APPENDIX A SUMMARY OF PREVIOUS INVESTIGATION AND CLEANUP ACTIONS

TABLE OF CONTENTS

1	INT	RODUCTION	1
2	WE	ST PLANT AREA	2
	2.1	Landfill #2 (Industrial) and Fill Deposit B-3	2
	2.2	Cable Plant Underground Storage Tank Cleanup	4
	2.3	Scrap Yard Soil Cleanup	5
	2.4	Closed BMP Facility Post-Closure Monitoring	6
	2.5	U-Ditch Reconnection	7
3	EAS	T PLANT AREA	8
	3.1	Former Stockpile Area	8
	3.2	Drum Soil Cleanup (1984)	10
	3.3	Cleanup at the Diesel Aboveground Storage Tank	10
	3.4	Fill Deposit A (Spent Lime)	11
	3.5	Landfill #1 (Floor Sweeps)	11
	3.6	Former Cryolite Recovery Plant and Nearby Fill Deposit B-2 (Residual Carbon)	12
	3.7	Fill Deposit B-1 (Residual Carbon)	13
	3.8	Soil Removal from the Former Cryolite Area Ditches	13
	3.9	Warehouse Underground Storage Tank and Fuel Island Cleanup	13
	3.10	Cleanup of Heat Transfer Media (HTM Oil)	14
4	SED	IMENTS	15
	4.1	1990 Sediment Sampling by Ecology	15
	4.2	Weyerhaeuser Dredged Material Characterization	15
	4.3	2010 Chinook Ventures Sediment Sampling	17
5	REF	ERENCES	18
Li	ist of	Plates	
P	late A	-1 Non RI-FS Sampling Locations – West Plant Area	3
P	late A	-2 Non RI-FS Sampling Locations – East Plant Area	9
P	late A		

List of Tables

Table A-1 Summary of Historical Cleanup Actions and Investigations

LIST OF ACRONYMS AND ABBREVIATIONS

AST aboveground storage tank

bgs below ground surface

CDID Consolidated Diking Improvement District

Closed BMP Facility Closed Black Mud Pond Facility

cPAH carcinogenic polycyclic aromatic hydrocarbon

CVI Chinook Ventures, Inc.

EPA U.S. Environmental Protection Agency

FS Feasibility Study

Ecology Washington State Department of Ecology

EMCON EMCON, Inc.

HTM heat transfer media

MBTL Millennium Bulk Terminals – Longview, LLC

MFG McCully Frick & Gillman, Inc.

mg/kg milligram per kilogram
mg/L milligram per liter

MTCA Model Toxics Control Act

Northwest Alloys Northwest Alloys, Inc.

NPDES National Pollutant Discharge Elimination System

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PNE Pacific Northern Environmental
PNG Pacific Northern Geoscience

RCRA Resource Conservation and Recovery Act

Reynolds Reynolds Metals Company

Reynolds Facility former Reynolds Metals Reduction Plant

RI Remedial Investigation

SEF Sediment Evaluation Framework

SPL spent potliner

TPH total petroleum hydrocarbon

TPH-G total petroleum hydrocarbon, gasoline-range

UST underground storage tank

VOC volatile organic compound WAD weak acid dissociable

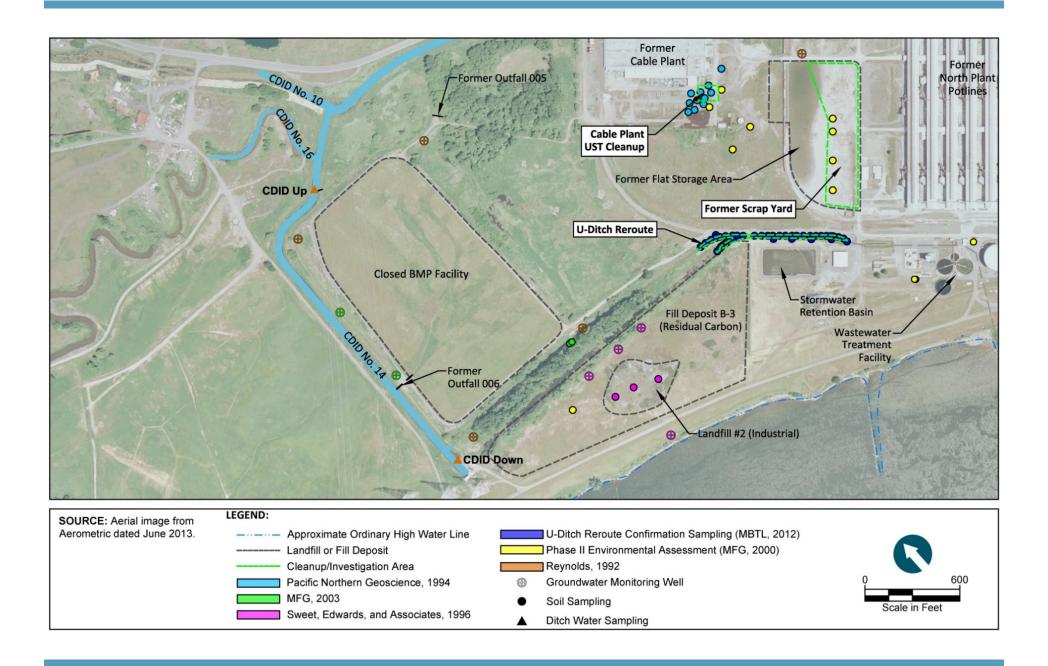
1 INTRODUCTION

Extensive testing data were developed at the former Reynolds Metals Reduction Plant (Reynolds Facility) in addition to those collected during the Remedial Investigation/Feasibility Study (RI/FS). These additional data were developed as part of previous investigation and cleanup actions and by other studies conducted in parallel with the RI/FS. These studies provide useful information documenting the quality of soil, groundwater, surface water, and sediment within the RI/FS Study Area.

Table A-1 provides a concise summary of the previous studies that include useful testing data for the RI/FS Study Area. These available data were considered by the Washington State Department of Ecology (Ecology) as part of the agency's data gaps analysis. That analysis was used to finalize the scope of additional investigations for the RI/FS, as described in Section 3 of the RI/FS.

This appendix summarizes the locations and types of sampling performed as part of these previous investigation and cleanup actions. Plates A-1 through A-3 show the locations of the sampling data, along with the locations of previous removal or cleanup actions. The data are organized by area, including the West Plant (see Plate A-1), the East Plant (see Plate A-2), and the Columbia River sediments (see Plate A-3). Supporting investigation reports and data packages are included in Appendix C of the RI/FS.

2 WEST PLANT AREA


Table A-1 summarizes five studies completed within the West Plant area between 1985 and 2012. Plate A-1 identifies the locations of test samples collected as part of these studies, and Appendix C of the RI/FS contains the underlying study reports or data tables.

2.1 Landfill #2 (Industrial) and Fill Deposit B-3

Environmental testing was initiated in 1985 for the landfill (Landfill #2; see Plate A-1) and residual carbon fill deposit (Fill Deposit B-3; see Plate A-1) located in the southwest corner of the property. That work included the installation of soil borings through Landfill #2 and in the installation of soil borings and monitoring wells in adjacent areas (Sweet, Edwards, and Associates, Inc. 1986). During the initial testing, 11 composite samples from the landfill and three composite samples from the underlying alluvial soil were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) using U.S. Environmental Protection Agency (EPA) Method 610 (Sweet, Edwards, and Associates, Inc. 1986). PAHs were detected in the landfill samples. PAH concentrations were detected in one of the four additional borings placed in the vicinity (Sweet, Edwards, and Associates, Inc. 1986).

Groundwater sampling performed during the same 1985 field investigations included testing of four newly-installed monitoring wells (RLSW-1 through RLSW-4). No PAHs were detected in these groundwater samples, demonstrating that the compounds are not impacting groundwater quality (Sweet, Edwards, and Associates, Inc. 1986).

Additional groundwater testing was later performed in this area in July 2000 (MFG 2000) and again in 2002 (MFG 2003). In July 2000, as part of field investigations conducted by McCully Frick & Gillman, Inc. (MFG), for the *Limited Phase II Environmental Site Assessment Report – Reynolds Metals Site*, groundwater monitoring wells RLSW-1 through RLSW-4 were sampled and analyzed for dissolved Resource Conservation and Recovery Act (RCRA) metals plus antimony and nickel, fluoride, total cyanide, and ammonia. Ammonia, fluoride, and total cyanide were detected in all samples (MFG 2000). In 2002, additional groundwater samples were collected from the same locations sampled in July 2000; the samples were analyzed for total cyanide, weak acid dissociable (WAD) cyanide, and fluoride (MFG 2003).

2.2 Cable Plant Underground Storage Tank Cleanup

An underground storage tank (UST) located adjacent to the Cable Plant (see Plate A-1) was removed in 1991. Localized gasoline-impacted soil and groundwater in this area were cleaned up with Ecology oversight under the Voluntary Cleanup Program. In 2003, Ecology provided a No Further Action determination for this area (Anchor 2003).

The 1,000-gallon gasoline UST was originally installed by Reynolds Metals Company (Reynolds) in 1974 to fuel company vehicles and equipment. When the tank was removed, a small (approximately 0.0625-inch) hole was found in the tank, and the surrounding soil and groundwater appeared to be impacted with gasoline. Notification of the leaking gasoline was made to Ecology when Reynolds removed the UST in November 1991, and Reynolds initiated an independent cleanup of the area (Anchor 2003).

Soil and groundwater samples collected from the initial excavation detected gasoline-range total petroleum hydrocarbons (TPH-G) in soils and groundwater above Model Toxics Control Act (MTCA) cleanup levels (PNE 1991). In 1992, additional soil and groundwater sampling was conducted at the site (PNE 1992). Later, five groundwater monitoring wells were installed at the site by Pacific Northern Environmental, and soil and groundwater samples were collected from each well location to determine the extent of soil and groundwater contamination in the vicinity of the former UST (PNE 1993). In 1993, Reynolds initiated a focused RI/FS (PNG 1994). As part of the focused RI/FS, groundwater samples were collected from six existing and three new monitoring wells within and downgradient of the former tank excavation area (PNG 1994).

Soil impacted with total petroleum hydrocarbons (TPHs) was excavated and removed from the site in 1994. Confirmation testing results of remaining soils showed that cleanup levels had been achieved (PNG 1994). EMCON, Inc. was commissioned by Reynolds to monitor groundwater quality near the former UST area. Quarterly monitoring results were presented in the 1995 Annual Groundwater Monitoring Report, Reynolds Cable Plant, Longview, Washington (EMCON 1996). TPH-G was not detected in groundwater samples from former UST area wells during the 1995 quarterly sampling (EMCON 1996). Groundwater monitoring continued until 1997.

Final remediation was documented in the *Voluntary Cleanup Report – Underground Gasoline Tank – Former Reynolds Longview Cable Plant*, which was submitted to Ecology on January 9, 2003 (Anchor 2003). Ecology provided a No Further Action determination for this area in a letter dated February 19, 2003.

2.3 Scrap Yard Soil Cleanup

The scrap yard was located west of the former North Plant potlines (see Plate A-1) and was historically used during Reynolds Facility operations for the handling of materials designated for reuse or off-site recycling (Anchor 2007a). In 2005, Chinook Ventures, Inc. (CVI), initiated a voluntary cleanup of the scrap yard area. The area of impacted soils was delineated, and CVI removed approximately 200 cubic yards of PAH-impacted soils from the scrap yard and disposed of the soils off site.

The scrap yard was first investigated in July 2000 as part of an investigation conducted by MFG for the Limited Phase II Environmental Site Assessment, including collection of four surface soil samples (SS-3 through SS-6). Soil samples were analyzed for RCRA metals, polychlorinated biphenyls (PCBs), and PAHs. Arsenic and PCBs were consistently below MTCA Method A soil cleanup levels for unrestricted land uses (20 and 1 milligrams per kilogram [mg/kg], respectively). PAHs were detected in the four soil samples; detected concentrations of benzo(a)pyrene exceeded Method A soil cleanup levels for unrestricted land uses, with concentrations ranging up to 47 mg/kg (MFG 2000).

In 2005, CVI sampled an additional ten locations within the north and south areas of the former scrap yard as a part of a focused FS and identified soils that exceeded the MTCA Industrial Use cleanup levels for PAHs (Anchor 2007b; Northwest Alloys 2011a). Other constituents were characterized but none exceeded MTCA Industrial Use cleanup levels. Soil samples collected after the cleanup confirmed that soil PAH concentrations were less than the MTCA Industrial Use cleanup levels (Anchor 2007b).

As shown on Plate A-1, the scrap yard footprint was later included within the flat storage area developed by CVI. The current RI/FS includes additional soil and groundwater testing in this area to assess soil quality following the removal of the stored products and the flat

storage pad. That testing was extensive, and it confirmed that the flat storage area was free of soil impacts except for a localized area in the northeast corner (see Section 5.2.3 of the RI/FS). The management options for soils in this area are presented in the FS.

2.4 Closed BMP Facility Post-Closure Monitoring

The Ecology-approved Closure/Post-Closure Plan also established a long-term groundwater and ditch water monitoring program (Reynolds and CH2MHill 1991) for the Closed Black Mud Pond Facility (Closed BMP Facility). The ongoing monitoring program includes nine groundwater monitoring wells ("RL-series" wells). Seven of these wells (RL-1S/1D, RL-2S/2D, RL-3S/3D, and RL-5) are located immediately adjacent to the Closed BMP Facility. These wells are screened in the thick layer of silt/clay soils known as the Upper Alluvium. The groundwater monitoring program also includes two background wells (RL-4S/4D) that are located in a separate area, between the Cable Plant and the North Plant Potlines. Groundwater data is included in Appendix E. The monitoring program includes two ditch water sampling locations in the Consolidated Diking Improvement District (CDID) Ditch No. 14.

Groundwater and ditch water samples are analyzed quarterly for pH, specific conductance, chloride, fluoride, sulfate, and total and free cyanide. Annual reports, which include the results of quarterly groundwater and surface water monitoring since December 1983, are kept on file at the Reynolds Facility in accordance with the Ecology-approved Closure/Post-Closure Plan (Reynolds and CH2M Hill 1991).

Groundwater monitoring within the silt/clay soils surrounding the Closed BMP Facility has been performed since the early 1990s. Results of monitoring have shown that the closure and dewatering of the facility have been effective. As described in Section 5 of the RI, there are no adverse impacts to water quality in the adjacent CDID ditches for cyanide or fluoride. Cyanide levels in shallow groundwater within the silt/clay soils immediately adjacent to the Closed BMP Facility are protective of both drinking water and surface water quality. A significant improvement in groundwater fluoride concentrations in these adjacent wells has also been observed (Anchor QEA 2011).

Groundwater concentration of chromium, copper and nickel in the RL series wells were evaluated in comparison to the hardness based aquatic chronic freshwater criteria, and concentrations were less than the freshwater criteria (Appendix E)

2.5 U-Ditch Reconnection

The U-ditch is an earthen stormwater ditch located in the southwestern portion of the Reynolds Facility (see Plate A-1). The ditch is used to manage stormwater within the Reynolds Facility, and it is regulated under the facility's National Pollutant Discharge Elimination System (NPDES) permit.

A portion of the U-ditch channel had been filled with debris by CVI, and Ecology ordered CVI to re-establish the connection of the U-ditch (Ecology Administrative Order No. 9536). Millennium Bulk Terminals – Longview, LLC (MBTL), completed the connection in fall 2012, with the removal of the debris from the U-ditch. As part of the reconnection project, MBTL characterized and removed more than 14,000 tons of debris from the property, which was disposed of off site at a permitted landfill in Hillsboro, Oregon.

Following debris removal and grading activities, sampling was conducted in November 2012 to characterize the quality of the U-ditch bottom and side-walls. This soil sampling included the collection of 56 surface grab samples from sidewalls and within the base of the final graded U-ditch channel, as outlined in the U-ditch Sampling and Analysis Plan (MBTL 2012). Post-removal confirmation soil sampling locations are shown on Plate A-3, and laboratory analytical reports are included in Appendix C of the RI/FS Report.

3 EAST PLANT AREA

Table A-1 summarizes five studies completed within the East Plant area between 1985 and 2011. Plate A-2 identifies the locations of test samples collected as part of these studies, and Appendix C of the RI/FS contains the underlying study reports or data tables.

3.1 Former Stockpile Area

The former stockpile area used to manage spent potliner (SPL) was located southeast of the former Cryolite Recovery Plant (see Plate A-2). The SPL has long since been removed, along with the stockpile pad and underlying soils. Testing performed in this area is summarized subsequently.

Initial testing was performed under Ecology Order No DE 83-293, with the installation of six groundwater monitoring wells ("R-series" wells) in the former stockpile area in October 1982. These wells were monitored quarterly from 1983 to 2002 and have been part of an ongoing quarterly monitoring program since 2011. The wells have been tested for cyanide (total, WAD, and free), total fluoride, and total chloride. The quarterly testing data are summarized in annual reports that are maintained on site and available for Ecology review upon request.

In 1988, soil testing was performed by Reynolds, including four subsurface soil samples (Reynolds 1988). Soil samples were collected 8 feet from the edge of the former concrete storage pad at approximately 6 feet below ground surface (bgs). Total cyanide concentrations were low (32 to 50 mg/kg), as were fluoride concentrations (3,200 to 4,100 mg/kg; Reynolds 1988).

In 1989, Reynolds conducted additional surface soil sampling in the former stockpile footprint, including testing of 12 samples for fluoride and total cyanide. Total cyanide concentrations ranged from 5 to 5,370 mg/kg, and fluoride concentrations ranged from 230 to 8,710 mg/kg (Reynolds 1989). After the SPL stockpile was removed, Reynolds excavated the underlying soil down to the water table and disposed of the soil in an off-site permitted treatment, storage, and disposal facility (Northwest Alloys 2011b). After excavation, the area was partially backfilled with dredged sand.

Evren Northwest, 2004

In 2002, MFG conducted soil and groundwater testing in the area of the former stockpile. No SPL was observed in the area (MFG 2003). Total cyanide concentrations in soil were very low (1.9 to 5.2 mg/kg), as were concentrations of fluoride (195 to 597 mg/kg). Total PAH concentrations ranged from 8.3 to 17.5 mg/kg (MFG 2003). Groundwater samples were tested for cyanide (total and WAD) and fluoride (MFG 2003).

3.2 Drum Soil Cleanup (1984)

In July 1984, a localized release from a drum was noted near Shed No. 1 near the North Plant Potline buildings (Reynolds 1984). The remaining liquid in the container was removed and placed into secure drums. PCBs were detected in soil samples, and associated impacted soils were removed in October 1984 and July and August 1985 (Reynolds 1986). The total quantity of soil removed initially included seventy-seven 55-gallon drums of soil, with follow-up excavations generating 105 cubic yards of soil. Final confirmation samples verified that trichlorobenzene and PCB concentrations were below 1 mg/kg (i.e., below the current industrial and residential soil cleanup levels; Ecology 1986). On February 20, 1986, Ecology approved the work as complete based on review of Reynolds' summary report and laboratory results (Ecology 1986).

3.3 Cleanup at the Diesel Aboveground Storage Tank

In 1991, Reynolds conducted an independent cleanup action to remove approximately 480 cubic yards of diesel-impacted soils adjacent to the 200,000-gallon diesel aboveground storage tank (AST). The AST is located between the alumina silos and the carbon plant (see Plate A-2).

The impacted soils were discovered in April 1991. Subsequent soil sampling by Reynolds confirmed diesel levels in the soil exceeding the MTCA Method A soil cleanup level (currently 2,000 mg/kg). Two groundwater samples were also collected; however, no constituents were detected above MTCA Method A groundwater cleanup levels, which indicated that the impacts were limited to soil (Reynolds 1991).

The excavation removed all of the impacted soils that could be safely accessed without compromising the integrity of the tank foundation. The excavated soils were treated using

on-site bioremediation. The cleanup of the diesel AST area included recording of institutional controls to manage the impacted soils remaining contained in place between the active tank foundation (Reynolds 1991). That tank remains in use.

3.4 Fill Deposit A (Spent Lime)

Sampling was performed adjacent to the 8-acre fill deposit located in the northeastern area of the Reynolds Facility (Fill Deposit A; see Plate A-1) in 2000 as part of a Phase II Environmental Site Assessment (MFG 2000). Sampling performed by MFG included collection of two water samples (SW-2 and SW-3) from the internal stormwater drainage ditches located adjacent to the fill deposit. Water sample SW-2 was collected from the ditch east of the No. 004 pump station, and sample SW-3 was collected from the ditch north of Fill Deposit A (see Plate A-2). Both of these ditches are used to collect stormwater from within the facility boundaries, and they are managed under the facility's NPDES permit. Analyses performed as part of this testing included fluoride; total cyanide; oil and grease; total dissolved solids; total suspended solids; RCRA metals plus antimony, nickel, and aluminum; and PAHs (MFG 2000). No PAHs were detected (MFG 2000).

3.5 Landfill #1 (Floor Sweeps)

The floor sweeps landfill is located in the southeast corner of the site (Landfill #1; see Plate A-2). Soil and groundwater quality in this area was investigated by MFG in 2000 and 2002, providing information on the levels of fluoride, cyanide, metals, petroleum, and PAHs in these materials (MFG 2003).

In July 2000, MFG collected a composite soil sample (FS-1) from the center of Landfill #1. The sample was a composite of soil collected at 3, 7, and 10 feet bgs and was analyzed for fluoride, total cyanide, RCRA metals plus antimony and nickel, TPH-DRO, PAHs, and percent moisture. Fluoride and benzo(a)pyrene (carcinogenic polycyclic aromatic hydrocarbon [cPAH]) were both detected, consistent with the types of materials managed in this landfill. Total cyanide concentrations were very low, well below industrial soil cleanup levels (MFG 2000).

Additional soil borings were placed in 2002 (DP-1 to DP-4). Soil samples were tested for cyanide, WAD cyanide, fluoride, and total PAHs. Results were comparable to the 2000 soil sampling, with elevated fluoride and PAHs but very low cyanide levels (MFG 2003). Groundwater was sampled from a temporary soil boring in the center of Landfill #1 (DP1). Sample results for unfiltered parameters are not considered representative due to turbidity encountered during field sampling from the temporary boring. Fluoride, cyanide, and PAHs were detected; dissolved metals (arsenic, chromium, copper, and nickel) were not detected (MFG 2003).

3.6 Former Cryolite Recovery Plant and Nearby Fill Deposit B-2 (Residual Carbon)

The former Cryolite Recovery Plant has been removed (see Plate A-2). Environmental testing of soils and groundwater has been performed both within the former plant footprint, as well as within the adjacent fill deposit containing residual carbon.

MFG conducted sampling of surface and subsurface soils in the former Cryolite Recovery Plant area in both 2000 and 2002. Neither study identified any potential releases within the historical Cryolite Recovery Plant footprint. Of five locations tested by MFG within the former Cryolite Recovery Plant footprint, all soil samples had measured fluoride concentrations of 300 mg/kg or less, well below both the MTCA Method C Industrial cleanup level (210,000 mg/kg¹) and also below residential soil cleanup levels. The soil samples had very low measured cyanide concentrations, ranging from fewer than 0.5 to 2.6 mg/kg (MFG 2000, 2003), well below applicable MTCA cleanup levels.

As expected, elevated fluoride concentrations were detected within the fill deposit used to manage residual carbon (Fill Deposit B-2; see Plate A-2). Testing in this area identified preliminary material thicknesses and provided information on the concentrations of fluoride, cyanide, and PAHs in the material (MFG 2003). Testing included 14 direct push borings and four piezometers (PZ-1 to PZ-4). Residual carbon material was encountered in each of the soil borings; waste material ranged from 0.25 to 6 feet in thickness, with an average thickness

¹ These concentrations are also below the MTCA Method B Unrestricted Use cleanup level of 4,800 mg/kg for fluoride.

of 3.1 feet (MFG 2003). Fluoride and PAH concentrations were elevated in the carbon materials. Cyanide levels were less than industrial soil cleanup levels (MFG 2003). Groundwater samples were collected from the temporary borings and the piezometers and tested for WAD cyanide, total cyanide, and fluoride (MFG 2003).

3.7 Fill Deposit B-1 (Residual Carbon)

Fill Deposit B-1 containing residual carbon is located along the eastern side of the property (see Plate A-2). During 2002 by MFG collected a soil sample (SD6) from the internal NPDES-regulated drainage ditch located west of this deposit. That soil sample was tested for cyanide, WAD cyanide, fluoride, and PAH compounds. Cyanide and fluoride concentrations were very low, both below residential soil cleanup levels (MFG 2003).

3.8 Soil Removal from the Former Cryolite Area Ditches

During 2008, soils containing elevated PAH concentrations were removed from the three ditches located southeast of the former Cryolite Recovery Plant (see Plate A-2). The three cryolite area ditches historically managed stormwater runoff from the area around the former Cryolite Recovery Plant. Currently, ditch water from this area is collected and treated in the on-site wastewater treatment plant. The presence of elevated PAH in the ditch soils had been identified during 2002 sampling performed by MFG (2002).

The cleanup completed in 2008 included removal of 5 to 6 feet of material from the bottom and sides of the ditches. Approximately 2,663 tons of material were removed and disposed in an off-site Subtitle D landfill (Northwest Alloys 2011a). Confirmation sampling established that the soil in the bottom of the ditches was below MTCA Method A soil cleanup levels.

3.9 Warehouse Underground Storage Tank and Fuel Island Cleanup

A cleanup was completed to address a localized area of diesel-impacted soil associated with a former UST fuel island (see Plate A-2). Soils from this area were excavated and treated successfully using on-site bioremediation. After treatment, the soils complied with MTCA Method A cleanup levels. With Ecology's approval, the treated soils were reused on site as fill.

The UST fuel island was located approximately 25 feet from a 10,000-gallon UST, which was decommissioned in May 2004. The decommissioning of the UST was conducted by the bankruptcy trustee in June 2004 (Evren Northwest 2004). The tank's contents were pumped from the tank, and the tank was then cleaned and removed from the ground. Sampling was performed following removal of the tank, product lines, and dispensers. Gasoline and PAH constituents were not detected, and benzene concentrations were below applicable groundwater cleanup levels in a confirmation groundwater sample collected from the tank excavation (Evren Northwest 2004).

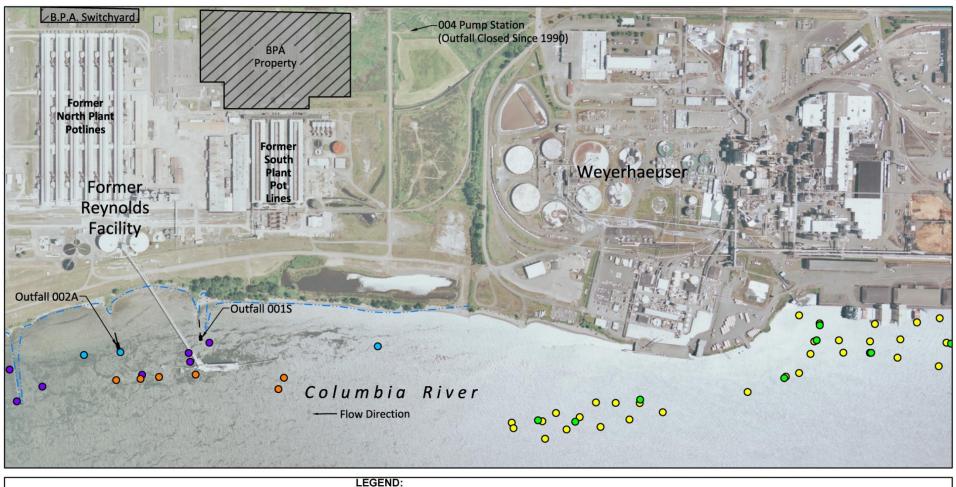
No gasoline was detected in soil adjacent to the tank, fuel lines, or dispensers. However, elevated diesel-impacted soil was present under the middle dispenser between 2 and 9 feet bgs (Evren Northwest 2004).

The petroleum-contaminated soil in the fuel island area was removed in October 2007 by CVI (Northwest Alloys 2011a). Soils excavated from the former UST fuel island were treated using bioremediation. The treatment successfully reduced soil concentration to below MTCA Method A cleanup levels. With Ecology's approval, the treated soil was used for fill within former equipment concrete pits in the former Cable Plant warehouse floor (Northwest Alloys 2011a).

3.10 Cleanup of Heat Transfer Media (HTM Oil)

During CVI operations at the site, a release of heat transfer media (HTM) oil from the tank heating system was discovered within the containment area around the pitch storage tanks (see Plate A-2). HTM oil is similar to mineral oil. CVI conducted testing and removal of oil-impacted soil in the HTM Oil Area. The available data were provided to Ecology for review (Anchor QEA 2011). Additional soil and groundwater sampling was conducted as part of the RI/FS to document current conditions in this area. As described in Sections 5.2.6 and 5.3.7 of the RI/FS, the remaining soils did not exceed applicable soil cleanup levels, and no impacts to groundwater were detected.

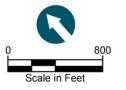
4 SEDIMENTS


Investigations of Columbia River sediments adjacent to the Reynolds Facility were conducted in 1990 and 2010. Additional investigations were conducted offshore of the adjacent, up-river Weyerhaueser facility in 2008 and 2010. The locations of these previous sediment sampling locations are shown on Plate A-3, and additional analytical data are presented in Appendix C of the RI/FS Report. None of these studies identified the presence of sediment contamination.

4.1 1990 Sediment Sampling by Ecology

In February 1990, Ecology conducted sediment sampling offshore of the site as part of a Class II NPDES Inspection at the Reynolds Facility (Ecology 1991). Sediment sample locations included three stations adjacent to Outfall 002A; the three sediment samples were identified as Upstream, Diffuser, and Downstream (see Plate A-3). Chemical testing included priority pollutants (fluoride, cyanide, volatile organic compounds [VOCs], PAHs, pesticides, and PCB Aroclors; Ecology 1991). No sediment impacts were detected near the Outfall 002A discharge. PCBs and pesticides were not detected in any of the test samples. Bioassays using *Hyallela azteca* and Microtox found no indication of toxicity in the sediment samples (Ecology 1991).

4.2 Weyerhaeuser Dredged Material Characterization


Weyerhaeuser conducted routine maintenance dredging in 2009 and 2010. In 2008 and 2009, sediment testing was performed within the proposed dredging areas, including testing of surface and subsurface sediments. Subsurface sediments included the proposed dredge material and the underlying sediments in accordance with the Dredged Material Management Program (DMMP) anti-degradation guidelines. Surface grab samples and subsurface core samples were collected within each dredge unit. Subsurface sediment samples were tested for Northwest Sediment Evaluation Framework (SEF) freshwater parameters, including testing for PCB Aroclors and dioxin/furans. No sample analysis results exceeded SEF freshwater or DMMP marine screening levels. The dioxin/furan toxic equivalency quotient concentrations were very low (fewer than 1.0 nanograms per kilogram dry weight) for the three samples tested, indicating no impacts to Columbia River sediments (DMMP 2009, 2010).

SOURCE: Aerial image from Aerometric dated June 2013.

- O 2010 Surface Sediment Grab (0-10 cm) CVI
- 2010 Dredge Unit Characterization Composite Core CVI
- 2008, 2010 Dredge Unit Characterization Core Weyerhaeuser
- 1990 Surface Sediment Grab (0-2 cm) Ecology
- 2008, 2010 Dredge Unit Characterization Sediment Grab (0-10 cm) Weyerhaeuser
 Approximate Ordinary High Water Line

4.3 2010 Chinook Ventures Sediment Sampling

In 2010, Ecology issued Agreed Order No. 7392, requiring CVI to investigate surface and subsurface sediments in the vicinity of the existing dock and berthing areas. The order was issued in response to a release of petroleum coke at the site in February 2010 (Anchor QEA 2010). The results of this study are presented in the DMMP suitability determination (DMMP 2010). Testing included seven surface sediment grab samples (at a depth interval of 0 to 10 centimeters below the mudline at the locations shown on Plate A-3 [SG01 to SG07]). Sample SG-REF2 was used as a reference.

Testing also included analysis of subsurface sediment samples, which were also collected within the shoaled berth area. Subsurface sediment samples (locations are shown on Plate A-3) were analyzed for conventional parameters, metals, PAHs, semivolatile organic compounds, PCBs, and pesticides (DMMP 2010; Anchor QEA 2010).

None of the surface or subsurface test results exceeded screening levels approved by DMMP (DMMP 2010). Following review of the sampling report, DMMP issued a suitability determination approving the sediments in the berth area for management by open-water disposal. Dredging of this area has since been completed. DMMP also approved the use of a "moderate" sampling density for any future dredge material characterization work at the site.

5 REFERENCES

- Anchor (Anchor Environmental, L.L.C.), 2003. *Voluntary Cleanup Report Underground Gasoline Tank Former Reynolds Longview Cable Plant*. Prepared for Washington Department of Ecology. January 9, 2003.
- Anchor, 2007a. *Remedial Investigation Work Plan: Chinook Ventures, Inc.* Prepared for Washington Department of Ecology. June 2007.
- Anchor, 2007b. *Remedial Investigation Report: Chinook Ventures, Inc. and Northwest Alloys, Inc.* Prepared for Washington Department of Ecology. June 2007.
- Anchor QEA (Anchor QEA, LLC), 2010. Sampling and Analysis Plan Chinook Ventures Sediment Characterization, Longview Washington. Prepared for Chinook Ventures. Prepared by Anchor QEA. August 2010.
- Anchor QEA, 2011. Memorandum: Quarterly Groundwater Monitoring Results for the Closed Black Mud Pond, 2004 to 2010 Former Longview Reduction Plant. Prepared for Washington State Department of Ecology. Prepared by Anchor QEA. March.
- DMMP (Dredged Material Management Program), 2009. Memorandum: Determination Regarding the Suitability of Proposed Dredged Material from the Weyerhaeuser Property, Longview, Washington, for Flow-Lane Disposal in the Columbia River, or for Beneficial Use. January 2.
- DMMP, 2010. Memorandum: Determination Regarding the Suitability of Proposed Dredged Material from Berth 1 of the Chinook Ventures Facility, Longview, Washington, for Flowlane Disposal in the Columbia River. November 4.
- Ecology (Washington State Department of Ecology), 1986. Memorandum: Reynolds PCB Cleanup. February 14, 1986. Attachment: Letter to Tom Dickey (Reynolds) February 20, 1986.
- Ecology, 1991. Reynolds Metals Company Class II Inspection February 1990. Prepared for Washington State Department of Ecology. Prepared by Merc Heffner (Ecology). June 1991.

- EMCON (EMCON, Inc.), 1996. 1995 Annual Groundwater Monitoring Report, Reynolds Cable Plant, Longview, Washington. Prepared by EMCON. Prepared for Reynolds Metals Company. January 1996.
- Evren Northwest (Evren Northwest, Inc.), 2004. *Underground Storage Tank Decommissioning and Assessment Report.* Prepared for Longview Aluminum and Washington State Department of Ecology. Prepared by Evren Northwest, Inc. June 2004.
- MBTL (Millennium Bulk Terminals Longview, LLC), 2012. U-ditch Sampling and Analysis Plan. Prepared for Washington State Department of Ecology. Prepared by MBTL. October 2012.
- MFG (McCully Frick & Gillman, Inc.), 2000. *Limited Phase II Environmental Site*Assessment Report Reynolds Metals Site. Prepared by MFG, Inc. (reviewed by Anchor Environmental in February 2004). Prepared for Washington State Department of Ecology. December 2003.
- MFG, 2003. *Draft Site Investigation Report North and South CEATS and selected South Plant Source Area CEATS Vols. I & II.* Prepared by MFG, Inc. (reviewed by Anchor Environmental in February 2004). Prepared for Alcoa. December 2003.
- Northwest Alloys (Northwest Alloys, Inc.), 2011a. Demolition and Cleanup

 Accomplishments at the Former Reynolds Longview Plant. Prepared for Alcoa.

 Prepared by Northwest Alloys. June 2011.
- Northwest Alloys, 2011b. Spent Potliner, Black Mud, and White Mud Management History: Former Reynolds Plant- Memo. Prepared for Alcoa. Prepared by Northwest Alloys, Inc. October 2011.
- PNE (Pacific Northern Environmental), 1991. *Underground Storage Tank Decommissioning Site Assessment*. Prepared by PNE. Prepared for Reynolds Metals Company.

 December 1991.
- PNE, 1992. *Independent Interim Cleanup Status Report.* Prepared by PNE. Prepared for Reynolds Metals Company. March 1992.
- PNE, 1993. *Preliminary Hydrogeologic Assessment: Reynolds Metals Company Cable Plant.*Prepared by PNE. Prepared for Reynolds Metals Company. January 1993.

- PNG (Pacific Northern Geoscience), 1994. Focused Remedial Investigation and Feasibility Study: Reynolds Metals Cable Plant. Prepared by PNG. Prepared for Reynolds Metals Company. July 1994.
- Reynolds (Reynolds Metals Company), 1984. Correspondence between Reynolds and Ecology. Regarding: PCB Spill in July 1984. July to October 1984.
- Reynolds, 1986. Summary Report of PCB Clean-up Activities Reynolds Metals Company. Prepared for Washington State Department of Ecology. January 1986.
- Reynolds, 1988. Correspondence between Reynolds and Ecology. Regarding: Accidental Black Mud Release in August 1988. September 1988.
- Reynolds, 1989. Reynolds Intercompany Correspondence: *Cathode Waste Pile Underburden Sampling and Analysis Report.* October 18, 1989.
- Reynolds, 1991. 200,000 Gallon Diesel AST Independent Cleanup Documents. 1991 to 1993.
- Reynolds and CH2M Hill, 1991. *Closure Plan and Post-Closure Plan for the Longview Reduction Plant*. Prepared for Washington State Department of Ecology. Prepared by Reynolds and CH2M Hill. July 1991.
- Sweet, Edwards, and Associates, Inc., 1986. Reynolds Solid Waste Site Soil and Groundwater Investigation. Prepared for Reynolds Metals Co. Prepared by Sweet, Edwards, and Associates, Inc. March 1986.

TABLE

Table A-1
Summary of Historical Cleanup Actions and Investigations

_				Year(s)
Area	References	Work Conducted	Available Data	Conducted
Western Facility Area			T	1
Landfill #2	Sweet, Edwards, and Associates, Inc. 1986	Investigation of soil, groundwater, and solid waste in Landfill #2 (industrial landfill). PAHs detected in one soil boring; no PAHs detected in groundwater.	Soil, landfill materials, groundwater	1985
	MFG 2000	Investigation of groundwater quality.	Groundwater	2000
	MFG 2003	Investigation of groundwater quality.	Groundwater	2002
	Pacific Northern Environmental 1991	1,000-gallon UST decommissioned and removed. Soil testing conducted.	Soil	1991
Cable Plant UST Cleanup	Pacific Northern Geoscience 1994	Focused RI/FS Report - Investigation of the extent of petroleum impacts. TPH-impacted soil excavated and removed from site. Confirmation testing of remaining soils showed that cleanup levels had been achieved.	Soil, groundwater	1994
	EMCON, Inc. 1996	Quarterly groundwater monitoring and sampling of Cable Plant area wells. Gasoline was not detected.	Groundwater	1995 - 1997
	Anchor 2003	Voluntary cleanup report summarizing investigation and cleanup actions completed. Ecology issued "No Further Action" letter in 2003.	Soil, groundwater	2003
	MFG 2000	Soil testing conducted to verify existing soil quality. Soil PAHs in a localized area exceeded MTCA Method A Cleanup Levels.		
Scrap Yard Soil Cleanup	Anchor 2007b; Northwest Alloys 2011a	CVI completed additional soil sampling and then removed 200 cubic yards of contaminated soil. The soil was disposed off site. Confirmation samples were clean (below MTCA Method A Cleanup Levels).	Soil	2000 - 2005
Closed BMP Facility Monitoring	Anchor QEA 2011a	Quarterly monitoring of groundwater and ditch waters has been performed consistent with the Ecology -approved closure and post-closure plan. The monitoring data demonstrate that water quality in the ditch is protected, and the closure and dewatering of the Closed BMP has been effective. Shallow groundwater quality adjacent to the facility (within the upper portion of the thick silt/clay deposit of the Upper Alluvium) shows decreasing trends in fluoride and alkalinity since closure.	Groundwater, ditch water	2004 - 2010
U-Ditch Reroute and Soil Removal	MBTL 2012c	During 2012, MBTL removed 14,000 tons of debris and materials that had been placed in the U-ditch by CVI. The original U-ditch alignment was restored. Soil testing results confirmed that chemical parameters for ditch sidewall and bottom samples were below industrial soil cleanup levels after removal of the debris.	Soil	2012
Eastern Facility Area				
	Ecology 1985	Reynolds completed groundwater monitoring near the former stockpile area. This included installation and sampling of six groundwater monitoring wells.	Groundwater	1984 - 1985
Former Stockpile Area	MFG 2003	MFG conducted soil and groundwater testing in the former stockpile area. Testing confirmed that no SPL remained in this area (SPL and contaminated soils had been previously removed form the site by Reynolds).	Soil, groundwater	2002
Drum Soil Cleanup	Ecology 1984b,c, 1986	Between July of 1984 and 1986, soil cleanup was conducted in a localized area associated with a leaking drum. Petroleum and PCB-impacted soil was removed and disposed offsite. Confirmation confirmed that impacted soils were successfully removed. In 1986, Ecology reviewed confirmation testing results and approved the work as complete.	Soil	1984 - 1986
Diesel AST	Reynolds 1991	Following a 1991 release to the spill containment area, Reynolds metals conducted the cleanup of petroleum-contaminated soils adjacent to the diesel AST. The cleanup was completed during 1992 and 1993, and included excavation, soil bioremediation, and backfilling of the area. The cleanup included placement of restrictive covenants to address the area of soil beneath the AST which could not be safely removed.	Soil removal	1991 - 1993
Fill Deposit A	MFG 2000	MFG conducted limited surface water sampling in the internal NPDES ditches adjacent to Fill Deposit A.	Surface water	2000
Landfill #1	MFG 2000	MFG conducted soil quality testing in Landfill #1 (floor sweeps). The presence of elevated PAH and fluoride concentrations was confirmed, consistent with the known landfill contents.	Soil	2000
	MFG 2003	MFG conducted an investigation of soil and groundwater quality new Landfill #1, including completion of four direct push borings.	Soil, groundwater	2002
Former Cryolite Recovery	MFG 2000	Soil quality testing was performed at four soil sampling locations (CP-1 to CP-4) beneath the former cryolite recovery plant location. No exceedances of cleanup levels were noted.	Soil	2000
Plant	MFG 2003	MFG completed soil quality testing from 5 direct push borings. No exceedances of cleanup levels were noted.	Soil	2002
Fill Deposit B-1	MFG 2003	MFG collected soil samples from within the internal NPDES-regulated ditches adjacent to Fill Deposit B-1.	Ditch sediment	2002
Fill Deposit B-2	MFG 2003	MFG completed soil and groundwater testing, including 9 direct push borings and four piezometers within and near Fill Deposit B-2. The presence of residual carbon within the Fill Deposit was confirmed, along with elevated concentrations of fluoride and PAH compounds.	Soil, groundwater	2002

Table A-1
Summary of Historical Cleanup Actions and Investigations

Aroa	References	Work Conducted	Available Data	Year(s)
Area				Conducted
Soil Removal from Former	MFG 2003	Six ditch soil samples were tested. Results confirmed that the shallow ditch soils contained elevated concentrations of PAHs, cyanide, and fluoride.	Ditch soil	2002
Cryolite Ditches	Northwest Alloys 2011a	Impacted ditch soils (approximately 2,663 tons) were removed from the ditches. Results of confirmation testing demonstrated that all impacted soil was removed, and the remaining ditch soils complied with MTCA Method A industrial soil cleanup levels for PAH compounds.	Ditch soil	2008
Manahawaa UST and Eval	Evren Northwest 2004	A 10,000-gallon UST was decommissioned and removed. Soil and groundwater testing was performed in the vicinity.	Soil, groundwater	2004
Warehouse UST and Fuel Island Cleanup	Northwest Alloys 2011a	CVI removed diesel-impacted soil. Post remediation soil samples indicated the remaining soils were below MTCA Method A Cleanup Levels. Soils were bio-remediated and then were used for fill within concrete-lined pits in the former Cable Plant warehouse floor.	Soil	2007 - 2011
HTM Oil Release Area	Anchor 2011	CVI removed soils impacted with heat transfer media (HTM) oil. Post-removal soil sampling data were collected. Testing documentation was limited, and locations of the test samples could not be confirmed. This area was subsequently re-sampled as part of the RI/FS investigation.	Soil	2010
Sediments				
1990 NPDES Sediment Sampling by Ecology	Ecology 1991	Sediment quality within the Columbia River was tested by Ecology near the Reynolds Facility NPDES outfalls . No sediment impacts identified.	Surface sediment	1991
2009 Weyerhaeuser Ship Access Channel DMMP Investigation	1 DMMP 2009	Surface and subsurface sediment testing was performed in September 2008. No sediment impacts were identified. Subsurface sediments in the ship access channel were approved for flow-lane disposal in the Columbia River.	Surface sediment, subsurface sediment	2009
2010 Weyerhaeuser Cargo Dock DMMP Investigation	I DMMP 2010	Surface and subsurface sediment testing was performed in January 2010. No sediment impacts were identified. Subsurface sediments in the dock and turning basin were approved for flow-lane disposal in the Columbia River.	Surface sediment, subsurface sediment	2010
2010 CVI Sediment Investigation		Surface and subsurface sediment testing was performed in 2010. No sediment impacts were identified. Subsurface sediments in the berth area were approved for openwater disposal. Maintenance dredging of the berth area was completed during late 2011.	Surface sediment, subsurface sediment	2010

Notes:

BMP = Black Mud Pond

AO = Agreed Order

cPAH = carcinogenic polycyclic aromatic hydrocarbon

CVI = Chinook Ventures, Inc.

DMMP = Dredged Material Management Program

Ecology = Washington State Department of Ecology

FS = Feasibility Study HTM = heat transfer media

MBTL = Millennium Bulk Terminals – Longview, LLC

MTCA = Model Toxics Control Act

NPDES = National Pollutant Discharge Elimination System

PAH = polycyclic aromatic hydrocarbon

RI = Remedial Investigation

RMC = Reynolds Metals Company

SPL = spent potliner

TPH = total petroleum hydrocarbon

PCB = polychlorinated biphenyl

UST = underground storage tank

APPENDIX B CLOSURE AND POST-CLOSURE ACTIVITIES FOR THE CLOSED BMP FACILITY

TABLE OF CONTENTS

1	Introduction	1
2	Origin of Residual Carbon	3
3	Construction and Operation	5
4	Closure	6
5	Post-closure Care and Monitoring.	10
6	Recent Repairs and Improvements	13
7	Conclusion	15
8	References	16

List of Plates

Plate B-1	Location of the Closed BMP Facility
Plate B-2	BMP Facility Closure and Post-Closure Monitoring Elements
Plate B-3	Closed BMP Facility Cap System
Plate B-4	Reduction in Groundwater Fluoride Concentrations since Facility Closure
Plate B-5	Recent Repairs and Other Improvements to the Closed BMP Facility

LIST OF ACRONYMS AND ABBREVIATIONS

CDID Consolidated Diking Improvement District

Closed BMP Facility Closed Black Mud Pond Facility

CVI Chinook Ventures, Inc.

Ecology Washington State Department of Ecology

Facility 71 Industrial Wastewater Chemical Treatment Plant

Facility 73 Stormwater Retention Basin and Filter Plant

G&O Gibbs & Olson, Inc.

MBTL Millennium Bulk Terminals – Longview, LLC

MCL Maximum Contaminant Level

mg/L milligram per liter

PAH polycyclic aromatic hydrocarbon

ppm parts per million

PVC polyvinyl chloride

RCRA Resource Conservation and Recovery Act

Reynolds Reynolds Metals Company

Reynolds Facility former Reynolds Metals Reduction Plant

RI Remedial Investigation

SPL spent potliner

WAC Washington Administrative Code

1 INTRODUCTION

The Closed Black Mud Pond Facility (Closed BMP Facility) is a closed landfill located in the northwestern corner of the former Reynolds Metals Reduction Plant (Reynolds Facility). The location of the Closed BMP Facility is shown on Plate B-1.

The Closed BMP Facility contains residual carbon generated during the former on-site recycling process operated by Reynolds Metals Company (Reynolds). Closure activities were completed in 1992. The closure was conducted consistent with a Washington State Department of Ecology- (Ecology-) approved Closure and Post-Closure Plan, prepared in compliance with the State Dangerous Waste Regulations (Washington Administrative Code [WAC] 173-303) in effect at that time.

The closure activities were successfully completed, and the facility has been subject to an extensive post-closure care and monitoring program. Results of monitoring have shown that the closure and dewatering of the facility have been effective. As described in Section 5 of the Remedial Investigation (RI), there are no adverse impacts to water quality in the adjacent Consolidated Diking Improvement District (CDID) ditches for cyanide or fluoride. Cyanide levels in shallow groundwater within the silt/clay soils immediately adjacent to the Closed BMP Facility are protective of both drinking water and surface water quality. A significant improvement in groundwater fluoride concentrations in these adjacent wells has also been observed.

This appendix provides an overview of the Closed BMP Facility history and the findings of ongoing post-closure monitoring. The appendix also summarizes recent repairs and upgrades to the Closed BMP Facility that were performed by Millennium Bulk Terminals – Longview, LLC (MBTL), under Ecology oversight after acquisition of the facility assets from Chinook Ventures, Inc. (CVI), in early 2011.

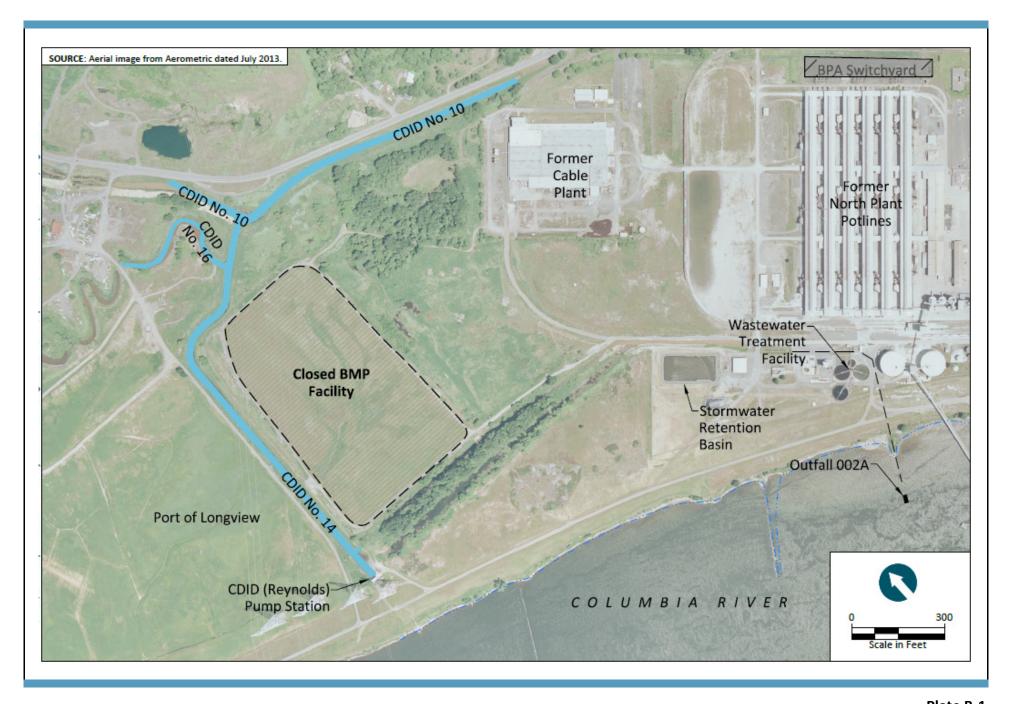


Plate B-1

Location of the Closed BMP Facility
Remedial Investigation/Feasibility Study

Former Reynolds Metals Reduction Plant – Longview

2 ORIGIN OF RESIDUAL CARBON

Residual carbon is a byproduct of the on-site recycling process that was used at the Reynolds Facility between 1953 and 1990. That process was known as the "cryolite recovery" process and was conducted in a cryolite recovery plant located on the east side of the Reynolds Facility. The former Cryolite Recovery Plant ceased operation in 1990 and has since been removed.

Cryolite is a compound composed of sodium, aluminum, and fluoride (Na₃AlF₆). Cryolite is critical to the aluminum manufacturing process, which cannot operate without it. It has been used globally in aluminum reduction plants since the 1800s. In the aluminum reduction process, alumina is placed in an aluminum manufacturing "pot" and is dissolved in cryolite. The resulting molten material consisting of alumina and cryolite is called bath. Electricity is then passed through the mixture, between an anode and a cathode (potliner), producing molten aluminum, which is separated for use.

The anodes and cathodes used in the reduction process are constructed from carbonaceous materials. The potliner consists of the carbon lining of the pots in which the molten aluminum is produced. Over time, this lining eventually becomes compromised and must be replaced. After removal from the pot, the cathode material is known as spent potliner (SPL). The SPL contains fluoride (from the cryolite solution used in the process) and polycyclic aromatic hydrocarbon (PAH) compounds (from the carbon materials). SPL can also contain cyanide, which can be produced during operation of the pots when nitrogen in the air combines with carbon in the carbonaceous materials. The levels of cyanide in SPL can vary depending on the specific production methods used and pot technology.

The cryolite recovery process was operated at the Reynolds Facility to recover reusable materials from SPL and also to recover reusable fluoride from the wet air emission control system solids (underflow solids). The SPL recycled at the Reynolds Facility came both from operations at the site, as well as from other northwest aluminum reduction plants. The underflow solids were collected in thickener tanks (also known as clarifiers) operated at two locations within the Reynolds Facility (Northwest Alloys 2011).

The cryolite recovery process involved digesting the SPL and underflow solids with sodium hydroxide and precipitating out the cryolite by addition of carbon dioxide. The cryolite was separated by filtration, dried, and was then either reused within the Reynolds Facility or was sold to other facilities for reuse.

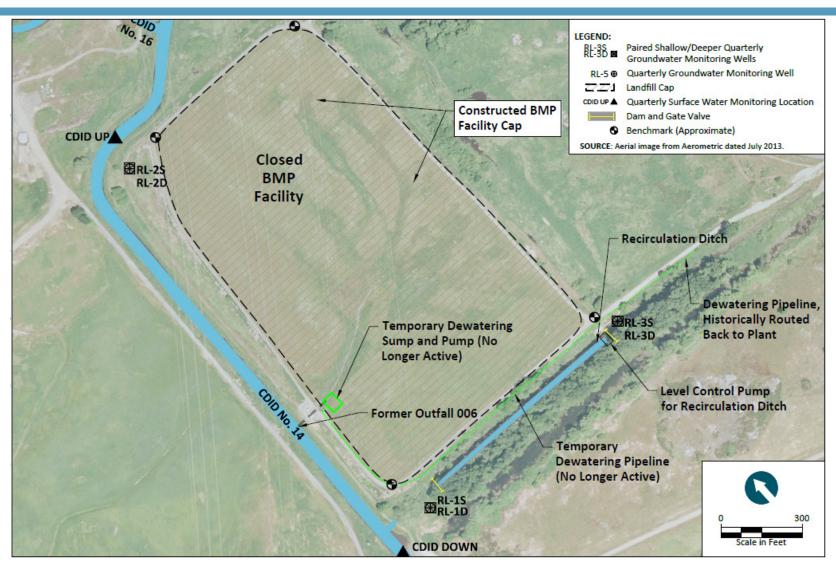
Residual carbon is the solid carbonaceous material left over after the cryolite recovery process is complete. It has a characteristic dark color, consistent with the carbonaceous materials used to construct the aluminum manufacturing cathodes. This residual carbon is not SPL, and the cryolite recovery process modifies the material such that the residual carbon does not maintain the levels of chemicals commonly present in SPL. Residual carbon contained within the Closed BMP Facility was approximately 15 to 30 percent solids by weight with a pH of 10 to 12, consisting of mostly carbon and alumina (Reynolds and CH2M Hill 1991). Samples of residual carbon from other Reynolds Facility deposits have been extensively analyzed using fish bioassays (Ecology 1982; Reynolds 1982) and would not be classified as a dangerous waste under current Washington waste bioassay testing protocols.

3 CONSTRUCTION AND OPERATION

The Closed BMP Facility was initially constructed in 1972 for collection and management of residual carbon from the cryolite recovery process. The 33-acre facility was constructed in the northwest corner of the Reynolds Facility (see Plate B-1).

The Closed BMP Facility was formed by earthen dikes and a clay bottom lining constructed above the natural ground surface (Reynolds 1992). The dikes were constructed between approximately 10 and 17 feet above the surrounding ground elevation in order to prevent stormwater run-on (Reynolds and CH2M Hill 1991). In 1980, the top of the dike was raised from 17 feet to a top elevation of 22 feet to increase overall capacity (Reynolds and CH2M Hill 1991). Access roads were used for maintenance.

Between 1972 and 1990, residual carbon was pumped as a fine slurry into the constructed facility. Entrained water was separated by gravity and subsequently recycled to the Reynolds Facility's emissions control system. Residual carbon from the Cryolite Recovery Plant was the only material managed in the BMP Facility throughout its operational history (Reynolds and CH2M Hill 1991). The cryolite recovery process and resulting residual carbon material were consistent throughout the Cryolite Recovery Plant's operation. As a result, the residual carbon materials are chemically homogenous.


4 CLOSURE

The closure and post-closure plan for the Closed BMP Facility was developed consistent with regulatory requirements that were applicable when the facility was closed. These closure requirements were based on the results of analyses performed using a particular bioassay testing protocol that was used for state-only dangerous waste characterization under WAC 173-303 between 1983 and 1995.

Following promulgation of WAC 173-303 in 1983, Ecology implemented state-only waste characterization protocols that included fish bioassay tests. These tests were used to identify materials that were subject to special regulatory requirements as state-only dangerous wastes. The residual carbon managed in the Closed BMP Facility was tested at multiple times during its operation using Washington's static acute fish toxicity tests (Ecology 1982; Reynolds 1982). These residual carbon materials passed these tests at a concentration of 100 parts per million (ppm), which is the current test protocol used by Ecology for waste characterization testing. However, at the time, Ecology used a bioassay test protocol at a concentration of 1,000 ppm. Using that testing protocol, the residual carbon was determined to be subject to regulation under WAC 173-303.

Because residual carbon was considered a state-only dangerous waste in 1983 per the acute fish toxicity test results, Reynolds submitted a Dangerous Waste Management Facility (Part B) permit application to Ecology in 1984. Ecology commented on the document, and a revised Part B permit application was prepared in 1985 (Reynolds and CH2M Hill 1985). Reynolds operated under the provisions of the Part B permit application until the facility operations were terminated and the facility was closed. Since that time, the dangerous waste regulations (WAC 173-303) have been updated; under the revised bioassay testing criteria, residual carbon does not designate as a state-only dangerous waste.

No more residual carbon was produced at the Reynolds Facility after May 1990 when operations of the Cryolite Recovery Plant ceased (Northwest Alloys 2011). The Closure/Post-Closure Plan (Reynolds and CH2M Hill 1991) for the Closed BMP Facility was submitted to Ecology in 1991. Closure was completed in 1992 as a landfill under the State Dangerous Waste Regulations. Closure and post-closure plan elements are shown on Plate B-2.

Obligations of the Closure/Post-Closure Plan include quarterly groundwater and surface water monitoring, periodic elevation surveys (at benchmarks), and inspections and maintenance of the temporary dewatering sump and pipeline, the level control pump, dams, and gate valves at the recirculation ditch, and the cap and drainage systems, gas vents, dikes, and access roads (Reynolds 1992).

The closure activities included construction of an engineered landfill cap. The cap system is approximately 5 feet thick and is constructed of multiple layers, as shown on Plate B-3. The primary layers in the cap system include the following:

- A 3-foot thick working cover of sand placed over geotextile
- Barrier layers that include a geosyntheic clay lining and a polyvinyl chloride (PVC) geomembrane
- Drainage layers consisting of a composite draining net and a 1-foot thick sand drainage layer
- An erosion control layer consisting of 1 foot of topsoil and surficial vegetation (grass; Reynolds 1992)

Because the residual carbon materials initially contained entrained water, the closure activities included installation of a temporary dewatering system. A temporary dewatering sump and pump were installed after closure to remove the entrained water and assist in consolidation of the carbon material (see Plate B-2; Reynolds 1992). The produced water was originally conveyed back to the wastewater treatment plant using an enclosed pipeline (see Plate B-2). The removal of this entrained water left behind the residual carbon, which is classified as a very fine sand with some silt. The dewatering is complete, and the dewatering system is no longer active.

An internal facility ditch (known as the recirculation ditch) is located along the south side of the Closed BMP Facility. In accordance with the Ecology-approved BMP Closure/Post-Closure Plan (Reynolds and CH2M Hill 1991), a dam and gate valve was constructed at each end of the recirculation ditch, and all ditch water was pumped to the Industrial Wastewater Chemical Treatment Plant (Facility 71) for treatment. No water other than groundwater and precipitation is currently managed by the recirculation ditch.

Closure of the BMP also included provisions for management of stormwater from the top of the new landfill cap. At the time of closure, a new outfall (Outfall 006) was constructed (see Plate B-2; Reynolds 1992). Stormwater runoff from the clean surface of the landfill cap was collected using a system of perforated pipes installed within a sand drainage layer (above the cap barrier layers). In accordance with the closure plan approved by Ecology, Outfall 006 discharged stormwater runoff from the surface of the engineered cover system to the adjacent CDID Ditch No. 14 (see Plate B-2).

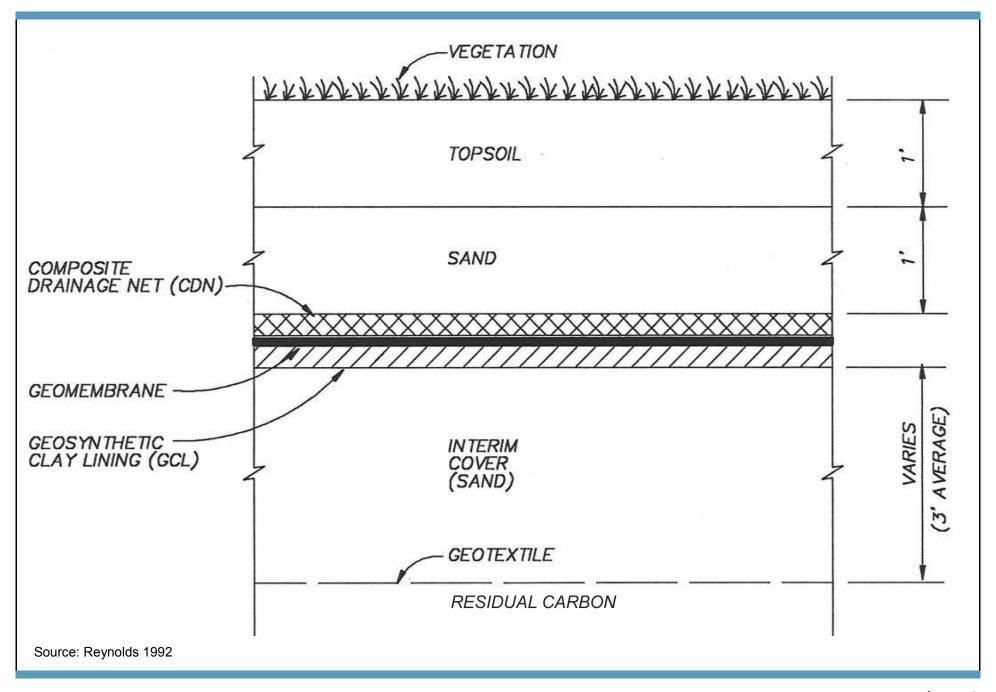


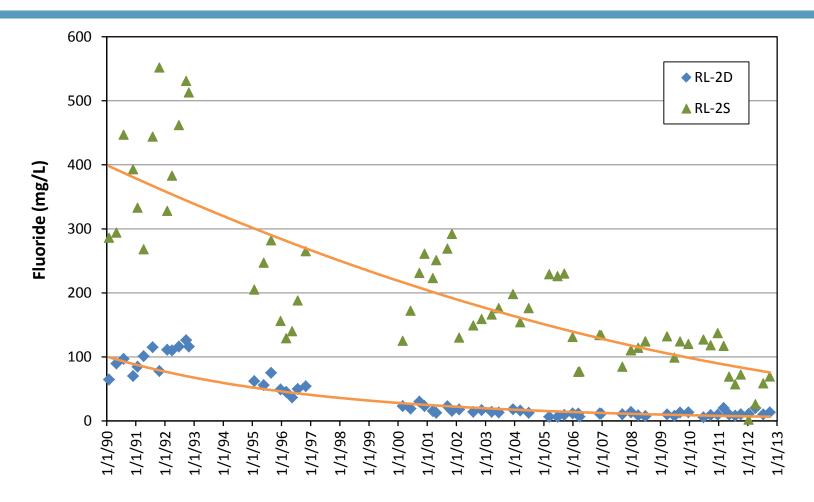
Plate B-3

5 POST-CLOSURE CARE AND MONITORING

The post-closure operation and monitoring program for the Closed BMP Facility includes several requirements. These are outlined on Plate B-2 and include the following:

- Operation and maintenance of the temporary dewatering system (no longer required)
- Periodic elevation surveys of the cap surface using established benchmarks at each corner of the landfill
- Routine inspections of the level control pump, dams, and gate valves at the recirculation ditch
- Regular inspections of the landfill cap and all drainage systems, gas vents, dikes, and access roads
- Quarterly groundwater and ditch water monitoring

In accordance with the Post-Closure Operation and Maintenance Manual (Reynolds 1992), pumping of water from the temporary dewatering sump was no longer required after 2001 because the entrained water had been sufficiently removed, so it no longer gravity-drained into the sump from the closed landfill. The temporary dewatering pipeline that once conveyed leachate from the sump to the Reynolds treatment facility has been inactive since that time. The recirculation ditch continues to be managed consistent with the post-closure plan, though the ditch receives no inflows other than groundwater and precipitation. The recirculation ditch system (dams, gate valves, and pumps) is routinely inspected, and water levels are controlled using an automatic level control pump (see Plate B-2). When water levels exceed those specified for the control pump, water from the recirculation ditch (i.e., groundwater and rainwater) is pumped to Facility 71 for treatment prior to discharge to the Columbia River via Outfall 002A.


The Ecology-approved Closure/Post-Closure Plan also established a long-term groundwater and ditch water monitoring program (Reynolds and CH2MHill 1991). The ongoing monitoring program includes nine groundwater monitoring wells ("RL-series" wells). As shown on Plate B-2, seven of these wells (RL-1S/1D, RL-2S/2D, RL-3S/3D, and RL-5) are located immediately adjacent to the Closed BMP Facility. These wells are screened in the thick layer of silt/clay soils known as the Upper Alluvium. The groundwater monitoring program also includes two background wells (RL-4S/4D) that are located in a separate area,

between the Cable Plant and the North Plant Potlines. The monitoring program includes two ditch water sampling locations in CDID Ditch No. 14, as shown on Plate B-2.

Groundwater and ditch water samples are analyzed quarterly for pH, specific conductance, chloride, fluoride, sulfate, and total and free cyanide. Annual reports, which include the results of quarterly groundwater and surface water monitoring since December 1983, are kept on file at the former Reynolds Facility in accordance with the Ecology-approved Closure/Post-Closure Plan (Reynolds and CH2M Hill 1991).

Groundwater monitoring within the silt/clay soils surrounding the Closed BMP Facility has been performed since the early 1990s. Results of monitoring show that the closure and dewatering of the facility has been effective. As described in Section 5 of the RI, there are no adverse impacts to water quality in the adjacent CDID ditches for cyanide or fluoride. Cyanide levels in shallow groundwater within the silt/clay soils immediately adjacent to the Closed BMP Facility are protective of both drinking water and surface water quality. A significant improvement in groundwater fluoride concentrations in these adjacent wells has also been observed.

Plate B-4 shows how the fluoride concentrations in wells RL-2S (shallower well, green symbols) and RL-2D (deeper well, blue symbols) have continued to decrease since facility closure. This is in part due to the properties of the alluvial soils, which restrict fluoride mobility through precipitation and sorption reactions (see Section 6 of the RI for a discussion of fluoride fate and transport evaluations).

Groundwater and ditch monitoring surrounding the Closed BMP has been performed since the early 1990s as part of the Ecology-approved closure and post-closure monitoring program. Results of monitoring have shown that the closure and dewatering of the facility have been effective. As described in Section 5 of the Remedial Investigation, there are no impacts to water quality in the adjacent CDID ditches for cyanide or fluoride. Cyanide levels in the shallow groundwater within the silt/clay soils immediately adjacent to the Closed BMP are protective of both drinking water and surface water quality. As shown in this plate, fluoride concentrations have been declining in shallow groundwater since facility closure. Fluoride concentrations in wells RL-2S (shallower well, green symbols above) and RL-2D (deeper well, blue symbols) continue to decrease, reflecting the properties of the alluvial soils which tend to restrict fluoride mobility (see Section 6 of the Remedial Investigation for a discussion of fluoride fate and transport evaluations).

6 RECENT REPAIRS AND IMPROVEMENTS

Ecology continues to provide oversight for the Closed BMP Facility and to ensure compliance with the Ecology-approved Closure/Post-Closure Plan (Reynolds and CH2M Hill 1991).

During 2010, Ecology issued an order to CVI to repair damage to the landfill cover drainage system. That order also included a requirement to install security fencing around the Closed BMP Facility and a requirement to address invasive blackberries and weeds on the cap cover (Anchor QEA 2011). The work required under the Ecology order was completed by MBTL in 2011 after acquiring the facility assets from CVI. Work completed included the following:

- Repairs to the Closed BMP Facility cover were performed consistent with an engineering plan developed by Gibbs & Olson, Inc. (G&O). That plan was approved by Ecology in July 2011 after completion of a cap inspection under Ecology oversight. The cap inspection demonstrated that no damage had occurred to the cap barrier layers. The repair included repairs to the stormwater drainage conveyance on the landfill cover (see Plate B-5; Anchor QEA 2011).
- An updated maintenance plan was developed to address invasive blackberries and
 weeds on the cap cover (Anchor QEA 2011). Maintenance and inspection activities
 outlined in the plan include routine mowing of the landfill cap in accordance with
 the schedule and recommendations outlined in the G&O engineering plan and
 compliance with inspection requirements established by the 1992 Operation and
 Maintenance Manual (Reynolds 1992).
- As required by Ecology, fencing and locked gates were installed surrounding the Closed BMP Facility to restrict access to the landfill (see Plate B-5).

Separate from the actions required under the Ecology Order, MBTL completed additional improvements to the stormwater drainage system, consistent with Ecology approvals. That work included rerouting stormwater from Outfall 006 to further centralize stormwater management within the Reynolds Facility. Outfall 006 previously discharged to CDID Ditch No. 14. This discharge was modified so that the stormwater is collected and discharged to the south branch of the internal stormwater collection ditch, referred to as the U-Ditch (see Plate B-5). The U-Ditch is used to collect stormwater runoff for treatment at the Stormwater Retention Basin and Filter Plant (Facility 73) prior to discharge through Outfall 002A. The plan to reroute Outfall 006 was approved by Ecology and successfully completed as of April 2013 (see Plate B-5).

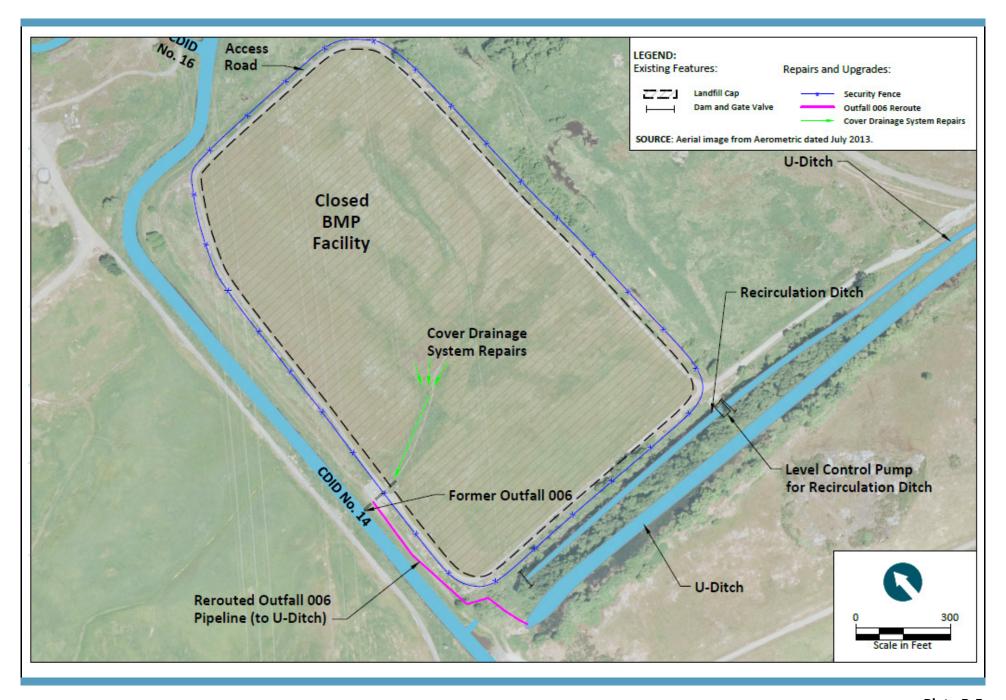


Plate B-5

7 CONCLUSION

The Closed BMP Facility is landfill located in the northwestern corner of the Reynolds Facility that contains residual carbon generated between 1972 and 1990 during the operation of a former on-site recycling process. In 1992, it was closed as a landfill under the State Dangerous Waste Regulations (WAC 173-303). The closure activities were successfully completed, and the landfill has been subject to ongoing maintenance and monitoring since the early 1990s.

Results of monitoring have shown that the closure and dewatering of the facility have been effective. As described in Section 5 of the RI, there are no adverse impacts to water quality in the adjacent CDID ditches for cyanide or fluoride. Cyanide levels in shallow groundwater within the silt/clay soils immediately adjacent to the Closed BMP Facility are protective of both drinking water and surface water quality. A significant improvement in groundwater fluoride concentrations in these adjacent wells has also been observed.

Ecology continues to provide oversight for the Closed BMP Facility and to ensure compliance with the Ecology-approved Closure/Post-Closure Plan. MBTL recently completed repairs to the Closed BMP Facility cover system and related actions consistent with an Ecology order that had been issued to CVI, the previous facility operator. MBTL also recently completed upgrades to the stormwater management system. Ongoing maintenance and monitoring activities continue to be performed by MBTL in accordance with the approved Closure/Post-Closure Plan (Reynolds and CH2M Hill 1991).

8 REFERENCES

- Anchor QEA (Anchor QEA, LLC), 2011. *Closed Black Mud Pond Cover Maintenance Plan AO 8027, Condition 5.* Prepared for Washington State Department of Ecology on behalf of Millennium Bulk Terminals Longview, LLC. Prepared by Anchor QEA. August 2011.
- Ecology (Washington State Department of Ecology), 1982. Memorandum: 96-hour Bioassay Information for sample from Reynolds Metals, Longview. Results of static basic acute toxicity bioassay testing on rainbow trout. July 8, 1982.
- Northwest Alloys, Inc., 2011. *Demolition and Cleanup Accomplishments at the Former Reynolds Longview Plant.* Prepared for Alcoa. Prepared by Northwest Alloy, Inc. June 2011.
- Reynolds (Reynolds Metals Company), 1982. Acute toxicity bioassay testing on rainbow trout. Letter and Data Sheet from BioMed Research Laboratories to Reynolds Metals Company. July 14, 1992.
- Reynolds, 1992. *Operations and Maintenance Manual: Black Mud Pond Post-Closure Care.*Prepared by Reynolds. November, 1992.
- Reynolds and CH2M Hill, 1985. Dangerous Waste Management Facility Permit Part B Application for the Longview Reduction Plant. Prepared for Washington State Department of Ecology. Prepared by Reynolds and CH2M Hill. September 1984. Revised May 1985.
- Reynolds and CH2M Hill, 1991. *Closure Plan and Post-Closure Plan for the Longview Reduction Plant*. Prepared for Washington State Department of Ecology. Prepared by Reynolds and CH2M Hill. July 1991.

APPENDIX C HISTORICAL CLEANUP ACTION REPORTS AND INVESTIGATION SUPPORTING INFORMATION

DOCUMENTS INCLUDED IN APPENDIX C

Facility-wide Documents

Historical Quarterly Groundwater Monitoring Results Memorandum, Former Reynolds Longview Reduction Plant – Longview.

Anchor QEA, LLC. Prepared for Millennium Bulk Terminals – Longview, LLC. October 15, 2013.

Demolition and Cleanup Accomplishments at the Former Reynolds Longview Reduction Plant.

Northwest Alloys, Inc. Longview, Washington. June 2011.

Addendum to Demolition and Cleanup Accomplishments at the Former Reynolds Longview Reduction Plant.

Northwest Alloys, Inc. Longview, Washington, and Millennium Bulk Terminals – Longview, LLC. June 2013.

Alcoa Longview Facility Data Report.

McCully Frick & Gillman, Inc. (2003), as submitted under Anchor Environmental, L.L.C. (2006). Prepared for Washington State Department of Ecology. August 2006.

West Plant Reports and Data

Voluntary Cleanup Report – Underground Gasoline Tank – Former Reynolds Longview Cable Plant.

Anchor Environmental, L.L.C. Prepared for Washington State Department of Ecology. January 2003.

U-Ditch Reroute and Soil Removal – Main Channel, Side Channel, and Main Channel Supplementary tables and U-Ditch Sample Locations figure.

Anchor QEA, LLC. Prepared for Millennium Bulk Terminals – Longview, LLC. 2012.

East Plant Reports and Data

Memorandum: Reynolds Drum Soil Cleanup, February 14, 1986, and Attachment: Letter to Tom Dickey (Reynolds), February 20, 1986.

Washington State Department of Ecology.

Independent Cleanup Documents, 200,000 Gallon Diesel AST.

Reynolds Metals Company. 1991-1993.

Soil Removal from Former Cryolite Ditches – Summary of Confirmational Testing Results table, Waste Profile Composite Sampling Results table, and Remediation Areas and Confirmation Sample Locations figure.

Anchor QEA, LLC. Prepared for Northwest Alloys, Inc. 2011.

Warehouse UST and Fuel Island Cleanup – Confirmation TPH Results for Former UST Fuel Island Soils table.

Anchor QEA, LLC. Prepared for Northwest Alloys, Inc. 2011.

Sediment

Reynolds Metals Company – Class II Inspection – February 1990.

Washington State Department of Ecology. June 1991.

Memorandum: Determination Regarding the Suitability of Proposed Dredged Material from the Weyerhaeuser Property, Longview, Washington, for Flow-Lane Disposal in the Columbia River, or for Beneficial Use.

Dredged Material Management Program. January 2, 2009.

Memorandum: Determination Regarding the Suitability of Proposed Dredged Material from the Weyerhaeuser Cargo Dock, Turning Basin and Salt Dock, Longview, Washington, for Flow-Lane Disposal in the Columbia River.

Dredged Material Management Program. March 26, 2010.

Memorandum: Determination Regarding the Suitability of Proposed Dredged Material from Berth 1 of the Chinook Ventures Facility, Longview, Washington, for Flowlane Disposal in the Columbia River.

Dredged Material Management Program. November 4, 2010.

Historical Quarterly Groundwater Monitoring Results Memorandum

Anchor QEA, LLC. Prepared for Millennium Bulk Terminals — Longview, LLC. October 15, 2013.

720 Olive Way, Suite 1900 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorgea.com

MEMORANDUM

To: James Demay, P.E., **Date:** October 15, 2013

Washington State Department of Ecology

From: Mark Larsen and Julia Fitts, Anchor QEA, LLC Project: 130730-01.01

Re: Former Reynolds Metals Reduction Plant RI/FS

Historical Quarterly Groundwater Monitoring Results

This memorandum summarizes previous quarterly groundwater monitoring events performed at the Former Reynolds Metals Reduction Plant in Longview, Washington. These data were collected separately from the Remedial Investigation/Feasibility Study, consistent with ongoing monitoring programs.

Between 2004 and 2010, quarterly groundwater sampling was conducted by Chinook Ventures, Inc. (Chinook) staff, the former owner of the facility assets. Laboratory analyses were performed by Columbia Analytical Services from 2004 to 2008 and by TestAmerica from 2009 to 2010. Since 2011, groundwater sampling has been performed by Millennium Bulk Terminals – Longview, LLC (MBTL), and its contractors. Since 2011, laboratory analyses have been performed by Apex Laboratories, LLC.

This memorandum and the attached tables (see Attachments A and B) summarize groundwater data collected during quarterly monitoring events from 2004 to 2010 by Chinook and data collected since 2011 by MBTL. Please note that the Chinook sampling data are tabulated based on available documentation, some of which have not been independently verified.

The Closed BMP Facility is located on the western portion of the property and includes quarterly sampling of nine groundwater monitoring wells (RL1S, RL1D, RL2S, RL2D, RL3S, RL3D, RL4S, RL4D, and RL5). The Former Spent Potliner (SPL) Area is located on the eastern portion of the property and includes quarterly groundwater sampling at six monitoring well locations (R1S, R1D, R2, R3, R4S, and R4D).

ATTACHMENT A GROUNDWATER DATA COLLECTED DURING QUARTERLY MONITORING EVENTS FROM 2004 TO 2010 BY CHINOOK

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/		Cyanide, Weak Acid Dissociabl (WAD; mg/	d e	Cyanide, fr (mg/L)	ee	Fluoride (mg/L)		Chloride, total (mg/	Sulfate (mg/L)		Temperature (°C)	рН	Specific conductivity (µS/cm)
RL1D	3/10/2004	0.01		0.01	U			0.4	U	3	0.4	U	12.9	5.71	1,217
RL1D	6/25/2004	0.01	U	0.01	U			0.2		3.4	0.2	U	13.9	6.15	1,210
RL1D	9/20/2004													6.59	
RL1D	11/5/2004			0.01	U					2	0.2	U			
RL1D	3/10/2005	0.01	U	0.01	U	0.01	U	0.2		4	0.2	U	13.2	6.59	1,370
RL1D	6/22/2005	1.3		0.01	U	0.01	U	0.3		3	0.2	U	15	6.62	1,301
RL1D	9/15/2005	0.01	U	0.01	U	0.01	U	0.2		2.9			12.6	6.78	1,344
RL1D	12/28/2005	0.004	J	0.01	U	0.01	U	0.3		0.9	0.4	U	11	6.61	1,390
RL1D	3/9/2006	0.01	U	0.01	U	0.03		0.4	U	2.7	0.4	U	12.3	6.39	1,376
RL1D	5/24/2006												12.6	6.49	1,287
RL1D	12/21/2006	0.01	U	0.01	U	0.00001	U	0.3		2.9	0.2	C	11.4	6.91	1,378
RL1D	3/8/2007			0.01	U	0.01	U			3.8	0.2	U	11.4	7.17	1,341
RL1D	6/5/2007			0.01	U	0.01	U			2.6	0.2	C	13.8	6.65	995
RL1D	9/11/2007			0.01	U	0.01	U	0.38		2.5	0.2	U	13	6.99	1,365
RL1D	12/19/2007	0.01	U	0.01	U	0.01	U	0.3		3.1	0.2	U	11.7	6.54	1,281
RL1D	3/28/2008	0.01	U	0.01	U	0.01	U	0.3		3.1	0.2	C	10.2	6.5	1,234
RL1D	6/26/2008	0.01	U	0.01	U	0.01	U	0.2	U	3.5	0.2	U	16.3	6.63	1,368
RL1D	9/30/2008	0.01	U	0.01	U	0.01	U	0.4		3	0.2		16.6	6.83	1,353
RL1D	3/27/2009	0.0053		0.005	U			0.5	U	2.78	1	U	12.4	6.4	1,214
RL1D	6/26/2009	0.005	U	0.005	U			0.5	J	2.84	1	U	19.7	6.56	1,340
RL1D	9/4/2009	0.0467		0.005	U			0.5	U	5.93	1	U	20.3	6.71	
RL1D	12/18/2009	0.0059		0.005	U			0.5	U	4.67	1	U	13.2	6.28	1,197
RL1D	3/26/2010												13.1	6.44	1,460
RL1D	6/25/2010	0.0099		0.005	U		R	0.5	U	2.65	1	U	13.4	6.52	1,460
RL1D	9/22/2010												13.7	6.32	759
RL1D	9/24/2010	0.005	U	0.005	U		R	0.5	U	4.77	1	U	13.2	6.41	1,401
RL1D	12/20/2010	0.0082		0.0054		0.0068		0.5	U	5.03	1	U			

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/		Cyanide, Weak Acid Dissociabl (WAD; mg/	d e	Cyanide, fr (mg/L)	ee	Fluoride (mg/L)		Chloride, total (mg/L))	Sulfate (mg/L)	Temperature (°C)	рН	Specific conductivity (µS/cm)
RL1S	3/10/2004	0.01	U	0.01	U			1.4		2.4		24	12.4	5.8	201
RL1S	6/25/2004	0.01	U	0.01	U			3.5		2		13.2	13.6	5.13	380
RL1S	9/22/2004												15	6.489	
RL1S	11/5/2004			0.01	U					1		20.6			
RL1S	3/10/2005	0.007	J	0.01	U	0.01	U	4		1.5		13.7	13.2	6.48	319
RL1S	6/22/2005	0.01		0.01	U	0.01	U	4.6		1.6		12.2	14	6.5	390
RL1S	9/15/2005	0.03		0.01	U	0.01	U	10.4		2			13.4	6.83	482
RL1S	12/28/2005	0.01	U	0.01	U	0.01	U	0.4	U	10.6		24.8	11.7	5.83	179
RL1S	3/9/2006	0.01	U	0.01	U	0.01	U	0.4		4		21.7	11.1	5.74	194
RL1S	3/25/2006	0.01	U	0.01	U	0.01	U	3.1		1.5		11.9			
RL1S	5/25/2006												12.2	6.32	371
RL1S	12/20/2006	0.01	U	0.01	U	0.00001	U	0.2		1.2		22.2	9.1	6.3	176
RL1S	3/8/2007			0.01	U	0.01	U			1.2		19.6	11	6.31	191
RL1S	6/6/2007			0.01	U	0.01	U			2.1		5.9	6.74	13.2	475
RL1S	9/12/2007			0.02		0.01	U	15.7		2.1		7.5	17.5	7.18	737
RL1S	12/19/2007	0.01	U	0.01	U	0.01	U	0.3		2.2		16.4	11.9	6.62	136
RL1S	3/28/2008	0.01	U	0.01	U	0.01	U	0.2	U	3.5		17.6	9.9	6.47	154
RL1S	6/27/2008	0.01		0.01	U	0.01	U	3.9		1.5		9.6	16.7	6.83	390
RL1S	9/30/2008	0.02		0.01		0.01	U	9.4		1.9		3.8	16.5	6.96	553
RL1S	3/27/2009	12.8		0.0221				44.7		3.97		22.3	10.3	6.19	188
RL1S	6/26/2009	0.0219		0.005	U	_		1.49		4.42		13	15.2	6.54	150
RL1S	9/4/2009	0.0086		0.005	U			1.92		4.82		7.52	23.3	7.2	
RL1S	12/18/2009	0.005	U	0.005	U			0.71		3.8		15.4	17.3	6.01	173
RL1S	3/26/2010												12.1	6.51	0
RL1S	6/25/2010	0.0135		0.005	U	0.005	U	2.05		3.5		8.11	12.2	6.45	0
RL1S	9/24/2010	0.0095		0.005	U		R	4.33		3.75		3.76	14.5	6.21	667
RL1S	12/17/2010	0.0092		0.0052		0.005	U	1.68		3.76		20.8			

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/L)	Cyanide, Weak Aci Dissociabl (WAD; mg/	d le	Cyanide, fre (mg/L)	e	Fluoride (mg/L)	Chloride, total (mg/L)	Sulfate (mg/L)	Temperature (°C)	рН	Specific conductivity (µS/cm)
RL2D	3/10/2004	0.14	0.15	U			16	27	33	12.1	6.78	2,770
RL2D	6/25/2004	0.73	0.01	U			12.5	23.3	25.7	12.9		2,200
RL2D	9/22/2004										6.996	
RL2D	3/10/2005	0.07	0.007	J	0.32		6.3	21.2	7.5	13.3	6.62	1,687
RL2D	6/22/2005	0.32	0.007	J	0.27		6.3	20.7	3.7	14	6.62	1,680
RL2D	9/15/2005	0.1	0.02		0.32		9.4	20.2		12.7	6.85	2,200
RL2D	12/28/2005	0.13	0.007	J	0.24		11.7	17.5	15.4	9.8	6.66	2,330
RL2D	3/9/2006	0.21	0.02		0.33		11.4	26.7	16.4	12.8	6.58	2,170
RL2D	3/25/2006	0.11	0.01	U	0.24		6.5	18.9	3.8			
RL2D	5/25/2006									12.7	6.46	1,600
RL2D	12/21/2006	0.5	0.02		0.32		11.4	25.1	17.9	10.7	7.04	2,600
RL2D	3/7/2007		0.01		0.28			26	17.9	12.6	7.44	2,260
RL2D	6/5/2007		0.02		0.21			23.8	2.6	12.7	6.85	1,670
RL2D	9/12/2007		0.02		0.3		10.3	29	17	13.8	7.31	2,350
RL2D	12/19/2007	0.1	0.01		0.305		13.7	31.6	13.9	10.3	7.15	3,070
RL2D	3/28/2008	0.08	0.02		0.3		8.6	27	10.4	9.4	7.55	2,700
RL2D	6/27/2008	0.08	0.01		0.29		7.4	25.8	5.9	14.9	6.93	2,100
RL2D	10/1/2008									17.8	7.34	3,250
RL2D	3/26/2009	0.0691	0.0108				10.1	29.3	11.2	11.3	6.66	2,300
RL2D	6/25/2009	0.489	0.011				7.76	27.7	8.25	15.6	6.66	3,200
RL2D	9/3/2009	0.0994	0.0145				13	34	25.6	18.2	6.69	
RL2D	12/17/2009	0.106	0.0217				13.4	35.9	20.7	11.6	6.85	2,850
RL2D	3/25/2010									12.2	6.5	2,700
RL2D	6/25/2010	0.175	0.0136		0.86		5.52	28.3	2.44	16.8	6.72	1,900
RL2D	9/22/2010	0.0798	0.005	U	1.32		8.97	34.7	11.3	14	6.46	2,500
RL2D	12/20/2010	0.118	0.005	U	1.19		9.6	35.4	14.4			
	2/2/225		1	1	ı			 	 	1		1
RL2S	3/10/2004	27	0.15	U			154	52	454	11.4	7.92	6,610

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/L)	Cyanide, Weak Acid Dissociable (WAD; mg/l	Cya	nide, free (mg/L)	Fluoride (mg/L)	!	Chloride, total (mg/l	L)	Sulfate (mg/L)		Temperature (°C)	рН	Specific conductivity (µS/cm)
RL2S	6/25/2004	30.8	0.04			176		59		553		13.9		10,400
RL2S	9/20/2004						Ш						9.82	
RL2S	3/10/2005	36.3	0.07		1.12	229	Ш	93		716		12.9	9.83	18,980
RL2S	6/22/2005	58.4	0.12		1.1	226		74.3		514		13	9.813	14,850
RL2S	9/15/2005	75	0.16	(0.96	230		71				13.5	9.97	16,330
RL2S	12/28/2005	29.2	0.6		0.5	131		52		448		11	9.93	12,300
RL2S	3/9/2006	13.1	0.1		0.3	76.5		24.8		171		11.3	9.77	5,400
RL2S	3/24/2006	15.4	0.08	0	.449	77		27		175				
RL2S	5/23/2006											11.5	9.71	6,510
RL2S	12/21/2006	33.8	0.06	(0.77	134		44		456		10.7	9.97	11,700
RL2S	3/9/2007		0.07		0.5			35		295		10.3	9.91	8,280
RL2S	6/6/2007		0.22	(0.61			45.5		302		13.3	9.85	8,800
RL2S	9/11/2007		0.18		0.4	84.5		40		246		14.7	9.67	7,590
RL2S	12/28/2007	35.8	0.05	(0.43	110		47		389		9.7	9.56	11,200
RL2S	3/28/2008	29	0.24	(0.37	114		38.8		256		9.4	9.85	9,400
RL2S	6/26/2008	33	0.2		0.6	124		46.8		317		18.1	9.76	9,900
RL2S	10/1/2008											17	9.67	7,920
RL2S	3/26/2009	28.4	0.416			132		63.8		428		10.6	9.44	11,000
RL2S	6/25/2009	25.2	0.0511			98.7		47		283		20	9.02	8,800
RL2S	9/3/2009	38.6	0.0779			124		58.5		398		16.9	9.41	
RL2S	12/17/2009	44.1	0.382			120		59.5		396		11.4	9.06	7,120
RL2S	3/25/2010						П				П	11.6	8.62	9,930
RL2S	6/25/2010	27.5	0.008	4	1.55	127	П	60.8		361	П	14.8	9.77	8,400
RL2S	9/22/2010	30.9	0.0212	3	3.59	118	П	61.1		340		17	9.57	10,900
RL2S	12/20/2010	46.8	0.1	3	3.72	137		68		443				
RL3D	3/10/2004	0.01 L		U		3.8		3		0.4	U	12.6	5.91	1,081
RL3D	6/25/2004	0.01 L	0.01	U		0.2	U	3.8		0.2	U	13.8	6.47	1,228

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/		Cyanide, Weak Acid Dissociabl (WAD; mg/	d e	Cyanide, fr (mg/L)	ee	Fluoride (mg/L)		Chloride,	Sulfate (mg/L)		Temperature (°C)	рН	Specific conductivity (µS/cm)
RL3D	9/20/2004													6.55	
RL3D	3/10/2005	0.01	U	0.01	U	0.01	U	0.2	U	5	0.2	U	13.7	6.62	1,180
RL3D	6/22/2005	0.01	U	0.01	U	0.01	U	0.2	U	3.8	0.2	U	15	6.57	1,226
RL3D	9/15/2005	0.01	U	0.01	U	0.01	U	0.3		3.9			13.1	6.63	1,253
RL3D	12/28/2005	0.003	J	0.01	U	0.01	U	0.2		1.4	0.4	U	11.7	6.49	1,330
RL3D	3/9/2006	0.008	J	0.01	U	0.02		0.4	U	3.6	0.4	U	12.4	6.29	1,298
RL3D	5/24/2006												12.6	6.45	1,171
RL3D	12/21/2006	0.01	U	0.02		0.02		0.2	U	3.9	0.2	U	11.5	7.11	1,286
RL3D	3/7/2007			0.01	U	0.01	U			4.8	0.2	U	13.4	7.93	1,126
RL3D	6/6/2007			0.01	U	0.01	U			3.3	0.2	U	13.7	6.56	1,195
RL3D	9/11/2007			0.01	U	0.01	U	2.81		3.4	0.2	U	14.3	7.09	1,282
RL3D	12/19/2007	0.01	U	0.01	U	0.01	U	0.2		3.9	0.2	U	11.5	6.65	1,197
RL3D	3/26/2008												11	6.68	1,275
RL3D	6/26/2008	0.01	U	0.01	U	0.01	U	0.2	U	4	0.2	U	16.7	6.63	1,206
RL3D	10/1/2008	0.01	U	0.01	U	0.01	U	0.2	U	3.9	0.2	U	15.4	6.92	1,225
RL3D	3/27/2009	0.007		0.005	U			0.55		4.25	1	U	11.5	6.67	1,040
RL3D	6/26/2009	0.005	U	0.005	U			0.57		4.34	1	U	15.6	6.66	1,240
RL3D	9/4/2009	0.005	U	0.005	U			0.5	U	4.13	1	U	20.4	6.54	
RL3D	12/18/2009	0.005	U	0.005	U			0.5	U	6.02	1	U	12.4	6.42	988
RL3D	3/26/2010												12.2	6.9	1,140
RL3D	6/25/2010	0.0124		0.005	U	0.0107		0.5	U	3.84	1	U	13.2	6.47	1,400
RL3D	9/23/2010	0.0119		0.005	U		R	0.5	U	5.72	1	U	13	6.42	1,283
RL3D	12/20/2010	0.0085		0.005	U	0.005	U	0.68		5.57	1.5				
RL3S	3/10/2004	0.08		0.01	U			12		6	17		11.1	6.19	769
RL3S	6/25/2004	0.14		0.01				17.1		11.5	38.2		13.8		1,356
RL3S	9/20/2004													7.04	
RL3S	3/10/2005	0.08		0.01		0.022		10.5		6.6	19.3		12.4	7.11	1,103

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/		Cyanide, Weak Acid Dissociabl (WAD; mg/	d e	Cyanide, fi (mg/L)	ree	Fluoride (mg/L)	Chloride, total (mg/L)	Sulfate (mg/L)		Temperature (°C)	рН	Specific conductivity (µS/cm)
RL3S	6/22/2005	0.17		0.01	U	0.04		17.9	7.4		15.9		14	7.16	1,388
RL3S	9/15/2005	0.18		0.02		0.01	U	21.8	13.7				14.2	7.31	2,170
RL3S	12/28/2005	0.07		0.01	U	0.003	J	4.1	2.4		12.4		10.6	6.81	437
RL3S	3/9/2006	0.07		0.009	J	0.02		6.6	3		5.3		11.1	6.82	751
RL3S	3/25/2006	0.04		0.01	U	0.01	U	7	3.6		6.8				
RL3S	5/25/2006												12.4	6.94	648
RL3S	12/1/2006	0.08		0.01		0.01		8.8	4.2		3.9		9	7.37	935
RL3S	3/8/2007			0.01		0.01	U		4.6		7.7		11.4	7.19	845
RL3S	6/5/2007			0.02		0.01			5.2		12.1		14.2	7.01	756
RL3S	9/11/2007			0.02		0.01		16.5	7.7		6.9		15.3	8.1	1,349
RL3S	12/19/2007	0.06		0.01	U	0.01	U	7.4	3.9		3.3		11.6	6.76	791
RL3S	3/26/2008												9.7	7.05	864
RL3S	6/27/2008	0.07		0.01		0.01	U	9.2	4.7		2.6		13.3	7.15	859
RL3S	9/30/2008	0.07		0.02		0.01	U	10.6	6.5		1.9		14.8	7.16	857
RL3S	3/27/2009	0.0899		0.005	U			8.46	10.1		2.64		11.4	6.95	985
RL3S	6/26/2009	0.0559		0.007				8.91	11.6		2.55		18	7.22	860
RL3S	9/4/2009	0.109		0.0123				13.9	14		1	U	23.2	6.94	
RL3S	12/18/2009	0.0228		0.005	U			4.73	10.5		4.07		11.9	6.58	637
RL3S	3/25/2010												11.5	6.64	1
RL3S	6/24/2010	0.0903		0.011		0.0128		10.5	7.13		1	U	14.3	6.99	1
RL3S	9/23/2010	0.0506		0.005	U	0.0104		7.82	6.31		1.3		14.1	6.79	1,105
RL3S	12/16/2010	0.0615		0.0062		0.005		7.7	9.61		1.83				
	-					-		•	<u> </u>						
RL4D	3/10/2004	0.01	U	0.01	U			0.4	11.6		0.4	U	13.1	6.22	522
RL4D	6/24/2004	0.01	U	0.01	U			0.3	9.8		0.2	U	15.4	5.38	417
RL4D	6/25/2004		U		U			0.3	9.8			U		5.38	549
RL4D	9/20/2004													6.52	
RL4D	3/10/2005	0.01	U	0.01	U	0.01	U	0.3	11.1		0.2	U	14.9	6.6	427

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/		Cyanide, Weak Aci Dissociabl (WAD; mg,	d le	Cyanide, fr (mg/L)	ee	Fluoride (mg/L)		Chloride, total (mg/	Sulfate (mg/L)		Temperature (°C)	рН	Specific conductivity (μS/cm)
RL4D	6/22/2005	0.01	U	0.01	U	0.01	U	0.3		10.7	0.2	U	14.5	6.66	477
RL4D	9/15/2005	0.01	U	0.01	U	0.01	U	0.3		10.6			14.4	6.72	464
RL4D	12/28/2005	0.006	J	0.01	U	0.01	U	0.2		1.6	0.4	U	12.9	6.5	414
RL4D	3/9/2006	0.16		0.01	U	0.009	J	0.4	U	10.2	0.4	U	12.9	6.36	560
RL4D	3/24/2006	0.01	U	0.01	U	0.01	U	0.4	U	8.8	0.4	U			
RL4D	5/24/2006												14	6.4	509
RL4D	12/1/2006		U	0.01		0.01			U	9.1	0.9			6.76	646
RL4D	12/21/2006												12.1	6.76	646
RL4D	12/21/2006	0.01	U	0.01		0.00001		0.2	U	9.1	0.9				
RL4D	3/8/2007			0.01	U	0.01	U			10.5	0.4		12.7	6.99	634
RL4D	6/5/2007												14.8	6.53	507
RL4D	6/5/2007			0.01	U	0.01	U			9.8	0.2	U			
RL4D	9/11/2007			0.01	U	0.01	U	1.02		9.5	0.2	U	19.4	6.88	686
RL4D	12/28/2007	0.01	U	0.01	U	0.01	U	1	U	10.4	1	U	10.2	6.97	769
RL4D	3/28/2008	0.01	U	0.01	U	0.01	U	0.3		8.6	0.2	U			
RL4D	6/19/2008	0.01	U	0.01	U	0.1	U	0.3		8.7	0.3		15.9	6.49	701
RL4D	3/26/2009	0.0063		0.005	U			0.5	U	10.6	3.58		11.9	6.66	717
RL4D	6/25/2009	0.162		0.005	U			1.17		9.41	8.87		20.8	6.41	730
RL4D	9/3/2009	0.005	U	0.005	U			0.5	U	9.69	11.8		22.4	6.56	
RL4D	12/17/2009	0.005	U	0.005	U			0.5	U	11.1	13.9		13.6	6.6	671
RL4D	3/25/2010												13.9	6.57	780
RL4D	6/24/2010	0.005	U	0.005	U	0.005	U	0.5	U	8.26	19.3		15.8	6.39	770
RL4D	9/22/2010	0.005	U	0.005	U	0.012		0.5	U	10.2	15		13.7	6.32	759
RL4D	12/16/2010	0.0108		0.005	U	0.005	U	0.5	U	11.2	14.2				
RL4S	3/10/2004	0.01	U	0.01	U			0.5		4.9	0.6		11.7	5.97	342
RL4S	6/24/2004	0.01	U	0.01	U			0.4		4.2	0.3		14.9	7.09	378
RL4S	9/20/2004													6.43	

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/		Cyanide, Weak Acid Dissociable (WAD; mg/	е	Cyanide, fr (mg/L)	ee	Fluoride (mg/L)		Chloride,	L)	Sulfate (mg/L)		Temperature (°C)	рН	Specific conductivity (µS/cm)
RL4S	3/10/2005	0.01	- ,	0.01	- ,	0.01	U	0.3		5.1	,	0.2	U	14.2	•	286
RL4S	6/24/2005	0.01	U	0.01	U	0.01	U	0.4		5		0.2	U	16	6.52	318
RL4S	9/15/2005	0.01	U	0.01	U	0.01	U	0.4		4.9				16.4	6.57	344
RL4S	12/28/2005	0.007	J	0.01	U	0.01	U	0.4		3.6		0.4	U	12.5	6.51	339
RL4S	3/9/2006	0.009	J	0.004	J	0.006	J	0.4	U	5		0.4	U	12.7	6.4	444
RL4S	3/24/2006	0.01	U	0.01	U	0.01	U	0.6		4.4		0.5		13.7	6.34	420
RL4S	12/21/2006		U	0.01		0.01	U	0.6		5.5		0.3		13	6.82	592
RL4S	3/8/2007			0.01	U	0.01	U			6.3		0.3		10.4	7.09	586
RL4S	6/6/2007			0.01	U	0.01	U			5.6		0.2	U	13.4	6.58	447
RL4S	9/12/2007			0.01	U	0.01	U	2.66		6		0.4		16.5	6.83	665
RL4S	12/21/2007	0.01	U	0.01	U	0.01	U	0.6		7.2		0.2	U	9.3	6.59	753
RL4S	3/28/2008	0.01	U	0.01	U	0.01	U	0.6		5.9		1.2		8.4	7.04	777
RL4S	6/20/2008	0.01	U	0.01	U	0.1	U	0.5		6.3		4.8		17.7	6.46	691
RL4S	3/27/2009	0.399		0.0056				3.2		7.89		5.51		9.6	7.24	837
RL4S	6/25/2009	0.0177		0.005	U			0.69		6.76		8.47		22.1	6.63	800
RL4S	9/3/2009	0.0053		0.005	U			0.54		6.91		8.75		20.2	6.48	
RL4S	12/17/2009	0.0061		0.0057				0.7		7.59		9.74		17.6	6.6	654
RL4S	3/25/2010													11.9	6.37	760
RL4S	6/25/2010	0.0127		0.005	U	0.043		0.63		7.07		5.75		13.5	6.55	681
RL4S	9/22/2010	0.0054		0.005	U	0.012		0.8		9.56		4.31		16.4	6.3	660
RL4S	12/17/2010	0.005	U	0.005	U	0.0051		0.74		10.5		3.03				
RL5	3/10/2004	0.02		0.01	U			2.7		9.2		71		11	5.81	599
RL5	6/25/2004	0.03		0.01	U			1.6		10		119		13.2		902
RL5	9/20/2004														6.47	
RL5	3/10/2005	0.06		0.01		0.01	U	1.2		17.3		202		12.8	6.41	862
RL5	6/22/2005	0.04		0.01	U	0.01	U	1.7		14.1		137		14	6.428	774
RL5	9/15/2005	0.05		0.01	U	0.01	U	1.7		14.2				13.7	6.51	603

Table A-1
Historical Groundwater Monitoring Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Cyanide, total (mg/L)	Cyanide, Weak Aci Dissociabl (WAD; mg,	d le	Cyanide, fr (mg/L)	ee	Fluoride (mg/L)		Chloride, total (mg/L)	Sulfate (mg/L)	Temperature (°C)	рН	Specific conductivity (µS/cm)
RL5	12/28/2005	0.04	0.01	U	0.004	J	1.7		10.9	91.6	11	6.24	511
RL5	3/9/2006	0.03	0.02		0.01		2.2		8.8	58.5	12	6.25	450
RL5	3/25/2006	0.05	0.02		0.01	U	1.8		10.6	150			
RL5	5/25/2006										11.2	6.34	710
RL5	12/19/2006	0.03	0.01	U	0.02		2.3		7.7	74.9	9.3	6.58	457
RL5	3/8/2007		0.01	U	0.01	U			7.1	40.3	11.2	6.94	402
RL5	6/5/2007		0.02		0.01	U			9.4	91.6	11.2	6.83	419
RL5	9/11/2007		0.01	U	0.01	U	2.05		9	79	13.8	6.9	
RL5	12/21/2007	0.03	0.01		0.01	U	2.1	כ	8.8	77.4	9.7	6.76	545
RL5	3/27/2008	0.02	0.01		0.01	U	2.1		7.9	70.2	12.9	7.01	539
RL5	6/26/2008	0.03	0.01		0.01	U	1.7		9	101	14.6	6.83	618
RL5	10/2/2008	0.02	0.01		0.01	U	1.9		10.4	105	19.1	6.98	627
RL5	3/25/2009	0.0326	0.0056				1.81		11.1	96.8	10.1	6.54	729
RL5	6/24/2009	0.0158	0.005	U			1.76		10.7	112	33	6.54	540
RL5	9/3/2009	0.0363	0.0063				1.73		12.3	105	20.1	6.6	
RL5	12/17/2009	0.047	0.0112				1.94		12.3	134	11.4	6.54	694
RL5	3/25/2010										12	6.39	760
RL5	6/24/2010	0.0303	0.0051		0.005	U	2.31		9.91	96.7	14.4	6.48	780
RL5	9/24/2010	0.0326	0.005	U	0.005	U	1.94		11.1	102			
RL5	10/14/2010	0.0371	0.005	U	0.0058		1.99		15.4	106			
RL5	12/16/2010	0.0359	0.0068		0.005	U	2.27		9.93	81.1			

Notes:

J = estimated value

U = not detected

°C = degrees Celsius

 μ S/cm = microSiemen per centimeter

mg/L= milligram per liter

WAD = weak acid dissociable

Table A-2
Historical Groundwater Metals Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Arsenic, Dissolve (μg/L)	ed	Calcium, Dissolved (μg/	L)	¹ Chromium Dissolved (μg		¹ Copper, Dissolved (μg	/L)	Magnesium, Dissolved (μg/L)	¹ Nickel, Dissolv (μg/L)	/ed	Sodium, Dissolved (μg/L)
RL1D	12/20/2010	1	U	122,000		2	U	2	U	62,100	2	U	21,800
RL1D	9/24/2010	1	U	121,000		2	U	2	U	59,100	2	U	24,700
RL1D	6/25/2010	1	U	120,000		2	U	2	U	60,800	2	U	25,000
RL1D	12/18/2009	1	U	117,000		2	U	2	U	61,700	2	U	25,500
RL1D	9/4/2009	1	U	119,000		2	U	2	U	64,700	1	U	27,400
RL1D	6/26/2009	1	U	117,000		2	U	2	U	66,900	1	U	27,500
RL1D	3/27/2009	1	U	118,000		2	U	2	U	61,500	1.96		26,000
RL1D	6/26/2008	5	U	121,000		5	U	10	U	63,400	20	U	26,800
RL1D	3/28/2008	5	U	118,000		5	U	10	U	63,600	20	U	26,700
RL1D	12/19/2007	5	U	116,000		5	U	10	U	63,800	20	U	26,100
RL1D	9/11/2007	5	U	111,000		5	U	10	U	57,400	20	U	24,400
RL1D	6/5/2007	5	U	115,000		5	U	10	U	59,900	20*	U	25,200
RL1D	3/8/2007	5	U	127,000		5	U	10	U	65,600	20	U	27,000
RL1D	12/21/2006	5	U	117,000		5	U	10	U	60,900	20*	U	25,500
RL1D	3/24/2006	5	U	129,000		5	U	10	U	64,300	20	U	26,800
RL1D	3/9/2006	5	U	117,000		5	U	10	U	59,100	20	U	26,200
RL1D	12/28/2005	5	U	113,000		5	U	10	U	60,200	20	U	27,100
RL1D	9/15/2005	5	U	121,000		5	U	10	U	61,600	20	U	26,700
RL1D	6/22/2005	5	U	119,000		5	U	10	U	60,800	20	U	26,200
RL1D	3/10/2005	5	U	112,000		5	U	10	U	58,300	20	U	24,700
RL1D	11/5/2004	5	U	120,000		5	U	10	U	62,100	20	U	27,800
RL1D	6/25/2004	5	U	121,000		5	U	10	U	62,000	20	U	25,900
RL1D	3/11/2004	5	U	120,000		5	U	10	U	61,000	20	U	27,100
RL1S	12/17/2010	1	U	9,560		2	U	2.69		4,570	3.04	T	37,900
RL1S	9/24/2010	1	U	18,900		2	U	2.03	U	8,620	2.71	+	66,700
RL1S	6/25/2010	1	U	14,900		2	U	2	U	7,020	4.08	+	45,500
RL1S	12/18/2009	1	U	8,340		2	U	8.54		3,640	5.46	+	32,300
RL1S	9/4/2009	1	U	14,400		2	U	9.37		6,570	6.71	+	61,200
RL1S	6/26/2009	1	U	11,700		2	U	31.2		5,260	9.64	+	49,900

Table A-2
Historical Groundwater Metals Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Arsenic, Dissolve	ed	Calcium, Dissolved (μg/	/L)	¹ Chromium Dissolved (μg	-	¹ Copper, Dissolved (μg	;/L)	Magnesium, Dissolved (μg/L)	¹ Nickel, Dissolv (μg/L)	ed	Sodium, Dissolved (μg/L)
RL1S	3/27/2009	5	U	9,230		10	U	10	U	4,430	8.36		196,000
RL1S	6/27/2008	5	U	14,600		5	U	10	U	7,480	20	U	58,200
RL1S	3/28/2008	5	U	9,560		5	U	10	U	4,780	20	U	14,300
RL1S	12/19/2007	5	U	7,250		5	U	10	U	3,500	20	U	13,300
RL1S	9/12/2007	5	U	15,500		5	U	10	U	7,970	20	U	131,000
RL1S	6/6/2007	5	U	17,500		5	U	10	U	8,950	20*	U	114,000
RL1S	3/8/2007	5	U	13,000		5	U	10	U	6,230	20	U	21,600
RL1S	12/20/2006	5	U	9,900		5	U	10	U	4,700	20*	U	15,700
RL1S	3/25/2006	5	U	17,800		5	U	10	U	8,500	20	U	54,800
RL1S	3/9/2006	5	U	10,100		5	U	10	U	4,860	20	U	15,800
RL1S	12/28/2005	5	U	12,200		5	U	10	U	5,860	20	U	13,700
RL1S	9/15/2005	5	U	17,900		5	U	10	U	8,750	20	U	108,000
RL1S	6/22/2005	5	U	17,800		5	U	10	U	8,450	20	U	60,200
RL1S	3/10/2005	5	U	14,400		5	U	10	U	6,840	20	U	48,800
RL1S	11/5/2004	5	U	11,800		5	U	10	U	5,830	20	U	42,200
RL1S	6/25/2004	5	U	15,600		5	U	10	U	7,570	20	U	62,000
RL1S	3/11/2004	5	U	10,400		5	U	10	U	5,040	20	U	26,200
RL2D	12/20/2010	2.03		57,600		2	U	2	U	33,300	2.07		538,000
RL2D	9/22/2010	1.63		65,400		2	U	2	U	32,100	2	U	429,000
RL2D	6/25/2010	1.19		74,800		2	U	2	U	36,000	2	U	272,000
RL2D	12/17/2009	2.99		61,900		2	U	2	U	30,200	4.5		759,000
RL2D	9/3/2009	2.79		64,000		2	U	2	U	30,800	3.99		624,000
RL2D	6/25/2009	1.18		74,500		2	U	2	U	37,200	1.65		388,000
RL2D	3/26/2009	2.19		58,300		2	U	2	U	28,800	3.27		551,000
RL2D	6/27/2008	5	U	66,700		5	U	10	U	34,700	20	U	283,000
RL2D	3/28/2008	5	U	65,700		5	U	10	U	35,200	20	U	396,000
RL2D	12/19/2007	5	U	55,900		5	U	10	U	30,400	20	U	596,000
RL2D	9/12/2007	5	U	57,300		5	U	10	U	287,000	20	U	457,000
RL2D	6/5/2007	5	U	72,800		5	U	10	U	35,300	20*	U	224,000

Table A-2
Historical Groundwater Metals Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Arsenic, Dissolve	ed	Calcium, Dissolved (µg/L))	¹Chromium,		¹ Copper,	·/L)	Magnesium, Dissolved (μg/L)	¹ Nickel, Dissolve (µg/L)	ed	Sodium, Dissolved (µg/L)
RL2D	3/7/2007	5	U	68,200	<i>'</i>	5	, <u>-,</u>	10	U	33,200	20	U	457,000
RL2D	12/21/2006	5	U	59,800		<u>5</u>	U	10	U	28,500	20*	U	479,000
RL2D	3/25/2006	5	U	75,900		<u> </u>	U	10	U	36,900	20	U	254,000
RL2D	3/9/2006	5	U	59,100		5	U	10	U	29,200	20	U	431,000
RL2D	12/28/2005	5	U	56,200		5	U	10	U	29,100	20	U	462,000
RL2D	9/15/2005	5	U	63,300		5	U	10	U	30,900	20	U	408,000
RL2D	6/22/2005	5	U	72,200		5	U	10	U	34,800	20	U	254,000
RL2D	3/10/2005	5	U	65,800		5	U	10	U	32,600	20	U	288,000
RL2D	6/25/2004	5	U	52,100		5	U	10	U	27,800	20	U	514,000
RL2D	3/11/2004	5	U	47,100		5	U	10	U	25,100	20	U	558,000
	-, ,			,						-,		_	,
RL2S	12/20/2010	60.8		6,470	I	63.1		10	U	2,820	18.4		4,290,000
RL2S	9/22/2010	47.6		6,010		124		40	U	2,540	85.6		3,210,000
RL2S	6/25/2010	9.12		6,980		12.2		2	U	2,890	8.83		3,410,000
RL2S	12/17/2009	55.1		9,480		23.3		2	U	3,660	4.7		3,690,000
RL2S	9/3/2009	10.8		7,480		8.29		4	U	3,020	2.5		3,260,000
RL2S	6/25/2009	50	U	1,370		10	U	10	U	549	50	U	2,820,000
RL2S	3/26/2009	51.7		8,380		93.6		20	U	2,690	86.3		3,640,000
RL2S	6/27/2008	39.4		6,140		85		11		2,830	61		2,800,000
RL2S	3/28/2008	15.9		2,690		42.3		10	U	769	29		1,220,000
RL2S	12/28/2007	43		7,860		106		20	U	3,010	74		2,790,000
RL2S	9/11/2007	32.6		6,740		55		10	U	1,970	40.3		2,060,000
RL2S	6/6/2007	33.3		5,300		65		10	U	1,640	51*		2,490,000
RL2S	3/9/2007	36		6,500		76		20	U	1,540	57		2,460,000
RL2S	12/21/2006	27.4		8,010		94.7		16		2,600	78*		3,120,000
RL2S	3/24/2006	26.9		5,610		52.1		10	U	1,820	47		1,810,000
RL2S	3/9/2006	21		5,150		42.9		10	U	1,560	36		1,550,000
RL2S	12/28/2005	38		6,210		115		10	U	2,570	89		3,630,000
RL2S	9/15/2005	64		6,600		99.1		10	U	2,740	124		5,160,000
RL2S	6/22/2005	56		6,760		155		20	U	2,860	135		4,870,000

Table A-2
Historical Groundwater Metals Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Arsenic, Dissolve	ed	Calcium, Dissolved (μg/L)) [¹Chromium, Dissolved (µg/		¹ Copper, Dissolved (μg	;/L)	Magnesium, Dissolved (μg/L)	¹ Nickel, Dissolve (μg/L)	ed	Sodium, Dissolved (µg/L)
RL2S	3/10/2005	58.7		8,310		101		10	U	4,350	121		5,610,000
RL2S	6/25/2004	31.7		5,410		76.2		10	U	2,070	67		2,790,000
RL2S	3/11/2004	46.1		5,950		121		10	U	2,140	110		3,780,000
RL3D	12/20/2010	1	U	77,600		2	U	2	U	40,300	2	U	28,800
RL3D	9/23/2010	1	U	99,400		2	U	2	U	51,800	2	U	30,300
RL3D	6/25/2010	1	U	104,000		2	U	2	U	52,400	2	U	32,400
RL3D	12/18/2009	1	U	79,600		2	U	2	U	50,500	2	U	30,500
RL3D	9/4/2009	1	U	101,000		2	U	2	U	54,500	1	U	32,100
RL3D	6/26/2009	1	U	95,600		2	U	2	U	51,800	1	U	34,900
RL3D	3/27/2009	1	U	95,600		2	U	2	U	46,400	1.64		29,900
RL3D	10/1/2008	5	U	109,000		5	U	10	U	53,700	20	U	30,400
RL3D	6/26/2008	5	U	104,000		5	U	10	U	53,200	20	U	34,200
RL3D	12/19/2007	5	U	111,000		5	U	10	U	59,800	20	U	31,600
RL3D	9/11/2007	5	U	108,000		5	U	10	U	53,300	20	U	29,000
RL3D	6/6/2007	5	U	108,000		5	U	10	U	54,400	20*	U	29,100
RL3D	3/7/2007	5	U	122,000		5	U	10	U	60,800	20	U	31,900
RL3D	12/21/2006	5	U	115,000		5	U	10	U	56,100	20*	U	31,500
RL3D	3/24/2006	5	U	120,000		5	U	10	U	58,800	20	U	31,800
RL3D	3/9/2006	5	U	111,000		5	U	10	U	54,600	20	U	31,100
RL3D	12/28/2005	5	U	109,000		5	U	10	U	56,300	20	U	32,500
RL3D	9/15/2005	5	U	115,000		5	U	10	U	55,800	20	U	30,600
RL3D	6/22/2005	5	U	119,000		5	U	10	U	57,800	20	U	32,000
RL3D	3/10/2005	5	U	114,000		5	U	10	U	57,400	20	U	31,100
RL3D	6/25/2004	5	U	112,000	\perp	5	U		U	57,500	20	U	30,400
RL3D	3/11/2004	5	U	111,000		5	U	10	U	55,500	20	U	32,600
				<u>, </u>									
RL3S	12/16/2010	1.53	Ш	38,600	╽	2	U	2	U	3,340	2	U	154,000
RL3S	9/23/2010	1.65		29,200		2	U	_	U	13,300	2	U	158,000
RL3S	6/24/2010	2.74		27,000		2	U	2	U	12,800	2	U	210,000

Table A-2
Historical Groundwater Metals Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Arsenic, Dissolve	ed	Calcium, Dissolved (μg/	'L)	¹ Chromium Dissolved (μg		¹ Copper, Dissolved (μ		Magnesium, Dissolved (μg/L)	¹ Nickel, Dissolve (μg/L)	ed	Sodium, Dissolved (μg/L)
RL3S	12/18/2009	1	U	29,700		2	U	2	U	12,100	2	U	91,200
RL3S	9/4/2009	2.75		29,300		2.33		2	U	14,500	1.26		354,000
RL3S	6/26/2009	1.52		28,500		2	U	2	U	13,600	1	U	201,000
RL3S	3/27/2009	1.18		27,100		2	U	2	U	12,700	1.36		189,000
RL3S	6/27/2008	7.4		24,900		5	U	10	U	11,400	20	U	158,000
RL3S	12/19/2007	5	U	28,400		5	U	10	U	14,200	20	U	136,000
RL3S	9/11/2007	5	С	20,600		5	U	10	U	10,600	20	U	281,000
RL3S	6/5/2007	5	U	20,200		5	U	10	U	10,000	20*	U	203,000
RL3S	3/8/2007	5	С	33,800		5	U	10	U	16,500	20	U	174,000
RL3S	12/20/2006	5	U	32,300		5	U	10	U	15,100	20*	U	171,000
RL3S	3/25/2006	5	U	24,500		5	U	10	U	11,200	20	U	124,000
RL3S	3/9/2006	5	U	27,800		5	U	10	U	12,500	20	U	125,000
RL3S	12/28/2005	5	U	23,200		5	U	10	U	10,100	20	U	81,200
RL3S	9/15/2005	5.2		29,900		14.2		10	U	14,100	20	U	515,000
RL3S	6/22/2005	5	U	28,200		7.6		10	U	13,200	20	U	324,000
RL3S	3/10/2005	5	U	29,400		5	U	10	U	13,200	20	U	235,000
RL3S	6/25/2004	5	U	26,000		5	U	10	U	12,700	20	U	256,000
RL3S	3/11/2004	5	U	33,100		11.4		10	U	17,100	20	U	393,000
RL4D	12/16/2010	1	С	53,800		2	U	2	U	24,800	2	U	23,600
RL4D	9/22/2010	1	С	50,200		2	U	2	U	23,700	2	U	23,900
RL4D	6/24/2010	1	С	50,500		2	U	2	U	23,800	2	U	23,800
RL4D	12/17/2009	1	С	59,900		2	U	2	U	26,100	2	U	25,800
RL4D	9/3/2009	1	С	56,800		2	U	2	U	27,100	1.72		25,500
RL4D	6/25/2009	1	U	57,700		2	U	2	U	27,200	1	U	30,400
RL4D	3/26/2009	1	U	54,700		2	U	2	U	25,000	1.1		24,500
RL4D	6/19/2008	5	U	51,000		5	U	10	U	25,300	20	U	22,400
RL4D	3/28/2008	5	U	53,200		5	U	10	U	26,500	20	U	23,700
RL4D	12/28/2007	5	U	55,000		5	U	10	U	27,100	20	U	22,600
RL4D	9/11/2007	5	U	51,200		5	U	10	U	24,000	20	U	20,400

Table A-2
Historical Groundwater Metals Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Arsenic, Dissolve (µg/L)	ed	Calcium, Dissolved (μg/L)		Chromium,		¹ Copper,	/L)	Magnesium, Dissolved (μg/L)	¹Nickel, Dissolve (µg/L)	ed	Sodium, Dissolved (µg/L)
RL4D	6/5/2007	5	U	47,200		5	Ú	10	U	22,100	20*	U	18,500
RL4D	3/8/2007	5	U	49,600		5	U	10	U	23,000	20	U	23,200
RL4D	12/21/2006	5	U	44,600		5	U	10	U	20,500	20*	U	22,400
RL4D	3/24/2006	5	U	40,600		5	U	10	U	18,500	20	U	16,200
RL4D	3/9/2006	5	U	39,400		5	U	10	U	17,800	20	U	16,200
RL4D	12/28/2005	5	U	35,900		5.3		10	U	16,800	20	U	18,500
RL4D	9/15/2005	5	U	39,700		5	U	10	U	18,000	20	U	15,800
RL4D	6/22/2005	5	U	39,700		5	U	10	U	17,800	20	U	16,000
RL4D	3/10/2005	5	U	38,600		5	U	10	U	17,600	20	U	15,500
RL4D	6/24/2004	5	U	39,900		5	U	10	U	18,300	20	U	15,900
RL4D	3/11/2004	5	U	38,400		5	U	10	U	18,300	20	U	16,200
		•		•	•					•	•		•
RL4S	12/17/2010	1.29		39,200		2	U	2	U	21,500	2	U	46,400
RL4S	9/22/2010	1.24		36,100		2	U	2	U	19,000	2	U	35,900
RL4S	6/25/2010	1.49		39,000		2	U	2	U	20,100	2	U	42,000
RL4S	12/17/2009	1.29		44,800		2	U	2	U	23,000	2.24		66,100
RL4S	9/3/2009	1.26		50,200		2	U	2	U	26,600	2.86		52,900
RL4S	6/25/2009	1	U	53,000		2	U	2	U	27,800	5		63,200
RL4S	3/27/2009	1.03		43,400		2	U	2	U	25,000	4.37		96,600
RL4S	6/20/2008	5	U	41,500		5	U	10	U	23,100	20	U	42,100
RL4S	3/28/2008	5	U	42,900		5	U	10	U	25,100	20	U	64,400
RL4S	12/21/2007	5	С	42,800		5	J	10	U	25,100	20	U	43,900
RL4S	9/12/2007	5	С	39,200		5	J	10	C	20,300	20	U	36,200
RL4S	6/6/2007	5	С	36,500		5	\supset	10	U	19,200	20*	U	35,400
RL4S	3/8/2007	5	U	38,900		5	\supset	10	U	20,100	20	U	40,000
RL4S	12/21/2006	5	U	32,600		5	J	10	U	17,000	20*	U	35,900
RL4S	3/24/2006	5	U	29,600		5	\supset	10	U	14,900	20	U	30,200
RL4S	3/9/2006	5	U	25,300		5	J	10	U	13,300	20	U	27,100
RL4S	12/28/2005	5	U	23,600		5	J	10	U	12,600	20	U	26,700
RL4S	9/15/2005	5	U	25,400		5	J	10	U	13,200	20	U	25,900

Table A-2
Historical Groundwater Metals Results for the Closed BMP Area: 2004 to 2010

Location ID	Sample Date	Arsenic, Dissolve (μg/L)	d	Calcium, Dissolved (μg/L)	Dissolved (μg/L)		, /L)	¹ Copper, Dissolved (μg,	/L)	Magnesium, Dissolved (μg/L)	¹ Nickel, Dissol· (μg/L)	Sodium, Dissolved (μg/L)	
RL4S	6/24/2005	5	U	24,700		5	U	10	U	12,600	20	U	24,900
RL4S	3/10/2005	5	С	23,900		5	U	10	U	12,400	20	U	24,200
RL4S	6/24/2004	5	U	21,600		5	U	10	U	11,400	20	U	23,400
RL4S	3/11/2004	5	U	20,700		5	U	10	U	11,300	20	U	24,300
RL5	9/3/2009	1	U	9,830	1	2	U	15.6	l	4,410	5.32	T	125,000
RL5	6/24/2009	1	U	10,200		2	U	22.2		4,530	5.21		137,000
RL5	3/25/2009	1	U	8,930		2	U	26.2		3,960	5.34		136,000
RL5	10/2/2008	5	U	9,480		5	U	16		4,100	20	U	127,000
RL5	6/26/2008	5	U	7,810		5	U	17		3,560	20	U	124,000
RL5	3/27/2008	5	U	7,050		5	U	25		3,070	20	U	113,000
RL5	12/21/2007	5	U	6,440		5	U	22		2,750	20	U	105,000
RL5	9/11/2007	5	U	7,260		5	U	25.9		3,260	20	U	116,000
RL5	6/5/2007	5	U	6,770		5	U	33		2,940	20*	U	109,000
RL5	3/8/2007	5	U	4,560		5	U	61		1,930	20	U	82,000
RL5	12/19/2006	5	U	5,740		5	U	47		2,350	20*	U	93,100
RL5	3/25/2006	5	U	13,800		5	U	42		5,860	20	U	159,000
RL5	3/9/2006	5	U	5,210		5	U	42		2,140	20	U	96,600
RL5	12/28/2005	5	Ω	7,210		5	U	21		3,110	20	U	124,000
RL5	9/15/2005	5	U	11,300		5	U	18	U	4,860	20	U	143,000
RL5	6/22/2005	5	U	11,600		5	U	30		5,020	20	U	155,000
RL5	3/10/2005	5	U	15,100		5	U	20		6,530	20	U	171,000
RL5	6/25/2004	5	U	8,180		5	U	29		3,480	20	U	120,000
RL5	3/11/2004	5	U	5,330		5	U	45.8		2,180	20	U	93,200

Notes:

U = Not Detected; J = Estimated Value

μg/L= microgram per liter

^{*}Nickel data from December 2006 and June 2007 was designated Total Metals on the laboratory report. These values seem to be consistent with the Dissolved Metals data suggesting the Total Metals label may have been a typo.

^{1 =} February 4, 2014 update – Result values for chromium, copper, and nickel should be regarded as overestimates of actual concentrations due to method interference (see Appendix E).

Table A-3
Historical Groundwater Monitoring Results for the Former SPL Area: 2004 to 2010

	I	Ī	I	-				1			1		ı ı		Ī
							Cyanide,	.							C:6:
Lacation							Weak Acid						Townsustan		Specific
Location ID	Sample Date	Chloride, total	Cyanide, free	•	Cyanide, tota	aı	Dissociable		Fluoride		Cultura (una	/ı \	Temperature	мU	conductivity
	Sample Date	(mg/L)	(mg/L)	4	(mg/L)		(WAD; mg/	_	(mg/L)	_	Sulfate (mg	/L)	(°C)	рН	(μS/cm)
R1D	3/23/2004				0.02		0.01	U					16.2	6.23	1,968
R1D	6/25/2004								0.4				15.3		1,620
R1D	9/20/2004													6.639	
R1D	11/5/2004							Ш	0.5						
R1D	3/10/2005	124	0.01 l	U	0.03		0.01	U	0.5				15	6.61	1,925
R1D	6/23/2005	118		U	0.04		0.01	U	0.6		0.2	U	14	6.62	1,919
R1D	9/15/2005	117	0.01 l	U	0.04		0.02		0.6				14.4	6.64	1,855
R1D	12/28/2005	112	0.01 เ	U	0.03		0.008	J	0.6		0.4	U	13.2	6.51	2,090
R1D	3/9/2006	112	0.03		0.07		0.03		0.4		0.4	U	12.4	6.39	1,996
R1D	3/25/2006	90	0.01	U	0.04		0.01	U	0.4	U					
R1D	5/25/2006	90	l	U	0.04			U		U			14.1	6.43	1,802
R1D	9/28/2006	104	0.01 l	U	0.03		0.01	U	0.6				18.1	6.76	1,848
R1D	12/14/2006	110	0.00001 l	U	0.03		0.03		1	U			10.1	6.92	1,992
R1D	3/8/2007	113	0.01 l	U			0.02						13	7.06	1,950
R1D	6/6/2007	123	0.01 l	U			0.03						13	6.62	1,912
R1D	9/11/2007	111	0.01 l	U			0.01		1.76				17.7	7.01	1,893
R1D	12/28/2007	116	0.01 l	U	0.04		0.01	U	1	U			11.5	6.7	1,976
R1D	3/21/2008												10.3	6.6	2,100
R1D	6/19/2008	113	0.1 l	U	0.04		0.01		0.2	U	0.2		19.3	6.52	1,982
R1D	9/26/2008	120	0.01 l	U	0.03		0.01		0.6				16	6.76	2,030
R1D	3/26/2009	118		1	0.0368		0.005	U	0.65				13.4	6.45	1,921
R1D	6/23/2009			1				П				Ī	14.2	6.55	2,090
R1D	9/2/2009	125		1	0.0241		0.0075		0.52			t	23.5	6.95	
R1D	12/17/2009	116		1	0.034		0.0074	П	0.5	U			12.8	6.6	1,883
R1D	3/24/2010	109	0.005 l	U	0.0243		0.0052	П	0.61			T	13.6	6.29	2,120
R1D	6/25/2010	116	0.005 l	U	0.0207		0.0055	П	0.53			l	14	6.52	2,030
R1D	9/23/2010	120	0.0166	1	0.0241		0.005	U	0.51				14.4	6.59	2,100

Table A-3
Historical Groundwater Monitoring Results for the Former SPL Area: 2004 to 2010

	T	ı	ı	_				-		ı				
Location ID	Sample Date	Chloride, total (mg/L)	Cyanide, free	9	Cyanide, tota (mg/L)	ıl	Cyanide, Weak Acid Dissociable (WAD; mg/	е	Fluoride (mg/L)	Sulfate (mg/	1)	Temperature (°C)	рН	Specific conductivity (µS/cm)
R1D	12/16/2010	125	0.0154		0.0344		0.0062	- <i>,</i>	0.63	Junute (ing/	-,	(-7	P	(p.c.)
KID	12/10/2010	125	0.0134		0.0344		0.0002		0.03					
R1S	3/23/2004			1	0.03		0.01	U				15.5	5.72	507
R1S	6/25/2004								37			14.4	6.21	625
R1S	9/20/2004												7.28	
R1S	11/5/2004								38.5					
R1S	3/10/2005	3.2	0.01	U	0.06		0.01	U	31.7			13.1	7.31	374
R1S	6/23/2005	2.2	0.01	U	0.07		0.01	U	29.1	0.2	U	14	7.33	437
R1S	9/15/2005	2.2	0.01	U	0.05		0.01	U	24			16.1	7.16	396
R1S	12/28/2005	1.6	0.01	U	0.04		0.01	U	30.8	0.6		11.5	7.16	455
R1S	3/9/2006	1.4	0.005	J	0.06		0.008	J	24.3	0.4	U	11.5	6.96	446
R1S	3/25/2006	1.6	0.01	U	0.04		0.01	U	25.1					
R1S	5/25/2006	1.6		U	0.04			U	25.1			13.6	6.98	391
R1S	9/28/2006	1.2	0.01	U	0.07		0.01	U	22.1			19.9	7.16	350
R1S	12/14/2006	1.6		U	0.05		0.01		30.2			12.2	7.49	490
R1S	12/21/2006	1.6	0.00001	U	0.05		0.01		30.2					
R1S	3/8/2007	1.5		U			0.01	U				10.4	7.63	524
R1S	6/6/2007	2.9	0.01	U			0.01	U				12.9	7.4	352
R1S	9/12/2007	2.4	0.01	U			0.01	U	35.8			19.5	7.66	453
R1S	12/28/2007	2.4	0.01	U	0.04		0.01	U	43.9			11.4	7.01	536
R1S	3/21/2008							Ш				9.4	7.68	595
R1S	6/20/2008	3.6		U	0.03		0.01	U	30.3	4.7		14.2	7.55	432
R1S	9/26/2008	5.3	0.01	U	0.06		0.01	U	31.5			16.2	7.43	406
R1S	3/25/2009	2.2			0.0441		0.005	U	27.9			11.4	6.76	459
R1S	6/24/2009	3.35			0.0346		0.0078	\sqcup	23.9			15.3	7.4	600
R1S	9/2/2009	4.08			0.0516		0.005	U	23.1			29.5	7.71	
R1S	12/17/2009	2.16			0.0591		0.0082		26.7			13.1	7.12	380

Table A-3
Historical Groundwater Monitoring Results for the Former SPL Area: 2004 to 2010

-	ī	I	I					1			Ī	1	Ī	1
							Cyanide,	.						Specific
Location		Chloride, total	Cuanida fra		Cupido to	-al	Weak Acid		Fluoride			Temperature		conductivity
ID	Sample Date	(mg/L)	Cyanide, fre (mg/L)	e	Cyanide, to (mg/L)	ldi	(WAD; mg/		(mg/L)		Sulfate (mg/L		рН	(μS/cm)
R1S	3/24/2010	2.15	_	U	0.024		0.005	-, U	28.8		Junute (mg/ L	11.6	6.75	490
R1S	6/24/2010	3.19	0.003	U	0.024		0.0128	0	28.5			12.7	7.18	413
R1S	9/23/2010	4.57	0.0127		0.027		0.0128	H	24.4			15.7	6.81	431
R1S	12/16/2010	2.89		U	0.048		0.0032	U	35.9			15.7	0.01	451
K13	12/10/2010	2.09	0.005	U	0.0279		0.003	U	33.3				<u> </u>	
R2	3/23/2004	7.4			0.23		0.007	J	1.7		0.5	13	6.51	497
R2	6/30/2004	6.6			0.01	U	0.01	U	0.3		+	18	6.853	
R2	9/24/2004											16	6.508	
R2	3/10/2005	7.7	0.01	U	0.005		0.01	U	0.3			12.2	6.67	402
R2	6/24/2005	7.2	0.01	U	0.005	J	0.01	U	0.3		0.5	15	6.54	430
R2	9/15/2005	7.2	0.01	U	0.01	U	0.01	U	0.4			13.8	6.78	413
R2	12/28/2005	1.5	0.01	U	0.008	J	0.01	U	0.3		0.3	10.2	6.37	400
R2	3/9/2006	7.3	0.009	J	0.009	J	0.01	U	0.4	U	0.4	9.8	6.47	471
R2	5/24/2006	6	0.01	U	0.01	U	0.01	U	0.4			11.9	6.43	486
R2	9/28/2006	7.1	0.01	U	0.01		0.01	U	0.5			16.5	6.67	420
R2	12/20/2006	6.9	0.00001	U	0.01	U	0.01		0.4			7.9	6.61	486
R2	3/8/2007	7.2	0.01	U			0.02	U				9.1	6.57	464
R2	6/6/2007	6.9	0.01	U			0.01	U				10.6	6.77	345
R2	9/12/2007	6.7	0.01	U			0.01		3.38				6.7	522
R2	12/31/2007	6.9	0.01	U	0.01	U	0.01	U	0.2	U		8.6	6.71	490
R2	3/28/2008	6.3	0.01	U	0.01	U	0.01	U	0.4			9.6	6.7	421
R2	6/19/2008	6	0.1	U	0.01	U	0.01	U	0.4		0.4	13.6	7.1	458
R2	3/25/2009	6.52			0.0129		0.005	U	0.58			11.8	7	539
R2	6/25/2009	6.46			0.005	U	0.005	U	0.5	U		13.6	6.56	430
R2	9/4/2009	8.03			0.0098		0.005	U	0.5	U		16.6	6.76	
R2	12/17/2009	6.84			0.0056		0.0054	Ш	0.51			10.9	6.4	375
R2	3/24/2010	6.25	0.005	U	0.005	U	0.005	U	0.75			9.7	6.21	440

Table A-3
Historical Groundwater Monitoring Results for the Former SPL Area: 2004 to 2010

				1		Cupuida	- 1		1	1		
						Cyanide, Weak Acid	,					Specific
Location		Chloride, total	Cyanide, free	Cyanide, to	tal	Dissociable		Fluoride		Temperature		conductivity
ID	Sample Date	(mg/L)	(mg/L)	(mg/L)	Lai	(WAD; mg/		(mg/L)	Sulfate (mg/L)	(°C)	рН	(μS/cm)
R2	6/23/2010	5.84	0.0208	0.005	U	0.005	-,	0.73	Junate (mg/L)	11.4	6.36	356
			-		U		+ +			ł		
R2	9/24/2010	6.75	0.0102 0.005 U	0.0055	U	0.005	U	0.59		12.6	6.41	465
R2	12/17/2010	7.16	0.005	0.005	U	0.005	U	0.67				<u> </u>
R3 ¹	3/23/2004	55	0.4	166	Τ		П	2,560	263	16.9	8.12	2,630
R3	6/25/2004	33	0.4	100			H	2,510	203	14.9	7.78	22,900
R3	9/23/2004						†	2,310		14.5	10.291	22,300
R3	11/5/2004							2,050			10.231	
R3 ¹	3/10/2005	69	0.3	282		11.7		2,460		14.9	10.37	30,400
R3 ¹	6/23/2005	61	0.06	251		13.2	Ħ	2,550	274	15	10.29	26,700
R3 ¹	9/15/2005	65	0.02	363		12.1	Ħ	2,450		15.9	10.43	28,000
R3 ¹	12/28/2005	85	0.6	235		9.2		2,400	262	12.9	10.48	28,300
R3 ¹	3/9/2006		0.43	319		9.7		2,510	254	12	10.23	27,000
R3 ¹	3/24/2006	69	0.34	187		10.1		2,460				
R3 ¹	5/24/2006	69	0.34	187		10.2		2,460		12.6	10.19	26,300
R3 ¹	9/28/2006	84	0.9	253		10.2		2,310		16.8	10.3	26,200
R3 ¹	12/14/2006	56	0.07	266		10.1		2,540		10.8	10.42	26,000
R3 ¹	3/8/2007	81	1.5			10.1				11.9	10.27	26,700
R3 ¹	6/5/2007	0.5	1			11.8				14.7	10.33	24,200
R3 ¹	9/11/2007	53	1.2			10.6		2,380		18.1	10.2	24,800
R3 ¹	12/31/2007	86	0.01	241		9		2,070		11.5	10.11	26,900
R3	3/21/2008									10.5	10.31	26,000
R3 ¹	6/19/2008	57	1.2	222		10.1		2,390	217	14.6	10.36	25,300
R3 ¹	3/26/2009	68.5	0.379	288				2,250		13.7	10.17	230
R3 ¹	6/25/2009	58.4	R	257				2,130		15.7	9.69	26,200
R3 ¹	9/2/2009	61.3	R	179				2,160		25.3	10.23	
R3 ¹	12/18/2009	249	0.236	229				2,080		12.7	10.39	21,900

Table A-3
Historical Groundwater Monitoring Results for the Former SPL Area: 2004 to 2010

	I	Ī		Ī					-			_	Ī		ī
								Cyanide, Weak Acid	,						Specific
Location		Chloride, tot	-al	Cyanide, fre	Δ.	Cyanide, tot	al	Dissociable		Fluoride			Temperature		conductivity
ID	Sample Date	(mg/L)	.u.	(mg/L)		(mg/L)	uı	(WAD; mg/		(mg/L)	Sulfate (mg/L		(°C)	рН	(μS/cm)
R3	3/26/2010					, ,			Ť			İ	13	9.59	26,100
R3 ¹	6/25/2010		R	0.032		112		40.3		2,080			14.5	10.18	25,900
R3 ¹	9/22/2010	66		0.0251		28.8		51.8		2,080	153		14.8	10.07	25,000
R3 ¹	12/17/2010	61		0.0648		335		30.5		2,100					
R4D	3/23/2004	10.7				0.03		0.01	U	1.8	0.2	U	16	6.62	1,218
R4D	6/25/2004									1.3					1,326
R4D	9/20/2004													6.67	
R4D	11/5/2004									1.3					
R4D	3/10/2005	10.6		0.01	J	0.03		0.01	U	1.5			14.7	6.67	1,340
R4D	6/23/2005	9.6		0.01	U	0.03		0.01	U	1.5	0.2	U	15	6.71	1,338
R4D	9/15/2005	10.3		0.01	U	0.03		0.01	U	1.6			14.1	6.75	1,276
R4D	12/28/2005	3.9		0.01	U	0.03		0.01	U	1.7	0.4	U	13	6.57	1,380
R4D	3/9/2006	10.2		0.01		0.07		0.01	U	1.7	0.4	U			
R4D	3/25/2006	8.1		0.01	U	0.03		0.01	U	1.4					
R4D	5/25/2006	8.1			U	0.03			U	1.4			13.8	6.49	1,231
R4D	9/28/2006	11		0.01	U	0.03		0.01		1.7			15.9	6.84	1,266
R4D	12/14/2006	8.8		0.02		0.04		0.02		1.9			12.6	6.71	1,375
R4D	12/21/2006	8.8		0.00002		0.04		0.02		1.9					
R4D	3/9/2007	9.3		0.01	U			0.02					11.2	7.07	1,357
R4D	6/6/2007	9		0.01	U			0.01	U				13.6	6.78	1,234
R4D	9/11/2007	9.7		0.01	U			0.01	Ш	1.65			18.6	6.91	1,273
R4D	12/28/2007	10.1		0.01	U	0.03		0.01	U	1.7			11	6.81	1,303
R4D	3/21/2008												12.5	6.69	1,410
R4D	6/19/2008	9		0.1	U	0.03		0.01		1.6	0.2	U	15.8	6.72	1,275
R4D	9/26/2008	10.4		0.01	U	0.03		0.02	Ш	1.7			15.2	6.8	1,338
R4D	3/26/2009	0.5	U			0.0296		0.005	U	1.84			13.1	6.63	1,250

Table A-3
Historical Groundwater Monitoring Results for the Former SPL Area: 2004 to 2010

		I	I							_	I		Ī		ı
							Cyanide, Weak Acid	.							Specific
Location		Chloride, total	Cyanide, free		Cyanide, tota	٦I	Dissociable		Fluoride				Temperature		conductivity
ID	Sample Date	(mg/L)	(mg/L)	-	(mg/L)	aı	(WAD; mg/		(mg/L)		Sulfate (mg/l		(°C)	рН	(μS/cm)
R4D	6/24/2009	9.94	(87 =/		0.0279		0.005	- , U	1.22		camace (mg/	,	14.7	6.43	1,380
R4D	9/3/2009	10.2			0.0273		0.0082		1.69				23.7	6.83	1,500
R4D	12/17/2009	11.2			0.0274		0.0082	H	1.6				17.8	6.67	1,184
R4D	3/24/2010	11.2			0.0271		0.0002	H	1.0				13.1	6.3	1,440
R4D	6/24/2010	9.78	0.005	U	0.0211		0.0053		1.59				14.8	6.53	1,400
R4D	9/24/2010	12		R	0.0226		0.005	U	1.68				13.6	6.62	1,349
R4D	12/16/2010	13.2	0.0362		0.0281		0.005	U	1.63						·
									•				•		•
R4S	3/23/2004				1.3		0.008	J					16.6	5.86	1,840
R4S	6/25/2004								7.8				14.9	6.38	1,863
R4S	9/20/2004													6.895	
R4S	11/3/2004								8.5						
R4S	3/5/2005														
R4S	3/10/2005	10.9	0.01	U	0.03		0.007	J	8.5				15.7	7.02	2,110
R4S	6/23/2005	9.6	0.01	U	0.04		0.01	U	8.1		0.2	U	15	6.91	1,922
R4S	9/15/2005	10.1	0.01	U	3.9		0.02		9.5				14.3	7.12	1,999
R4S	12/28/2005	3.2	0.01	U	0.04		0.008	J	10.6		0.4	U	13.2	6.96	2,130
R4S	3/9/2006	10	0.04		0.06		0.02		7.7		0.4	U	11.9	6.7	1,859
R4S	3/24/2006	10.3	0.01	U	0.03		0.01		6						
R4S	5/24/2006	10.3		U	0.03		0.01		6				12.9	6.75	1,704
R4S	9/28/2006	11	0.01	U	0.03		0.01		9.9				15.1	6.93	1,861
R4S	12/20/2006	8	0.00003		0.04		0.02		9.6				10.7	7.12	2,030
R4S	3/8/2007	9.4		U			0.03	Ш					11.8	7.53	1,888
R4S	6/6/2007	9.3		U			0.02	Ш					12.7	6.85	1,710
R4S	9/11/2007	10		U			0.02	Ш	8.3				17	7.14	1,952
R4S	12/28/2007	9.9	0.01	U	0.03		0.01	Ш	11.3				10.9	6.75	1,940
R4S	3/21/2008												10.9	6.84	2,100

Table A-3
Historical Groundwater Monitoring Results for the Former SPL Area: 2004 to 2010

Location ID	Sample Date	Chloride, tot (mg/L)	al	Cyanide, fre	ee	Cyanide, tot (mg/L)	al	Cyanide, Weak Acid Dissociable (WAD; mg/	9	Fluoride (mg/L)	Sulfate (mg/	L)	Temperature (°C)	рН	Specific conductivity (μS/cm)
R4S	6/20/2008	9.6		0.1	U	0.03		0.02		8.9	0.2	כ	15.4	6.81	1,781
R4S	9/26/2008												19.5	7.42	2,040
R4S	3/26/2009	10.1				0.0354		0.005	U	9.73			14.8	6.89	1,774
R4S	6/24/2009	12.8				0.334		0.0154		16.7			21.7	6.86	2,100
R4S	9/2/2009	0.5	J			0.173		0.0096		12.9			27.6	7.15	
R4S	12/17/2009	11.5				0.0417		0.0099		11.1			13.3	6.78	1,724
R4S	3/24/2010	9.73		0.005	U	0.0261		0.007		7.2			12.1	6.41	1,800
R4S	6/25/2010	9.54		0.0093		0.0455		0.0085		7.24			13	6.8	1,760
R4S	9/24/2010	12		0.0102		0.0291		0.005	U	9.62			14.1	6.65	1,875
R4S	12/20/2010	12.2		0.0082		0.0327		0.0054		8.86					

1 = Free and WAD Cyanide results for Location ID R-3 have been been swapped due to a laboratory database discrepancy (apparent column transposition) with the tabulated data that could not be verified with the original laboratory reports (unavailable at the time of publication).

J = estimated value

U = not detected

R = sample result rejected (quality assurance/quality control)

°C = degrees Celsius

 μ S/cm = microSiemen per centimeter

mg/L= milligram per liter

SPL = Spent Pot Liner

WAD = weak acid dissociable

Table A-4
Historical Groundwater Metals Results for the Former SPL Area: 2004 to 2010

Location ID	Sample Date	Arsenic, Dissolved (μg/L)		Calcium, Dissolved (μg	;/L)	¹ Chromiun Dissolved (μg/L)	-	¹Copper, Dissolved (μg/L)		Magnesium, Dissolved (μg/L)	¹ Nickel, Dissolved (μg/L)		Sodium, Dissolved (µg/L)
R1D	12/28/2005	5	U	118,000		5	U	10	U	63,600	20	U	129,000
R1S	12/28/2005	5	U	12,700		5	U	10	U	4,840	20	U	104,000
R1S	3/25/2009	1	U	12,000		2	U	2	U	4,720	1	U	79,900
R1S	6/24/2009	1	U	13,200		2	U	2	U	5,120	1	U	88,300
R1S	9/2/2009	1	U	14,100		2	U	2	U	5,500	1	U	91,800
R2	6/30/2004					5	U	10	U	16,500			31,200
R2	12/28/2005	5	U	30,200		5	U	10	U	14,000	20	U	31,400
R2	3/25/2009	1	U	27,400		2	U	3		12,400	1	U	28,900
R2	6/25/2009	1	U	32,600		2	U	2	U	14,100	1	U	32,300
R2	9/4/2009	1.25		34,200		2	U	2	U	15,500	2.14		29,700
R3	12/28/2005	85		447		232		20	U	332	102		8,590
R4D	12/28/2005	5	U	74,200		5	U	10	U	42,700	20	U	113,000
R4S	12/28/2005	5	U	85,100		5.2		10	U	41,900	20	U	368,000

J = estimated value

U = not detected

μg/L = microgram per liter

SPL = Spent Pot Liner

1 = February 4, 2014 update – Result values for chromium, copper, and nickel should be regarded as overestimates of actual concentrations due to method interference (see Appendix E).

