommend that we review this report to determine the applicability of the conclusions and recommendations concerning the changed conditions or time lapse.

This report was prepared for the exclusive use of J-U-B Engineers, Inc., and its design team in the design and construction of the proposed Eagle Hardware and Garden in Wenatchee, Washington. It should be made available to prospective contractors for information on factual data only and not as a warranty of subsurface conditions included in this report, such as those interpreted from the test pit logs and discussions of subsurface conditions included in this report.

J-U-B Engineers, Inc.
Attn: Mr. Vince Loftus, P.E.
December 19, 1995
Page 10

Shannon \& Wilson, Inc., has included the "Important Information About Your Geotechnical Report" to assist you and others in understanding the use and limitations of our report. This enclosure is considered an integral part of our report and should be read as part of the basis for using this report.

Sincerely,

SHANNON \& WILSON, INC.

Brian J. Williams, P.G., P.E.
Senior Engineer

Dee J. Burrie, P.E.
Branch Manager

BJW:DJB:EAS/cvm
Enclosures: Figure 1 - Site Plan
Figure 2 - Log of Test Pit TP-1
Figure 3-Log of Test Pit TP-2
Figure 4 - Log of Test Pit TP-3
Figure 5 - Log of Test Pit TP-4
Figure 6-Footing Subgrade Preparation
Figure 7 - Wall Backfill Drainage Design
Figure 8 - West Property Line Slope Construction Guidelines Important Information About Your Geotechnical Report

Notes:

1. Backnall behind wall shouid be compacted with hand-operated equipment to 90% of the maximum dry density determined by ASTMD 1557.
2. Drainage Gravel to be $5 / 8^{\prime \prime \prime}$ - minus commerciallyproduced base course or top course gravel. Pea Gravel to be commercially-produced product
3. Subdrain pipe to be $4^{\circ \prime}$ minimum diameter, siotted pipe, sloped to drain $6^{\prime \prime}$ per 100°, or steeper. Maximum slot width to be $18^{\prime \prime}$. Subdrain pipe to outlet at least 15^{\prime} away from (downslope) of wall face.

Scale as Shown

Eagire Hardware and Garden Wenatchee, Washington	
Wall Backill Drainage Design;	
West Property Line Wall	
H-1282-01	
December 1995	Fig.7
Shannon \& Wilson, Inc. Geotectnical and Environmental Consulants	

Finished Pavement Surface

Dated: December 19, 1995
To: \qquad
Mr. Vince_Loftus. P. F

Important Information About Your Geotechnicai/Envirommental Report

Comsultants prepare reports to meet the specific needs of speciic individuals A roport pmepared for a civil eaginear mary not be radequate for a construction contructor or even another civil engimers. Uniless indicuted otherwisa, yoner congulfant propaned yours Breport expressly for you and expressiy for the proposes you indicased. No one other than yous shonild apply fins report for its inforuded purpose without first coumercing with the consuitmon. No party should apply this report for amy poupose other than that osigimally contemplased without fioss coaferring with the consultant

TEIE CONSULTANT'S RGAPORT IS BASND ON PROJECT-SPECIIICC TACIORS.

A geotechnical/earionmental report is baged on a sabsarfice replomation plam designed to consider a urique set of project-
 and configaration; its historicall use and practices the location of the stracturs on the site and its orimation; other impnovements such as access roads, parking lots, and urdergroumd wtilities; and the additional risk created by scope-of-sarvice limitations inposed by the client. To help avoid costly problems, ask the comsultant to eviluate how any fictors that change subsequept to the date of the report may affect the recommendations. Unless your commultant indicates otherwise, yois report should not be parking garage, or if a mefrige the proposed project is changed (for example, if ans office boilding winl be earected instead of a near the sita); (2) when the sims, elequtiouse will be built instead of ap unarefrigerated ona, or chemicals are discovered on or tion of the proposed project is modified; (4) whest there is a chonge of ownership; or (5) fipr application to an adjacem ander Consultants canaot nocept responsibility for problems that may occur if they are not coasulfed after factows which were cowsita - in the development of the report have changed.

SUBSURFACE CONDTIONS CAN CFANGE.

Subsurface conditions may be affected as a resuit of naturai processes or human activity Because a geotechnical/ewriponmental report is based on conditions that existed at the time of subsarfice explaration, construction decisions should not be based ar a report whose adequacy may have been affectod by time. Ask the consultant to sdivise if addizional tests are desimble before construction starts; for example, groundwater conditions commonily vary seasonaily.

Construction operations at or adjacent to the site and natural eveats such as filoods, earthqualoes, or groumatwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/earixommental report. The coasultant should be kept apprised of any such events, and should be consuited to determine if additional tests are necessary.

MOST RECOMIMENDATIONS ARE EROFPESEIONAL JUDGMENIS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taben. The data were extrapolated by your consuitant, who then applied jurgmeat to render an opinion about overall subsuraxe conditions The actual interface between materials may be far more gradual or abrupt than your report indicates Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and yours consultant can work together to help neduce their impacts Retaining your consuitant to observe subsurface construction operations can be particulariy beneficial in this respect.

-. \triangle REPORT'S CONCLUSIONS ARE PRGCLTMINARY

The conciasions contained in your consultant's report ans preimminary bocanse they must be based on the assumption that conditions -r revealed througha selective explonutory sampling ara indicative of actual conditions throughont a site Actual subsurfice conditions can be discerned only during carthwork; thentorora, you should retain your consaltank to observe aemal conditions and to provide conclosions. Onky the consuitant who prepared the report is fally familise with the backgmond information needed to determine Whather or not the report's recommendations based on those concinsions ane valid and whether or not the comtractor in abiding by mpplicable recommendationss. The cousultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommpendations if another party is notained to observe construction.

TEEE CONSULTANT"S REEPORT IS SURIECT TO MISINTIERPRRETATION.

tal report. to help avoid thess problems, the coasultant shomid be rebained to work with other project design paosemsionnis

BORING LOGS AND/OR MONITORING WELL DATA SHOUUD NOT RE SEPPARATED FROM THE REEPOET.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by sile personmei), field test resuitts, and laboxatory and/or office eviluation of field samplen and dato. Ohiy fimal boring loge and data ane customarily incladed in
 or other design drawings, because dratters may cownit errors or omisemons in the tuansfer process.

To reduce the ifikelinood of boring \log or monitoring well misimrerpretation, contructors should be given ready access to the coumplete gootechnical engineeriug/eavironmental report prepared of authorized for their use. If access is provided only to the report preprared鱼r you, you should advise contmctors of the report's linitations assuming that a contractor was not ons of the specific persons for whom the roport was prepared, and that developing construction cost eatimates was not one of the specific praposes for which it was prepared. While a contractor mary grin impostant knowledge from a report prepared for amother party, the contmatos should discuss tho report with your cousuitant and perforxo the additional or alternative work believed necessary to obtain the data specifically approprinto for construction coat estimating purposes. Some clients hold the mistalken impression that simply disclaiming reaponsibility Her the secumcy of subsurfeec information always insulates them from attendant lisbility Providing the best available imformation to contrictors heips preveat costly construction problems and the adversariai attitudes that agoravats them to a disproportionate scaile.

READ RESTPONSTBILITY CLAUSKS CLOSELXY

Because geotecimical/eqrisonmental engineering is based extensively on judgmenk and opinion, it is far less exact tham other design disciplines This situation has resulted in wholly unwarranted claims being lodged agginst consuitants. To help prevent this problem, comsultants have developed a mumber of clauses for use in their contracts, reports and other documents. These responsibility clauses are not excuipatory clauses designed to tmasfor the consultant's liabilitiesto other parties; rather, they are definitive clauses thant identify where the comsultant's responsibilities begin and end. Their use helps all parties inolved recogrize their individani responsibilities amd tolos appopriate action. Some of these definitive clauses are lilecly to appear in your report, and you are encouraged to read them closely Your consultant will be pleased to give foll and frank answers to your questions

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in tho Geosciences, Silver Spring, Maryland

APPENDIX C - GASOLINE UST REMOVAL REPORT

Letter of Transmittal

TO: Eagle Hardware and Garden, Inc.

THESE ARE TRANSMITTED FOR YOUR:
目 Information \quad Files $\quad \square$ Approval \square Review and Comments \square Signature \square Distribution
\square
REMARKS:

CC:1 $\quad J-U-B$ Engineers, Inc.	
2	
3	
4	

ATTN.
ATTN.
ATTN.
ATTN.
ATTN.
BY Joe Nessel

UNDERGROUND STORAGE TANK CLOSURE

EAGLE HARDWARE STORE NO. 453
WALLA WALLA AVENUE
AND RIVER PARK STREET
WENATCHEE, WASHINGTON

E-7118-1

April 10, 1996

PREPARED FOR
EAGLE HARDWARE AND GARDEN, INC. C/O SCONZO/HALLSTROM ARCHITECTS

Robert S. Levinson, P.E. Principal

Earth Consultants, Inc.
1805-136th Place Northeast, Suite 201
Bellevue, Washington 98005
(206) 643-3780

Eagle Hardware and Garden, Inc.
c/o Sconzo/Hallstrom Architects
919-124th Avenue Northeast
Suite 101
Bellevue, Washington 98005
Attn: Mr. John Hallstrom
Subject: Underground Storage Tank (UST) Closure
Eagle Hardware Store No. 453
Walla Walla Avenue and River Park Street
Wenatchee, Washington
Dear Mr. Hallstrom:
The Environmental Services Division of Earth Consultants, Inc. (ECI) observed the removal of a gasoline underground storage tank at the subject site on March 19, 1996. This tank had previously been utilized for the fueling of equipment on a pear orchard located at the subject site. This report presents the observations by the ECI representative, sampling activity, and documentation for this project.

We appreciate the opportunity to have provided environmental consulting services to you. If you have any questions, or if we may be of further service, please contact us.

Respectfully submitted,

EARTH CONSULTANTS, INC.

Joe Nessel, REA, REP
Environmental Scientist

Robert S. Levinson, P.E.
Principal

JN/RSL/kml

TABLE OF CONTENTS

E-7118-1

PAGE
1.0 INTRODUCTION 1
1.1 Scope of Work 1
1.2 Site History 1
2.0 UST REMOVAL AND SOIL SAMPLING 2
3.0 RESULTS 3
4.0 CONCLUSIONS 4
5.0 STANDARD LIMITATIONS 5
6.0 REFERENCES 6
APPENDICES

Appendix A Appendix B Appendix C

ILLUSTRATIONS

Plate 1
Plate 2
Plate 3

Laboratory Analytical Results
Photographs
Soil Sampling and Field Screening Methodology

Vicinity Map
Site Plan
Sample Location Plan

1.0 INTRODUCTION

Earth Consultants, Inc. (ECI) observed the closure of a gasoline underground storage tank (UST) for Eagle Hardware and Garden, Inc. and Sconzo/Hallstrom Architects on March 19, 1996. This report presents the data and documentation for $\mathrm{ECl}^{\prime} \mathrm{s}$ observations of the UST removal and our site assessment.

During this project, a single gasoline UST formerly used to supply fuel to farm equipment/vehicles, was removed from the area of former structures which supported a pear orchard operated by the Brown Family. The approximate site location is shown on the Vicinity Map, Plate 1, and the Site Plan, Plate 2.

1.1 Scope of Work

ECI's services were retained to observe and document the removal of the gasoline UST. The scope of work included the following tasks:

- Provide a Site Safety Plan for the removal of the UST
- Provide observations and documentation for the UST removal
- Collect subsurface soil samples from the UST excavation for chemical analytical testing.
- Prepare a written report documenting field work, laboratory analyses, and conclusions.

1.2 Site History

According to the referenced Phase I/II Environmental Assessment by J-U-B Engineers, Inc. (J-U-B), the subject site was the residential and shop area located at the southeast corner of a 9.8-acre pear orchard property. In 1985, the property owner installed an approximately 300 metal gallon UST to store unleaded gasoline, and a fuel pump, at the northeast corner of the garage (Plate 2). On December 20, 1995, J-U-B collected soil samples to depths of eighteen inches below the ground surface (bgs) at the area above the tank. Results of analyses for gasoline total petroleum hydrocarbons (TPHs) on the soils samples indicated that there were no detectable concentrations of gasoline TPHs.

According to the J-U-B report, a second UST, utilized for the storage of used oil, had been previously located east adjacent to the gasoline UST. The property owner reported that he had removed and disposed of the waste oil underground storage tank in about 1991. The owner reported no noticeable leakage or spillage from the used oil tank at the time of removal.

2.0 UST REMOVAL AND SOIL SAMPLING

On March 19, 1996, Appleland Pump and Equipment (Appleland) of Wenatchee, Washington, inerted the gasoline UST with carbon dioxide. Continental Dirt Contractors of Kent, Washington then utilized a trackhoe to remove soil from over and around the UST to approximately two feet bgs. The approximately ten cubic yards of overburden soil was pulled into piles at the south and east ends of the UST.

The five foot long tank was positioned with its long-axis oriented east and west. The tank was removed without further excavation, utilizing its lifting eye to lift the tank from its hole. The three foot diameter metal tank appeared to be in good condition with no evidence of leakage. The tank was calculated to be approximately 250 gallons in size. The former UST was removed from the site by Appleland.

Groundwater was not encountered during this tank excavation and removal. There was no evidence of staining on the subsurface soils around or beneath the excavated tank. No odors of gasoline were noted and no organic vapors were detected by a photoionization detector (PID) used on site to monitor for volatile organic compounds (VOCs) during the UST removal process.

An ECI representative was on-site to observe the UST removal, monitor for the presence of VOCs, and collect subsurface and stockpile soil samples for laboratory analysis. Four subsurface soil samples were collected from the limits of the tank removal excavation and submitted for laboratory analysis of gasoline-range Total Petroleum Hydrocarbons (TPHs) by Ecology Method WTPH-G. Three soil samples were collected from the stockpiled soil and submitted for laboratory analysis by WTPH-G. These seven soil samples were also analyzed for the gasoline related volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX).

Based upon the information about the former presence of an oil UST adjacent to the east end of the gasoline UST, one subsurface soil sample also was analyzed to confirm that heavier oil range TPHs were not present or, if present, were in compliance with Ecology cleanup levels. This soil sample, EW-3, collected from the east wall of the excavation at three feet bgs, was analyzed for the presence of diesel and oil TPHs by Ecology Method WTPH-D Extended.

3.0 RESULTS

Analytical testing indicated that gasoline range TPHs were not detected at $5 \mathrm{mg} / \mathrm{kg}$, and that BTEX compounds were not detected above their detection limits of $0.1,0.1$, $0.1,0.3 \mathrm{mg} / \mathrm{kg}$ respectively. Analysis of sample EW-3 for oil range TPHs detected approximately $31 \mathrm{mg} / \mathrm{kg}$ of diesel range TPH and $92 \mathrm{mg} / \mathrm{kg}$ of oil range TPH. The analytical laboratory reports are included in appendix A. The results were well below the Washington State MTCA Method A Cleanup Levels (WAC 173-340) for both gasoline range TPHs ($100 \mathrm{mg} / \mathrm{kg}$) and oil range TPHs ($200 \mathrm{mg} / \mathrm{kg}$).

4.0 CONCLUSIONS

A single approximately 250 -gallon gasoline fuel tank was excavated and removed from the subject site on March 19, 1996. The tank was in good condition with no evidence of leakage. There was no evidence of soil stains on either the walls or base of the excavation. No gasoline or petroleum odors were detected during the tank excavation. A review of soil sample analytical results for both gasoline and oil total petroleum hydrocarbons indicates that they were below MTCA Method A Cleanup Standards. Based on our observations and analytical results, ECI concludes that no gasoline was released form the UST on the subject property. The excavation has been backfilled. The laboratory analytical reports are located in Appendix A. Photographs of the UST removal are located in Appendix B, and Soil Sampling and Field Screening Methodology is located in Appendix C.

5.0 STANDARD LIMITATIONS

ECI has prepared this report in a professional manner, using the skill and care normally exercised for similar projects under similar conditions by competent environmental consultants currently practicing in this area. ECI believes the conclusions stated herein to be factual, but no guarantee is made or implied.

This report is for the exclusive use of Eagle Hardware and Garden, Inc., Sconzo/Hallstrom Architects and their representatives. After completion of this present work, any future consultations of other professional services to others (third parties) related to this project requires written authorization form Sconzo/Hallstrom Architects or Eagle Hardware. Any such ECI service to third parties is new work requiring formal agreement with the third party and will be performed in accordance with the formal agreement.

6.0 REFERENCES

1. Phase I/II Environmental Assessment for Eagle Hardware and Garden Inc., Wenatchee, Washington, January 1996; J-U-B Engineers, Inc., 2810 W. Clearwater Avenue, Suite 201, Kennewick, Washington 99336.
2. Site Safety Plan for Proposed Eagle Hardware Site, Former Brown Residence, Walla Walla Avenue and East River Park Road, Wenatchee, Washington; Earth Consultants, Inc., 136th Place Northeast, Suite 201, Bellevue, Washington; E-7118, March 6,1996
3. Washington Administrative Code, Chapter 173-360;Underground Storage Tank Regulations, 10/29/91
4. Washington Administrative Code, Chapter 173-340; Model Toxics Control Act, Cleanup Regulation; Publication No. 94-06; December 1993
5. Washington State Department of Ecology, "Guidance for Site Checks and Site Assessments for Underground Storage Tanks"; Department of Ecology Underground Storage Program (90-52); February 1991, (Revised 1992).