ATTACHMENT B
GROUNDWATER DATA COLLECTED DURING
QUARTERLY MONITORING EVENTS SINCE 2011
BY MILLENNIUM BULK TERMINALS —
LONGVIEW, LLC

Table B-1
Groundwater Field Sampling Parameters for the Closed BMP Area: 2011 to Current

			Volume Purged		Specific Conductance	Temperature	Turbidity at Start of	Turbidity at End of
Location ID	Date	Sample ID	(liters)	рН	(μS/cm)	(°C)	Sampling, NTU	Sampling, NTU
RL-1S	3/2/2011	MBT-030211-08	3.5	5.82	234	9.47	43.2	34.5
RL-1S	5/10/2011	MBT-051011-08	3.2	5.75	373	9.93	42.9	89.0
RL-1S	7/27/2011	MBT-072711-15	6.5	4.12	366	11.47	19.7	17.7
RL-1S	10/6/2011	RL-1S-100611	4.0	6.34	410	12.13	8.89	17.3
RL-1S	1/12/2012	MBT-011212-15	9.5	7.38	244	8.54	80.3	24.8
RL-1S	4/5/2012	BMP-040512-07	9.5	7.98	176	9.16	41.4	52.3
RL-1S	7/12/2012	BMP-071212-07	6.6	4.96	273	11.83	18.4	20.2
RL-1S	10/4/2012	BMP-100412-01	1.9	6.40	313	12.30	83.3	15.9
RL-1S	2/13/2013	BMP-021313-06	4.7	6.11	206	10.85	18.4	18.9
RL-1S	4/24/2013	BMP-042413-07	4.7	5.85	175	10.06	9.7	9.4
RL-1S	7/17/2013	BMP-071713-06	4.7	5.61	248	11.51	59.7	32.9
					_			
RL-1D	3/3/2011	MBT-030311-13	18.2	6.55	1367	10.67	>1000	>1000
RL-1D	5/10/2011	MBT-051011-09	20.9	6.45	1324	11.09	>1000	>1000
RL-1D	7/26/2011	MBT-072611-08	19.0	6.27	1352	12.45	>1000	>1000
RL-1D	10/6/2011	RL-1D-100611	20.8	6.65	1268	12.40	354	61.9
RL-1D	1/11/2012	MBT-011112-08	17.0	7.34	1077	9.29	706	134
RL-1D	4/4/2012	BMP-040412-05	18.9	8.34	967	10.09	80.3	93.8
RL-1D	2/13/2013	BMP-021313-07	13.3	6.53	1318	10.85	>1000	53.7
RL-1D	4/24/2013	BMP-042413-08	15.1	6.47	1346	10.42	377.30	>1000
RL-1D	7/17/2013	BMP-071713-07	15.1	6.27	1321	11.87	161.00	114.0
RL-2S	3/4/2011	MBT-030411-17	24.6	9.86	6984	10.32	7.75	6.35
RL-2S	5/11/2011	MBT-051111-18	7.6	9.56	5241	10.79	2.86	17.1
RL-2S	7/27/2011	MBT-072711-16	6.5	9.65	6116	11.95	6.94	7.59
RL-2S	10/6/2011	RL-2S-100611	8.5	9.68	5470	13.03	5.54	6.75
RL-2S	1/12/2012	MBT-011212-16	5.7	10.56	7099	8.91	13.5	12.5
RL-2S	4/5/2012	BMP-040512-11	8.0	8.49	3246	10.39	25.7	27.8
RL-2S	7/12/2012	BMP-071212-09	6.0	9.53	5193	12.90	13.8	12.8
RL-2S	10/4/2012	BMP-100412-05	6.6	9.37	3250	13.04	22.0	6.36
RL-2S	2/13/2013	BMP-021313-08	5.7	9.10	5500	10.86	3.1	6.4

Table B-1
Groundwater Field Sampling Parameters for the Closed BMP Area: 2011 to Current

			Volume Purged		Specific Conductance	Temperature	Turbidity at Start of	Turbidity at End of
Location ID	Date	Sample ID	(liters)	рН	(μS/cm)	(°C)	Sampling, NTU	Sampling, NTU
RL-2S	4/24/2013	BMP-042413-10	5.7	9.75	4435	11.26	41.7	6.92
RL-2S	7/17/2013	BMP-071713-08	5.7	9.38	7259	12.02	4.3	2.47
RL-2D	3/3/2011	MBT-030311-12	2.6	6.92	4308	14.48	10.9	9.86
RL-2D	5/11/2011	MBT-051111-17	49.4	6.64	2366	11.20	2.60	2.86
RL-2D	7/26/2011	MBT-072611-11	47.5	6.49	2339	12.51	4.22	1.76
RL-2D	10/6/2011	RL-2D-100611	45.5	6.85	2596	11.72	5.15	5.65
RL-2D	1/11/2012	MBT-011112-11	48.3	7.71	2362	11.39	6.09	3.34
RL-2D	4/4/2012	BMP-040412-03	53.0	8.47	2069	10.85	8.20	11.5
RL-2D	7/11/2012	BMP-071112-03	45.4	6.54	2323	13.13	6.64	10.6
RL-2D	10/4/2012	BMP-100412-06	45.4	6.80	2740	11.84	14.9	22.8
RL-2D	2/12/2013	BMP-021213-04	45.4	6.61	3136	11.08	4.26	4.2
RL-2D	4/23/2013	BMP-042313-03	46.6	6.65	2451	11.43	1.32	1.83
RL-2D	7/16/2013	BMP-071613-03	45.4	6.48	2441	12.02	2.97	4.96
RL-3S	3/3/2011	MBT-030311-11	2.1	6.85	1071	10.05	11.7	6.57
RL-3S	5/11/2011	MBT-051111-15	3.5	6.73	1037	11.00	4.21	3.52
RL-3S	7/26/2011	MBT-072611-12	3.4	6.64	1583	15.81	8.40	2.72
RL-3S	10/6/2011	RL-3S-100611	2.8	6.91	1661	13.54	5.43	4.74
RL-3S	1/11/2012	MBT-011112-13	3.0	7.66	859	11.21	164	111
RL-3S	4/4/2012	BMP-040412-02	3.0	7.59	1189	9.41	80.3	64.7
RL-3S	7/11/2012	BMP-071112-04	3.2	6.77	1709	15.78	10.7	10.9
RL-3S	10/4/2012	BMP-100412-09	6.2	6.30	1224	14.25	5.48	5.48
RL-3S	2/13/2013	BMP-021313-09	4.8	6.70	1581	10.63	26.4	15.3
RL-3S	4/23/2013	BMP-042313-05	2.8	7.00	1309	13.29	7.38	13.27
RL-3S	7/16/2013	BMP-071613-04	4.5	6.78	1191	14.84	6.63	5.2
RL-3D	3/4/2011	MBT-030311-18	22.7	6.59	949	11.25	6.29	1000
RL-3D	5/11/2011	MBT-051111-16	26.6	6.59	935	13.85	>1000	>1000
RL-3D	7/27/2011	MBT-072711-17	19.0	6.43	1041	13.17	1000	>1000
RL-3D	10/6/2011	RL-3D-100611	18.2	6.65	1165	12.51	303	64.5

Table B-1
Groundwater Field Sampling Parameters for the Closed BMP Area: 2011 to Current

			Volume Purged		Specific Conductance	Temperature	Turbidity at Start of	Turbidity at End of
Location ID	Date	Sample ID	(liters)	рН	(μS/cm)	(°C)	Sampling, NTU	Sampling, NTU
RL-3D	1/12/2012	MBT-011212-17	18.9	7.55	985	9.71	217	168
RL-3D	4/5/2012	BMP-040512-09	18.9	8.26	886	11.32	79.8	80.2
RL-3D	7/12/2012	BMP-071212-10	17.0	6.51	1156	13.97	47.1	47.8
RL-3D	10/4/2012	BMP-100412-08	19.8	7.29	1130	12.80	>1000	602
RL-3D	2/13/2013	BMP-021313-10	17.0	6.75	1072	11.13	97.24	81.8
RL-3D	4/24/2013	BMP-042413-11	17.0	6.73	1158	12.14	250.1	64.2
RL-3D	7/17/2013	BMP-071713-11	17.0	6.52	1176	13.29	133.5	116
RL-4S	3/3/2011	MBT-030311-14	9.1	7.00	526	10.77	188	165
RL-4S	5/11/2011	MBT-051111-14	9.5	6.51	574	12.19	68.3	88.9
RL-4S	7/27/2011	MBT-072711-18	8.0	6.29	548	15.49	44.2	131
RL-4S	10/6/2011	RL-4S-100611	6.0	6.55	506	16.34	42.2	147
RL-4S	1/12/2012	MBT-011212-18	7.6	7.28	459	10.55	108	99.1
RL-4S	4/5/2012	BMP-040512-06	7.6	9.87	400	10.08	137	113
RL-4S	7/12/2012	BMP-071212-11	7.0	6.36	543	15.10	46	68
RL-4S	10/4/2012	BMP-100412-10	5.7	7.48	476	17.83	36.6	35.4
RL-4S	2/13/2013	BMP-021313-11	8.5	6.60	427	11.04	105	77
RL-4S	4/24/2013	BMP-042413-12	8.5	6.54	520	12.41	52.46	59.08
RL-4S	7/17/2013	BMP-071713-12	8.5	6.46	560	15.63	70.71	49.38
RL-4D	3/3/2011	MBT-030311-10	64.4	6.43	705	12.64	696	733
RL-4D	5/11/2011	MBT-051111-13	60.8	6.38	668	13.08	19.9	23.8
RL-4D	7/26/2011	MBT-072611-14	58.9	6.24	653	13.90	18.7	15.3
RL-4D	10/6/2011	RL-4D-100611	56.8	6.62	674	13.30	1710	1676
RL-4D	1/11/2012	MBT-011112-14	60.6	6.95	557	12.86	1000	874
RL-4D	4/4/2012	BMP-040412-01	64.4	9.98	507	12.76	>1000	>1000
RL-4D	7/11/2012	BMP-071112-06	60.6	6.32	643	14.30	993	1000
RL-4D	10/4/2012	BMP-100412-11	56.7	6.76	633	13.55	321	>1000
RL-4D	2/13/2013	BMP-021313-12	60.2	6.19	653	12.79	138	86
RL-4D	4/23/2013	BMP-042313-06	60.2	6.50	653	13.40	405	302
RL-4D	7/16/2013	BMP-071613-05	56.8	6.44	667	14.08	327	311

Table B-1
Groundwater Field Sampling Parameters for the Closed BMP Area: 2011 to Current

Location ID	Date	Sample ID	Volume Purged (liters)	рН	Specific Conductance (μS/cm)	Temperature (°C)	Turbidity at Start of Sampling, NTU	Turbidity at End of Sampling, NTU
RL-5	3/4/2011	MBT-030311-15	2.4	6.22	625	9.37	20.1	21.1
RL-5	5/10/2011	MBT-051011-12	2.0	6.61	618	13.95	13.1	12.9
RL-5	7/26/2011	MBT-072611-13	2.4	5.90	638	13.92	11.7	8.01
RL-5	10/7/2011	RL-5-100711	5.7	6.49	628	11.01	105	15.0
RL-5	1/11/2012	MBT-011112-12	3.3	8.57	598	10.73	22.2	21.6
RL-5	4/5/2012	BMP-040512-12	5.1	7.79	387	10.42	25.4	24.9
RL-5	7/12/2012	BMP-071212-12	9.5	6.18	655	12.41	16.0	12.6
RL-5	10/4/2012	BMP-100412-12	4.9	6.10	609	10.27	9.83	24.8
RL-5	2/12/2013	BMP-021213-05	3.6	6.17	597	10.35	11.8	8.34
RL-5	4/23/2013	BMP-042313-04	3.0	6.57	581	13.69	14.56	13.47
RL-5	7/17/2013	BMP-071713-09	9.5	6.25	709	11.47	8.84	8.92

°C = degrees Celsius

 μ S/cm = microSiemens per centimeter

BMP = Black Mud Pond

NTU = nephelometric turbidity units

Table B-2
Groundwater Monitoring Results for Closed BMP Area: 2011 to Current

	,		1	r							_	_					_						
																l							
			Total	WAD	Free							- 1	Dissolve	- 1	Dissolved	Dissolved	Dissolv		Dissolve		Dissolved	וןי	Dissolved
Location ID	Camaria ID	Data	Cyanide	Cyanide	Cyanid		Fluorio	- 1	Fluoride Analytical	Chloride			Arsenio		Calcium	¹Chromium	¹Copp		Magnesiu	ım	¹ Nickel		Sodium
Location ID	Sample ID	Date	(mg/L)	(mg/L)	(mg/L)		(mg/l	-)	Method	(mg/L)	(mg/L	'	(μg/L)	_	(μg/L)	(μg/L)	(μg/L)	(μg/L)		(μg/L)		(μg/L)
RL-1S	MBT-030211-08	3/2/2011		0.00500 U		-	2.59	Н	USEPA 300.0/9056A	2.84	12.9	+	0.567	1	7550	0.500 J	11.6	+	3460		4.49	_	39600
RL-1S RL-1S	MBT-051011-08	5/10/2011 7/27/2011	0.00500 U	0.00500 U	0.00500	-		Н	USEPA 300.0/9056A	2.15	11.2 4.54	+	0.800	1	6980	1.66 J 1.70 J	17.4 2.51	+.	3300 5350		8.92 5.04		71500 83100
RL-13	MBT-072711-15 RL-1S-100611	10/6/2011	0.00800	0.00500	0.00500	-	7.42 9.79		USEPA 300.0/9056A USEPA 300.0/9056A	3.05	1.88	+	0.889	,	11400 13600	2.32 U	4.00	11	6390		2.71		100000
RL-13	MBT-011212-15	1/12/2012	0.0154 0.00500 U		+	_	3.20	Н	USEPA 300.0/9056A	3.73	12.2	+	0.967	,	9230	0.789 J	3.87	+	4230		4.19	_	45200
RL-13	BMP-040512-07	4/5/2012		0.00500 U	+	-	7.78	Н	SM4500-F-C (probe)		10.2	+	0.600	,	6630	1.07	14.8	+,	2860		6.16	_	63900
RL-1S	BMP-071212-07	7/12/2012		0.00500 U	-	-	3.76		SM4500-F-C (probe)	3.48	5.29	-	1.22	_	12500	1.31 J	1.28	+	5590		5.28	_	51600
RL-1S	BMP-100412-01	10/4/2012		0.00670	0.00500	-	16.3	Н	SM4500-F-C (probe)		1.00	╗	1.56	1	15300	1.74 J	2.00	11	7290	H	2.84		111000
RL-1S	BMP-021313-06			0.00500 U	0.00300	-	1.88	\vdash	SM4500-F-C (probe)		9.71	┧	0.500	11	9610	0.500 U	1.38	۱Ť	4550	-	3.00		31200
RL-1S	BMP-042413-07	4/24/2013		0.00500 U	+	-	1.60		SM4500-F-C (probe)	2.81	10.80	\dashv	0.370	Ť	9260	0.500 U	1.71	Ť	4400		2.86	_	29700
RL-1S	BMP-071713-06			0.00500 U	+	_	2.83		SM4500-F-C (probe)		2.68	\dashv	0.323		13900	0.811 J	1.00	U	6400		2.06		43100
NE 13	DIVII 071713 00	7/17/2013	0.00330	0.00300 0	0.00200	U	2.03		3141-300 T C (probc)	2.77	2.00		0.323		13300	0.011 3	1.00	10	0400		2.00		43100
RL-1D	MBT-030311-13	3/3/2011	0.0150 U	0.00500 LU	0.00500	U	1.00	U	USEPA 300.0/9056A	2.82	1.00	υĪ	1.32	J	134000	0.244 J	0.411	IJ	63200		1.53	J	26000
RL-1D	MBT-051011-09			0.0150 U	+	\vdash		\vdash	•	2.69	1.00	U	1.18	j	117000	1.36 J	0.578	1	60500		0.678		24800
RL-1D	MBT-072611-08	7/26/2011	0.0150 U		0.00500	_		R	SM4500-F (probe)	2.74	1.00	U	1.37	j	111000	2.0 U	4.00	U	58900		0.900		23900
RL-1D	RL-1D-100611	10/6/2011		0.00500 U	+	-	_		SM4500-F (probe)	2.85	1.00	υ	1.20	j	122000	2.0 U	4.00	U	58900		1.09	_	24000
RL-1D	MBT-011112-08	1/11/2012		0.00500 U	-	-			SM4500-F (probe)	2.77	1.00	υ	1.04	Ť	130000	1.72	4.00	U	63100		1.62		24300
RL-1D	BMP-040412-05	- 1		0.00500 U	-	-			SM4500-F-C (probe)	2.16	1.00	U	1.31	J	125000	1.59 J	4.00	U	62400		2.28		25100
RL-1D	BMP-071212-08			0.00500 U	+	-			SM4500-F-C (probe)	2.80	1.00	U	1.39	J	120000	0.844 J	2.00	U	59500		2.54		24800
RL-1D	BMP-100412-02	10/4/2012	0.00500 U	0.00500 U	0.00500	U	0.357		SM4500-F-C (probe)	2.86	1.00	U	0.967	J	250000	4.00 U	2.00	U	122000		1.73	J	24500
RL-1D	BMP-021313-07	2/13/2013	0.00500 U	0.00500 U	0.00200	U	0.313		SM4500-F-C (probe)	2.88	1.00	U	0.967	J	114000	0.856 J	1.00	U	60300		1.71	J	24800
RL-1D	BMP-042413-08	4/24/2013	0.00500 U	0.00500 U	0.00200	U	0.256		SM4500-F-C (probe)	2.85	1.00	U	1.180	J	126000	0.678 J	1.00	U	66000		1.00	J	25500
RL-1D (FD)	BMP-042413-09	4/24/2013	0.00500 U	0.00500 U	0.00200	U	0.262		SM4500-F-C (probe)	2.83	1.00	U	1.140	J	120000	0.711 J	1.00	U	62600		1.17	l	26100
RL-1D	BMP-071713-07	7/17/2013	0.00500 U	0.00500 U	0.00200	U	0.306		SM4500-F-C (probe)	2.79	1.00	U	0.989	J	120000	1.340 J	1.00	U	58600		1.79	l	24000
RL-2S	MBT-030411-17	3/4/2011	29.0	0.0501	0.00500	U	117		USEPA 300.0/9056A	42.0	297		12.2	J	1690	22.9	3.11	J	342	J	22.9	7	755000
RL-2S			15.7	0.0398	0.00500		69.1		USEPA 300.0/9056A		146		19.7		5750	31.8	4.39	J	1060		27.1		200000
RL-2S	MBT-072711-16	7/27/2011	12.4	0.140	0.00220	J	57.1		USEPA 300.0/9056A	31.8	127		2.82		1080	5.97	1.00	J	199		4.5	1	160000
RL-2S	RL-2S-100611	10/6/2011	21.3	0.106	0.03220		72.3		USEPA 300.0/9056A	39.4	164		19.5		4510	35.8	20.0	U	882		26.1	1	.040000
RL-2S	MBT-011212-16	1/12/2012	26.4	0.184	0.00500	U	1.75		USEPA 300.0/9056A	1.06	5.57		37.6		9680	94.9	40.0	U	3210		77.9	2	230000
RL-2S	BMP-040512-11	4/5/2012	8.82	0.0740	0.00500	U	26.2		SM4500-F-C (probe)	14.1	69.0		16.1		5210	33.9	7.14		1310		25.5	9	960000
RL-2S	BMP-071212-09	- 1	15.1	0.116	0.00500	-	58.6		SM4500-F-C (probe)		157		33.0		11900	56.7	2.00	U	2420		57.6	_	480000
RL-2S	BMP-100412-05		19.2	0.0248	0.00500	-	69.4		SM4500-F-C (probe)		166		34.0		9730	66.7	20.0	U	2140		65.9		750000
RL-2S	BMP-021313-08		11.0	0.0334	0.00200	_	81.4	Ш	SM4500-F-C (probe)	34.8	186		23.3		8910	51.2	9.51		2560	oxdot	33.8	_	160000
RL-2S	BMP-042413-10	4/24/2013	23.6	0.0373	0.00200	U	86.3		SM4500-F-C (probe)	42.4	225		41.6		11900	92.5	12.60	J	3180		69.0	2	260000
RL-2S	BMP-071713-08	7/17/2013	12.5	0.0471	0.00200	U	83.8		SM4500-F-C (probe)	54.3	214		33.0	J	9830	66.8	22.50	U	3430		50.2	1	970000
RL-2D	MBT-030311-12	3/3/2011	0.880	0.0278	0.00500	-			USEPA 300.0/9056A		42.0		10.0	J	79800	13.1 J	40.0	U			13.6		923000
RL-2D	MBT-051111-17	5/11/2011	0.228	0.0103	0.00500	U	9.83		USEPA 300.0/9056A	30.1	15.4		3.94		70600	4.66	0.578	J	36400		4.07	4	469000
RL-2D	MBT-072611-11	7/26/2011	0.258	0.0106 U	0.00500	UJ	8.04		USEPA 300.0/9056A	28.5	10.4		2.69		73600	2.64	0.322	J	39700		2.71	2	284000
RL-2D	RL-2D-100611	10/6/2011	0.562	0.0205	0.00500	-	10.4		USEPA 300.0/9056A	35.2	15.7		5.84		66700	9.97	4.00	U	32300		6.63	5	590000
RL-2D	MBT-011112-11	1/11/2012	0.208	0.0128	0.00500	U	10.8	J	USEPA 300.0/9056A	31.8	15.2		3.72		72200	3.78 J	4.00	U	36800		6.76	4	491000

Table B-2
Groundwater Monitoring Results for Closed BMP Area: 2011 to Current

Coation D Sample D Date Cyanide					1	1			The suits for C		_			1	1	1		ı	
Control Cont																			
R. 2D MP -							- 1					1			1.	l -		_	
R.2 D	Location ID	Comple ID	Data	•	1 -	1 -			•	1	1				1		_		Sodium
RL2D [FD] MMP-0711027 102 0.0050 0 0.0050 0 0.0050 0 0.02 0.0050 0 0.02 0.0050 0 0.02 0.0050 0 0.02 0.0050 0 0.02 0.0050 0 0.02 0.0050 0 0.02 0.0050 0 0.02 0.0050 0 0.02 0.0050 0		•					_				_		,						(μg/L)
R1-2D BMP-071112-03 7/11/2012 1.02 0.0230 0.00500 U 10.2 SMM-500-I (probe) 33.6 12.6 S.11 73900 6.47 2.00 U 33300 8.53 ST R1-2D BMP-100412-07 10/4/012 0.115 0.0129 0.00500 U 3.37 SMM-500-I (probe) 32.5 17.4 4.72 J 75100 4.56 J 1.00 U 35900 1.01.5 ST R1-2D SMP-100412-07 10/4/012 0.115 0.0129 0.00500 U 13.3 SMM-500-I (probe) 32.5 B.1 4.83 J 75500 3.89 J 1.00 U 35900 1.01.1 ST ST ST ST ST ST ST S					+	_	-					_	1,						691000 680000
RI-2D BMP-100412-06 10/4/2012 0.112 0.0200 U 0.05500 U 13.7 SMM-500-F (probe) 22.5 17.4 4.72 75100 4.56 J 10.0 U 36800 10.5 SFR RI-2D BMP-00412-3-04 2/12/2013 0.239 0.0196 0.00200 U 16.6 SMM-500-F (probe) 40.4 27.6 7.66 60500 12.4 1.47 31800 7.74 7.7 RI-2D BMP-00412-3-03 2/72/2013 0.239 0.0196 0.00200 U 16.6 SMM-500-F (probe) 40.4 27.6 7.66 60500 12.4 1.47 31800 7.74 7.7 RI-2D BMP-00412-3-03 2/72/2013 0.464 0.0135 0.00200 U 10.3 SMM-500-F (probe) 35.2 15.9 1.3 1.3 7.7 7	` '					-	_					_	+-						584000
RL-2D BMP-010412-07 30/4/2012 0.115 0.0129 0.00500 U 1.57 SMM500F (probe) 32.5 18.1 4.83 J 73500 3.89 U 0.0 U 35900 1.0 1.55 1.59 1.50 1.5						_	-			+ +		_	١.						563000
Ri 2D BMP 021213 04 2/12/2013 0.239 0.0196 0.00200 U 16.6 SMM500F (probe) 40.4 27.6 7.66 6.9500 12.4 1.47 31800 7.74 7.75						+	-			+ +	+ +	_	H						580000
R1-2D BMP-071613-03 A/23/2013 0.0891 0.0142 0.00400 12.3 SMM500F (probe) 35.2 15.9 3.81 73200 4.89 1.00 U 35400 3.9 47 R1-2D BMP-071613-03 7/16/2013 0.0464 0.0135 0.00200 U 10.3 SMM500F (probe) 34.0 14.1 3.9 76900 S.11 1.00 U 35200 3.79 46 A84 A8	` '					-	_					_	╁						711000
Ri-3D BMP-071613-03 7/16/2013 0.464 0.0135 0.00200 U 10.3 SM4500-F (probe) 34.0 14.1 3.9 76900 5.11 1.00 U 35200 3.79 44.0 Ri-3S MBF-030311-11 3/3/2011 0.0226 0.00840 0.00500 U 3.07 USEPA 300.0/9056A 9.72 1.00 U 12.9 62300 2.00 U 0.0311 J 31400 1.66 J 17.0 L 17.0							\vdash						+						478000
RL-35 MBT-03031-11 3/3/2011 0.0226 0.00840 0.00500 U 3.07 USEPA 300.0/9056A 9.72 1.00 U 12.9 62300 2.00 U 0.311 J 31400 1.66 J 1.78 RL-35 MBT-05111-15 5/11/2011 0.0297 0.00500 U 0.00500 U 3.62 USEPA 300.0/9056A 9.92 1.00 U 12.9 57000 1.51 J 0.322 J 27100 1.23 J 1.79 RL-35 MBT-072611-12 7/26/2011 0.0272 0.00500 U 0.00500 U 6.09 USEPA 300.0/9056A 1.0 U 10.0 U 10.4 58600 2.0 U 4.00 U 32600 1.77 J 2: RL-35 MBT-072611-12 7/26/2011 0.0272 0.00740 0.00500 U 4.12 USEPA 300.0/9056A 1.0 1.06 U 10.4 58600 2.0 U 4.00 U 32600 1.77 J 2: RL-35 MBT-01112-13 J1/1/2012 0.0245 0.00670 0.00500 U 1.29 J USEPA 300.0/9056A 1.0 1.66 L 1.76 65700 2.0 U 4.00 U 33300 3.76 L 1.8 L 1.76 65700 2.0 U 4.00 U 33300 3.76 L 1.8 L 1.76 65700 2.0 U 4.00 U 33300 3.76 L 1.8 L 1.76 65700 2.0 U 4.00 U 33300 3.76 L 1.8 L 1.76 L 1.							-			+ +	+ +	_	+						466000
RL3S MBT-05111-15 5/11/2011 0.0297 0.00500 U 0		51111 07 1010 00	7/10/2013	0.101	0.0200	0.00200		20.0	51111300 1 (p1000)	7 5 7	1 1	1 0.5		70500	0.22	1.00	33233	0.75	1 100000
RL3S MBT-05111-15 5/11/2011 0.0297 0.00500 U 0.00500 U 0.00500 U 0.00500 U USEPA 300.0/9056A 9.92 1.00 U 1.29 57000 1.51 J 0.322 J 27100 1.23 J 1.0 RL3S MBT-072611-12 7/26/2011 0.00212 0.00500 U 0	RL-3S	MBT-030311-11	3/3/2011	0.0226	0.00840	0.00500	U	3.07	USEPA 300.0/9056A	9.72	1.00	J 12.9	1	62300	2.00 U	0.311 J	31400	1.66	J 172000
RL-3S MBT-072611-12 7/26/2011 0.0022 0.0050 U 0.00500 U						-	_					_	1						J 155000
RL3S RL3S-100611 10/6/2011 0.0271 0.00740 0.00500 U 4.12 USEPA 300.0/9056A 1.0.5 1.4.6 17.6 65700 2.0 U 4.00 U 27700 1.8.4 J 14.6.1		MBT-072611-12					_					_	T						J 253000
RL-3S BMP-040412-02 4/4/2012 0.0354 J 0.0129 0.00500 U 7.38 SM4500-F (probe) 17.3 1.00 U 9.42 84300 1.77 J 4.00 U 43200 4.53 2.00 RL-3S BMP-071112-04 7/11/2012 0.0520 0.0138 0.00500 U 7.59 SM4500-F (probe) 18.5 1.00 U 8.16 79200 1.38 J 2.00 U 41300 6.03 2t 8.00500 U 7.59 SM4500-F (probe) 18.5 1.00 U 1.00 U 1.00 U 1.15 1.00 U 1.15 1.00 U 1.10 U 1.15 1.00 U 1.10 U 1.15 1.00 U 1.10 U 1.1	RL-3S	RL-3S-100611	10/6/2011	0.0271	0.00740	0.00500	U	4.12	USEPA 300.0/9056A	10.5	1.46	17.6	1	65700	2.0 U	4.00 U	27700	1.84	J 164000
RL-3S BMP-071112-04 7/11/2012 0.0520 0.0138 0.00500 U 7.59 SM4500-F (probe) 18.5 10.0 U 8.16 79200 1.38 J 2.00 U 41300 6.03 26 RL-3S (FD) BMP-071112-05 7/11/2012 0.0529 0.0136 0.00500 U 7.68 SM4500-F (probe) 18.3 10.0 U 8.09 75300 1.32 J 2.00 U 40500 5.84 32 RL-3S BMP-00012-09 10/4/2012 0.0349 0.00500 U 0.0349 0.00500 U 0.768 SM4500-F (probe) 11.5 1.00 U 12.1 64000 0.933 J 2.00 U 30100 3.04 11 RL-3S BMP-021313-09 2/13/2013 0.0349 0.00500 U 0.00500 U 0.775 SM4500-F (probe) 11.5 1.00 U 12.1 64000 0.933 J 2.00 U 30100 3.04 11 RL-3S BMP-021313-09 2/13/2013 0.0448 0.00630 0.00200 U 7.75 SM4500-F (probe) 17.2 2.17 8.97 83400 1.220 J 1.00 U 46500 2.20 2.30 RL-3S BMP-021313-09 4/3/2013 0.0448 0.00630 0.00200 U 9.98 SM4500-F (probe) 10.9 13.90 7.33 52200 0.733 J 1.00 U 30800 1.62 J 18 RL-3S BMP-071613-04 7/16/2013 0.0468 0.00910 0.00200 U 13.0 SM4500-F (probe) 8.85 13.0 6.66 36600 1.280 J 1.00 U 21200 1.41 J 1.00 U 30800 1.62 J 18 RL-3S BMP-071613-04 7/16/2013 0.0468 0.00910 0.00200 U 1.30 SM4500-F (probe) 8.85 13.0 6.66 J 99900 2.00 U 0.378 J 1.00 U 21200 1.41 J 1.00 U 30800 1.62 J 18 RL-3D MBT-03111-16 5/11/2011 0.0350 U 0.00500 U 0.00500 U 0.05500 U 0.05	RL-3S	MBT-01112-13	1/11/2012	0.0245	0.00670	0.00500	U	2.95	J USEPA 300.0/9056A	11.2	3.56	6.13		71200	1.02	4.00 U	33300	3.76	152000
RL-3S (FD) BMP-071112-05 7/11/2012 0.0529 0.0136 0.00500 U 7.68 SM4500-F (probe) 18.3 10.0 U 8.09 75300 1.32 J 2.00 U 40500 5.84 22 RL-3S BMP-100412-09 10/4/2012 0.0349 0.00960 0.00500 U 6.28 SM4500-F (probe) 11.5 1.00 U 12.1 64000 0.933 J 2.00 U 30100 3.04 18 RL-3S BMP-042313-09 2/13/2013 0.0393 0.0166 0.00200 U 7.75 SM4500-F (probe) 17.2 2.17 8.97 83400 1.220 J 1.00 U 46500 2.20 U 2.23 RL-3S BMP-042313-05 4/23/2013 0.0448 0.00630 0.00200 U 7.75 SM4500-F (probe) 19.9 13.90 7.33 52200 0.733 J 1.00 U 30800 1.62 J 18 RL-3S BMP-042313-05 4/23/2013 0.0448 0.00630 0.00200 U 13.0 SM4500-F (probe) 19.9 13.90 7.33 52200 0.733 J 1.00 U 30800 1.62 J 18 RL-3S BMP-042313-05 4/23/2013 0.0468 0.00910 0.00200 U 13.0 SM4500-F (probe) 8.85 13.0 6.66 36600 1.280 J 1.00 U 21200 1.41 J 1.00 U 1.64 RL-3D MBT-030411-18 5/11/2011 0.00500 U 0.00500 U 0.00500 U 0.05500	RL-3S	BMP-040412-02	4/4/2012	0.0354	J 0.0129	0.00500	UJ	7.38	SM4500-F (probe)	17.3	1.00 l	J 9.42		84300	1.77 J	4.00 U	43200	4.53	243000
RL-3S BMP-100412-09 10/4/2012 0.0349 0.00960 0.00500 U 6.28 SM4500-F (probe) 11.5 1.00 U 12.1 64000 0.933 J 2.00 U 30100 3.04 12. RL-3S BMP-021313-09 2/13/2013 0.0393 0.03060 0.00200 U 7.75 SM4500-F (probe) 17.2 2.17 8.97 83400 1.220 J 1.00 U 46500 2.20 22. RL-3S BMP-021313-09 4/23/2013 0.0448 0.00630 0.00200 U 9.98 SM4500-F (probe) 10.9 13.90 7.33 52200 0.733 J 1.00 U 30800 1.62 J 11. RL-3S BMP-071613-04 7/16/2013 0.0468 0.00910 0.00200 U 3.0 SM4500-F (probe) 8.85 13.0 6.66 36600 1.280 J 1.00 U 21200 1.41 J 1.00 U 30800 1.62 J 11. RL-3S BMP-030411-18 3/4/2011 0.00500 U	RL-3S	BMP-071112-04	7/11/2012	0.0520	0.0138	0.00500	U	7.59	SM4500-F (probe)	18.5	10.0 l	J 8.16		79200	1.38 J	2.00 U	41300	6.03	260000
RL-3S BMP-021313-09 2/13/2013 0.0393 0.01060 0.00200 U 7.75 SM4500-F (probe) 17.2 2.17 8.97 83400 1.220 J 1.00 U 46500 2.20 2: RL-3S BMP-042313-05 4/23/2013 0.0448 0.00630 0.00200 U 9.98 SM4500-F (probe) 10.9 13.90 7.33 52200 0.733 J 1.00 U 30800 1.62 J 18 RL-3S BMP-071613-04 7/16/2013 0.0468 0.00910 0.00200 U 1.00 SM4500-F (probe) 8.85 13.0 6.66 3600 1.280 J 1.00 U 21200 1.41 J 1.00 U 2.00 U	RL-3S (FD)	BMP-071112-05	7/11/2012	0.0529	0.0136	0.00500	U	7.68	SM4500-F (probe)	18.3	10.0 l	J 8.09		75300	1.32 J	2.00 U	40500	5.84	255000
RL-3S BMP-042313-05 4/23/2013 0.0448 0.00630 0.00200 U 9.98 SM4500-F (probe) 10.9 13.90 7.33 52200 0.733 J 1.00 U 30800 1.62 J 18 RL-3S BMP-071613-04 7/16/2013 0.0468 0.00910 0.00200 U 13.0 SM4500-F (probe) 8.85 13.0 6.66 36600 1.280 J 1.00 U 21200 1.41 J 1.00 U 21200 1.41 J 1.00 U 30800 1.62 J 1.00 U 30800 1.00 U 30800 I 30800	RL-3S	BMP-100412-09	10/4/2012	0.0349	0.00960	0.00500	U	6.28	SM4500-F (probe)	11.5	1.00	J 12.1		64000	0.933 J	2.00 U	30100	3.04	181000
RL-3D MBT-030411-18 3/4/2011 0.00500 U 0.00500 U 0.00500 U 1.00 U USEPA 300.0/9056A 3.90 1.00 U 1.66 J 99900 2.00 U 0.378 J 51900 1.19 J 3 RL-3D MBT-051111-16 5/11/2011 0.0300 U 0.0150 U 0.00500 U 0.00500 U 0.00500 U 0.0550 U 0	RL-3S	BMP-021313-09	2/13/2013	0.0393	0.01060	0.00200	U	7.75	SM4500-F (probe)	17.2	2.17	8.97		83400	1.220 J	1.00 U	46500	2.20	233000
RL-3D MBT-030411-18 3/4/2011 0.00500 U 0.00500 U 0.00500 U 1.00 U USEPA 300.0/9056A 3.90 1.00 U 1.66 J 99900 2.00 U 0.378 J 51900 1.19 J 3 RL-3D MBT-051111-16 5/11/2011 0.0300 U 0.0150 U 0.00500 U 0.00500 U 0.0500 U 0.0	RL-3S	BMP-042313-05	4/23/2013	0.0448	0.00630	0.00200	U	9.98	SM4500-F (probe)	10.9	13.90	7.33		52200	0.733 J	1.00 U	30800	1.62	J 181000
RL-3D MBT-051111-16 5/11/2011 0.0300 U 0.0150 U 0.00500 J 1.00 U USEPA 300.0/9056A 3.67 1.00 U 1.58 J 101000 1.36 J 0.300 J 50800 0.489 J 3 RL-3D MBT-072711-17 7/27/2011 0.0150 U 0.0150 U 0.00500 U 0.00500 U 0.023 J SM4500-F (probe) 3.33 1.00 U 1.42 J 100000 2.0 U 0.511 J 52100 0.767 J 2 RL-3D MBT-011212-17 1/12/2012 0.00500 U 0.00500 U 0.00500 U 0.0500 U 0.457 SM4500-F (probe) 3.63 1.00 U 1.48 J 118000 2.0 U 4.00 U 54900 1.40 J 2 RL-3D MBT-011212-17 1/12/2012 0.00500 U 0.00500 U 0.00500 U 0.457 SM4500-F (probe) 3.99 1.00 U 1.21 108000 1.14 4.00 U 52700 1.93 J 3 RL-3D BMP-040512-09 4/5/2012 0.00500 U 0.00500 U 0.00500 U 0.00500 U 0.314 SM4500-F (probe) 4.14 1.00 U 1.79 113000 1.00 U 2.00 U 55200 1.73 J 3 RL-3D BMP-100412-08 10/4/2012 0.00500 U 0.00500 U 0.00500 U 0.368 SM4500-F (probe) 3.87 1.00 U 1.32 J 117000 0.589 J 2.00 U 55800 1.87 J 3 RL-3D BMP-0421313-10 2/13/2013 0.00500 U 0.00500 U 0.00500 U 0.0368 SM4500-F (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 55800 1.83 J 3 RL-3D BMP-042413-11 4/24/2013 0.00500 U 0.00500 U 0.00500 U 0.316 SM4500-F (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 55800 1.83 J 3 RL-3D BMP-042413-11 4/24/2013 0.00500 U 0.00500 U 0.00500 U 0.3016 SM4500-F (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 52600 1.83 J 3 RL-3D BMP-042413-11 4/24/2013 0.00500 U 0.00500 U 0.00500 U 0.3016 SM4500-F (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 52600 1.83 J 3 RL-3D BMP-071713-11 7/17/2013 0.00500 U 0.0	RL-3S	BMP-071613-04	7/16/2013	0.0468	0.00910	0.00200	U	13.0	SM4500-F (probe)	8.85	13.0	6.66		36600	1.280 J	1.00 U	21200	1.41	J 171000
RL-3D MBT-051111-16 5/11/2011 0.0300 U 0.0150 U 0.00500 J 1.00 U USEPA 300.0/9056A 3.67 1.00 U 1.58 J 101000 1.36 J 0.300 J 50800 0.489 J 3 RL-3D MBT-072711-17 7/27/2011 0.0150 U 0.0150 U 0.00500 U 0.00500 U 0.023 J SM4500-F (probe) 3.33 1.00 U 1.42 J 100000 2.0 U 0.511 J 52100 0.767 J 2 RL-3D MBT-011212-17 1/12/2012 0.00500 U 0.00500 U 0.00500 U 0.0500 U 0.457 SM4500-F (probe) 3.63 1.00 U 1.48 J 118000 2.0 U 4.00 U 54900 1.40 J 2 RL-3D MBT-011212-17 1/12/2012 0.00500 U 0.00500 U 0.00500 U 0.457 SM4500-F (probe) 3.99 1.00 U 1.21 108000 1.14 4.00 U 52700 1.93 J 3 RL-3D BMP-040512-09 4/5/2012 0.00500 U 0.00500 U 0.00500 U 0.00500 U 0.314 SM4500-F (probe) 4.14 1.00 U 1.79 113000 1.00 U 2.00 U 55200 1.73 J 3 RL-3D BMP-100412-08 10/4/2012 0.00500 U 0.00500 U 0.00500 U 0.368 SM4500-F (probe) 3.87 1.00 U 1.32 J 117000 0.589 J 2.00 U 55800 1.87 J 3 RL-3D BMP-0421313-10 2/13/2013 0.00500 U 0.00500 U 0.00500 U 0.0368 SM4500-F (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 55800 1.83 J 3 RL-3D BMP-042413-11 4/24/2013 0.00500 U 0.00500 U 0.00500 U 0.316 SM4500-F (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 55800 1.83 J 3 RL-3D BMP-042413-11 4/24/2013 0.00500 U 0.00500 U 0.00500 U 0.3016 SM4500-F (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 52600 1.83 J 3 RL-3D BMP-042413-11 4/24/2013 0.00500 U 0.00500 U 0.00500 U 0.3016 SM4500-F (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 52600 1.83 J 3 RL-3D BMP-071713-11 7/17/2013 0.00500 U 0.0																			
RL-3D MBT-072711-17 7/27/2011 0.0150 U 0.0150 U 0.00500						_	-		-			_	J						J 35300
RL-3D RL-3D-100611 10/6/2011 0.00500 U 0.00500						+	-				+ +	_	J						J 30600
RL-3D MBT-011212-17 1/12/2012 0.00500 U 0.00500 U 0.00500 U 0.00500 U 0.0457 SM4500-F (probe) 3.99 1.00 U 1.21 108000 1.14 4.00 U 52700 1.93 J 3 RL-3D BMP-040512-09 4/5/2012 0.00500 U 0.00500 U 0.00500 U 0.00500 U 0.0470 SM4500-F-C (probe) 4.14 1.00 U 1.79 113000 1.00 2.00 U 55200 1.73 J 3 RL-3D BMP-071212-10 7/12/2012 0.00500 U 0.005						-	_		" '		-	_	J						J 29600
RL-3D BMP-040512-09 4/5/2012 0.00500 U 0.00500							_						ı						J 29000
RL-3D BMP-071212-10 7/12/2012 0.00500 U 0.0050													_					1.93	J 33400
RL-3D BMP-100412-08 10/4/2012 0.00500 U 0.0050													+-		+ +	t			
RL-3D BMP-021313-10 2/13/2013 0.00500 U 0.00500 U 0.00500 U 0.00200 U 0.316 SM4500-F-C (probe) 3.86 1.00 U 1.14 J 102000 0.922 J 1.00 U 52600 1.83 J 3 RL-3D BMP-042413-11 4/24/2013 0.00500 U 0.00500 U 0.00500 U 0.00200 U 0.301 SM4500-F-C (probe) 3.74 1.00 U 0.522 J 109000 0.589 J 1.73 J 45200 0.83 J 2 RL-3D BMP-071713-11 7/17/2013 0.00500 U 0.00500 U 0.00500 U 0.00200 U 0.260 SM4500-F-C (probe) 3.69 1.00 U 1.29 J 110000 1.00 J 1.00 U 52400 1.38 J 2 RL-4S MBT-030311-14 3/3/2011 0.00500 U 0.00							_				+ +	_	1						32800
RL-3D BMP-042413-11 4/24/2013 0.00500 U 0.00500 U 0.00500 U 0.00500 U 0.00200 U 0.301 SM4500-F-C (probe) 3.74 1.00 U 0.522 J 109000 0.589 J 1.73 J 45200 0.83 J 2 RL-3D BMP-071713-11 7/17/2013 0.00500 U 0.00											-	_	1,						J 32000
RL-3D BMP-071713-11 7/17/2013 0.00500 U 0.0050							_				+ +	_	+-						J 32200
RL-4S MBT-030311-14 3/3/2011 0.00500 U 0.00500 U 0.00500 U 1.00 U USEPA 300.0/9056A 9.20 1.74 4.01 37700 2.00 U 0.300 J 20800 1.63 J 4												_	1.						J 25500 J 28800
	KL-3D	DIVIP-0/1/13-11	//1//2013	0.00500	0 0.00500 0	0.00200	U	0.260	3ivi4500-r-C (probe	3.09	1.00 [1.29	1,	110000	1.00 1	1.00 0	32400	1.30	28800
	RI-4C	MRT_020211 1/	3/2/2011	0.00500 1	1 0 00500 1 1	0.00500	11	1.00	II IISEDV 300 0/00E6V	0 20	1 7/1	4.01	Т	37700	2 00 111	0.300 1	20800	1.62	J 42200
I KI-AN INKI-DALLI-TA ENTETTI DI DOMINI TOTONOMI ELLO DELLO ELLO ELLO ELLO ELLO ELLO ELL	RL-4S	MBT-050311-14					-				2.45	3.23	+	37900	1.47 J	0.356 J	19700	1.10	J 37100
													+						J 33900
						-	_		" '	+ +	+ +	_	+			 			J 34600
	-						-			+ +	+ +	_	+		+ +	 			J 38600
						-	_			+ +	+ +	_	+						J 37900
						-	_					_	+						J 35200
	RL-4S	BMP-100412-10				-	_		SM4500-F (probe)	12.0	1.00	J 4.34	+	36500	0.578 J	2.00 U	19100	1.56	J 34800

Table B-2
Groundwater Monitoring Results for Closed BMP Area: 2011 to Current

			Total Cyanide		WAD Cyanide		Free Cyanid	e	Fluori	de	Fluoride Analytical	Chloride	Sulfate	Dissolved Arsenic	Dissolved Calcium	Dissolved ¹ Chromium	Dissolved ¹ Copper	Dissolved Magnesium	Dissolved ¹ Nickel	Dissolved Sodium
Location ID	Sample ID	Date	(mg/L)		(mg/L)		(mg/L))	(mg/	L)	Method	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
RL-4S	BMP-021313-11	2/13/2013	0.00500	U 0	0.00500	0.	.00200	J	0.790		SM4500-F (probe)	12.7	3.54	1.94 J	40500	0.722 J	1.00 U	21500	1.49 J	38300
RL-4S	BMP-042413-12	4/24/2013	0.00500	U 0	0.00500	0.	.00200	J	0.901		SM4500-F (probe)	12.0	2.41	2.99	38400	0.656 J	1.00 U	21100	1.12 J	37000
RL-4S	BMP-071713-12	7/17/2013	0.00500	U 0	0.00500	0.	.00200	כ	0.872		SM4500-F (probe)	11.0	2.45	3.92	39400	1.93 J	1.00 U	20300	1.34 J	36100
RL-4D	MBT-030311-10	3/3/2011	0.00500	U 0).00500 l	J O.	.00500	J	1.00	U	USEPA 300.0/9056A	9.31	13.1	1.39 J	50500	0.267 J	4.00 U	24300	0.778 J	27600
RL-4D	MBT-051111-13	5/11/2011	0.0510	0	0.00500 L	J O.	.00500	U	1.00	U	USEPA 300.0/9056A	9.81	11.0	1.56 J	45900	1.29 J	4.00 U	23100	2.00 U	25100
RL-4D	MBT-072611-14	7/26/2011	0.00500	U 0	0.00500 L	J 0.	.00500	UJ	0.296	J	SM4500-F (probe)	10.0	8.98	1.52 J	44300	2.0 U	4.00 U	22400	0.656 J	24400
RL-4D	RL-4D-100611	10/6/2011	0.00500	U 0	0.00500 L	J O.	.00500	\supset	0.300		SM4500-F (probe)	10.2	7.05	1.39 J	44700	2.0 U	4.00 U	22000	0.778 J	24400
RL-4D	MBT-011112-14	1/11/2012	0.00500	U 0).00500 l	J O.	.00500	J	0.331		SM4500-F (probe)	10.7	6.06	1.46	50100	0.944 J	4.00 U	24200	1.24 J	26200
RL-4D	BMP-040412-01	4/4/2012	0.00500	U O).00500 l	J O.	.00500	UJ	0.411		SM4500-F (probe)	11.5	5.66	1.61 J	49300	1.19 J	4.00 U	23100	1.07 J	26200
RL-4D	BMP-07112-06	7/11/2012	0.00660	0).00500 l	J O.	.00500	U	0.353		SM4500-F (probe)	12.3	4.15	1.20 J	46400	0.689 J	2.00 U	21500	1.53 J	25300
RL-4D	BMP-100412-11	10/4/2012	0.00500	U O	.00760	0.	.00500	J	0.406		SM4500-F (probe)	12.1	2.51	1.30 J	45400	0.900 J	2.00 U	21300	1.07 J	25100
RL-4D	BMP-021313-12	2/13/2013	0.00500	U O	0.00500	0.	.00200	U	0.350		SM4500-F (probe)	13.1	3.95	0.967 J	49000	0.533 J	1.00 U	23400	0.956 J	27700
RL-4D	BMP-042313-06	4/23/2013	0.00500	U 0	0.00500	0.	.00200	U	0.422		SM4500-F (probe)	13.3	5.10	0.900 J	44600	0.500 U	1.00 U	22000	0.700 J	27000
RL-4D	BMP-071613-05	7/16/2013	0.00500	U 0	0.00500	0.	.00200	U	0.362		SM4500-F (probe)	13.0	4.28	1.040 J	43400	0.844 J	1.00 U	20100	0.778 J	25300
RL-5	MBT-030411-15	3/4/2011	0.0184	0	.00780	0.	.00500	U	2.73		USEPA 300.0/9056A	7.96	60.1	1.18 J	8380	0.844 J	19.1	3730	6.14	139000
RL-5	MBT-051011-12	5/10/2011	0.0230	0	.00570	0.	.00200	J	2.82		USEPA 300.0/9056A	7.21	56.7	1.04 J	8340	1.59 J	20.6	3880	6.73	134000
RL-5	MBT-072611-13	7/26/2011	0.0288	0).00500 L	J O.	.00500	UJ	2.39		USEPA 300.0/9056A	7.95	76.7	1.33 J	7860	2.0 U	11.6	3690	4.69	124000
RL-5	RL-5-100711	10/7/2011	0.0332	0	.00640	0.	.00500	J	2.26		USEPA 300.0/9056A	8.55	78.2	1.32 J	8980	2.0 U	22.7	4330	8.23	148000
RL-5	MBT-011112-12	1/11/2012	0.0683	1	0.0136	0.	.00500	U	2.88	J	USEPA 300.0/9056A	9.04	93.6	1.20	11000	1.12	21.7	4800	8.41	160000
RL-5	BMP-040512-12	4/5/2012	0.0275	0	.00670	0.	.00500	U	3.04		SM4500-F-C (probe)	7.04	48.6	0.867	7520	1.41	20.1	3180	6.26	122000
RL-5	BMP-071212-12	7/12/2012	0.0378	0	.00600	0.	.00500	U	2.50		SM4500-F-C (probe)	8.19	105	1.41 J	10500	0.700 J	19.1	4490	7.34	151000
RL-5	BMP-100412-12	10/4/2012	0.0314	0	.00990	0.	.00500	U	2.79		SM4500-F-C (probe)	8.04	77.5	1.50 J	9570	1.16 J	17.8	4150	8.29	141000
RL-5	BMP-021213-05	2/12/2013	0.0355	0	.00940	0.	.00200	U	2.73		SM4500-F-C (probe)	7.03	61.9	1.18 J	8170	1.17 J	21.4	3540	6.24	136000
RL-5	BMP-042313-04	4/23/2013	0.0263	0	0.00500 L	J O.	.00200	U	3.56		SM4500-F-C (probe)	6.30	46.0	1.12 J	7630	1.09 J	24.1	3380	6.92	124000
RL-5	BMP-071713-09	7/17/2013	0.0283	0	.00530	0.	.00200	U	2.59		SM4500-F-C (probe)	6.79	84.0	1.01 J	8790	1.00 J	18.4	3940	6.13	136000
RL-5 (FD)	BMP-071713-10	7/17/2013	0.0344	0	.00550	0.	.00200	U	2.64		SM4500-F-C (probe)	6.78	83.9	1.14 J	9160	1.02 J	19.4	4150	6.47	142000

Page 3 of 3

Notes:

μg/L = micrograms per liter (parts per billion)

J = estimated value

R = rejected and unusable value

U = not detected above method reporting limit

BMP = Black Mud Pond (Closed BMP Facility)

FD = field duplicate sample

mg/L = milligrams per liter (parts per million)

WAD = weak acid dissociable

1 = February 4, 2014 update – Result values for chromium, copper, and nickel should be regarded as overestimates of actual concentrations due to method interference (see Appendix E).

Table B-3
Groundwater Field Sampling Parameters for the Former SPL Area: 2011 to Current

Location ID	Sample ID	Date	pН	Specific Conductance (μS/cm)	Temperature (degrees Celsius)	Turbidity at Start of Sampling, NTU	Turbidity at End of Sampling, NTU
R-1S	MBT-030211-04	3/2/2011	7.19	619	10.26	15.5	5.08
R-13	MBT-050911-03	5/9/2011	7.19	538	11.10	3.8	4.44
R-1S	MBT-072511-02	7/25/2011	6.69	485	14.22	1.4	1.99
R-1S	R-1S-100511	10/5/2011	7.37	555	14.05	2.0	1.92
R-1S	MBT-011012-03	1/10/2012	7.69	408	11.78	11.0	7.37
R-1S	SPL-040312-06	4/3/2012	8.89	383	10.10	21.6	10.10
R-1S	SPL-070912-04	7/9/2012	7.01	507	14.37	1.7	1.27
R-1S	SPL-100312-06	10/3/2012	7.14	485	15.29	9.94	2.28
R-1S	SPL-021113-02	2/11/2013	6.82	473	10.32	6.9	6.13
R-1S	SPL-042213-03	4/22/2013	7.29	567	12.51	4.07	4.32
R-1S	SPL-042213-03	7/15/2013	7.01	480	15.61	8.42	2.45
R-1D	MBT-030211-07	3/2/2011	6.50	2,038	11.08	42.4	53.7
R-1D	MBT-050911-06	5/9/2011	6.36	2,001	12.37	56.1	42.7
R-1D	MBT-072511-04	7/25/2011	6.11	2,005	13.29	83.7	77.8
R-1D	R-1D-100511	10/5/2011	6.57	2,012	12.55	83.9	72.0
R-1D	MBT-011012-04	1/10/2012	6.72	1,603	11.39	61.6	48.5
R-1D	SPL-040312-07	4/3/2012	8.61	1,502	11.20	33.1	61.6
R-1D	SPL-070912-05	7/9/2012	6.25	2,045	13.78	28.1	30.5
R-1D	SPL-100312-05	10/3/2012	6.71	1,965	13.58	32.16	35.3
R-1D	SPL-021113-03	2/11/2013	6.45	2,004	10.27	37.0	37.0
R-1D	SPL-0242213-04	4/22/2013	6.56	2,040	11.97	45.34	47.16
R-1D	SPL-0242213-04	7/15/2013	6.36	2,060	14.33	50.39	32.25
-							
R-2	MBT-030211-06	3/2/2011	6.45	410	8.11	7.82	10.1
R-2	MBT-050911-01	5/9/2011	6.20	378	10.48	6.77	6.3
R-2	MBT-072511-07	7/25/2011	5.12	413	12.12	195	161.0
R-2	R-2-100511	10/5/2011	6.69	510	11.71	23.10	19.8
R-2	MBT-011012-01	1/10/2012	7.46	319	9.93	9.23	8.94
R-2	SPL-040312-01	4/3/2012	10.04	265	8.51	4.12	3.06
R-2	SPL-070912-01	7/9/2012	6.31	394	12.35	5.37	5.19

Table B-3
Groundwater Field Sampling Parameters for the Former SPL Area: 2011 to Current

Location ID	Sample ID	Date	рН	Specific Conductance (μS/cm)	Temperature (degrees Celsius)	Turbidity at Start of Sampling, NTU	Turbidity at End of Sampling, NTU
R-2	SPL-100312-01	10/3/2012	6.74	418	11.48	3.66	1.62
R-2	SPL-021113-01	2/11/2013	6.23	384	8.80	8.24	4.6
R-2	SPL-042213-01	4/22/2013	6.57	394	10.07	12.16	11.4
R-2	SPL-042213-01	7/15/2013	6.39	400	12.65	19.01	18.26
D 2	MDT 020211 05	2/2/2011	10.12	22.007	9.77	6.02	10.1
R-3	MBT-030211-05	3/2/2011	10.12	23,987			
R-3	MBT-050911-02	5/9/2011		22,888	12.51	23.50	24.7
R-3	MBT-072511-03	7/25/2011	10.19	22,920	13.09	33.50	8.74
R-3	R-3-100511	10/5/2011	10.12	22,330	12.49	1.69	1.52
R-3	MBT-011012-02	1/10/2012	10.59	18,990	12.09	2.99	3.47
R-3	SPL-040312	4/3/2012	10.95	17,150	11.50	4.17	4.86
R-3	SPL-070912-02	7/9/2012	10.07	22,349	17.47	2.52	2.61
R-3	SPL-100312-07	10/3/2012	10.16	22,084	16.32	2.09	2.09
R-3	SPL-021213-06	2/12/2013	10.38	21,635	9.47	3.12	2.81
R-3	SPL-042213-02	4/22/2013	10.07	21,472	14.02	1.4	1.27
R-3	SPL-042213-02	7/15/2013	10.02	22,209	17.56	0.34	0.21
R-4S	MBT-030111-03	3/1/2011	7.08	1,915	11.64	40.0	41.5
R-4S	MBT-050911-05	5/9/2011	6.79	1,967	11.50	59.0	24.3
R-4S	MBT-072511-05	7/25/2011	6.48	1,887	12.81	441	433
R-4S	R-4S-100511	10/5/2011	6.88	1,755	13.56	37.8	28.1
R-4S	MBT-011012-07	1/10/2012	8.22	1,483	11.92	32.6	39.1
R-4S	SPL-040312-04	4/3/2012	8.41	1,294	12.02	26.8	31.7
R-4S	SPL-070912-07	7/9/2012	6.31	1,928	12.81	41.2	38.6
R-4S	SPL-100312-02	10/3/2012	7.01	1,686	13.91	5.79	18.8
R-4S	SPL-021213-07	2/12/2013	7.40	1,907	11.52	29.38	33.93
R-4S	SPL-042213-07	4/22/2013	7.17	1,987	11.29	23.76	34.29
R-4S	SPL-042213-07	7/15/2013	7.00	1,986	13.34	5.49	13.69
D 4D	NADT 020444 64	2/4/2044	6.57	4 220	14.50	02.6	77.6
R-4D	MBT-030111-01	3/1/2011	6.57	1,328	11.59	83.6	77.6
R-4D	MBT-050911-04	5/9/2011	6.53	1,305	12.53	68.8	58.9

Table B-3
Groundwater Field Sampling Parameters for the Former SPL Area: 2011 to Current

Location ID	Sample ID	Date	рН	Specific Conductance (μS/cm)	Temperature (degrees Celsius)	Turbidity at Start of Sampling, NTU	Turbidity at End of Sampling, NTU
R-4D	MBT-072511-01	7/25/2011	6.35	1,292	13.22	317	266
R-4D	R-4D-100511	10/5/2011	6.69	1,159	12.80	41.3	5.25
R-4D	MBT-011012-05	1/10/2012	7.99	1,064	11.86	20.1	21.1
R-4D	SPL-040312-03	4/3/2012	8.79	986	12.23	56.0	37.8
R-4D	SPL-070912-06	7/9/2012	6.44	1,293	14.64	63.6	44.1
R-4D	SPL-100312-03	10/3/2012	6.80	1,280	13.95	7.10	11.0
R-4D	SPL-021113-04	2/11/2013	6.62	1,277	11.61	28.0	52
R-4D	SPL-042213-06	4/22/2013	6.57	1,253	13.00	447.30	479.6
R-4D	SPL-042213-06	7/15/2013	6.40	1,292	15.53	54.83	51.2

 μ S/cm = microSiemens per centimeter

NTU = nephelometric turbidity units

SPL = Spent Pot Liner

Table B-4
Groundwater Monitoring Results for the Former SPL Area: 2011 to Current

Location			Total Cyanid	e	WAD Cyanic	le	-	Free Cyanide			Fluoride Analytical	Chloride	
ID	Sample ID	Date	(mg/L)		(mg/L)		(mg/L)		(mg/L)		Method	(mg/L)	
R-1S	MBT-030211-04	3/2/2011	0.0170		0.0125		0.00500	U	39.9		USEPA 300.0/9056A	1.51	
R-1S	MBT-050911-03	5/9/2011	0.0207		0.00670	U	0.00500	U	35.4		USEPA 300.0/9056A	2.95	
R-1S	MBT-072511-02	7/25/2011	0.0199		0.0178		0.00500	UJ	32.5		USEPA 300.0/9056A	2.24	
R-1S	R-1S-100511	10/5/2011	0.0331		0.0123		0.00500	U	30.1		USEPA 300.0/9056A	2.38	
R-1S	MBT-011012-03	1/10/2012	0.0395		0.00910		0.00500	U	37.6		USEPA 300.0/9056A	3.07	
R-1S	SPL-040312-06	4/3/2012	0.0240	J	0.01140		0.00500	U	41.2		SM4500-F (probe)	1.61	
R-1S	SPL-070912-04	7/9/2012	0.0226		0.00870		0.00500	U	35.6		SM4500-F (probe)	3.62	
R-1S	SPL-100312-06	10/3/2012	0.0417		0.0111		0.00500	С	29.8		SM4500-F (probe)	2.86	
R-1S	SPL-021113-02	2/11/2013	0.0343		0.00830		0.00200	С	30.3		SM4500-F (probe)	3.16	
R-1S	SPL-042213-03	4/22/2013	0.0241		0.0114		0.00200	С	31.4		SM4500-F (probe)	2.85	
R-1S	SPL-071513-05	7/15/2013	0.0240		0.00500	U	0.00200	U	27.4		SM4500-F (probe)	4.25	
R-1D	MBT-030211-07	3/2/2011	0.0231		0.00860		0.00500	U	1.00	U	USEPA 300.0/9056A	107	
R-1D	MBT-050911-06	5/9/2011	0.0520		0.00510	U	0.00500	U	1.00	U	USEPA 300.0/9056A	108	
R-1D (FD)	MBT-050911-07	5/9/2011	0.0430		0.0142		0.00260		1.00	U	USEPA 300.0/9056A	109	
R-1D	MBT-072511-04	7/25/2011	0.0432		0.0501		0.00660	ſ	0.586	J	SM4500-F (probe)	108	
R-1D	R-1D-100511	10/5/2011	0.0537		0.0235		0.00360	J	0.668		SM4500-F (probe)	105	
R-1D	MBT-011012-04	1/10/2012	0.0482		0.0248		0.00700		0.550	J	SM4500-F (probe)	108	
R-1D	SPL-040312-07	4/3/2012	0.0377	J	0.0103		0.00500	С	0.615		SM4500-F (probe)	108	
R-1D	SPL-070912-05	7/9/2012	0.0461		0.0143		0.00250	ſ	0.633		SM4500-F (probe)	104	
R-1D	SPL-100312-05	10/3/2012	0.0590		0.0171		0.00290	J	0.879		SM4500-F (probe)	105	
R-1D	SPL-021113-03	2/11/2013	0.0279		0.00760		0.00200	C	0.641		SM4500-F (probe)	103	
R-1D	SPL-042213-04	4/22/2013	0.0349		0.0139		0.00260	J	0.668		SM4500-F (probe)	110	
R-1D (FD)	SPL-042213-05	4/22/2013	0.0416		0.0173		0.00670		0.668		SM4500-F (probe)	110	
R-1D	SPL-071513-06	7/15/2013	0.0403		0.0111		0.00800		0.628		SM4500-F (probe)	105	
R-2	MBT-030211-06	3/2/2011	0.00500	U	0.00500	U	0.00500	U	1.00	U	USEPA 300.0/9056A	5.93	
R-2	MBT-050911-01	5/9/2011	0.00500	U	0.00500	U	0.00500	U	1.00	U	USEPA 300.0/9056A	5.77	
R-2	MBT-072511-07	7/25/2011	0.00500	U	0.00500	U	0.00500	UJ	0.478	J	SM4500-F (probe)	5.73	
R-2	R-2-100511	10/5/2011	0.00550		0.00500	U	0.00500	U	0.512		SM4500-F (probe)	5.95	
R-2	MBT-011012-01	1/10/2012	0.00500	U	0.00500	U	0.00500	U	0.469	J	SM4500-F (probe)	5.92	

Table B-4
Groundwater Monitoring Results for the Former SPL Area: 2011 to Current

Location		_	Total Cyanic	de	WAD Cyanio	de	Free Cyanic	de	Fluoride	Fluoride Analytical	Chloride
ID	Sample ID	Date	(mg/L)		(mg/L)		(mg/L)		(mg/L)	Method	(mg/L)
R-2	SPL-040312-01	4/3/2012	0.00570	J	0.00500	U	0.00500	U	0.546	SM4500-F (probe)	5.68
R-2	SPL-070912-01	7/9/2012	0.00500	U	0.00500	U	0.00500	U	0.519	SM4500-F (probe)	5.66
R-2	SPL-100312-01	10/3/2012	0.00700		0.00500	U	0.00500	U	0.521	SM4500-F (probe)	5.65
R-2	SPL-021113-01	2/11/2013	0.00500	С	0.00500	U	0.00200	U	0.518	SM4500-F (probe)	5.70
R-2	SPL-042213-01	4/22/2013	0.00500	С	0.00500	U	0.00200	U	0.546	SM4500-F (probe)	5.56
R-2	SPL-071513-01	7/15/2013	0.00530		0.00500	U	0.00230	J	0.567	SM4500-F (probe)	5.51
R-2 (FD)	SPL-071513-02	7/15/2013	0.00500	C	0.00500	U	0.00350	J	0.498	SM4500-F (probe)	5.48
R-3	MBT-030211-05	3/2/2011	253		0.0368		0.00500	U	2020	USEPA 300.0/9056A	64.5
R-3	MBT-050911-02	5/9/2011	353		0.304		0.00840		2020	USEPA 300.0/9056A	63.5
R-3	MBT-072511-03	7/25/2011	368		0.734		0.00720	J	2100	USEPA 300.0/9056A	47.6
R-3	R-3-100511	10/5/2011	376		0.488		0.00620		2180	USEPA 300.0/9056A	74.7
R-3	MBT-011012-02	1/10/2012	407		0.279		0.02110	J	2200	USEPA 300.0/9056A	68.4
R-3	SPL-040312-02	4/3/2012	396	J	0.815		0.0330		2000	SM4500-F (probe)	70.8
R-3	SPL-070912-02	7/9/2012	356		0.605		0.0050	U	1970	SM4500-F (probe)	69.5
R-3 (FD)	SPL-070912-03	7/9/2012	360		0.590		0.0050	U	1920	SM4500-F (probe)	69.0
R-3	SPL-100312-07	10/3/2012	363		0.484		0.00580		1920	SM4500-F (probe)	61.0
R-3	SPL-021213-06	2/12/2013	309		0.034		0.00980		2010	SM4500-F (probe)	63.1
R-3	SPL-042213-02	4/22/2013	300		0.893		0.00680		1960	SM4500-F (probe)	63.4
R-3	SPL-071513-03	7/15/2013	284		0.126		0.00880		2060	SM4500-F (probe)	56.4
		•							•	<u> </u>	•
R-4S	MBT-030111-03	3/1/2011	0.0222		0.00530		0.00500	UJ	8.44	USEPA 300.0/9056A	8.64
R-4S	MBT-050911-05	5/9/2011	0.0203		0.0174		0.00500	U	7.70	USEPA 300.0/9056A	8.65
R-4S	MBT-072511-05	7/25/2011	0.0250		0.0295		0.00500	UJ	8.25	USEPA 300.0/9056A	8.66
R-4S (FD)	MBT-072511-06	7/25/2011	0.0245		0.0293		0.00500	UJ	8.28	USEPA 300.0/9056A	8.66
R-4S	R-4S-100511	10/5/2011	0.0238		0.00970		0.00500	U	11.4	USEPA 300.0/9056A	9.49
R-4S	MBT-011012-07	1/10/2012	0.0247		0.0110		0.00500	U	12.0	USEPA 300.0/9056A	10.9
R-4S	SPL-040312-04	4/3/2012	0.0182	J	0.00910		0.00500	U	9.79	SM4500-F (probe)	11.2
R-4S (FD)	SPL-040312-05	4/3/2012	0.0392	J	0.00720		0.00500	U	9.63	SM4500-F (probe)	11.2
R-4S	SPL-070912-07	7/9/2012	0.0294		0.00680		0.00500	U	8.35	SM4500-F (probe)	11.0
R-4S	SPL-100312-02	10/3/2012	0.0310		0.00860		0.00500	U	14.5	SM4500-F (probe)	8.32

Table B-4
Groundwater Monitoring Results for the Former SPL Area: 2011 to Current

Location ID	Sample ID	Total Cyanide WAD Cyanide Free Cyanide ample ID Date (mg/L) (mg/L) (mg/L)		de	Fluoride (mg/L)	Fluoride Analytical Method	Chloride (mg/L)			
R-4S	SPL-021213-07	2/12/2013	0.0232	0.00690		0.00200	U	15.7	SM4500-F (probe)	8.31
R-4S	SPL-042213-07	4/22/2013	0.0231	0.00700		0.00200	U	21.6	SM4500-F (probe)	8.60
R-4S	SPL-071513-07	7/15/2013	0.0239	0.00540		0.00250	J	12.4	SM4500-F (probe)	8.17
R-4D	MBT-030111-01	3/1/2011	0.0259	0.00550		0.00500	UJ	1.70	USEPA 300.0/9056A	8.89
R-4D (FD)	MBT-030111-02	3/1/2011	0.0256	0.00540		0.00500	UJ	1.68	USEPA 300.0/9056A	8.91
R-4D	MBT-050911-04	5/9/2011	0.0296	0.00690	U	0.00500	U	1.83	USEPA 300.0/9056A	8.88
R-4D	MBT-072511-01	7/25/2011	0.0380	0.0175		0.00500	UJ	1.83	USEPA 300.0/9056A	8.89
R-4D	R-4D-100511	10/5/2011	0.0259	0.00630		0.00500	U	1.54	USEPA 300.0/9056A	8.99
R-4D	MBT-011012-05	1/10/2012	0.0340	0.00680		0.00500	U	1.76	USEPA 300.0/9056A	8.79
R-4D (FD)	MBT-011012-06	1/10/2012	0.0309	0.00680		0.00500	U	1.72	USEPA 300.0/9056A	8.79
R-4D	SPL-040312-03	4/3/2012	0.0419 J	0.00860		0.00500	U	2.15	SM4500-F (probe)	8.97
R-4D	SPL-070912-06	7/9/2012	0.0366	0.00850		0.00500	U	2.12	SM4500-F (probe)	11.2
R-4D	SPL-100312-03	10/3/2012	0.0292	0.00660		0.00500	U	2.10	SM4500-F (probe)	9.16
R-4D (FD)	SPL-100312-04	10/3/2012	0.0299	0.00660		0.00500	U	2.09	SM4500-F (probe)	9.22
R-4D	SPL-021113-04	2/11/2013	0.0309	0.00600		0.00200	U	1.94	SM4500-F (probe)	9.28
R-4D (FD)	SPL-021113-05	2/11/2013	0.0309	0.00600		0.00200	U	1.93	SM4500-F (probe)	9.26
R-4D	SPL-042213-06	4/22/2013	0.0430	0.00590		0.00200	U	1.85	SM4500-F (probe)	9.41
R-4D	SPL-071513-04	7/15/2013	0.0357	0.00520		0.00200	U	1.76	SM4500-F (probe)	9.22

J = estimated value

U = not detected above method reporting limit

FD = field duplicate sample

mg/L = milligram per liter

SPL = Spent Pot Liner

WAD = weak acid dissociable

Demolition and Cleanup Accomplishments at the Former Reynolds Longview Reduction Plant

Northwest Alloys, Inc. Longview, Washington. June 2011.

DEMOLITION AND CLEANUP ACCOMPLISHMENTS AT THE FORMER REYNOLDS LONGVIEW REDUCTION PLANT

Northwest Alloys, Inc. • Longview, Washington

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	1
1 IN7	RODUCTION	4
2 EA 2.1 2.2	RLY DEMOLITION AND CLEANUP ACCOMPLISHMENTS Cryolite Recovery Plant Demolition	5
3 CH 3.1	INOOK DEMOLITION AND CLEANUP ACCOMPLISHMENTS North and South Plant Potrooms	
3.2 3.3 3.4	Cast House Maintenance Buildings Carbon Plant	8
3.5 3.6	Fume Control System	9
3.7 3.8 3.9	Pot Digging Building Pot Relining Building and Pin and Channel Building Compressor Rooms and Central Unloading Towers	10
3.10 3.11	Cable PlantScrap Yard	10 11
3.12 3.13	,- 3	11
3.	13.2 Fuel IslandLENNIUM CLEANUP ACCOMPLISHMENTS	12
→ IVIII	LEININIOIVI OLLAINOF ACCOIVIF LIGI IIVILIN I G	13
TABLI	ES	
Table	1 Total Materials Recycled, Reused, or Disposed	14

i

LIST OF ACRONYMS AND ABBREVIATIONS

Calbag Calbag Metals Co.
Chinook Chinook Ventures, LLC

Envirocon Inc.

ESPs Electrostatic Precipitators

FS Feasibility Study

MTCA Model Toxics Control Act

Millennium Bulk Terminals – Longview

NWA Northwest Alloys, Inc.

PAHs polycyclic aromatic hydrocarbons

PCBs polychlorinated biphenyls

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation
Reynolds Reynolds Metals Company

SPL spent potliner (or potliner)
VOC volatile organic compound

WAC Washington Administrative Code WDOE Washington Department of Ecology

EXECUTIVE SUMMARY

The Reynolds Metals Company (Reynolds) Longview Reduction Plant was constructed in 1941 at 4029 Industrial Way in Longview, Washington. The plant was expanded in 1968 and operated by Reynolds until 2001. In 2001, Reynolds sold the plant to Longview Aluminum, but retained ownership of the land and the Cryolite Recovery Plant. Longview Aluminum later declared bankruptcy in 2003. Chinook Ventures, LLC (Chinook) purchased the remaining assets, including the buildings, structures and process equipment, from the bankruptcy trustee and entered into a long-term ground lease with Reynolds, effective November 30, 2004. Reynolds assigned its obligation and interests in the lease to Northwest Alloys Inc. (NWA), on September 30, 2005. Chinook was the sole operator of the plant until January 2011, when Chinook sold the plant assets to Millennium Bulk Terminals – Longview (Millennium).

In May 2004, Reynolds hired Envirocon Inc. (Envirocon) to demolish the Cryolite Recovery Plant. During the Cryolite Recovery Plant demolition project approximately 800 tons of metals and 150 tons of concrete were recycled; 161 tons of construction debris and 132 tons of brick/refractory were disposed of as non-hazardous waste in an off-site Resource Conservation and Recovery Act (RCRA) Subtitle D landfill; and 850 tons of underflow solids, a Washington State dangerous waste, was disposed in the Chemical Waste Management RCRA Subtitle C landfill in Arlington, Oregon.

A total of 40 potroom transformers were sold by the bankruptcy trustee to Calbag Metals Co. (Calbag) in Portland, Oregon. Calbag recycled the transformer metals and transformer oil.

In early 2005, Chinook began a plant-wide demolition and cleanup project. Chinook hired Envirocon to perform the demolition of the North Plant and South Plant potrooms under a work plan approved by the Washington Department of Ecology (WDOE). Additional work was self-performed by Chinook and continued until Chinook sold the plant in 2011. Various accomplishments include:

Reduction plant equipment in the north and south potrooms was removed, including:
the pot superstructures, anodes, cathodes, bus, and other hardware. Wastes generated
in the process were managed in accordance with local, state and federal requirements.
Metals including copper, aluminum, and steel were recycled.

- Anode carbon totaling 24,324 tons was stored, subsequently crushed, and sold for reuse in the steel industry as cover flux or as an additive for carbon steel.
- The potrooms were cleaned including outside courtyards.
- The fume control systems attached to the potrooms, consisting of ductwork, prescrubbers and Electrostatic Precipitators (ESPs) were cleaned. In addition, the fume sludge handling equipment including piping, tanks, and clarifiers were cleaned.
- Equipment in the two cast houses were demolished and cleaned. The furnaces and other casting equipment were removed and the rooms were cleaned, including the casting pits.
- The mixer side of the Carbon Plant was demolished and cleaned. The mixers and related piping were removed and recycled.
- Maintenance buildings, the pot digging building, pin-and-channel building, pot relining building, and compressor buildings were cleaned.
- The unloading tower and the central loading/unloading tower were cleaned, including the South Plant alumina handling system.
- The waste and stormwater systems were cleaned including the Wastewater Treatment Plant, the storm drain lines, and the stormwater multi-media filter building.
- The Cable Plant cast house and warehouse were cleaned.
- Contaminated soils were removed from the former scrap yard and properly disposed at an off-site landfill.
- Other materials, including scrap metals, used oil, and unused transformers were recycled.

On June 15, 2007, Chinook and NWA signed Agreed Order No. 4263 (AO4263) with the WDOE which, in summary, required the parties to complete a Remedial Investigation (RI) and Feasibility Study (FS) in accordance with the Model Toxics Control Act (MTCA; Chapter 173-340 of the Washington Administrative Code [WAC]). In accordance with AO4263, Chinook and NWA submitted a RI Report in June 2007 and a Focused FS in September 2007. The Focused FS identified 11 areas of potential concern. In 2008, WDOE approved the proposed remedial action for two of the areas identified in the Focused FS: the on-site ditches near the former Cryolite Recovery Plant and the former fuel island. Accordingly, Chinook completed the following work in those areas:

- Soil from the three south ditches near the former Cryolite Recovery Plant was removed to meet preliminary soil cleanup levels established in the Focused FS.
- Diesel contaminated soil under the former fuel island near the plant warehouse was removed, bio-remediated, and used for fill on-site per WDOE approval.

Over the period that Chinook owned the plant, the following metals were recycled:

- 3,568 tons of copper
- 7,578 tons of aluminum, and
- 38,440 tons of steel.

In addition, the following process materials and contaminated soils were removed from the facility:

- 24,324 tons of anode carbon was beneficially reused or recycled,
- 29,270 tons of hazardous waste was disposed of in permitted off-site facilities, and,
- 9,688 tons of non-hazardous waste and contaminated soils were collected and disposed in permitted off-site facilities.

Millennium took ownership of the facility on January 11, 2011. Millennium is continuing the cleanup of the site and through May 2011, has disposed of approximately:

- 63 tons of cleanup debris.
- 60 tons of wood waste,
- 15 tons of pitch-impacted debris,
- 5 tons of underflow solids,
- 1,801,512 gallons of thin stillage, and
- 775,000 gallons of storm water from the outdoor coke storage area.

1 INTRODUCTION

The Reynolds Longview Reduction Plant was constructed in 1941 at 4029 Industrial Way in Longview, Washington. The plant was expanded in 1968 and operated by Reynolds until 2001. In 2001, Reynolds sold the plant to Longview Aluminum, but retained ownership of the land and the Cryolite Recovery Plant. Longview Aluminum later declared bankruptcy in 2003. In 2004, Chinook purchased the remaining assets, including the buildings, structures and process equipment, from the bankruptcy trustee and entered into a long-term ground lease with Reynolds, effective November 30, 2004. Reynolds assigned its obligation and interests in the lease to NWA, on September 30, 2005. Chinook immediately began to remove the reduction plant equipment that would not be used by Chinook; to dispose of wastes generated during the demolition process; and, to clean other equipment and buildings. Chinook was the sole operator of the plant until January 2011, when Chinook sold the plant assets to Millennium.

This report summarizes the work accomplished by Reynolds, the bankruptcy trustee, Chinook, and Millennium from 2003 when Longview declared bankruptcy through May 2011.

2 EARLY DEMOLITION AND CLEANUP ACCOMPLISHMENTS

This section describes the demolition and cleanup activities performed by Reynolds or the bankruptcy trustee prior to the sale of the facility assets to Chinook.

2.1 Cryolite Recovery Plant Demolition

In May 2004, Reynolds hired Envirocon to demolish the Cryolite Recovery Plant. The project took five months, concluding in October 2004. Envirocon developed a work plan which was approved and permitted by Cowlitz County. Work began in early August 2004, and proceeded approximately as follows:

- 1. Stormwater and erosion controls were established.
- 2. The digester tanks and related equipment were removed.
- 3. The slurry tanks, liquor tanks, and precipitator tank were removed.
- 4. The cryolite dry bins and demolish the rotary kiln were removed.
- 5. The lime station was removed.
- 6. The cryolite building and contents were vacuumed, cleaned, and then demolished.
- 7. Pits and trenches were cleaned and backfilled with clean material.
- 8. Tank and building debris (e.g., waste material, concrete, etc.) were contained and shipped off site for disposal.

During the Cryolite Recovery Plant demolition project, approximately 800 tons of metals and 150 tons of concrete were recycled; approximately 161 tons of construction debris and 132 tons of brick/ refractory were disposed at an off-site RCRA Subtitle D landfill; and, approximately 850 tons of debris were disposed of in the Chemical Waste Management RCRA Subtitle C landfill in Arlington, Oregon.

2.2 Potroom Transformers

Under the direction of the bankruptcy trustee, the 16 North Plant transformers and the 24 South Plant transformers were sold to Calbag. Calbag drained the transformers and recycled the non-polychlorinated biphenyl (PCB) mineral oil from each transformer. The transformers were then loaded onto rail cars and transported to the Calbag facility for demolition and recycle of the metal components.

3 CHINOOK DEMOLITION AND CLEANUP ACCOMPLISHMENTS

During the period from 2004 through January 2011, Chinook Ventures conducted demolition, cleanup, and recycling activities in several areas of the facility. This section is organized to discuss activities that occurred within the various site facilities.

3.1 North and South Plant Potrooms

In late 2004, Chinook hired Envirocon to perform the demolition of the aluminum smelting equipment located in the North Plant and South Plant potrooms. The North Plant consisted of six potrooms, rooms 51 through 56 that were built in the late 1960s. The South Plant consisted of three potrooms, rooms J, K, and L, that were built during World War II. Envirocon began the project in January 2005 and prepared a construction work plan that was approved by the WDOE prior to construction.

The demolition was conducted in both the north and south plant potrooms simultaneously. Work proceeded in general accordance with the sequence described below:

- Ductwork for the fume systems was disconnected.
- Floor plates were removed.
- Anode and cathode bus work was disconnected and the buses were then removed.
- The side and end doors were removed.
- Hardware, such as the ore bins on the North Plant pots, was removed as appropriate.
- The anode superstructures were pulled and the anode pins and channels were stripped prior to breaking the anode carbon into smaller pieces.
- The bath and metal pads were stripped from the top of the cathodes.
- The cathodes were removed and sheared in half horizontally below the collector bars.
- The upper half of the pot shell was removed and transported to the pot digging building for potliner removal.
- The alumina insulation was removed from the remainder of the cathode shell.
- The fume ducts were cleaned or removed from the inside of the potrooms.
- Recyclable metals were prepared for off-site transport.

The anode and cathode bus work in the South Plant was made of copper. The bus work in the North Plant was made of aluminum, as were the side doors. Most of the other hardware was made from steel. The equipment and hardware was cleaned in accordance with the Work Plan and the metals were sized and sold as scrap. Approximate total quantities of metals recycled from the potlines are listed in Table 1.

Approximately 26,000 tons of spent potliner (SPL) was removed from the cathodes at the pot digging building and disposed of in the Chemical Waste Management RCRA Subtitle C landfill in Arlington, Oregon. The anode pins and channels were removed from the carbon anodes, and the anode carbon was placed in the South Plant potrooms for temporary storage.

Envirocon completed most of the cleanup and decontamination of smelter process materials before the end of their contract with Chinook. Envirocon washed four of the North Plant potrooms, rooms 53 through 56. The washing started in the monitor at the roof line and continued to the potroom floor. Envirocon also washed the basements and courtyards under and between these rooms. Solids from the wash water were collected and disposed of offsite, and the wash water was treated in the stormwater settlement pond, which is followed by multi-media filters, prior to discharge to the Columbia River. Envirocon completed their work at the end of 2005, at which time Chinook continued the cleanup by self-performing the work.

After cleanup, Chinook converted the North Plant potrooms into covered flat storage areas for bulk materials. Pre-cast floor pads, cast on-site by Specialty Concrete, were set in place where the electrolytic cells, or pots, once stood. The river end and center section of potroom 51 were the first areas where pre-cast concrete pads were installed. Chinook then set up crusher equipment in these areas and began crushing anode carbon. The crushed anode carbon was sold to Nucor Steel and Pacific Metallurgical Inc. for beneficial use as cover flux for steel furnaces and as a carbon additive for carbon steel alloys. The anode crusher operation was later moved to the southern end of Facility 19. Chinook recycled or reused 24,324 tons of anode carbon that would have otherwise required landfill disposal.

The final two North Plant rooms, 51 and 52, were cleaned by Chinook following the relocation of the crusher to Facility 19.

The cleanup of the three potlines in the South Plant (J, K, and L lines) was also completed by Chinook. Starting in the roof monitor, Chinook washed the rooms down to the floor level. The floors and pot trenches in each line were then cleaned, and the materials and debris generated by that process were properly disposed of. The quantities of debris generated by the South Plant potlines cleanup are included with the other cleanup debris in Table 1.

3.2 Cast House

Two of the former reduction plant buildings, the North Plant Cast House (Facility 20) and the South Plant Cast House (Facility 19), contained the Aluminum Plant casting operations. Chinook cleaned up Facility 20, by removing the furnaces and casting equipment and reusing or recycling the majority of the demolition material. The casting pits were backfilled with clean material and covered with concrete. A steel operation run by MMF moved into this area in July 2007. The refractory generated in the demolition process was tested by Chinook and test results were submitted to WDOE. WDOE approved the beneficial use of the refractory for backfill. Some of the waste refractory was used for fill near or under the new railroad spur which was built by Chinook, and some was placed in the casting pit on the rectifier end of Facility 20 and in the quench pit in the floor of the Cable Plant cast house.

Chinook moved their anode carbon crushing equipment to Facility 19 in January 2007. The crusher operation was subsequently moved to the former pot digger building in October 2009. Final cleanup of Facility 19 was completed in October 2010. The casting pits and other depressions in the floor were backfilled with Columbia River sand and paved with concrete.

3.3 Maintenance Buildings

The maintenance operations at the former reduction plant consisted of several plant facilities, including a weld shop, paint shop, auto shop, millwright shop, machine shop, and an electrical shop. These areas have been cleaned by Chinook. Oils, greases and paint were retained and used by Chinook. Waste oil generated by Chinook was stored and recycled by used oil recyclers.

3.4 Carbon Plant

The carbon facility at the former reduction plant was designed to manufacture anode carbon paste and cathode paste on the "wet" side and to crush (or size) calcined petroleum coke and anthracite coal on the "dry" side.

Chinook used the dry side equipment to pulverize petroleum coke for resale. The floors and tunnels on the wet side were cleaned by Chinook, including removal of the mixers, pitch scales, and connected piping. Scrap metal generated in the removal of the equipment was recycled. Cleanup material totaling 46 tons was managed as pitch-contaminated debris and disposed of off-site in the Chemical Waste Management RCRA Subtitle C landfill in Arlington, Oregon. This work was completed in January 2011.

3.5 Fume Control System

The fume control system for the former reduction plant consisted of 46 wet pre-scrubbers followed by 31 wet ESPs. Chinook cleaned the pre-scrubbers and ESPs in the North and South Plants and the associated duct work, piping, and clarifiers. Chinook also cleaned the fume system sludge handling building and tanks (Facility 72). Approximately 3,224 tons of debris (referred to as underflow solids, or UFS) from the fume system was disposed of in the Chemical Waste Management RCRA Subtitle C landfill in Arlington, Oregon.

3.6 Wastewater Management Facilities

Chinook continued to operate and maintain the wastewater systems, including the Wastewater Treatment Plant (Facility 71) and the storm water treatment system, which consists of a settling pond followed by multi-media filters (Facility 73). Chinook finished cleaning the interior of the buildings and the exterior of the process equipment in Facility 73 and Facility 71.

Chinook cleaned approximately 98% of the underground stormwater system, including the South Plant storm drains, the North Plant storm drains, and the other plant storm drains which include: maintenance, cast houses, Carbon Plant, office buildings, other open areas, and the parking lots. The only sections of the stormwater system that have not been cleaned

are a short section of the main drain line from the South Plant area, the storm water sump at Facility 77, and the storm water settling pond.

3.7 Pot Digging Building

Following the removal of SPL from the Pot-Digging Building, Chinook cleaned the building and the equipment. Chinook also cleaned the associated dust collector, duct work, and fans. Chinook began using the building for anode carbon crushing in October 2009. In addition to processing on-site anode carbon, Chinook accepted anode carbon from two other reduction plants that have ceased operations: the Kaiser Tacoma Works and the Goldendale Reduction Plant. The crushed anode carbon was also sold to Nucor Steel and Pacific Metallurgical Inc. for beneficial use. Recycling these materials for use in the steel industry is a good example of beneficially using what might have otherwise been waste.

3.8 Pot Relining Building and Pin and Channel Building

Chinook cleaned the former pot relining building, Facility 34. The building is now used as a fabrication shop. Chinook also cleaned the pin and channel building, Facility 35, which is now used for equipment storage.

3.9 Compressor Rooms and Central Unloading Towers

Both the North and South Plant compressor rooms were cleaned by Chinook. The central unloading towers were also cleaned by Chinook. Associated with the unloading tower is the alumina handling system. Process material removal and cleaning of the South Plant alumina transfer system was completed in October 2010.

3.10 Cable Plant

The former Reynolds Metals Cable Plant consists of a cast house and a large warehouse supported by office buildings, maintenance shops, and other auxiliary buildings. Chinook completed the cleanup of the cast house and the warehouse from the ceiling to the floor and below ground areas in November 2010.

3.11 Scrap Yard

A surface and subsurface soil sampling plan was prepared for the area previously used by Reynolds to manage scrap metals. The purpose of the sampling was to investigate potential contamination from past practices and to prepare the area for future use. Ten discrete locations within the former scrap yard footprint were sampled and tested for fluoride, total cyanide, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), PCBs, and metals. Only one sample contained concentrations of PAHs above the preliminary soil cleanup levels established in the Focused FS. Other constituents sampled were below the Focused FS preliminary soil cleanup levels. Subsequently, Chinook excavated and disposed of 1,004 tons of rock and soil at an off-site RCRA Subtitle D facility.

3.12 Oil Recycling

By the end of 2010, Chinook recycled approximately 15 transformers. These included spare transformers and others that were removed from operation by Chinook. The transformers did not contain PCB-containing oils. The transformer oil was either sold to an oil recycler or stored for reuse. Chinook routinely managed used oil from other sources including motor oil, hydraulic oil, and heat transfer material (HTM) oil by selling these materials to used oil recyclers.

3.13 MTCA Cleanup Activities

On June 15, 2007, Chinook and NWA signed AO4263 with the WDOE which, in summary, required the parties to complete a RI and FS in accordance with MTCA. In accordance with AO4263, Chinook and NWA submitted a RI Report in June 2007 and a Focused FS in September 2007. The Focused FS identified 11 areas of potential concern. In 2008, WDOE approved the proposed remedial action for two of the areas identified in the Focused FS: the on-site ditches near the former Cryolite Recovery Plant and the former fuel island. The following sections describe the completed remedial activities.

3.13.1 South Ditches

Process residue, containing concentrations of PAHs above the Washington State dangerous waste criteria, impacted surface soils contained in three on-site ditches near the former Cryolite Recovery Plant. Beginning in October 2008, Chinook pumped the water out of the

ditches and removed the process residue and adjacent bottom and sidewall soils until a horizon of apparent native, non-affected soils was visible. Approximately 2,663 tons of process residue, soil, and debris were removed from the ditches. Test results from samples of the removed materials were less than the Washington State dangerous waste and were disposed in an off-site RCRA Subtitle D landfill. Following removal, four confirmation soil samples were taken from the bottom of each ditch and submitted to a certified laboratory for PAH analyses using EPA 8270M-SIM. These samples were reported with PAH concentrations less than the preliminary soil cleanup levels presented in the Focused FS.

3.13.2 Fuel Island

In May 2004, the bankruptcy trustee decommissioned the plant's 10,000-gallon underground gasoline tank. Soil samples taken under the fuel island showed levels of diesel exceeding preliminary soil cleanup levels established in the Focused FS in accordance with MTCA Method A values for industrial properties. In October 2007, Chinook began removing the concrete and diesel contaminated soil. The excavation measured approximately 24 feet wide by 42 feet long and was 10 feet deep. Post remediation soil samples from the excavation walls and floor were tested for diesel. Test results showed that the remaining soils met the preliminary cleanup levels established in the Focused FS. Soil removed from the excavation was placed at the site of the former Cryolite Recovery Plant and bio-remediated to below MTCA Method A cleanup levels. With WDOE's approval, the bio-remediated soil was used for fill in concrete pits in the former Cable Plant warehouse floor.

4 MILLENNIUM CLEANUP ACCOMPLISHMENTS

Millennium took ownership of the facility on January 11, 2011. To help facilitate an expedited transition of site operations from Chinook to Millennium, Millennium leased 2 to 3 acres of storage space to Chinook for temporary storage of equipment still belonging to Chinook. Chinook began moving their equipment to the leased site immediately and finished this task in May 2011.

As Chinook's equipment was cleared from the plant, Millennium proceeded to clean up the areas formerly operated by Chinook. Initial activities included clearing and disposing scrap wood, metal, and other general debris and waste materials identified. The plant parking lots and main courtyards have been swept and cleaned by Millennium, who has maintained an outstanding level of housekeeping practices. Through May 2011, Millennium cleared and disposed of approximately:

- 63 tons of clean-up debris,
- 60 tons of wood waste,
- 15 tons of pitch contaminated debris, and
- 5 tons of underflow solids.

In addition, Millennium shipped 1,801,512 gallons of thin stillage (corn milk) to the Cowlitz County Publicly-owned Treatment Works (POTW) and 775,000 gallons of stormwater from the outside coke storage area to an off-site permitted waste water treatment plant, Cascade General in Portland Oregon.

Table 1

Total Materials Recycled, Reused, or Disposed Of

Material	Source	How Managed	Total Quantity in Tons		
Copper	Potrooms	Recycled	3,568		
Aluminum	Potrooms	Recycled	7,538		
Aluminum	General Plant	Recycled	40		
Steel	Potrooms	Recycled	28,600		
Steel	General Plan	Recycled	9,840		
Anode Carbon	Potrooms	Reused	24,324		
Spent Potliner	Potrooms	Disposed of	26,000		
Underflow Solids	Fume System	Disposed of	3,224		
Scrap Yard Debris	Scrap Yard	Disposed of	1,004		
ESP Cleanings	ESPS	Disposed of	500		
Bath	Potrooms	Disposed of	3,275		
Cleanup debris	Potrooms, General Plant	Disposed of	2,246		
Ditch cleanup dirt	South Ditches	Disposed of	2,663		
Pitch contaminated debris	Carbon Plant	Disposed of	46		
Copper, Brass	General Plant	Recycled	68		
Steel, Aluminum	Cryolite Recovery Plant	Recycled	800		
Concrete	Cryolite Recovery Plant	Recycled	150		
Construction Debris	Cryolite Recovery Plant	Disposed of	161		
Brick/Refractory	Cryolite Recovery Plant and Cast Houses	Reused	532		
Underflow Solids	Cryolite Recovery Plant	Disposed of	850		
Wood Waste	General Plant	Disposed of	60		
Thin Stillage (corn milk)	Imported from off- site	Disposed of	1,801,512 gallons		
Storm Water	Coke Storage Area	Disposed of	775,000 gallons		

Addendum to Demolition and Cleanup Accomplishments at the Former Reynolds Longview Reduction Plant

Northwest Alloys, Inc. Longview, Washington, and Millennium Bulk Terminals — Longview, LLC. July 2013.

ADDENDUM TO DEMOLITION AND CLEANUP ACCOMPLISHMENTS AT THE FORMER REYNOLDS LONGVIEW REDUCTION PLANT

Northwest Alloys, Inc. • Longview, Washington and

Millennium Bulk Terminals - Longview, LLC

1 INTRODUCTION

This addendum supplements information contained within the *Demolition and Cleanup Accomplishments at the Former Reynolds Longview Reduction Plant* report prepared by Northwest Alloys, Inc. (Northwest Alloys) in 2011.

Between June 2011 and the end of December 2012, Millennium Bulk Terminals – Longview, LLC (MBTL) continued to remove and clean up unwanted equipment or unpermitted structures and storage areas and associated materials that were developed by Chinook Ventures, Inc. (CVI) prior to MBTL's purchase of the former Reynolds Metals Reduction Plant (Reynolds Facility). In addition, MBTL has voluntarily undertaken and completed other cleanups and has managed additional wastes, as described further in Section 2. The work described herein was performed under the Washington State Department of Ecology's (Ecology's) supervision.

MBTL's work at the Reynolds Facility has resulted in the removal of more than 200,000 tons of wastes and materials since MBTL's purchase of the Reynolds Facility assets in early 2011. MBTL has also removed unpermitted conveyors and structures that had been installed by CVI and has completed repairs of the Consolidated Diking Improvement District (CDID) levee that had been damaged by CVI.

MBTL and Northwest Alloys continue to work with Ecology to implement a Remedial Investigation and Feasibility Study (RI/FS) consistent with the Model Toxics Control Act (MTCA) Agreed Order overseen by Ecology.

2 ADDITIONAL ACCOMPLISHMENTS

This section describes the demolition and cleanup activities performed by MBTL between June 2011 and December 2012. Summaries of the quantities discussed in this section are included in Table 1.

2.1 Stormwater Settling Pond Maintenance

During summer 2012, MBTL performed routine maintenance on the stormwater settling pond. The work included removal of settled solids that had accumulated in the pond since completion of the last solids removal event in 2001. Beginning in mid-July, the pond was drained, and the settled solids were allowed to dry in place to the extent possible. A lined drying bed was constructed next to the pond, and the settled solids were transferred to the drying bed. In addition, the inlet piping and the effluent pump sump were cleaned, and the resulting material/solids removed during cleaning were also placed in the drying bed. The stormwater settling pond cleanup material was disposed of off site in a permitted landfill in Hillsboro, Oregon. More than 1,000 tons of settled solids were removed and properly disposed of off site.

2.2 Commissioning of the Replacement Treatment System

During late 2011 and early 2012, MBTL completed the commissioning of the replacement water treatment system. This work was conducted consistent with a design approved by Ecology. Pending commissioning of the treatment system, approximately 725,000 gallons of collected process waters were managed by off-site disposal. The treatment system continues to operate consistent with National Pollutant Discharge Elimination System (NPDES) permit requirements.

2.3 Petroleum Coke Storage Area Pad Cleanup and Removal

MBTL coordinated with regulatory authorities and the owner of the green petroleum coke from CVI's former storage pad to remove more than 100,000 tons of green petroleum coke from the site during summer and fall 2012. MBTL then removed and disposed of the petroleum coke storage area pad, which consisted of concrete, soil, and residual petroleum

coke. Between summer and fall 2012, approximately 21,000 tons of petroleum coke storage area pad cleanup debris was shipped to a permitted landfill in Hillsboro, Oregon.

2.4 Petroleum Coke Storage Area Stormwater Management

MBTL managed stormwater that had come in contact with the green petroleum coke by either evaporation or collecting the stormwater and shipping it to off-site permitted wastewater facilities. From June 2011 until removal of the green petroleum coke in fall 2012, more than 2,000,000 gallons of stormwater was shipped for off-site disposal, and approximately 4,000,000 gallons was evaporated at the site.

2.5 Alkaline Ore

The demolition of the North Plant and South Plant potrooms is described in the *Demolition* and Cleanup Accomplishments at the Former Reynolds Longview Reduction Plant report. The cathode insulation, referred to as alkaline ore, was stored by CVI in the potrooms for possible reuse. Because of the high sodium content of the alkaline ore, a suitable reuse application was not identified by CVI. Accordingly, MBTL shipped approximately 6,500 tons of alkaline ore to a permitted landfill in Hillsboro, Oregon, for disposal.

2.6 Other Reusable or Recyclable Materials

Materials remaining on site included a number of reusable or recyclable materials. For materials owned by other parties, MBTL coordinated with materials owners and obtained applicable permits and approvals to ensure that materials were removed safely. Reusable and recyclable materials removed from the site include the following:

- More than 2,500 tons of alumina ore
- More than 20,000 tons of anode carbon
- More than 26,000 tons of fly ash
- More than 1,200 tons of scrap metal

2.7 Wood Block Floor in Maintenance Machine Shop

The machine shop floor in the maintenance machine shop building was equipped with a wood block floor. Following the closure of the Reynolds Facility, this floor fell into

disrepair, and much of the flooring was loose and significantly damaged. Testing showed that the oil and mastic in the floor contained asbestos, polychlorinated biphenyls, and lead. An asbestos abatement contractor was hired by MBTL to remove the floor. The project was completed in 3 months, and approximately 68 tons of flooring, including some of the cement under and around the perimeter of the floor, was removed and disposed of in a permitted Toxic Substances Control Act and hazardous waste landfill in Arlington, Oregon.

2.8 U-ditch Restoration

When CVI constructed a new railroad line to connect the former on-site cable plant to the existing rail lines that paralleled the river end of the North Plant, they filled in a drainage ditch (referred to as the U-ditch) that, at the time, conveyed stormwater from the western portion of the property back to the Reynolds Facility's stormwater treatment system. This change in the U-ditch by CVI was in violation of the site's NPDES permit, so Ecology issued an Administrative Order to CVI to correct the situation. CVI did not reconnect the U-ditch. MBTL received approval from Ecology to reconnect the U-ditch. The fill used by CVI to close the U-ditch consisted of site demolition debris. After the ditch was reopened, MBTL separated the sampled clean fill from the demolition debris-contaminated fill and disposed of more than 14,000 tons of the demolition debris-contaminated fill in a permitted landfill in Hillsboro, Oregon. The segregated clean fill was stored for proposed 2013 regrading of the ditch.

2.9 Removal and Disposal of Other Materials

MBTL continued to conduct general site cleanup and remove miscellaneous debris and other materials. Materials removed from the site and disposed at appropriately permitted off-site treatment/disposal facilities include the following:

- Approximately 700 tons of cleanup debris
- Approximately 90 tons of wood waste
- Approximately 20 tons of pitch-impacted debris
- More than 200 tons of underflow solids

2.10 Other Completed Actions

MBTL continued to remove unpermitted structures that had been installed by CVI and other historical debris and infrastructure, in addition to repairing infrastructure still in operation. These actions include the following:

- Removal of product handling conveyors and other unpermitted structures previously placed at the site by CVI
- Removal of the unpermitted conveyor system and product loader that had previously been installed on the dock by CVI
- Completion of in-water migration measures, including the removal of creosote-treated structures
- Repair of the CDID levee that had been damaged by CVI
- Repair of the Reynolds Facility dock, including restoration of the fire suppression system for the dock
- Upgrades to the facility's potable water system
- Re-establishment of on-site facilities for use by MBTL employees

3 SUMMARY

Since purchasing the Reynolds Facility assets in early 2011, MBTL has made great progress in restoring conditions at the Reynolds Facility. To date, MBTL has removed more than 200,000 tons of wastes and materials, has removed unpermitted conveyors and structures that had been installed by CVI, and has completed repairs of the CDID levee that had been damaged by CVI.

MBTL's progress at the Reynolds Facility is ongoing. The attached photographs illustrate the improved conditions achieved since MBTL's purchase of the Reynolds Facility assets from CVI in early 2011. MBTL and Northwest Alloys continue to work with Ecology to implement a RI/FS consistent with the MTCA Agreed Order overseen by Ecology.

Table 1
Demolition and Cleanup Accomplishments: June 2011 through December 2012

Material	Source	How Managed	Quantity		
Sattlad solids	Stormwater	Disposed of in a	More than 1,000 tons		
Settled solids	settling pond	permitted landfill	101010 (11011 1,000 (0113		
Process water	Commissioning of	Shipped to permitted	Approximately 725,000		
Process water	treatment system	wastewater treatment plants	gallons		
Green petroleum	Green petroleum coke	Removed and exported by	More than		
coke	Green petroleum coke	product owner	100,000 tons		
Petroleum coke,	Petroleum coke	Disposed of in a	Approximately		
soil, and concrete	storage area	permitted landfill	21,000 tons		
Chamanatan	Petroleum coke	Shipped to permitted	More than		
Stormwater	storage area	wastewater treatment plants	2 million gallons		
Alkalina ava	Cathode demolition	Disposed of in a	Approximately		
Alkaline ore	Cathode demonition	permitted landfill	6,500 tons		
Alumina ore	Glencore	Removed by Glencore	Approximately		
Alumina ore	diencore	Removed by diencore	2,500 tons		
Carbon	Anode carbon	Recycling in the steel industry	More than 20,000 tons		
Fly ash	LaFarge	Reused by LaFarge	More than 26,000 tons		
Mandand somewhat	Maintenance machine	Disposed of in a permitted	Approximately 60 tons		
Wood and concrete	shop floor	Subtitle C landfill	Approximately 68 tons		
Compa mostal	Site cleanup and	Recycled	More than 1,200 tons		
Scrap metal	structure removal	Recycled	Widte than 1,200 tons		
Demolition debris	U-ditch restoration	Disposed of in a	More than 14,000 tons		
and soil	O-utter restoration	permitted landfill	Wide than 14,000 tons		
Claanun dahnia	Site cleanup	Disposed of in a	Approximately 700 tons		
Cleanup debris	Site cleanup	permitted landfill	Approximately 700 tons		
Wood waste	Site cleanup	Disposed of in a	Approximately 90 tons		
wood waste	Site cleanup	permitted landfill	Approximately 90 tons		
Pitch-impacted	Site cleanup	Disposed of in a	More than 20 tons		
debris	Site cleanup	permitted landfill	iviore trian 20 tons		
Underflow solids	Site cleanup	Disposed of in a	More than 200 tons		
Uniderflow Sollas	Site cleanup	permitted landfill	IVIOLE CHAIL ZOO COLIS		

The quantities shown in this table include only materials removed from the Reynolds Facility between June 2011 and December 2012. For information on actions completed and materials removed from the Reynolds Facility prior to that date, refer to the *Demolition and Cleanup Accomplishments at the Former Reynolds Longview Reduction Plant* report prepared by Northwest Alloys in 2011.

Photographs

Flat Storage Area

Previous Conditions

North Plant Potlines

Previous Conditions

South Plant Potlines

Previous Conditions

Current Conditions

Current Conditions

Current Conditions

Maintenance Courtyard

Previous Conditions

Current Conditions

Closed Black Mud Pond Facility

Previous Conditions

Current Conditions

Waste Treatment Facility (U-ditch)

Previous Conditions

Current Conditions

Product Handling

Previous Conditions

CDID Levee Repair

Previous Conditions

Current Conditions

Current Conditions

Alcoa Longview Facility Data Report

McCully Frick & Gillman, Inc. (2003), as submitted under Anchor Environmental, L.L.C. (2006). Prepared for Washington State Department of Ecology. August 2006.

Anchor Environmental, L.L.C. 1423 3rd Avenue, Suite 300 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131

August 2, 2006 060354-01

Ms. Carol Kraege Washington State Department of Ecology Industrial Section PO Box 47600 Olympia, WA 98504-7600

Dear Ms. Kraege:

The purpose of this letter is to transmit environmental data from investigations performed by MFG on behalf of Alcoa at the former Reynolds Metals Corporation Longview facility (site) in Longview, Washington. The site characterization activities conducted by MFG provide information that assists with quantifying the environmental conditions at the site and further establish a soil, sediment, groundwater, and surface water database to be used for evaluating future site environmental strategy. Past investigations at the site, combined with the recent work by MFG, has resulted in a detailed understanding of the shallow groundwater, surface water, soil, and on-site ditch sediment in site areas where waste materials exist.

Site History

As you know, the site is located at 4029 Industrial Way on the north bank of the Columbia River in Cowlitz County, Washington near Longview. The site covers approximately 416 acres with approximately 100 acres of developed area. The southern portion of the facility (South Plant) began aluminum smelting and casting operations in 1941. The larger North Plant began aluminum smelting and casting operations in 1967. The Longview facility was shut down in March 2003.

Investigation Summary

The MFG investigations commenced in July 2002 and were concluded in September 2003. Table 1 summarizes the actual data collection activities at the site in 2002 and 2003. The attached data report contains all of the data collected by MFG. The tables and figures in this data report are organized as follows:

Volume I

- Chronology of Field Events, Well Construction Information: Tables 1 2
- Facility Site Location Map, Site Plan, All Monitoring/Sampling Locations: Figures 1 3
- North Plant Groundwater Data/Figures: Tables 3 11; Figures 4 8
- North Plant Surface Water Data/Figures: Table 12; Figure 9
- North Plant Soil Data/Figures: Figure 10
- South Plant Soil Data: Tables 13 14
- South Plant Groundwater Data/Figures: Tables 5 18, 20 22; Figures 11 13, 16 17
- South Plant Sediment Data/Figures: Table 19; Figure 14
- South Plant Surface Water Data/Figures: Table 23; Figure 15

Volume II

- Appendix A: August 1970 Color Enhanced Aerial Photograph of Plant
- Appendix B: Data Evaluation Summaries
- Appendix C: Boring Logs and Screened Intervals for North Plant Wells and Piezometers
- Appendix D: Hydrographs for BMP Area Wells, Piezometers, Surface Water-Groundwater Pairs, and Surface Water Benchmarks
- Appendix E: Trilinear and Stiff Diagrams
- Appendix F: Boring Logs for South Plant Direct-Push and Hollow Stem Auger Borings
- Appendix G: Boring Logs and Screened Intervals for South Plant Wells and Piezometers
- Appendix H: Hydrographs for South Plant Wells, Piezometers, Surface Water-Groundwater Pairs, and Surface Water Benchmarks

Please feel free to call (206 287 9130) or e-mail me (<u>jkeithly@anchorenv.com</u>) if you have any questions or concerns. We appreciate the open exchange of information on this project trust that we will continue to have an open dialog.

Sincerely,

James Keithly
Anchor Environmental, L.L.C.

Cc: Andy Hanes, Alcoa Mark Stiffler, Alcoa Barry Oliver, Chinook Ventures Alan Parks, Chinook Ventures Tom Dickey, Anchor Environmental Kristen Gaines, Anchor Environmental

Table of Contents

List of Tables

Table 1	Chronology of Field Events
Table 2	Well Construction Information
Table 3	North Groundwater Water Level Elevations
Table 4	Old Industrial Landfill Water Level Elevations
Table 5	North Groundwater Vertical Gradients
Table 6	North Groundwater Hydraulic Calculations
Table 7	North Groundwater Surface Water/Groundwater Interaction
Table 8	Black Mud Pond Area Wells—Wet, Dry, Average Year Water Level
	Elevations
Table 9	North Groundwater One-Time Conventional and Inorganic Results
Table 10	North Groundwater One-Time PAH Results
Table 11	North Groundwater Quarterly Piezometer Well Analytical Results
Table 12	North Plant One-Time and Quarterly Surface Water Analytical Results
Table 13	South Plant Boring Logs Summary
Table 14	South Plant Area Subsurface Soil Analytical Results
Table 15	South Groundwater Water Level Elevations
Table 16	South Groundwater Vertical Gradients
Table 17	South Groundwater Hydraulic Calculations
Table 18	South Groundwater Surface Water/Groundwater Interaction
Table 19	South Plant Area Sediment Analytical Results
Table 20	South Groundwater One-Time Conventional and Inorganic Results
Table 21	South Groundwater One-Time PAH Results
Table 22	South Groundwater Quarterly Piezometer Well Analytical Results
Table 23	South Plant One-Time and Quarterly Surface Water Analytical Results

List of Figures

Figure 1	Facility Site Location Map
Figure 2	Site Plan
Figure 3	All Monitoring/Sampling Stations
Figure 4	North Groundwater Potentiometric Surface Map - December 27, 2002
Figure 5	North Groundwater Potentiometric Surface Map - March 24, 2003
Figure 6	North Groundwater Potentiometric Surface Map - July 1, 2003
Figure 7	North Plant Shallow Groundwater Results

Table of Contents

Figure 8	North Plant Shallow Groundwater Results
Figure 9	North Plant Surface Water Sampling Results CN, F, and Total PAHs
Figure 10	Direct Push Soil Sampling Results CN, F, and Total PAH
Figure 11	South Groundwater Potentiometric Surface Map - December 27, 2002
Figure 12	South Groundwater Potentiometric Surface Map - March 24, 2003
Figure 13	South Groundwater Potentiometric Surface Map - July 1, 2003
Figure 14	Sediment Sampling Results CN, F, and Total PAHs
Figure 15	South Plant Surface Water Sampling Results CN, F, and Total PAHs
Figure 16	Direct Push Sampling Shallow Groundwater Results CN, F, and Total
	PAHs
Figure 17	South Plant Shallow Groundwater Results
List of Appe	endices

Appendix A	August 1970 Color Enhanced Aerial Photograph of Plant
Appendix B	Data Evaluation Summaries
Appendix C	Boring Logs and Screened Intervals for North Plant Wells and
	Piezometers
Appendix D	Hydrographs for BMP Area Wells, Piezometers, Surface Water-
	Groundwater Pairs, and Surface Water Benchmarks
Appendix E	Trilinear and Stiff Diagrams
Appendix F	Boring Logs for South Plant Direct-Push and Hollow Stem Auger Borings
Appendix G	Boring Logs and Screened Intervals for South Plant Wells and
	Piezometers
Appendix H	Hydrographs for South Plant Wells, Piezometers, Surface Water-
	Groundwater Pairs, and Surface Water Benchmarks

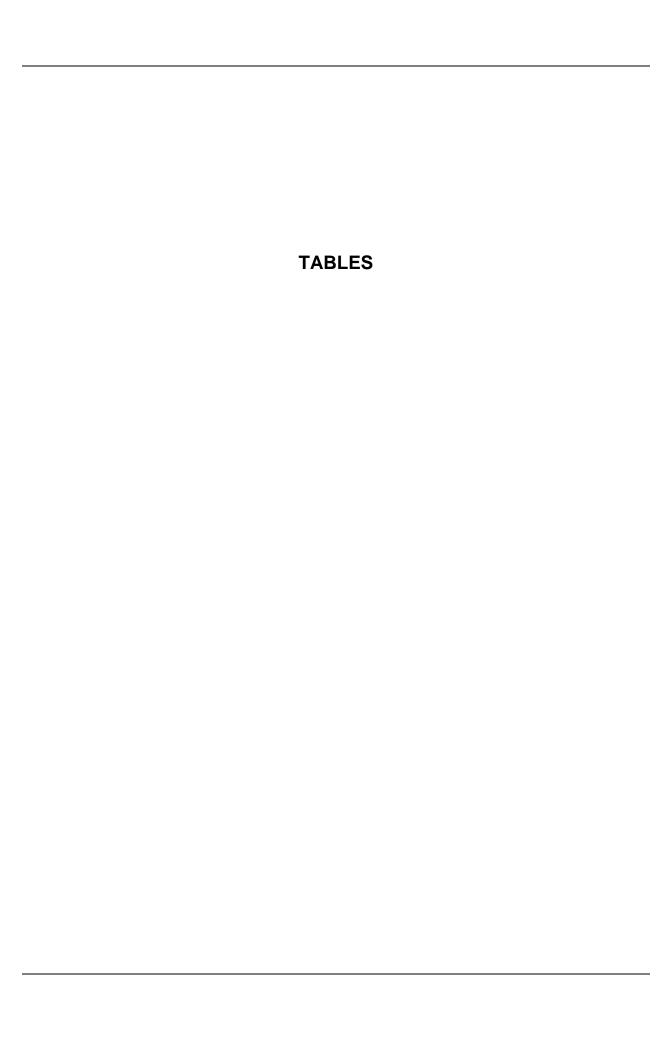


Table 1 Chronology of Field Events

Date	Event	Notes
July 29, 2002	Sediment samples collected at six locations from the ditches in the South Plant Area Staff gauges or mini-piezometers installed at four locations (G-1A/B, G-3A/B, G-4A/B, and G-8A/B); surface water measurement benchmarks identified at four other locations (G-2, G-5, G-6, and G-7) in the South Plant Area and near the BMP.	
July 30, 2002	Quarterly groundwater monitoring begins on wells RL-4S, RL-4D, RL-5, RL-3D and RL- 3S in the BMP Area	Not in original Scope. Due to staffing issues, the Plant was unable to provide the personnel to perform this quarterly monitoring. MFG stepped in and conducted the monitoring for this quarter.
July 31, 2002	Continued quarterly groundwater monitoring of wells RL-4S, RL-5, RL-3D, RL-3S, RL1D, RL-2S, RL2D, RL-1S, and RL1D. Sample collected from CDID Down surface water monitoring station in the BMP Area.	
August 1, 2002	Continued quarterly monitoring of the CDID Up surface water monitoring station, wells RL-1S, RL-1D, RL-4S, RL-4D in the BMP Area. Began quarter monitoring of well R-3 in the South Plant Area.	
August 2, 2002	Continued quarterly groundwater monitoring of wells R-2, R-4S, and R-1D in the South Plant Area.	
August 5, 2002	Continued quarterly groundwater monitoring of wells R-1D, R-4D, and R-1D in the South Plant Area. Began quarterly groundwater monitoring of wells RLSW-2 and RLSW-3 in the Old Industrial Landfill Area.	
August 6, 2002	Continued quarterly groundwater monitoring of wells RLSW-4 and RLSW-1 in the Old Industrial Landfill Area.	
August 27, 2002	Site-wide monthly water level measurements begins at 19 existing monitoring wells five staff gauge/mini-piezometers, and four benchmark locations. Surveyors begin acquiring benchmark data prior to shooting all water level measurement locations.	An additional staff gauge/mini-piezometer installed in low lying area south of well RL-5 (G-9A/B).
September 10, 2002	First of four quarterly rounds of surface water sampling begins. Samples collected at MFG stations SW-4, SW-5, SW-6, SW-7, SW-8 in the South Plant Area and stations SW-9 in the BMP Area	
September 11, 2002	Direct push soil sampling begins in South Plant Area. Borings DP-1, DP-2, DP-3, DP-4, DP-5, DP-6, DP-7, and DP-8 completed.	
September 12, 2002	Continued direct push soil sampling in South Plant Area. Borings DP-9, DP-10, and DP-11 completed.	At 1300 hr, direct push rig breaks down, ending field work until September 24, 2002.
September 17, 2002	Surveyors begin shooting DP-1 though DP-11.	
September 24, 2002	Resumed direct push soil sampling in South Plant Area. Borings DP-12, DP-13, DP-14, DP-15, DP-16, DP-17, DP-18, and DP-19 completed.	DP-20 began, but macrocore sampler could not be recovered. No sample collected.
September 25, 2002	Site-wide monthly water level measurements collected.	MW-9 near the Cable Plant added to monitoring network.

Date	Event	Notes
October 29, 2002	Site-wide monthly water level measurements collected.	CDID down benchmark added to monitoring network.
November 25, 2002	Site-wide monthly water level measurements collected. Second of four quarterly rounds of surface water sampling completed. Samples collected at MFG stations SW-4, SW-5, SW-6, SW-7, SW-8 in the South Plant Area and stations SW-9, CDID Up and CDID Down in the BMP Area.	
November 25 and November 26, 2002	Site-wide monthly water level measurements collected. Five piezometers installed in the South Plant area and two installed between BMP and CDID ditch. Well development begins on PZ-1, PZ-2, PZ-3, and PZ-4.	
November 27, 2002	Well development PZ-1, PZ-4, PZ-5, PZ-6 and PZ-7.	
December 2 and December 3, 2002	Completed well development and collected groundwater samples from PZ-1, PZ-2, PZ-3, PZ-4, PZ-5, PZ-6, and PZ-7.	
December 4, 2002	Surveyors shoot DP-12 through DP-19, and PZ-1 though PZ-7.	
December 27, 2002	Site-wide monthly water level measurements collected.	
January 29, 2003	Site-wide monthly water level measurements collected.	
February 25, 2003	Site-wide monthly water level measurements collected.	
March 24, 2003	Site-wide monthly water level measurements collected Third of four quarterly rounds of surface water sampling completed. Samples collected at MFG stations SW-4, SW-5, SW-6, SW-7, SW-8 in the South Plant Area and stations SW-9, CDID Up and CDID Down in the BMP Area.	
March 25, 2003	Second of four quarterly rounds of samples collected from PZ-2, PZ-3, PZ-4, PZ-5, PZ6, and PZ-7.	PZ-1 not sampled due to problem with casing. The casing was repaied by the driller in April 2003.
April 29, 2003	Site-wide monthly water level measurements collected.	
May 29, 2003	Site-wide monthly water level measurements collected.	
June 29 & 30, 2003	Third of four quarterly rounds of samples collected from PZ-1, PZ-2, PZ-3, PZ-4, PZ-5, PZ6, and PZ-7.	
July 1, 2003	Site-wide monthly water level measurements collected. Fourth of four quarterly rounds of surface water sampling completed. Samples collected at MFG stations SW-4, SW-5, SW-6, SW-7, SW-8 in the South Plant Area and stations SW-9, CDID Up and CDID Down in the BMP Area.	
August 12, 2003	Samples collected from drums of investigation-derived waste (IDW) for characterization purposes	
September 25, 2003	IDW hauled off-site by Philip Services	
September 30, 2003	Fourth of four quarterly rounds of samples collected from PZ-1, PZ-2, PZ-5, PZ6, and PZ-7	

BMP Black Mud Pond

CDID Consolidated Diking and Improvement District (Cowlitz County)

Table 2
Well Construction Information

							Screene	Screened Interval			Screened Interval Elevation			
		Total Depth	PVC Well		Steel	PVC			Ground	Measuring Point				
Well/Piezo	Location of	of	Casing		Casing	Casing	Top of	Bottom	Surface	Elevation (Top of PVC	Top of	Bottom of		
meter	Well/Piezometer	Borehole	Diameter	Screen	Stickup	Stickup	Screen	of Screen	Elevation	Casing)	Screen	Screen		
Number	at Facility	(ft bgs)	(Inches)	Slot Size	(ft ags)	(ft ags)	(ft bgs)	(ft bgs)	(ft NAVD88)	(ft NAVD88)	(ft NAVD88)	(ft NAVD88)		
CPMW-9	Cable Plant	15	2	0.010	0.00	-0.38	6	14	12.30	11.92	6.30	-1.70		
R 1D	South Plant	24	2	0.010	0.90	0.79	20	24	16.59	17.38	-3.41	-7.41		
R 1S	South Plant	12	2	0.010	0.47	0.30	7	12	16.54	16.84	9.54	4.54		
R 2	South Plant	14	2	0.010	2.05	1.63	9	14	7.42	9.05	-1.58	-6.58		
R 3	South Plant	24	2	0.010	0.54	0.39	19	24	12.44	12.83	-6.56	-11.56		
R 4D	South Plant	27	2	0.010	1.14	0.97	23	27	17.73	18.70	-5.27	-9.27		
R 4S	South Plant	19	2	0.010	1.07	0.94	14	19	17.62	18.56	3.62	-1.38		
RL-1D	BMP	38	2	0.010	1.92	1.77	28	38	10.43	12.20	-17.57	-27.57		
RL-1S	BMP	17	2	0.010	1.96	1.83	8	18	10.52	12.35	2.52	-7.48		
RL-2D	BMP	33	2	0.010	2.00	1.93	23	33	8.34	10.27	-14.66	-24.66		
RL-2S	BMP	17.5	2	0.010	2.66	2.45	7.5	17.5	8.27	10.72	0.77	-9.23		
RL-3D	BMP	38	2	0.010	2.45	2.35	28	38	10.33	12.68	-17.67	-27.67		
RL-3S	BMP	17.5	2	0.010	2.59	2.33	7.5	17.5	10.42	12.75	2.92	-7.08		
RL-4D	BMP	35	2	0.010	1.39	1.28	25	35	8.33	9.61	-16.67	-26.67		
RL-4S	BMP	13.5	2	0.010	1.70	1.58	8.5	13.5	8.33	9.91	-0.17	-5.17		
RL-5	BMP	22	2	0.010	3.42	3.24	12	22	14.15	17.39	2.15	-7.85		
RLSW1	OIL	18	1.5	0.010	1.91	1.77	9	18	14.15	15.92	5.15	-3.85		
RLSW2	OIL	18	1.5	0.010	2.02	2.02	9	18	15.46	17.48	6.46	-2.54		
RLSW3	OIL	18	1.5	0.010	1.75	1.48	9	18	13.50	14.98	4.50	-4.50		
RLSW4	OIL	28.5	1.5	0.010	1.69	1.51	18	28.5	27.78	29.29	9.78	-0.72		
PZ-1	South Plant	13.7	2	0.010	2.96	2.58	8.6	13	12.34	14.92	3.74	-0.66		
PZ-2	South Plant	25.3	2	0.010	3.15	2.48	20.2	24.6	14.24	16.72	-5.96	-10.36		
PZ-3	South Plant	10.3	2	0.010	3.10	2.73	5.1	9.5	10.17	12.90	5.07	0.67		
PZ-4	South Plant	18.2	2	0.010	3.14	2.74	13	17.4	8.53	11.27	-4.47	-8.87		
PZ-5	South Plant	23.5	2	0.010	2.61	1.99	18.4	22.8	9.91	11.90	-8.49	-12.89		
PZ-6	BMP	12.6	2	0.010	2.99	2.52	7.5	11.9	4.49	7.01	-3.01	-7.41		
PZ-7	BMP	18.6	2	0.010	3.06	2.63	8.4	17.8	7.73	10.36	-0.67	-10.07		

BMP = Black Mud Pond

OIL - Old Industrial Landfill

ft ags = feet above ground surface

ft bgs = feet below ground surface

Table 3

North Groundwater Water Level Elevations

Monitoring Station Name	RL-1S	RL-1D	RL-2S	RL-2D	RL-3S	RL-3D	RL-4S	RL-4D	RL-5	CPMW-9	PZ-6	PZ-7	G6	G 7	G8A	G8B	G9A	G9B	CDID Down	CDID RMC PS
Monitoring Station Location				Black M	lud Pone	d Area				Cable Plant	West	Side BMP	BMP Recirc	Cable plant sample platform		Plant Ditch	East Si	ide BMP	CDID Pump Station	
Station Type	Well	Well	Well	Well	Well	Well	Piez	Piez	Piez	Piez	Piez	SG	Mpiez	Ditch	SG	Mpiez	SG	Mpiez	Ditch	Ditch
Measuring Point Location	тос	тос	тос	тос	тос	TOC	TOC	тос	тос	TOC	тос	TOC	PM	PM	SG	TOSC	SG	TOSC	Pipe on walkway	SG
Date											V	Vater Level	Elevations (f	NAVD88)						
26-Jul-02																				0.50
30-Jul-02					4.86	2.82	3.60	3.13	1.49											
31-Jul-02	1.20	0.74	0.07	0.05																
02-Aug-02																				0.50
23-Aug-02																				0.30
27-Aug-02	1.91	2.65	0.41	0.26	3.29	4.66	3.55	3.62	0.49				4.30		Dry	Dry	Dry	Dry		
30-Aug-02																				0.50
25-Sep-02	1.63	2.55	0.33	0.11	3.90	4.16	3.10	3.11	0.49	2.90			4.07	Dry	Dry	0.41	Dry	Dry		
27-Sep-02																				0.50
14-Oct-02	1.72	3.58	0.45	0.50	4.05	4.25	4.15	3.80	0.10											
25-Oct-02																				0.50
29-Oct-02	1.70	2.14	0.41	0.34	3.94	4.09	3.80	3.59	0.03	3.60			4.11	1.97	Dry	1.83	Dry	Dry		
01-Nov-02																				0.60
25-Nov-02	1.78	2.18	0.57	0.64	4.27	4.22	5.45	4.58	0.65	4.58			4.38	2.81	3.16	3.16	Dry	Dry	0.32	
02-Dec-02											0.74	1.46								
27-Dec-02	2.49	2.88	1.66	1.85	5.53	5.34	6.81	6.08	4.95	6.00	1.11	0.13	5.06	2.91	3.79	3.62	Dry	4.63	0.07	
29-Jan-03	3.02	3.18	2.50	2.14	6.04	5.42	7.17	6.18	5.60	6.14	2.15	1.10	4.26	3.06	3.20	3.12	Dry	5.10	0.33	
25-Feb-03	2.80	3.33	1.87	1.88	5.52	5.61	6.85	6.13	5.60	6.27	1.80	0.14	3.98	2.88	2.88	3.08	Dry	5.48	0.27	
24-Mar-03	2.94	0.96	3.30	2.60	5.99	4.69	7.48	6.55	5.99	7.28	2.70	2.28	5.41	3.10	3.10	3.32	7.48	5.88	0.55	
29-Apr-03	2.58	3.51	1.25	1.55	5.64	5.63	6.91	6.31	5.66	6.49	1.43	0.27	5.13	3.85	3.86	3.85	Dry	6.38	0.08	
29-May-03	2.34	3.19	0.99	1.19	5.08	5.33	5.77	5.53	4.19	5.89	0.16	0.73	5.43	3.61	3.60	3.55	Dry	6.41	0.48	
01-Jul-03	2.14	2.78	0.67	0.75	4.82	5.02	4.96	4.42	2.57	5.00	0.46	1.20	5.19	3.20	3.20	3.11	Dry	6.01	0.27	

All water levels are in feet NAVD88

SPL Ditch = Spent Pot Liner Ditch

Piez = Piezometer

Mpiez = Mini Piezometer

PM = Paint Mark

RMC PS = CDID pump station located just down stream of CDID Down location (measured by CDID personnel on an irregular basis)

SG = Staff Gauge

TOC = Top of PVC Casing

TOSC = Top of Steel Casing

Blank Cell = no measurement

Table 4
Old Industrial Landfill Water Level Elevations

Well Name	RLSW-1	RLSW-2	RLSW-3	RLSW-4
Date	Wat	er Level Eleva	ations (ft NAVI	D88)
05-Aug-02		6.28	5.79	
06-Aug-02	6.46			11.26
27-Aug-02	5.98	6	5.76	11.27
25-Sep-02	5.43	5.39	5.16	10.99
29-Oct-02	5.55	5.54	5.43	10.76
25-Nov-02	6.07	6.06	5.84	10.6
27-Dec-02	8.04	7.99	7.74	11.05
29-Jan-03	8.39	8.98	8.08	11.69
25-Feb-03	8.4	8.97	8.25	12.08
24-Mar-03	8.71	9.81	8.73	12.39
29-Apr-03	8.61	9.42	8.3	12.37
29-May-03	7.96	8.15	7.6	12.11
01-Jul-03	7.15	7.05	6.81	11.82

All measuring points were top of outer steel well casing

Blank Cell = no measurement

Table 5
North Groundwater Vertical Gradients

Well Pair	RL-1S	RL-1D	RL-2S	RL-2D	RL-3S	RL-3D	RL-4S	RL-4D
Bottom of Screen (ft NAVD88)	-7.48	IKE-ID	-9.23	IXL-ZD	-7.08	IKE-3D	-5.17	IXL-4D
Top of Screen (ft bgs)	7.40	-17.57	3.20	-14.66	7.00	-17.67	3.17	-16.67
6/30/2002		17.07		14.00		17.07		10.07
Water Level Elevation (ft NAVD88)					4.86	2.82	3.6	3.13
Vertical Gradient (ft/ft)						93	0.0	
7/31/2002								
Water Level Elevation (ft NAVD88)	1.2	0.74	0.07	0.05				
Vertical Gradient (ft/ft)	0.0)46	0.0	004				
8/27/2002								
Water Level Elevation (ft NAVD88)	1.91	2.65	0.41	0.26	3.29	4.66	3.55	3.62
Vertical Gradient (ft/ft)	-0.0	073	0.0)28	-0.	129	-0.0	006
9/25/2002								
Water Level Elevation (ft NAVD88)	1.63	2.55	0.33	0.11	3.90	4.16	3.10	3.11
Vertical Gradient (ft/ft)	-0.0	091	0.0)41	-0.0	025	-0.0	001
10/14/2002								
Water Level Elevation (ft NAVD88)	1.72	3.58	0.45	0.5	4.05	4.25	4.15	3.80
Vertical Gradient (ft/ft)	-0.	184	-0.009		-0.019		0.0)30
11/25/2002								
Water Level Elevation (ft NAVD88)	1.78	2.18	0.57	0.64	4.27	4.22	5.45	4.58
Vertical Gradient (ft/ft)	-0.040		-0.013		0.0	005	0.0)76
12/27/2002								
Water Level Elevation (ft NAVD88)	2.49	2.88	1.66	1.85	5.53	5.34	6.81	6.08
Vertical Gradient (ft/ft)	-0.0	039	-0.035		0.018		0.0	063
1/29/2003								
Water Level Elevation (ft NAVD88)	3.02	3.18	2.50	2.14	6.04	5.42	7.17	6.18
Vertical Gradient (ft/ft)	-0.0	016	0.0	066	0.0)59	0.0)86
2/25/2003								
Water Level Elevation (ft NAVD88)	2.80	3.33	1.87	1.88	5.52	5.61	6.85	6.13
Vertical Gradient (ft/ft)	-0.0	053	-0.0	002	-0.0	800	0.0	063
3/24/2003								
Water Level Elevation (ft NAVD88)	2.94	0.96	3.30	2.6	5.99	4.69	7.48	6.55
Vertical Gradient (ft/ft)	0.1	196	0.1	129	0.1	23	0.0)81
4/29/2003								
Water Level Elevation (ft NAVD88)	2.58	3.51	1.25	1.55	5.64	5.63	6.91	6.31
Vertical Gradient (ft/ft)	-0.0	092	-0.0	055	0.0	001	0.0)52
5/29/2003								
Water Level Elevation (ft NAVD88)	2.34	3.19	0.99	1.19	5.08	5.33	5.77	5.53
Vertical Gradient (ft/ft)	-0.0	084	-0.0	037	-0.0	024	0.0)21
7/1/2003								
Water Level Elevation (ft NAVD88)	2.14	2.78	0.67	0.75	4.82	5.02	4.96	4.42
Vertical Gradient (ft/ft)	-0.0	063	-0.0	015	-0.0	019	0.0)47

 $Vertical\ Gradient\ (ft/ft) = (Water\ Level_{shallow\ well}\ -\ Water\ Level_{deep\ well})/(Bottom\ of\ Screen_{shallow\ well}\ -\ Top\ of\ Screen_{deep\ well})/(Bottom\ of\ Screen_{deep\ well}\ -\ Top\

Positive vertical gradient value = downward vertical gradient

Negative vertical gradient value = upward vertical gradient

Table 6
North Groundwater Hydraulic Calculations

Date	December 27, 2002	March 24, 2003	July 1, 2003
Estimated Average Hydraulic Conductivity (K: ft/day)	0.83	0.83	0.83
Calculated Average Horizontal Hydraulic Gradient (i; ft/ft)	0.002	0.002	0.002
Effective Porosity (n _e ; percent by volume)	35 - 45	35 - 45	35 - 45
Estimated Horizontal Groundwater Flow Velocity (v; ft/day)	0.0047 - 0.0037	0.0047 - 0.0037	0.0047 - 0.0037

Horizontal Groundwater Flow Velocity = $v = (K_h i)/n_e$

K: obtained from aquifer test results performed by Reynolds and CH₂MHill (1991) for BMP Closure and Post Closure Plan

 n_e : very fine - medium sands, sandy silt, silt: estimated from Table 5.1 in Groundwater and Wells (Driscoll, 1986)

Table 7
North Groundwater Surface Water/Groundwater Interaction

Monitoring Station Name	G8A	G8B		G9A	G9B	
Monitoring Station Location	Cable Plant Ditch	Cable Plant Ditch	Surface Water	East Side BMP	East Side BMP	Surface Water
Station Type	SG	Mpiez	Gaining or	SG	Mpiez	Gaining or
Measuring Point Location	SG	TOSC	Losing	SG	TOSC	Losing
Date		ı	Nater Level Eleva	ations (ft NAVD88)		
27-Aug-02	Dry	Dry		Dry	Dry	
25-Sep-02	Dry	0.41		Dry	Dry	
29-Oct-02	Dry	1.83		Dry	Dry	
25-Nov-02	3.16	3.16		Dry	Dry	
27-Dec-02	3.79	3.62	Losing	Dry	4.63	
29-Jan-03	3.20	3.12	Losing	Dry	5.10	
25-Feb-03	2.88	3.08	Gaining	Dry	5.48	
24-Mar-03	3.10	3.32	Gaining	7.48	5.88	Losing
29-Apr-03	3.86	3.85	Losing	Dry	6.38	
29-May-03	3.60	3.55	Losing	Dry	6.41	
01-Jul-03	3.20	3.11	Losing	Dry	6.01	

Surface Water Gaining or Losing: Surface water level is greater than groundwater = surface water is losing water to groundwater; Surface water level is less than groundwater = surface water is gaining water from groundwater

SPL Ditch = Spent Pot Liner Ditch

Mpiez = Mini Piezometer

SG = Staff Gauge

TOSC = Top of Steel Casing

Table 8
Black Mud Pond Area Wells—Wet, Dry, Average Year Water Level Elevations

Wel	I Name	RL1S	RL1D	RL2S	RL2D	RL3S	RL3D	RL4S	RL4D	RL5
(Top of out	Point Elevation er steel casing) GVD88)	12.35	12.2	10.72	10.27	12.75	12.68	9.91	9.61	17.39
Date	Precipitation				Water Leve	I Elevation	(ft NGVD88)			
18-Dec-95		6.35	6.62	8.14	6.94	8.25	5.18	7.16	6.61	5.89
26-Feb-96	Wet Year 66.08	2.43	2.28	2.97	2.44	5.00	4.93	7.24	6.78	5.14
13-May-96	inches	4.85	3.03	0.64	1.02	4.58	6.76	5.91	5.28	4.97
22-Jul-96		1.40	2.35	0.72	0.72	4.20	4.48	5.16	4.71	2.44
29-Nov-93		3.27	1.03	0.72	0.69	4.50	4.43	5.41	4.36	0.72
7-Nov-94	Dry Year 33.22	2.10	2.12	2.39	2.27	5.00	4.76	6.24	5.44	5.39
6-Mar-94	Diy real 33.22	1.18	1.87	0.55	0.85	4.33	6.93	4.49	4.19	2.72
8-Aug-94		0.77	1.87	0.14	0.19	3.58	3.93	3.41	3.03	0.89
17-Nov-97		1.60	2.23	1.35	1.27	4.80	4.68	6.16	5.61	4.82
23-Feb-98	Avg Year 46.97	3.09	3.34	4.17	2.81	5.80	5.38	7.69	6.46	5.87
8-Jun-98	inches	1.84	2.33	1.18	1.33	4.65	4.88	5.95	5.68	4.68
14-Sep-98		1.10	1.78	0.46	0.37	3.75	3.96	3.46	3.21	0.52

Table 9

North Groundwater One-Time Conventional and Inorganic Results

	Units	RL-1D	RL-1S	RL-2D	RL-2S	RL-3D	RL-3S	RL-4D	RL-4S	RL-5	RLSW1	RLSW2	RLSW3	RLSW4
	Date	8/2/2002	8/1/2002	7/31/2002	7/31/2002	7/31/2002	7/30/2002	7/30/2002	7/31/2002	7/31/2002	8/5/2003	8/5/2003	8/5/2003	8/5/2003
General Water Chemistry			•											
Bicarbonate Alkalinity as CaCO ₃	mg/L	740	259	1,210	3,200	719	700	240	132	170	1,270	758	400	2,160
Carbonate Alkalinity as CaCO ₃	mg/L	2 U	2 U	2 U	3,820	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total Alkalinity as CaCO3	mg/L	740	259	1,210	7,020	719	700	240	132	170	1,270	758	400	2,160
Calcium, Dissolved	ug/L	123,000	18,500	53,100	5,810	115,000	29,100	45,300	18,300	8,310	28,100	13,700	90,700	45,200
Magnesium, Dissolved	ug/L	60,700	9,380	25,900	2,270	55,700	14,000	20,700	10,400	3,790	16,400	6,520	44,200	19,990
Potassium, Dissolved	ug/L	2,430	2,000 U	2,690	4,530	3,030	2,000 U 2,000 U	4,410	10,600					
Sodium, Dissolved	ug/L	25,800	113,000	440,000	3,480,000	30,400	280,000	16,300	22,600	121,000	617,000	443,000	242,000	977,000
Ammonia as Nitrogen	mg/L	18.8	0.29 J	6.7	30	26.5	1.36	5.3	1.06	0.05 U	0.90	0.05 U	3.8	4
Nitrate as Nitrogen	mg/L	0.2 U	0.2 UJ	0.2 U	0.2 UJ	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Solids, Total Dissolved	mg/L	688	384	1,450	9,040	824	732	338	212	450	95	60	182	5 U
Solids, Total Suspended	mg/L	121	112	196	9	252	7	552	294	460	1,690	1,220	1,100	2,780
Sulfate	mg/L	0.2	10.3	31	523	0.3	25	0.3	2	108	17	6	20	19
Chloride	mg/L	5.0	3.4	23	60	4.9	8	13.0	4.7	10.3	84	108	0.5	69
Inorganics														
Total Cyanide	mg/L	0.20	0.020	0.35	38.6	0.003 U	0.14	0.03	0.003 U	0.003	0.92	0.03	0.30	0.19
WAD Cyanide	mg/L	0.003 U	0.003 J	0.003 U	0.23	0.003 U	0.03	0.003 U	0.003 U	0.008	0.03	0.01	0.08	0.08
Fluoride	mg/L	0.2 U	11.4	14	149	0.2 U	16	0.3	0.6	1.8	61	78	10	103
Metals														
Arsenic	μg/L	5 U	5U	5 U	47	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U	6.9
Copper	μg/L	10 U	10 U	10 U	20 U	10 U	10 U	10 U	10 U	16	10 U	18.3	10 U	10 U
Chromium	μg/L	5 U	5U	5 U	103	5 U	5.6	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Nickel	μg/L	20 U	20 U	20 U	97	20 U 20 U	20 U	20 U						
Field Parameters														
Temperature	С	12.6	16.3	12.4	15.4	16.0	15.0	16.1	13.0	21.3	15.7	16.9	15.6	13.6
Conductivity	µmhos/cm	840	227	1,474	7,348	8,355	534	374	162	343	1,608	1,206	1,105	2,504
рН	Std. Units	5.88	6.04	6.24	8.81	5.90	6.15	5.78	5.81	6.16	6.76	6.94	5.93	6.95
Red-ox Potential	mV	-8	-1	-61	-107	-60	-67	-60	123	-32	-53	19	-2	-84
Dissolved Oxygen	% sat	7.9	9.2	15.1	9.6	12.3	9.9	9.9	8.5	10	11.2	10.4	11.7	12.6

C - Celsius

mg/L- Milligrams per liter

μg/L- Micrograms per liter

 $\mu mhos/cm$ - micromhos per cenitmeter

Std. Units - standard units

mV - milivolts

% Sat - percent saturation

 $\label{thm:compound} U\mbox{ - The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.}$

UJ - Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected

Table 10

North Groundwater One-Time PAH Results

		RL-1D		RL-1S		RL-2D		RL-2S		RL-3D		RL-3S		RL-4D		RL-4S		RL-5		PZ-6		PZ-7		RLSW1		RLSW2		RLSW3		RLSW4
Parameter	Units	8/2/2002	Q	8/1/2002	Q	7/31/2002	Q	7/31/2002	Q	7/31/2002	Q	7/30/2002	Q	7/30/2002	Q	7/30/2002	Q	7/31/2002	Q	12/3/2002	Q	12/3/2002	Q	7/30/2002	Q	7/31/2002	Q	12/3/2002	Q	12/3/2002 Q
Acenaphthene	μg/L	1	UJ	0.98	UJ	1	UJ	1.1	UJ	1.2	UJ	0.96	UJ	1.2	UJ	1	UJ	0.96	UJ	0.98	UJ	0.96	UJ	1	UJ	1	UJ	0.99	UJ	1 UJ
Acenaphthylene	μg/L	1	UJ	0.98	UJ	1	UJ	1.1	U	1.2	UJ	0.96	UJ	1.2	UJ	1	UJ	0.96	UJ	0.98	UJ	0.96	UJ	1	UJ	1	UJ	0.99	UJ	1 UJ
Anthracene	μg/L	0.1	U	0.098	U	0.1	U	0.11	U	0.12	U	0.096	U	0.12	U	0.1	U	0.096	U	0.55		0.096	U	0.1	U	0.1	U	0.099	U	0.1 U
Benz(a)anthracene	μg/L	0.1	U	0.098	U	0.1	U	0.11	U	0.12	U	0.096	U	0.12	U	0.1	U	0.096	U	0.5		0.096	U	0.1	U	0.1	U	0.099	U	0.1 U
Benzo(a)pyrene	μg/L	0.1	U	0.098	U	0.1	U	0.11	U	0.12	U	0.096	U	0.12	U	0.1	U	0.096	U	0.098	U	0.096	U	0.1	U	0.1	U	0.099	U	0.1 U
Benzo(b)fluoranthene	μg/L	0.2	U	0.2	U	0.23		2.9	J	0.24	U	0.2	U	0.23	U	0.2	U	0.2	U	1.3	J	0.3	J	0.2	U	0.2	U	0.2	U	0.2 J
Benzo(g,h,i)perylene	μg/L	0.2	U	0.2	U	0.2	U	0.22	U	0.24	U	0.2	U	0.23	U	0.2	U	0.2 U												
Benzo(k)fluoranthene	μg/L	0.1	U	0.098	U	0.1	U	0.11	U	0.12	U	0.096	U	0.12	U	0.1	U	0.096	U	0.14		0.096	U	0.1	U	0.1	U	0.099	U	0.1 U
Chrysene	μg/L	0.1	U	0.098	U	0.1	U	0.11	U	0.12	U	0.096	U	0.12	U	0.1	U	0.096	U	0.72		0.096	U	0.1	U	0.1	U	0.1		0.1 U
Dibenz(a,h)anthracene	μg/L	0.2	U	0.2	U	0.2	U	0.22	U	0.24	U	0.2	U	0.23	U	0.2	U	0.2 U												
Fluoranthene	μg/L	0.2	U	0.22		0.2	U	0.22	U	0.24	U	0.2	U	0.23	U	0.2	U	0.2	U	4.4	UJ	0.2	U	0.2	U	0.2	U	0.2	UJ	0.2 U
Fluorene	μg/L	0.2	U	0.2	U	0.2	U	0.22	U	0.24	U	0.2	U	0.23	U	0.2	U	0.2 U												
Indeno(1,2,3-cd)pyrene	μg/L	0.1	U	0.098	U	0.1	U	0.11	U	0.12	U	0.096	U	0.12	U	0.1	U	0.096	U	0.098	U	0.096	U	0.1	U	0.1	U	0.099	U	0.1 U
Naphthalene	μg/L	1	UJ	0.98	U	1	UJ	1.1	UJ	1.2	UJ	0.96	UJ	1.2	UJ	1	UJ	0.96	UJ	0.98	UJ	0.96	UJ	1	UJ	1	UJ	0.99	UJ	1 UJ
Phenanthrene	μg/L	0.1	U	0.098	U	0.1	U	0.33	J	0.12	U	0.096	U	0.12	U	0.1	U	0.096	U	4.6		0.11		0.1	U	0.1	U	0.099	U	0.1 U
Pyrene	μg/L	0.2	U	0.2	U	0.2	U	0.22	U	0.24	U	0.2	U	0.23	U	0.2	U	0.2	U	3.5		0.2	U	0.2	U	0.2	U	0.2	U	0.2 U

PAH - Polycyclic Aromatic Hydrocarbons

U - The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.

J - Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable.

UJ -Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected.

Table 11

North Groundwater Quarterly Piezometer Well Analytical Results

			PZ			PZ	' -7		
	Units	12/3/2002 ^a	3/24/2003	6/30/2003	9/29/2003	12/3/2002 ^a	3/24/2003	6/30/2003	9/29/2003
General Water Chemistry									
Alkalinity, Total as CaCO3	mg/L		3						
Bicarbonate Alkalinity as CaCO ₃	mg/L	1,330	806	1,320	2,370	910	1,280	2,500	2,300
Carbonate Alkalinity as CaCO ₃	mg/L	676	2,240 J	1,300	1,030	2 U	2 UJ	2 U	2 U
Calcium	ug/L	12,700	8,920	7,630	15,500	6,540	26,700	52,500	46,800
Magnesium	ug/L	4,090	724	809	4,820	3,150	12,100	20,400	23,100
Potassium	ug/L	3,150	1,830	2,930	4,590	2,000 U	2,290	4,490	6,310
Sodium	ug/L	598,000	1,740,000	1,600,000	9,860,000	215,000	616,000	1,260,000	1,080,000
Chloride	mg/L	37	46	31	39	11	18	27	29
Sulfate	mg/L	182	287	206	320	16	52	7	30
Ammonia as Nitrogen ^o	mg/L	10.8	NA	NA	NA	3.79	NA	NA	NA
Nitrate as Nitrogen ^o	mg/L	0.5 UJ	NA	NA	NA	0.2 UJ	NA	NA	NA
Solids, Total Dissolved ^o	mg/L	3,680	NA	NA	NA	1,280	NA	NA	NA
Solids, Total Suspended ^o	mg/L	364	NA	NA	NA	52	NA	NA	NA
Inorganics									
Cyanide, Total	mg/L	5	6	6.4	12	0.13	0.25	0.7	0.41
Cyanide, Weak Acid Dissociable (WAD)	mg/L	0	0.07		0.15 J	0.01 U	0.03		0.06 J
Fluoride	mg/L	82.00	104	115	110	16	27	47	40
Field Parameters									
Conductivity	µmhos/cm	6,464	4,323	3,699	4,725	2,312	2,055	2,911	2,759
рН	Std. Units	9.2	9.77	9.63	8.04	6.79	6.64	7.01	6.84
Red-ox Potential	mV	1	-184	-132	-5	61	-106	-142	-90
Dissolved Oxygen	% sat	40.9	26.8	64.1	23.8	33.2	25.2	71.5	2.0

C - Celsius

NA - Sample not analyzed for this parameter.

mg/L- Milligrams per liter

mV - millivolts

μg/L- Micrograms per liter

Std. Units - standard units

µmhos/cm - micromhos per cenitmeter

% Sat - percent saturation

- a Metal values for this date are totals; remaining dates are dissolved.
- b Analyzed for only during first round per Sampling and Analysis Plan
- U The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.
- J Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable.
- UJ -Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected.

Table 12

North Plant One-Time and Quarterly Surface Water Analytical Results

			CDII	D UP			CDID	DOWN		SW-9					
	Units	8/1/2002 ^a	11/25/2002	3/24/2003	7/1/2003	7/31/2002 ^a	11/25/2002	3/24/2003	7/1/2003	9/10/2002	11/25/2002	3/24/2003	7/1/2003		
General Water Chemistry	0.000			0,2 ,,2000			11,20,200	0,2 1,2000	17.11.2000	0,10,200	11,20,200	012020			
Alkalinity, Total as CaCO3	mg/L														
Bicarbonate Alkalinity as CaCO3	mg/L	109	94	60	121	156	103	83	341	2,160	2,110	316	906		
Carbonate Alkalinity as CaCO3	mg/L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	484	264	2U	40		
Arsenic, Dissolved	ug/L	5 U	5 U ^e	5 U ^f	5 U ^g	5 U	5 U ^e	5 U ^f	5 U ^g	NA	NA	NA	NA		
Calcium, Dissolved ^b	ug/L	18,500	NA	NA	NA	19,000	NA	NA	NA	26,300	NA	NA	NA		
Calcium, Total	ug/L	NA	16,500	13,100	20,000	NA	16,200	16,200	23,200	NA	20,700	12,700	24,400		
Copper, Dissolved	ug/L	10 U	10 U ^e	11.2 ^f	10 U ^g	10 U	10 U ^e	10 U ^f	10 U ^g	NA	NA	NA NA	NA		
Chromium, Dissolved	ug/L	5 U	5 U ^e	5 U ^f	5 U ^g	5 U	5 U ^e	5 U ^f	5 U ^g	NA	NA	NA	NA		
Magnesium, Dissolved ^b	ug/L	8,760	NA	NA	NA	8,780	NA	NA	NA	15,700	NA	NA	NA		
Magnesium, Total	ug/L	NA NA	7,390	5,890	9,200	NA NA	7,110	6,990	11,400	NA	13,100	7,130	12,500		
Nickel, Dissolved	ug/L	20 U	20 U ^e	20 U ^f	20U ^g	20 U	20 U ^e	20 U ^f	20U ^g	NA	NA	NA	NA		
Potassium, Dissolved ^b	ug/L	2,000 U	NA NA	NA NA	NA NA	2,000 U	NA NA	NA NA	NA NA	6,840	NA NA	NA	NA NA		
Potassium, Total	ug/L	NA	3,050	1,450	2,000 U	NA	2,850	1,890	2,000 U	NA NA	10,900	1,330	3,390		
Sodium, Dissolved ^b	ug/L	19,100	NA NA	NA	NA	45,300	NA	NA	NA	1,290,000	NA	NA	NA		
Sodium, Total	ug/L	NA NA	16,000	11,500	31,900	NA	NA NA	17,600	142,000	NA	1,100,000	137,000	489,000		
Chloride	mg/L	9.3	5.5 ^e	0.46 ^f	7.3 ^g	8.7	9.0 ^e	5.6 ^f	7.0 ^g	NA ^e	28	5	11		
Sulfate	mg/L	5.2	7.7 ^e	150 ^f	6.5 ^g	9.6	13.0 ^e	13.7 ^f	14.0 ^g	201	131	19	56		
Ammonia as Nitrogen ^c	mg/L	0.05 U	NA	NA NA	NA	0.05 U	NA NA	NA	NA	2.06	NA NA	NA NA	NA NA		
Nitrate as Nitrogen ^c	mg/L	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA		
Solids, Total Dissolved ^c	mg/L	159	NA NA	NA NA	NA NA	254	NA NA	NA NA	NA NA	3,610	NA NA	NA NA	NA NA		
Solids, Total Suspended ^c	mg/L	17	NA NA	NA NA	NA NA	12	NA NA	NA NA	NA NA	6	NA NA	NA NA	NA NA		
Inorganics	1119/2		101	100	10/1		10/1	10/1	107	Ů	101	107			
Cyanide, Total	mg/L	0.003 U	0.005 U ^e	0.003 U ^f	0.010 ^g	0.009 J	0.0182 ^e	0.040 ^f	0.020 ^g	1.6	1.45	0.05 J	0.37		
Cyanide, Weak Acid Dissociable (WAD)	mg/L	0.003 U	0.005 U ^e	0.003 U ^f	0.010 ^g	0.006 J	0.005 U ^e	0.007 J ^f	0.010 ^g	0.06	0.080	0.01	0.01 J		
Fluoride	mg/L	0.50	0.47 ^e	0.70 ^f	0.80 ^g	8.7	4.67 ^e	1.7 ^f	5.0 ^g	69	58	20	37 J		
Field	iiig/L	0.00	0.47	0.70	0.00	0.7	4.07	1.7	0.0			20	010		
pH	Std. Units	6.4	5.5	6.0	6.8	6.8	6.4	6.1	8.2	8.5	8.5	7	8.5		
Specific Conductance	µmhos/cm	144.0	304.7	174.3	185.1	211.2	329.2	230.8	453.2	3,148	6,401	781.8	1,286		
PAHs ^c	μπποσ/οπ	144.0	304.7	174.0	100.1	211.2	323.Z	200.0	+00.Z	3,140	0,401	701.0	1,200		
Acenaphthene	ug/L	0.98 U	NA	NA	NA	0.96 U	NA	NA	NA	1 U	NA	NA	NA		
Acenaphthylene	ug/L	0.98 U	NA NA	NA NA	NA NA	0.96 U	NA NA	NA NA	NA NA	1 U	NA NA	NA NA	NA NA		
Anthracene	ug/L	0.098 U	NA NA	NA NA	NA NA	0.096 U	NA NA	NA NA	NA NA	0.1 U	NA NA	NA NA	NA NA		
Benz(a)anthracene	ug/L	0.098 U	NA NA	NA NA	NA NA	0.096 U	NA NA	NA NA	NA NA	0.1 U	NA NA	NA NA	NA NA		
Benzo(a)pyrene	ug/L	0.098 U	NA NA	NA NA	NA NA	0.096 U	NA NA	NA NA	NA NA	0.1 U	NA NA	NA NA	NA NA		
Benzo(b)fluoranthene	ug/L	0.2 U	NA NA	NA NA	NA NA	0.090 U	NA NA	NA NA	NA NA	0.1 U	NA NA	NA NA	NA NA		
Benzo(g,h,i)perylene	ug/L	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA		
Benzo(k)fluoranthene	ug/L	0.098 U	NA NA	NA NA	NA NA	0.096 U	NA NA	NA NA	NA NA	0.1 U	NA NA	NA NA	NA NA		
Chrysene	ug/L	0.098 U	NA NA	NA NA	NA NA	0.096 U	NA NA	NA NA	NA NA	0.1 U	NA NA	NA NA	NA NA		
Dibenz(a,h)anthracene	ug/L ug/L	0.2 U	NA NA	NA NA	NA NA	0.090 U	NA NA	NA NA	NA NA	0.1 U	NA NA	NA NA	NA NA		
Fluoranthene	ug/L ug/L	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA		
Fluorene	ug/L ug/L	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA		
Indeno(1,2,3-cd)pyrene	ug/L ug/L	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA	0.2 U	NA NA	NA NA	NA NA		
Naphthalene	ug/L ug/L	0.96 U	NA NA	NA NA	NA NA	0.096 U	NA NA	NA NA	NA NA	1 U	NA NA	NA NA	NA NA		
Phenanthrene	ug/L ug/L	0.98 U	NA NA	NA NA	NA NA	0.96 U	NA NA	NA NA	NA NA	0.1 U	NA NA	NA NA	NA NA		
		0.098 U 0.2 UJ	NA NA	NA NA	NA NA	0.096 UJ	NA NA	NA NA	NA NA	0.1 UJ	NA NA	NA NA	NA NA		
Pyrene	ug/L	U.Z UJ	INA	I INA	INA	U.Z UJ	INA	INA	INA	U.Z UJ	INA	INA	INA		

- a Includes facility quarterly monitoring parameters collected by MFG
- b MFG followed the Plant's protocol while conducting the quarterly monitoring in the 3rd quarter of calendar year 2002. This protocol called for filtering the samples to be analyzed for metals.
- $c \quad \text{Analyzed for only during first round per Sampling and Analysis Plan}. \\$
- d Laboratory error: Marked for analysis on the chain of custody form but missed by laboratory.
- e Collected and analyzed by Plant October 2002

J - The result is an estimated concentration that is less than the method reporting limit but greater than or equal to the method detection limit.

f Collected and analyzed by Plant March 2003 g Collected and analyzed by Plant June 2003 U - The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.

NA - Sample not analyzed for this parameter.

UJ -Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected.

Table 13
South Plant Boring Logs Summary

		Total Depth of		Interval of	Interval of
CEAT	Paring / Diagometer	Boring (feet	Interval of Fill Material	Waste Material	Native Material
CEAT CDI	Boring / Piezometer	bgs)	(feet bgs)	(feet bgs)	(feet bgs)
	Storage Area	40	2 2 2 5	0.05 4.75	4.75.40
4	DP-5	16	0 - 0.25	0.25 - 4.75	4.75 - 16
4	DP-6	12	0 - 1.5	NE	1.5 - 12
4	PZ-5	24	0 - 4.5	NE	4.5 - 24
	ping Landfill				
6	DP-1 / DP-1R	24	0 - 0.25	0.25 - 21.5	21.5 - 24
Between Flo	oor Sweeping Landfill ar		Mud Ponds		
5/6	DP-2	12	0 - 2.5	NE	2.5 - 20
Between Flo	oor Sweeping Landfill ar	d Former SPL	Storage Area		
4/6	DP-3	20	0 - 4	4 - 8*	8 - 20
4/6	DP-4	8	NE	0 - 1.75	1.75 - 8
Black Mud I	Pond East of Cryolite Pla	ant			
8	DP-8	12	NE	0 - 2.75	2.75 - 12
8	DP-9	12	0 - 1	1 - 7	7 - 12
8	DP-10	12	0 - 1.5	1.5 - 6	6 - 12
8	DP-11	12	0 - 0.75	0.75 - 5	5 - 12
8	DP-12	12	0 - 1	1 - 3	3 - 12
8	DP-13	12	0 - 1.5	1.5 - 3.5	3.5 - 12
8	DP-14	12	0 - 2	2 - 4	4 - 12
8	DP-15	12	0 - 4.5	NE	4.5 - 12
8	DP-16	12	0 - 1.25	1.25 - 4	4 - 12
8	DP-17	12	0 - 4.5	NE	4.5 - 12
8	DP-18	12	0 - 4.25	4.25 - 4.5	4.5 - 12
8	DP-19	12	NE	0 - 4.5	4.5 - 12
8	DP-20	8	0 - 4	NE	NE
8	B-21	7.5	0 - 2.25	2.25 - 6.5	6.5 - 7.5
8	PZ-1	14	0 - 1.25	1.25 - 3.5	3.5 - 14
8	PZ-2	26.5	0 - 1.25	1.25 - 4.5	4.5 - 26.5
8	PZ-3	11.5	0 - 1.5	1.5 - 2	2 - 11.5
8	PZ-4	19	0 - 0.75	0.75 - 6.25	6.25 - 19
Cryolite Pla	nt				
9	DP-7	12	0 - 0.25	0.25 - 1.25	1.25 - 12

bgs = below ground surface

Fill = Cover or construction fill

Waste = material other than construction fill

NE = not encountered

^{*} Estimated due to poor recovery

Table 14
South Plant Area Subsurface Soil Analytical Results

					Sam	pling Station, Dat	te Collected and D	epth Interval (ft b	gs)			
		DP-1	DP-2	DP-4	DP-5	DP-6	DP-7	DP-8	DP-9	DP-10A	DP-10B	DP-11
		9/11/2002	9/11/2002	9/11/2002	9/11/2002	9/11/2002	9/11/2002	9/11/2002	9/12/2002	9/12/2002	9/12/2002	9/12/2002
	Depth ^a ®	Composite ^b	3 - 4	0.1 - 0.25	2 - 5.4	0.5 - 1.5	0.25 - 1.25	0.2 - 0.75	0 - 1	1.5 - 3.8	4 - 6	0.75 - 1.5
Parameter	Units											
Conventionals												
Solids, Total	Percent	82	69.6	93.8	91.6	91.9	91.5	89.3	94.8	87.4	48.7	88.7
Inorganics												
Cyanide, Total	mg/Kg	20.5	2.4	1.7 J	5.2	1.9 J	1.3 J	14.7	1.8 J	0.9 J	256 J	48 J
Cyanide, Weak Acid Dissociable (WAD)	mg/Kg	4.3	1.5 J	1.1 J	1.7	1.5 U	1.6	6.3	0.7	0.6 U	145	14
Fluoride	mg/Kg	906	366	80	195	597	172	677	218	221	1,040	151
Polycyclic Aromatic Hydrocarbons (PAH)												
Total PAHs ^c	μg/Kg	1,773,065	119	35,097	8,324	27,530	16,746	84,094	90,844	1,121	3,024,677	142,714
2-Methylnaphthalene	ug/Kg	12,000 D	7.2 U	5.6	63	19	5.5	56	52	5.8 U	200	24
Acenaphthene	ug/Kg	55,000 D	7.2 U	39	230	96	35	200	590	5.8 U	3,400 D	130
Acenaphthylene	ug/Kg	130 U	7.2 U	5.4 U	5.5 U	5.5 U	5.5 U	46	5.9	5.8 U	77	27
Anthracene	ug/Kg	93,000 D	7.2 U	190	150	390	57	7,500 D	1,100 D	7.4	85,000 D	1,900 D
Benz(a)anthracene	ug/Kg	90,000 D	7.2 U	1,200 D	370	1,000 D	830	2,800 D	7,500 D	68	140,000 D	4,900 D
Benzo(a)pyrene	ug/Kg	95,000 D	7.2 U	1,800 D	480	1,700 D	940	4,300 D	8,800 D	65	62,000 D	2,800 D
Benzo(b)fluoranthene	ug/Kg	150,000 D	13	7,600 D	1,000	4,400 D	2,400 D	16,000 D	11,000 D	230	160,000 D	38,000 D
Benzo(g,h,i)perylene	ug/Kg	56,000 D	7.2 U	4,700 D	890	4,700 D	3,600 D	8,000 D	4,600 D	75	15,000 D	2,700 D
Benzo(k)fluoranthene	ug/Kg	53,000 D	7.2 U	2,500 D	370	1,500 D	890	4,300 D	8,400 D	81	76,000 D	13,000 D
Chrysene	ug/Kg	110,000 D	9.7	4,400 D	740	4,700 D	3,000 D	8,400 D	9,100 D	160	200,000 D	23,000 D
Dibenz(a,h)anthracene	ug/Kg	15,000 D	7.2 U	890	130	1100	360	1,900 D	1,100 D	18	6,600 D	11,00 D
Dibenzofuran	ug/Kg	44,000 D	7.2 U	34	150	130	18	280	210	5.8 U	6,300 D	230
Fluoranthene	ug/Kg	300,000 D	18	3,300 D	1,000	1,400 D	940	9,700 D	13,000 D	130	880,000 D	22,000 D
Fluorene	ug/Kg	54,000 D	7.2 U	23	140	120	31	420	490	5.8 U	12,000 D	62
Indeno(1,2,3-cd)pyrene	ug/Kg	63,000 D	7.2 U	4,300 D	800	4,000 D	2,300 D	8,000 D	5,900 D	77	18,000 D	3,800 D
Naphthalene	ug/Kg	23,000 D	7.2 U	13	68	32	7	92	96	5.8 U	100	41
Phenanthrene	ug/Kg	310,000 D	16	1,200 D	860	940 D	230	4,400 D	6,900 D	42	580,000 D	13,000 D
Pyrene	ug/Kg	250,000 D	15	2,900 D	880	1,300 D	1,100	7,700 D	12,000 D	150	780,000 D	16,000 D

See Figure 4 for sampling locations.

- a Interval in feet below ground surface
- b Composite of 7 samples collected from various intervals down to 24 feet bgs. See Boring log for sample intervals.
- c Total of all 16 compounds. Non-detected compounds were assigned a value of one-half the reporting limit for this calculation. bgs Below ground surface
- ft feet
- J The result is an estimated concentration that is less than the method reporting limit but greater than or equal to the method detection limit.
- D The reported result is from a dilution.
- U The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.

Table 14
South Plant Area Subsurface Soil Analytical Results

					Sampling S	Station, Date Colle	ected and Depth I	nterval (ft bgs)			
		DP-12	DP-13	DP-14	DP-18	DP-19a	DP-19b	PZ-3	PZ-4A	PZ-4B	B-21
		9/24/2002	9/24/2002	9/24/2002	9/24/2002	9/24/2002	9/24/2002	12/3/2002	12/3/2002	12/3/2002	11/25/2002
	Depth ^a ®	3 - 4	1.5 - 2	2 - 4	0 - 4	1 - 2.5	2.5 - 4	2.5 - 4	3 - 6	12 - 13.5	2.5 - 4.5
Parameter	Units										
Conventionals											
Solids, Total	Percent	59.5	87.3	76.3	83.8	81.9	81.1	80.7	64.8	72.6	64.2
Inorganics											
Cyanide, Total	mg/Kg	524	9	62	4	7	69	0.2	361	9.5	362
Cyanide, Weak Acid Dissociable (WAD)	mg/Kg	397	2	63	1.6 J	1.1 J	48	0.3	261	0.3	376
Fluoride	mg/Kg	1,220	216	1,320	166	295	899	65.1	1,070	1,410	1,720
Polycyclic Aromatic Hydrocarbons (PAH)											
Total PAHs ^c	μg/Kg	3,099,038	202,517	1,292,030	44,859	21,428	126,667	1,665	4,546,350	33,200	2,895,420
2-Methylnaphthalene	ug/Kg	330	16	140	7.6	6.1 U	22	2 J	1,700 D	10	320 D
Acenaphthene	ug/Kg	320	85	2,900 D	24	14	70	3 J	3,700 D	78	5,000 D
Acenaphthylene	ug/Kg	78	12	170	10	6.1 U	30	6.2 U	1,100 D	3.6 J	190 D
Anthracene	ug/Kg	61,000 D	1,800 D	29,000 D	710	350	1,700 D	59	290,000 D	1,800 D	120,000 D
Benz(a)anthracene	ug/Kg	110,000 D	12,000 D	91,000 D	1,600 D	900 D	5,400 D	75	140,000 D	1100	110,000 D
Benzo(a)pyrene	ug/Kg	5,800 D	2,300 D	20,000 D	580 D	330 D	1,100 D	35	32,000 D	300	30,000 D
Benzo(b)fluoranthene	ug/Kg	150,000 D	33,000 D	78,000 D	12,000 D	5,400 D	31,000 D	180	140,000 D	1,900 D	140,000 D
Benzo(g,h,i)perylene	ug/Kg	7,300 D	3,000 D	2,900 D	780 D	590 D	1,700 D	48	5,300 D	83	6,900 D
Benzo(k)fluoranthene	ug/Kg	57,000 D	15,000 D	31,000 D	3,200 D	2,200 D	13,000 D	64	42,000 D	370	42,000 D
Chrysene	ug/Kg	160,000 D	34,000 D	110,000 D	8,600 D	3,600 D	26,000 D	210	230,000 D	3,000 D	120,000 D
Dibenz(a,h)anthracene	ug/Kg	4,200 D	1,300 D	1,100 D	430 D	260 D	920 D	12	3,600 D	40	3,800 D
Dibenzofuran	ug/Kg	13,000 D	250	2,400 D	89	42	260	7.4	29,000 D	200	8,900 D
Fluoranthene	ug/Kg	900,000 D	26,000 D	270,000 D	7,600 D	3,100 D	19,000 D	340	1,300,000 D	8,700 D	940,000 D
Fluorene	ug/Kg	510 D	30	180 D	6.9	6.1 U	16	3.8 J	250 D	21	210 D
Indeno(1,2,3-cd)pyrene	ug/Kg	9,300 D	3,700 D	3,100 D	1,100 D	720 D	2,300 D	40	6300 D	84	7,800 D
Naphthalene	ug/Kg	200	24	140	21	13	49	2.5 J	1400 D	10	300 D
Phenanthrene	ug/Kg	1100,000 D	11,000 D	180,000 D	3,700 D	1,600 D	9,100 D	230	1,500,000 D	9,400 D	680,000 D
Pyrene	ug/Kg	520,000 D	59,000 D	470,000 D	4,400 D	2,300 D	15,000 D	350	820,000 D	6,100 D	680,000 D

See Figure 4 for sampling locations.

- a Interval in feet below ground surface
- b Composite of 7 samples collected from various intervals down to 24 feet bgs. See Boring log for sample intervals.
- c Total of all 16 compounds. Non-detected compounds were assigned a value of one-half the reporting limit for this calculation. bgs Below ground surface
- ft feet
- J The result is an estimated concentration that is less than the method reporting limit but greater than or equal to the method detection limit.
- D The reported result is from a dilution.
- U The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.

Table 15
South Groundwater Water Level Elevations

Monitoring Station Name	R1S	R1D	R4S	R4D	R2	R3	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	G-1A	G-1B	G-2	G-3A	G-3B	G-4A	G-4B	G-5	CDID Industrial Way
Monitoring Station Location				,	South	Plant A	rea					SPL Ditch	SPL Ditch	Bridge over Ditch		004 E	Ditch		004 Pump Station	Pump Station
Station Type	Well	Well	Well	Well	Well	Well	Piez	Piez	Piez	Piez	Piez	SG	Mpiez	Ditch	SG	Mpiez	SG	Mpiez	Ditch	Ditch
Measuring Point Location	TOC	TOC	TOC	TOC	TOC	TOC	TOC	TOC	TOC	TOC	TOC	SG	TOSC	PM	SG	TOSC	SG	TOSC	PM	SG
Date									١	Nater	Level	Elevati	ons (ft NA	VD88)						
7/26/2002																				1.6
8/1/2002	11.78	11.13	9.58	9.74		8.98														
8/2/2002					3.70															
8/5/2002		10.98		9.58																
8/9/2002																				1.50
8/27/2002	11.43	10.56	9.52	9.27	2.43	8.84						8.86	9.07	9.04	6.02	6.14	Dry	1.66	1.92	
8/30/2002																				1.20
9/25/2002	11.08	10.23	9.24	8.95	1.17	8.54						Dry	8.79	8.79	5.88	6.60	Dry	1.03	1.84	
9/27/2002																				1.00
10/29/2002	10.86	9.95	9.15	8.78	3.38	8.78						8.09	8.92	9.32	6.17	6.23	Dry	2.42	1.92	
11/1/2002																				1.00
11/12/2002	10.74	9.91	9.39	9.06	3.74	8.90														
11/25/2002	10.84	9.79	9.20	8.85	4.65	9.00						8.85	9.23	10.00	6.25	6.23	3.45	3.07	1.14	
12/2/2002							7.16	9.33	8.30	6.25	7.29									
12/27/2002	11.69	10.98	10.61	10.17	6.11	10.72	8.83	10.89	9.59	7.56	9.52	10.60	No Data	11.45	6.31	6.39	3.92	3.57	1.85	1.50
1/29/2003	12.44	11.49	10.87	10.53	6.23	10.48	8.67	10.76	9.48	7.59	8.43	10.65	No Data	10.63	6.34	6.38	3.98	3.64	1.45	
1/31/2003																				2.00
2/25/2003	12.95	12.20	11.00	10.99	6.17	10.83	8.79	10.90	9.33	7.70	8.88	10.55	No Data	10.86	6.29	6.41	3.93	3.75	1.82	
3/24/2003	13.52	12.39	11.74	11.42	6.34	11.23	9.22	11.31	9.72	7.95	9.16	10.85	No Data	11.90	6.37	6.52	4.13	4.04	3.94	
4/29/2003	13.33	12.75	12.07	11.52	6.34	11.06	9.03	11.12	9.53	7.96	9.15	9.29	11.57	11.02	6.31	6.59	4.10	3.84	1.88	
5/29/2003	12.81	12.25	11.55	10.98	5.99	10.58	7.83	10.48	8.63	7.42	8.66	9.51	11.24	10.62	6.24	6.53	3.95	3.64	1.45	
7/1/2003	12.29	11.64	10.83	10.19	4.87	9.88	6.69	9.62	7.94	6.51	7.95	8.95	10.84	10.05	6.23	6.44	3.55	3.34	1.92	

All water levels are in feet NAVD88

Piez = Piezometer

TOSC = Top of Steel Casing

No Data = Staff Gauge was not accessible by foot due to high surface water levels.

Mpiez = Mini Piezometer

PM = Paint Mark

SP = South Plant

SG = Staff Gauge

Blank Cell = Not measured

SPL Ditch = Spent Pot Liner Ditch

TOC = Top of PVC Casing

 $CDID\ Industrial\ Way\ PS = Pump\ station\ across\ Industrial\ Way\ near\ G5-meaured\ by\ CDID\ on\ an\ irregular\ basis.$

Table 16
South Groundwater Vertical Gradients

Well Pair	R1S	R1D	R4S	R4D	PZ-1	PZ-2
Bottom of Screen (ft NAVD88)	4.54	KID	-1.38	K4D	-0.66	PZ-Z
Top of Screen (ft bgs)	4.34	-3.41	-1.30	-5.27	-0.00	-5.96
8/1/2002		-3.41		-3.21		-3.30
Water Level Elevation (ft NAVD88)	11.78	11.13	9.58	9.74		Т
Vertical Gradient (ft/ft)	0.0)41 041		
8/27/2002	0.0	02	-0.0	J 4 I		
Water Level Elevation (ft NAVD88)	11.43	10.56	9.52	9.27		Т
Vertical Gradient (ft/ft)	0.1)64		
9/25/2002	0.1	03	0.0	,		
Water Level Elevation (ft NAVD88)	11.08	10.23	9.24	8.95		T
Vertical Gradient (ft/ft)	0.1)75		
10/29/2003	0.1	07	0.0	773		
Water Level Elevation (ft NAVD88)	10.86	9.95	9.15	8.78		T
Vertical Gradient (ft/ft)	0.1)95		
11/12/2002	1 0.1	17	0.0)3J		
Water Level Elevation (ft NAVD88)	10.74	9.91	9.39	9.06		T
Vertical Gradient (ft/ft)	0.1)85		1
11/25/2003	0.1	0 -	0.0	,00		
Water Level Elevation (ft NAVD88)	10.84	9.79	9.20	8.85		Т
Vertical Gradient (ft/ft)	0.1)90		
12/27/2002	0.1	<u> </u>	0.0)50		
Water Level Elevation (ft NAVD88)	11.69	10.98	10.61	10.17	8.83	10.89
Vertical Gradient (ft/ft)	0.0			13		389
1/29/2003	0.0		0.1	10	0.	000
Water Level Elevation (ft NAVD88)	12.44	11.49	10.87	10.53	8.67	10.76
Vertical Gradient (ft/ft)	0.1			087		394
2/25/2003	0.1	10	0.0	,01	0.	001
Water Level Elevation (ft NAVD88)	12.95	12.2	11.00	10.99	8.79	10.9
Vertical Gradient (ft/ft)	0.0			003		398
3/24/2003	0.0	<u> </u>	0.0	,00	<u> </u>	
Water Level Elevation (ft NAVD88)	13.52	12.39	11.74	11.42	9.22	11.31
Vertical Gradient (ft/ft)	0.1	L.		082		394
4/29/2003	0.1		0.0	,02	<u> </u>	
Water Level Elevation (ft NAVD88)	13.33	12.75	12.07	11.52	9.03	11.12
Vertical Gradient (ft/ft)	0.0			41		394
5/29/2003	3.0		0.1		<u> </u>	
Water Level Elevation (ft NAVD88)	12.81	12.25	11.55	10.98	7.83	10.48
Vertical Gradient (ft/ft)	0.0			147		500
7/1/2003	3.0		0.1		0.	
Water Level Elevation (ft NAVD88)	12.29	11.64	10.83	10.19	6.69	9.62
Vertical Gradient (ft/ft)	0.0			165		553
vortical Gradient (tert)	0.0	<u></u>	0.1		-0.	

Positive vertical gradient value = downward vertical gradient

Negative vertical gradient value = upward vertical gradient

 $Vertical\ Gradient\ (ft/ft) = (Water\ Level_{shallow\ well}\ -\ Water\ Level_{deep\ well})/(Bottom\ of\ Screen_{shallow\ well}\ -\ Top\ of\ Screen_{deep\ well})$

Table 17
South Groundwater Hydraulic Calculations

Date	Decembe	er 27, 2002	March :	24, 2003	July 1,	2003
South Groundwater	Eastern Zone	Western Zone	Eastern Zone	Western Zone	Eastern Zone	Western Zone
Estimated Average Hydraulic Conductivity (K: ft/day)	0.83	0.83	0.83	0.83	0.83	0.83
Calculated Average Horizontal Hydraulic Gradient (i; ft/ft)	0.006	0.009	0.006	0.017	0.004	0.017
Effective Porosity (ne; percent by volume)	35 - 45	35 - 45	35 - 45	35 - 45	35 - 45	35 - 45
Estimated Horizontal Groundwater Flow Velocity (v; ft/day)	0.014 - 0.011	0.021 - 0.017	0.014 - 0.011	0.040 - 0.031	0.0095 - 0.0074	0.040 - 0.031

Horizontal Groundwater Flow Velocity = $v = (K_h i)/n_e$

K: obtained from aquifer test results performed by Reynolds and CH₂MHill (1991) for BMP Closure and Post Closure Plan

n_e: very fine - medium sands, sandy silt, silt: estimated from Table 5.1 in Groundwater and Wells (Driscoll, 1986)

Eastern Zone = East of Cryolite Plant and West of Covered Mud and Lime Ponds

Western Zone = Within and southwest of Former SPL Storage Area

Table 18
South Groundwater Surface Water/Groundwater Interaction

Monitoring Station Name	G-1A	G-1B		G-3A	G-3B		G-4A	G-4B	
Monitoring Station Location	SPL Ditch	SPL Ditch	Surface Water	004 Ditch	004 Ditch	Surface Water	004 Ditch	004 Ditch	Surface Water
Station Type	SG	Mpiez	Gaining or	SG	Mpiez	Gaining or	SG	Mpiez	Gaining or
Measuring Point Location	SG	TOSC	Losing	SG	TOSC	Loosing	SG	TOSC	Losing
Date			Wa	ter Level E	levations (ft NAVD88)			
8/27/2002	8.86	9.07	Gaining	6.02	6.14	Gaining	Dry	1.66	
9/25/2002	Dry	8.79		5.88	6.60	Gaining	Dry	1.03	
10/29/2002	8.09	8.92	Gaining	6.17	6.23	Gaining	Dry	2.42	
11/25/2002	8.85	9.23	Gaining	6.25	6.23	Losing	3.45	3.07	Losing
12/27/2002	10.60	No Data		6.31	6.39	Gaining	3.92	3.57	Losing
1/29/2003	10.65	No Data		6.34	6.38	Gaining	3.98	3.64	Losing
2/25/2003	10.55	No Data		6.29	6.41	Gaining	3.93	3.75	Losing
3/24/2003	10.85	No Data		6.37	6.52	Gaining	4.13	4.04	Losing
4/29/2003	9.29	11.57	Gaining	6.31	6.59	Gaining	4.10	3.84	Losing
5/29/2003	9.51	11.24	Gaining	6.24	6.53	Gaining	3.95	3.64	Losing
7/1/2003	8.95	10.84	Gaining	6.23	6.44	Gaining	3.55	3.34	Losing

Surface Water Gaining or Loosing: Surface water level is greater than groundwater = surface water is loosing water to groundwater; Surface water level is less than groundwater = surface water is gaining water from groundwater

All water levels are in feet NAVD88

No Data = Staff Gauge was not accessible by foot due to high surface water levels.

SPL Ditch = Spent Pot Liner Ditch

Piez = Piezometer

Mpiez = Mini Piezometer

SG = Staff Gauge

TOSC = Top of Steel Casing

Table 19
South Plant Area Sediment Analytical Results

			Sampl	ing Station a	and Date Co	llected	
		SD1	SD2	SD3	SD4	SD5	SD6
	Units	7/29/2002	7/29/2002	7/29/2002	7/29/2002	7/29/2002	7/29/2002
Conventionals							
Solids, Total	Percent	53.8	53.5	45.2	44.8	31.4	42.8
Inorganics							
Cyanide, Total	mg/Kg	27.5	16	78.5	25.7	213	3
Cyanide, Weak Acid Dissociable (WAD)	mg/Kg	18.4	10.3	26.3	4.3	35.5	0.4 U
Fluoride	mg/Kg	832	1,310	5,650	5,030	5,730	927
Polycyclic Aromatic Hydrocarbons (PAH)							
Total PAHs ^a	Percent	0.01	0.03	1.83	1.85	2.2	0.01
Acenaphthene	mg/Kg	0.92 U	2.9 U	30	52	49	2.4 U
Acenaphthylene	mg/Kg	0.92 UJ	2.9 UJ	3.4 UJ	3.4 UJ	4.8 UJ	2.4 UJ
Anthracene	mg/Kg	0.13 J	0.63 J	120 JD	84 JD	150 JD	0.55 J
Benz(a)anthracene	mg/Kg	3.2 D	18 D	1,100 D	1,500 D	1,500 D	6.9
Benzo(a)pyrene	mg/Kg	4 D	13 D	610 D	740 D	870 D	6.9
Benzo(b)fluoranthene	mg/Kg	12 D	41 D	2,300 D	2,100 D	2,100 D	20 D
Benzo(g,h,i)perylene	mg/Kg	8.1 J,D	16 J,D	570 J,D	560 J,D	720 J,D	7.3 J
Benzo(k)fluoranthene	mg/Kg	3.7 J,D	14 J,D	500 J,D	580 J,D	710 J,D	6.5 J
Chrysene	mg/Kg	12 D	54 D	1,300 D	1,900 D	2,100 D	18 D
Dibenz(a,h)anthracene	mg/Kg	0.86 UJ	1.9 UJ	55 UJ	55 UJ	67 UJ	0.87 UJ
Fluoranthene	mg/Kg	3.1 J,D	46 J,D	5,500 J,D	6,000 J,D	7,200 J,D	19 J,D
Fluorene	mg/Kg	0.19 U	0.57 U	23 D	17 D	18 D	0.47 U
Indeno(1,2,3-cd)pyrene	mg/Kg	5.6 D	9.8 D	310 D	380 D	450 D	6.3 D
Naphthalene	mg/Kg	0.92 UJ	2.9 UJ	3.4 UJ	3.4 UJ	4.8 UJ	2.4 UJ
Phenanthrene	mg/Kg	0.44	1.9	500 D	290 D	500 D	2.3
Pyrene	mg/Kg	2.3 J	34 J,D	5,400 J,D	4,300 J,D	5,700 J,D	17 J,D

See Figure 4 for sampling locations.

- a Total of all 16 compounds. Non-detected compounds were assigned a value of one-half the reporting limit for this calculation.
- D The reported result is from a dilution.
- U The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.
- J Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable.
- $UJ\ Indicates\ an\ estimated\ quantitation\ limit;\ the\ compound\ was\ analyzed\ for,\ but\ was\ considered\ to\ be\ nondetected.$

Table 20
South Groundwater One-Time Conventional and Inorganic Results

		R1D	R1S	R2	R3	R4D	R4S	DP1	DP2	DP4	DP5	DP6	DP7	DP8	DP9	DP10	DP12	DP13
	Date	8/5/2002	8/1/2002	8/2/2002	8/1/2002	8/5/2002	8/2/2002	9/11/2002	9/11/2002	9/11/2002	9/11/2002	9/11/2002	9/11/2002	9/11/2002	9/12/2002	9/12/2002	9/24/2002	9/24/2002
Conventionals	Units																	
Alkalinity, Bicarbonate	mg/L	831	125	208	4,600	822	974	9	750	108	698	12	2 U	10	2,110	823	1,070	1,990
Alkalinity, Carbonate	mg/L	2 U	2 U	2 U	11,000	2 U	2 U	7	2 U	2 U	2 U	29	16	2 U	1,040	2 U	256	30
Alkalinity, Total	mg/L	831	125	208	15,600	822	974	3,080	750	108	698	8,280	4,400	2,180	3,150	823	1,320	2,020
Calcium, Dissolved	ug/L	130,000	12,900	33,400	1,010	82,600	108,000	2,880	68,700	4,910	81,700	32,700	3,090	8,070	200	59,300	3,480	21,700
Magnesium, Dissolved	ug/L	66,600	4,790	15,200	596	43,300	51,000	1,320	35,000	1,670	48,400	12,800	337	3,630	74	29,400	658	7,600
Potassium, Dissolved	ug/L	2,400	2000 U	2000 U	18,000	2,070	2,430	19,900	6,050	2,500	2,170	35,700	21,100	3,920	2000 U	2000 U	2000 U	5,230
Sodium, Dissolved	ug/L	104,000	59,600	32,500	9,180,000	116,000	269,000	1,410,000	242,000	39,400	164,000	6,140,000	2,510,000	1,300,000	179,000	257,000	835,000	969,000
Ammonia as Nitrogen	mg/L	7.4	1.72 J	0.43	372	1.34 J	3.18	NES	5.2	NES	5.5	142	13.1	6.3	12.2	4.6	2.07	10.5
Nitrate as Nitrogen	mg/L	0.2 U	0.2 UJ	0.2 U	0.4	0.2 UJ	0.2 U	3	1.3	1.3	1.2	24	1 U	1 U	0.5 U	0.5 U	5	0.2 U
Solids, Total Dissolved	mg/L	972	234	336	21,700	936	1,040	NES	980	476	700	11,800	7,080	3,440	NES	NES	2,520	2,160
Solids, Total Suspended	mg/L	240	12	120	10	192	292	NES	294,000	3,300	8,740	16,300	6,350	12,400	NES	NES	1,150	2,220
Chloride	mg/L	112	4.5	7.3	85.5	11	11.2	156	29	3	49	42	58	21	44	16	14	35
Sulfate	mg/L	0.3	0.4	1.3	210	0.2	0.2	37	2	4	2	36	408	19	45	1	80	0.5
Inorganics																		
Cyanide, Total	mg/L	0.03	0.09	0.003 U	307	0.02	0.04	9	3 J	0.9 J	2	36	5 J	4	3.6 J	0.5 J	2.37	1.16
Cyanide, WAD	mg/L	0.003 J	0.004 J	0.003 U	0.14 J	0.003 J	0.006 J	0.1	0.08 J	0.05 J	0.1	0.1	0.08 J	0.2	0.06	0.03	0.41	0.06
Fluoride	mg/L	0.8	21.5	0.4	2,160	1.5	5.1	336	17	25	19	1,910	296	180	320	17	238	63
Metals																		
Arsenic, Dissolved	ug/L	5 U	5 U	5 U	70.6 J	26.1	21.1	NA										
Chromium, Dissolved	ug/L	5 U	5 U	5 U	243	5 U	5 U	NA										
Copper, Dissolved	ug/L	10 U	10 U	10 U	20 UJ	10 U	10 U	NA										
Nickel, Dissolved	ug/L	20 U	20 U	20 U	40 U	20 U	20 U	NA										

U = The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.

J = Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable.

UJ = Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected.

NA = Not anlayzed in sample

NES = Not enough sample volume for this anlayasis

Table 21 South Groundwater One-Time PAH Results Page 1 of 2

		DP-1	Q	DP-2	Q	DP-4	Q	DP-5	Q	DP-6	Q	DP-7	Q	DP-8	Q	DP-9	Q	DP-10	Q	DP-12	Q	DP-13 Q
Parameter	Units	9/11/2002		9/11/2002		9/11/2002		9/11/2002		9/11/2002		9/11/2002		9/11/2002		9/12/2002		9/12/2002		9/24/2002		9/24/2002
Acenaphthene	μg/L	96	UJ	0.96	UJ	1.2	UJ	0.096	UJ	1	UJ	0.96	U	1	U	0.96	U	9.9	U	48	U	9.6 U
Acenaphthylene	μg/L	96	U	0.96	U	1.2	U	0.096	U	1	U	0.96	U	1	U	0.96	U	9.9	U	48	U	9.6 U
Anthracene	μg/L	140		0.22		0.12	U	0.096	U	0.13		0.7		6.6		0.15		19		86		21
Benz(a)anthracene	μg/L	370		0.6		0.34	П	0.14		1.1		0.93		9.1		0.096	U	12		340	П	25
Benzo(a)pyrene	μg/L	500		0.68		0.77	П	0.096	U	0.1	U	0.91		14		0.096	U	3.6		68	П	16
Benzo(b)fluoranthene	μg/L	530		1.1		1.5	П	0.58		1.8		2.4		39		0.3		10		530	П	40
Benzo(g,h,i)perylene	μg/L	570		1.2		4.4	П	0.65		1.3		1.4		35		0.2	U	4.8		190	П	14
Benzo(k)fluoranthene	μg/L	260		0.47		0.66	П	0.096	U	0.1	U	0.61		13		0.096	U	3.2		180	П	12
Chrysene	μg/L	530		0.85		0.85		0.31		2.4		1.8		20		0.096	U	17		670	П	52
Dibenz(a,h)anthracene	μg/L	100		0.2	U	3.1		0.2	U	0.2	U	1.2	П	22		0.2	U	3.1		24		2.1
Fluoranthene	μg/L	880		1.9		0.94		0.28		3.7		4.4	П	26		0.55		110		2400		160
Fluorene	μg/L	170		0.29		0.23	U	0.2	U	0.34		2.7		0.67		0.4		21		9.6	U	11
Indeno(1,2,3-cd)pyrene	μg/L	290		0.55		1.6	П	0.38		0.55		0.59		18		0.096	U	0.99	U	66	П	5.9
Naphthalene	μg/L	260	U	0.96	U	1.2	U	0.96	U	5.1		28		1	U	3.5	U	9.9	U	48	U	9.6 U
Phenanthrene	μg/L	790		1.6		0.24		0.17		0.97		13		8.3		1.7		180		2000		150
Pyrene	μg/L	760		1.2		0.66		0.2		2.9		2.4		20		0.38	U	79		1500		120

U - The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit. PAH - Polycyclic Aromatic Hydrocarbons

J - Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable.

UJ -Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected.

Table 21 South Groundwater One-Time PAH Results Page 2 of 2

		PZ1	Q	PZ2	Q	PZ3	Q	PZ4	Q	PZ5	Q	R1D	Q	R1S	Q	R2	Q	R3	Q	R4D	Q	R4S	Q
Parameter	Units	12/3/2002		12/3/2002		12/3/2002		12/3/2002		12/3/2002		8/2/2002	$\dagger \dagger$	8/2/2002		8/1/2002	\dagger	8/1/2002	+	8/5/2002		8/2/2002	
Acenaphthene	μg/L	7.3	J	1	UJ	40	J	11	J	1	UJ	1	U	0.99	U	0.99	U	0.96	U	1.1	U	1	U
Acenaphthylene	μg/L	0.99	U	1	UJ	9.6	UJ	27	J	1	UJ	1	U	0.99	U	0.99	U	0.96	U	1.1	U	1	U
Anthracene	μg/L	3		2.4		14		27		1.4		0.1	U	0.099	U	0.099	U	0.096	U	0.11	U	0.1	U
Benz(a)anthracene	μg/L	1.1		1.1		3.6		8.8		0.67		0.1	U	0.099	U	0.099	U	0.096	U	0.11	U	0.1	U
Benzo(a)pyrene	μg/L	0.099	U	0.14		1.1		1.8		0.57		0.1	U	0.099	U	0.099	U	0.096	U	0.11	U	0.1	U
Benzo(b)fluoranthene	μg/L	0.98		1.3		3.1		9.5		4.3	J	0.2	U	0.2	U	0.2	U	8.8		0.22	U	0.2	U
Benzo(g,h,i)perylene	μg/L	0.2	U	0.2	U	2	U	2.2	UJ	1.1		0.2	U	0.2	U	0.2	U	0.2	U	0.22	U	0.2	U
Benzo(k)fluoranthene	μg/L	0.099	U	0.24		1.2		2.1		0.42	J	0.1	U	0.099	U	0.099	U	0.096	U	0.11	U	0.1	U
Chrysene	μg/L	1.7		1.4		7.7		12		1.5		0.1	U	0.099	U	0.099	U	0.096	U	0.11	U	0.1	U
Dibenz(a,h)anthracene	μg/L	0.2	U	0.2	UJ	2	UJ	2.2	U	0.2	UJ	0.2	U	0.2	U	0.2	U	0.2	U	0.22	U	0.2	U
Fluoranthene	μg/L	13	J	19	J	44		130		7.8		0.2	U	0.2	U	0.2	U	0.2	U	0.22	U	0.2	U
Fluorene	μg/L	12	J	0.29	J	19		2.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.22	U	0.2	U
Indeno(1,2,3-cd)pyrene	μg/L	0.099	U	0.1	UJ	0.96	UJ	1.1	UJ	0.51		0.1	U	0.099	U	0.099	U	0.096	U	0.11	U	0.1	U
Naphthalene	μg/L	0.99	U	1	UJ	9.6	UJ	11	UJ	1	UJ	1	U	0.99	U	0.99	U	0.96	U	1.1	U	1	U
Phenanthrene	μg/L	42	J	37	J	140		260		11	J	0.1	U	0.099	U	0.099	U	0.096	U	0.11	U	0.1	U
Pyrene	μg/L	9.2	J	14	J	37	J	100	J	6	J	0.2	U	0.2	U	0.2	U	0.2	U	0.22	U	0.2	U

U - The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit. PAH - Polycyclic Aromatic Hydrocarbons

J - Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable.

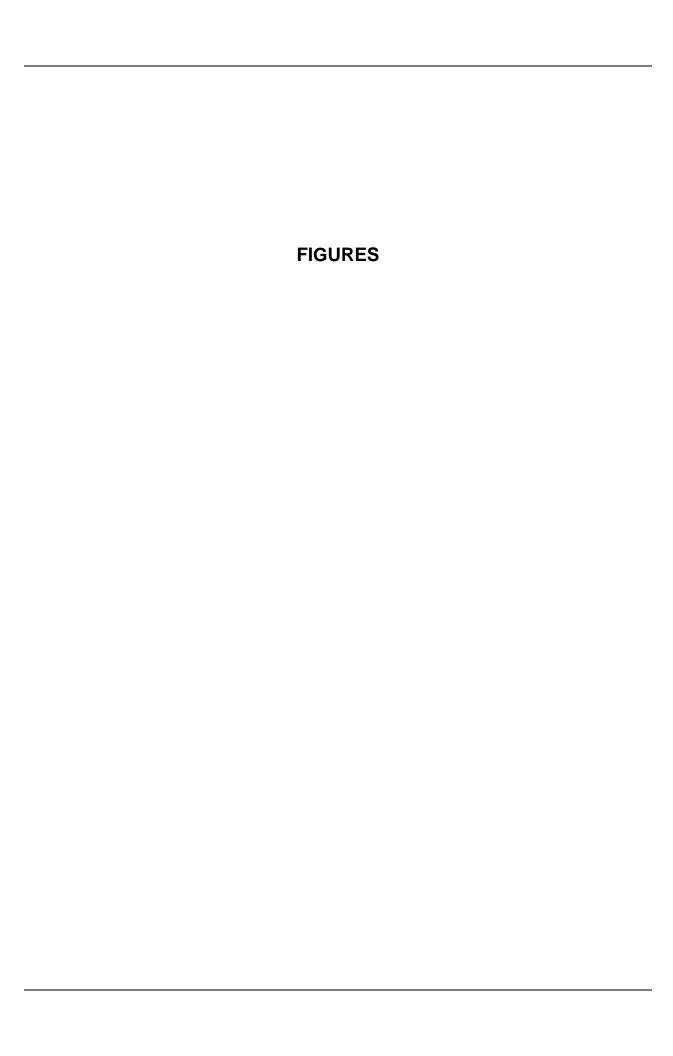
UJ -Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected.

Table 22
South Groundwater Quarterly Piezometer Well Analytical Results

						General W	ater Chemistry	у							Inorganics		Fi	eld Paramete	ers	
		Bicarbonate	Carbonate		Me	tals								Total	WAD					
		Alkalinity	Alkalinity	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Ammonia ^a	Nitrate ^a	TSS ^a	TDS ^a	Cyanide	Cyanide	Fluoride	Conductivity	рН	Eh	DO
Well	Date	mg/L as CaCO ₃	mg/L as CaCO ₃	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	mg/L	mg/L-N	mg/L	mg/L	mg/L	mg/L	mg/L	µmhos/cm	Std. Units	mV	% Sat.
	12/3/2002 ^b	1,100	460	2,550	341	2,000 U	515,000	18	90	2.35	2 U	93	2,710	9	0.1	257	5,854	8.99	-15	37.9
PZ1	3/25/2003	NS1	NS1	NS1	NS1	NS1	NS1	NS1	NS1	NA	NA	NA	NA	NS1	NS1	NS1	NS1	NS1	NS1	NS1
' - '	6/30/2003	1,170	490	5,840	620	2,000 U	1,170,000	14	106	NA	NA	NA	NA	5		265	ND	8.23	-152	58.4
	9/29/2003	1,040	462	9,180	2,700	3,820	1,110,000	14	98	NA	NA	NA	NA	14	0.41 J	270	2,611	9.81	113	39.2
	12/3/2002 ^b	758	1,900	1,250	661	3,670	1,590,000	52	220	14	1 U	12	7,720	47	0.1	548	15,340	9.04	-179	32.6
PZ2	3/25/2003	2,530	2,220 J	2,010	1,280	5,120	2,790,000	57	205	NA	NA	NA	NA	47.7	0.08	542	6,917	9.45	-170	17.7
'	6/30/2003	3,140	1,720	2,100	1,280	7,430	3,210,000	40	200	NA	NA	NA	NA	59		584	6,720	9.31	-187	66.3
	9/29/2003	3,290	1,710	2,210	1,360	6,950	16,200,000	36	184	NA	NA	NA	NA	65	0.75 J	579	6,786	9.12	-26	31.8
	12/3/2002 ^b	940	40	1,980	759	2,000 U	303,000	22	3	5.6	0.5 U	67	1,290	0.6	0.02	111	2,472	7.54	-42	35.1
PZ3	3/25/2003	522	2 UJ	10,900	3,390	2,440	345,000	18	3	NA	NA	NA	NA	0.007 J	0.006 J	89	756	7.57	-172	23.9
1 23	6/30/2003	1,630	2 U	16,800	6,990	5,160	970,000	38	1.5	NA	NA	NA	NA	0.5		176	2,444	7.91	-104	67.7
	9/29/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/3/2002 ^b	3,930	2,720	3,510	1,650	3,290	2,020,000	126	117	44	2 U	107	9,650	74	0.01 U	1,030	19,740	9.12	-133	28.6
PZ4	3/25/2003	2,920	3,000 J	3,600	2,200	5,330	3,910,000	118	148	NA	NA	NA	NA	75	1.02	1,110	9,537	9.64	-208	18.1
'	6/30/2003	3,280	2,920	3,740	2,000	6,610	4,600,000	92	101	NA	NA	NA	NA	89.5		1,200	9,231	9.46	-176	74
	9/29/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/3/2002 ^b	244	7,920	545	211	6,350	3,440,000	68	556	267	5 U	22	17,100	302	0.03	2,840	31,550	10.07	-215	19.8
PZ5	3/25/2003	2 U	7,500 J	941	351	8,990	6,070,000	73	620	NA	NA	NA	NA	231	0.26	2,330	14,880	10.64	-237	29.9
' 23	6/30/2003	176	8,140	798	307	13,600	7,350,000	85	632	NA	NA	NA	NA	277		2,960	14,590	10.39	-279	72.7
	9/29/2003	108	7,910	3,480	923	14,100	36,300,000	86	630	NA	NA	NA	NA	502	3 J	2,910	14,510	10.17	-79	33.8

- a Analyzed for only during first round per Sampling and Analysis Plan
- b Metal values for this date are totals; remaining dates are dissolved.
- DO Dissolved Oxygen
- Eh Red-Ox potential
- NA Not Analyzed for during this sampling event.
- ND No data, meter malfunction.
- NS1 No Sample Loose well casing prevented bailer from reaching water column.
- TDS Total Dissolved Solids
- TSS Total Suspended Solids
- U The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.
- J Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable.
- UJ Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected.
- WAD Weak-Acid Dissociable

Table 23
South Plant One-Time and Quarterly Surface Water Analytical Results

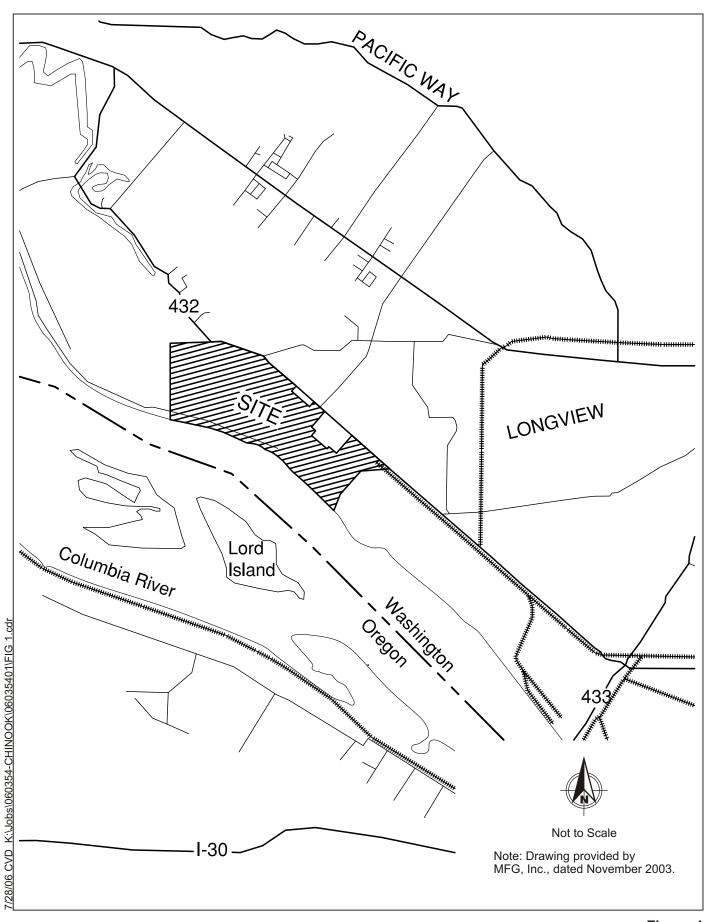
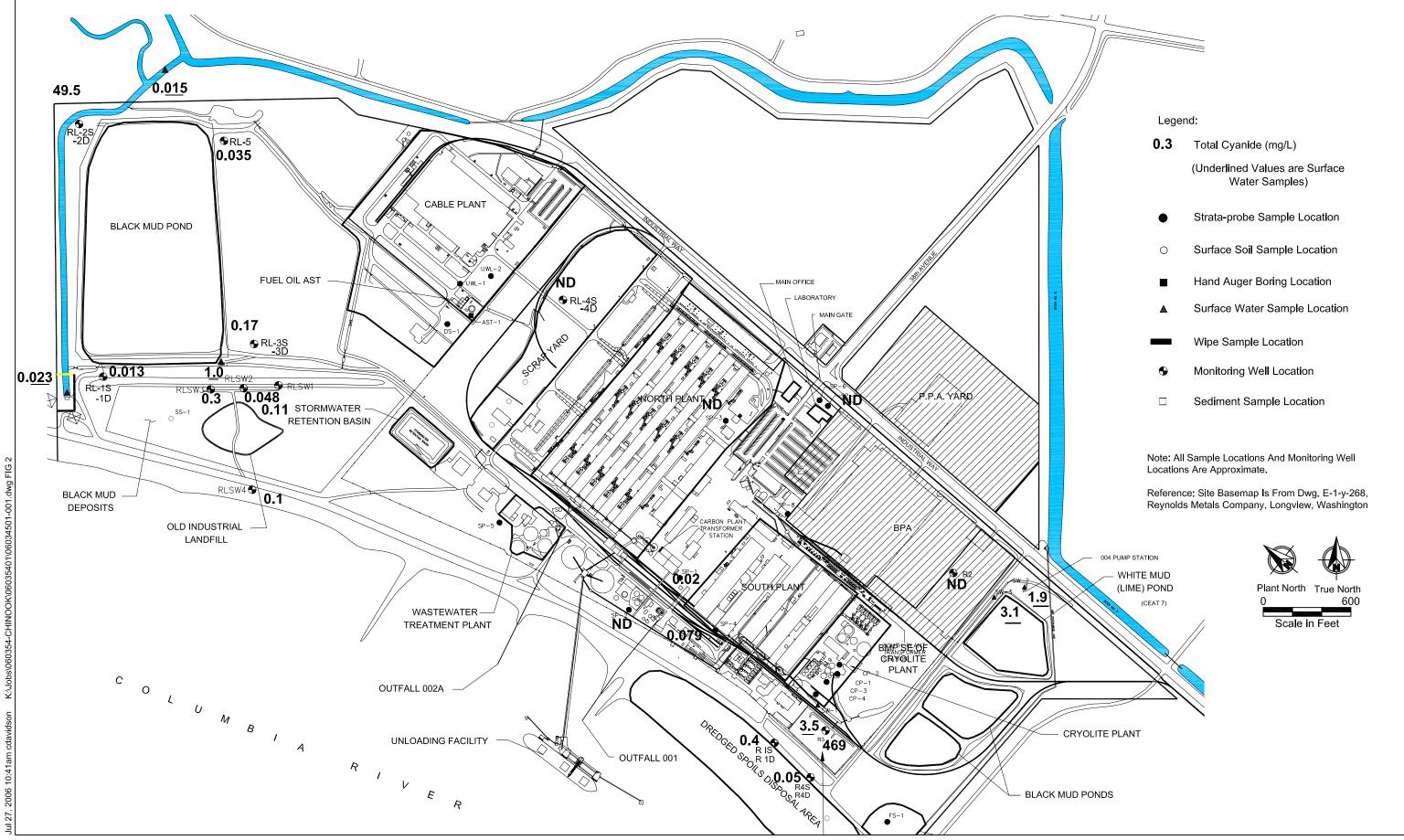
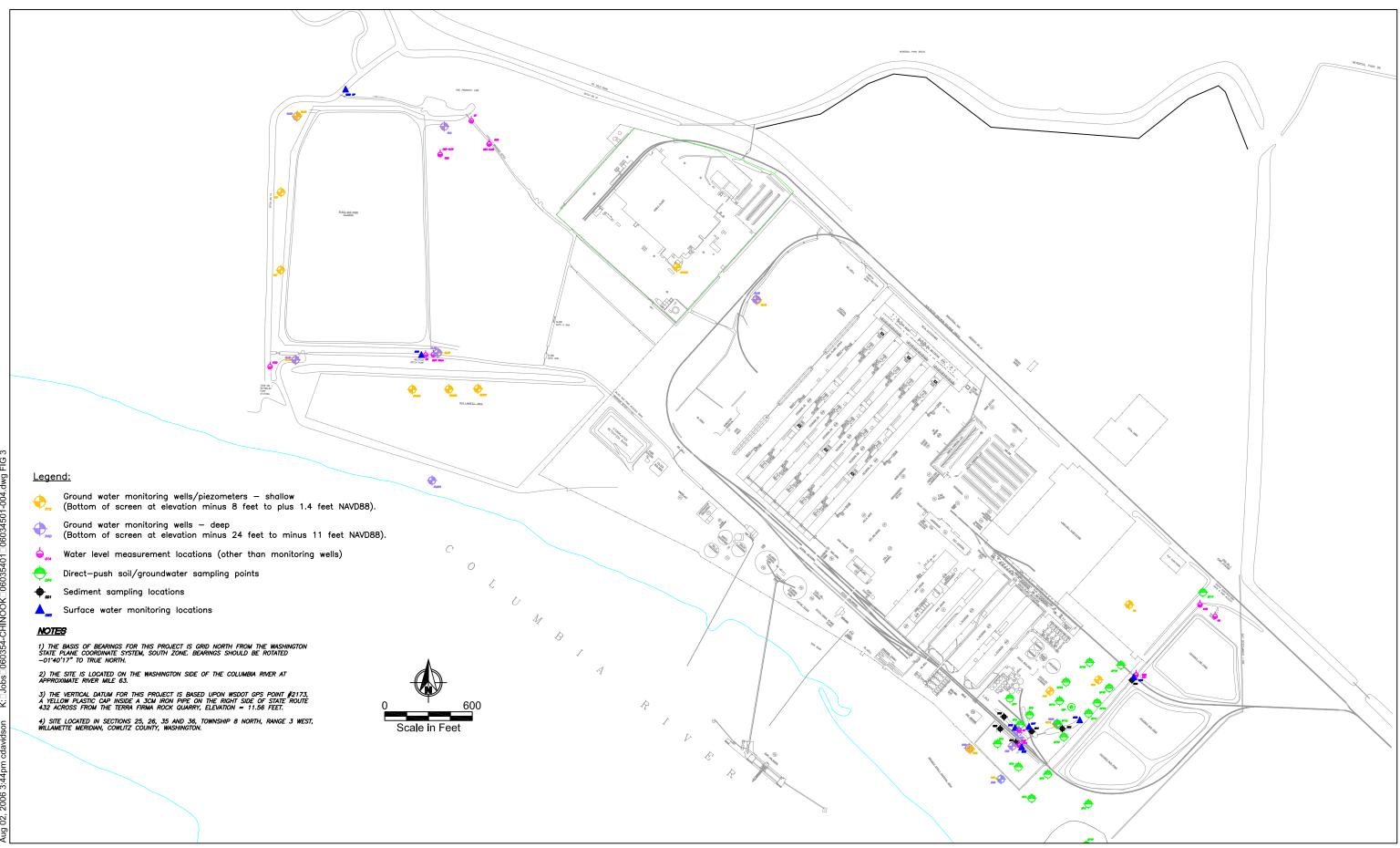

			SW	-4			SW	-5			SW	-6	
	Units	9/10/2002	11/25/2002	3/24/2003	7/1/2003	9/10/2002	11/25/2002	3/24/2003	7/1/2003	9/10/2002	11/25/2002	3/24/2003	7/1/2003
General Water Chemistry													
Alkalinity, Total as CaCO3	mg/L	2,450	925	407	1,360	789	580	106	336	1,040	980	146	400
Bicarbonate Alkalinity as CaCO3	mg/L	1,450	781	329	806	254	554	106	336	666	654	146	284
Carbonate Alkalinity as CaCO3	mg/L	996	144	78	552	535	27	2 U	2 U	370	326	2U	116
Calcium, Dissolved ^a	ug/L	17,600	NA	NA	NA	7,870	NA	NA	NA	4,880	NA	NA	NA
Calcium, Total	ug/L	NA	7,120	9,460	10,600	NA	6,270	5,820	7,950	NA	3,690	5,350	5,330
Magnesium, Dissolved ^a	ug/L	5,480	NA	NA	NA	1,780	NA	NA	NA	3,090	NA	NA	NA
Magnesium, Total	ug/L	NA	3,980	3,680	3,590	NA	3,950	2,210	5,000	NA	2,960	1,780	2,250
Potassium, Dissolved ^a	ug/L	3,810	NA	NA	NA	4,830	NA	NA	NA	4,360	NA	NA	NA
Potassium, Total	ug/L	NA	4,230	1,670	3,320	NA	5,880	1,920	2,210	0	5,150	1,320	3,210
Sodium, Dissolved ^a	ug/L	1,410,000	NA	NA	NA	539,000	NA	NA	NA	813,000	NA	NA	NA
Sodium, Total	ug/L	NA	608,000	229,000	936,000	NA	401,000	58,100	229,000	NA	807,000	111,000	325,000
Chloride	mg/L	NA ^c	15	4	15	NA ^c	10	2.1	2.3	NA ^c	36	3.7	10
Sulfate	mg/L	57	44	22	41	5.2	30	5.4	1.9	312	271	22	69
Ammonia as Nitrogen ^b	mg/L	0.46	NA	NA	NA	0.12	NA	NA	NA	0.05 U	NA	NA	NA
Nitrate as Nitrogen ^b	mg/L	0.2 U	NA	NA	NA	0.2 U	NA	NA	NA	0.2 U	NA	NA	NA
Solids, Total Dissolved ^b	mg/L	3,330	NA	NA	NA	1,060	NA	NA	NA	1,810	NA	NA	NA
Solids, Total Suspended ^b	mg/L	97	NA	NA	NA	260	NA	NA	NA	23	NA	NA	NA
Inorganics					•	•			•				-
Cyanide, Total	mg/L	3.0	3.4	1.42 J	4.94	0.5	0.49	0.03 J	0.15	0.3	0.08	0.02 J	0.04
Cyanide, WAD	mg/L	0.09	0.08	0.23 J	5 J	0.06	0.04	0.003 UJ	0.4 J	0.02	0.02	0.009 J	0.03 J
Fluoride	mg/L	299	125	47	207 J	175	112	14.7	61 J	177	165	36	87 J
PAHs ^b									-				
Acenaphthene	ug/L	1 U	NA	NA	NA	1 U	NA	NA	NA	1 U	NA	NA	NA
Acenaphthylene	ug/L	1 U	NA	NA	NA	1 U	NA	NA	NA	1 U	NA	NA	NA
Anthracene	ug/L	0.1 U	NA	NA	NA	0.1 U	NA	NA	NA	0.1 U	NA	NA	NA
Benz(a)anthracene	ug/L	0.17	NA	NA	NA	0.1 U	NA	NA	NA	0.62	NA	NA	NA
Benzo(a)pyrene	ug/L	0.18 J	NA	NA	NA	0.1 U	NA	NA	NA	0.66	NA	NA	NA
Benzo(b)fluoranthene	ug/L	0.87	NA	NA	NA	0.2 U	NA	NA	NA	2.90	NA	NA	NA
Benzo(g,h,i)perylene	ug/L	0.35 J	NA	NA	NA	0.2 U	NA	NA	NA	1.4	NA	NA	NA
Benzo(k)fluoranthene	ug/L	0.16 J	NA	NA	NA	0.1 U	NA	NA	NA	0.55	NA	NA	NA
Chrysene	ug/L	0.16 J	NA	NA	NA	0.1 U	NA	NA	NA	1.2	NA	NA	NA
Dibenz(a,h)anthracene	ug/L	0.3	NA	NA	NA	0.2 U	NA	NA	NA	0.2 UJ	NA	NA	NA
Fluoranthene	ug/L	1.10	NA	NA	NA	0.25	NA	NA	NA	0.2 U	NA	NA	NA
Fluorene	ug/L	0.2 U	NA	NA	NA	0.2 U	NA	NA	NA	0.2 U	NA	NA	NA
Indeno(1,2,3-cd)pyrene	ug/L	0.22 U	NA	NA	NA	0.1 U	NA	NA	NA	0.85	NA	NA	NA
Naphthalene	ug/L	1 U	NA	NA	NA	1 U	NA	NA	NA	1 U	NA	NA	NA
Phenanthrene	ug/L	0.41	NA	NA	NA	0.12	NA	NA	NA	0.18	NA	NA	NA
Pyrene	ug/L	0.74	NA	NA	NA	0.28	NA	NA	NA	2.8 J	NA	NA	NA

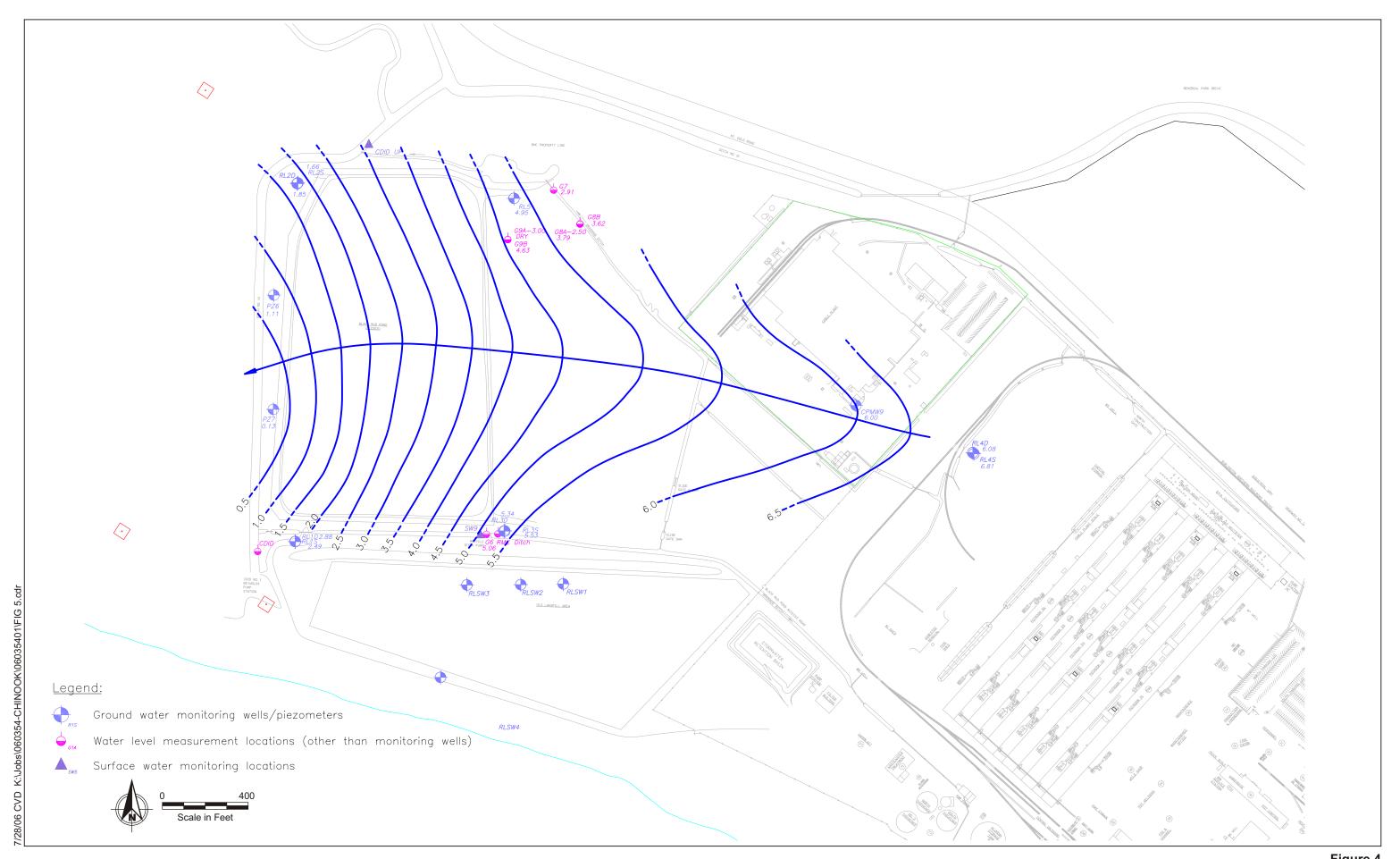
- a MFG followed the Plant's protocol while conducting the quarterly monitoring in the 3rd quarter of calendar year 2002. This protocol called for filtering the samples to be analyzed for metals.
- b Analyzed for only during first round per Sampling and Analysis Plan
- $c \quad Laboratory\: error: Marked\: for\: analysis\: on\: the\: chain\: of\: custody\: form\: but\: missed\: by\: laboratory.$
- $\label{eq:constraints} \textit{J-Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable.}$
- UJ Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected.
- NA Sample not analyzed for this parameter.
- D The reported result is from a dilution.
- U The compound was analyzed for, but not detected ("Non-detect") at or above the given method reporting limit.

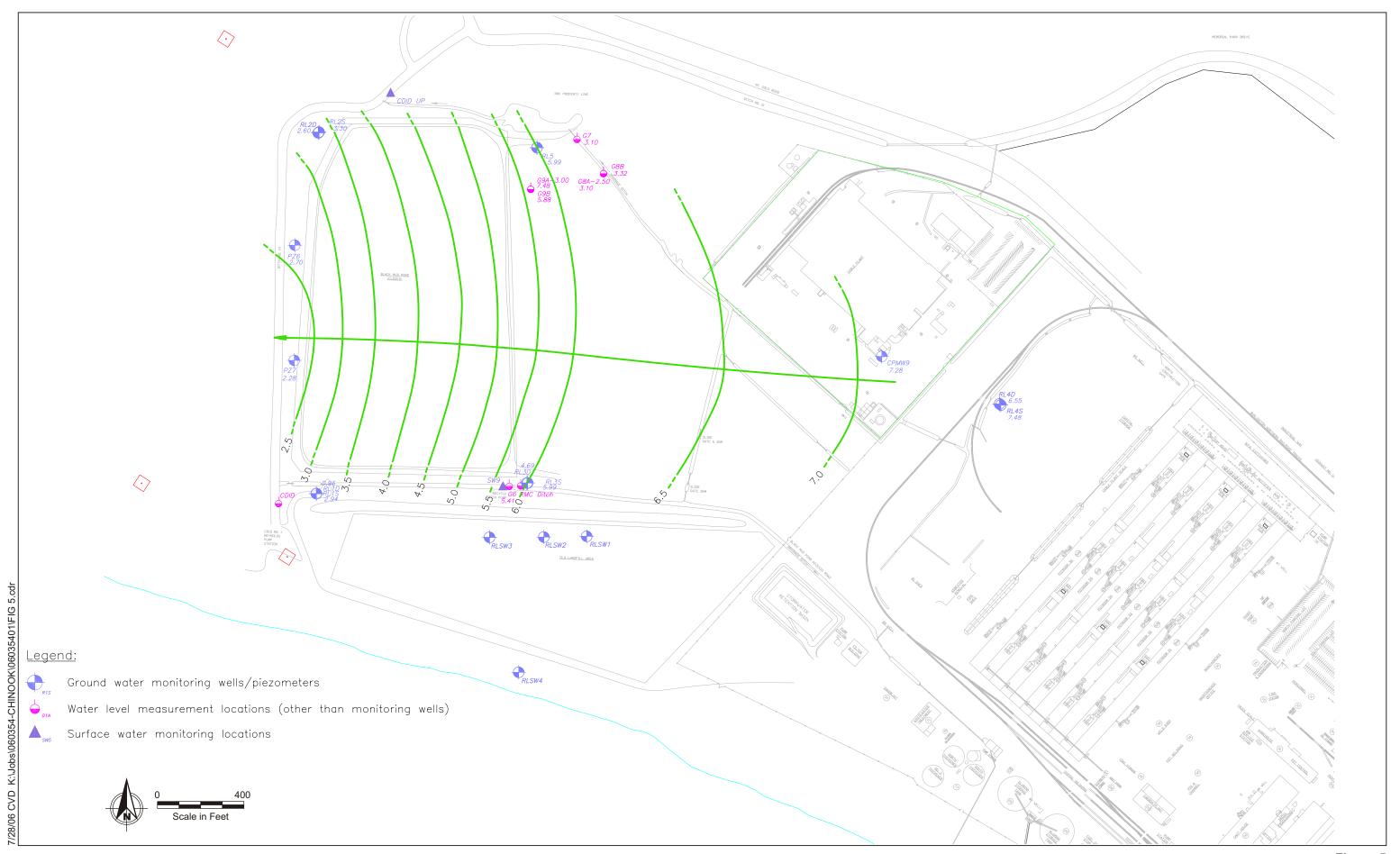
Table 23
South Plant One-Time and Quarterly Surface Water Analytical Results

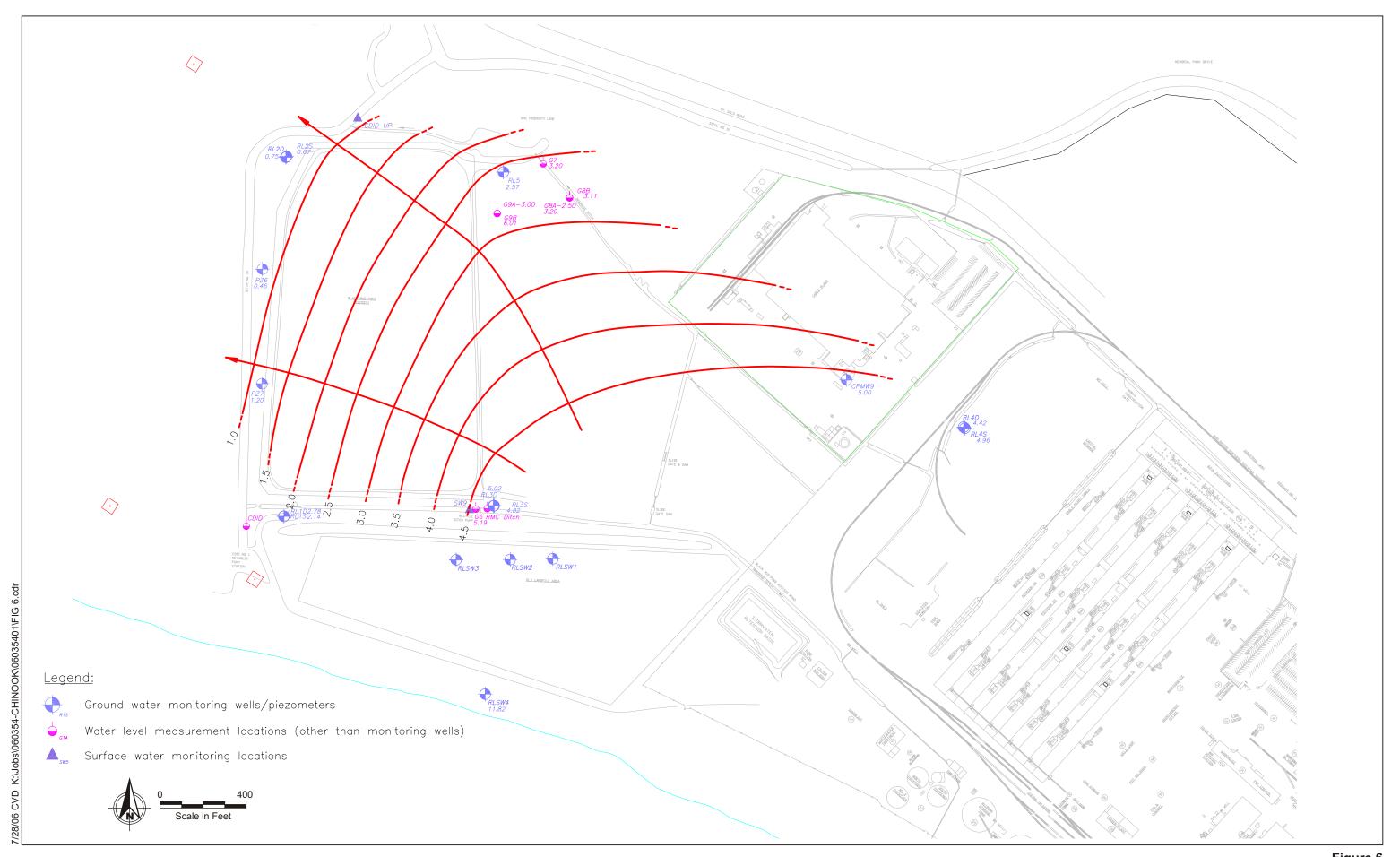
			SW	-7			SW	-8	
	Units	9/10/2002	11/25/2002	3/24/2003	7/1/2003	9/10/2002	11/25/2002	3/24/2003	7/1/2003
General Water Chemistry									
Alkalinity, Total as CaCO3	mg/L	2,330	390	117	554	1,040	728	137	514
Bicarbonate Alkalinity as CaCO3	mg/L	1,100	283	117	406	672	492	137	334
Carbonate Alkalinity as CaCO3	mg/L	1,230	106	2U	148	366	236	2U	180
Calcium, Dissolved ^a	ug/L	2,920	NA	NA	NA	3,970	NA	NA	NA
Calcium, Total	ug/L	NA	1,500	3,540	5,350	NA	3,460	5,780	5,540
Magnesium, Dissolved ^a	ug/L	1,990	NA	NA	NA	3,030	NA	NA	NA
Magnesium, Total	ug/L	NA	756	932	2,230	NA	2,300	1,720	2,240
Potassium, Dissolved ^a	ug/L	7,980	NA	NA	NA	4,550	NA	NA	NA
Potassium, Total	ug/L	NA	2,230	923	3,020	NA	3,810	1,280	2,730
Sodium, Dissolved ^a	ug/L	1,560,000	NA	NA	NA	836,000	NA	NA	NA
Sodium, Total	ug/L	NA	387,000	111,000	476,000	NA	635,000	89,300	430,000
Chloride	mg/L	NA ^c	17	4	16	NA ^c	30	3.6	16
Sulfate	mg/L	476	119	25	106	325	217	22	105
Ammonia as Nitrogen ^b	mg/L	0.05 U	NA	NA	NA	0.05 U	NA	NA	NA
Nitrate as Nitrogen ^b	mg/L	0.2 U	NA	NA	NA	0.2 U	NA	NA	NA
Solids, Total Dissolved ^b	mg/L	3,760	NA	NA	NA	1,900	NA	NA	NA
Solids, Total Suspended ^b	mg/L	78	NA	NA	NA	27	NA	NA	NA
Inorganics									•
Cyanide, Total	mg/L	0.3	0.1	0.007 J	0.06	0.05	0.03	0.003 J	0.01
Cyanide, WAD	mg/L	0.05	0.03	0.003 U	0.05 J	0.01	0.004 J	0.003 U	0.01 J
Fluoride	mg/L	372	128	43.0	121 J	177	141	29	110 J
PAHs ^b									
Acenaphthene	ug/L	11 U	NA	NA	NA	1 U	NA	NA	NA
Acenaphthylene	ug/L	11 U	NA	NA	NA	1 U	NA	NA	NA
Anthracene	ug/L	1.1 U	NA	NA	NA	0.1 U	NA	NA	NA
Benz(a)anthracene	ug/L	3.3 D	NA	NA	NA	0.16	NA	NA	NA
Benzo(a)pyrene	ug/L	2.2 D	NA	NA	NA	0.2	NA	NA	NA
Benzo(b)fluoranthene	ug/L	18 D	NA	NA	NA	1.20	NA	NA	NA
Benzo(g,h,i)perylene	ug/L	6.1 D	NA	NA	NA	0.79	NA	NA	NA
Benzo(k)fluoranthene	ug/L	3.5 D	NA	NA	NA	0.29	NA	NA	NA
Chrysene	ug/L	7.8 D	NA	NA	NA	0.5	NA	NA	NA
Dibenz(a,h)anthracene	ug/L	2.2 UJ	NA	NA	NA	0.2 UJ	NA	NA	NA
Fluoranthene	ug/L	12 J,D	NA	NA	NA	0.2 U	NA	NA	NA
Fluorene	ug/L	2.2 U	NA	NA	NA	0.2 U	NA	NA	NA
Indeno(1,2,3-cd)pyrene	ug/L	3.1 D	NA	NA	NA	0.46	NA	NA	NA
Naphthalene	ug/L	11 U	NA	NA	NA	1 U	NA	NA	NA
Phenanthrene	ug/L	1.2 D	NA	NA	NA	0.1 U	NA	NA	NA
Pyrene	ug/L	11 D	NA	NA	NA	0.67 J	NA	NA	NA

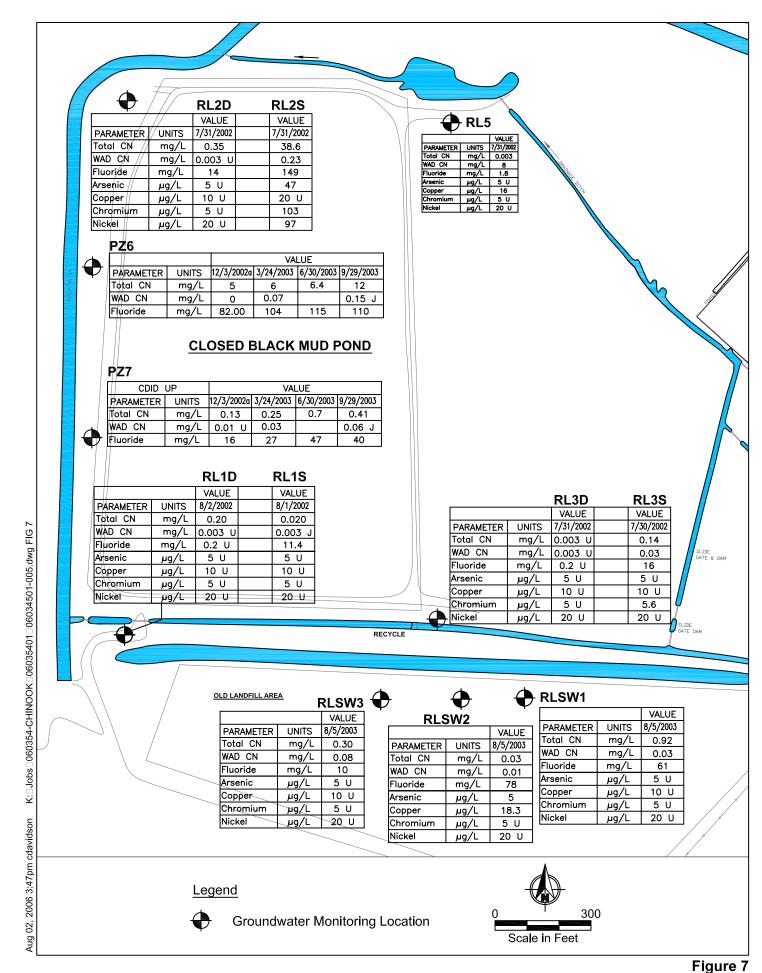
- a MFG followed the Plant's protocol while conducting
- b Analyzed for only during first round per Sampling
- c Laboratory error : Marked for analysis on the chain
- J Indicates an estimated concentration; the result is co
- UJ Indicates an estimated quantitation limit; the comp
- NA Sample not analyzed for this parameter.
- D The reported result is from a dilution.
- U The compound was analyzed for, but not detected (

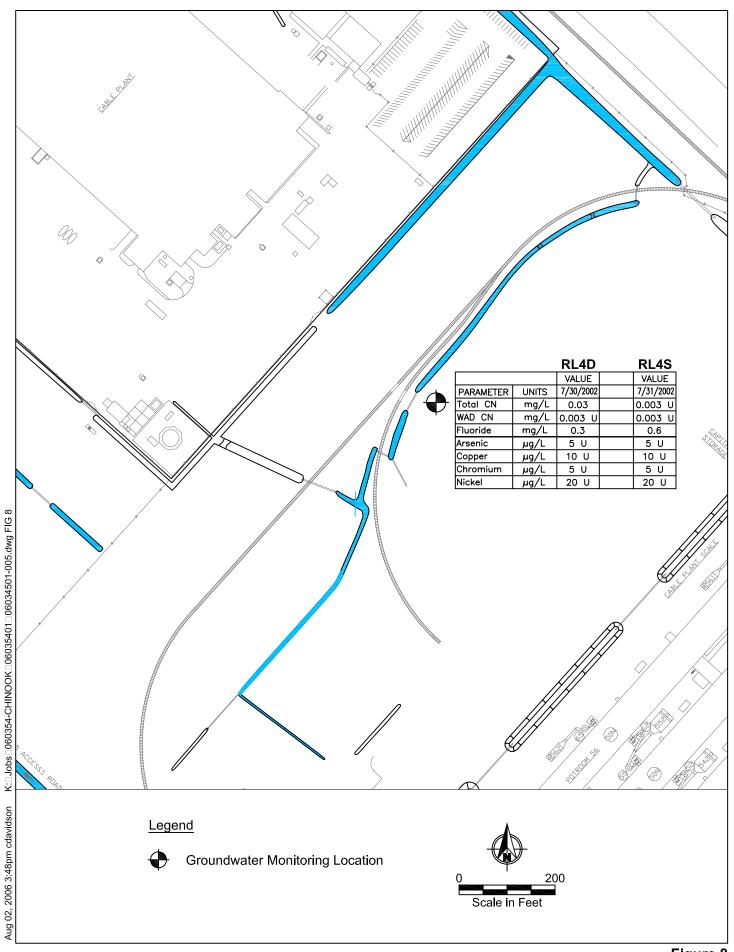




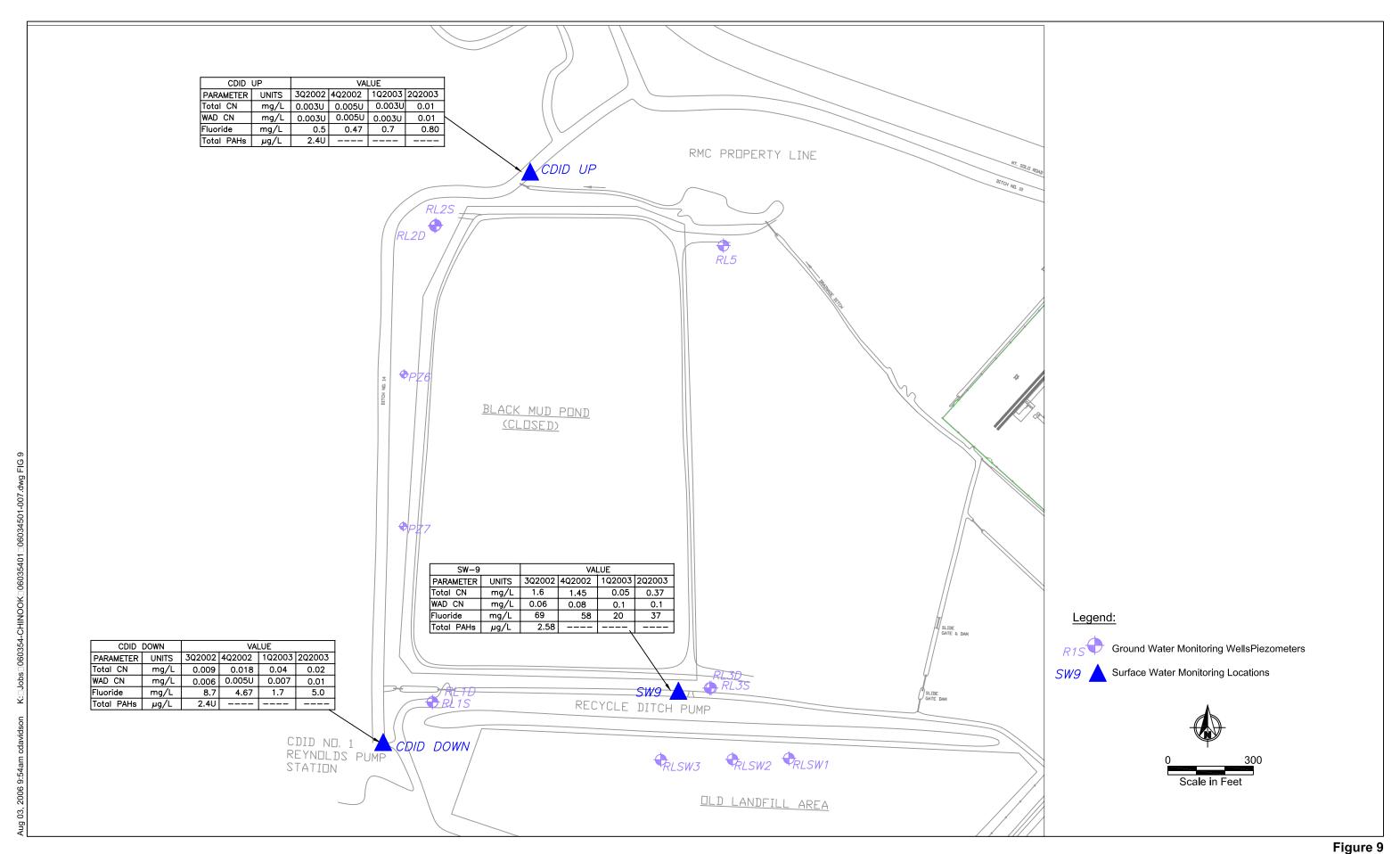

Figure 1
Facility Site Location Map
Chinook Ventures
Longview Site

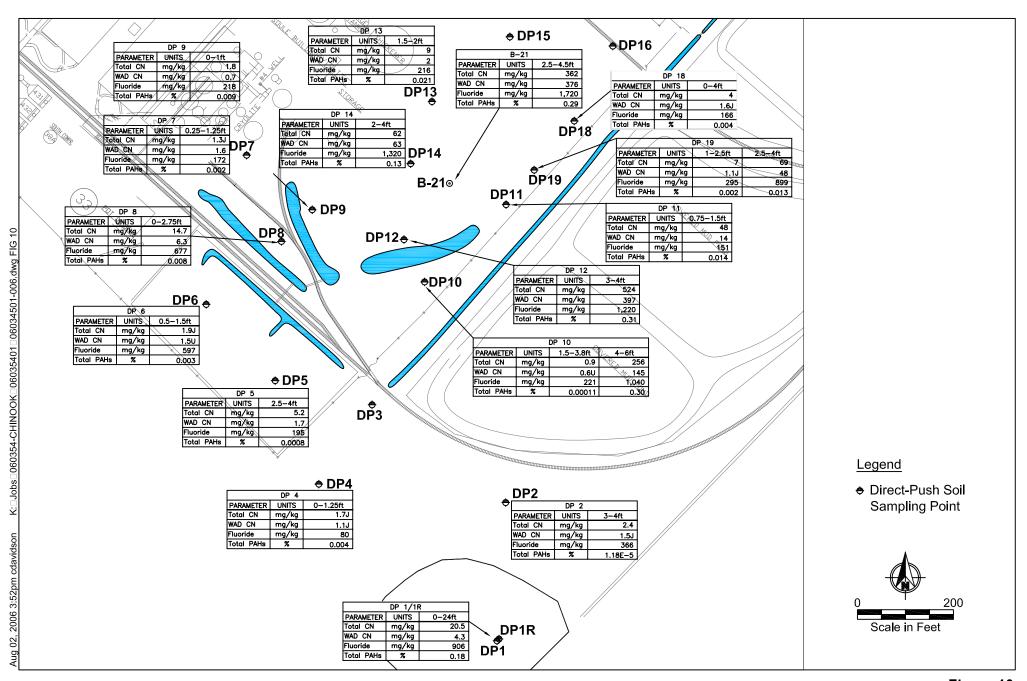


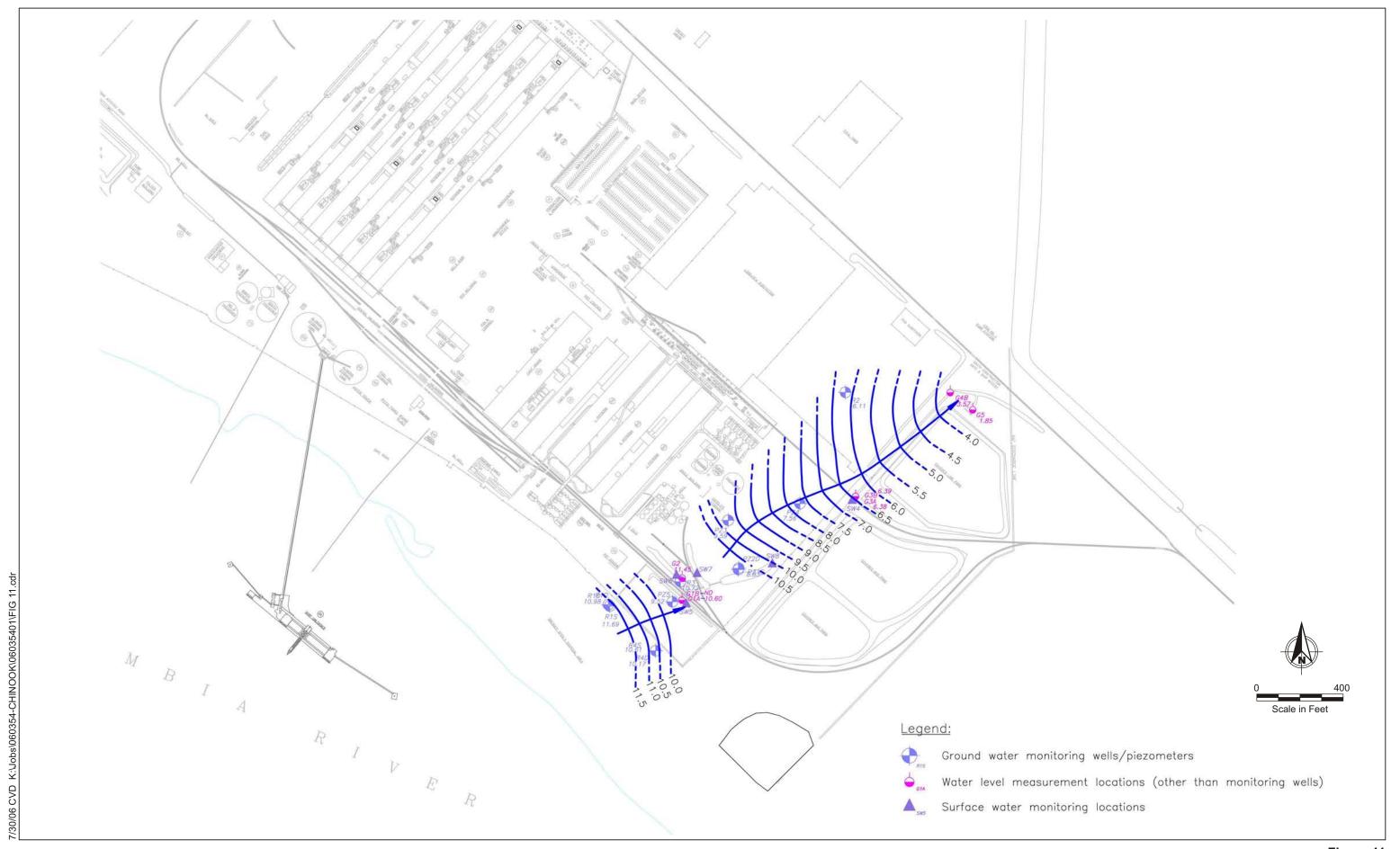


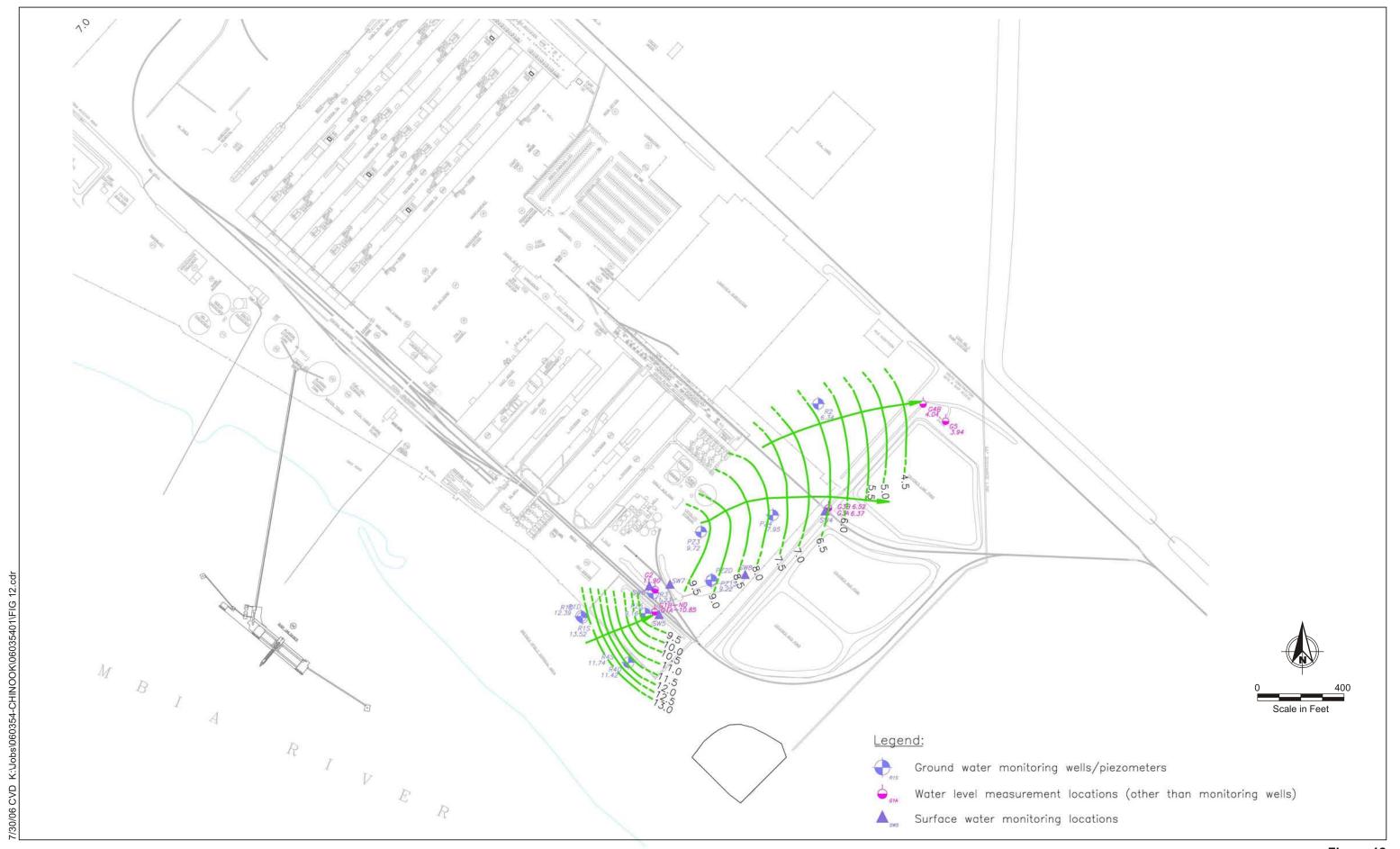












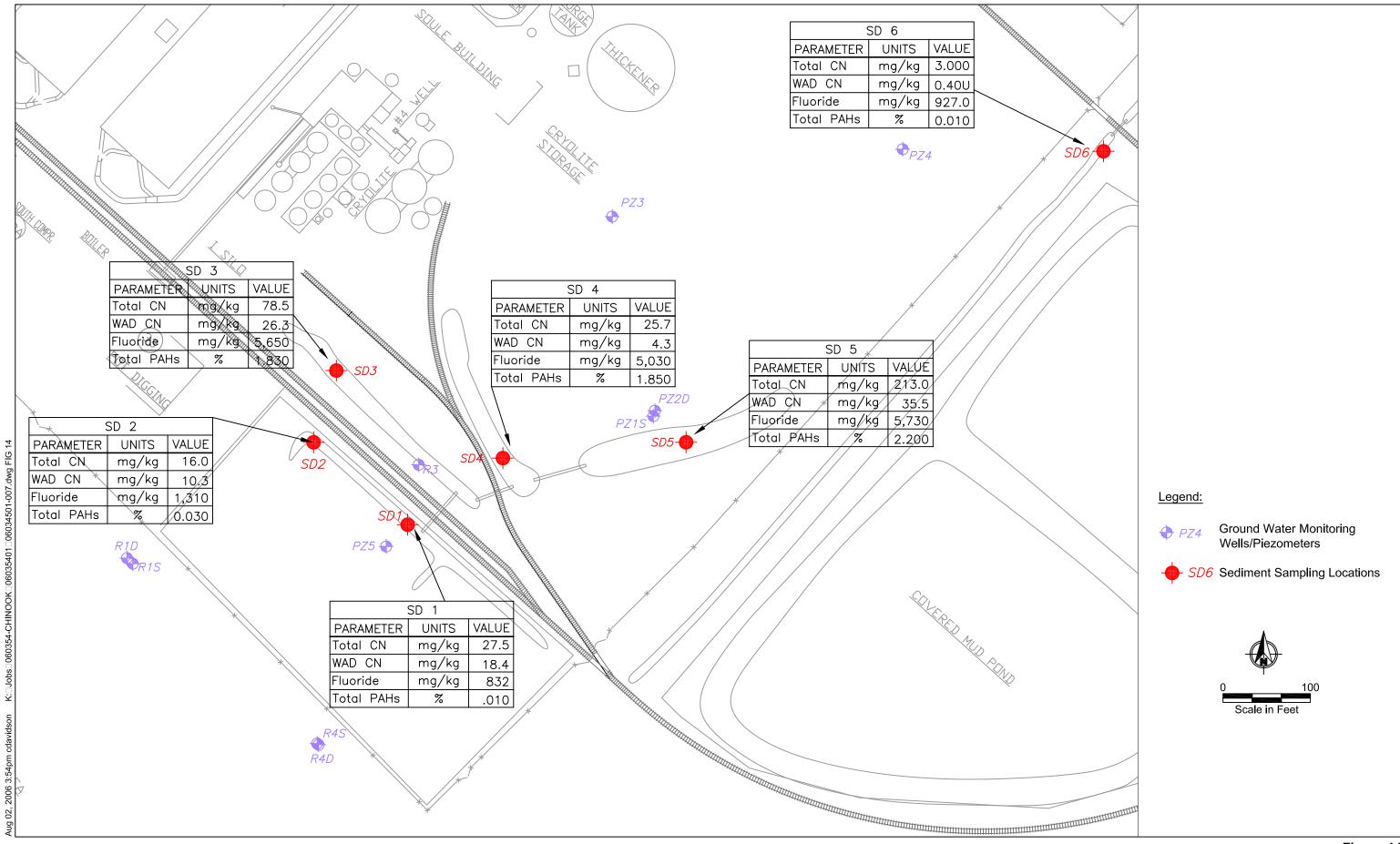
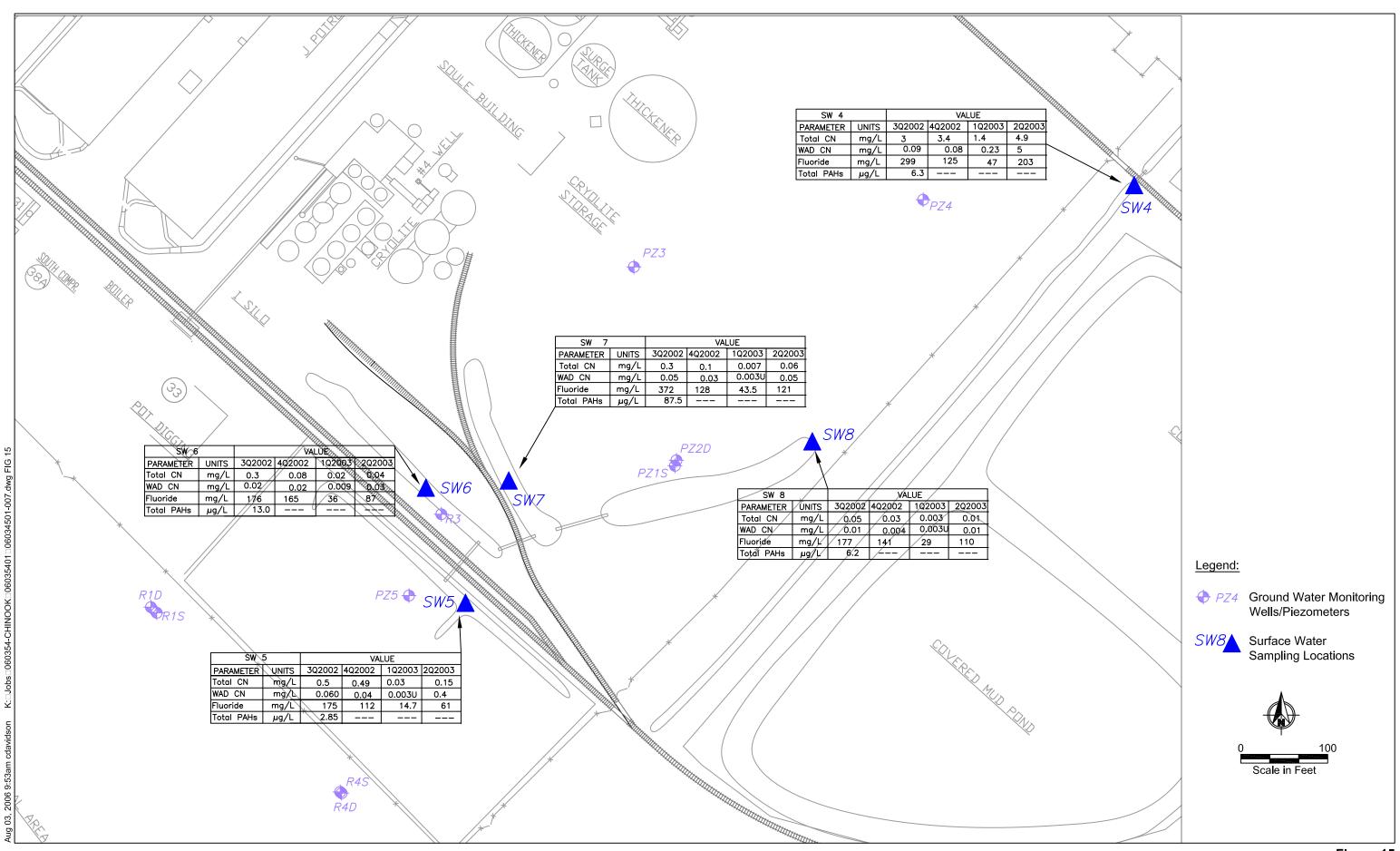
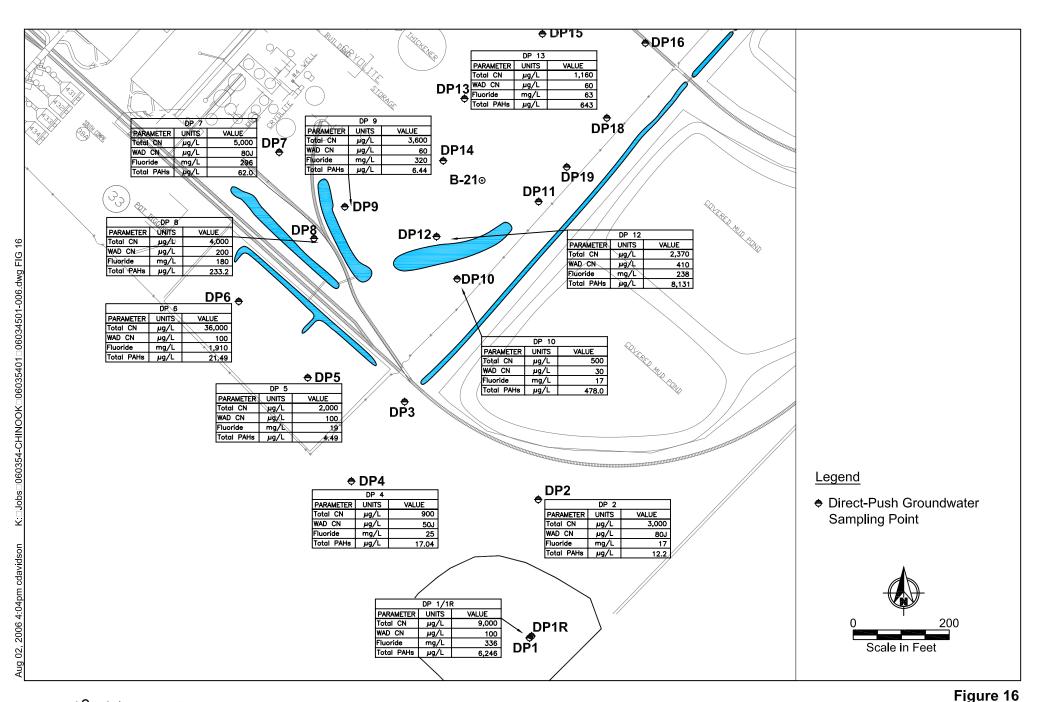


Figure 14
Sediment Sampling Results CN, F, and Total PAHs
Chinook Ventrues
Longview Site

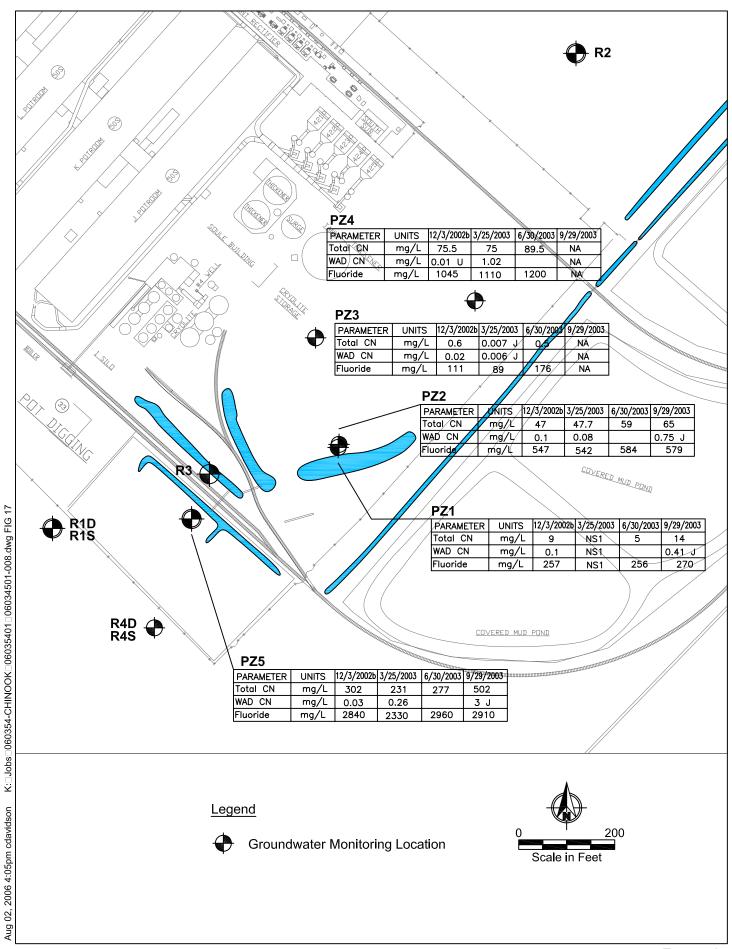


Figure 15
South Plant Surface Water Sampling Results CN, F, and Total PAHs
Chinook Ventrues
Longview Site

Direct Push Sampling Shallow Groundwater Results CN, F, and Total PAHs
Chinook Ventures
Longview Site

APPENDIX A AUGUST 1970 COLOR ENCHANCED AERIAL PHOTOGRAPH OF PLANT

8-11-1970 photo c.bmp

APPENDIX B DATA EVALUATION SUMMARIES

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2205088

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

December 1, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from six sediment samples, collected on July 29, 2002 at Alcoa RMC Longview site in Longview, Washington.

The soil samples arrived at Columbia Analytical Services, Inc. (CAS) on July 29, 2002. All of the samples were analyzed for the following inorganic compounds:

- Fluoride, by EPA Method 300.0M
- Total Cyanide by EPA Method 9010B
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I

All of the samples were analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

Data were evaluated according to MFG's standard operating procedure (MFG 2000) Data were also reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for the soil samples.

Laboratory
Sample
Identifications
K2205088-001
K2205088-002
K2205088-003
K2205088-004
K2205088-005
K2205088-006

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses

performed so as to generate an adequate database to successfully complete the remediation.

Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Six soil samples were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain of Custody

All samples arrived in good condition at the lab in accordance with the chain of custody.

3.2 Sample Holding Times and Preservatives

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.3 Review of Narrative

Total Cyanide and Weak Acid Dissociable Cyanide: The control criteria for matrix spike recovery of Cyanide, Total and WAD, for sample SPL-SD1 is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Laboratory Control Sample(LCS) exceptions: The spike recovery of Naphthalene (56%), Acenaphthylene (67%) and Anthracene (67%) for LCS Sample KWG0205543-3 was outside the EPA suggested lower criterion (70%).

Surrogate Exception: The control criteria for the surrogate p-Terphenyl in samples SPL-SD-2, SD-3, SD-4 and SD-5 are not applicable. The extracts were taken to a higher final volume due to their viscous nature, which resulted in a surrogate concentration below the Method Reporting Limit.

The control criteria were exceeded for the surrogate p-Terphenyl in samples SPL-SD1 and SD-6. Due to the presence of non-target background components that prevented adequate resolution of the surrogate, accurate quantitation was not possible. No further action was taken.

Matrix Spike Recovery Exceptions: The matrix spike recoveries of Pyrene, Benzo(k)fluoranthene and Indeno(1,2,3-cd)pyrene for sample KWG0205543-1 and the matrix spike recoveries of analytes Naphthalene, Acenaphthylene, Dibenz(a,h)anthracene, and Benzo(g,h,I)perylene for samples KWG0205543-1,2 were outside control criteria because of matrix interference. The chromatogram indicated the presence of non-target background components that prevented adequate resolution of the target analytes; as a result, accurate quantitation was not possible.

The matrix interference present in the Batch QC parent sample prevented adequate resolution of the analytes Benzo(K)fluoranthene and Dibenz(a,h)anthracene at the reporting limit.

The method reporting limit for the associated un-spiked and spiked samples is elevated above the background level. The results are flagged to indicate the matrix interference. No further corrective action was required.

Relative Percent Difference Exception: The relative percent difference criterion for the replicate analysis of Pyrene, and Indeno(1,2,3-cd)pyrene in samples KWG0205543-1,2 (batch QC) is not applicable. The presence of non-target background components that prevented adequate resolution of the target analytes prevented accurate quantitation. No further corrective action was required.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were submitted for analysis.

3.5 ACCURACY

Surrogate Spike Recoveries

All surrogate recoveries were outside the control limits except for the Laboratory Method blank sample (KWG0205543-4).

Matrix Spike And Matrix Spike Duplicate Samples

The matrix spike recoveries of Pyrene, Benzo(k)fluoranthene and Indeno(1,2,3-cd)pyrene for sample KWG0205543-1 and the matrix spike recoveries of analytes Naphthalene, Acenaphthylene, Dibenz(a,h)anthracene, and Benzo(g,h,I)perylene for samples KWG0205543-1,2 were outside control

criteria because of matrix interference. The laboratory data sheets have been flagged with a "J" qualifier to indicate that the results are to be considered estimated.

Laboratory Control Samples

Laboratory Control Samples for Naphthalene, Acenaphthylene and Anthracene were outside the control criteria. The laboratory data sheets have been flagged with a "J" qualifier to indicate that the results are to be considered estimated.

3.6 PRECISION

Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. No field duplicates were taken with this batch of samples.

Reporting Limits

All samples required dilution do to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution. The reporting limit was elevated for Dibenz(a,h)anthracene in all samples. The chromatogram indicated the presence of non-target background components co-eluting with the target analyte on the U.V. detector. The interference prevented adequate resolution of the target compound at the reporting limit. The results are flagged to indicate the interference.

3.7 COMPLETENESS

The project completeness was 93%.

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data are acceptable and usable without qualification. All organic data are acceptable and usable without qualification except for the following: Matrix spike recoveries of Pyrene, Benzo(k)fluoranthene and Indeno(1,2,3-cd)pyrene for sample KWG0205543-1 and the matrix spike recoveries of analytes Naphthalene, Acenaphthylene, Dibenz(a,h)anthracene, and Benzo(g,h,I)perylene for samples KWG0205543-1,2 were outside control criteria because of matrix interference. The matrix interference present in the Batch QC parent sample prevented adequate resolution of the analytes Benzo(K)fluoranthene and Dibenz(a,h)anthracene at the reporting limit. The spike recovery of Naphthalene (56%), Acenaphthylene (67%) and Anthracene (67%) for LCS Sample KWG0205543-3 was outside the EPA suggested lower criterion (70%). The above have all been flagged with "J" qualifiers, all associated data for all samples mentioned above are to be considered estimated.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2205135

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

November 26, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from six water samples including one field duplicate collected on July 30th and 31st, 2002 at Alcoa RMC Longview site in Longview, Washington.

The water samples arrived at Columbia Analytical Services, Inc. (CAS) on July 31, 2002. All or some of the samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0.
- Nitrate as Nitrogen by EPA Method 353.2
- Ammonia as Nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.4
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I.
- Dissolved Arsenic (by EPA Method 7060A) Calcium, Chromium, Copper, Magnesium, Nickel, Potassium and Sodium by EPA Method 6010B.
- Total Dissolved Solids by EPA Method 160.1.
- Total Suspended Solids by EPA Method 160.2.

All or some of the samples were analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8310.

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field duplicates is 50% for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for both surface water and soil samples.

MFG Field Sample Identification	Type of Sample	Laboratory Sample Identifications
RL-4D (DUP)	Water	K2205135-001
AL-1 (DUP)	Water	K2205135-002
RL-3S	Water	K2205135-003
RL-4S (7/30)	Water	K2205135-004
RL-4S (7/31)	Water	K2205135-005
RL-5)	Water	K2205135-006

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses performed so as to generate an adequate database to successfully complete the remediation.

Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Six water samples were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain Of Custody

There was no bottle received for sample RL-4S (7/31) for Alkalinity. The chain did not request testing for Alkalinity for RL-4S (7/30). No Alkalinity testing was performed on either sample.

3.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.3 Review of Narrative

Matrix Spike (MS) Exceptions: The matrix spike recoveries for Nitrite as Nitrogen and Nitrate+Nitrite as Nitrogen for samples RL-4D were outside control criteria because of suspected matrix interference. A matrix spike duplicate (MSD) was also analyzed for each analyte, but produced similar results. The laboratory control samples were acceptable indicating the analysis was in control.

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 (Water)

Relative percent Difference Exceptions: The relative percent difference for the analytes Naphthalene, Acenaphthylene, and Acenaphthene in the replicate laboratory control sample analyses (KWG0205621-2 and KWG0205621-3) were outside control criteria. Recoveries for the analytes were acceptable. Results reported for these analytes will exhibit a lower degree of accuracy. Since the field samples analyzed in this sequence did not contain the analyte in question, the data has not been affected.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. All field duplicate RPD's were within the control limits.

3.5 ACCURACY

3.5.1 Surrogate Spike Recoveries

All surrogate spike recoveries were within the control limits.

3.5.2 Matrix Spike And Matrix Spike Duplicate Samples

All Matrix spike Recoveries were within the control limits except for the Nitrite as Nitrogen and Nitrate+Nitrite as Nitrogen for sample RL-4D. The data is flagged to indicate the problem.

3.5.3 Laboratory Control Samples

All reported results were within the control limits.

3.6 PRECISION

3.6.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples AL-1 and RL-4D were collected as field duplicates and analyzed for all parameters. All duplicate RPD's were within control limits.

3.6.2 Laboratory Duplicate Results

All results were within the control limits.

3.7 Reporting Limits

No issues were found while reviewing the data.

3.8 COMPLETENESS

The project completeness was 97 %.

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data except for Nitrate as Nitrogen are acceptable and usable without qualification. The aforementioned Nitrate as Nitrogen Matrix Spike recovery has been flagged with a "J" qualifier, as recovery was below the control criteria indicating results may be biased low.

All organic data are acceptable and usable without qualification.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2205200

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

December 2, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from nine water samples including one field duplicate that were collected between August 1 and August 2, 2002 at Alcoa RMC Longview site in Longview, Washington.

The water samples arrived at Columbia Analytical Services, Inc. (CAS) on August 2, 2002. All or some of the samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0.
- Nitrate as Nitrogen by EPA Method 353.2.
- Ammonia as Nitrogen by EPA Method 350.1
- Total Nitrate + Nitrite by EPA Method 353.2
- Total Cyanide by EPA Method 335.2
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I.
- Dissolved Arsenic (by EPA Method 7060A) Calcium, Chromium, Copper, Magnesium, Nickel, Potassium and Sodium by EPA Method 6010B.
- Total Dissolved & Suspended Solids by EPA Method 160.1.
- Total Suspended Solids by EPA Method 160.2.

All or some of the samples were analyzed for the following organic compounds:

• Polynuclear Aromatic Hydrocarbons by EPA Method 8310.

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field duplicates is 50% for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for surface water samples.

MFG Field	Type of	Laboratory
Sample	Sample	Sample
Identification		Identifications
RL-1S(0755)	Water	K2205200-001
CD1DUP	Water	K2205200-002
RL-1S(1105)	Water	K2205200-002
R1S	Water	K2205200-004
R-3(DUP)	Water	K2205200-005
AL-2(DUP)	Water	K2205200-006
R-2	Water	K2205200-007
R-4S	Water	K2205200-008
R-1D(RL-1D)	Water	K2205200-009

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses performed so as to generate an adequate database to successfully complete the remediation. Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Six water samples were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain Of Custody

Some samples were received outside of the recommended temperature and some sample labels were changed per conversations with MFG.

3.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.3 Review of Narrative

Nitrate Analysis Notes: The reported results so not make the necessary distinctions.

Nitrate as Nitrogen by method 353.2: The matrix spike recovery of Nitrate + Nitrite as Nitrogen for sample RL-1S (0755) was outside the control criteria because of suspected matrix interference. A matrix spike duplicate was also analyzed but produced similar results. The laboratory control sample was acceptable indicating the analysis was in control. No further corrective action was appropriate.

Ammonia as Nitrogen by Method 350.1: The matrix spike recovery of Ammonia as Nitrogen for sample RL-1S (0755) was outside control criteria because of suspected matrix interference. A matrix spike duplicate was also analyzed but produced similar results. The laboratory control sample was acceptable indicating the analysis was in control. No further corrective action was appropriate.

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 (Water)

Sample Confirmation Notes: The confirmation comparison criterion of 40% difference for Benzo(b)fluoranthene was exceeded in samples R-3 and AL-2. The higher of the two values is reported because no evidence of matrix interference was observed.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.5 ACCURACY

3.5.1 Surrogate Spike Recoveries

All surrogate spike recoveries were within the control limits.

3.5.2 Matrix Spike And Matrix Spike Duplicate Samples

All Matrix spike Recoveries were within the control limits except for the Ammonia as Nitrogen and Nitrate+Nitrite as Nitrogen for sample RL-1S(0755). The data is flagged to indicate the problem.

3.5.3 Laboratory Control Samples

All results reported were within the control limits.

3.6 PRECISION

3.6.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples R-3 and AL-2 were collected as field duplicates and analyzed for all parameters. All duplicate RPD's were within control limits except for the Cyanide(WAD). The data sheets have been flagged to indicate the problem.

3.6.2 Laboratory Duplicate Results

All results were within the control limits.

3.7 Reporting Limits

No issues were found while reviewing the data.

3.8 COMPLETENESS

The project completeness was 93 %.

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data except for sample RL-1S (and associated samples), for Nitrate as Nitrogen and Ammonia as Nitrogen are acceptable and usable without qualification. The aforementioned Nitrate as Nitrogen and Ammonia as Nitrogen Matrix Spike recoveries were outside the control criteria and have been flagged with "J" qualifiers. These recoveries are potentially biased low due to matrix effects, all associated data will be considered estimated. The field duplicates (AL-2 and R-3) for Cyanide (WAD) have been flagged with "J" qualifiers. The RPD for these two samples are outside the control limits therefore the results are to be considered estimated values.

All organic data are acceptable and usable without qualification.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2205168

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059741/059868

Report Date:

November 7, 2002

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from seven water samples collected on July 31, 2002 at Alcoa RMC Longview site in Longview, Washington.

The samples arrived at Columbia Analytical Services, Inc. (CAS) on August 2, 2002. The samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, Sulfate, and Nitrate-nitrogen by EPA Method 300.0
- Ammonia-nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.4
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I
- Total Dissolved Solids by EPA Method 160.1
- Total Suspended Solids by EPA Method 160.2
- Dissolved Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

And for the following organic compounds:

Polynuclear aromatic hydrocarbons (PAH) by EPA Method 8310C

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field blanks is 50% or greater for water samples. Data

also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. These surface water samples and tie MFG and laboratory sample numbers are

MFG Field Sample Identification	Laboratory Sample Identifications
RL-3D	K2205168-001
RL2D	K2205168-002
RL-4S	K2205168-003
RL-5	K2205168-004
CDID Down	K2205168-005
RL-2S	K2205168-006
RL-4S	K2205168-007

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable (the compound may or may not be present) resampling and reanalysis is required if verification is needed

3.0 DATA EVALUATION RESULTS

Seven water samples were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 REPRESENTATIVENESS

3.1.1 Chain Of Custody

The bottle count for on the COC for CDID Down and RL-2S were different than what the lab found in the coolers. The COC was incorrect and the lab verified this with the MFG Project Manager.

3.1.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

The samples arrived at the laboratory slightly above the recommended 4 °C (4.8 °C). No qualifications were made based on this temperature. The samples were kept at the proper temperature in the laboratory prior to being analyzed.

The metals samples for RL-2D, RL-5, and RL-2S arrived without proper preservation. The appropriate acid volume was added at the laboratory. No qualifications were made based on this issue.

3.1.3 Review of Narrative

The PAH analyses had several data quality issues. The confirmation criterion of 40% difference was exceeded benzo(b) fluoranthene and phenanthrene in sample RL-2S.

3.1.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks was analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.2 ACCURACY

3.2.1 Surrogate Spike Recoveries

All surrogate spike recoveries for PAHs were within laboratory control limits.

3.2.2 Matrix Spike And Matrix Spike Duplicate Samples

For all EPA method 300.0 parameters (F, NO₃, and SO₄), ammonia-N, total and WAD cyanide, all MS recoveries and RPDs were within laboratory- and method-specified control limits. For PAH analyses, all MS/MSD recoveries and RPDs were within laboratory- and method-specified control limits.

3.2.3 Laboratory Control Samples

For PAH analyses, all LCS recoveries were within laboratory- and method-specified control limits except for naphthalene, acenaphthylene, and acenaphthene.

3.3 PRECISION

3.3.1 Field Duplicate Results

No field duplicates were collected in this batch of samples. The overall project goal of 10 percent has been achieved.

3.3.2 Laboratory Duplicate Results

All laboratory duplicate samples were within specified control limits for all analyses.

3.4 COMPARABILITY

3.4.1 Reporting Limits

No issues found during data review

3.5 REPRESENTATIVENESS

The project completeness goal of 90% was achieved. Completeness was 100%.

4.0 OVERALL ASSESSMENT OF THE DATA

All data except the PAH data are acceptable and usable without qualification.

The confirmation criterion of 40% difference was exceeded benzo(b) fluoranthene and phenanthrene in sample RL-2S. These results will be flagged with a "J" qualifier.

LCS recoveries were not within laboratory-specified control limits for naphthalene, acenaphthylene, and acenaphthene. Results for these compounds for all samples will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

All other PAH results are acceptable and usable without qualification.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2205318

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

December 3, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from ten water samples including one field duplicate that were collected between August 5 and August 6, 2002 at Alcoa RMC Longview site in Longview, Washington.

The water samples arrived at Columbia Analytical Services, Inc. (CAS) on August 7, 2002. All or some of the samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0.
- Nitrate as Nitrogen by EPA Method 353.2.
- Ammonia as Nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.2
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I.
- Dissolved Arsenic (by EPA Method 7060A) Calcium, Chromium, Copper, Magnesium, Nickel, Potassium and Sodium by EPA Method 6010B.
- Total Dissolved Solids by EPA Method 160.1.
- Total Suspended Solids by EPA Method 160.2.

All or some of the samples were analyzed for the following organic compounds:

• Polynuclear Aromatic Hydrocarbons by EPA Method 8310.

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field duplicates is 50% for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for surface water samples.

MFG Field Sample	Type of Sample	Laboratory Sample
Identification	Jampio	Identifications
R4D	Water	K2205318-001
R1D	Water	K2205318-002
RLSW-2	Water	K2205318-002
RLSW-3	Water	K2205318-004
RLSW-4 (DUP)	Water	K2205318-005
AL-3 (DUP)	Water	K2205318-006
RLSW-1	Water	K2205318-007
R1D (1516)	Water	K2205318-008
RLSW-2 (1554)	Water	K2205318-009
RLSW-3 (1625)	Water	K2205318-010

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses performed so as to generate an adequate database to successfully complete the remediation.

Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Six water samples were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain Of Custody

All samples arrived in good condition at the lab in accordance with the chain of custody.

3.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.3 Review of Narrative

Nitrate as nitrogen by method 353.2: The matrix spike recovery of Nitrate as Nitrogen for sample R4D was outside the control criteria because of suspected matrix interference. A matrix spike duplicate was also analyzed but produced similar results. The laboratory control sample was acceptable indicating the analysis was in control. No further corrective action was appropriate.

Ammonia as Nitrogen by Method 350.1: The matrix spike recovery of Ammonia as Nitrogen for sample R4D was outside control criteria because of suspected matrix interference. A matrix spike duplicate was also analyzed but produced similar results. The laboratory control sample was acceptable indicating the analysis was in control. No further corrective action was appropriate.

Dissolved Metals: The matrix spike recovery of Arsenic for the batch QC sample was outside control criteria. Recovery in the Laboratory Control Sample was acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. No further action was appropriate. The matrix spike recovery of Copper for sample R4D was outside control criteria. Recovery in the Laboratory Control Sample was acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. No further action was appropriate.

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 (Water)

Continuing Calibration Verification Exceptions: The upper control criteria were exceeded for the analyte Dibenz(a,h)anthracene in Continuing Calibration Verifications (CCVs)KWG0205853-1,2,3. The field sample analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected.

Surrogate exceptions: The control criterion was exceeded for the surrogate p-Terphenyl in samples RLSW-4 and AL-3. The sample produced excessive emulsion during extraction, which often leads to reduced recoveries for some analytes. No further corrective action was taken.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.5 ACCURACY

3.5.1 Surrogate Spike Recoveries

All surrogate spike recoveries were within the control limits.

3.5.2 Matrix Spike And Matrix Spike Duplicate Samples

All Matrix spike Recoveries were within the control limits except for the Nitrate as Nitrogen, Ammonia as Nitrogen and Copper for sample R4D and Arsenic for the batch QC. The data is flagged to indicate the problem.

3.5.3 Laboratory Control Samples

All results were within the control limits.

3.6 PRECISION

3.6.1 Field Duplicate Results

All field duplicate RPD's were within the control criterion. The RPD for samples RLSW-4 and AL-3 (Cyanide WAD) were not calculated due to one or both of the values is less than five times the reporting limit.

3.6.2 Laboratory Duplicate Results

All results were within the control limits.

3.7 Reporting Limits

No issues were found while reviewing the data.

3.8 COMPLETENESS

The project completeness was 95 %.

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data except for sample R4D (and associated samples), for Nitrate as Nitrogen, Ammonia as Nitrogen and Copper and sample batch QC (all associated samples) for Arsenic are acceptable and usable without qualification. The aforementioned samples and parameters had Matrix Spike recoveries that were outside the control criteria and have been flagged with "J" qualifiers. These recoveries are potentially biased low due to matrix effects, all associated data will be considered estimated. All organic data are acceptable and usable without qualification.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2206307

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059741/059868

Report Date:

November 7, 2002

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from seven water samples, including one field duplicate, collected at Alcoa RMC Longview site in Longview, Washington.

The samples were collected on September 10, 2002, and analyzed by Columbia Analytical Services, Inc. (CAS). The samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, Sulfate, and Nitrate-nitrogen by EPA Method 300.0
- Ammonia-nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.4
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I
- Total Dissolved Solids by EPA Method 160.1
- Total Suspended Solids by EPA Method 160.2
- Dissolved Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

And for the following organic compounds:

Polynuclear aromatic hydrocarbons (PAH) by EPA Method 8310C

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field blanks is 50% or greater for water samples. Data

also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. These surface water samples and tie MFG and laboratory sample numbers are

MFG Field Sample Identification	Laboratory Sample Identifications
SW-4	K2206307-001
SW-5	K2206307-002
SW-6	K2206307-003
SW-7	K2206307-004
SW-8	K2206307-005
SW-9	K2206307-006
AL-SW-1 (Field Duplicate)	K2206307-007

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable (the compound may or may not be present) resampling and reanalysis is required if verification is needed

3.0 DATA EVALUATION RESULTS

Seven water samples, including one field duplicate sample were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 REPRESENTATIVENESS

3.1.1 Chain Of Custody

The chain of custody form had all samples listed for chloride analysis. The lab did not perform this analysis on any sample.

3.1.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

The samples arrived at the laboratory above the recommended 4 °C recommended by some of the methods. This was, however, due to the samples being collect not more than 3 hours before arriving a at the laboratory. The samples were kept at the proper temperature in the laboratory prior to being analyzed.

The metals samples arrived without proper preservation. The appropriate acid volume was added at the laboratory. Since the sample were collected a few hours earlier this is not an issue.

3.1.3 Review of Narrative

The nitrate as nitrogen analyses had elevated reporting limits in all samples because the samples required dilution (2x). The chromatograms from the nitrate as nitrogen analyses indicated the presence of non-target background compounds. The samples contained high levels of chloride and sulfate that required dilution in order to prevent damage to the equipment.

The PAH analyses had several data quality issues. The primary evaluation verification for continuing calibration was exceeded for dibenz(a,h)anthacene. Per laboratory practice, the alternate criterion specified in the EPA method was used. This standard met the alternate criteria evaluation.

The confirmation criterion of 40% difference was exceeded for several PAHs in samples SW-4, SW-6, SW-7 and field duplicate AL-SW-1.

3.1.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks was analyzed with each analytical batch for all analyses, and no target compounds were detected.

3.2 ACCURACY

3.2.1 Surrogate Spike Recoveries

All surrogate spike recoveries for PAHs were within laboratory control limits.

3.2.2 Matrix Spike And Matrix Spike Duplicate Samples

For all EPA method 300.0 parameters (F, NO₃, and SO₄), ammonia-N, total and WAD cyanide, all MS recoveries and RPDs were within laboratory- and method-specified control limits. For PAH analyses, all MS/MSD recoveries and RPDs were within laboratory- and method-specified control limits.

3.2.3 Laboratory Control Samples

For PAH analyses, all LCS recoveries were within laboratory- and method-specified control limits.

3.3 PRECISION

3.3.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples ALSW-1 and SW-6 were collected as field duplicates and analyzed for all parameters. The PAH, pyrene, had an RPD greater than 50% based on field duplicate analyses (58%).

3.3.2 Laboratory Duplicate Results

All laboratory duplicate samples were within specified control limits for all analyses.

3.4 COMPARABILITY

3.4.1 Reporting Limits

The nitrate as nitrogen analyses had elevated reporting limits in all samples because the samples required dilution (2x). The chromatograms from the nitrate as nitrogen analyses indicated the presence of non-target background compounds. The samples contained high levels of chloride and sulfate that required dilution in order to prevent damage to the equipment.

Samples SW-7 required dilution (10X) due to the elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

The reporting limit for is elevated indeno(1,2,3,cd)pyrene in Sample SW-4. This was due to matrix interference.

3.5 REPRESENTATIVENESS

The project completeness goal of 90% was achieved for all analysis except chloride. The lab failed to perform the chloride analysis on ay samples.

4.0 OVERALL ASSESSMENT OF THE DATA

All data except the PAH data are acceptable and usable without qualification.

Sample SW-4 had confirmation criteria problems for pyrene, chrysene, benzo(k)fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene. These results will be flagged with a "J" qualifier.

Sample SW-6 had a confirmation criteria problem for phenanthrene. Sample SW-7 had a confirmation criteria problem for fluoranthene. Sample ALSW-1 had a confirmation criteria problem for dibenz(a,h)anthacene. Results for these compounds for all samples will be will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

Pyrene had an RPD greater than 50% based on field duplicate analyses. Therefore, all sample results for this compound is flagged with a "J" qualifier.

All other PAH results are acceptable and usable without qualification.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2206762

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

November 20, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from two water samples and six soil samples, collected on September 11, 2002 at Alcoa RMC Longview site in Longview, Washington.

The water samples arrived at Columbia Analytical Services, Inc. (CAS) on September 12, 2002. These samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0 (SW-series samples only)
- Nitrate as Nitrogen by EPA Method 300.0
- Ammonia as Nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.4 (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)
- Dissolved Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

The water samples were also analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

The soil samples arrived at Columbia Analytical Services, Inc. (CAS) on September 12, 2002. These samples were analyzed for the following inorganic compounds:

- Fluoride by EPA Method 300.0 (SW-series samples only)
- Total Cyanide by EPA Method 9010B (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)

The soil samples were also analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field duplicates is 50% for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for both surface water and soil samples.

MFG Field Sample	Type of Sample	Laboratory Sample
Identification		Identifications
DP-12(3-4')	Soil	K2206762-001
DP-12	Water	K2206762-002
DP-13(1.5-2')	Soil	K2206762-003
DP-13	Water	K2206762-004
DP-14(2-4')	Soil	K2206762-005
DP-18(0-4')	Soil	K2206762-006
DP-19(1-2.5')	Soil	K2206762-007
DP-19(2.5-4')	Soil	K2206762-008

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses performed so as to generate an adequate database to successfully complete the remediation.

Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Two water samples and six soil samples were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain Of Custody

Water samples arrived with insufficient preservatives.

3.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.3 Review of Narrative

Nitrate as Nitrogen by EPA Method 300.0: The reporting limit is elevated for Nitrate in sample DP-13 because the sample required dilution. The chromatogram indicated the presence of non-target background components. The sample contained high levels of chloride that required dilution in order to prevent damage to the suppressor. The matrix interference prevented adequate resolution of the target compound at the reporting limit. The result is flagged to indicate the matrix interference.

Total Cyanide by EPA Method 9010B: The control criteria for matrix spike recovery of Cyanide for sample DP-12(3-4') is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Cyanide, Weak Acid Dissociable by SM 4500-CN-I: The control criteria for matrix spike recovery of Cyanide for sample DP-12(3-4') is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 (Water)

Sample Confirmation Notes: The confirmation comparison criteria of 40% difference for Naphthalene, Dibenz(a,h)anthracene and Benzo(g,h,I)perylene was exceeded in samples DP-12 and DP-13. The higher of the two values was reported for Benzo(g,h,I)perylene because no evidence of a matrix interference was observed. The lower of the two values was reported for Naphthalene and Dibenz(a,h)anthracene because of an apparent interference on the alternate detector that produced the higher value.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.5 ACCURACY

3.5.1 Surrogate Spike Recoveries

Samples DP-12 and DP-13 (water) were outside the control limits for p-Terphenyl. Samples DP-12, DP-13 and DP-14 (soil) were outside the control limits for Terphenyl-d14. Sample DP-14 (soil) was outside the control limit for Fluoranthene-d10.

3.5.2 Matrix Spike And Matrix Spike Duplicate Samples

All Matrix spike Recoveries were within the control limits except for the Cyanide for sample DP-12(3-4') and DP-13. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery. Matrix Spike Duplicates (MSD) were only analyzed for organic parameters. All MSD recoveries were within the control limits.

3.5.3 Laboratory Control Samples

All results were within the control limits.

3.6 PRECISION

3.6.1 Field Duplicate Results

No field duplicates were taken with this batch of samples.

3.6.2 Laboratory Duplicate Results

All results were within the control limits.

3.7 Reporting Limits

Samples DP-12 and DP-13 required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

3.8 COMPLETENESS

The project completeness was 95 %.

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data except for WAD cyanide for soil samples DP-18 and DP-19(1-2.5') are acceptable and usable without qualification. The aforementioned cyanide results were less than the method reporting limit and have been flagged with a "J" qualifier.

All organic data are acceptable and usable without qualification except for the parameter sample pairs identified in the sample conformation notes that have been flagged with a "J" qualifier.

REFERENCE .

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2206377

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

November 18, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from eight water samples, including one field duplicate and seven soil samples, collected on September 11, 2002 at Alcoa RMC Longview site in Longview, Washington.

The water samples arrived at Columbia Analytical Services, Inc. (CAS) on September 12, 2002. These samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0 (SW-series samples only)
- Nitrate as Nitrogen by EPA Method 300.0
- Ammonia as Nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.4 (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)
- Dissolved Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

The water samples were also analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

The soil samples arrived at Columbia Analytical Services, Inc. (CAS) on September 12, 2002. These samples were analyzed for the following inorganic compounds:

- Fluoride by EPA Method 300.0 (SW-series samples only)
- Total Cyanide by EPA Method 9010B (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)

The soil samples were also analyzed for the following organic compounds:

• Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field duplicates is 50% for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for both surface water and soil samples.

MFG Field Sample Identification	Type of Sample	Laboratory Sample Identifications	MFG Field Sample Identification	Type of Sample	Laboratory Sample Identifications
DP-1	Soil	K2206377-001	AL-DP1 (FD)	Water	K2206377-009
DP-1	Water	K2206377-002	DP-6	Soil	K2206377-010
DP-2	Soil	K2206377-003	DP-6	Water	K2206377-011
DP-2	Water	K2206377-004	DP-7	Soil	K2206377-012
DP-4	Soil	K2206377-005	DP-7	Water	K2206377-013
DP-4	Water	K2206377-006	DP-8	Soil	K2206377-014
DP-5	Soil	K2206377-007	DP-8	Water	K2206377-015
DP-5	Water	K2206377-008			

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses performed so as to generate an adequate database to successfully complete the remediation.

Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
 - R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Eight water samples, including one field duplicate and seven soil samples were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain Of Custody

Water samples arrived with insufficient preservatives. Samples DP-1 and DP-2 were mis-labeled.

3.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.3 Review of Narrative

Nitrate as Nitrogen by EPA Method 300.0: The sample contained high levels of chloride, fluoride and sulfate that required dilution in order to prevent damage to the suppressor. The matrix interference prevented adequate resolution of the target compound at the reporting limit. The results are flagged to indicate the martrix interference.

Total Cyanide by EPA Method 335.4: The Relative Percent Difference (RPD) criterion for the replicate analysis of cyanide in sample Batch QC (for the water matrix samples), is not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit.

The control criteria for matrix spike recovery of cyanide for sample DP-1 (composite) is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM (Soils)

Surrogate Exceptions: The control criteria were exceeded for the following surrogate in sample DP-1 (composite) due to matrix interferences: Terphenyl-d14. Due to the presence of non-target background components that prevented adequate resolution of the surrogate, accurate quantitation was not possible. No further corrective action was appropriate.

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 (Water)

Continuing Calibration Verification exception: The Primary evaluation criterion was exceeded for the analyte Dibenz(a,h)anthracene in Continuing Calibration Verifications KWG0207466-1 and 2. The primary evaluation criterion was exceeded for the analyte Benzo(a)pyrene in Continuing Calibration Verification KWG0207728-1. In accordance with CAS standard operating procedures, the alternative

evaluation specified in the EPA method was performed using the average percent recovery of all analytes in the verification standards. The standard meets the alternative evaluation criteria.

Surrogate Exception: The control criteria for the surrogate p-Terphenyl in sample DP-1 are not applicable. The analysis of the sample required a dilution, which resulted in a surrogate concentration below the Method Reporting Limit (MRL). No further corrective action was appropriate.

Sample Confirmation Notes: The confirmation comparison criteria of 40% difference was exceeded for Naphthalene in samples DP-1, DP-6 and DP-7. The criteria of 40% was exceeded for Fluorene in DP-1, DP-4, DP-7 and DP-8. The Criteria of 40% was exceeded for Dibenz(a,h)anthracene in DP-1, DP-4, DP-7 and DP-8. The criteria of 40% was exceeded for Indeno(cd1,2,3)pyrene in samples DP-2, DP-4, DP-6 and DP-7. The laboratory data sheets have been flagged to indicate the results are to be considered estimated.

Elevated Method Reporting Limits: Samples DP-1, DP-7 and DP-8 required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

The reporting limit is elevated for Naphthalene in sample DP-1. The result is flagged to indicate the matrix interference.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.5 ACCURACY

3.5.1 Surrogate Spike Recoveries

All Surrogate Spike Recoveries were within the Method Reporting Limit (MRL) except for p-Terphenyl in sample DP-1.

3.5.2 Matrix Spike And Matrix Spike Duplicate Samples

All Matrix spike and Recoveries were within the control limits except for the Cyanide for sample DP-1. Matrix Spike Duplicates (MSD) were only analyzed for organic parameters. All MSD recoveries were within the control limits.

3.5.3 Laboratory Control Samples

All results were within the control limits.

3.6 PRECISION

3.6.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples DP-5 and AL-DP1 were collected as field duplicates and analyzed for all parameters. All duplicate RPD's were within the control limits except for the following. Ammonia as Nitrogen, Sulfate, Fluoride, Total Cyanide and Weak Acid Dissociable Cyanide. The following are to be considered estimated due to the difference between the samples is greater than 2Xs its reporting limit: Chrysene, Benzo(b)fluoranthene,Benzo(g,h,I)perylene and Indeno(1,2,3-cd)pyrene. The following did not have RPD's calculated due to one or both values being <5X's the reporting limit: Phenanthrene, Fluoranthene, Pyrene and Benzo(b)fluoranthene.

3.6.2 Laboratory Duplicate Results

All results were within the control limits.

3.7 Reporting Limits

The reporting limit is elevated for Nitrate as Nitrogen in samples AL-DP1, DP-7 and DP-8. Samples DP-1 DP-7 and DP-8 required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution. The reporting level is elevated for Naphthalene in Sample DP-1.

3.8 COMPLETENESS

The project completeness was 94%.

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data except total cyanide for soil samples DP-4, DP-6, DP-7, total cyanide for water samples DP-2, DP-4, AL-DP1, DP-7 and WAD cyanide for soil samples DP-2 and DP-4 are acceptable and usable without qualification. The aforementioned cyanide results were less than the method reporting limit and have been flagged with a "J" qualifier.

All organic data for soil are acceptable and usable without qualification.

All organic data for water are acceptable and usable without qualification except for the parameter sample pairs identified in the sample confirmation notes that have been flagged with a "J" qualifier.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2206401

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

December 3, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from two water samples and four soil samples, collected on September 12, 2002 at Alcoa RMC Longview site in Longview, Washington.

The water samples arrived at Columbia Analytical Services, Inc. (CAS) on September 12, 2002. The water samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0 (SW-series samples only)
- Nitrate as Nitrogen by EPA Method 300.0
- Ammonia as Nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.2 (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)
- Dissolved Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

The water samples were analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

The soil samples arrived at Columbia Analytical Services, Inc. (CAS) on September 12, 2002. The soil samples were analyzed for the following inorganic compounds:

- Fluoride by EPA Method 300.0 (SW-series samples only)
- Total Cyanide by EPA Method 9010B (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)

The soil samples were analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field duplicates is 50% for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for both surface water and soil samples.

MFG Field Sample Identification	Type of Sample	Laboratory Sample Identifications
DP-9 (0-1')	Soil	K2206762-001
DP-9	Water	K2206762-002
DP-10 (1.5-3.8')	Soil	K2206762-003
DP-10 (4-6')	Soil	K2206762-004
DP-10	Water	K2206762-005
DP-11 (.75-1.50')	Soil	K2206762-007

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses performed so as to generate an adequate database to successfully complete the remediation.

Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Two water samples and five soil samples were collected at the Alcoa RMC Longview Site. Two water samples and four soil samples were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain Of Custody

All samples arrived in good condition at the lab in accordance with the chain of custody.

3.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.3 Review of Narrative

Nitrate as Nitrogen by EPA Method 300.0: The reporting limit is elevated for Nitrate in samples DP-9 and DP-10 because the sample required dilution. The chromatogram indicated the presence of non-target background components. The sample contained high levels of Chloride and Sulfate that required dilution in order to prevent damage to the suppressor. The matrix interference prevented adequate resolution of the target compound at the reporting limit. The result is flagged to indicate the matrix interference.

Total Cyanide by EPA Method 335.2: The control criteria for matrix spike recovery of Cyanide for the batch QC is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Cyanide, Weak Acid Dissociable by SM 4500-CN-I: The reporting limit is elevated for WAD in sample DP-10 (1.5-3.8'). The sample contained carbonation that interferes with the colorimetric determination. The sample required dilution to remove the interference resulting in an elevated detection limit. The result is flagged to indicate matrix interference.

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 (Water)

Sample Confirmation Notes: The confirmation comparison criteria of 40% difference for Pyrene, Dibenz(a,h)anthracene, and Benzo-(g,h,i)perylene was exceeded in sample DP-10. The higher of the two values is reported for Dibenz(a,h)anthracene and Benzo-(g,h,i)perylene because no evidence of a matrix interference was observed. The lower of the two values was reported for Pyrene because of an apparent interference on the alternate column that produced the higher value.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM (Soil)

Surrogate exceptions: The control criteria were exceeded for the following surrogate in samples DP-10 (4-6') and DP-11 (0.75-1.50') due to matrix interferences: Terphenyl-d14. Due to the presence of non-target background components that prevented adequate resolution of the surrogate, accurate quantitation was not possible. No further corrective action was appropriate.

Matrix Spike Recovery and Relative Percent Difference Exceptions: The control criteria for matrix spike recoveries and relative percent difference of most analytes for sample DP-9 (0-1') are not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery and the associated RPD's. The matrix spike recoveries of Acenaphthene, Dibenzofuran and Fluorene for sample DP-9 (0-1') were outside control criteria. Recovery in the laboratory control sample was acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. No further corrective action was appropriate.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.5 ACCURACY

3.5.1 Surrogate Spike Recoveries

The surrogate Terphenyl-d14 exceeded the control criteria for samples DP-10 (4-6') and DP-11 (0.75-1.50')

3.5.2 Matrix Spike And Matrix Spike Duplicate Samples

The matrix spike (batch QC) recovery for Total Cyanide is outside the control limits. The matrix spike recoveries of Acenaphthene, Dibenzofuran and Fluorene for sample DP-9 (0-1') are outside the control limit.

3.5.3 Laboratory Control Samples

All results were within the control limits.

3.6 PRECISION

3.6.1 Field Duplicate Results

No field duplicates were taken with this batch of samples.

3.6.2 Laboratory Duplicate Results

All results were within the control limits.

3.7 Reporting Limits

The reporting limits were elevated for Nitrate as Nitrogen (samples DP-9 and DP-10) and for Cyanide, Weak Acid dissociable (sample DP-10 1.5-3.8').

3.8 COMPLETENESS

The project completeness was 87.3 %.

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data are acceptable and usable without qualification except for the following. The matrix spike (batch QC) recovery for Total Cyanide is outside the control limits. This result is potentially bias high due to matrix effects, all associated data is to be considered estimated. The data has been flagged with a "J" qualifier.

All organic data are acceptable and usable without qualification except for sample DP-9 (0-1'). The matrix spike recoveries for Acenaphthene, Dibenzofuran and Fluorene for sample DP-9 (0-1') are potentially bias low due to matrix effects, all associated data will be considered estimated. All other analytes except for Naphthalene, 2-Methylnaphthalene and Acenaphthylene for sample DP-9 (0-1') are to be considered estimated due to the values exceeding the instrument calibration range.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2208532

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059741/059868

Report Date:

January 13, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from nine water samples, including one filed duplicate, collected on November 25, 2002 at Alcoa RMC Longview site in Longview, Washington.

The samples arrived at Columbia Analytical Services, Inc. (CAS) on November 26, 2002. The samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0 (SW-series samples only)
- Total Cyanide by EPA Method 335.4 (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)
- Total Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field blanks is 50% or greater for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. These surface water samples and tie MFG and laboratory sample numbers are:

MFG Field Sample Identification	Laboratory Sample Identifications
SW-4	K22008532-001
SW-5	K22008532-002
SW-6	K22008532-003
SW-7	K22008532-004
SW-8	K22008532-005
SW-9	K22008532-006
SW-10 (Field Duplicate)	K22008532-007
CDID Up	K22008532-008
CDID Down	K22008532-009

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- **J.** Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable (the compound may or may not be present) resampling and reanalysis is required if verification is needed

3.0 DATA EVALUATION RESULTS

Nine water samples, including one duplicate sample were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic constituents listed in Section 1.0 of this report.

3.1 REPRESENTATIVENESS

3.1.1 Chain Of Custody

All samples arrived in good condition at the lab in accordance with the chain of custody.

3.1.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.1.3 Review of Narrative

No anomalies other than those discussed below.

3.1.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks was analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.2 ACCURACY

3.2.1 Surrogate Spike Recoveries

No Surrogate spikes were required.

3.2.2 Matrix Spike And Matrix Spike Duplicate Samples

The control criteria for the matrix spike recovery of total cyanide for sample SW-4 is not applicable. The analyte concentration in the sample was greater than 4 times the added spike concentration. This prevents accurate evaluation of spike recovery, however, no qualification is applied to the detected values.

3.2.3 Laboratory Control Samples

No LCS were required

3.3 PRECISION

3.3.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples SW-8 and SW-10 were collected as field duplicates and analyzed for all parameters. All duplicate RPD were within control limits except for WAD cyanide. This parameter had an RPD of 86%. The sample values, however, for both the sample and duplicate was less than 5 times method detection limits. No qualification is applied to these values.

3.3.2 Laboratory Duplicate Results

No issues found during data review.

3.4 COMPARABILITY

3.4.1 Reporting Limits

No issues found during data review.

3.5 REPRESENTATIVENESS

The project completeness goal of 90% was achieved. Completeness was 100%.

4.0 OVERALL ASSESSMENT OF THE DATA

All data are acceptable and usable without qualification.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2302263

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059741/059868

Report Date:

July 31, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from seven water samples, including one field duplicate, collected on March 25, 2003 at Alcoa RMC Longview site in Longview, Washington.

The samples arrived at Columbia Analytical Services, Inc. (CAS) on March 25, 2003. The samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0 (SW-series samples only)
- Total Cyanide by EPA Method 335.4 (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)
- Dissolved Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field blanks is 50% or greater for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. These surface water samples and tie MFG and laboratory sample numbers are

MFG Field Sample	Laboratory Sample
Identification	Identifications
PZ-2	K2302263-001
PZ-3	K2302263-002
PZ-4	K2302263-003
PZ-5	K2302263-004
PZ-6	K2302263-005
PZ-7	K2302263-006
PZ-8 (Field Duplicate)	K2302263-007

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable (the compound may or may not be present) resampling and reanalysis is required if verification is needed

3.0 DATA EVALUATION RESULTS

Seven water samples, including one duplicate sample were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic constituents listed in Section 1.0 of this report.

3.1 REPRESENTATIVENESS

3.1.1 Chain Of Custody

All samples arrived in good condition at the lab in accordance with the chain of custody.

3.1.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.1.3 Review of Narrative

No anomalies were noted by the laboratory.

3.1.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks was analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.2 ACCURACY

3.2.1 Surrogate Spike Recoveries

No Surrogate spikes were required.

3.2.2 Matrix Spike And Matrix Spike Duplicate Samples

All results were within control limits.