LEGEND

Not-To-Scale

Site Plan

LEGEND

- Sample Location

4. Area of Excavation

To 2 Feet Below Ground Surface

Not-To-Scale

Area of Stockpiled

 Excavated SoilCLIENT: EARTH CONSULTANTS, INC.
DATE: $\quad 3 / 20 / 96$
1805 136TH PLACE N.E.
CCIL JOB \#: 603043
SUITE 201
BELLEVUE, WA 98005
DATE RECEIVED: 3/19/96
WDOE AĊCREDITATION \#: C142
CLIENT CONTACT: JOE NESSEL
CLIENT PROJECT ID: EAGLE-WENATCHEE 7118
CLIENT SAMPLEID: SW-4 3/19/96 9:35

DATA RESULTS						
				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
TPH-GASOLINE	WTPH-G	$\mathrm{ND}(<5)$	MG/KG	100MG/KG	3/19/96	KLP
BENZENE	EPA-8020	$N D(<0.1)$	MG/KG	.5MG/KG	3/19/96	KLP
toluene	EPA-8020	$N D(<0.1)$	MG/KG	40MG/KG	3/19/96	KLP
ETHYLBENZENE	EPA-8020	$N D(<0.1)$	MG/KG	20MG/KG	3/19/96	KLP
XYLENES	EPA-8020	$\mathrm{ND}(<0.3)$	MG/KG	20MG/KG	3/19/96	KLP

[^1]** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
*. actions levels are provideo only when parameter data is used for a generally
CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY.
THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY
DECISIONS BASED ON ANALYTICAL DATA

CCI
Analytical
Laboratories, Inc.

CERTIFICATE OF ANALYSIS

CLIENT: EARTH CONSULTANTS, INC.
DATE: 3/20/96 1805 136TH PLACE N.E.

CCIL JOB \#: 603043
SUITE 201
BELLEVUE, WA 98005
CCIL SAMPLE \#: 2
DATE RECEIVED: 3/19/96
WDOE AĊCREDITATION \#: C142
CLIENT CONTACT: JOE NESSEL
CLIENT PROJECT ID: EAGLE-WENATCHEE 7118
CLIENT SAMPLEID:
EW-3 3/19/96 9:45
DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS	
ANALYTE	METHOD	RESULTS*	UNITS**		LEVEL**	DATE	BY

NOTE: DIESEL RESULT IS MAINLY DUE TO FRONT OF OIL RANGE PRODUCT ELUTING IN DIESEL RANGE

- "ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTNG LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES
* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
*- ACTIONS LEVELS ARE PROVIDEO ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY
CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIOELINES ONLY.
THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY
DECISIONS BASED ON ANALYTICAL DATA

APPROVED BY: C. ${ }^{\text {Cit }}$

Page 1

CERTIFICATE OF ANALYSIS

CLIENT:	EARTH CONSULTANTS, INC.	DATE:	$3 / 20 / 96$
	1805 136TH PLACE N.E.	COIL JOB \#:	603043
	SUITE 201	COIL SAMPLE \#:	3
	BELLEVUE, WA 98005	DATE RECEIVED:	$3 / 19 / 96$
		DOE ACCREDITATION \#:	C142

CLIENT CONTACT: JOE NESSEL
CLIENT PROJECT ID: EAGLE-WENATCHEE 7118
CLIENT SAMPLE ID:
EW-4 3/19/96 9:50

- "NO" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES
.* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
... ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY
CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY.
THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY
DECISIONS BASED ON ANALYTICAL DATA

APPROVED BY: \qquad

CERTIFICATE OF ANALYSIS

CLIENT: EARTH CONSULTANTS, INC.
DATE: 3/20/96
1805 136TH PLACE N.E.
CCIL JOB \#: 603043
SUITE 201
beLLEVUE, WA 98005
CCIL SAMPLE \#: 4
DATE RECEIVED: 3/19/96
WDOE ACCREDITATION \#: C142

CLIENT CONTACT: JOE NESSEL

$\begin{array}{ll}\text { CLIENT PROJECT ID: } & \text { EAGLE-WENATCHEE } 7118 \\ \text { CLIENT SAMPLE ID: } & \text { BOTTOM } 3 / 19 / 969: 55\end{array}$

DATA RESULTS						
ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-GASOLINE	WTPH-G	$\mathrm{ND}(<5)$	MG/KG	100MG/KG	3/20/96	KLP
BENZENE	EPA-8020	ND(<0.1)	MG/KG	.5MG/KG	3/20/96	KLP
toluene	EPA-8020	$\mathrm{ND}(<0.1)$	MG/KG	40MG/KG	3/20/96	KLP
ETHYLBENZENE	EPA-8020	$\mathrm{ND}(<0.1)$	MG/KG	20MG/KG	3/20/96	KLP
XYLENES	EPA-8020	$\mathrm{ND}(<0.3)$	MG/KG	20MG/KG	3/20/96	KLP

[^2]APPROVED BY: CHIS

Page 1

CERTIFICATE OF ANALYSIS

CLIENT:	EARTH CONSULTANTS, INC.	DATE:	$3 / 20 / 96$
	1805 136TH PLACE N.E.	CCIL JOB \#:	603043
	SUITE 201	CCIL SAMPLE \#:	5
	BELLEVUE, WA 98005	DATE RECEIVED:	$3 / 19 / 96$
		WDOE ACCREDITATION \#:	C142

CLIENT CONTACT: JOE NESSEL

CLIENT PROJECT ID:
CLIENT SAMPLEID:

EAGLE-WENATCHEE 7118
PILE SOUTH 3/19/96 9:57

DATA RESULTS

[^3]
APPROVED BY:

\qquad

Page 1

CCI
Analytical
Laboratories, Inc.

CERTIFICATE OF ANALYSIS

CLIENT:	EARTH CONSULTANTS, INC.	DATE:	$3 / 20 / 96$
	1805 136TH PLACE N.E.	CCIL JOB \#:	603043
	SUITE 201	CCIL SAMPLE\#:	6
	BELLEVUE, WA 98005	DATE RECEIVED:	$3 / 19 / 96$
		WDOE ACCREDITATION \#:	C142

CLIENT CONTACT: JOE NESSEL

CLIENT PROJECT ID: CLIENT SAMPLE ID:

EAGLE-WENATCHEE 7118
PILE EAST 3/19/96 10:00

DATA RESULTS

DATA RESULTS						
ANALYTE	METHOD	RESULTS*	UNITS***	ACTION LEVEL"*	ANALYSIS DATE	ANALYSIS BY
TPH-GASOLINE	WTPH-G	$\mathrm{ND}(<5)$	MG/KG	100MG/KG	3/20/96	KLP
BENZENE	EPA-8020	ND(<0.1)	MG/KG	.5MG/KG	3/20/96	KLP
TOLUENE	EPA-8020	NO(<0.1)	MG/KG	40MG/KG	3/20/96	KLP
ETHYLBENZENE	EPA-8020	$N D(<0.1)$	MG/KG	20MG/KG	3/20/96	KLP
XYLENES	EPA-8020	$\mathrm{ND}(<0.3)$	MG/KG	20MG/KG	3/20/96	KLP

[^4]* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
** actions levels are provideo only when parameter data is used for a generally CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

APPROVED BY: \qquad

Page 1

CERTIFICATE OF ANALYSIS

CLIENT:		DATE:	$3 / 20 / 96$
	EARTH CONSULTANTS, INC.	COIL JOB\#:	603043
	SUITE 201	COIL SAMPLE \#:	7
	BELLEVUE, WA 98005	DATE RECEIVED:	$3 / 19 / 96$
		WDOE ACCREDITATION \#:	C142

CLIENT CONTACT: JOE NESSEL

CLIENT PROJECT ID: CLIENT SAMPLE ID:

EAGLE-WENATCHEE 7118 PILE EAST + 3 FT 3/19/96 10:02

DATA RESULTS

| | | | ACTION | ANALYSIS | ANALYSIS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALYSE | METHOD | RESULTS* | UNITS** | | |
| LEVEL** | DATE | BY | | | |

- "ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMT. REPORTING LIMIT IS GIVEN IN PARENTHESES
* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

APPROVED BY: \qquad

CERTIFICATE OF ANALYSIS

CLIENT:	EARTH CONSULTANTS, INC.	DATE:	$3 / 20 / 96$
	1805 136TH PLACE N.E.	CCIL JOB \#:	603043
	SUITE 201		
	BELLEVUE, WA 98005	DATE RECEIVED:	$3 / 19 / 96$
		WDOE ACCREDITATION \#:	C142

CLIENT CONTACT: JOE NESSEL
CLIENT PROJECT ID:

EAGLE-WENATCHEE 7118

QUALITY CONTROL RESULTS

SURROGATE RECOVERY			
CCIL SAMPLEID	ANALYTE	SUR ID	\% RECV
603043-01	WTPH.G	TFT	98
603043-01	EPA-8020	TFT	94
603043-02	WTPH.G	TFT	95
603043-02	EPA-8020	TFT	90
603043-02	WTPH.D EXT	C25	121
03043-03	WTPH-G	TFT	103
603043.03	EPA-8020	TFT	95
603043-04	WTPH-G	TFT	99
603043-04	EPA-8020	TFT	94
603043-05	WTPH-G	TFT	101
603043-05	EPA-8020	TFT	95
603043-66	WTPH-G	TFT	98
603043-06	EPA-8020	TFT	92
603043-07	WTPH-G	TFT	100
603043-07	EPA-8020	TFT	94

BLANK AND DUPLICATE RESULTS

method	blk result	Assoc smpls	dup result	orig result	*ROP	Assoc smpls
WTPH-G	ND(<5)	303043-1 TO 2	22	28	***	SAME
EPA-8020(BENZ)	ND(<0.1)	303043-1 TO 2	$\mathrm{ND}(<0.1)$	ND(<0.1)	**	SAME
EPA-8020(TOL)	ND(<0.1)	303043-1 TO 2	0.1	0.1	**	SAME
EPA-8020(ETHYLBENZ)	$\mathrm{ND}(<0.1)$	303043-1 TO 2	$\mathrm{ND}(<0.1)$	$\mathrm{ND}(<0.1)$	**	SAME
EPA-8020(XYLENE)	$\mathrm{ND}(<0.3)$	303043-1 TO 2	0.4	0.4	***	SAME
WTPH-G	ND(<5)	303043-3 TO 7	ND(<5)	ND(<5)	***	SAME
EPA-8020(BENZ)	ND(<0.1)	303043-3 TO 7	$\mathrm{ND}(<0.1)$	$\mathrm{ND}(<0.1)$	***	SAME
EPA-8020(TOL)	$\mathrm{ND}(<0.1)$	303043-3 TO 7	ND(<0.1)	$\mathrm{ND}(<0.1)$	***	SAME
EPA-8020(ETHYLBENZ)	$\mathrm{ND}(<0.1)$	303043-3 TO 7	$\mathrm{ND}(<0.1)$	$\mathrm{ND}(<0.1)$	***	SAME
EPA-8020(XYLENE)	$\mathrm{ND}(<0.3)$	303043-3 TO 7	ND (<0.3)	$\mathrm{ND}(<0.3)$	***	SAME
WTPH D EXT(DSL RANGE	$\mathrm{ND}(<25)$	603043-02	36	31	***	SAME
WTPH D EXT(OIL RANGE)	$N D(<50)$	603043-02	130	92	***	SAME

Page 1

CERTIFICATE OF ANALYSIS

CLIENT: EARTH CONSULTANTS, INC.
DATE: 3/20/96
1805 136TH PLACE N.E.
COIL JOB \#: 603043
SUITE 201
BELLEVUE, WA 98005 DATE RECEIVED: 3/19/96
CLIENT CONTACT: JOE NESSEL
CLIENT PROJECT ID:
EAGLE-WENATCHEE 7118
QUALITY CONTROL RESULTS

SPIKE RECOVERY

*** RD NOT REPORTED FOR RESULTS < XS THE REPORTING LIMIT

APPROVED BY: \qquad

Page 2
3229 Pine St. • Everett, WA 98201 • 206 258-4548 • FAX 206 259-6289 • Seattle 206 292-9059
SIGNATURES（Name，Company，Date，and Time）：

SAMPLE I．D．	DATE	TIME	TYPE	LAB \＃
1． $3 \omega-4$	3119	$9: 35$	Soll	
2．$-\omega-3$	$3 / k \%$	4，\％\％	5 SOL	
3. \qquad	$3 / 19$	4.50	Soll	
4. Bormes	3119	9.55	512	
5．P L 二	3119	$9: 57$	Serlc	
6．Pue Eべs	$3 / 19$	10．00	6210	
7. \qquad PuE EATS＋3ft	$3 / 19$	10.02	SOIL	
8．				
10.				

[^5]
POSSIBLE SAMPLE HAZARDS

1．Relinquished By：Lei Neseef $3 / 191961530$ 2．Relinquished By：

Photo 1 Gasoline UST excavation.

Photos Dated 3/19/96

APPENDIX C

Soil Sampling and Field Screening Methodology

After the removal of the UST, soil samples were collected, from the bottom and sidewalls of the excavation, with a clean hand shovel or with the excavator bucket. The hand shovel was cleaned in a solution of Liquinox and water, then rinsed with distilled water between each sample collection to prevent cross-contamination between samples. Samples were taken from the center of the excavation bucket. Clean disposal gloves were used during the collection and handling of each soil sample. Soil samples from the stockpiled soil were collected after removing about one foot of soil to expose a fresh surface. All soil samples were immediately packed in laboratory grade glass jars, sealed, labelled and packed in a cooler with ice for delivery under chain-of-custody to CCI Analytical Laboratories, Inc., in Everett, Washington for analyses.

Field screening using a Photovac Microtip photoionization detector (PID) was performed on soil samples collected during the excavation procedures. The instrument was used to measure volatile organic compound vapors, which provides an indication of the presence of hydrocarbons.

Samples collected for field screening were placed in a clean plastic bag, sealed, and gently shaken to release organic vapors into the bag's headspace. The PID probe was inserted into the plastic bag, withdrawing vapors from the bag's headspace, and the reading was recorded.

Headspace vapor field screening results are site-specific and vary according to contaminant type, atmospheric conditions, and soil moisture content.

APPENDIX D - LEAD AND ASBESTOS PAINT SURVEY FOR PREVIOUS STRUCTURES

Mr. Paul Klatt

J-U-B Engineers
1250 Ironwood Drive, Suite 220
Coeur d' Alene, Idaho 83814

Re: Disposition of Floor Tile in Shop Building Eagle Hardware Store - Wenatchee, WA

Dear Mr. Klatt:
This letter responds to your question about the disposition of the floor tile in the shop building at 1200 Walla Walla Avenue. About one month prior to the asbestos and lead abatement project that occured at the Eagle Hardware site during the last week of March 1996, the shop building on the property which contained 250 sq . ft . of twelve inch floor tile was dismantled and removed for reuse by the previous owner of the property. The concrete slab to which the floor tile was adhered was removed by the General Contractor. Therefore the floor tile was not part of the asbestos abatement project which we oversaw.

This situation does not create any liability for the current property owner because the floor tile is categorized by the Environmental Protection agency as a Catergory I Non Friable asbestoscontaining material. There is no requirement to remove the floor tile prior to demolition if the floor tile does not become friable during the demolition of the slab. We were not on-site during the demolition and consequently did not observe whether the floor tile became friable. I can state that the practice of leaving floor tile in a building being demolished is not unusual in that jurisdiction. Therefore little liability will accrue to the property owner.

Sincerely,

Jeff Lambert, P.E.
Principal Environmental Engineer

Nart. John Hallidrom

Scanzo © $\mathbf{2}$ Hallistron Architects
919124 th Avenue, N.E
Bellevue, WVA 98005
Aprill 3,3996

Re AsbesbosfLead- Based Print Rencioval Verification
Dear Mar. Hallstrom:
This letter serves as a verification that all asbestos/Lead-based paint eontaining inaterials have been removed from a houste on the Eagle Fandware stome pruperty located at 1200 Walla Walla Averued, Wenaidise, WA.

The asbestos removal waf started on March 21, 1996 and was completed on March 23, 1996. All asbestos niaterials werie disposed of at Graham laridill in Spokane, WA.

All previcuady identified pad-base painted components of the howse were removed fromi Aprill through April 3 , 1996 . The cormponents were packaged on pallets, and lebeled with appropriate waming labels The packaged materials are betig stored onsite in aniasea specified by Lamny Bohns Site Superintedent. The materials have a fence around thern. A hamardous wipaste transporter will stop by the site within the next two weeks to pick up the matarials.

The intent of this letter is to notify you that tie demo contractor may now demoligh the house and transport the materfalis as deap construction debris to a regular landail. Whe will be providing youtwith a:foll meport to inchude disposal documentation in the near futione

It has been qui pleasure to hatre beden of service to you. ff you have any questions, please: cantact pre or Jeff Lambert at (50) 536 -9676 or Fax (509) 536-6504

Sincemely,

Eant Sorimixflele Spokare, WA|99102

Asbestos and Lead-Based Paint
 Survey
 Proposed Eagle Hardware Site Wenatchee, Washington

February 1996
$J-U-B$ Engineers, Inc.
2810 West Clearwater Avenue, Suite 201 Kennewick, Washington 99336

February 8, 1996

J-U-B Engineers, Inc.
2810 West Clearwater Avenue, Suite 201
Kennewick, Washington 99336
Attn: Mr. Vince Loftus, P.E.

RE: ASBESTOS AND LEAD-BASED PAINT SURVEY, PROPOSED EAGLE HARDWARE SITE, WENATCHEE, WASHINGTON

This letter presents the results of an asbestos-containing material (ACM) and lead-based paint (LBP) survey at the property located at 1200 Walla Walla Avenue in Wenatchee, Washington (Figure 1). This work was done in accordance with our proposal dated January 3, 1996, signed by Mr. Vince Loftus of J-U-B Engineers, Inc., on January 11, 1996. This report summarizes the project approach and findings. The purpose of the ACM survey was to identify potential ACM in the house, shop, and garage/carport located at the site (Figure 2). The purpose of the LBP survey was to identify potential areas of painted building materials that contained LBP. This survey was requested by Mr. Loftus in anticipation of property transfer and building demolition.

SCOPE OF WORK

Our scope of work consisted of the following tasks:

- Visual reconnaissance of the house, shop, and garage/carport to identify apparently homogeneous areas of potential ACM and LBP.
- Collection of representative samples of the potential ACM and LBP from the house, shop, and garage/carport.
- Submission of samples to a certified laboratory for asbestos analysis using the phase light microscopy (PLM) method and lead analysis using flame atomic absorption spectroscopy (AA).
- Preparation of quantity estimates of the confirmed ACM.
- Preparation of this letter report.