3.2.3 Laboratory Control Samples

No LCS were required

3.3 PRECISION

3.3.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples PZ-6 and PZ-8 were collected as field duplicates and analyzed for all parameters. All duplicate RPD were within control limits except for bicarbonate alkalinity. This parameter that had a RPD of 82%. The values of the sample and the duplicate were greater than 5 times the method reporting limit.

3.3.2 Laboratory Duplicate Results

All results were with limits.

3.4 COMPARABILITY

3.4.1 Reporting Limits

No issues found during data review

3.5 REPRESENTATIVENESS

The project completeness goal of 90% was achieved. Completeness was 100%.

4.0 OVERALL ASSESSMENT OF THE DATA

All data except the bicarbonate alkalinity results are acceptable and usable without qualification.

The bicarbonate alkalinity results from the field duplicates had a RPD of 82%. Therefore, all bicarbonate alkalinity results will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2208601

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

December 1, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from four soil samples, collected on November 25, 2002 at Alcoa RMC Longview site in Longview, Washington.

The soil samples arrived at Columbia Analytical Services, Inc. (CAS) on November 27, 2002. All or some of the samples were analyzed for the following inorganic compounds:

- Fluoride, by EPA Method 300.0
- Total Cyanide by EPA Method 335.4 (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)

The soil samples were also analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

Data were evaluated according to MFG's standard operating procedure (MFG 2000). Data were also reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for the soil samples.

MFG Field	Laboratory
Sample	Sample
Identification	Identifications
B21(2.5'-4.5')	K2208601-001
PZ-4(3'-6')	K2208601-002
PZ-4(12'- 13.5)	K2208601-003
PZ-3(2.5'-4')	K2208601-004

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses performed so as to generate an adequate database to successfully complete the remediation.

Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Four soil samples were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain of Custody

All samples arrived in good condition at the lab in accordance with the chain of custody.

3.2 Sample Holding Times and Preservatives

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.2 Review of Narrative

General Chemistry Parameters

Total Cyanide EPA Method 9010: The control criteria for matrix spike recovery of Total Cyanide for sample B-21(2.5'-4.5') is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Fluoride by EPA Method 300.0: The matrix spike recovery of Fluoride for sample B-21 (2.5'-4.5') was outside the control criteria because of suspected matrix interference. A matrix spike duplicate was also analyzed, but produced similar results. The results of the original analysis are reported. No further corrective action was appropriate.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270 SIM

Surrogate Exceptions: The control criteria were exceeded for the surrogate in sample B-21(2.5'-4.5') and PZ-4(3'-6') due to high levels of target analytes interfering with resolution of the surrogate peak. No further corrective action was appropriate.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were submitted for analysis.

3.5 ACCURACY

Surrogate Spike Recoveries

Surrogate samples Fluorene-d10 (PZ-4 3'-6'), Fluoranthene-d10 (B-21 2.5'-4.5), and Terphenyl-d14 (B-21 2.5'-4.5' & PZ-4 3'-6') are outside the control criteria.

Matrix Spike And Matrix Spike Duplicate Samples

All Matrix spike and Recoveries were within the control limits except for Fluoride, Total Cyanide and WAD Cyanide for sample B-21(2.5'-4.5'). Matrix Spike Duplicates (MSD) were only analyzed for organic parameters. All MSD recoveries were within the control limits.

Laboratory Control Samples

All results were within the control limits.

3.6 PRECISION

Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. No field duplicates were completed with this batch of samples.

Reporting Limits

Samples B-21(2.5'-4.5'), PZ-4(12'-13.5') and PZ-4(3'-6') required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

3.7 COMPLETENESS

The project completeness was 93%

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data are acceptable and usable without qualification except for the matrix spike recovery for Fluoride. The results for this analyte are to be considered estimated values and have been flagged with a "J" qualifier. All organic data are acceptable and usable without qualification except for sample PZ-3(2.5-4') for Naphthalene, 2-Methylnaphthalene, Acenaphthene and Fluorene and PZ-4(12-13.5') for Acenaphthylene. The sample results are flagged with "J" qualifiers, all associated data are to be considered estimated.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2208677

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059868

Report Date:

November 18, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from eight water samples, including one field duplicate, collected on December 03, 2002 at Alcoa RMC Longview site in Longview, Washington.

The water samples arrived at Columbia Analytical Services, Inc. (CAS) on December 03, 2002. These samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0 (SW-series samples only)
- Nitrate as Nitrogen by EPA Method 300.0
- Ammonia as Nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.4 (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)
- Dissolved Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

The water samples were also analyzed for the following organic compounds:

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field duplicates is 50% for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. The following are the MFG and Laboratory identification numbers for the surface water samples.

MFG Field	Laboratory
Sample	Sample
Identification	Identifications
PZ-1	K2208677-001
PZ-2	K2208677-002
PZ-3	K2208677-003
PZ-4	K2208677-004
PZ-5	K2208677-005
PZ-6	K2208677-006
PZ-7	K2208677-007
PZ-8 (DUP)	K2208677-008

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

2.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Data precision or analytical error is assessed by determining the agreement among replicate measurements of the same sample and measurements of duplicate samples, which include MS/MSD samples, laboratory duplicate samples and field duplicate samples. The comparison is made by calculating the relative percent difference (RPD).

2.2 ACCURACY

Accuracy is a measure of the bias or error in a sample program. Examples of bias include contamination and errors made in sample collection, preservation, handling, and analysis. Accuracy will be assessed by the collection of field/trip blanks and in the laboratory by the use of known and unknown QC samples and matrix spikes. Accuracy will be measured by the percent bias of percent recovery. Evaluation of the laboratory's performance will be similar as for a laboratory control sample with the acceptable recovery range of 80% to 120%.

2.3 COMPLETENESS

Completeness is the percent of measurements made which are judged to be valid. The completeness of the data reflects that all the required samples have been taken and requisite analyses performed so as to generate an adequate database to successfully complete the remediation. Completeness values for analytical work will be 90 percent for demonstrated analytical techniques.

2.4 DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable, resampling and reanalysis is required if verification is needed.

3.0 DATA EVALUATION RESULTS

Eight water samples, including one field duplicate were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic and organic constituents listed in Section 1.0 of this report.

3.1 Chain of Custody

Not all of the preserved bottles were received with the appropriate pH.

3.2 Sample Holding Times and Preservatives

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.3 Review of Narrative

Nitrate as Nitrogen by EPA Method 300.0: The sample contained high levels of chloride and/or sulfate that required dilution in order to prevent damage to the suppressor. The matrix interference prevented adequate resolution of the target compound at the reporting limit. The results are flagged to indicate the matrix interference.

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 (Water)

Lab Control Sample Exceptions: The spike recovery of Naphthalene, Acenaphthylene, and Acenaphthene for Duplicate Laboratory Control Sample KWG0210158-3 was outside the lower control criterion. The analytes in question were detected in the associated field samples. The error associated with reduced recovery equates to a potential low bias. All samples associated with this DLCS were reextracted and re-analyzed with the exception of sample PZ-2and PZ-2MS. Additional analysis of these field samples could not be performed because insufficient sample remained for testing. The data is flagged to indicate the problem.

Relative Percent Difference exception: The spike recovery for Naphthalene, Acenaphthylene, and Acenaphthene for Duplicate Laboratory Control Sample KWG0210158-3 was outside the lower control criterion. This poor percent recovery in the duplicate analysis produced the unreasonably high RPD. All samples associated with this DLCS were re-extracted and re-analyzed with the exception of sample PZ-2 and PZ-2MS(insufficient sample amount). The data is flagged to indicate the problem.

Matrix Spike Recovery Exceptions: The matrix spike recoveries of Naphthalene, Acenaphthene, Fluorene, Dibenz(a,h)anthracene and Indeno(1,2,3-cd)pyrene for sample PZ-2MS was outside control criteria. The matrix spike outlier suggests a potential low bias in this matrix. Additional analysis could not be performed to due to an insufficient amount of sample. No further corrective action was feasible.

Continuing Calibration Verification exception: The primary evaluation criterion was exceeded for the analyte Benzo(k)fluoranthene in Continuing Calibration Verification KWG0210756-5. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was

performed using the average percent recovery of all analytes in the verification standard. The standard meets the alternative evaluation criteria.

Sample Confirmation Notes: The confirmation comparison criteria of 40% difference was exceeded for Acenaphthene in samples PZ-1 and PZ-3. The confirmation comparison criteria of 40% difference was exceeded for Benzo(b)fluoranthene and Benzo(k)fluoranthene in sample PZ-5. The confirmation comparison criteria of 40% difference was exceeded for Fluoranthrene and Pyrene in samples PZ-1, PZ-2, PZ-3, PZ-5, and PZ-6. The confirmation comparison criteria of 40% difference was exceeded for Pyrene in samples PZ-4 and PZ-8. The laboratory data sheets have been flagged to indicate the results are to be considered estimated.

Elevated Method Reporting Limits: Sample PZ-1 required dilution due to the presence of elevated levels of Fluorene, Phenanthrene, Fluoranthene and Pyrene. Samples PZ-2 and PZ-5 required dilution due to the presence of elevated levels of Phenanthrene, Fluoranthene and Pyrene. The reporting limits are adjusted to reflect the dilution for analytes. Samples PZ-3, PZ-4 and PZ-8 required dilution due to the presence of elevated levels of target analytes. The reporting limits are adjusted to reflect the dilution for analytes. The reporting limit is elevated for Naphthalene in sample PZ-2 due to the presence of non-target background components. The result is flagged to indicate the matrix interference. The reporting limit is elevated for Acenaphthylene in sample PZ-8 due to the presence of non-target background components. The result is flagged to indicate the matrix interference.

3.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks were analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were submitted for analysis.

3.5 ACCURACY

Surrogate Spike Recoveries

All Surrogate Spike Recoveries were within the Recovery Control Limits.

Matrix Spike And Matrix Spike Duplicate Samples

All Matrix spike and Recoveries were within the control limits except for the Cyanide for sample PZ-1. Matrix Spike Duplicates (MSD) were only analyzed for organic parameters. All MSD recoveries were within the control limits.

Laboratory Control Samples

All results were within the control limits.

3.6 PRECISION

Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples PZ-4 And PZ-8 were collected as field duplicates and analyzed for all parameters. All duplicate RPD's were within the control limits.

Reporting Limits

See: Method Reporting Limit.

3.7 COMPLETENESS

The project completeness was 87.5%.

4.0 OVERALL ASSESSMENT OF THE DATA

All inorganic data are acceptable and usable without qualification. All organic data are acceptable and usable without qualification except for data from PZ-2 and the sample parameter pair identified in the sample confirmation notes that have been flagged with a "J" qualifier.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2302262

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059741/059868

Report Date:

July 31, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from nine water samples, including one field duplicate, were collected on March 24, 2003 at Alcoa RMC Longview site in Longview, Washington.

The samples arrived at Columbia Analytical Services, Inc. (CAS) on March 26, 2003. The samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0 (SW-series samples only)
- Total Cyanide by EPA Method 335.4 (SW-series samples only)
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I (SW-series samples only)
- Total Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field blanks is 50% or greater for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. These surface water samples and tie MFG and laboratory sample numbers are

MFG Field Sample Identification	Laboratory Sample Identifications
SW-4	K2302262-001
SW-5	K2302262-002
SW-6	K2302262-003
SW-7	K2302262-004
SW-8	K2302262-005
SW-9	K2302262-006
SW-10 (Field Duplicate)	K2302262-007
CDID Up	K2302262-008
CDID Down	K2302262-009

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable (the compound may or may not be present) resampling and reanalysis is required if verification is needed

3.0 DATA EVALUATION RESULTS

Nine water samples, including one duplicate sample were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic onstituents listed in Section 1.0 of this report.

3.1 REPRESENTATIVENESS

3.1.1 Chain Of Custody

All samples arrived in good condition at the lab in accordance with the chain of custody.

3.1.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.1.3 Review of Narrative

The analysis of samples SW-4, SW-5, and SW-6 was initially performed on March 30, 2003. The MS was outside the CAS control criteria. The samples were supposed to be reanalyzed ASAP. However, the reanalysis was performed 9 days past the recommended holding time.

3.1.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks was analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.2 ACCURACY

3.2.1 Surrogate Spike Recoveries

No Surrogate spikes were required.

3.2.2 Matrix Spike And Matrix Spike Duplicate Samples

MS recoveries for total cyanide for sample SW-6 was outside of laboratory control criteria because of suspected matrix interference. A MSD was also analyzed, but produced similar results.

3.2.3 Laboratory Control Samples

No LCS were required

3.3 PRECISION

3.3.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples SW-7 and SW-10 were collected as field duplicates and analyzed for all parameters. All duplicate RPD were within control limits.

3.3.2 Laboratory Duplicate Results

The RPD for total cyanide was below the specified control limit. However, because the analyte concentration was not significantly greater than the method reporting limit, it will not be qualified for this issue.

3.4 COMPARABILITY

3.4.1 Reporting Limits

No issues found during data review

3.5 REPRESENTATIVENESS

The project completeness goal of 90% was achieved. Completeness was 100%.

4.0 OVERALL ASSESSMENT OF THE DATA

All data except the total cyanide and WAD cyanide data are acceptable and usable without qualification.

MS recoveries for total cyanide for sample SW-6 was outside of laboratory control criteria because of suspected matrix interference. A MSD was also analyzed, but produced similar results. All total cyanide values will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

The analysis of samples SW-4, SW-5, and SW-6 was initially performed on March 30, 2003. The MS was outside the CAS control criteria. The samples were supposed to be reanalyzed ASAP. However, the reanalysis was performed 9 days past the recommended holing time. All WAD cyanide values will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2304834

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059741/059868

Report Date:

August 31, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from seventeen water samples, including two field duplicates, collected on June 30, 2003 (PZ-series) and on July 1, 2003 (SW- and CDID-series) at Alcoa RMC Longview site in Longview, Washington.

The samples arrived at Columbia Analytical Services, Inc. (CAS) on July 1, 2003. The samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0
- Total Cyanide by EPA Method 335.4
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I
- Total Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B(Dissolved for PZ-series, total s for all others).

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field blanks is 50% or greater for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. These surface water samples and tie MFG and laboratory sample numbers areL

MFG Field Sample	Laboratory Sample
Identification	Identifications
PZ-1	K2304834-001
PZ-2	K2304834-002
PZ-3	K2304834-003
PZ-4	K2304834-004
PZ-5	K2304834-005
PZ-6	K2304834-006
PZ-7	K2304834-007
PZ-8 (Field Duplicate)	K2304834-008
SW-4	K2304834-009
SW-5	K2304834-010
SW-6	K2304834-011
SW-7	K2304834-012
SW-8	K2304834-013
SW-9	K2304834-014
SW-10 (Field Duplicate)	K2304834-015
CDID Up	K2304834-016
CDID Down	K2304834-017

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- **J.** Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable (the compound may or may not be present) resampling and reanalysis is required if verification is needed

3.0 DATA EVALUATION RESULTS

Seventeen water samples, including two field duplicates, were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic listed in Section 1.0 of this report.

3.1 REPRESENTATIVENESS

3.1.1 Chain Of Custody

The samples arrived at the laboratory above the recommended 4 °C recommended by some of the methods. This was, however, due to the samples being collected not more than 3 hours before arriving at the laboratory. The samples were kept at proper temperature in the laboratory prior to analyses.

3.1.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

The metal samples for SW-4, SW9, and SW-10 required additional acid to get pH<2. The appropriate acid volume was added at the laboratory. No qualifications were made based on this issue.

3.1.3 Review of Narrative

Nothing noted other than described below.

3.1.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks was analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.2 ACCURACY

3.2.1 Surrogate Spike Recoveries

No Surrogate spikes were required.

3.2.2 Matrix Spike And Matrix Spike Duplicate Samples

MS recoveries for fluoride for sample SW-9 was outside of laboratory control criteria because of suspected matrix interference. A MSD was also analyzed, but produced similar results.

3.2.3 Laboratory Control Samples

No LCS were required

3.3 PRECISION

3.3.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples SW-4 and SW-10 were collected as field duplicates and analyzed for all parameters. Water samples PZ-5 and PZ-8 were collected as field duplicates and analyzed for all parameters. For the SW samples, the WAD cyanide analyses had a RPD of 195%, exceeding the project control criterion. For the PZ samples, the total cyanide analyses had a RPD of -108%, exceeding the project control criterion. All duplicate sample results were greater than 5 times the method detection limit.

3.3.2 Laboratory Duplicate Results

The WAD cyanide RPD was well below the specified control limit. However, because the analyte concentration was not significantly greater than the method reporting limit, it will not be qualified for this issue.

3.4 COMPARABILITY

3.4.1 Reporting Limits

No issues found during data review

3.5 REPRESENTATIVENESS

The project completeness goal of 90% was achieved. Completeness was 100%.

4.0 OVERALL ASSESSMENT OF THE DATA

All data except the total cyanide and WAD cyanide data are acceptable and usable without qualification.

For the SW samples, the WAD cyanide analyses had a RPD of 195%, exceeding the project control criterion. All WAD cyanide values will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

For the PZ samples, the total cyanide analyses had a RPD of -108%, exceeding the project control criterion. All total cyanide values for PZ-series samples will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

MS recoveries for fluoride for sample SW-9 was outside of laboratory control criteria because of suspected matrix interference. A MSD was also analyzed, but produced similar results. All SW-Series for fluoride ill be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

DATA QUALITY EVALUATION REPORT

Site Name:

Alcoa RMC Longview

Client:

Alcoa Remediation Management, Inc

Laboratory:

Columbia Analytical Services, Inc.

Kelso, Washington

Lab Service No.

K2307535

Data Evaluator:

MFG, Inc.

MFG Project Number(s):

059741/059868

Report Date:

Ocober 30, 2003

1.0 INTRODUCTION

This memorandum documents the data quality evaluation of data from six water samples, including one filed duplicate, collected on September 30, 2003 at Alcoa RMC Longview site in Longview, Washington.

The samples arrived at Columbia Analytical Services, Inc. (CAS) on September 30, 2003. The samples were analyzed for the following inorganic compounds:

- Total Alkalinity by EPA Method 310.1, Bicarbonate and Carbonate Alkalinity by Standard Methods (SM) 2320B.
- Fluoride, Chloride, and Sulfate by EPA Method 300.0
- Ammonia-nitrogen by EPA Method 350.1
- Total Cyanide by EPA Method 335.4
- Weak-Acid Dissociable Cyanide by SM 4500-CN-I
- Total Calcium, Magnesium, Potassium and Sodium by EPA Method 6010B

Data were evaluated according to MFG's standard operating procedure (MFG 2000) except for the relative percent difference (RPD) criterion for field blanks is 50% or greater for water samples. Data also were reviewed in accordance with CAS precision and accuracy goals. All samples collected were submitted to the lab for analysis of all the aforementioned chemical parameters. These surface water samples and tie MFG and laboratory sample numbers are

MFG Field Sample Identification	Laboratory Sample Identifications
PZ-1	K2307535-001
PZ-2	K2307535-002
PZ-5	K2307535-003
PZ-6	K2307535-004
PZ-7	K2307535-005
PZ-8 (Field duplicate)	K2307535-006

Section 2.0 presents the quality control (QC) criteria evaluated and data qualifiers used. Section 3.0 presents data evaluation findings. Section 3.0 is organized in subsections that correspond to the QC criteria listed in Section 2.0. Criteria having met QC requirements are mentioned only briefly, while criteria with quality problems or needing qualification are discussed in detail. The data package reviewed included only summary forms, as requested, and appeared to be complete.

2.0 QUALITY CONTROL CRITERIA AND DATA QUALIFIERS

The following data qualifiers are used in this data validation report.

- No qualifier. Indicates that the data are acceptable both qualitatively and quantitatively
- U. Indicates that the compound was analyzed for but not detected above the concentration listed; the concentration listed is the sample quantitation limit
- J. Indicates an estimated concentration; the result is considered to be qualitatively acceptable, but quantitatively unreliable
- UJ. Indicates an estimated quantitation limit; the compound was analyzed for, but was considered to be nondetected
- R. The data are unusable (the compound may or may not be present) resampling and reanalysis is required if verification is needed

3.0 DATA EVALUATION RESULTS

Six water samples, including on field duplicate were collected at the Alcoa RMC Longview Site and were analyzed by CAS for the inorganic constituents listed in Section 1.0 of this report.

3.1 REPRESENTATIVENESS

3.1.1 Chain Of Custody

All samples arrived in good condition at the lab in accordance with the chain of custody (COC).

3.1.2 Sample Holding Times And Preservation

All samples for all analyses were extracted and analyzed within holding times, as specified by methods used for the analyses.

3.1.3 Review of Narrative

No anomalies other than those described below.

3.1.4 Field And Laboratory Blank Results

The appropriate number of laboratory blanks was analyzed with each analytical batch for all analyses, and no target compounds were detected. No field blanks were required.

3.2 ACCURACY

3.2.1 Surrogate Spike Recoveries

No surrogate spikes were required.

3.2.2 Matrix Spike And Matrix Spike Duplicate Samples

The control criteria for matrix spike recovery of total cyanide and for sample PZ-1 not applicable. The analyte concentration is greater than 4 times the spike added. This prevents accurate evaluation of spike recovery, however, no qualification is applied to the detected values.

The matrix spike recovery of WAD cyanide for sample PZ-1 was calculated by the laboratory using unrounded values and was within acceptance limits (120%, upper limit is 125%). However if the values are rounded, as reported, the percent recovery is 200%, well outside of control limits.

For PAH analyses, all MS/MSD recoveries and RPDs were within laboratory- and method-specified control limits.

3.2.3 Laboratory Control Samples

For PAH analyses, all LCS recoveries were within laboratory- and method-specified control limits except for naphthalene, acenaphthylene, and acenaphthene.

3.3 PRECISION

3.3.1 Field Duplicate Results

Field duplicates measure both field and laboratory precision and are considered to be indicators of overall precision. Water samples PZ-4 and PZ-8 were collected as field duplicates and analyzed for all parameters. All duplicate RPD were within control limits except for WAD cyanide. This parameter that had a RPD of -200%. The values of the sample and the duplicate were not, however, greater than 5 times the method reporting limit.

3.3.2 Laboratory Duplicate Results

All laboratory duplicate samples were within specified control limits for all analyses.

3.4 COMPARABILITY

3.4.1 Reporting Limits

No issues found during data review

3.5 REPRESENTATIVENESS

The project completeness goal of 90% was achieved. Completeness was 100%.

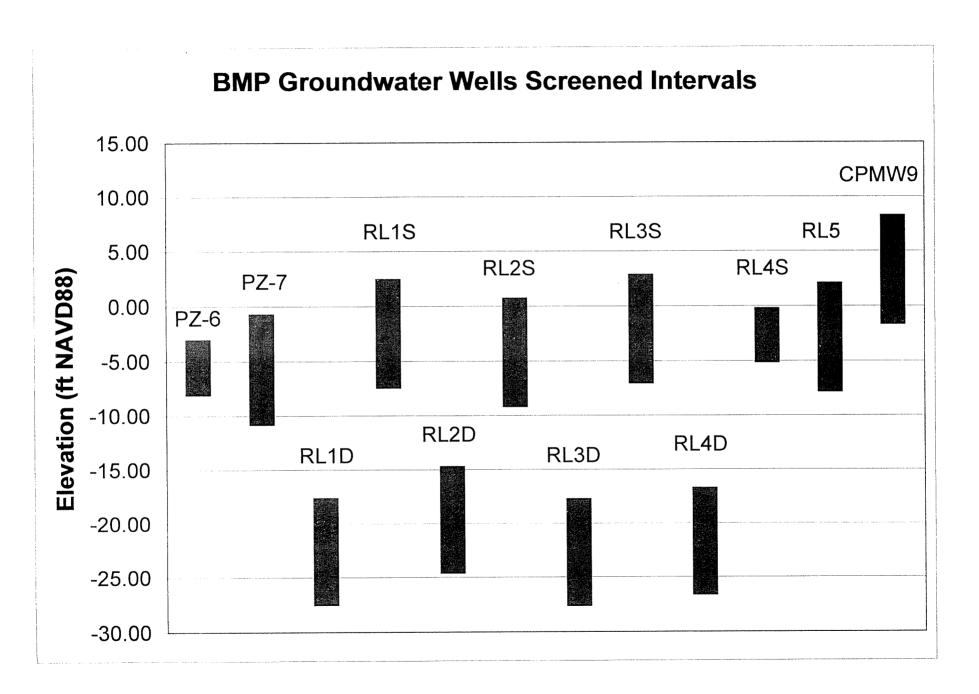
4.0 OVERALL ASSESSMENT OF THE DATA

All data except the WAD cyanide and PAH results are acceptable and usable without qualification.

The matrix spike recovery of WAD cyanide for sample PZ-1 was calculated by the laboratory using unrounded values and was within acceptance limits (120%, upper limit is 125%). However if the values are rounded, as reported, the percent recovery is 200%, well outside of control limits. Results for these compounds for all samples will be will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.

The confirmation criterion of 40% difference was exceeded benzo(b) fluoranthene and phenanthrene in sample RL-2S. These results will be flagged with a "J" qualifier.

LCS recoveries were not within laboratory-specified control limits for naphthalene, acenaphthylene, and acenaphthene. Results for these compounds for all samples will be flagged with a "J" qualifier for detected values and "UJ" for non-detects.


All other PAH results are acceptable and usable without qualification.

REFERENCE

MFG, Inc. 2000. Standard Operating Procedure No. 20, Data Evaluation. Rev. No. 0. August 2000.

APPENDIX C

BORING LOGS AND SCREENED INTERVALS FOR NORTH PLANT WELLS AND PIEZOMETERS

y										
	A TETRA TECH COMPANY 19203 36th Ave. W., Suite 101				LO	G C)F E	BORING P	Z-6	
	Lynnwood, WA 98036-5707 (25) 921-4000 (425) 921-4040								(P	age 1 of 1)
	Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington MFG Project# 059741	Drilling Ager Drill Rig Drilling Meth Sample Meth	hod thod	: CME : Hollo : 1.5"x	cade Dri 85 Tradow Stem (1.5' Spl	ck Rig Auger lit Spoo	r/9" O.	Northing Co	ing Elev. oordinate	: 11/26/02 : N. Morrow : 7.01 ft NAVD88 : 306391.57
-	INFG Project# 059741	Sample Typ	T T	: 2.5 to	oot inter	val	T	Easting Co	ordinate	: 1002978.72
Depth ft bgs	DESCRIPTION		nscs	GRAPHIC	Samples	Blow Count	Recovery (%)	REMARKS	Well: F Elev.:	PZ-6 7.01 ft NAVD88 Cover 2.1 ft (2.6 ft steel)
0-			<u> </u>							
1-	SILTY SAND to SANDY SILT , brown to gorange, few to some clay, moist.	yellowish						Well casing measured from top of casing to top of concrete.		Surface Casing Cement
2-	-yellowish orange to pale brown, very fin	ne to fine				•	**************************************	Located in north plant area north of BMP;		2 ft bgs
3-	sand, some iron oxide mottling, grades to orange to gray with minor iron oxide mott	o yellowish			1	6 4 7	80	between BMP main access road and CDID ditch.		2" SCH 40 PVC Casing
4-						,				3/8" Bentonite Chips
5-	grain size gradually decreases, minor wo	fine sand, ood pieces,				2			▼	4.9 ft bgs
6-	sulfidic odor, very moist to wet.				2	2	90			11/27/02
8-	-very fine to fine sand, slight decrease in odor, wet	ı sulfidic	SM-ML		3	. 3	90			7.5 ft bgs
9-	-increase in fine sand content, wet					19	-			─10x20 Silica Sand
10 1 1 1	-several layers with higher fine sand con	itent, wet			4	4 7	90			2" SCH 40 0.010 Slot PVC Screen
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						5	90			11.9 ft bgs
12 12 13 13 13 13 13 13	•					1				Sump - 12.6 ft bgs
. 14 14 14 14 14 14 14 14	SILTY SAND TO SANDY SILT, brown, ve sand, very moist.	ery fine to fin	ıe ·		5	4	100			
w:059741 Longview/Longview DP1 and P2 Logs 2002/P2-6-BOR	SILT, greenish gray to gray, some to few sand, very moist grades to moist to very r		ML			1				Slough
16 16 17 17 17 17 17 17 17 17 17 17 17 17 17			2		6	3 5	100			40.5.6.5
3 17	Total depth of borehole = 16.5 feet bgs									16.5 ft bgs

	A TETRA TECH COMPANY 19203 36th Ave. W., Suite 101 Lynnwacd, WA 98036-5707 (425) 921-4000 (425) 921-4004	LOG OF BORING PZ-7 (Page 1 of 1)								
	Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington MFG Project# 059741	Drilling Agency : Cascade Drilling, Inc. Drill Rig : CME 85 Track Rig Drilling Method : Hollow Stem Auger/9" O.D Sample Method : 1.5"x1.5' Split Spoon Sample Type : 2.5 foot interval				g er/9" O	Logged By .D. Surface Ele Northing C	Date Completed : 11/26/02 Logged By : N. Morrow		
Depth ft bgs	DESCRIPTION		nscs	GRAPHIC	Samples	Blow Count	Recovery (%)	REMARKS	Well: F	
2-	SILTY SAND, brown, fine to medium san some angular to subangular gravel up to moist. Fill. SAND, yellowish orange, iron oxide mottl to fine sand, few to some silt, moist.	1/2-inch size	, AR			.4		Located in north plant area north of BMP; between BMP main access road and CDID ditch.		Surface Casing Cement
4- 5- 6-	-light brown to light olive gray, slight incressize to fine sand, few to minor medium sain iron oxide mottling, slightly moist to mo	ind, increase			2	15 13 4 3 3	80			2" SCH 40 PVC Casing -3/8" Bentonite Chips -6 ft bgs
8	-grades from very moist to wet to wet to s	saturated	SP		3	4 4 7	90		—	8.4 ft bgs 9.38 ft bgs 11/17/02
11-	-wet to Saturated				4	16 13 7	60			2" SCH 40 0.010 Slot PVC Screen —10x20 Silica Sand
13	-fine sand, few medium sand, sulfidic odd saturated	er, wet to			5	14 15 20	75			12.8 ft bgs 2" PVC Casing 13.4 ft bgs
15	-as above				6	2 3 4	75			2" SCH 40 0.010 Slot PVC Screen
=	-decrease in moisture content very moist	to wet			-					

2

6

SP-ML

100

02-17-2003 w:\059741 Longview\Longview DPT and PZ Logs 2002\PZ-7.BOR

19

20

SILTY SAND to SANDY SILT, very fine sand, few fine sand, dense, moist to very moist.

Total depth of borehole = 19 feet bgs

17.8 ft bgs

18.6 ft bgs

19 ft bgs

Sump

PROJECT Reynolds	Page 1 of 1
Location Southwest of Black Mud Lagoon	Boring No. RL-1 (shallow)
Surface Elevation	Drilling Method Auger
Total Depth 18 ft.	Drilled By Sweet, Edwards & Assoc.
Date Completed6/28/83	Logged By J.E.Edwards

WELL DETAILS	PENE- TRATION TIME/ RATE	DEPTH (FEET)	SA NO.	TYPE	PERME- ABILITY TESTING	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
Coarse Silica Sand Bentonite Seal & Market States States Silica Sand Bentonite Seal & Market States States States FVC Screen & Market States States States Screen & Market States	TIME/ RATE	— 15 — 20	L,		ABILITY	SYMBOL	See Boring Log for RL-1 (deep).	WATER QUALITY 350μs/cm DTW=11.8' 6/28,1200 1050μs/cm DTW=10/7' 6/29,0900
		30						

PROJECTReynolds	Page_1 of 2
Location S.W. black mud lagoon	Boring No. RL-1 (deep)
Surface Elevation	Drilling MethodAuger
Total Depth 39.5	Drilled By _ Sweet, Ldwards & Assoc.
Date Completed 6/29/83	Logged By J.E.Edwards

WELL DETAILS	PENE- TRATION TIME/ RATE	DEPTH (FEET)	S/ NO.	AMPLE TYPE	PERME- ABILITY TESTING	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
		5	1	Split Spoon	1	CL/ML	3'-4.5' Silty Clay, Clay- ey Silt- Grey, mottled red and brown, roots and organics, dry.	Cond.= 459µs/cm @23' Cond.= 1350µs/cm 6/25/83 Time=
ite Seal		10		Split Spoon	8:00am 6/29/83	SP/SM	7' Drop in drill resistance. 8'-9.5' Sand- Grey, very fine, with trace silt, soft, semi-saturated, massive, some roots.	09:00am
Bentonite		15		Split Spoon		SP/SM	13'-14.5' Same as above, no roots.	
5		20	- 44	Split Spoon		SP	18'-19.5' <u>Sand</u> - Grey, fine grained, trace silt, saturated, massive.	
1		25	T I	Split Spoon		ML/CL	23'-24.5' <u>Silt</u> - Grey, trace to some sand, some clay, massive, slightly saturated.	
se Silica Sand		30		Split Spoon		CL	28'-29.5' <u>Clay</u> - Grey, some wood fibers, firm, semi-saturated.	
Coarse		35	7	Split Spoon		SP	33'-34.5' <u>Sand</u> - Grey, fine to medium grained, clean, saturated.	

BORING LOG

PROJECT	REYNOLDS	

Page_2_ of_2_

Boring No. RL-1 (deep)

							ng No	
WELL DETAILS	PENE - TRATION TIME / RATE	DEPTH (FEET)	ļ	MPLE	PERME - ABILITY TESTING	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
5-5-4	HAIE		NO.	TYPE	. 20 . 1 . 1			
		40		Split Spoon		CL	38'-39.5' Clay- Grey, organics, semi-saturated.	
		45						
		50						
		55 .						
		. 60						
		65						-
		70						

PROJECT Reynolds	Page 1 of 1
Location Northwest of Black Mud Lagoon	Boring No. RL-2 (shallow)
Surface Elevation	Drilling Method Auger
Total Depth 17.5 ft.	Drilled By Sweet, Edwards & Assoc.
Date Completed6/29/83	logged By J. F. Edwards

	7	_						
WELL DETAILS	PENE- TRATION TIME/ RATE	DEPTH (FEET)	NO.	TYPE	PERME- ABILITY TESTING	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
nite Seal					·			Cond.= 450µs/cm 6/29/83 Time-1200
	ca Sand	5					See Boring Log for RL-2 (deep).	Cond.= 1,300 .µs/cm 6/29/83
Heave		10					·	(
Natural		15						
		20						
·		25						
		30					·	**************************************
		35						

PROJECT Reynolds	Page_1 of_1
Location Northwest of Black Mud Lagoon	Boring No. RL-2 (deep)
Surface Elevation	Drilling Method Auger
Total Depth 34.5 ft.	Drilled By Sweet, Edwards & Assoc.
Date Completed 6/30/83	Logged By J.E. Edwards

WELL DETAILS	PENE- TRATION TIME/	DEPTH (FEET)	S	AMPLE	PERME-	SYMBOL	LITHOLOGIC DESCRIPTION	WATER
<u> </u>	RATE	(1221)	NO.	TYPE	TESTING		LIMOLOGIO BESCHIP HON	QUALITY
		5	1	Split Spoon		· SP	3'-4.5' Sand- Grey to rust, fine to medium grained, clean, dry, roots.	Cond.= 5600µs/cm 6/29/84 Time-1700
Bentonite Seal 80 PVC Casing		10	2	Split Spoon		SP	8'-9.5' <u>Sand</u> - Grey, medium grained, clean, saturated.	
Ber 2" Sch. 6		15	3	Split Spoon		ML/SM	13'-14.5' Sandy Silt, Silty Sand- Grey, sand-very fine grained, soft, semi-saturated.	
		20	4	Split Spoon		SM/SC	18'-19.5' Sand- Grey, fine grained with some silt and clay, soft, semi-saturated.	
tural Heave	·	25	5	Split Spoon		SP and SM/ML	23'-24.5' Sand and Silt- Interbedded, clean, medium grained sand or silty sand, saturated, chemical odor.	
Nat		30	6	Split Spoon		SP	28'-29.5' Sand- Medium grained, clean, loose, saturated.	
0.0		35	7	Split Spoon		SP/ML	33'-34.5' Sand and Silt- Grcy, interbedded, medium grained, clean sand.	

PROJECT REYNOLDS	Page_t of 1
Location	Boring No. RL-3 (shallow)
Surface Elevation	Drilling Method Auger
Total Depth 17.5 ft.	Drilled BySweet, Edwards & Ass.,
Date Completed 6/30/83	Logged By _J.J.Maul

WELL DETAILS	PENE- TRATION TIME/	DEPTH (FEET)	SA	MPLE	PERME- ABILITY	SYMBOL	LITHOLOGIC DESCRIPTION	WAIFR
<u> </u>	RATE	,	NO.	TYPE	TESTING			MINITY
Bentonite Seal Seal Sech. 80 PVC casir							See Boring Log for RL3 (deep).	
Sand Backfill Slotted PVC Screen								
0.010"								

PROJECT Reynolds	Page 1 of 2
Location	Boring No. RL-3 (deep)
Surface Elevation	Drilling Method
Total Depth 39 ft.	Drilled By Sweet, Edwards & Assoc.
Date Completed 6/30/83	Logged By J.J.Maul

wi	ELL DETAILS	PENE- TRATION TIME/ RATE	DEPTH (FEET)	S/	TYPE	PERME- ABILITY TESTING	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
			5						Cond.= 680 s/cm 6/30/83 Time- 1937
ite Seal	Casing		10	1	Split Spoon		SM	7.5'-9' Silty Sand- Tan to grey, medium to fine greined, saturated, hard push.	
Benton	Sch. 80 PVC		15	2	Split Spoon		SP	13.5'-14' <u>Sand</u> - Grey, med- ium to fine grained, clean saturated.	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		20	3	Split Spoon	1	ML	17.5'-19' Clayey Silt- Grey, medium plasticity, soft, trace sand organic.	
	Screen		25	4	Split Spoon		ML	23.5'-24' Clayey Silt- As above, stiff, non-plastic, 10 ft. heave.	
al Heave	tted PVC		30	5	Split Spoon		SP	27.5'-29' Sand- Grey, medium to fine grained, clean.	
Natura].	0.010"		35	6	Split Spoon				

BORING LOG

PROJECT ____Reynolds

Page_2 of_2

Boring No. RL-3 (deep)

	PENE -							
WELL DETAILS	TRATION TIME/ RATE	DEPTH (FEET)		TYPE	PERME- ABILITY TESTING	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
		40	7	Split Spoon			37.5'-39' Clayey Silt- Grey, plastic, highly organic.	
		45				•		
		50					·	(
·		55						
		. 60						
·		65						
		70						

P	ROJECT	Rev	nolds				Page.	1 of 1
Location _	· · · · · · · · · · · · · · · · · · ·				Bori	ng No.	RL-4 (shallow)	
Surface El	evation	l			Drilling Method Auger			
Total Dept	h13.5	ft.			Drilled By Sweet, Edwards & Assoc.			
Date Comp	leted_	9/30	/83				J.J.Maul	
WELL DETAILS	PENE- TRATION TIME/ RATE	DEPTH (FEET)	SAMPLE	PERME- ABILITY TESTING	SYMBOL	LITH	OLOGIC DESCRIPTION	WATER QUALITY

	WELL DETAILS	INATION DEFIN		PERME- ABILITY	SYMBOL	LITHOLOGIC DESCRIPTION	WATER		
	2:01 15:5	TIME/ RATE	(FEET)	NO.	TYPE	TESTING	,	Extracted SESCITE HON	QUALITY
1	Gravel Pack Seal Seal Seal Seal Seal Seal Seal Seal				·			See Boring Log for RL-4 (deep).	
	0.010" Slotted PVC Screen		-						

ST.

PROJECT Reynolds	Page 1 of 1
Location	
Surface Elevation	Drilling Method _Auger
Total Depth 35 ft.	
Date Completed 9/30/83	Logged By J.J.Maul

WELL DETAILS	PENE- TRATION	DEPTH	S	AMPLE	PERME- ABILITY	SYMBOL	LITHOLOGIC DESCRIPTION	WATER
	TIME/ RATE	(FEET)	NO.	TYPE	TESTING	G T WISOL	ETHOLOGIC DESCRIPTION	QUALITY
		5	1	SS		ML	3.5'-5' Clayey Silt- Grey, soft, roots, slightly plastic.	
ite Seal PVC Casing		10	2	ss		ML	8.5'-10' <u>Silty Clay</u> - Grey- blue, soft.	
Bentoni 2" Sch. 80		15	3	SS		MI.	13.5'-15' Silty Clay- Grey some silty sand at end of spoon.	-
		20 -	4	SS		ML	18.5'-20' Silt- Grey, organics (roots, wood), trace very fine sand, some sandy lenses.	
Pack		25	5	SS		ML	23.5'-25' clayey Silt- Greyish green, organics, trace sands at end of spoon.	-
Cravel Pa		30	6	SS		l'IL	28.5'-30' Sandy Silt- Grey some very fine mica sand, massive.	
		35	7	ES		ML	33.1'-25' <u>Sandy Sili</u> - Came as above.	

PROJECT REYNOLDS BLACK MUD LA	AGOON Page 1 of 2
Location NE corner of lagoon	Boring No. RL-5
Surface Elevation Top of PVC = 13.65 ft.	Drilling Method Hollow Stem Auger
Total Depth	Drilled By _Sweet, Edwards & Assoc.
Date Completed 7/20/84	Logged By D.Dykes/J.Maul
-	

WELL DETAILS	PENE- TRATION TIME/	DEPTH (FEET)	SA	MPLE	PERME- ABILITY	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
	RATE	(, ,	NO.	TYPE	TESTING			GUALITI
Bentonite Powder M. 80 PVC riser M. 80 PVC riser M. 80 PVC riser M. 80 PVC riser		. [:] 5					0'-5' Fill 8'-9.5' Silt- Grey to tan mottling with some red staining, some clay and very fine sand, roots,	
12. Sch.		10					cohesive, unsaturated. (ML) 10.5'-12' Silt- Tan to grey, mottled, some orga- nics stained red; Grey, fine to very fine sand in tip of spoon (saturated). (ML)	,
Gravel Pack		15					13.5'-15' Silty Sand- Grey fine to very fine sand, saturated. (SM) 15.5'-17' Sand- Grey, massive, fine to very fine sand, trace silt, satu-	EC = 450 micro- mhos/cm
Pea 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20		20					rated. (SM) 18.5'-20' Silty Sand- Grey fine to very fine sand, saturated. (SM) 20.5'-22' Sand- Grey, massive, some buried organics	
2" Sch. 80 F		25					very fine to fine sand, saturated. (SM)	
		30			1.33		28.5'-30' Silty Clay- Grey organics. (CL)	-
		35			32.6		33.5'-35' <u>silty Clay</u> - Same as above. (CL)	

BORING LOG

PROJECT REYNOLDS BLACK MUD LAGOON

Page 2 of 2

Boring No. RL-5

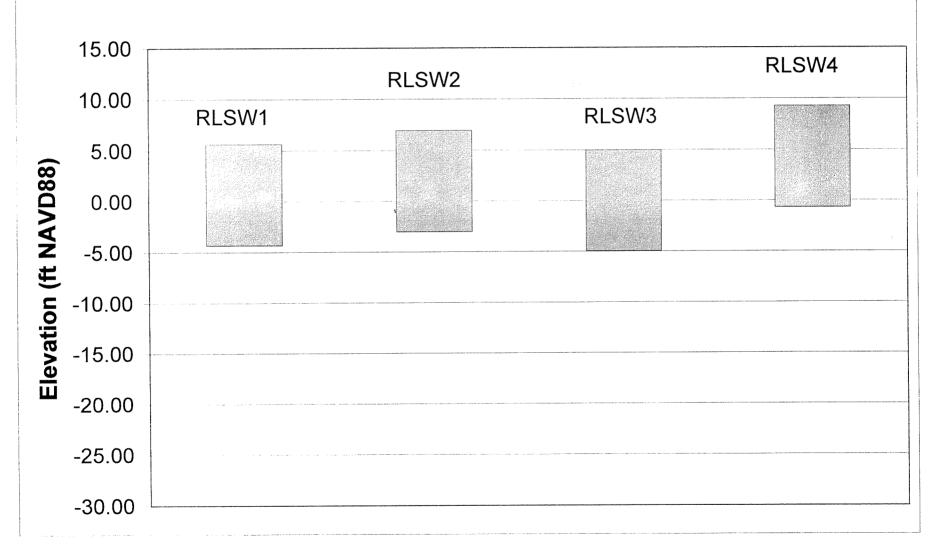
WELL DETAILS TRATION TIME/ RATE DEPTH TESTING TESTING SYMBOL LITHOLOGIC DESCRIPTION Sample Permetal Ration Time/ RATE Depth Testing Symbol Lithologic Description	WATER QUALITY
ATE NO. TYPE TESTING 38.5'-40' Silty Clay- Same as above. (CL) 7/19/84 First borehole to 40' abandoned with bentonite slurry tremied from bottom of hole to surface. 7/20/84	
7/19/84 First borehole to 40' abandoned with bentonite slurry tremied from bottom of hole to surface. 7/20/84	
First borehole to 40' abandoned with bentonite slurry tremied from bottom of hole to surface. 7/20/84	
powder 12 to 0 feet. Moved over 5 ft. and installed RL-5. Drilled to 22 ft.	(
7/19/84 Depth to water - 11.5 ft., with hole to 40 ft.	
60	
65	
70	

PACIFIC NORTHERN GEOSCIENCE

Monitoring Well Geologic & Construction Log

REYNOLDS CABLE PLANT PRELIMINARY HYDROGEOLOGIC ASSESSMENT 4393 INDUSTRIAL WAY LONGVIEW WASHINGTON

FIGURE A-8


Project Number 9333114

> Well Number MW-9

Sheet 1 of 1

Elevation (Top of Well Casing): Water Level Elev:			ST ~	ST — Sampler Type: Lab Tests:			Logged By: RAL					
Drilling Contractor: CASCADE DRILLING Drilling Method: HSA, 140 lb.—30" DROP W/D&M 2" SAMPLER			1	2" OD Split Spoon S - Soil Properties			Approved By: RAL					
		ation: NA			Bulk Grab Sample	C - Chemical Pro						
Start Finish	Date: . Date: .		rt Time: 10:50 sh Time: 11:45	2	Drive Borrel	¥ Water Level	At Time C	Of Dri	illing (A	(TD))	
Depth In Feet		Well Construction			Description			epth In eet	Lab Tests	S	Blows Per 6"	OVA Readi (PPA
-		Locking water tight, flush mounted monument concrete seal	Asphalt 3" 2" Sandy grav	vel blo	anket .	,						
		Bentonite Seal	SAND, brown, r	mediu	ım—grained, medi	um dense	-				13	0
-		2" ID Sch. 40 PVC Threaded Well Caseing	Grades to SILT: at 6.0'					-			14 15	
- 5		Ş _{ATD}	SILT, gray, sti slight organic	iff, tr odor	ace sand, trace of significant	organics,	_		С		6 11 15	0
		2" ID Sch. 40 PVC	—SAND: at an SAND: gray, t loose, mottled	orown	, fine-medium gr	ain,					3 4 5	
-10		Threaded Weil Screen— .020 Slot	—Grades Less	s Silty	, '		- 1	10:	.		3	
		10/20 Silica Sand Filter Pack	SILT: gray, fir	rm, tr	race sand, trace	organics, wet.	-				4 5	
- - 15		3" PVC Threaded End Plug					1	15			7	1
15		·	Bottom of bo 2" .020 scree	ring en, 4	at 14', 10' schedu blank PVC.	ile 40 PVC .	_					
ľ												

Old Industrial Landfill Groundwater Wells Screened Intervals

Sweet, Edwards & Associates, Inc.

BORING LOG

PROJECT REYNOLDS SOLID WASTE P	ILE INVESTIGATION Pa	ge_1_ of_1
Location N.E. of landfill	Boring No. RLSW-1	
Surface Elevation	Drilling Method Hollow Ste	
Total Depth 20 feet	Drilled By Sweet, Edwards a	
Date Completed5/6/85	Logged By J. Maul	

	WELL DETAILS	PENE- TRATION TIME/ RATE	DEPTH (FEET)	SA NO.	TYPE	PERME- ABILITY TESTING	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
	XXXXI XXXX		10		111.2				
	5" Sch. 80 PVC	nite Powder _	- 5 	1	SS			3.5-5.5' <u>SILT</u> , gray totan, mottled, organic. ML	·
Bentonite Pellets	1.5	Sand — Bentoni	- 10	2	SS			8.5-10.0' SANDY SILT, gray to tan, very fine sand. Sharp contact in bottom 0.25' of spoon with gray fine sand, clean, saturated ML/SP	·
Ben	12.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	8 Monteray S	- 15	3	SS			13.5-15.0' SILTY SAND, gray, fine to very fine sand, trace of silt, saturated. SM	
	Screen -	Number	- 20	4	ss			18.5-20.0' SAND, same as above, except slightly coarser and cleaner. SP	
	0.010" Slot Sc	·	- 25			·			
		-							
L								•	

BORING LOG

Sweet, Edwards & Associates, Inc.

PROJECT REYNOLDS SOLID WASTE PILE INVESTIGATION

Page 1 of ____

Location North of landfill

Boring No. RLSW-2

Surface Elevation Drilling Method Hollow Stem Auger

Total Depth 18.5 feet

Drilled By Sweet, Edwards and Assoc., Inc.

Logged By J. Maul

	WELL DETAILS TRATIC TIME RATE		·						
	WELL DETAILS	PENE- TRATION TIME/	DEPTH (FEET)	s	AMPLE	PERME- ABILITY	SYMBOL	LITHOLOGIC DESCRIPTION	WATER
		RATE		NO.	TYPE	TESTING			QUALITY
Bentonite Powder	1.5" Sch. 80	Number 8 Monterey Sand—	- 5 - 10	3	SS			3.5-5.0' SILTY SAND/SILT, brown to black, appears to be road fill containing some black mud. 8.5-10.0' SILT, grayish green, some orange streaks core is layered with black carbon laminae with some organics. Sharp contact in lower 0.25' of spoon with clean gray fine to very fine sand, saturated. ML/SP 13.5-15.0' SAND, gray, fine to very fine in bottom of spoon grading upward to medium to fine sand, minor ants of wood fragments, clean, saturated. SP	

Sweet, Edwards & Associates, Inc.

BORING LOG

PROJECT REYNOLDS SOLID WASTE PILE INVESTIGATION Page 1 of 1

Location N.W. of landfill Boring No. RLSW-3

Surface Elevation Drilling Method Hollow Stem Auger

Total Depth 20 feet Drilled By Sweet, Edwards and Assoc., Inc.

Date Completed 5/8/85 Logged By J. Maul

,	Date Comp	neteu _	3/3/3				Log	ged By J. Maul	
	WELL DETAILS	PENE- TRATION TIME/ RATE	DEPTH (FEET)	NO.	TYPE	PERME- ABILITY TESTING	SYMBOL	LITHOLOGIC DESCRIPTION	WATER QUALITY
	X		Ö						
	Sch. 80 PVC	Powder	- 5	1	SS			3.5-5.0' SANDY SILT, brown, medium to fine sand, some organics. ML	
Pellets —	1.5"	Bentonite	1 1	2	SS			8.5-10.0' SILTY CLAY, CLAYEY SILT, gray, inter- layered with abundant	
Bentonite		cey Sand —	- 10	3	ss		5.502.55	organics, saturated. ML/CL 13.5-15.0' SILTY SAND,	
		er 8 Monterey	- 15 	3	55			green, fine to medium sand, some organics, saturated. SM	
	Scree	Number	- - 20	4	SS			18.5-20.0' SILT, green, cohesive, some organics, saturated. ML	
	0.010" slot	·	-						
	.0		_						
			-						
L							•		

Sweet, Edwards & Associates, Inc.

BORING LOG

PROJECT REYNOLDS SOLID WASTE PILE INVESTIGATION Page 1 of ______

Location South of landfill Boring No. RLSW-4

Surface Elevation Drilling Method Hollow Stem Auger

Total Depth 28.5 feet Drilled By Sweet, Edwards and Assoc., Inc.

Date Completed 5/20/85 Logged By J. Maul

								gged By Maul	
WELL DETA	ILS	PENE- TRATION TIME/	DEPTH (FEET)	S	AMPLE	PERME- ABILITY	SYMBO	L LITHOLOGIC DESCRIPTION W	'ATER
****	000	RATE		NO.	TYPE	TESTING		Q	JALITY
2		entonite Powder	5	1	SS			3.5-5.0' SANDY SILT, gray some white fibrous material, slight odor, some perched water. ML	
1.5" Sch. 80 PVC		L Ben	- 10	2	SS			8.5-10.0' SILTY CLAY, gray, some medium fine sand and pea gravel, lenses moist to saturated Unsaturated medium to fine brown sand in tip of spoon.	Communication of the Communica
* :::			- 15	3	ss			13.5-15.0' SAND, gray to light brown, some layer of coarse sand, moist. SP	
		ey sand	20	4	ss			18.5-20.0' SAND, gray, medium to fine grained, saturated. SP	
0.010" slot Screen	Maradaria Notation		25	5	SS			23.5-24.0' SAND, SILT, SILTY SAND, gray, some wood fragments. SP/ML 24.0-25.0' CLAYEY SILT, SILTY CLAY, gray, cohesive some wood fragments at contact with above, saturated. ML/CL	
0.0							• •		

PACIFIC NORTHERN GEOSCIENCE

Water Level Élev:

20

Elevation (Top of Well Casing):

Monitoring Well Geologic & Construction Log

REYNOLDS CABLE PLANT PRELIMINARY HYDROGEOLOGIC ASSESSMENT 4393 INDUSTRIAL WAY LONGVIEW WASHINGTON

FIGURE A-8

Lab Tests:

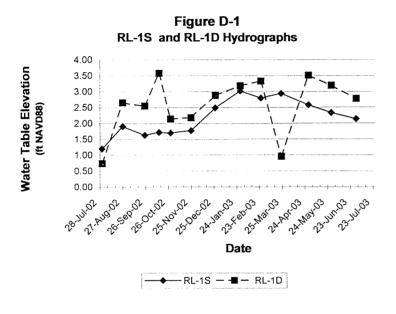
ST - Sampler Type:

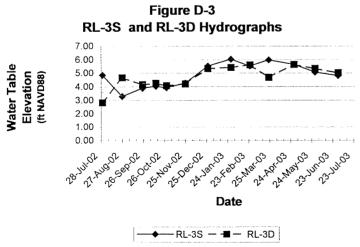
Project Number 9333114

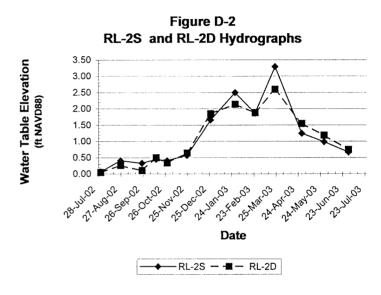
> Well Number MW-9

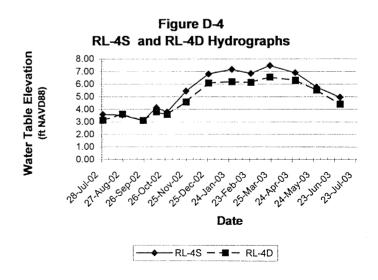
Sheet 1 of 1

Logged By: RAL

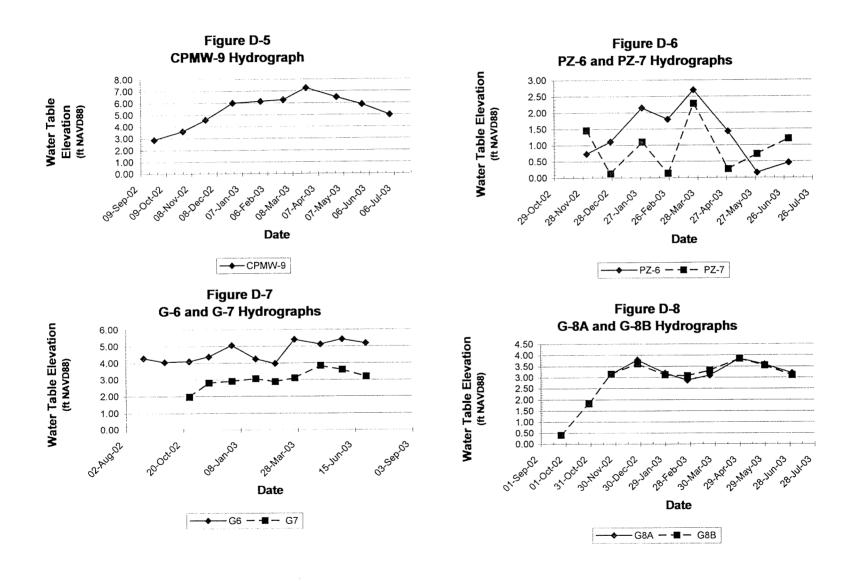

_20

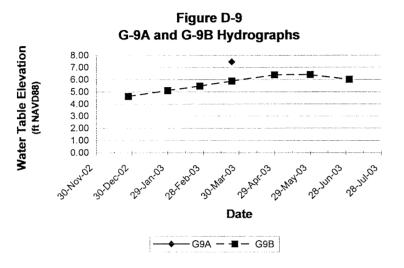

5	Orillin Surfa Start	g Meti ce Ele Date:	W/D&M 2" SAMPL vation: NA 3/2/93 Sta	DROP ER	ROP 1 2 00 Split Spoon S - Soil Properties Approved Bulk Grab Sample C - Chemical Properties Time: 10:50 Drive Barrel										
ł	epth In eet		Well Construction		Description										
			Locking water tight, flush mounted monument concrete seal	Asphalt 3" 2' Sandy gravel	blanket	,				(РРМ					
-	-		Bentonite Seal	SAND, brown, me	edium—grained, mediu	m dense	-		13	0					
			2" ID Sch. 40 PVC Threaded Well Coseing	—Grades to SIL	T: at 6.0'		_		14						
 - :	5		¥ ATD	SILT, gray, stiff, slight organic o	, trace sand, trace of dor, slightly moist	rganics,	5 <u>⊊</u>	С	6 11 15	0					
_			2" ID Sch. 40 PVC Threaded Well Screen— .020 Slot	—SAND: at app SAND: gray, bro loose, mottled, —Grades Less S	own, fine—medium gra wet	in,	-		3 4 5						
- 1 - -	10		10/20 Silica Sand Filter				- 10 -								
-	u .		3" PVC Threaded End Plug	SILT: gray, firm,	, trace sand, trace or	rganics, wet.	-		4 5 7						
	o			Bottom of borin 2" .020 screen,	ng at 14', 10' schedule 4' blank PVC	= 40 PVC _;	- 15								
						•	-								

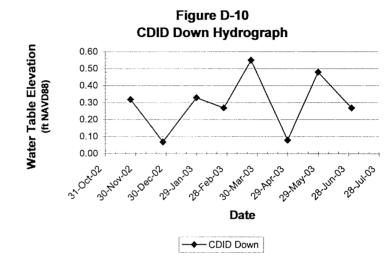

APPENDIX D

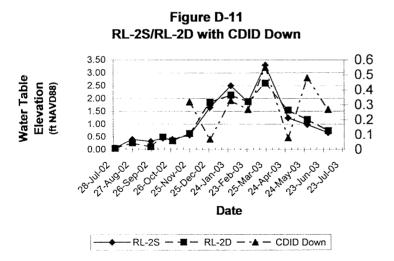

HYDROGRAPHS FOR BMP AREA WELLS, PIEZOMETERS, SURFACE WATER-GROUNDWATER PAIRS, AND SURFACE WATER BENCHMARKS

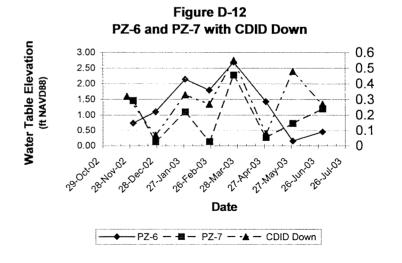
Black Mud Pond Area Hydrographs Former RMC Longview Longview, Washington



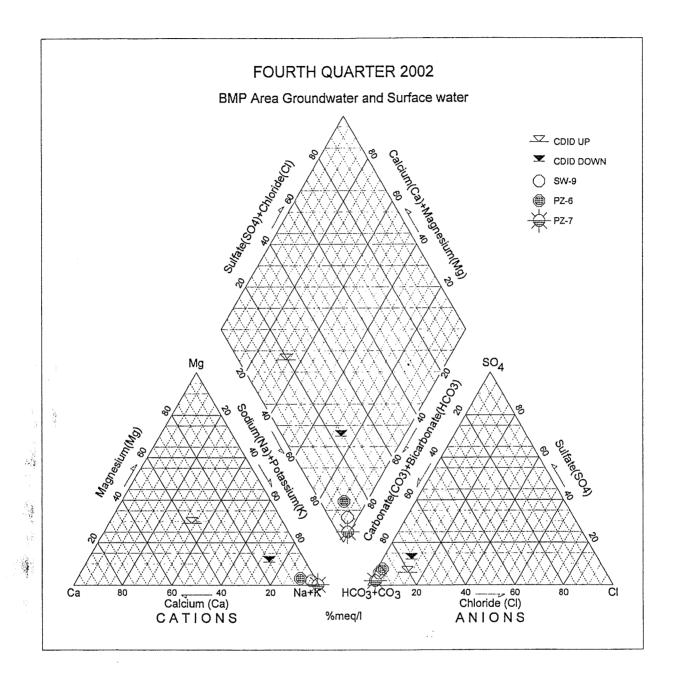




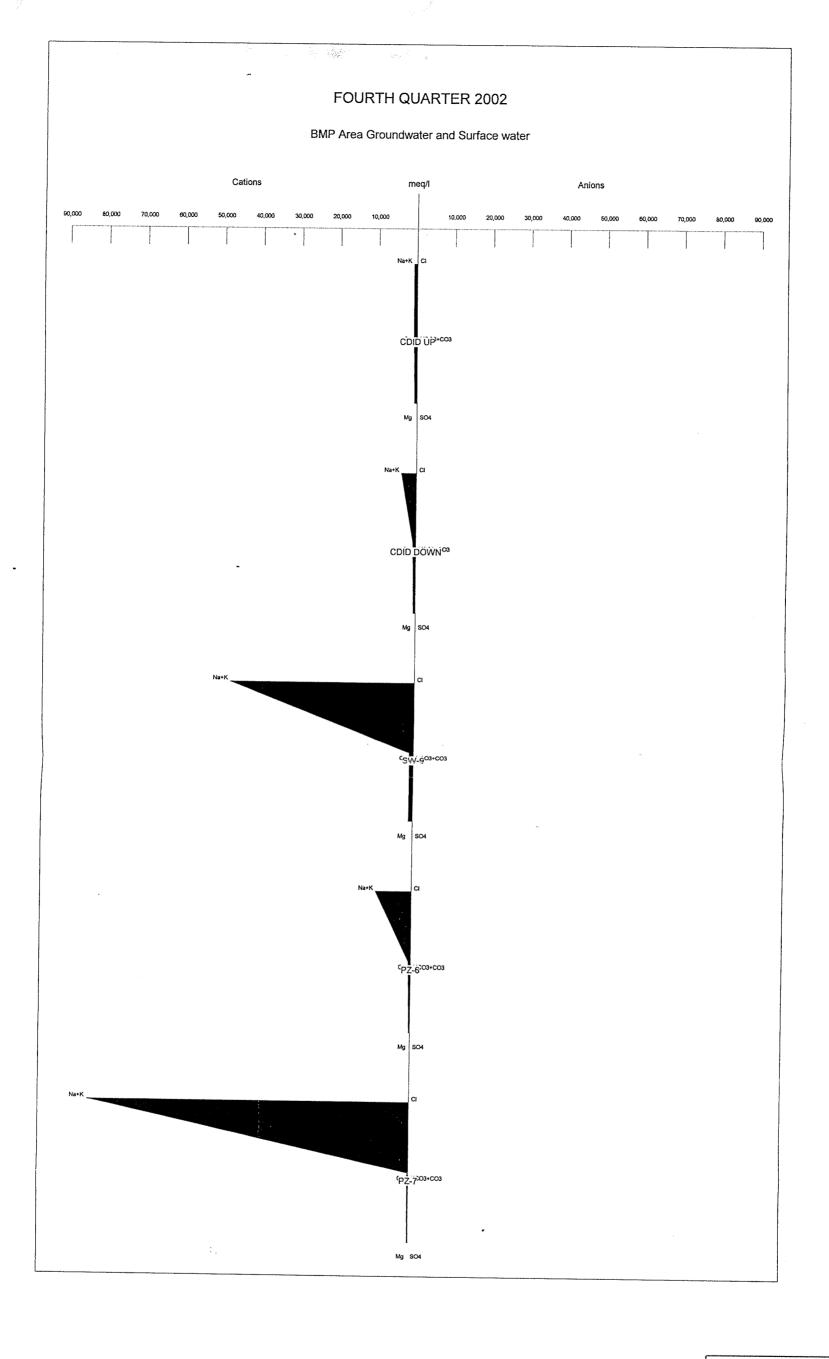

Black Mud Pond Area Hydrographs Former RMC Longview Longview, Washington



Black Mud Pond Area Hydrographs Former RMC Longview Longview, Washington



APPENDIX E TRILINEAR AND STIFF DIAGRAMS


TRILINEAR DIAGRAM FOURTH QUARTER 2002 BMP AREA

ALCOA RMC Longview, Washington

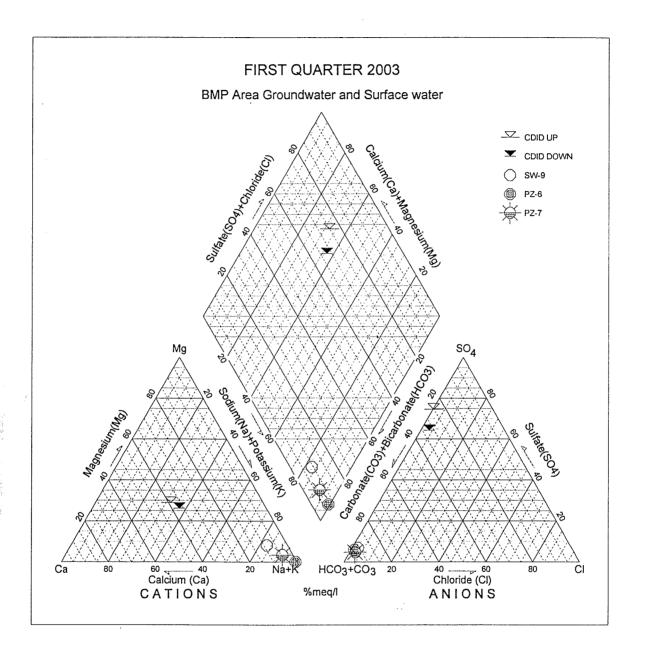
Project No. 059868 By: J. Triolo

Date: 10/13/03 Checked: C. Spill

MFG, Inc. consulting scientists and engineers

TRILINEAR DIAGRAM FOURTH QUARTER 2002 BMP AREA

ALCOA RMC Longview, Washington


059868.3 By: J. Triolo

Date: 10/13/03

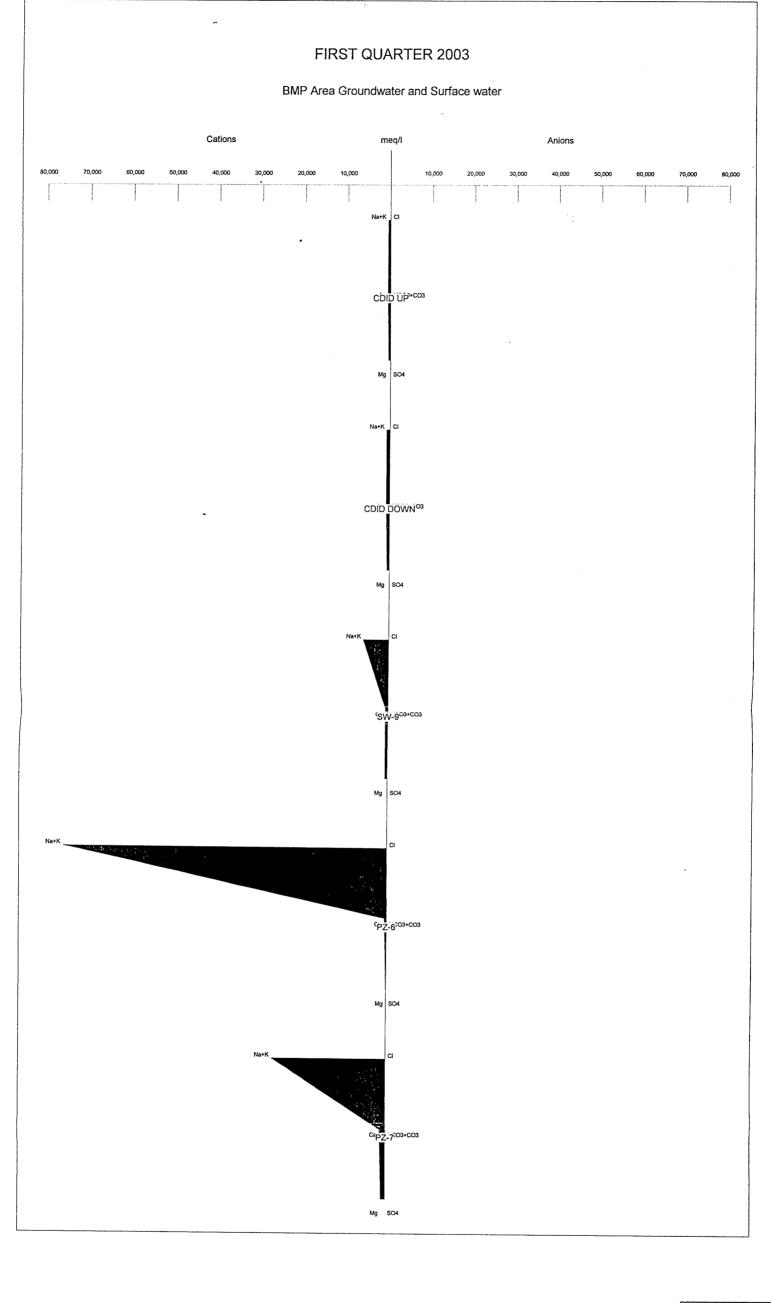
MFG, Inc.

Checked:

consulting scientists and engineers

TRILINEAR DIAGRAM FIRST QUARTER 2003 BMP AREA

ALCOA RMC Longview, Washington


Project No. 059868 B

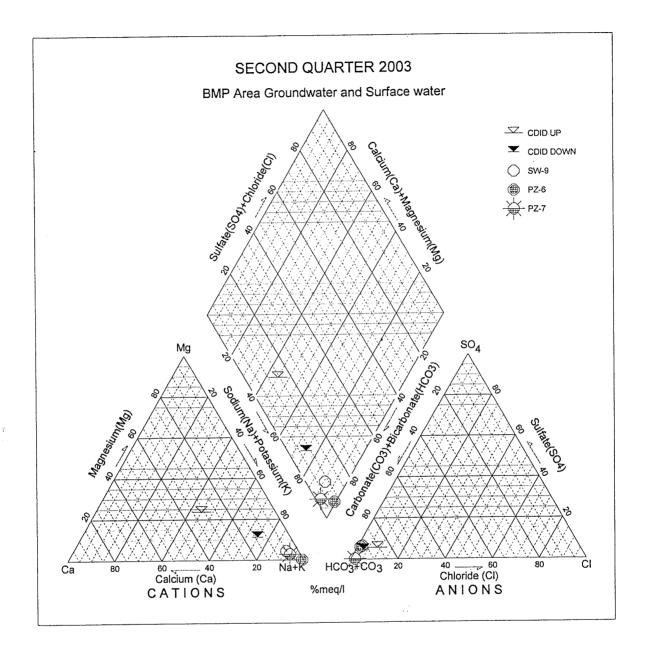
By: J. Triolo

Date: 10/13/03

Checked: C. Spill

MFG, Inc. consulting scientists and engineers

TO THE INC.


TRILINEAR DIAGRAM FIRST QUARTER 2003 BMP AREA

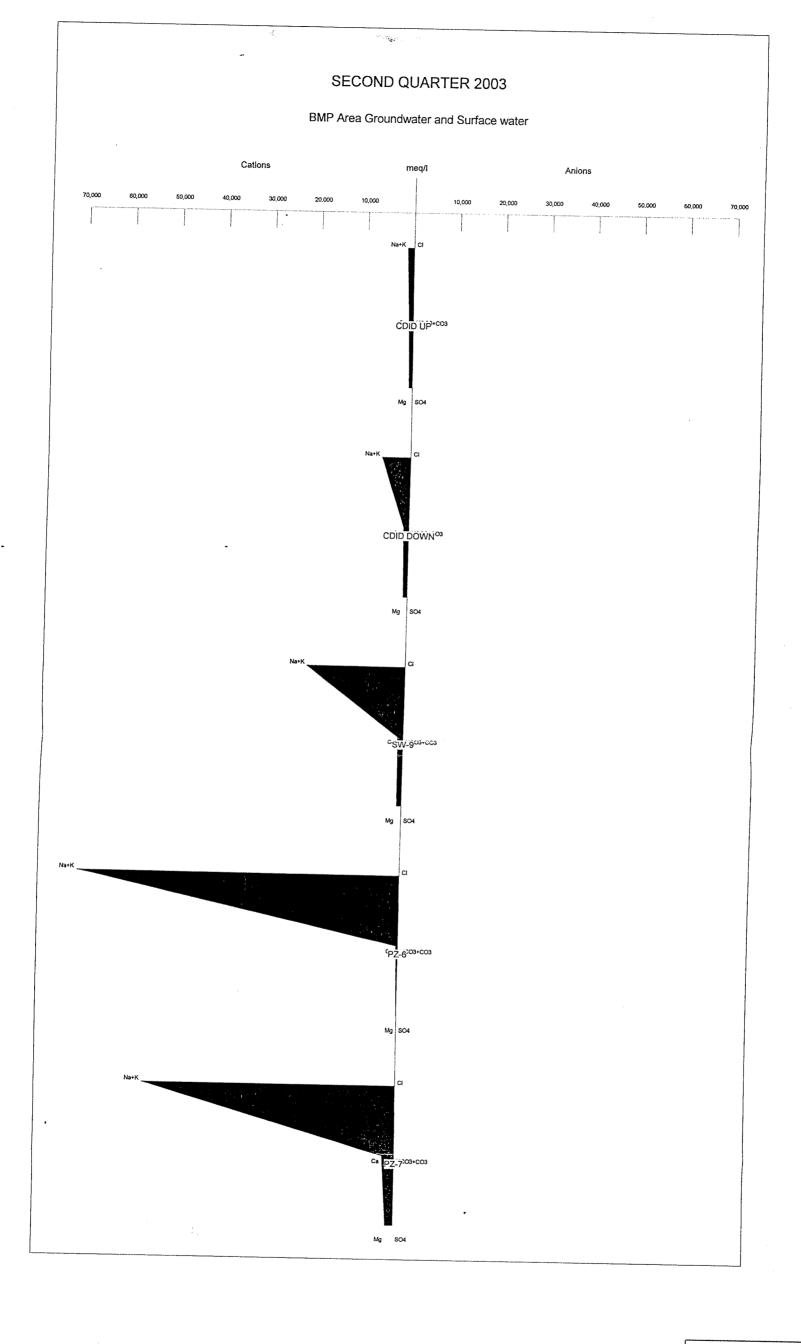
ALCOA RMC Longview, Washington

059868.3 By: J. Triolo

Date: 10/13/03 Checked:

consulting scientists and engineers

TRILINEAR DIAGRAM SECOND QUARTER 2003 BMP AREA

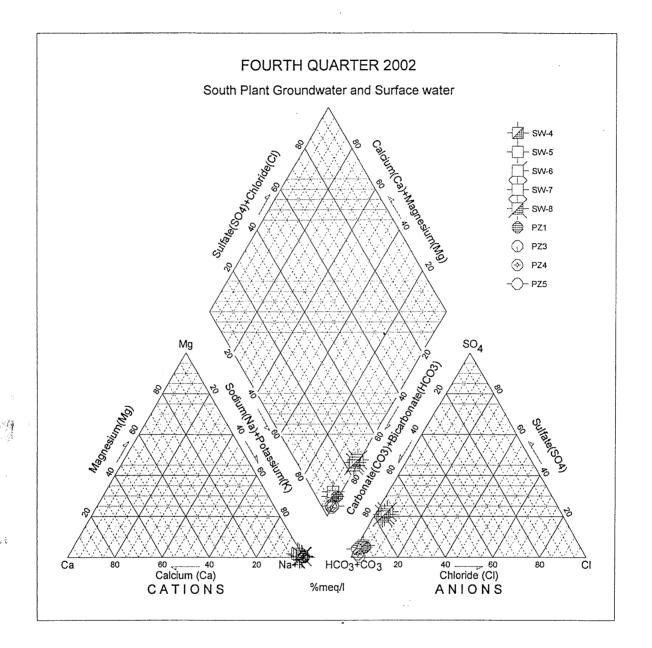

ALCOA RMC Longview, Washington

Project No. 059868 By: J. Triolo

Date: 10/13/03

Checked: C. Spill

MFG, Incconsulting scientists and engineers


TRILINEAR DIAGRAM SECOND QUARTER 2003 BMP AREA

ALCOA RMC Longview, Washington

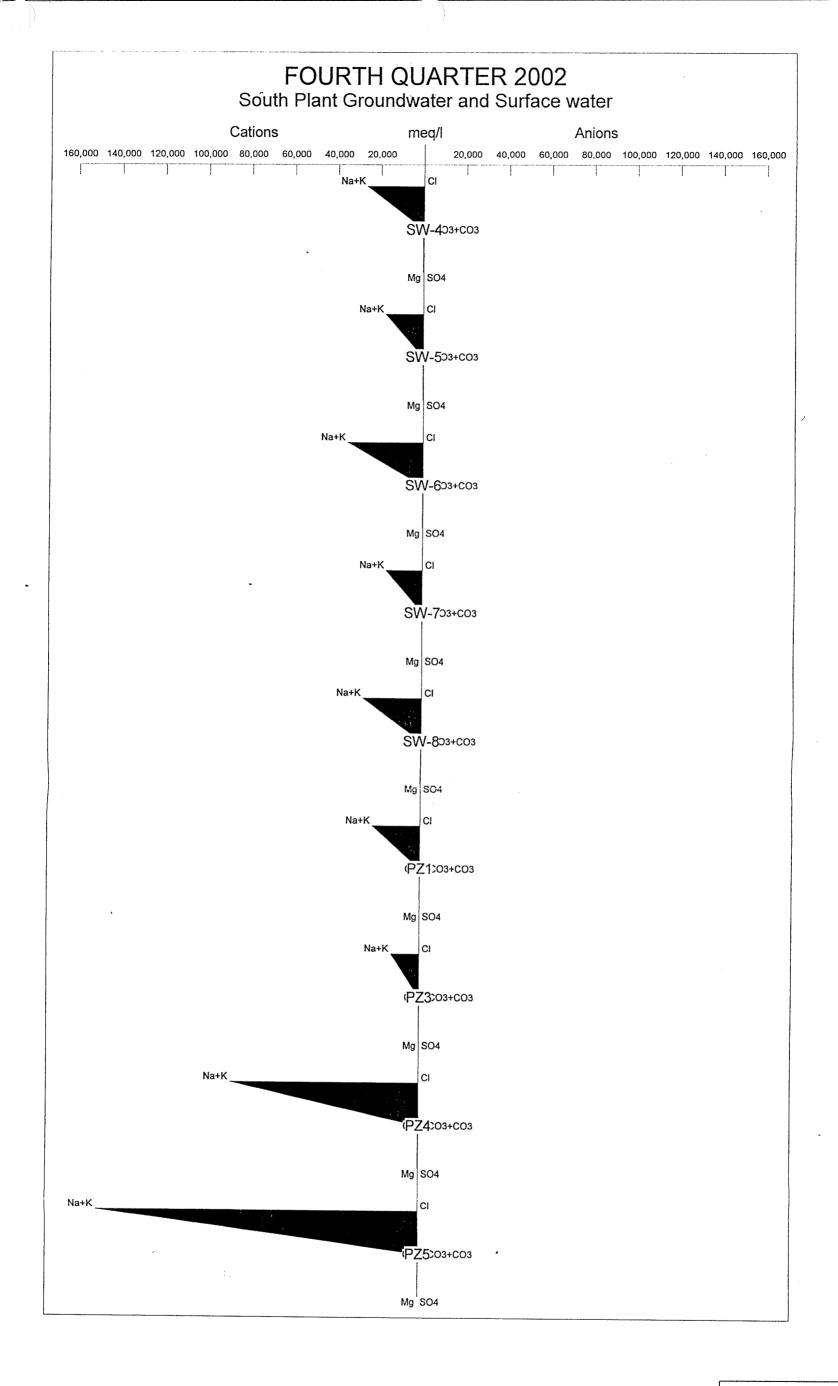
059868.3 By: J. Triolo

Date: 10/13/03 Checked:

consulting scientists and engineers

TRILINEAR DIAGRAM FOURTH QUARTER 2002 SOUTH PLANT AREA

ALCOA RMC Longview, Washington

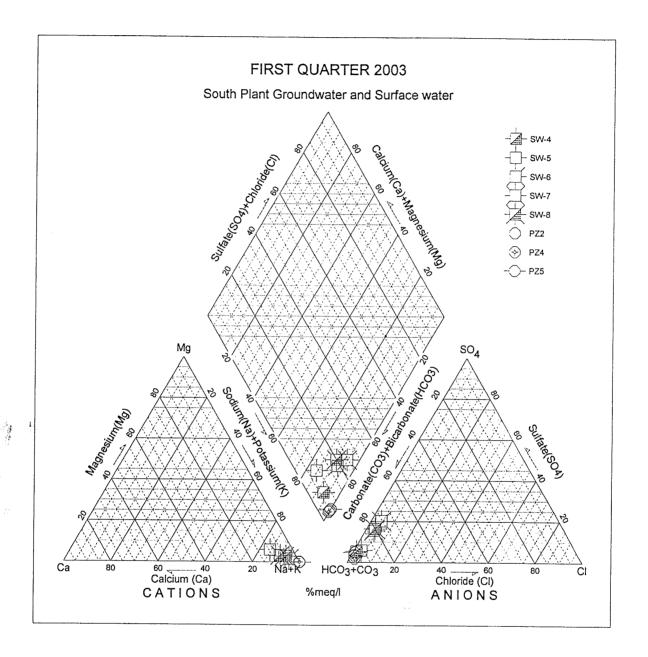

Project No. 059868

By: J. Triolo

Date: 10/13/03

Checked: C. Spill

MFG, Inc. consulting scientists and engineers



TRILINEAR DIAGRAMS FOURTH QUARTER 2002 SOUTH PLANT AREA

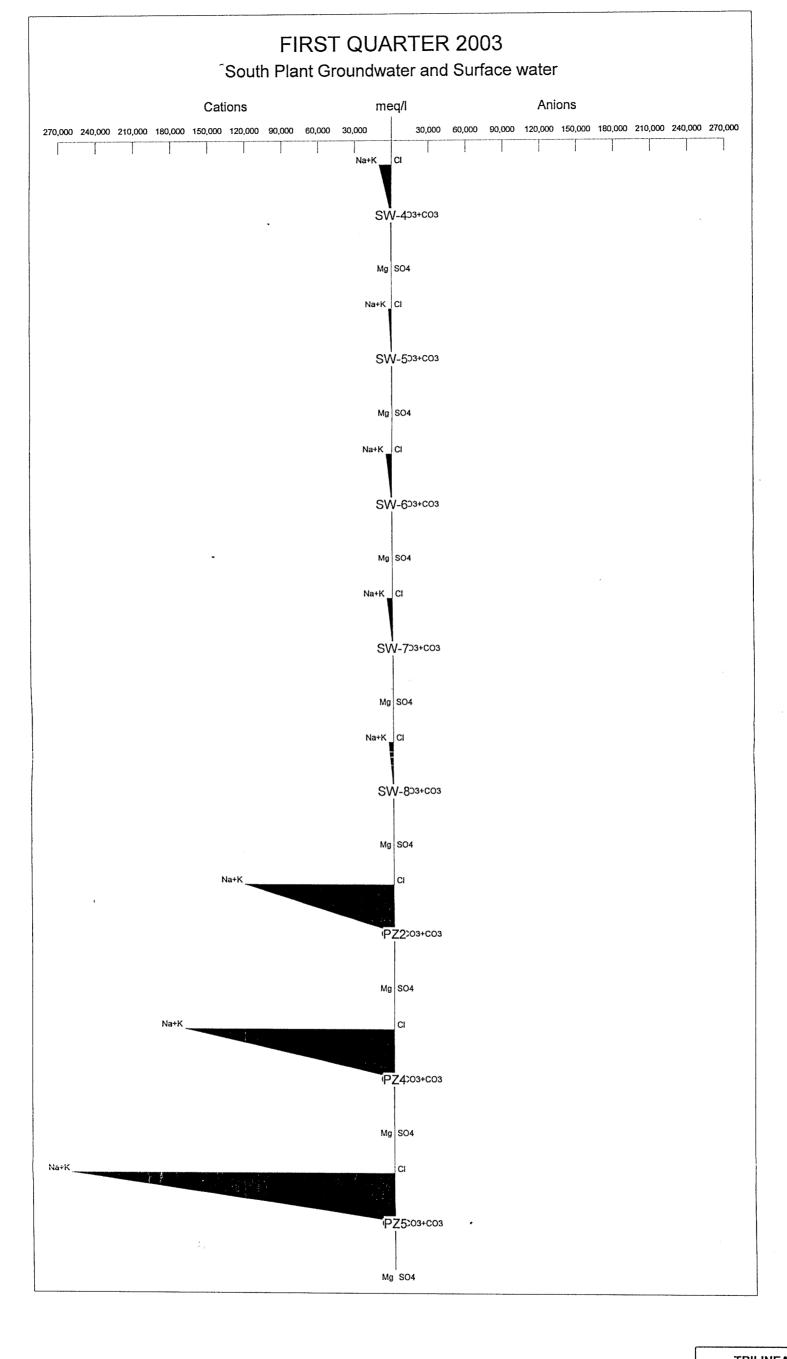
ALCOA RMC Longview, Washington

Project No. 059868.3	By: J. Triolo
Date: 10/13/03	Checked:

consulting scientists and engineers

TRILINEAR DIAGRAM FIRST QUARTER 2003 SOUTH PLANT AREA

ALCOA RMC Longview, Washington

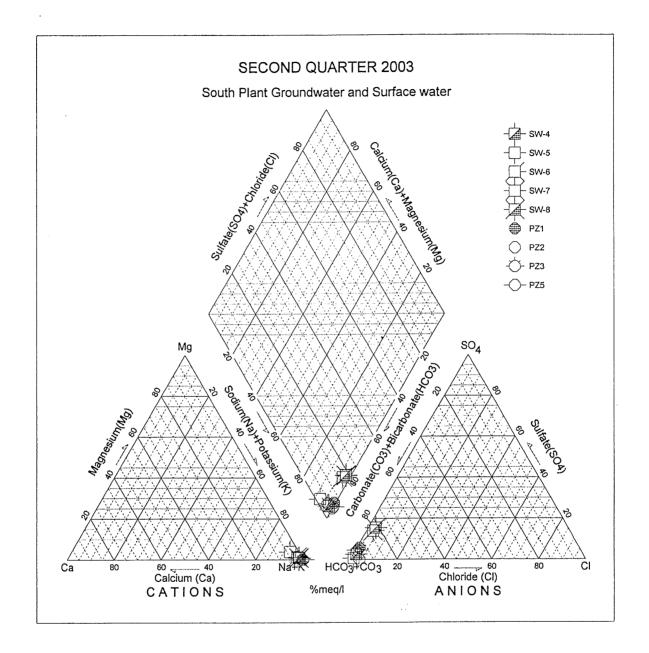

Project No. 059868

By: J. Triolo

Date: 10/13/03

Checked: C. Spill

MFG, Inc. consulting scientists and engineers


TRILINEAR DIAGRAMS FIRST QUARTER 2003 SOUTH PLANT AREA

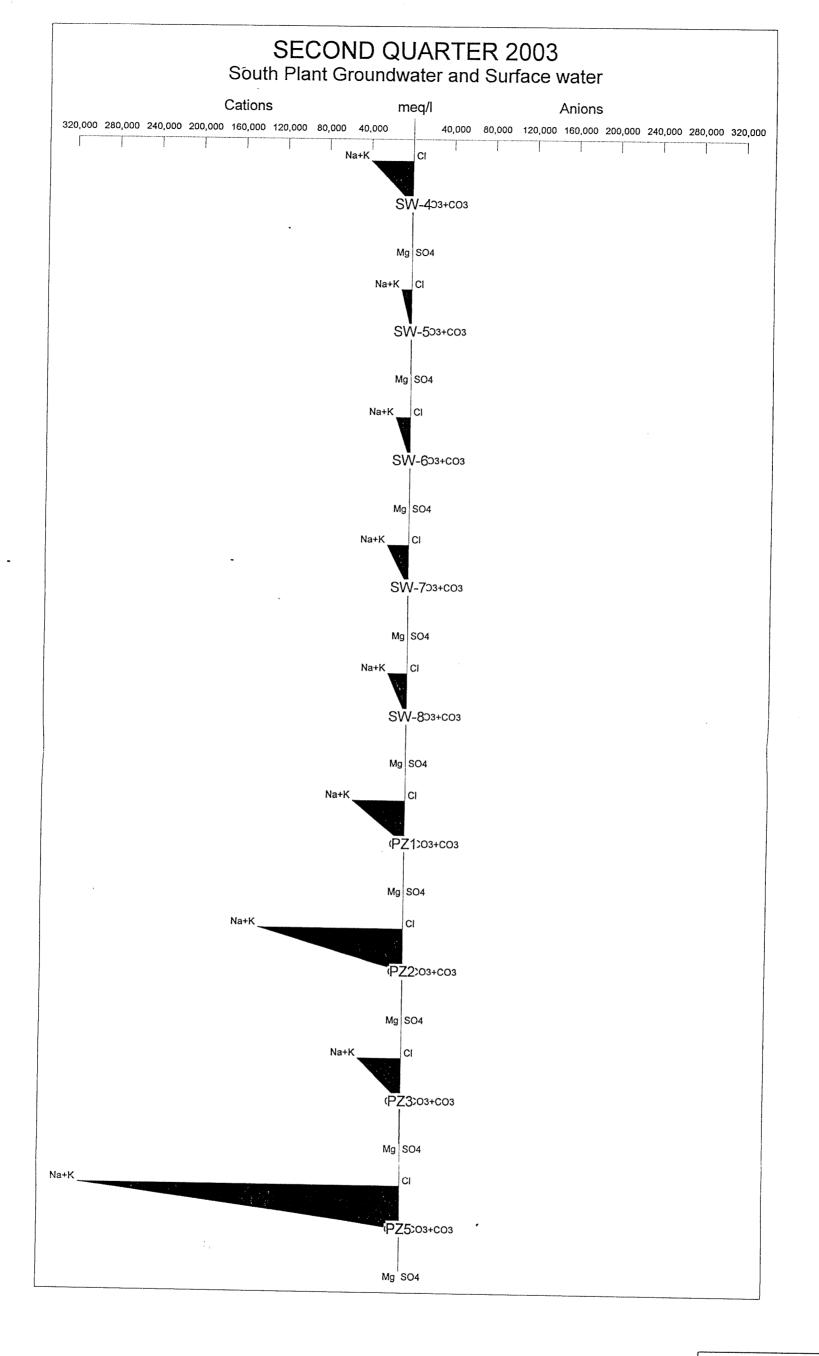
ALCOA RMC Longview, Washington

Project No. 059868.3 By: J. Triolo

Date: 10/13/03 Checked:

consulting scientists and engineers

TRILINEAR DIAGRAM **SECOND QUARTER 2003 SOUTH PLANT AREA**


ALCOA RMC Longview, Washington

Project No. 059868 By: J. Triolo

Date: 10/13/03

Checked: C. Spill

MFG, Inc. consulting scientists and engineers

TRILINEAR DIAGRAMS SECOND QUARTER 2003 SOUTH PLANT AREA

ALCOA RMC Longview, Washington

Project No. 059868.3 By: J. Triolo

Date: 10/13/03 Checked:

consulting scientists and engineers

APPENDIX F

BORING LOGS FOR SOUTH PLANT DIRECT-PUSH AND HOLLOW STEM AUGER BORINGS

19203 36th Ave. W., Suite 101 Lynnwaed, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-1

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

MFG Project# 059741

Drilling Agency Sample Method

Sample Type

Date Completed

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology : 4 foot Macrocore w/liners

: Continuous Cores : 9/11/02

Logged By

: N. Morrow

Surface Elevation : 25.82 feet NAVD88 Northing Coordinate : 301911.28

Easting Coordinate : 1008497.50

Well:

Elev.: 25.82 ft NAVD88

Medium Bentonite Chips

GRAPHIC Recovery Samples Depth ft bgs **DESCRIPTION** REMARKS 0-SAND, brown, medium sand, few grass roots, dry to AR/SP AR = Artificial fill. slightly moist. Cap material. SAND, medium gray, medium sand, few gravel up to 1/4-inch size, dry to slightly moist. Waste. Waste composite 50 AR/SP subsample collected: 0.25 to 4 feet bgs. SILTY SAND to SANDY SILT, black, silt to very fine sand size material, some coarse sand size material, Waste composite few gravel up to 1/4-inch size, slightly moist. Waste. subsample collected: 4 to 6 feet bgs. AR/SM 2 75 Refusal at approximately 6 feet bgs. Move approximately 5 feet east of DP-1 for DP-1R.

Total depth of borehole = 6 feet bgs.

02-17-2003 w:\059741 Longview\Longview DPT and PZ Logs 2002\DP-1R.BOR

A TETRA TECH COMPANY

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-1R

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

Drilling Agency

Sample Method

: Cascade Drilling, Inc.

Drilling Rig & Method : Direct Push Technology

: 4 foot Macrocore w/liners

Logged By Surface Elevation

: N. Morrow : 25.66 ft NAVD88

Northing Coordinate : 301915.05

	MFG Project# 059741	Sample Typ Date Comp	e	: Continu		ores	Easting Coord	inate : 301915.05 inate : 1008501.69)
Depth ft bgs			nscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 25.66 ft	NAVD88
0- 1- 2- 3-	SAND, brown, medium sand, few grass rookslightly moist. Cap material. SAND, medium gray, medium sand, few grass of the same of	ravel up to	AR/SP AR/SP		1	50	AR = Artificial fill. Descriptions for 0 to 6 feet bgs obtained from DP-1 boring log. Waste composite subsample collected: 0.25 to 4 feet bgs from DP-1.		
5 5 6- 7	SILTY SAND to SANDY SILT, black, silt to sand size material, some coarse sand size few gravel up to 1/4-inch size, slightly mois -silt to fine sand size, black, few carbon fra and gravel up to 1/2-inch size, carbon odor	material, st. Waste.	AR/SM		2	75 80	Waste composite subsample collected: 4 to 6 feet bgs from DP-1. Waste composite subsample collected: 6 to 8 feet bgs.		
8- 9- 10-	SAND, gray, medium sand. Waste. SILTY SAND, black to dark gray, silt to fine material. Waste. SAND, gray to black, medium sand. Waste	/	AR/SP AR/SM AR/SP		3	50	Waste composite subsample collected: 8 to 12 feet bgs.		
11- 11- 12-	Brick fragment, red to reddish-orange. Was SILTY SAND, silt to fine sand size material moist. Waste. SILTY SAND, black, silt to medium sand size	l, slightly	AR		4	50	Waste composite subsample collected: 12	- Mediu Bento	ım nite Chips
13- 14- 15- 16-	slightly moist to moist. -at 15 feet bgs some gravel/carbon fragme 1/2-inch size, saturatedat 15.5 feet bgs silt to very fine sand size slightly moist.	ents up to material,	AR/SM		5	80	to 16 feet bgs. Waste composite	- ▼ 15 ft b	·
17- 18-	-at 16 feet bgs gravel and brick fragments 1-inch size, few wood pieces, saturated. SILTY SAND, black, silt to fine sand, satura SAND, black, fine to medium sand size mat	ated.			6	75	subsample collected: 16 to 20 feet bgs.		
20-	GRAVEL, black, angular gravel/carbon frag to 1/2-inch size, some fine sand and silt, sa Waste.	ments up	AR/SP AR/GP				Waste composite subsample collected: 20 to 21.5 feet bgs.		
23	SAND, dark gray to gray brown, medium to coarse sand grades to fine to medium sand wet. Possibly native. SILT, dark gray to dark gray brown, some find few rootlets, moist to very moist. Native.	I, moist to	SP ML		7	100	Waste composite sample DP-1 collected at 0850. Groundwater sample DP-1 collected at 0850.		
	Total depth of borehole = 24 feet bgs.							termedage and transferred	

19203 36th Ave. W., Suite 101 Lynnwaad, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-2

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

Drilling Agency Sample Method : Cascade Drilling, Inc.

Drilling Rig & Method : Direct Push Technology : 4 foot Macrocore w/liners

Sample Type : Continuous Cores Logged By

: N. Morrow

Surface Elevation Northing Coordinate : 302199.37

: 12.48 ft NAVD88

Easting Coordinate : 1008515.62

	MFG Project# 059741	Date Comple		: Continu : 9/11/02			Easting Coord	nate : 1008515.62
Depth ft bgs	DESCRIPTION		nscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 12.48 ft NAVD88
0	SAND, brown grades to gray between 1 to medium sand, few grass roots, dry to sligh	2 feet bgs, tly moist.	AR/SP		1	60	AR = Artificial fill.	
3-	SAND, dark gray to dark brown-gray, wet to saturated. Native. SILT, dark gray to dark brownish gray, few wet. Native.		SP ML			00	Collected soil sample DP-2 (3-4') at 0950. Groundwater sample DP-2 collected at 0950.	-3.3 ft bgs
5-	SAND, brown, medium sand, wet. Native. SILT to CLAYEY SILT, gray to brown-gray, very fine sand, wet. Native.	, few fine to	SP				DI -2 collected at 0950.	
6- 7-			ML		2	60		Medium Bentonite Chips
1	SAND, brown, medium sand, few wood and Native. SILT, greenish gray to blue gray, few to mir fine sand, few clay, somewhat crumbly, mo	nor verv	SP					
10-			ML		3			
12	Total depth of borehole = 12 feet bgs.							

02-17-2003 w:\059741 Longview\Longview DPT and PZ Logs 2002\DP-2.BOR

19203 36th Ave. W., Suite 101 Lynnwaad, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-3

(Page 1 of 1)

Alcoa Longview Site
Former Reynolds Metals Facility
Longview, Washington

Drilling Agency

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology : 4 foot Macrocore w/liners Logged By Surface Elevation

: N. Morrow : 15.00 ft NAVD88 Northing Coordinate : 302403.09

Sample Method

	MFG Project# 059741	Sample Typ Date Compl		: Continu : 9/11/02		Cores	Easting Coordi	nate : 1008237.26
Depth ft bgs			nscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 15.00 ft NAVD88
0-	SILT, dark brown, few fine sand and root	ets, dry. Fill	AR/ML			.,—	AR = Artificial fill.] <i>[77]</i>
1-	GRAVEL, broken gravel up to 1-inch size minor brown silt, few to minor fine sand, or	, few to dry. Fill.					No recovery in soil interval, no sample	
2-			AR/GP		1	35	collected. No groundwater sample	
3-							collected, dry hole.	
4-	Brick stuck in shoe, red to red-orange brid black silt and sand around brick, moist. N	ck, some lon-native.						
5-								
6-			AR		2	10		
7-								
8-	SILT to CLAYEY SILT, greenish gray, sor mottling, minor fine sand, very moist	ne iron						
9-	-grades to gray-brown, few very fine to fir	ie sand.						
10-	few rootlets, very moist to wet. Native.	,			3	90		Medium Bentonite Chips
11-								Bentonite Chips
12-								
13-								
14			ML		4	0		
15								
16-	-greenish gray							
17-	- •							
18-					_	7.5		
+	brown to grow your and the second				5	75		
	-brown to gray, very moist to wet, minor ve sand	ery fine						
20+	Total depth of borehole = 20 feet bgs.	L						[///]

w:\059741 Longview\Longview DPT and PZ Logs 2002\DP-4.BOR

A TETRA TECH COMPANY

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-4

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

Sample Method

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology : 4 foot Macrocore w/liners

Logged By Surface Elevation Northing Coordinate

: N. Morrow : 15.49 ft NAVD88 : 302237.70

MFG Project# 059741

Sample Type Date Completed

Drilling Agency

: Continuous Cores : 9/11/02

Easting Coordinate : 1008126.29

Recovery (%) Well: GRAPHIC Depth Samples Elev.: 15.49 ft NAVD88 ft bgs DESCRIPTION **REMARKS** SAND, dark brown to black, 1-inch size broken gravel piece at 1.5 feet bgs. Non-native. AR = Artificial fill. Collected soil sample DP-4 (0-1.25') at 1200. AR/SP 1-Collected water sample SAND, black to brown medium sand. Non-native. DP-4 at 1200. SAND, brown to dark brown, medium to coarse grained, very moist to wet. Native. 80 3 3.68 ft bgs SP -brown, medium sand, saturated Medium Bentonite Chips 2 75 SILT, gray to dark gray, few to some very fine sand, ML Total depth of borehole = 8 feet bgs.

02-17-2003 w:\059741 Longview\Longview DPT and PZ Logs 2002\DP-5.BOR

A TETRA TECH COMPANY

19203 36th Ave. W., Suite 101 Lynnwaed, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-5

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

Sample Method

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology : 4 foot Macrocore w/liners Logged By Surface Elevation Northing Coordinate : 302453.30

: N. Morrow : 11.76 ft NAVD88

MFG Project# 059741

Sample Type Date Completed

Drilling Agency

: Continuous Cores : 9/11/02

Easting Coordinate

: 1008035.38

Well: Elev.: 11.76 ft NAVD88 Depth

Dept ft bg		nscs	GRAPH	Samples	Recover	REMARKS	Elev.: 11./6 ft NAVD88	
0- 1- 2- 3-	SILTY SAND to SANDY SILT, brown, very fine to fine sand, few gravel up to 1/4-inch size, dry. Fill. SANDY GRAVEL, brown, iron staining, few black waste portions, few gravel with green staining/coating, broken gravel up to 3/4-inch size, fine sand few medium sand and silt dry. Non-native			1	75	AR = Artificial fill. Collected soil sample DP-5 (2.5-4') at 1425 Collected groundwater sample DP-5 at 1425		
5- 6- 7-	-fine sand, few medium sand, few to some silt, minor clay, grades to sandy silt, very moist to wet	SP	X 1	2	75			
9-	SILT, dark gray to greenish gray, few fine sand, few clay, minor rootlets, very moist to wet.	ML		3	50		- Medium Bentonite Chips	
13- 14- 15-	-grades to greenish gray, some white mottling, minor very fine sand, moist			4	80			
	Total depth of borehole = 16 feet bgs.							

1

2

3

4-

6

7-

9-

10-

11-

A TETRA TECH COMPANY

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-6

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

MFG Project# 059741

Drilling Agency

: Cascade Drilling, Inc.

Logged By Surface Elevation : N. Morrow

gravel up to 1/2-inch size, slightly moist

Drilling Rig & Method : Direct Push Technology Sample Method Sample Type

: 4 foot Macrocore w/liners : Continuous Cores

Northing Coordinate

: 13.14 ft NAVD88 : 302612.24

Date Completed

: 9/11/02

Easting Coordinate

: 1007891.73

Recovery (%) Well: GRAPHIC Depth Elev.: 13.14 ft NAVD88 Samples ft bgs DESCRIPTION REMARKS SAND, brown, medium grained, dry. Non-nativel. AR = Artificial fill. -fine to medium sand, some to few angular broken

AR/SP

SAND, dark grayish brown, fine to medium sand, some iron oxide mottling, few wood pieces. Native.

Collected soil sample DP-6 (0.5-1.5') at 1610

Collected groundwater sample DP-6 at 1610

SAND WITH GRAVEL, light brown, broken gravel. SAND to SILTY SAND, brown to grayish brown, some iron oxide mottling, very fine to fine sand, minor rootlets, sulfidic odor, very moist grades to wet at 6 feet bgs then grades back to moist.

SP

2

3 100

100

90 1

5 ft bgs

Medium Bentonite Chips

SAND WITH GRAVEL, angular gravel up to 1/2-inch size, fine to very fine sand, few medium sand, some silt, few clay, saturated.

SILT, brownish gray to greenish gray, some very fine sand, minor clay, few to some rootlets and woody plant matter, wet.

ML

Total depth of borehole = 12 feet bgs.

02-17-2003 w:\059741 Longview\Longview DPT and PZ Logs 2002\DP-6.BOR

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-7

(Page 1 of 1)

Alcoa Aluminum Former Reynolds Aluminum Facility Longview, Washington

MFG Project# 059741

Drilling Agency

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology Logged By

: N. Morrow

Sample Method Sample Type

: 4 foot Macrocore w/liners : Continuous Cores

Surface Elevation Northing Coordinate : 302923.03

: 12.65 ft NAVD88

Date Completed

: 9/11/02

Easting Coordinate : 1007975.93

	MFG Project# 059741	Date Comple	eteu .	: 9/11/02				
Depth ft bgs	DESCRIPTION		USCS	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 12.65 ft NAVD88
0-	SAND, brown, fine to medium, some rootle	te	AR/SP	X	ПП			1 7777
- - 1- -	SANDY GRAVEL, brown, broken gravel up size, fine sand, some to few medium sand, some silt, few small rootlets, dry to slightly in Non-native.	to 1/2-inch few to moist.	AR/GP				AR = Artificial fill. Collected soil sample DP-7 (0.25-1.25') at 1705	
2-	SAND, brownish gray to gray, medium sand few fine sand, few subrounded gravel up to size, moist. Native.	d, some to 1-inch			+	75	Collected groundwater sample DP-7 at 1705	
3 - 4 - 5 - 6 -	-dark gray, medium to coarse grained sand gravel, wet to saturated	d, minor	SP		2	75		- 3.2 ft bgs - Medium Bentonite Chip
7-8-	-grades to fine to medium sand, few silt, m clay, saturated	inor to few				Application of the state of the		Serio ille Grip
9	SILT, dark gray, some very fine to fine sand	d, moist.	ML		3	100		
-	-dark brown, few fine sand, few rootlets, su odor	Ifidic						

19203 36th Ave. W., Suite 101 Lynnwaad, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-8

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington Drilling Agency

Sample Method

: Cascade Drilling, Inc.

Drilling Rig & Method : Direct Push Technology

: 4 foot Macrocore w/liners

Logged By Surface Elevation : N. Morrow : 13.70 ft NAVD88

Northing Coordinate : 302743.34

Longview, Washington Sample Met Sample Typ MFG Project# 059741 Date Compl				: Co	foot N ontinu 11/02	rdinate : 302743.34 dinate : 1008048.45			
Depth ft bgs			nscs		GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 13.70 ft NAVD88
0-	SAND, light gray grades to dark gray, fine silt, few gravel up to 1-inch size, few very red-orange brick fragments, dry.	sand, some small red to						AR = Artificial fill.	
1- - - 2- -	-at 2.75 ft bgs white		AR/SP			1	60	Collected soil sample DP-8 (0-2.75') at 1750 Collected groundwater	
3- 	SANDY SILT, yellowish brown, some iron mottling, very fine to fine sand, dry to sligh Non-native. -3 feet to 4 feet bgs wet, fine sand, few to	tly moist.	AR/ML					sample DP-8 at 1750	
5-	SILT, greenish gray, few brown to black me some very fine sand, some clay, sulfidic or saturated.	ottling, dor, wet to							
6						2	50		- 6 ft bgs - Medium
7-									Bentonite Chi
8-	-some to few fine sand, iron oxide and blad minor rootlets, wet to saturated	ck mottling.	ML						
9-	•					3	90		
11-	-moist								
12	Total depth of borehole = 12 feet bgs								
13									

19203 36in Ave. W., Suite 101 Lynnwadd, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-9

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

MFG Project# 059741

Drilling Agency

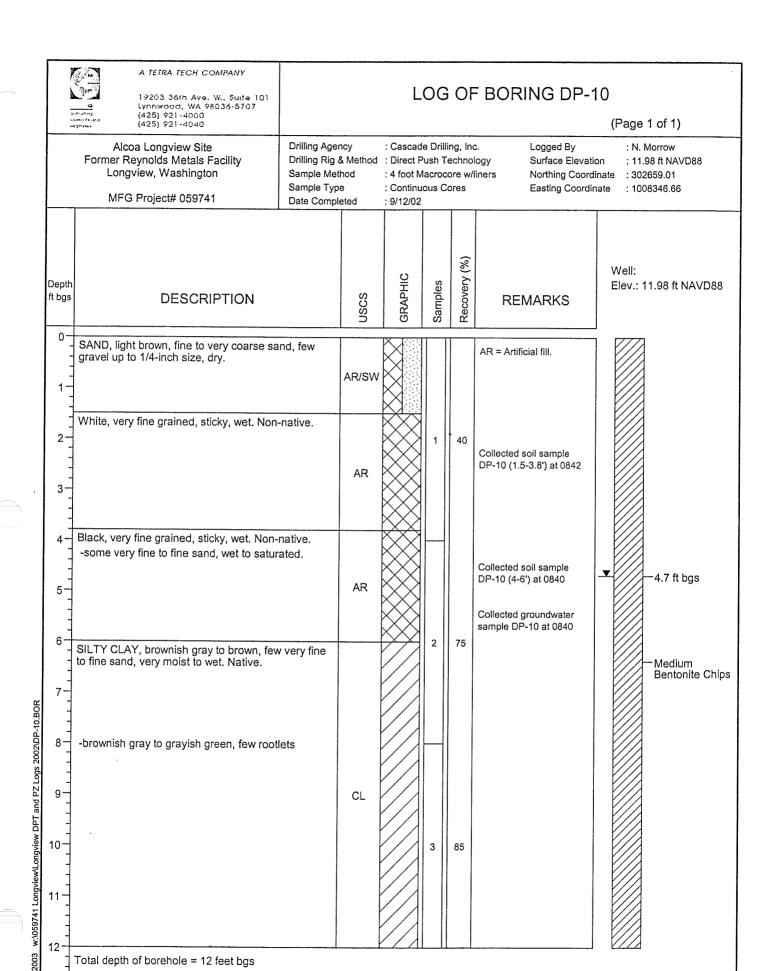
: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology Logged By

: N. Morrow

Sample Method

: 4 foot Macrocore w/liners

Surface Elevation Northing Coordinate : 302809.29


: 13.51 ft NAVD88

Sample Type

: Continuous Cores . 0/12/02

Easting Coordinate : 1008112.62

	MFG Project# 059741	Date Comple	eted	: 9/12/02		,		
Depth ft bgs	DESCRIPTION		nscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 13.51 ft NAVD88
0	SAND, black to dark gray, fine grained, sor cemented-like fragments of waste with iron staining, dry. Non-native.	ne oxide	AR/SP				AR = Artificial fill.	
2-3-	SAND, light brown, fine grained, few silt, sli grades to moist. Native. -grades to fine to medium sand, light brown gray brown, moist		-		1	75	Collected soil sample DP-9 (0-1') at 0735 Collected groundwater sample DP-9 at 0735	
5	-dark gray, fine to medium sand, grades to sand with few to some fine sand, sulfidic oc saturated	o medium dor,	SP					-4 ft bgs
6	SILT, dark gray, some fine sand, some clay to wet.	y, very mois	st ML		2	75		Medium Bentonite Chip
4	CLAYEY SILT to SILTY CLAY, dark gray to greenish gray, very moist to wet grades to r very moist.	o dark moist to						
11-			ML/CL		3	100		
12	Total depth of borehole = 12 feet bgs							

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-11

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

MFG Project# 059741

Drilling Agency Sample Method

Sample Type

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology

: 4 foot Macrocore w/liners

: Continuous Cores

Logged By Surface Elevation

: N. Morrow : 12.22 ft NAVD88

Northing Coordinate : 302820.10 Easting Coordinate : 1008516.44

	MFG Project# 059741	Date Comple	eted	: 9/12/02					
Depth ft bgs			uscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.:	12.22 ft NAVD88
0-	SILTY SAND, brown, fine to medium sand, rootlets.	, few	AR/SP				AR = Artificial fill.		
1-	SAND, black, fine grained. Non-native.		AR/SP				Collected soil sample DP-11 (0.75-1.50') at		
2-	SILTY SAND, yellowish brown, iron oxide s throughout, few black sand size waste frag / Waste.	staining ıments. Fill	AR/SP		1		No groundwater sample collected, not enough recovery.		
3									
4-	SILTY SANDY GRAVEL, brown to yellowis angular gravel up to 1/2-inch size, fine to me sand, few clay. Non-native.	h brown, nedium	AR/GP						─4 ft bgs
5-	CLAYEY SILT TO SILTY CLAY, dark gray, some very fine to fine sand, saturated. Nat	few to tive.	ML/CL						
6	SILT, greenish gray to gray, some brown m some to few very fine to fine sand, wet to s	nottling, aturated.			2	75			[—] Medium Bentonite Chip
7-			ML						Domonico Grap
8-	-moist	70174							
9-									
10-	SAND, gray to dark gray, very fine to fine sa saturated grades to wet.	and,			3	90			
11-			SP						
12	Total depth of borehole = 12 feet bgs							Tunkunkunkud	
13-									

19203 36th Ave. W., Suite 101 Lynnwaod, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-12

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

Drilling Agency Sample Method

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology

: 4 foot Macrocore w/liners

Logged By Surface Elevation : N. Morrow : 14.69 ft NAVD88

Northing Coordinate : 302747.22

Sample Type : Continuous Cores Easting Coordinate : 1008303.71 MFG Project# 059741 Date Completed : 9/24/02 Recovery (%) GRAPHIC Samples Elev.: 14.69 ft NAVD88 Depth ft bgs DESCRIPTION REMARKS 0 SAND, light brown, very fine to fine sand, some AR = Artificial fill. subrounded gravel up to 1-inch size, dry. AR/SP Collected soil sample GRAVEL, dark brown to dark gray, broken gravel up DP-12 (3-4') at 0730. AR/GP to 1-inch size, some fine sand, dry. Non-native. AR/GC CLAYEY GRAVEL, dark brown to dark gray, gravel up Groundwater sample to 1/4-inch size, moist. Non-native. DP-12 collected at 0740. 75 AR/ML 1 SANDY SILT, yellowish brown, some very fine to fine sand, moist. At 2 feet bgs grades to yellowish brown sandy silt and black mixture. Non-native AR/ML SANDY SILT, black, very fine to fine sand size, crumbly, moist. Non-native Grades to saturated clay size black non-native at approximately 3 feet bgs. Non-native. 4. AR/CL 5 -as above 6 2 75 Medium SILT to CLAYEY SILT, greenish gray, few iron oxide Bentonite Chips and light brown mottling, few rootlets, saturated. Native. 6.8 ft bgs 7-02-17-2003 w:\059741 Longview\Longview DPT and PZ Logs 2002\DP-12.BOR 8--saturated, grades to very moist with increase in iron oxide mottling 9 ML 10 3 100 Total depth of borehole = 12 feet bgs

19203 36th Ave. W., Suite 101 lynnwaed, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-13

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

MFG Project# 059741

Drilling Agency

: Cascade Drilling, Inc.

Logged By : N. Morrow

Drilling Rig & Method : Direct Push Technology Sample Method

: 4 foot Macrocore w/liners

Surface Elevation Northing Coordinate : 303034.70

: 12.30 ft NAVD88

Sample Type : Continuous Cores Easting Coordinate : 1008362.01

	MFG Project# 059741	Date Compl	eted	: 9/24/02		·		
Depth ft bgs	1		nscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 12.30 ft NAVD88
0-	SANDY GRAVEL to SAND with GRAVEL subangular gravel up to 1/2-inch size, roo 0.25-feet, dry. Non-native.	, light brown ots in top	AR/GP				AR = Artificial fill. Collected soil sample DP-13 (1.5-2') at 0850.	
2-	SILTY SAND to SANDY SILT, black, few gavel, slight carbon odor, moist. Non-nat SILTY GRAVEL, yellowish brown, same s grades to dry with increase in broken grav	and, moist			1	75	Groundwater sample DP-13 collected at 0855.	
3-	1-inch size. Non-native. SAND, medium gray to dark gray, fine to	medium san	AR/GM d,					
4 — - 5 —	few silt, one piece of wood-woody plant m rootlets, moist to very moist. Native.	асепаі,	SP					-5 ft bgs
6-	SILTY SAND, medium gray to dark gray, t sand, some rootlets, very moist.	fine to mediu			2	50		- Medium Bentonite Chip
7	SAND, as above, saturated.		SM					
9-			SP					
10	SILTY SAND, dark gray, few laminations of gray, very fine to fine sand, grades from savery moist.	aturated to	SM		3	80		
7	SAND, medium to dark gray, fine to mediu to some silt, very moist. PEAT, organic rich layer of wood/woody pl very moist.	lant matter	SM ML					
1	SILTY SAND, medium gray to dark gray, fi sand, very moist. SILT, dark brown to dark brownish gray, fe very moist.		m					
14-	Total depth of borehole = 12 feet bgs							

w:\059741 Longview\Longview DPT and PZ Logs 2002\DP-14.BOR

A TETRA TECH COMPANY

19203 36th Ave. W., Suite 101 Lynnwaed, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-14

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

MFG Project# 059741

Drilling Agency

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology

Logged By Surface Elevation : N. Morrow : 12.72 ft NAVD88

Sample Method Sample Type

: 4 foot Macrocore w/liners

Northing Coordinate : 302905.31

Date Completed

: Continuous Cores : 9/24/02

Easting Coordinate

: 1008317.62

Recovery (%) Well: **SRAPHIC** Samples Depth Elev.: 12.72 ft NAVD88 ft bgs DESCRIPTION REMARKS 0 SAND, light brown, fine to coarse sand, minor gravel AR = Artificial fill. up to 1/4-inch size, slightly moist. Non-native. AR/SW Collected soil sample DP-14 (2-4') at 0930. No groundwater sample collected, not producing 2 1 SAND to SILTY SAND, black, few light gray enough water for laminations scattered throughout core, very fine to fine collection of sample or sand and silt size waste, slightly moist to moist. field parameter Non-native. monitoring. AR/SP -SANDY SILT TO SILTY SAND, very fine sand, laminations as above. SILT, medium gray to brownish gray, few very fine to ML fine sand. Native. SAND, dark gray, medium sand, wet to saturated. 5-SP 6-2 40 Medium Bentonite Chips 7-SILT, as above at 3.75 to 4.25 feet bgs. SP SAND, as above at 4.25 to 7.25 feet bgs. SILT, as above, few very fine sand. -at 8 feet bgs, SILT, greenish gray to brownish gray, some clay, few very fine sand, minor rootlets, very moist to wet. ML -light brown to brown, very moist to wet, grades to 3 90 moist with iron mottling and minor rootlets Total depth of borehole = 12 feet bas.

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-15

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

Drilling Agency Sample Method

Sample Type

: Cascade Drilling, Inc. Drilling Rig & Method : Direct Push Technology

: 4 foot Macrocore w/liners

: Continuous Cores

Logged By

: N. Morrow : 11.03 ft NAVD88

Surface Elevation Northing Coordinate : 303169.56

Easting Coordinate : 1008524.31

	MFG Project# 059741	Date Comple		: 9/24/02		T	T	
Depth ft bgs	DESCRIPTION		nscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 11.03 ft NAVD88
0- 1- 2- 3-	SAND, light brown, medium sand, few coar minor fine sand and subrounded gravel up size, roots in top 0.25 feet, moist.	rse sand, to 1/4-inch	AR/SP		1	50	AR = Artificial fill. No soil sample collected. No non-native material found. No groundwater sample collected, not producing enough water for sample collection or field parameter monitoring.	
5	-grades to medium to coarse sand, wet. SAND, dark gray, very fine to fine sand, mi sand, few silt, odor, wet. Native. -very fine, some to few fine and medium sawet to saturated. SANDY SILT to SILTY SAND, very fine sar somewhat crumbly, moist. SAND, dark gray, medium sand, some to fe sand, very moist to moist.	and, ordor,	SP/SM		2	75		Medium Bentonite Chips
9 - 10 - 11 - 12	SILTY SAND, dark gray, fine to medium sa plant matter, very moist to moist. SILT to SANDY SILT, light brown to reddist some clay, few roots, increases to some rowood at 10 to 12 feet bgs, one 1-inch size subrounded gravel at 8.25 feet bgs, very m	h brown, ots and oist.	SM ML/SM		3	25	,	

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-16

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

MFG Project# 059741

Drilling Agency

Drilling Rig & Method : Direct Push Technology Sample Method

Sample Type Date Completed

: Cascade Drilling, Inc.

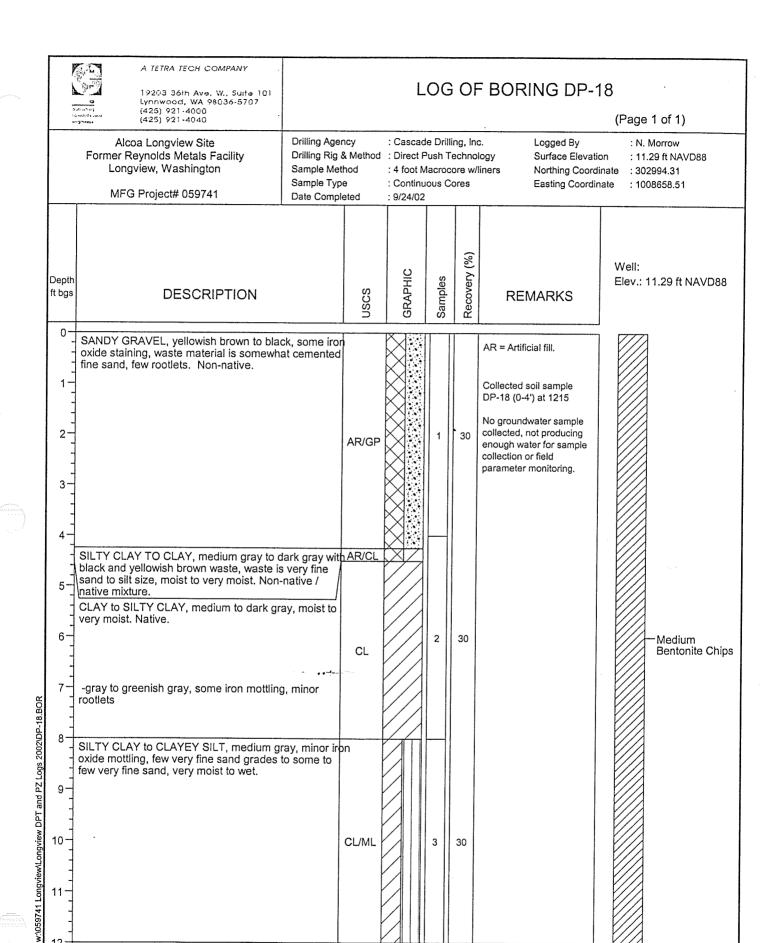
: 4 foot Macrocore w/liners

: Continuous Cores : 9/24/02

Logged By

Northing Coordinate

: N. Morrow Surface Elevation


: 9.21 ft NAVD88 : 303150.41

Easting Coordinate : 1008738.70

Well: GRAPHIC Recovery Elev.: 9.21 ft NAVD88 Depth Samples ft bgs DESCRIPTION REMARKS 0 SANDY SILT, brown, dry, some to few rootlets, few AR = Artificial fill. gravel up to 1/4-inch size, dry. Fill. SANDY SILT to SILTY SAND, dark gray to dark brown AR/SM few broken gravel up to 1/2-inch size with green No soil sample collected. coating, dry. Fill. SILTY GRAVEL, yellowish brown to dark brown, No groundwater sample some iron oxide staining, broken gravel up to 1-inch collected, not producing size, some to few fine sand, dry to slightly moist. Fill. enough water for sample 50 collection or field parameter monitoring. AR/GM 3--dark brown to dark gray mixed with yellowish brown, dark material is fine to medium sand, minor subrounded gravel up to 1-inch size. Fill. SAND, greenish gray, fine to medium sand, few subrounded to rounded gravel up to 1/4-inch size, SP very moist to wet. Native. SANDY SILT, medium gray to brownish gray, very fine sand, few to some clay, minor rootlets, moist. -grades to gray to dark reddish brown, some rootlets, 2 50 Medium Bentonite Chips ML w:\059741 Longview\Longview DPT and PZ Logs 2002\DP-16.BOR 8--SILTY SAND as above 9 gradational change from silt to clay at approximately 10 feet bgs 3 SILTY CLAY, light brown grades to gray, few to minor very fine sand, very moist to wet. 11 CL Total depth of borehole = 12 feet bgs

	Vince of the and dingreen	A TETRA TECH COMPANY 19203 36th Ave. W., Suite 101 Lynnwaed, WA 98036-5707 (425) 921-4000 (425) 921-4040				.00	G 01	F BORING DP-	17 (Page 1 of 1)
	Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington MFG Project# 059741		Drilling Agency Drilling Rig & Method Sample Method Sample Type Date Completed		: Cascade Drilling, Inc. : Direct Push Technolog : 4 foot Macrocore w/lin : Continuous Cores : 9/24/02			ology Surface Elevati	linate : 303648.93
Depth ft bgs	1	DESCRIPTION		nscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 7.69 ft NAVD88
0	SAND, g few to so Native.	SANDY GRAVEL, light brown grace in brown and back to light brown, and broken gravel up to 1-inch size the properties of	d, few silt, inch size.	AR/GM SP		2	50	AR = Artificial fill. No waste sample collected. No groundwater sample collected, not producing enough water for sample collection or field parameter monitoring.	Medium Bentonite Chip
8	very mois	ark reddish brown, roots and plan st to wet. LAY, light gray, few to minor very et to very moist.		PT					
10-		th of borehole = 12 feet bgs		CL		3	10		

13

Total depth of borehole = 12 feet bgs

	gramatini mina	
	2 0 4	productions (
		Alcoa Former Rey Longvi
		MFG F
	Depth ft bgs	
	0-	SAND to SIL brown, silt to rootlets, crun
	1-	SILTY SAND brown mottlin Non-native.
	2-	SAND, dark of brown and will sand size wa
	3-	
	4-	SANDY SILT
Į	1	angular grave

19203 36In Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING DP-19

(Page 1 of 1)

Alcoa Longview Site
Former Reynolds Metals Facility
Longview, Washington

Project# 059741

Drilling Agency Drilling Rig & Method : Direct Push Technology

Sample Method Sample Type

: Cascade Drilling, Inc.

: 4 foot Macrocore w/liners : Continuous Cores

Logged By

Surface Elevation

: N. Morrow : 12.02 ft NAVD88 : 302892.07

Northing Coordinate Easting Coordinate

: 1008574.97

	MFG Project# 059741	Date Comple	eted	: 9/24/02				
Depth ft bgs			USCS	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.: 12.02 ft NAVD88
0-	SAND to SILTY SAND, gray black, and yello brown, silt to sand size non-native material, rootlets, crumbly, dry.	owish , few					AR = Artificial fill.	
1-	SILTY SAND to SANDY SILT, light brown, y brown mottling, some small white flecks, dry Non-native.	yellowish y.	AR/SP				Collected soil sample DP-19 (1-1.5') at 1240 and DP-19 (2.5-4') at 1240.	
2-	SAND, dark gray to black, few areas of yello brown and white, few iron mottling, very fine sand size waste, dry. Non-native.	owish e to fine			1	50	No groundwater sample collected, not producing enough water for sample	
3-			AR/SP				collection or field parameter monitoring.	
5.	SANDY SILT, black, very fine sand size was angular gravel up to 3/4-inch size, dry to slig Non-native.	ste, minor ghtly moist	SM					
6-			O		2	40		Medium Bentonite Chip
	GRAVEL, yellowish brown, some to few silt a sand, dry to slightly moist. Fill. SAND, medium gray to dark gray, fine sand, Native.	/	GP SP			٠		
8	SANDY SILT, medium gray, very fine sand, to wet. Native.	very moist						
9-			SM					
10 =	SAND, medium gray, fine sand, wet to saturate very fine to fine sand, wet grades to very m	1			3	40		
11-	7017 mile to mile sand, wet grades to very m	iolot	SP					

	19203 36th Lynnwood, (425) 921-4	CH COMPANY Ave. W., Suite 101 WA 98036-5707 1000			L	OG	OF	BORING DP-2	20 (Page 1	of 1)
day	Alcoa Longviev Former Reynolds Me Longview, Wash MFG Project# 0	v Site tals Facility nington	Drilling Ager Drilling Rig & Sample Met Sample Typ Date Compl	& Method hod e	: Cascado : Direct P : 4 foot M : Continuo : 9/24/02	ush Te acroco	echnol ore w/l	ogy Surface Elevati	inate : Not S	orrow Surveyed Surveyed Surveyed
Depth ft bgs		SCRIPTION		nscs	GRAPHIC	Samples	Recovery (%)	REMARKS	Well: Elev.:	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SANDY GRAVEL, bro size, unbroken gravel few medium sand, fev	up to 1/4-inch size	, fine sand,	AR/GM				AR = Artificial fill. No soil sample collected, no non-native material encountered.		
2	SAND, fine to medium			AR/SP		1	75	No groundwater sample collected, no groundwater encountered.		
3-	GRAVEL, light gray, be few fine sand, few to s	some rock flour, dr	y. Fill.	AR/GP						
4-	SAND, brown, fine to broken gravel up to 1/	medium snad, few /4-inch size, few sil	angular t, dry. Fill.	AR/SP				·		- Mediu
5	No recovery.									Bentor
5 6 7 8 0	,					2	0			Macro
								Macrocore locked up in subsurface. Abandoned Macrocore and borehole.		
8	Total depth of boreho	le = 8 feet bgs			_					

Medium Bentonite Chips

-Macrocore

Total depth of borehole = 8 feet bgs

something standard decay
Forr

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING B-21

(Page 1 of 1)

Alcoa Aluminum
Former Reynolds Aluminum Facility
Longview, Washington

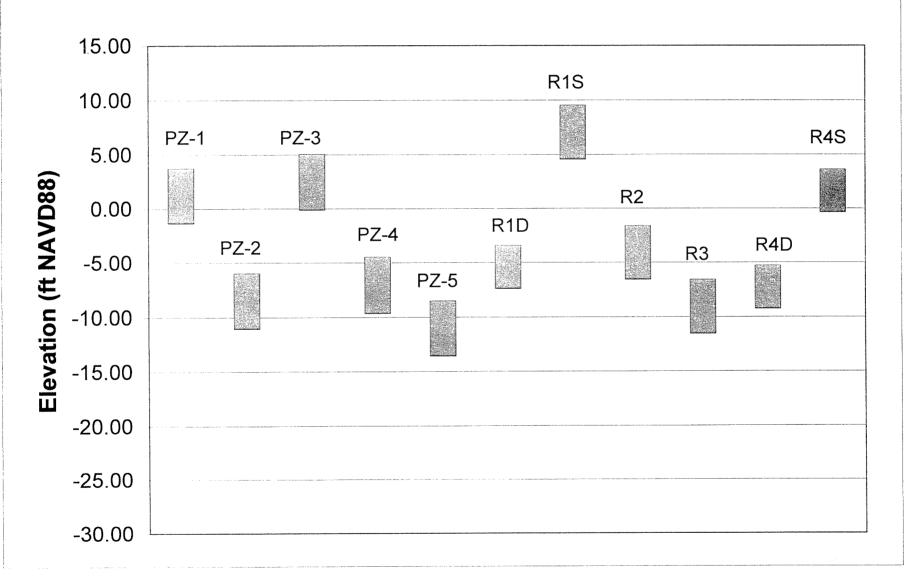
MFG Project# 059741

Drilling Agency Drill Rig **Drilling Method** Sample Method

: Cascade Drilling, Inc. : CME 85 Track Rig

: Hollow Stem Auger/9" O.D. : 1.5"x1.5' Split Spoon

Date Completed Logged By Surface Elevation


: 11/26/02 : N. Morrow : 12.23 NAVD

Northing Coordinate : 302864.28

	Sample Ty	pe	: Conti	nuous		·	Easting Co	ordinate : 1008398.55
Depth ft bgs		nscs	GRAPHIC	Samples	Blow Count	Recovery (%)	REMARKS	Well: Elev.: 12.23 ft NAVD88
1	SAND, light brown, medium to very coarse grained. Cap material. -fine to very coarse sand, wet to saturated	AR		1	9 . 11		Located in south plant area between PZ-1 and PZ-4 and DP-11 and DP-13.	
3	SAND to SILTY SAND, black, wet to saturated. Wasteas above			2	3 7 4		Soil sample: B-21(2.5'-4.5')	
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-fine sand size black waste, very moist SILT, light gray to light brown, moist. Fill.	AR		3	4 1 1 1			3/8" Bentonite Chips
67	SILT to SANDY SILT, black, approximately 10% angular black shiny fragments, very moist to wetwet	, , , ,			1			
7-1	SILT to CLAYEY SILT, olive gray, iron oxide mottling, moist to very moist. Native.	ML		5	5			
1 7	Total depth of borehole = 7.5 feet bgs.							

APPENDIX G
BORING LOGS AND SCREENED INTERVALS FOR SOUTH PLANT WELLS AND PIEZOMETERS

South Groundwater Wells Screened Intervals

A TETRA TECH COMPANY LOG OF BORING PZ-1 19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (Page 1 of 1) (425) 921-4040 : Cascade Drilling, Inc. Date Completed : 11/25/02 **Drilling Agency** Alcoa Longview Site : CME 85 Track Rig : N. Morrow Drill Rig Logged By Former Reynolds Metals Facility : Hollow Stem Auger/9" O.D. Top of Casing Elev. : 14.92 ft NAVD88 Longview, Washington **Drilling Method** Sample Method : 1.5"x1.5' Split Spoon Northing Coordinate : 302744.72 MFG Project# 059741 Sample Type : 2.5 foot interval Easting Coordinate : 1008299.05 Recovery (%) Well: PZ-1 **Blow Count** GRAPHIC Samples Elev.: 14.92 ft NAVD88 Depth USCS ft bas DESCRIPTION REMARKS Cover 2.2 ft (2.7 ft steel) Well stickups SILTY SAND, dark brown, moist. Fill. Surface were measured Casing AR from top of casing to top of concrete. SAND, black, fine sand size material, very moist to Cement wet. Waste. Located in 2south plant area adjacent to AR -yellowish orange with iron oxide mottling, few to DP-12, PZ-2, minor gravel up to 1/8-inch size, slightly moist to moist 10 and surface 3 ft bgs water ditch. 50 -silt size waste 1 5 SANDY SILT, light brown to light gray, few to minor iron oxide mottling, very fine to fine sand, moist. ML 2" SCH 40 PVC Casing CLAYEY SILT to SILTY CLAY, gray to greenish gray, 3/8"Bentonite minor sand, sulfidic odor, moist to very moist. Chips 2 5.55 ft bgs 11/26/02 2 100 6-SANDY SILT to SANDY CLAY, olive gray, wet.

CLAYEY SILT TO SILT CLAYEY, olive gray, iron oxide ML-CL 7 ft bgs mottling, few to minor fine to coarse sand, minor rootlets, slightly moist to moist. 3 100 3 Longview\Longview DPT and PZ Logs 2002\PZ-1.BOR 8.6 ft bgs 3 SILT, greenish gray to gray, iron oxide mottling, few clay, moist, minor saturated intervals with fine to very coarse sand up to 0.25 and 0.5 feet thick. -10x20 Silica Sand 100 4 8 11-2" SCH 40 0.010 8 Slot PVC Screen ML 12--greenish gray, iron oxide mottling -SANDY SILT, saturated, fine sand, few medium to very coarse sand, few to minor clay 13 ft bgs 5 100 7 Sump SANDY CLAY to CLAYEY SAND, wet to saturated. 13.7 ft bgs SILT, greenish gray, iron oxide mottling, moist. 14 ft bgs Total depth of borehole = 14 feet bgs.

02-17-2003 w:\059741 Longview\Longview DPT and PZ Logs 2002\PZ-2.BOR

28

A TETRA TECH COMPANY

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING PZ-2

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington Drilling Agency Drill Rig

Drilling Method

: Cascade Drilling, Inc. : CME 85 Track Rig

: Hollow Stem Auger/9" O.D.

Date Completed Logged By Top of Casing Elev.

: 11/25/02 : N. Morrow : 16.72 ft NAVD88

	MFG Project# 059741 Sample Tyo		thod. : 1.5"x1.5' Spli			plit Spo		Northing C	Coordinate : 302751.01		
	NIFG Project# 059741 Sample Type		oe T	: 2.5 f	oot inte	erval	1	Easting Co	ordinate	: 1008300.80	-
Depth ft bgs			nscs	GRAPHIC	Samples	Blow Count	Recovery (%)	REMARKS	Well: Elev.:	PZ-2 : 16.72 ft NAVD88 ———————————————————————————————————	
0-	SAND, dark brown, medium grained, mind	or gravel up	to AR	XX	1	T	I	Well stickups		Surface	
1-	3-inch size, moist. SILT grades to SILTY SAND, black, very	fine to fine						were measured from top of		Casing Cement	
2-	sand size material, very moist to wet grad to very moist. Waste.	es to moist]			casing to top of concrete.		J. Johnson	
3-	,		AR	$\langle \rangle \rangle$	1	5	100	Located in		3 ft bgs	
4-	OLAVEY OUT TO OUT TO OUT TO					,3		south plant area adjacent to			
5-	CLAYEY SILT to SILTY CLAY, gray, few to oxide mottling, very moist to wet. Native.	to some iron				1		DP-12 and PZ-1.	•	5.17 ft bgs 11/26/02	
6-			ML		2	1 1	100			11/26/02	
7-					 	_					
8- 9-	SILTY SAND to CLAYEY SAND, dark gray coarse sand, saturated.	y, fine to ver	y SM		3	5 4 3	15				
10 -	CLAYEY SILT to SILTY CLAY, gray, iron o	oxide								2" SCH 40 PVC Casing	
11-	mottling, very moist to wet grades to moist moist with no iron oxide mottling.	to very	ML-CL		4	2 5 4	100			3/8" Bentonite	
12 <u> </u>	SAND, gray to greenish gray, wet to satura	ated.	SP	44		5				Chips	
14-	SILT to SANDY SILT, light brownish gray, grai, modera mottling, minor very fine to fir very moist.	few to ne ne sand,			5	10 14	100				
15-	-light brownish gray, wet to saturated		ML			5					
16-					6	10 17	5				
17	SAND, gray, very fine to fine grained, mod	erately		ЬU	·					47.0 5 1	
18-	dense, wet to saturated.				7	27 50/	30			17.6 ft bgs	
19-					Ш	5.5"					
20	-fine to medium sand				\Box	11				20.2 ft bgs	
21					8	28 32	20				
22	-as above		SP							10x20 Silica Sand	
23-		ĺ			9	7 15	10			2" SCH 40 0.010	
24					$\sqcup $	9				Slot PVC Screen	- TE
25	-very fine to fine sand, gradual increase to SAND.	SILTY			-	4				24.6 ft bgs Sump 25.3 bgs	1
26					10	4 2	20				
27-	Total depth of borehole = 26.5 feet bgs	-								26.5 ft bgs	

10	A TETRA TECH COMPANY 19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040			n er val na et un et	LO	G C	F	BORING P		Page 1 of 1)	
	Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington MFG Project# 059741	Drilling Ager Drill Rig Drilling Meth Sample Metl Sample Type	od hod	: Casc : CME : Hollor : 1.5"x : 2.5 fc	85 Tra w Stem 1.5' Spi	ck Rig Auger lit Spoo	/9" O.	Date Comp Logged By D. Top of Cas Northing C Easting Co	ing Elev. oordinate	: 11/26/02 : N. Morrow : 12.90 ft NAVD88 : 302972.98 : 1008251.97	
Depth ft bgs	DESCRIPTION		uscs	GRAPHIC	Samples	Blow Count	Recovery (%)	REMARKS	Well: Elev.:	PZ-3 12.90 ft NAVD88 Cover 2.4 ft (2.8 ft steel)	
0- - - 1-	SAND, brown, few gravel 3/4-inch size, fi medium grained, some to few silt, wet. F SAND, brown, fine to medium grained, m	ill.	AR		1	20 14 14	40	Well stickups were measured from top of casing to top of concrete.		Surface Casing Cement	
2-	SILT to SANDY SILT, black, dry to slightl Waste. SAND, gray, medium grained, some to fe coarse sand, wet. Native.		AR			•		Located in south plant area on south side of cryolite storage building, adjacent to	1.92 ft bgs 11/27/02		
3-					2	10 9 7	50	road. Soil Sample: PZ-3(2.5'-4")		2" SCH 40 PVC Casing -3/8" Bentonite Chips	
5-	-saturated		SP		3	5 6	75				
ν DPT and PZ Logs 2002/PZ-3.BOR Φ	-slight increase in coarseness, sulfidic or silt layer at approximately 8 feet bgs.	dor, 0.25-foo			4	2 3 3	100			2" SCH 40 0.010 Slot PVC Screen —10x20 Silica Sand	
02-17-2003 w:\059741 Longview\Longview DPT and PZ Logs 2002\PZ-3.BOR	SILT to CLAYEY SILT, olive gray, minor value fine sand, very moist to wet, grades to we	very fine to	ML		5	1 1 2	75			9.5 ft bgs Sump 10.3 ft bgs	
12-17-20	Total depth of borehole = 11.5 feet bgs			<u> </u>	ı L				ی لکـک	11.5 ft bgs	

19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000 (425) 921-4040

LOG OF BORING PZ-4

(Page 1 of 1)

Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington

Drilling Agency Drill Rig

Drilling Method Sample Method : Cascade Drilling, Inc. : CME 85 Track Rig

: Hollow Stem Auger/9" O.D. : 1.5"x1.5' Split Spoon

Date Completed Logged By

: 11/25/02 : N. Morrow Top of Casing Elev. : 11.27 ft NAVD88

Northing Coordinate : 303050 14

	MFG Project# 059741	Sample Method : 1.5"x1.5" Split Spoon Sample Type : Continuous						Northing Coordinate : 303050,14 Easting Coordinate : 1008584,21			
Depth ft bgs			nscs	GRAPHIC	Samples	Blow Count	Recovery (%)	REMARKS	Well: Elev.:	PZ-4 : 11.27 ft NAVD88 2.4 ft (2.8 ft steel	
0-	SAND, brown, fine to coarse grained, roots moist to wet. Cap material.	s, very	AR			2		Well casings measured from		Surface	
1-	SAND to SILTY SAND, black, fine sand an material, few to some rootlets, very moist.	id silt size Waste.				6	50	top of casing to top of concrete.		Casing	
2-	-gray, fine to very coarse sand and silt size very moist to wet	e waste,			2	6 10	50	Located in south plant area	▼	Cement 2.30 ft bgs	
3-	-as above		\		-	40 1		on south side of cryolite storage		11/26/02 3 ft bgs	
4-	-wet		AR		3	2	80	building, adjacent to road.			
5-					4	1	75	Soil Sample:			
6	-as above					1/12"		PZ-4(3'-6')		2" SCH 40 PVC	ľ
7-	SILT, light brown, iron oxide mottling, moist				5	5	100			Casing	
8	-greenish gray, iron oxide mottling, slightly moist	moist to				2				3/8" Bentonite Chips	
9	-wet		ML		6	7 12	100				
10	-slightly moist				7	10 10	100				
11	-wet to very moist -slightly moist					8 4					
]	SAND, to SILTY SAND, greenish gray, fine	grained			8	4 11	100			11.5 ft bgs	
13	very moist to wetmoist	grained,			9			Soil Sample: PZ-4(12'-13.5')			
=	-SAND, greenish gray, fine grained, wet to	saturated						FZ-4(12-13.5)		13.0 ft bgs	
14-					10		10				
15	-as above		SP-SM			2				10x20 Silica Sand	
16-	-wet				11	9	10			2" SCH 40 0.010 Slot PVC Screen	
17-					12	6 9				17.4 ft bgs	
18-						13				Sump 18.2 ft bgs	-
19 =	Total depth of borehole = 19 feet bgs									19 ft bgs	
٦	_										ł

		A TETRA TECH COMPANY 19203 36th Ave. W., Suite 101 Lynnwood, WA 98036-5707 (425) 921-4000		LOG OF BORING PZ-5 (Page 1 of 1)							age 1 of 1)
		Alcoa Longview Site Former Reynolds Metals Facility Longview, Washington	Drilling Agen Drill Rig Drilling Meth Sample Meth	od nod	: Casca : CME : Hollov : 1.5"x1	85 Trac v Stem I.5' Spli	k Rig Auger/ t Spoo	9" O.[Date Compl Logged By D. Top of Casi Northing Co	eted ng Elev.	: 11/26/02 : N. Morrow : 11.90 ft NAVD88
-	-	MFG Project# 059741	Sample Type	9	; 2,5 10	ot mer	vai		Lasting Ook	, and a	. 1007.000.00
- 1	Depth it bgs	DESCRIPTION		nscs	GRAPHIC	Samples	Blow Count	Recovery (%)	REMARKS	Well: Elev.:	PZ-5 11.90 ft NAVD88 Cover 2.1 ft (2.7 ft steel)
	0	SAND, brown, medium grained, wet. Ca	p material.	AR					Well casings measured from		Surface Casing
	2-	SILTY SAND, gray-brown, very fine to m few coarse sand, few gravel up to 3/4-ind minor rootlets, wet. Fill.	edium sand, th size,	AR			3		top of casing to top of concrete. Located in south plant area	₩	Cement
	3- 4-	SILTY SAND to SANDY SILT, yellowish moist to moist. Fill.	brown, slight	y _{AR}		1	14 16	60	near surface water gaging station G1;		11/2/102
	5— 6—	SILTY SAND to SANDY SILT, gray, very sand, minor rootlets, crumbly, ammoniamoist.	fine to fine like odor,			2	6 6 7	100	south side of ditch/pond.		
	7- 8-	-few small fractures with brown silt, amn odor	nonia-like			3	5 7 13	100	,		2" SCH 40 PVC Casing
	9-10-	-gray to olive gray, ammonia-like odor		SP-SM		4	17 27 27	100			-3/8" Bentonite Chips
~	12- 13- 14-	SAND, gray to olive gray, sulfidic to amr saturated. SAND, light gray to black, very fine to fir medium sand, wet to saturated.		dr,		5	1 3 5	80			
PZ-5.BO	15-	SILT, sulfidic to ammonia-like odor, moi	st to very mo	ist. SM-MI	-111		6				
3gs 2002\	16-	SAND, dark gray with black laminations, saturated.	wet to			6	9	80			16 ft bgs
OPT and PZ Lo	17- 18-	-gray, very fine to fine grained, saturate	d.			7	11 15 14	75			18.4 ft bgs
w:\059741 Longview\Longview DPT and PZ Logs 2002\PZ-5.BOR	19- 20- 21-	-fine to medium grained, few to minor s	ilt	SP		8	5 11 18	10			- 10x20 Silica Sand - 2" SCH 40 0.010 Slot PVC Screen
2003 w:\059741 Lon	22-	as above, ammonia-like odor -				9	4 5 16	10			22.8 ft bgs Sump 23.5 ft bgs 24 ft bgs

Total depth of borehole = 24 feet bgs

25-

BORING LOG ____R-1S

Project_	REYNOLDS LONGVIEW	Sheet 2 of 2
Client	REYNOLDS	
Feature_	POTLINER STORAGE PILE	Drilled By CEW
Location	WEST OF POTLINER PILE; TOE OF DIKE see m	
Depth to	Water <u>see log.</u> , well R-ID	Surf Elev.
Date	October 4, 1982	Total Depth 12 feet

<u> </u>				
Security Casing WELL DETAIL	UNIFIED CLASS DEPTH (ft)	ELEVATION (ft)	Sample No By Blows per Hd 6 inches Becovery W/n 0.1 ft Sample By Type	Elevation Top PVC = 14.87 feet DESCRIPTION
SOS : heave soil : granular de soil :	□ 5 □ 10 □ 15 □ 20 □ 15			SEE LOG, WELL R-1D

REMARKS:

BORING LOG ____R-1D

Project_	REYNOLDS LONGVIEW	Sheet 1 of 2
Client	Reynolds	Drilled By CEW
Feature _	POTLINER STORAGE PILE	Logged By JEE
Location	WEST OF POTLINER PILE: Toe of Dike, see map	Date Logged 10/4/82
Depth to		Surf Elev
Date	October 4, 1982	Total Depth 26 feet

•						
	0 3	(ft)	SAMPLE	RECORD	Elevation '	Fop PVC = 15.38 feet.
WELL	UNIFIED CLASS DEPTH (ft)	ELEVATION	Sample No Blows per 6 inches	Recovery W/n 0.1 ft Sample Type		DESCRIPTION
		덦		<u>N</u>		
bentonite Security	- - - - - - 5		1	SS 100Push	4.5'-6.0'	Spoils, sand, medium to coarse grained, clean, scattered fine gravel (SP) dry.
riser L	- - - - 10		2	SS 100Push	•	Silty, v. fine sand to fine sandy-silt (SM-ML), dark gray, saturated, roots & organics, rotten smell, water sample #1 (D-T-W. 5. pumped 2 gallons prior to taking sample).
bentonite pellets	15 		3	SS 100Push	14.5'-16'	Same as above w/less sand (ML) saturated, roots, rotten odor, water sample #2 (D-T-W. 10.0', pumped 2 gaprior to laking sample)
kewe 199	20		4	SS 100Push		Same as above with clay, organics and wood fragmen (ML-CL)
2"screen	25		5	SS 100Push	24.5'-26.0'	Silt, gray, w/4" peat lay moist, not saturated (ML) water sample #3 (D-T-W. 17', pumped 7 gallons prito taking sample).

REMARKS: Analysis of ground water samples taken during drilling by Reynolds, Longview. Redrilled twice due to heaving of upper sand

SEA - 300-02

BORING LOG _____R-2

Project_	REYNOLDS	LONGVIEW				Sheet	7	- 6	
Client	REYNOLDS					Drilled	By	_of CEW	
Feature _	POTLINER	STORAGE P	ILE - BACK	GROUND	WELT.	F Sepond		JEE	
Location _	WEST OF	INDUSTRIAL	WAY; SOUTH	OF IP	SWITCHYARD	Nate Log	ged	10/5/	/82
Depth to	Water	2.4 feet				Surf Ele	_	10/3/	02
Date	October 5	5, 1982				Total De		15 f∈	
_								77 16	:er_

	· •					
sim		(ft)	SAMPLE R	RECORD	Elevation '	Top PVC = 6.53 feet
Security casing well DETAIL	UNIFIED CLASS DEPTH (ft)	ELEVATION	Sample No Blows per 6 inches	w/n 0.1 ft Sample Type		DESCRIPTION
Spoil sand :: spoil sand :: the squandars	- 5 - 5 - 10 - 15 - 15 - 15		2 10	SS 00Push S1 00Push	8.5'-10.0' 13.5'-15.0'	saturated (ML), fine sand lense from 8.5'-8.7'.

REMARKS: Analysis of ground water samples taking during drilling by Reynolds, Longview.

	A
A.	

ביים מטו מאוואטם	BORING	LOG .	R-3
------------------	--------	-------	-----

Project_	REYNO	DLDS	LONG	ZIEW				·		Sheet _	1	_of_	1
Client	REYNO	DLDS								Drilled	Ву	CEW	
Feature _										Logged		JEE	
Location .	EAST	OF	PILE, W	EST	EDGE	OF	DITCH,	ADJACENT	TO	Date Lo	gged	10/5	/82
Depth to	Water _						(R	R TRACKS)		Surf El	ev		
Date										Total D	epth_	25 f	eet

		(ft)	SAMPLE	RECORD	Elevation T	op PVC = 11.15 feet
WELL DETAIL	UNIFIED. CLASS DEPTH (ft)	ELEVATION (Sample No Blows per 6 inches	Recovery W/n 0.1 ft Sample Type		DESCRIPTION
spoil sand backfill 2" riser security casing			3	SS 100 Push SS 100 Push SS 100 Push	8.5'-10.0' 13.5'-15.0' 18.5'-20.0'	cohesive, v. soft, partia saturated, water sample #1 (D-T-W. 9.5' bailed sample

REMARKS:

Analysis of ground water samples taken during drilling by

Reynolds, Longview

BORING LOG ____R-4s

Project REYNOLDS LONGVIEW	Chart 2	
Client REYNOLDS	Sheet 2	_of2
Feature POTLINER STORAGE PILE	_Drilled By _	JJM
	Logged By	7777
Location WEST OF POTLINER PILE: TOE OF DIKE, SEE MAP		JEE
TIDE OF DIRE, SEE MAP	_Date Logged	10/6/82
Depth to Water SEE LOG WELL R-4D		- V V V C
Date October 6, 1982	_Surf Elev	
	Total Depth	19 feet
		TO TEEL

		(ft)	SAMPLE	RECORD	Elevation Top PVC = 16.57'
WELL DETAIL	UNIFIED CLASS DEPTH (ft)	z	Sample No Blows per 6 inches	Recovery w/n 0.1 ft Sample Tvpe	DDGGD TDGTGU
Sink havie Sink havie Sink havie Sink havie Sink havie		5			SEE LOG WELL R-4D
KELIHKKS:					

BORING LOG ____R-4D

Sheet 1	of	2
Drilled By	 JJM	
Logged By		
Date Logged		82
Surf Elev.		
Total Depth		
	Drilled By Logged By Date Logged Surf Elev.	Drilled By JJM Logged By JEE Date Logged 10/6/ Surf Elev.