SITE DESCRIPTION

The 10 -acre site, located at 1200 Walla Walla Avenue in Wenatchee, Washington, is currently an orchard. The southeast corner of the site is occupied by a residential structure, shop building, garage, and several minor outbuildings. The site is bordered on the west by a railroad right-of-way belonging to the Burlington Northern/Santa Fe Railroad, with two tracks trending parallel to the west side of the site. To the north and south, the site is bordered by residential properties and to the east, the site is bordered by Walla Walla Avenue.

ASBESTOS

Sampling Protocols

Homogeneous areas in the buildings were identified during an initial walk-through on January 11, 1996. A homogeneous area (HGA) contains materials that are uniform by color, construction/application date, texture, and general appearance. Representative bulk material samples were obtained by Shannon \& Wilson personnel on January 11, 1996, from the homogeneous areas suspected of containing ACM. The sample locations for the house are shown in Figure 3. Two samples were collected from the office floor in the shop, and no samples were collected from the garage/carport. The survey and sampling were conducted by an Asbestos Hazard Emergency Response Act (AHERA)-certified inspector. A total of 24 samples were collected using appropriate sampling tools, placed in labeled containers, and delivered by Federal Express to Environmental Management Consultants Laboratories (EMC) in Phoenix, Arizona, for analysis of asbestos content by PLM. Chain-

J-U-B Engineers, Inc.
Attn: Mr. Vince Loftus
February 8, 1996

Page 3

of-custody was maintained for each sample from the time of collection until delivery to EMC. All sample locations were patched (when practical) after sampling, and photographs were taken at each sample location.

Laboratory Analytical Methods

The bulk ACM samples were analyzed by EMC using PLM (method EPA 600/Mr-82-020). PLM is the U.S. Environmental Protection Agency (EPA)-recommended method for assessing the percentage of asbestos in building materials. PLM quantifies asbestos concentrations at between 100 percent and 1 percent detection levels. Levels below 1 percent can be stated only as "trace."

For samples containing more than 1 separable layer of materials, this report includes findings for each layer (labeled A for layer one and B for layer two, etc.).

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (National Emissions Standards for Hazardous Air Pollutants [NESHAPs], 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos. If required, concentration estimates of asbestos in these samples using point counting can be conducted.

Results of Asbestos Investigation

Seventeen HGAs suspected of containing ACM were identified during the site visit. Each HGA was given a distinct number, as shown in parentheses, and rated for friability:

- (3-1) wallboard - low friability
- (4-1) plaster - low friability
- (9-1) sprayed-on surfacing material (popcorn ceiling) high friability
- (20-1) air cell pipe lagging - high friability
- (40-1, 40-2) vinyl floor tile - low friability
- (41-1, 41-2) mastic associated with vinyl floor tile - not friable
- (42-1, 42-2, 42-3, 42-4) linoleum - low friability
- (47-1) cement asbestos board - not friable

J-U-B Engineers, Inc.
February 8, 1996
Page 4

- (57-1) roofing material - low friability
- (58-1) sealant on chimney - not friable
- (60-1) tar patch - not friable
- (63-1) window putty - low friability

The EPA considers material as ACM if it contains greater than 1 percent asbestos fibers. The results from 11 of the 24 samples collected indicated that asbestos was present at levels greater than 1 percent (Table 1).

Three of the samples had results that were reported as "trace." One of the "trace" results was present as layer B in a positive sample. Another "trace" result (sample No. H12820201) was from a 10 -square-foot section of linoleum located on the second floor of the house. It would be easiest to treat this small quantity of material as ACM and dispose of it with the other ACMs rather than having it reanalyzed by point counting. The third "trace" result (sample No. H12820213 - Layer C) was from the surfacing material on the ceiling in rooms 2-6 and 2-8 of the house. It is recommended that this sample be reanalyzed by point counting before this material is removed, or the material could be disposed of with the other ACMs.

Nine of the seventeen HGAs had positive samples associated with them, and two HGAs had "trace" samples associated with them. Estimated quantities and locations for HGAs with ACM are shown in Table 2. The laboratory reports prepared by EMC, dated January 22, 1996, are contained in Appendix A, Bulk Material Report.

LEAD-BASED PAINT

Sampling Protocols

Homogeneous areas on the inside and outside of the buildings were identified during the initial walk-through. The homogeneous areas contained painted materials that were uniform by color. Each of these homogeneous areas contained various layers of paint and substrate material. A representative paint chip sample of each homogenous area was collected,

Attn: Mr. Vince Loftus
February 8, 1996
Page 5
ensuring that all layers of paint were sampled at each location. Each sample was place in labeled containers, and the samples were delivered by Federal Express to Environmental Management Consultants Laboratories (EMC) in Phoenix, Arizona, for lead analysis using AA. Chain-of-custody was maintained for each sample from the time of collection until delivery to EMC.

Laboratory Analytical Methods

The LBP chip samples were analyzed by EMC using flame AA spectroscopy (method EPA SW-846-7420). Flame AA is an EPA-recommended method for assessing the percentage of lead in paint.

Results of Lead Investigation

Six HGAs suspected of containing LBP were identified during the site visit. Each HGA was identified and sampled:

- White paint on chimney
- Green paint on old wall behind current wooden wall finish
- Green and white paint on interior door
- Blue paint on boxed eaves
- Blue paint on exterior trim
$\rightarrow \quad$ Green paint on exterior of garage
The EPA considers paint to be lead based if lead is present in the sample at greater than 0.5 percent by weight. The results from 4 of the 6 samples collected indicated that lead was present at levels greater than 0.5 percent by weight (Table 3). Table 3 identifies material, location, and results of LBP analyses. The laboratory reports dated January 24, 1996, were prepared by EMC and are contained in Appendix B, Results of Lead Analysis.

J-U-B Engineers, Inc.
Attn: Mr. Vince Loftus
February 8, 1996
Page 6

CONCLUSIONS AND RECOMMENDATIONS

Based on our observations and the results of sample analyses, we present the following conclusions:

Asbestos

- Asbestos was found in 9 HGAs in the house and shop at levels greater than 1 percent. Asbestos was found in 2 HGAs in the house at "trace" levels. These "trace" HGAs should be disposed of as ACMs or reanalyzed using point counting. See Table 1 and Table 2 for description, percent asbestos, location, and estimated quantity of ACMs.
- No ACMs were found in the garage/carport.
- Asbestos may be present in the wall cavities or behind existing woodwork. To determine locations and quantities of asbestos in inaccessible areas, invasive sampling may be appropriate prior to demolition.

Lead

- Lead was found throughout the house. Lead was found to exceed the 0.5 percent by weight criteria for LBP in 4 of the 6 HGAs sampled. Lead levels ranged from 0.006 percent on the garage to 23.08 percent on the exterior boxed eaves of the house.

The results of laboratory analyses for both LBP and ACM should be provided to contractors involved in demolition of the structures at the site so that worker health and safety issues can be addressed and appropriate disposal of ACM can be arranged. Based on conversations with the Washington State Department of Ecology (Ecology), we understand that it is recommended that surfaces with LBP be sampled for Toxicity Characteristic Leaching Procedure (TCLP) method 6010. This would involve collecting a core sample from each waste stream, consisting of a paint sample adhered to the underlying material. This core sample is then analyzed by the TCLP method to approximate the quantity of lead that may leach from the paint after disposal. If the TCLP results from the material are determined to be above the 5.0 milligrams per liter (mg / L) limit, then the material is
considered a hazardous waste and must be disposed of in a landfill approved for receipt of hazardous waste.

LIMITATIONS

In preparing this report, Shannon \& Wilson has conducted interviews with Ecology concerning regulations, conducted an on-site visual survey of the subject property, and collected and analyzed building material samples. We have examined and relied on documents referenced in the report and on oral statements made by certain individuals. Shannon \& Wilson has not conducted an independent examination of the facts contained in referenced materials and statements. We have assumed that these documents are genuine, and that the information provided in these documents and statements is true and accurate.

Asbestos and lead-based paint surveys are noncomprehensive by nature and subject to many limitations. Our assessment has considered risks pertaining to asbestos and lead-based paint. This survey was not designed to identify all potential concerns or to eliminate all risks associated with demolition. No warranty, express or implied, is made. Site visits included a thorough visual walk-through of the building for the purpose of viewing and sampling potential ACM and LBP. Shannon \& Wilson is not responsible for materials that require destructive means to access, materials that are hidden from sight, those materials hidden in walls, or materials that cannot be found with reasonable diligence.

Shannon \& Wilson has prepared this report in a professional manner, using that level of skill and care normally exercised for similar projects under similar conditions by reputable and competent environmental consultants currently practicing in this area. Shannon \& Wilson shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time the report was prepared. Shannon \& Wilson also notes that the facts and conditions referenced in this report may change over time, and that the conclusions and recommendations set forth here are applicable only to the facts and conditions as described at the time of this report.
Conclusions and recommendations were made within the operative constraints of the scope,

J-U-B Engineers, Inc.
Attn: Mr. Vince Loftus
February 8, 1996
Page 8
budget, and schedule for this project. Shannon \& Wilson believes that the conclusions stated here are factual, but no guarantee is made or implied.

This report is for the exclusive use of J-U-B Engineers, Inc., and its representatives. Shannon \& Wilson has prepared Appendix C, "Important Information About Your Environmental Report," to assist you and others in understanding the use and limitations of our reports.

Sincerely,

SHANNON \& WILSON, INC.

Tolli Lowell-Forker
AHERA Certified Building Inspector
Certification No. 950208-10

Dale E. Topham, P.E., R.P.G.
Senior Engineer

TF:DET:JFZ/eet

Enclosures: Table 1 - Asbestos Results
Table 2 - HGA Estimated Quantities
Table 3 - Lead Paint Results
Figure 1 - Vicinity Map
Figure 2 - Site Plan
Figure 3 - Sampling Locations
Appendix A - Bulk Material Report
Appendix B - Results of Lead Analysis
Appendix C - Important Information About Your Environmental Report

TABLE 1
ASBESTOS RESULTS

SHANNON \& WILSON, INC.
TABLE 2
HGA ESTIMATED QUANTITIES

NOTE
Map adapted from USGS topographic map of Wenatchee, WA quadrangle, dated 1966.

J-U-B Engineers, Inc.
Proposed Eagle Hardware Site Wenatchee, Washington

VICINITY MAP

H-1282-02

SHANNON \& WILSON, INC Geotectrical and Emvicommental Corssultants

FIG. 1

APPENDIX A

BULK MATERIAL REPORT

REPORT Laboratory Analysis: BULK MATERIAL
Client: SHANNON \& WILSON, INC.
Reported to: TOLLI LOWELL-FORKER
Sampled from: EAGLE-W.
Shipped via: FEDERAL EXPRESS
SAMPLE
01

02

H12820202
sealant
gray
PARAMETER
Asbestos

Asbestos

Asbestos
air cell
It. gray

LAB: 26295
Methodology: EPA 600/M4-82-020
PlO\#:
Prof: H-1282-02
By: Client
Received: 1/15/96 Reported: 1/22/96

TEST RESULTS

Trace detected. This sample contains approx. trace Chrysotile, 99\% Quartz , WaCO , Binder

Positive. This sample contains approx. 3% Chrysotile, 97% Quartz, CaCO , Binder

Positive. This sample contains approx. 90\% Chrysotile, 10\% Quartz , Binder

Positive. This sample contains approx. 90% Chrysotile, 3% Cellulose, 7\% Quartz , CaCO , Binder

THE REPORT APPLIES TO THE STANDARDS OR PROCEDURES IDENTIFIED AND TO THE SAMPLES) TESTED. THE TEST RESULTS ARE NOT NECESSARILY INDICATIVE OR REPRESENTATIVE OF THE QUALITIES OF THE LOT FROM WHICH THE SAMPLE WAS TAKEN OR OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE RENDERED UPON THE CONDITION THAT THEY WILL NOT BE REPRODUCED WHOLLY OR IN PART FOR ADVERTISING OR OTHER PURPOSES OVER OUR SIGNATURE OR IN CONNECTION WITH OUR NAME WITHOUT SPECIAL WRITTEN PERMISSION. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAXIMUM OF THIRTY DAYS.
ACCREDITED BY THE NATIONAL INSTITUTE OF STANDARDS .TECHNOLOGY, VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHOD FOR ASBESTOS. THE ACCREDITATION OR ANY REPORTS GENERATED BY THIS LABORATORY IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. ALL ANALYSES ARE DERIVED FROM CALIBRATED VISUAL ESTIMATE UNLESS OTHERWISE NOTED. POLARIZED-LIGHT IS NOT CONSISTENTLY RELIABLE IN DETECTING ASBESTOS IN FLOOR COVERINGS AND SIMILAR NON-FRIABLE ORGANICALLY BOUND MATERIALS. QUANTITATIVE TRANSMISSION ELECTRON microscopy is currently the only method that can be used to determine if this material gan be considered or treated as non-asbestos-containing.

Analyst: Luis A. Bohorquez

By: Kurt Kettle

NVLAP Accreditation \#1926, CA ELAP \#1913, NY ELAP \#11445, TX DOH \#30-0094
4455 EAST CAMELBACK ROAD, SUITE D-155 PHOENIX, ARIZONA 85018 (602) 840-8012 FAX: (602) 990-8468

REPORT Laboratory Analysis: BULK MATERIAL
Client: SHANNON \& WILSON, INC.
Reported to: TOLLI LOWELL-FORKER
Sampled from: EAGLE-W.
Shipped via: FEDERAL EXPRESS
SAMPLE
04B
IDENTIFICATION
H12820204
air cell, wrap, 2nd layer
off white

LAB: 26295
Methodology: EPA 600/M4-82-020
PlO\#:
Proj: H-1282-02
By: Client
Received: 1/15/96 Reported: 1/22/96

PARAMETER

Asbestos

Asbestos
tile
\tan

TEST RESULTS

Trace detected. This sample contains approx. trace Chrysotile, 95% Cellulose, 4% Quartz , CaCO , Binder

Positive. This sample contains approx. 2% Chrysotile, 98% Quartz, taCO , Binder

None detected. This sample contains approx. 100\% Quartz , WaCO , Mica , Binder

None detected. This sample contains approx. 2% Cellulose, 98% Quartz , CaCO , Binder

 PERMISSION. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAXIMUM OF THIRTY DAYS.

 MICROSCOPY IS CURRENTLY THE ONLY METHOD THAT CAN BE USED TO DETERMINE IF THIS MATERIAL CAN BE CONSIOERED OR TREATED AS NON-ASBESTOS.CONTAINING.

Analyst: Luis A. Bohorquez

By: Kurt Kettle

NVLAP Accreditation \#1926, CA ELAP \#1913, NY ELAP \#11445, TX DOH \#30-0094
4455 EAST CAMELBACK ROAD, SUITE D-155 PHOENIX, ARIZONA 85018 (602) 840-8012 FAX: (602) 990-8468

Sampled from: EAGLE-W.

SAMPLE

NEPORT Laboratory Analysis: BULK MATERIAL
Client: SHANNON \& WILSON, INC.
Reported to: TOLLI LOWELL-FORKER

Shipped via: FEDERAL EXPRESS

08

IDENTIFICATION

H12820208
white

PARAMETER
Asbestos

Asbestos

Asbestos

Asbestos

LAB: 26295
Methodology: EPA 600/M4-82-020
PlO\#:
Proj: H-1282-02
By: Client
Received: 1/15/96 Reported: 1/22/96

TEST RESULTS

None detected. This sample contains approx. 100\% Quartz, CaCO , Binder

None detected. This sample contains approx. 100\% Quartz, WaCO, Binder

Positive. This sample contains approx. 20\% Chrysotile, 80\% Quartz, WaCO , Binder It. \tan

11
H12820212
Positive. This sample contains approx. 15% Chrysotile, 5% Cellulose, 80% Quartz, taCO , Binder

THE REPORT APPLIES TO THE STANDARDS OR PROCEDURES IDENTIFIED AND TO THE SAMPLES) TESTED. THE TEST RESULTS ARE NOT NECESSARILY INDICATIVE OR REPRESENTATIVE OF THE QUALITIES OF THE LOT FROM WHICH THE SAMPLE WAS TAKEN OR OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE RENDERED UPON THE CONDITION THAT THEY WILL NOT BE REPRODUCED WHOLLY OR IN PART FOR ADVERTISING OR OTHER PURPOSES OVER OUR SIGNATURE OR IN CONNECTION WITH OUR NAME WITHOUT SPECIAL WRITTEN PERMISSION. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAXIMUM OF THIRTY DAYS.
ACCREDITED BY THE NATIONAL INSTITUTE OF STANDARDS _TECHNOLOGY, VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHOD FOR ASBESTOS. THE ACCREDITATION OR ANY REPORTS GENERATED BY THIS LABORATORY IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. ALL ANALYSES ARE DERIVED FROM CALIBRATED VISUAL ESTIMATE UNLESS OTHERWISE NOTED. POLARIZED-LIGHT IS NOT CONSISTENTLY RELIABLE IN DETECTING ASBESTOS IN FLOOR COVERINGS AND SIMILAR NON-FRIABLE ORGANICALLY BOUND MATERIALS. QUANTITATIVE TRANSMISSION ELECTRON MICROSCOPY IS CURRENTLY THE ONLY METHOD THAT CAN BE USED TO DETERMINE IF THIS MATERIAL CAN BE CONSIDERED OR TREATED AS NON-ASEESTOS-CONTAINING.

Analyst: Luis A. Bohorquez

By: Kurt Kettle
, EPORT Laboratory Analysis: BULK MATERIAL
Client: SHANNON \& WILSON, INC.
Reported to: TOLLI LOWELL-FORKER
Sampled from: EAGLE-W.
Shipped via: FEDERAL EXPRESS

LAB: 26295
Methodology: EPA 600/M4-82-020
P/O\#:
Prof: H-1282-02
By: Client
Received: 1/15/96 Reported: 1/22/96

PARAMETER

Asbestos
1st layer
white

TEST RESULTS
None detected. This sample contains approx. 2% Cellulose, 2% Wollastonite, 96% Quartz, taCO , Mica , Binder

None detected. This sample contains approx. 2\% Cellulose, 2\% Wollastonite, 96% Quartz , CaCO , Mica , Binder

Trace detected. This sample contains approx. trace Chrysotile, 2\% Antigorite, 97\%. Quartz, WaCO , Binder

None detected. This sample contains approx. 15\% Cellulose, 85\% Quartz , CaCO , CaSO

THE REPORT APPLIES TO THE STANDARDS OR PROCEDURES IDENTIFIED AND TO THE SAMPLE (S) TESTED. THE TEST RESULTS ARE NOT NECESSARILY INDICATIVE OR REPRESENTATIVE OF THE QUALITIES OF THE LOT FROM WHICH THE SAMPLE WAS TAKEN OR OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE RENDERED UPON THE CONDITION THAT THEY WILL NOT BE REPRODUCED WHOLLY OR IN PART FOR ADVERTISING OR OTHER PURPOSES OVER OUR SIGNATURE OR IN CONNECTION WITH OUR NAME WITHOUT SPECIAL WRITTEN PERMISSION. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAXIMUM OF THIRTY DAYS.
ACCREDITED BY THE NATIONAL INSTITUTE OF STANDARDS _TECHNOLOGY, VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHOD FOR ASBESTOS. THE ACCREDITATION OR ANY REPORTS GENERATED BY THIS LABORATORY IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. ALL ANALYSES ARE DERIVED FROM CALIBRATED VISUAL ESTIMATE UNLESS OTHERWISE NOTED. POLARIZED-LIGHT IS NOT CONSISTENTLY RELIABLE IN DETECTING ASBESTOS IN FLOOR COVERINGS AND SIMILAR NON-FRIABLE ORGANICALLY BOUND MATERIALS. QUANTITATIVE TRANSMISSION ELECTRON MICROSCOPY IS CURRENTLY THE ONLY METHOD THAT CAN BE USED TO DETERMINE IF THIS MATERIAL CAN BE CONSIDERED OR TREATED AS NON-ASBESTOS-CONTAINING.

Analyst: Luis A. Bohorquez

By: Kurt Kettles

NVLAP Accreditation \#1926, CA ELAP \#1913, NY ELȦP \#11445, TX DOH \#30-0094
4455 EAST CAMELBACK ROAD, SUITE D-155 PHOENIX, ARIZONA 85018 (602) 840-8012 FAX: (602) 990-8468

REPORT Laboratory Analysis: BULK MATERIAL
Client: SHANNON \& WILSON, INC.
Reported to: TOLLI LOWELL-FORKER
Sampled from: EAGLE -W.
Shipped via: FEDERAL EXPRESSAMPLE
IDENTIFICATION

H12820214 2nd layer white

PARAMETER Asbestos

Asbestos

It. gray

15A
H12820216
1st layer
off white

15B
H12820216
2nd layer
white

LAB: 26295
Methodology: EPA 600/M4-82-020
PlO\#:
Prof: H-1282-02
By: Client
Received: 1/15/96 Reported: 1/22/96

TEST RESULTS

None detected. This sample contains approx. 2% Wollastonite, 98% Quartz , CaCO , Mica , Binder

Positive. This sample contains approx. 10\% Chrysotile, 90\% Quartz, CaCO , Binder

None detected. This sample contains approx. 10% Cellulose, 90% Quartz, taCO , CaSO

None detected. This sample contains approx. 100% Perlite , Quartz, WaCO , Binder

THE REPORT APPLIES TO THE STANDARDS OR PROCEDURES IDENTIFIED AND TO THE SAMPLE (S) TESTED. THE TEST RESULTS ARE NOT NECESSARILY INDICATIVE OR REPRESENTATIVE OF THE QUALITIES OF THE LOT FROM WHICH THE SAMPLE WAS TAKEN OR OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE RENDERED UPON THE CONDITION THAT THEY WILL NOT BE REPRODUCED WHOLLY OR IN PART FOR ADVERTISING OR OTHER PURPOSES OVER OUR SIGNATURE OR IN CONNECTION WITH OUR NAME WITHOUT SPECIAL WRITTEN PERMISSION. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAXIMUM OF THIRTY DAYS.
ACCREDITED BY THE NATIONAL INSTITUTE OF STANDARDS TECHNOLOGY, VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHOD FOR ASBESTOS. THE ACCREDITATION OR ANY REPORTS GENERATED BY THIS LABORATORY IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. ALL ANALYSES ARE DERIVED FROM CALIBRATED VISUAL ESTIMATE UNLESS OTHERWISE NOTED. POLARIZED-LIGHT IS NOT CONSISTENTLY RELIABLE IN DETECTING ASBESTOS IN FLOOR COVERINGS AND SIMILAR NON-FRIABLE ORGANICALLY BOUND MATERIALS. QUANTITATIVE TRANSMISSION ELECTRON MICROSCOPY IS CURRENTLY THE ONLY METHOD THAT CAN BE USED TO DETERMINE IF THIS MATERIAL CAN BE CONSIDERED OR TREATED AS NON-ASBESTOS-CONTAINING.

Analyst: Luis A. Bohorquez

By: Kurt Kettle

NVLAP Accreditation \#1926, CA ELAP \#1913, NY ELAP \#11445, TX DOH \#30-0094
4455 EAST CAMELBACK ROAD, SUITE D-155 PHOENIX, ARIZONA 85018 (602) 840-8012 FAX: (602) 990-8468

REPORT Laboratory Analysis: BULK MATERIAL
Client: SHANNON \& WILSON, INC.
Reported to: TOLLI LOWELL-FORKER
Sampled from: EAGLE-W.
Shipped via:
FEDERAL EXPRESS
and layer
white

LAB: 26295
Methodology: EPA 600/M4-82-020
P/O\#:
Proj: H-1282-02
By: Client
Received: 1/15/96 Reported: 1/22/96

Asbestos

Asbestos
$17 \cdot \mathrm{H} 12820218$
white

TEST RESULTS

None detected. This sample contains approx. 10% Cellulose, 90% Quartz , TaCO , CaSO

None detected. This sample contains approx. 100\% Perlite , Quartz , WaCO , Binder

Positive. This sample contains approx. 2% Chrysotile, 98% Quartz, CaCO , Binder

THE REPORT APPLIES TO THE STANDARDS OR PROCEDURES IDENTIFIED AND TO THE SAMPLES) TESTED. THE TEST RESULTS ARE NOT NECESSARILY INDICATIVE OR REPRESENTATIVE OF THE QUALITIES OF THE LOT FROM WHICH THE SAMPLE WAS TAKEN OR OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE RENDERED UPON THE CONDITION THAT THEY WILL NOT BE REPRODUCED WHOLLY OR IN PART FOR ADVERTISING OR OTHER PURPOSES OVER OUR SIGNATURE OR IN CONNECTION WITH OUR NAME WITHOUT SPECIAL WRITTEN PERMISSION. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAXIMUM OF THIRTY DAYS.
ACCREDITED BY THE NATIONAL INSTITUTE OF STANDARDS _TECHNOLOGY, VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHOD FOR ASBESTOS. THE ACCREDITATION OR ANY REPORTS GENERATED BY THIS LABORATORY IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. ALL ANALYSES ARE DERIVED FROM CALIBRATED VISUAL ESTIMATE UNLESS OTHERWISE NOTED. POLARIZED.LIGHT IS NOT CONSISTENTLY RELIABLE IN DETECTING ASBESTOS IN FLOOR COVERINGS AND SIMILAR NON-FRIABLE ORGANICALLY BOUND MATERIALS. QUANTITATIVE TRANSMISSION ELECTRON microscopy is Currently the only method that can be used td determine if this material can be considered or treated as non-asbestos-containing.

Analyst: Luis A. Bohorquez

By: Kurt Kettle

NVLAP Accreditation \#1926, CA ELAP \#1913, NY ELAP \#11445, TX DOH \#30-0094
4455 EAST CAMELBACK ROAD, SUITE D-155 PHOENIX, ARIZONA 85018 (602) 840-8012 FAX: (602) 990-8468
rePORT Laboratory Analysis: BULK MATERIAL
client: SHANNON \& WILSON, INC.
Reported to: TOLLI LOWELL-FORKER
Sampled from: EAGLE-W.
shipped via: FEDERAL EXPRESS
SAMPLE
18A

IDENTIFICATION
H12820219
roofing-1st layer black

LAB: 26295
Methodology: EPA 600/M4-82-020
PlO\#:
Proj: H-1282-02
By: Client
Received: 1/15/96 Reported: 1/22/96

PARAMETER

Asbestos

Asbestos

Asbestos

Asbestos
brown

TEST RESULTS
None detected. This sample contains approx. trace Cellulose, trace Synthetics, 98% Quartz , CaCO , Binder

None detected. This sample contains approx. 40\% Cellulose, 60\% Quartz, WaCO , Binder

Positive. This sample contains approx. 15\% Chrysotile, 85\% Quartz , WaCO , Binder

Positive. This sample contains approx. 15\% Chrysotile, 5\% Cellulose, 80\% Quartz, CaCO , Binder

 PERMISSION. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAXIMUM OF THIRTY DAYS.

 MICROSCOPY IS CURRENTLY THE ONLY METHOD THAT CAN BE USED TO DETERMINE IF THIS MATERIAL CAN BE CONSIDERED OR TREATED AS NON-ASBESTOS-CONTAINING.

Analyst: Luis A. Bohorquez

By: Kurt Kettle

NVLAP Accreditation \#1926, CA ELAP \#1913, NY ELAP \#11445, TX DOH \#30-0094
4455 EAST CAMELBACK ROAD, SUITE D-155 PHOENIX, ARIZONA 85018 (602) 840-8012 FAX: (602) 990-8468

REPORT Laboratory Analysis: BULK MATERIAL
Client: SHANNON \& WILSON, INC.
Reported to: TOLLI LOWELL-FORKER
Sampled from: EAGLE-W.
Shipped via: FEDERAL EXPRESS

SAMPLE

21

H12820222
black
Asbestos
white, black, spotted

24
IDENTIFICATION
H12850221
Asbestos

H12820223

PARAMETER
LAB: 26295
Methodology: EPA 600/M4-82-020
PlO\#:
Proj: H-1282-02
By: Client
Received: 1/15/96 Reported: 1/22/96

Positive. This sample contains approx. 3\% Chrysotile, 97% Quartz, CaCO , Binder

None detected. This sample contains approx. 100\% Quartz , WaCO , Mica , Binder

 PERMISSION. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAXIMUM OF THIRTY DAYS.

 MICROSCOPY IS CURRENTLY THE ONLY METHOD THAT CAN BE USED TO DETERMINE IF THIS MATERIAL CAN BE CONSIDERED OR TREATED AS NON-ASBESTOS-CONTAINING.

Analyst: Luis A. Bohorquez

By: Kurt Kettle

CHAIN OF CUSTODY

EMC Laboratories
4455 East Camelback Road, Suite D-155 Phoenix, Arizona 85018
(800) 362-3373 Phone (602) 990-8468 Fax

LAB \#: 26295
TAT: 3-5 Day
Rec'd: JAN 1 S PM EMC Use Only

COMPLETE ITEMS 1-4 BELOW:

(Failure to complete any items may cause a delay in processing or analyzing your samples)

1. TURNAROUND TIME: [4hrs] [8hrs] [1-Day]
[2-Day]
[3-Day] - [5-Day]
[6-10 Day] NOTE: Prior confirmation of turnaround time is required for 24 -hour analysis or analysis-of more than 50 samples.
2. TYPE OF ANALYSIS: [Bulk-PLM] [Air-PCM] [Lead] [Point Count] [TEM-Air] [TEM-Bulk]
3. DISPOSAL INSTRUCTIONS: [Dispose of samples at EMC] / [Return samples to me at my expense] (If you do not indicate preference, EMC will dispose of samples $\underline{\underline{60} \text { days }}$ from analysis.)

SPECIAL INSTRUCTIONS:

F-19-91/UR

$=\$$ SHANNON \& WILSON, INC. 400 N. 34th Street. Suite 10011500 Olive Blvd., Suite 276 Seattle. WA $98103 \quad$ St. Louis, MO 63141

2055 Hill Road 5430 Fairbanks Streel. Suite 3
Fairbanks, AK 99707
(907) $479-0600$ Anchorage, AK
(907) $56:-2120$

Date
Time
Sampled

Sample Identity

 Project Number: $H-120 ; 2-0$ Project Name: Eacico-N. Contact TOM U L Contact. Oll Ves \square No

 lnstructions \& i, i, \& \& \& \& \& \& \&

$$
\begin{aligned}
& \text { Requested Turn Around Time: } \\
& \text { Special Instructions: } \\
& \text { send Dis }
\end{aligned}
$$

Distribution: White - w/shipment - returned to Shannon \& Wilson w/ Laboratory report Yellow - w/shipment - for consignee files
Pink - Shannon \& Wilson - Job File

Lab \# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
cLient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. Sampled By Client Lab Sample ID\# 26295-01 Sample Description linoleum
Client Sample ID\# H12820201

Colors off white
FIBROUS MATERIAL 0\% NONFIBROUS
Textures smooth
ESTIMATED FIBROUS CONSTITUENTS
PL ANALYSIS

N Pleochroic @ 40X
Anthophyllite 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D. St. - || Gold - -L Blue Beck Line Used $n \|$ __ n
N Pleochroic @ 40X

Cellulose 0 O\%
Fiat Twisted Fibers
Anisotropic
Synthetics \qquad
Even Edges
High Birefringence

Other Fibers

Other nonfibers
Comments

Crocidolite 0\%

Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w tan e Blue
D. St. - |l Yellow _L Yellow

Becks Line Used
n II \qquad $\cdot n _$ \qquad
Pleochroic @ 40X
Tremolite \qquad
Straight Fibers
Sign of Elongation (${ }^{+}$)
Parallel Extinction
Oblique Extinction $\quad 0$ Angle
Birefringence Low
w Blue e Yellow
DiSt. - |l Gold - _l_ Blue
Beck Line Used
n II \qquad nil \qquad
N Pleochroic @ 40X
Perlite
Quartz
Wollastonite _0\%
$\mathrm{CaCO} X$
Case \qquad
Mica
Binder X

Analyst Luis A. Bohorquez

Lab \# 26295
Pg 2 of 32
LABORATORY ANALYSIS OF BULK ASBESTOS
Client SHANNON \& WILSON, INC.
Method Interim EPA 600/M4-82-020 Purchase Order \#

Date Received 01/15/96
Shipped Via FEDERAL EXPR
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Sampled By Client Lab Sample ID\# 26295-02 Sample Description sealant
Client Sample ID\# H12820202 Materials sealant
Colors gray
FIBROUS MATERIAL

NONFIBROUS
90\% HOMOGENEOUS
Y
Textures hard, fine grained Location Description \qquad
ESTIMATED FIBROUS CONSTITUENTS 10\% chrysotile

PLM ANALYSIS

hrysotile __ 3\%		
X	Wavy Fibers	
X	Sign of Elongation (+)	
X	Parallel Extinction	
X	Perpendicular Extinction	
X	Birefringence Low	
X	blue e yellow	
X	D.St. - \|	Mag.- _L Blue
X	cke Line Used	
	$\mathrm{n}\|\mid 1.556 \mathrm{n}$ _L 1.548	

N Pleochroic @ 40X

Anthophyllite _ 0\%

Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D.St. - |l Gold -_L Blue

Becke Line Used
n! n_L \qquad
N Pleochroic @ 40X

Cellulose
0\%
Flat Twisted Fibers
Anisotropic
Synthetics \qquad
Even Edges
High Birefringence
Amosite__ 0%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue e yellow
$—$ n ll ___ n_L \qquad
Pleochroic @ 40X
Actinolite \qquad
Straight Fibers
Sign of Elongation (+)
-
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold - _l_ Blue

Becke Line Used
n \| \qquad n._1

Pleochroic @ 40X

Mineral Wool _ 0\%

Irregular Shapes
Isotropic
Glass Fibers_ 0\%
Straight Fibers Isotropic

Crocidolite $\quad 0 \%$
Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w tan e Blue
D.St - II. Yellow _L Yellow

Becke Line Used
n \| - \qquad n_1- \qquad
Pleochroic @ 40X
Tremolite \qquad
Straight Fibers
Sign of Elongation (${ }^{+}$)
Parallel Extinction
Oblique Extinction _ O Angle
Birefringence Low
w Blue e Yellow
D.St. - Il Gold -_L Blue

Becke Line Used
n || \qquad n_L \qquad
N Pleochroic @ 40X
Perlite
Quartz x
Wollastonite_0\%
$\mathrm{CaCO} \quad \mathrm{X}$
CaSO
Mica
Binder X

Other Flbers \qquad
Other nonfibers
Comments other sample layers present; not analyzed per client paperwork

Lab \# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
dient SHANNON \& WILSON, INC.

Reported To TOLLI LOWELL-FORKER

Sampled From EAGLE-W.
Client Sample ID\# H12820203 Lab Sample ID\# 26295-03 Sample Description air cell

Colors it. gray
FIBROUS MATERIAL $\quad 85 \%$ NONFIBROUS
Materials air cell

fibrous
 ESTIMATED FIBROUS CONSTITUENTS 85% chrysotile

PLM ANALYSIS

	Chrysotile _ 90\%
\underline{x}	Wavy Fibers
x	Sign of Elongation (+)
X	Parallel Extinction
X	Perpendicular Extinction
X	Birefringence Low
\underline{x}	w blue e yellow
\underline{x}	D.St. - \|l Mag.- _L Blue
X	Becke Line Used

\qquad $n \| 1.556 \quad n _1.548$

N Pleochroic @ 40X
Anthophyllite__ 0\%
Straight Fibers
Sign of Elongation (${ }^{(}$)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D.St. - |l Gold -_L Blue

Becke Line Used
n || \qquad n_L \qquad Pleochroic @ 40X

Cellulose 0\%
Flat Twisted Fibers
Anisotropic
Synthetics \qquad
Even Edges High Birefringence

Amosite
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue eyellow
D.St. - || Gold- _L_ Blue

Becke Line Used
n || \qquad n_l \qquad
Pleochroic @ 40X
Actinolite \qquad
Straight Fibers
Sign of Elongation (${ }^{+}$)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold - _ _ Blue

Becke Line Used
n 11 \qquad n - \qquad
Pleochroic@ 40X

```
    Mineral Wool __ 0%
    Irregular Shapes
    Isotropic
    Glass Fibers__ 0%
    Straight Fibers
    Isotropic
```

HOMOGENEOUS N Location Description

Method Interim EPA 600/M4-82-020 Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR
\qquad

Lab \# 26295

LABORATORY ANALYSIS OF BULK ASBESTOS

-lient SHANNON \& WILSON, INC.