WELL DETAIL	UNIFIED	ОЕРТН (£t)	ELEVATION (ft)	NO .	Blows per de inches de inches de Arabe de inches de inch	Type Type	Elevation '	Top PVC = 16.71 feet DESCRIPTION
Spor M. Back fill : Sand Heave Sand Heave Sand Mixed Sand Mix I" 1:50 Security asing	* 			2	100	ss ush ush	8.5'-10.0'	Spoils, sand, clean, loose (SP) Sand, dark gray, v. fine gravel, some silt, saturated v. soft (SM-SP), water sample #1 (D-T-W. 11.5' pumped 4 gallons prior to taking sample). d Heave at 13.5 prevented sampling Silty-clay, gray, v. soft (CL-ML), auger bit sample

REMARKS: Drilled with wooden plug in hollow stem to prevent sand heave at depth.

APPENDIX H
HYDROGRAPHS FOR SOUTH PLANT WELLS, PIEZOMETERS, SURFACE WATERGROUNDWATER PAIRS, AND SURFACE WATER BENCHMARKS

South Plant Area Hydrographs Former RMC Longview Longview, Washington

Figure H-1 R-1S and R-1D Hydrographs

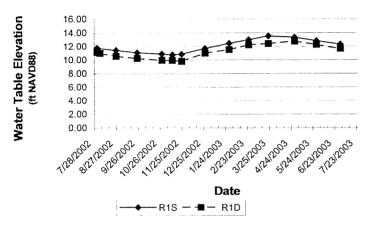


Figure H-3 R-2 and R-3 Hydrographs

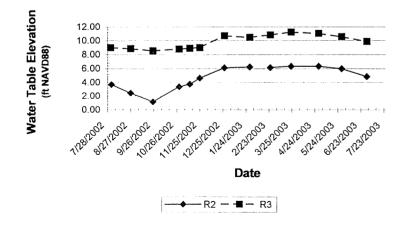


Figure H-2 R-4S and R-4D Hydrographs

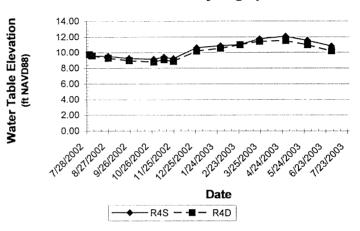
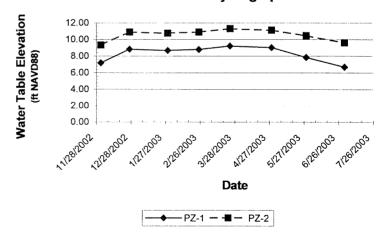



Figure H-4
PZ-1 and PZ-2 Hydrographs

South Plant Area Hydrographs Former RMC Longview Longview, Washington

Figure H-5 PZ-3, PZ-4, PZ-5 Hydrographs

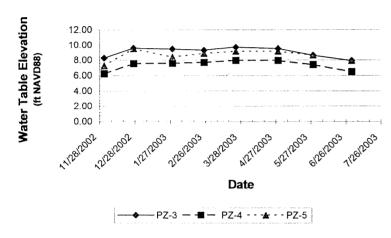


Figure H-7 G-2 Hydrograph

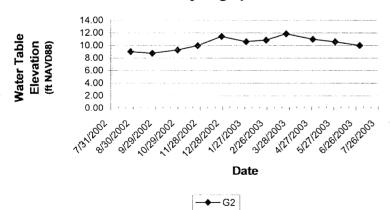


Figure H-6
G-1A and G-1B Hydrographs

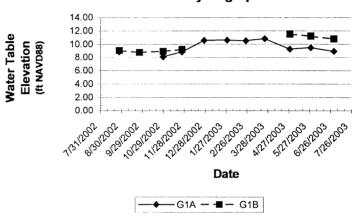
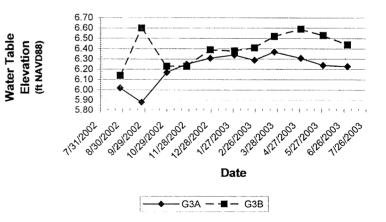
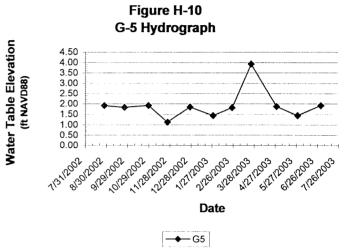




Figure H-8
G-3A and G-3B Hydrographs

South Plant Area Hydrographs Former RMC Longview Longview, Washington

Voluntary Cleanup Report – Underground Gasoline Tank – Former Reynolds Longview Cable Plant

Anchor Environmental, L.L.C. Prepared for Washington State Department of Ecology. January 2003.

Voluntary Cleanup Report Underground Gasoline Tank Former Reynolds Longview Cable Plant

Longview, Washington

Prepared for Alcoa Inc.

Prepared by Anchor Environmental, LLC Portland, Oregon

January 9, 2003

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

P.O. Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

February 19, 2003

Your address is in the **Grays- Elochoman** watershed

Mr. Thomas D. Dickey, Technical Superintendent Longview Aluminum 4029 Industrial Way Longview, WA 98632

Dear Mr. Dickey:

Thank you for submitting the results of your independent remedial action for review by the Washington State Department of Ecology (Ecology). Ecology appreciates your initiative in pursuing this administrative option under the Model Toxics Control Act (MTCA).

Ecology's Toxics Cleanup Program has reviewed the following information regarding cleanup activities at 4029 Industrial Way, Longview, WA 98632:

- Anchor Environmental, LLC, <u>Voluntary Cleanup Report Underground Gasoline</u> Tank Former Reynolds Lonview Cable Plant, January 9, 2003.
- Archived **BICC Cable Corp** file, and associated correspondence.

The above-listed reports will be kept in Central Files of the Southwest Regional Office (SWRO) of Ecology for review by appointment only. Appointments can be made by calling the SWRO Resource Person at (360) 407-6365.

Based upon the above listed information, Ecology has determined that, at this time, the release of Total Petroleum Hydrocarbons as gasoline into the soil and groundwater no longer poses a threat to human health or the environment.

Therefore, Ecology is issuing this determination that no further remedial action is necessary at this site under MTCA, Chapter 70.105D RCW. However, please note that because your actions were not conducted under a consent decree with Ecology, this letter is written pursuant to RCW 70.105D.030(1)(i) and does not constitute a settlement by the state under RCW 70.105D.040(4) and is not binding on Ecology.

Mr. Thomas D. Dickey February 19, 2003 Page 2 of 2

Ecology's no further action determination is made only with respect to the releases identified in the reports listed above and applies only to the area of the property affected by the release of gasoline, as identified in the reports. It does not apply to any other release or potential release at the property, any other areas on the property, nor any other properties owned or operated by Longview Aluminum, BICC Cable Corp, or Thomas Dickey.

At the conclusion of this process, Ecology will update its databases and your site will not appear in future publications of the Confirmed and Suspected Contaminated Sites List (previously known as the Affected Media and Contaminants Report).

The State, Ecology, and its officers and employees are immune from all liability and no cause of action of any nature may arise from any act or omission in providing this determination.

If you have any questions about any of the information presented in this letter, please contact me at (360) 407-6261.

Sincerely,

Lisa Pearson
Project Engineer

Toxics Cleanup Program Southwest Regional Office

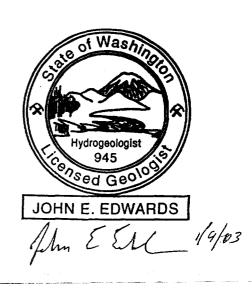
Tim han

LP/lp

cc:

Charles Cline, Department of Ecology

Patty Martin, Department of Ecology


Voluntary Cleanup Report Underground Gasoline Tank Former Reynolds Longview Cable Plant

Longview, Washington

Prepared for Alcoa Inc.

Prepared by Anchor Environmental, LLC Portland, Oregon

January 9, 2003

Table of Contents
1.0 CABLE PLANT AND UST BACKGROUND 1
2.0 PURPOSE 1
3.0 INITIAL INVESTIGATION/CLEANUP
4.0 SOIL AND GROUNDWATER REMEDIATION
4.1 Initial Soil and Groundwater Removal
4.2 Installation of Groundwater Monitoring System 4
4.3 Remedial Investigation4
4.4 Feasibility Study5
4.5 Integrated Remediation Program6
4.6 Post Remediation Groundwater and Surface Water
Monitoring7
5.0 SUMMARY AND CLOSURE RECOMMENDATION8
List of Tables
Table 1- Groundwater Quality Data
Table 2- Soil Confirmation Sample Data
Table 3- Biotreatment Soil Data
List of Figures
Figure 1- Site Location Map
Figure 2- Benzene Water Quality Data and Water Table Contours for December, 1995
Figure 3- Benzene Water Quality Data and Water Table Contours
for December, 1996
List of Attachments
Attachment A- Documentation of thermal treatment of gasoline contaminated soils
Attachment B- Analytical data for walls of excavation August 8, 1994
Attachment C- Approximate locations of air sparging/vapor extraction (AS/VP) piping
Attachment D- Analytical data for biological cell treatment July 25, 1994,
August 24, 1994, and October 3, 1994 Attachment E-1995 Annual Groundwater Monitoring Report, Reynolds Cable Plant,
Longview Washington January 25, 1996
Attachment F-Annual VOC and metals data submitted for NPDES Permit #WA000039-6
Attachment G- Groundwater Monitoring Report, Reynolds Cable Plant, Longview,
Washington Ianuary 14, 1998

1.0 Cable Plant and UST Background

In 1968 Reynolds Metals Co. began construction of the Longview Cable Plant to take advantage of aluminum produced at the neighboring Longview Aluminum Reduction Plant. The plant was completed in 1970 and is situated on 27 acres with 327,000 square feet under roof including main production buildings, office buildings, and ancillary storage and equipment buildings. The plant produced a full range of insulated and noninsulated aluminum cables for electrical transmission in addition to continuous aluminum rod.

In 1992 the Electrical Division of Reynolds Metals Co. was sold to BICC Cables Corporation. BICC subsequently decided to discontinue operations at the Longview facility, and the plant was closed in May, 1993. The property reverted back to Reynolds Metals Co. In May, 2000 Reynolds Metals Co. merged with Alcoa, Inc. (Alcoa). Alcoa subsequently sold the business to Michigan Avenue Partners. The plant was renamed Longview Aluminum, LLC. Alcoa currently owns the land under the facility. The land was leased to Longview Aluminum, LLC in February, 2001.

In 1974 Reynolds Metals Co. Longview Cable Plant installed a 1000-gallon underground gasoline storage tank. The cable plant location is shown on Figure 1. In 1991 rather than upgrade a 17-year-old tank to meet new regulatory requirements, Reynolds decided to remove the tank. Removal began in November, 1991. When the tank was removed, a small (approximately 1/16 inch) hole was noted. Soil and groundwater appeared to be contaminated with gasoline.

Notification of the leaking underground gasoline storage tank was made to the Department of Ecology (Ecology) as required by WAC 173-340, the Model Toxics Control Act (MTCA). The notification was acknowledged by Ecology in a response dated December 10, 1991, from Patricia L. Martin, LUST Site Manager, Toxic Cleanup Program. Reynolds conducted an independent cleanup of the site. The details and results of the independent cleanup are described in the following sections.

2.0 Purpose

Alcoa wishes to close this former UST site under Ecology's Voluntary Cleanup Program. Along with this Voluntary Cleanup Report, Alcoa is submitting the following documents required under the Voluntary Cleanup Program.

- Voluntary Cleanup Program Application to Request Assistance
- Voluntary Cleanup Program Site Summary
- Voluntary Cleanup Program Terrestrial Ecological Evaluation Exclusion

There were a number of technical reports generated by Reynolds' consultants during this project. The reports done by Pacific Northern Geoscience during the period December 6,

1991 through October 4, 1993 were submitted to Ecology during that time period. Ecology has requested that those documents not be resubmitted with this Voluntary Cleanup Report. Those reports are referenced herein.

Consultant reports, relevant information from Alcoa project files, and lab reports not already submitted to Ecology, are attached to this report.

This Voluntary Cleanup Report is divided into five sections. Section 3 summarizes the investigation and cleanup that occurred as the tank was decommissioned. Section 4 is divided into subsections that cover subsequent cleanup activities, remedial investigation, feasibility study, and groundwater monitoring. Section 5 covers summary conclusions and a recommendation for site closure.

3.0 Initial Investigation/Cleanup

The tank was transported to the Pacific Northern Environmental shop in Longview, Washington where it was decommissioned. The sludge and residual liquid were transported to a licensed facility for disposal. The tank was recycled as scrap metal. Details of the initial removal and remediation are included in a report titled <u>Underground Storage Tank Decommissioning Site Assessment</u> prepared by Pacific Northern Environmental dated December 16, 1991. This report was submitted to Ms. Patricia Martin at Ecology' Southwest Regional Office and is in Ecology's file for this site. The information in this section is summarized from the 1991 report.

Following tank removal, soil with the appearance of petroleum contamination was excavated. The soil was removed down to the soil/water interface. Soil was not excavated horizontally outside the existing excavation. Soil samples were collected from the walls of the excavation and from the soil stockpile. The samples were delivered to Columbia Analytical Services in Kelso, Washington. The soil samples were analyzed using Washington Method WTPH-HCID for hydrocarbons; EPA Method 5030/8020 for benzene, toluene, ethylbenzene, and total xylenes (BTEX); and by EPA Method 7420 for total lead. Samples which indicated that gasoline was present using Method WTPH-HCID were further analyzed for gasoline by Washington Method WTPH-G. MTCA Method A Cleanup Levels were exceeded for gasoline and BTEX in some samples.

On December 4, 1991 a water sample was taken from the excavation and analyzed using EPA Method 7420 for total lead, EPA Methods 3550/8015 for total petroleum hydrocarbons, and by EPA Methods 5030/8020 Modified for BTEX. The testing results indicated that lead, gasoline, oil, benzene, toluene, and total xylenes were above Ecology's Method A Cleanup Levels for groundwater.

On December 9, 1991 additional soil was removed from the bottom and sides of the tank excavation. Soil samples were then taken from the walls of the excavation and from the soil stockpile. Using the above referenced methods for soils, laboratory testing of the soil samples from the excavation walls showed concentrations of gasoline, benzene, toluene,

ethylbenzene, and total xylenes below Method A Cleanup Levels. Gasoline concentrations in the stockpile soil samples exceeded Method A Cleanup Levels.

4.0 Soil and Groundwater Remediation

4.1 Initial Soil and Groundwater Removal

Beginning January 2, 1992 Pacific Northern GeoSciences conducted some additional soil and groundwater cleanup in the tank excavation area. Those activities were described in the <u>Independent Interim Cleanup Status Report</u> for Reynolds Metals Company, March 20, 1992. That report was prepared by Pacific Northern Environmental and submitted to Ms. Patricia Martin at Ecology's Southwest Regional Office. The March report describes the site activities that are summarized in this subsection. The report is currently in Ecology's file for this site.

Following removal of the UST, soil impacted with petroleum hydrocarbons was observed below the groundwater level in the tank excavation. On January 2, 1992 Pacific Northern Environmental removed soil below the water surface until the soil with field detectable hydrocarbon concentrations had been removed. A soil sample was taken from the soil stockpile for laboratory testing. Soil was not sampled below the water surface in the excavation. The gasoline concentration of the stockpile soil sample was above the Method A Cleanup Level.

Following removal of the soil below the excavation water level, Pacific Northern Environmental pumped the excavation dry on January 6, 1992 and again on January 15, 1992. Approximately 4500 gallons of water were removed. This material was collected and disposed offsite by Cowlitz Clean Sweep.

The groundwater in the excavation was sampled on 1/6/92 and 1/15/92 following each recharge. Analyses of both samples showed contaminants above Ecology's Method A Cleanup Levels. Pacific Northern Environmental then filled the excavation with pea gravel and installed a 4-inch monitoring/extraction well (MW-1) in the excavation. This was done as a contingency, to provide a potential groundwater recovery well, if needed. Tacoma Pump and Drilling provided oversight of the well installation. Upon completion of the well, a well diagram was constructed by Tacoma Pump and Drilling and submitted to Ecology. On March 5, 1992 Pacific Northern Environmental developed and sampled the well. Analytical results indicated a decrease in constituent concentrations compared with earlier sampling events, but the concentrations still exceeded Ecology's Method A Cleanup Levels. The location of well MW-1 is shown on Figure 2.

The soil stockpile was covered with polyethylene sheeting. In June, 1992 the soil was shipped to Oregon Hydrocarbon, Inc. for thermal treatment. Details of the offsite soil

treatment were provided in a June 16, 1992 letter to Ms. Patricia Martin of Ecology's Southwest Regional Office (Attachment A).

4.2 Installation of Groundwater Monitoring System

A groundwater monitoring system was installed at the site to determine the extent of groundwater contamination beyond the former tank location. Five monitoring wells were installed on October 13, 1992 (MW-2, MW-3, MW-4, MW-5, and MW-6). That work was completed by Cascade Drilling Company, Woodinville, Washington. The well logs, construction details, and water quality data described in this section are from the report Preliminary Hydrogeologic Assessment Reynolds Metals Co. Cable Plant Longview, Washington (Pacific Northern Geoscience, January 4, 1993). That report was submitted to Ms. Patricia Martin and is in Ecology files.

At each monitoring well boring location one soil sample was collected from the vadose zone immediately above the watertable, and one groundwater sample was collected from each of the six monitoring wells (including well MW-1 installed in the tank excavation). The soil and groundwater samples were submitted for testing of total petroleum hydrocarbons as gasoline (WTPH-G), BTEX by EPA method 5030/8020, and total lead by EPA method 7421. Gasoline was detected in the soil from location MW-2 at a concentration exceeding Ecology's Method A Cleanup Level. Benzene was detected at concentrations above cleanup levels in the soil samples from MW-2 and MW-3. The total xylene cleanup concentration was exceeded for soil from MW-2. Toluene, ethylbenzene, and lead were also detected in the soil at various locations but the concentrations were below Method A Cleanup Levels.

Groundwater from well MW-2 exceeded the MTCA Method A TPH gasoline concentration limit. The benzene MTCA Method A concentration limit was exceeded in groundwater from wells MW-1, 2, 3, 4.. Other BTEX constituent concentrations exceeded MTCA Method A limits in the groundwater samples from wells MW-2 and 3.

4.3 Remedial Investigation

Because the preliminary groundwater investigation showed that contamination extended beyond the tank excavation, Reynolds Metals Co. began a focused remedial investigation and feasibility study (RI/FS). The information in this subsection and subsection 4.4 is summarized from the report <u>Focused Remedial Investigation and Feasibility Study</u>, Reynolds Metals Cable Plant, Longview, Washington (Pacific Northern GeoScience, October 14, 1993). That report is in Ecology files.

The purpose of the RI/FS was to develop sufficient information to select an appropriate cleanup action to prevent further contamination of groundwater and soil. The RI focused on characterizing the distribution and concentrations of petroleum constituents in soil and

groundwater. The FS focused on evaluation of alternative cleanup methods and selection of an action that would protect human health and the environment.

The groundwater investigation described in subsection 4.2 was considered to be Phase 1 of the RI. Phase two was performed in March, 1993 and consisted of four additional soil borings, three of which were completed as monitoring wells. These were labeled SB-1, MW-7, MW-8, and MW-9.

The soil borings described in subsection 4.2 were located based on limited subsurface information available from previous work at the site. They were located in a radial pattern and in the apparent down-gradient direction from the former tank location. Soil borings completed during the second phase were located to establish the horizontal extent of contamination based on analytical data collected in phase one.

Results of soil analytical testing indicated that the zone of soil contamination was limited to the area immediately downgradient and next to the former tank location, specifically toward SB-1 and MW-2. The extent and volume of soil containing petroleum hydrocarbons at concentrations exceeding MTCA cleanup standards was determined by computer modeling, evaluation of soil quality data, and visual observations made while conducting the investigation. Estimated volumes of contaminated soil were calculated by contouring contaminant concentration data collected from the borings. Using an average impacted soil thickness of 3 to 5 feet gave an estimated volume of 1082 to 1805 cubic yards of soil exceeding MTCA cleanup standards.

A new round of groundwater samples was taken from the nine monitoring wells on March 29, 1993. All groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (method WTPH-G), BTEX by EPA method 5030/8020, and total lead by EPA method 7421. Both filtered and unfiltered samples were tested for total lead. Concentrations exceeding MTCA Method A cleanup standards were found in several of the monitoring wells. The highest concentrations were found at MW-2 and MW-3. Benzene was the most detected volatile organic compound, and total lead was identified in unfiltered samples but was not detected in the filtered samples. The groundwater quality data are in Table 1.

4.4 Feasibility Study

The RI results showed that soil and groundwater concentrations near the former UST exceeded MTCA Method A limits, triggering the need for a feasibility study. Technologies considered for soil remediation included: 1) no action; 2) in-situ treatment using soil vapor venting; 3) excavation and treatment by on-site or off-site thermal desorption; 4) excavation and off-site landfill disposal; and 5) excavation and on-site biological treatment. Groundwater treatment alternatives considered included: 1) no action; 2) groundwater extraction and on-site treatment by activated carbon; and 3) groundwater extraction and on-site treatment by air stripping.

Each alternative was evaluated individually considering the factors of; overall protection of human health and the environment, compliance with ARARs, long term effectiveness, long term performance, reduction of toxicity, mobility, or volume of waste, short term effectiveness, implementability, and cost. Two integrated cleanup scenarios met all of the criteria: 1) Contaminated soil excavation and on-site bioremediation, with monitored natural attenuation of the groundwater contaminants; and 2) Contaminated soil excavation and on-site bioremediation, with groundwater pump and treat. Integrated cleanup scenario 1 was selected. This scenario was considered best because the source of the contamination was located in relatively low permeability soils which would be difficult to cleanup using vapor extraction. After removing the source, the groundwater quality would improve through natural attenuation of the dissolved contaminants. Ecology was notified that the soils would be excavated and biotreated onsite in a May 26, 1994 letter to Ms. Patricia Martin.

4.5 Integrated Remediation Program

Integrated remediation began in the summer of 1994. On July 18, 1994 additional asphalt pavement was removed and shipped offsite for recycle. Concrete and overburden soils were removed and stored on site. Over the next several days additional concrete and overburden were removed and the excavation of contaminated soils began.

The excavation was expanded as needed to follow gas odors. A photoionization detector (PID) was used to detect gasoline contamination and trenches were dug outward from the excavation to determine more precisely the extent of the contamination. The excavation was expanded laterally to encompass the trenches where contamination was found, and deepened to approximately 2 feet below water level. Monitoring wells MW-1, MW-2, and MW-3 were removed and closed in the process. Excavation continued through August 1, 1994. The final excavation boundary is shown on Figure 2. Soil samples were obtained from the excavation walls on August 1, 1994 and analyzed for BTEX using EPA Methods 5030/8020 and gasoline by method WTPH-G. BTEX and gasoline were detected in soil samples from the north wall, but at concentrations below Ecology's Method A Cleanup Levels. The soil lab testing report is shown in Table 2 and included in Attachment B.

After the confirmation sample testing results showed that Method A Cleanup Levels had been achieved for the remaining soils (see Table 2), the excavation was backfilled. At this point it was decided to install air sparging and vapor extraction (AS/VE) pipes in the excavation backfill material as a contingency should Method A Cleanup Levels for groundwater not be achievable using monitored natural attenuation. A hand drawing of the AS/VE piping layout is shown in Attachment C. The piping was installed in beds of gravel. The rest of the backfill consisted of clean sand, which was watered, compacted, and installed in layers of approximately 12 inches. The excavation was covered with plastic sheeting at a depth of 2 feet below original grade. This sheeting was installed to provide a seal for the VE piping so that they would draw air from the underlying soil

rather than short circuit to the atmosphere. The sheeting was covered with sand and the area finished with gravel. The excavation backfill completion date was August 17, 1994.

The excavated soil was placed in biological treatment cells (biocells). The biocells were constructed of 10-mil plastic sheeting placed on top of 6 inches of clean sand. The cells were surrounded with straw bales and the plastic sheeting was draped over the bales. The contaminated soil was spread to a thickness of approximately 12 inches. The total area covered was approximately 50,000 square feet, which equates to approximately 1850 cubic yards of contaminated soil. Water accumulated during the process or pumped from the excavation was sprayed over the soil in the biocells to keep the soil moist and aid the biotreatment process. The biocells were divided into seven grids for testing.

The seven biological treatment cell grids were labeled G1 through G7. The soil was kept moist and rototilled on a regular basis. When the soil reached the condition where there were no detectable gasoline odors, composite samples were taken from the grid(s) and submitted to Columbia Analytical Services (CAS) for BTEX and gasoline testing. When the concentrations fell below Model A Cleanup Levels, the upper six inches of treated soil was skimmed off the cell and the remaining six-inch layer remained in treatment. Biotreatment continued until late-September. On October 3, 1994 the analytical report from CAS indicated that all of the soil in each grid met Method A Cleanup Levels with all samples non-detect (ND) for both BTEX and gasoline. The confirmation soil quality data are in the lab reports in Attachment D and are shown in Table 3. The treated soil was used as general fill on site.

4.6 Post Remediation Groundwater and Surface Water Monitoring

In late 1994, EMCON Northwest, Inc. was hired to monitor groundwater quality and evaluate shallow groundwater conditions near the former UST. Emcon conducted quarterly sampling of monitoring wells MW- 4 through 9, including hydrology monitoring. The groundwater quality data are in Table 1. Groundwater samples were analyzed for BTEX by EPA Method 5030A/8020 and for gasoline by Method WTPH-G. The data are in the 1995 Annual Groundwater Monitoring Report (EMCON Northwest, January 25, 1996), located in Attachment E.

The data in the 1995 annual report showed that toluene, ethylbenzene, total xylenes, and gasoline were not detected in any of the samples from any of the wells at concentrations above the method reporting limits (MRLs). Benzene was detected in samples from MW-4, MW-6, and MW-7. The groundwater flow direction beneath the site was found to be consistently south-southwest. The benzene water quality data and watertable contours for December 1995 are shown on Figure 2.

Groundwater sampling continued quarterly until 1997. Documentation of the final groundwater monitoring is included in Attachment G: <u>Groundwater Monitoring Report</u>, Reynolds Cable Plant_dated January 14, 1998. For each of the 1996 and 1997 sampling events toluene, ethylbenzene, total xylenes, and gasoline continued to be below MRLs.

Following the 1994 removal of the gasoline impacted soils, the groundwater benzene concentrations in wells MW-4, 6, and 7 rapidly declined, as shown on Table 1. The 1995 and early 1996 water quality data show a consistent decrease in benzene concentrations. For the June 21, 1996 sampling event, the benzene concentration in MW-4 was below the MRL, 1.3 µg/l in MW-6, and 4.3 µg/l in MW-7. Benzene concentrations for the December 13, 1996 sampling event were below MRLs for all site wells. Benzene concentrations in MW-7 remained below the MRL when this well was resampled on April 9, 1997. The benzene water quality data and watertable contours for December 1996 are shown on Figure 3. These data show that the plan to remediate the groundwater contamination using a combination of source soil removal and monitored natural attenuation was successful.

The site is located within a heavy industrial zoned facility and the shallow groundwater discharges into a surface water drainage ditch located approximately 100 feet southwest and downgradient of MW-7. This ditch was monitored by NPDES permit #WA000039-6 as outfall 009. The lab reports of priority pollutant VOC and total metals testing of ditch water samples taken at outfall 009 from March, 1995 to March, 1998 are shown in Attachment F. Those data show no decrections for VOCs and no decrections for lead during the period of the cleanup.

5.0 Summary and Closure Recommendation

Gasoline contamination found during the 1991 decommissioning of the 1000-gallon underground gasoline tank at the Reynolds Metals Co. Longview Cable Plant confirmed that a release of gasoline had occurred. Analyses of soil samples taken from the initial excavation showed contaminant concentrations above MTCA Method A Cleanup Levels. Additional contaminated soil was removed and biotreated onsite between late-1991 and October, 1994. The remaining soils in the excavation met MTCA Method A Cleanup Levels. Monitoring data show that natural attenuation has resulted in groundwater quality that meets MTCA Method A cleanup levels. Annual NPDES surface water quality data indicate that groundwater contamination did not impact the water quality in the ditch downgradient of the former UST location. Impacted soil and groundwater near the former gasoline UST have been successfully cleaned up and no further action is required.

Tables

TABLE 1

Page 1 of 4

		D8	m . 1 8	D.1 11 8	m . 1 × z	Page 1 of 4
Well Number	Date Sampled	Benzene ^a	Toluenea	Ethylbenzene ^a	Total Xylenes	TPH as Gasoline ^b
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MTCA Method B C	leanup Levels	71	200,000	29,000	NL ^d	10,000°
MW-1	10/19/92	71.4	2	29	9	550
	3/11/93	1	ND	10	ND	190
	Well abandoned on Jul	ly 28, 1994.				
MW-2	10/19/92	1840	46	136	222	1910
	3/11/93	1500	41	200	271 .	2100
	Well abandoned on Jul	ly 28, 1994.				
MW-3	10/19/92	718	7	28	75	738
	3/11/92	1400	15.0	49.0	114.0	1400
	Well abandoned on Jul	ly 28, 1994.				
MW-4	10/19/92	55.1	ND	ND	1	ND
	3/11/93	110	ND	ND	ND	ND
	3/27/95	65.5	ND	ND	ND	ND
(Duplicate)	3/27/95	63.5	ND	ND	ND	ND
	6/29/95	41 ^d	ND ^d	NDd	ND^d	ND
	9/15/95	64.4	ND	ND	ND	ND
(Duplicate)	9/15/95	66.6	ND	ND	ND	ND
	12/15/95	9.7	ND	ND	ND	ND
	3/28/96	NS	NS	NS	NS	NS
	6/21/96	ND	ND	ND	ND	ND
	9/24/96	NS	NS	· NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
	4/9/97	NS	NS	NS	NS	NS

TABLE 1

Well Number	Date Sampled	Benzene ^a (μg/L)	Toluene ^a (μg/L)	Ethylbenzene ^a	Total Xylenes ^a	Page 2 o
MTCA Method B Cle		71		(μg/L)	(μg/L)	(μg/L)
MW-5	10/19/92		200,000	29,000	NL ^d	10,000°
	3/11/93	ND	2	1	7	ND
	3/11/95	ND	ND	ND	ND	ND
	1 1	ND	ND	ND	ND	ND
	6/29/95	NS	NS	NS	NS	NS
	9/15/95	ND	ND	ND	ND	ND
	12/15/95	ND	ND	ND	ND	ND
	3/28/96	NS	NS	NS	NS	NS
	6/21/96	NS	NS	NS	NS	NS
	9/24/96	NS	NS	NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
GV (4/9/97	NS	NS	NS	NS	NS
ſW-6	10/19/92	ND	ND	ND	ND	ND
	3/11/93	ND	ND	ND	ND	
	3/27/95	ND	ND	ND	ND	ND
	6/29/95	ND	ND	ND	ND ND	ND
	9/15/95	1.0	ND	ND	ND	ND
•	12/15/95	3.0	ND	ND	ND	ND
	3/28/96	NS	NS	NS		ND
	6/21/96	1.3	ND	ND ND	NS	NS
	9/24/96	NS	NS	NS NS	ND	ND
	12/13/96	ND	ND	I 1	NS	NS
	4/9/97	NS	NS	ND	ND	ND
		110	149	NS	NS	NS

TABLE 1

	T					Page 3 of 4
		Benzene ^a	Toluene ^a	Ethylbenzene ^a	Total Xylenes ^a	TPH as Gasoline ^b
Well Number	Date Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MTCA Method B Cle	anup Levels ^c	71	200,000 29,000		NL ^d	10,000°
MW-7	3/11/93	2	ND	ND	ND	ND
	3/27/95	121	ND	ND	ND	ND
	6/29/95	784	ND^d	ND^d	ND^d	ND
(Duplicate)	6/29/95	724	ND^d	ND^d	ND ^d	ND
	9/15/95	60.5	ND	ND	ND	ND
	12/15/95	150	ND	ND	ND	ND
(Duplicate)	12/15/95	148	ND	ND	ND	ND
	3/28/96	38.3	ND	ND	ND	ND
	6/21/96	4.3	ND .	ND	ND	ND
	9/24/96	0.7	ND	ND	ND	ND
	12/13/96	ND	ND	ND	ND	ND
	4/09/97	ND	ND	ND	ND	ND
MW-8	3/11/93	ND	ND	ND	ND	ND
	3/27/95	ND	ND	ND	ND	ND
	6/29/95	ND	ND	ND	ND	ND
	9/15/95	ND	ND .	ND	ND	ND
	12/15/95	ND	ND	ND	ND	ND
	3/28/96	NS	NS	NS	NS	NS
	6/21/96	NS	NS	NS	NS	NS
	9/24/96	NS	NS	NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
	4/9/9 7	NS	NS	NS	NS	NS

TABLE 1

Page 4 of 4

Well Number	Date Sampled	Benzene ^a (μg/L)	Toluene ^a (μg/L)	Ethylbenzene ^a (μg/L)	Total Xylenes ^a (μg/L)	TPH as Gasoline ^b (μg/L)
MTCA Method B Clea	anup Levels ^c	71	200,000	29,000	NL ^d	10,000°
MW-9	3/11/95	ND	ND	ND	ND	ND
	3/27/95	ND	ND	ND	ND	ND
	6/29/95	NS	NS	NS	NS	NS
	9/15/95	ND	ND	ND	ND	ND
	12/15/95	NS	NS	NS	NS	NS
	3/28/96	NA	NA	NA	NA	NA
	6/21/96	NS	NS	NS	NS	NS
	9/24/96	NS	NS	NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
	4/9/97	NS	NS	NS	NS	NS

NOTE:

Not detected at or above laboratory method reporting limit.

Not sampled

NA = Not analyzed for particular analyte.

μg/L = Micrograms per liter (parts per billion).
Shaded values exceed MTCA Method B Cleanup levels.

BTEX by USEPA Method 5030 A/8020.

Total petroleum hydrocarbons as gasoline by Ecology Method WTPH-G.

Chapter 173-340 WAC, "The Model Toxics Control Act Cleanup Regulations, Method B Cleanup Levels." Amended January 1996. Cleanup levels based on protection of surface water. Includes federal water quality criteria to protect humans eating aquatic organisms (WQA, 40 CFR 131.36).

There are no Method B cleanup levels based on protection of surface water for total xylenes and dissolved lead.

Ecology, 1987. Discharges containing oil and grease of mineral origin. Water Quality 9, September.

BTEX by USEPA Method 8260.

Analytical Report

Client:

EMCON Northwest

Project:

Ostrander/Reynolds/#0542-002.01

Sample Matrix: Soil

Date Collected: Date Received:

8/1/94 8/1/94

Date Extracted: Date Analyzed:

Service Request:

8/5/94 8/6/94

K944608

TABLE 2

Gasoline Range Organics Total Petroleum Hydrocarbons as Gasoline Washington DOE method WTPH-G Units: mg/Kg (ppm)

Sample Name	Lab Code	MRL	Result
South Wall-1-4.5	K944608-001	5	47(a)
South Wall-2-4.5	K944608-002	5 .	<10(b)
East Wall-1-4.5	K944608-003	5	<10(b)
North Wall-1-4.5	K94460S-004	5	<10(b)
North Wall-2-4.5	K944608-005	5	34
West Wall-1-4.5	K944608-006	5	<10(b)
Method Blank	K940805-SB	5	ND
< leanup level			100

Quantified as gasoline. The sample contained components that eluted in the gasoline range, but the chromatogram did not match the typical gasoline fingerprint.

MRL is elevated because of the low percent solids in the sample as received.

	,		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A 3 70		Date	
Approved By	·		
**		7 2 2 2 2 4 2 5 5 6 6 1 1	化离子单位 医动物性两种毒

Analytical Report

Client: Project: **EMCON Northwest**

Ostrander/Reynolds/#0542-002.01

Sample Matrix: Soil

Date Collected:

Date Received: Date Extracted:

8/1/94 8/5/94

Service Request: K944608

TABLE 2

BTEX EPA Methods 5030/8020

	Method Repo	Analyte: Units: rting Limit:	Benzene mg/kg(ppm) 0.05	Toluene mg/kg(ppm) 0.1	Ethyl- benzene mg/kg(ppm) 0.1	Total :Xylenes mg/kg(ppm) 0.1
Sample Name	Lab Code	Date Analyzed		_		
South Wall-1-4.5	K944608-001 K944608-002	8/6/94 8/6/94	<0.1(a) <0.1(a)	<0.2(a)	<0.2(a) <0.2(a)	<0.2(a) <0.2(a)
East Wall-1-4.5 E North Wall-1-4.5 North	K944608-003 K944608-004	8/6/94 8/6/94	<0.1(a) <0.1(a)	<0.2(a) <0.2(a)	<0.2(a) <0.2(a)	<0.2(a) <0.2(a)
North Wall-2-4.5 μ West Wall-1-4.5 ω	K944608-005 K944608-006	8 /6/94 8/6/94	0.1 <0.1(a)	<0.2(a) <0.2(a)	0.4 <0.2(a)	1.2 <0.2(a)
Method Blank	K940305-SB	8/6/94	ND 0.5	ND 40	ND Zo	ND 20

MRL is elevated because of the low percent solids in the sample as received.

Approved By

Analytical Report

Client: Project: Reynolds Metals Company Reynolds Cable Plant

Sample Matrix:

Soil

Service Request: K944825 Date Collected: 8/10/94

Date Received: 8/10/94 Date Extracted: 8/15/94

Date Analyzed: 8/16,18/94

TABLE 3

BTEX EPA Methods 5030/8020 mg/Kg (ppm) Dry Weight Basis

		Analyte: Method Reporting Limit:	Benzene 0.05	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1
Sample Na	ıme	Lab Code				
G1-810 /	-6 ''	K944825-001	ND	ND	ND	ND
G2-810		K944825-002	ND	ND	ND	ND
G3-810		K944825-003	ND	ND	ND.	ND
G4-810		K944825-004	ND	ND	ND	ND
G5-810		K944825-005	ND	ND	ND	ND
Method Bla	ank	K940815-SB	ND	ND	ND	ND

4A/061694 K944825.XLS - 4A 8/24/94

Page 1 of 5

Page No.:

00004

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Cable Plant

Sample Matrix: Soil

Date Collected:
Date Received:

08/10/94 08/10/94

Date Received:

08/15/94

Date Analyzed: Work Order No.:

08/16,18/94 K944825

TABLE 3

Total Petroleum Hydrocarbons as Gasoline Washington DOE Method WTPH-G mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result
1-6"			-
G1-810	K944825-001	5	ND
G2-810	K944825-002	5	ND
G3-810	K944825-003	5	ND
G4-810	K944825-004	5	ND
G5-810	K944825-005	5	ND
Method Blank	K940815-SB	5	ND

Approved by ahi Aprelmon

Date 8/24/94

00005

Page 2 of 5

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Cable Plant

Sample Matrix:

Soil

Service Request: K945245

Date Collected: 8/29/94

Date Received: 8/29/94 Date Extracted: 8/31/94

Date Analyzed: 8/31,9/1/94

BTEX and Total Petroleum Hydrocarbons (TPH) as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G

TABLE 3

Units: mg/Kg (ppm) Dry Weight Basis

	Analyte: Method Reporting Limit:	Benzene 0.05	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1	TPH as Gasoline 5
Sample Name	Lab Code					
G6-829 1-6" G7-829 Method Blank	K945245-001 K945245-002 K940831-SB	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND

5A/061694 5245GBTX.XLS - 5A 9/7/94

Page 3 of 5

00003

Analytical Report

Client:

Reynolds Metals Company

Service Request: K945760

Project:

Reynolds Cable Plant

Date Collected: 9/21/94

Sample Matrix:

Soil

Date Received: 9/21/94 Date Extracted: 9/21/94

TABLE 3

Date Analyzed: 9/22,23/94

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G Units: mg/Kg (ppm) Dry Weight Basis

	Analyte: Method Reporting Limit:	Benzene 0.0.5	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1	TPH as Gasoline 5
Sample Name	Lab Code					
G1-9 6-12"	K945760-001	ND	ND	ND	ND	ND
G2-9	K945760-002	ND	ND	ND	ND	ND
G3-9	K945760-003	ND	ND	ND	ND	ND
G4-9	K945760-004	ND	ND	ND	ND	ND
G5-9	K945760-005	ND	ND	ND	ND	ND
Method Blank	K940921-SB	ND	ND	ND	ND	ND

Approved By:

Date: 9/28/94

Page No.:

Analytical Report

Client: Project:

Reynolds Metals Company Reynolds Metals Co. Cable Plant

Sample Matrix:

Soil

Service Request: K945844

Date Collected: 9/23/94
Date Received: 9/23/94

Date Extracted: 9/26/94

TABLE 3

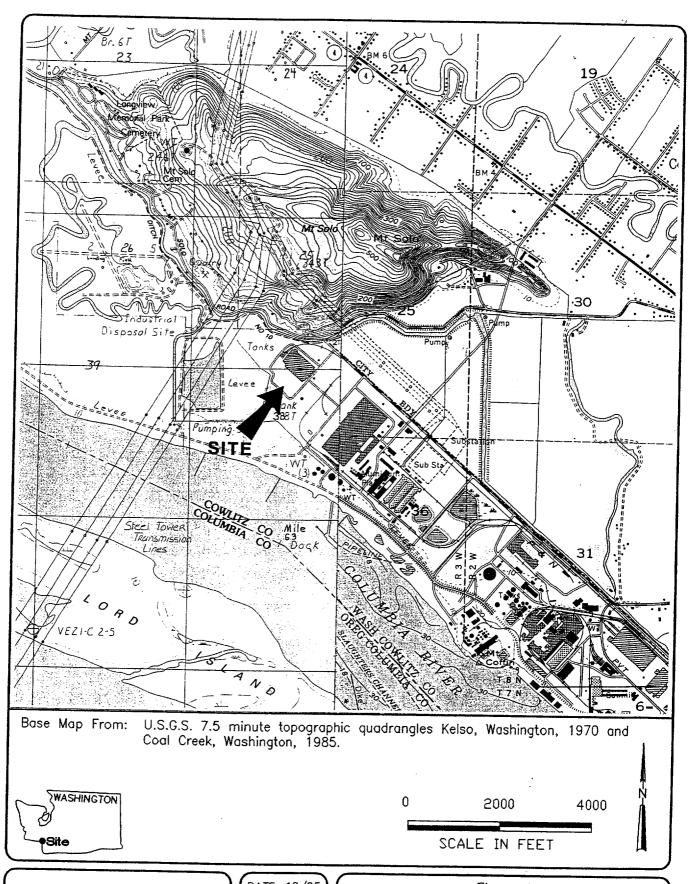
Date Analyzed: 9/27/94

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G Units: mg/Kg (ppm) Dry Weight Basis

	Analyte: Method Reporting Limit:	Benzene 0.05	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1	TPH as Gasoline 5
Sample Name	Lab Code					
G6-923 6-12 '' G7-923 Method Blank	K945844-001 K945844-002 K940926-SB	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND

Approved By:

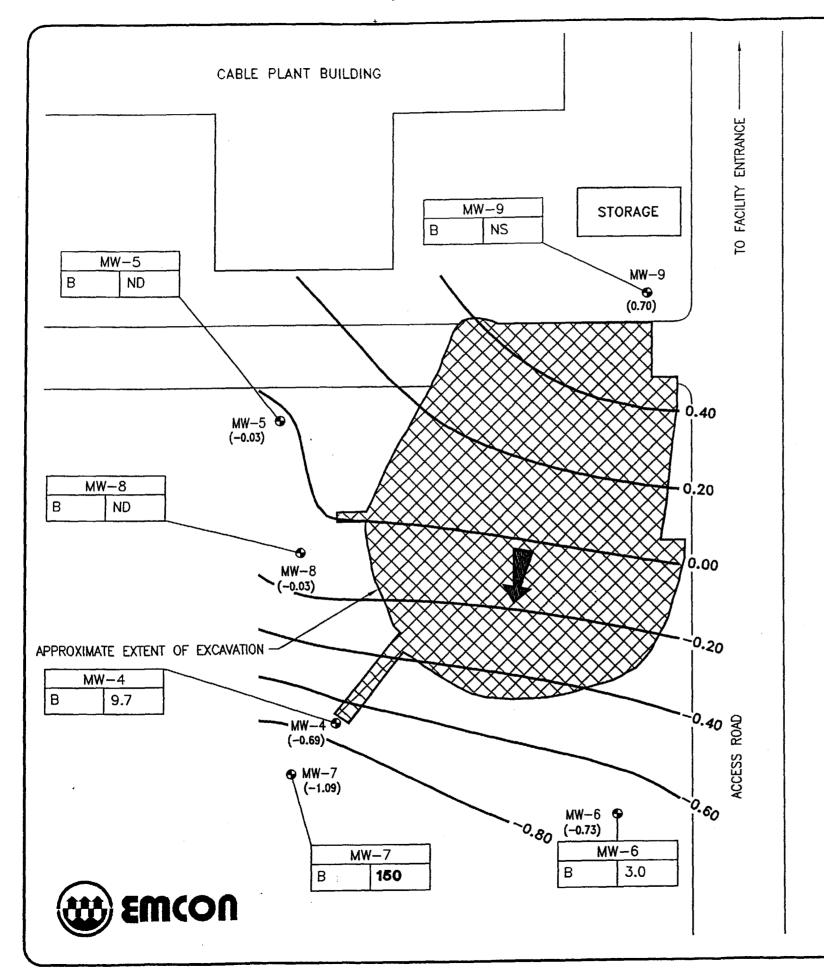
5844GBTX XI.S - 5A 10/3/9


Date: 10/3/94

Page 5 of 5

Page No.

00003



DATE 12/95 DWN. MMM APPR. TJ LF REVIS. PROJECT NO. 40133-001.007

Figure 1
REYNOLDS METALS CO. CABLE PLANT LONGVIEW, WASHINGTON

SITE LOCATION MAP

LEGEND

MW-4 Monitoring Well

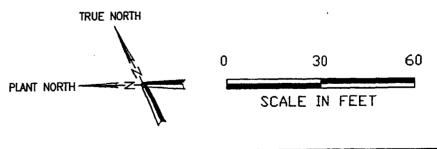
Approximate Area of Former Excavation

.40— Groundwater Elevation Contour (Feet), December 15, 1995

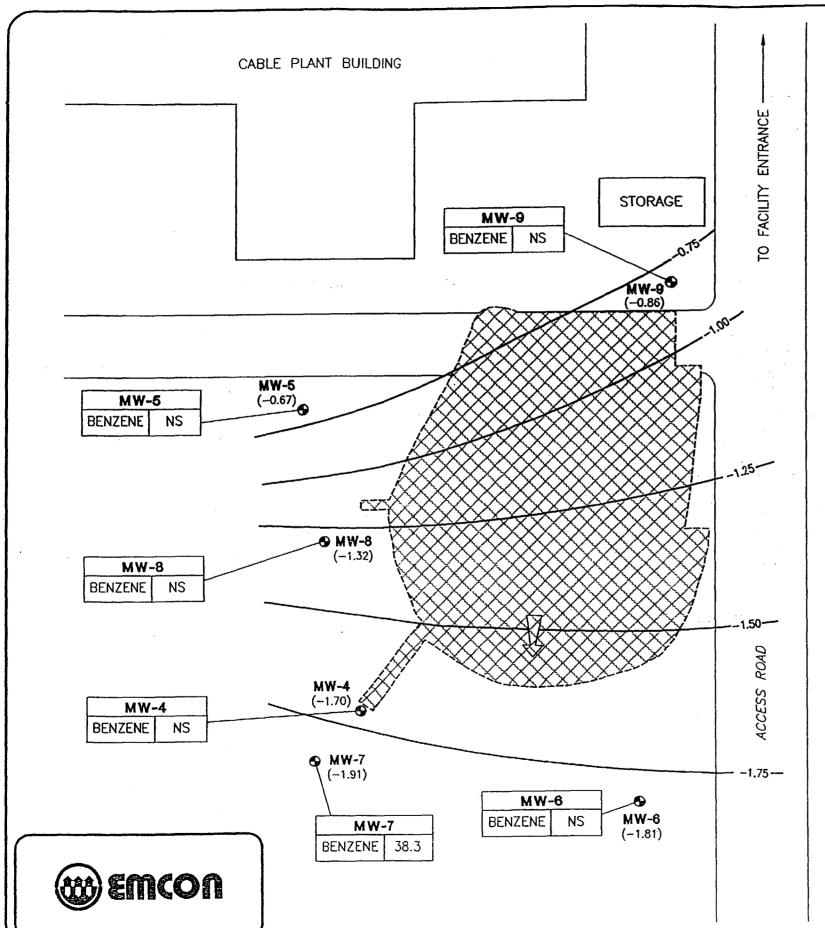
(-0.69)

Measured Groundwater Elevation (Feet), December 15, 1995

Inferred Groundwater Flow Direction


B = Benzene

ND = Not Detected at the Method Reporting Limit


NS = Not Sampled for Particular Analyte.

	MW-4		Laboratory Results in
i	В	9.7	Parts Per Billion (ppm)

Values Highlighted in **BOLD** Exceed MTCA Method B Cleanup Levels for Surface Water

DATE 12/95 DWN. MMM APPR. 70# REVIS. PROJECT NO. 40133-001.007 Figure 2
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON
WATER TABLE AND ELEVATION CONTOUR MAP
DECEMBER 15, 1995

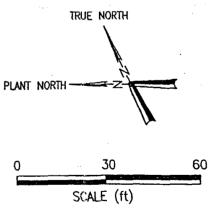
LEGEND:

MW-4 Monitoring Well Location

Approximate Area of Former Excavation

Inferred Groundwater Elevation Contour (feet)

(-1.32) Relative Groundwater Elevation (feet) on March 28, 1996


Inferred Groundwater Flow Direction

ND = Not Detected Above the Method Reporting Limit

NS = Not Sampled

MW-7 BENZENĘ 38.3 Laboratory Results on March 28, 1996 (Parts Per Billion)

Values Highlighted in **Bold** Exceed MTCA Method B Cleanup Levels Based on Protection of Surface Water

DATE 5-97
DWN MLP
APP 7105
REV PROJECT NO.
40133-001.007

Figure 3
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON

WATER TABLE ELEVATION CONTOUR MAP MARCH 28, 1996

Scale: 1 - 30.00 Date: 5/13/97 Time: 9:10 AM Operator: MLP

Pacific Northern Environmental

dba Petroleum Services Unlimited

P

June 16, 1992

Ms. Patricia Martin Southwest Region Office 7272 Cleanwater lane, LU-11 Olympia, WA 98504-6811

RE: Reynolds Metals Company, Longview, Washington, UST I.D. Number 002452

Dear Ms. Martin:

Pacific Northern Environmental (PNE) has conducted independent interim cleanup of soil at the Reynolds Metals Company site referred to above. A report dated March 20, 1992 was submitted to your office outlining site progress. Approximately 100 cubic yards of gasoline contaminated soil was stockpiled on site. Prior laboratory analyses indicted that stockpiled soil contains levels of gasoline above Method A Cleanup Levels as outlined in Chapter 173-340-740 of the Washington Administrative Codes.

On June 9, 1992, a registered site assessor from PNE was at the project site to observe and document gasoline contaminated soil being loaded onto trucks. The soil was transported to Oregon Hydrocarbons, Inc. of Portland, Oregon for treatment. The soil was treated in a rotary thermal desorption unit. The soil was sampled subsequent to treatment and submitted for laboratory analysis. PNE will forward a copy of the laboratory analytical results to you upon our receipt.

and BTEX contamination above groundwater Method A Cleanup Levels was observed in previous analytical testing of groundwater at the project site. PNE is working

with Reynolds Metals Company to investigate the project site. PNE will update Ecology as the site investigation progresses.

If you have any questions or require further information, please do not hesitate to call me at (503) 285-7819.

Sincerely,

PACIFIC NORTHERN ENVIRONMENTAL

Joseph A. Sturza

Environmental Engineer

cc: Tim Mace / Reynolds Metals Company

Pacific Northern Environmental

P N F

dba Petroleum Services Unlimited

July 27, 1992

Patricia Martin Southwest Regional Office 7272 Cleanwater Lane, LU-11 Olympia, WA 98504-6811

Subject:

Analytical Results of Treated Soil at Reynolds Metals Company of Longview,

Washington.

Dear Ms. Martin:

The purpose of this letter is to verify the treatment of petroleum contaminated soil generated at the subject site. Pacific Northern Environmental (PNE), on behalf of its client, Reynolds Metals Company, presents analytical results of soil treated at Oregon Hydrocarbon, Inc. (OHI). The petroleum contaminated soil was generated at the Reynolds Metals Company UST site.

Analytical results indicate that petroleum hydrocarbons were not detected in soil samples collected from the treated soil. The attached letter from OHI describes the analyses and includes the associated laboratory data sheets.

If you have any questions or require further information, please feel free to contact me at (503) 240-3478.

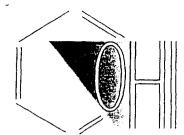
Sincerely,

PACIFIC NORTHERN ENVIRONMENTAL

Joseph A. Sturza

Environmental Engineer

Wayne M. Coppel

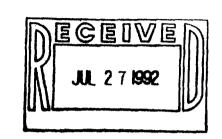

Portland Branch Manager

enclosures

cc:

Tim Mace / Reynolds Metals Company

JAS/C:\letters\ryndoea.wp



OREGON HYDROCARBON, INC.

9333 NORTH HARBORGATE STREET • P.O. BOX 83685 PORTLAND, OR 97283 (503) 735-9525 FAX (503) 240-1712

July 13, 1992

REYNOLDS METALS CO. P.O. BOX 1238 LONGVIEW, WA 98632

Dear Mr. MACE,

This letter is to certify that all contaminated soil shipped to Oregon Hydrocarbon, Inc. on Bill of Lading number(s) through W2BVT-7 have been thermally treated.

Analysis of the treated soil was conducted by independent laboratory using Oregon DEQ TPH-HCID test. The enclosed certificate of analysis shows total petroleum hydrocarbon (TPH) in milligrams per kilogram (mg/kg), approximates parts per million.

As determined by the Oregon Department of Environmental Quality, the Oregon action level for hydrocarbon contaminated soil is 40 mg/kg TPH for gasoline and 100 mg/kg TPH for diesel and other heavier chains of hydrocarbons. Any soil contaminated with hydrocarbons below these state levels is considered environmentally safe. The Oregon Hydrocarbon Inc. standard of treatment consistently exceeds Oregon's state action level.

We thank you for this opportunity to be of service to you. Should you have any further questions, please feel free to call me at any time.

Sincerely.

Lexus F. Johnson General Manager

enclosure

AmTest Inc.

Professional Analytical **Bervious**

9206 S.W. Nimbut Beaverton, Off

\$7006

Date Revised: 7/13/92 Tel: 603 292 0854

Date Received: 6/24/92 Date Analyzed: 6/24/92 Date Reported: 6/25/92 Job Number: 17603-4

Page 1 of 1

ANALYSIS REPORT

C

L Myron Banek

I Oregon Hydrocarbon, Inc.

E P.O. Box 83686

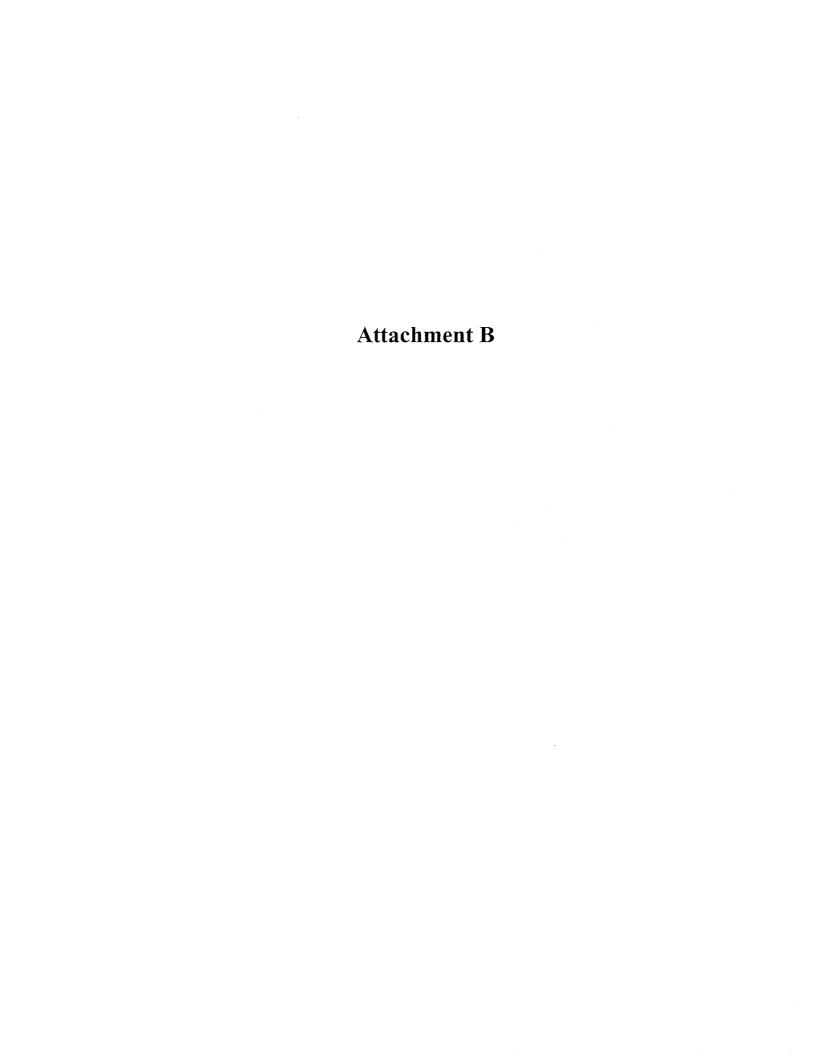
N Portland OR 97283

Sample Type - Soll

Analysis - TPH-HCID

		,,,		, , =	
Lab Number	Client Identification		Results		
		Gasoline	Diesel	Other*	Surrogate** % Recovery
17603	12-W2BVT02BWF02BUF	ND	ND	ND	- /117
17604	13-02BQT	ND	ND	ND	81/114
Lab Blank	6/24/92	ND	ND	ND	80/81

ND = None Detected


Detection Limits: Gasoline - 20 mg/Kg; Diesel - 50 mg/Kg

*Higher boiling petroleum products

* *Trifluorotolusno/p-terphanyl

Reported By

Greg Bolt Laboratory Manager

Analytical Report

Client:

EMCON Northwest

Project:

Ostrander/Reynolds/#0542-002.01

Sample Matrix: Soil

Date Collected: Date Received:

8/1/94 8/1/94

Date Extracted: Service Request: K944608

8/5/94

BTEX EPA Methods 5030/8020

; .							
	Method Repo	Analyte: Units: rting Limit:	Benzene mg/kg(ppm) 0.05	Toluene mg/kg(ppm) 0.1	Ethyl- benzene mg/kg(ppm) 0.1	Total Xylenes mg/kg(ppm) 0.1	
Sample Name	Lab Code	Date Analyzed					
South Wall-1-4.5 South Wall-2-4.5	K944608-001 K944608-002	8/6/94 8/6/94	<0.1(a) <0.1(a)	<0.2(a)	<0.2(a) <0.2(a)	<0.2(a) <0.2(a)	
East Wall-1-4.5 E North Wall-1-4.5 Abd	K944608-003 K944608-004	8/6/94 8/6/94	<0.1(a) <0.1(a)	<0.2(a) <0.2(a)	<0.2(a) <0.2(a)	<0.2(a) <0.2(a)	
North Wall-2-4.5 ω West Wall-1-4.5 ω	K944608-005 K944608-006	8/6/94 8/6/94	0.1 <0.1(a)	<0.2(a) <0.2(a)	0.4 <0.2(a)	1.2 <0.2(a)	
Method Blank	K940805-SB	8/6/94	ND	ND	ND	ND	
Cleamb		•	0.5	40	20	20	

MRL is elevated because of the low percent solids in the sample as received.

	1	A 4.	
Approved By	j	Date	
Lippio. Ud. C.			

QA/QC Report

Client:

EMCON Northwest

Project:

Ostrander/Reynolds/#0542-002.01

Sample Matrix: Soil

Date Collected:
Date Received:
Date Extracted:

8/1/94 8/1/94 8/5/94

Date Analyzed: Service Request:

8/6/94 K944608

Surrogate Recovery Summary BTEX EPA Methods 5030/8020

		Spike Level	Percent Recovery
Sample Name	Lab Code	Units: µg/L (ppb)	4-Bromofluorobenzene
South Wall-1-4.5	K944608-001	3.7	
South Wall-2-4.5	K944608-002	4.6	71
East Wall-1-4.5	K944608-003	4.2	60
North Wall-1-4.5	K944608-004	3.7·	66
North Wall-2-4.5	K944608-005	3.8	67
West Wall-1-4.5	K944608-006	3.8	52(a)
Method Blank	K940805-SB	2.5	87

CAS Acceptance Limits:

59-137

Outside of acceptance limits due to matrix affects.

Approved By Date

Page No.

Analytical Report

Client:

EMCON Northwest

Project:

Ostrander/Reynolds/#0542-002.01

Sample Matrix: Soil

Date Collected:
Date Received:
Date Extracted:

8/1/94 8/1/94 8/5/94

Date Analyzed: Service Request: 8/6/94 K944608

Gasoline Range Organics
Total Petroleum Hydrocarbons as Gasoline
Washington DOE method WTPH-G
Units: mg/Kg (ppm)

Sample Name	Lab Code	MRL	Result
South Wall-1-4.5	K944608-001	5	47(a)
South Wall-2-4.5	K944608-002	5	<10(b)
East Wall-1-4.5	K944608-003	5	<10(b)
North Wall-1-4.5	K944608-004	5	<10(b)
North Wall-2-4.5	K944608-005	5	34
West Wall-1-4.5	K944608-006	5	<10(b)
Method Blank	K940805-SB	5	ND
< leanup level			001

Quantified as gasoline. The sample contained components that eluted in the gasoline range, but the chromatogram did not match the typical gasoline fingerprint.

MRL is elevated because of the low percent solids in the sample as received.

Approved By	D	ate
		4.4

TO

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

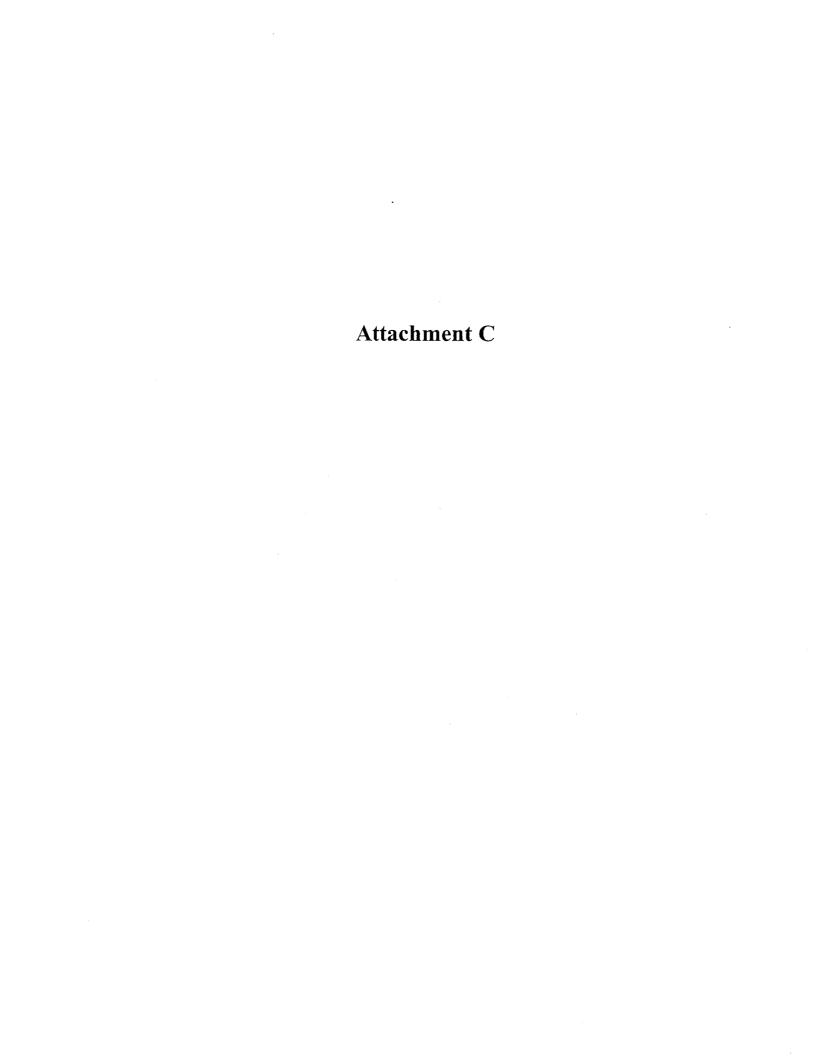
EMCON Northwest

Project:

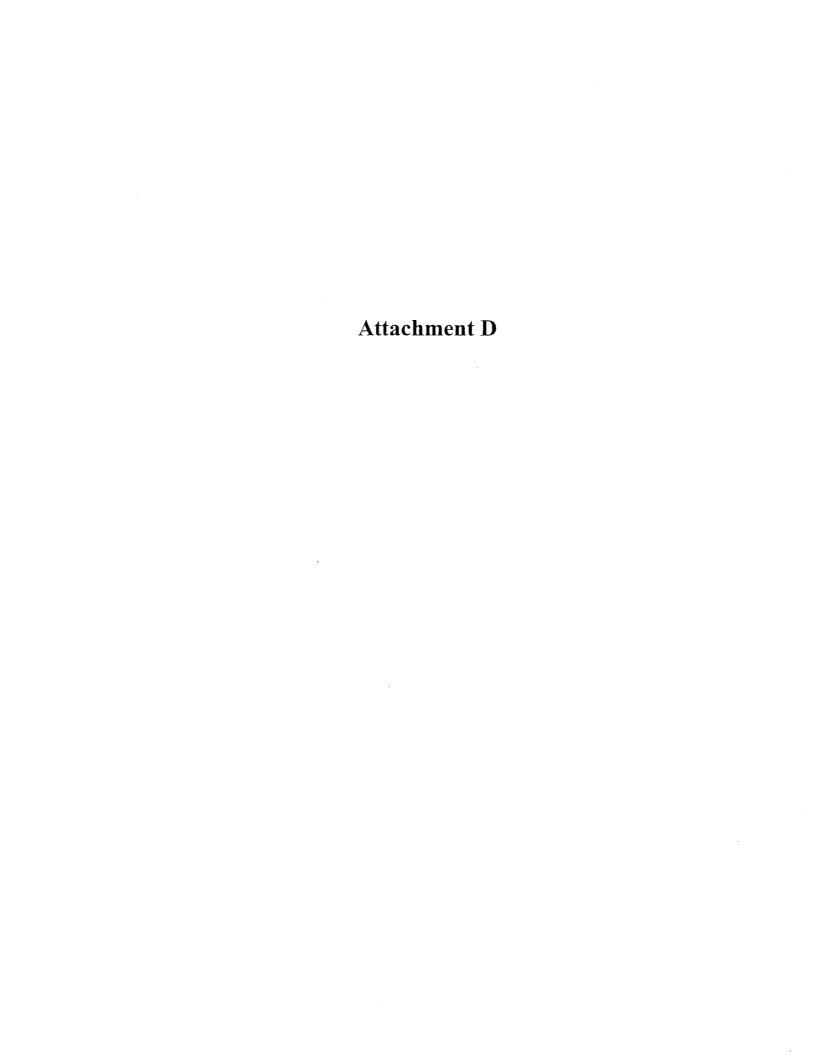
Ostrander/Reynolds/#0542-002.01

Sample Matrix: Soil

Date Collected: 8/1/94
Date Received: 8/1/94
Date Extracted: 8/5/94
Date Analyzed: 8/6/94
Service Request: K944608


Surrogate Recovery Summary
Total Petroleum Hydrocarbons as Gasoline
Washington DOE method WTPH-G

		Spike Level	Percent Recovery
Sample Name	Lab Code	Units: mg/Kg (ppm)	4-Bromofluorobenzene
South Wall-1-4.5	K944608-001	3.7	87
South Wall-2-4.5	K944608-002	4.6	78
East Wall-1-4.5	K944608-003	4.2	64
North Wall-1-4.5	K944608-004	3.7	76
North Wall-2-4.5	K944608-005	3.8	81
West Wall-1-4.5	K944608-006	3.8	57
Method Blank	K940805-SB	2.5	94


CAS Acceptance Limits:

52-140

Approved By		Date

COMPUTATION SHEET PROJECT TITLE: Legnolds site nstallation comp. N 8-11-94 SHEET ____ OF_ DATE: 7/28/94 CHKD BY: ____ DATE:____ **DESCRIPTION:**_ PREP. BY: NO 5 all the I slope back to ADS lines to allow 000000 . See Detail 1 condensate dreinige Visqueen at 2 69= VE-4 (above all piping) Label each pipet (VE-1, AS-1, VE-2, A114 'AS-4 A5-2, etc.) **,∀**E-3 8-8% VE = Vapor Extraction As = Air Sparging AS-1 Detail \otimes nw-4

August 24, 1994

Service Request No.: K944825

Tim Mace Reynolds Metals Company Reduction Plant 4029 Industrial Way P. O. Box 999 Longview, WA 98632

Re: Reynolds Cable Plant Project

Dear Tim:

Enclosed are the results of the sample(s) submitted to our laboratory on August 10, 1994. Preliminary results were transmitted via facsimile on August 23, 1994. For your reference, these analyses have been assigned our service request number K944825.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda A. Huckestein Project Chemist

LAH/sam

Page 1 of _____

Acronyms

ASTM American Society for Testing and Materials

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon

CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology

DOH Department of Health

EPA U. S. Environmental Protection Agency

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit

MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable

NAN Not Analyzed

NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

Analytical Report

Client: Project: Reynolds Metals Company

Date Received:

08/10/94

Reynolds Cable Plant

Date Analyzed:

08/16/94

Sample Matrix:

Soil

Work Order No.: K944825

Solids, Total EPA Method Modified 160.3 Percent (%)

Sample Name	Lab Code	Result				
G1-810	K944825-001	82.7				
G2-810	K944825-002	74.8				
G3-810	K944825-003	76.6				
G4-810	K944825-004	83.3				
G5-810	K944825-005	83.5				
G5-810	K944825-005Dup	85.5				

Approved by ahi Appelman

Analytical Report

Client:

Reynolds Metals Company

Project: Sample Matrix: Reynolds Cable Plant Soil Service Request: K944825

Date Collected: 8/10/94
Date Received: 8/10/94

Date Extracted: 8/15/94
Date Analyzed: 8/16,18/94

BTEX EPA Methods 5030/8020 mg/Kg (ppm) Dry Weight Basis

	Analyte: Method Reporting Limit:	Benzene 0.05	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1
Sample Name	Lab Code				
G1-810	K944825-001	ND	ND	ND	ND
G2-810	K944825-002	ND	ND	ND	ND
G3-810	K944825-003	ND	ND	ND	ND
G4-810	K944825-004	ND	ND	ND	ND
G5-810	K944825-005	ND	ND	ND	ND
Method Blank	K940815-SB	ND	ND	ND	ND

Approved By: <u>AMic Amelina</u>

4A/061694
K944825.XLS - 4A 8/24/94

Date:

Page No.:

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Cable Plant

Sample Matrix:

Soil

Date Collected: Date Received:

08/10/94 08/10/94

Date Extracted:

08/10/94

Date Analyzed:

08/16,18/94

Work Order No.: K944825

Total Petroleum Hydrocarbons as Gasoline Washington DOE Method WTPH-G mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result
G1-810	K944825-001	5	ND
G2-810	K944825-002	5	ND
G3-810	K944825-003	5	ND
G4-810	K944825-004	5	ND
G5-810	K944825-005	5	ND
Method Blank	K940815-SB	5	ND

Approved by ahi Aprelman

Date 8/24/94

APPENDIX A LABORATORY QC RESULTS

QA/QC Report

Client: Project: Reynolds Metals Company

Sample Matrix:

Reynolds Cable Plant

Soil

Date Collected: Date Received:

08/10/94 08/10/94

Date Extracted:

08/15/94

Date Analyzed:

08/16,18/94

Work Order No.: K944825

Surrogate Recovery Summary Total Petroleum Hydrocarbons as Gasoline Washington DOE Method WTPH-G

Sample Name	Lab Code	Spike Level μ g/L (ppb)	Percent Recovery 4-Bromofluorobenzene
G1-810	K944825-001	62	79
G2-810	K944825-002	62	74
G3-810	K944825-003	62	80
G4-810	K944825-004	62	81
G5-810	K944825-005	62	86
Method Blank	K940815-SB	62	107

CAS Acceptance Criteria

52-140

QA/QC Report

Client:

Reynolds Metals Company

Project:

Reynolds Cable Plant

Sample Matrix:

Soil

Date Collected:

08/10/94

Date Received: Date Extracted: 08/10/94

Date Analyzed:

08/15/94 08/16,18/94

Work Order No.: K944825

Surrogate Recovery Summary BTEX EPA Methods 5030/8020

Sample Name	Lab Code	Spike Level μ g/L (ppb)	Percent Recovery 4-Bromofluorobenzene
G1-810	K944825-001	62	70
G2-810	K944825-002	62	66
G3-810	K944825-003	62	74
G4-810	K944825-004	62	72
G5-810	K944825-005	62	75
Method Blank	K940815-SB	62	92

CAS Acceptance Criteria

59-137

Approved by all Aprilma

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1317 South 13th Ave. • Kelso, W	A 98626 •	(206) 577-72	22, FAX (206) 636-1	068												DATE	8_	<u>- /८</u>	<u>)-9</u>	4_	PAGE	<i></i> _ c	/
PROJECT NAME REYNO	ds C	Mo Po	int.											AN/	ALYSIS	REQU	ESTE)					_
PROJECT MNGR	R	Mace						7	7	. 7	7	0/	7	_7	7.		7	7		7	7	77	
COMPANY/ADDRESS 4	950	Ind	ustrial 1	Nay	RESS				(S)		8	100	7			T gage		d		8/		//	0.0
Longview	WA	98	<u>632</u>		<u>¥</u>		200		2 8	§ /			کر /	8	\$ 5	8	/	St.	37.	8	/	/ /	J
	<u> </u>		_ PHONE_636	8858-	A A	/	F S	\$ 8 J	5 /	/ 8 /	£ .	्रेड भ च के डि		/ /			<i>'</i> /.	8 8	3	是是	/ /	/ /	
SAMPLERS SIGNATURE	91	S. M	are		NUMBER OF CONTAINERS			E 33/ 3	2 D	8/8		260		/ و	0/10/20	3 /s	8		3 /	8			
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX	₹	1 1 1 1 1 1 1 1 1 1	3/38	14 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		7 0 al Person 1 Cas 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E	THE STANDARD OF THE TO	首	823	The section of the se		£ \$	₹/₹ }		Section 1		REM	IRKS
G1-810	8-10-94	1:40 PM	K 4825-1	Soi				.,			X												
G2-810	11	1:45pm	2	1,	1,	<u> </u>					X								<u> </u>				
G3-810	11	1:47pm	3	11	16						X												
G4-810	<u>Ic</u>	1:53	4	, k	v						X												
G5-810	11	1:56 Pm	5	- 11	14						X			<u> </u>									
		'			<u> </u>														<u> </u>				
					<u></u>																		
					<u> </u>														<u> </u>				
RELINQUISHED BY:			POPULO DV																<u> </u>				
NELINGUISHED BY:		1)5	RECEIVED BY:	TURNA				_				REMEN	TS					ATION:	_		SA	MPLE RECEIPT	:
Signature T. R. Mace		Signifiture	TURNO	i .				5 day			ne Repor			P.O. #_		58	<u> </u>	W.	Π	Shippin	• –		
Printed Name R NA C		Printed Name	-			~10-15 mbal Pre	-			IL Repor MSD, charo	ri (includi as requ ed as es:	es DUP, vired, ma mples)	MS, By be	Bill to:		7 n	old	<u> </u>	etas	Shippin Condition	•		
Firm	_	Find / (a)	1911			X Prelin	•					n Report aw Data)								COIRIR	/II		
Date/Time		Date/fime	17 743	Requeste	d Repor	etsO 1						aw Data) ie Repor								Lado No	<u>. K</u>	94-482	5 .
RELINQUISHED BY:		F	RECEIVED BY:	SPEC	IAL IN	STRUC	TIONS	COMM	ENTS:												····		
Signature		Signature																					
Printed Name		Printed Name																					
Firm		Firm	 																				
Date/Time		Date/Time																					

September 7, 1994

Service Request No.: K945245

Tim Mace Reynolds Metals Company Reduction Plant 4029 Industrial Way P. O. Box 999 Longview, WA 98632

Re: Reynolds Cable Plant Project

Dear Tim:

Enclosed are the results of the sample(s) submitted to our laboratory on August 29, 1994. Preliminary results were transmitted via facsimile on September 6, 1994. For your reference, these analyses have been assigned our service request number K945245.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda A. Huckestein Project Chemist

-

LAH/rr

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon

CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology

DOH Department of Health

EPA U. S. Environmental Protection Agency

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit

MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable

NAN Not Analyzed

NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

Analytical Report

Client: Project: Reynolds Metals Company Reynolds Cable Plant

Sample Matrix:

Soil

Service Request: K945245

Date Collected: 8/29/94

Date Received: 8/29/94 Date Extracted: 8/31/94

Date Analyzed: 8/31,9/1/94

BTEX and Total Petroleum Hydrocarbons (TPH) as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G

Units: mg/Kg (ppm) Dry Weight Basis

	Analyte: Method Reporting Limit:	Benzene 0.05	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1	TPH as Gasoline 5
Sample Name	Lab Code					
G6-829 G7-829	K945245-001 K945245-002	ND ND	ND ND	ND ND	ND	ND ND
Method Blank	K940831-SB	ND	ND	ND	ND ND	ND ND

5A/061694 5245GBTX.XLS - 5A 9/7/94

Page No.:

QA/QC Report

Client:

Reynolds Metals Company

Project:

Reynolds Cable Plant

Sample Matrix: Soil

Service Request: K945245

Date Collected: 8/29/94

Date Received: 8/29/94 Date Extracted: 8/31/94

Date Analyzed: 8/31,9/1/94

Surrogate Recovery Summary

BTEX and Total Petroleum Hydrocarbons (TPH) as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
G6-829	K945245-001	75	81
G7-829	K945245-002	73	75
Method Blank	K940831-SB	76	86

CAS Acceptance Limits:

59-137

52-140

SUR2/060194 5245GBTX.XLS - SUR2 9/7/94

Lyndo Hickester

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1317 South 13th Ave. • Kelso, WA 98626 •	(206) 577-72	22, FAX (206) 636-10	68												DATE	_ ප	<u>-29</u>	<u> </u>	4	PAGE		OF	<u></u>
PROJECT NAME REYNOLDS C	ado P	ant												LYSIS	REQU	ESTE)						
PROJECT MINGRTR_	Mace				-	7	7	7.	7	7	0/	 /	_/		0	7	7	/	7	7	7	7	
COMPANY/ADDRESS 4029	Indi	istrial W	ay	NERS	ĺ			Se	20/ 82/	Į,	# 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	' /		d	\$ / E		de	/2 	3/				F
Longriew, Wf	1 98	(32	<u></u>	Į Ž		8	/ _	2 8 E			8	ئى /	3/	30	18	/	8	3. Z	39		/ /	/	
	N 4	PHONE 636	8358-	β β	/	<i>& & </i>		8 /	3° /	£ 1			′ /		*** /	/ /	8 3	2	変を	/	′ /		1
SAMPLERS SIGNATURE	OC. YY	Jaca		NUMBER OF CONTAINERS					8 d	100	18/8 18/8		2/2		\$	\$ 8	\$ (5) \$ (\$		£ 8/				
SAMPLE LAB SAMPLE I.D. MATRIX				₹	48	16 16 18 18 18 18 18 18 18 18 18 18 18 18 18	Hab Series (S. 1826)			X THE STATE OF STATE	E	TH. IN THE SERVE	D'A	More (DE) DION (Sen) Paris		₹	s/ ₹ .		200 me Tales (200)			REMARKS	
G6-829 8-29.94	11:2500	13245-1	Soil	1						Х													
G7-829 8-29-8	11: 30am	12	4	1						X								ļ					
				<u> </u>			i																
						<i>;</i>																	
																					ļ 		
																	ļ	<u> </u>					
																	<u> </u>	<u> </u>					
				<u> </u>	<u> </u>								ļ			L.	<u> </u>	<u> </u>			ļ		
				ļ											<u> </u>			<u> </u>	<u> </u>				
RELINQUISHED BY:	Li	DEOCUMED DV	1		<u> </u>									137/0	105 10	FORM	ATION:	<u> </u>	ļ		100 5 5	FOEIMT.	
AS A MARO	120	RECEIVED BY:				UIREME				REQUIF		115				W					MPLE H	ECEIPT:	}
Signature R. Mace	Signature	h				hr _X working:				ne Repor		uc	P.O. #	<u> </u>		olds	٠,	etals	Shippin Shippin	• -			
Printed Name	Printed Name					iminary i		·	MSD, charg	n (include as requ ed as sar	wired, m mples)	ay be	D# 10:) "	काल 2		ر بدر	Conditi	-			
Firm	Firm C1	19/ 12/	//) P	rovide F/	X Prelir	ninary Re	sults			Validation des All R										—— /	<u>c.</u> /-	- 12	
Date/Time	Date/Time	<u>''/ </u>	Requesto	ed Repo	t Date					Deliverab		-							Lab No	»:-{ } -	145	240	
RELINQUISHED BY:		RECEIVED BY:	SPEC			TIONS				esu	01			/:	2 /_	- C	319	7					
Signature	Signature	·		H	5,	(FA	X	1	62N	475			6	O	- C) (/	l					
Printed Name	Printed Name																						
Firm	Firm																						
Date/Time	Date/Time																						

October 3, 1994

Service Request No.: K945760

Tim Mace Reynolds Metals Company Reduction Plant 4029 Industrial Way P. O. Box 999 Longview, WA 98632

Re: Reynolds Cable Plant Project

Dear Tim:

Enclosed are the results of the sample(s) submitted to our laboratory on September 21, 1994. For your reference, these analyses have been assigned our service request number K945760.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Lynde Hickest

Columbia Analytical Services, Inc.

Lynda A. Huckestein Project Chemist

LAH/rr

Page 1 of ____

Acronyms

ASTM American Society for Testing and Materials

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon

CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology

DOH Department of Health

EPA U. S. Environmental Protection Agency

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit

MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable

NAN Not Analyzed

NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

Analytical Report

Client: Project: Reynolds Metals Company Reynolds Cable Plant

Sample Matrix:

Soil

Service '

Service Request: K945760

Date Collected: 9/21/94

Date Received: 9/21/94

Date Extracted: 9/21/94

Date Analyzed: 9/22,23/94

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G Units: mg/Kg (ppm) Dry Weight Basis

	Analyte: Method Reporting Limit:	Benzene 0.0.5	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1	TPH as Gasoline 5
Sample Name	Lab Code					
G1-9	K945760-001	ND	ND	ND	ND	ND
G2-9	K945760-002	ND	ND	ND	ND	ND
G3-9	K945760-003	ND	ND	ND	ND	ND
G4-9	K945760-004	ND	ND	ND	ND	ND
G5-9	K945760-005	ND	ND	ND	ND	ND
Method Blank	K940921-SB	ND	ND	ND	ND	ND

Approved By:

5760PHC JW1 - 5A 9/29/94

Date: 9/28/94

Page No.:

QA/QC Report

Client:

Reynolds Metals Company

Project:

Reynolds Cable Plant

Sample Matrix: Soil

Service Request: K945760 Date Collected: 9/21/94 Date Received: 9/21/94

Date Extracted: 9/21/94 Date Analyzed: 9/22,23/94

Surrogate Recovery Summary BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G

		Percent Recovery	Percent Recovery
Sample Name	Lab Code	1,4-DFB (PID - BTEX)	1,4-DFB (PID - BTEX)
G1-9	K945760-001	81	82
G2-9	K945760-002	82	83
G3-9	K945760-003	78	83
G4-9	K945760-004	74	78
G5-9	K945760-005	78	83
G2-9	K945760-002D	82	83
G5-9	K945760-005MS	85	110
Laboratory Control Sample	K940921-SL	100	120
Method Blank	K940921-SB	100	102

CAS Acceptance Limits:

51-133

51-133

Approved By

SUR2/060194 5760PHC.JW1 - SUR2 9/29/94

Page No.:

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1317 South 13th Ave. • Kelso, V	WA 98626 •	(206) 577-72	22, FAX (206) 636-10	068												DATE		<u>7-2</u>	1-0)4	PAGE	OF		
PROJECT NAME Rayn	olds C	able Pla	#												ALYSIS			D						
PROJECT MNGR	· B.	Mace	, - ,		1		7	7		7	7	מ/	7		7.	<i>[</i>]		$\overline{}$			7	7 / =		
COMPANY/ADDRESS	1029	Indi	ustrial U	Vay	ERS				100			<u> </u>	7	[] [5]	d	\$		/&	, /	ફ /		// =		
	iveaco	ew 1	UA 986	32	Ž		8	/	28.5	§ /		\$ 20°	/ 8	8/	J. J.	9/8		10	35	· /_		/ /		
	0	,	PHONE 636	8858-2	8		Ç Ş	. 2 2 3	\$ 8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				GARGABOTA OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME OF SAME OF SAME OF SAME OF SAME OF SAME THE SAME OF SAME THE SAME OF SA		7,	/~ð/		/ ,	8.2	1	# _	/ /	/ /
SAMPLERS SIGNATURE	4.1	1.5	Jack		NUMBER OF CONTAINERS		88/8				508 200 PC R R R R R R R R R R R R R R R R R R			/ و	2 1 S	Male (1904 D. Sami Pery Let Berner D. Co. D.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\$ 8/				
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX	25	1	25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				10/25 10/25 10/25	E	03			£3	¥/₹ \$/ ¥		<u> </u>		REMARKS		
(-9	9-21-91	1	K5760-1	Soil	1						X									1				
ca 9					_		-								ļ			-	-		1			
62-9	10	11:3200	2	M	١,						X													
G3-9	11	11:38~	3	Ü	1,						×													
G4-9	11	11:44.	4	1,	4						\times													
G5-9	1(11:50cm	5	(+	u						X													
	<u> </u>																							
	ļ																							
					_																			
DELINOHOUSE DV	<u> </u>				<u> </u>	<u></u>																		
RELINQUISHED BY:		(c : t	RECEIVED BY:	TURNA					1			REMEN	TS					ATION:			SA	MPLE RECEIPT:		
I OKHOTIKA /		Signature	L 11.	24	hr _	48	hr _X	5 day						P.O. #_		813	$\overline{}$. 7	1	Shippin	•			
Printed Name	- -	Printed Name	K. HAWAJ	I			working			IL Repor MSD,	t (include as requ	es DUP, uired , ma mples)	MS, By be	Bill to:	Re	hno	ds	Met	als (Shippin				
Firm		Firm					eliminany minany Re								<u>.</u>					Condition	on:			
Date/firme		Date/Time	<u>u 17:73</u>	Requeste			ininary me	73UN3	l .			n Report aw Data) Ne Report								lah No	. K	14-5760		
RELINQUISHED BY:		F	RECEIVED BY:				TIONS/	COMM		V.GLP U	enverau	ne nepon	ι					····•		Cab IV				
6:					P	\<	FA	Х	re	su	14	٠, ر	4	0		63	6-	18	97					
Signature		Signature			,	12	• • •	•			-, ,	-												
Printed Name		Printed Name																				ļ		
Firm		Firm																				ļ		
Date/Time		Date/Time																						

October 3, 1994

Service Request No.: K945844

Tim Mace Reynolds Metals Company Reduction Plant 4029 Industrial Way P. O. Box 999 Longview, WA 98632

Re: Reynolds Metals Co. Cable Plant Project

Dear Tim:

Enclosed are the results of the sample(s) submitted to our laboratory on September 23, 1994. Preliminary results were telephoned on October 3, 1994. For your reference, these analyses have been assigned our service request number K945844.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda A. Huckestein

Project Chemist

LAH/rr

Page 1 of _____

Acronyms

ASTM American Society for Testing and Materials

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon

CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology

DOH Department of Health

EPA U. S. Environmental Protection Agency

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA. MCL

MDL Method Detection Limit

MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable

NAN Not Analyzed

NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Metals Co. Cable Plant

Sample Matrix:

Soil

Service Request: K945844

Date Collected: 9/23/94

Date Received: 9/23/94

Date Extracted: 9/26/94

Date Analyzed: 9/27/94

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G Units: mg/Kg (ppm) Dry Weight Basis

	Analyte: Method Reporting Limit:	Benzene 0.05	Toluene 0.1	Ethylbenzene 0.1	Total Xylenes 0.1	TPH as Gasoline 5
Sample Name	Lab Code					
G6-923 G7-923 Method Blank	K945844-001 K945844-002 K940926-SB	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND

Approved By:

5844GBTX.XLS - 5A 10/3/94

Date: 10/2/94

Page No.:

QA/QC Report

Client:

Reynolds Metals Company

Project:

Sample Matrix: Soil

Reynolds Metals Co. Cable Plant

Date Collected: 9/23/94 Date Received: 9/23/94 Date Extracted: 9/26/94 Date Analyzed: 9/27/94

Service Request: K945844

Surrogate Recovery Summary BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 1,4-DFB (PID - BTEX)	Percent Recovery 1,4-DFB (FID - GAS)
G6-923	K945844-001	93	90
G7-923	K945844-002	91	92
Method Blank	K940926-SB	98	105

CAS Acceptance Limits:

51-133

51-133

Approved By SUR2/060194

5844GBTX.XLS - SUR2 10/3/94

Page No.:

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1317 South 13th Ave. • Kelso, W	VA 98626 •	(206) 577-72	222, FAX (206) 636-10	68												DATE		<u>-53</u>	<u>9</u> .	<u>4</u>	PAGE	OF
PROJECT NAME Resm	olds M	etak Co		Plant											ALYSIS	REQU	JESTE)	٠.,			
PROJECT MNGR	, 12,	Ma	CE				7	7	7	·/	7	0/	7	_/	7		7	7		7	7	7 7
COMPANY/ADDRESS 4029 Industrial Way			NUMBER OF CONTAINERS				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Tolel Person	THICKET OF THE COST OF THE COS	2 8	7./		d	17 Jan 18		do		SCO SECTION OF SCOOL				
Longview, WA 98632			ğ		80	/			\$ 6	2/8/n	نج حرا		80	\$ \$ \f	/	\g	\$.	39	/	/ /		
PHONE 636-8288			<u>-8288</u>	9			88	8 /	8°/		30/		' /		\$ /	/ /,	8 3	15 /	\$ 2 E			
SAMPLERS SIGNATURE +, R, Maco.					/s	8 8 8 8	8 / 8 8 / 8	5/8		2 6	10 S				₹ /.₹	3 8	\$\\$		8 8			
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX	3	48	10 10 10 10 10 10 10 10 10 10 10 10 10 1	H	8	20	E J	E	E	8	Hotel Divos	8/8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\ \\$		§	_	REMARKS
G6-923	9.23.99	12:100		Soil		<u>. </u>					\times			<u> </u>				<u> </u>	ļ			
G7-923	11	1316Am		١,	11		ļ				\times							<u> </u>				
		,			<u> </u>													ļ				
					ļ	<u> </u>												<u>-</u>	ļ			
		ļ		·	ļ	<u> </u>								_					ļ			
					<u> </u>							_							ļ			
					<u> </u>	<u> </u>							<u> </u>		ļ			ļ	ļ			·
					ļ	<u> </u>	ļ							ļ				<u> </u>	<u> </u>			
														_				ļ	ļ	ļ		
251 11011101150 201	<u> </u>	L.,	OFOCHUĆE DV		<u> </u>		<u> </u>															
RELINQUISHED BY:			RECEIVED BY:	TURNA					ł		REQUIF		ΠS					ATION:			SA	MPLE RECEIPT:
Signature		Signature	, il.				hr 🔀		•					P.O. ≢.	Fer		1 1		16	Shippin	_	
Printed, Name		Printed Name	11. HA. 10.)				working liminary		<u> </u>	MSD	1 (include as requ ed as sau	rired ma	MS, ay be	Bill to:	1.6	NOI	195 T	1/61 a	5 0	Shippin Canditio	_	
Firm	 -	C		<u></u> 1			ninary R		اا	III. Data \	/alidation	n Report	į									
923-94 / / 2 / 5 3 Firm Pale/Time Pale/Time Pale/Time Requesti			d Repor	t Date				,	des All Fl Deliverab		,							Lab No				
RELINQUISHED BY:			RECEIVED BY:	SPEC	IAL IN	STRUC	TIONS	сомм	ENTS:					·								
Signature Signature			Ø	_	EM	V	10.6	a c	11	1	-		63	L-	21	97	7					
Printed Name	_	Printed Name	· · · · · · · · · · · · · · · · · · ·		11:	>	1 7	(^ <u> </u>	, ,	سر.	としろ				63 09	_	<u> </u>	- 1				
Firm		Firm						\mathcal{P}^{a}	ray	+	ick	et	;	# .	03	36	9					ļ
									ر													
Date/Time		Date/Time																				

Attachment E

603 Royal Street West • P.O. Drawer B • Kelso, Washington 98626-0079 • (360) 423-3580 • Fax (360) 423-7518

January 25, 1996 Project 40133-001.007

Mr. Timothy R. Mace Reynolds Metal Company P. O. Box 999 Longview, Washington 98632

Re: 1995 Annual Groundwater Monitoring Report, Reynolds Cable Plant, Longview,

Washington

Dear Mr. Mace:

EMCON is pleased to submit this letter report describing the results of the 1995 groundwater monitoring activities conducted at the Reynolds Metals Company (Reynolds) Cable Plant. The site is located at 4393 Industrial Way in Longview, Washington (Figure 1). The objectives of the monitoring and sampling activities were to determine groundwater quality and groundwater flow directions beneath the site.

SCOPE OF WORK

The field activities completed by EMCON on March 27, June 29, September 15, and December 15, 1995, are listed below.

- Measured depth to groundwater in all on-site monitoring wells
- Collected groundwater samples from on-site monitoring wells
- Collected and drummed monitoring well purge water for disposal by Reynolds personnel

Groundwater

Depth to groundwater measurements were collected using a Slope Indicator brand electronic well probe, and were measured from known reference elevations marked on the top of each PVC well riser. The measuring probe was decontaminated between each well using methanol and distilled water rinses, respectively.

Depth to water measurements were converted to groundwater elevations based on well elevation surveys conducted by Pacific Northern Geoscience (PNG) during previous site investigation work. The elevations of the wells were based on an arbitrary site datum of 4.79 feet (MW-1) referenced to the top of the PVC casing.

Sample Collection

Monitoring wells were purged using polyethylene disposable bailers attached to nylon string. A minimum of three well casing volumes of water was removed from each well with field measurements (pH, temperature, and specific conductance) recorded after removing each well volume.

Samples were collected with polyethylene disposable bailers equipped with low-flow emptying devices to minimize aeration of the sample. Samples were stored in cooled shipping containers and delivered to Columbia Analytical Services, Inc., in Kelso, Washington, under chain of custody documentation. Field Sampling Data Sheets for each sampling event are included in Appendix A.

Quantitative Chemical Analyses

Samples were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) using USEPA Method 8020 and total petroleum hydrocarbons as gasoline (TPH-G) using Washington Department of Ecology Method WTPH-G. Select samples (MW-4 and MW-7) were analyzed for BTEX using USEPA Method 8260 during the June 29, 1995, monitoring event.

RESULTS

Groundwater

During 1995, depths to groundwater in the wells ranged from 3.04 (MW-6) to 8.28 (MW-9) feet below the top of the PVC riser (approximate ground surface). Water table elevations fluctuated 2.11 to 2.75 feet due to seasonal effects between the September 1995 and December 1995 sampling events. The lowest elevation occurred during September and the highest elevation occurred during December. The general groundwater flow direction beneath the site was consistently to the south-southwest at an average horizontal hydraulic gradient of approximately 0.06 feet/foot. Groundwater measurements are presented in Table 1 and groundwater elevation contour maps for each monitoring event are presented in Figures 2, 3, 4, and 5.

Quantitative Chemical Results

For each sampling event, toluene, ethylbenzene, total xylenes, and TPH as gasoline were not detected in any of the samples from any of the wells at concentrations above the method reporting limits (MRLs). Benzene was detected in samples from MW-4, MW-6, and MW-7. Benzene concentrations in the samples from MW-4, MW-6, and MW-7 ranged from 9.7 to 66.6 micrograms per liter (μ g/L), less than 0.5 to 3.0 μ g/L, and 60.5 to 150 μ g/L, respectively.

Conclusions

EMCON believes that surface water cleanup levels should apply to the groundwater beneath the site because 1) the groundwater discharges into the surface water drainage ditch and 2) the

groundwater will probably not be used as a drinking water source. The MTCA Method B cleanup level for benzene concentrations in surface water is $71 \mu g/L$.

If you have any questions, please call Mike Staton at (206) 485-5000 or Tim Haderly at (360) 423-3580.

Sincerely,

EMCON

Timothy J. Haderly

Project Manager

Michael D. Staton
Project Director

Attachments: Limitations

Table 1 - Groundwater Measurements

Table 2 - Groundwater Sample Analytical Results

Figure 1 - Site Location Map

Figure 2 - Water Table and Elevation Contour Map (3/27/95)

Figure 3 - Water Table and Elevation Contour Map (6/29/95)

Figure 4 - Water Table and Elevation Contour Map (9/15/95)

Figure 5 - Water Table and Elevation Contour Map (12/15/95)

Appendix A - Field Sampling Data Sheets

Appendix B - Analytical Reports and Chain of Custody Forms

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

Table 1

Groundwater Measurements Reynolds Metals Company Cable Plant Longview, Washington

Page 1 of 3

Well	Date	Reference Elevation (feet) ¹	Depth to Water (feet) ²	Groundwater Elevation (feet) ³
MW-1	10/15/92	4.79	7.30	-2.51
	10/19/92		7.25	-2.46
	11/6/92		6.91	-2.12
	11/11/92		6.73	-1.94
	12/9/92		5.80	-1.01
	12/18/92		5.52	-0.73
	3/11/93		6.78	-1.99
	3/23/93		6.60	-1.81
	6/7/93		6.22	-1.43
	Well abandoned on Jul	y 28, 1994.		
MW-2	10/15/92	3.56	5.84	-2.28
	10/19/92		5.75	-2.19
	11/6/92		5.40	-1.84
	11/11/92		5.32	-1.76
	12/9/92		4.71	-1.15
	12/18/92		4.59	-1.03
	3/11/93		4.76	-1.20
	3/23/93		5.51	-1.95
	6/7/93		5.53	-1.97
	Well abandoned on July	y 28, 1994.		
MW-3	10/15/92	3.71	6.24	-2.53
	10/19/92		6.17	-2.46
	11/6/92		5.84	-2.13
	11/11/92		5.75	-2.04
	12/9/92		5.15	-1.44
	12/18/92		5.07	-1.36
	3/11/93		5.90	-2.19
	3/23/93		5.71	-2.00
	6/7/93		5.65	-1.94
	Well abandoned on July	/ 28, 1994.	:	

Table 1

Groundwater Measurements Reynolds Metals Company Cable Plant Longview, Washington

Page 2 of 3

Well	Date	Reference Elevation (feet) ¹	Depth to Water (feet) ²	Groundwater Elevation (feet) ³
MW-4	10/15/92	2.69	5.40	-2.71
	10/19/92		5.33	-2.64
	11/6/92		4.99	-2.30
	11/11/92		5.00	-2.31
	12/9/92		4.54	-1.85
	12/18/92		4.42	-1.73
	3/11/93		5.17	-2.48
	3/23/93		4.83	-2.14
	6/7/93		4.99	-2.30
	3/27/95		4.30	-1.61
	6/29/95		5.16	-2.47
	9/15/95		5.79	-3.10
i 	12/15/95		3.38	-0.69
MW-5	10/15/92	5,34	4.89	0.45
	10/19/92		8.16	-2.82
	11/6/92		7.74	-2.40
	11/11/92		7.62	-2.28
	12/9/92		6.72	-1.38
	12/18/92		6.51	-1.17
	3/11/93		6.71	-1.37
	3/23/93		8.10	-2.76
	6/7/93		6.54	-1.20
	3/27/95		5.92	-0.58
	6/29/95		6.62	-1.28
	9/15/95		7.53	-2 .19
	12/15/95		5.37	-0.03

Table 1

Groundwater Measurements Reynolds Metals Company Cable Plant Longview, Washington

Page 3 of 3

Well Date (feet) ¹ (feet) ² Elevation MW-6 10/15/92 2.31 4.85 -2.5 10/19/92 4.81 -2.5 11/6/92 4.48 -2.1 11/11/92 4.39 -2.0 12/9/92 3.86 -1.5 12/18/92 3.79 -1.4 3/11/93 4.69 -2.3 3/23/93 4.33 -2.0 6/7/93 4.54 -2.2	4 0 7 8 5 8 8
10/19/92 4.81 -2.5 11/6/92 4.48 -2.1 11/11/92 4.39 -2.0 12/9/92 3.86 -1.5 12/18/92 3.79 -1.4 3/11/93 4.69 -2.3 3/23/93 4.33 -2.0	0 7 8 5 8
11/6/92 4.48 -2.1 11/11/92 4.39 -2.0 12/9/92 3.86 -1.5 12/18/92 3.79 -1.4 3/11/93 4.69 -2.3 3/23/93 4.33 -2.0	7 8 5 8 8
11/11/92 4.39 -2.0 12/9/92 3.86 -1.5 12/18/92 3.79 -1.4 3/11/93 4.69 -2.3 3/23/93 4.33 -2.0	8 5 8 8
12/9/92 3.86 -1.5 12/18/92 3.79 -1.4 3/11/93 4.69 -2.3 3/23/93 4.33 -2.0	5 8 8
12/18/92 3.79 -1.4 3/11/93 4.69 -2.3 3/23/93 4.33 -2.0	8
3/11/93 3/23/93 4.33 -2.0	8
3/23/93 4.33 -2.0	
	2
6/7/93 4.54 -2.2	
	3
3/27/95 3.83 -1.5	2
6/29/95 4.79 -2.4	8
9/15/95 5.44 -3.1	3
12/15/95 3.04 -0.7	3
MW-7 3/11/93 2.12 4.71 -2.5	9
3/23/93 4.34 -2.2	2
6/7/93 4.72 -2.6	0
3/27/95 3.98 -1.8	6
6/29/95 4.76 -2.6	4
9/15/95 5.32 -3.2	0
12/15/95 3.21 -1.0	9 _
MW-8 3/11/93 4.02 6.15 -2.1	3
3/23/93 5.97 -1.9	5
6/7/93 6.11 -2.0	9
3/27/95 5.16 -1.1	4
6/29/95 6.50 -2.4	8
9/15/95 6.80 -2.7	8
12/15/95 4.05 -0.0	3
MW-9 3/11/95 5.35 7.28 -1.9	3
3/23/93 7.15 -1.8	э -
6/7/93 6.82 -1.4	7
3/27/95 6.40 -1.0.	5
6/29/95 7.32 -1.9	7
9/15/95 8.28 -2.9	' i
12/15/95 4.65 0.70	1

NOTE:

Reference elevation relative to a arbitrary site datum (MW-1) established on October 14, 1992.

Distance from established reference elevation marked on top of PVC well riser to water table. Water table elevation relative to arbitrary site datum (MW-1) of 4.79 feet.

Table 2

Groundwater Sample Analytical Results
Reynolds Metals Company Cable Plant
Longview, Washington

Page 1 of 3

r		· · · · · · · · · · · · · · · · · · ·							rage 1 013
		Sample	Benzene ¹	Toluene ¹	Ethylbenzene ¹	Total Xylenes ¹	TPH as Gasoline ²	Dissolved Lead ³	Total Lead ³
Well Number	Date Sampled	Collector	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	Leau (μg/L)	(μg/L)
MTCA Method	B Cleanup Leve	els ⁵	71	200,000	29,000	NL ⁶	10,000 ⁷	NL ⁶	3.2
MW-1	10/19/92	PNG	71,4	2	29	9	550	NA	5
	3/11/93	PNG	1	ND	10	ND	190	ND	ND
	Well abandoned	on July 28, 199	94.						
MW-2	10/19/92	PNG	1840	46	136	222	1910	NA	38
	3/11/93	PNG	1500	41	200	271	2100	ND	14.3
	Well abandoned	on July 28, 199)4.						
MW-3	10/19/92	PNG	718	7	28	75	738	NA	42
	3/11/92	PNG	1400	15.0	49.0	114.0	1400	ND	10.4
	Well abandoned	on July 28, 199	94.						
MW-4	10/19/92	PNG	55.1	ND	ND	1	ND	NA	39
	3/11/93	PNG	110	ND	ND	ND	ND	ND	9.9
	3/27/95	EMCON	65.5	ND	ND	ND	ND	NA	NA
(Duplicate)	3/27/95	EMCON	63.5	ND	ND	ND	ND	NA	NA
	6/29/95	EMCON	414	ND⁴	ND⁴	ND⁴	ND	NA	NA
	9/15/95	EMCON	64.4	ND	ND	ND	ND	NA	NA
(Duplicate)	9/15/95	EMCON	66.6	ND	ND	ND	ND	NA	NA
	12/15/95	EMCON	9.7	ND	ND	ND	ND	NA	NA
MW-5	10/19/92	PNG	ND	2	1	7	ND	NA	166
	3/11/93	PNG	ND	ND	ND	ND	ND	ND	ND
	3/27/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	6/29/95	EMCON	NS	NS	NS	NS	NS	NS	NS
	9/15/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	12/15/95	EMCON	ND	ND	ND	ND	ND	NA	NA

Table 2

Groundwater Sample Analytical Results
Reynolds Metals Company Cable Plant
Longview, Washington

Page 2 of 3

									Page 2 of 3
Well Number	Date Sampled	Sample Collector	Benzene¹ (μg/L)	Toluene ¹ (μg/L)	Ethylbenzene ¹ (μg/L)	Total Xylenes ¹ (µg/L)	TPH as Gasoline ² (µg/L)	Dissolved Lead ³ (μg/L)	Total Lead ³ (µg/L)
MTCA Method	B Cleanup Leve	els ⁵	71	200,000	29,000	NL ⁶	10,0007	NL ⁶	3.2
MW-6	10/19/92	PNG	ND	ND	ND	ND	ND	ND	17
	3/11/93	PNG	ND	ND	ND	ND	ND	ND	5.2
	3/27/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	6/29/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	9/15/95	EMCON	1.0	ND	ND	ND	ND	NA	NA
-	12/15/95	EMCON	3.0	ND	ND	ND	ND	NA	NA
MW-7	3/11/93	PNG	2	ND	ND	ND	ND	ND	ND
	3/27/95	EMCON	121	ND	ND	ND	ND	NA	NA
	6/29/95	EMCON	78 ⁴	ND⁴	ND ⁴	ND⁴	ND	NA	NA
(Duplicate)	6/29/95	EMCON	72 ⁴	ND⁴	ND ⁴	ND⁴	ND	NA	NA
	9/15/95	EMCON	60.5	ND	ND	ND	ND	NA	NA
	12/15/95	EMCON	150	ND	ND	ND	ND	NA	NA
(Duplicate)	12/15/95	EMCON	148	ND	ND	ND	ND	NA	NA
MW-8	3/11/93	PNG	ND	ND	ND	ND	ND	ND	ND
	3/27/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	6/29/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	9/15/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	12/15/95	EMCON	ND	ND	ND	ND	ND	NA	NA

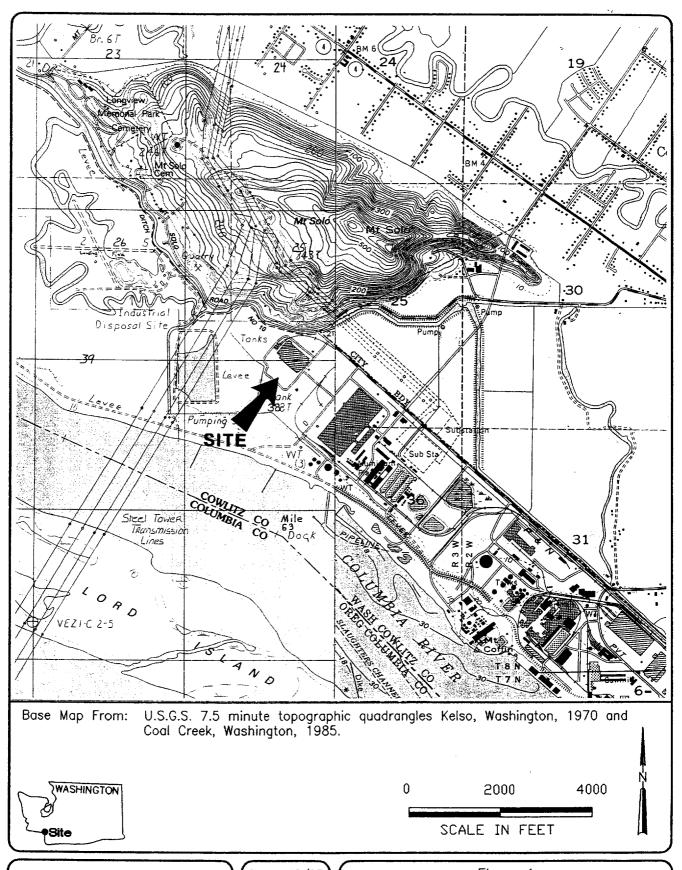
Table 2

Groundwater Sample Analytical Results Reynolds Metals Company Cable Plant Longview, Washington

Page 3 of 3

Tage 5 of .									
Well Number	Date Sampled	Sample Collector	Benzene ¹ (µg/L)	Toluene ¹ (μg/L)	Ethylbenzene ¹ (μg/L)	Total Xylenes¹ (μg/L)	TPH as Gasoline ² (µg/L)	Dissolved Lead ³ (µg/L)	Total Lead ³ (μg/L)
MTCA Method	B Cleanup Leve	els ⁵	71	200,000	29,000	NL ⁶	10,0007	NL ⁶	3.2
MW-9	3/11/95	PNG	ND	ND	ND	ND .	ND	ND	ND
	3/27/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	6/29/95	EMCON	NS	NS	NS	NS	NS	NA	NS
	9/15/95	EMCON	ND	ND	ND	ND	ND	NA	NA
	12/15/95	EMCON	NS	NS	NS	NS	NS	NS	NS
NOTE: ND	= Not de	tected at or above lab	oratory method repo	orting limit.	PNG	= Pacific	Northern Geoscienc	e.	

μg/L

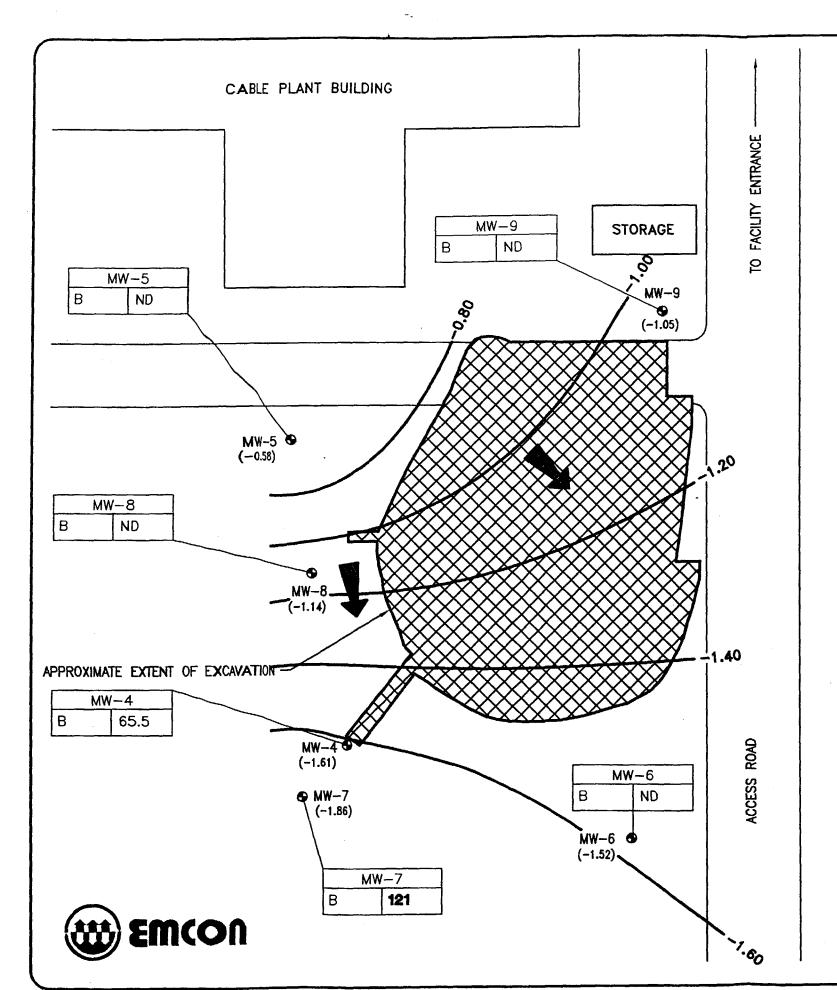

NS Not sampled

NA Not analyzed for particular analyte.

Shaded values exceed MTCA Method A Cleanup levels.

- BTEX (USEPA Method 8020).
- Total petroleum hydrocarbons as gasoline (Ecology Method WTPH-G).
- Total and dissolved lead (USEPA Method 7421).
- BTEX (USEPA Method 8260).
- Chapter 173-340 WAC, "The Model Toxics Control Act Cleanup Regulations, Method B Cleanup Levels for Surface Water". Amended December 1993. Includes federal water quality criteria to protect humans eating aquatic organisms (WQA, 40 CFR 131.36).
- There is no Method B Surface Water cleanup level for total xylenes and dissolved lead.
- Ecology, 1987. Discharges containing oil and grease of mineral origin. Water Quality 9, September.

Approximates parts per billion (ppb) concentrations.



DATE 12/95 DWN. __MMM APPR. __71/t REVIS.__ PROJECT NO. 40133-001.007

Figure 1
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON

SITE LOCATION MAP

LEGEND

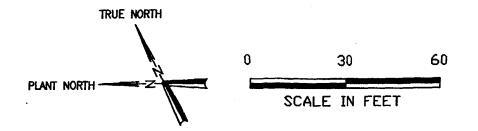
MW-4 Monitoring Well

170

Approximate Area of Former Excavation

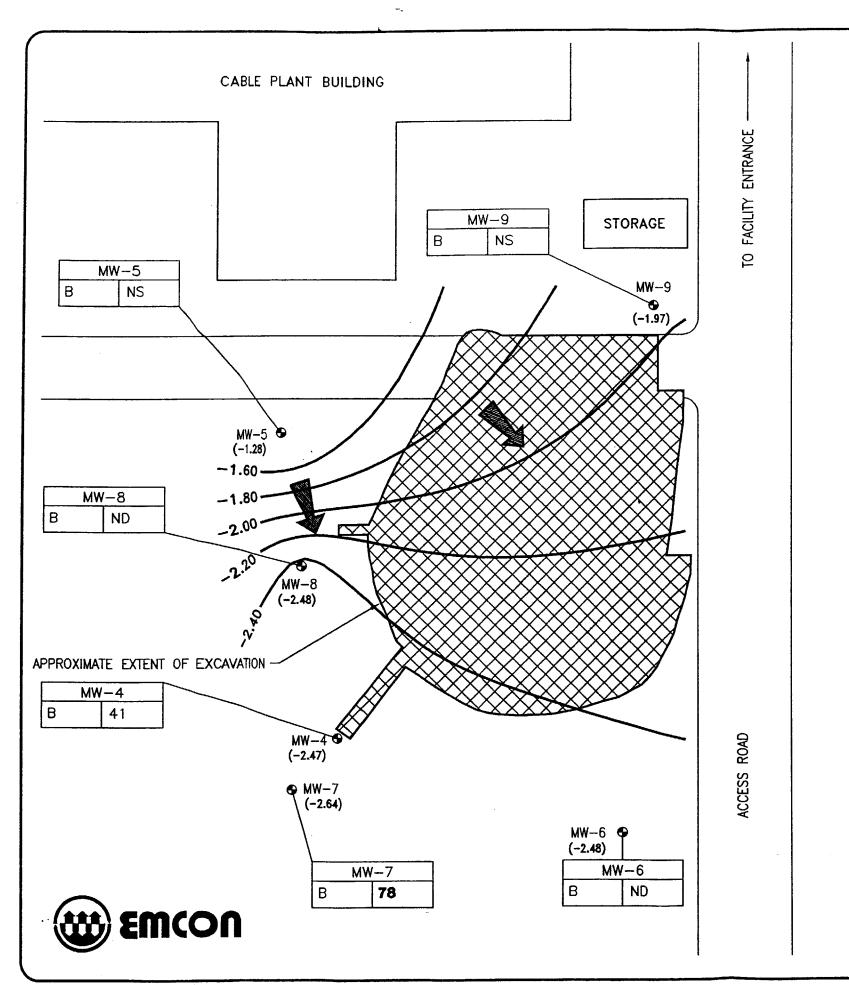
Groundwater Elevation Contour (Feet), March 27, 1995

(-1.61) Measured Groundwater Elevation (Feet), March 27, 1995


Inferred Groundwater Flow Direction

B = Benzene

ND = Not Detected at the Method Reporting Limit


MW	-4	Laboratory Results in / 📉
В	65.5	Parts Per Billion (ppm)

Values Highlighted in **BOLD** Exceed MTCA Method B Cleanup Levels for Surface Water

DATE 12/95 DWN. MMM APPR. 73/7 REVIS. PROJECT NO. 40133-001.007

Figure 2
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON
WATER TABLE AND ELEVATION CONTOUR MAP
MARCH 27, 1995

LEGEND

MW-4 ♥ Monitoring Well

Approximate Area of Former Excavation

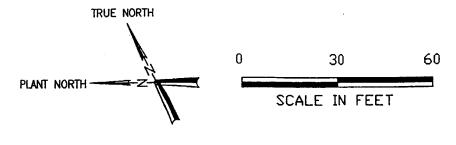
 Groundwater Elevation Contour (Feet), June 29, 1995

(-2.47)

Measured Groundwater Elevation (Feet), June 29, 1995

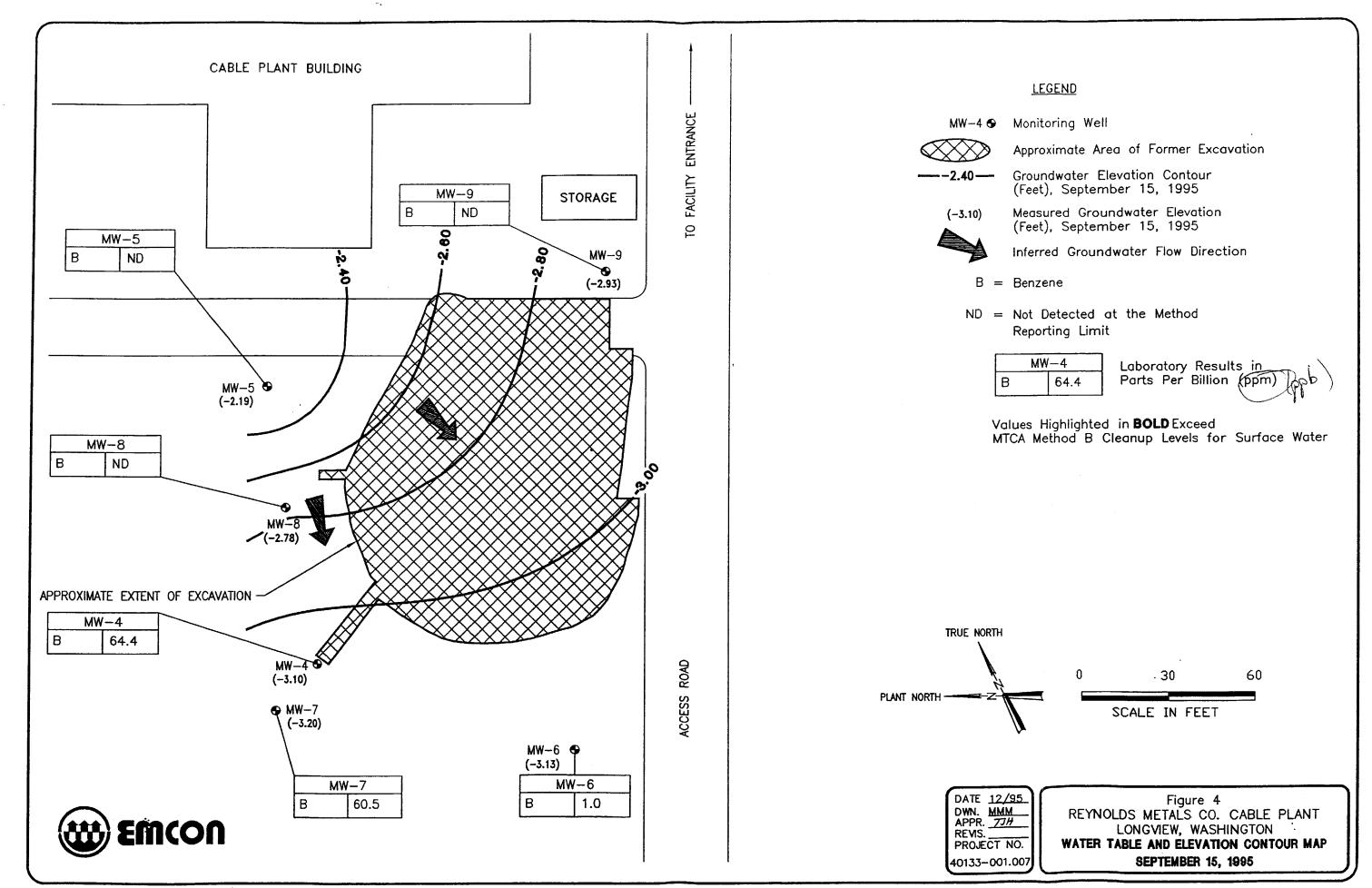
Inferred Groundwater Flow Direction

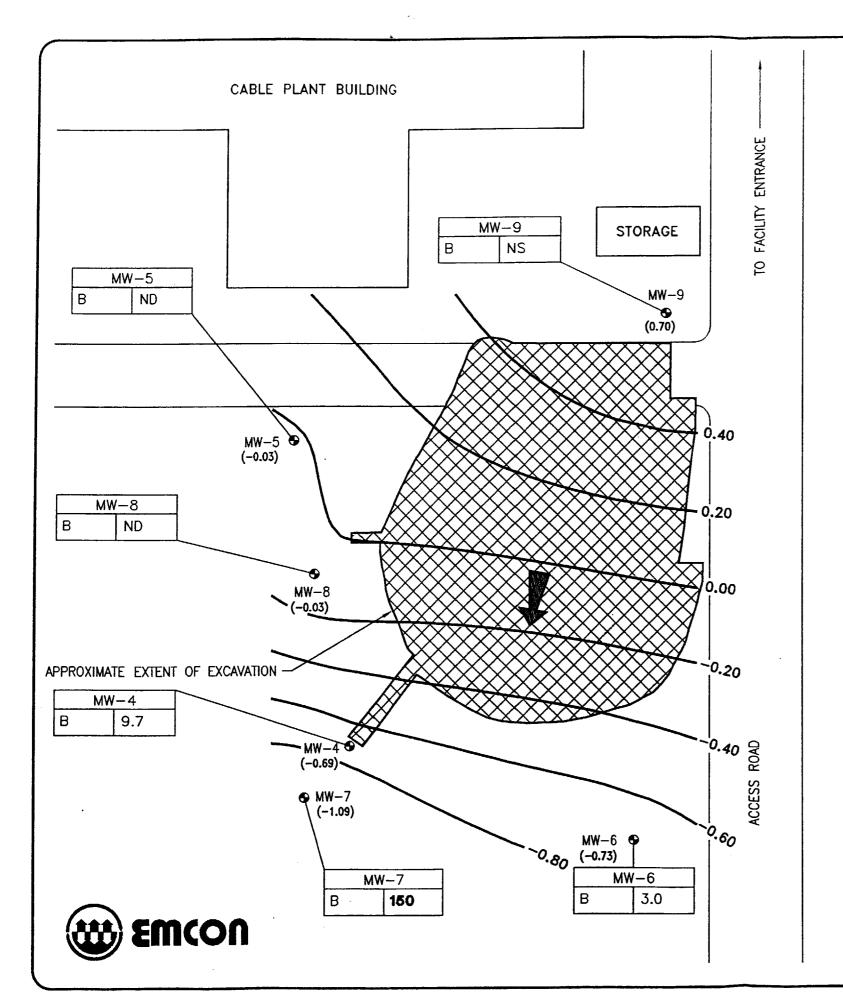
B = Benzene


ND = Not Detected at the Method Reporting Limit

NS = Not Sampled for Particular Analyte.

MW-4						
В	41					


Laboratory Results in Parts Per Billion (ppm)


Values Highlighted in **BOLD** Exceed MTCA Method B Cleanup Levels for Surface Water

DATE 12/95 DWN. MMM APPR. 77H REVIS. PROJECT NO. 40133-001.007

Figure 3
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON
WATER TABLE AND ELEVATION CONTOUR MAP
JUNE 29, 1995

LEGEND

MW-4 Monitoring Well

Approximate Area of Former Excavation

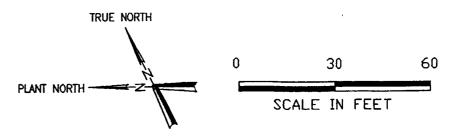
Groundwater Elevation Contour (Feet), December 15, 1995

(-0.69)

Measured Groundwater Elevation (Feet), December 15, 1995

Inferred Groundwater Flow Direction

B = Benzene


ND = Not Detected at the Method Reporting Limit

NS = Not Sampled for Particular Analyte.

MW	-4	L
В	9.7	P

Laboratory Results in Parts Per Billion (ppm)

Values Highlighted in **BOLD** Exceed MTCA Method B Cleanup Levels for Surface Water

DATE 12/95 DWN. MMM APPR. 72/4 REVS. PROJECT NO. 40133-001.007

Figure 5
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON
WATER TABLE AND ELEVATION CONTOUR MAP
DECEMBER 15, 1995

APPENDIX A FIELD SAMPLING DATA SHEETS

OCATION/ADDRESS Reynolds Motal	Well or Surface Site Number MW-4 Sample Designation KC4/3.27-95					
PROJECT NAME	Date, Time					
CLIENT/CONTACT			Weather	Dm ~ ll		, , , , , , , , , , , , , , , , , , ,
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.) Elevation	Date, T	ime	/ Metho	od (Level Meter	# nr Code)/(Comments
4.30	3 <u>-21-95</u>		Alope.	Indicate		
WELL EVACUATION: 1.5 Gallons/Pore Volumes 4.5 Discontinuous	ne Method Used - Posable Pacle-		Rinse Meth	ood 3	Dat -27-95	e, Time 1542-154
Surface Water Flow Speed	, Measuremen	t Method_			Date, Time	9
Date, Volume Sample Time Method (ml) VOC 3-27-95 DISP GOC 1550 DISP TIELD WATER QUALITY TESTS: Por Vol. Number pH Temp (co) (uS/cm) 2 metruty 13-7	Container Type Clear Clars Conductivity @ 25° (uS/cm) CTT	Depth Taken (feet) 5-6	Field Filtered (yes,no) Wo	Preserva- tive Hc C	ced (yes,no) 	Sampler Cleaning Method Non-Phosphatic detergent wash H20 rinse MeOH rinse* Distilled H20 rinse *Hexane rinse if oily
Motes: Well Cop 14as bo medium brown, silty						
LAB: CAS SAMPLER	as: hym	n Sin Sen	pson /	Ross	t be	T

LOCATION/ADDRESS Reynolds Metals					Sample De	esignation	mber NW	77-95	
PROJEC	T NAME					Date, Time 3-27-95 Weather Aun ~70°F			
CLIENT/	CONTACT					Weather	Am_	~10 +	
HYDROL	OGY MEASUREMEN	NTS:						·	
	(Nearest .01 ft.) 5,92		Elevation	Date, 3-27-95	Time 1021	Alope .	Od (Level Mei Indicia	er#orCode)/(fcr	Comments
	VACUATION: /. 3	Gallon:		e Method Used		Rinse Meth	and		e, Time
2	2 ,	VOIDITIES .							1512-15
_ Surface	Water Flow Speed	<u> </u>	•	<u></u>	ent Method_			_, Date, Time	e,
SAMPLI	NG:							.,,	Sampler
Sample	Date, Time	Method	Volume (ml)	Container Type	Depth Taken (feet)	Field Filtered (yes,no)	Preserva _tive	- (ced (yes,no)	Oleaning Method Non-Phosphatic
10C_	15/5	Oisp. Biller.	York.	Clear bless	6-9	Ko.	_Hc(_	, <u>Xe</u> F,	detergent wash H20 rinse MeOH rinse
							·		Distilled H20
	1	,							*Hexane rinse if oily
FIELD W	ATER QUALITY TE		iductivity	Conductivity @					
Number 2	pH Ten		uS/cm)	25° (uS/cm) 473 486			•		
		· · · · · · · · · · · · · · · · · · ·				_,	· · · · · · · · · · · · · · · · · · ·		•
							• .	·	
NOTES:	well + to	- (` (- 6-	14.1		5 T	(20/00	
	Vell + to	SK WI	Th-C	ap vo	CTEX	on l	of Or	LOCUES	
									
}					····				
					<u> </u>		1 ,	111	
	CAS		SAMPLER	s: <u>Lyn</u>	1) mp	250m/ft	1051 /	chen	
Hotal #	of Bottles: 3		Sign	istilice. All	~~~	3			

				L			
				Well or Surf	ace Site Num	ber MW-	X /
LOCATION/ADDRESS Keynold	Metals	ν			signation	RC6/3	27-95
PROJECT NAME				Date, Time	·	·	
CLIENT/CONTACT				Weather	Jun ~ 70'	<u> </u>	
				 			
HYDROLOGY MEASUREMENTS:	= 1	Data	Ti	Mathe	od (Leyel Meter	# or CodeVC	'omments
(Nearest .01 ft.) 83	Elevation	Date, 3-27-95	1029		Indicato o		Omments
	 	,	1035				
,							···
WELL EVACUATION: 1.6 Gallo	ns/Pore Volume	· •					
Gallons Pore Volumes	_ M	lethod Used		Rinse Meth			e, Time
4.8 3	. Die	y Dailer			2:	27.95	1620
Surface Water Flow Speed		. Measureme	 nt Method			Date, Time	··································
Surface Water Flow Speed							
SAMPLING:		-					Sampler
, <u></u>			Depth	Field			Cleaning
Date,	Volume	Container	Taken	Filtered	Preserva-	Iced	Method
Sample Time Method	, (ml)	Type	(feet)	(yes,no)	tive	(yes,no)	Non-Phosphatic
10C 37795 DISP	. Your .	leablass.	4-6	. <u>140</u> .	HCC	_, <i>Yes</i> ,	detergent wash
1650 Bailes	,						H20 rinse
		,					MeOH\rinse*
				1			Distilled H20
		·		•		'	rinse
	,,			••		_,·	if oily
	,,			·			
FIELD WATER QUALITY TESTS:							
Por Vol.	onductivity	Conductivity @					
Number pH Temp (c⁰)	(uS/cm)	25º (uS/cm)					
2 moter 14.0.	-(•	<u> </u>					
J. maturation 4.1.	 , .	1147			 •	············	•
	/- · ·			 ,	·		
					·		
		•					
NOTES:							- .
well capis	6/+	/ Wat	10-1	tel -	- 005	ble	dist
and surface water		EE -	msd	20 1	well oil	· - 11	ed inside
casing sligh	this si	17× 0	pale	SILY	in c	olor	
		- /			9/11		
improper bolt s	130 Fo	1 (0)	p -	needs	1/16	-	
,		·					
						./.	
LAB: CAS	SAMPLED	s. Lu	nn .5	MPSON	1 Rus	or Heli	28/
	0.000 CEI	1	1		7		
Total # of Bottles: 3	Sign	ature:	m He	moder			
\sim		U					

PROJECT	NAME	eynolds	Metal			Sample De Date, Time			3-27-96
CLIENT/C	CONTACT					Weather_\	un ··· Iv		
YYDROLO	OGY MEASUREME (Nearest .01 ft.)		Elevation	Date, 3-27-95	Time DOS	Alope	d (Level Meter	# or Code)/C	Comments
	1 -	Gallon e Volumes	8	Method Used	, _	Rinse Meth			e, Time /602-/60 {
Surface \	Water Flow Speed	1		, Measurem	ent Method_		 -	Date, Time	9
Sample / O C	G: Date, Time 3-27-95	Method Oisp Bailer	Volume (ml) York,	Container Type (lea blas)	Depth Taken (feet) U-6	Field Fittered (yes,no) . LYC	Preserva- tive HC(ced (yes,no) \(\subseteq \infty \)	Sampler Cleaning Method Non-Phosphatic detergent wash H20 rinse MeOH rinse Distilled H20 rinse 'Hexane rinse if oily
Por Vol. Number	pH Te neter 1 making	Co	nductivity us/cm)	Conductivity @ 25° (uS/cm) / / 45 / 35				· · · · · · · · · · · · · · · · · · ·	
IOTES:	dtb= Foamy	well	Ca p bailed	- Lt 1	bolto	d in	place	_ (NOT	Lockel
		7	SAMPLEF	is: Ly	in S, m Sir	mpson por	/Ro	ise He	Shell

OCATION/ADDRESS Reyallds metals	Sample Designation (3/3-27-95			
'ROJECT NAME	Date. Time			
CLIENT/CONTACT	Weather 5un 70°F			
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.) Elevation Date, Time 5-16 , 3-77-95 1019	Method (Level Meter # or Code)/Comments Slope Indicator			
.VELL EVACUATION: 1.4 Gallons/Pore Volume Gallons Pore Volumes Method Used 4.5 , 3 , 0,3985=6646 biller ,	Rinse Method Date, Time 3-27-95 1525453			
Surface Water Flow Speed, Measurement Method_	, Date, Time			
Depth Date, Volume Container Taken Sample Time Method (ml) Type (feet) OC 3-27-95 Orsp York (leass 6-9) 1535 Order	Field Filtered Preserva- Iced Method (yes,no) tive (yes,no) Non-Phosphatic Mo. HcC , YCC, detergent wash H20 sinse Method Trinse Disfilled H20 Trinse Hexane rinse if oily			
Por Vol. Por Vol. Number pH Temp (c°) (uS(cm) 25° (uS/cm) 1 new /4.7 Notes: Wall (ap , s holfed holf not	Cocked			
LAB: CAS SAMPLERS: Lynn: Total # of Bottles: 3 Signature: Lymn	Simpson Ross Hobert			

OCATION/ADDRESS Reynolds	Well or Surface Site Number MW-8 7 Sample Designation RC//3-27-75					
PROJECT NAME			Date, Time 3-27-95			
CLIENT/CONTACT			Weather	un		
HYDROLOGY MEASUREMENTS:						
(Nearest .01 ft.) E	levation Date, 3-27-95	Time 1035 1029	Slope S	d (Level Mete	r # or Code)/C	omments
<u> </u>		,				•
VELL EVACUATION: Gallons Gallons Pore Volumes	Pore Volume Method Used Oisposable Baile	;	Rinse Meth	od		e, Time 95 1435 76
Surface Water Flow Speed	, Measuremen	nt Method_			, Date, Time	·
SAMPLING:		Dooth	Cold			Sampler
Date, Sample Time Method 10C, 3-27-97, OSP.	Volume Container (ml) Type	Depth Taken (feet)	Field Filtered (yes,no)	Preserva- tive #CL	iced (yes,no)	Cleaning Method Non-Phosphatic detergent wash
	40nL,				· · · · · · · · · · · · · · · · ·	H20 rinse MeOH rinse * Distilled H20 rinse
						*Hexane rinse if oily
	ductivity Conductivity @ 25° (uS/cm) x/90					
	1				··············	
NOTES: Well Flush mouri	T - Bolted	down	- NO	Locks	•	
LAB: <u>C45</u>	SAMPLERS: Lynn Signature Lynn	C. SIMP SOL	Ross	HeberT		
Total # of Bottles: 3	Signature: Ly	m'Sci	pone			

LOCATION/ADDRESS Reynolds Cath PROJECT NAME CHENT/CONTACT		Date, Time	29/95 10:17 Sunny 80°
CLIENT/CONTACT		Weather Clary	JUNNEY 80
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.) Elevation	Date, Time 6/39/95 9:30	Method (Leve <u>らんみと まん</u>	I Meter # or Code)/Comments
	Method Used (posable	Ĥīnse Method	Date, Time C/39/95 10:33
Surface Water Flow Speed	Measurement Me	hod	Date, Time
Date, Volume Sample Time Method (ml) 100	Container Ta		Sampi Cleanii ve (yes.no) Non-Phosi detergent H20 rins MeOH ri Distilled rinse
POR VOI. Number pH Temp (cº) (uS/cm) 1 (1.65.15.8. 2 (1.65.15.2. 3 (1.60.15.4.	Conductivity @ 25° (uS/cm) .5 5 0		if oils
NO ODO	n color, tosa	1 dt6= 13.30	(+0.24:13.60
# Bittles 3			

LOCATION/ADDRESS Reynolo	ls Cab	le plant	-	Sample D	rface Site Nurr esignation Mu	106299	5-6
PHOJECT NAME				Date, Tim	e	5	
CLIENT/CONTACT	jste .			Weather			
HYDROLOGY MEASUREMENTS: (Nearest .0.1 ft.)	Elevation	Date, T	ime	Meth	od (Level Meter	# or Code)/	Comments
<u></u>		. 6/39/9 9:35	<u></u> .	51000	India	e fur	
WELL EVACUATION: 1.5 Gallo Gallons Pore Volumes 4.5	. Dist	Method Used		Älmse Meth	od	0/291	
Surface Water Flow Speed	•	Measurement	Method_		<u></u>	// '2 Date, Tim	
CAMBINO			···				\ C==-!
Date, Sample Time Method VOC, 4/39/45 Dis poses		Container Type	Depth Taken (feet)	Field Filtered (yes,no) <u>WO</u> ,	Preserva- tive HcL	lced (yes.no)	Sampler Cleaning Method Non-Phosphatidetergent wash
							H20 rinse MeOH rinse Distilled H20 rinse *Hexane kinse if oily
1	nductivity (Conductivity @ 25° (uS/cm) / 3 3 / / 3 0 4					; ; ;
OTES: Clear, Slightly Silt	1 110	odor		146= 1	3.80. to	0.24=	1404
			· · · · · · · · · · · · · · · · · · ·				
#Bottles 3							
·- // C		Ruce	Hah	1	Rine .	Kh M	

3

LOCATION/ADDRESS Reynolds Cub	le plant		Sample Di	face Site Num	1307885	<u>- フ ダ</u> - フ <u> </u>
PROJECT NAME			Date, Tim	1001 SU	11-1 80	0
CLIENT/CONTACT			weather <u>C</u>	12613 300		
(Nearest .01 ft.) Elevation	0ate, 7 6/29/9 9:33		Metho <u>Slope</u>	od (Level Meter	# or Code)/Co	omments
1.7						
	Method Used Posable		Alase Meth	nod	Date.	Time
	a.lc					
Surface Water Flow Speed	, Measurement	Method		$\overline{}$	Date, Time	
SAMPLING:				. ——————		\ Samplei
Date, Volume Sample Time Method , (ml)	Container Type ([fea-6[as]]	Depth Taken (feet)	Field Filtered (yes,no) <u>NO</u> .	Preserva- tive HCL	ced (yes,no) 	Cleaning Method Non-Phospha detergent w H20 rinse MeOH rinse
			: : :			Distilled H: rinse "Hexane kins if oily
FIELD WATER QUALITY TESTS: Por Vol. Number pH Temp (c°) (uS/cm) 1 669 / 6.2 2 665 /5.5 3 6.56 /5.4	Conductivity @ 25° (uS/cm) / 4/79 / 3 68 / 33 0					· · · · · · · · · · · · · · · · · · ·
NOTES: Clear, Slightly Silty, Sligh	t Odor	<u> </u>	drb=	12.92+	-0.745,	13.16_
		·			·····	
,		\$0) uplica	te m	w-10	
 -			1110			
	. Pucc					

LOCATION/ADDRESS R	ynolds Cak	le plant		Sample D	esignation <u>My</u>	U 06/29	195-8
PROJECT NAME				Date, Tim	e 6/29/9	5	-0
CLIENT/CONTACT				Weather <u>C</u>	lear sun	<u>~~ 7</u>	5
HYDROLOGY MEASUREMENT	rs:						
(Nearest .01 ft.)	Elevation	Date, J	ime	Meth	od (Level Meter	# or Code)/	Comments
<u> </u>		<u>6/29/9</u> 9:28		SLOPE	- Indic	afor	WIP_
,		_,			 -		
WELL EVACUATION: 1.2	Gallons/Pore Volum						
	Gallons/Pore Volum 'olumes	ne Method Used		Alase Meth	nod	. Dat	e, Time
3.8		posable.				6/28/	95
		Sailer.				10:00	2
Surface Water Flow Speed		Measurement	t Method_			Date, Time	e
							
SAMPLING:			Danah	r=- 1.1			Sampler
Date,	Volume	Container	Depth Taken	Field Filtered	Preserva-	Iced	Cleaning Method
Sample Time	Method , (ml)	Type	(feet)	(yes,no)	tive	(yes,no)	Non-Phosphai
2 / 7	Disposable 40	Clear Glass.	-/3 .	No.	Hol	<u>, YCS</u> ,	detergent was
10.05	Duiles.					-,	H20 rinse
				<u> </u>		-··	MeOH rinse
	· · · · · · · · · · · · · · · · · · ·			 •		-··	Distilled H20
						 .	rinse
						,	*Hexane kins
				•		··	if oily
FIELD WATER QUALITY TEST	S·						`
Por Vol.	Conductivity	Conductivity @					
Number pH Temp	1	25º (uS/cm)					
1. 6.72. les		983	·			 •	 •
	_ _ · _ ·	870		- 1		1	
) . (B.GO. 15.)		_ 5 4 /	·		. • –	 •	·
				- ·		·	
NOTES:							T.'
10125				4.	= 14.13	100//=	14/37
					-17.13	10.09	
Slightly Silt	a ode a	NO NO	odor				
2191117	7 / 12 11 1	1/					
		 					
	· · · · · · · · · · · · · · · · · · ·			······			
		·					
FB-THES	3						
1) c///t			· .		5	11 5	4
LAB: <u>(A</u> 5	SAMPLERS	s: <u>Russ</u>	Hel	be I	Kons	Hehr.	<u>//</u>

PROJECT NAME		<u>/.</u>	Date, Time 9/15/95 14/3. Weather Simy			/3/
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.) Ele	9/15	Time /95	Metho	d(Level Meter	# or Code)/Co	omments
WELL EVACUATION: 1.2 Gallons/P Gallons Pore Volumes 3.6 3	Method Used Mispose blu Measureme	nt Method_	Rinse Meth	od/ :	Date 9 1/5/9 1/6 4/9 Date, Time	2
Date, Sample Fime Method VCAS 1/15/95 Disp.	Volume Container (mt) Type 40 C GICU	Depth Taken (feet)	Field Filtered (yes,no)	Preserva- tive HC/	ced (yes,no) 	Samp Clean Meth Non-Pho detergen H20 ris MeOH Distilled rins *Hexane if oi
FIELD WATER QUALITY TESTS: Por Vol. Number pH Temp (cº) (uS/d) 7 (173 17.5				 		
NOTES:	cdor	a	/	13.30 10.#mi	+0.24 v-3/9	=13.5

LOCATION/ADDRESS	able Plint		Well or Surface Site Number 19 10 - 3 Sample Designation 19 10 - 5 19 115 Date, Time 9 15 19 14 20 Weather Suny			9/15/95
HYDROLOGY MEASUREMENTS: (Nearest 01 ft.) Elevation	Date, 9/15/	195	Metho	od (Level Mete	r#or Code)/	Comments
WELL EVACUATION:	Volume Method Used Dispussu おごし Measureme	, nt Method	Rinse Meth	od		e. Time 79 5 2 5
Date, Volu Sample Time Method (m) VOA 9/15/95 Dig. 4	i) Type	Depth Taken (feet) 9	Field Filtered (yes,no)	Preserva- tive HCI	ced (yes.no) 	Sampler Cleaning Method Non-Phosphat detergent was H20 rinse MeOH rinse Distilled H20 rinse *Hexane rinse if oily
FIELD WATER QUALITY TESTS: Por Vol. Number pH Temp (cº) (uS/cm) / 3 (J.C./. 17.9.	Conductivity @ 25° (uS/cm) US S					
NOTES: Heavy Silt, Gray	ve odor		dtb:	14.03+	0.24=	14,27
LAB: AS SAMP	LERS: Russ	Hebrt				

PROJECT NAMECLIENT/CONTACT	Indle Plant	Well or Surface Site Number Mw-6 Sample Designation Mw-6/9/15/95 Date, Time 9/5/95 Weather Samy		
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.) Elevation	Date, Time 9//5/95	Method (Level Met	er # or Code)/Comments	
WELL EVACUATION: Gallons/Pore Volumes Gallons Pore Volumes Surface Water Flow Speed	Ime Method Used Director Str. Measurement Method	Rinse Method	Date, Time 9/15/95 1625 Date, Time	
SAMPLING: Date, Volume Sample Fine/ Method (ml) VOA 9/15/95 Disp. 49 1630 Bails.	Depth Container Taken Type (feet)	_	Sampler Cleanin Iced Methoc (yes.no) Non-Phosphi detergent v H20 rins MeOH rins Distilled F rinse Hexane rin: if oily	
FIELD WATER QUALITY TESTS: Por Vol. Number pH Temp (c°) (uS/cm) 2 (77, 776 3 (220, 774)	Conductivity @ 25° (uS/cm)			
rotes: Gray, Shighty Silty,	No role	dfb= 13.63 f	0.24=1387	
LAB: (A) SAMPLI	ERS: Pus Hobe	F.		

PROJECT NAME	Cable Plant			esignation March	195 /	9/15/95 1428
CLIENT/CONTACT			Weather	Timy		
				,		
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.) Elevati		Time /45	Metho	od (Level Meter	r # or Code)/0	Comments
		· · · · · · · · · · · · · · · · · · ·				
WELL EVACUATION:	Method Used Dis porasla		Rinse Meth	od	9/15	e, Time
Surface Water Flow Speed		ant Method			Date, Time	e
SAMPLING:	ume Container	Depth Taken	Field Filtered	Preserva-	lced	Sampler Cleaning Method
Sample Time Method (r	ume Container nl) Type (D . C . C	(feet)	(yes,ng)	tive	(yes.no)	Non-Phosphat detergent was H20 rinse MeOH rinse Distilled H20
						rinse *Hexane rins if oily
FIELD WATER QUALITY TESTS: Por Vol. Number pH Temp (c°) (uS/cm) 2 (03 /8.3 4 (9.10 17.8	Conductivity @ 25° (uS/cm). 735 702 772					
NOTES:						
Some odu			dtb.	> 12.86+	0.24=	13.60
			·	· · · · · · · · · · · · · · · · · · ·		
LAB: AS SAM	miers. Rice	Asa	4.			

PROJECT NAMECLIENT/CONTACT	inolds Cable Plan	<i>+</i>	Sample Designation Date, Time 9/15 Weather Sunay	145 1125
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.)	Elevation Date,		Method (Level M	leter # or Code)/Comments
WELL EVACUATION: / / Ga Gallons Pore Volumes 5 / / Surface Water Flow Speed	Diffush Saile	.,	Rinse Method	Date, Time
SAMPLING: Date, Sample Time Metho VOA 9//5/95 Baile	Volume Container d (ml) Type	Depth Taken (feet)	Field Filtered Present (yes.no) tive	(yes.no) Non-Phosphi
PIELD WATER QUALITY TESTS: Por Vol. Number pH Temp (c°) 7 6.15 18.8 3 6.27 18.2 NOTES:	Conductivity Conductivity @ (uS/cm) / 25° (uS/cm) / 78° 3 / 75° 8		## Ath	======================================
LAB: (As	SAMPLERS:Russ	Hebrt		

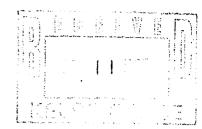
LOCATION/ADDRESS Reynolds Con	lle	<u></u>	Sample De	ace Site Number Signation 1	nw-4/9	115195
PROJECT NAMECLIENT/CONTACT			Weather	Siny		
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.) Elevation 9.24	Date, Tim 9/15/9	ne 	Metho	d (Level Meter)# or Code)/C	omments
WELL EVACUATION: // Gallons/Pore V	Method Used <u>Disposed le</u> Baster		Rinse Metho	od	9/15/ 14/5 3 Date, Time	3
Sample Time Method (ml) 1/0A 9/15/95 DBuiler 4/0	Туре Туре	Depth Taken (feet)	Field Filtered (yes,no) //C	Preserva- tive #C (ced (yes,no) 	Sampler Cleaning Method Non-Phosphatin detergent wast H20 rinse MeOH rinse Distilled H20 rinse "Hexane rinse if oily.
FIELD WATER QUALITY TESTS: Por Vol. Conductivity Number 7 PH Temp (c°) (uS/cm) / 3 / 5.38 / 1 / 6.38 / 1 / 6.5 /	Conductivity @ 25° (uS/cm) 385					
NOTES: La, No color, NO	silt, No	o de	d.		32 to	24=
LAR: OF SAME	PLERS: _ Kus /	41.				
LAB: SAMF	LERS:	0007				

PROJECT NAME		Cople			<u> 1,2/15/20</u>		
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.)	Elevation	Date, T	95	Metho	d (Level Meter	# or Code)/Co	omments
WELL EVACUATION: 1.6 Gallons Pore Volum 5	Pi	me Method Used Spusabli Bailer	<u> </u>	Rinse Meth	og	• Date	, Time 5/45
Surface Water Flow Speed		Measuremen	Method			Date, Time	
FIELD WATER QUALITY TESTS:	Volume ethod (ml)	Conductivity @	Depth Taken (feet)	Field Filtered (yes,no) A/O	Preserva- tive //c C	Iced (yes,no)	Sampler Cleaning Method Non-Phosphate detergent was H20 rinse MeON rinse Distilled H20 rinse Hexane rinse if oily
Number pH Temp (cº 2.02 15.9 16.2 3 6.08 16.9	(uS/cm)	25° (us/cm) 5° 4° 8° 5° 6° 0° 5° 6° 3°					
NOTES: LT Grey, Sligh.	tly silty	, No colo	01	/tb = 1	3,06+	-0.24=	17.30
		as: Rus					

LOCATION/ADDRESS Reguel	de Cable			Sample De	signation/11 60	ber 121	575
PROJECT NAME				•			
CLIENT/CONTACT Tim 124	16			Weather			
HYDROLOGY MEASUREMENTS:							
(Nearest .01 ft.)	Elevation	Date, T		Metho	d (Level Meter	ो or Code)/Co	mments
<u> 5.3.7 </u>		· _12/15					
	/	/3.2	. ــــــــــــــــــــــــــــــــــــ				
11/				· · · · · · · · · · · · · · · · · · ·			
	Ions/Pore Volume	ethod Used		Rinse Meth	od	· Date	,Time
Gallons Pore Volumes		ses ably		Milise Mell		12/15/	<u> </u>
		ile					
Surface Water Flow Speed		_, Measurement	Method_			Date, Time_	
							
SAMPLING:						,	Sampler
	u filia de la composición del composición de la composición de la composición del composición de la co		Depth	Field			Cleaning
Date,	Volume	Container	Taken	المحادث	Preserva-	Iced	Method
Sample Time Method		Туре	∠(feet)	(yes.no)	tive . HcC	(yes,no)	Non-Phosphatic
1540 Bala		Jean blace.		. <u>16</u> .	1160	_, <u>y-2</u> ,	detergent wash H20 rinse
	<u> </u>	•					MeOH mase
	_ , , _			••			Distilled H2Q
				· <u> </u>			rinse
							*Hexane rinse
							if oily
							
FIELD WATER QUALITY TESTS:							
		Conductivity @					
Number pH Temp (cº)	(uS/cm)	25º (uS/cm) ᠘/ Ĵ <i>Ŷ</i>				44	
1 61/2 1/4 T	/· -	459		,	·		·
3 624 14.7		462		,	, _	·	
	<u> </u>				<u> </u>		
	/						
NOTES:							
LTGICY, ITSO	11 110	alac					
	W.C.	Vaci					
			cith.	=13.89	+0.24	-14/13	
			-			:	
							
						·	
						100 May	
		.1		11 +	·		
LAB: CAS	SAMPLERS	s:	S5_17	1611			
7		\sim	1	1/10	+		

No. 13/15/95 D.5 2054 C 40 (124) 645 40 40 40 40 40 40 40	LOCATION/ADDRESS Reynolds (able) PROJECT NAME CLIENT/CONTACT Tim mare	Well or Surface Site Number MW - 6 Sample Designation Number 12/5/15 Date, Time 12/15/15 Weather
Gallons Pore Volumes Disposable Rinse Method Date, Time 1/1/3/1/3 Surface Water Flow Speed Measurement Method Date, Time 1/1/3/1/3 Sampler Time Method Date, Time Cleaning Depth Field Sampler Cleaning Method Met	(Nearest .01 ft.) Elevation Date, Time	Method (Level Meter# or Code)/Comments
Date Volume Container Taken Field Preserva Iced Method Me	Gallons Pore Volumes Method Used 5.5 3 Disposable Briles	12/15/25
Por Vol. Number	Depth Date, Volume Container Taken Sample Time, Method (ml) Type (feet) Vol. 12/15/95 D-520542/10 40 (1241/4655 44	Field Cleaning Filtered Preserva- Iced Method (yes.no) tive (yes.no) Non-Phosphati V' HCC YS detergent was H20 rinse Distilled H20 rinse Hexane rinse
IT Grey, NO odor, No silt	Por Vol. Conductivity Conductivity @ Number pH Temp (c°) (uS/cm) 25° (uS/cm)	
	IT brey, NO ofor, No silt	

LOCATION/ADDRESS Reynolds (able		Sample De	signation/1100	$\frac{100}{17-131}$	
PROJECT NAME				17/15/	75	
CLIENT/CONTACT TIM MACE			Weather			
HYDROLOGY MEASUREMENTS.				 -		
HYDROLOGY MEASUREMENTS; (Nearest .01 ft.) Elevation	/ Date, T		Metho	Level Meter	# or Code)/Co	omments
<u>X</u> 3.21	<u> </u>	195	<u> </u>			
		<u></u> ,				
WELL EVACUATION: / Gallons/Pore Vo	olume					
Galloos Pore Volumes	Method Used		Rinse Meth	òq	Date.	Time
	Biler.	_			12//3/9	
	Measurement	Method_	7		, Date, Time	
		·				
SAMPLING:		Depth	Field			Sampler Cleaning
Date, Volum	ne Container	Taken	Filtered	Preserva-	Iced	Method
Sample Time Method (ml)		(feet)	(yes,no)	tive .	(yes,no)	Non-Phosphatic
NOC. 13/15/15. Disposelle 40	. Clearthas.	<u> </u>	1/6	HCC_	<u>X </u>	detergent wash
1920 Bailes						H20 rinse
1						MéOH rinse * Distilled H20
						rinse
					_,,	Hexane rinse
1					-:: /	if oily
FIELD WATER QUALITY TESTS: Por Vol. Conductivity	Conductivity @					
Por Vol. Conductivity Number pH Temp (cº) (uS/cm) /	Conductivity @ 25° (uS/cm)					
_1 5-93 16.1	750					
2 6.00 16-6	752					
3. 6.18. 16.6.	707		<u> </u>	 _		
					· ·	•
				 -	 ·	•
NOTES:	10 / F 10 m	n 1: -				
Clear, Colorless, M				 		
		dF3	712.80	710,24	1=13.1	ָ כ
						01430
	<i>₩ 00</i> 0	plica	10 mil	10 - 1	7/5 75	£ 14 30
		-				
	12.1.	~ ~	Webe:	7		
LAB: <u>CAS</u> SAMP	LERS:	<u>} </u>	110000	<u></u>		
7	\sim	<i>!</i>	11/1/1	,		



LOCATION/ADDRESS Reynol	ds 19127	ials		Sample De	signation /) 1 4	N8-12	1575
PROJECT NAME				Date, Time	17/15/	5.5	
CLIENT/CONTACT TIME	rull			Weather			
	·	-					
HYDROLOGY MEASUREMENTS:						`	
(Nearest .01 ft.)	Elevation	Date. 17/15/		Metho	od (Level Meter	# or Code)/Co	omments
4.05	<i>-</i>		28				
WELL EVACUATION: 3 Ga	illons/Pore Volum	ie					
Gallons Pore Volumes	3	Method Used	. •	Rinse Meth	nod	Date () / (5)	Time
<u> </u>		sosable	• -	/-	 •	15/	0
Surface Water Flow Speed		Measuremer	· —— nt Method			, Date, Time,	
Surface Water Flow Speed							· · · · · · · · · · · · · · · · · · ·
SAMPLING:							Sampler /
			Depth	Field			Cleaning
Date,	Volume	Container	Taken	Filtered	Preserva-	(ced	Method Non-Phosphatic
Sample Time Metho		(/cut/cs	(feet) - /L/	(yes,no)	tive .	(yes,no)	detergent wash
1315 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15		(1747) [14]		, , , , ,		/	H20 rinse
	<u> </u>	•		••			MeOH rinse
		: •					Distilled H20
		•		:		/	rinse
				•		/	*Hexane rinse
						′	if oily
							
FIELD WATER QUALITY TESTS:							
Por Vol.	Conductivity	Conductivity @ 25° (uS/cm)					
Number pH Temp (c°)	(uS/cm)	25 (46/011)				_	
7 6.02 17.0		683					
175 6.25 15.8		639					
	<u></u>			,	<i>-</i> -	·	
					.	1	
NOTES:		,	j		_	,	
pursul dry	at 27	5 plv.	and	GARISE	7.50	Eas C	
,	•	J	111	- 140	9102	11-14	33
					1 40.5	9 - 1 1.	<u> </u>
Grey with mode	ento s.	It. NO	oder				
227 1077 753011							
		•					
						· · · · · · · · · · · · · · · · · · ·	
		.0		11 -			
LAB: CAS	SAMPLER	rs: Kus	<u> </u>	10601			<u> </u>
~	e ^r	~	つ .	11/14			

APPENDIX B

ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

April 10, 1995

Service Request No.: K9501795

Tim Haderly EMCON 603 Royal Street W. P. O. Drawer B Kelso, WA 98626

Re: Reynolds Cable Plant/Project #40133-001.007

Dear Tim:

Enclosed are the results of the sample(s) submitted to our laboratory on March 28, 1995. For your reference, these analyses have been assigned our service request number K9501795.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda A. Huckestein Project Chemist

LAH/td

Page 1 of

00106 - Talaakaaa 0061677 7000 - Tau 0061696 406

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Analytical Report

Client:

EMCON

EMCON

Project: Reyr Sample Matrix: Water

Reynolds Cable Plant/#40133-001.007

Water

Service Request: K9501795

Date Collected: 3/27/95

Date Received: 3/28/95.

Date Extracted: NA
Date Analyzed: 3/30/95

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: μ g/L (ppb)

	Analyte: Method Reporting Limit:	Benzene 0.5	Toluene l	Ethylbenzene l	Total Xylenes	TPH as Gasoline 50
Sample Name	Lab Code					
RC1/3-27-95 (ML-9)	K9501795-001	ND	ND	ND	ND	ND
RC2/3-27-95 (nw-5)	K9501795-002	ND	ND	ND	ND	ND
RC3/3-27-95 (mw-8)	K9501795-003	ND	ND	ND	ND	ND
RC4/3-27-95 (MW-4)	K9501795-004	65.5	ND	ND	ND	ND
RC5/3-27-95 (mm-7)	K9501795-005	121	ND	ND	ND	ND
RC6/3-27-95 (mw-le)	K9501795-006	ND	- ND	ND	ND	ND
RC7/3-27-95 (mm-4 Dup) K9501795-007	63.5	ND	ND	ND	ND
Method Blank	K950330-WB	ND	ND	ND	ND	ND

Approved By:	Mandany	Date: _	4/8/95

5A/102194 01795PHC.LP1 - BTXw 4/4/95

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix: Water

Service Request: K9501795 Date Collected: 3/27/95 Date Received: 3/28/95 Date Extracted: NA

Date Analyzed: 3/30,31/95

Surrogate Recovery Summary BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
RC1/3-27-95	K9501795-001	101	98
RC2/3-27-95	K9501795-002	103	100
RC3/3-27-95	K9501795-003	99	94
RC4/3-27-95	K9501795-004	102	93
RC5/3-27-95	K9501795-005	103	100
RC6/3-27-95	K9501795-006	101	100
RC7/3-27-95	K9501795-007	100	97
RC5/3-27-95	K9501795-005D	105	102
RC1/3-27-95	K9501795-001MS	112	-
RC2/3-27-95	K9501795-002MS	-	102
Laboratory Control Sample	K950330-WL	- 122	107
Method Blank	K950330-WB	105	103

CAS	Acceptance	Limits:
-----	------------	---------

70-122

51-143

Manhane Date: 4/8/95 Approved By:

SUR2/111594 01795PHC.LPI - BTXwSUR 4/4/95

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix: Water

Service Request: K9501795

Date Collected: 3/27/95

Date Received: 3/28/95 Date Extracted: NA

Date Analyzed: 3/30,31/95

Duplicate Summary

BTEX and Total Petroleum Hydrocarbons as Gasoline

EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Units: µg/L (ppb)

Sample Name:

RC5/3-27-95

Lab Code:

K9501795-005

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	CAS RPD Acceptance Limit
Benzene	0.5	121	109	115	10	30
Toluene	I	ND	ND	ND	ND	30
Ethylbenzene	1	ND	ND	ND	ND	30
Total Xylenes	1	ND	ND	ND	ND	30
Gasoline	50	ND	ND	ND	ND	30

Approved By:	Wondans	Da	ate:	4/8/95
DI IPISE POVINCION				

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix: Water

Service Request: K9501795

Date Collected: 3/27/95

Date Received: 3/28/95

Date Extracted: NA

Date Analyzed: 3/30,31/95

Matrix Spike Summary

BTEX and Total Petroleum Hydrocarbons as Gasoline

EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Units: µg/L (ppb)

Sample Name: RC1/3-27-95

Lab Code:

K9501795-001

CAS

Analyte	K9301793-001	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	Recovery Acceptance Limits
Benzene		0.5	100	ND	90.0	90	56-129
Toluene		1	100	ND	78	78	61-126
Ethylbenzene		l	100	ND	75	75	54-132

Approved By:	Under	Date:	4/8795

MS1S/102194 01795PHC.LP1 - BTXwMS 4/4/95

Page No.:

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix: Water

Service Request: K9501795

Date Collected: 3/27/95

Date Received: 3/28/95 Date Extracted: NA

Date Analyzed: 3/30,31/95

Matrix Spike Summary

BTEX and Total Petroleum Hydrocarbons as Gasoline

EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Units: µg/L (ppb)

Sample Name:

RC2/3-27-95

Lab Code:

CAS

Percent

K9501795-002

Spike Sample Level Result

Sample Result

Spiked

Percent Recovery

Recovery Acceptance Limits

Analyte Gasoline

50 2500

MRL

ND

2040

82

52-133

Date: 4/8/95 Mandans Approved By:

MS1S/102194 01795PHC,LP1 - BTXwMS (2) 4/4/95

CHAIN OF CUSTODY/LABORATORY ANALYSIS HEQUEST FORM

1317 South 13th Ave. • Kelso,																DATE	ئة :	21.	15		PAG	EOF																												
PROJECT NAMERCYNIEDO CA GE Plant : 40122-001.007 PROJECT MNGR Tin Haderly				-			ANALYSIS REQUESTED											-			**************************************																													
COMPANY/ADDRESS EIIICON - KILSO			NUMBER OF CONTAINERS				7.86 8.65 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0	8 D		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	\$	A Participation of the Partici			d	3 /3	8/	7. /																															
SAMPLERS SIGNATURE TO TELL SULL WOLLD				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		BER OF CONTA		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		E E E E E E E E E E E E E E E E E E E		EXECT 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		2		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		64.64.64.64.64.64.64.66.64.66.64.66.64.64				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				### ##################################			To the state of th	THE SIES BOSE OF THE TOTAL OF THE SECOND OF	TH. K. Salasa	8) 03/	Motals (DVOA CAM)	000000		1 2 8 P. P.	CO, Tolate, To	(10) Vanic Hallow 90:0	//
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX	SS.	4 6	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				A E S	打造	22.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 E	%\\$ \$\\$, doj		REMARKS																												
KC1/3-27-95	3.77-93	1450	K1745.1	water	3						×										1																													
KCZ/2-27-95	3-27-45	 	. 2		3	<u> </u>					×																																							
KL 3 /3-27-95	 	1535	- 3		3						X																																							
RC4/3-27-95	 	1550	- 4		2	<u> </u>		ļ			×																																							
KC5/2-27-95	<u> </u>	1610	-5		3						X																																							
RC6/3-27-95		1630	-4		3						X																																							
nc7/3-27-95	↓	1600	-7	$\sqrt{}$	1						X																																							
	ļ	ļ			<u> </u>	<u> </u>	,																																											
		ļ		<u>.</u>	<u> </u>			ļ																																										
	<u> Li.,</u>						<u> </u>		<u> </u>	<u> </u>																																								
RELINQUISHED BY:		()=	RECEIVED BY:	TURNA						PORT	REQUI	REMEN	TS	INVOICE INFORMATION: SAMPLE RECEIPT																																				
Signature		Signature	101115	1.7		481			1		ine Repo			P.O. #						Shipping Vu. Hickor Delivercal																														
Printed Name FINCON		Printed Marrie				~10-15 mbal Pre				II. Repo MSD,	ort (includ , as req	les DUP, uired mi umples)	MS, By be	Bill to:						Shipping #																														
Flm	- -	Frm/	105 11	 .		u V. Prefin						impies) in Report Raw Data								- Conditi	on:																													
Date/Time	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				·					kaw Data) ole Repor								Lab No	g	501795																														
RELINQUISHED BY: RECEIVED BY: SPECI		IAL IN	IAL INSTRUCTIONS/COMMENTS:												······		1																																	
Signature	-	Signature																																																
Primed Name		Printed Name																																																
Firm		Firm	 																																															
Date/Time		Date/Time																																																
2214.18.14		Dates : 1110		l																																														

JUL 18

c:\weekly\k9504029 July 15, 1995

Service Request No.: K9504029

Tim Haderly EMCON 603 Royal Street W. P. O. Drawer B Kelso, WA 98626

Re: Reynolds Cable Plant/Project #40133-001.007

Dear Tim:

Enclosed are the results of the sample(s) submitted to our laboratory on June 29, 1995. For your reference, these analyses have been assigned our service request number K9504029.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda A. Huckestein Project Chemist

Lynde Hules

LAH/sm

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Analytical Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix: Water Service Request: K9504029

Date Collected: 6/29/95 Date Received: 6/29/95 ·

Date Extracted: NA

Date Analyzed: 7/7,8/95

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: µg/L (ppb)

	Analyte: Method Reporting Limit:	Benzene 0.5	Toluene I	Ethylbenzene 1	Total Xylenes 1	TPH as Gasoline 50
Sample Name	Lab Code					
MW062995-8 mn-8	K9504029-001	ND	ND	ND	ND	ND V
MW062995-4 MW-4	K9504029-002	-	-	-	-	ND 🗸
MW062995-7 mn-7	K9504029-003	-	-	-	_	ND V
MW062995-10 Mar. 7 (0.)	K9504029-004	-	-	-	-	ND 🗸
MW062995-6 mm-le	K9504029-005	ND	ND	ND	ND	ND 🗸
K950706-MB	K950707-MB	ND	ND	ND	ND	ND

5A/102194 / 04029PHC.LL1 - BTXw 7/10/95

Date: 1/12/45

Page No.: 00003

Analytical Report

Client:

EMCON

Project:

Reynolds Cable Plant/ #40133-001.007

Sample Matrix: Water

Service Request: K9504029 Date Collected: 6/29/95

Date Received: 6/29/95
Date Extracted: NA

Volatile Organic Compounds EPA Method 8260

Units: µg/L (ppb)

		Minist	Min - T	mn-7 (2)
	Sample Name: Lab Code: Date Analyzed:	MW062995-4 K9504029-002 7/12/95	MW062995-7 K9504029-003 7/12/95	MW062995-10 K9504029-004 7/12/95
Analyte	MRL			
Benzene Toluene Ethylbenzene	0.5 0.5 0.5	41 ND ND	78(a) ND ND	72(a) ND ND
Total Xylenes	0.5	ND	ND	ND

Result is from the analysis of a diluted sample, performed on 7/13/95. Dilution factor: 5.

Date: 7/19/9

Analytical Report

Client:

EMCON

Project: Sample Matrix: Water

Reynolds Cable Plant/ #40133-001.007

Service Request: K9504029

Date Collected: NA Date Received: NA Date Extracted: NA

Volatile Organic Compounds EPA Method 8260 Units: µg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Method Blank K9504029-MB 7/12/95
Analyte	MRL	
Benzene Toluene Ethylbenzene Total Xylenes	0.5 0.5 0.5 0.5	ND ND ND

Result is from the analysis of a diluted sample, performed on 7/13/95. Dilution factor: 5.

,	4.4.4		_/./	
Approved By:	Unt_	Date: _	7/19/95	
K9504029.XLS - 8260rev7-18-95 (2) 7/19/95				(1

UCCO3

APPENDIX A

LABORATORY QC RESULTS

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix: Water

Service Request: K9504029 Date Collected: 6/29/95 Date Received: ·6/29/95 Date Extracted: NA

Date Analyzed: 7/7,8/95

Surrogate Recovery Summary BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
MW062995-8	K9504029-001	88	80
MW062995-4	K9504029-002	-	83
MW062995-7	K9504029-003	-	80
MW062995-10	K9504029-004	-	80
MW062995-6	K9504029-005	92	84
K950706-MB	K950707-MB	90	85

CAS Acceptance Limits:

69-114

65-117

Approved By:

SUR2/111594 04029PHC.LL1 - BTXwSUR 7/12/95

Page No.:

Cob Analy Service	rtical	317 South 13	th Ave. • Kelso, W.	A 98626										B ر	A. A.	TU	11 (27)	A	٦Ľ	Y Page	∪	{Lu	,JE; of	υ. πυ 	1.00
PROJECT NAME ROY															ALY:										
PROJECT MANAGERZ COMPANY/ADDRESS	C. 21.3.	Helen on Fr	110			CONTAINERS) 60 60		//	Baje	ilingiliii I	Anion Scar			(18)		LI COMO	$^{\prime}//$	$^{\prime}/\!/$			
SAMPLERS SIGNATURE	•		PHONE 4/2	ः <u>इ</u>	180	NUMBER OF CC		Solution of the second		Metal Acid	omments fived is	omments 2nd 7.5	10 Se 75 Se		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 10 10 10 10 10 10 10 10 10 10 10 10 10	S. K. Na. S. P.	ria Palic	Enterogg F. C	/ % 100 100 100	/ & /	/ /	/ /		7
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAM MAT	IPLE TRIX					S. Z. Z.				T. S. T.	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		Anion	Page /	Emero	1505 de 0410				REMARK	s
mw062795.8	112995	1005	K4029-1	15 C)	<u>3</u>		X																	
MW062905 . 11	$\bot \bot$	1035	2			3	X																		
1NU163995-7	11	1100	-3			3	X																		
140624 48 110		11:10	-4			3	X	<u> </u>																	
madatis b	1	11.30	-5	7	4	3		K	ļ																
	 		*		٠,٠		-	-	<u> </u>										_	-					
							-	-		 							_					├			
								 	-	\vdash	-						-		-		-	 			
						 -				 	 							 				+-	 		
RELINQUISHED E	3Y:	F	ECEIVED BY:		TURNA					4			UIREM	ENTS		INVO	ICE IN	ORMA	TION:	<u></u>	-	1 <u> </u>	AMPLE.	RECEIPT:	
Signature		Ciadolura			24 	hr _ andard	48 l	nr	. 5 day	<u> </u>	i. Roul	ort finclud	des DUP	.MS.	PO #						China	ina MA			
Printed Name		Printed Na	ame		Pi	ovide \		eliminary			char	ged as s	ired, ma amples)	•											
Firm			11.7		١.	sults					Jil. Data (inc	i Validati Iudes Alt	on Repo Raw Da	rt la)											
Date/Time	. 6-	Firm 26	90 17	·	Requeste			minary A	esuits		IV. CLF	Deliver	able Rep	ort]		·		····		100.81	io:			—]
RELINQUISHED E	3Y:		ECEIVED BY:		SPEC			UCTIO	NS/C	<u></u> Эмме	ENTS:	Landf	in .								LAUN	v			
Signature		Signature			Circle v	/hich_	metals	are to t	e enal	yzed:															•
Printed Name		Printed Na			Tol	al Me	tals: A	As St	ва Ва	Ве	Ca	Cd	Co (Or C	u Fe	Pb	Mg	Mn	Ni	Ag S	Se T	ΙV	Zn ⊦	la	
Firm		Firm			Dissolv																		Zn F		
Date/Time		Date/Time	}																						

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/ #40133-001.007

Sample Matrix: Water

Service Request: K9504029 Date Collected: 6/29/95

Date Received: 6/29/95

Date Extracted: NA Date Analyzed: 7/12/95

Surrogate Recovery Summary Volatile Organic Compounds EPA Method 8260

Sample Name	Lab Code	P e r c e n Dibromofluoromethane		o v e r y 4-Bromofluorobenzene
MW062995-4	K9504029-002	102	99	91
MW062995-7	K9504029-003	103	99	92
MW062995-10	K9504029-004	101	99	91
Method Blank	K9504029-MB	99	100	94

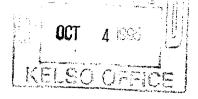
CAS Acceptance Limits: 91-117

Loa aleiskyt

90-110

82-119

Approved By:


SUR3/111594 04029VOAJJ1 - 8260wSUR 7/14/95

Page No.:

	٠,
	٠.
	4
	\prec
	n
٠	o,
	`
	_
	0
	ಌ
	\
	90
	0

Columbi Analy Service	tical				٠												,	,		YSI. PAGE			UEST FO
			n Ave. • Kelso, W			577-7	222 •	(800)	95-722	22 • F	AX (20	6) 636	-1068					UES					OF/
PROJECT NAME Rey PROJECT MANAGER 7 COMPANY/ADDRESS 2	in	tades	/	001.00	ジ ア . 	AINERS				$\sqrt{s_i}$		$\overline{/}$, ,	ر ا	$\overline{}$	\int		4/
SAMPLERS SIGNATURE			PHONE <u>42.</u>	j - 3 5	80	NUMBER OF CONTAINERS	0.00		Reservent Company	Mer-/	Dissolved M	mments nd ro	10 Color 18S	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NO NO	K. Na. Fe	Bacieria Palio	4/				
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAM! MAT		NUME		No au	B. 5.5.8	Sold I	0/08/08 0/08/08/08/08/08/08/08/08/08/08/08/08/08	\$\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2				8/ <u>§</u> 1/55	Anlon.	Bacleria 7.	Entero	Office Page	1/2	<u>/</u>	REMAR
mw062995-8	drogs	1005		150)	3		X													X		, w
nw062995.4		1035				3	X														×		6/6m
1 WO62995-7		1100				3	X				ļ										×		79 ~
nu067995,10		11:10				3	X														×		May My
nw362895.6	V	11:30		1 2		3		X													X		V *
								Н			·				1	<u> </u>			<u> </u>	1	 		
								H	Post-	1		e H	76 (571	Date Fron	\mathcal{U}	70	page	//.		╣.		
								Ī	Co./De	pt!	ids		•		ço.	11	1	1	<u>/·</u>		╡:		
RELINQUISHED E	Y:	نسأ	ECEIVED BY:			lh/ _	48 h		Phone	*		Ple	nol	- 1	Fax		- /(1			<i></i>	-	Si	AMPLE RECEIPT:
Signature (VS) Hohe T Printed Name For Con Colors Date/Time	36	Printed Na Printed Na Firm 29	me 15	.: 35{	, Re	rovide V esulls rovide F	'erbal Pre AX prelin	ini,			III. Data (incl		on Repo Raw Da		DE 10	•						ng #; ion:	195040
RELINQUISHED E	Y: ,	R	ECEIVED BY:		SPEC	IAL IN	ISTAL	CTIC	NS/C	L DMME	NTS:	Landf	ill		I						!		
Signalure		Signature			Circle v	vhich r	netals :	are to I	oe anah	vzed:													
Printed Name		Printed Na	me		To	tal Me	lais: A	s \$1	в а	Be	Св	Cd	Co (Cr C	u Fe	Pb	Mg	Mn	Ni	Ag S	Se TI	V	Zn Hg
Firm		Firm			Dissolv	ed Me	tals: A	s S	b Ba	Ве	Ca	Cd	Co	Cr C	Cu F	e Pb	Mg	Mn	NI	Ag S	Se T	ıv	Zn Hg
Date/Time		Date/Time																					

October 4, 1995

Service Request No.: K9505781

Tim Haderly **EMCON** 603 Royal Street W. P. O. Drawer B Kelso, WA 98626

Reynolds Cable Plant Project Re:

Dear Tim:

Enclosed are the results of the sample(s) submitted to our laboratory on September 15, 1995. For your reference, these analyses have been assigned our service request number K9505781.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda A. Huckestein

Link thetet

Project Chemist

LAH/sm

Page 1 of _ 5

Tim Mace/Reynolds, Longview cc:

Mike Staton/EMCON, Bothell

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the POL but greater

than or equal to the MDL.

Analytical Report

Client:

EMCON

Project:

Reynolds Cable Plant

Sample Matrix:

Water

Service Request: K9505781

Date Collected: 9/15/95

Date Received: 9/15/95

Date Extracted: NA

Date Analyzed: 9/27-28/95

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: µg/L (ppb)

	Analyte: Method Reporting Limit:	Benzene 0.5	Toluene 1	Ethylbenzene 1	Total Xylenes	TPH as Gasoline 50
Sample Name	Lab Code					
MW-9/9/15/95	K9505781-001	ND	ND	ND	ND	ND
MW-5/9/15/95	K9505781-002	ND	ND	ND	ND	ND
MW-8/9/15/95	K9505781-003	ND	ND	ND	ND	ND
MW-7/9/15/95	K9505781-004	60.5	ND	ND	ND	ND
MW-6/9/15/95	K9505781-005	1.0	ND	ND	ND	ND
MW-4/9/15/95	K9505781-006	64.4	- ND	ND	ND	ND
MW-3/9/15/95	K9505781-007	66.6	ND	ND	ND	ND
Method Blank	K950927-MB	ND	ND	ND	ND	ND

5A/102194 05781PHC_LP1 - BTXw 10/3/95

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant

Sample Matrix: Water

Service Request: K9505781

Date Collected: 9/15/95

Date Received: 9/15/95

Date Extracted: NA

Date Analyzed: 9/27-28/95

Surrogate Recovery Summary BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

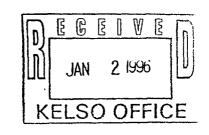
Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
MW-9/9/15/95	K9505781-001	99	68
MW-5/9/15/95	K9505781-002	98	68
MW-8/9/15/95	K9505781-003	98	67
MW-7/9/15/95	K9505781-004	99	68
MW-6/9/15/95	K9505781-005	99	68
MW-4/9/15/95	K9505781-006	99	68
MW-3/9/15/95	K9505781-007	100	67
Method Blank	K950927-MB	94	65

CAS Acceptance Limits:

69-114

65-117

Date: 10.3.95 Approved By: SUR2/111594 05781PHC.LP1 - BTXwSUR 10/3/95


Page No.:

pidmuio
Amaytica
Services.

CHAIN OF CUSTODY ABOUNTABLY ANALYSIS REQUEST FORM

Service Service		317 South 13	Sth Ave. • Kelso, W	A 9862	6 • (360)	577-7	222 •	(800) 6	395-722	22 • F	E) XA	60) 636	-1068		DATE_	2	//5	19	5	PAGE	:	_	OF	/ K	5781
PROJECT NAMEROYA	elels/	blest	.T.											AN.	ALY:	SIS	REQ	UES	TE	_					
PROJECT MANAGER Z		, ,	,			/		7	$\overline{7}$	Vols	lies /	7.	\mathcal{J}	377	$\overline{}$		\$/	7	7.		's /	0/	7		
	Em .		Kelso			NER				/S		To di			Scan 10 O	9	Terbol (g)		1,1	? ₹	: /	765040			}
						Į Į		Janica	/	Salati				/_ \s	ORM Sean	Vomi Vomi Vomi		/	OA.	17.01	28			/	İ
			PHONE (/)	2.3	550	8	/	(50 28 28	2 g/	\$ 8 K		E W	16/		8 /	/چ	r 1807	' /c	8 g /		類為	/ /	' /	•	
SAMPLERS SIGNATURE _	يرسيو		41			NUMBER OF CONTAINERS	BaseNewas		Halogenales 601/80	Pesticides Posts	Total Petrol		8015 1000 1000 1000 1000 1000 1000 1000		TCLP ORHCID	Metals (1013) VOAO Semi Pe	i de	No. Com	્રે જે (ડે ફે (ફે)		N 9020 III Halides				
SAMPLE · I.D.	DATE	TIME	LAB I.D.		MPLE TRIX	NOM			Halo 60109	18809			Har Diese	ZZZ ZZZ	Metal.	Meta List B	Sean Sean	Å. 0,0,0	Circles		3/	/	_	REMARKS	3
mw-9/3/15/85 ;	3/15/95	1455	165781-1	014	711	3						X													
nu-5/9/15/95		1530	-2			3						X											+ C**		
MW-8/9/15/95		1550	-3			3						X												,	
MW-7/19/15/95		1608	-4			3						X													
mw-6/9/15/85		163c	-5			3					<u> </u>	X													
mu-4/9/15/90		1645	- (40		<u> </u>	3					_	<u>x</u>													
mu-3/9/15/55	1	1720	-7		<u> </u>	3						K													
		<u> </u>				ļ				ļ	ļ				<u> </u>										
		<u> </u>		-		<u> -</u>		<u> </u>												-					
	<u> </u>					<u> </u>	<u> </u>	<u></u>	<u></u>			7.050	unc.	L		INVO	ICE INI	ORMA	TION			9.	MPI F	RECEIPT:	
BELINQUISHED B	y:	Rut	RECEIVED BY:	111		AROUN						RT REQU tine Repo		EN13		11110	ICE III	UIIIIA	11011.			Ů,			
Signature	~	Signatur	th il la le	ارو	1	Standard					MSI	ort (includ), as requ	ired, ma	y be	1				_		1	-			
Printed Name	, , , , , , , , , , , , , , , , , , , 	Printed N	lame .	ブ		Provide V Results	erbal Pro	eliminary	'		III. Dat	rged as s a Validati	on Repo	ort	Bill To						1	ing #: tion:			
1000 1000 1000	20	Firm 9	16/95 0	7.30	5	Provide F	AX prelir	ninary R	lesults		•	cludes All P Deliver		,											
Date/Time		Date/Tim	<u>, , , , , , , , , , , , , , , , , , , </u>			ed Repo	rt Date _														Lab N	0:			
RELINQUISHED B	Y: _]	RECEIVED BY:		SPEC	CIAL II	ISTRI	JCTIC	NS/C	ОММ	ENTS	:	,r	_	04	44.	<i>H</i>	1 8	-02/	^		•			
Signature Signature			W.	TPH	- 6	<i>دا </i>	1/=	:X	: US	3	11		ושיייו	7.061	v	J (<i>,</i>								
Printed Name Printed Name																									
																		î.			. ن	ide			
Date/Time		Date/Tim	18		1 /	,			,							12	Bo	the	11))				milds) <u>1400</u>	
					PL	ase	52	n/	(0)	04	01	Re	00-	17	ر-	mi	1-c	57	470	ه ۸ و	<u></u>	Tin	~ n	1966	

December 29, 1995

Service Request No.: K9507815

Tim Haderly **EMCON** 603 Royal Street W. P. O. Drawer B Kelso, WA 98626

Reynolds Cable Plant/Project #40133-001.007 Re:

Dear Tim:

Enclosed are the results of the sample(s) submitted to our laboratory on December 15, 1995. For your reference, these analyses have been assigned our service request number K9507815.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda A. Huckestein

Lynde thickers

Project Chemist

LAH/sam

Page 1 of _____

cc: Mike Staton, EMCON - Bothell

Tim Mace, Reynolds - Longview

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed

NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Analytical Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix:

Water

Service Request: K9507815

Date Collected: 12/15/95

Date Received: 12/15/95.

Date Extracted: NA

Date Analyzed: 12/28/95

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: µg/L (ppb)

	Analyte: Method Reporting Limit:	Benzene 0.5	Toluene 1	Ethylbenzene 1	Total Xylenes 1	TPH as Gasoline 50
Sample Name	Lab Code					
MW4-121595	K9507815-001	9.7	ND	ND	ND	ND
MW5-121595	K9507815-002	ND	ND	ND	ND	ND
MW6-121595	K9507815-003	3.0	ND	ND	ND	ND
MW7-121595	K9507815-004	150	ND	ND	ND	ND
MW8-121595	K9507815-005	ND	ND	ND	ND	ND
MW10-121595	K9507815-006	148	- ND	ND	ND	ND
Method Blank	K951227-WB	ND	ND	ND	ND	ND

Approved By:	Kanlan	_ Date:	12/20	195

5A/102194 07815PHC.LP1 - BTXw 12/28/95

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix: Water

Service Request: K9507815 Date Collected: 12/15/95

Date Received: 12/15/95

Date Extracted: NA

Date Analyzed: 12/28/95

Surrogate Recovery Summary

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
MW4-121595	K9507815-001	87	83
MW5-121595	K9507815-002	86	82
MW6-121595	K9507815-003	87	84
MW7-121595	K9507815-004	89	.84
MW8-121595	K9507815-005	86	81
MW10-121595	K9507815-006	90	82
Method Blank	K951227-WB	87	83

CAS Acceptance Limits:

69-114

65-117

Approved By: Date: 12/21/95

SUR2/111594 07815PHC_LP1 - BTXwSUR 12/28/95

7	MOIL
	Analytical
	Services.

1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222 • FAX (360) 636-1068 DATE 12/15/5 PAGE // OF

		,		**************************************	7		(000)	083-72		-WY (3	00) 031	o-1068		DATE		<u>~~</u>	17	<u> </u>	PAG	<u> </u>	_/_	OF
PROJECT NAME CON	dels	Cable	140133	-001.007	7									ALY	SIS	REC)UE:	STE	D			-
PROJECT MANAGER	Tim	Had	ledy		S		/	/ /		itiles /		870	2 /	~/	//	8/				10 /	101	
COMPANY/ADDRESSC	Emco	on 1	telso		CONTAINERS		/2		/3 2 2		1 Hydrocarbox	2008015810				Herbo	. /	/u	ā /	; /	765040	
					MA		Sanic		Spain	§/	87		75.5		Seji.		/ .	Q.	. 6. 1.	85	<u> </u>	
	47	·	PHONE 4	27-3580		1 /	188 1880 1880 1880 1880 1880 1880 1880	88	\$ 8 \ \$ 8 \		E W	a se		8	ري ا	\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ /	ે જુંકો	70 E	新)	/ /
SAMPLERS SIGNATURE The Many				EROF		Volume 025/8270	Halosena: 8240	Pesticoles of Atomatic Vol.	Total Pelmi			Z Z	Merita On Missano	Metals I VOAO Semi Pe			3 E /	Total One Total P TKW	920 CAOS	′ /	.	
SAMPLE			LAB	SAMPLE	NUMBER	Sec.		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ 80 G	8 18 3 0 18 3					als de la constant de		\§.	≥ \≥.	(g) (g)	8 8		
1.D. MW4-121595	DATE	TIME	V.7815-1	MATRIX	 	100	/ <u>> &</u>	(/±8	\ <u>~</u> `&	/ B		<u>/~8</u>	FZ	128	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	<u>/♂</u>	\ <u>{</u> \£\5	\\ * \&	100	<u>}/</u>	/_	REMARKS
	11495		-Z	WATE	3	-		-			X.							_	ļ	ļ	 	
mw5.121585	\leftarrow	1540	-3		3	├		-			X							ļ				
MW4-171595	$-\!$	1405		 - 	1-5						X						<u> </u>	ļ <u>.</u>	ļ	ļ		
mw7-121595		1420	-4 -5	 	15	-	-				X								<u> </u>	ļ	 	
MW9-12/595	16	1515		 	3	-		_			X							ļ	ļ	_		
mw10-171595	Ψ,	1430	-6	W	15	-			-		X						<u></u>	ļ	ļ	ļ	<u> </u>	0.05/1/ 0
					-	├			_				ļ				ļ	ļ	 	<u> </u>	 	REC'd a Blank
		<u> </u>			 	-	_														 	
		 			 			-											-	-	├—	
RELINQUISHED BY	/:	1	RECEIVED BY:	TURN	AROUN	ID REQ	UIREMI	ENTS	<u> </u>	REPOR	T REQU	JIREME	ENTS		INVO	CE INF	ORMA	TION:			s	AMPLE RECEIPT:
Ken Held		Ka	11 11	Oc	24 hr	48 h	r	5 day	ا کم	REPORT REQUII I. Routine Report II. Report (includes											-	
Signature Hebers		Signature	1 AN Shiff	M1101	Standard Provide V					MSD	ged as s	ired, ma		l						I ''	•	
Printed Name	0	Printed N	ame ///S		Results	elbai Fil	summary			III. Data	yoo as s Validati ludes All	on Reno	4	Del To						Condi		
12/15/95 16	17	Firm/2/	15/95 /	20-	Provide F	AX preff	ninary R	ešults			Delivera		•							_		
Date/Time		Date/Time	-		ed Repo			·												Lab N	0:	
RELINQUISHED BY	/ :	, F	RECEIVED BY:	SPEC	CIAL IN	ISTRU	JCTIO	NS/C	OMME	NTS:		,	,	,		_			1-	/	, Ca	
Signature		Signature		/	درم	1/5	-	TO		T1+	n /	41.	101	14	2	ادا الم	10	A	//	د ب ،	1	(vien
Printed Name		Printed N	ame 🛒						1	mi	100	5 /	T. 1	TO	1.1	۶ ۲.۱. م	100	41	/> . /	01	7.00	
Firm		Firm								TIV	~	M	40	_	/	م کڑا	ر ا	א ניי	m/ S		(· 5 VICIN
Date/Time		Date/Time	9 :																			
				.										ł								

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Metals Co, Cable Plant

Sample Matrix: Water

Date Collected: 3/16/98
Date Received: 3/16/98

Date Extracted: NA

Total Toxic Organics (TTO)
Volatile Organic Compounds
EPA Method 624
Units: μg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Outfall 009 K9801603-001 3/18/98	Method Blank K980318-MB 3/18/98
Analyte	MRL		•
Chloromethane	10	ND	ND
Vinyl Chloride	10	ND	ND
Bromomethane	10	ND	ND
Chloroethane	10	ND	ND
1,1-Dichloroethene (1,1-DCE)	5	ND	ND
Methylene Chloride	5	ND	ND
trans-1,2-Dichloroethene	5	ND	ND
1,1-Dichloroethane	5	ND	ND
Chloroform	5	ND	ND
1,1,1-Trichloroethane (TCA)	5	ND	ND
Carbon Tetrachloride	5	ND	ND
Benzene	5	ND	ND
1,2-Dichloroethane	5 5 5	ND	ND
Trichloroethene (TCE)	5	ND	ND
1,2-Dichloropropane		ND	ND
Bromodichloromethane	5	ND	ND
2-Chloroethyl Vinyl Ether	10	ND	ND
Total-1,3-Dichloropropylene	5	ND	ND
Toluene	5	ND	ND
1,1,2-Trichloroethane	5	ND	ND
Tetrachloroethene (PCE)	5	ND	ND
Dibromochloromethane	5	ND	ND
Chlorobenzene	5	ND	ND
Ethylbenzene	5	ND	ND
Bromoform	5	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND
1,3-Dichlorobenzene	5	ND	ND
1,4-Dichlorobenzene	5	ND	ND
1,2-Dichlorobenzene	5	ND	ND
Acrolein	100	ND	ND
Acrylonitrile '	10	ND	ND

 JA 1 G

Date: \$\frac{3}{3}/98

00007

Page No.:

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Metals Co., Cable Plant

Sample Matrix: Water

Service Request: K9801603

Date Collected: 3/16/98 Date Received: 3/16/98

Date Extracted: 3/19/98

Total Metals Units: $\mu g/L$ (ppb)

	·	Sample Name: Lab Code: Date Analyzed:	Outfall 009 K9801603-001 3/20/98	Method Blank K9801603-MB 3/20/98
Analyte	EPA Method	MRL		
Antimony	6010A	50	ND	ND
Arsenic	7060A	5	ND	ND
Beryllium	6010A	5	ND	ND
Cadmium	6010A	4	ND	ND
Chromium	6010A	5	ND	ND
Copper	6010A	10	ND	ND
Lead	7421	2	ND	ND
Mercury	7470A	0.5	ND	ND
Nickel	6010A	20	ND	ND
Selenium	7740	5	ND	ND
Silver	6010A	10	ND	ND
Thallium	7841	5	ND	ND
Zinc	6010A	10	16	ND

Approved By:

3S30EPA/102094

01603ICP.EA1 - Sample 3/27/98

Page No.:

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Metals Co, Cable Plant

Sample Matrix: Water

Service Request: K9701755 Date Collected: 3/19/97 Date Received: 3/19/97

Date Extracted: NA

Total Toxic Organics (TTO) Volatile Organic Compounds EPA Method 624 Units: µg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Outfall 009 K9701755-001 4/2/97	Method Blank K970402-MB 4/2/97
Analyte	MRL		
Chloromethane	10	ND	ND
Vinyl Chloride	10	ND	ND
Bromomethane	10	ND	ND
Chloroethane	10	ND	ND
1,1-Dichloroethene (1,1-DCE)	5	ND	ND
Methylene Chloride	5	ND	ND
trans-1,2-Dichloroethene	5	ND	ND
1,1-Dichloroethane	5	ND	ND
Chloroform	5	ND	ND
1,1,1-Trichloroethane (TCA)		ND	ND
Carbon Tetrachloride	5	ND	ND
Benzene	5	ND	ND
1,2-Dichloroethane	5 5 5 5	ND	ND
Trichloroethene (TCE)	5	ND	ND
1,2-Dichloropropane	5	ND	ND
Bromodichloromethane	5	ND	ND
2-Chloroethyl Vinyl Ether	10	ND	ND
Total-1,3-Dichloropropylene	5	ND	ND
Toluene	5	ND	ND
1,1,2-Trichloroethane	5	ND	ND
Tetrachloroethene (PCE)	5 5	ND	ND
Dibromochloromethane	5	ND	ND
Chlorobenzene		ND	ND
Ethylbenzene	5 5 5 5	ND	ND
Bromoform	5	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND
1,3-Dichlorobenzene	. 5	ND	ND
1,4-Dichlorobenzene	5	ND	ND
1,2-Dichlorobenzene	5	ND	ND
Acrolein	100	ND	ND
Acrylonitrile	10	ND	ND

Date: 4/4/97 Approved By: 3530/102094

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Metals Co, Cable Plant

Sample Matrix: Water

Service Request: K9701755

Date Collected: 3/19/97

Date Received: 3/19/97

Date Extracted: 3/21/97

Total Metals Units: µg/L (ppb)

		Sample Name: Lab Code: Date Analyzed:	Outfall 009 K9701755-001 3/24/97	Method Blank K9701755-MB 3/24/97
	EPA) en i		
Analyte	Method	MRL		
Antimony	6010A	50	ND	ND
Arsenic	7060A	5	ND	ND
Beryllium	6010A	5	ND	ND
Cadmium	6010A	4	ND	ND
Chromium	6010A	5	ND	ND
Copper	6010A	10	ND	ND
Lead	7421	2	ND	ND
Mercury	7470A	0.5	ND	ND
Nickel	6010A	20	ND	ND
Selenium	7740	5	ND	ND
Silver	6010A	10	ND	ND
Thallium	7841	5	ND	ND
Zinc	6010A	10	20	ND

Approved By:

3S30EPA/102094 01755ICP.JC1 - Sample 4/2/97

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Metals Co., Cable Plant/ #REY1095LVMISC

Sample Matrix: Water

Service Request: K9601615 Date Collected: 3/21/96

Date Received: 3/21/96 Date Extracted: NA

Total Toxic Organics (TTO) Volatile Organic Compounds EPA Method 624 Units: µg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Outfall 009 K9601615-001 4/4/96	Method Blank K960404-MB 4/4/96
Analyte	MRL		
Chloromethane	10	ND	ND
Vinyl Chloride	10	ND	ND
Bromomethane	10	ND	ND
Chloroethane	10	ND	ND
1,1-Dichloroethylene	5	ND	ND
Methylene Chloride	5	ND	ND
trans-1,2-Dichloroethylene	5	ND	ND
1,1-Dichloroethane	5	ND	ND
Chloroform	5	ND	ND
1,1,1-Trichloroethane (TCA)	5	ND	ND
Carbon Tetrachloride	5	ND	ND
Benzene	5	ND	ND
1,2-Dichloroethane	5	ND	ND
Trichloroethylene (TCE)	5	ND	ND
1,2-Dichloropropane	5	ND	ND
Bromodichloromethane	5	ND	ND
2-Chloroethyl Vinyl Ether	10	ND	ND
Total-1,3-Dichloropropylene	5	ND	ND
Toluene	5	ND	ND
1,1,2-Trichloroethane	5	ND	ND
Tetrachloroethylene (PCE)	5	ND	ND
Dibromochloromethane	5	ND	ND
Chlorobenzene	5	ND	ND
Ethylbenzene	5	ND	ND
Bromoform	5	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND
1,3-Dichlorobenzene	5	ND	ND
1,4-Dichlorobenzene	5	ND	ND
1,2-Dichlorobenzene	5	ND	ND
Acrolein	100	ND	ND
Acrylonitrile	10	ND	ND

Diane E. Wegel 4/8/96 00007 Approved By: Date: 3S30/102094

01615VOA.JG1 - 624TTO 4/8/96

Page No.:

Analytical Report

Client:

Reynolds Metals Company

Project:

Sample Matrix: Water

Reynolds Metals Co., Cable Plant/#REY1095LVMISC

Date Collected: 3/21/96 Date Received: 3/21/96 Date Extracted: 4/1/96

Service Request: K9601615

Total Metals Units: µg/L (ppb)

		Sample Name: Lab Code: Date Analyzed:	Outfall 009 K9601615-001 4/1/96	Method Blank K9601615-MB 4/1/96
Analyte	EPA Method	MDY		
rmaire	Memon	MRL		
Antimony	6010A	50	ND	ND
Arsenic	7060	5	ND	ND
Beryllium	6010A	5	ND	ND
Cadmium	6010A	3	ND	ND
Chromium	6010A	5	ND	ND
Copper	6010A	10	ND	ND
Lead	7421	2	ND	ND
Mercury	7470	0.5	ND	ND
Nickel	6010A	20	ND	ND
Selenium	7740	5	ND	ND
Silver	6010A	10	ND	ND
Thallium	7841	5	ND	ND
Zinc	6010A	10	ND	ND

00004 Approved By: 3S30EPA/102094 01615ICP.EAI - Sample 4/4/96

Page No.:

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Metals Co; Cable Plant

Sample Matrix: Water

Date Collected: 3/23/95 **Date Received:** 3/23/95

Date Extracted: NA

Total Toxic Organics (TTO) Volatile Organic Compounds EPA Method 624 Units: µg/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Outfall 009 K9501717-001 4/5/95	Method Blank K9501717-MB 4/5/95
Analyte	MRL		
Chloromethane	10	ND	ND
Vinyl Chloride	10	ND	ND
Bromomethane	10	ND	ND
Chloroethane	10	ND	ND
1,1-Dichloroethylene	5	ND	ND
Methylene Chloride	5	ND	ND
trans-1,2-Dichloroethylene	5	ND	ND
1,1-Dichloroethane	5	ND	ND
Chloroform	5	ND	ND
1,1,1-Trichloroethane (TCA)	5	ND	ND
Carbon Tetrachloride	5	ND	ND
Benzene	5	ND	ND
1,2-Dichloroethane	5	ND	ND
Trichloroethylene (TCE)	5	ND	ND
1,2-Dichloropropane	5	ND	ND
Bromodichloromethane	5	ND	ND
2-Chloroethyl Vinyl Ether	10	ND	ND
Total-1,3-Dichloropropylene	5	ND	ND
Toluene	5	ND	ND
1,1,2-Trichloroethane	5	ND	ND
Tetrachloroethylene (PCE)	5	ND	ND
Dibromochloromethane	5	ND	ND
Chlorobenzene	. 5	ND	ND
Ethylbenzene	5	ND	ND
Bromoform	5	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND
1,3-Dichlorobenzene	5	ND	ND
1,4-Dichlorobenzene	5	ND	ND
1,2-Dichlorobenzene	5	ND	ND
Acrolein	100	ND	ND
Acrylonitrile	10	ND	ND

Approved By:

3S30/102094

All Thursday

Date:

4/8/95

Analytical Report

Client:

Reynolds Metals Company

Project:

Reynolds Metals Co; Cable Plant

Sample Matrix: Water

01717ICP.WM1 - Sample (2) 4/6/95

Service Request: K9501717

Date Collected: 3/23/95

Date Received: 3/23/95
Date Extracted: 3/27/95

Total Metals Units: μg/L (ppb)

		Sample Name: Lab Code: Date Analyzed:	Outfall 009 K9501717-001 3/30/95	Method Blank K9501717-MB 3/30/95
Analyte	EPA Method	MRL		
Analyte	Method	MIKL		
Antimony	6010A	50	ND	ND
Arsenic	7060	5	ND	ND
Beryllium	6010A	5	ND	ND
Cadmium	6010A	3	ND	ND
Chromium	6010A	5	ND	ND
Copper	6010A	10	ND	ND
Lead	7421	2	ND	ND
Mercury	7470	0.5	ND	ND
Nickel	6010A	20	ND	ND
Selenium	7740	5	ND	ND
Silver	6010A	10	ND	ND
Thallium	7841	5	ND	ND
Zinc	6010A	10	12	ND

Page No.:

Attachment G

January 14, 1998 Project 40133-001.007

Mr. Tim Mace Reynolds Metals Company P.O. Box 999 Longview, Washington 98632

Re: Groundwater Monitoring Report, Reynolds Cable Plant, Longview, Washington

Dear Mr. Mace:

EMCON is pleased to submit this letter report describing the results of quarterly groundwater monitoring activities conducted from March 1996 through April 1997 at the Reynolds Metals Company (Reynolds) Cable Plant. The site is located at 4393 Industrial Way in Longview, Washington (Figure 1). The objective of the work was to monitor groundwater quality and groundwater flow directions beneath the site over time.

SCOPE OF WORK

The field activities completed by EMCON on March 28, June 21, September 24, and December 13, 1996, and April 9, 1997, included the following:

- Measured depths to groundwater in all monitoring wells.
- Collected groundwater samples from selected monitoring wells.
- Placed all purge water in 55-gallon drums for disposal by Reynolds.

During each sampling event, EMCON measured depths to groundwater in each well by using an electronic water level probe. The probe was decontaminated between each well by using methanol and distilled water rinses, respectively. Depth to groundwater measurements were converted to groundwater elevations based on well elevation surveys conducted by Pacific Northern Geoscience (PNG) during previous site investigation work. The elevations of the wells were surveyed relative to a local site datum.

Before sample collection, at least three pore volumes of water were removed from the monitoring wells. Each well was purged using a disposable polyethylene bailer. Field parameters of pH, specific conductance, and temperature were measured following the removal of each pore volume. After stabilization of the field parameters (less than 10 percent difference

between pore volumes), the sample was collected. Field Sampling Data Sheets for each sampling event are included in Appendix A.

Each sample was properly labeled and placed into an iced cooler. The samples were delivered under standard chain-of-custody protocol to Columbia Analytical Services, Inc., in Kelso, Washington. All of the samples were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) by USEPA Method 5030A/8020 and total petroleum hydrocarbons as gasoline (TPH-G) by Washington Department of Ecology Method WTPH-G.

RESULTS

From March 1996 through April 1997, depths to groundwater in the wells ranged from 3.15 (MW-6) to 7.80 (MW-9) feet below the tops of the flush-grade well casings. Groundwater elevations in the wells fluctuated 1.53 to 2.03 feet due to seasonal effects. The general groundwater flow direction beneath the site was consistently to the south-southwest at an average horizontal hydraulic gradient of approximately 0.008 feet/foot. The depth to groundwater measurements and groundwater elevations are presented in Table 1, and groundwater elevation contour maps for each monitoring event are presented on Figures 2, 3, 4, 5, and 6.

For each 1996 and 1997 sampling event, toluene, ethylbenzene, total xylenes, and TPH as gasoline were not detected in any of the samples at concentrations above the method reporting limits (MRLs). Benzene was detected in one of the two samples from MW-6 and three of the five samples from MW-7; however, the concentrations were below the Model Toxics Control Act (MTCA) Method B Cleanup Level based on protection of surface water (71 micrograms per liter).

MTCA Method B cleanup levels based on protection of surface water should apply to the shallow groundwater beneath the site because the groundwater is probably not potable. The groundwater beneath the site is not a current source of drinking water, and it will not likely be a future source of drinking water. The site is located within an industrial zoned facility and the shallow groundwater discharges into a surface water drainage ditch located approximately 100 feet southwest (hydraulically downgradient) of MW-7. The deeper groundwater beneath the site discharges into the Columbia River, which is located approximately 2,000 feet southwest of the site.

If you have any questions, please call Mike Staton at (425) 485-5000.

Sincerely,

EMCON

Michael D. Staton, R.G.

Project Manager

Attachments: Limitations

nald. SA

Table 1 - Groundwater Monitoring Results

Table 2 - Groundwater Sample Analytical Results

Figure 1 - Site Location Map

Figure 2 - Water Table Elevation Contour Map (3/28/96)

Figure 3 - Water Table Elevation Contour Map (6/21/96)

Figure 4 - Water Table Elevation Contour Map (9/24/96)

Figure 5 - Water Table Elevation Contour Map (12/13/96)

Figure 6 - Water Table Elevation Contour Map (4/9/97)

Appendix A - Field Sampling Data Sheets

Appendix B - Analytical Reports and Chain of Custody Forms

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

Table 1

Groundwater Monitoring Results Reynolds Metals Company Cable Plant Longview, Washington

Page 1 of 4

		T		Page 1 of 4
Well	Date	Well Elevation ¹ (feet)	Depth to Groundwater ² (feet)	Groundwater Elevation ³ (feet)
	 			
MW-1	10/15/92	4.79	7.30	-2.51
	10/19/92		7.25	-2.46
	11/6/92		6.91	-2.12
	11/11/92		6.73	-1.94
	12/9/92		5.80	-1.01
	12/18/92		5.52	-0.73
	3/11/93		6.78	-1.99
	3/23/93		6.60	-1.81
	6/7/93		6.22	-1.43
	Well abandoned on Ju	, 		
MW-2	10/15/92	3.56	5.84	-2.28
	10/19/92		5.75	-2.19
	11/6/92	-	5.40	-1.84
	11/11/92		5.32	-1.76
	12/9/92		4.71	-1.15
	12/18/92		4.59	-1.03
	3/11/93		4.76	-1.20
-	3/23/93		5.51	-1.95
	6/7/93		5.53	-1.97
	Well abandoned on Ju	ly 28, 1994.		
MW-3	10/15/92	3.71	6.24	-2.53
	10/19/92		6.17	-2.46
·	11/6/92		5.84	-2.13
	11/11/92		5.75	-2.04
	12/9/92		5.15	-1.44
	12/18/92		5.07	-1.36
	3/11/93		5.90	-2.19
	3/23/93		5.71	-2.00
	6/7/93		5.65	-1.94
	Well abandoned on Ju	ly 28, 1994.		
MW-4	10/15/92	2.69	5.40	-2.71
	10/19/92		5.33	-2.64
	11/6/92		4.99	-2.30
	11/11/92		5.00	-2.31
	12/9/92		4.54	-1.85
	L.,	L	1	

Table 1

Groundwater Monitoring Results
Reynolds Metals Company Cable Plant
Longview, Washington

Page 2 of 4

		Well	Depth to	Groundwater
Well	Date	Elevation ¹ (feet)	Groundwater ² (feet)	Elevation ³ (feet)
MW-4 cont.	12/18/92	2.69	4.42	-1.73
	3/11/93		5.17	-2.48
	3/23/93		4.83	-2.14
	6/7/93		4.99	-2.30
	3/27/95		4.30	-1.61
	6/29/95		5.16	-2.47
	9/15/95		5.79	-3.10
	12/15/95		3.38	-0.69
	3/28/96		4.39	-1.70
	6/21/96		4.95	-2.26
	09/24/96		5.33	-2.64
	12/13/96		3.41	-0.72
	4/9/97		4.27	-1.58
MW-5	10/15/92	5.34	4.89	0.45
	10/19/92		8.16	-2.82
	11/6/92		7.74	-2.40
	11/11/92		7.62	-2.28
	12/9/92		6.72	-1.38
	12/18/92		6.51	-1.17
	3/11/93		6.71	-1.37
	3/23/93		8.10	- 2.76
	6/7/93		6.54	-1.20
	3/27/95		5.92	-0.58
	6/29/95		6.62	-1.28
	9/15/95		7.53	-2.19
	12/15/95		5.37	-0.03
	3/28/96		6.01	-0.67
	6/21/96		6.59	-1.25
	09/24/96		7.20	-1.86
	12/13/96		5.67	-0.33
-	4/4/97	<u> </u>	5.82	-0.48
MW-6	10/15/92	2.31	4.85	-2.54
	10/19/92		4.81	-2.50
	11/6/92		4.48	-2.17
	11/11/92		4.39	-2.08

Table 1

Groundwater Monitoring Results
Reynolds Metals Company Cable Plant
Longview, Washington

Page 3 of 4

Well	Date '	Well Elevation ¹ (feet)	Depth to Groundwater ² (feet)	Groundwater Elevation ³ (feet)
MW-6 cont.	12/9/92	2.31	3.86	-1.55
	12/18/92		3.79	-1.48
	3/11/93		4.69	-2.38
	3/23/93		4.33	-2.02
	6/7/93		4.54	-2.23
	3/27/95	. 🐣	3.83	-1.52
	6/29/95		4.79	-2.48
	9/15/95		5.44	-3.13
	12/15/95		3.04	-0.73
	3/28/96		4.12	-1.81
	6/21/96		4.61	-2.30
	09/24/96		4.82	-2.51
	12/13/96		3.15	-0.84
	4/9/97		3.85	-1.54
MW-7	3/11/93	2.12	4.71	-2.59
	3/23/93		4.34	-2.22
	6/7/93		4.72	-2.60
	3/27/95		3.98	-1.86
	6/29/95		4.76	-2.64
	9/15/95		5.32	-3.20
	12/15/95		3.21	-1.09
	3/28/96		4.03	-1.91
	6/21/96		4.60	-2.48
	09/24/96		4.89	-2.77
	12/13/96	e .	3.31	-1.19
	4/9/97		3,88	-1.76
MW-8	3/11/93	4.02	6.15	-2 .13
	3/23/93		5.97	-1.95
	6/7/93		6.11	-2 .09
	3/27/95		5.16	-1.14
	6/29/95		6.50	-2.48
	9/15/95		6.80	-2.78
	12/15/95		4.05	-0.03
	3/28/96		5.34	-1.32
	6/21/96		5.89	-1.87

Table 1

Groundwater Monitoring Results Reynolds Metals Company Cable Plant Longview, Washington

Page 4 of 4

Well	Date	Well Elevation ¹ (feet)	Depth to Groundwater ² (feet)	Groundwater Elevation ³ (feet)
MW-8 cont.	09/24/96	4.02	6.35	-2.33
	12/13/96	,	4.32	-0.30
	4/9/97		5.28	-1.26
MW-9	3/11/95	5.35	7.28	-1.93
·	3/23/93		7.15	-1.80
	6/7/93		6.82	-1.47
	3/27/95		6.40	-1.05
	6/29/95		7.32	-1.97
·	9/15/95		8.28	-2.93
	12/15/95		4.65	0.70
	3/28/96		6.21	-0.86
	6/21/96		6.91	-1.56
	09/24/96		7.80	-2.45
	12/13/96		4.83	0.52
	4/9/97		5.91	-0.56

Reference elevation relative to a arbitrary site datum (MW-1) established on October 14, 1992.

Distance from established reference elevation marked on top of PVC well riser to water table.

Water table elevation relative to arbitrary site datum (MW-1) of 4.79 feet.

Table 2

Groundwater Sample Analytical Results
Reynolds Metals Company Cable Plant
Longview, Washington

Page 1 of 4

		1				Page 1 of 4
		Benzene*	Toluene*	Ethylbenzene ^a	Total Xylenes ^a	TPH as Gasoline ^b
Well Number	Date Sampled	(μ g/ L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MTCA Method B Cl	eanup Levels ^e	71	200,000	29,000	NLd	10,000°
MW-1	10/19/92	71.4	2	29	9	550
	3/11/93	1	ND	10	ND	190
	Well abandoned on Ju-	ly 28, 1994.				
MW-2	10/19/92	1840	46	136	222	1910
	3/11/93	1500	41	200	27 1 .	2100
	Well abandoned on Ju-	ly 28, 1994.				
MW-3	10/19/92	718	7	28	75	738
	3/11/92	1400	15.0	49.0	114.0	1400
	Well abandoned on Ju-	ly 28, 1994.				
MW-4	10/19/92	55.1	ND	ND	1	ND
	3/11/93	110	ND	ND	ND	ND
	3/27/95	65.5	ND	ND	ND	ND
(Duplicate)	3/27/95	63.5	ND	ND	ND	ND
	6/29/95	41 ^d	ND^d	ND ^d	ND^d	ND
	9/15/95	64.4	ND	ND	ND	ND
(Duplicate)	9/15/95	66.6	ND	ND	ND	ND
	12/15/95	9.7	ND	ND	ND	ND
	3/28/96	NS	NS	NS	NS	NS
	6/21/96	ND	ND	ND	ND	ND
	9/24/96	NS	NS	NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
	4/9/97	NS	NS	NS	NS	NS

Table 2

Groundwater Sample Analytical Results
Reynolds Metals Company Cable Plant
Longview, Washington

Page 2 of 4

Well Number Date Sampled		Benzene ^a (µg/L)	Toluene ^a (μg/L)	Ethylbenzene ^a (μg/L)	Total Xylenes* (μg/L)	Page 2 of 4 TPH as Gasoline ^b (μg/L)
MTCA Method B Clea	anup Levels ^c	· 71	200,000	200,000 29,000		10,000°
MW-5	10/19/92	ND	2	1	NL ^d	ND
	3/11/93	ND	ND	ND	ND	ND
	3/27/95	ND	ND	ND	ND	ND
	6/29/95	NS	NS	NS	NS	NS
	9/15/95	ND	ND	ND	ND	ND
	12/15/95	ND	ND	ND	ND	ND
	3/28/96	NS	NS	NS	NS	NS
	6/21/96	NS	NS	NS	NS	NS
9/24/96		NS	'NS	NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
	4/9/97	NS	NS	NS	NS	NS
MW-6	10/19/92	ND	ND	ND	ND	ND
	3/11/93	ND	ND	ND	ND	ND
	3/27/95	ND	ND	ND	ND	ND
	6/29/95	ND	ND	ND	ND	ND
;	9/15/95	1.0	ND	ND	ND	ND
	12/15/95	3.0	ND	ND	ND	ND
	3/28/96	NS	NS	NS	NS	NS
	6/21/96	1.3	ND	ND	ND	ND
	9/24/96	NS	NS	NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
4/9/97		NS	NS	NS	NS	NS

Table 2

Groundwater Sample Analytical Results
Reynolds Metals Company Cable Plant
Longview, Washington

Page 3 of 4

		Benzene ^a	Toluene ^a	Ethylbenzene*	Total Xylenes ^a	TPH as Gasoline ^b
Well Number	Date Sampled	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)
MTCA Method B Cle	anup Levels ^c	71	200,000	29,000	NLd	10,000°
MW-7	3/11/93	2	ND	ND	ND	ND
	3/27/95	121	ND	ND	ND	ND
	6/29/95	78*	ND^d	ND^d	ND^d	ND
(Duplicate)	6/29/95	724	ND^d	ND^d	ND^d	ND
	9/15/95	60.5	ND	ND	ND	ND
	12/15/95	150	ND	ND	ND	ND
(Duplicate)	12/15/95	148	ND	ND	ND	ND
	3/28/96	38.3	ND	ND	ND	ND
	6/21/96	4.3	ND	ND	ND	ND
	9/24/96	0.7	ND	ND	ND	ND
	12/13/96	ND	ND	ND	ND	ND
	4/09/97	ND	ND	ND	ND	ND
MW-8	3/11/93	ND	ND	ND	ND	ND
	3/27/95	ND	ND	ND	ND	ND
	6/29/95	ND	ND	ND	ND	ND
	9/15/95	ND	ND	ND	ND	ND
	12/15/95	ND	ND	ND	ND	ND
	3/28/96	NS	NS	NS	NS	NS
	6/21/96	NS	NS	NS	NS	NS
	9/24/96	NS	NS	NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
	4/9/97	NS	NS	NS	NS	NS

Table 2

Groundwater Sample Analytical Results Reynolds Metals Company Cable Plant Longview, Washington

Page 4 of 4

Well Number	Date Sampled	Benzeneª (µg/L)	Toluene ^a (µg/L)	Ethylbenzene ^a (µg/L)	Total Xylenes ^a (μg/L)	TPH as Gasoline ^b (µg/L)
MTCA Method B Clea	nup Levels ^c	71	200,000	29,000	NL ^d	10,000°
MW-9	3/11/95	ND	ND	ND	ND	ND
	3/27/95	ND	ND	ND	ND	ND
	6/29/95	NS	NS	NS	NS	NS
	9/15/95	ND	ND	ND	ND	ND
	12/15/95	NS	NS	NS	NS	NS
	3/28/96	NA	NA	NA	NA	NA
	6/21/96	NS	NS	NS	NS	NS
	9/24/96	NS	NS	NS	NS	NS
	12/13/96	ND	ND	ND	ND	ND
NOTE NO	4/9/97	NS	NS	NS	NS	NS

NOTE: ND = Not detected at or above laboratory method reporting limit.

NS = Not sampled

NA = Not analyzed for particular analyte.

μg/L = Micrograms per liter (parts per billion).

Shaded values exceed MTCA Method B Cleanup levels.

BTEX by USEPA Method 5O30A/8020.

Total petroleum hydrocarborns as gasoline by Ecology Method WTPH-G.

Chapter 173-340 WAC, "The Model Toxics Control Act Cleanup Regulations, Method B Cleanup Levels." Amended January 1996. Cleanup levels based on protection of surface water. Includes federal water quality criteria to protect humans eating aquatic organisms (WQA, 40 CFR 131.36).

There are no Method B cleanup levels based on protection of surface water for total xylenes and dissolved lead.

Ecology, 1987. Discharges containing oil and grease of mineral origin. Water Quality 9, September.

BTEX by USEPA Method 8260.

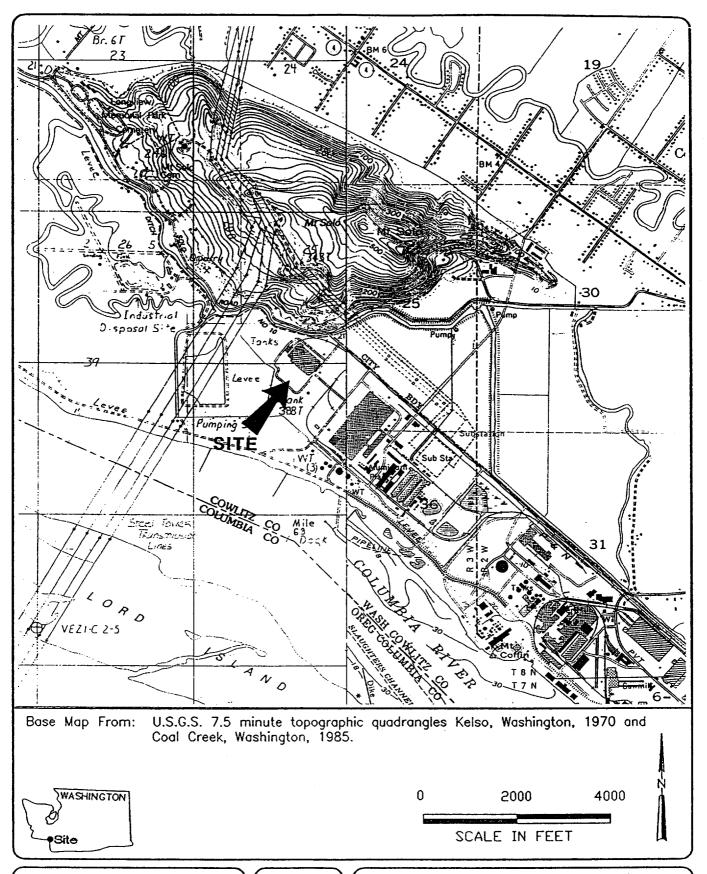


Figure 1
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON

SITE LOCATION MAP

73 CABLE PLANT BUILDING ENTRANCE FACILITY ¥.3 STORAGE MW-9 BENZENE ဥ (-0.86)MW-5 (-0.67) MW-5 BENZENE NS 8-WM & (-1.32)MW-8 BENZENE 1.50-ROAD **MW-4** (-1.70) ACCESS MW-4 BENZENE **MW-7** (−1.91) - -1.75--- MW-6 BENZENE NS MW-6 MW-7 (-1.81)BENZENE 38.3

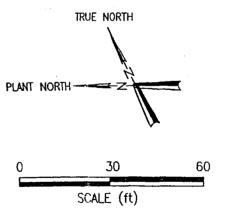
LEGEND:

MW-4 Monitoring Well Location

Approximate Area of Former Excavation

-1.75 — Inferred Groundwater Elevation Contour (feet)

(-1.32) Relative Groundwater Elevation (feet) on March 28, 1996


Inferred Groundwater Flow Direction

ND = Not Detected Above the Method Reporting Limit

NS = Not Sampled

BENZENE 38.3 Laboratory Results on March 28, 1996 (Parts Per Billion)

Values Highlighted in **Bold** Exceed MTCA Method B Cleanup Levels Based on Protection of Surface Water

DATE 5-97
DWN MLP
APP / 105
REV ____
PROJECT NO.
40133-001.007

Figure 2
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON

WATER TABLE ELEVATION CONTOUR MAP MARCH 28, 1996

CABLE PLANT BUILDING ENTRANCE FACILITY STORAGE MW-9 BENZENE NS MW-5 MW-5 BENZENE NS (-1.25)MW-8 (-1.87)8-WM BENZENE ROAD MW-4 BENZENE MW-4 ND (-2.26)MW-7 (-2.48) MW-6 MW-6 BENZENE MW-7 (-2.30)BENZENE 4.3

LEGEND:

MW-4 Monitoring Well Location

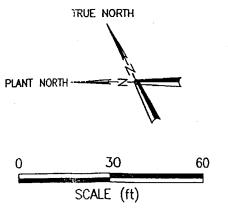
Approximate Area of Former Excavation

--1.75 --- Inferred Groundwater Elevation Contour (feet) on June 21, 1996

(-2.26) Relative Groundwater Elevation (feet)

on June 21, 1996

Inferred Groundwater Flow Direction


ND = Not Detected Above the Method Reporting Limit

NS = Not Sampled

MW-6
BENZENE 1.3

Laboratory Results on June 21, 1996 (Parts Per Billion)

Values Highlighted in **Bold** Exceed MTCA Method B Cleanup Levels Based on Protection of Surface Water

DATE 5-97 DWN MLP APP MDS REV PROJECT NO. 40133-001.007 Figure 3
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON

WATER TABLE ELEVATION CONTOUR MAP JUNE 21, 1996

CABLE PLANT BUILDING ENTRANCE FACILITY **STORAGE** MW-9 BENZENE NS ဝ MW-9 **6** (-2.45) MW-5 (-1.86) MW-5 BENZENE NS 8-WM @ (-2.33)ROAD **MW-8** ACCESS BENZENE NS MW-4 BENZENE NS MW-4 (-2.64)-2.50 MW-7 MW-7 (-2.77)BENZENE 0.7 MW-6 BENZENE NS MW-6 (-2.51)

LEGEND:

MW-4 Monitoring Well Location

App

Approximate Area of Former Excavation

——2.25 —— Inferred Groundwater Elevation Contour (feet) on September 24, 1996

(-2.64) Relative Groundwater Elevation (feet) on September 24, 1996

✓ Inferred Gr

Inferred Groundwater Flow Direction

ND = Not Detected Above the Method Reporting Limit

NS = Not Sampled

MW-7
BENZENE 0.7

Laboratory Results on September 24, 1996 (Parts Per Billion)

Values Highlighted in **Bold** Exceed MTCA Method B Cleanup Levels Based on Protection of Surface Water

DATE 5-97
DWN MLP
APP MS
REV PROJECT NO.
40133-001.007

Figure 4
REYNOLDS METALS CO. CABLE PLANT
LONGVIEW, WASHINGTON

WATER TABLE ELEVATION CONTOUR MAP SEPTEMBER 24, 1996

ENW-BOTHELL2/DATA: C:\DWG\+0133001\BO0007R3.4wg Xrefs: <NDNE> Scole: 1 = 30.00 DimScole: 1 = 30.00 Date: 5/13/97 Time: 9:25 AM Operator: MLP

LEGEND:

MW-4 Monitoring Well Location

Approximate Area of Former Excavation

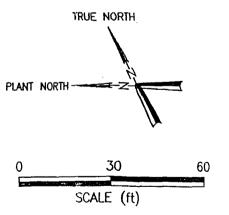
....

Inferred Groundwater Elevation Contour (feet)

(-1.19) Relative Groundwater Elevation (feet) on December 13, 1996

^ .c ...

Inferred Groundwater Flow Direction


ND = Not Detected Above the Method Reporting Limit

NS = Not Sampled

MW-7
BENZENE ND

Laboratory Results on December 13, 1996 (Parts Per Billion)

Values Highlighted in **Bold** Exceed MTCA Method B Cleanup Levels Based on Protection of Surface Water

DATE 5-97
DWN MLP
APP MDS
REV PROJECT NO.
40133-001.007

Figure 5
REYNOLDS METALS CO. CABLE PLANT LONGVIEW, WASHINGTON

WATER TABLE ELEVATION CONTOUR MAP DECEMBER 13, 1996

CABLE PLANT BUILDING ENTRANCE FACILITY STORAGE **MW-9** BENZENE ဥ MW-5 (-0.48) MW-5 BENZENE -1.00-MW-8 **MW-8** (-1.26)BENZENE MW-4 (-1.58) ROAD MW-4 BENZENE ACCESS MW-7 (-1.76)MW-8 MW-8 BENZENE NS MW-7 (-1.54)BENZENE

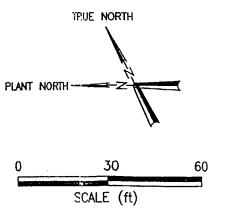
LEGEND:

MW-4 Monitoring Well Location

Approximate Area of Former Excavation

-1.75 — Inferred Groundwater Elevation Contour (feet)

(-1.26) Relative Groundwater Elevation (feet) on April 9, 1997


Inferred Groundwater Flow Direction

ND = Not Detected Above the Method Reporting Limit

NS = Not Sampled

BENZENE 38.3 | Laboratory Results on April 9, 1997 (Parts Per Billion)

Values Highlighted in **Bold** Exceed MTCA Method B Cleanup Levels Based on Protection of Surface Water

DATE 5-97
DWN MLP
APP //ND S
REV ____
PROJECT NO.
40133-001.007

Figure 6
REYNOLDS METALS CO. CABLE PLANT LONGVIEW, WASHINGTON

WATER TABLE ELEVATION CONTOUR MAP APRIL 9, 1997

APPENDIX A FIELD SAMPLING DATA SHEETS

hod (Level Meter # or Code)/Comments ### 19 3 3 7 9 hod Date, Time Date, Time Sam Clear
hod Date, Time Date, Time Sam Clear
Date, Time Date, Time Sam Clear Preserva- Iced Meth tive (yes,no) Non-Pho deterger H20 ri
Date, Time Sam Clear Preserva- Iced Mett tive (yes,no) Non-Pho 17 CC , YCC deterger H20 riv
Same Clear Preserva- Iced Metr tive (yes,no) Non-Pho
,,,
1287+0.74213.00

ROJECT NAME 2001	rolds (a Dtc 1990 nare	ble		Well or Surf Sample De Date, Time Weather	signation W	99 warn	2184
HYDROLOGY MEASUREMENTS: (Nearest .01 ft.)	Elevation	(12:17)	me 90		of Co Ff	For Codel/Co	omments
Gallons Pore Volumes Garage Water Flow Speed	allons/Pore Volume Me Ois Sala	ethod Used OSABIL Cr Measurement		Rinse Metho	od	Date Date, Time	Time 21/96
Date, Sample Time/ Disp	reple 40. C	Container Type //as/las/	Depth Taken (feet) /2	Field Filtered (yes,no) NO	Preserva- live HCC	ced (yes,no) 	Sampler Cleaning Method Non-Phosphatic detergent wash H20 rinse MeOH rinse Distilled H20 rinse "Hexane rinse if oily
Por Vol. Number PH Temp (cº) 1 7.77 // // // // // // // // // // // // /	Conductivity (uS/cm)	Conductivity @ 25° (u.S.Icm)			· · ·	·	
OTES:		Rus				5+024	- 13.29

LOCATION/ADDRESS Reynold	5 Cubl	Well or Surface Site Number Mw-6 Sample Designation W6-062194					
CHOJECT NAME 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1866	96		Date, Time	0 6/7 C/CUD 6	1176	
ZIETTIOOTIAOT				Weather	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
							•
HYDROLOGY MEASUREMENTS:			· · · · · · · · · · · · · · · · · · ·				
(Nearest .01 ft.)	Elevation	Date, T	inge /96	Metho	Cevel Meter	f or Code)/0	20mments
		145	2	Sinco	# 232	74	
WELL EVACUATION: /-leGallons Pore Volumes		e Nethod Used	·	Rinse Meth	ood	/	e, Time 2//94
	. B	ile.		-/			1548
Surface Water Flow Speed		Measuremen	t Method_			Date, Time	} _
SAMPLING:				· · · · · · · · · · · · · · · · · · ·			Sampler
			Depth	Field			Cleaning
Date,	Volume	Container	Taken	Filtered	Preserva-	(ced	Method
Sample Time Method	7	Type (curblact	- (feet) - / 2	(yes,no) , <u>////</u> ,	tive #cL	(yes,no)	Non-Phosphatic detergent wash
1550 bile.				, , , , , , , , , , , , , , , , , , , ,		-,,	H20 rinse
	•	· · · · · · · · · · · · · · · · · · ·	·			-··	MeOH rinse •
	•					-···	Distilled H20
							rinse
						'	Hexane rinse if oily
				•			
FIELD WATER QUALITY TESTS:					•		
	• •	Conductivity @					
Number pH Temp (c ^o)	(uS/cm)	25° (uS/cro)	•				
2 643 148	/ · -	543			 	·	
3 6.44 177	:	573					·
				_,			
	/ · -				 ,		
NOTES:							
NOTES: Clear, Mac	12.01	Hales	٠.	us als	. 16	c/+	
(1/600)				70 00.0			
					14.33	20.24	-14.57
							7
LAB: <i>CAS</i>	SAMPLERS	Riss	- Ho	berT			
	JAMIFULNS		7/	//`/	1		

LOCATION/ADDRESS Royalds Cable								Well or Surface Site Number MW-/ Sample Designation W7-062174					
ROJECT			Drd	051	986		Date, Tin	10_6/21	196	·			
LIENTICO	DNTACT		Im a	10CC			Weather	Clean	, wor				
			· · · ·							• •			
YDROLO			S:										
	(Nearest .0	1 ft.)	· E	levation		Time / 9 C		nod (Kevel Mete	Code)/C	omments .			
	····	··		/		··	5/0	COFF	30 14				
ELL EVA	CUATION:	1.3	Gallons/	Pore Volu	ne								
Gal	llons	Pore Vo			Method Used	·	Rinse Met	hod		. Time 1/90			
·	<u> </u>			130	ile	· :			15	30			
irface Wa	ater Flow	Speed			Measureme	nt Method_			Date, Time				
AMPLING:		-								Sampler			
						Depth	Field			Cleaning			
	Date,	_		Volume .	Container	Taken	Filtered	Preserva-	Iced	Method			
Sample つく	Time	26 0	Method	(ml)	Mearblass	(feet) <u>H.O</u>	(yes.no)	tive ACC	(yes,no)	Non-Phosphatic			
<u> </u>	15 35	- 3	re(C)	70.	Clearetain	<u>F4.0</u>	1/0.	776	/	detergent wash			
		—· =				. ——-				H20 rinse MeOH rinse			
	· · · · · · · · · · · · · · · · · · ·		 •						-· · · · ·	Distilled H20			
		· -							-1	rinse			
		—· -					•			Hexane rinse			
										it oily			
FIELD WAT	ER QUALI	TY TESTS	•					•					
Por Vol. lumber	•nH	Tomp (uctivity /cm)	Conductivity @								
	6.19	Temp (7. (03	/Citi)	259 (µS/cm)								
7	7.38	14.80	* · ·	/ · ·	668		_ ·	 .•					
3	4.41	14.9		7_:	642								
			/						·				
			_,						1				
OTES:	- - /- -	~ /			C-14		,						
	- G)a([Trey	NO	silt 1	10 020)						
							·	12.86+	0.245	13.10			
						 							
	·· ==·												
	1				0 .	- 1/	1. +						
_AB: _ <i>C_ /</i>	<u></u>			SAMPLER	s: Rus	<u>) 17 (</u>	pc/1	7 1					

15055 SW Sequoia Parkway, Suite 140

Portland, Oregon 97224-7712										-7712													
-								Office:	(503	624-7	200	Fax:	(50	3) 620	7658								
PRO.	JECT I	NAME:	Reynolds	Cabl	le Plan	t			WE	LL ID:	N	W-	7 .										
SITE	ADDR	ESS:	Longviev	, Wa	shingto	on			BLI	ND ID:		4	MU	U-7									
								······································	D	UP ID:					(NA)								
W	IND F	ROM: N	NE	E	SE	S	sw	W	NW	(LIG	HT)	ME	NUIC	HE	AVY								
	WEAT	HER: SU	NNY	CLO	JDY	RA	IN		?	TEN	IPERA	TURE:	°F6	5)	·c								
HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x G																							
									ne (gai)														
9/5	24 A6	14:00	_ <u></u>					82				.03	X 1	7	·3								
\ 	/	71.00	12.0	'		•		0,2					Х3	7	.9								
	(dia /2) ² :	x 0.163 1" =	0.041 2	<u>_</u>	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875								
	<u> </u>	Submersible Pump (4,000		0.5.0								
	GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth:																						
Bottle Type Date Time Method Amount & Volume mL Preservative [circle] Ice Filter								1	pН	1													
VOA	Glass	4 44146	14:2	c T		(3 A0m)				(HCI)		YES	NO										
Amber	Glass	11	:				250, 50	00, 1L	(None)	(HCI) (I	I₂SO₄)	YES	NO										
White	Poly	/ /	:	_			250, 50	00, 1L	<u> </u>	None		YES	NO	NA.									
Yellov	v Poly	1 1	:				250, 50	00, 1L		H ₂ SO ₄		YES	NO										
Greer	Poly	1 1	:				250, 50	00, 1L		NaOH		YES	NO.										
Red To	tal Poly	1 1	:				250, 50	00, 1L		HNO ₃		YES	NO										
Red Dis	s. Poly	1 1	:				250, 50	00, 1L		HNO ₃		YES	YES										
110A(3 (0.55)	4 124 196	14:2	0 (C	3	250, 50	00, 1L		HCl		YES	1)C	AJA									
		Total Bottle	s (include du	plicate	count):	6				331			<u></u>										
	ВО	TTLE TYPE	TYPICAL AN	ALYSIS	ALLOW		TTLE TYP	E (Circle	applicable	or write no	n-standan	d analysis	below)										
	VOA - G	iass	(8010). (8010	8020)	(8020) (8240) (826	O) (BTEX)	(TPH-G	(BTEX/IF	2H-G)			OR	(]	WALT								
yed De d	AMBER	- Glass	(РАН) (ТРН	(CID)	(TPH-D)	(TPH-418.1)	(Oil &Grea	ase)					OR	[]	WA[]								
Ş Ç	WHITE -	Poly	(pH) (Conduc	tivity) (നാടു ന്ദ്ര	SS) (BOD)	(Turbidity) (Alkalin	ity) (HCO ₃	vco²) (ci	(SO ₄)	(NOT) (N	O) (F)										
Analysis Allowed per Bottle Type	YELLOY	V - Poly	(COD) (TOC)	(Total	PO ₄) (To	otal Keldahi I	litrogen) (NH3) (NC	DyNO ₂)														
er B	GREEN	- Poly	(Cyanide)																				
₹ ĕ	RED TO	TAL - Poly	(As) (Sb) (Ba	(Be) ((Ca) (Cd)	(Co) (Cr)	(Cu) (Fe)	(Pb) (Mg)	(Mn) (Ni)	(Ag) (Se)	(TI) (Y) (II	Zn) (Hg) ((K) (Na)										
	RED DIS	SSOLVED - Poly	(As) (Sb) (Ba)	(Be) (Ca	a) (Cd) (Cd	o) (Cr) (Cu)	(Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (So	e) (TT) (V)	(Zn) (Hg) (l	(Na) (Ha	RED DISSOLVED - Poly (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cd) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Ti) (Y) (Zn) (Hg) (K) (Na) (Hardness) (Silica)										

WATE	R QUALIT	Y DATA	Purge Start Ti	me: :			Pump/Bailer Inlet Depth:			
Meas.	Method §	Purged (gal)	urged (gal) pH E Cond (μS) °F Teme		Purged (gal) pH E Cond (μS) °F Tem(°C) Other Diss O		Diss O ₂ (mg/l)	Water Quality		
4		•					•			
3	<u> </u>	1.5	6.44	1042	18.7		•	1		
2	6	1.5	6.47	1358	18.2					
1		1.5	6.45	1/27	18.6			Med be sion, sitty		
0 (Casinal		0.00						<u> </u>		

[Circle units]

[Clarity, Color]

		"				C	DI				ortland,				140			
1	Same of the last	/	432		1 4				Office:	(50	3) 624-7	200	Fax:	(50	03) 620	-7658		
PROJ	ECT N	AME	•	Reyno	lds Cat	ole Plant				W	WELL ID: MW-Y							
SITE	ADDRE	ESS:		Longv	iew, Wa	shingto	n			BL	IND ID:	RCP	1213	96-	4			
_									3		OUP ID:					NA		
W	IND FF	ROM:	N	NE	E	SE	S	sw	(w)	NW	V _Q	H)	MEI	ОШМ	Н	EAVY		
1	WEAT	HER:	SU	NNY	CLC	YOU	(RA	(NI		?	TEI	MPERA	TURE:	िन प	۲.	• C		
HYDE	ROLOG	3Y/I F	VEL N	IFASU	REMEN	TS (Nea	roet () ()1 ft	1		Product	Thickness)	[Weter	Column]	(Cir	cle appropri	ate unitsi olumn x Gal/iti		
Da			ime		ottom		roduct		Nater		-DTW	T	-DTW	1		me (gal)		
17./1	3 96		:00		-85				.41				. 44	X 1	70.0	.5		
1	/	۲,	••••	16	-05		•		• 7.1		` 	 7	-77_	1	U	·5		
	(dia./2) ² x	0 163	1"=	0.041	2=	0.163	3"=	0.367	4" =	0.653	6"=	1.469	10" ==	4.080	<u>9</u> 12"≈	- 3 5.875		
			<u> </u>			sposable Bal								4.000	12 =			
						product is					,	1	e Depth	•	-	[v if used]		
Bottle			ate		me	Method ⁵				Proc	servative	<u> </u>	Ice	Filter	рН	1		
VOA			13/96			C			mi	110	HCI	[Circle]	YES	NO	Pit	-		
Amber		101	1	<u> </u>	:25		8			/None		1 50)						
<u>-</u> _				<u> </u>	<u> </u>				500, 1L	(IAOUS) (HCI) (I	725(4)	YES	NO				
White				<u> </u>	<u>.</u>				00, 1L		None		YES	NO	NA			
Yellow				<u> </u>	:				00, 1L		H₂SO₄		YES	NO				
Green	 -				:			250, 5	00, 1L		NaOH		YES	NO				
Red To	tal Poly				:			250, 5	500, 1L		HNO ₃		YES	NO				
Red Dis	s. Poly	/	1		:			250, 5	600, 1L		HNO ₃		YES	YES				
					:			250, 5	500, 1L		· · · · · · · · · · · · · · · · · · ·		YES					
		То	tal Bottle	s (include	duplicat	e count):	6	_										
	во	TILE	YPE	TYPICAL	ANALYS	IS ALLOW	ED PER BC	TTLE TY	PE (Circle	applicable	or write no	n-standard	analysis t	below)				
	VOA - G				8010/8020)		8240) (826			(BTEX/T	PH-G)				[]	[]AW		
Analysis Allowed per Bottle Type	AMBER				TPH-HCID)		(TPH-418.1)	(Oil &Gre							[]	WA[]		
A Ple	WHITE -				onductivity)		SS) (BOO)				Aco²) (CI	(SO ₄)	(HO ¹) (H	O ₂) (F)				
sls/ Bott	YELLOW				TOC) (To	tal PO ₄) (T	otal Keldahi t	vitrogen)	(NH ₃) (NC	Dy/NO₂)								
nal)	GREEN RED TO		h	(Cyanide)	(0-) (0.)	10-1 10-0	(0.1. (0.1	(0.3. (5.3.	(DL) (11-)	(14-) (87)	41-1-40-1		- 2 / 2 / 2					
۳ ۲	RED DIS					(Ca) (Cd) Ca) (Cd) (C			****							 -		
	THE BIO		3 - 1 Oly	(73) (30)	(pa) (pa) ((a) (co) (c	0) (01) (01)	(1-0)	(mg) (mi) ((A) (A) (3	e) (1) (V) (Zij (ng) (n	y (Na) (Na	uchess) (Si	CAL			
WATF	R QUA	LITY	DATA	L	Purne	Start Tir	ne·	.	_ <u>-</u>	-		Pump/I	Railer In	let Depti	n.			
Meas.	Meth			d (gai)		H	E Cond	1 (45)	°F Ter	nn °C	Other	<u> </u>	2 (mg/l)	 -	/ater Qu	ality		
4	MIGUI		. urge	~ (9ai)	<u> </u>	1.1	2 00110	- (μυ)	1 101	p 0	Outer	D133 U	2 (1119/1)	<u></u>	aler Qu	unty		
				·	L				<u> </u>			<u> </u>		 _				

1.5

[Clarity, Color]

EMCON EMCON

FIELD SAMPLING DATA SHEET

15055 SW Sequoia Parkway, Suite 140 Portland, Oregon 97224-7712

Office:

(503) 624-7200

Fax:

(503) 620-7658

[/ if used]

PROJECT NAME:		Reyno	lds Cab	le Plant		_	WELL ID: MW-5						
SITE ADDRESS:		Longvi	ew, Wa	shingto	n		BLIND ID: RCP 121396-2						
								NA					
WIND FROM:	N	NE	Е	SE	S	sw	W	NW	(LIGHT)	MEDIUM	HEAVY		
WEATHER:	SU	NNY	CLC	YQU	(R)	(NIS		?	TEMPERA	TURE: (F) 48	· .		

			_	_						I Copy	CIG STICKOOLIS	IN LINES
HYDROLOG	Y/LEVEL M	EASUREMEN	TS (Nearest 0.01 ft	t)		(Product	Thickness]	[Water	Column]		[Water Co	kımn x Gəl/ft]
Date	Time	DT-Bottom	DT-Product	DT-V	Vater	DTP	-DTW	DTB-	DTW		Volur	ne (gal)
12/13/96	10:30	13.48	•	5.67				7.81		X 1	1	.3
1 1	:	• ,	•		•		•			Х3	3	.9
$Gal/It = (dia./2)^2 x$	0.163 1"=	0.041 2"=	0.163 3"=	0.367	4" =	0.653	6" =	1.469	10"=	4.080	12" =	5.875

§ METHOOS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Baller (D) PVC/Teflon Baller (E) Dedicated Baller (F) Dedicated Pump (G) Other = GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample)

Sample Dedicated Baller (F) Dedicated Pump (G) Other = GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample)

GROUNDWA	ATER SAMPI	LING DATA (I	if product is	, do NOT sample)	Sampi					
Bottle Type	Date	Time	Method §	Amour	t & Volume mL	Preservative [dicle]	Ice	Filter	pН	1/
VOA Glass	1213/96	10:55	C	6	40 ml	HCI	YES	NO		
Amber Glass	1 1	:			250, 500, 1L	(None) (HCI) (H ₂ SO ₄)	YES	NO	•	
White Poly	1 1	•			250, 500, 1L	None	YES	NO	NA	_
Yellow Poly	1 1	:			250, 500, 1L	H₂SO₄	YES	NO		
Green Poly	1 1	:			250, 500, 1L	NaOH	YES	NO		
Red Total Poly	1 1	:			250, 500, 1L	HNO ₃	YES	МО		·
Red Diss. Poly	1 1				250, 500, 1L	HNO ₃	YES	YES		
	1 1	:			250, 500, 1L		YES			
		<u> </u>								·

Total Bottles (include duplicate count): 6

[BOTTLE TYPE	TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below)
	VOA - Glass	(8010) (8010/8020) (8020) (8240) (8260) (BTEX) (TPH-G) (BTEX/TPH-G) OR[] WA[]
9 e	AMBER - Glass	(PAH) (TPH-HCID) (TPH-D) (TPH-418.1) (Oi &Grease) OR[] WA[]
ollowed Type	WHITE - Poly	(pH) (Conductivity) (TDS) (TSS) (BOO) (Turbidity) (Alkalinity) (HCO ₂ /CO ₂) (CI) (SO ₄) (NO ₂) (NO ₂) (F)
alysis Al er Bottle	YELLOW - Poly	(COD) (TOC) (Total PO ₄) (Total Keidahl Nitrogen) (NH ₃) (NO ₂ /NO ₂)
P BC	GREEN - Poly	(Cyanide)
Ana	RED TOTAL - Poly	(As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hg) (K) (Na)
	RED DISSOLVED - Poly	(As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Ti) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silica)
1	<u> </u>	

WATE	R QUALITY	DATA	Purge Start Tir	me: /0 : 38	5		Pump/Bailer Inlet Depth:			
Meas. Method §		Purged (gal)	рН	E Cond (μS)	°F Temp ©	Other	Diss O ₂ (mg/l)	Water Quality		
4		•								
3	C	3 . 4	6.69	390	.5.7		•	5/14, 5M		
2	J	2.2	6.64	363	15.7		•	Silty, grey		
1	\mathcal{C}	1.3	6.70	354	15.7			Jilty gray		
0		0.00								

Casing] [Select A-G] [Cumulative Totals] [Circle units] [Circle units]

SAMPLER: Jrnn J Renda

(SIGNATURE)

EMCO r									Portland, Oregon 97224-7712								
1								Ĭ	Office:	(50:	3) 624-7	200	Fax:	(50	03) 620	-7658	
PROJE	ECT N	AME:		Reyno	lds Cab	le Plant				W	ELL ID:	MW	-6		-		
SITE A	DDRE	ESS:		Longv	ew, Wa	shingto	n			BL	IND ID:	RCP	1213	96 -	6		
									COUP ID:					NA			
WI	ND FF	ROM:	N	NE	E	SE	S	SW	(w)	NW (LIGHT)			MEC	DIUM HEAVY			
٧	VEAT	HER:	SUI	YNY	CLC	YQUC	RA	IN)	7 TEMPERATURE: OF YS					<u>%</u> .	•c		
HYDR	OLOG	SY/LE	VFI M	EASU	REMEN	TS (Near	est 0 01 ft	1		[Product	Thickness]	[Water 6	Columni	íCin	cle accroor	late unitsi Xolumn x Gal/ftj	
Da			ime		ottom		roduct		Vater		-DTW	DTB-				me (gal)	
12/1	3 196				3	. 15				29	X 1	7	7				
1	/	<i>(</i> 1	:	,,,	• 12						•	1	01	Х3	5	- /	
Gal/ft≔ (dia /2\2 v	0 163	1"=	0.041		0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875	
			L		Pulme-(C) Di				<u> </u>		Dedicated P					0.010	
						product is							Depth:		*********	[v if used]	
Bottle			ate		me	Method ⁶				Pres	ervative	ـــــــ	lce	Filter	рН	1	
VOA		_	3/46		28		6	_==	ml		HCI		YES	NO		1	
Amber		1	/		:			250, 500, 1L		(None) (HCI) (H ₂ SO ₄)		YES	NO			
White		1				00, 1L	(, ,,,,,,,	None	.2004	YES	NO	NA					
Yellow		1				00, 1L		H₂SO₄		YES	NO		 				
Green			'		:			00, 1L		NaOH		YES	NO		 		
				ļ	:					HNO ₃			YES	NO		 	
Red Tot		<u> </u>	/		<u>. </u>				00, 1L								
Red Dis	s. Poly			 -	:				00, 1L		HNO ₃		YES	YES		 	
			/	l	:	l		250, 5	00, 1L				YES			<u> </u>	
				<u></u>		e count):	6										
	VOA - G	TTLE T	YPE		- ANALYS 8010/8020)	_	ED PER B0 8240) (826			applicable BTEX/T	or write no	n-standard	analysis t		[]	WA[]	
p 9	AMBER				TPH-HCID)		(TPH-418.1)			(BIEST					[]	WA()	
Typ.	WHITE				onductivity)		SS) (BOD)			ity) (HCC	,co, (ci	(SO ₄)	(NO ₂) (N	O ₂) (F)	`		
s Al	YELLOV	V - Poly					otal Keldahi i			D-/NO ²)							
llysi Bo	GREEN	- Poly		(Cyanide)													
Ana	AMBER - Glass						(Cu) (Fe)	(Pb) (Mg)	(Mn) (Nii)	(Ag) (Se)	(II) (V) (Z	ín) (Hg) (K) (Na)				
RED DISSOLVED - Poly (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (I								(Mg) (Mn) ((Ni) (Ag) (S	(V) (TT) (e)	Zn) (Hg) (K) (Na) (Ha	rdness) (Sili	ica)			
WATE	R QU	ALITY	DATA		Purge	Start Tir	ne:	:				Pump/8	Bailer In	let Depti	h:		
Meas.	Meth	od §	Purge	d (gal)	p	Н	E Con	d (μS)	°F Te	mp 🖒	Other	Diss O	₂ (mg/l)	٧	Vater Q	uality	
4																	
3		ارا	5	. [18.	731		15	. 3				Clar	1-	100	
2	~		3	. 4	6	.82	72	.5	25	Έ.				Clou	Jes. 1	× 2 1/2	

670

6.82

15.2

0.00 [Cumulative Totals]

1

[Select A-G]

[Clarity, Color]

15055 SW Sequoia Parkway, Suite 140 Portland, Oregon 97224-7712

								Office. (503) 624-7200 Pax. (503) 620-7658							-7658	
PROJ	ECT N	IAME	:	Reyno	lds Cat	le Plant	t			W	ELL ID:		ru-	1		
SITE	ADDRI	ESS:		Longvi	iew, Wa	shingto	ก			BL	IND ID:	RC	P-13	139	(6-7	5
											UP ID:					NA
W	IND F	ROM:	N	NE	Ε	SE	S	sw	8	NW LIGHT		HT	(MEDIUM)		HEAVY	
1	WEAT	HER:	SU	YNY	CLC	YQU	RA	11)	Hail	?	TE	TEMPERATURE:				
HYDF	ROLOG	GY/LE	EVEL M	EASU	REMEN	TS (Near	rest 0.01 ft	n	,		[Product Thickness] [Water (Columnj			ate unitsi olumn x Gal/fij
Da			ime		ottom		roduct		Nater		DTW		DTW			me (gal)
12/1	3 112	//	:20	12	.85			3	.31		•	a	SH	X 1	7	SS
1	1		:				•							Х3	4	.08
Gal/ft =	(dia./2) ² >	0.163	1"=	0.041	2" =	0.163	3" =	0.367	4" =	0.653	6* =	1.469	10" =	4.080	12" =	5.875
§ METHO	XDS: (A) S	ubmersit	ole Pump (B	Peristaltic	Pump (C) Di	sposable Bai	ler (D) PVC/T	efion Baller	(E) Dedicate	ed Bailer (F)	Dedicated F	ump (G) Ot	Wr=			
GROU	NDW	ATER	SAMP	LING D	ATA (if	product is	detected,	do NOT	sample)			Sample	Depth:			[veet]
Bottle	Туре		ate	Ti	me	Method ^{\$}	Amoun	t & Volu	me mL	Pres	ervative	(circle)	Ice	Filter	рН	1
VOA	Glass	121	3 98	11	:55		3	40	ml		НСІ		YES	NO		
Amber	Glass	1	/		:			250, 5	500, 1L	(None)	(HCI) (I	H₂SO₄)	YES	NO		
White	Poly	1	1		:			250, 5	500, 1L		None		YES	NO	NA	
Yellov	Poly	1	1		:			250, 5	500, 1L	H₂SO₄		YES	NO			
Green	en Poly / / :		:			250, 5	500, 1L		NaOH		YES	NO				
Red To	Red Total Poly / / :			:			250, 5	500, 1L		HNO₃		YES	NO			
Red Dis	s. Poly	1	/		:			250, 5	500, 1L		HNO ₃		YES	YES		
		/	1		:			250, 5	500, 1L				YES			
		То	tal Bottle	s (include	duplicat	e count):	6									
	ВС	TTLET	YPE	TYPICAL	ANALYS	IS ALLOW	ED PER BO	TILE IY			or write no	n-standard	analysis t	oelow)		
۰ -	VOA - G				8010/8020)		8240) (8266			(BTEX/TI	PH-G)				1 1	WA[]
Analysis Allowed per Bottle Type	WHITE				TPH+HCID) anductivity)		(TPH-418.1) (BOO)			iw) (HCO	/co³) (ci) (SO ₄)	(NO ₃) (N	OH O ₂) (F)	[]	[] AW
s All	YELLOV	_ _					Total Keldahi i			Dy/NO ₂)	, co ₃ , (c,	, (004)	(1103) (111	- (, /		
alysi r Bo	GREEN	- Poly		(Cyanide)			····									
An Pe		TAL - Po		(As) (Sb)	(Ba) (Be)	(Ca) (Cd)	(Co) (Cr)	(Cu) (Fe)	(Pb) (Mg)	(Mn) (Ni)	(Ag) (Se)	(TI) (V) (I	Zn) (Hg) (K) (Na)		
	RED DI	SOLVE	D - Poly	(As) (Sb)	(Ba) (Be) (Ca) (Cd) (C	o) (Cr) (Cu)	(Fe) (Pb)	(Mg) (Mn) (Ni) (Ag) (S	e) (TT) (V) ((Zn) (Hg) (k	() (Na) (Ha	rdness) (Sili	ica)	
WATE	P OIL	NI ITV	DATA		Burgo	Start Tir						D.,/	Doiles In	let Depti	h.	
Meas.		od §		d (gal)	— <u> </u>				°F Ter		Other	Diss O			/ater Qu	ality
4	well	00 -	ruige	u (gai)	<u> </u>	H	E Cond	υ (μο)	r iei	iib C	Outer	DISS O	2 (1119/1)	*	rater Qu	anty
3	_		7.	8		.89	12	13	15	X		<u> </u>	•			
2			3	7	6	87	63		75		***					
1			1	1		.81	63			9			•			
0			0.	100	<u> </u>	.0'	د ه		,	· • •		 				
[Casing]	[Select	A-G]	(Cumulati		L				[Circle	units]		L			(Clarity, Co	lorj

SAMPLER:

15055 SW Sequoia Parkway, Suite 140 Portland, Oregon 97224-7712

Office:

(503) 624-7200

Fax:

(503) 620-7658

PROJECT NAME:	Reynolds Cable Plant	WELL ID: MW - 8	
SITE ADDRESS:	Longview, Washington	BLIND ID: RCP-121396-1	
		DUP ID:	NA

WIND FROM: SW (W) NW (UGH) MEDIUM N NE E SE HEAVY **WEATHER:** SUNNY CLOUDY TEMPERATURE:

HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x Gal/ff] Date Time DT-Bottom DT-Product DT-Water DTP-DTW DTB-DTW Volume (gal) 12/13 MG 10:15 14 10 .32 78 59 X 1 X 3 $GaVft = (dia./2)^2 \times 0.163$ 1"= 0.041 2" = 0.163 3*= 0.367 4" = 0.653 6" = 1.469 10" = 4.080 12" = 5.875

§ METHODS: (A) Submersible Pump (B) Peristatic Pump (C) Disposable Baller (D) PVC/Tefion Baller (E) Dedicated Baller (F) Dedicated Pump (G) Other =

GROUNDW	ATER SAMP	LING DATA (if	product is	detected,	do NOT sample)	Sampl	_	[V if used]		
Bottle Type	Date	Time	Method ⁵	Amoun	t & Volume mL	Preservative [dicle]	Ice	Filter	ρH	- √
VOA Glass	12113196	10:45	7	16	40 ml	HCI	YES	NO		
Amber Glass	1 1	:			250, 500, 1L	(None) (HCI) (H ₂ SO ₄)	YES	NO		
White Poly	1 1	:			250, 500, 1L	None	YES	NO	NA	
Yellow Poly	1 1	:			250, 500, 1L	H₂SO₄	YES	NO		
Green Poly	1 1	:			250, 500, 1L	NaOH	YES	NO		
Red Total Poly	1 1	:			250, 500, 1L	HNO₃	YES	NO		·
Red Diss. Poly	1 1	:			250, 500, 1L	HNO ₃	YES	YES		
	1 1	:			250, 500, 1L		YES			

Total Bottles (include duplicate count):

	BOTTLE TYPE	TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below)
VOA	- Glass	(8010) (8010/8020) (80240) (8240) (8260) (81EX (PHG) (BTEX/TPHG) OR[] WA[]
	ER - Glass	(PAH) (TPH-HCID) (TPH-0) (TPH-418.1) (Oil &Grease) OR[] WA[]
= ' #	TE - Poly	(pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO ₂ /CO ₃) (Cl) (SO ₄) (NO ₃) (NO ₂) (F)
Y Off YELL	.OW - Poly	(COD) (TOC) (Total PO4) (Total Keldahi Nitrogen) (NH ₃) (NO ₃ /NO ₂)
E GRE	EN - Poly	(Cyanide)
RED RED	TOTAL - Poly	(As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Ti) (V) (Zn) (Hg) (K) (Na)
RED	DISSOLVED - Poly	(As) (Sb) (Ba) (Ba) (Ca) (Cd) (Cd) (Cd) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Ti) (V) (Zn) (Hg) (K) (Na) (Harchess) (Slica)

WATE	R QUALITY	DATA	Purge Start Tir	ne: :		Pump/Bailer Inlet Depth:				
Meas. Method §		Purged (gal)	рН	E Cond (μS)	°F Temp °C	Other	Diss O ₂ (mg/l)	Water Quality		
4					•					
3	J	4.8	6.89	861	15.0			setulations		
2		3.2	6 93	864	15.0			١,		
1		1.6	7.06	965	14.3			γ1		
0		0.00								

(Cumulative Totals) [Select A-G]

(Circle units)

[Clarity, Color]

SAMPLER: SHarqvail
(PRINTED NAME)

Total Bottles (include duplicate count):

15055 SW Sequoia Parkway, Suite 140

Portland, Oregon 97224-7712

(503) 624-7200 Fax: (503) 620-7658

PROJECT NAME:	Reynolds Cable Plant	WELL ID:	mma	
SITE ADDRESS:	Longview, Washington	BLIND ID:	RCP-121396-3	

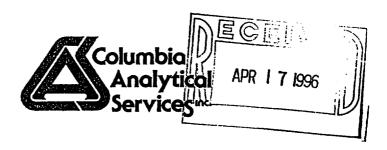
_)UP ID:		NA NA
WIND FROM:	N	NE	E.	SE	S	sw	\$ NW	(JGF)	MEDIUM	HEAVY
WEATHER:	SU	NNY	CLC	YDU	€/	JIN)	?	TEMPERA	ATURE: 1-43	•c

HYDROLOG	SY/LEVEL N	MEASUF	REMEN	TS (Near	est 0.01 f	ft)		(Product	Thickness]	(Water	Column]	[Circ	le appropri Water C	iate unitsi kolumn x Gal/ft]
Date	Time	DT-B	ottom	DT-P	roduct	DT-\	Vater	DTP	-DTW	DTB	-DTW		Volu	me (gal)
1213 96	10:48	14	.40		•	14	87		•	19	51	X 1	l	\$5
1 1	•				•	i			•			Х3	4	-67
$GaVit = (dia./2)^2 x$	0.163 1" =	0.041	2" =	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875

GROUNDW	ATER SA	ER SAMPLING DATA (if product is detected, do NOT sample)						Sample Depth:					
Bottle Type	Date	,	Time	Method [§]	Amoun	t & Volume mL	Preservative (circle)	Ice	Filter	pН	- √		
VOA Glass	12/3/	98	11:10	7	3	40 ml	HCI	YES	NO				
Amber Glass	/ /	'	:			250, 500, 1L	(None) (HCI) (H ₂ SO ₄)	YES	NO				
White Poly	/ /	′	:			250, 500, 1L	None	YES	NO	NA			
Yellow Poly	/ /	'	:			250, 500, 1L	H₂SO₄	YES	NO				
Green Poly	/ /	<i>'</i>	:			250, 500, 1L	NaOH	YES	NO	-			
Red Total Poly	/ /		:			250, 500, 1L	HNO ₃	YES	NO				
Red Diss. Poly	//		:			250, 500, 1L	HNO ₃	YES	YES				
	, ,	,				050 500 41		VEC					

BOTTLE TYPE	TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below)
VOA - Glass	(8010) (8010/8020) (8240) (8260) (BTEX) (PH-G) (BTEX/TPH-G) OR[] WA[]
AMBER - Glass	(PAH) (TPH-HCID) (TPH-0) (TPH-418.1) (Oil &Grease) OR[] WA[]
WHITE - Poly	(pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO ₂ /CO ₃) (Cl) (SO ₄) (NO ₃) (NO ₂) (F)
YELLOW - Poly	(COO) (TOC) (Total PO ₄) (Total Keldahi Nitrogen) (NH ₃) (NO ₃ /NO ₂)
GREEN - Poly	(Cyanide)
RED TOTAL - Poly	(As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Ti) (V) (Zn) (Hg) (K) (Na)
RED DISSOLVED - Poly	(As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silica)
	VOA - Glass AMBER - Glass WHITE - Poly YELLOW - Poly GREEN - Poly RED TOTAL - Poly

WATER QUALITY DATA			Purge Start Tir	ne: :		١.	Pump/Bailer Inlet Depth:				
Meas.	Method §	Purged (gal)	pН	E Cond (μS)	°F Temp °C	Other	Diss O ₂ (mg/l)	Water Quality			
4			•								
3	<u></u>	4.8	6.82	280	14.9		•	situad litar			
2		3.2	6.81	279	14.9			4,			
1		7 .6	6.93	269	14.9			44			
0		0.00									
[Casing]	[Select A-G]	(Cumulative Totals)			[Circle units]	·	·	[Clarity, Color]			


SAMPLER:

15055 SW Seguoia Parkway, Suite 140

V	Portland, Oregon 97224-7712 Office: (503) 624-7200 Fax: (503) 620-7658																			
PROJE	ECT N	AME:		Revno	lds Cat	le Plan	t		Ottioo.	<u>`</u> _	ELL ID:		W-7)	0,020					
SITE A						shington				BL	IND ID:			_04	149	7-1				
											OUP ID:					NA				
WI	ND FF	ROM:	M	NE	E	SE	S	sw	W	NW	KG	HÞ	MED	MUI	HE	EAVY				
٧	VEAT	HER:	SUI	SUNNY CLOUDY RAIN ? TEMPERAT				TURE:	•F 4	゚゚゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙	°C									
HYDR	OLOG	gy/LE	VEL M	EASU	REMEN	TS (Near	est 0.01 ft	 :)		(Product	Thickness]	[Water	Column)	fCin	de acorocite (Water Co	ute units) olumn x Gai/ft)				
Da			ime	T	ottom		roduct		Vater	DTP	-DTW	DTB	DTW		Volu	me (gal)				
411	17	เร	:45	12	.75		4	3	.88			8	.87	X 1	7	.44				
1	/		:	1-			•			:	•			Х3	4	.33				
Gal/ft = (dia./2) ² x	0.163	1"=	0,041	2"=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" ==	4.080	12" =	5.875				
§ METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teffon Bailer (E) Dedicated Baller (F) Dedicated Pump (G) Other =																				
GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth:									[vecu]											
Bottle	Туре	D	ate	Ti	me	Method §	Amoun	ount & Volume mL Prese				[circle]	Ice	Filter	pН	1				
VOA	Slass	4 1	C 97	16	:00	1	3	40			(नटा)		KEZ)	NO		u				
Amber	Glass	1	1		:			250, 5	600, 1L	(None	e) (HCl) (H₂SO₄)		YES	NO						
White	Poly	1	1		:			250, 5	500, 1L		None		YES	NO	NA					
Yellow	Poly	/	7		:			250, 5	500, 1L		H₂SO₄		YES	NO						
Green	Poly	1	7		:			250, 500, 1L			NaOH		YES	10						
Red Tot	al Poly	1	1		:			250, 500, 1L		HNO ₃			YES	NO						
Red Dis	s. Poly	1	7		:			250, 5	500, 1L		HNO ₃		YES	YES						
		/	1		:			250, 9	500, 1L				YES							
		То	tal Bottle	s (include	e duplicat	te count):	3													
	ВС	TTLE T	YPE	TYPICAL	L ANALYS	SIS ALLOW						n-standar	d analysis t							
_	VOA - G				8010/8020)			O) (BTEX		(BTEX/	MPH-G)				[]	MY[]				
Analysis Allowed per Bottle Type	AMBER			 	TPH-HCID)		(TPH-418.1))³(∞³) (a) (SO ₄)	(NO ₃) (N	OR C ₂) (F)	[]	MV[]				
Allo Te T	WHITE	- Poly W - Poly		<u> </u>	onductivity) (TOC) (To		rss) (800 Total Keldahl	<u> </u>		O ₂ /NO ₂)	<i>3</i> 403) (G	(304)	(1403) (14	O3) (17						
ysis Bot	GREEN	<u>_</u>		(Cyanide)	(100) (11	A211 04) (100011	·····	, .	-32										
Analy per		TAL - Po	rly		(Ba) (Be) (Ca) (Cd)	(Co) (Cr)	(Cu) (Fe)	(Pb) (Mg)	(Mn) (Ni)	(Ag) (Se)	(TI) (V)	(Zn) (Hg) (K) (Na)						
,	RED DI	SSOLVE	O - Poly			(Ca) (Cd) (C									lica)					
WATE	R QU	ALITY	DATA		Purge	e Start Time: Pump/Bailer Inlet Depth:														
Meas.	Meth	nod §	Purge	ed (gal)		Н	E Con	nd (μS) °F Temp °C Other Diss O₂ (mg/l)				V	Vater Qu	ıality						
4										•										
3			4	.5	6	.92	65	31	15	. 7	7						•		Carly.	Colon
2			3	.0	6	.89	64	13	15	. خ				71						
1			1	.5	6	.87	62	-1	15	.6			•	<u> </u>	N					

APPENDIX B ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

April 15, 1996

Service Request No.: K9601763

Mike Staton EMCON 18912 North Creek Parkway, Suite 100 Bothell, WA 98011

Re: Reynolds Cable Plant/Project #40133-001.007

Dear Mike:

Enclosed are the results of the sample(s) submitted to our laboratory on March 28, 1996. For your reference, these analyses have been assigned our service request number K9601763.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 243.

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard Craven Project Chemist

RAC/td

Page 1 of __5

COLUMBIA ANALYTICAL SERVICES, Inc.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the POL but greater

than or equal to the MDL.

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001,007

Sample Matrix:

Water

Service Request: K9601763

Date Collected: 3/28/96

Date Received: 3/28/96

Date Extracted: NA

Date Analyzed: 4/10/96

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: µg/L (ppb)

	Analyte: Method Reporting Limit:	Benzene 0.5	Toluene 1	Ethylbenzene 1	Total Xylenes 1	TPH as Gasoline 50
Sample Name	Lab Code					
W1/032896 MW-7 Method Blank	K9601763-001 K960410-WB	38.3 ND	ND ND	ND ND	ND ND	ND ND

Approved By: 55/102194
01763PHC.SPI - BTXw 4/11796

Date: Hull

00003

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/#40133-001.007

Sample Matrix: Water

Service Request: K9601763

Date Collected: 3/28/96

Date Received: 3/28/96 Date Extracted: NA

Date Analyzed: 4/10/96

Surrogate Recovery Summary

BTEX and Total Petroleum Hydrocarbons as Gasoline

EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
W1/032896	K9601763-001	90	94
Method Blank	K960410-WB	91	94

CAS Acceptance Limits:

69-114

65-117

SUR2/111594 01763PHC.SP1 - BTX:wSUR 4/11/96

Date: 4/1/96

Page No.;

00004

HOW	An∈'	ical
El Aller Market		ices

WIMIN OF COSTODIALABORATORI ANALISIS DEGUEST FURNING

0	3 1 / South 13	3th Ave. • Kelso, W	A 98626 • (206)	577-7	222 •	(800) (395-72	22 • F	FAX (2)	06) 636	-1068		DATE	5/	21/	94		PAG	E		OF	=
PROJECT NAME CYNULAS	blepla	en 1.40133	201.007									AN	ALY	SIS	REC	UE	STE	D				
1	ETATO			1		$\overline{}$			1. 7	\neg	7							7	7	7	7	7
COMPANY/ADDRESS Engles	150	the//		Ä								Ę/		- /-						/	\u/\	/
				Į		/ &	,/	Į,				<u>}</u>		/ ,	$\sqrt{}$	ો ફો	/ ;	<u>[</u>		/.	7	
		PHONE 48	6-5200	8	۱,	28	g		/ ,	\s_	82	8	/_ /	/ දු	810		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		/		} /	/
SAMPLERS SIGNATURE 2	A.L.	7		90					3 6 7 5 S		38/		డ్డ్ /	527	2 × ×	E. L. J.	\ _\'	\z /	, /	人分	* /	'
SAMPLE	T	1 140	1 2	NUMBER OF CONTAINERS	8	Volatile Of Care	. /§	Total Met.	Ossovanie Sesovanie	E S	\$/2	₹\5	20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Bacleria Hatio	Enteroge	Aroon Pr	§ /	\mathcal{N}		
I.D. DATE	TIME	LAB I.D.	SAMPLE MATRIX	2	38	120	/46		7/38		3/8/	\$\₹	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	87	3/ 👸		1	$\vec{3}$		REMARKS
W1/032896 37840	1005		WATE	3										1	Ť			1	/ ×	Ť	\leftarrow	
																	 		 	+	+	
					7							 				T .		 	 	\vdash	十一	
											-							 	╁	╁	+	
																-	\vdash	 	 	╁	 	
												 	H				 		 	1	 	
				 								T		 -		1-	\vdash	-	-	-	+	
·														-		 	一	 	 	╁╌	+	
												ļ					-	 	┢	╁	+	
		1				·							 	-		\vdash		 	-	+	┼──	
RELINQUISHED BY:		RECEIVED BY:	TURN	AROUN	D REQ	UIREMI	NTS		REPOR			ENTS		INVO	ICE IN	FORMA	TION:	<u> </u>	\vdash	<u>ا</u>	AMPLE	RECEIPT:
Signature /	Signature	St H S	ALE - 2	4 hr _	48 h	r	5 day	X	L.Rout	ine Repo ort (Includ		ue							1			
Signature // br. T Printed Name	Printed N	1 NOXI LA	-/			orking da Alminary	rys)		MSD	as requi	ired. ma	w ba	ł	:								
moun / 1/50		7/45							III. Data	Validation	on Reon	ył .								•		
5/11/96 1700	Firm	258911	-73-771			ninary Re	esuits	l		Delivera			l —		·				l —			
Date/Time	Date/Time		Request																Lab N	lo:		
RELINQUISHED BY:	,	RECEIVED BY:	SPEC	IAL IN	ISTRU	JCTIO	NS/C	OMME	ENTS:	Landf	in .											
Signature .	Signature)	Circle	which r	netais (ere to b	e anal	yzed:														
Printed Name	Printed Name			tal Met					Ca	Cd	Co (Cr C	u Fe	Pb	Mg	Mn	Ni	Ag :	Se T	ı v	Zn I	Hg
Firm	Firm		Dissol	ved Me	tals: A	ls Si) Ba	Be	Ca	Cq	Co	Cr C	ù Fe	Pb	Mg	Mn	NI	Ag :	Se 1	u A	Zn	Hg
Date/Time	Date/Tim	9																				
												·										f_{ij}

July 8, 1996

Service Request No.: K9603701

Mike Staton EMCON 18912 North Creek Parkway, Suite 100 Bothell, WA 98011

Re: Reynolds Cable Plant/Project #40133-001.007

Dear Mike:

Enclosed are the results of the sample(s) submitted to our laboratory on June 21, 1996. For your reference, these analyses have been assigned our service request number K9603701.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 243.

O Maaun

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard Craven Project Chemist

RAC/II

Page 1 of <u>5</u>

COLUMBIA ANALYTICAL SERVICES, Inc.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON

Project: Sample Matrix: Reynolds Cable Plant/40133-001.007

: Water

Service Request: K9603701

Date Collected: 6/21/96
Date Received: 6/21/96

Date Extracted: NA
Date Analyzed: 7/1,2/96

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: µg/L (ppb)

	Analyte: Method Reporting Limit:	Benzene 0.5	Toluene 1	Ethylbenzene l	Total Xylenes 1	TPH as Gasoline 50
Sample Name	Lab Code					
W4-062196 MW-4 W7-062196 MW-7 W6-062196 MW-6 Method Blank	K96013701-001 K96013701-002 K96013701-003 K960701-WB	ND 4.3 1.3 ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND

pproved By:	Kendan	Date:	7/5/96	

5A:102194 03:701PHC.SPI - BTX:= 3/3/96

Page No.:

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/40133-001.007

Sample Matrix: Water

Service Request: K9603701
Date Collected: 6/21/96
Date Received: 6/21/96
Date Extracted: NA
Date Analyzed: 7/1,2/96

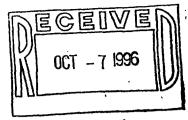
Surrogate Recovery Summary
BTEX and Total Petroleum Hydrocarbons as Gasoline
EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
W4-062196	K96013701-001	100	93
W7-062196	K96013701-002	98	94
W6-062196	K96013701-003	100	93
Method Blank	K960701-WB	100	91

CAS Acceptance Limits:

69-114

65-117


Approved By:	landow	Date:	7/5/96
7777411507			

TUR2/111594 03701PHC.SP1 - BTX#SUR 7/3/96

Page No.:

Service	esme 1	317 South 13	th Ave. • Kelso, W	A 98626	• (206) 57	7-7222	• (800) 695-7	222°• l	FAX (2)	љ, 636	3-1000		JM 1	2/		16		AGL		1			<u>'</u>
PROJECT NAMER CYTUTAL (ablept #1/0/33-001.00							ANALYSIS REQUESTED																	
COMPANY/ADDRESS EIGEN Pothell				1	NERS		7			7	7	Will Service S	\mathcal{I}	7	7		7	_	7		V	7		
			PHONE			NUMBER OF CONTAINERS	48010 Becamics	08/28/28/28/28/28/28/28/28/28/28/28/28/28	Total Mes	Oksoved in the second in the s	श्री इंद्र	8 78 P	No.	App 883 Cg.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8.0.8 8.6.8 7.	Bacleria Patio			/ ,	//	`} }		
SAMPLERS SIGNATURE _	Ja	- B	GN.			, E			vertra Vertra			5 (S	3 2		2	ואל אין				§ /				
SAMPLE 1.D.	DATE	TIME	LAB I.D.	SAM MAT			\$ 3	18.4.2 Supplies 18.4.2 Suppl		3/3 3/3/3	3/3/ 3/3/	8	\$ \$ £	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8/.§ 3/3	A Pion	Bacteria 7	Enteroco	Mo Pr				REMARK	ks
W4-062194	12/10	1515	1/3701-1	WAT		3			1	<u> </u>										X				
117-062196		1535	-2			3			<u> </u>			_								X				
16-062196	4	1550	-3	1		3	1		1.											1		<u> </u>		
	<u> </u>					- -	+	-	 											<u> `</u>		<u> </u>		
						- -	- -		-		-	<u></u>	<u> </u>						ļ	<u> </u>		<u> </u>		
				 			- -		4-	+	-	_		-			<u> </u>			 		┼		
	-			-		-	+	-	 	┼—	-	 -		-					 	 		├		
				 			+	- -	┼		├─		-	 	 	-	 	├	 	-		├-		
		 		<u> </u>	-	- -	╁		+	+	 	-	 	 		-	├	├─	 	┼─		-		
They Held le- k. H.		24 h	RNAROUND REQUIREMENTS 24 hr48 hr5 day				L. Routine Report					INVOICE INFORMATION:						SAMPLE RECEIPT:						
			Standard (10-15 working days)				II. Report (includes DUP.MS. MSD, as required, may be charged as samples)					P.O. #:						Shipping VIA:						
Printed Name Printed Name			Provide Verbal Preliminary Results				III. Data Validation Report (includes All Raw Data)												Condition:					
Fin 196 1620 Fin 2196 1620			ide FAX p		y Results	_	IV. CLP Deliverable Report																	
		<u>'`</u>	eport Date												Lab No:									
1		SPECIA	٠.					: Land	fill												(
Signature		Circle wit			٠.																			
Printed Name Printed Name			Total Metals: As Sb Ba Be Ca Cd Co Cr Cu Fe Pb Mg Mn Ni Ag Se Ti V Zn Hg											-										
Firm Firm		Dissolve	Metals	. A8	ಶD	Ba Be) Ca	Cd	Co.	Cr (Cu F	e Pb	Mg	Mn	Ni	Ag	Se T	7 V	Zn	Hg				
Date/Time Date/Time							•			,												ļ		

October 3, 1996

Service Request No: K9605999

Mike Staton EMCON 18912 North Creek Parkway, Suite 100 Bothell, WA 98011

Re: Reynolds cable Plant/40133-001.007

Dear Mike:

Enclosed are the results of the sample(s) submitted to our laboratory on September 25, 1996. For your reference, these analyses have been assigned our service request number K9605999.

All analyses were performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 243.

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard Craven Project Chemist

RAC/td

Page 1 of

2 Par 470 - Mata Warbiastas 98626 - Talephone 360/577-7929 - Fax 360/636-1068

COLUMBIA ANALYTICAL SERVICES, Inc.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

00002

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON

Project:

Reynolds Cable Plant/40133-001.007

Sample Matrix:

Water

Service Request: K9605999

Date Collected: 9/24/96

Date Received: 9/25/96 Date Extracted: NA

Date Analyzed: 9/27/96

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: µg/L (ppb)

	Analyte: Method Reporting Limit:	Benzene 0.5	Toluene l	Ethylbenzene 1	Total Xylenes 1	TPH as Gasoline 50
Sample Name	Lab Code	:				
MW-7 Method Blank	K9605999-001 K960927-WB	0.7 ND	ND ND	ND ND	ND ND	ND ND

Approved By:	Meena	Shah	Date:	10/2/96

SA/102194 05999PHC.SP1 - BTXw 10/2/96

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/40133-001.007

Sample Matrix: Water

Service Request: K9605999

Date Collected: 9/24/96

Date Received: 9/25/96

Date Extracted: NA
Date Analyzed: 9/27/96

Surrogate Recovery Summary

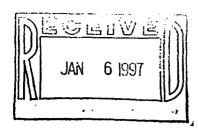
BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
MW-7	K9605999-001	96	86
Method Blank	K960927-WB	94 .	85

CAS Acceptance Limits:

69-114

65-117


Approved By: Mema Shah Date: 10/2/96

05999PHC.SP1 - BTXwSUR 10/2/96

Ana.,	Services 1317 South 13th Ave. • Kelso, WA 98626 • (206) 577-7222 • (800) 695-7222 • FAX (206) 636-1068 DATE 9.24.96 PAGE OF																							
Jervic	e5 ^{m.} 13	17 South 13	1-1			7-7222	(800)	695-72	22 • .1	FAX (2)	06) 636	3-1068	1	DATE_	9.	20	₹ · c	16	PAGI	Ē	•	OF	/	کلاــــــ
PROJECT NAME 12	yealla.	Calal	, Plat40133	-001.	007		•		· .	•			AN	ALY	SIS	REC	UE	STE	D					
PROJECT MANAGER	M	<u>(e ≤</u>	taton	· · · · · · · · · · · · · · · · · · ·	_ ,	م		/· /			7	7			/		1	•				7	$\overline{\mathcal{I}}$	
COMPANY/ADDRESS	ENC	<u> 770</u>	Buthell	<u> </u>		ž					1/	./.			. /		છે/		_/					
			·		_	₹ 2	/ &	3/	/gi						/ 4	./ .		/.			4		/	
<u></u>		1	PHONE 48	5.500) [3	20	8	No.	/ "/	a la la	18/2	8	20	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	36	Page 1	/ 3	/	/- ,	P	ku l	/	
SAMPLERS SIGNATURE _		<i>/</i> · ·	E 0		_ ?	Nomber of Containers	28070 Best St. St. St. St. St. St. St. St. St. St	BaseMe.	Total Mail Acid Org.,	See Symmetric See Symmetric Symmetri		38/5	5/	Anies Sc.			Bacteria Ratio	Enleron	ž /	e E	THE STATES	() - -		
SAMPLE			LAB	SAMPL	E		10 P	y/§	E O	र्ड है	ર્ક/ફેં		₹/Ş	8 5 5 5	8/8	2 Z	Bacteria 7		No ta outo	320	. / <u>E</u>	= /		
1.D.	DATE	TIME	I.D.	MATRI	-	, Y -	<u> </u>	\ <u>\</u>	1/23	*/ठॅ <i>ऊ</i>	£8	18/8	1	\ \$ 0	/ප්ද්	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/a,		18		<u> </u>	\bot	REMARKS	
MW-7	9/14/96	1420		Wate	r (2						<u> </u>		54.2					<u> </u>	.×	と		••	
							<u> </u>	ļ	_	R	c'd	7	ie	Blo	عليه	- n	+	<u>~</u>	coc	u	4/0	AS_		
							<u>:[:</u>	<u> </u>					<u> </u>		<u>.</u>						_			
				.,	<u> </u>		<u> </u>	<u> </u>	ļ				<u>, :</u>	· .										
						_ _			_			· .			<u>:</u>									
				-				<u> </u>	<u> </u>	<u> </u>		<u>. </u>	ļ										· · · · · · · · · · · · · · · · · · ·	
				-															<u> </u>					
•											<u>.</u>							<u>. </u>					·	
•																					<u> </u>			
DEI ALOUIS UNITED						1		<u> </u>	_				<u> </u>			<u> </u>		L		Ŀ				
RELANQUISHED B	Y: -	la-	RECEIVED BY:			UND RE				REPOR	T REQ	uiremi Xi	EŅTS		INVO	ICE INI	ORMA	TION:		ŀ	.\$	AMPLE	RECEIPT:	
Sonature BAN	JKE	Signature		_	Stand	lard (10-15	working d	iays)	_			des DUP ured, ma	MS.	P.O. #:						Shippi	ng VIA:		<u> </u>	_
Printed Name		Printed Na	eme		Provi	de Verbal F Is	reliminar	1		chai	ged as a	amples) Ion Repo	•	Bill To:						Shippi				-
	1657	FITT 09249		87 _	٠.	de FAX pre	liminary F	Results		(inc	tudes All	Raw Da able Rep	ita)				· ·			Condit	don:			
Part										. IV. OU	Deliver	ene-úah								Lab N	0:	K96 -	5999	-
RELINQUISHED BY: RECEIVED BY: SPECIAL INSTRUCTIONS/COMMENTS: Landfill											ᅱ													
Signature	·	Signature	· · · · · · · · · · · · · · · · · · ·	ľ	•	ch metal:																		
Printed Name		Printed No	•		Total	Metals:	As S	b Ba	Be	Ca	Cd	Co. (Cr C	u Fe	Pb	Mg	Mn	NI	Ag 8	Se Ti	v	Zn 1	da da	
	· · · · · · · · · · · · · · · · · · ·	Firm	G1110	P	issolved	Metals:	As S	b Ba	а Ве	Ca	Cd ·	Co	Cr, C	u Fe	Pb	•	Mn	Ni	Ag	Se T	ı v	Zn	•	
Firm					-0		_1			M;			٠.	-								•		-
Date/Time		Date/Time	9		4	apol	Ţ	-10		11	KC	,	>	100	٠	~			•					

Service Request No: K9608050

January 3, 1997

Mike Staton EMCON 18912 North Creek Parkway, Suite 100 Bothell, WA 98011-8016

Re: Reynolds Cable Plant/40133-001.007

Dear Mike:

Enclosed are the results of the sample(s) submitted to our laboratory on December 13, 1996. For your reference, these analyses have been assigned our service request number K9608050.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 243.

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard Craven Project Chemist

RAC/sm

Page 1 of ____

" " " " " O0/0/ - Talaabaaa 240/577 7000 - 500 240/404 4045

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON

Project:

Reynolds Cable Plant/40133-001.007

Sample Matrix:

Water

Service Request: K9608050

Date Collected: 12/13/96 Date Received: 12/13/96

Date Extracted: NA

Date Analyzed: 12/20,26/96

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: µg/L (ppb)

	М	Analyte: lethod Reporting Limit:	Benzene 0.5	Toluene 1	Ethylbenzene 1	Total Xylenes 1	TPH as Gasoline 50
Sample Name		Lab Code					
RCP-121396-1	mw-8	K9608050-001	ND	ND	ND	ND	ND
RCP-121396-2	MW-5	K9608050-002	ND	ND	ND	ND	ND
RCP-121396-3	mw-9	K9608050-003	ND	ND	ND	ND	ND
RCP-121396-4	mw-4	K9608050-004	ND	ND	ND	ND	ND
RCP-121396-5	AW-7	K9608050-005	ND	ND	ND	ND	ND
RCP-121396-6	MW-6	K9608050-006	ND	ND	ND	ND	ND
Trip Blank	• -	K9608050-007	ND	ND	ND	ND	ND
Method Blank		K961220-MB	ND	ND	ND	ND	ND

00002 Date: 1/2/97 Approved By:

5A/102194 08050VOA.MSI - BTXw 1/2/97

Page No.:

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/40133-001.007

Sample Matrix: Water

Service Request: K9608050

Date Collected: 12/13/96

Date Received: 12/13/96

Date Extracted: NA

Date Analyzed: 12/20,26/96

Surrogate Recovery Summary BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
RCP-121396-1	K9608050-001	95	95
RCP-121396-2	K9608050-002	97	95
RCP-121396-3	K9608050-003	96	95
RCP-121396-4	K9608050-004	96	95
RCP-121396-5	K9608050-005	96	95
RCP-121396-6	K9608050-006	96	95
Trip Blank	K9608050-007	99	97
Method Blank	K961220-MB	93	87
Method Blank	K961226-MB	99	96

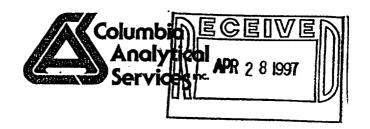
CAS Acceptance Limits:

69-114

65-117

00003

Approved By:


SUR2/111594 08050VOA.MSI - BTX:#SUR 1/2/97 Date: 1/2/97

Page No.:

ytic Services ==

CHAIN OF CUSTODAN ABUBALUBA ANATAGIC BEOLIEST LODIN

The state of the s) Jef vic	£2.	13	17 South 13t	h Ave. • Kelso, WA	98626 • (36	0) 577-72	222 •	(800) 6	95-722	22 • F	AX (360	0) 636-	1068	D	ATE_	1 . ;	1 >1	40		PAGE			OF
PROJECT NAI	MERITAD	ی),(abl	Plant	# Ho1330	50 i O O 7										LYS		REQ	UES	STE	>	•		
PROJECT MAI	DDRESS	111	<i>ډ</i> د. ی.	Slali Desi	C. M. U		CONTAINERS		inics	\int	Billic Volsiii		Togarbons	08015/8020		C10-17	ini Pesi	Wed) Herbo	7	0 4. F. Br	P. TKN. TO		165047	
SAMPLERS S			1/2	bla.	PHONE 4/8		NUMBER OF CON	New	Volume Orselezzo	rs 6248240	010 5 0r Arg	FOUR PETOLES	20 C C C C C C C C C C C C C C C C C C C	10 10 10 10 10 10 10 10 10 10 10 10 10 1	HCID A Care	ARO (COID)	15 1000 Silvers	elow or diss	No. Company		, 70(a).	9020 Halida 7/40X		///
SAMP I.D.		D	ATE	TIME	LAB I.D.	SAMPLE MATRIX	Ş	#\text{5}	<u>శ్రీస్థ</u>	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(S			Ta' O	E Z	Z	Meta	C) and	<u>₹</u> Ş	S X X		<u>} </u>	_	REMARKS
RCP-1213	96-1	12/	खुवा	10:45		11:0	6			广			<u> </u>											
ļ	2	_		10:22	2		6			X			X											
	3			11:10	3		8	ļ		X			X								<u> </u>			
	<u>4</u>	\square		11:25	4	 	16			X			X							 				
		H		11:55	5		16	-	-	X			X							_		_		
Trip Blo	<u> </u>	1		12:20	<u>}</u>	 	6 4	-	-	X			Ŷ							-			 	
1119 1210	ant	17) 		7	4.	+-	 	-	1.	-					_				_	 - 	-		·
		-	·					-	-	-	 									-	-	├		
		-					_	-		-	-				-							 	-	
RELINQUISHED BY: RECEIVED BY: Signature Signature Firm							24 hr Standard Provide National Results	48 / (10-15 v /erbal Pr	vorking d	_ 5 day lays)		III. Data (inc	ine Repo in (includ , as requ ged as s i Validati ludes All	ort des DUP uired, ma amples)	MS. ny be ort nta)				FORMA			Shipp Condi	ing ViA: . ing #; tion:	AMPLE RECEIPT:
Date/Time	\						ested Repo	ort Date .														Lab N	0:	k96-8050
RELINQUISHED BY: RECEIVED BY:							ECIAL I																	
Signature							TPL	1.6	, (1	E Col	190	g Flo	oth	المند	WT	PH	-G	()						
Printed Nam	3	-		Printed N	lame						0	′						′						
	>			Firm													•							
Date/Time C	Date/Time Date/Time																							

April 25, 1997

Service Request No: K9702309

Mike Staton EMCON 18912 North Creek Parkway, Suite 100 Bothell, WA 98011-8016

Re: Reynolds Cable Plant/40133-001.007

Dear Mike:

Enclosed are the results of the sample(s) submitted to our laboratory on April 9, 1997. For your reference, these analyses have been assigned our service request number K9702309.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 281.

Respectfully submitted,

Columbia Analytical Services, Inc.

Elizabeth Schneider Project Chemist

ES/mc

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON

Project:

Reynolds Cable Plant/40133-001.007

Sample Matrix:

Water

Service Request: K9702309

Date Collected: 4/9/97

Date Received: 4/9/97

Date Extracted: NA

Date Analyzed: 4/22/97

BTEX and Total Petroleum Hydrocarbons as Gasoline EPA Methods 5030A/8020 and Washington DOE Method WTPH-G Units: µg/L (ppb)

ı	A	Analyte: Aethod Reporting Limit:	Benzene 0.5	Toluene 1	Ethylbenzene 1	Total Xylenes 1	TPH as Gasoline 50
Sample Name		Lab Code					
RCP-040997-1 Trip Blank Method Blank	mw-7	K9702309-001 K9702309-002 K970421-MB	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND

Date: 4/24/97

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

EMCON

Project:

Reynolds Cable Plant/40133-001.007

Sample Matrix: Water

Service Request: K9702309

Date Collected: 4/9/97 Date Received: 4/9/97

Date Extracted: NA

Date Analyzed: 4/22/97

Surrogate Recovery Summary BTEX and Total Petroleum Hydrocarbons as Gasoline

EPA Methods 5030A/8020 and Washington DOE Method WTPH-G

Sample Name	Lab Code	Percent Recovery 4-BFB (PID - BTEX)	Percent Recovery 4-BFB (FID - GAS)
RCP-040997-1	K9702309-001	100	104
Trip Blank	K9702309-002	101	104
Method Blank	K970421-MB	101	105

CAS Acceptance Limits:

69-114

65-117

Approved By:

SUR2/111594 02309VOA.MS1 - BTX#SUR 4/24/97

Date: 4/24/97

Page No.:

Service Service	es inc. 13	17 South 13	th Ave. • Kelso, W.	A 98626	(360)	577-72	222 •	(800) E	95-722	22 • F	AX (36	30) 636	3-1068	. 0	DATE_	41	91	97	7	PAGE	<u> </u>	/	OF
PROJECT NAME RCYN	,	<i>-</i> . ,	,40133													SIS I	REQ	UES	STE	D			
PROJECT MANAGER	mik	splo	n			ω		7	\neg		89 /			9 7		7	.8/	7	7		§ 7	6/	77
COMPANY/ADDRESS E	mea	~ VS5	thell_			NER		/2		70 10 10 10 10 10 10 10 10 10 10 10 10 10	5/	8	3 2	//.		Q.	£/2		lu.	?	://	765040	
						MTA			/			\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		5	DOLLES OF THE SERVICE	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 8	/	\\ \delta_4 \\ \de	1.0.1	\$ R	,/	/ /
	/	2//	PHONE //8	2-29	00	P. CC			88 .	58		# # # # # # # # # # # # # # # # # # #			8 /	8/	\$ /				[] [] [] []	/ /	′ /
SAMPLERS SIGNATURE	11		[47pd]			ERC		8/8		20/3	S (2)			E S		2/2		ja S	0, Q		8/		
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAM		NUMBER OF CONTAINERS	GONGERA	30	Halogenales (September 1997)		TO S	TPHO ON HOOM	THE STORY OF THE S			Metas ton Semi Peri		No. Sand			A 9020 Inc. Hallides		REMARKS
RCP040997-1	4/9/4	1600	23/21	1/2		3	7.0	/_ U	()	/ "6	- W	ズ	1.0	<i> </i>	/ - 2		<i> </i>	/95	<u>/२७</u>	<u>/~c</u>	_		/ 112
Trip Blank	7.5-11-1-1		2	-		7						X		.`									
			:																				
							<u></u>																
							Ľ_		-														
				ļ			<u> </u>												·				
	· .							:		<u>. </u>	<u> </u>		<u> </u>	<u> </u>		<u>. </u>					<u> </u>	igspace	
	<u> </u>	ļ	1		 -	-	<u>.</u>	<u>:</u>			<u> </u>		<u> </u>								↓	<u> </u>	
				Ľ <u>_</u>	-		رر		<u> </u>					<u></u>		1770				<u> </u>	↓	<u></u>	
RELINQUISAED E			RECEIVED BY:		TURN/		ID REQ 481			X		in HEQ ine Rep	UIREM! ort	ENTS		INVU	ICE INI	FORMA	HION:			S	AMPLE RECEIPT:
Signature Ham	val	Signature	4 8 4 7	, ,	<u> </u>	itandard	(10-15 v	rorking d	ays)		II. Repo	ort (Inclu), as req	ides DUP uired, ma samples)	MS. ry be	P.O.#						1 "	ing VIA:	
Printed Name		Printed N	ame			'rovide V lesuits	erbal Pr	eiiminary	1		char III. Qat	nged as a a Valida	samples) tion Repo Il Raw Da	ort.	Bill To	·					Shippi		
19/9/97 12	30	Firm 4/	9/10	123			AX prefi	minary R	esuits				n Haw Da rable Reg								_		10111270
Date/Time		Date/Tim	0		Request			-		<u></u>					_						Lab N		9103507
RELINQUISHED E	3Y:	" 1	RECEIVED BY:		SPEC	IAL IN	NSTRI	JCTIC	NS/C		ENTS:	:	, 1	一人	7 11	' <i>→</i>		~dЛ	6	m	Øn	1/2:	o'.
Signature Signature						911		nil	~	777	100	n /	(A	ad'	re 1/	14	ح. د	••	- • •		~··,	"17-	»\Z
Printed Name	Inted Name Printed Name						٠.																
S lm		Fim	·							٠.													
Date/Time	Date/Time																			•			
ie ra					ı																		

U-Ditch Reroute and Soil Removal – Main Channel, Side Channel, and Main Channel Supplementary tables and U-Ditch Sample Locations figure

Anchor QEA, LLC. Prepared for Millennium Bulk Terminals — Longview, LLC. 2012.

	1	1	Tack	II Ditch Compling	II Ditch Compling	II Ditch Compline	II Ditch Compling	U-Ditch Sampling	II Ditch Compling	II Ditch Compling	LI Ditch Compling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	B01	B02	B03	B04	B05	B06	B07	B08	B08	B09
										_		MBTL-SO-UD-B08D	
			Sample Date	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012
				0 - 0.5 ft	0 - 0.5 ft								
			Depth			SO						SO SO	
			Matrix	SO N	SO N	SU N	SO N	SO	SO N	SO N	SO N	FD	SO N
			Sample Type					N 1005594.15			N 1005510.49		1005477.9
			Ŷ	1005660.72 304573.83	1005652.68 304607.96	1005635.71 304637.76	1005616.83 304660.31	1005584.15 304688.18	1005563.67 304713.12	1005536.69 304734.21	1005510.48 304757.36	1005510.48 304757.36	304786.43
		MTCA Method C	T	304373.63	304007.90	304037.70	304000.31	304000.10	304713.12	304734.21	304737.30	304/3/.30	304760.43
		Industrial or											
		Alternate	MTCA Method A										
	Method	Screening Level	Industrial										
Conventional Parameters (mg/kg)	ca.ioa	Jereening zerei	dust.idi										
Cyanide, total	SM4500CNE	70000		7.18	2.96	2.39	5.92	2.24	4.28	16.6	1.89	22.5	3.54
Fluoride	SM4500FC	210000		1070	2180	518	720	380	473	1100	429	548	1110
Conventional Parameters (pct)			l l	-		-	-		-			-	
Total solids	APEXsolids			63.8	78	79	74.6	76.2	79	65.5	79.1	75.6	80.3
Total solids	SM2540G										75.7		
Metals (mg/kg)	-										-		
Antimony	SW6020A	1400		1.61 U	1.28 U	1.33 U	1.31 U	1.27 U	1.34 U	1.59 U	1.24 U	1.37 U	1.36 U
Arsenic	SW6020A	20	20	3.29	1.05 J	0.864 J	1.19 J	1.06 J	0.751 J	2.72 J	2.48 U	1.14 J	1.06 J
Beryllium	SW6020A	7000		1.61 U	1.28 U	1.33 U	1.31 U	1.27 U	1.34 U	1.59 U	1.24 U	1.37 U	1.36 U
Cadmium	SW6020A	2	2	1.61 U	1.28 U	1.33 U	1.31 U	1.27 U	1.34 U	1.59 U	1.24 U	1.37 U	1.36 U
Chromium	SW6020A		2000	16	39.7	10.5	9.31	11	4.84	15.7	3.32	11.5	5.66
Copper	SW6020A	140000		30.5	16.7	13	22.5	32.9	22	41.2	16	32.6	49.5
Lead	SW6020A	1000	1000	8.7	2.33	2.34	4.47	2.9	1.6	7.52	0.733 J	4.24	2.8
Mercury	SW6020A	2	2	0.128 U	0.102 U	0.106 U	0.105 U	0.101 U	0.107 U	0.127 U	0.0993 U	0.11 U	0.109 U
Nickel	SW6020A	38		27.2	17.6	11.3	12.9	9.55	6.58	23.2	4.01	10.2	9.53
Selenium	SW6020A	1800		3.21 U	2.56 U	2.66 U	2.62 U	2.53 U	2.68 U	3.18 U	2.48 U	2.74 U	2.72 U
Silver	SW6020A	1800		1.61 U	1.28 U	1.33 U	1.31 U	1.27 U	1.34 U	1.59 U	1.24 U	1.37 U	1.36 U
Thallium	SW6020A			1.61 U	1.28 U	1.33 U	1.31 U	1.27 U	1.34 U	1.59 U	1.24 U	1.37 U	1.36 U
Zinc	SW6020A	1100000		158	103	68.3	89.8	74.4	31.1	171	15.7	60.4	32.1
Polycyclic Aromatic Hydrocarbons (μg/kg)											_		
1-Methylnaphthalene	SW8270DSIM			428 U	360 U	692 U	734 U	71.3 U	140 U	409 U	33.9 U	71.7 U	20.4 J
2-Methylnaphthalene	SW8270DSIM			428 U	360 U	692 U	734 U	71.3 U	140 U	409 U	33.9 U	71.7 U	40.1
Acenaphthene	SW8270DSIM			180 J	180 U	346 U	367 U	41.4	70.2 U	205 U	9.45 J	60.2	96.6
Acenaphthylene	SW8270DSIM			214 U	180 U	346 U	367 U	35.7 U	70.2 U	205 U	17 U	35.8 U	16.7 U
Anthracene	SW8270DSIM			194 J	180 U	346 U	367 U	66	49.3 J	133 J	15.1 J	262	125
Benzo(a)anthracene	SW8270DSIM			4410	877	1090	2470	673	678	1880	194	4950	2740
Benzo(a)pyrene	SW8270DSIM	2000 / 18000 ²	2000 ²	2950	558	678	1820	610	591	1610	174	4060	1500
Benzo(b,k)fluoranthene	SW8270DSIM			15700	3070	3210	8040	2360	2420	6580	695	12700	7070
Benzo(g,h,i)perylene	SW8270DSIM			2970	601	741	1960	692	763	1730	186	2840	1350
Chrysene	SW8270DSIM			15800	2840	3060	10600	2120	1920	5410	505	11000	8420
Dibenzo(a,e)pyrene	SW8270DSIM			2140 U	1800 U	3460 U	3670 U	357 U	702 U	3030 U	235 U	246 J	91.2 J
Dibenzo(a,h)anthracene	SW8270DSIM			753	101 J	346 U	368	131	102	330	27.8	693	370
Dibenzo(a,h)pyrene	SW8270DSIM			2140 U	1800 U	3460 U	3670 U	357 U	702 U	3030 U	235 U	253 U	167 U
Dibenzo(a,i)pyrene	SW8270DSIM			2140 U	1800 U	3460 U	3670 U	357 U	702 U	3030 U	235 U	253 U	167 U
Dibenzo(a,j)acridine	SW8270DSIM			2140 U	1800 U	3460 U	3670 U	357 U	702 U	3030 U	235 U	253 U	167 U
Dibenzo(a,l)pyrene	SW8270DSIM			2140 U	1800 U	3460 U	3670 U	179 J	702 U	3030 U	235 U	596	254
Dibenzofuran	SW8270DSIM			214 U	180 U	346 U	367 U	35.7 U	70.2 U	205 U	17 U	20.2 J	58.6
Fluoranthene	SW8270DSIM			6930	1710	2230	5830	1570	1490	3520	351	9210	4750

Page 1 of 10

			Location ID Sample ID Sample Date Depth	B01 MBTL-SO-UD-B01	B02	U-Ditch Sampling B03 MBTL-SO-UD-B03 11/1/2012 0 - 0.5 ft SO	B04	В05	U-Ditch Sampling B06 MBTL-SO-UD-B06 11/1/2012 0 - 0.5 ft SO	В07	В08	U-Ditch Sampling B08 MBTL-SO-UD-B08D 11/1/2012 0 - 0.5 ft SO	B09 MBTL-SO-UD-B09 11/1/2012 0 - 0.5 ft
			Matrix Sample Type X Y	1	N 1005652.68 304607.96	N 1005635.71 304637.76	N 1005616.83 304660.31	N 1005584.15 304688.18	N 1005563.67 304713.12	N 1005536.69 304734.21	N 1005510.48 304757.36	FD 1005510.48 304757.36	SO N 1005477.9 304786.43
	Method	MTCA Method C Industrial or Alternate Screening Level	MTCA Method A Industrial		22 2000								33 00110
Fluorene	SW8270DSIM			214 U	180 U	346 U	367 U	23.6 J	70.2 U	205 U	17 U	45.3	49
Indeno(1,2,3-c,d)pyrene	SW8270DSIM			2990	621	739	1950	635	671	1670	177	2710	1340
Naphthalene	SW8270DSIM	5000		428 U	360 U	692 U	734 U	71.3 U	140 U	409 U	33.9 U	71.7 U	33.5 U
Phenanthrene	SW8270DSIM			340	158 J	346 U	563	241	185	516	45.6	354	413
Pyrene	SW8270DSIM			7010	1760	2690	7180	1540	1580	3540	361	9090	4980
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	1	2000 / 18000 ²	2000 ²	5493.3	1053.3 J	1229.8	3208.8	1011.1	997.3	2710.1	288.4	6275.3	2736.2
Total Petroleum Hydrocarbons (mg/kg)													
Diesel Range Hydrocarbons	NWTPHDx	2000	2000	47	22.4	16.2	41.8	17.5	14.6	47	5.25 J	39	24.5
Oil	NWTPHDx			199	82.8	113	147	74.1	51.5	287	22.8	177	111

Notes:

Detected concentration is greater than MBTL_Soil screening level

Detected concentration is greater than MTCA Method A Indust screening level

Bold = Detected result

FD = Field Duplicate

J = Estimated value

cPAH = carcinogenic PAH

mg/kg = milligrams per kilogram

N = Normal Field Sample

pct = percent

μg/kg = micrograms per kilogram

U = Compound analyzed, but not detected above detection limit

MTCA = Model Toxics Control Act

TEQ = Toxic Equivalent Quantity

-- Results not reported or not applicable

Totals are calculated as the sum of all detected results and 1/2 the undetected result. If all results are undetected, the highest reporting limit value is reported as the sum.

Significant figures are applied to all calculations.

- 1 cPAH minimum 7 analytes calculation includes Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene and Indeno(1,2,3-c,d)pyrene. Per MTCA cleanup Regulation, Table 708-2 "Toxicity Equivalency Factors for Minimum Required Carcinogenic Polyaromatic Hydrocarbons (cPAHs) under WAC 173-340-708(e).
- 2 Soils were screened both against the MTCA Method A cleanup level and the MTCA Method C cleanup level for benzo(a)pyrene and cPAH TEQ is 18000 ug/kg (18 mg/kg).