Reported To TOLLI LOWELL-FORKER

Sampled From EAGLE-W.

Client Sample ID\# H12820204

 Lab Sample ID\# 26295-04 Sample Description air cell, 1st layerColors It. gray
FIBROUS MATERIAL 87% NONFIBROUS

Textures fibrous

ESTIMATED FIBROUS CONSTITUENTS 85% chrysotile, 2% cellulose
Purchase Order \#

PLM ANALYSIS
Chrysotile \qquad 90\%

$\frac{x}{x}$
$\frac{x}{x}$
$\frac{x}{x}$
$\frac{x}{x}$
$\frac{x}{2}$

Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low w blue e yellow
D.St. - || Mag.-_ L Blue

Becke Line Used
$n \| 1.556$ n L
N
Pleochroic © 40X
Anthophyllite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue eyellow
D.St. - |l Gold - L Blue

Becke Line Used
n || \qquad n_L
Pleochroic @ 40X

Cellulose 3% Flat Twisted Fibers
Anisotropic Synthetics_ 0\% Even Edges High Birefringence
Other Flbers

Amosite 0%

Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue e yellow
D.St. - || Gold-___ Blue

Becke Line Used
n $\|$ \qquad n_1. \qquad
Pleochroic @ 40X
Actinolite 0%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Low
whlue e Yellow
D.St. - || Goid - _L Blue

Becke Line Used
n || \qquad n_L \qquad Pleochroic @ 40X

Mineral Wool _ 0\%
Irregular Shapes
Isotropic
Glass Fibers_0\%
Straight Fibers
Isotropic

Method Interim EPA 600/M4-82-020

Date Received 01/15/96
Shipped Via FEDERAL EXPR

Lab\# _26295
Pg 5 of 32

LABORATORY ANALYSIS OF BULK ASBESTOS
 Ilient SHANNON \& WILSON, INC.

Method Interim EPA 600/M4-82-020

Purchase Order \#

\qquad
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Sampled By Client
Date Received 01/15/96
Shipped Via FEDERAL EXPR Lab Sample ID\# 26295-04 Sample Description air cell, wrap, 2nd layer
Client Sample ID\# H12820204 Materials air cell, wrap, 2nd layer
Colors off white
FIBROUS MATERIAL 95\% NONFIBROUS \qquad 5\% HOMOGENEOUS \qquad
Textures fibrous Location Description

ESTIMATED FIBROUS CONSTITUENTS 95\% cellulose

PLM ANALYSIS

	Wavy Fibers Sign of Elongation (+) Parallel Extinction Perpendicular Extinction Birefringence Low w blue e yellow D.St. - \|	Mag.-_L Blue Becke Line Used n \|	1.556 n_L 1.5

N Pleochroic @ 40X

Anthophyllite 0%

Straight Fibers
_ Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
-
w Blue eyellow
D.St. - || Gold -_L Blue

Becke Line Used
$n \| \quad n _$n \qquad
Pleochroic @ 40X

Cellulose 95\%
Flat Twisted Fibers
Anisotropic
Syrithetics \qquad
Even Edges
High Birefringence
Other Fibers \qquad
Other nonfibers
Comments

Amosite __ 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
D.St. - || Gold- _ _ Blue

Becke Line Used
n || \qquad
\qquad
Pleochroic @ 40X
Actinolite
0\%
_ Straight Fibers

Mineral Wool 0\%

Irregular Shapes
Isotropic
Glass Fibers_0\%
Straight Fibers
Isotropic

Crocidolite \qquad
Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
$w \tan$ e Blue
__D.St. - || Yellow _L_ Yellow
Becke Line Used
n || \qquad n _L \qquad
Pleochroic © 40X
Tremolite \qquad
Straight Fibers
Sign of Elongation (+)
Parailel Extinction
Oblique Extinction \qquad 0 Angle
__ Birefringence Low
_ w Blue e Yellow
__ D.St. - || Gold -_ L Blue
Becke Line Used
n $\|$ \qquad n \qquad
Pleochroic @ 40X
Perlite
Quartz X
Wollastonite _0\%
$\mathrm{CaCO} \quad \mathrm{X}$
CaSO
Mica \qquad
Binder X

Lab\# 26295

LABORATORY ANALYSIS OF BULK ASBESTOS

Jient SHANNON \& WILSON, INC.

Pg 6 of 32
Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Sampled From EAGLE-W.
 Sampled By Client

Client Sample ID\# H12820205 Lab Sample ID\# 26295-05 Sample Description tile
Colors tan

Materials	
99%	tile

FIBROUS MATERIAL
NONFIBROUS
99\% HOMOGENEOUS
N
Textures smooth Location Description
ESTIMATED FIBROUS CONSTITUENTS 1% cellulose

PLM ANALYSIS

Chrysotile

\qquad
Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low
wblue eyellow
D.St. - || Mag.-_ L Blue
X Becke Line Used
$n \| 1.556 n \perp 1.548$
N Pleochroic @ 40X
Anthophyllite 0%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D.St. - || Gold -_L Blue

Becke Line Used
$n \|$ ___ ${ }^{n}$ _ \qquad
N
Pleochroic @ 40X

Cellulose $\quad 0 \%$
Flat Twisted Fibers
Anisotropic Synthetics 0%
Even Edges
High Birefringence
Other Fibers \qquad
Other nonfibers
Comments other sample layers present; not analyzed per client paperwork

Amosite
 \qquad

Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue e yellow
D.St. - || Gold- _ _ Blue

Becke Line Used
n \| \qquad n_1 \qquad
Pleochroic @ 40X
Actinolite $\quad 0 \%$
Straight Fibers
Sign of Elongation (${ }^{(}$)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold - _L Blue
-
Becke Line Used
n \| \qquad n_L \qquad
Pleochroic @ 40X

Mineral Wool
 0\%

Irregular Shapes
Isotropic
Glass Fibers_0\%
Straight Fibers
Isotropic

Crocidolite
 \qquad

Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w tan e Blue
D.St. - || Yellow _L_ Yellow

Becke Line Used
n || \qquad n_L \qquad
Pleochroic @ 40X
Tremolite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Oblique Extinction __ Angle
Birefringence Low
w Blue e Yellow
D.St. - || Goid -_I_ Blue

Becke Line Used
n || \qquad n_1 \qquad
N Pleochroic @ 40X
Perlite \qquad
Quartz \qquad
Wollastonite 0%
$\mathrm{CaCO} \quad \mathrm{X}$
CaSO \qquad
Mica \qquad
Binder X

Lab\# 26295
Pg 7 of 32
LABORATORY ANALYSIS OF BULK ASBESTOS
Client SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. Sampled By Client Lab Sample ID\# 26295-06 Sample Description mastic

| Client Sample ID\# H12820206 | Lab Sample ID\# 26295-06 | Sample Description mastic | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Colors It. brown | | | Materials | |

Textures resinous
ESTIMATED FIBROUS CONSTITUENTS 1% cellulose
PLY ANALYSIS

Crocidolite 0%
Straight Fibers
_ Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
wan e Blue
D. St. - \|l Yellow _L Yellow

Beck Line Used
n II
Pleochroic @ 40X
Tremolite 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Oblique Extinction 0 Angle
Birefringence Low
w Blue e Yellow
D. St. - || Gold -_L_ Blue

Becks Line Used
n $\|$
Pleochroic @ 40X
Perlite
Quartz x
Wollastonite 0\%
$\mathrm{CaCO} X$
Caso
Mica x
Binder x

Comments other sample layers present; not analyzed per client paperwork

Lab \# 26295
Pg 8 of 32

LABORATORY ANALYSIS OF BULK ASBESTOS

,lient SHANNON \& WILSON, INC.

Method interim EPA 600/M4-82-020 Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.

Sampled By Client
Client Sample ID\# H12820207 Lab Sample ID\# 26295-07 Sample Description \qquad
Materials
Colors It. tan
FIBROUS MATERIAL 4% NONFIBROUS
96\%
\qquad

Textures granular, powdery, fibrous
HOMOGENEOUS N
Location Description \qquad
ESTIMATED FIBROUS CONSTITUENTS 3\% synthetic, 1% cellulose

PLM ANALYSIS

Chrysotile \qquad
Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low
_ wblue e yellowD.St. - || Mag.-_ L Blue
\qquad Becke Line Used
n $\|$ \qquad n_L \qquad
N Pleochroic @ 40X
Anthophyllite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue eyellow
D.St. - || Gold -_L_ Blue

Becke Line Used
$n \mid l$ \qquad n_L

- Pleochroic @ 40X

Cellulose _ 2\%
$\frac{x}{x}$ Flat Twisted Fibers Anisotropic Synthetics _ 0\% Even Edges High Birefringence

Amosite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue eyellow
D.St. - || Gold-_L Blue

Becke Line Used
n $\|$ \qquad n_l \qquad
Pleochroic @ 40X
Actinolite __ 0\%
Straight FibersSign of Elongation (+)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold - L L Blue

Becke Line Used
$n \|$ \qquad n_L \qquad
Pleochroic @ 40X

Other Fibers

\qquad

Crocidolite
 \qquad

 0\%Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
$\mathrm{w} \boldsymbol{\operatorname { t a n }} \mathrm{e}$ Blue
D.St. - |l Yellow _L_ Yellow

Becke Line Used
n \| \qquad n_L \qquad
Pleochroic @ 40X
Tremolite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Oblique Extinction 0 Angle
Birefringence Low
w Blue e Yellow
D.St. - |l Gold - _L_ Blue

Becke Line Used
n || \qquad n_L
N Pleochroic @ 40X
Perlite \qquad
Quartz X
Wollastonite 0\%
$\mathrm{CaCO} \quad \mathrm{X}$
CaSO \qquad
Mica \qquad
Binder _X

Other nonfibers
Comments

Lab \# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
, lient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. .__ Sampled By Client
Method interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Client Sample ID\# H12820208 Lab Sample ID\# 26295-08 Sample Description \qquad
Colors white
Materials
FIBROUS MATERIAL 1\% . NONFIBROUS
99\%
HOMOGENEOUS Y
Textures fine grained
Location Description

ESTIMATED FIBROUS CONSTITUENTS 1% cellulose

PLM ANALYSIS

Comments
A.

Analyst Luis A. Bohorquez

Lab\# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
Client SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Sampled From EAGLE-W. Sampled By Client

Method Interim EPA 600/M4-82-020

Purchase Order \#

\qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Client Sample ID\# H12820209
Materials
Colors it. gray
FIBROUS MATERIAL 1% NONFIBROUS - 99% \qquad
Textures smooth Location Description \qquad
ESTIMATED FIBROUS CONSTITUENTS 1% cellulose

PLM ANALYSIS

Crocidolite 0% Straight Fibers Sign of Elongation (-) Parallel Extinction

Perpendicular Extinction Birefringence Medium
wtan e Blue
D.St. - || Yellow _L_ Yellow Becke Line Used n || \qquad n_1. Pleochroic @ 40X

Tremolite _ 0\% Straight Fibers Sign of Elongation (+) Parallel Extinction Oblique Extinction __ 0 Angle Birefringence Low w Blue e Yellow D.St. - || Gold - _L Blue Becke Line Used $n|\mid$ \qquad ${ }^{n}-1$ \qquad
N Pleochroic @ 40X
Perlite \qquad
Quartz X
Wollastonite 0%
$\mathrm{CaCO} X$
CaSO
Mica
Binder \qquad

Other nonfibers \qquad
Comments

Lab \# 26295

LABORATORY ANALYSIS OF BULK ASBESTOS

client SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Client Sample ID\# H12820210 Lab Sample ID\# 26295-10 Sample Description

Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Colors it. tan
FIBROUS MATERIAL 21% NONFIBROUS
Textures rubbery, fibrous
ESTIMATED FIBROUS CONSTITUENTS 20\% chrysotile, 1% cellulose
PL ANALYSIS

Chrysotile
20%
Wavy Fibers
Sign of Elongation (+)
Parallel Extinction Perpendicular Extinction
Birefringence Low.
w blue e yellow
DSt. - || Mag.- LL Blue
Beck Line Used
nl| 1.556 niL 1.548
N Pleochroic @ 40X

Anthophyllite
 \qquad

Straight Fibers
Sign of Elongation (${ }^{+}$)
Parallel Extinction
Birefringence Medium

w Blue e yellow
D. St. - || Gold -_L_ Blue

Becks Line Used
n \| \qquad n \qquad
N Pleochroic @ 40X

Cellulose 0%
Flat Twisted Fibers
Anisotropic
Synthetics \qquad
Even Edges
High Birefringence

Amosite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue e yellow
D. St. - || Gold -_1_ Blue

Beck Line Used
n $\|$ \qquad n_1 \qquad
Pleochroic @ 40X
Actinolite _ 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D. St. - |l Gold - _I. Blue

Becks Line Used
n II \qquad no \qquad
Pleochroic @ 40X

Mineral Wool
0\%
Irregular Shapes
Isotropic
Glass Fibers__ 0\%
Straight Fibers
Isotropic

Other Fibers

\qquad
Other nonfibers

Comments

\qquad

Analyst Luis A. Bohorquez

Lab \# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
jlient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. \qquad Sampled By Client Lab Sample ID\# 26295-11 Sample Description

Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Client Sample ID\# H12820212 \qquad
Colors brown
Materials
FIBROUS MATERIAL_ 25% NONFIBROUS \square 75\%

HOMOGENEOUS N . Location Description \qquad
Textures rubbery, fibrous

ESTIMATED FIBROUS CONSTITUENTS 15\% chrysotile, 10\% cellulose
PLM ANALYSIS

Lab \# 26295

LABORATORY ANALYSIS OF BULK ASBESTOS

jlient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. Sampled By Client

Pg 13 of 32
Method Interim EPA 600/M4-82-020

Purchase Order \#

Date Received 01/15/96
Shipped Via FEDERAL EXPR

Client Sample ID\# H12820213_Lab Sample ID\# 26295-12 Sample Description 1st layer
Colors white

FIBROUS MATERIAL 1% NONFIBROUS

Materials 1st layer

Textures powdery, spongy
99\% HOMOGENEOUS N
Location Description \qquad
ESTIMATED FIBROUS CONSTITUENTS 1% cellulose

PLM ANALYSIS

Chrysotile	0\%	
Wavy Fibers		
Sign of Elongation (+)		
Parallel Extinction		
Perpendicular Extinction		
Birefringence Low		
w blue e yellow		
D.St. - \|	Mag.- _L Blue	
Becke Line Used		

N

Anthophyllite
 \qquad

Straight Fibers
Sign of Elongation (${ }^{+}$)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D.St..- || Gold -_L_ Blue

Becke Line Used
n II \qquad n -1
N Pleochroic @ 40X

Cellulose 2\%
$\frac{x}{x}$
Flat Twisted Fibers Anisotropic Synthetics 0%
Even Edges
High Birefringence
Other Flbers

Amosite
 0\%

Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue e yellow
D.St. - II Gold-_ _ Blue

Becke Line Used
n II \qquad n_L \qquad
Pleochroic @ 40X

Actinolite

\qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold - _L_ Blue

Becke Line Used
n II \qquad n_1 \qquad
Pleochroic @ 40X

Mineral Wool_ 0\%

Irregular Shapes
isotropic
Glass Fibers_ 0%
Straight Fibers
Isotropic

Other nonfibers
Comments
\qquad

Lab \# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
slient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Client Sample ID\# H12820213
Colors white

FIBROUS MATERIAL_1\% NONFIBROUS
Textures fine grained
ESTIMATED FIBROUS CONSTITUENTS 1% cellulose

PLM ANALYSIS

| Chrysotile \qquad
 Wavy Fibers Sign of Elongation (+) Parallel Extinction Perpendicular Extinction Birefringence Low wblue eyellow D.St. - \|| Mag.-_l_ Blue Becke Line Used n || \qquad n_1 \qquad N Pleochroic @ 40X
 Anthophyllite \qquad |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

Straight FibersSign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue eyellow
D.St. - || Gold -I_ Blue
-
Becke Line Used
n \qquad n_1-
N Pleochroic @ 40X
ellulose $\quad 2 \%$
X Flat Twisted Fibers X Anisotropic Synthetics \qquad
Even Edges
High Birefringence

Other FIbers

\qquad
Other nonfibers
Comments \square

Crocidolite _ $\quad 0 \%$
Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
wtan e Blue
D.St. - || Yellow _L_ Yellow

Becke Line Used
n II \qquad n-1 \qquad
Pleochroic @ 40x
Tremolite _ 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Oblique Extinction 0 Angle
Birefringence Low

- wBlue e Yellow
D.St. - |l Gold -_L Blue

Becke Line Used
nll _n_ n \qquad
N Pleochroic @ 40X
Perlite
Quartz X
Wollastonite 2%
$\mathrm{CaCO} \times$
Caso
Mica X
Binder X

LABORATORY ANALYSIS OF BULK ASBESTOS

lient SHANNON \& WILSON, INC.

Pg 15 of 32
Method Interim EPA 600/M4-82-020 Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
\qquad Sampled By Client

Client Sample ID\# H12820213 Lab Sample ID\# 26295-12 Sample Description 3rd layer

Colors cream Materials 3rd layer
FIBROUS MATERIAL _ $\quad 1 \%$ NONFIBROUS $\quad 99 \%$ HOMOGENEOUS Y

Textures fine grained Location Description \qquad
ESTIMATED FIBROUS CONSTITUENTS 1% cellulose

PLM ANALYSIS

	Chrysotile __TR\%
x	Wavy Fibers
X	Sign of Elongation (+)
X	Parallel Extinction
X	Perpendicular Extinction
X	Birefringence Low
x	w blue e yellow
X	D.St.- -\|l Mag.- _ L Blue
X	Becke Line Used

N
$n \| l \mid 1.556 n _1.1 .548$

Anthophyllite _ 0\%
Straight Fibers
Sign of Elongation (${ }^{+}$)
Parallel Extinction
Birefringence Medium w Blue e yellow
D.St. - || Gold -_ L_ Blue

Becke Line Used
n \| \qquad n_1. \qquad Pleochroic @ 40X

Cellulose 0%
Flat Twisted Fibers Anisotropic Synthetics \qquad 0\%
Even Edges High Birefringence

Amosite
Straight Fibers
Sign of Elongation (+).
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue e yellow
D.St. - || Gold- _L_ Blue

Becke Line Used
n $\|$ \qquad n_1 \qquad
Pleochroic @ 40X
Actinolite _ 0%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold - _l_ Blue

Becke Line Used
n 1 \qquad n
Pleochroic @ 40X
Mineral Wool__ $\quad 0 \%$
Irregular Shapes
Isotropic
Glass Fibers__ $\quad 0 \%$
Straight Fibers
Isotropic

Irregular Shapes
Isotropic
Glass Fibers_ 0\%
Straight Fibers
Isotropic

Other Flbers 2\% Antigorite
Other nonfibers
Comments

Lab\# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
dient SHANNON \& WILSON, INC.

Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Client Sample ID\# H12820214 Lab Sample ID\# 26295-13 Sample Description 1st layer

Colors off white
FIBROUS MATERIAL \qquad 0\% NONFIBROUS
Materials 1st layer
Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Textures powdery, spongy
ESTIMATED FIBROUS CONSTITUENTS 10\% cellulose
PLM ANALYSIS

Lab \# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
fient SHANNON \& WILSON, INC.

Pg 17 of 32
Method Interim EPA 600/M4-82-020
Purchase Order \#
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Sampled From EAGLE-W.
Sampled By Client Lab Sample ID\# 26295-13 Sample Description End layer

Client Sample ID\# H12820214

Textures chalky Location Description \qquad
ESTIMATED FIBROUS CONSTITUENTS 1% cellulose
PL ANALYSIS

Other Fibers \qquad
Comments

Lab \# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
jient SHANNON \& WILSON, INC.

Reported To TOLLI LOWELL-FORKER

Sampled From EAGLE-W. Sampled By Client _____

Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR Lab Sample ID\# 26295-14 Sample Description \qquad Materials
Colors lt. gray
H12820215 FIBROUS MATERIAL 17% NONFIBROUS \qquad
83\%
HOMOGENEOUS N Location Description
Textures cementitious, fibrous
ESTIMATED FIBROUS CONSTITUENTS 15% chrysotile, 2% cellulose

PLM ANALYSIS

Chrysotile

\qquad

$\frac{x}{x}$
$\frac{x}{x}$
$\frac{x}{x}$
$\frac{x}{x}$

Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low
w blue e yellow
DSt. - || Mag.-_L Blue
Beck Line Used
$\mathrm{n}|\mid \underline{1.556} \mathrm{n}$ _L 1.548
N
Pleochroic @ 40X
Anthophyllite \qquad \%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D. St. - || Gold -_L_ Blue

Beck Line Used
n |l \qquad niL
Pleochroic @ 40X

Cellulose
0\%
Flat Twisted Fibers
Anisotropic
Synthetics _0\%
Even Edges
High Birefringence

Amosite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
wblue e yellow
DSt. - || Gold-_I_Blue
Beck Line Used

$$
\text { n\|__ } n
$$

\qquad
Pleochroic @ 40X
Actinolite _ O\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Low
w blue e Yellow
D. SI. - || Gold - _L Blue

Beck Line Used
n $\|$ \qquad niL \qquad
Pleochroic @ 40X

Mineral Wool
0\%
Irregular Shapes
Isotropic
Glass Fibers_ 0%
Straight Fibers
Isotropic

Crocidolite

\qquad
Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w tan e Blue
D. St. - |l Yellow L_ Yellow

Becks Line Used
n $\|$ \qquad n \perp \qquad
Pleochroic @ 40X
Tremolite \qquad

\%

Straight Fibers
_ Sign of Elongation (+)
Parallel Extinction

- Oblique Extinction \qquad
Birefringence Low
w Blue e Yellow
D. St. - || Gold - _ _ Blue

Becks Line Used
n $\|$ \qquad nil_ \qquad
N Pleochroic @ 40X
Perlite \qquad
Quartz x
Wollastonite 0%
WaCO X
CaSO \qquad
Mica \qquad
Binder X

Other Fibers

Other nonfibers \qquad
Comments

Analyst Luis A. Bohorquez

Lab \# 26295
LABORATORY ANALYSIS OF BULK ASBESTOS
dient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Client Sample ID\# H12820216 Colors off white Materials 1st layer
FIBROUS MATERIAL $\quad 10 \%$ NONFIBROUS
Textures chalky
ESTIMATED FIBROUS CONSTITUENTS 10\% cellulose
PLM ANALYSIS

Analyst Luis A. Bohorquez
NVLAP \#1926
4455 EAST CAMELBACK ROAD, SUITE D-155 PHOENIX, ARIZONA 85018 (602) 840-8012 FAX: (602) 990-8468

Lab \# 26295
Pg 20 of 32
LABORATORY ANALYSIS OF BULK ASBESTOS
client SHANNON \& WILSON, INC.
Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.

Sampled By Client Lab Sample ID\# 26295-15 Sample Description 2nd layer
Client Sample ID\# H12820216
Colors white
FIBROUS MATERIAL 0\% NONFIBROUS
Materials 2nd layer

Textures fine grained Location Description

ESTIMATED FIBROUS CONSTITUENTS

PLM ANALYSIS

Lab \# 26295
Pg 21 of 32

Method Interim EPA 600/M4-82-020
Purchase Order \#
Date Received 01/15/96
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Client Sample ID\# H12820217
Sampled By Client Lab Sample ID\# 26295-16 Sample Description 1st layer

Colors cream

Materials 1st layer

FIBROUS MATERIAL 10% NONFIBROUS \qquad 90\% HOMOGENEOUS N Location Description \qquad
Textures chalky
ESTIMATED FIBROUS CONSTITUENTS 10% cellulose

PL ANALYSIS
Chrysotile \qquad
Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low
w blue e yellow
D.St. - |l Mag.- _L Blue

Beck Line Used
$\mathrm{n} \|$ \qquad niL \qquad N Pleachroic @ 40X

Anthophyllite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D. St. - || Gold -_L Blue

Beck Line Used
n || \qquad n
Pleochroic @ 40X

Cellulose 10\%
Flat Twisted Fibers
Anisotropic
Synthetics _0\%
Even Edges
High Birefringence
Other FIbers
Other nonfibers
Comments
2. 1

Crocidolite \qquad
Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w tan e Blue
D. St. - || Yellow _L_ Yellow

Beck Line Used
$\mathrm{n} \|$ \qquad niL
Pleochroic @ 40X
Tremolite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Oblique Extinction _ O Angle
Birefringence Low
w Blue e Yellow
D.St. - || Gold - _L Blue

Beck Line Used
n II \qquad nil \qquad
Pleochroic @ 40X
Perlite
Quartz X
Wollastonite \qquad
CaCO
CaSO \qquad
Mica \qquad
Binder \qquad

Analyst Luis A. Bohorquez

LABORATORY ANALYSIS OF BULK ASBESTOS

lient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Sampled By Client
Lab Sample ID\# 26295-16 Sample Description 2nd layer
Client Sample ID\# H12820217
Colors white
Materials 2nd layer
FIBROUS MATERIAL $\quad 1 \%$ NONFIBROUS 99% HOMOGENEOUS Y
Textures fine grained
ESTIMATED FIBROUS CONSTITUENTS 1\% cellulose

PLM ANALYSIS

Chrysotile _ 0\%		
Wavy Fibers		
Sign of Elongation (+)		
Parallel Extinction		
Perpendicular Extinction		
Birefringence Low		
w blue eyellow		
Becke Line Used		
$\mathrm{n} \\|$		

N Pleochroic @ 40X
Anthophyllite 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D.St. - || Gold -_L Blue

Becke Line Used
n || \qquad n_L \qquad
N Pleochroic @ 40X

Cellulose
0\%
Flat Twisted Fibers
Anisotropic
Synthetics
0\%
Even Edges High Birefringence

Amosite
0\%
Straight Fibers
Sign of Elongation (+)
Paraliel Extinction
Perpendicular Extinction
Birefringence Medium
wblue e yellow
D.St. - || Gold- _ L Blue

Becke Line Used
n II \qquad n_1
Pleochroic @ 40X
Actinolite \qquad
Straight Fibers
_ Sign of Elongation (+)
Parallel Extinction
Birefringence Low
-
w Blue e Yellow
D.St. - || Gold - _I_ Blue

Becke Line Used
n $\|$ \qquad n_L \qquad
Pleochroic @ 40X
Mineral Wool _ 0\%

Irregular Shapes
Isotropic
Glass Fibers_0\%
Straight Fibers
Isotropic

Crocidolite
 \qquad

Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w tan e Blue
D.St. - || Yellow _L_ Yellow

Becke Line Used
n 11 \qquad n_L \qquad
Pleochroic @ 40X
Tremolite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Oblique Extinction 0 Angle
Birefringence Low
_ w Blue e Yellow
D.St. - || Gold - _L_ Blue

Becke Line Used
n II \qquad n. 1 \qquad
N Pleochroic @ 40X
Perlite
X
Quartz X
Wollastonite _ 0\%
CaCO X
CaSO
Mica
Binder X

Other Flbers \qquad
Other nonfibers \qquad
Comments

Lab \# 26295
Pg 23 of 32
LABORATORY ANALYSIS OF BULK ASBESTOS
-lien SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Client Sample ID\# H12820217 Lab Sample ID\# 26295-16 Sample Description 3rd layer

Colors white
FIBROUS MATERIAL 1% NONFIBROUS
Materials 3rd layer

Textures fine grained
Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

ESTIMATED FIBROUS CONSTITUENTS 1% cellulose

PLY ANALYSIS
Chrysotile \qquad
Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low
_ blue e yellow
D.St. - II Mag.-_L Blue

Beck Line Used
n || \qquad n_L \qquad
N Pleochroic @ 40X
Anthophyllite _ 0%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D. St. - || Gold -_L Blue

Beck Line Used
n ll _n_ $\quad{ }^{n}$ \qquad
N Pleochroic @ 40X

Cellulose 0\%
Flat Twisted Fibers
Anisotropic Synthetics _0\%
Even Edges
High Birefringence

Other Fibers

\qquad
Other nonfibers
Comments

Amosite 0\%
Straight Fibers

- Sign of Elongation (+)

Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue e yellow
DSt. - || Gold -_L Blue
Beck Line Used
n || \qquad niL \qquad
Pleochroic @ 40X
Actinolite _ 0%Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Low
w Blue e Yellow
DSt. - || Gold - I_{i} Blue
Becks Line Used
n II \qquad niL \qquad -
Pleochroic @ 40X

Mineral Wool_ 0\%
Irregular Shapes
Isotropic
Glass Fibers _0\%
Straight Fibers
Isotropic

Crocidolite \qquad
Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w tan e Blue
D. St. - $|\mid$ Yellow _ L Yellow

Beck Line Used
n || \qquad niL \qquad
Pleochroic @ 40X
Tremolite \qquad
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Oblique Extinction _ O Angle
Birefringence Low
w Blue e Yellow
D. St. - || Gold - _l_ Blue

Beck Line Used
n \| \qquad niL \qquad
Pleochroic @ 40X
Perlite
Quartz \qquad
Wollastonite \qquad
CoCO X
TasSO \qquad
Mica \qquad
Binder X

LABORATORY ANALYSIS OF BULK ASBESTOS
Slient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. Sampled By Client
Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Client Sample ID\# H12820218 Lab Sample ID\# 26295-17 Sample Description \qquad Colors white Materials
FIBROUS MATERIAL - 0% NONFIBROUS
100%
\qquad
HOMOGENEOUS Y
Textures fine grained \qquad Location Description

ESTIMATED FIBROUS CONSTITUENTS
PLM ANALYSIS

	Chrysotile ___ 2\%	
x	Wavy Fibers	
x	Sign of Elongation (+)	
x	Parallel Extinction	
X	Perpendicular Extinction	
X	Birefringence Low	
x	w blue e yellow	
X	D.St. - \|	Mag.- - L Blue
x	Becke Line Used	
	$n \\| \frac{1.556}{n} \quad$ - 1.1 .548	

N Pleochroic @ 40X
Anthophyllite 0%

Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D.St. - || Ģold -_L_ Blue

Becke Line Used
n II \qquad n_L \qquad
N Pleochroic @ 40X

Cellulose 0%
Flat Twisted Fibers
Anisotropic
Synthetics_0\%
Even Edges
High Birefringence
Other Fibers \qquad
Other nonfibers
Comments
\qquad
\qquad

Pléachroic @ 40X
Actinolite 0%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold -_L_ Blue

Becke Line Used
n II \qquad n_1 \qquad
Pleochroic @ 40X

Mineral Wool
0%
Irregular Shapes
Isotropic
Glass Fibers_ 0%
Straight Fibers
Isotropic

Crocidolite
 \qquad

Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
__ Birefringence Medium
$w \tan$ e Blue
D.St. - || Yellow $_$Y Yellow

Becke Line Used
n II \qquad n_L
Pleochroic @ 40X
Tremolite \qquad
Straight Fibers
__ Sign of Elongation (+)
Parallel Extinction
Oblique Extinction 0 Angle
Birefringence Low
w Blue e Yellow
D.St. - |l Gold -_L_ Blue

Becke Line Used
n II \qquad n_1 \qquad
N Pleochroic @ 40X
Perlite \qquad
Quartz X
Wollastonite 0%
CaCO x
Caso \qquad
Mica
Binder
\qquad

Method Interim EPA 600/M4-82-020 Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Sampled From EAGLE-W.
Client Sample ID\# H12820219

Lab Sample ID\# 26295-18 Sample Description roofing-1st layer
Colors black
FIBROUS MATERIAL 2% NONFIBROUS
Textures granular, resinous

Materials roofing-1st layer
98\% HOMOGENEOUS N
Location Description \qquad
\qquad , 1% synthetic

PLY ANALYSIS

Other nonfibers

Comments
\rightarrow
Analyst Luis A. Bohorquez

Pg 26 of 32
Lab \# 26295
Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
-lien SHANNON \& WILSON, INC.
Date Received
01/15/96
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. Sampled By Client

Shipped Via FEDERAL EXPR
Client Sample ID\# H12820219 Lab Sample ID\# 26295-18 Sample Description roofing-2nd layer

Colors black
FIBROUS MATERIAL 40% NONFIBROUS Materials roofing-2nd layer

Textures resinous, fibrous
\qquad
60\%
HOMOGENEOUS N
Location Description
ESTIMATED FIBROUS CONSTITUENTS 40\% cellulose
PLY ANALYSIS

Chrysotile \qquad
Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low
w blue e yellow
DSt. - $\|$ Mag.-_ L Blue
Beck Line Used
n_{I} \qquad
N Pleochroic @ 40X

Anthophyllite
 \qquad

Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
w Blue e yellow
D. St. - || Gold --L Blue

Beck Line Used
nl l \qquad niL
Pleochroic @ 40X

Cellulose \qquad
Flat Twisted Fibers
Anisotropic
Synthetics _0\%
Even Edges
High Birefringence
Other Fibers \qquad
Other nonfibers
Comments

\sim.