June 2013

	1		1										
								U-Ditch Sampling					
			Location ID	B10	B11	B12	B13	B14	B15	B16	B17	B18	B19
								MBTL-SO-UD-B14					
			Sample Date	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			Matrix	SO	so	so	so	so	so	so	so	so	so
			Sample Type	N	N	N	N	N	N	N	N	N	N
			X	1005446.58	1005423.36	1005393.66	1005363.24	1005337.74	1005313.91	1005284.04	1005253.68	1005195.91	1005170.42
			Y	304819.67	304840.43	304867.36	304887.6	304917.87	304945.25	304972.47	305000.2	305050.37	305076.69
		MTCA Method C											
		Industrial or											
		Alternate	MTCA Method A										
	Method	Screening Level	Industrial										
Conventional Parameters (mg/kg)	1	1	ı				1	1		·			ı
Cyanide, total	SM4500CNE	70000		4.33	26.3	42.6	2.34	1.15	1.96	0.305 U	0.332	0.426	0.962
Fluoride	SM4500FC	210000		434	1470	1810	191	174	1240	209	260	282	350
Conventional Parameters (pct)	1	1	г							Ι			Т
Total solids	APEXsolids			77.6	63.4	66	71.8	77.4	76.8	74.7	72.4	74	73.7
Total solids	SM2540G												
Metals (mg/kg)	1	<u> </u>	· · · · · · · · · · · · · · · · · · ·				<u>, </u>			<u> </u>			Γ
Antimony	SW6020A	1400		1.37 U	1.56 U	1.48 U	1.44 U	1.38 U	1.31 U	1.34 U	1.43 U	1.49 U	1.43 U
Arsenic	SW6020A	20	20	2.07 J	2.68 J	2.67 J	2.88 U	1.23 J	1.25 J	2.69 U	2.86 U	1.28 J	1.41 J
Beryllium	SW6020A	7000		1.37 U	1.56 U	1.48 U	1.44 U	1.38 U	1.31 U	1.34 U	1.43 U	1.49 U	1.43 U
Cadmium	SW6020A	2	2	1.37 U	1.56 U	1.48 U	1.44 U	1.38 U	1.31 U	1.34 U	1.43 U	1.49 U	1.43 U
Chromium	SW6020A		2000	7.09	12	13.9	3.75	8.71	8.4	10.1	10.9	7.55	8.37
Copper	SW6020A	140000		23.4	47.6	120	10.7	17.9	41.1	12.2	35.9	19.5	22.3
Lead	SW6020A	1000	1000	2.22	6.05	6.94	0.865 J	2.47	3.06	2.51	1.79	2.49	2.8
Mercury	SW6020A	2	2	0.109 U	0.124 U	0.118 U	0.115 U	0.11 U	0.105 U	0.108 U	0.114 U	0.119 U	0.114 U
Nickel	SW6020A	38		10.6	22.3	24.8	4.66	9.43	19.8	6.68	7.72	10.6	12.4
Selenium	SW6020A	1800		2.74 U	3.11 U	2.95 U	2.88 U	2.76 U	2.63 U	2.69 U	2.86 U	2.98 U	2.86 U
Silver	SW6020A	1800		1.37 U	1.56 U	1.48 U	1.44 U	1.38 U	1.31 U	1.34 U	1.43 U	1.49 U	1.43 U
Thallium	SW6020A			1.37 U	1.56 U	1.48 U	1.44 U	1.38 U	1.31 U	1.34 U	1.43 U	1.49 U	1.43 U
Zinc	SW6020A	1100000		42.2	108	142	16.9	26.8	71.2	20.4	40.5	26	29.4
Polycyclic Aromatic Hydrocarbons (μg/kg)													
1-Methylnaphthalene	SW8270DSIM			69.1 U	170 U	84.1 U	9.9 U	8.78 U	30.1 J	9.04 U	6.68 J	8.24 U	7.71 U
2-Methylnaphthalene	SW8270DSIM			69.1 U	170 U	84.1 U	9.9 U	8.78 U	52.9	9.04 U	14.7	8.24 U	7.71 U
Acenaphthene	SW8270DSIM			28.8 J	155	55.9	4.95 U	4.39 U	155	4.52 U	22.1	5.31	4.15
Acenaphthylene	SW8270DSIM			34.5 U	85 U	42.1 U	4.95 U	4.39 U	20 U	4.52 U	4 U	4.12 U	3.86 U
Anthracene	SW8270DSIM			64	204	178	2.72 J	4.39 U	72.3	4.52 U	15.9	54.3	14.6
Benzo(a)anthracene	SW8270DSIM			1130	3300	2930	45.8	33.2	542	3.17 J	167	633	185
Benzo(a)pyrene	SW8270DSIM	2000 / 18000 ²	2000 ²	910	2590	2630	55.3	28.2	483	4.52 U	162	354	145
Benzo(b,k)fluoranthene	SW8270DSIM			3800	9800	9290	197	119	2540	6.75 J	611	1190	499
Benzo(g,h,i)perylene	SW8270DSIM			901	2410	2170	49	32.6	789	2.77 J	379	290	152
Chrysene	SW8270DSIM			4080	10100	9500	186	108	1990	4.93	445	1440	549
Dibenzo(a,e)pyrene	SW8270DSIM			345 U	850 U	440 J	49.5 U	43.9 U	200 U	45.2 U	53.9 U	269 U	41 J
Dibenzo(a,h)anthracene	SW8270DSIM			193	493	465	13	7.82	176	4.52 U	59	91.9	39.6
Dibenzo(a,h)pyrene	SW8270DSIM			345 U	850 U	600 U	49.5 U	43.9 U	200 U	45.2 U	53.9 U	269 U	53.3 U
Dibenzo(a,i)pyrene	SW8270DSIM			345 U	850 U	600 U	49.5 U	43.9 U	200 U	45.2 U	53.9 U	269 U	53.3 U
Dibenzo(a,j)acridine	SW8270DSIM			345 U	850 U	600 U	49.5 U	43.9 U	200 U	45.2 U	53.9 U	269 U	53.3 U
Dibenzo(a,l)pyrene	SW8270DSIM			209 J	487 J	1170	49.5 U	43.9 U	195 J	45.2 U	59.9	269 U	102
Dibenzofuran	SW8270DSIM			34.5 U	71.3 J	37.2 J	4.95 U	4.39 U	121	4.52 U	21.2	2.4 J	2.14 J
Fluoranthene	SW8270DSIM			1950	5520	4550	25.2	33.3	816	2.71 J	253	1720	314

Page 3 of 10

June 2013 130730-01.01

			Location ID	B10	B11	U-Ditch Sampling B12 MBTL-SO-UD-B12	B13	B14	B15	B16	B17	B18	B19
			Sample Date	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			Matrix	so	so	so	SO	so	so	so	so	so	so
			Sample Type	N	N	N	N	N	N	N	N	N	N
			x	1005446.58	1005423.36	1005393.66	1005363.24	1005337.74	1005313.91	1005284.04	1005253.68	1005195.91	1005170.42
			Y	304819.67	304840.43	304867.36	304887.6	304917.87	304945.25	304972.47	305000.2	305050.37	305076.69
		MTCA Method C Industrial or Alternate	MTCA Method A										
	Method	Screening Level	Industrial										
Fluorene	SW8270DSIM			34.5 U	77.4 J	37.5 J	4.95 U	4.39 U	111	4.52 U	15.7	4.71	3.11 J
Indeno(1,2,3-c,d)pyrene	SW8270DSIM			846	2330	2080	45.4	29.4	621	4.52 U	300	263	132
Naphthalene	SW8270DSIM	5000		69.1 U	170 U	84.1 U	9.9 U	8.78 U	40 U	9.04 U	4.16 J	8.24 U	7.71 U
Phenanthrene	SW8270DSIM			157	648	373	3.17 J	4.98	281	4.52 U	66.4	71.9	31.8
Pyrene	SW8270DSIM			2260	5980	5120	27.6	36.5	701	2.28 J	239	1620	413
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	1	2000 / 18000 ²	2000 ²	1547.7	4283.3	4201.5	87.3	48.22	890.8	3.75 J	280.1	586.2	236.1
Total Petroleum Hydrocarbons (mg/kg)													
Diesel Range Hydrocarbons	NWTPHDx	2000	2000	17.3	33.8	21.7	9.9 U	8.78 U	7.12 J	4.76 J	4.14 J	10.1	4.95 J
Oil	NWTPHDx			76.9	200	148	19.8 U	17.6 U	38.4	18.1 U	13.1 J	30.3	24.6

Notes:

Detected concentration is greater than MBTL_Soil screening level

Detected concentration is greater than MTCA Method A Indust screening level

Bold = Detected result

FD = Field Duplicate

J = Estimated value

cPAH = carcinogenic PAH

mg/kg = milligrams per kilogram

N = Normal Field Sample

pct = percent

μg/kg = micrograms per kilogram

U = Compound analyzed, but not detected above detection limit

MTCA = Model Toxics Control Act

TEQ = Toxic Equivalent Quantity

-- Results not reported or not applicable

Totals are calculated as the sum of all detected results and 1/2 the undetected result. If all results are undetected, the highest reporting limit value is reported as the sum.

Significant figures are applied to all calculations.

- 1 cPAH minimum 7 analytes calculation includes Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene and Indeno(1,2,3-c,d)pyrene. Per MTCA cleanup Regulation, Table 708-2 "Toxicity Equivalency Factors for Minimum Required Carcinogenic Polyaromatic Hydrocarbons (cPAHs) under WAC 173-340-708(e).
- 2 Soils were screened both against the MTCA Method A cleanup level and the MTCA Method C cleanup level for benzo(a)pyrene and cPAH TEQ is 18000 ug/kg (18 mg/kg).

Page 4 of 10

June 2013

	<u> </u>	1	Tools	II Ditah Camalina	II Ditch Compline	II Ditch Comulina	II Ditch Compline	II Ditch Compline	II Ditch Compline	II Ditah Camalina	II Ditch Compline	U-Ditch Sampling	II Ditch Compline
			Location ID	B20	B21	B22	B23	B24	B25	B26	B26	B26	U-Ditch Sampling B26
					l								MBTL-SO-UD-B26D
			Sample Date	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/15/2012	11/2/2012	11/15/2012
			Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0.5 - 1.5 ft	0 - 0.5 ft	0.5 - 1.5 ft			
			Matrix	SO SO	SO	SO SO	so	SO	SO SO	SO SO	SO	SO SO	SO SO
			Sample Type	N N	N N	N N	N N	N N	N N	N N	SU N	FD	FD
			Sample Type	1005148.85	1005118.96	1005088.98	1005061.28	1005030.5	1004992.68	1004950.98	1004950.98	1004950.98	1004950.98
			l î	305093.61	305124.51	305149.49	305160.5	305168.23	305174.17	305174.04	305174.04	305174.04	305174.04
		MTCA Method C	'	303033.01	303124.31	303143.43	303100.3	303108.23	303174.17	303174.04	303174.04	303174.04	303174.04
		Industrial or											
		Alternate	MTCA Method A										
	Method	Screening Level	Industrial										
Conventional Parameters (mg/kg)			l l				l						I
Cyanide, total	SM4500CNE	70000		50.1	0.289 U	0.304 U	15.9	1.1	1.18	64.2		59.7	
Fluoride	SM4500FC	210000		186	203	155	176	143	554	2070		1590	
Conventional Parameters (pct)													
Total solids	APEXsolids			76.2	76.5	79.1	76.5	77.4	77.5	71		61.6	
Total solids	SM2540G												
Metals (mg/kg)													
Antimony	SW6020A	1400		1.36 U	1.35 U	1.24 U	1.38 U	1.42 U	1.35 U	1.42 U		1.7 U	
Arsenic	SW6020A	20	20	2.72 U	2.7 U	2.47 U	2.77 U	1.42 J	1.88 J	2.07 J		2.92 J	
Beryllium	SW6020A	7000		1.36 U	1.35 U	1.24 U	1.38 U	1.42 U	1.35 U	1.42 U		1.7 U	
Cadmium	SW6020A	2	2	1.36 U	1.35 U	1.24 U	1.38 U	1.42 U	1.35 U	1.42 U		1.7 U	
Chromium	SW6020A		2000	3.95	2.61 J	3.38	5.4	9.04	8.58	6.82		8.93	
Copper	SW6020A	140000		12.9	11.4	13.4	14.5	20.6	45.9	19.2	-	25.6	
Lead	SW6020A	1000	1000	1.37	1.71	1.03 J	2.13	2.83	4.91	5.19		7.59	
Mercury	SW6020A	2	2	0.109 U	0.108 U	0.099 U	0.111 U	0.114 U	0.108 U	0.113 U		0.136 U	
Nickel	SW6020A	38		4.97	4.74	4.68	7.15	9.19	10.9	18.5		29.4	
Selenium	SW6020A	1800		2.72 U	2.7 U	2.47 U	2.77 U	2.84 U	2.7 U	2.83 U		3.4 U	
Silver	SW6020A	1800		1.36 U	1.35 U	1.24 U	1.38 U	1.42 U	1.35 U	1.42 U		1.7 U	
Thallium	SW6020A			1.36 U	1.35 U	1.24 U	1.38 U	1.42 U	1.35 U	1.42 U		1.7 U	
Zinc	SW6020A	1100000		17.6	14.5	13.5	20.6	34.3	33.6	39.7		53.7	
Polycyclic Aromatic Hydrocarbons (μg/kg)	1		 				1					Γ	1
1-Methylnaphthalene	SW8270DSIM			9.54 U	8.11 U	8.04 U	9.45 U	8.68 U	8.59 U		9.98 U		9.8 U
2-Methylnaphthalene	SW8270DSIM			9.54 U	8.11 U	8.04 U	9.45 U	8.68 U	8.59 U		9.98 U		9.8 U
Acenaphthene	SW8270DSIM			4.77 U	4.05 U	4.02 U	4.72 U	2.59 J	17.2		28.2		33.3
Acenaphthylene	SW8270DSIM			4.77 U	4.05 U	4.02 U	4.72 U	4.34 U	4.3 U		4.99 U		4.9 U
Anthracene	SW8270DSIM			12.2	7.29	4.02 U	16	16.9	81.2 740		83		182
Benzo(a)anthracene	SW8270DSIM		2000 2	95.4	89.9	4.05	248	246			1020		1850
Benzo(a)pyrene	SW8270DSIM	2000 / 18000 ²	2000 ²	53.9	51.1	4.36	294	150	485		595		1020
Benzo(b,k)fluoranthene	SW8270DSIM			194	201	12.4	1080	543	1590		1830		3180
Benzo(g,h,i)perylene	SW8270DSIM			66	42.9	5.07	501	131	448		362		695
Chrysene	SW8270DSIM			237	219	8.15	739	1280	1600		2360		4780
Dibenzo(a,e)pyrene	SW8270DSIM			47.7 U	40.5 U	40.2 U	32.5 J	43.4 U	34.2 J		38 J		89.6
Dibenzo(a,h)anthracene	SW8270DSIM			17.4	11.4	4.02 U	82.3	30.9	108		143		275
Dibenzo(a,h)pyrene	SW8270DSIM			47.7 U	40.5 U	40.2 U	51.6 U	43.4 U	51.6 U		49.9 U		49 U
Dibenzo(a,i)pyrene	SW8270DSIM SW8270DSIM			47.7 U 47.7 U	40.5 U 40.5 U	40.2 U 40.2 U	51.6 U 51.6 U	43.4 U	51.6 U		49.9 U		49 U 49 U
Dibenzo(a,j)acridine	SW8270DSIM SW8270DSIM			47.7 U	40.5 U	40.2 U	89.4	43.4 U	51.6 U 93.8		49.9 U		236
Dibenzo(u,l)pyrene				47.7 U	40.5 U	40.2 U	89.4 4.72 U	34.9 J	5.35		104 11.1		
Dibenzofuran	SW8270DSIM							4.34 U 343	1590				14 4560
Fluoranthene	SW8270DSIM			235	200	5.33	144	545	1990		2670		4560

Page 5 of 10

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	B20	B21	B22	B23	B24	B25	B26	B26	B26	B26
			Sample ID	MBTL-SO-UD-B20	MBTL-SO-UD-B21	MBTL-SO-UD-B22	MBTL-SO-UD-B23	MBTL-SO-UD-B24	MBTL-SO-UD-B25	MBTL-SO-UD-B26	MBTL-SO-UD-B26	MBTL-SO-UD-B26D	MBTL-SO-UD-B26D
			Sample Date	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/15/2012	11/2/2012	11/15/2012
			Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0.5 - 1.5 ft	0 - 0.5 ft	0.5 - 1.5 ft
			Matrix	so	so	so	so	so	so	so	so	so	so
			Sample Type	N	N	N	N	N	N	N	N	FD	FD
			x	1005148.85	1005118.96	1005088.98	1005061.28	1005030.5	1004992.68	1004950.98	1004950.98	1004950.98	1004950.98
			Υ	305093.61	305124.51	305149.49	305160.5	305168.23	305174.17	305174.04	305174.04	305174.04	305174.04
		MTCA Method C											
		Industrial or											
		Alternate	MTCA Method A										
	Method	Screening Level	Industrial										
Fluorene	SW8270DSIM			4.77 U	4.05 U	4.02 U	4.72 U	4.34 U	10.1		33		39.9
Indeno(1,2,3-c,d)pyrene	SW8270DSIM			53.1	41	3.77 J	453	117	410		375		701
Naphthalene	SW8270DSIM	5000		9.54 U	8.11 U	8.04 U	9.45 U	8.68 U	4.82 J		9.98 U		5.55 J
Phenanthrene	SW8270DSIM			34.2	10.7	4.02 U	26.6	27.3	202		162		315
Pyrene	SW8270DSIM			229	236	5.68	170	414	1500		2370		4110
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	1	2000 / 18000 ²	2000 ²	92.3	87.6	6.66 J	487.7	256.5	785.8		955.4		1668.4
Total Petroleum Hydrocarbons (mg/kg)													
Diesel Range Hydrocarbons	NWTPHDx	2000	2000	9.54 U	8.11 U	8.04 U	9.45 U	4.86 J	10.5	216		312	
Oil	NWTPHDx			9.67 J	11.9 J	16.1 U	20.5	12.2 J	45.9	1020		918	

Notes:

Detected concentration is greater than MBTL_Soil screening level

Detected concentration is greater than MTCA Method A Indust screening level

Bold = Detected result

FD = Field Duplicate

J = Estimated value

cPAH = carcinogenic PAH

mg/kg = milligrams per kilogram

N = Normal Field Sample

pct = percent

μg/kg = micrograms per kilogram

U = Compound analyzed, but not detected above detection limit

MTCA = Model Toxics Control Act

TEQ = Toxic Equivalent Quantity

-- Results not reported or not applicable

Totals are calculated as the sum of all detected results and 1/2 the undetected result. If all results are undetected, the highest reporting limit value is reported as the sum.

Significant figures are applied to all calculations.

- 1 cPAH minimum 7 analytes calculation includes Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene and Indeno(1,2,3-c,d)pyrene. Per MTCA cleanup Regulation, Table 708-2 "Toxicity Equivalency Factors for Minimum Required Carcinogenic Polyaromatic Hydrocarbons (cPAHs) under WAC 173-340-708(e).
- 2 Soils were screened both against the MTCA Method A cleanup level and the MTCA Method C cleanup level for benzo(a)pyrene and cPAH TEQ is 18000 ug/kg (18 mg/kg).

June 2013

		I	Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	S01E	S01W	S02E	S02W	S03E	S03W	S04E	S04E	S04W
											MBTL-SO-UD-S04ED	
			Sample Date	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012
			Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			Matrix	so	SO	so	so	so	SO	so	so	so
			Sample Type	N	N	N	N	N	N	N	FD	N
			x	1005594.6	1005613.05	1005523.5	1005503.84	1005429.06	1005414.41	1005342.14	1005342.14	1005328.31
			Y	304654.39	304678.07	304760.09	304739.92	304841.49	304827.42	304926.15	304926.15	304906.63
	Method	MTCA Method C Industrial or Alternate Screening Level	MTCA Method A		00.00.000				00.000.000	55.050.05	55.555.55	
Conventional Devemptors (mg/kg)	Wethou	Screening Level	illuustilai			<u>l</u>		<u>l</u>				
Conventional Parameters (mg/kg)	SM4500CNE	70000	1	0.386 U	0.985	2.12	15.7	0.216.11	36.4	0.305 U	0.272 U	0.396.11
Cyanide, total Fluoride				713		2.13		0.316 U	2450	186		0.286 U
	SM4500FC	210000		/13	353	834	1090	648	2450	180	152	125
Conventional Parameters (pct) Total solids	APEXsolids			63.9	82.5	69	70.5	69.8	57.8	75.7	80.1	87.2
Total solids Total solids	SM2540G					1		1		75.7		
	31/125400									/9.1		
Metals (mg/kg) Antimony	SW6020A	1400	1	1.62 U	1.2 U	1.58 U	1.5 U	1.41 U	1.05 J	1.44 U	1.28 U	1.19 U
,	SW6020A				0.842 J	3.22	4.46	3.47	4.87		0.756 J	0.914 J
Arsenic	SW6020A	20 7000	20	5.31 0.942 J	1.2 U	1.58 U	1.5 U	0.888 J	1.08 J	1.31 J 1.44 U	1.28 U	1.19 U
Beryllium		2	 2		1.2 U				1.72 U		1.28 U	
Characteristic	SW6020A		2000	1.62 U 20.6	8.89	1.58 U 17.5	1.5 U 17.3	1.41 U 20.7	20.4	1.44 U 6.26	4.06	1.19 U 3.44
Chromium	SW6020A	140000			16.8							8.06
Copper	SW6020A	140000	1000	42.8		35.1	43.6	31.4	103	15.1	10.9	
Lead	SW6020A	1000	1000	7.47	1.88	8.59	10.7	7.56	11.4	2.07	1.54	1.96
Mercury	SW6020A	2	2	0.13 U	0.0962 U	0.126 U	0.0704 J 24.2	0.113 U	0.137 U 55	0.115 U	0.103 U	0.095 U
Nickel	SW6020A	38		21.1	10.3	22.4		16.1		8.36	6.06	6.17
Selenium	SW6020A	1800		3.25 U	2.41 U	3.16 U	2.99 U	2.82 U	3.43 U	2.87 U	2.56 U	2.37 U
Silver	SW6020A	1800		1.62 U	1.2 U	1.58 U	1.5 U	1.41 U	1.72 U	1.44 U	1.28 U	1.19 U
Thallium	SW6020A			1.62 U	1.2 U	1.58 U	1.5 U	1.41 U	1.72 U	1.44 U	1.28 U	1.19 U
Zinc	SW6020A	1100000		64.1	26.8	51.3	70.9	33.8	140	23	16.8	27.4
Polycyclic Aromatic Hydrocarbons (μg/kg)	C14/0270DC144	ı	ı	0.40.11	6.04.11	20.011	10.4.11	7.70.11	402.11	7.6611	0.42.11	0.02.11
1-Methylnaphthalene	SW8270DSIM			8.49 U	6.91 U	38.8 U	40.1 U	7.79 U	192 U	7.66 U	9.42 U	8.03 U
2-Methylnaphthalene	SW8270DSIM			8.49 U	6.91 U	38.8 U	40.1 U	7.79 U	192 U	7.66 U	9.42 U	8.03 U
Acenaphthene	SW8270DSIM			4.24 U	3.46 U	17.1 J	33.2	3.89 U	66.9 J	3.83 U	4.71 U	4.02 U
Acenaphthylene	SW8270DSIM			4.24 U	3.46 U	14.6 J	20 U	3.89 U	95.8 U	3.83 U	4.71 U	4.02 U
Anthracene	SW8270DSIM			4.24 U	2.25 J	50.3	106	3.89 U	349	3.83 U	4.71 U	4.02 U
Benzo(a)anthracene	SW8270DSIM	2	2	6.84	25.1	230	1700	2.16 J	6020	15.6	5.9	13.2
Benzo(a)pyrene	SW8270DSIM	2000 / 18000 ²	2000 ²	7.85	38.7	301	1440	2.31 J	4680	16.9	6.47	15.1
Benzo(b,k)fluoranthene	SW8270DSIM			24.6	152	861	5170	5.51 J	16900	63.9	22.7	42.1
Benzo(g,h,i)perylene	SW8270DSIM			16.2	127	573	1440	2.2 J	3760	85.9	52.5	17.3
Chrysene	SW8270DSIM			14.5	64.4	544	4900	3.06 J	18100	39.5	13.6	23.5
Dibenzo(a,e)pyrene	SW8270DSIM			42.4 U	34.6 U	194 U	233 J	38.9 U	958 U	38.3 U	47.1 U	40.2 U
Dibenzo(a,h)anthracene	SW8270DSIM			4.24 U	15.3	70.3	294	3.89 U	837	7.71	3.35 J	4.05
Dibenzo(a,h)pyrene	SW8270DSIM			42.4 U	34.6 U	194 U	279 U	38.9 U	958 U	38.3 U	47.1 U	40.2 U
Dibenzo(a,i)pyrene	SW8270DSIM			42.4 U	34.6 U	194 U	279 U	38.9 U	958 U	38.3 U	47.1 U	40.2 U
Dibenzo(a,j)acridine	SW8270DSIM			42.4 U	34.6 U	194 U	279 U	38.9 U	958 U	38.3 U	47.1 U	40.2 U
Dibenzo(a,I)pyrene	SW8270DSIM			42.4 U	30.2 J	130 J	592	38.9 U	766 J	21.2 J	47.1 U	40.2 U
Dibenzofuran	SW8270DSIM			4.24 U	3.46 U	11.4 J	18.4 J	3.89 U	95.8 U	3.83 U	4.71 U	4.02 U
Fluoranthene	SW8270DSIM			10.4	37.8	475	3370	3.89 U	12900	20.9	8.73	24.8

Page 7 of 10

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	S01E	S01W	S02E	S02W	S03E	S03W	S04E	S04E	S04W
			Sample ID	MBTL-SO-UD-S01E	MBTL-SO-UD-S01W	MBTL-SO-UD-S02E	MBTL-SO-UD-S02W	MBTL-SO-UD-S03E	MBTL-SO-UD-S03W	MBTL-SO-UD-S04E	MBTL-SO-UD-S04ED	MBTL-SO-UD-S04W
			Sample Date	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012	11/1/2012
			Depth	0 - 0.5 ft								
			Matrix	so								
			Sample Type	N	N	N	N	N	N	N	FD	N
			x	1005594.6	1005613.05	1005523.5	1005503.84	1005429.06	1005414.41	1005342.14	1005342.14	1005328.31
			Υ	304654.39	304678.07	304760.09	304739.92	304841.49	304827.42	304926.15	304926.15	304906.63
		MTCA Method C										
		Industrial or										
		Alternate	MTCA Method A									
	Method	Screening Level	Industrial									
Fluorene	SW8270DSIM			4.24 U	3.46 U	15.8 J	21.5	3.89 U	49.9 J	3.83 U	4.71 U	4.02 U
Indeno(1,2,3-c,d)pyrene	SW8270DSIM			11.7	105	459	1350	3.89 U	3680	37.1	20.4	16.4
Naphthalene	SW8270DSIM	5000		8.49 U	6.91 U	28.5 J	40.1 U	7.79 U	192 U	7.66 U	9.42 U	8.03 U
Phenanthrene	SW8270DSIM			4.08 J	8.74	222	240	3.89 U	697	5.57	2.8 J	9.78
Pyrene	SW8270DSIM			12.2	36.8	597	3370	2.53 J	12500	20.8	8.61	22
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	1	2000 / 18000 ²	2000 ²	12.52	69.1	468.5	2340.4	3.5 J	7604.7	29.73	11.84 J	22.91
Total Petroleum Hydrocarbons (mg/kg)												
Diesel Range Hydrocarbons	NWTPHDx	2000	2000	8.49 U	6.91 U	10.9	21.5	7.79 U	51.4	7.66 U	9.42 U	8.03 U
Oil	NWTPHDx			17 U	13.8 U	36.5	121	15.6 U	300	15.3 U	18.8 U	16.1 U

Notes

Detected concentration is greater than MBTL_Soil screening level

Detected concentration is greater than MTCA Method A Indust screening level

Bold = Detected result

FD = Field Duplicate

J = Estimated value

cPAH = carcinogenic PAH

mg/kg = milligrams per kilogram

N = Normal Field Sample

pct = percent

μg/kg = micrograms per kilogram

U = Compound analyzed, but not detected above detection limit

MTCA = Model Toxics Control Act

TEQ = Toxic Equivalent Quantity

-- Results not reported or not applicable

Totals are calculated as the sum of all detected results and 1/2 the undetected result. If all results are undetected, the

highest reporting limit value is reported as the sum. Significant figures are applied to all calculations.

- 1 cPAH minimum 7 analytes calculation includes Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene and Indeno(1,2,3-c,d)pyrene. Per MTCA cleanup Regulation, Table 708-2 "Toxicity Equivalency Factors for Minimum Required Carcinogenic Polyaromatic Hydrocarbons (cPAHs) under WAC 173-340-708(e).
- 2 Soils were screened both against the MTCA Method A cleanup level and the MTCA Method C cleanup level for benzo(a)pyrene and cPAH TEQ is 18000 ug/kg (18 mg/kg).

Page 8 of 10

June 2013
130730-01.01

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	S05E	S05W	S06E	S06E	S07E	S07W	S08E	S08E	S08W
											MBTL-SO-UD-S08ED	
			Sample Date	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	0 - 0.5 ft								
			Matrix		SO SO	so	SO	SO SO		SO		SO
				SO N	N N	N N	FD	N N	SO N	N N	SO FD	N N
			Sample Type	1005249.8	1005244.64	1005165.2	1005165.2	1005072.25	1005060.08	1004950.61	1004950.61	1004952.26
			Ŷ	305009.45	304987.79	305087.39	305087.39	305165.64	305138.36	305178.21	305178.21	305157.23
		MTCA Method C	T	303003.43	304367.73	303067.33	303067.33	303103.04	303136.30	303178.21	303176.21	303137.23
		Industrial or										
		Alternate	MTCA Method A									
	Method	Screening Level	Industrial									
Conventional Parameters (mg/kg)	Method	ourcening zever	maastra									
Cyanide, total	SM4500CNE	70000		0.317 U	0.274 U	0.519	0.364	0.283 U	0.315 U	1.9	0.31	5.3
Fluoride	SM4500FC	210000		186	138	494	440	179	348	380	223	1230
Conventional Parameters (pct)			l	_50			- 10	1	2.0			
Total solids	APEXsolids			71	86.5	71.9	72.7	78.5	75.5	70.1	78.1	81.9
Total solids	SM2540G					72.7		78.9		73.1		
Metals (mg/kg)	525 100		l			1		1 . 3.3		. 3.2		
Antimony	SW6020A	1400		1.45 U	1.12 U	1.44 U	1.49 U	1.26 U	1.35 U	1.47 U	1.33 U	1.22 U
Arsenic	SW6020A	20	20	2.9 U	1.52 J	3.95	2.08 J	0.908 J	2.71 U	1.81 J	1.4 J	1.63 J
Beryllium	SW6020A	7000		1.45 U	1.12 U	1.44 U	1.49 U	1.26 U	1.35 U	1.47 U	1.33 U	1.22 U
Cadmium	SW6020A	2	2	1.45 U	1.12 U	1.44 U	1.49 U	1.26 U	1.35 U	1.47 U	1.33 U	1.22 U
Chromium	SW6020A		2000	7.27	4	8.76	10.1	6.52	8.72	12.3	5.31	6.2
Copper	SW6020A	140000		17.3	10.3	14.5	14.8	18.7	18.3	30	19.4	17.1
Lead	SW6020A	1000	1000	1.74	2.7	5.96	6.64	1.5	2.19	6.16	1.43	4.16
Mercury	SW6020A	2	2	0.116 U	0.09 U	0.115 U	0.119 U	0.101 U	0.108 U	0.118 U	0.107 U	0.0975 U
Nickel	SW6020A	38		7.59	8.18	15.8	17.1	7.18	6.11	15.6	7.12	10.1
Selenium	SW6020A	1800		2.9 U	2.25 U	2.87 U	2.97 U	2.52 U	2.71 U	2.95 U	2.67 U	2.44 U
Silver	SW6020A	1800		1.45 U	1.12 U	1.44 U	1.49 U	1.26 U	1.35 U	1.47 U	1.33 U	1.22 U
Thallium	SW6020A			1.45 U	1.12 U	1.44 U	1.49 U	1.26 U	1.35 U	1.47 U	1.33 U	1.22 U
Zinc	SW6020A	1100000		23.8	29.6	53.3	56.5	20.9	20.7	38.6	17.8	37.4
Polycyclic Aromatic Hydrocarbons (μg/kg)	•		•			•						
1-Methylnaphthalene	SW8270DSIM			10.2 U	8.76 U	10.6 U	9.81 U	9.06 U	8.3 U	11.3 U	9.37 U	6.87 J
2-Methylnaphthalene	SW8270DSIM			10.2 U	8.76 U	10.6 U	9.81 U	9.06 U	8.3 U	11.3 U	9.37 U	7.01 J
Acenaphthene	SW8270DSIM			9.48	4.38 U	14.6	4.9 U	4.53 U	4.15 U	3.86 J	4.69 U	32.6
Acenaphthylene	SW8270DSIM			5.08 U	4.38 U	5.3 U	4.9 U	4.53 U	4.15 U	5.64 U	4.69 U	3.5 J
Anthracene	SW8270DSIM			12.2	2.83 J	27.9	7.81	4.53 U	4.15 U	11.5	4.69 U	36.9
Benzo(a)anthracene	SW8270DSIM			155	20.4	93.1	55	3.79 J	4.15 U	174	6.6	162
Benzo(a)pyrene	SW8270DSIM	2000 / 18000 ²	2000 ²	139	23.2	113	71	4.52 J	2.16 J	161	4.41 J	105
Benzo(b,k)fluoranthene	SW8270DSIM			454	53	310	234	12.9	4.17 J	676	21.3	337
Benzo(g,h,i)perylene	SW8270DSIM			199	23.2	1210	884	12.3	4.15 U	338	8.06	72.7
Chrysene	SW8270DSIM			392	29.7	406	273	7.61	2.19 J	705	13.4	379
Dibenzo(a,e)pyrene	SW8270DSIM			56.2 U	43.8 U	35.8 J	45.2 J	45.3 U	41.5 U	55.4 U	46.9 U	45.5 U
Dibenzo(a,h)anthracene	SW8270DSIM			43.3	5.36	112	79.3	4.53 U	4.15 U	60	4.69 U	18.6
Dibenzo(a,h)pyrene	SW8270DSIM			56.2 U	43.8 U	55.1 U	52 U	45.3 U	41.5 U	55.4 U	46.9 U	45.5 U
Dibenzo(a,i)pyrene	SW8270DSIM			56.2 U	43.8 U	55.1 U	52 U	45.3 U	41.5 U	55.4 U	46.9 U	45.5 U
Dibenzo(a,j)acridine	SW8270DSIM			56.2 U	43.8 U	55.1 U	52 U	45.3 U	41.5 U	55.4 U	46.9 U	45.5 U
Dibenzo(a,l)pyrene	SW8270DSIM			56.2 U	43.8 U	94.8	122	45.3 U	41.5 U	55.4 U	46.9 U	23.8 J
Dibenzofuran	SW8270DSIM			5.77	4.38 U	5.76	4.9 U	4.53 U	4.15 U	5.64 U	4.69 U	13.2
Fluoranthene	SW8270DSIM			179	32.4	131	55.3	4.52 J	4.15 U	261	10.5	642
	1					i						

Page 9 of 10

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	S05E	S05W	S06E	S06E	S07E	S07W	S08E	S08E	S08W
			Sample ID	MBTL-SO-UD-S05E	MBTL-SO-UD-S05W	MBTL-SO-UD-S06E	MBTL-SO-UD-S06ED	MBTL-SO-UD-S07E	MBTL-SO-UD-S07W	MBTL-SO-UD-S08E	MBTL-SO-UD-S08ED	MBTL-SO-UD-S08W
			Sample Date	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	0 - 0.5 ft								
			Matrix	SO								
			Sample Type	N	N	N	FD	N	N	N	FD	N
			x	1005249.8	1005244.64	1005165.2	1005165.2	1005072.25	1005060.08	1004950.61	1004950.61	1004952.26
			Υ	305009.45	304987.79	305087.39	305087.39	305165.64	305138.36	305178.21	305178.21	305157.23
		MTCA Method C										
		Industrial or										1
		Alternate	MTCA Method A									1
	Method	Screening Level	Industrial									
Fluorene	SW8270DSIM			6.12	4.38 U	10.9	4.9 U	4.53 U	4.15 U	5.64 U	4.69 U	9.3
Indeno(1,2,3-c,d)pyrene	SW8270DSIM			163	21.8	510	362	6.17	4.15 U	275	4.62 J	73.3
Naphthalene	SW8270DSIM	5000		10.2 U	8.76 U	10.6 U	9.81 U	9.06 U	8.3 U	11.3 U	9.37 U	5.18 J
Phenanthrene	SW8270DSIM			38.3	10.9	128	15	4.53 U	4.15 U	39.3	2.8 J	197
Pyrene	SW8270DSIM			198	33.8	154	57.6	4.76	4.15 U	251	8.59	533
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)	1	2000 / 18000 ²	2000 ²	224.5	33.55	219.6	146.8	7.11 J	3.22 J	286.6	8.03 J	167.9
Total Petroleum Hydrocarbons (mg/kg)												
Diesel Range Hydrocarbons	NWTPHDx	2000	2000	10.2 U	8.76 U	5.9 J	5.29 J	9.06 U	8.3 U	7.55 J	9.37 U	9.1 U
Oil	NWTPHDx			21.8	9.58 J	30.5	29.2	18.1 U	13.1 J	36.1	18.7 U	16.8 J

Notes:

Detected concentration is greater than MBTL_Soil screening level

Detected concentration is greater than MTCA Method A Indust screening level

Bold = Detected result

FD = Field Duplicate

J = Estimated value

cPAH = carcinogenic PAH

mg/kg = milligrams per kilogram

N = Normal Field Sample

pct = percent

μg/kg = micrograms per kilogram

U = Compound analyzed, but not detected above detection limit

MTCA = Model Toxics Control Act

TEQ = Toxic Equivalent Quantity

-- Results not reported or not applicable

Totals are calculated as the sum of all detected results and 1/2 the undetected result. If all results are undetected, the

highest reporting limit value is reported as the sum.

Significant figures are applied to all calculations.

- 1 cPAH minimum 7 analytes calculation includes Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene and Indeno(1,2,3-c,d)pyrene. Per MTCA cleanup Regulation, Table 708-2 "Toxicity Equivalency Factors for Minimum Required Carcinogenic Polyaromatic Hydrocarbons (cPAHs) under WAC 173-340-708(e).
- 2 Soils were screened both against the MTCA Method A cleanup level and the MTCA Method C cleanup level for benzo(a)pyrene and cPAH TEQ is 18000 ug/kg (18 mg/kg).

Page 10 of 10

June 2013
130730-01.01

	I	1	T1-	II Diade Consulting	II Bitch Consulting	II Bitch Consulting	II Dital Carrellia	II Divole Consulting	II Dital Canadia	II Dital Camalia	II Dital Camalia	II Ditale Campulina	II Ditale Committee
				U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling		U-Ditch Sampling				U-Ditch Sampling	U-Ditch Sampling
			Location ID	CB01	CB02	CB03	CB04	CB05	CB06	CB07	CB08	CBS09W	CBS09W
			•				l						MBTL-SO-UD-CBS09WD
			Sample Date	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			Matrix	SO	SO N	SO N	SO .	SO	SO SI	SO	SO	SO N	SO ED
			Sample Type	N 1005126 24	N 1005116 5	N 1005000.6	N 1005000.6	N 1005063 51	N 1005047.27	N 1005030.66	1005007.C	N 1005030.61	FD
			X	1005136.34	1005116.5	1005098.6	1005080.6	1005063.51	1005047.27	1005028.66	1005007.6	1005028.61	1005028.61
			T	305068.74	305075.95	305081.23	305085.89	305090.1	305093.94	305094.73	305095.85	305075.32	305075.32
		MTCA Method C											
		Industrial or	MTCA Method A										
	Method	Alternate Screening Level	Industrial										
Conventional Boson store (mg/l/g)	Wethou	Screening Level	iliuustilai										
Conventional Parameters (mg/kg) Cyanide, total	SM4500CNE	70000		5.37	0.352	0.369 U	1.64	0.644	1.26	0.36	42.8	5.2	6.38
Fluoride	SM4500FC	210000		591	546	458	635	595	1180	659	1490	1170	1160
Conventional Parameters (pct)	21414200EC	210000		331] 340	730	033	333	1100	039	1430	11/0	1100
Total solids	APEXsolids			67.2	71	67	71.9	68.9	53.4	64.4	58.1	69.9	72.1
Metals (mg/kg)	2,1301103				<u> </u>	· · · · · · · · · · · · · · · · · · ·	1	23.3					1
Antimony	SW6020A	1400		1.54 U	1.51 U	1.47 U	1.44 U	1.45 U	1.95 U	1.7 U	1.73 U	1.41 U	1.49 U
Arsenic	SW6020A	20	20	1.89 J	3.63	2.08 J	3.15	3.96	4.34	4.34	5.02	3.15	3.59
Beryllium	SW6020A	7000		1.54 U	1.51 U	1.47 U	1.44 U	1.45 U	1.95 U	1.7 U	1.06 J	1.41 U	1.49 U
Cadmium	SW6020A	2	2	1.54 U	1.51 U	1.47 U	1.44 U	1.45 U	1.95 U	1.7 U	1.73 U	1.41 U	1.49 U
Chromium	SW6020A		2000	14.2	8.25	13.7	12.5	13.8	16.1	11.6	15.9	11.5	11
Copper	SW6020A	140000		14	9.79	25.6	21.3	17.2	37	24.5	35.6	28.2	31.4
Lead	SW6020A	1000	1000	6.89	7.01	12.9	8.73	16	18.9	10.1	16.6	7.76	8.34
Mercury	SW6020A	2	2	0.123 U	0.121 U	0.0596 J	0.115 U	0.116 U	0.0937 J	0.136 U	0.0941 J	0.113 U	0.119 U
Nickel	SW6020A	38		13.8	13.6	15.9	18.2	17.1	28.1	17.7	43.6	23.5	24.9
Selenium	SW6020A	1800		3.08 U	3.02 U	2.95 U	2.88 U	2.9 U	3.91 U	3.41 U	3.46 U	2.83 U	2.98 U
Silver	SW6020A	1800		1.54 U	1.51 U	1.47 U	1.44 U	1.45 U	1.95 U	1.7 U	1.73 U	1.41 U	1.49 U
Thallium	SW6020A			1.54 U	1.51 U	1.47 U	1.44 U	1.45 U	1.95 U	1.7 U	1.73 U	1.41 U	1.49 U
Zinc	SW6020A	1100000		58	44.7	79.2	54.4	82.9	103	60.5	79.5	50.3	51.8
Polycyclic Aromatic Hydrocarbons (μg/kg								,					
1-Methylnaphthalene	SW8270DSIM			9.2 U	9.2 U	11.5 U	10.4 U	10 U	13 U	9.43 J	11 U	10.3 U	9.98 U
2-Methylnaphthalene	SW8270DSIM			9.2 U	9.2 U	11.5 U	10.4 U	10 U	13 U	17.3	11 U	10.3 U	9.98 U
Acenaphthene	SW8270DSIM			4.6 U	4.6 U	5.75 U	31.8	5.02 U	6.52 U	63.9	10.5	9.14	7.31
Acenaphthylene	SW8270DSIM			4.6 U	4.6 U	5.75 U	5.18 U	20.1	4.25 J	3.11 J	5.51 U	3.33 J	2.78 J
Anthracene	SW8270DSIM			4.6 U	2.88 J	3.84 J	252	75.6	9.51	86.9	274	234	114
Benzo(a)anthracene	SW8270DSIM		2	18.3	11.6	13.2	1760	270	40.8	625	2280	1840	1170
Benzo(a)pyrene	SW8270DSIM	2000 / 18000 ²	2000 ²	14.5	11.2	12.6	911	266	51.3	685	1580	1620	1120
Benzo(b,k)fluoranthene	SW8270DSIM			50.8	53.7	34.6	3320	378	193	1740	5660	5400	3510
Benzo(g,h,i)perylene	SW8270DSIM			15.7	20.3	14.7	721	147	74.5	690	1140	2050	1660
Chrysene	SW8270DSIM			50.7	27	22.3	5260	269	79.6	1130	7450	7450	4660
Dibenzo(a,e)pyrene	SW8270DSIM			46 U	46 U	57.5 U	1040 U	56.8 U	65.2 U	98	342 U	215 J	275 U
Dibenzo(a,h)anthracene	SW8270DSIM			4.07 J	6.68	3.75 J	259	37.4	13.8	158	440	668	489
Dibenzo(a,h)pyrene	SW8270DSIM			46 U	46 U	57.5 U	1040 U	56.8 U	65.2 U	61.8 U	342 U	284 U	275 U
Dibenzo(a,i)pyrene	SW8270DSIM			46 U	46 U	57.5 U	1040 U	56.8 U	65.2 U	61.8 U	342 U	284 U	275 U
Dibenzo(a,j)acridine	SW8270DSIM			46 U	46 U	57.5 U	1040 U	56.8 U	65.2 U	61.8 U	342 U	284 U	275 U
Dibenzofuran	SW8270DSIM SW8270DSIM			46 U	46 U 4.6 U	57.5 U 5.75 U	1040 U 13.1	33.6 J	65.2 U	250 17.8	457 7.46	597 10.6	375 6.7
Dibenzofuran Elugranthono	SW8270DSIM SW8270DSIM			4.6 U	4.6 U 22.5	16.9	6350	5.02 U 505	6.52 U 81.3	17.8	7.46 3280		705
Fluoranthene	34407/0D3IIAI			19.1	22.5	10.9	0330	303	01.3	1280	3280	1110	/05

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	CB01	CB02	CB03	CB04	CB05	СВ06	CB07	CB08	CBS09W	CBS09W
			Sample ID	MBTL-SO-UD-CB01	MBTL-SO-UD-CB02	MBTL-SO-UD-CB03	MBTL-SO-UD-CB04	MBTL-SO-UD-CB05	MBTL-SO-UD-CB06	MBTL-SO-UD-CB07	MBTL-SO-UD-CB08	MBTL-SO-UD-CBS09W	MBTL-SO-UD-CBS09WD
			Sample Date	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	0 - 0.5 ft	0 - 0.5 ft								
			Matrix	SO	SO								
			Sample Type	N	N	N	N	N	N	N	N	N	FD
			х	1005136.34	1005116.5	1005098.6	1005080.6	1005063.51	1005047.27	1005028.66	1005007.6	1005028.61	1005028.61
			Υ	305068.74	305075.95	305081.23	305085.89	305090.1	305093.94	305094.73	305095.85	305075.32	305075.32
		MTCA Method C											
		Industrial or											
		Alternate	MTCA Method A										
	Method	Screening Level	Industrial										
Indeno(1,2,3-c,d)pyrene	SW8270DSIM			14.2	19.5	14.2	672	147	67.1	700	1200	2180	1690
Naphthalene	SW8270DSIM	5000		9.2 U	9.2 U	11.5 U	10.4 U	15.3	6.58 J	29.3	5.64 J	6.44 J	9.98 U
Phenanthrene	SW8270DSIM			5.44	12	10.2	829	144	38.8	317	314	292	147
Pyrene	SW8270DSIM			18.9	23.6	20.4	5710	549	84.9	1320	3200	929	622
Total cPAH TEQ (7 minimum CAEPA 200	05) (U = 1/2) ¹	2000 / 18000 ²	2000 ²	23.74 J	20.62	19.4 J	1564.7	351.9	83.6	1018.6	2612.5	2703.3	1852.5
Total Petroleum Hydrocarbons (mg/kg)													
Diesel Range Hydrocarbons	NWTPHDx	2000	2000	9.2 U	9.2 U	11.5 U	29.9	9.9 J	7.37 J	13.5	21	13.1	10.4
Oil	NWTPHDx			20	18.4 U	21.7 J	113	39.7	54.5	94.5	108	136	112

Notoc

Detected concentration is greater than MBTL_Soil screening level

Detected concentration is greater than MTCA Method A Indust screening level

Bold = Detected result

FD = Field Duplicate

J = Estimated value

mg/kg = milligrams per kilogram

N = Normal Field Sample

pct = percent

μg/kg = micrograms per kilogram

U = Compound analyzed, but not detected above detection limit

-- Results not reported or not applicable

Totals are calculated as the sum of all detected results and 1/2 the undetected result. If all results are undetected, the highest reporting limit value is reported as the sum.

Significant figures are applied to all calculations.

1 cPAH minimum 7 analytes calculation includes Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene and Indeno(1,2,3-c,d)pyrene. Per MTCA cleanup Regulation, Table 708-2 "Toxicity Equivalency Factors for Minimum Required Carcinogenic Polyaromatic Hydrocarbons (cPAHs) under WAC 173-340-708(e).

2 Soils were screened both against the MTCA Method A cleanup level and the MTCA Method C cleanup level for benzo(a)pyrene, and cPAH TEQ is 18,000 μg/kg (18 mg/kg).

Page 2 of 2

U-Ditch Reroute and Soil Removal - Main Channel Supplementary

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	1	S04E	S06E	SO7E	S08E
			Sample ID	MBTL-SO-UD-B08	MBTL-SO-UD-S04E	MBTL-SO-UD-S06E	MBTL-SO-UD-S07E	MBTL-SO-UD-S08E
			Sample Date		11/1/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	1	0 - 0.5 ft			
			Matrix		so	so	so	so
			Sample Type		N	N	N	N
			Χ	1005510.48	1005342.14	1005165.2	1005072.25	1004950.61
			Υ	304757.36	304926.15	305087.39	305165.64	305178.21
		MTCA Method C						
		Industrial or Alternate	MTCA Method A					
	Method	Screening Level	Industrial					
Conventional Parameters (pct)								
Total solids	SM2540G			75.7	79.1	72.7	78.9	73.1
Volatile Organics (μg/kg)						_		
1,1,1,2-Tetrachloroethane	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
1,1,1-Trichloroethane	SW8260B		2000	44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,1,2,2-Tetrachloroethane	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,1,2-Trichloroethane	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
1,1-Dichloroethane	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,1-Dichloroethene	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,1-Dichloropropene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
1,2,3-Trichlorobenzene	SW8260B			446 U	403 U	412 U	441 U	409 U
1,2,3-Trichloropropane	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
1,2,4-Trichlorobenzene	SW8260B			446 U	403 U	412 U	441 U	409 U
1,2,4-Trimethylbenzene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
1,2-Dibromo-3-chloropropane	SW8260B			446 U	403 U	412 U	441 U	409 U
1,2-Dichlorobenzene	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,2-Dichloroethane	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,2-Dichloroethene, cis-	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,2-Dichloroethene, trans-	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,2-Dichloropropane	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,3,5-Trimethylbenzene (Mesitylene)	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
1,3-Dichlorobenzene	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,3-Dichloropropane	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
1,3-Dichloropropene, cis-	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
1,3-Dichloropropene, trans-	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
1,4-Dichlorobenzene	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
2,2-Dichloropropane	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
2-Butanone (MEK)	SW8260B			891 U	806 U	823 U	883 U	817 U
2-Chlorotoluene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
2-Hexanone (Methyl butyl ketone)	SW8260B			891 U	806 U	823 U	883 U	817 U
4-Chlorotoluene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
4-Isopropyltoluene (4-Cymene)	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	B08	S04E	S06E	S07E	S08E
					MBTL-SO-UD-S04E			
			Sample Date		11/1/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	· ·	0 - 0.5 ft			
			Matrix	SO	so	SO	SO	so
			Sample Type	N N	N N	N N	N N	N N
			Sample Type V	1005510.48	1005342.14	1005165.2	1005072.25	1004950.61
			, v	304757.36	304926.15	305087.39	305165.64	305178.21
	Ι	MTCA Method C	<u> </u>	304737.30	304320.13	303087.33	303103.04	303178.21
		Industrial or Alternate	MTCA Method A					
	Method	Screening Level	Industrial					
Acetone	SW8260B			1780 U	1610 U	1650 U	1770 U	1630 U
Benzene	SW8260B		30	22.3 U	20.2 U	20.6 U	22.1 U	20.4 U
Bromobenzene	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Bromochloromethane	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Bromodichloromethane	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Bromoform (Tribromomethane)	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
Bromomethane (Methyl Bromide)	SW8260B			891 U	806 U	823 U	883 U	817 U
Carbon tetrachloride (Tetrachloromethane)	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Chlorobenzene	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Chloroethane	SW8260B			891 U	806 U	823 U	883 U	817 U
Chloroform	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
Chloromethane	SW8260B			446 U	403 U	412 U	441 U	409 U
Dibromochloromethane	SW8260B			178 U	161 U	165 U	177 U	163 U
Dibromomethane	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
Dichlorodifluoromethane	SW8260B			178 U	161 U	165 U	177 U	163 U
Dichloromethane (Methylene chloride)	SW8260B		20	446 U	403 U	412 U	441 U	409 U
Ethylbenzene	SW8260B		6000	44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Ethylene dibromide (1,2-Dibromoethane)	SW8260B		5	44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	SW8260B			178 U	161 U	165 U	177 U	163 U
Isopropylbenzene (Cumene)	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
m,p-Xylene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
Methyl isobutyl ketone (4-Methyl-2-pentanone or (MIBK))	SW8260B			891 U	806 U	823 U	883 U	817 U
Methyl tert-butyl ether (MTBE)	SW8260B		100	89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
Naphthalene	SW8260B	5000		178 U	161 U	165 U	177 U	163 U
n-Butylbenzene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
n-Propylbenzene	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
o-Xylene	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
sec-Butylbenzene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
Styrene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
tert-Butylbenzene	SW8260B			89.1 U	80.6 U	82.3 U	88.3 U	81.7 U
Tetrachloroethene (PCE)	SW8260B		50	44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Toluene	SW8260B		7000	315	80.6 U	82.3 U	88.3 U	81.7 U

U-Ditch Reroute and Soil Removal - Main Channel Supplementary

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	B08	S04E	S06E	S07E	S08E
					MBTL-SO-UD-S04E			
			Sample Date		11/1/2012	11/2/2012	11/2/2012	11/2/2012
			Depth		0 - 0.5 ft			
			Matrix		so	so	so	so
			Sample Type	N	N	N	N	N
			χ	1005510.48	1005342.14	1005165.2	1005072.25	1004950.61
			Υ	304757.36	304926.15	305087.39	305165.64	305178.21
		MTCA Method C						
		Industrial or Alternate	MTCA Method A					
	Method	Screening Level	Industrial					
Trichloroethene (TCE)	SW8260B		30	44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Trichlorofluoromethane (Fluorotrichloromethane)	SW8260B			178 U	161 U	165 U	177 U	163 U
Vinyl chloride	SW8260B			44.6 U	40.3 U	41.2 U	44.1 U	40.9 U
Semivolatile Organics (μg/kg)								
1,2,4-Trichlorobenzene	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
1,2-Dichlorobenzene	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
1,3-Dichlorobenzene	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
1,4-Dichlorobenzene	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
2,3,4,6-Tetrachlorophenol	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
2,4,5-Trichlorophenol	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
2,4,6-Trichlorophenol	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
2,4-Dichlorophenol	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
2,4-Dimethylphenol	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
2,4-Dinitrophenol	SW8270D			5170 U	122 U	1320 U	120 U	546 U
2,4-Dinitrotoluene	SW8270D			2070 U	48.7 U	526 U	47.9 U	218 U
2,6-Dinitrotoluene	SW8270D			2070 U	48.7 U	526 U	47.9 U	218 U
2-Chloronaphthalene	SW8270D			207 U	4.87 U	52.6 U	4.79 U	21.8 U
2-Chlorophenol	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
2-Methylphenol (o-Cresol)	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
2-Nitroaniline	SW8270D			4140 U	97.3 U	1050 U	95.8 U	436 U
2-Nitrophenol	SW8270D			2070 U	48.7 U	526 U	47.9 U	218 U
3-Methylphenol & 4-Methylphenol (m&p-Cresol)	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
3-Nitroaniline	SW8270D			4140 U	97.3 U	1050 U	95.8 U	436 U
4-Bromophenyl-phenyl ether	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
4-Chloro-3-methylphenol	SW8270D			2070 U	48.7 U	526 U	47.9 U	218 U
4-Chloroaniline	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
4-Chlorophenyl phenyl ether	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
4-Nitroaniline	SW8270D			4140 U	97.3 U	1050 U	95.8 U	436 U
4-Nitrophenol	SW8270D			2070 U	48.7 U	526 U	47.9 U	218 U
Aniline	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
Benzoic acid	SW8270D			25900 U	608 U	6580 U	599 U	2730 U
Benzyl alcohol	SW8270D			1030 U	24.3 U	263 U	24 U	109 U

			Task Location ID	U-Ditch Sampling B08	U-Ditch Sampling S04E	U-Ditch Sampling S06E	U-Ditch Sampling S07E	U-Ditch Sampling S08E
				MBTL-SO-UD-B08	MBTL-SO-UD-S04E	MBTL-SO-UD-S06E	MBTL-SO-UD-S07E	MBTL-SO-UD-S08E
			Sample Date	11/1/2012	11/1/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	1 ' '	0 - 0.5 ft			
			Matrix	so	so	so	so	so
			Sample Type		N	N	N	N
				1005510.48	1005342.14	1005165.2	1005072.25	1004950.61
			Υ	304757.36	304926.15	305087.39	305165.64	305178.21
		MTCA Method C						
		Industrial or Alternate	MTCA Method A					
	Method	Screening Level	Industrial					
bis(2-Chloroethoxy)methane	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
bis(2-Chloroethyl)ether	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
bis(2-Chloroisopropyl)ether	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
Bis(2-ethylhexyl)phthalate	SW8270D			4140 U	97.3 U	1050 U	95.8 U	436 U
Butylbenzyl phthalate	SW8270D			4140 U	97.3 U	1050 U	95.8 U	436 U
Carbazole	SW8270D			310 U	7.3 U	78.9 U	7.19 U	32.7 U
Dibenzofuran	SW8270D			207 U	4.87 U	52.6 U	4.79 U	21.8 U
Diethyl phthalate	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
Dimethyl phthalate	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
Di-n-butyl phthalate	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
Dinitro-o-cresol (4,6-Dinitro-2-methylphenol)	SW8270D			5170 U	122 U	1320 U	120 U	546 U
Di-n-octyl phthalate	SW8270D			4140 U	97.3 U	1050 U	95.8 U	436 U
Hexachlorobenzene	SW8270D			207 U	4.87 U	52.6 U	4.79 U	21.8 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
Hexachlorocyclopentadiene	SW8270D			1030 U	24.3 U	263 U	24 U	109 U
Hexachloroethane	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
Isophorone	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
Nitrobenzene	SW8270D			2070 U	48.7 U	526 U	47.9 U	218 U
N-Nitrosodimethylamine	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
N-Nitrosodi-N-propylamine	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
N-Nitrosodiphenylamine	SW8270D			517 U	12.2 U	132 U	12 U	54.6 U
Pentachlorophenol	SW8270D			4140 U	97.3 U	1050 U	95.8 U	436 U
Phenol	SW8270D			414 U	9.73 U	105 U	9.58 U	43.6 U
PCB Aroclors (μg/kg)								
Aroclor 1016	SW8082A			5.19 U	4.64 U	5.45 U	4.73 U	5.14 U
Aroclor 1221	SW8082A			5.19 U	4.64 U	5.45 U	4.73 U	5.14 U
Aroclor 1232	SW8082A			5.19 U	4.64 U	5.45 U	4.73 U	5.14 U
Aroclor 1242	SW8082A			7.69	4.64 U	5.45 U	4.73 U	5.14 U
Aroclor 1248	SW8082A			5.19 U	4.64 U	5.45 U	4.73 U	5.14 U
Aroclor 1254	SW8082A			27.5	4.64 U	12.6	4.73 U	5.77
Aroclor 1260	SW8082A			44.5	4.64 U	24.3	4.73 U	7.46
Aroclor 1262	SW8082A			5.19 U	4.64 U	5.45 U	4.73 U	5.14 U

U-Ditch Reroute and Soil Removal - Main Channel Supplementary

			Task	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling	U-Ditch Sampling
			Location ID	B08	S04E	S06E	S07E	S08E
			Sample ID	MBTL-SO-UD-B08	MBTL-SO-UD-S04E	MBTL-SO-UD-S06E	MBTL-SO-UD-S07E	MBTL-SO-UD-S08E
			Sample Date	11/1/2012	11/1/2012	11/2/2012	11/2/2012	11/2/2012
			Depth	0 - 0.5 ft				
			Matrix	so	so	so	so	so
			Sample Type	N	N	N	N	N
			X	1005510.48	1005342.14	1005165.2	1005072.25	1004950.61
			Υ	304757.36	304926.15	305087.39	305165.64	305178.21
		MTCA Method C						
		Industrial or Alternate	MTCA Method A					
	Method	Screening Level	Industrial					
Aroclor 1268	SW8082A			5.19 U	4.64 U	5.45 U	4.73 U	5.14 U
Total PCB Aroclors (U = 1/2)		10000	10000	95.26	4.64 U	55.98	4.73 U	31.22

Notes:

Detected concentration is greater than MBTL_Soil screening level

Detected concentration is greater than MTCA Method A Indust screening level

Bold = Detected result

FD = Field Duplicate

N = Normal Field Sample

pct = percent

μg/kg = micrograms per kilogram

U = Compound analyzed, but not detected above detection limit

-- Results not reported or not applicable

Totals are calculated as the sum of all detected results and 1/2 the undetected result. If all results are undetected, the highest reporting limit value is reported as the sum.

Significant figures are applied to all calculations.

LEGEND

• U-Ditch Sample Locations

B = Base

S = Sidewall E = East W = West

CB = Side Channel Base CBS = Side Channel Sidewall

NOTE: Aerial Imagery: Microsoft Bing Maps, copyright 2010

Feet 75

Memorandum: Reynolds Drum Soil Cleanup, February 14, 1986, and Attachment: Letter to Tom Dickey (Reynolds), February 20, 1986

Washington State Department of Ecology.

CHECK
INFORMATON
FOR ACTION
PERMIT
OTHER

State of Washington
Department of Ecology

Dick Burkhalter

FROM: George Houck Slenge Fouck

SUBJECT: Reynolds PCB Cleanup

DATE: February 14, 1986

Attached is the Reynolds Metals Company summary report (dated January 31) of their cleanup activities at the PCB spill site described in their September 11, 1984, letter to us. I believe the site has now been cleaned adequately, and the matter should be closed. I have attached a draft letter for your signature to the company stating words to this effect. A copy should go to Mike Hoyles of EPA.

The spill occurred some time after 1969 near the North Plant when it was being constructed. It consisted of leakage of about one-third of a 55 gallon drum, and was not discovered by the company until July 10, 1984. The company has utilized their own people, Reidel Emergency Environmental Services, Chem Security Systems, Inc., Dames and Moore, and Laucks Laboratories at different times and stages of the cleanup work. The entire activity is described in the Reynolds report.

The company has dug out a hole about 12 feet deep and 20 feet in diameter and carried the contaminated soil to the Arlington, Oregon hazardous waste site. In total this was 105 cubic yards plus 77 drums. Only one drum remains at the plant, in a PCB temporary storage area, to be hauled to Arlington soon.

Plate 3 of the report shows the final testing results. There are 12 sample locations and all exhibit less than 1 ppm PCB. Also, Table 2 shows 10 sample locations where trichlorobenzene (TCB) was analysed. All tests show no more than 0.1 ppm, except for one where 0.4 ppm was found. Trichlorobenzene, in high concentration, was a carrier to the PCB in the original product.

Because of various stops and starts, the cleanup project took a year and a half. This seems an inordinately long time. However, the work is now complete in my opinion.

GCH:bkw Attachment

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 • Olympia, Washington 98504-8711 • (206) 459-6000

February 20, 1986

Mr. Tom Dickey Reynolds Metals Company P. O. Box 999 Longview, Washington 98632

Dear Mr. Dickey:

We have reviewed your January 31 summary report of the cleanup at the PCB spill site described in your September 11, 1984, letter. According to results from Laucks Laboratories, the PCB cleanup meets Ecology policy of less than 1 ppm. Trichlorobenzene has also been cleaned up to concentrations of less than 1 ppm.

We have concluded the site has been adequately cleaned up, and your company may proceed to fill the hole with soil.

Sincerely,

Richard A. Burkhalter, P.E.

Supervisor

Industrial Section

RAB:bkw

cc: Mike Hoyles, EPA/W00

Independent Cleanup Documents, 200,000 Gallon Diesel AST

Reynolds Metals Company. 1991-1993.

REYNOLDS

Reynolds Metals Company • P.O. Box 999 • Longview, Washington 98632 • (206)425-2800

October 30, 1991

Mr. Paul Skyllingstad Industrial Section Department of Ecology P.O. Box 47600 Olympia, WA 98504-7706

Dear Mr. Skyllingstad:

This letter is a follow-up to Reynolds report regarding the independent clean-up of diesel contamination in the area surrounding the plants' 200,000 gallon aboveground storage tank.

The excavation site has been backfilled with clean fill. concrete work is underway and should be completed by the middle of November. Remediation of the contaminated soil is continuing.

Per our telephone conversation, the notation in Reynolds deed will be made at the same time as the notation regarding the closure of the black mud surface impoundment.

Should you have any questions or comments, please contact me at (206) 636-8203.

Sincerely,

REYNOLDS METALS COMPANY LONGVIEW REDUCTION PLANT

Thomas D. Dickey Technical Supt.

mb

Ray Walker C: John Amos; G-4-9 Larry Tropea; E-L-3 Donna Dabney; E-2-2

FILE COPY

MOV 08 1991

WATER/SOLID

HAZ WASTE

HWCU

Reynolds - Ind oil tank CUL.

FILE COPY

REYNOLDSAALUMINUM

Dctobe 2, 1991 Reynolds Metals Company • P.O. Box 999 • L

HAZ WASTE HWCU

oil tank clean up - spill

Mr. Paul Skyllingstad Dept. of Ecology Industrial Section 2404 Chandler Court S.W., Suite 260 Olympia, WA 98502-6038

Dear Mr. Skylingstad:

Attached is a report detailing the Reynolds Metals Company independent cleanup of the area adjacent to the on-site 200,000 gallon aboveground diesel tank. It is Reynolds intent to persue the action items in the report and to keep you informed of our progress.

Should you have additional questions or comments, please contact me at (206) 636-8203.

> REYNOLDS METALS COMPANY LONGVIEW REDUCTION PLANT

Thomas D. Dickey Technical Supt.

mb

Attachment

Jerry Newman - Longview Hal Hays - Longview

> John Amos - G-4-9 Larry Tropea - E-L-3

520 Engineering)
520 Engineering

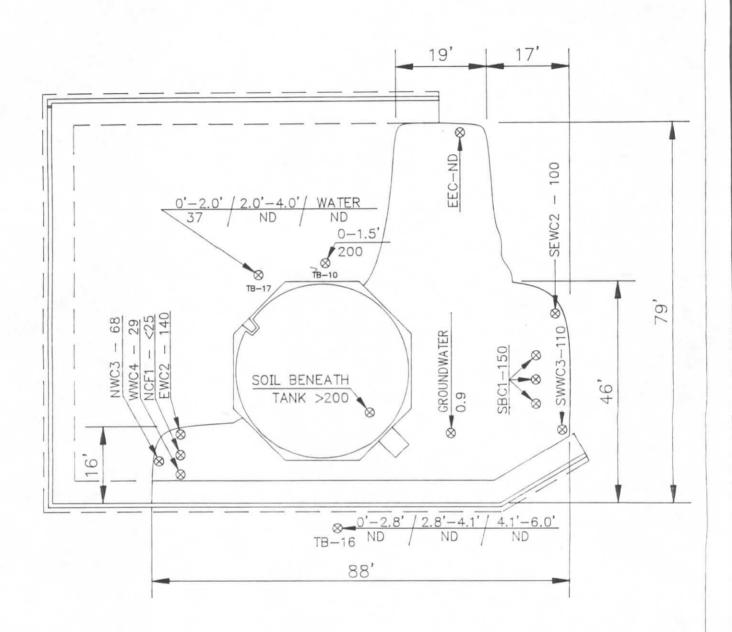
REYNOLDS METAL COMPANY LONGVIEW REDUCTION PLANT INDEPENDENT CLEANUP OF HISTORIC DIESEL RELEASE

On April 19, 1991, Reynolds became aware of potential diesel contamination in the soil surrounding the discharge pumps, valves, and piping of the on-site 200,000 gallon aboveground storage tank. Subsequent soil sampling confirmed that the diesel contamination exceeded the 200 ppm cleanup standard in chapter 173-340 WAC, the Model Toxics Control Act (MTCA) cleanup regulation. There is no evidence that the tank has ever leaked. It is therefore assumed that the contamination is the result of maintenance activity on or failure of the discharge equipment. Figure 1 shows the initial sampling locations and diesel levels (in ppm).

Several excavation attempts were required to remove all accessible contaminated soil above 200 ppm. Reynolds initially manually removed twenty-four 55-gallon drums of soil before realizing that the plume of contamination was greater than expected. Four additional excavations were required as shown in the table below.

Date	Contaminated Soil Removed
07/25/91 - 07/29/91	101 Cubic Yards
08-07-91	90 Cubic Yards
08-12-91	60 Cubic Yards
09/24/91 - 09/26/91	230 Cubic Yards

All of the contaminated soil has been placed on plastic and surrounded with grass bales to capture potential leachate. It is Reynolds' intent to bio-treat this material on-site to below 200 ppm, and then to use the material in a suitable location.


Unfortunately some of the contamination extends under the tank and can not be removed without removing the tank. Reynolds proposes to leave this material in place (until the tank is taken out of service) and to cover the site with concrete.

With the exception of the soil under the tank, Reynolds considers the site remediated. Figure L-68-Y-100 shows the location of samples taken from the excavation site as well as

borings (TB-10, TB-16, and TB-17) taken prior to excavation. A groundwater sample was also taken from the bottom of the excavation and found to be below 1 ppm. In addition, a water sample taken at location TB-17 did not detect diesel. Documentation of these analyses is attached. (Note: Some samples shown in the documentation indicate concentrations above the action levels. These areas were removed by subsequent excavation. Therefore the location of these samples is not shown in figure L-68-Y-100)

Reynolds therefore proposes the following actions:

- The excavation site will be backfilled with clean fill and compacted.
- The entire area around the diesel tank will be covered with concrete and surrounded by concrete containment walls.
- 3) A notation will be made in Reynolds property deed stating that diesel contamination exists directly under the tank. This material will be remediated upon the removal of the tank.
- 4) Contaminated soil will be bio-remediated on site to < 200 ppm diesel.</p>

ND=NOT DETECTED
OTHER LEVELS SHOWN ARE MG/KG, DRY WT. BASIS

REMOVED APPROX. 481 CUBIC YARDS OF CONTAMINATED SOIL

REYNOLDS METALS CO.

LONGVIEW REDUCTION PLANT

DRAWN JOHN CAPLE CH'K _______

SCALE 1"=20' APPR.______

200,000 GALLON FUEL OIL STORAGE CONTAMINATED SOIL REMOVAL AREA

CAD NO.- Y-0100

DATE 8-27-91 L-68-Y-100

REV.

Analytical Report

Client:

Sweet-Edwards/EMCON, Inc.

Project:

Reynolds Metals/#S3301.04

Sample Matrix: Soil

05/21/91 Date Received: 05/23/91 Date Extracted: 05/24,30/91

Date Analyzed: Work Order #:

K912757

Hydrocarbon Scan EPA Methods 3550/Modified 8015 mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Diesel	Jet Fuel	Gasoline	Kerosene	Mineral Spirits	Oil*
TD 0 0/ 1 5/	K2757-1	10	1,800	ND	ND	ND	ND	, ND
TB-2 0'-1.5'	K2757-2	10	1,500	ND	ND	ND	ND	ND
TB-4 1.5'-3.0'	K2757-2	10	6,400	ND	ND	ND	ND	ND
TB-8 1,5'-3.0'	K2757-3	10	ND	ND	ND	ND	ND	**200
TB-10 0'-1.5'		10	860	ND	ND	ND	ND	ND
TB-5 3.0'-4.5' Method Blank	K2757-5 K2757-MB	10	ND	ND	ND	ND	ND	ND

Method Reporting Limit MRL

Quantitated using hydraulic oil as a standard. The MRL for oil is four times the MRL shown above.

None Detected at or above the method reporting limit ND

Unidentified product that matches the volatility range of oil.

Approved by Chey Fraky

Date 6/6/9/

Analytical Report

Client:

Sweet-Edward/EMCON, Inc.

Project:

Reynolds/#S3301.01

Sample Matrix: Soil

Date Received: Date Extracted: 06/12/91

06/11/91

Date Analyzed:

06/13/91

Work Order #:

K913155

Total Recoverable Petroleum Hydrocarbons SM Method 5520E/EPA Method 418.1 ma/Ka (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result		
TB16-0-2.8	K3155-1	25	ND.		
TB16-2.8-4.1	K3155-2	25	ND		
TB16-4.1-6.0	K3155-3	25	ND		
TB17-0-2	K3155-4	25	37		
TB17-2-4	K3155-5	25	ND		
TB9 1.5-3.0	K3155-6	25	39		
Method Blank	K3155-MB	25	ND		

SM

Standard Methods for the Examination of Water and Wastewater, 17th Ed., 1989

MRL

Method Reporting Limit

ND

None Detected at or above the method reporting limit

Chen Lishy

Date 6/34/9/

Analytical Report

Client:

Sweet-Edwards/EMCON, Inc.

Project:

Reynolds Metals/#S3301.04

Sample Matrix: Water

Date Received: 06/07/91

Date Extracted: 06/10/91

Date Analyzed:

06/10/91

Work Order #:

K913127

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1 mg/L (ppm)

Sample Name	Lab Code	MRL	Result
TB-11	K3127-1	0.5	2.3
TB-15	K3127-2	0.5	ND
TB-17	K3127-3	0.5	ND
Method Blank	K3127-MB	0.5	ND

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Analytical Report

Client:

Reynolds Metals Company

Sample Matrix: Soil

Date Received: 08/08/91 Date Extracted: 08/08/91 Date Analyzed: 08/09/91

Work Order #:

K914437

Total Recoverable Petroleum Hydrocarbons SM Method 5520E/EPA Method 418.1 mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result		
SSEWC5	K4437-1	25	350		
SSWC6	K4437-2	25	1,800		
NCF1	K4437-3	25	ND		
EWC2	K4437-4	25	140		
NWC3	K4437-5	25	68		
WWC4	K4437-6	25	29		
Method Blank	K4437-MB	25	ND		

SM Standard Methods for the Examination of Water and Wastewater, 17th Ed., 1989

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

00001

e y Parky

Analytical Report

Client:

Reynolds Metals Company

Sample Matrix: Soil

Date Received:

08/13/91

Date Extracted: Date Analyzed:

08/14/91

Work Order #:

08/14/91 K914541

Total Recoverable Petroleum Hydrocarbons SM Method 5520E/EPA Method 418.1 mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result
SBC1	K4541-1	25	150
SEWC2	K4541-2	25	100
SWWC3	K4541-3	25	110
Method Blank	K4541-MB	25	ND

Standard Methods for the Examination of Water and Wastewater, 17th Ed., 1989 SM

Method Reporting Limit MRL

None Detected at or above the method reporting limit ND

Analytical Report

Reynolds Metals Company

Sample Matrix: Water

Date Received: 08/22/91 Date Extracted: 08/23/91

Date Analyzed: 08/23/91

Work Order #:

K914791

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1 mg/L (ppm)

Sample Name	Lab Code	MRL	Result
Ground Water	K4791-1	0.5	0.9
Method Blank	K4791-MB	0.5	ND

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Date 8/27 (8)

Analytical Report

Client:

Reynolds Metals Company

Sample Matrix: Soil

Date Received: 09/26/91
Date Extracted: 09/26/91
Date Analyzed: 09/27/91
Work Order #: K915542

Total Recoverable Petroleum Hydrocarbons SM Method 5520E/EPA Method 418.1 mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result
EEC 9-26-91 Soil	K5542-1	25	ND
Method Blank	K5542-MB	25	ND

SM Standard Methods for the Examination of Water and Wastewater, 17th Ed., 1989
 MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by Date 10/161

FILE COPY

JUN 13 1991

OLDS ALUMINGMED PRIMARY METALS DIVISION REYNOLDS

June 11, 194AZ. WASTE

HWCU

Reynolls -

Mr. Paul Skyllingstad Dept. of Ecology Industrial Section 2404 Chandler Court S.W., Suite 260 Olympia, WA 98502-6038

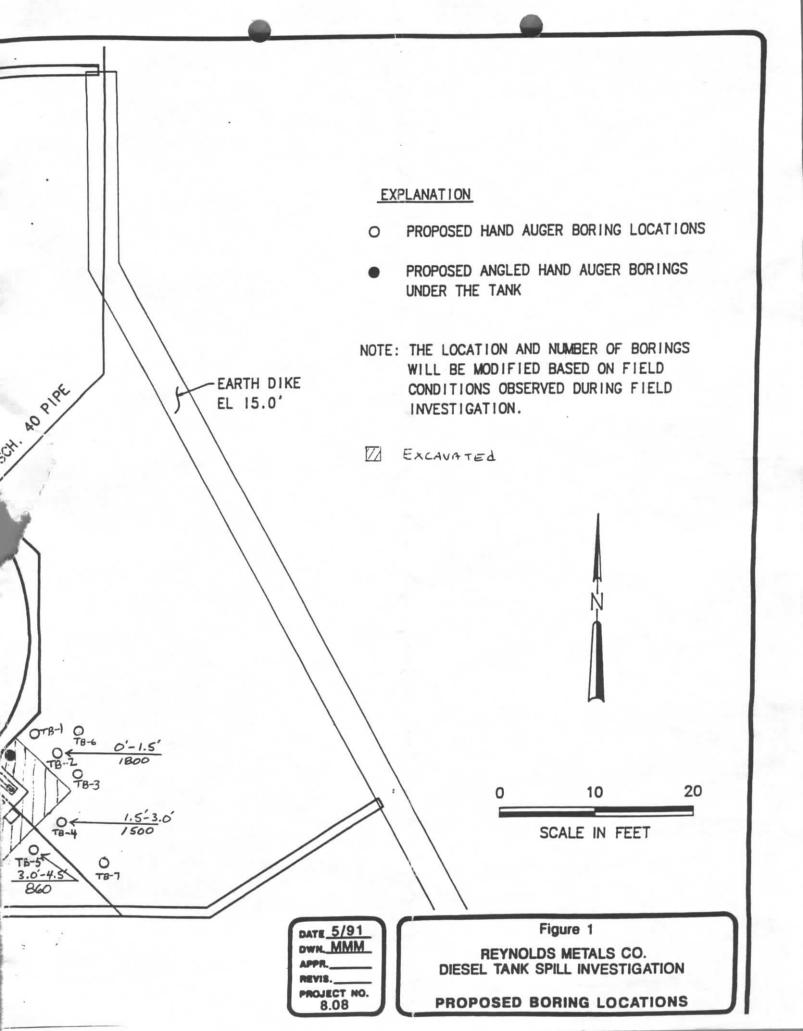
Dear Mr. Skyllingstad:

On April 19, 1991, Reynolds became aware of potential diesel contamination around the discharge pumps, valves, and piping of our on-site 200,000 gallon aboveground storage tank. Subsequent soil sampling has shown diesel contamination exceeding the 200 ppm cleanup standard in chapter 173-340 WAC, the Model Toxics Control Act cleanup regulation. A sketch of the diesel tank and soil sample sites is attached.

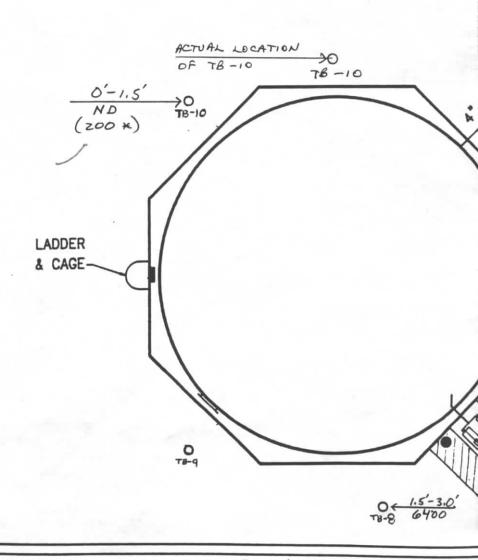
It is Reynolds intent to proceed with a voluntary cleanup. Additional sampling will be conducted to determine the extent of the contamination. Reynolds will keep Ecology informed of its progress on this matter.

Sincerely,

REYNOLDS METALS COMPANY LONGVIEW REDUCTION PLANT


Thomas D. Dickey Technical Supt.

mb


Attachment

John Claunch cc: John Amos, G-4-9 Larry Tropea, E-L-3

Notification of Independent Ch. Oil spille diese

EL 10.5'

Sweet-Edwards EMCON * 200 mg/kg of petroleum product with The volatility range of oil. Soil Removal from Former Cryolite
Ditches – Summary of Confirmational
Testing Results table, Waste Profile
Composite Sampling Results table, and
Remediation Areas and Confirmation
Sample Locations figure

Anchor QEA, LLC. Prepared for Northwest Alloys, Inc. 2011.

Summary of Confirmational Testing Results, 2008

		MTCA Method A	Angle Ditch	Angled Ditch	Angled Ditch			-	_	_		Railroad Ditch		
		Industrial Soil	No. 1	No. 2	No. 3	No. 4	No. 1	No. 2	No. 3	No. 4	#1	#2	#3	#4
Chemical	Units	Criteria	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/21/2008	10/21/2008	10/21/2008	10/21/2008	10/27/2008	10/27/2008	10/27/2008	10/27/2008
Conventional Parameters (pct)					Ī						Ī	•		
Total solids	pct		63.5	71	71.7	55.1	64.3	78.4	76.3	75.6	66.8	69.4	75.4	74.2
Polycyclic Aromatic Hydrocarbons (μg	/kg)													
Total PAH (U = 1/2)	μg/kg		377	568	223	219	20.5 U	249	302	4,814	20 U	19.2 U	543	187
Total PAH (U = 0)	μg/kg		272	493	93.3	37.9	20.5 U	147	207	4,779	20 U	19.2 U	473	71.0
Total cPAH (U=1/2)	μg/kg	2,000 ¹	16.0	18.5	14.0	18.3	15.5	14.5	14.2	337	15.1	14.5	33.2	13.5
Total cPAH (U=0)	μg/kg	2,000 ¹	0.23	6.3	0.0	0.0	0.0	2.6	2.1	337	0.0	0.0	31.4	0.0
2-Methylnaphthalene	μg/kg			-					-	-				
Acenaphthene	μg/kg		30.4	27.2	66.9	24.2 U	20.5 U	17 U	17.3 U	17.5 U	20 U	19.2 U	17.6 U	17.9 U
Acenaphthylene	μg/kg		21 U	18.7 U	18.5 U	24.2 U	20.5 U	17 U	17.3 U	17.5 U	20 U	19.2 U	17.6 U	17.9 U
Anthracene	μg/kg		99.5	37.8	26.4	37.9	20.5 U	17 U	17.3 U	53.4	20 U	19.2 U	17.6 U	17.9 U
Benzo(a)anthracene	μg/kg	B(a)P	21 U	25	18.5 U	24.2 U	20.5 U	17 U	17.3 U	374	20 U	19.2 U	34.9	17.9 U
Benzo(a)pyrene	μg/kg	2,000	21 U	18.7 U	18.5 U	24.2 U	20.5 U	17 U	17.3 U	204	20 U	19.2 U	20.3	17.9 U
Benzo(b)fluoranthene	μg/kg	B(a)P	21 U	32.7	18.5 U	24.2 U	20.5 U	22.1	18.5	537	20 U	19.2 U	47.5	17.9 U
Benzo(g,h,i)perylene	μg/kg		21 U	18.7 U	18.5 U	24.2 U	20.5 U	17 U	17.3 U	126	20 U	19.2 U	17.6 U	17.9 U
Benzo(k)fluoranthene	μg/kg	B(a)P	21 U	18.7 U	18.5 U	24.2 U	20.5 U	17 U	17.3 U	206	20 U	19.2 U	21.7	17.9 U
Chrysene	μg/kg	B(a)P	23.2	55.9	18.5 U	24.2 U	20.5 U	34.7	27.4	757	20 U	19.2 U	70.8	17.9 U
Dibenzo(a,h)anthracene	μg/kg	B(a)P	21 U	18.7 U	18.5 U	24.2 U	20.5 U	17 U	17.3 U	45.3	20 U	19.2 U	17.6 U	17.9 U
Fluoranthene	μg/kg		41.4	107	18.5 U	24.2 U	20.5 U	48.4	61.1	1,160	20 U	19.2 U	130	27.6
Fluorene	μg/kg		21 U	18.7 U	18.5 U	24.2 U	20.5 U	17 U	17.3 U	17.5 U	20 U	19.2 U	17.6 U	17.9 U
Indeno(1,2,3-c,d)pyrene	μg/kg	B(a)P	21 U	18.7 U	18.5 U	24.2 U	20.5 U	17 U	17.3 U	96.7	20 U	19.2 U	17.6 U	17.9 U
Naphthalene	μg/kg	5,000	21 U	18.7 U	18.5 U	24.2 U	20.5 U	17 U	17.3 U	17.5 U	20 U	19.2 U	17.6 U	17.9 U
Phenanthrene	μg/kg		36	91.4	18.5 U	24.2 U	20.5 U	17 U	48.7	170	20 U	19.2 U	31.3	21.7
Pyrene	μg/kg		41.6	116	18.5 U	24.2 U	20.5 U	41.8	51.4	1,050	20 U	19.2 U	116	21.7

Notes:

Detected concentration is greater than MTCA Method C Soil screening level

Bold = Detected result

-- = Not analyzed

μg/kg = microgram per kilogram

U = Compound analyzed, but not detected above detection limit

cPAH = carcinogenic PAHs

MTCA = Model Toxics Control Act

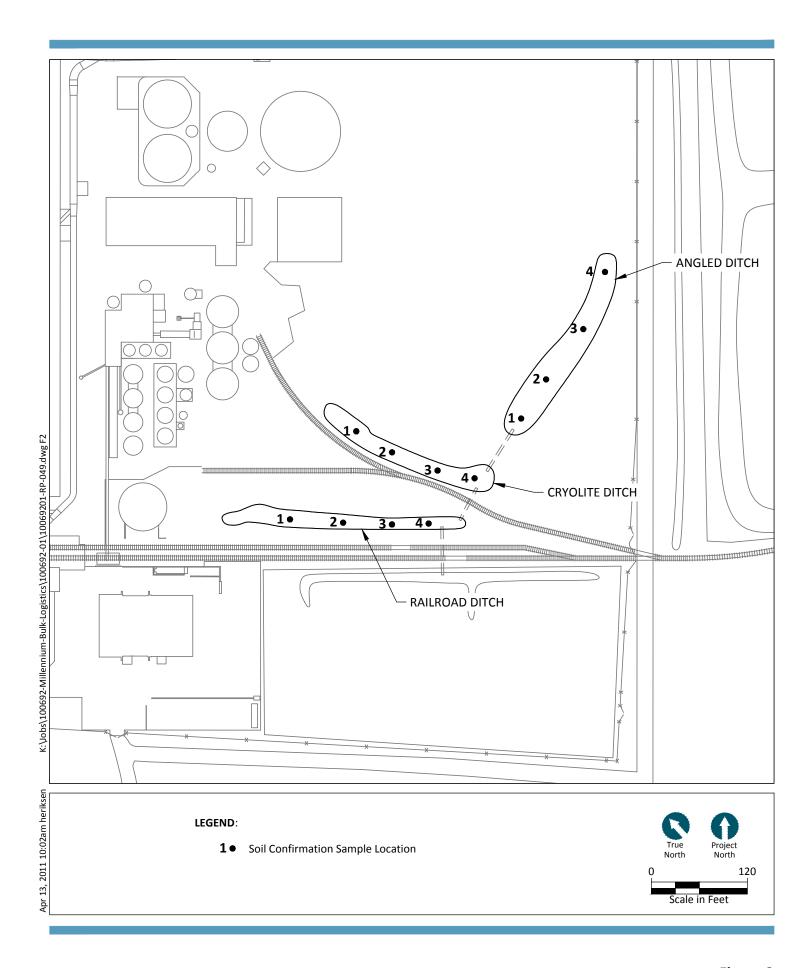
1 cPAHs were calculated using toxicity equivalency factor methodology and include benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluorantene, chrysene, dibenzo(a,h)anthracene and indeno(1,2,3-c,d)pyrene.

Waste Profile Composite Sampling Results, 2009

.		CD1 #1	CD1 #3	CD1 #4	CD2 #1	CD2 #3	CD2 #4	CD3 #1	CD3 #2	CD3 #4	CD4 #1	CD4 #2	CD5 #1	CD5 #2	CD6 #1	CD6 #2	#1	#2	#3	#4
Chemical	Unit	10/21/2009	10/21/2009	10/21/2009	10/21/2009	10/21/2009	10/21/2009	10/21/2009	10/21/2009	10/21/2009	10/22/2009	10/22/2009	10/22/2009	10/22/2009	10/22/2009	10/22/2009	8/27/2009	8/27/2009	8/27/2009	8/27/2009
Conventional Parameters (mg/kg)	1 6		· ·											1					1	
Cyanide, total	mg/kg	18			9.5			20.9			8.8				28.6	-				
Fluoride	mg/kg	55,600			8,680			32,300			14,300				49,100		-			
Total solids	pct	78.6	84	85.1	87.5	83.4	89.6	84	83.4	80.3	73.8	74.4	72.6	74.3	75.6	76.1	87	87.9	88.5	92.1
Metals (μg/L) - TCLP	•																•		•	•
Arsenic	ug/l	100 U				100 U														
Barium	ug/l	1,000 U				1,000 U														
Cadmium	ug/l	10			10 U			10			10 U				20					
Chromium	ug/l	10 U			10 U			10			10 U				10 U					
Lead	ug/l	50 U				50 U			-											
Mercury	ug/l	1 U			1 U			1 U			1 U				1 U			-		
Nickel	ug/l	360			210			770			230				790					
Selenium	ug/l	100 U				100 U			-											
Silver	ug/l	20 U				20 U			-											
Zinc	ug/l	500 U				500 U														
Polycyclic Aromatic Hydrocarbons (μg/	kg)			•								•	•	•			•			
Total 18 PAH (U = 1/2)	μg/kg		4,576,625	3,693,154		1,501,676	1,610,913		5,637,678	4,467,598	-	1,161,224	1,348,417	1,055,640	5,752,240	5,742,305	11,809,000	3,117,900	9,780,000	19,029,000
Total 18 PAH (U = 0)	μg/kg		4,576,625	3,693,154		1,501,676	1,610,913		5,637,678	4,467,598		1,161,190	1,348,417	1,055,640	5,752,240	5,742,220	11,809,000	3,117,900	9,780,000	19,029,000
2-Methylnaphthalene	μg/kg		52	54		35	45		68	58	-	34 U	66	3,500	320	270				
Acenaphthene	μg/kg		4,000	2,000		720	730		4,200	1,600		1,100	11,000	20,000	11,000	10,000	15,000	3,900	23,000	150,000
Acenaphthylene	μg/kg		200	120		44	51		200	100		60	470	540	430	450		-		
Anthracene	μg/kg		15,000	12,000		7,300	9,200		18,000	14,000		6,400	24,000	38,000	35,000	34,000	74,000	19,000	61,000	690,000
Benzo(a)anthracene	μg/kg		340,000	280,000		130,000	150,000		430,000	360,000	-	86,000	67,000	79,000	420,000	430,000	870,000	240,000	740,000	750,000
Benzo(a)pyrene	μg/kg		230,000	190,000		89,000	95,000		230,000	170,000		55,000	43,000	55,000	220,000	230,000	440,000	130,000	400,000	440,000
Benzo(b)fluoranthene	μg/kg		750,000	620,000		250,000	270,000		790,000	620,000	-	190,000	120,000	120,000	760,000	790,000	1,400,000	450,000	1,300,000	1,200,000
Benzo(g,h,i)perylene	μg/kg		190,000	140,000		48,000	49,000		160,000	130,000	-	37,000	31,000	37,000	150,000	160,000	270,000	84,000	260,000	330,000
Benzo(k)fluoranthene	μg/kg		170,000	140,000		51,000	53,000		160,000	130,000	-	33,000	26,000	30,000	140,000	140,000	330,000	81,000	290,000	290,000
Chrysene	μg/kg		560,000	360,000		260,000	270,000		450,000	390,000	-	190,000	190,000	130,000	410,000	450,000	1,400,000	480,000	1,300,000	1,500,000
Dibenzo(a,h)anthracene	μg/kg		28,000	25,000		13,000	13,000		28,000	24,000		8,700	6,300	7,300	29,000	32,000	60,000	20,000	56,000	49,000
Fluoranthene	μg/kg		1,000,000	840,000		320,000	350,000		1,700,000	1,400,000	-	240,000	330,000	190,000	1,800,000	1,700,000	3,400,000	800,000	2,500,000	4,400,000
Fluorene	μg/kg										-				6,300					
Indeno(1,2,3-c,d)pyrene	μg/kg		160,000	120,000		46,000	49,000		130,000	100,000		35,000	26,000	33,000	120,000	130,000	220,000	77,000	210,000	230,000
Naphthalene	μg/kg		73	110		67	67		110	110	-	34 U	81	9,300	190	170 U		-		
Phenanthrene	μg/kg		28,000	23,000		16,000	21,000		36,000	27,000		18,000	60,000	97,000	150,000	130,000	330,000	63,000	240,000	3,800,000
Pyrene	μg/kg		1,100,000	940,000		270,000	280,000		1,500,000	1,100,000		260,000	410,000	190,000	1,500,000	1,500,000	3,000,000	670,000	2,400,000	5,200,000
Semivolatile Organics (µg/kg)						·								•						
Dibenzofuran	μg/kg		470	290		290	340		550	410		290	390	12,000	2,400	2,200	1			1

Notes:

Bold = Detected result


U = compound analyzed, but not detected above detection limit

-- = not analyzed

μg/kg = microgram per kilogram

μg/L = microgram per liter

June 2013
Page 1 of 1
130730-01.01

Warehouse UST and Fuel Island Cleanup – Confirmation TPH Results for Former UST Fuel Island Soils table

Anchor QEA, LLC. Prepared for Northwest Alloys, Inc. 2011.

Confirmation TPH Results for Former UST Fuel Island Soils

	Sample ID	CV-001-102407	CV-002-102407	CV-003-102407	CV-004-102407	CV-005-102407	CV-006-102407
	Sample Date	10/24/2007	10/24/2007	10/24/2007	10/24/2007	10/24/2007	10/24/2007
Analyte	Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Total Petroleum Hydrocarbons (mg/kg)							
Diesel Range Hydrocarbons		6.6 U	6.6 U	12	6.7 U	5.7 U	5.6 U
Gasoline Range Hydrocarbons		9.6 U	9.8 U	9.8 U	9.9 U	6.8 U	6.7 U
Motor Oil Range		13 U	13 U	14	13 U	11 U	11 U

Notes:

Bold = Detected result

U = Compound analyzed, but not detected above detection limit

-- Results not reported or not applicable

mg/kg = milligrams per kilogram

Reynolds Metals Company – Class II Inspection – February 1990

Washington State Department of Ecology. June 1991.

REYNOLDS METAL COMPANY CLASS II INSPECTION FEBRUARY 1990

by Marc Heffner

Washington State Department of Ecology Environmental Investigations and Laboratory Services Program Compliance Monitoring Section Olympia, Washington 98504-6814

Water Body No. WA-CR-1010 (Segment No. 26-00-04)

June 1991

ABSTRACT

A Class II Inspection was conducted in February 1990 at the Reynolds Metals Company primary aluminum smelter in Longview. Samples were collected from the five permitted discharges. Receiving water sediments near the principal discharge to the Columbia River (002A) and centrifuge samples of the 002A discharge were also collected. NPDES permit compliance was good during the inspection. Some toxicity was observed in 002A effluent using *Daphnia magna*, fathead minnow and Microtox bioassays. Sediment impacts near the 002A discharge were not detected.

INTRODUCTION

A Class II Inspection was conducted on February 26-28, 1990, at the Reynolds Metals Company (Reynolds) primary aluminum smelter in Longview. Receiving water sediment samples were collected on February 23, 1990. The inspection was conducted by Keith Seiders and Marc Heffner of the Ecology Compliance Monitoring Section and Wayne Wooster of the Ecology Industrial Section. Reynolds staff providing assistance were Hal Hays, Stan Casswell, and Tom Dickey.

The smelter has five point discharges regulated by NPDES Permit #WA-000008-6 and Order #89-3 (Figure 1). Outfall 002A into the Columbia River serves as the primary discharge for water used in the plant. Outfall 001 into the Columbia River discharges sanitary wastes generated and treated on-site. Discharge 003 into the Longview Ditch system includes noncontact cooling water and site runoff. Discharges 004 and 005 into the Longview Ditch system are site runoff. At the time of the inspection the cryolite recovery plant, which was scheduled for closure, was in operation.

Objectives of the inspection included:

- 1. Verify effluent compliance with NPDES permit limits.
- 2. Characterize priority pollutants in the 002 discharge stream.
- 3. Characterize priority pollutants in the sediments near outfall 002.
- 4. Evaluate outfall 002 effluent and sediments for toxicity using a series of bioassays.
- 5. Review lab procedures at the mill to determine adherence to accepted protocols. Samples were split with the permittee to determine the comparability of Ecology and permittee laboratory results.
- 6. Advance the state-of-the art of compliance inspections by contributing to ongoing developmental efforts with centrifugation.

PROCEDURES

Ecology sample collection in the 001 and 002 outfall systems included composite and grab samples. Ecology Isco composite samplers were set up to collect 001 effluent, 002-A effluent, 002-B influent, and 002-B effluent samples. Sampler configurations and locations are summarized in Figure 1 and Table 1. Samplers collected equal volumes of sample every 30 minutes for 24 hours. Sampling quality assurance/quality control steps included priority pollutant cleaning samplers prior to the inspection and collecting a field transfer blank sample (Table 2).

Reynolds also collected composite samples of the 002-A effluent and 002-B effluent. Ecology and Reynolds samples were split for analysis by both the Ecology and Reynolds labs. Samples collected, sampling times, and parameters analyzed are summarized in Table 3.

Ecology 003, 004, and 005 discharge grab samples and the 001 Reynolds grab sample collection procedures attempted to assure similar sample was submitted for each analysis. Samples for PAH, oil and grease, and fecal coliform analysis were collected directly into the appropriate containers. For the remaining parameters, grab samples were placed in a large jug until adequate volume was available for all analysis. The sample was shaken then distributed into the appropriate containers. Locations are summarized in Figure 1 and Table 1. Samples collected, sampling times and parameters analyzed are summarized in Table 3.

Receiving water sediments were collected with a 0.1 m² van Veen grab sampler at three stations; one at a background site approximately 500 yards upstream of the outfall (upstrm), one within ten yards downstream of the outfall diffuser (diffuser), and one 300 feet downstream of the diffuser at the edge of the dilution zone (dwnstrm). At each station, the top two centimeters of sample from successive grab samples were collected. A VOA bottle was filled from the first grab while the remainder of the sample was put in a stainless steel bucket. After an adequate volume was collected, the contents of the bucket were homogenized and put in appropriate containers. Sampling quality assurance/quality control steps included collecting only sediment not in direct contact with the sampler and pre-inspection priority pollutant cleaning of equipment that would touch the samples (Table 2). Sampling times and parameters analyzed are included in Table 3.

Samples for Ecology analysis were placed on ice and delivered to the Ecology Manchester Laboratory. Analytical procedures and the laboratories doing the analysis are summarized in Table 4.

RESULTS AND DISCUSSION

Laboratory Evaluation/Split Sample Results

Reynolds laboratory procedures were reviewed by Stew Lombard and Lee Fearon of the Ecology Quality Assurance Section. Their comments and recommendations are included in Appendix A.

Split sample analytical results compared well (Table 5).

001-Sanitary Discharge

The trickling filter plant effluent was within most NPDES permit limits during the inspection (Table 6). The Ecology effluent composite sample TSS concentration (31 mg/L) slightly exceeded the daily average permit limit (30 mg/L) and the two Ecology fecal coliform grab

sample results (590/100mL and 36000-estimated/100mL) exceeded permit limits. Chlorine residual concentrations varied from <0.04 to 0.4 mg/L, perhaps contributing to the high coliform counts.

Trickling filter plant operation was a concern. When collecting the February 27, 1720 effluent grab sample, TSS concentrations appeared high. Further plant inspection revealed approximately 2 inches of water ponded on the trickling filter. A clarifier core sample found a shallow sludge blanket (<1 foot) but poor settling throughout the water column. Effluent TSS (127 mg/L) and COD (110 mg/L) were elevated while the chlorine residual concentration (<0.04 mg/L) was low (Table 7). Plant personnel reported a blocked line to the treatment plant had been cleared at approximately 1500 on February 27, possibly resulting in the plant disturbance.

When collecting the February 28, 0920 sample, soap suds were observed coming out of the trickling filter intake wetwell. Plant personnel reported that weekly shower cleanup had begun at 0500 resulting in the suds and reducing the amount of cleaner used would be investigated. Ponding was again observed on the trickling filter.

More attention to plant operation appears necessary. Collecting influent composite data to evaluate trickling filter loading and measuring effluent quality with composite samples would be useful. The cause of the ponding should be found and eliminated before further problems develop. Chlorine dosage rates should be set to provide the lowest chlorine residual concentration capable of adequate disinfection. Meeting the requirements in the new permit for the 001 discharge should help correct the plant loading and chlorine residual concerns.

002 - Industrial Discharge

General Chemistry

The discharge was within NPDES Permit general chemistry parameters with the exception of one of the three oil and grease grab samples (grab - 18 mg/L: daily maximum limit - 15 mg/L: Table 6). The other two oil and grease grabs were well below permit limits. The inspection data suggest cyanide sources other than the 002B stream, to which the permit limit applies, may exist. One-third to one-fourth of the cyanide being discharged appeared to come from the 002B stream. Reynolds reported that the cyanide concentrations observed in the 002A sample likely resulted from a pipe in the North plant air pollution control system that broke during the inspection spilling water with elevated cyanide and sulfate concentrations into the 002A system. Cyanide concentrations in the 002A and 002B streams should be resampled during the next inspection.

Laboratory analysis of both the weak & dissociable and total cyanide in the 002A stream found the weak & dissociable concentration to be approximately one-sixth of the total cyanide concentration (Table 7). Continued measurement of total cyanide in the discharge is reasonable because of the varying solubility and reactivity of cyanides and toxicity of hydrogen cyanide (HCN).

Nutrient concentrations were low in the discharge (Table 7). Other general chemistry parameter concentrations appeared acceptable.

Organics

Benzo(a)pyrene, the only organic compound with an NPDES permit limit, was within limits (Table 6). The load in the 002B stream, the permitted stream, represented 10-20 percent of the load measured in the 002A stream. The 002A load fell between the average and maximum loads allowed in the 002B stream.

Organics in the 002A discharge were primarily high molecular weight polynuclear aromatic hydrocarbons (HPAH; Tables 8 and 9). Fluoranthene (22mg/L) was the HPAH found in the highest concentration. The 002B discharge had higher concentrations of HPAHs and several low molecular weight polynuclear aromatic hydrocarbons (LPAH). Organics concentrations detected in the 002A stream were less than available toxicity criteria (EPA, 1986; Table 10). The 002A organic concentrations may also have been influenced by the spill in the North plant discussed in the general chemistry section. A recheck of both the 002A and 002B streams for PAHs is suggested for the next inspection.

Bis(2-Ethylhexyl)phthalate was found in the 002A and 002B samples as well as the transfer blank. Sample or laboratory contamination appear the likely source of the phthalate. Low concentrations of acetone and chloroform were found in the 002A discharge (2 ug/L or less) and higher concentrations of acetone were found in the 002B discharge (17 and 100 ug/L). Five ug/L of acetone, a common laboratory contaminant, was found in the transfer blank.

A complete list of parameters analyzed and analytical results is included in Appendix B.

Tentatively identified compounds are included in Appendix C. Only two compounds were tentatively identified in the 002A sample, both at concentrations of 13 ug/L-estimated or less. In the 002B sample the twenty tentatively identified compounds found in the highest concentration ranged in concentration from 130-910 ug/L-estimated. Most were long-chain carbon compounds.

Metals

Interpretation of permit compliance for metals is difficult due to the poor detection limits attained by the Ecology contract laboratory (Table 11). The Ecology contract laboratory performance evaluation sample results bordered on the unacceptable range for aluminum and nickel (Table 5). The problem was in part caused by improper sample preparation after the sample preparation directions were either not forwarded to the contract lab or lost. Reynolds lab PE sample results for Al and Ni were good. The PE sample provided by the QA section did not contain a known concentration of Sb. Ecology contract laboratory Sb concentrations were all greater than the Reynolds laboratory results. A PE sample for Sb analysis by Reynolds is

suggested for the next inspection. The Reynolds metals results, which are thought to be the most accurate, indicate permit compliance (Table 6).

Detection limits also hampered efforts to compare 002A concentrations to toxicity criteria (Table 10). Several detection limits exceeded the criteria and several of the metals detected were detected at the detection limit, a range of limited analytical accuracy.

Bioassays

The rainbow trout bioassay results were in compliance with the NPDES limit (Table 6). One hundred percent survival occurred in both the 65% effluent concentration specified in the permit and in 100% effluent (Table 12).

Some toxicity was noted in the other organisms tested (Table 12). Acute results showed an LC₅₀ of 26% effluent for *Daphnia magna* and 58.8% effluent for fathead minnow. Chronic results showed a NOEC of 25% effluent for *Daphnia magna* and 12.5% effluent for fathead minnow. The Microtox EC₅₀ was 38% effluent.

The cause of the toxicity is not clear. Comparison of results to toxicity criteria found cyanide to be the only parameter measured in concentrations greater than acute toxicity criteria (EPA, 1986; Table 10). Organics in the effluent were in concentrations less than available toxicity criteria, and comparison of results to metals criteria is inconclusive. Chlorine residual concentrations in 002A effluent samples were <40 ug/L (Table 7). Although the detection limit was slightly greater than the acute (19 ug/L) and chronic (11 ug/L) criteria, chlorine toxicity is not considered likely (EPA, 1986).

Centrifuge

Analysis of centrifuge cake (solids captured in the bowl of the centrifuge) for organics found many of the HPAH and LPAH compounds found in the 002A and 002B samples (Table 8). A similar compound list was found in the 002B treatment plant sludge, although sludge concentrations were generally less than centrifuge cake concentrations. Phenol was only found in the centrifuge solids sample. A volatile organics analysis was not run on the two samples.

Metals results also indicated higher concentrations of metals in the centrifuge cake than in the sludge (Table 11). High effluent metals detection limits prevent informative comparison of centrifuge and effluent data.

A more complete discussion of centrifuge methods and results will be presented in a centrifuge study report (Andreasson, in prep).

003, 004, & 005 - Discharges to the Longview Ditches

The three surface water discharges into the Longview Ditch system were within NPDES Permit limits (Table 6).

The 003 stream general chemistry results closely approximated the Longview Ditch characteristics in the discharge area (Table 7). Chrysene was the only PAH detected at 0.25 ug/L, just above the detection limit of 0.20 ug/L (Table 9). Metals results are not useful.

The 004 stream water quality was somewhat different than ditch quality. Fluoride (29.4 mg/L) and cyanide (total - 370 ug/L: weak and dissociable - 29 ug/L) were both observed in the 004 flow from Reynolds property (Table 7). PAHs were all below detection limits in the discharge (Table 9).

The 005 stream permitted site included flows from both the smelter and cable plant. The upstream station, which included smelter flow only was notably different than downstream (Table 7). The cyanide concentration was higher (total - 53 ug/L: weak and dissociable - 13 ug/L) and eight PAHs, ranging in concentration from 0.3-8.8 ug/L were detected in the upstream station (Table 9).

Rerouting the 004 discharge and further monitoring the 003 and 005 discharges as required in the new permit appears appropriate.

Sediments

Sediments in the area of the 002 outfall showed little impact from the discharge for the parameters measured (Tables 7 and 8). Current velocities appeared adequate to minimize deposition near the outfall. Sediment samples collected varied from 96-98% sand while the centrifuge cake was 95% silt and clay (Table 8). TOC concentrations were very low; 0.15 percent-dry wt basis or lower.

Methylene chloride, acetone, and bis(2-Ethylhexyl)phthalate were found in the three sediment samples collected (Table 8). All three compounds were also found in the transfer blank. Four LPAHs were found in the downstream sample at concentrations up to 76 ug/Kg-dry wt-estimated. Metals concentrations were similar for all three samples (Table 11).

A complete list of parameters analyzed and detection limits is included in Appendix B. Also, five tentatively identified compounds were found in each sample at estimated concentrations up to 890 ug/Kg-dry wt basis (Appendix C).

Bioassays using *Hyallela azteca* and Microtox found no indication of toxicity in the sediments (Table 13).

RECOMMENDATIONS AND CONCLUSIONS

Laboratory Evaluation/Split Sample Results

Sample split results compared well. Laboratory recommendations made by the Ecology Quality Assurance Section are included in Appendix A.

001 - Sanitary Discharge

The sanitary discharge approached BOD₅ and TSS permit limits, and one fecal coliform measurement was quite high, likely due to variable chlorine residual concentrations. More attention to plant operation is recommended; including, measurement of influent loading, correcting the trickling filter ponding as necessary, and maintaining the minimum chlorine residual necessary for good disinfection. Meeting conditions of the new NPDES permit should help satisfy the recommendations.

002 - Industrial Discharge

General Chemistry

Discharge concentrations and loadings were within permit limits. The cyanide loadings observed were greater in the 002A flow than in the 002B flow. The spill in the North plant may account for the observation. A recheck of cyanide in both streams during the next inspection is recommended.

The weak and dissociable cyanide concentrations represented approximately one-sixth of the total cyanide measured. Monitoring both parameters is of value because of the variable stability of many cyanide compounds.

Organics

Organics detected were primarily HPAH compounds. Benzo(A)pyrene loading was within limits in the permitted 002B stream. The load in the 002A stream fell between the monthly average and daily maximum 002B limits. The North plant spill may have contributed to the observation. A recheck of PAHs in both streams during the next inspection is recommended.

<u>Metals</u>

Poor Ecology detection limits limited usefulness of the data. Reynolds results appeared accurate and indicated permit compliance.

Bioassays

The trout bioassay found no toxicity indicating permit compliance. Acute test LC₅₀s ranged from 26-58.8% 002A effluent and chronic test NOECs ranged from 12.5-25% 002A effluent in tests run with other organisms (*Daphnia magna*, fathead minnow, and Microtox). The cause was unclear although cyanide concentrations exceeded toxicity criteria.

Centrifuge

Many of the compounds found in the 002A&B samples and a list very similar to compounds found in the 002B sludge, were found in the centrifuge cake sample. Both metals and organics concentrations were higher in the centrifuge cake than in the sludge.

003, 004, & 005 - Discharges to the Longview Ditches

All three discharges were within permit limits at the time of the inspection. The 003 discharge was similar to the Longview Ditch water near the discharge. The 004 discharge had elevated fluoride (29.4 mg/L) and cyanide (total-370 ug/L) concentrations in comparison to the Longview Ditch. The 005 discharge upstream of the cable plant contributions had cyanide (total-53 ug/L) and eight PAHs (0.3-8.8 ug/L) detected.

Discontinuing the 004 discharge and studies of the 003 and 005 discharges required in the new permit appear appropriate.

Sediments

The sediments were fairly clean with no detected impacts from the Reynolds discharge. There was no indication of toxicity in the bioassays.

REFERENCES

Andreasson, Jeanne, in preparation. Summary of Ecology Centrifuge Testing.

EPA, Level 1 Biological Testing Assessment and Data Formatting, EPA 600/7-80-079. April, 1980.

EPA, Quality Criteria for Water, EPA 440/5-86-001, 1986.

FIGURE

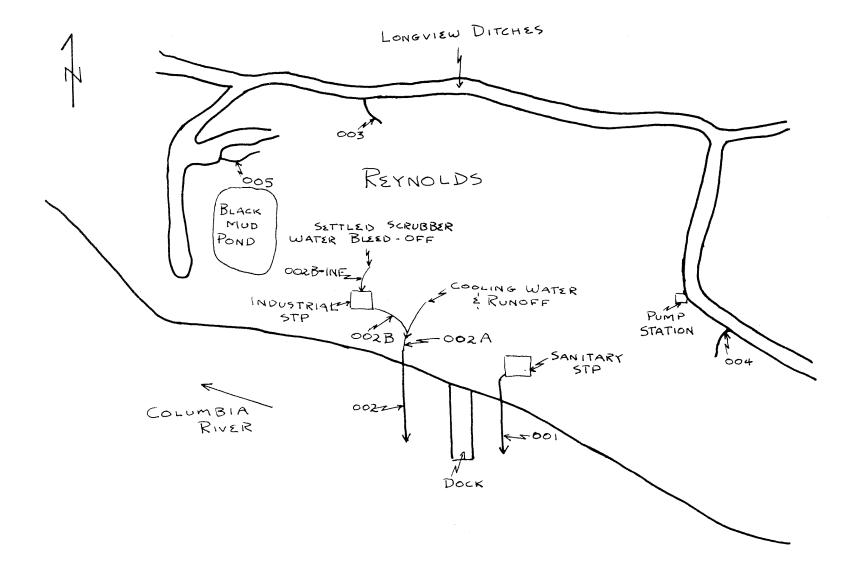


Figure 1 - Simplified Schematic - Reynolds Metals, February 1990.

TABLES

Table 1 - Sampling Station Descriptions - Reynolds, February 1990.

001

Treated Sanitary Wastewater - Samples collected from the effluent weir box just upstream of the weir.

002-A

Cooling Water, Site Runoff, and Treated Industrial Wastewater - Samples collected from a tap off the effluent pipe gallery above the discharge wet well. Composite and centrifuge samples were collected from a priority pollutant cleaned stainless steel bucket placed under the tap and allowed to overflow at a rate to prevent solids from settling.

002-B-Influent

Industrial Wastewater Treatment Plant Influent - Samples collected from a tap on the pipe into the industrial wastewater treatment plant. Composite sample was collected from a priority pollutant cleaned stainless steel bucket placed under the tap and allowed to overflow at a rate to prevent solids from settling.

002-B

Treated Industrial Wastewater - Samples collected from a tap on the discharge line. Composite samples were collected from a priority pollutant cleaned stainless steel bucket placed above the wet well tank. A teflon line was run from the tap to the bucket and the flow rate set to allow the bucket to overflow at a rate to prevent solids from settling.

003-Upstream

Sample collected approximately 5 feet upstream* of the discharge and 10 feet out into the Longview Drainage District Ditch.

003

Sample collected at corner of Reynolds Cable Plant parking lot just after the 003 ditch passed under the reduction plant/cable plant boundary fence.

003-Downstream

Sample collected in the effluent plume approximately 8 feet into the Longview Drainage District Ditch. The plume was relatively clear water compared to the turbid receiving water.

Table 1 - Cont'd - Reynolds, February 1990.

004-Upstream

Sample collected approximately 10 feet upstream* of the discharge and 8 feet out into the Longview Drainage District Ditch.

004

Sample collected as the 004 discharge fell from the culvert pipe into the Longview Drainage District Ditch.

004-Downstream

Sample collected in the effluent plume approximately 8 feet into the Longview Drainage District Ditch.

005-Upstream

Sample collected from the 005 ditch at the corner of the cable plant spool storage area. Location was upstream of inputs from the cable plant.

005-Permit

Sample collected at the Reynolds sampling bridge just prior to the 005 ditch entering a culvert running into a swampy area.

^{*} Longview Drainage District Ditches were flowing east to west

Table 2 - Priority Pollutant Cleaning and Field Transfer Blank Procedures - Reynolds, February 1990.

PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. Wash with laboratory detergent
- 2. Rinse several times with tap water
- 3. Rinse with 10% HNO3 solution
- 4. Rinse three (3) times with distilled/deionized water
- 5. Rinse with high purity methylene chloride
- 6. Rinse with high purity acetone
- 7. Allow to dry and seal with aluminum foil

FIELD TRANSFER BLANK PROCEDURE

- 1. Pour organic free water directly into appropriate bottles for parameters to be analyzed from grab samples (VOA).
- 2. Run approximately 1L of organic free water through a compositor and discard.
- 3. Run approximately 6L of organic free water through the same compositor and put the water into appropriate bottles for parameters to be analyzed from composite samples (BNA, Pesticide/PCB, metals, cyanide, and PAH).

Field Analyses	E E E
Conductivity	
Alkalinity	
Hardness	
Sulfate Cyanide (Total) ER ER <td></td>	
Cyanide (Total)	
TS E E E E E T E	
TNVS	
TNVSS	
BOD5	
Inhib. BOD5	
COD E E E TOC (liquid) E E F TOC (solids) NH3-N E E E NH3-N E E E E NO3+NO2-N E E E E Total-P E E E E Oil and Grease E E E E Fecal Coliform E E E E Aluminum (total) E E E E Antimony (total) E E E E Nickel (total) E E E E Copper (tot rec) pp metals (dissolved) E E E BNA (water) E E E E	
TOC (solids)	
NH3-N E <td></td>	
NO3+NO2-N E	
Oil and Grease	
Fecal Coliform ER E Aluminum (total) E E E E E E E Antimony (total) ER	
Aluminum (total)	
Nickel (total) ER ER Copper (tot rec) E E E pp metals (dissolved) E E E BNA (water) E E E	
Copper (tot rec) E E E E E E E E D E	
pp metals E E E E pp metals (dissolved) E E BNA (water) E	
BNA (water)	
Pest/PCB (water)	
PAH (Mthd 610) E E E	
BNA (solids) VOA (solids)	
Pest/PCB (solids) E Ecology analysis	
% Solids R Reynolds analysis	
Grain Size * R analysis for Benzo(a)Pyrene only Trout (65% effluent) ** bioassay samples are comprised of equa	
Trout (100% effluent) E** volumes of the three 002A grab samples.	
Microtox E** + station – sampler. Ecology sample when	
Fathead Minnow Daphnia Magna E** not specified + additional data will be presented in a	
Hyallela (sediment) centrituge report (Andreasson, in prep)	

Table 3 - Cont'd - Reynolds, February 1990.

rubio	Sample+: Date: Time: Type: Lab Log #	002B-E 2/27-28 0700-0700 Composite	002B-R 2/27-28 0700-0700 Composite 098242	003-upstm 2/27 1220 Grab 098243	003 2/27 1255 Grab 098244&52	003-dnstm 2/27 1150 Grab 098245	004-upstm 2/27 1515 Grab 098246	004 2/27 1530 Grab 098247&54	004-dnstr 2/27 1500 Grab 098248	m 005-upstm 2/27 1620 Grab 098249&56	2/27 1640 Grab	Trns Blk 2/26 1430 Grab 098251	PE sample 098260	2/23	Diffuser 2/23 1245–1340 Grab 088020	2/23	Cent Cake 2/28 *+ Composite 098280	Sludge 2/28 *+ Grab 098283
Field Ana pH Conducti Temperal	vity ture	E E	E	E E	ER E E	ER E E	E E	ER E	ER E E	ER E	ER E							
Chlorine Sulfide Laborator	residual ry Analyse	8		E	E E	E E	E E	É E	E	E E	E E							
Conducti	vity	E	Е	E	E	E	Ε	E	E	E	E							
Alkalinity Hardness		E E		E	E	Е	Е	E	Ε	E	E							
Fluoride (Fluoride (E	E	E	ER	ER	E	ER	ER	ER	ER		ER	E E	E	E E		
Sulfate	,	E	E		E			Ε		E	E							
Cyanide (Cyanide (ER ER	ER ER	E E	E ER	E ER	E E	E ER	E ER	E ER	E ER	E	ER	E E	E E	E E		
TŚ TNVS	``	E E																
TSS		E	ER										ER					
TNVSS BOD5		Ε																
Inhib. BO	D5																	
COD TOC (liqu	ıid)																	
TOC (soli NH3-N	ds)				E			E		E	Е			E	E	E	E	Ē
NO3+NO	2-N				E			E		E	Ε							
Total-P Oil and G	irease				E			E E		E	E							
Fecal Col	liform																	
Aluminun Antimony		E E	E E	E	E	E	E	E	E	E	E		ER ER	E	E	E	E	E
Nickel (to Copper (t		E	E		R	R			R		R		ER					
pp metals	3	. Е		Ε	E	E .	E	E	Ē	E	E	E		E	E	E	E	E
pp metals BNA (wat	s (dissolve er)	a) E										E						
VOA (wat Pest/PCB		E										E E						
PAH (Mth	id 610)	ER*	ER*		Ε			E		E	E	E						
BNA (soli VOA (soli														E E	E E	E E	E	E
Pest/PCB % Solids	(solids)													Ε	Ε	Ε	Ē	Ē
Grain Siz	e													E E	E E	E E	E	E E
	% effluent 0% effluer																	
Microtox		it de la companya de la companya de la companya de la companya de la companya de la companya de la companya de												E	E	E		
Fathead I Daphnia I																		
Hyallela (sediment)													E	E	E		

Table 4 – Ecology Analytical Methods – Reynolds, February 1990.

	Method Used for Ecology Analysis (Ecology, 1988&89)	Laboratory Performing <u>Analysis</u>
Laboratory Analyses		
Conductivity	EPA #120.1	Ecology
Alkalinity	EPA #310.1	Ecology
Hardness	EPA #130.2	Ecology
Fluoride (total)	EPA #340.3	Ecology
Fluoride (soluble)	EPA #340.3	Ecology
Sulfate	EPA #300.0	Ecology
NH3-N	EPA #350.1	Ecology
NO3+NO2-N	EPA #353.2	Ecology
Total-P	EPA #365.2	Ecology
TS	EPA #160.3	Ecology
TNVS	EPA #160.4	Ecology
TSS	EPA #160.2	Ecology
TNVSS	EPA #160.4	Ecology
COD	EPA #410.1	Ecology
BOD5	EPA #405.1	Ecology
Inhib. BOD5	EPA #405	Ecology
Fecal Coliform (MF)	APHA, 1985: #909C	Ecology
Oil and Grease	EPA #413.1	Amtest
TOC (water)	EPA #415.1	Ecology
TOC (sed/sludge)	Tetra Tech, 1986	Amtest
% Solids	EPA #160.3	Amtest
Grain Size	Tetra Tech, 1986	Laucks
Cyanide (total)	EPA #335.3	Ecology
Cyanide (wk & dis)	APHA, 1985: #412H	Ecology
VOA (water)	EPA #624	Laucks
VOA (sed/sludge)	EPA #8240	Laucks
BNA (water)	EPA #625	Laucks
BNA (sed/sludge)	EPA #8270	Laucks
Pest/PCB (water)	EPA #608	Laucks
Pest/PCB (sed/sludge)	EPA #8080	Laucks
PAH (water)	EPA #610	Ecology
Metals (water)	EPA #200	Sound Analytical Services
Metals (sediments)	EPA #200	Amtest
Metals (cent/sludge)	EPA #200	Ecology
Trout	Ecology, 1981	Weyerhaeuser
Fathead Minnow	EPA, 1989	Northwestern Aquatic Sciences
Daphnia Magna	EPA, 1987	Ecology
Microtox (water)	Beckman, 1982	ECOVA
Microtox (sed/sludge)	Tetra Tech, 1986	ECOVA
Hyallela	Nebeker, 1984	Northwestern Aquatic Sciences

Table 4 - Cont'd - Reynolds, February 1990.

	Method Used for Ecology Analysis (Ecology, 1988&89)	Laboratory Performing <u>Analysis</u>
Field Analyses		
pH	APHA, 1985: #423	Ecology
Conductivity	APHA, 1985: #205	Ecology
Temperature	APHA, 1985: #212	Ecology
Chlorine Residual	APHA, 1985: #408E	Ecology
Sulfide	EPA #376.2	Ecology

APHA-AWWA-WPCF, 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed.

Beckman Instruments, Inc., 1982. Microtox System Operating Manual. Ecology, 1981. Static Acute Fish Toxicity Test, DOE 80–12, revised July 1981.

Ecology, 1988. Department of Ecology Laboratory Users Manual.

Ecology, 1989. Manchester Laboratory Price List, 6/15/89.

EPA, 1983. Methods for Chemical Analysis of Water and Wastes, 600/4/79–020, revised March 1983.

EPA, 1984. 40 CFR Part 136, October 26, 1984.

EPA, 1986. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, 3rd ed., November 1986.

EPA, 1987. A Short-Term Chronic Toxicity Test Using Daphnia magna, EPA/600/D-87/080.

EPA, 1989. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, second edition, EPA/600/4–89/001.

Nebeker, A.V., et al, 1984. Biological Methods for Determining Toxicity of Contaminated Freshwater Sediments to Invertebrates, Env. Tox. and Chemistry, vol. 3.

Tetra Tech, 1986, Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound, Prepared for Puget Sound Estuary Program.

Table 5 - Split Sample Results Comparison - Reynolds, February 1990.

	Sample +: Date: Time: Type: Lab Log #:	001-E 2/27-28 0700-0700 Composite 098230	001-R 2/28 0920 Grab 098231	002A 2/28 1020 Grab 098262	002A-E 2/27-28 0700-0700 Composite 098236	002A-R 2/27-28 0700-0700 Composite 098237	002B-E 2/27-28 0700-0700 Composite 098241	Composite	003 2/27 1255 Grab 098244&52	003–dnstm 2/27 1150 Grab 098245	004 2/27 1530 Grab 098247&54	004-dnstm 2/27 1500 Grab 098248	2/27 1620 Grab	005–permit 2/27 1640 Grab 098250&58	PE sample 098260	PE sample true value (acceptance limits) 098260
	Laborator	Y														
рН (S.U.)	Ecology Reynolds	7.1 7.8	7.4 7.6		7.4 7.5	7.4 7.5			7.2 7.6	7.6 7.6	7.3 7.4	6.6 6.8	7.0 7.1	7.3 7.6		
Fluoride (total-mg/L)	Ecology Reynolds		4.7 2.4		8.4 6.7	8.0 7.4			1.4 1.2	1.4 1.1	29.4 22.0	0.75 0.65	9.7 8.6	0.50 0.43	1.7 1.6	1.60 (1.39–1.78)
Cyanide (total-ug/L)	Ecology Reynolds				191 150	649 171	2630 2250	2950 2890							903 980	890 (562–1140)
Cyanide (wk&dis-ug/L)	Ecology Reynolds				27 25	19 23	606 890	569 1040	2 <5	4 <5	29 33	4 <5	13 19	4 <5		
TSS (mg/L)	Ecology Reynolds	31 32.8	19 20.8		11 13.2	10 11.0		285 162							27 29.3	29.7 (24.2-33.3)
BOD5 (mg/L)	Ecology Reynolds	20 22.4	19 15.9													
Oil and Grease (mg/L)	Ecology Reynolds			5.7 3.0												
Fecal Coliform (#/100mL)	Ecology Reynolds		590 107													
Benzo(a)pyrene (ug/L)	Ecology Reynolds						33.0 31	30.8 12								
Cu (ug/L)	Ecology Reynolds								<50 <10	<50 <10		<10 <10		<50 <10		
Al (ug/L)	Ecology Reynolds				690 530	630 500									441* 350	350 (269–439)
Ni (ug/L)	Ecology Reynolds				70 <20	50 <20									417* 390	370 (319–419)
Sb (ug/L)	Ecology Reynolds				280 <50	70 <50									230* <50	**

station – sampler. Ecology sample when not specified.
 proper dilution instructions were not provided to the contract laboratory analyzing the samples.
 true value of Sb not quantified in the PE sample tested.

Table 6 - NPDES Permit Limits/Inspection Results Comparison - Reynolds, February 1990.

Outfall 001						
			Sample +: Date: Time:	001-E 2/27-28 0700-0700	001-R 2/28 0920	001
	Effluent L		Type: Lab Log #:	Composite 098230	Grab 098231	Grabs
	Daily <u>Average</u>	Daily <u>Maximum</u>	Laboratory			
рН (S.U.)	6.5–8.5 at al	I times	Ecology Reynolds		7.4 7.6	7.2; 7.4
TSS (mg/L)	30	45	Ecology	31	19	
(lbs/D)	38	90	Reynolds Ecology Reynolds	32.8 23.5 24.9	20.8 14.4 15.8	
BOD5 (mg/L)	25	45	Ecology	20 22.4	19 15.9	
(lbs/D)	31	90	Reynolds Ecology Reynolds	15.2 17.0	14.4 12.1	
Fecal Coliform (#/100mL)	200	400	Ecology Reynolds		590 107	3 6000LJ
Chlorine Residual (mg/L)	range 0.1	-3.0	Ecology		0.3	0.4; <0.04
Flow (MGD)	0.22	0.32		0.091	0.091	

⁺ station - sampler. Ecology sample when not specified. LJ estimated - total plate count greater than 200

Outfalls 00	3, 004	, & 0 05								
		Effluor	nt Limits	Sample: Date: Time: Type: Lab Log #:	003 2/27 1255 Grab 098244&52	003-dnstm 2/27 1150 Grab 098245	004 2/27 1530 Grab 098247&54	004-dnstm 2/27 1500 Grab 098248	005-upstm 2/27 1620 Grab	005-permit 2/27 1640 Grab
		Daily Average	Daily Maximum	Lab Log #.	090244 & 52	090245	090247034	098248	098249&56	098250&58
pH (S.U.)		6.5-9.0 a	at all times	Ecology Reynolds	7.2+ 7.6+	7.6 7.6	7.3+ 7.4+	6.6 6.8	7.0 7.1	7.3+ 7.6+
Fluoride (total-mg/l	_)	,	. *	Ecology Reynolds	1.4 1.2	1.4+ 1.1+	29.4 22.0	0.75+ 0.65+	9.7 8.6	0.50+ 0.43+
Cyanide (wk&dis-u	g/L)	5.	2++	Ecology Reynolds	2 <5	4+ <5+	29 33	4+ <5+	13 19	4+ <5+
Oil and Grea (mg/L)	ıse	no visib	le sheen	Ecology	no sheen+ 1.2	no sheen	no sheen+ 3.3	no sheen	no sheen 3.1	no sheen+ 6.4
Benzo(a)pyre (ug/L)	ene	•	* *	Ecology Reynolds	0.20U		0.20U		0.6	0.1U+
Cu (ug/L)	003		.7*	Ecology Reynolds		<50+ <10+				
	004		3.0*	Ecology Reynolds				<10+ <10+		
	005	22	2.0*	Ecology Reynolds						<50+ <10+

⁺ location where permit limits are applied
++ chronic toxicity criteria
* chronic toxicity criteria

chronic toxicity criteria based on hardness

concentration to be less than chronic toxicity criteria.

No criteria available.

^{***} limit for outfall 005 only. Concentration to be less than chronic toxicity criteria. No criteria available.

U compound analyzed for but not detected at the given detection limit.

Table 6 - Cont'd - Reynolds, February 1990.

	Effluent	Limits	Sample +: Date: Time: Type: Lab Log #:	002A Grab	002A-E 2/27-28 0700-0700 Composite 098236	002A-R 2/27-28 0700-0700 Composite 098237	002B-E 2/27-28 0700-0700 Composite 098241	002B-R 2/27-28 0700-0700 Composite 098242
	Daily <u>Average</u>	Daily <u>Maximum</u>	Laboratory		000200	030207	030241	030242
pH (S.U.)	6.0-	9.0	Ecology Reynolds	7.1;7.5;7.1				
Total Fluoride (mg/L) (lbs/D)	608	1315	Ecology Reynolds Ecology Reynolds		8.4 6.7 563 449	8.0 7.4 536 496		
Total Cyanide (ug/L) (lbs/D)	12.0*	18.0*	Ecology Reynolds Ecology Reynolds		191 150 12.8** 10.1**	649 171 43.5** 11.5**	2630 2250 3.2 2.8	2950 2890 3.6 3.5
TSS (mg/L) (lbs/D)	1850	3700	Ecology Reynolds Ecology Reynolds		11 13.2 738 885	10 11.0 671 738		
Oil and Grease (mg/L)	10	15	Ecology Reynolds	18;2.1;5.7 3.0				
Benzo(a)pyrene (ug/L) (lbs/D)	0.070*	1.000*	Ecology Reynolds Ecology Reynolds		5.7 0.382**	3.0 0.201**	33.0 31 0.041 0.038	30.8 12 0.038 0.015
Al (ug/L) (lbs/D)	150*	300*	Ecology Reynolds Ecology Reynolds		690 530 46 36	630 500 42 34		
Ni (ug/L) (lbs/D)	3.0	5.1	Ecology Reynolds Ecology Reynolds		70 <20 4.7 <1.3	50 <20 3.4 <1.3		
Sb (ug/L) (lbs/D)	10.1	22.5	Ecology Reynolds Ecology Reynolds		280 <50 18.8 <3.4	70 <50 4.7 <3.4		
Salmonid Bioassay (% Survival)	>8	0	Ecology		100			
Flow (MGD)						8,04		

^{*} per Order No. 89–3.
** limit applies to 002B flow
+ station – sampler. Ecology sample when not specified.

Table 7 - Ecology Laboratory General Chemistry Results - Reynolds, February 1990.

Sample +: 001 Date: 2/27 Time: 0920 Type: Grab Lab Log #:	001 2/27 1720 Grab 098261	001-E 2/27-28 0700-0700 Composite 098230	001-R 2/28 0920 Grab 098231	001 2/28 1530 Grab 098232	Intake 2/28 1200 Grab 098233	002A 2/27 0955 Grab 098234	002A 2/27 1755 Grab 098235	002A 2/28 1020 Grab 098262	002A-E 2/27-28 0700-0700 Composite 098236	002A-R 2/27-28 0700-0700 Composite 098237	002B-Inf 2/27 1035 Grab	002B-Inf 2/27 1820 Grab	2/28 1045	002B-Inf 2/27-28 0700-0700 Composite 098238	002B 2/27 1025 Grab 098239	002B 2/27 1810 Grab 098240	002B 2/28 1110 Grab
Field Analyses													***************************************	7/11/7			
pH (S.U.) 7.2 Conductivity (umhos/cm 480 Temperature (C) 12.0 Chlorine residual (mg/L) Free 0.2 Total 0.4 Sulfide (mg/L)	7.4 517 15.2 <0.1 <0.04	7.1 460 1.5	7.4 454 11.6 <0.1 0.3			7.1 1055 17.6 <0.04	7.5 1268 16.8	7.1 1120 16.7	7.4 1132 3.7 <0.04 <0.1	7.4 1210 18.6	9.3 38600 29.7	8.9 37300 30.7	8.6 34500 27.0	9.0 36700 3.1	3.0 36700 26.8	3,9 36000 28.1	3.5 44200 26.5
Laboratory Analyses																	
Conductivity (umhos/cm) Alkalinity (mg/L as CaCO3)		517	481						1290 125	1310				33900			
Hardness (mg/L as CaCO3)		160			112				132	132							
Fluoride (total-mg/L) Fluoride (total-mg/Kg dry wt) Flouride (soluble-mg/L)		3.3	4.7		0.87				8.4	8.0				1110			
Sulfate (mg/L) Cyanide (total-ug/L)									375 191	390 649				17500 28600			
Cyanide (wk & dis-ug/L) Cyanide (total-mg/Kg dry wt) Cyanide (wk & dis-mg/Kg dry v	wt)								27	19				865			
TS (mg/L)		372	340						881					38000			
TNVS (mg/L)	4.4	257	254						792					32900			
TSS (mg/L) T'''SS (mg/L)	127	31 14	19 8						11	10				309			
5 (mg/L)		20	19						8					211			
Inhib. BOD5 (mg/L)		17	16														
COD (mg/L)	110	69	85														
TOC (liquid-mg/L)									11								
TOC (solids-% dry wt)																	
NH3-N (mg/L)		5.6	3.2						0.36	0.28							Simple state
NO3+NO2-N (mg/L)		0.61	0.58						0.07	0.19							
Total-P (mg/L) Oil and Grease (mg/L)		1.2	0.84			.40			0.46	0.47							
Fecal Coliform (#/100mL) % Solids			590 3	6000 LJ		18	2.1	5.7							58	25	

^{*} sample too turbid for accurate test results

⁺ station - sampler (E - Ecology: R - Reynolds). Ecology sample when not specified.

J estimated

L total plate count greater than 200

U less than

Table 7 - Cont'd - Reynolds, February 1990.

			002B-R 2/27-28 0700-0700 Composite 098242	003-upstm 2/27 1220 Grab 098243	003 2/27 1255 Grab 098244&52	003-dnstm 2/27 1150 Grab 098245	004-upstm 2/27 1515 Grab 098246	004 2/27 1530 Grab 098247&54	2/27 1500 Grab	005-upstm 2/27 1620 Grab 098249&56	2/27 1640 Grab	Trns Blk 2/26 1430 Grab 098251	PE sample 098260	Upstrm 2/23 1515–1545 Grab 088022	Diffuser 2/23 1245–1340 Grab 088020	Dwnstrm 2/23 1355-1415 Grab 088021
Field Analyses																
pH (S.U.) Conductivity (umbo Temperature (C) Chlorine residual (r Free		3.9 35100 5.1	3.4 36500 17.9	7.0 285 9.6	7.2 330 14.1	7.6 280 11.7	6.7 297 13.0	7.3 735 7.1	6.6 302 13.5	7.0 849 11.3	7.3 497 13.7					
Total Sulfide (mg/L)				<0.04 <0.1	0.06 <0.1	<0.04 <0.1	<0.04 <0.1	<0.04 <0.1	<0.04 <0.1	<0.04 <0.1	0.08					
Laboratory Analyse	<u>s</u>			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Conductivity (umbo	CaCÓ3)	34400 1U	34400	297	287	276	280	793	297	910	533					
Hardness (mg/L as Fluoride (total-mg/l Fluoride (total-mg/l Flouride (soluble-m	L) Kg dry wt)	303 190	230	108 0.80	110 1.4	109 1.4	106 0.20	96 29.4	112 0.75	196 9.7	207 0.50		1.7	114 3.8U	34.2 3.8U	23.5 3.1U
Sulfate (mg/L) Cyanide (total-ug/L Cyanide (wk & dis-	.) ug/L)	18900 2630 606	20500 2950 569	8 6	3.9 2U 2	2 4	2 6	40 370 29	32 4	64 53 13	3.4 4 4	2U 2U	903	3.60	3.60	3.10
Cyanide (total-mg/l Cyanide (wk & dis-i TS (mg/L)		34200												0.091U 0.094U	0.100U 0.099U	0.099U 0.094U
TNVS (mg/L) TSS (mg/L) TNVSS (mg/L) BOD5 (mg/L) Inhib. BOD5 (mg/L) COD (mg/L)		33500 308 203	285										27			
TOC (liquid-mg/L) TOC (solids-% dry	wt)													0.07	0.05	0.15
NH3-N (mg/L) NO3+NO2-N (mg/L) Total-P (mg/L) Oil and Grease (mg	,				0.14 0.10 0.42 1.2	- 2000000000000000000000000000000000000		0.04 0.28 0.12 3.3		0.65 0.16 0.13 3.1	0.44 0.05 0.45 6.4			oo oo oo oo oo oo oo oo oo oo oo oo oo	A CAR	
Fecal Coliform (#/10 % Solids					, .£					9.1	0.4			78.2	76.4	76,6

Table 8 - VOA, BNA, and Pest/PCB Compounds Detected - Reynolds, February 1990.

Sample ++: Date: Time: Type: Lab Log #:	002A 2/27 0955 Grab 098234	002A 2/27 1755 Grab 098235	002B 2/27 1025 Grab 098239	002B 2/27 1810 Grab 098240	Trns Blk 2/26 1430 Grab 098251	Upstrm 2/23 1515–1545 Grab 088022	Diffuser 2/23 1245–1340 Grab 088020	Dwnstrm 2/23 1355–1415 Grab 088021	Cent Cake 2/26-28 Comp 098280	Sludge 2/28 Grab 098283
% TOC (dry-wt basis)						78.2 0.07	76.4 0.05	76,6 0,15	16.1 10.5	55.2
Grain size (%)						0.07	0.05	0.15	10.5	3.1
. Gravel – +10 mesh						<2	<2	<2	<1	<1
Sand - +230 mesh						96	96	98	5	<1
Silt - 5 - 8 phi Clay - 9 - 12 phi						4	3	1	44	69
VOA Compounds	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	<1 (ug/Kg **)	1 	1	51	31
Methylene Chloride	(49/L) 	(ag/L) 	(ug/c) 	(ug/L)	(ug/L) 1	(ug/kg) 12 B	(ug/Kg **) 14 B	(ug/Kg **) 12 B		
Acetone	2 J		100	17 J	5	31	24	27		
Chloroform	1	2								
Sample ++:	002A-E		002B-E		Trns Blk	Upstrm	Diffuser	Dwnstrm	Cent Cake	Sludge
Date: Time:	2/27-28		2/27-28		2/26	2/23	2/23	2/23	2/26-28	2/28
Type:	0700-0700 Composite		0700-0700 Composite		1430 Grab	1515-1545	1245-1340	1355-1415	0	0.1
Lab Log #;	098236		098241		098251	Grab 088022	Grab 088020	Grab 088021	Comp 098280	Grab 098283
BNA Compounds	(ug/L)		(ug/L)		(ug/L)	(ug/Kg **)	(ug/Kg **)	(ug/Kg **)	(ug/Kg **)	
Phenol	(ug/L) 		(ug/L)		(ug/L)	(ug/kg)	(ug/Ng)	(ug/Ng)	(ug/kg) 13000	(ug/Kg **)
2,4-Dimethylphenol			2 J							
2-Methylnaphthalene			2 J							addidididid i aa a taa
Dibenzofuran Bis(2-Ethylhexyl)phthalate			1 J				- - <u>-</u>	- -	- -	
Low Molecular Weight Polynuc	53	rocarbone (LP	55		33	520	210 B	750		
Naphthalene	near Aromade Hyd	rocarbons (Er	3 1					or in a contract <u>and a magazine</u>		
Acenaphthylene	– –		4 J				- <u>-</u>			
Acenaphthene			20						6600 J	9300
Phenanthrene	1 J		16						130000	17000
Anthracene	, - +, ,,		6						47000	8500
High Molecular Weight Polynu Fluoranthene	clear Aromatic Hyd 22	rocarbons (H	220 320					00 1	1000000	****
Pyrene	21		380					39 J 37 J	1900000 2300000 D	520000 570000
Benzo(a)Anthracene	 6		75					o/ u	1100000	240000
Chrysene	10		61						1700000	390000
Benzo(b+k)Fluoranthene	11		150					76 J	1800000 D	510000
Benzo(a)Pyrene	3 J		36					42 J	620000	130000
Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene	1 J		12						210000	40000
DINGITE U(a,II) AIRCHIACETTE										
Benzo(a.h.i)Pervlene	2 .1		4 J 13						88000	17000
Benzo(g,h,i)Perylene Pest/PCB Compounds	2 J		4 J 13						88000 230000	17000 44000

J estimated value – less than the specified detection limit
D result from analysis of a diluted sample
B detected in the method blank also
** dry-wt basis
++ station – sampler. Ecology sample when not specified.

Table 9 - PAH Scan Results - Reynolds, February 1990.

Sample ++:	002A-	-E	002A-E	002A-R	002A-R	002B-Inf	002B-E	002B-E
Date:	2/27-2	28	2/27-28	2/27-28	2/27-28	2/27-28	2/27-28	2/27-28
Time:	0700-070	00	0700-0700	0700-0700	0700-0700	0700-0700	0700-0700	0700-0700
Type:	Composi	ite	Composite	Composite	Composite	Composite	Composite	Composite
Lab Log #:	09823	36	098236	098237	098237	098238	098241	098241
	PAH Sca	an	BNA Scan	PAH Scan	BNA Scan	PAH Scan	PAH Scan	BNA Scan
	(ug/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Benzo(a)Pyrene	5.7		3 J	3,0	1 J	400	33.0	36
Dibenzo(a,h)Anthracene	1.0	J	4 U	1,1 J	2 U	60 UJ	1.3 UJ	4 J
Benzo(a)Anthracene	9.6		6	4.8	4	720	138	75
Acenaphthene	0.5	U	2 U	0.5 U	2 U	2.5 U	19.0	20
Phenanthrene	1.2		1 J	0.5 U	0.2 J	2.5 U	26.6	16
Fluorene	0.5	U	2 U	0.5 U	2 U	2.5 U	3.0	4 U
Naphthalene	0.5	U	4 U	0.5 U	2 U	2.5 U	1.5	3 J
Anthracene	0.5	UJ	2 U	0.5 U	2 U	2.5 U	10.4	6
Pyrene	20.7		21	6.1	4	2090 J	535	380
Benzo(g,h,i)Perylene	1.2		2 J	1.8	1 J	165	3.0	13
Indeno(1,2,3-cd)Pyrene	1.0	J	1 J	1.1 J	1 J	60 UJ	1.3 UJ	12
Benzo(b)Fluoranthene	14.4		11 X	8.7	5	1000	164 J	150 X
Fluoranthene	27.1		22	7.7	7	2290 J	535	320
Benzo(k)Fluoranthene	7.6		11 X	3.1	4	555	67.0 J	150 X
Acenaphthylene	0.5	U	2 U	0.5 U	2 U	2.5 U	3.5	4 J
Chrysene	17.4		10	9.2	9	1490 J	129	61

Sample ++:	002B-R	003	004	005-upstm	005-permit	Trans Blk	Trans Blk
Date:	2/27-28	2/27	2/27	2/27	2/27	2/26	2/26
Time:	0700-0700	1255	1530	1620	1640	1430	1430
Type:	Composite	Grab	Grab	Grab	Grab	Grab	Grab
Lab Log #:	098242	098244&52	098247&54	098249&56	098250&58	098251	098251
	PAH Scan	PAH Scan	BNA Scan				
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Benzo(a)Pyrene	30.8	0.20 U	0.20 U	0.6	0.1 U	0.2 U	4 U
Dibenzo(a,h)Anthracene	4.0 J	0.20 U	0.20 U	0.2 UJ	0.1 U	0.2 U	4 U
Benzo(a)Anthracene	70.7	0.20 U	0.20 U	1.7	0.1 U	0.2 U	2 U
Acenaphthene	4.8	0.20 U	0.20 U	0.2 U	0.1 U	0.2 U	2 U
Phenanthrene	11.0	0.20 U	0.20 U	0.2 U	0.1 U	0.2 U	2 U
Fluorene	2.5 U	0.20 U	0.20 U	0.2 U	0.2	0.2 U	2 U
Naphthalene	2.5 U	0.20 U	0.20 U	0.2 U	0.1 U	0.2 U	4 U
Anthracene	4.0	0.20 U	0.20 U	0.2 U	0.1 U	0.2 U	2 U
Pyrene	298	0.20 U	0.20 U	4.9	0.2	0.2 U	2 U
Benzo(g,h,i)Perylene	10.1	0.20 U	0.20 U	0,3	0.1 U	0.2 U	4 U
Indeno(1,2,3-cd)Pyrene	4.0 J	0.20 U	0.20 U	0.2 UJ	0.1 U	0.2 U	4 U
Benzo(b)Fluoranthene	75.4 J	0.20 U	0.20 U	2.2 J	0.1 U	0.2 U	4 U
Fluoranthene	300	NAR	0.20 U	8.4	0.3	0.2 U	2 U
Benzo(k)Fluoranthene	30.7 J	0.20 U	0.20 U	0.8 J	0.1 U	0.2 U	4 U
Acenaphthylene	2.5 U	0.20 U	0.20 U	0.2 U	0.1 U	0.2 U	2 U
Chrysene	77.3	0.25	0.20 U	3.3	0.2	0.2 U	2 U

NAR no analytical result

U compound analyzed for but not detected at the given detection limit

J estimated value less than the specified detection limit

X Benzo(b+k)Fluoranthene

⁺⁺ station - sampler. Ecology sample when not specified.

Table 10 - Comparison of 002A Data to Toxicity Criteria - Reynolds, February 1990.

VOA Compou Acetone Chloroform	Sample ++: Date: Time: Type: Lab Log #: unds	2 09	J	002A 2/27 1755 Grab <u>098235</u> (ug/L) 2			a (EP	Toxicity A, 1986) Chronic 1240	
	Sample ++: Date: Time: Type: Lab Log #:	002A 2/27 0700-0 Compos <u>0983</u> (ug/L)	-28 700 site 236						
Cyanide (tota	•	191	٦		Γ				
Cyanide (wk a		27	_			22		5.2	
	exyl)phthalate	53				940	* *	3	* *
Phenanthrend HPAHs	_	1	J						
Fluoranthene	!	22				3980	*		
Pyrene		21							
Benzo(a)Anth	racene	6							
Chrysene		10							
Benzo(b+k)Fl Benzo(a)Pyre		11 3							
Indeno(1,2,3-		1							
Benzo(g,h,i)P		2	J J						
Metals	Ci yiciic	2.	J						
Antimony (TR)	40				9000		1600	*
Arsenic (TR)	,	100	+*			0000		.000	
(Penta)						850	*	48	*
(Tri)						360		190	
Beryllium (TR		10	U+**			130	*	5.3	*
Cadmium (TR		10	U+**			5.4	+	1.4	+
Chromium (TI	H)	50	U						
(Hexa) (Tri)						16		11	
Copper (TR)		50	U+**				+	260	
Lead (TR)		100	U+**				+	15 4.5	+
Mercury (TR)		0.2				2.4	+	0.012	+
Nickel (TR)		50	-			1790	+	199	+
Selenium (TR)	100				260	•	35	•
Silver (TR)	-	100	U+**			6.5	+	0.12	
Thallium (TR)		100	U			1400	*	40	*
Zinc (TR)		50	U			148	+	134	+

J estimated value - less than the specified detection limit

LPAHs Low Molecular Weight Polynuclear Aromatic Hydrocarbons

HPAHs High Molecular Weight Polynuclear Aromatic Hydrocarbons

TR total recoverable metal

U indicates compound was analyzed for but not detected at the given detection limit

^{*} insufficient data to develop criteria - Lowest Observed Effect Level (LOEL) presented

^{**} LOEL for phthalate esters

⁺ calculation based on hardness (132 mg/L as CaCO3)

⁺⁺ station - sampler. Ecology sample when not specified.

^{+*} exceeds chronic toxicity criteria - concentration reported is at detection limit

^{+**} detection limit exceeds acute and/or chronic toxicity criteria

Table 11 - Metals Scan Results - Reynolds, February 1990.