Crocidolite 0%
Straight Fibers
Sign of Elongation (-)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w tan e Blue
DSt. - || Yellow _L_ Yellow
Beck Line Used
$\mathrm{n} \|=\quad \mathrm{n}$ _ \qquad
Pleochroic @ 40X
Tremolite 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Oblique Extinction 0 Angle
Birefringence Low
w Blue ep Yellow
D. St. - || Gold - _L Blue

Beck Line Used
n II \qquad niL \qquad
N Pleochroic @ 40X
Perlite
Quartz _x
Wollastonite_ 0%
$\mathrm{CaCO} X$
Case
Mica \qquad Binder $\quad \mathrm{X}$

LABORATORY ANALYSIS OF BULK ASBESTOS
lient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. Sampled By Client
Client Sample ID\# H12820220 Lab Sample ID\# 26295-19 Sample Description

Method Interim EPA 600/M4-82-020
Purchase Order \#

Colors black
FIBROUS MATERIAL
16%
NONFIBROUS
Materials
84\%
Location Description
Textures granular, resinous

ESTIMATED FIBROUS CONSTITUENTS 15% chrysotile, 1% cellulose
PLM ANALYSIS

Other nonfibers \qquad
Comments

LABORATORY ANALYSIS OF BULK ASBESTOS
Client SHANNON \& WILSON, INC. \qquad
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Client Sample ID\# H12820211 Lab Sample ID\# 26295-20 Sample Description

Method Interim EPA 600/M4-82-020 Purchase Order \# \qquad
Date Received 01/15/96 Shipped Via FEDERAL EXPR

Colors brown
FIBROUS MATERIAL 25\% NONFIBROUS
Textures rubbery, fibrous

ESTIMATED FIBROUS CONSTITUENTS 15\% chrysotile, 10% cellulose

PLM ANALYSIS

Other nonfibers
Comments

Amosite 0%
Straight Fibers
Sign of Elongation (+)
Paraliel Extinction
Perpendicular Extinction
w blue eyellow
D.St. - || Gold- _L_ Blue

Becke Line Used
n ||
Pleochroic @ 40X
Actinolite 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold - _ L Blue

Becke Line Used
n \| \qquad n _1 \qquad Becke Line Used
n \| leochroic @ 40X

Perlite
\qquad
Wollastonite 0\%
$\mathrm{CaCO} \quad \mathrm{X}$
CaSO
\qquad
Binder x

Analyst Luis A. Bohorquez

LABORATORY ANALYSIS OF BULK ASBESTOS

lient SHANNON \& WILSON, INC.
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W.
Client Sample ID\# H12850221 Lab Sample ID\# 26295-21 Sample Description

Method Interim EPA 600/M4-82-020 Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERALEXPR

Colors black
FIBROUS MATERIAL 16% NONFIBROUS
Textures resinous
ESTIMATED FIBROUS CONSTITUENTS 15% chrysotile, 1% cellulose

PLM ANALYSIS

Chrysotile 15%

Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low
wblue eyellow
D.St. - || Mag.- _L Blue

Becke Line Used
$n \| 1.556 \mathrm{n}$ _ 1.548
N

Anthophyllite 0\%

Straight Fibers

Sign of Elongation (+)
Parallel Extinction
Birefringence Medium
——
w Blue e yellow
D.St. - || Gold -___ Blue

Becke Line Used
n II \qquad n \qquad
N Pleochroic @ 40X

Cellulose 0\%

Flat Twisted Fibers
Anisotropic
Synthetics 0%

Even Edges
High Birefringence

Amosite 0\%
Straight Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Medium
w blue e yellow
D.St. - || Gold- __ Blue

Becke Line Used
n \| \qquad n_1
Pleochroic @ 40X
Actinolite 0\%
Straight Fibers
Sign of Elongation (${ }^{+}$)
Parallel Extinction
Birefringence Low
w Blue e Yellow
D.St. - || Gold - _l_ Blue

Becke Line Used
n II \qquad n_1 \qquad
Pleochroic @ 40X

Mineral Wool \qquad
Irregular Shapes
Isotropic
Glass Fibers_ 0%
Straight Fibers
Isotropic

Other Flbers \qquad
Other nonfibers \qquad
Comments

Lab\# 26295
Pg 30 of 32

LABORATORY ANALYSIS OF BULK ASBESTOS

lient SHANNON \& WILSON, INC.
Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Reported To TOLLI LOWELL-FORKER
Sampled From EAGLE-W. Sampled By Client
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Client Sample ID\# H12820222 Lab Sample ID\# 26295-22 Sample Description \qquad
Colors black
Materials
FIBROUS MATERIAL 41% NONFIBROUS
HOMOGENEOUS
Textures granular, flaky, resinous, fibrous
ESTIMATED FIBROUS CONSTITUENTS 40% cellulose, 1% synthetic

PLM ANALYSIS

Chrysotile
 \qquad

Wavy Fibers
Sign of Elongation (+)
Paralle: Extinction
Perpendicular Extinction
Birefringence Low
w blue eyellow
D.St. - || Mag.- _L Blue

Becke Line Used
n $\|$ \qquad $n _$ \qquad
N Pleochroic @ 40X
Anthophyllite 0\% Straight Fibers Sign of Elongation (+) Parallel Extinction Birefringence Medium w Blue eyellow
_ D.St. - || Gold -_I_ Blue Becke Line Used
n $\|$ \qquad n_l \qquad N Pleochroic © 40X

Cellulose
40%

x
x

X Even Edges
X High Birefringence
Other Flbers \qquad
Other nonfibers
Comments

Analyst Luis A. Bohorquez

Lab\# 26295
Pg 31 of 32

LABORATORY ANALYSIS OF BULK ASBESTOS
Jlient SHANNON \& WILSON, INC.

Method Interim EPA 600/M4-82-020
Purchase Order \# \qquad
Date Received 01/15/96
Shipped Via FEDERAL EXPR

Sampled From EAGLE-W.
Sampled By Client
Lab Sample ID\# 26295-23 Sample Description \qquad Materials
Colors white, black, spotted
FIBROUS MATERIAL 0% NONFIBROUS
100\%
HOMOGENEOUS
N
Textures smooth Location Description \qquad
ESTIMATED FIBROUS CONSTITUENTS
PLM.ANALYSIS

Comments insufficient mastic/adhesive for analysis

Analyst Luis A. Bohorquez

Lab \# 26295
Pg 32 of 32
LABORATORY ANALYSIS OF BULK ASBESTOS
;lent SHANNON \& WILSON, INC.

Reported To TOLLI LOWELL-FORKER

Sampled From EAGLE-W. Sampled By Client _______

Date Received 01/15/96
Shipped Via FEDERAL EXPR
Client Sample ID\# H12820224 Lab Sample ID\# 26295-24 Sample Description

PLO ANALYSIS

Chrysotile ___ 0%
Wavy Fibers
Sign of Elongation (+)
Parallel Extinction
Perpendicular Extinction
Birefringence Low

Low
w blue e yellow
D.St. - || Mag.-_ _ Blue

Beck Line Used
$\pi 11$ \qquad n_1 \qquad
\qquad N

Anthophyllite
 \qquad

Straight Fibers
Sign of Elongation (+)
Parallel Extinction Birefringence Medium
w Blue e yellow
D. St. - || Gold -_L_ Blue

Beck Line Used $\pi \|$ \qquad niL \qquad
N Pleochroic @ 40X

Cellulose 0\%
Flat Twisted Fibers
Anisotropic
Synthetics \qquad
Even Edges
High Birefringence

Other FIbers

\qquad
Other nonfibers
Comments

Analyst Luis A. Bohorquez

APPENDIX B

RESULTS OF LEAD ANALYSIS

4455 EAST CAMELBACK RD., SUITE D-155 / PHOENIX. ARIZONA 85018 / 602-840-8012 / FAX 602-990-8468

RESULT OF LEAD ANALYSIS BY FLAME ATOMIC ABSORPTION PAINT CHIP SAMPLES
 (EPA METHOD SW-846)

Page 1

EMC LAB \#: 3808,	DATE REC'D: 01/15/96
CLIENT: Shannon \& Wilson, Inc.	REPORT DATE: 01/24/96
CLIENT ADDRESS:400 N. 34th St, STE 100 Seattle, WA 98103	P.O. NO.:
PROJECT NAME: Eagle-Wenatchee	PROJ. \#: H-1282-02

EMC SAMPLE \#	SAMPLE DATE /96	$\begin{gathered} \text { CLIENT } \\ \text { SAMPLE } \\ \text { H128202PB- } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { DETECTION } \\ & \text { LIMIT } \end{aligned}$	\% Pb BY WEIGHT
1	1/11	01	B-1	0.005	1.347
2	1/11	02	1-1	0.001	0.207
3	1/11	03	1-8	0.016	9.730
4	1/11	04	Paint Chips	0.065	23.080
5	1/11	05	Trim	0.085	18.600
6	1/11	06	Shop 2	0.001	0.006

[^6]This report applies to the standards or procedures identified and to the samples tested only. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar :oducts, nor do they represent an ongoing quality assurance program unless so noted.
lere it is noted that a sample with excessive substrate was submitted for laboratory analysis, such analysis may be biased. The lead content of such sample may, in actuality, be greater than reported. EMC makes no warranty, express or implied, as to the accuracy of the analysis of samples noted to have been submitted with excessive substrate. Resampling is recommended in such cituations to verify original laboratory results.
lese reports are for the exclusive use of the addressed client and are rendered upon the condition that they will not be reproduced ... olly or in part for advertising or other purposes over our signature or in connection with our name without special written permission. Samples not destroyed in testing are retained a maximum of thirty (30) days.

ANALYST:

George Rasmussen

RESULT OF LEAD ANALYSIS BY FLAME ATOMIC ABSORPTION PAINT CHIP SAMPLES (EPA METHOD SW-846)

Page 1

EMC LAB \#: 3808	DATE REC'D: $1 / 15 / 96$
LLIENT: Shannon \& Wilson	REPORT DATE: 01/24/96
CLIENT ADDRESS:400 N. 34th St, STE 100 Seattle, WA 98103	P.O. NO.:
PROJECT NAME: Eagle-Wenatchee	PROJ. \#: H-1282-02

EMC SAMPLE 1	SAMPLE DATE 196	CLIENT: SAMPLE \#	DESCRIPTION	DETECTION LIMIT IN PPM	PPM
1	1/11	01	B-1	50.0	13470.0
2	1/11	02	1-1	10.0	2070.0
3	1/11	03	1-8	160.0	97300.0
4	1/11	04	Paint Chips	650.0	230800.0
5	1/11	05	Trim	850.0	186000.0
6	1/11	06	Shop 2	10.0	60.0

[^7]This report applies to the standards or procedures identified and to the samples tested only.
ie test results are not necessarily indicative or representative of the qualities of the lot -om which the sample was taken or of apparently identical or similar products, nor do they represent an ongoing quality assurance program unless so noted.
lere it is noted that a sample with excessive substrate was submitted for laboratory analysis, tch analysis may be biased. The lead content of such sample may, in actuality, be greater than reported. EMC makes no warranty, express or implied, as to the accuracy of the analysis of gamples noted to have been submitted with excessive substrate. Resampling is recommended in ich situations to verify original laboratory results.
nese reports are for the exclusive use of the addressed client and are rendered upon the condition that they will not be reproduced wholly or in part for advertising or other purposes rer our signature or in connection with our name without special written permission. Samples -t destroyed in testing are retained a maximum of thirty (30) days.

NALYST:

George Rasmussen

APPENDIX C

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL REPORT

Dated: February 8, 1996
To: J-U-B Engineers, Inc. Attn: Mr. Vince Loftus

Important Information About Your Geotechnical/Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/ervironmental report is based on a subsurface exploration plan designed to consider a unique set of projectspecific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/ervironmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditi revealed through selective exploratory sampling are indicative of actual conditions throughout a site Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determing whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and envimnmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/ervironmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss. the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

APPENDIX E-RESTRICTIVE COVENANT

RETURN ADDDES思


```
1. Revmintwe Covesant
2 .
3.
4 .
```


(on prope
\qquad af docorneny (i))

Grantor(s) (Lest amao first, then first neme and initial(3))

1.

EAGLB HARDWAFE \& GARDEN, INC.
2.
3.
4.
5. \square Addintional anmes on puge _—__of documeat

1.
2.
3.
4.
5. \square Addztional manes on pege _of docuratat.

Legal Descripton (iblevevistad; Le., IOX, bleck, plat or section, townatip, rampe)
Lote 1. 2 and 3, Block 9. Second Subritan Horn Addition; and Loe 1, 2 and 3; Block 1. and Low 3 and 4, Block 2 , Sunith Prik
8

Amasion's Property Tax Pincel/heopunt Nionber 232034857005 Additiconl hepal is on pint ___ of docturent.

The AuditerfReconder will rely on the information provided on the form. The stefl will pot mead the daculuen to verify the accurcicy or completenes of the indexing infumanion provided berein.

```
WASMDNGTON STATT COUNTY AUDITOWHECOEDER'S
MNDEXING HORM (Cover Stwek)
```


RESTRICTIVE COVENANT

Notice is hereby given the the property which is the subject of this Restrictive Covenant and is legally described as:

Lots 1, 2 and 3, Block 9, Second Suburban Home Addition to Wenatchee, Chelan County, Washington, acconding to the plat thereof recorded in Yolume 1 of Piax, Page 23,

AND
Lots 1, 2 and 3, Block 1, and Lots 3 and 4, Block 2. Smith Park of Wenatchee, Chelen County. Washington, according to the plat thereof recerrded in Volume 1 of Plas, Pages 39 and 40
("Property"), was the subject of remedial action under Chapter 70.105D RCW. The work done in the remedial sction ("Cleanup Aetion") is described in the report dated 1997 undor the Independent Remedial Action Program and in the exhibits included in the report. The report is kept in the central filex at the Washington State Departunent of Ecology, Central Regional Office.

This Restrictive Covenant is required by WAC 173-340-440 because some of the subsurface soll remaining on the Property contains concentrations of lead, arsenic and DDT based pesticides contaminadon which excsed Model Toxics Control Act method A cleanup levels estrablished under WAC 173-340-740. Accordiagly, certain engineering controls have been put in place on the Propenty to deal with such soil and are described in Exhibit A attached hereto.

The undersigned Eagle Handware \& Garten, Inc. is the fee owner ("Owner") of the Property and makes the following declaration as to timitations, restrictions, and ases to which the Froperty may be por. The Owner intends that these declarations will constitute covenants to run with the land, as provided by law, and will be binding on all parties and all persons claiming tander them, including curront and future owners who scyuire any portion of or interest in the Property.

Potential purchnsers and lesseces of the Property are put on notice that:

1. The State of Washington Department of Ecology has authority under RCW 70.105 D .030 to enforce this Restrictive Covenant.
2. Any activity on the site that may resuit in the exposure of hazandous substances to human bealch and the environement is prohlbited.
3. The Owner of the Property must give wrimen notice to the Department of Ecology, or to a successor agency, of the Owner's conveyance of any inderest in the Property.
4. The Owner ruust require compliance with this Restrictive Covenant whenever interest in the Property is conveyed by title or an casement or lease is granted. The Owner of the Preperty must furnish a copy of the No-Further-Action Letter to any transieree of such real property inderest.
```
01/06/1997 09:10
5. The Owner of the Property mast notify and obtsin approval from the Department of Ecology, or from a anccessor agency, prior to any use of the property that is incongistent with the terms of this Restrictive Coveasme. The Departurent of Bcology or its successor tavency may afprove an amendrnent to the Restrictive Covenant following public notice and commoraton the Owner's requers.

6 The Owner must allow detignated representatives of the Department of Ecology, or succensor agency, to enter the Property at reasonable times given reasomable notice for the purpose of evaluating compliagce with the No-Further-Action Letter or reviewing the effectiveness of the Cemary Action.
7. The Owger may request the Department of Ecology to remove the Restrictive Covenant or certain restrictions conthinted within the Resurictive Covenant whenever the residual hazardons substapoes remmining at the Property are reduced in concentration such chat the mechod A cleanap levels, ostablished under WAC 173-340-740 are met without a conditional point of compliance. The Departonent of Ecology will remove the Restrictive Covenunt or ofher rescrictions if the department, after public actice and opportumity for commens, agrees with the Owner's request.

Erecuted this \(\qquad\) day of \(\qquad\) 1997.

EACLE HARDWARE \& GARDEN, INC.
By: \(\qquad\)

Printed Name

Tite

Approved:
Stale of Wasbington
Departunent of Ecology
Christiac O. Gregolise
Altomey Gentral

By:
Ascistant Attordey Geaeral

\section*{STATE OF WASHINGTON}

\section*{COUNTY OF KING}
ss.

I cerrify that I know or heve satisfectory evidence that the person who appeared befort mas, and said person acknowledged that said person signed this ingrument, on oath stated that said person was authorived to executw dhe instrument and acknowledged it tas the \(\qquad\) of Eagla Hardware \& Garder, Inc., to be the free and voluntary act of such conporation for the uses and purposes mentioned in the instrument.

Dated this \(\qquad\) day of \(\qquad\) 1997.

Signature of Notary
(Laglely Print or Stamp Name of Notary)
Notary prablic in and for the state of Washimgtom, nesiding at \(\qquad\) .
My appointment expires \(\qquad\) .

Soil contamination exists at the Eagle Hardware and Garden, Inc. property in Wenatchee, Washington. Constituents of concern in the soil are total lead, total arsenic and DDT derivatives above the Model Toxics Control Act "Method A" clean-up levels, WAC 173-340-740. Contamination resulted from the agronomic application of pesticides to a pear orchard. Contamination was generally limited to the top 24-36 inches and dispersed throughout the site by the agricultural activities prior to the construction of the Eagle store in 1996. The constituents of concern are not readily mobile within the soil column.

To assure protection to human health and the environment, protective capping of the contaminated soil with building slabs or paving was the chosen remedial action for the subject site. In areas where soil is to remain exposed due to landscape plantings, the native soils were excavated to a depth of at least 36 inches and used as backfill under impervious surfaces elsewhere on the site. Fruit trees, roots, grasses and other organic debris were burned at the subject site prior to development of the Eagle Store. The residues from the on-site burning were spread throughout the site, incorporating them into the native soils.

The southeast quadrant of the site had contamination at a slightly deeper level (to approximately 48 inches). Consequently, native soils in the southeast quadrant of the site were removed to a depth of 48 inches below original ground surface. Due to the regrading of the Eagle site, the interior planters between the east side of the Eagle store and the property line could not be excavated to a depth of four feet below original ground surface. In those areas, the planters were excavated to a depth of three feet below finish grade and layer of geotextile fabric was placed at the bottom of the excavation to indicate a separation between clean fill material and potentially contaminated native soils.

Clean soil was mined from on-site by stripping the native soil to a depth of at least 36 inches before mining soils for the planter areas. Soils were mined at convenient locations around the site, primarily on the north half and western perimeters. Contaminated soil excavated from the planter areas was utilized as fill material elsewhere on the site and placed under impermeable concrete and asphalt surfaces.

Stormwater infiltration has been limited to the clean soil in the planter areas which constitute about \(6.5 \%\) of the property, or 0.65 acres. The majority of the stormwater is piped directly to the City of Wenatchee's stormwater conveyance system.

The attached Figure 1 shows the final site development for the Eagle Hardware and Garden store in Wenatchee.

\footnotetext{
Eagle Hardware and Garden, Inc. Wenatchee, Washington
}


APPENDIX F-SAMPLE RESULTS AND CHAIN OF CUSTODY
\begin{tabular}{ll} 
CLIENT : J-U-B Engineers, Inc. & SVL JOB No. \(: ~\) \\
Sample Receipt :12/12/96 & Date of Report :12/27/96
\end{tabular}


Soil samples: As Received Basis

Reviewed By:


Part I Prep Blank and Laboratory Control Sample
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Client : J-U-B Engineers, Inc.} & \multicolumn{3}{|r|}{SVL JOB NO. : 63200} \\
\hline Analyte & Method & Matrix & Units & Prep Blank & True-LCS-Found & LCS \%R & Date \\
\hline Arsenic & 200.7 & SOIL & \(\mathrm{mg} / \mathrm{kg}\) & <4.0 & 164181 & 110.4 & 12/26/96 \\
\hline Lead & 200.7 & SOIL & mg/kg & <4.0 & 96.1 95.9 & 99.8 & 12/26/96 \\
\hline \% Solids & 999 & SOIL & & & N/A & N/A & 12/25/96 \\
\hline
\end{tabular}

LEGEND:
\(N / A=\) Not Applicable
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{} \\
\hline As & 200.7 & SOIL & \(1 \mathrm{mg} / \mathrm{kg}\) & <4.0 & 5.30 & 200.0 & 11 & 100 & 110.0 & 12/26/96 \\
\hline , & 200.7 & SOIL & \(1 \mathrm{mg} / \mathrm{kg}\) & 43.9 & 55.0 & 22.4 & 143 & 100 & 99.1 & 12/26/96 \\
\hline sol. & 999 & SOIL & 1 \% & 84.4 & 82.2 & 2.6 & N/A & N/A & N/A & 12/19/96 \\
\hline
\end{tabular}

TAEGEND:

 QC Sample 1: SVL SAM NO.: 131928 Client sample ID: SE


CHAIN OF CUSTODY RECORD

\section*{\begin{tabular}{|c|}
\hline \multicolumn{1}{|c|}{ Table 1. - Matrix Type } \\
\(1=\) Surface Water, \(2=\) Ground Water \\
\(3=\) Soil/Sediment, \(4=\) Rinsate, \(5=\mathrm{Oil}\) \\
\(6=\) Waste, \(7=\) Other (Specify)
\end{tabular} \\ - поп̣ээ! \\  \\ \(\varepsilon\)}


Delivery Method
 SVL Analytical, Inc (208) 784-1258 FAX (208) 783-0891
Analyses Required


\section*{APPENDIX G - PHOTO LOG}

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#1
Southeast corner of site looking north.


Photo \#2
Southeast corner of site looking northwest.


Photo \#3
Southeast corner of site looking west.


Photo \#4 East property line looking west at south southern building entrance.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#5
East property line center looking southwest.


Photo \#6
East property line center looking northwest.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#7
Northeast property corner looking south.


Photo \#8
Northeast property corner looking west.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#9
Northwest property corner looking east.


Photo \#10
Northwest property corner looking south.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#11
Central west Perimeter Drive looking south.


Photo \#12
Southwest corner looking north.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#13
Southwest corner looking east.


Photo \#14
Southeast corner of building looking northeast.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#15
Southeast corner of building looking southeast.


Photo \#16
Southeast soil sample close-up.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#17 South central soil sample close-up.


Photo \#18
South central front soil sample close-up.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#19
Southwest soil sample close-up.


Photo \#20
Northwest soil sample close-up. INDEPENDENT REMEDIAL ACTION REPORT


Photo \#21
North corner of building looking northeast.


Photo \#22
Northeast corner of building looking southeast.


Photo \#23
North front soil sample close-up.


Photo \#24
Northeast corner soil sample close-up.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#25 West property line central looking north during construction of planter areas.


Photo \#26 West property line central looking southeast during construction.

EAGLE HARDWARE AND GARDEN - WENATCHEE, WASHINGTON INDEPENDENT REMEDIAL ACTION REPORT


Photo \#27 East property line looking north at planter construction.


Photo \#28 East property line looking northwest at planter construction.


Photo \#31 North parking lot entrance looking west at planter construction.


Photo \#32 East property line looking west at building entrance planter construction.

\section*{APPENDIX H-PERTINENT FIELD REPORTS}


At the request of the client. \(E C T\) was on site. to observe site and soul conditions.
Continental Dirt Contractors (CNC) was removing the trees from site. The Contractor estimates this will take a few more days.
Placement of thee. strippirigs limns also disclosed. ECI recommended that parking areas that rolled. more than 2 fest of hill, do not need to he stripped. The stripping fore the bumbling showed be flack in parting areas outside of henv! traffic areas.
Tun test win re excavated to explore subsurface conditions. A Sample was taken from bach test pit far proctor analifsis.

At the request of the client ECT was on site to observe clearing of the site.
CDC continues to remove the trees from the site and burn them on site. This should be completed by tomorrow.
I met with John Harper from cDc to
) discuss full options, We visited a pit near Rock Island. The material consisted of sandy fine to coarse gravel with cobbles and boulders, this material uxuld be screened to singh minus of used. This material should be suitable for footing and building pad full.
John also requested confirmation of The depth of the imported fill in celt areas of the building. Tulle (12) inches is recommended for protection of the Silty subgrade Dols the 12 inches. include the synches of capillary break?

3


INTERIOR FOOtings, \(C-2.5, C-3.5, B .6-2.5, B .6-3\) \(B-2.5, B .3-2.5\) were overexcavated 2 feet with the HOLe Trackhoe with a smooth bucket and interior footings \(C-3\) and \(C-4\) were over excavated 3 feet as ixcommended. Thendetueubrade around these footings is approximately 2 feet below finished subgrade. The subgrade was stripped using a D3C cat and compacted with the grid roller in static mode to a firm condition before fill was placed.
Exterior Footings, line \(a\) from \(G\) to \(D\), line 1 from C. 9 to F.4, line C. 9 from 1 to 2 , line 2 from C. 9 to B.3, were over excavated two feet as recommended.
CDC continued to cut and aerate the native subgrade in the cut areas of the building PAD. Most of the MAIN STORE I AREA has been cut to the recommended one foot blow bottom of slat section. CDC is starting to cut the subgrade and footings on the last ind of the lumbure yard. The material excavated from the building is being placed in the parking lot last of the buediigg. This area is also. being aerated to dry the
) native material

\(835 \rightarrow\) TANK FILED WITH \(\mathrm{CO}_{2}\) by Apple land Dump and Equipment of Wenatchel, WA (6102-0832).
\(840 \rightarrow\) Start cemoval of Tank, TOP 2 feet removed and seperated with Komatsuighoal track hoe.
\(855 \rightarrow\) TANK Picked out of hole no
) material Remould belau 2 feet. Tank removed from the site by Applelfand. Pump and Equipment. Tank dimensions 3 ft diameter and five feet long.

No evidence of leaking, No staining on soil, No odor



CDC continued to excavate ienterior footings in the lumber yard. The footings were excdutated with a 205 tracthoe and compacted with a backhoe vibratory plate, In place density tests on the footing subgrades indicates compaction greater. than 90 percent of the maximum dey density per Aston D. 1557.



At the request of Eagle, ECT was on site to monitor silt e activities

CDC continued the 3 foot excavation in the landscape areas for the installation of the. 6 inch irrigation fine. The spot wide planter on the north property line was completed to the east property dune. The landscape area behind theside aralk on the east side of the site was excavated from the north property line to theneraicuss road and from the south side of the access road to 110 felt south of the road. The lo inch irrigation line was installed il felt bluest of the eastern property dine as shown on the plans fac from the, north property line to the access road. The tiein to the existing lines will be completed tomorrow.
CDC is fine grading the slab subarade from line 6408 , The subarade in this area was. prepared and tested previously. Geotextile fabric was placed underita inches of xthequetifiqurom D line to the west edge of the bueldinde. East of Dine more than 2 feet of fill was placed. The slab is fine graded with inches of \(3 / \mathrm{s}\) inch minus c hushed. Deflections on the prepared subarade are leos than \(1 / 2\) inch under loaded truck traffic from line \& to 8. coop to: LANNY

not been compacted (sanitary sewer near line 2, sanitary sewer near line 9 and the water line near 9.
CDC started mining ron-contaminated soil from the acclon roan on the north side of the building. The top three pelt ane removed, the lower "clean" sail was placed in a scraper and wold to fill the irrigation line planter and then the top 3 feeturere placed in the frye The irrigation line has been completed including the fie in to the tank and the insisting lines. The 'clean' material was placed in the planting area south of the northern access road.
The large, \(F B\) footing at B.7-8.4 was compacted with a backhoe vibratory plate. The footing was excavated monday. In place density testing indicates compaction greater than 90 percent of the maximum dry density per ASTM D-1557.
CDC plans to continue excavating the planters on the east side of the site and mining non. contaminated soil from below 3 fut on the norther side of the blueding.
CDC continued to grade the buelding slab subgrade
\(=-\quad=\)


At the request of EAGEE, ECI was on site to monitor site activities
CDC continued to overevcavate the planter areas on the east property line. The planter was excavated three feet deep and 11 feet wide. The excavation is complete to approximately 350 feet south of the northeast corner. The excavation was stopped because of the EAGle Trailer and to was continued south of the trailer. The overevcavation resumed 100 feet south. This area is in the southeast quadrant and was excavated four feet deep as specified. The ousrexcauations were filled with non-contaminated soil mined from below 3 feet on the north side of the building.
A pumping area in the building between \(A, 4\) and \(B\) at shine was overevcavated, the overevciuvation. was \(15 \times 20\) feet and 2.5 feet deep. The excavation was filled with imported pitrun.
CDC has completed fine grading the slab subgrade between 4 and 6 form A. 4 to F. subgradions under heavy construction were observed
to be under th inch.
Equipment - 2 scrapers, 2 trackhce, loader, 1 D8 cat 2 small cats, 2 rollers, 2 graders, 1 backhoe + 1 watertruck. Coop To: LANNY


At the request of Eagle. FCI was on site to monitor site activities.

CDC Duerevcavated the remapping exterior footings on the west side of the lumber yard Exterior footing from \(A-9\) to \(A-14\) and \(A-14\) to A.45-14 wired over excavated two feet as recommended. The excavated material is below 3 feet from original grade and was placed in the landscape. area from the water tent. to the northeulist corner of the site . The footings with be filled as the exterior footings an Kline are excavated and the extra imported pit run is remould
The exterior footings from B line to Fline on
lin 14 were excavated to footing subgrade with the 400 trackhoe. The sand and gravel remould will be placed on the west end of the lumberyard for slab and footing fell.
CDC started laying out native material along the last side of the building and on the east side of the parking lot in front of the building, Morstior contents in the fill range from 20 to 24 percent. ale recommended aerating the fill until the moisture contents are 10 to 12 percent. The fell was turned with a disc serval times boer To:


At the sequent of EAGUE ECT was on site to monitor site actwities.

CDC completed aracling the slab subyrade in the main building him 8 to a line. The only remaining. aria not graded is the south: sidle of the mezzarin't and tie landing dock area. Imported sand and arauei was placed for all slab areas. Gontevtile fabric undeblies at i, act 12 mines of fill on the west side of the slab from \(D\) line to the west eclat from line \(a\) to 4 ard from \(c\) line to the west edifice from uni \(H\) to 2 . The remanimic areas have at least two lent of fill over the hatiu subyiracle.
CD continued to averexpavate landscape areas and wile them with non-contamamated fell mimed tram below 3 feet. The landscape area on the east sine of the site was evaluated four feet dup to the norther side of the main access road. The inndscipe aria on the west side of the site was overevcauated Bunt from the telephone pole south of the irriciatio taint interring 50 feet south. This area was bill u with hon-contaminated dill mined from Below 3 hest in the parking aced west of the hull
The riumbine contractor is excavating for the roof drains in the lumber tuned.


SUPPIEMENAAFY REPORT
At the request of Eagle, ECI was on site to monitor site activities.

The continuous exterior footings along a line. from \(B\) to F. 5 were excavated toclay and compacted with a vibratory plate. In place denseti, tests indicate compaction greater than 90 pennant af the maximum dry density.
The overexcavation and replacement in the landscapesux area on the west spice is complete to the south pile con To: LANNY

the maximum dry density.
CDC construed to aerate the material placed in the east parking lot. The fell was ripped up yesterday with the D8 cat and was disced this afternocu).
The excavation of contaminated material from the landscape areas, around the Perimeter of the site continued today. The west side of the site is complete and the south side is complete to the east end of the building. The areas on the quest side and the maporitil on the south side were overexcavated three pet below existing arad and replaced with noncontaminated sill mired. from below i 3 feet. The part of the south side that is in the southeast quadrant was overexcavafer four feet.


At the request of Fane, ECT was on site to monitor site activities.

CDC canted a tractor and plow this morning to and in drying the native soil deeper. The fatiue subaracte on the north, west and south sides of the budding was turned ovules. The plow penetrates about two neut and turns the ult sol from the bottoms to the surface. We anticipate a week or longer to dry these soils for compaction. The del placed in the east parking lot as ulld as the mined areas were also turned aver with the new plow and the disc. Aeration will continue tomorrows. The last parking lot from the southeast aduadrant. line to the \(4^{\prime \prime}\) sanitary sewer line was mined for moncointamenater soil. The top three feet was place back in the excavation prated and compacted to a firm and unyielding condition before adilitional fell uss placed.
The exterior footing excavation was completed alone G line \(z\) and the garden area was aradid for Rat slabs to pour panels on.

in the full. This area will be left open until monday. The cut areas around the building were also almated and are drying.
The existing house was demolished and is bung haled off-site, this ane should be ready for full monday. CoDe will tie-in the north sanitary
sewer to the main line tomorrous.


At the request of Eagle, ECI was on site to attend the weekly site meeting.
\(C D C\) is continuing to install the storm around the building and place imported fill for the crane road. We understand that lanny with Eagle has Hammond, Collier t yade-luingstone testing the utility back fill in We haw not tested any of the back fill in the storm trenches.
We will not be attending meetings or visiting the site unlipo a dibreded by Eagle or sconce Halstrom from nowt on


6:00 AM Arrived on site.

6:40 Tested concrete from pump; made three cylinders.
Slump 4-1/4"; Air 3.2\%; Mix Temp \(57^{\circ}\); Air Temp \(39^{\circ}\); sample taken \(60^{\prime}\) west of first slab.
7:30 Left site.

9:30 Back on site. I spoke to Pete from Continental Dirt concerning contaminated soil. The planter on southeast corner was dug to \(3^{\prime}\). Fabric was put down and uncontaminated soil was put in to subgrade. The other planters were dug to \(4^{\prime}\) and no fabric was used. Uncontaminated soil was then placed in them to subgrade.

10:15 Left site.

12:30 Arrived on site.
1:07 Sampled concrete truck \#205. Three cylinders were cast. Slump 6-1/2"; Air 2\%; Mix Temp \(65^{\circ}\); Air Temp 79 \({ }^{\circ}\).

1:45 Sampled truck \#206; three cylinders were cast.
Slump 1-1/2"; Air 2.1\%; Mix Temp \(68^{\circ}\); Air Temp \(70^{\circ}\).
2:45 Left job site.
\(\qquad\)

HAMMOND, COLLIER \& WADE-LIVINGSTONE ASSOCIATES, INC. ENGINEERING • SURVEYING • TESTING • INSPECTION

104 East Ninth Street Wenatchee, WA 98801 (509) 662-1762

4010 Stone Way North \#300 Seattle, W A 98103 (800) 562-7707

122 South Emerson
Chelan, WA 98816
(509)682-2462
(509) 826-5861

\section*{DAILY INSPECTION REPORT}

DATE:
CLIENT:
PROJECT NO.:
PROJECT:
CONTRACTOR:
\begin{tabular}{l} 
Eagle Hardware \\
96318 \\
Store \#453 \\
Eagle/G.G. Richardson \\
\hline
\end{tabular}


Eagle/G.G. Richardson
HUMIDTY

EQUIPMENT AT SITE:

Pete with Continental Construction has requested a depth inspection for planters.
Arrived on site at 9:40 a.m. Pete and I checked the depth of four planters on the front of Eagle store.
They have removed \(36^{\prime \prime}(+)\) of native material in these areas. Felt liner is being placed.
Pictures have been taken and placed in office file for future purposes.
Left site at 9:15.
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{HAMMOND, COLLIER \& WADE - LIVINGSTONE ASSOCIATES, INC.} \\
\hline \multicolumn{7}{|c|}{DAILY INSPECTION REPORT} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{EQUIPMENT AT SITE:} \\
\hline
\end{tabular}

Arrived on site to check depth on the last large planter (front of building - lumber yard).

Contractor has removed 3+ feet of native soils and placed liner over bottom of pit.
Informed Pete that I checked it.

Left site.

\section*{HAMMOND, COLLIER \& WADE - LIVINGSTONE ASSOCIATES, INC.}

ENGINEERING • SURVEYING - TESTING • INSPECTION

104 East Ninth Street Wenatchee, WA 98801 (509) 662-1762

4010 Stone Way North \#300 Seattle, WA 98103 (800)562-7707

122 South Emerson Chelan, WA 98816
(509) 682-2462

20-1/2 Copple Road Omak, WA 98841 (509) 826-5861

\section*{DAILY INSPECTION REPORT}


EQUIPMENT AT SITE:

I arrived on site at 10:00 and spoke to Pete from Continental Dirt who asked me to record the depth of the two planters in grid lines 1 and \(2 \mathrm{C}+\mathrm{D}\). Depths of both planters measured \(3^{\prime}-6^{\prime \prime}\) to \(3^{\prime}-2^{\prime \prime}\). The bottom of the planters were covered by fabric.
\(\qquad\)```


[^0]:    Eagle Hardware and Garden Wenatchee, Washington

[^1]:    - "NO" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES

[^2]:    - "ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES
    * UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
    ** actions levels are provided only when parameter oata is used for a generally
    CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY.
    THE APPROPRIATE REGULATORY DOCUMENT SHOULO BE CONSULTED BEFORE MAKING ANY
    DECISIONS BASED ON ANALYTICAL DATA

[^3]:    - "ND" INDICATES ANALYTE NOT DETECTED AT LEVEL. ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES
    ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
    ... actions levels are provided only when parameter data is useo for a generally
    CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY.
    THE APPROPRIATE REGULATORY DOCUMENT SHOULO BE CONSULTED BEFORE MAKING ANY
    DECISIONS BASED ON ANALYTICAL DATA

[^4]:    - "ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES

[^5]:    SPECIAL INSTRUCTIONS $\searrow</$ hna kurnarvounef

[^6]:    $=$ Dilution Factor Changed
    = Excessive Substrate May Bias Sample Results
    IL = Below Detectable Limits

[^7]:    = Dilution Factor Changed
    = Excessive Substrate May Bias Sample Results
    $\mathrm{L}=$ Below Detectable Limits