Date: 227-28 228 228 227-28	Sample ++:	001-E	001-R	Intake	002A-E	002A-E	002A-R	002B-Inf	002B-E	002B-R	003-upstm	003	003-dnstm
Composite Comp								2/27-28	2/27-28	2/27-28	2/27	2/27	2/27
Lab Log #: 098230 098231 098238 098238 098237 098238 098237 098248 098241 098242 098243 098244 098245 098245 098244 098244 098244 098245 098244 098244 098245 098244							0700-0700	0700-0700	0700-0700	0700-0700	1220	1255	1150
Carbon C				Grab	Composite	Composite	Composite	Composite	Composite	Composite	Grab		Grab
Antimony (TF) 10 U 10 U 40 10 U 10 U 30 U 10 U 10 U 10 U 10 U 10	Lab Log #:	098230	098231	098233	098236	098236	098237	098238	098241	098242	098243	098244&52	
Antimony (TF) 10 U 10 U 40 10 U 10 U 30 U 10 U 10 U 10 U 10 U 10						dissolved							
Antimony (TR) 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10		(ug/L)	(ua/L)	(ua/L)	(ua/L)		(ua/L)	(ua/L)	(un/t-)	(ua/L)	(un/L)	· · · · · (uall)	(na/L)
Arsenic (TR)	Antimony (TR)					10 Ú	· · · · · · · · · · · · · · · · · · ·	10 1					
Beryllium (TR)	Arsenic (TR)	100 U		100 U									
Cadmium (TR)													
Chromium(TFR													
Copper (TR)													
Lead (TR)	•												
Morecury (TR)													
Nicket Time													
Selenium (TR) 100 U													
Silver (TR) 100 U													
Thallium (TR)													
Zinc (TR) 50 U 50													
Altiminum (T) 490 340 70 880 70 280 70 70 800 70 800 70 800 70 800 70 800 70 800 70 800 850 850 370 310 290 800 800 800 800 800 800 800 800 800 8													
Antimony (T) Nickel (T)			340			00	630			950			
Nickel (T)			• , •					31000			370	310	290
Sample ++: 004-upstm 004 004-dnstm 005-upstm 005-upstm 015-upstm													
Date: 2/27 2/27 2/27 2/27 2/27 2/27 2/27 2/27 2/27 2/27 2/28 150 1515 1530 1500 1620 1640 1430 1515 1545 1245 1340 1355 1415 1245 1340 1355 1415 1245 1340 1355 1415 1245 1340 1355 1415 1345 1340 1355 1415 1345 1340 1355 1415 1345 1340 1355 1415 1345 1340 1345 1340 1345 1345 1340 1345 1340 1345 1340 1345 1340 1345 1340 1345 1340 1345 1340 1345 1340 1345 1340 1345 1340 1345 1340 1345 1340 1345									730	900			
Date: 2/27 2/27 2/27 2/27 2/27 2/27 2/27 2/27 2/27 2/27 2/28 1515 1515 1515 1525 1530 1530 1520 1640 1430 1515 1515 1545 1245 1345 1355 1415 1345													
Time: 1515 1530 1530 1500 1620 1640 1430 1515-1545 Grab Grab Grab Grab Grab Grab Grab Grab	Sample ++:	004-upstm	004	004-dnstm	005-upstm	005-permit	Trns Blk	PE sample	Unstrm	Diffuser	Dwnstrm	Cent Cake	Sludge
Type: Grab								PE sample					
Lab Log #: 098246 098247854 098248 09824956 098250858 098251 098260 088022 088020 088021 098280 098283 (ug/L) (ug	Date:	2/27	2/27	2/27	2/27	2/27	2/26	PE sample	2/23	2/23	2/23		
Cug/L Cug/	Date: Time:	2/27 1515	2/27 1530	2/27 1500	2/27 1620	2/27 1640	2/26 1430	PE sample	2/23 1515–1545	2/23 1245–1340	2/23 1355–1415	2/26–28	2/28
Antimony (TR)	Date: Time: Type:	2/27 1515 Grab	2/27 1530 Grab	2/27 1500 Grab	2/27 1620 Grab	2/27 1640 Grab	2/26 1430 Grab	·	2/23 1515–1545 Grab	2/23 1245–1340 Grab	2/23 1355–1415 Grab	2/26-28 Composite	2/28 Grab
Antimony (IR) 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	Date: Time: Type:	2/27 1515 Grab 098246	2/27 1530 Grab 098247&54	2/27 1500 Grab 098248	2/27 1620 Grab 098249&56	2/27 1640 Grab 098250&58	2/26 1430 Grab 098251	·	2/23 1515–1545 Grab	2/23 1245–1340 Grab 088020	2/23 1355–1415 Grab	2/26-28 Composite	2/28 Grab
Beryllium (TR)	Date: Time: Type: Lab Log #:	2/27 1515 Grab 098246 (ug/L)	2/27 1530 Grab 098247&54	2/27 1500 Grab 098248	2/27 1620 Grab 098249&56	2/27 1640 Grab 098250&58	2/26 1430 Grab 098251 (ug/L)	098260	2/23 1515–1545 Grab 088022 (mg/Kg **)	2/23 1245–1340 Grab 088020 (mg/Kg **)	2/23 1355–1415 Grab 088021 (mg/Kg **)	2/26–28 Composite 098280	2/28 Grab 098283
Cadmium (TR)	Date: Time: Type: Lab Log #: Antimony (TR)	2/27 1515 Grab 098246 (ug/L) 10 U	2/27 1530 Grab 098247&54 (ug/L) 10 U	2/27 1500 Grab 098248 (ug/L) 10 U	2/27 1620 Grab 098249&56 (ug/L) 10 U	2/27 1640 Grab 098250&58 (ug/L) 10 U	2/26 1430 Grab 098251 (ug/L) 10 U	098260	2/23 1515–1545 Grab 088022 (mg/Kg **) 2.5 U	2/23 1245–1340 Grab 088020 (mg/Kg **)	2/23 1355–1415 Grab 088021 (mg/Kg **)	2/26–28 Composite 098280 (mg/Kg **)	2/28 Grab 098283 (mg/Kg **)
Chromium (TR) 50 U 50 U 50 U 50 U 50 U 50 U 50 U 23 13 16 95 1.6 J Copper (TR) 10 30 10 U 10 U 50 U 50 U 24 14 19 176 47 Lead (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 1.2 5.7 1.1 80 J 38 Mercury (TR) 0.2 U 0.7 0.6 0.9 0.2 U 0.4 0.031 0.011 U 0.012 U 1.8 0.67 Nickel (TR) 50 U 50 U 50 U 50 U 50 U 50 U 14 7.4 9.9 495 158 Selenium (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 0.59 U 0.59 U 36 9.8 Silver (TR) 100 U 100 U 100 U 100 U 100 U 100 U 0.61 U 0.59 U 0.59 U 36 9.8 Silver (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U 1.2 0.71 1.1 1.6 UN 0.45 UN Zinc (TR) 50 U 50 U 50 U 50 U 50 U 50 U 50 U 50	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U	098260	2/23 1515–1545 Grab 088022 (mg/Kg **) 2.5 U 0.86	2/23 1245–1340 Grab 088020 (mg/Kg **) 2.4 U 1.1	2/23 1355–1415 Grab 088021 (mg/Kg **) 2.4 U 0.71	2/26–28 Composite 098280 (mg/Kg **) 1.4 J	2/28 Grab 098283 (mg/Kg **) 0.2 U
Copper (TR) 10 30 10 U 10 U 50 U 50 U 24 14 19 176 47 Lead (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 1.2 5.7 1.1 80 J 38 Mercury (TR) 0.2 U 0.7 0.6 0.9 0.2 U 0.4 0.031 0.011 U 0.012 U 1.8 0.67 Nickel (TR) 50 U 50 U 50 U 50 U 50 U 50 U 14 7.4 9.9 495 158 Selenium (TR) 100 U 100 U 100 U 100 U 100 U 100 U 0.61 U 0.59 U 0.59 U 36 9.8 Silver (TR) 100 U 100 U 100 U 100 U 100 U 100 U 0.61 U 0.59 U 0.59 U 36 9.8 Silver (TR) 100 U 1	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U 10 U	098260	2/23 1515–1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U	2/23 1355–1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71	2/26–28 Composite 098280 (mg/Kg **) 1.4 J 325	2/28 Grab 098283 (mg/Kg **) 0.2 U 16
Lead (TR)	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U 10 U	098260	2/23 1515–1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U	2/23 1355–1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71	2/26–28 Composite 098280 (mg/Kg **) 1.4 325 3.4	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0
Mercury (TR) 0.2 U 0.7 0.6 0.9 0.2 U 0.4 0.31 0.011 U 0.012 U 1.8 0.67 Nickel (TR) 50 U 50 U 50 U 50 U 50 U 50 U 14 7.4 9.9 495 158 Selenium (TR) 100 U 100 U 100 U 100 U 100 U 100 U 0.59 U 0.59 U 36 9.8 Silver (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 2.5 2.4 2.4 0.3 U 0.09 U Thallium (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 1.2 0.71 1.1 1.6 UN 0.45 UN Zinc (TR) 50 U 50 U 50 U 50 U 50 U 50 U 50 U 57 28 39 553 15 Aluminum (T) 580 1530 690 400 240 230 441 5800 6500 6500 70000 15430 Antimony (T)	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 10 U 50 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U 10 U 50 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 10 U 50 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 10 U 50 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 10 U 50 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U 10 U 10 U 10 U	098260	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23	2/23 1245–1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2
Nickel (TR) 50 U 50 U 50 U 50 U 50 U 50 U 50 U 50	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR) Copper (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 10 U 50 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U 10 U 50 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 10 U 50 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 50 U 10 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 10 U 50 U 50 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U 10 U 10 U 50 U 50 U	098260	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24	2/23 1245–1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J
Selenium (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U 0.61 U 0.59 U 0.59 U 36 9.8 Silver (TR) 100 U 100 U 100 U 100 U 100 U 100 U 2.5 2.4 2.4 0.3 U 0.09 U Thallium (TR) 100 U 100 U 100 U 100 U 100 U 100 U 1.2 0.71 1.1 1.6 UN 0.45 UN Zinc (TR) 50 U 50 U 50 U 50 U 50 U 57 28 39 553 15 Aluminum (T) 580 1530 690 400 240 230 441 5800 6500 6500 70000 15430 Antimony (T)	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR Copper (TR) Lead (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 10	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U 10 U 50 U 30 100 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 50 U 10 U 10 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 50 U 10 U 10 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 100	2/26 1430 Grab 098251 10 U 100 U 10 U 10 U 50 U 50 U	098260	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2	2/23 1245–1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16 19	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47
Silver (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 2.5 2.4 2.4 0.3 U 0.09 U Thallium (TR) 100 U 100 U 100 U 100 U 100 U 100 U 1.2 0.71 1.1 1.6 UN 0.45 UN Zinc (TR) 50 U 50 U 50 U 50 U 50 U 50 U 50 U 57 28 39 553 15 Aluminum (T) 580 1530 690 400 240 230 441 5800 6500 6500 70000 15430 Antimony (T)	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR Copper (TR) Lead (TR) Mercury (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 10 10 U 0.2 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U 10 U 50 U 30 100 U 0.7	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 10 U 50 U 10 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 50 U 10 U 100 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 100 U	2/26 1430 Grab 098251 10 U 100 U 10 U 10 U 50 U 50 U 100 0.4	098260	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16 19	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176 80 J	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47 38
Thallium (TR) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 1.2 0.71 1.1 1.6 UN 0.45 UN Zinc (TR) 50 U 50 U 50 U 50 U 50 U 57 28 39 553 15 Aluminum (T) 580 1530 690 400 240 230 441 5800 6500 6500 70000 15430 Antimony (T)	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR Copper (TR) Lead (TR) Mercury (TR) Nickel (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 10 100 U 0.2 U 50 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U 10 U 50 U 30 100 U 0.7 50 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 10 U 50 U 10 U 10 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 10 U 10 U 10 U 10 U 10	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 50 U 50 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U 10 U 10 U 50 U 50 U 100 0.4	098260	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2 0.031 14	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7 0.011 U 7.4	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16 19 1.1 0.012 U 9.9	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176 80 J 1.8	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47 38 0.67
Thallium (TH) 100 U 100 U 100 U 100 U 100 U 100 U 100 U 1.2 0.71 1.1 1.6 UN 0.45 UN Zinc (TR) 50 U 50 U 50 U 50 U 50 U 57 28 39 553 15 Aluminum (T) 580 1530 690 400 240 230 441 5800 6500 6500 70000 15430 Antimony (T)	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR) Lead (TR) Mercury (TR) Nickel (TR) Selenium (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 10 U 50 U 50 U 50 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U 10 U 50 U 30 100 U 0.7 50 U 100 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 50 U 10 U 10 U 0.6 50 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 10 U 10 U 10 U 10 U 10	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 100 0.2 U 50 U 100 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U 10 U 50 U 50 U 100 0.4 50 U	098260	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2 0.031 14 0.61 U	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7 0.011 U 7.4 0.59 U	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16 19 1.1 0.012 U 9.9	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176 80 J 1.8 495	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47 38 0.67 158
Zinc (TR) 50 U 50 U 50 U 50 U 50 U 50 U 57 28 39 553 15 Aluminum (T) 580 1530 690 400 240 230 441 5800 6500 6500 70000 15430 Antimony (T) 10 U 230	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR) Lead (TR) Mercury (TR) Nickel (TR) Selenium (TR) Silver (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 100 U 50 U 50 U 100 U 100 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U 50 U 30 100 U 0.7 50 U 100 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 50 U 10 U 100 U 100 U 100 U 100 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 10 U 10 U 10 U 10 U 10	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 100 0.2 U 50 U 100 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U 10 U 50 U 50 U 50 U 100 0.4 50 U	098260	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2 0.031 14 0.61 U 2.5	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7 0.011 U 7.4 0.59 U 2.4	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.71 0.24 U 16 19 1.1 0.012 U 9.9 0.59 U	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176 80 J 1.8 495 36	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47 38 0.67 158 9.8
Antimony (T) 10 U 230	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR Copper (TR) Lead (TR) Mercury (TR) Nickel (TR) Selenium (TR) Silver (TR) Thallium (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 100 U 0.2 U 50 U 100 U 100 U	2/27 1530 Grab 098247&54 (ug/L) 10 U 100 U 10 U 50 U 30 100 U 0.7 50 U 100 U 100 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 50 U 10 U 100 U 100 U 100 U 100 U 100 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 50 U 10 U 100 0.9 50 U 100 U 100 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 50 U 50 U 100 0.2 U 50 U 100 U	2/26 1430 Grab 098251 10 U 100 U 10 U 10 U 50 U 50 U 50 U 100 U 100 U	098260	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2 0.031 14 0.61 U 2.5 1.2	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7 0.011 U 7.4 0.59 U 2.4 0.71	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16 19 1.1 0.012 U 9.9 0.59 U 2.4	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176 80 J 1.8 495 36 0.3 U	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47 38 0.67 158 9.8 0.09 U
ATT A LOTTO	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR Copper (TR) Lead (TR) Mercury (TR) Nickel (TR) Selenium (TR) Silver (TR) Thallium (TR) Zinc (TR)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 100 U 50 U 100 U 100 U 100 U 100 U	2/27 1530 Grab 098247&54 10 U 100 U 10 U 10 U 50 U 30 100 U 0.7 50 U 100 U 100 U 100 U 100 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 10 U 10 U 10 U 10 U 100 U 100 U 100 U 100 U 100 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 10 U 10 U 100 U 100 U 100 U 100 U 100 U 100 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 50 U 100 U 100 U 100 U 100 U 100 U	2/26 1430 Grab 098251 10 U 10 U 10 U 50 U 50 U 50 U 100 U 100 U 100 U 100 U 100 U	098260 (ug/L)	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2 0.031 14 0.61 U 2.5 1.2 57	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7 0.011 U 7.4 0.59 U 2.4 0.71 28	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16 19 1.1 0.012 U 9.9 0.59 U 2.4	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176 80 J 1.8 495 36 0.3 U 1.6 UN 553	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47 38 0.67 158 9.8 0.09 U 0.45 UN
Nickel (1) 50 U 417	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR) Chromium (TR) Chromium (TR) Chromium (TR) Selenium (TR) Selenium (TR) Silver (TR) Thallium (TR) Aluminum (T)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 100 U 50 U 100 U 100 U 100 U 100 U	2/27 1530 Grab 098247&54 10 U 100 U 10 U 10 U 50 U 30 100 U 0.7 50 U 100 U 100 U 100 U 100 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 10 U 10 U 10 U 10 U 100 U 100 U 100 U 100 U 100 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 10 U 10 U 100 U 100 U 100 U 100 U 100 U 100 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 50 U 100 U 100 U 100 U 100 U 100 U	2/26 1430 Grab 098251 10 U 100 U 10 U 50 U 50 U 100 0.4 50 U 100 U 100 U 100 U 100 U 230	098260 (ug/L)	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2 0.031 14 0.61 U 2.5 1.2 57	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7 0.011 U 7.4 0.59 U 2.4 0.71 28	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16 19 1.1 0.012 U 9.9 0.59 U 2.4 1.1 39	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176 80 J 1.8 495 36 0.3 U 1.6 UN 553	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47 38 0.67 158 9.8 0.09 U 0.45 UN
	Date: Time: Type: Lab Log #: Antimony (TR) Arsenic (TR) Beryllium (TR) Cadmium (TR) Chromium (TR) Chromium (TR) Chead (TR) Mercury (TR) Nickel (TR) Selenium (TR) Silver (TR) Thallium (TR) Zinc (TR) Aluminum (T) Antimony (T)	2/27 1515 Grab 098246 (ug/L) 10 U 100 U 10 U 50 U 100 U 50 U 100 U 100 U 100 U 100 U	2/27 1530 Grab 098247&54 10 U 100 U 10 U 10 U 50 U 30 100 U 0.7 50 U 100 U 100 U 100 U 100 U	2/27 1500 Grab 098248 (ug/L) 10 U 100 U 10 U 10 U 10 U 10 U 10 U 100 U 100 U 100 U 100 U 100 U	2/27 1620 Grab 098249&56 (ug/L) 10 U 100 U 10 U 10 U 10 U 100 U 100 U 100 U 100 U 100 U 100 U	2/27 1640 Grab 098250&58 (ug/L) 10 U 100 U 10 U 50 U 50 U 50 U 100 U 100 U 100 U 100 U 100 U	2/26 1430 Grab 098251 (ug/L) 10 U 100 U 10 U 50 U 50 U 100 U 100 U 100 U 100 U 100 U 100 U 230 U	098260 (ug/L)	2/23 1515-1545 Grab 088022 (mg/Kg **) 2.5 U 0.86 0.98 0.49 23 24 1.2 0.031 14 0.61 U 2.5 1.2 57	2/23 1245-1340 Grab 088020 (mg/Kg **) 2.4 U 1.1 0.56 U 0.24 U 13 14 5.7 0.011 U 7.4 0.59 U 2.4 0.71 28	2/23 1355-1415 Grab 088021 (mg/Kg **) 2.4 U 0.71 0.71 0.24 U 16 19 1.1 0.012 U 9.9 0.59 U 2.4 1.1 39	2/26-28 Composite 098280 (mg/Kg **) 1.4 J 325 3.4 11 J 95 176 80 J 1.8 495 36 0.3 U 1.6 UN 553	2/28 Grab 098283 (mg/Kg **) 0.2 U 16 2.0 4.2 1.6 J 47 38 0.67 158 9.8 0.09 U 0.45 UN

U indicates compound was analyzed for but not detected at the U indicates compound was analyzed for but not detected a given detection limit

J estimated value less than the specified detection limit

N spiked sample recovery not within control limits

** total metal – dry weight basis

T total metal for liquid samples

TR total recoverable metal for liquid samples

++ station – sampler. Ecology sample when not specified.

Table 12 - Effluent Bioassay Results - Reynolds, February 1990.

NOTE: all tests were run on 002A effluent - lab log #098236

<u>Daphnia magna - 7 day survival and reproduction test</u> (Daphnia magna)

Sample	#	Percent	Mean # Young per
	Tested	Survival	Original Female
Control	10	100	22.1
6.25 % Effluent	10	100	29.1
12.5 % Effluent	10	100	27.5
25 % Effluent	10	100	29.1
50 % Effluent	10	10	23.3
100 % Effluent	10 LC5	O Acute 0 = 26 % effluent	9.9 <u>Chronic</u> NOEC = 25 % effluent
		C = 25 % effluent $C = 50 %$ effluent	

<u>Fathead Minnow - 7 day survival and growth test</u> (Pimephales promelas)

Sample	# Tested *	Percent Survival	Mean Weight per Fish (mg)
Control	60	95.0	0.475
6.25 % Effluent	60	91.7	0.471
12.5 % Effluent	60	86.7	0.428
25 % Effluent	60	85.0	0.304
50 % Effluent	60	61.7	
100 % Effluent	60	21.7	
		Acute	Chronic
	LOEC	C = 25 % effluent C = 50 % effluent = 58.8 % effluent	NOEC = 12.5 % effluent LOEC = 25 % effluent

^{*} four replicates of 15 organisms

Rainbow Trout - 96 hour survival test (Oncorhynchus mykiss)

Microtox

Onwests	#	Percent		effluent)	Ranking *
Sample	Tested	Survival	15 minutes	38	moderate
Control	10	100	15 minutes	36	moderate
65% Effluent	30	100			
100% Effluent	30	100		g for further tox EC50 (EPA, 198	

NOEC - no observable effects concentration LOEC - lowest observable effects concentration LC50 - lethal concentration for 50% of the organisms EC50 - effect concentration for 50% of the organisms

Table 13 - Sediment Bioassay Results - Reynolds, February 1990.

		Hyalell	Microtox	
		#	Percent	
<u>Sample</u>	Lab Log #	Tested	Survival	EC50
Control		75	96	
Upstrm	088022	75	96	NSR
D:#	000000	***** pr	400	Non
Diffuser	088020	/5	100	NSR
Dwnstrm	088021	75	99	NSB
Diffuser	088022 088020 088021	75 75 75	96 100 99	NSR NSR NSR

NSR data not suitable for reduction indicating low toxicity EC50 effect concentration for 50% of the organisms

APPENDIX A

WASHINGTON STATE DEPARTMENT OF ECOLOGY ENVIRONMENTAL INVESTIGATIONS & LABORATORY SERVICES Quality Assurance Section

April 3, 1990

TO:

Marc Hefner

FROM:

Stewart Lombard

Lee Fearon

SUBJECT: Laboratory Evaluation, Reynolds Metals Co., 3/16/1990

Here are our comments and recommendations for the Reynolds lab:

The following Reynolds staff participated in the lab evaluation:

Hal Hayes Lab Manager

Stan Caswell Environmental Chemist

Mike Burnside Chemist

Jack Malone Chemist (Low Fluorine Lab)
Nick Peyton Chemist (Cyanide Distillations)

Tom Dickey Technical Supervisor

BOD

A grab sample for BOD from the sanitary STP (Outfall 01) is collected and analyzed weekly. Duplicate analyses are run at 3 dilutions (aliquots of 60 mL, 120 mL, and 180 mL are diluted to 300 mL in the BOD bottles) along with a blank. Results are in the 5-15 mg/L range. Seed is collected from the settling pond and allowed to age for 24 hours. Samples are incubated in an under-counter cabinet and no temperature check is made. The HVAC system maintains the lab temperature at 72 ± 2 °F (22.2 ± 1.1 °C). This deviation from the required 20 ± 1 °C would produce consistently high BOD results. Dissolved oxygen is determined using the membrane electrode technique. No standards are analyzed with the samples. Quality Control (QC) consists of running the weekly sample in duplicate. Each set consists of two sub sets of three sample aliquot dilutions plus the dilution water/seed blank (Mike Burnside)

<u>It is recommended</u> that the procedure in Standard Methods, 17th edition, Method 5210 B be followed by running a glucose/glutamic acid standard with each set of samples and incubating the samples at 20 $^{\rm o}$ C. The standard subset should consist of three dilutions. It is also recommended that the phosphate buffer solution be stored under refrigeration.

TSS

A grab sample from the sanitary STP (Outfall 01) is collected and analyzed weekly. A 24-hour composite sample from Outfall 02A is collected and analyzed daily. QC consists of analyzing all samples in duplicate (Mike Burnside)

Marc Hefner Page 2

<u>It is recommended</u> that a standard control suspension, such as those available from EPA, ERA, or APG, be run on a weekly basis on the same day that both Outfall samples are run.

Total Chlorine Residual

A grab sample from the sanitary STP (Outfall 01) is collected and analyzed daily. QC consists of running this sample in duplicate on a daily basis (Mike Burnside). It is recommended that a freshly prepared chlorine check standard in the range of 1 to 3 mg/L be run along with the normal set in accordance with Method 4500-Cl(G) of Standard Methods, 17th edition.

Fecal Coliform

A grab sample from the sanitary STP (Outfall 01) is collected and analyzed monthly. The 100 mL sample is filtered and the filter is put into a plastic bag and incubated in a water bath inside an oven. A thermometer graduated in 0.1 $^{\circ}$ C increments is immersed in the water bath and checked each working day. Colonies are counted visually. Typical results are 0-12 \pm 3 colonies per filter. No duplicate analyses are performed. (Mike Burnside)

The 0.45 μm membranes used for the fecal coliform test are currently acceptable. However, when new membranes are ordered, it is recommended that the laboratory obtain a type developed for testing chlorinated effluents. The Millipore Corporation type HC (or equivalent) helps prevent heat damage to chlorine-injured organisms during the critical first few hours of the fecal coliform test. Because these filters have a larger pore size, they are also less subject to clogging.

The large deviation in results at the low colony count level of the chlorinated effluent makes it impossible to implement any quality assurance measures.

рΗ

Grab samples from Outfalls 03, 04 and 05 are collected and analyzed monthly.

Cyanide

A 24-hour composite sample from the industrial WTP (Outfall 02B) is collected and analyzed for total cyanide daily. Grab samples from Outfalls 03, 04 and 05 are collected and analyzed monthly for "free cyanide". Distillation is performed under vacuum. The procedure for maintaining the flow rate of the cyanide is not very precise. (Nick Peyton)

Cyanide is determined by specific ion electrode. The meter is calibrated with two standards. Quantitation is based on the results of a check standard which is distilled along with the samples. Duplicate analyses are performed occasionally. The same material is used to prepare the calibration and check standards. (Mike Burnside)

Marc Hefner Page 3

<u>It is recommended</u> that the daily cyanide sample be run in duplicate along with a check standard (prepared from a source different from the calibration standards) or spiked sample. Both the check standard and the spike should be run together at least once a week.

Fluoride

A 24-hour composite sample from Outfall 02 is collected and analyzed daily. Grab samples from Outfalls 03, 04 and 05 are collected and analyzed monthly. Fluoride is determined by specific ion electrode directly on the sample (no distillation is used). (Jack Malone)

According to Method 4500-F⁻(C), Standard Methods, 17th edition, the distillation step should be performed if there is a possibility of aluminum concentration levels greater than 3 mg/L. <u>It is recommended</u> that the distillation step be performed at the Reynolds lab.

0il and Grease

A grab sample from Outfall 02 is collected and analyzed daily. The acidified contents (1 liter) of the sample bottle are extracted three times with 30 mL portions of freon in a 2-liter separatory funnel and extracted with freon. The first 30 mL freon portion is used to wash residual oil and grease from the sample bottle before extraction. The freon is passed through a filter paper into a tared beaker and evaporated with warm air. The beaker is weighed on a Mettler electronic balance with a sensitivity of 0.1 mg. No measures are taken to insure that no water is present in the freon.

According to Method 5520 B, Standard Methods, 17th edition, anhydrous sodium sulfate should be used if it is suspected that a stable emulsion may be formed, if there is not a clear separation of water and freon, or if there is an obvious presence of water bubbles in the freon layer. The anhydrous sodium sulfate is poured into the filter paper and the freon is slowly drained from the separatory funnel. It is recommended that anhydrous sodium sulfate be used at the Reynolds lab.

Metals and Benzo (a) pyrene

24-hour composite samples from Outfall O2A and from the industrial WTP (Outfall O2B) are collected and sent to Columbia Analytical Services, Longview, WA weekly for analysis for aluminum, antimony, nickel and benzo(a)pyrene.

We informed Hal and Stan that our proposed WAC 173-220, if adopted as planned later this year, would require the Reynolds laboratory to be accredited by July 1, 1992 but that they could request accreditation at any time. We referred Hal to Perry Brake of our office for further questions and assistance with accreditation.

Marc Hefner Page 4

We discussed the use of Method 4500-CN(I) from Standard Methods, 17th Edition, for the analysis of "weak and dissociable" cyanide in the effluent from the industrial WTP (Outfall 02B) with Hal and Stan. The treatment process includes the use of ferrous iron to complex the cyanide in the waste stream. The ferrocyanide complex would tie up most of the cyanide. However, the formation of the complex is an equilibrium process, so temperature, pH, concentrations of ferrous iron and cyanide, competing equilibria and retention time in the treatment plant will affect the final concentration of "weak and dissociable" cyanide.

Sample preservation with NaOH to pH 12 would not be suitable for samples of the WTP effluent if the goal of the test is to exclude cyanide complexed as ferrous-cyanide since the complex would be destroyed under these conditions. Unfortunately, Standard Methods, 17th Edition, does not address this situation. We recommend sample storage in a closed dark brown bottle away from sunlight and preservation with a sodium acetate pH 8.5 buffer solution

We have attached a copy of a generic QA Manual for a small WTP lab. We suggest that you forward a copy of the manual to Hal to help him understand the purpose and use of the additional QC data that we have recommended.

If you have any questions please call us.

Attachments

APPENDIX B

Appendix B - VOA, BNA, and Pest/PCB Scan Results - Reynolds, February 1990.

	Sample ++: Date: Time: Type: Lab Log #:	002A 2/27 0955 Grab 098234	002A 2/27 1755 Grab 098235	002B 2/27 1025 Grab 098239	002B 2/27 1810 Grab 098240	Trns Blk 2/26 1430 Grab 098251	Upstrm 2/23 1515–1545 Grab 088022	Diffuser 2/23 1245–1340 Grab 088020	Dwnstrm 2/23 1355–1415 Grab 088021	Cent Cake 2/26-28 Comp 098280	Sludge 2/28 Grab 098283
% Solids	-2 -9-A			***************************************			78.2	76.4	76.6	16.1	55.2
% TOC (dry wt b Grain size (%)	asis) Gravel – +10 mesh						0.07	0.05	0.15	10,5	3.1
Ciaili Size (90)	Sand - +230 mesh						<2 96	<2 96	<2 98	<1 5	<1 <1
	Silt - 5 - 8 phi						4	3	1	44	69
	Clay - 9 - 12 phi						<1	1	1	51	31
VOA Compound	S	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/Kg **)	(ug/Kg **)	(ug/Kg **)		
2-Chloroethylvir	nylether					(3)	(, 5 , 5 ,	(33)	(-99)		
Chloromethane		1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 U		
Bromomethane		1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 U		
Vinyl Chloride Chloroethane		1 U 3 U	1 U 3 U	2 U 6 U	5 U 15 U	1 U 3 U	2 U 6 U	2 U 6 U	2 U		
Methylene Chlor	ride	3 U	1 U	2 U	15 U	3 U 1	6 U 12 B	6 U 14 B	5 U 12 B		
Acetone		2 J	ร่ บั	100	17 J	5	31	24	27		
Carbon Disulfide)	ī Ū	1 Ū	2 U	5 Ū	i U	2 U	Ž U	2 U		
1,1-Dichloroethe	ene	1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 U		
1,1-Dichloroetha		1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 U		
1,2-Dichloroethe	ene (total)	1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 U		
Chloroform 1,2-Dichloroetha	202	1 1 U	2 1 U	2 U 2 U	5 U	1 0	2 U	2 U	2 U		
2-Butanone	ane	3 U	1 U 3 U	2 U 6 U	5 U 15 U	1 U 3 U	2 U 6 U	2 U 6 U	2 U 5 U		
1.1.1-Trichloroe	thane	1 U	1 U	2 U	5 U	3 U	2 U	2 U	2 U		
Carbon Tetrachl		iŬ	iŬ	2 U	5 U	iÜ	2 U	2 U	2 U		
Vinyl Acetate		i Ü	1 Ū	2 Ŭ	5 Ü	i Ŭ	2 Ü	2 Ü	2 Ü		
Bromodichlorom		1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 Ü		
1,2-Dichloropro		1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 U		
cis-1,3-Dichloro	propene	3 U	3 U	6 U	15 U	3 U	6 U	6 U	5 U		
Trichloroethene		1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 U		
Dibromochlorom		3 U 1 U	3 U 1 U	6 U 2 U	15 U 5 U	3 U 1 U	6 U	6 U	5 U		
Benzene	urane	1 0	iü	2 U	5 U 5 U	1 U 1 U	2 U 2 U	2 U 2 U	2 U 2 U		
trans-1,3-Dichlo	propropene	зÜ	зŬ	6 Ŭ	15 U	3 U	6 U	6 U	5 U		
Bromoform	, ,	1 U	1 U	2 Ū	5 U	i Ü	2 Ü	2 U	2 Ü		
4-Methyl-2-Pen	itanone	3 U	3 U	6 U	15 U	3 U	6 U	6 U	5 U		
2-Hexanone		3 U	3 U	6 U	15 U	3 U	6 U	6 U	5 U		
Tetrachloroether 1,1,2,2-Tetrachl		1 U	1 U	2 U	5 U	1 U	2 U	2 U	2 U		
Toluene	oroemane	3 U 1 U	3 U 1 U	6 U 2 U	15 U 5 U	3 U	6 U	6 U	5 U		
Chlorobenzene		3 U	3 U	2 U 6 U	5 U 15 U	1. U 3. U	2 U 6 U	2 U 6 U	2 U 5 U		
Ethylbenzene		1 U	1 U	2 U	5 U	3 U	2 U	2 U	2 U		
Styrene		1 U	i Ŭ	2 Ü	5 U	1 U	2 U	2 U	2 U		
Total Xylenes		1 U	1 U	2 U	5 U	1 U	2 Ū	2 Ū	2 Ū		

U indicates a compound was analyzed for but not detected at the given detection limit
 J estimated value less than the detection limit
 B detected in the method blank also
 X Benzo(b+k)Fluoranthene

D result from analysis of a diluted sample UJ indicates a compound was analyzed for but not detected at the estimated detection limit

^{**} dry-wt basis

⁺⁺ station - sampler. Ecology sample when not specified.

Sample ++:

002A-E

002B-E

Trns Blk

Diffuser

Dwnstrm

Cent Cake

Sludge

Upstrm

Appendix B - Cont'd - Reynolds, February 1990.

Sam Date	ole ++:	002A-			Trns	BIk 2/26		trm /23	Diffus	er 23	Dwnstrm 2/23				ıdge 2/28
Time		700-07				430			1245-13		1355-1415		-20		2120
Type		Composi				irab		rab	Gra		Grab		omp	c.	Grab
Láb I	_og #:	0982	36 098	241	098				0880		088021		280		3283
BNA Compounds		(ug/	1) (4)]/L)	(11	g/L)	(ug/Kg	**)	(ug/Kg *		(ug/Kg **)			(ug/Kg	
Benzidine		1-9	_, (2,	g. —,	(4	9, -,	(ug/ilg	,	(ug/itg	,	(ug/itg)	(ug/itg	,	laging	, ,
Hexachlorobenzene		4	U 8	U	4	U	86	U	92	U	85 U	25000	U	7400	11
Pentachlorophenol		20		U		Ū	430			Ū	430 U	120000	_	37000	
Phenanthrene		1	J 16		2		43			Ú	43 U	130000		17000	
Anthracene			U 6		2	U	43	U	46	U	43 U	47000		8500	i
Di-n-Butyl Phthalate		_	U 4	U	2		43		46	U	43 U	12000	U	3700	U
Fluoranthene		22	320			Ų	43			U	39 J	1900000		520000	
Pyrene		21	380		2		43			U	37 J	2300000		570000	
Butylbenxylphthalate				U	2			U		U	43 U	12000		3700	
3,3'-Dichlorobenzidine			U 40	U	20		430			U	430 U	120000	U	37000	
Benzo(a) Anthracene		6	75			U	43			U	43 U	1100000		240000	
Chrysene	lata	10	61 55		2	U		U		U	43 U	1700000		390000	
Bis(2-Ethylhexyl)phtha Di-n-Octyl Phthalate	iate	53 2	55	U	33		520			В	750	12000		3700	
Benzo(b)Fluoranthene		11		X	4	U	43	U		U	43 U	12000		3700	
Benzo(k)Fluoranthene				Ŷ	4			Ü	92 92	U	76 J) 76 J)		DX DX	510000 510000	
Benzo(a)Pyrene			J 36	^	4			Ü	92		76 J7 42 J	620000	UΛ	130000	
Indeno(1,2,3-cd)Pyren	e.	1 .			4			Ü		Ŭ	85 U	210000		40000	
Dibenzo(a,h)Anthracen			U 4	J		ŭ		Ŭ		Ŭ	85 U	88000		17000	
Benzo(g,h,i)Perylene	7	2 .				ŭ	86		92		85 U	230000		44000	
Pest/PCB Compounds					·	_		-		_	55 5	200000		44000	
alpha-BHC		0.050	U 0.050	11	0.050	U	10	U	11	U	10 U	40	U	15	U
beta-BHC		0.050			0.050			Ŭ		Ŭ	10 U	49 49			U
delta-BHC		0.050			0,050			Ŭ		Ŭ	10 U	49	Ŭ	15	
gamma-BHC (Lindane		0.050			0.050			Ŭ		Ŭ	10 U	49			ŭ
Heptachlor		0.050			0.050			ŭ		Ŭ	10 U	490		15	
Aldrin		0.050			0.050			Ū		Ū	10 Ū	49		15	
Heptachlor Epoxide		0.050		U	0.050	U		U		U	10 U	49			Ū
Endosulfan I		0.050			0.050	U	10	U	11	U	10 U	49	U	15	U
Dieldrin		0.10			0.10			U		U	20 U	98		30	U
4,4'-DDE		0.10			0,10	U		U	22		20 U		U		U
Endrin		0.10			0.10			U		U	20 U	98		30	_
Endosulfan II 4.4'-DDD		0.10			0.10			U		Ų	20 U	98	U	30	
Endosulfan Sulfate		0.10	U 0.10 U 0.10		0.10			U		U	20 U	98	U	30	
4.4'-DDT		0.10		U	0,10 0,10			U U	22 22	J	20 U 20 U	98	U	30	
Methoxychlor		0.50			0.50			Ü		U	100 U	98 490		30 150	
Endrin Ketone		0.10			0.10			Ü		Ŭ	20 U	98		30	
alpha-Chlordane		0.50		Ŭ	0.50			Ŭ		Ŭ.	100 U	490	Ü	150	
gamma-Chlordane		0.50		Ū	0.50			Ŭ		Ú	100 U	490		150	
Toxaphene		1.0		Ü	1.0			Ū		Ũ	200 U	980		300	
Aroclor-1016		0.50	U 0.50	Ü	0.50			Ū		Ū	100 U	490		150	
Aroclor-1221		0.50		U	0,50	U	100	U		Ú	100 U	490		150	
Aroclor-1232		0.50			0.50		100	U		U	100 U	490		150	
Aroclor-1242		0.50			0.50			U	110	_	100 U	490	U	150	U
Aroclor-1248		0.50		U	0.50	U		U	110		100 U	490		150	
Arcelor 1969		1.0		Ų	1.0	U		U	220		200 U	980		300	
Aroclor-1260 Endrin Aldehyde		1.0	J 1.0	U	1.0	U	210	U	220	U	200 U	980	U	300	U
Litariii Alderiyae															

APPENDIX C

Sample - co2A-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Log # : 1 098236

SAMPLE NO.

Contract: Lab Name: Laucks Testing Labs

Lab Code: LAUCKS Case No.:03051 SAS No.: ____ SDG No.:___

Lab Sample ID: 03051-6 Matrix: (soil/water)WATER

Lab File ID: >LC143::D1 Sample wt/vol: 1000.(g/ml)ML

Level: (low/med) LOW Date Received: 03/02/90

Date Extracted: 03/05/90 % Moisture: not dec.__ dec.__

Extraction: (SapF/Cont/Sonc) SEPF Date Analyzed: 03/13/90

GFC Cleanup: (Y/N)N pH:0.0 Dilution Factor: 1.0

> CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Number TICs found: 2

CAS NUMBER	COMPOUND NAME	. RT	I EST. CONC.	L
	LUNKNOWN	115.74	1 9	l J N
2.54803373	IPHOSPHORIC ACID, (1,1-DIME	ETH136.64	1 13	JW
3.			i	1
4.		!		!
				1
7.		1		,
				{
# **** **** **** **** **** **** **** *		1		
		1	1	
			!	;
14.			1	•
5.		1	1	
			3	1
[9,		,	1	
20		1	1	
			1	
23.	1			
			1	
25.				
26.		; 1		
27.		,	1	
29.		# 1		
· · ·		<u> </u>	* *** Texts were were some some recent street were street were some some some file	

N-good indication identification is connect

FORM I SV-TIC

1F Sample - OOR B-E

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Log#1 098241

SAMPLE NO.

Lab Name: Laucks Testing Labs Contract:

Lab Code: LAUCKS Case No.:03051 SAS No.: ____ SD6 No.:___

Matrix: (soil/water)WATER Lab Sample ID: 03051-7

Sample wt/vol: 1000.(g/ml)ML Lab File ID: >LC148::SS

Date Received: 03/02/90 Level: (low/med) LOW

% Muisture: not dec.__ dec.__ Date Extracted:03/05/90

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 03/14/90

GPC Cleanup: (Y/N)N pH:0.0 Dilution Factor: 2.0

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg)UG/L

1	MIN SEPTIT THESE MANUAL STORE SAFEL SEEDS SECTION SAFEL MANUAL SECTION MANUAL SECTION ASSESSMENT SECTION SECTI	The service was the first pass and the service and the service and are service and the service	: : : : : : : : : : : : : : : : : : :	TO THE THE UNIT WITH STATE COME AND STATE COME AND ALLES
1	CAS NUMBER	COMFOUND NAME	FT	EST. CONC. 1 0 1
1 :	ar end fine due fine fine and mar the fine will the fine but fine but	THE STATE OF THE SET T	r negati kiliker yanga kapite uputan grupu gi bar kiliker suputa dan Kilike melah yang kiliker dangan gulah kiliker danar saputa dan	
- 1	1.112403	IDODECANE	115.92	150137 1年
1	2.629505	TRIDECANE	117.84	280 J '
:	3.74645980	(DODECANE, 2,7,10-TRIMETHYL-	119.21 1	160¦J
;			119.62	490¦J ¦
!	5,13151741	IDECANE 3-CYCLOHEXYL-, 3-CYCL	120.44	140¦J \ ;
1 5	6.629925	INONADECANE	120.69	230 J \
;	7.629505	!TRIDECANE	121.32 :	6001J (1
!	8.629969	:1-EICOSANOL	122.14	180!J (
!	7	LUNKNOWN	122.35	130 J
í			122.90	640 J
1	11.75163972	OCTADECANE, 2,6-DIMETHYL-	123,62	330(J 1 1
ŀ	12.4443601	CYCLOHEXANE, (1-HEXYLTETRADE	123.74	2001J 1
!	13.629787	! HEPTADECANE	124.40 1	910 J
;	14.61141728	DODECANE, 4,6-DIEMTHYL-	124.48	440!J
!	15.630079	!PENTATRIACONTANE	125.94 1	210!J ;
!	16.74685306	5-EICOSANE, (E)-	126.90	270 J
1	17.629925	INONADECANE	127.15	500 J
ĭ	18.630024	OCTACOSANE	128.44	25013 1
Į	19.74685339	:3-EICOSENE, (E)-	129.51	540 J !
1	20	LUNKNOWN	135.92	190¦J√ ¦
ş	21.		!	1
1	22.		1	
1				
į	24.		1	
!	25.			
;	26.	CONTRACTOR CONTRACTOR	1	**************************************
1	27.		1	1
f	28.		1	
}	29.		!	
ş	30.	The same was also have been part that you can the same and the gas	1	1
1_	7001 Day 100 and the 1010 MM \$111 MM 1001 AND		1	

N-good indication identification is correct

1F Sample-Solids Method BlankSAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			-	
TENTATIVELY	IDENTIFIED	COMPOUNDS	!	
			!	SELKL1

Lab Name: Laucks Testing Labs Contract: _____

Lab Code: LAUCKS Case No.:02340 SAS No.: ____ SDG No.:____

Matrix: (soil/water)SOIL Lab Sample ID: B0302MSVSLO

Sample wt/vol: 30.0 (g/ml)6 Lab File ID: >LC136::D1

Level: (low/med) LOW Date Received: 02/26/90

% Moisture: not dec.0 dec.__ Date Extracted:03/02/90

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 03/13/90

GPC Cleanup: (Y/N)N pH:7.0 Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs found: 4

	COME OF MANY	T RT	: : : :	I ! !
CAS NUMBER		; KI :====================================	: EST. CONC.	Q ======
1	_ :UNKNOWN ALDOL CONDENSATION	17.42	; 580	IJAW I
1 2.	!UNKNOWN ALDOL CONDENSATION	18.15	5400	IJA
	:UNKNOWN ALDOL CONDENSATION	19.62	; 550	IJA :
4.646139	10CTADECANOIC ACID, 2-METHYLF	433.01	1 380	J 🎶
5				!!
6				!!
7			# 3 ***********************************	!!
8		.	1	!!
9			! !	
10		. !		!!
14				
15.				
18				<u> </u>
17				
20				
21		. i		i
22.		. i	,	
23		. i		i
24.				
25		i		
- - - - - - - - - -		. 1	1	t
		· · · · · · · · · · · · · · · · · · ·	1 i	

N-good indication identification is correct

Sample - Upstrm

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Laucks Testing Labs Contract: Lab Lag # ;

Lab Code: LAUCKS Case No.:02340 SAS No.: ____ SDG No.:___

Matrix: (soil/water)SOIL

Lab File ID: >LC139::D1

Sample wt/vol: 30.0 (g/ml)6

Level: (low/med) LOW

Date Received: 02/26/90

Lab Sample ID: 02340-3B

% Moisture: not dec.22 dec.__

Date Extracted:03/02/90

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 03/13/90

GPC Cleanup: (Y/N)N pH:6.9

Dilution Factor: 1.0 ·

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs found: 9

Name control values forms device report report values against operate provide America 1980s; july de-	ages , made state paids which takes takes takes to make from some states about their state, and, some states about about about about their fines of the some states about the st	<u> </u>	!	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC. Q	•
1	-: UNKNOWN ALDOL CONDENSATION	+7.42		· }
1 2.	TUNKNOWN ALDOL CONDENSATION	18.13	1 6100 JA	+
. 3.		19.65	1 5801JA	
4.	:UNKNOWN ALDOL CONDENSATION	110.04	1 400!JA	•
5.4436753	:3-HEXENE-2.5-DIONE	110.49	ALIO13A	f
5.	LUNKNOWN ALDOL CONDENSATION	11.58	1 330 JA	į t
7.	:UNKNOWN ALDOL CONDENSATION	112.87	1 3301JA	1
	LUNKNOWN	130.00	1 8901J	į
9.446139	+ CCTADECANGIC ACID, 2-METHYLF	433.05	:	-;
			tt	1
			11	!
			1	i
13.		1		!
14.	**************************************		1	;
15.		f 1		1
	Note Annual Column Annua			!
	Quantities Qua			:
				1
19.				!
20.			1	1
21		! !		!
22		1		į
27.) 1	I I	1
				•
25.		1		1
26.		·	To the same with the same term and the same with the same term and	,
~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1	The same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same sta	•
28				1
7Q		* ************************************	To the same time the time the same time time time time time time time ti	•
30.		!		1
/ ¹	pure cours. I was come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and come and com	1		:
		·		•

W-Good indication identification is correct

#### 1F Sample - Diffuser SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Pag EFA SAMPLE NO.

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Laucks Testing Labs Contract:

Lab Code: LAUCKS Case No.:0234o SAS No.: ____ SDG No.:___

Matrix: (soil/water)SOIL Lab Sample ID: 02340-1B

Sample wt/vol: 30.0 (g/ml)6 Lab File ID: >LC137::D1

Level: (low/med) LOW Date Received: 02/26/90

% Moisture: not dec.28 dec.__ Date Extracted:03/02/90

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 03/13/90

Dilution Factor: 1.0 GPC Cleanup: (Y/N)N pH:6.9

- CONCENTRATION UNITS: Number TICs found: 7 (ug/L or ug/Kg)U6/K6

Contract Property and the contract of		I ST	EST. CONC.   Q	:
1.				= ; 
2.	- LUNKNOWN ALDOL COMDENSATION	18.14	+ 7300 tan	+
图2	- HINKNOWN ALDOL CONDENSATION	<del>-19.63</del>	+- 980+JA	- !
4.	LUNKNOWN ALDOL CONDENSATION	19.99	1 2301JA	:
5.4436753	13-HEXENE-2,5-DIONE	110.44	1 520:JA	1
6.	UNKNOWN ALDOL CONDENSATION	111.56	400:JA	į.
7.116096	12-PROPANONE, 1-HYDROXY-	112.82	1 3101JA	:
		129.95	: 850:J	4
9.646139	!UNKNOWN <del> DCTADECANDIC ACID, 2-METHYL</del>	<del>P133.00</del>	+ 540+J V	+-
			1	ç è
				!
12.	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	! !	1 1	:
13.			1	1
14.		   		1
15.		· · · · · · · · · · · · · · · · · · ·		1
				;
18.		1		1
19	2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A	!	1	!
20		f		
21		!		!
77				
27			1	į
74			, ,	;
24		!		:
26. 26.			. ,	!
27				
78				!
70				:
- / ·				!
		_ '	1	

N-good indication identification is connect

### 1F Sample - Dunstrm

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

# TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Laucks Testing Labs Contract: Lab Log # : | 088021

Lab Code: LAUCKS Case No.:02340 SAS No.: ____ SDG No.:___

Lab Sample ID: 02340-2B Matrix: (soil/water)SOIL

Sample wt/vol: 30.0 (g/ml)6 Lab File ID: >LC138::D1

Date Received: 02/26/90 Level: (low/med) LOW

% Moisture: not dec.22 dec.__ Date Extracted: 03/02/90

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 03/13/90

Dilution Factor: 1.0 GPC Cleanup: (Y/N)N pH:6.9

> CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Number TICs found: 9

CAS NUMBER	; COMPOUND NAME	I RT	EST. CONC.	
1.	; <del>UNKNOWN ALDOL CONDENSATION</del>		+ 570	
2.	TUNKNOWN ALDOL CONDENSATION		+ 6200	
	HUNKNOWN ALDOL CONDENSATION	19.63	<del>  76</del> 9	1JA
4.	UNKNOWN ALDOL CONDENSATION	19.99	1 420	IJA
5.4436753	3-HEXENE-2,5-DIONE	110.44	1 440	
6.108225		111.54	310	IJA
7	!UNKNOWN ALDOL CONDENSATION	112.82	1 270	IJA 🎽
8.	LUNKNOWN	129.96	1 300	IJ
9.646139	HOCTADECANDIC ACID, 2 METHYLI	<del>433.01</del>	+580	HJ W
O		_		; i
1.		!	1	1
2.	1	1	1	1
	1			
			1	1
8.		- !		1
O,		ļ	1	!
~ a		1		ļ
4.		1	<b>!</b>	,
5.				•
6.		!	•	,
·				

N-good indication identification is correct

#### NOTICE

The property that is the subject of this notice has been the subject of an independent cleanup by Reynolds Metals Company to comply with WAC 173-340, the Model Toxics Control Act ("MTCA") cleanup regulation. Diesel contaminated soils exceeding the 200 ppm cleanup standard were removed from the plant's on-site Above Ground 200,000 Gallon Fuel Oil Storage Tank. Notice is made to inform interested parties that some of the contamination greater than 200 ppm extends under the fuel oil storage tank and cannot be removed without removing the tank.

The undersigned, Reynolds Metals Company, is the fee owner of real property in the County of Cowlitz, State of Washington, hereafter referred to as the "Above Ground 200,000 Gallon Fuel Oil Storage Tank Property", being a portion of the property described in Deed Volume 264, page 539 (Fee No. 209738), which portion is described as follows:

Beginning at the intersection of the North line of the Weyerhaeuser Timber Company property, as described in Volume 122, Page 358, Cowlitz County Deed Records, with the Southwesterly right-of-way line of Northern Pacific Railway Company*, et al, as described in Volume 167, Page 426, said point of beginning being marked by a concrete monument inscribed "W. T. 4" and is located 1883.45 feet South and 1242.18 feet East of a concrete monument inscribed "LB 395", set to mark the Northwest corner of Section 31, Township 8 North, Range 2 West, W. M., Cowlitz County, Washington; thence along the North line of said Weyerhaeuser Timber Company property West 926.34 feet to a Northwesterly corner of said property marked by a concrete monument inscribed "W. T. 3"; thence along the Westerly property line of said Weyerhaeuser Timber Company property South 40 degrees 55 minutes West 1324 feet; thence North 49 degrees 5 minutes West 2607 feet to the center of the Above Ground 200,000 Gallon Fuel Oil Storage Tank with said tank being circular with a diameter of 36 feet.

^{*} now owned by Burlington Northern Railway Company

230412098 VILL3 P053

Reynolds Metals Company will comply with the following limitations, restrictions, and uses listed in Sections 1-4 below:

- Section 1: Diesel contaminated soil exceeding the 200 ppm cleanup standard that is present under the Above Ground 200,000 Gallon Fuel Oil Storage Tank Property will be remediated consistent with WAC 173-340 if the tank is removed.
- Section 2: Any activity of the Above Ground 200,000 Gallon Fuel Oil Storage Tank Property that may interfere with future remediation is prohibited. The entire area around the Above Ground 200,000 Gallon Fuel Oil Storage Tank Property has been covered with concrete and surrounded by concrete containment walls to contain any future diesel spill.
- Section 3: The owner of the Above Ground 200,000 Gallon Fuel Oil Storage Tank Property must give written notice to the Dept. of Ecology, or to a successor agency, of the owner's intent to convey any interest in the Above Ground 200,000 Gallon Fuel Oil Storage Tank Property. No conveyance of title, easement, lease, or other interest in the Above Ground 200,000 Gallon Fuel Oil Storage Tank Property shall be consummated by the owner without adequate and complete provision for future cleanup action.

Section 4: The owner must notify and obtain approval from the Dept. of Ecology, or from a successor agency, prior to any use of the Above Ground 200,000 Gallon Fuel Oil Storage Tank Property that is inconsistent with the terms of this Notice

REYNOLDS METALS COMPANY

N 172

Title: \

TREASURER

Date: MARCH 31, 1993

F:\JLD\LONGVIEW.RED\NOTICE

930412098

county of HENRICO ) ss

On this 3 ST day of MARCH, 1993, before me personally appeared JULIAN H. TAYLOR, to me known to be the VICE PRESIDENT, TREASURER of the corporation that executed the within and foregoing instrument, and acknowledged the said instrument to be the free and voluntary act and deed of said corporation, for the uses and purposes therein mentioned, and on oath stated that he was authorized to execute said instrument and that the seal affixed is the corporate seal of said corporation.

In witness whereof, I have hereunto set my hand and affixed my official seal the day and year first above written.

My Commission expires: April 23, 1993

Notary Public in and for the Commonwealth of Virginia, residing at RICHMOND, VA

DARLENE P. DEROSIER COWLITE CO. AUDITOR

JAR 12 256 1 50

REQUEST OF Reynolds Metal



### REYNOLDS ALUMINUM

Reynolds Metals Company • P.O. Box 999 • Longview, Washington 98632 • (206)425-2800

February 22, 1993

RECEIVED

FEB 24 1993

Department of Ecology Industrial Section

Mr. Paul Skyllingstad Department of Ecology Industrial Section P.O. Box 47706 Olympia, Wa. 98504-7706

Dear Mr. Skyllingstad:

Attached is a draft of the notice which Reynolds plans to record with our property deed related to the above ground diesel tank. This draft is also being submitted to our corporate staff for review and comment.

Should you have any questions or comments regarding this draft notice prior to its being recorded, please contact me at (206) 636-8203.

Sincerely,

REYNOLDS METALS COMPANY LONGVIEW REDUCTION

Tom Dickey

Technical Superintendent

TD:t Enc. cc:	Kent Moore Hal Hays	FILE COPY	,
	Ray Walker Doug Macauley -	Richmond E-LAIR	r ₃
		WATER/SOLID HAZ WASTE HWCU ENFORCEMENT	
		Independent Ch	Oil Tank



## REYNOLDS ALUMINUM COPY

Reynolds Metals Company • P.O. Box 999 • Longview, Washington 98632 • (205)425-280

September 28, 1992

WATER/SOLID HAZ. WASTE FIVICU

Mr. Paul Skyllingstad Dept. of Ecology Industrial Sec. P.O. Box 47706 Olympia, WA 98504-7706

Dear Mr. Skyllingstad:

Attached are the results of testing the diesel contaminated soil which was excavated from the site of Reynolds' aboveground diesel storage tank. (See Reynolds' report dated October 2, 1991.) The soil was divided into eight rectangular areas for testing purposes. As can be seen in the attached data, six of the areas are <200 ppm diesel.

The soil which is below 200 ppm and therefore no longer considered a hazard per MTCA will be moved to a location behind Reynolds' potliner digging area. Stormwater runoff from this location is contained and returned to the plant's fume control system. Bioremediation will continue for the soil in the two areas which contain diesel at levels greater than 200 ppm.

Should you have any questions or comments, please contact me at (206) 636-8203.

Sincerely,

REYNOLDS METALS COMPANY LONGVIEW REDUCTION PLANT

Thomas D. Dickey Technical Supt.

mb

attachment

c: Kent Moore John Amos (G-4-9) Doug Macauley (E-L-3) See Independent Ch Oil tank

See ensineering files





DATE& SUBJECT:	9/17/92	Soil Bioremediation of Diesel Contaminated Soil
COPY:	Frank Eisle	
→ T O ;	Tom Dickey	
FROM:	Harold Hays	

Attached are the analytical results obtained on samples collected from the bioremediation area for the soils excavated from the vicinity of the plant diesel storage tank.

The area was divided into a grid of eight sub-areas, labeled A through H. Each grid area was sampled at 4 locations within the grid. The samples from each grid area were composited to form a sample representative of that area. Each sample consisted of a core of soil extending from the upper surface to the bottom. A sketch depicting the sampling grid, sample designation, and analytical results is attached.

The eight composite samples were collected at approximately 9:00 a.m. on 8/21/92. The samples were kept under refrigeration and submitted to Columbia Analytical Services on 8/24/92 to be analyzed for residual diesel concentration using Washington Department of Ecology Method WTPH-D.

Of the eight grid areas sampled, only two areas, A and G, remain above the 200 mg/kg concentration specified as the clean-up level for diesel under WAC 173-340-740 (2), (Model Toxics Control Act, soil clean-up levels, Method A.)

Harold Hays

## DIESEL STORAGE TANK SOIL REMEDIATION AREA SAMPLING GRID

PLANT NORTH

E	D
GRID	GRID
(170 PPM)	(57 PPM)
F	С
GRID	GRID
(116 PPM)	(100 PPM)
G	В
GRID	GRID
(459 PPM)	(138 PPM)
Н	A
GRID	* GRID *
(54 PPM)	(679 PPM)
	* *

FAC 71 (WWTP)

* SAMPLE LOCATIONS PER GRID AREA, TYPICAL
( ) TPH-DIESEL CONCENTRATION, MG/KG DRY WT. BASIS
SOIL SAMPLES COLLECTED 8/21/92, 9:00 A.M., BY R. G. WILSON

SKETCH NOT TO SCALE



September 11, 1992

Harold Hays Reynolds Metals Company Reduction Plant P.O. Box 999 Longview, WA 98632

Dear Harold:

Enclosed are the results of the samples submitted to our lab on August 24, 1992. For your reference, these analyses have been assigned our work order number K925242.

All analyses were performed in accordance with our laboratory's quality assurance program. Reproduction of reports is allowed only in whole, not in part. Results apply only to the samples analyzed.

Please call if you have any questions.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kevin DeWhitt Project Chemist

KD/eaw



#### COLUMBIA ANALYTICAL SERVICES, INC.

#### **Analytical Report**

Client:

Reynolds Metals Company

Sample Matrix:

Soil

Date Received: Date Extracted: 08/24/92 08/26/92

Date Analyzed:

08/27,28/92

Work Order No.:

K925242

Total Petroleum Hydrocarbons as Diesel and Oil Washington DOE Method WTPH-D mg/Kg (ppm) Dry Weight Basis

		Die	esel	0	il *
Sample Name	Lab Code	MRL	Result	MRL	Result
A Grid	K5242-1	25	679	100	ND
B Grid	K5242-2	25	138	100	ND
C Grid	K5242-3	25	100	100	ND
D Grid	K5242-4	25	57	100	ND
E Grid	K5242-5	25	170	100	ND
F Grid	K5242-6	25	116	100	ND
G Grid	K5242-7	25	459	100	ND
H Grid	K5242-8	25	54	100	ND
Method Blank	K5242-MB	25	ND	100	ND

Quantified using 30-weight motor oil as a standard.

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by Kelly Tay

Date 9-16

00002

# APPENDIX A LABORATORY QC RESULTS





Client:

Reynolds Metals Company

Sample Matrix:

Date Received: Date Analyzed: 08/24/92

08/26/92

Work Order No.: K925242

Solids, Total EPA Method Modified 160.3 Percent (%)

Sample Name	Lab Code	Result
A Grid	K5242-1	94.7
B Grid	K5242-2	93.8
C Grid	K5242-3	92.4
D Grid	K5242-4	93.0
E Grid	K5242-5	92.8
F Grid	K5242-6	93.2
G Grid	K5242-7	95.2
H Grid	K5242-8	93.4

000-1



#### COLUMBIA ANALYTICAL SERVICES, INC.

#### QA/QC Report

Client:

1313

Reynolds Metals Company

Sample Matrix:

Soil

Date Received:

08/24/92

Date Extracted:

08/26/92 08/27,28/92

Date Analyzed: Work Order No.: K925242

Surrogate Recovery Summary Total Petroleum Hydrocarbons as Diesel and Oil Washington DOE Method WTPH-D

Sample Name	Lab Code	Percent Recovery p-Terphenyl
A Grid	K5242-1	85
B Grid	K5242-2	86
C Grid	K5242-3	82
D Grid	K5242-4	86
E Grid	K5242-5	86
F Grid	K5242-6	86
G Grid	K5242-7	88
H Grid	K5242-8	86
Method Blank	K5242-MB	89

CAS Acceptance Criteria

50-114

Approved by 4

00004

Memorandum: Determination
Regarding the Suitability of Proposed
Dredged Material from the
Weyerhaeuser Property, Longview,
Washington, for Flow-Lane Disposal in
the Columbia River, or for Beneficial
Use

Dredged Material Management Program. January 2, 2009.

MEMORANDUM FOR: RECORD January 2, 2009

**SUBJECT**: DETERMINATION REGARDING THE SUITABILITY OF PROPOSED DREDGED MATERIAL FROM THE WEYERHAEUSER PROPERTY, LONGVIEW, WASHINGTON, FOR FLOW-LANE DISPOSAL IN THE COLUMBIA RIVER, OR FOR BENEFICIAL USE.

- Introduction. This memorandum reflects the consensus determination of the Dredged Material Management Program (DMMP) agencies (U.S. Army Corps of Engineers, Environmental Protection Agency, and Washington Departments of Ecology and Natural Resources) regarding the suitability of up to 110,000 cubic yards (cy) of dredged material from the Weyerhaeuser property in Longview for beneficial use or for flow-lane disposal in the Columbia River.
- 2. <u>Background</u>. The Mount Coffin Ship Access Channel in the Columbia River and areas adjacent to the Weyerhaeuser property require routine maintenance dredging to ensure navigation depths for oceangoing vessels and river barges that are shipping mill products and raw materials to existing Weyerhaeuser facilities. The Mount Coffin Ship Channel provides ship access from the federal navigation channel to the docks and turning basin. The areas originally proposed for maintenance dredging, shown in Figure 1, are as follows (Integral, 2008a):
  - Salt Dock at river mile (RM) 64.0. Maintain to 38 ft Columbia River Datum (CRD) for deep-draft shipping.
  - Cargo Dock and Turning Basin at RM 64.5. Maintain to 38 ft CRD for deep-draft shipping.
  - Export Dock at RM 65.5. Maintain to 38 ft CRD for deep-draft shipping.
  - Chip Barge Slip at RM 65.0. Maintain to 14 ft CRD for chip barge handling.
  - Mount Coffin Ship Access Channel at RM 63.4. Maintain to 42 ft CRD.

The sampling and analysis plan (SAP) allocated dredged material management units (DMMUs) and field samples to each of these proposed dredging areas. However, during field sampling it was determined that little or no sediment accumulation had occurred above the maintenance depth for the Salt Dock, Cargo Dock, Turning Basin or Export Dock. Only the Chip Barge Slip and Mount Coffin Access Channel required dredging. The remainder of this suitability determination addresses these two portions of the project only.

3. <u>Project Summary</u>. Table 1 includes project summary and tracking information.

Table 1. Project Summary

Project ranking	Low-moderate
Characterized volume	Total: 110,000 cy Chip Barge Slip: 10,000 cy Access Channel: 100,000 cy
Maintenance depth	Chip Barge Slip: 14 ft. CRD Access Channel: 42 ft. CRD
Draft SAP received	August 18, 2008

Draft SAP returned for revisions	August 28, 2008
SAP revisions completed	August 29, 2008
SAP revisions approved	September 1, 2008
Sampling date	September 2, 2008
Final data report received	December 14, 2008
DAIS Tracking number	WEYLO-1-A-F-265
USACE Permit Application Number	Chip Barge Slip: 1999-2-00191 Access Channel: 200200105
Recency Determination	
(low-moderate rank = 6 years)	September 2014*

^{*}Chip Barge Slip and Access Channel only; the Salt Dock, Cargo Dock/Turning Basin and Export Dock will require sediment characterization prior to the next dredging cycle.

- 4. <u>Project Ranking and Sampling Requirements</u>. The Weyerhaeuser property in Longview is ranked "low-moderate" (Integral, 2008a). In low-moderate-ranked areas with homogeneous sediment, the minimum numbers of field samples and dredged material management units (DMMUs) are calculated using the following guidelines (DMMP, 2008b):
  - Maximum volume of sediment represented by each field sample = 8,000 cubic yards
  - Maximum volume of sediment represented by each DMMU = 40,000 cubic yards.

Based on these guidelines, the following numbers of field samples and DMMUs were required:

Dredging Area	Volume (cy)	field samples	DMMUs
Chip Barge Slip	10,000	2	1
Access Channel	100,000	13	3

5. <u>Sampling</u>. Sampling took place September 2-4, 2008 using a van Veen sampler (in areas with homogeneous sediment, surface grab samples are deemed adequate to represent the sediment – DMMP, 2008b). Only minor problems were encountered during sampling for the Access Channel and Chip Barge Slip. The target locations for G8-4 and G10-4 in the Access Channel and G6-2 in the Chip Barge Slip did not have sediment accumulated above the maintenance dredging depth. Therefore, the actual sampling stations were moved to locations with adequate sediment depth.

In addition to grab samples, core samples were required for collection of z-samples to represent the sediment surface to be exposed by dredging. Weyerhaeuser agreed to collect z-samples in two layers: 0-1' and 1-2' below the proposed dredging depth. A vibracore was used to collect these samples.

See Figure 2 (Access Channel) and Figure 3 (Chip Barge Slip) for target and actual grab and core sampling locations. Table 2 presents this information in tabular form.

**Chemical Analysis**. The approved sampling and analysis plan was followed and quality control guidelines specified by the PSEP and DMMP programs were met, with only minor quality control deviations (Integral, 2008b). The data were considered sufficient and acceptable for regulatory decision-making under the DMMP program.

Sediment conventional results (Table 3) show that the proposed dredged material in the Access

Channel is predominantly sand, while that in Chip Barge Slip is sandy silt. The total organic carbon content is less than 0.1 percent in the Access Channel and 0.52 percent in the Chip Barge Slip.

For this project, the DMMP agencies agreed to use the SEF freshwater guidelines (RSET, 2006), supplemented by the DMMP marine guidelines (DMMP, 2008b) for those chemicals of concern for which freshwater guidelines do not exist. The chemical results indicated that there were no exceedances of SEF freshwater or DMMP marine screening levels (Table 4).

In addition to routine DMMP chemicals of concern, analysis of resin acids and guaiacols was required at the Chip Barge Slip due to the probable presence of woody debris associated with unloading operations at that facility. Table 5 includes data for the resin acids and guaiacols, all of which were either undetected or detected at very low concentrations. The detected concentrations were compared to those found in projects in Grays Harbor for which bioassays were conducted. The Weyerhaeuser concentrations were far below concentrations associated with bioassays that passed open-water dispersive suitability guidelines in Grays Harbor.

The analysis of dioxins/furans was required for DMMU 8 and its corresponding z-samples, due to its proximity to potential upland sources of dioxin, including a Kraft batch digestor and a Kaymr continuous Kraft digestor (see Figure 4). The dioxin/furan toxic equivalence (TEQ) concentrations (Table 6) were very low for the three samples tested and are well below the range of concentrations (0.65 to 2.387 pptr) compiled by the Department of Ecology for freshwater samples taken downstream of Puget Island (see Table 7). This range of values can be considered background for the lower Columbia River, therefore the Weyerhaeuser dioxin/furan concentrations are below background.

Based on the overall evaluation of the chemical data, bioassay testing was not required for the dredged material. All four DMMUs met suitability guidelines, based on chemistry alone, for flow-lane disposal in the Columbia River.

7. <u>Sediment Exposed by Dredging</u>. Sediment to be exposed by dredging must be evaluated in accordance with the DMMP antidegradation guidelines (DMMP 2008a). Vibracore samples were taken from 0-1 feet and 1-2 feet below project overdepth for DMMUs 6, 8, 9 and 10. Other than the requirement to test the z-samples from DMMU 8 for dioxins/furans, there were no requirements for immediate testing of the sediment to be exposed by dredging. However, the analytical lab inadvertently tested all z-samples for routine chemicals of concern.

None of the z-samples exceeded SEF freshwater or DMMP marine guidelines except for the 1-2 foot z-sample associated with DMMU 10. Dimethyl phthalate was detected at 350 ug/kg, exceeding the SEF freshwater guideline of 46 ug/kg. However, as phthalates are common laboratory contaminants and the detected concentration was an order of magnitude higher than the concentration detected in any other project sample, archived sediment for this z-sample was sent to another laboratory for verification. Two subsamples of the archived sediment were extracted and analyzed. Dimethyl phthalate was undetected in both samples. Based on the retest data, the DMMP agencies agreed to set aside the original results. The sediment to be exposed by dredging is deemed to have met the DMMP antidegradation guidelines.

8. Beneficial-Use Analysis. The proposed dredged material had no exceedances of the State of Washington numerical Sediment Quality Standards (see Table 8). (It should be noted that the organic carbon content for DMMUs 8, 9 and 10 was too low to permit carbon normalization. However, the dryweight concentrations for those chemicals for which the SQS is carbon-normalized were well below the SEF freshwater or DMMP marine guidelines.) Based on the comparison to SQS and agency best professional judgment regarding acceptable dioxin/furan and resin acid/guaiacol concentrations in beneficial use material, sediment from this project may be used for beneficial use in a freshwater or marine environment.

To assess the suitability for upland beneficial use, the chemical results were compared to the Model Toxics Control Act (MTCA) guidelines (Ecology, 2005). Table 9 indicates that the reported concentration of 1.0 mg/kg for arsenic in DMMU 6 exceeds the Method B guideline for carcinogens for unrestricted use. Therefore, it is possible that DMMU 6 may be unsuitable for some types of upland use. Ecology, DNR and the local health department should be consulted if upland beneficial use is contemplated for this management unit. The other three DMMUs are all suitable for upland beneficial use.

9. <u>Suitability Determination</u>. This memorandum documents the evaluation of the suitability of sediment proposed for dredging from the Weyerhaeuser property in Longview for flow-lane disposal or beneficial use. The approved sampling and analysis plan was followed (with the exceptions noted previously) and the data gathered were deemed sufficient and acceptable for regulatory decision-making under the DMMP program.

Based on the results of the previously described testing, the DMMP agencies conclude that **all 110,000 cubic yards are suitable** for flow-lane disposal in the Columbia River or in-water beneficial use. DMMUs 8, 9 and 10 are also suitable for upland beneficial use. However, upland beneficial use of DMMU 6 would require further consultation with Ecology, DNR and the local health department.

This suitability determination applies only to the Access Channel and Chip Barge Slip. Sediment from the Salt Dock, Cargo Dock, Turning Basin and Export Dock must be characterized prior to any dredging from those areas.

A pre-dredge conference call with DNR, Ecology and the Corps of Engineers will be required. A dredging quality control plan must be developed and submitted to the Corps of Engineers Regulatory Branch Project Manager for this project at least 7 days prior to the pre-dredge conference call. A DNR site use authorization must also be acquired.

#### 10. References.

DMMP, 2008a. Quality of Post-Dredge Sediment Surfaces (Updated). A Clarification Paper Prepared by David Fox (USACE), Erika Hoffman (EPA) and Tom Gries (Ecology) for the Dredged Material Management Program, June 2008.

DMMP, 2008b. *Dredged Material Evaluation and Disposal Procedures (Users Manual)*. Dredged Material Management Program, July 2008.

Ecology, 1995. *Sediment Management Standards – Chapter 173-204 WAC.* Washington State Department of Ecology, December 1995.

Ecology, 2005. *Model Toxics Control Act – Chapter 70.105D RCW and Cleanup Regulation - Chapter 173-340 WAC.* Washington State Department of Ecology, October 2005.

Integral, 2008a. *Sampling and Analysis Plan, Sediment Characterization, Weyerhaeuser Property, Longview, Washington.* Prepared by Integral Consulting Inc. for Weyerhaeuser Company. September 2008.

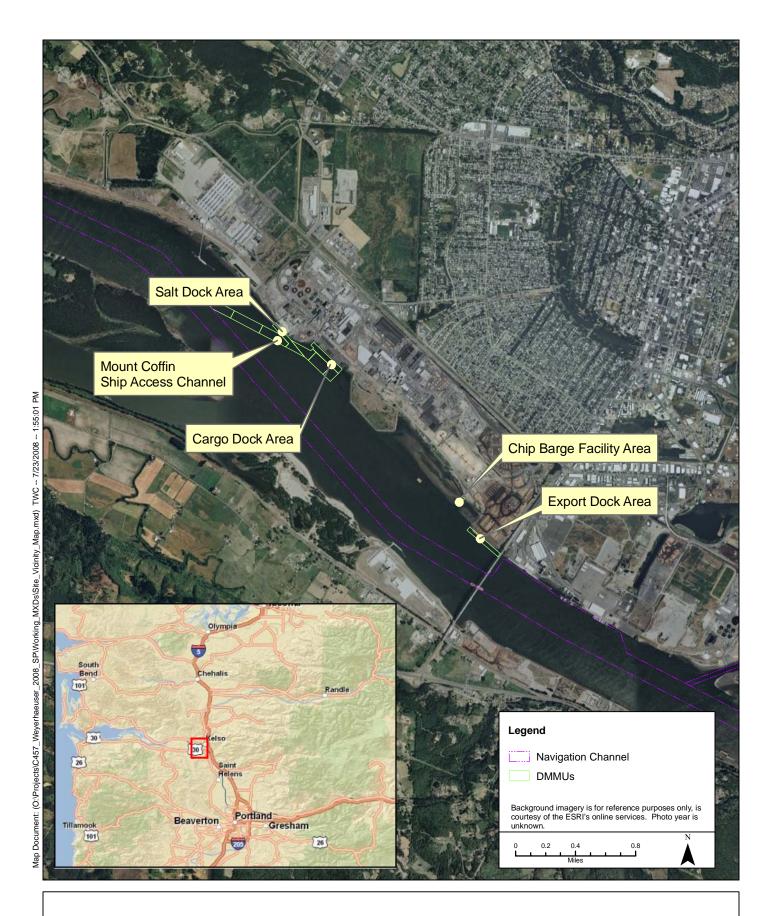
Integral, 2008b. *Sediment Characterization Report, Weyerhaeuser Property, Longview, Washington.* Prepared by Integral Consulting Inc. for Weyerhaeuser Company. December 2008.

RSET, 2006. *Northwest Regional Sediment Evaluation Framework, Interim Final.* Northwest Regional Sediment Evaluation Team, September 2006.

#### 11. Agency Signatures.

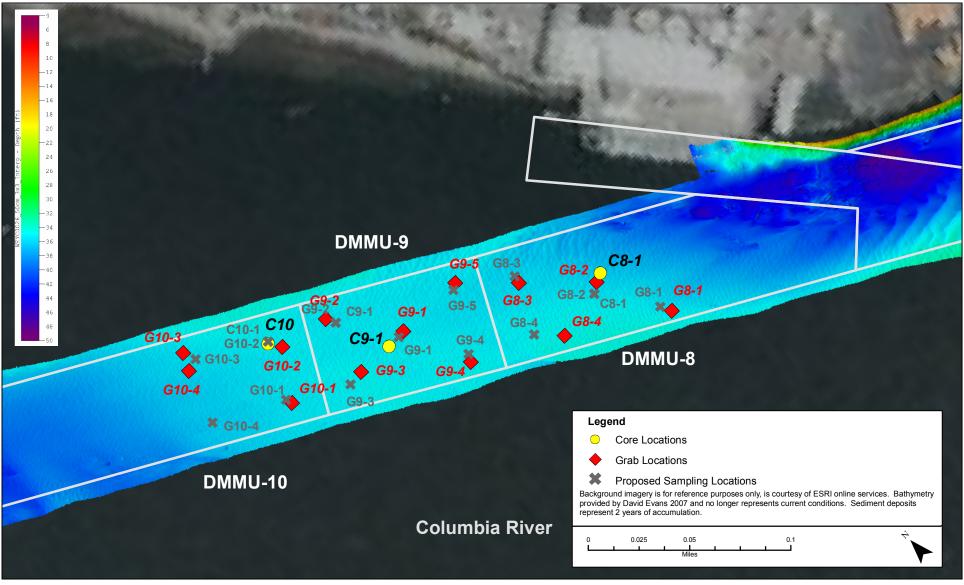
Concur:

David Fox, P.E. - Seattle District Corps of Engineers


Erika Hoffman - Environmental Protection Agency

Laura Inouye, Ph.D. - Washington Department of Ecology

Courtney Wasson'- Washington Department of Natural Resources


Copies furnished:

**DMMP** signatories Seattle District Regulatory PM Sandy Browning, Integral Consulting Brian Wood, Weyerhaeuser





**Figure 1.** Weyerhaeuser, Longview, WA Site Vicinity





**Figure 2.** Weyerhaeuser, Longview, WA Ship Access Channel Sampling Locations

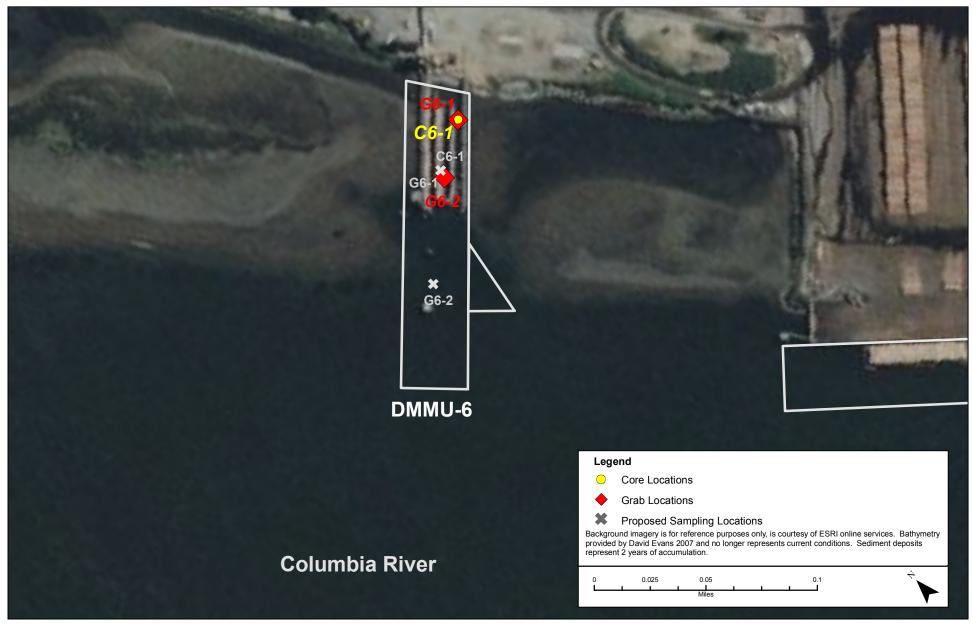
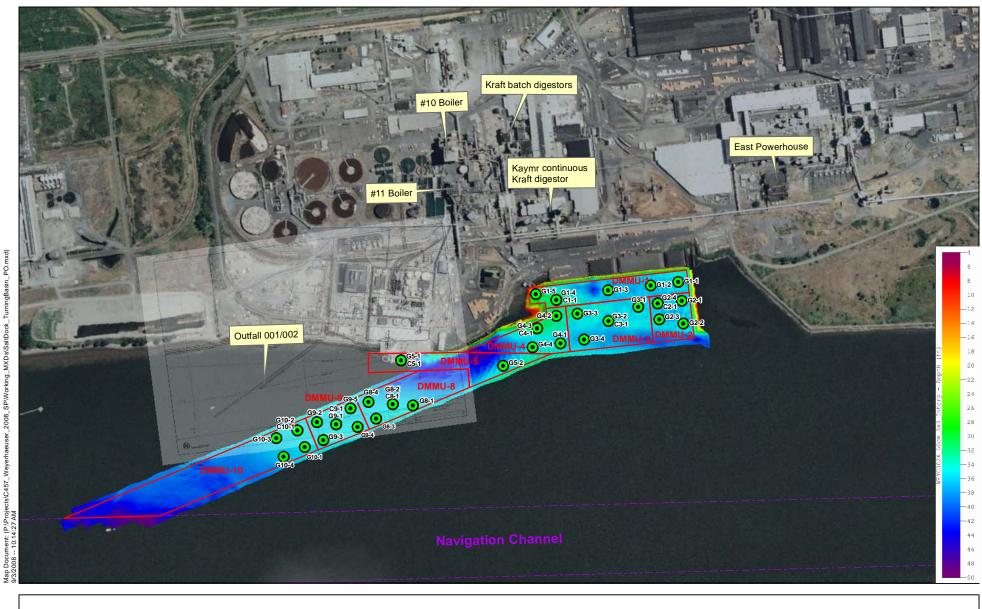







Figure 3.
Weyerhaeuser, Longview, WA
Chip Barge Area Sampling Locations





Note: DMMUs 1-5 were eliminated due to lack of sediment above the maintenance depth.

Table 2. Sampling Coordinates and Sample Designations.

	Sample		Actual Samp	le Locations	Proposed San	nple Locations		Location
Location	Designation	Sample Type	Easting	Northing	Easting	Northing	Difference (ft)	Designations
DMMIL & Chin Borgo	DMMU-6-C6	Grab	1015482.152	294034.887	1015370.117	293974.6236	127	G6-1
Divilvio-6 Chip barge	DIVIIVIO-6-C6	Grab	1015365.47	293956.3319	1015173.769	293789.868	254	G6-2
•	C6-Z(0-1) C6-Z(1-2)	Core	1015482.871	294034.916	1015370.117	293974.6236	128	C6-1
		Grab	1008815.868	299674.7229	1008801.859	299703.3857	32	G8-1
DMMU-8	DMMU-8-C8	Grab	1008723.62	299863.049	1008698.706	299844.1494	31	G8-2
Mt. Coffin Channel	DIVIIVIU-6-C6	Grab	1008574.357	299999.6481	1008578.162	300019.7876	20	G8-3
		Grab	1008567.493	299817.393	1008511.607	299874.0442	80	G6-1 G6-2 C6-1 G8-1 G8-2
•	C8-Z(0-1) C8-Z(1-2)	Core	1008746.65	299873.6862	1008698.706	299844.1494	56	C8-1
		Grab	1008268.036	300112.7717	1008249.718	300109.7508	19	G9-1
DMMILO		Grab	1008142.511	300272.8878	1008155.439	300249.0967	27	G9-2
	DMMU-9-C9	Grab	1008115.71	300109.9063	1008073.004	300105.2551	43	G9-3
IVIL. COIIIII CHAIIITEI		Grab	1008342.885	299934.1878	1008352.223	299952.9677	21	G9-4
		Grab	1008452.791	300113.0537	1008436.95	300102.1219	19	G9-5
	C9-Z(0-1) C9-Z(1-2)	Core	1008214.156	300109.7425	1008155.439	300249.0967	151	C9-1
		Grab	1007928.889	300173.5503	1007923.32	300190.423	18	G10-1
DMMU-10	DMMII 10 C10	Grab	1008010.031	300297.9373	1007992.734	300332.9558	39	G10-2
DMMU-6 Chip Barge Z sample 0'-1' Z sample 1'-2'  DMMU-8 Mt. Coffin Channel Z sample 0'-1' Z sample 1'-2'  DMMU-9 Mt. Coffin Channel Z sample 0'-1' Z sample 1'-2'  DMMU-10 Mt. Coffin Channel Z sample 0'-1'	DMMU-10-C10 DMMU-10-C10	Grab	1007810.938	300462.1912	1007823.664	300428.6089	36	G10-3
		Grab	1007789.47	300417.8326	1007742.944	300277.9513	147	G10-4
Z sample 0'-1' Z sample 1'-2'	C10-Z(0-1) C10-Z(1-2)	Core	1007988.354	300329.0101	1007992.734	300332.9558	6	C10-1

Integral Consulting Inc. Page 1 of 1

Table 3. Sediment Conventional Data.

		Chip Barge Slip		CCESS Channel  DMMU-9-C9 DMMU-10-C10  C3 C4  DMMU 9 DMMU 10  0.2 0.0  99.8 98.4  0.0 1.6  0.0 0.0			
	Lab ID:	DMMU-6-C6	DMMU-8-C8				
	DAIS ID:	C1	C2				
	DMMU #:	DMMU 6	DMMU 8	DMMU 10			
	% Gravel:	2.1	0.7	0.2	0.0		
CDAIN	% Sand:	43.7	98.2	99.8	98.4		
GRAIN SIZE	% Silt:	54.2	1.1	0.0	1.6		
	% Clay:	0.0	0.0	0.0	0.0		
	% Fines (clay+silt):	54.2	1.1	0.0	1.6		
Total Solids (%):		62.2	75.5	67.6	67.9		
Volatile Solids (%):		2.1	0.5	0.5	0.6		
Total Organic Carbon (%):		0.52	0.05	0.02 u	0.08		
Total Sulfides (mg/kg):		17.8	0.8 u	0.9 u	0.9 u		
Tota	al Ammonia (mg N/kg):	18.3	.006 u	1.6	.006 u		

Table 4. Chemical results compared to DMMP regulatory guidelines.

Part							Barge	Slip			Access C	hanne	el	
SEF Freshwater						Lab ID:	DMMU-	6-C6	DMMU-	8-C8	DMMU-	9-C9	DMMU-1	0-C10
SEF Freshwater						DAIS ID:	C.1		C2		C3		C.4	
METALS (mg/kg dry)		CEE Ero	chuatar		DMMD Mori		- 01		02		- 03		04	
Chemical   Sl.1   Sl.2   Sl.   BT   ML   Conc   OL	SET FIE	STIWATEI		DIVIIVIP IVIALII	ie	DMMI	16	DMMI	18	DMMI	19	DMMU	10	
METALS (mg/kg dry)	CHEMICAL	SI 1	SI 2	SI	RT	М	Divilvio	, 0	Divilvi	0 0	Divilvio	, ,	DIVINIO 10	
Antimony		JLI	JLZ	JL	ы	IVIL	conc	ΟI	conc	ΟI	conc	ΟI	conc	QL
Arsenic   20				150		200				_				_
Cadmium								D		_		_		U
Chromium		_										D		, D
Copper   80														
Lead														
Mercury														
Nicker   60   70   NA   370   NA   5.13   4.01   5.8   5.72										11		11		11
Selenium	,									0		0		0
Silver   2   2.5								П		П		П		П
Zinc   130   400   NA   2,783   NA   22.3   10.6   13.3   13.1														
LPAH (ug/kg dry)   2-Methylnaphthalene										+		1		+
2-Methylnaphthalene         470         560         NA		130	400	14/1	2,703	14/1	22.5		10.0		10.0		10.1	
Acenaphthene         1,100         1,300         NA          NA         13         1.4         U         1.4         U         1.6         U           Acenaphthylene         470         640         NA          NA         1.8         J         1.2         U         1.2         U         1.4         U           Anthracene         1,200         1,600         NA          NA         6.8         J         1.6         U         1.6         U         1.8         U           Roper and the control         1,000         3,000         NA          NA         1.4         U         1.6         U         1.8         U           Naphthalene         1,000         3,000         NA          NA         2.3         U         2.3         U         2.3         U         2.6         U           Phenanthrene         6,100         7,600         NA          NA         75         1.9         J         1.4         U         1.6         U           Total LPAH         6,600         92,00         NA          NA         37         1.7         U         1.7 <td>( 3 3 1/</td> <td>470</td> <td>560</td> <td>NΔ</td> <td></td> <td>NΔ</td> <td>3.0</td> <td>1</td> <td>2.2</td> <td>Ш</td> <td>2.2</td> <td>Ш</td> <td>2.5</td> <td>Ш</td>	( 3 3 1/	470	560	NΔ		NΔ	3.0	1	2.2	Ш	2.2	Ш	2.5	Ш
Acenaphthylene								,		_				Ш
Anthracene         1,200         1,600         NA          NA         6.8         J         1.6         U         1.8         U           Fluorene         1,000         3,000         NA          NA         14         1.1         U         1.1         U         1.3         U           Naphthalene         500         1,300         NA          NA         2.3         U         2.3         U         2.6         U           Phenanthrene         6,100         7,600         NA          NA         75         1.9         J         1.4         U         1.6         U           Total LPAH         6,600         92,00         NA          NA         110         J         1.9         J         1.4         U         1.6         U           Benzo(a)anthracene         4,300         5,800         NA          NA         37         1.7         U         1.7         U         1.9         U           Benzo(a)pyrene         3,300         4,800         NA          NA         23         1.7         U         1.7         U         1.9         U								ī				_		Ŭ
Fluorene								ı				_		•
Naphthalene         500         1,300         NA          NA         2.3         U         2.3         U         2.3         U         2.6         U           Phenanthrene         6,100         7,600         NA          NA         75         1.9         J         1.4         U         1.6         U           Total LPAH         6,600         92,00         NA          NA         110         J         1.9         J         1.4         U         1.6         U           HPAH (ug/kg dry)          NA         110         J         1.9         J         2.3         U         2.6         U           Benzo(a)anthracene         4,300         5,800         NA          NA         37         1.7         U         1.7         U         1.9         U           Benzo(a)pyrene         3,300         4,800         NA          NA         23         1.7         U         1.7         U         1.9         U           Benzo(g,h,i)perylene         4,000         5,200         NA          NA         13         1.5         U         1.5         U         1												-		_
Phenanthrene			-,					Ш				-		
Total LPAH         6,600         92,00         NA          NA         110         J         1.9         J         2.3         U         2.6         U           HPAH (ug/kg dry)         Benzo(a)anthracene         4,300         5,800         NA          NA         37         1.7         U         1.7         U         1.9         U           Benzo(a)pyrene         3,300         4,800         NA          NA         23         1.7         U         1.7         U         1.9         U           Benzof(g,h,i)perylene         4,000         5,200         NA          NA         13         1.5         U         1.5         U         1.7         U         1.7         U         1.7         U         1.7         U         1.7         U         1.7         U         1.5         U         1.7         U         1.9         U         1.0         1.7         U         1.7         U         1.9         U         1.0         1.5         U         1.7         U         1.7         U         1.5         U         1.7         U         1.6         U         1.6         U         1.5												_		_
HPAH (ug/kg dry)           Benzo(a)anthracene         4,300         5,800         NA          NA         37         1.7         U         1.7         U         1.9         U           Benzo(a)pyrene         3,300         4,800         NA          NA         23         1.7         U         1.7         U         1.9         U           Benzo(g,h,i)perylene         4,000         5,200         NA          NA         13         1.5         U         1.5         U         1.7         U         1.9         U         1.9         U         1.5         U         1.5         U         1.5         U         1.7         U         1.7         U         1.6         U         1.6         U         1.6         U         1.6         U         1.6         U         1.6         U         1.7         U         1.7         U         1.7         U         1.5         U         1.5         U         1.5         U         1.7         U         1.7         U								ī		_				
Benzo(a)anthracene         4,300         5,800         NA          NA         37         1.7         U         1.7         U         1.9         U           Benzo(a)pyrene         3,300         4,800         NA          NA         23         1.7         U         1.7         U         1.9         U           Benzo(g,h,i)perylene         4,000         5,200         NA          NA         13         1.5         U         1.5         U         1.7         U           Benzofluoranthenes         600         4,000         NA          NA         63         1.4         U         1.4         U         1.6         U           Chrysene         5,900         6,400         NA          NA         49         1.5         U         1.5         U         1.7         U           Dibenzo(a,h)anthracene         800         840         NA          NA         8.7         J         1.5         U         1.5         U         1.7         U           Fluoranthene         11,000         15,000         NA         4,600         NA         90         2.5         J         1.6<		0,000	72,00			1.00		,			2.0		2.0	
Benzo(a)pyrene         3,300         4,800         NA          NA         23         1.7         U         1.7         U         1.9         U           Benzo(g,h,i)perylene         4,000         5,200         NA          NA         13         1.5         U         1.5         U         1.7         U           Benzofluoranthenes         600         4,000         NA          NA         63         1.4         U         1.4         U         1.6         U           Chrysene         5,900         6,400         NA          NA         49         1.5         U         1.5         U         1.6         U           Dibenzo(a,h)anthracene         800         840         NA          NA         8.7         J         1.5         U         1.5         U         1.7         U           Fluoranthene         11,000         15,000         NA         4,600         NA         90         2.5         J         1.6         U         1.8         U           Indeno(1,2,3-c,d)pyrene         4,100         5,300         NA          NA         21         1.5         U <td< td=""><td></td><td>4.300</td><td>5.800</td><td>NA</td><td></td><td>NA</td><td>37</td><td></td><td>17</td><td>U</td><td>17</td><td>U</td><td>19</td><td>U</td></td<>		4.300	5.800	NA		NA	37		17	U	17	U	19	U
Benzo(g,h,i)perylene         4,000         5,200         NA          NA         13         1.5         U         1.5         U         1.7         U           Benzofluoranthenes         600         4,000         NA          NA         63         1.4         U         1.4         U         1.6         U           Chrysene         5,900         6,400         NA          NA         49         1.5         U         1.5         U         1.7         U           Dibenzo(a,h)anthracene         800         840         NA          NA         8.7         J         1.5         U         1.5         U         1.7         U           Fluoranthene         11,000         15,000         NA         4,600         NA         90         2.5         J         1.6         U         1.8         U           Indeno(1,2,3-c,d)pyrene         4,100         5,300         NA          NA         21         1.5         U         1.5         U         1.7         U           Pyrene         8,800         16,000         NA         11,980         NA         100         1.5         U         1.	. ,		.,									Ü		U
Benzofluoranthenes         600         4,000         NA          NA         63         1.4         U         1.4         U         1.6         U           Chrysene         5,900         6,400         NA          NA         49         1.5         U         1.5         U         1.7         U           Dibenzo(a,h)anthracene         800         840         NA          NA         8.7         J         1.5         U         1.5         U         1.7         U           Fluoranthene         11,000         15,000         NA         4,600         NA         90         2.5         J         1.6         U         1.8         U           Indeno(1,2,3-c,d)pyrene         4,100         5,300         NA          NA         21         1.5         U         1.5         U         1.7         U           Pyrene         8,800         16,000         NA         11,980         NA         100         1.5         U         1.5         U         1.7         U           Total HPAH         31,000         55,000         NA          NA         404.7         J         2.5         J						NA				U	1.5	U		U
Chrysene         5,900         6,400         NA          NA         49         1.5         U         1.5         U         1.7         U           Dibenzo(a,h)anthracene         800         840         NA          NA         8.7         J         1.5         U         1.5         U         1.7         U           Fluoranthene         11,000         15,000         NA         4,600         NA         90         2.5         J         1.6         U         1.8         U           Indeno(1,2,3-c,d)pyrene         4,100         5,300         NA          NA         21         1.5         U         1.5         U         1.7         U           Pyrene         8,800         16,000         NA         11,980         NA         100         1.5         U         1.5         U         1.7         U           Total HPAH         31,000         55,000         NA          NA         404.7         J         2.5         J         1.7         U         1.9         U           CHLORINATED HYDROCARBONS (ug/kg dry)          31          64         2.6         U         2.6	(3/  )	600	4.000	NA		NA	63		1.4	U	1.4	U	1.6	U
Dibenzo(a,h)anthracene         800         840         NA          NA         8.7         J         1.5         U         1.5         U         1.7         U           Fluoranthene         11,000         15,000         NA         4,600         NA         90         2.5         J         1.6         U         1.8         U           Indeno(1,2,3-c,d)pyrene         4,100         5,300         NA          NA         21         1.5         U         1.5         U         1.7         U           Pyrene         8,800         16,000         NA         11,980         NA         100         1.5         U         1.5         U         1.7         U           Total HPAH         31,000         55,000         NA          NA         404.7         J         2.5         J         1.7         U         1.9         U           CHLORINATED HYDROCARBONS (ug/kg dry)          31          64         2.6         U         2.6         U         2.6         U         2.9         U         1,2-billorlorbenzene           35          110         2.9         U         2.9		_								U		U		U
Fluoranthene         11,000         15,000         NA         4,600         NA         90         2.5         J         1.6         U         1.8         U           Indeno(1,2,3-c,d)pyrene         4,100         5,300         NA          NA         21         1.5         U         1.5         U         1.7         U           Pyrene         8,800         16,000         NA         11,980         NA         100         1.5         U         1.5         U         1.7         U           Total HPAH         31,000         55,000         NA          NA         404.7         J         2.5         J         1.7         U         1.9         U           CHLORINATED HYDROCARBONS (ug/kg dry)          31          64         2.6         U         2.6         U         2.6         U         2.9         U           1,2-Dichlorobenzene           35          110         2.9         U         2.9         U         2.9         U         3.3         U	Dibenzo(a,h)anthracene	800	840	NA		NA		J		U		U	1.7	U
Pyrene         8,800         16,000         NA         11,980         NA         100         1.5         U         1.5         U         1.7         U           Total HPAH         31,000         55,000         NA          NA         404.7         J         2.5         J         1.7         U         1.9         U           CHLORINATED HYDROCARBONS (ug/kg dry)           31          64         2.6         U         2.6         U         2.9         U           1,2-Dichlorobenzene           35          110         2.9         U         2.9         U         2.9         U         3.3         U		11,000	15,000	NA	4,600	NA				J	1.6	U	1.8	U
Total HPAH         31,000         55,000         NA          NA         404.7         J         2.5         J         1.7         U         1.9         U           CHLORINATED HYDROCARBONS (ug/kg dry)           1,2,4-Trichlorobenzene           31          64         2.6         U         2.6         U         2.6         U         2.9         U           1,2-Dichlorobenzene           35          110         2.9         U         2.9         U         2.9         U         3.3         U	Indeno(1,2,3-c,d)pyrene	4,100	5,300			NA	21	l		U	1.5	U	1.7	U
Total HPAH         31,000         55,000         NA          NA         404.7         J         2.5         J         1.7         U         1.9         U           CHLORINATED HYDROCARBONS (ug/kg dry)           1,2,4-Trichlorobenzene           31          64         2.6         U         2.6         U         2.6         U         2.9         U           1,2-Dichlorobenzene           35          110         2.9         U         2.9         U         2.9         U         3.3         U	Pyrene	8,800	16,000	NA	11,980	NA	100	l	1.5	U	1.5	U	1.7	U
CHLORINATED HYDROCARBONS (ug/kg dry)         1,2,4-Trichlorobenzene        31        64       2.6       U       2.6       U       2.9       U         1,2-Dichlorobenzene         35        110       2.9       U       2.9       U       2.9       U       2.9       U       3.3       U						NA		J		J		U	1.9	U
1,2-Dichlorobenzene 35 110 2.9 U 2.9 U 2.9 U 3.3 U	CHLORINATED HYDROCARE	ONS (ug/kg d	ry)										•	
	1,2,4-Trichlorobenzene			31		64	2.6	U	2.6	U	2.6	U	2.9	U
	1,2-Dichlorobenzene			35		110	2.9	U	2.9	U	2.9	U	3.3	U
				170			3	U	3	U	3	U	3.4	U
1,4-Dichlorobenzene 110 120 2.9 U 2.9 U 2.9 U 3.3 U	1,4-Dichlorobenzene			110		120	2.9	U	2.9	U	2.9	U	3.3	U
Hexachlorobenzene 22 168 230 1.2 U 1.2 U 1.2 U 1.4 U				22	168	230	1.2	U	1.2	U	1.2	U	1.4	U

						Barge	Slip			Access C	hanne	el	
					Lab ID:	DMMU-	6-C6	DMMU-	8-C8	DMMU-	9-C9	DMMU-1	0-C10
					DAIS ID:	C1		C2		C3		C4	
	SEE Ero	shwater	-	DMMP Marii				- 02					
	SEFFIE	Silwatei		JIVIIVIF IVIAI II	IC	DMMI	DMMU 6		J 8	DMMU	19	DMMU 10	
CHEMICAL	SL1	SL2	SL	ВТ	ML	Divilvio				Divilvio	,		
PHTHALATES (ug/kg dry)	OLI	OLL	OL.	<u> </u>	IVIL								
Bis(2-ethylhexyl)phthalate	220	320	NA		NA	12	J	7.4	J	10	J	8.4	J
Butyl benzyl phthalate	260	370	NA		NA	3.2	U	6.3	J	7.7	J	5.1	J
Di-n-butyl phthalate			1,400		5,100	14	J	21		25		19	J
Di-n-octyl phthalate	26	45	NA		NA	1.7	U	1.7	U	1.7	U	1.9	U
Diethyl phthalate			200		1,200	2.6	J	3.3	J	3.4	J	2.3	J
Dimethyl phthalate	46	440	NA		NA	1	U	28		17		1.2	U
PHENOLS (ug/kg dry)													
2 Methylphenol			63		77	1.5	U	1.5	U	1.5	U	1.7	U
2,4-Dimethylphenol			29		210	5.5	U	5.5	U	5.5	U	6.2	U
4 Methylphenol			670		3,600	1.5	U	1.5	U	1.5	U	1.7	U
Pentachlorophenol			400	504	690	20	U	20	U	20	U	23	U
Phenol			420		1,200	2	U	2	U	2	U	2.3	U
MISCELLANEOUS EXTRACTA	BLES (ug/kg	dry)						•				•	
Benzoic acid			650		760	96	U	96	U	96	U	110	U
Benzyl alcohol			57		870	2.1	U	18	J	16	J	2.4	U
Dibenzofuran	400	440	NA		NA	7.7	J	1.2	U	1.2	U	1.4	U
Hexachlorobutadiene			29		270	2.5	U	2.5	U	2.5	U	2.8	U
Hexachloroethane			1,400		14,000	3.1	U	3.1	U	3.1	U	3.5	U
N-Nitrosodiphenylamine			28		130	1.6	U	1.6	U	1.6	U	1.8	U
PESTICIDES AND PCBs (ug/kg	dry)							•	,		,	•	
Aldrin			10			0.16	U	0.16	U	0.16	U	0.16	U
Chlordane			10	37		0.12	U	0.12	U	0.12	U	0.12	U
Dieldrin			10			0.14	U	0.14	U	0.14	U	0.14	U
Heptachlor			10			0.12	U	0.12	U	0.12	U	0.12	U
Lindane			10			0.08	U	0.08	U	0.08	U	0.08	U
Total DDT			6.9	50	69	0.17	U	0.17	U	0.17	U	0.17	U
Total PCBs	60	120	NA		NA	2.1	U	2.1	U	2.1	U	2.1	U
Total PCBs (mg/kg OC)		aning lovel		38		0.4	U	NA		NA		NA	

B = detected in the blank
J = estimated concentration
U = undetected
ML = maximum level
NA = not applicable

OC = organic carbon

Table 5. Resin acid and guaiacol data.

	Barge	Slip
Lab ID:	DMMU	l-6-C6
DAIS ID:	C	1
CHEMICAL	DMM	IU 6
RESIN ACIDS (mg/kg dry)	conc	QL
Linoleic acid	0.027	U
Oleic acid	0.15	J
Pimaric acid	0.029	J
Isopimaric acid	0.49	
Dehydroabietic acid	1.6	
Abietic acid	0.33	
9,10-Dichlorostearic acid	0.03	U
12-Chlorodehdroabietic acid	0.0092	U
14-Chlorodehdroabietic acid	0.0083	U
Dichlorodehydroabietic acid	0.017	U
Sandracopimaric acid	0.056	
Neoabietic acid	0.045	U
Palustric acid	0.045	UJ
GUAIACOLS (ug/L)		
4-Chloroguaiacol	1.25	U
3,4-Dichloroguaiacol	2.5	U
4,5-Dichloroguaiacol	2.5	U
4,6-Dichloroguaiacol	2.5	U
3,4,5-Trichloroguaiacol	2.5	U
3,4,6-Trichloroguaiacol	2.5	U
4,5,6-Trichloroguaiacol	2.5	U
Tetrachloroguaiacol	5	U

J = estimated concentration

U = undetected

QL = laboratory qualifier

Table 6. Dioxin/Furan data.

	ĺ		Access Channel										
	Lab ID:		DI	MMU-8-C8				8-Z(0-1)	''			:8-Z(1-2)	
	DAIS ID:			C2				S3				S4	
CHEMICAL	TEF			DMMU 8		DMMU 8 - Z (0-1 ft)					DMML	J 8 - Z (1-2	ft)
				TEQ				TEQ				TEQ	
DIOXINS (ng/kg dry)	1	conc	QL		TEQ (U=0)		_		TEQ (U=0)		QL	•	TEQ (U=0)
2,3,7,8-TCDD	1	0.0722	U	0.0361	0	0.0453	U	0.02265	0	0.0393	U	0.01965	0
1,2,3,7,8-PeCDD	1		U	0.0369	0	0.0464	U	0.0232	0	0.0462	U	0.0231	0
1,2,3,4,7,8-HxCDD	0.1	0.0572	U	0.00286	0	0.0306	U	0.00153	0	0.0472	U	0.00236	0
1,2,3,6,7,8-HxCDD	0.1	0.0997	U	0.004985	0	0.0435	JKU	0.002175	0	0.0644	U	0.00322	0
1,2,3,7,8,9-HxCDD	0.1	0.0705	U	0.003525	0	0.0325	U	0.001625	0	0.0636	JKU	0.00318	0
1,2,3,4,6,7,8-HpCDD	0.01	0.871	JU	0.004355	0	0.26	BJU	0.0013	0	0.464	BJU	0.00232	0
OCDD	0.0003	7.33	J	0.002199	0.002199	1.35	BJU	0.000203	0	3.03	BJU	0.000455	0
													-
2,3,7,8-TCDF	0.1	0.0765	U	0.003825	0	0.0332	U	0.00166	0	0.0419	U	0.002095	0
1,2,3,7,8-PeCDF	0.03	0.0489	U	0.000734	0	0.0196	U	0.000294	0	0.026	U	0.00039	0
2,3,4,7,8-PeCDF	0.3	0.0507	U	0.007605	0	0.0193	U	0.002895	0	0.0267	U	0.004005	0
1,2,3,4,7,8-HxCDF	0.1	0.0458	U	0.00229	0	0.0256	U	0.00128	0	0.0221	U	0.001105	0
1,2,3,6,7,8-HxCDF	0.1	0.0476	U	0.00238	0	0.0247	U	0.001235	0	0.0215	U	0.001075	0
1,2,3,7,8,9-HxCDF	0.1	0.0536	U	0.00268	0	0.0279	U	0.001395	0	0.0221	U	0.001105	0
2,3,4,6,7,8-HxCDF	0.1	0.0505	U	0.002525	0	0.0273	U	0.001365	0	0.0225	U	0.001125	0
1,2,3,4,6,7,8-HpCDF	0.01	0.233	J	0.00233	0.00233	0.0898	J	0.000898	0.000898	0.107	JKU	0.000535	0
1,2,3,4,7,8,9-HpCDF	0.01	0.0467	U	0.000234	0	0.0389	U	0.000195	0	0.0326	U	0.000163	0
OCDF	0.0003	0.758	JU	0.000114	0	0.301	JKU	4.52E-05	0	0.385	J	0.000116	0.000116
TOTAL TEQ:				0.116	0.005			0.064	0.001			0.066	0.000

J = estimated concentration

K = ion abundance ratio out of range

U = undetected

QL = laboratory qualifier

TEF = toxic equivalency factor (WHO 2005 mammalian)

TEQ = toxic equivalency

Table 7. Columbia River Dioxin/Furan background data from EIM.

User_Study_ID	Study_Location_Name	Field_Activity_Start_Date	Sample_ID	Sample_Source	sum TEQ	Latitude	Longitude
WPRT0698	WP-GC-13	06/04/1998	WP-GC-13	Freshwater Sediment	0.65	46.1461	-123.384
LCBWRS93	RM59	06/25/1993	7-S	Freshwater Sediment	2.87	46.1696	-123.072
LCBWRS93	RM14	06/28/1993	1-S	Freshwater Sediment	2.36	46.1655	-123.829
LCBWRS93	RM29	06/26/1993	5-S	Freshwater Sediment	1.89	46.2236	-123.553
LCBWRS93	RM26	06/26/1993	4-S	Freshwater Sediment	1.64	46.2	-123.588
LCBWRS93	RM36	06/25/1993	6-S	Freshwater Sediment	1.21	46.2244	-123.402
LCBWRS93	RM23	06/27/1993	3-S	Freshwater Sediment	1.19	46.1747	-123.666
LCBWRS93	RM21	06/27/1993	2-S	Freshwater Sediment	1.14	46.1767	-123.701
COLWLR90	CR17/18	05/10/1990	CR17/18	Freshwater Sediment	1.53	46.1924	-123.425
COLWLR90	CR-VC-12	05/10/1990	CRVC12AB	Freshwater Sediment	1.28	46.1461	-123.385
COLWLR90	CR-GC-16	05/10/1990	CR-GC-16	Freshwater Sediment	1.21	46.1686	-123.416
COLWLR90	CR-GC-15	05/10/1990	CR-GC-15	Freshwater Sediment	1.11	46.1699	-123.416

EIM = Environmental Information Management system

Table 8. Chemical results compared to SMS regulatory guidelines.

			Barge	Slip			Access C	hann	el	
		Lab ID:	DMMU-	6-C6	DMMU-	8-C8	DMMU-	9-C9	DMMU-	10-C10
		DAIS ID:	C1		C2		C3		C4	
CHEMICAL	SQS	CSL	DMMU	J 6	DMMU 8		DMMU 9		DMMU 10	
METALS (mg/kg dry)	•		conc	QL	conc	QL	conc	QL	conc	QL
Arsenic	57	93	1		0.54	В	0.61	В	0.59	В
Cadmium	5.1	6.7	0.13		0.022	В	0.028		0.033	
Chromium	260	270	4.1		1.89		2.59		2.33	
Copper	390	390	17		6.35		7.74		7.04	
Lead	450	530	2.9		0.74		0.85		0.87	
Mercury	0.41	0.59	0.032		0.002	U	0.002	U	0.003	U
Silver	6.1	6.1	0.04		0.03		0.03		0.03	
Zinc	410	960	22.3		10.6		13.3		13.1	
LPAH (mg/kg OC)										
2-Methylnaphthalene	38	64	0.7	J	NA		NA		NA	
Acenaphthene	16	57	2.5		NA		NA		NA	
Acenaphthylene	66	66	0.3	J	NA		NA		NA	
Anthracene	220	1200	1.3	J	NA		NA		NA	
Fluorene	23	79	2.7		NA		NA		NA	
Naphthalene	99	170	0.4	U	NA		NA		NA	
Phenanthrene	100	480	14.4		NA		NA		NA	
Total LPAH	370	780	21.2	J	NA		NA		NA	
HPAH (mg/kg OC)										
Benzo(a)anthracene	110	270	7.1		NA		NA		NA	
Benzo(a)pyrene	99	210	4.4		NA		NA		NA	
Benzo(g,h,i)perylene	34	88	2.5		NA		NA		NA	
Benzofluoranthenes	230	450	12.1		NA		NA		NA	
Chrysene	110	460	9.4		NA		NA		NA	
Dibenzo(a,h)anthracene	12	33	1.7	J	NA		NA		NA	
Fluoranthene	160	1200	17.3		NA		NA		NA	
Indeno(1,2,3-c,d)pyrene	34	88	4.0		NA		NA		NA	
Pyrene	1000	1400	19.2		NA		NA		NA	
Total HPAH	960	5300	77.8	J	NA		NA		NA	
CHLORINATED HYDROCARBO										
1,2,4-Trichlorobenzene	0.81	1.8	0.50	U	NA		NA		NA	
1,2-Dichlorobenzene	2.3	2.3	0.6	U	NA		NA		NA	
1,4-Dichlorobenzene	3.1	9	0.6	U	NA		NA		NA	
Hexachlorobenzene	0.38	2.3	0.23	U	NA		NA		NA	

			Barge	Slip		Access Channel					
		Lab ID:	DMMU	-6-C6	DMMU-	8-C8	DMMU-9-C9		DMMU-	10-C10	
		DAIS ID:	IS ID: C1 C2			C3		C4			
CHEMICAL	SQS	CSL	DMM	U 6	DMMU 8		DMMU 9		DMM	U 10	
PHTHALATES (mg/kg OC)											
Bis(2-ethylhexyl)phthalate	47	78	2.3	J	NA		NA		NA		
Butyl benzyl phthalate	4.9	64	0.6	U	NA		NA		NA		
Di-n-butyl phthalate	220	1700	2.7	J	NA		NA		NA		
Di-n-octyl phthalate	58	4500	0.3	U	NA		NA		NA		
Diethyl phthalate	61	110	0.5	J	NA		NA		NA		
Dimethyl phthalate	53	53	0.2	U	NA		NA		NA		
PHENOLS (ug/kg dry)											
2 Methylphenol	63	63	1.5	U	1.5	U	1.5	U	1.7	U	
2,4-Dimethylphenol	29	29	5.5	U	5.5	U	5.5	U	6.2	U	
4 Methylphenol	670	670	1.5	U	1.5	U	1.5	U	1.7	U	
Pentachlorophenol	360	690	20	U	20	U	20	U	23	U	
Phenol	420	1200	2	U	2	U	2	U	2.3	U	
MISCELLANEOUS EXTRACTA	BLES (ug/kg	g dry)		•	•					•	
Benzoic acid	650	650	96	U	96	U	96	U	110	U	
Benzyl alcohol	57	73	2.1	U	18	J	16	J	2.4	U	
MISCÉLLANEOUS EXTRACTAI	BLES (mg/k	g OC)									
Dibenzofuran	15	58	1.5	J	NA		NA		NA		
Hexachlorobutadiene	3.9	6.2	0.5	U	NA		NA		NA		
N-Nitrosodiphenylamine	11	11	0.3	U	NA		NA		NA		
PCBs (mg/kg OC)					•					•	
Total PCBs (mg/kg carbon)	12	65	0.4	U	NA		NA		NA		
R - detected in the blank				•						•	

B = detected in the blank

U = undetected

QL = laboratory qualifier OC = organic carbon

SMS = Sediment Management Standards

SQS = sediment quality standard

CSL = cleanup screening level

NA = not applicable; organic carbon content is too low to normalize

J = estimated concentration

Table 9. Chemical results compared to MTCA regulatory guidelines.

			Barge S	Slip			Access C	hanne	el	
		Lab ID:	DMMU-	6-C6	DMMU-8-C8		DMMU-9-C9		DMMU-10-C1	
		DAIS ID:	C1	C1		C2		C3		ļ
	1	2								
CHEMICAL	Method A ¹	Method B ²	DMML		DMMU		DMMU		DMMU 10	
METALS (mg/kg dry)			conc	QL	conc	QL	conc	QL	conc	QL
Arsenic, inorganic	20	0.67	11		0.54	В	0.61	В	0.59	В
Cadmium	2		0.13		0.022	В	0.028		0.033	
Chromium (total)			4.1		1.89		2.59		2.33	
Chromium VI	19									
Copper			17		6.35		7.74		7.04	
Lead	250		2.9		0.74		0.85		0.87	
Mercury	2		0.032		0.002	U	0.002	U	0.003	U
Silver			0.04		0.03		0.03		0.03	
Zinc			22.3		10.6		13.3		13.1	
LPAH (ug/kg dry)	<u> </u>									
Acenaphthene			13		1.4	U	1.4	U	1.6	U
Anthracene			6.8	J	1.6	U	1.6	U	1.8	U
Fluorene			14		1.1	U	1.1	U	1.3	U
Naphthalene	5,000		2.3	U	2.3	U	2.3	U	2.6	U
HPAH (ug/kg dry)	0,000				2.0		2.0	J		
Benzo(a)anthracene		140	37		1.7	U	1.7	U	1.9	U
Benzo(a)pyrene	100	140	23		1.7	U	1.7	U	1.9	Ü
Benzo(b,k)fluoranthenes			63		1.4	U	1.4	U	1.6	U
Benzo(b)fluoranthene		140	48		1.2	U	1.2	U	1.4	U
Benzo(k)fluoranthenes		140	15		1.4	U	1.4	U	1.6	IJ
Chrysene		140	49		1.5	U	1.5	U	1.7	IJ
Dibenzo(a,h)anthracene		140	8.7	1	1.5	U	1.5	U	1.7	IJ
Fluoranthene			90	J	2.5	J	1.6	IJ	1.7	U
Indeno(1,2,3-c,d)pyrene		140	21		1.5	U	1.5	U	1.7	U
1 1 1 1 1 1 1		140	100		1.5	U	1.5	U	1.7	U
Pyrene			100		1.3	U	1.3	U	1.7	U
CHLORINATED HYDROCARBO	JNS (ug/kg ary		2./	li i	2 /	U	2 /	U	2.0	U
1,2,4-Trichlorobenzene			2.6	U	2.6	U	2.6	U	2.9	U
1,2-Dichlorobenzene		42.000	2.9	U	2.9		2.9		3.3	•
1,4-Dichlorobenzene		42,000	2.9	U	2.9	U	2.9	U	3.3	U
Hexachlorobenzene		630	1.2	U	1.2	U	1.2	U	1.4	U
PHTHALATES (ug/kg dry)	1					т.				T
Bis(2-ethylhexyl)phthalate		71,000	12	J	7.4	J	10	J	8.4	J
Butyl benzyl phthalate			3.2	U	6.3	J	7.7	J	5.1	J

		Barge	Slip	Access Channel							
		Lab ID:	DMMU-	6-C6	DMMU-8-C8		DMMU-9-C9		DMMU-10-C10		
		DAIS ID:	C1	C1		C2		C3		C4	
CHEMICAL	Method A ¹	Method B ²	DMM	IJ 6	DMMI	DMMU 8		DMMU 9		DMMU 10	
Di-n-butyl phthalate			14	J	21		25		19	J	
Di-n-octyl phthalate			1.7	U	1.7	U	1.7	U	1.9	U	
Diethyl phthalate			2.6	J	3.3	J	3.4	J	2.3	J	
Dimethyl phthalate			1	U	28		17		1.2	U	
PHENOLS (ug/kg dry)											
2,4-Dimethylphenol			5.5	U	5.5	U	5.5	U	6.2	U	
Pentachlorophenol		8,300	20	U	20	U	20	U	23	U	
Phenol			2	U	2	U	2	U	2.3	U	
MISCELLANEOUS EXTRACTAE	MISCELLANEOUS EXTRACTABLES (ug/kg dry)										
Benzoic acid			96	U	96	U	96	U	110	U	
Benzyl alcohol			2.1	U	18	J	16	J	2.4	U	
Dibenzofuran			7.7	J	1.2	U	1.2	U	1.4	U	
Hexachlorobutadiene		13,000	2.5	U	2.5	U	2.5	U	2.8	U	
N-Nitrosodiphenylamine		200,000	1.6	U	1.6	U	1.6	U	1.8	U	
PESTICIDES AND PCBs (ug/kg	dry)										
Aldrin		59	0.16	U	0.16	U	0.16	U	0.16	U	
Chlordane		2,900	0.12	U	0.12	U	0.12	U	0.12	U	
Dieldrin		63	0.14	U	0.14	U	0.14	U	0.14	U	
Heptachlor		220	0.12	U	0.12	U	0.12	U	0.12	U	
Heptachlor epoxide		110									
Lindane	10	770	0.08	U	0.08	U	0.08	U	0.08	U	
Total DDT			0.17	U	0.17	U	0.17	U	0.17	U	
DDT	3,000	2,900	0.17	U	0.17	U	0.17	U	0.17	U	
DDE		2,900	0.11	U	0.11	U	0.11	U	0.11	U	
Total PCBs	1,000	500	2.1	U	2.1	U	2.1	U	2.1	U	

¹Soil, Method A, Unrestricted Land Use, Table Value

 $^{^2}$ Soil, Method B, Carcinogen, Standard Formula Value, Direct Contact (ingestion only), unrestricted land use

B = detected in the blank

J = estimated concentration

U = undetected

QL = laboratory qualifier

Memorandum: Determination
Regarding the Suitability of Proposed
Dredged Material from the
Weyerhaeuser Cargo Dock, Turning
Basin and Salt Dock, Longview,
Washington, for Flow-Lane Disposal in
the Columbia River

Dredged Material Management Program. March 26, 2010.

MEMORANDUM FOR: RECORD March 26, 2010

**SUBJECT**: DETERMINATION REGARDING THE SUITABILITY OF PROPOSED DREDGED MATERIAL FROM THE WEYERHAEUSER CARGO DOCK, TURNING BASIN AND SALT DOCK, LONGVIEW, WASHINGTON, FOR FLOW-LANE DISPOSAL IN THE COLUMBIA RIVER.

- Introduction. This memorandum reflects the consensus determination of the Dredged Material Management Program (DMMP) agencies (U.S. Army Corps of Engineers, Environmental Protection Agency, and Washington Departments of Ecology and Natural Resources) regarding the suitability of up to 115,300 cubic yards (cy) of dredged material from the Weyerhaeuser property in Longview for flow-lane disposal in the Columbia River.
- 2. <u>Background</u>. In 2008, Weyerhaeuser submitted a sampling and analysis plan (SAP) for characterization of dredged material from the Mount Coffin ship access channel, salt dock, export dock, chip barge slip, cargo dock and turning basin (Integral, 2008). However, during field sampling it was determined that little or no sediment accumulation had occurred above the maintenance depth for the salt dock, cargo dock, turning basin or export dock. Only the chip barge slip and Mount Coffin access channel required dredging. Sediment from these two areas was characterized and a DMMP suitability determination was issued in January 2009 (DMMP, 2009). In December 2009, Weyerhaeuser notified the Corps of Engineers that the salt dock, cargo dock and turning basin required dredging. Because of the short time available before the end of the in-water work window, the DMMP agencies allowed the 2008 SAP to be used, with minor revisions to reflect current shoaling patterns (Integral, 2010a). The SAP addendum allocated dredged material management units (DMMUs) and field samples to each of the proposed dredging areas (see Figure 1).
- 3. **Project Summary**. Table 1 includes project summary and tracking information.

Table 1. Project Summary

Project ranking	Low-moderate
Characterized volume	Total: 115,300 cy
	Salt Dock: 19,600 cy
	Cargo Dock: 46,400 cy
	Turning Basin: 49,300 cy
Maintenance depth	-38 ft. CRD
SAP addendum received	January 13, 2010
SAP addendum approved	January 13, 2010
Sampling dates	January 13-14, 2010
Final data report received	March 25, 2010
DAIS Tracking number	WEYLO-1-A-F-287
USACE Permit Application Number	1999-2-00191
Recency Determination	
(low-moderate rank = 6 years)	January 2016

- 4. <u>Project Ranking and Sampling Requirements</u>. The Weyerhaeuser property in Longview is ranked "low-moderate" (Integral, 2008). In low-moderate-ranked areas with homogeneous sediment, the minimum numbers of field samples and dredged material management units (DMMUs) are calculated using the following guidelines (DMMP, 2008b):
  - Maximum volume of sediment represented by each field sample = 8,000 cubic yards
  - Maximum volume of sediment represented by each DMMU = 40,000 cubic yards.

Based on these guidelines, the proposed dredging volume of 115,300 cy would require a minimum of 15 field samples and 3 DMMUs. The SAP addendum called for 18 field samples and 5 DMMUs – well above the minimum requirement.

5. <u>Sampling</u>. Sampling took place January 13-14, 2010 using a van Veen sampler (in areas with homogeneous sediment, surface grab samples are deemed adequate to represent the sediment – DMMP, 2008b). Only minor problems were encountered during sampling. The target locations for G3-4, G4-1 and G5-1 did not have sediment accumulated above the maintenance dredging depth. Therefore, the sampling stations were moved to locations with adequate sediment depth.

In addition to grab samples, core samples were required for collection of z-samples to represent the sediment surface to be exposed by dredging. Integral Consulting planned to collect z-samples in two layers: 0-1' and 1-2' below the overdepth. However, the sampling team mistakenly collected the z-samples below the design depth rather than the overdepth. A vibracore was used to collect these samples.

See Figure 1 for target and actual grab and core sampling locations. Table 3 presents this information in tabular form.

6. <u>Chemical Analysis</u>. The approved sampling and analysis plan was followed and quality control guidelines specified by the PSEP and DMMP programs were met, with only minor quality control deviations (Integral, 2010b). The data were considered sufficient and acceptable for regulatory decision-making under the DMMP program.

For this project, the DMMP agencies agreed to use the SEF freshwater guidelines (RSET, 2006), supplemented by the DMMP marine guidelines (DMMP, 2008b) for those chemicals of concern for which freshwater guidelines do not exist. The preliminary chemical results included a single exceedance of a SEF freshwater screening level. Bis(2-ethylhexyl)phthalate (BEHP) was detected in DMMU 1 at a concentration of 270 ug/kg (the SL1 is 220 ug/kg). There were no exceedances of DMMP marine screening levels. See Table 2.

Because BEHP was the only chemical exceeding the screening level and because phthalates are common laboratory contaminants, ARI proactively re-extracted all DMMUs on their own, including DMMUs 1 and 5 in duplicate. The results were highly variable (see Table 2). The DMMP agencies then requested that ARI analyze the archived sample for DMMU 1 in duplicate, along with the z-samples associated with DMMU 1. BEHP was detected at low concentrations in DMMU 1 and was also found at a low level in the method blank. The results for the 0-1 ft z-sample were highly variable. The DMMP agencies discussed the results at length vis-à-vis the need to do bioassays. After much discussion the DMMP agencies agreed that the risk in not doing bioassays for this DMMU was small

while the navigational impacts of requiring bioassays were very real (Weyerhaeuser would have missed the work window entirely).

Based on the overall evaluation of the chemical data and application of best professional judgment, bioassay testing was not required for the dredged material. All five DMMUs met suitability guidelines, based on chemistry alone, for flow-lane disposal in the Columbia River.

- 7. Sediment Exposed by Dredging. Sediment to be exposed by dredging must be evaluated in accordance with the DMMP antidegradation guidelines (DMMP 2008a). Vibracore samples were taken from 0-1 feet and 1-2 feet below the project design depth. Based on the results from analysis of the dredged material, and as indicated in the previous section of this memorandum, the z-samples associated with DMMU 1 were tested for BEHP. The results were highly variable, but the highest concentration detected did not exceed the SL1. While the z-samples should have been taken below the overdepth rather than the design depth, it is highly probable that some of the material in the 1-2 foot stratum below the design depth would be left in place after dredging. The DMMP agencies agreed there was little risk in exposing this sediment to the environment or, should the entire 2-foot overdepth be removed, of exposing sediment beyond the overdepth. The sediment to be exposed by dredging was deemed to have met the DMMP antidegradation guidelines.
- 8. <u>Suitability Determination</u>. This memorandum documents the evaluation of the suitability of sediment proposed for dredging from the Weyerhaeuser property in Longview for flow-lane disposal. The approved sampling and analysis plan was followed (with the exceptions noted previously) and the data gathered were deemed sufficient and acceptable for regulatory decision-making under the DMMP program.

Based on the results of the previously described testing, the DMMP agencies conclude that **all 115,300 cubic yards are suitable** for flow-lane disposal in the Columbia River.

#### 9. References.

DMMP, 2008a. Quality of Post-Dredge Sediment Surfaces (Updated). A Clarification Paper Prepared by David Fox (USACE), Erika Hoffman (EPA) and Tom Gries (Ecology) for the Dredged Material Management Program, June 2008.

DMMP, 2008b. *Dredged Material Evaluation and Disposal Procedures (Users Manual)*. Dredged Material Management Program, July 2008.

DMMP, 2009. Determination Regarding the Suitability of Proposed Dredged Material from the Weyerhaeuser Property, Longview, Washington, for Flow-Lane Disposal in the Columbia River or for Beneficial Use. Dredged Material Management Program, January 2009.

Integral, 2008. Sampling and Analysis Plan, Sediment Characterization, Weyerhaeuser Property, Longview, Washington. Prepared by Integral Consulting Inc. for Weyerhaeuser Company. September 2008.

Integral, 2010a. *Sampling and Analysis Plan Addendum, Sediment Characterization, Weyerhaeuser Property, Longview, WA*. Prepared by Integral Consulting Inc. for Weyerhaeuser Company. January 2010.

Integral, 2010b. *Turning Basin Dredged Material Characterization – Field Sediment Sampling Technical Memorandum Summary.* Prepared by Integral Consulting Inc. for Weyerhaeuser NR Company. March 2010.

RSET, 2006. *Northwest Regional Sediment Evaluation Framework, Interim Final.* Northwest Regional Sediment Evaluation Team, September 2006.

# 10. Agency Signatures.

Concur:

Date

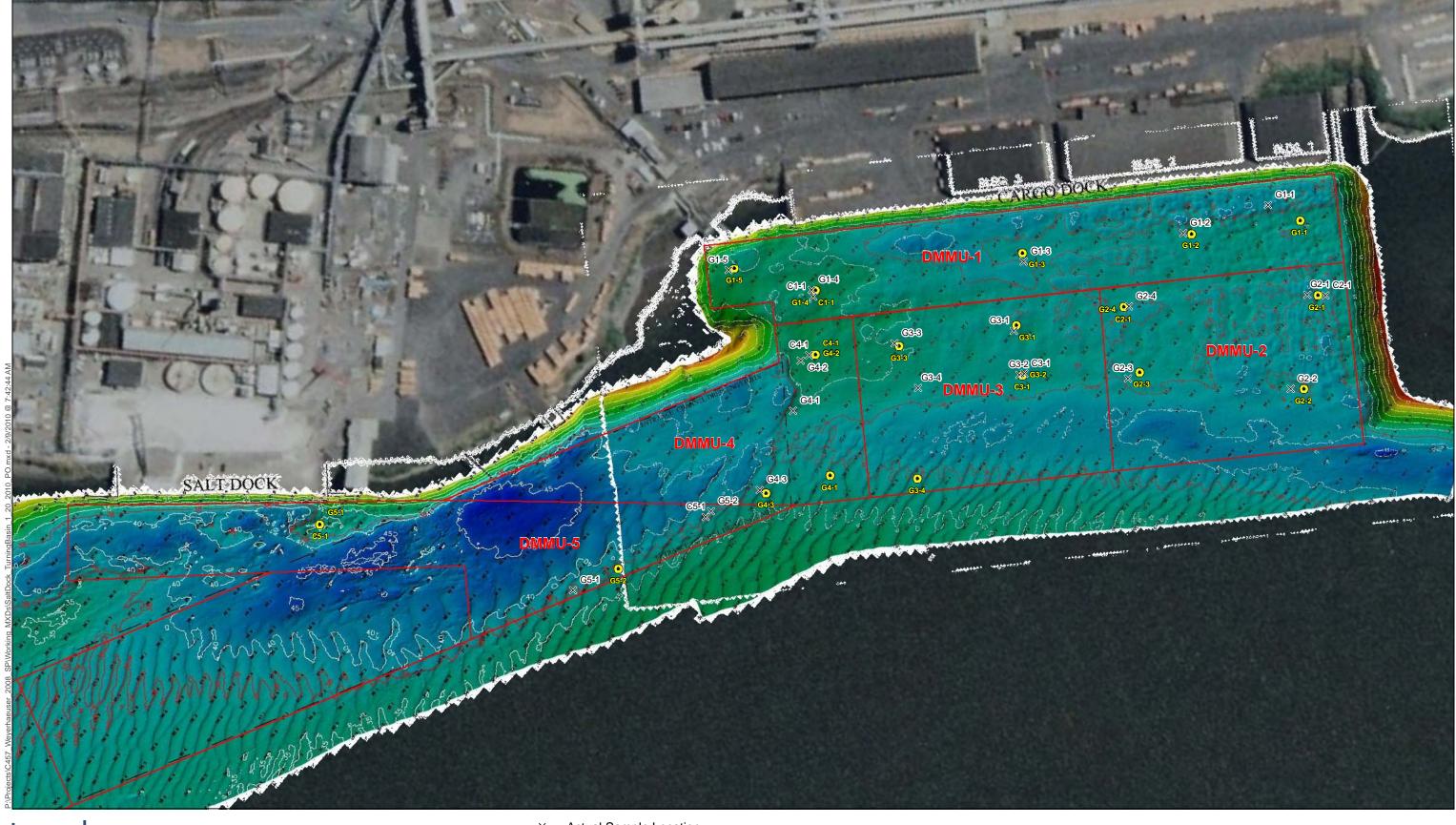
David Fox, P.E. - Seattle District Corps of Engineers

4/1/10

Date

Erika Hoffman - Environmental Protection Agency

04/61/2010


Laura Inouye, Ph.D. - Washington Department of Ecology


04/61/2010 Date

Dave Vagt - Washington Department of Natural Resources

Copies furnished:

DMMP signatories Danette Guy, Corps Regulatory Sandy Browning, Integral Consulting Brian Wood, Weyerhaeuser





× Actual Sample Location

January 2010 Proposed Sampling Location

DMMU

Table 2. Weyerhaeuser 2010 Sediment Chemistry Results Compared with SEF Guidelines.a

	SEF - Fre	eshwater	DMMP	- Marine		C1	C1	C1	C1	C1-Z	C1-Z	C1-Z	C1-Z	
Parameter	SL1	SL2	SL	ML	C1	Re-extract	Re-extract Dup.	Archive	Archive Dup.	(0-1)	(0-1) Dup.	(1-2)	(1-2) Dup.	C2
Conventionals							·		•		, , ,		, , ,	
N-Ammonia (mg-N/kg)					12.5									8.24
Percent Fines (%)					52.6					36.9		40.7		21.7
Total organic carbon (%)					0.359					0.282		0.306		0.570
Total solids (%)					65.6					70.9		70.3		63.3
Total volatile solids (%)					1.67									1.85
Total sulfides (mg/kg)					14.3									19.9
Metals (mg/kg dw)														
Antimony			150	200	0.3 <i>UJ</i>									0.3 <i>U</i>
Arsenic	20	51	NA	NA	1.6									1.8
Cadmium	1.1	1.5	NA	NA	0.4									0.3 <i>U</i>
Chromium	95	100			7.7									8
Copper	80	830	NA	NA	27.3									26.2
Lead	340	430	NA	NA	2									3
Mercury	0.28	0.75	NA	NA	0.04 <i>U</i>									0.04 <i>U</i>
Nickel	60	70	NA	NA	8.9									9.2
Selenium ^b					0.3 <i>U</i>									0.3 <i>U</i>
Silver	2.0	2.5	NA	NA	0.3 <i>U</i>									0.3 <i>U</i>
Zinc	130	400	NA	NA	36									39
SVOCs (µg/kg dw)														
LPAHs														<del></del>
2-Methylnaphthalene	470	560	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Acenaphthene	1,100	1,300	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Acenaphthylene	470	640	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Anthracene	1,200	1,600	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Fluorene	1,000	3,000	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Naphthalene	500	1,300	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Phenanthrene	6,100	7,600	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Total LPAH	6,600	9,200	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
HPAH	0,000	3,200		147 (	20 0	0+ 0	0+ 0			20 0	20 0	20 0	20 0	
Fluoranthene	11,000	15,000	NA	NA	13 <i>J</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	22
Pyrene	8,800	16,000	NA	NA	12 <i>J</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	24
Benz(a)anthracene	4,300	5,800	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	11 <i>J</i>
Chrysene	5,900	6,400	NA	NA	11 <i>J</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	17 <i>J</i>
Benzofluoranthenes (b+k)	600	4,000	NA	NA NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	24 J
Benzo(j)fluoranthene	NA NA	+,000 NA	3,200	9,900										
Benzo(a)pyrene	3,300	4,800	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	16 <i>J</i>
Indeno(1,2,3-c,d)pyrene	4,100	5,300	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Dibenz(a,h)anthracene	800	840	NA NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Benzo(g,h,i)perylene	4,000	5,200	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>			20 <i>U</i>	
Total HPAH	31,000	55,000	NA NA	NA NA	36 J	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i> 20 <i>U</i>	20 <i>U</i> 20 <i>U</i>	20 <i>U</i>	11 <i>J</i> 125 <i>J</i>
Chlorinated hydrocarbons (µg/kg		33,000	11/7	INA	30 0	04 0	04 0			20 0	20 0	20 0	20 0	120 0
1,3-Dichlorobenzene	NA	NA	170		1011	64 11	64 11			20.11	20.11	20.11	20.11	1011
1,4-Dichlorobenzene	NA NA	NA NA	110	120	1.2 <i>U</i>	64 U	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	1.2 <i>U</i>
1,2-Dichlorobenzene	NA NA	NA NA	35	120	20 <i>U</i>	64 U	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
1,2,4-Trichlorobenzene				110	20 <i>U</i>	64 U	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
<del></del>	NA NA	NA NA	31	64	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Hexachlorobenzene (HCB)	NA	NA	168	230	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>

Integral Consulting Inc. 1 of 4

Table 2. Weyerhaeuser 2010 Sediment Chemistry Results Compared with SEF Guidelines.a

	SEF - Fre	shwater	DMMP	- Marine		C1	C1	C1	C1	C1-Z	C1-Z	C1-Z	C1-Z	
Parameter	SL1	SL2	SL	ML	C1	Re-extract	Re-extract Dup.	Archive	Archive Dup.	(0-1)	(0-1) Dup.	(1-2)	(1-2) Dup.	C2
Phthalate esters (µg/kg dw)														
Dimethyl phthalate	46	440	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Diethyl phthalate	NA	NA	200	1,200	20 <i>U</i>	140 B	78 B			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Di-n-butyl phthalate	NA	NA	1,400	5,100	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Butyl benzyl phthalate	260	370	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Bis(2-ethylhexyl)phthalate	220	320	NA	NA	270	260 J	64 <i>UJ</i>	18 JB	21 B	160 <i>JB</i>	20 <i>JB</i>	25 B	22 JB	140
Di-n-octyl phthalate	26	45	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Phenols (µg/kg dw)														-
Phenol			420	1,200	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
2-Methylphenol			63	77	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
4-Methylphenol			670	3,600	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
2,4-Dimethylphenol			29	210	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Pentachlorophenol			400	690	98 <i>U</i>	320 <i>U</i>	320 <i>U</i>			100 <i>U</i>	99 <i>U</i>	98 <i>U</i>	100 <i>U</i>	98 <i>U</i>
Miscellaneous extractables (µg/kg	g dw)													
Benzyl alcohol			57	870	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Benzoic acid	NA	NA	650	760	200 <i>U</i>	640 <i>U</i>	640 <i>U</i>			200 <i>U</i>	200 <i>U</i>	200 <i>U</i>	200 <i>U</i>	200 <i>U</i>
Dibenzofuran	400	440	NA	NA	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Hexachloroethane			1,400	14,000	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Hexachlorobutadiene			29	270	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
N-Nitrosodiphenylamine			28	130	20 <i>U</i>	64 <i>U</i>	64 <i>U</i>			20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>	20 <i>U</i>
Pesticides (µg/kg dw)														
Total DDT	NA	NA	6.9	69	1.9 <i>U</i>									2 U
p,p'-DDE	NA	NA			1.9 <i>U</i>									2 U
p,p'-DDD	NA	NA			1.9 <i>U</i>									2 U
p,p'-DDT	NA	NA			1.9 <i>U</i>									2 <i>U</i>
Aldrin	NA	NA	10		0.97 <i>U</i>									0.99 <i>U</i>
Total Chlordane	NA	NA	10		1.9 <i>U</i>									2 <i>U</i>
Dieldrin	NA	NA	10		1.9 <i>U</i>									2 <i>U</i>
Heptachlor	NA	NA	10		1.2 <i>UJ</i>									0.99 <i>U</i>
Lindane	NA	NA	10		0.97 <i>U</i>									0.99 <i>U</i>
PCB Aroclors (µg/kg dw)														
Total PCB Aroclors	60	120	NA	NA	9.8 <i>U</i>									10 <i>U</i>

Integral Consulting Inc. 2 of 4

Table 2. Weyerhaeuser 2010 Sediment Chemistry Results Compared with SEF Guidelines.a

	SEF - Fre	eshwater	DMMP	- Marine	C2		C3		C4		C5	C5
Parameter	SL1	SL2	SL	ML	- Re-extract	C3	Re-extract	C4	Re-extract	C5	Re-extract	Re-extract Dup.
Conventionals												<u> </u>
N-Ammonia (mg-N/kg)						2.35		1.91		0.13 <i>U</i>		
Percent Fines (%)						58		48.6		1		
Total organic carbon (%)						0.413		0.270		0.120		
Total solids (%)						65.8		72.3		75.5		
Total volatile solids (%)						1.57		0.89		0.47		
Total sulfides (mg/kg)						1.5 <i>U</i>		1.35 <i>U</i>		1.28 <i>U</i>		
Metals (mg/kg dw)												
Antimony			150	200		0.3 <i>U</i>		0.3 <i>U</i>		0.2 <i>U</i>		
Arsenic	20	51	NA	NA		1.6		1.1		0.8		
Cadmium	1.1	1.5	NA	NA		0.3		0.3 <i>U</i>		0.2 <i>U</i>		
Chromium	95	100				6.8		5.5		4.6		
Copper	80	830	NA	NA		24.5		16		11.8		
Lead	340	430	NA	NA		2		1		1 <i>U</i>		
Mercury	0.28	0.75	NA	NA		0.03 <i>U</i>		0.03 <i>U</i>		0.03 <i>U</i>		
Nickel	60	70	NA	NA		8.4		8.1		6.7		
Selenium ^b						0.3 <i>U</i>		0.3 <i>U</i>		0.2 <i>U</i>		
Silver	2.0	2.5	NA	NA		0.3 <i>U</i>		0.3 <i>U</i>		0.2 <i>U</i>		
Zinc	130	400	NA	NA		32		25		21		
SVOCs (µg/kg dw)						<u> </u>						
LPAHs												
2-Methylnaphthalene	470	560	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Acenaphthene	1,100	1,300	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Acenaphthylene	470	640	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Anthracene	1,200	1,600	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Fluorene	1,000	3,000	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Naphthalene	500	1,300	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Phenanthrene	6,100	7,600	NA	NA	63 <i>U</i>	13 <i>J</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Total LPAH	6,600	9,200	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
HPAH	-,	0,200					<u> </u>				<u> </u>	
Fluoranthene	11,000	15,000	NA	NA	63 <i>U</i>	31	61 <i>U</i>	11 <i>J</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Pyrene	8,800	16,000	NA	NA	63 <i>U</i>	25	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Benz(a)anthracene	4,300	5,800	NA	NA	63 <i>U</i>	20	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Chrysene	5,900	6,400	NA	NA	63 <i>U</i>	22	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Benzofluoranthenes (b+k)	600	4,000	NA	NA	63 <i>U</i>	81	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Benzo(j)fluoranthene	NA	NA	3,200	9,900								
Benzo(a)pyrene	3,300	4,800	NA	NA	63 <i>U</i>	28	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Indeno(1,2,3-c,d)pyrene	4,100	5,300	NA	NA	63 <i>U</i>	16 <i>J</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Dibenz(a,h)anthracene	800	840	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Benzo(g,h,i)perylene	4,000	5,200	NA	NA	63 <i>U</i>	19 <i>J</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	7 U
Total HPAH	31,000	55,000	NA	NA	63 <i>U</i>	242 <i>J</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Chlorinated hydrocarbons (µg/kg		55,555		14/ (	00 0	2 TZ U	01.0	10 0	00 0	10 0	0-7 0	
1,3-Dichlorobenzene	NA NA	NA	170		63 <i>U</i>	1.2 <i>U</i>	61 <i>U</i>	1.2 <i>U</i>	66 <i>U</i>	1.2 <i>U</i>	64 <i>U</i>	64 <i>U</i>
1,4-Dichlorobenzene	NA NA	NA	110	120	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	1.2 <i>U</i>	66 <i>U</i>	1.2 <i>U</i>	64 <i>U</i>	64 <i>U</i>
1,2-Dichlorobenzene	NA NA	NA NA	35	110	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
1,2,4-Trichlorobenzene	NA NA	NA NA	31	64	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Hexachlorobenzene (HCB)	NA NA	NA NA	168	230	63 <i>U</i>		61 <i>U</i>		66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	
TIENACITIOTODETIZETIE (FICE)	INA	IVA	100	∠30	63 <i>U</i>	20 <i>U</i>	01 0	19 <i>U</i>	00 <i>U</i>	19 0	04 <i>U</i>	64 <i>U</i>

Integral Consulting Inc. 3 of 4

Table 2. Weyerhaeuser 2010 Sediment Chemistry Results Compared with SEF Guidelines.^a

	SEF - Fre	shwater	DMMP	- Marine	C2		C3		C4		C5	C5
Parameter	SL1	SL2	SL	ML	Re-extract	C3	Re-extract	C4	Re-extract	C5	Re-extract	Re-extract Dup
Phthalate esters (µg/kg dw)												
Dimethyl phthalate	46	440	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Diethyl phthalate	NA	NA	200	1,200	33 <i>JB</i>	20 <i>U</i>	61 <i>JB</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	86 <i>B</i>
Di-n-butyl phthalate	NA	NA	1,400	5,100	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Butyl benzyl phthalate	260	370	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Bis(2-ethylhexyl)phthalate	220	320	NA	NA	63 <i>U</i>	120	61 <i>U</i>	150	66 <i>U</i>	120	64 <i>U</i>	64 <i>U</i>
Di-n-octyl phthalate	26	45	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Phenols (µg/kg dw)												
Phenol			420	1,200	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
2-Methylphenol			63	77	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
4-Methylphenol			670	3,600	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
2,4-Dimethylphenol			29	210	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Pentachlorophenol			400	690	310 <i>U</i>	98 <i>U</i>	310 <i>U</i>	97 <i>U</i>	330 <i>U</i>	96 <i>U</i>	320 <i>U</i>	320 <i>U</i>
Miscellaneous extractables (µg/kg	g dw)											
Benzyl alcohol			57	870	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Benzoic acid	NA	NA	650	760	630 <i>U</i>	200 <i>U</i>	610 <i>U</i>	190 <i>U</i>	660 <i>U</i>	190 <i>U</i>	640 <i>U</i>	640 <i>U</i>
Dibenzofuran	400	440	NA	NA	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Hexachloroethane			1,400	14,000	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Hexachlorobutadiene			29	270	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
N-Nitrosodiphenylamine			28	130	63 <i>U</i>	20 <i>U</i>	61 <i>U</i>	19 <i>U</i>	66 <i>U</i>	19 <i>U</i>	64 <i>U</i>	64 <i>U</i>
Pesticides (µg/kg dw)												
Total DDT	NA	NA	6.9	69		2 <i>U</i>		1.9 <i>U</i>		1.9 <i>U</i>		
p,p'-DDE	NA	NA				2 <i>U</i>		1.9 <i>U</i>		1.9 <i>U</i>		
p,p'-DDD	NA	NA				2 <i>U</i>		1.9 <i>U</i>		1.9 <i>U</i>		
p,p'-DDT	NA	NA				2 <i>U</i>		1.9 <i>U</i>		1.9 <i>U</i>		
Aldrin	NA	NA	10			0.98 <i>U</i>		0.96 <i>U</i>		0.97 <i>U</i>		
Total Chlordane	NA	NA	10			2 <i>U</i>		1.9 <i>U</i>		1.9 <i>U</i>		
Dieldrin	NA	NA	10			2 <i>U</i>		1.9 <i>U</i>		1.9 <i>U</i>		
Heptachlor	NA	NA	10			2.1 <i>UJ</i>		0.96 <i>U</i>		0.97 <i>U</i>		
Lindane	NA	NA	10			0.98 <i>U</i>		0.96 <i>U</i>		0.97 <i>U</i>		
PCB Aroclors (µg/kg dw)												
Total PCB Aroclors	60	120	NA	NA		10 <i>U</i>		10 <i>U</i>		10 <i>U</i>		

#### Notes:

--- = data not available

DMMP = Dredged Material Management Program

HPAH = high molecular weight polycyclic aromatic hydrocarbon

LPAH = low molecular weight polycyclic aromatic hydrocarbon

ML = maximum level
NA = not applicable
PCB = polychlorinated biphenyl

SEF = Sediment Evaluation Framework

SL = screening level

SVOC = semivolatile organic compound

B = analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.

J = estimated concentration when the value is less than ARI's established reporting limits

 $\boldsymbol{U}$  = indicates the target analyte was not detected at the reported concentration

mg-N/kg dw = millegrams-Nitrogen/kilograms dry weight

μg/kg dw = micrograms/kilograms dry weight

Bis(2-ethylhexyl)phthalate exceeded the SL1 in composite sample C1.

Per the SAP (2008), VOCs were not analyzed.

Per the SAP Addendum (2010), resin acids, guaiacols, and dioxin/furans were not analyzed.

Integral Consulting Inc. 4 of 4

^a The SEF freshwater guidelines are used for those chemicals of concern for which they are available. The DMMP marine guidelines are used for those chemicals of concern for which no freshwater guidelines exist.

^b The DMMP bioaccumulation trigger for selenium is 3 mg/kg.

Table 3. Weyerhaeuser DMMP Sediment Sampling Summary, Winter 2010

		Dredge Volume to 40 ft CRD	•		Proposed	Location	Actual L	ocation	Design Depth	Mudline Depth	Core Depth Be	low Mudline (ft)
Location	Note	(cubic yards)	Sample Type	Sample ID	Long_DDM	Lat_DDM	Long_DDM	Lat_DDM	(ft CRD)	(ft CRD)	<b>Z</b> 1	<b>Z2</b>
			Grab	G1-1	122° 58.941' W	46° 7.505' N	-122° 58.946' W	46° 07.517' N		35.7		
			Grab	G1-2	122° 58.983' W	46° 7.531' N	-122° 58.986′ W	46° 07.533' N		35.9		
DMMU 1	Corgo Dook	46,400	Grab	G1-3	122° 59.049' W	46° 7.572' N	-122° 59.052' W	46° 07.569' N		34.6		
DIVIIVIO	Cargo Dock	40,400	Grab	G1-4	122° 59.135' W	46° 7.618' N	-122° 59.136' W	46° 07.619 N	30 -	33.9		
			Grab	G1-5	122° 59.154' W	46° 7.645' N	-122° 59.157' W	46° 07.646' N	<del></del>	33.9		
			Core	C1-1	122° 59.135' W	46° 7.618' N	-122° 59.138' W	46° 07.617' N		33.4	4.5-5.5	5.5-6.5
			Grab	G2-1	122° 58.964' W	46° 7.482' N	-122° 58.967' W	46° 07.485' N		34.9*		
			Grab	G2-2	122° 59.005' W	46° 7.464' N	-122° 59.009' W	46° 07.467' N	<del></del>	39.5*		
DMMU 2	Turning Basin	14,000	Grab	G2-3	122° 59.055' W	46° 7.512' N	-122° 59.061' W	46° 07.513' N	38	37.9*		
			Grab	G2-4	122° 59.035' W	46° 7.531' N	-122° 59.033' W	46° 07.530' N	<del></del>	39.7*		
		•	Core	C2-1	122° 59.035' W	46° 7.531' N	-122° 58.961' W	46° 07.480' N	<del></del>	35.6*	2.4-3.4	3.4-4.4
			Grab	G3-1	122° 59.079' W	46° 7.556' N	-122° 59.082' W	46° 07.555' N		38.9*		
			Grab	G3-2	122° 59.096' W	46° 7.542' N	-122° 59.097' W	46° 07.543' N	<del></del>	37.9*		
DMMU 3	Turning Basin	18,400	Grab	G3-3	122° 59.127' W	46° 7.582' N	-122° 59.128' W	46° 07.584' N	38	36.8*		
			Grab	G3-4	122° 59.172' W	46° 7.546' N	-122° 59.137' W	46° 07.567' N	<del></del>	38.3*		
			Core	C3-1	122° 59.096' W	46° 7.542' N	-122° 59.095' W	46° 07.542' N	<del></del>	35.2*	2.8-3.8	3.8-4.8
			Grab	G4-1	122° 59.201' W	46° 7.570' N	-122° 59.189' W	46° 07.595' N		35.6		
DMMII 4	Turning Dooin	16.000	Grab	G4-2	122° 59.160' W	46° 7.603' N	-122° 59.167' W	46° 07.605' N		34.1		
DMMU 4	Turning Basin	16,900	Grab	G4-3	122° 59.230' W	46° 7.583' N	-122° 59.231' W	46° 07.585' N	38	35.6		
			Core	C4-1	122° 59.160' W	46° 7.603' N	-122° 59.162' W	46° 07.604' N	<del></del>	34.2	3.8-4.8	4.8-5.8
			Grab	G5-1	122° 59.395' W	46° 7.695' N	-122° 59.334' W	46° 07.611' N		37.6		
DMMU 5	Salt Dock	19,600	Grab	G5-2	122° 59.310' W	46° 7.604' N	-122° 59.256' W	46° 07.593' N	38	36.6		
			Core	C5-1	122° 59.395' W	46° 7.695' N	-122° 59.260' W	46° 07.593' N	-	36.8	1.2-2.2	2.2-3.2

## Notes:

* = Depths less than shown due to one-hour lag in "real-time" tide gage corrections. Water depths confirmed using November 2009 bathymetric survey of Cargo Dock (Northwest Hydro Inc.) and were generally 1.5-2 ft less than "real-time" reading.

-- = not applicable

CRD = Columbia River Datum

DDM = degrees, decimals, minutes

DMMP = dredge management prism

DMMU = dredge management unit

Integral Consulting Inc. 1 of 1

Memorandum: Determination
Regarding the Suitability of Proposed
Dredged Material from Berth 1 of the
Chinook Ventures Facility, Longview,
Washington, for Flowlane Disposal in
the Columbia River

Dredged Material Management Program. November 4, 2010. MEMORANDUM FOR: RECORD November 4, 2010

**SUBJECT**: DETERMINATION REGARDING THE SUITABILITY OF PROPOSED DREDGED MATERIAL FROM BERTH 1 OF THE CHINOOK VENTURES FACILITY, LONGVIEW, WASHINGTON, FOR FLOW-LANE DISPOSAL IN THE COLUMBIA RIVER.

- Introduction. This memorandum reflects the consensus determination of the Dredged Material Management Program (DMMP) agencies (U.S. Army Corps of Engineers, Environmental Protection Agency, and Washington Departments of Ecology and Natural Resources) regarding the suitability of up to 31,300 cubic yards (cy) of maintenance dredged material from Chinook Ventures Berth 1 in Longview for flow-lane disposal in the Columbia River. See Figure 1 for a vicinity map.
- 2. <u>Background</u>. Chinook Venture's import/export operations are centered on the existing dock facility, referred to as Berth 1. Prior to Chinook's involvement at the site, Reynolds Metals Company operated Berth 1 and routinely performed maintenance dredging. The last maintenance dredging event occurred in 2000 under USACE Permit No. 97-2-00894. The USACE permit authorized a berth depth of -40 feet Columbia River Datum (CRD) plus an overdredge allowance. Maintenance dredging is necessary at Berth 1 to allow ships continued safe access to its berthing facilities. The proposed dredge depth for Berth 1 is -40 feet CRD, with a 2-foot overdredge allowance (-42 feet CRD total). Berth 1 and its adjacent channel, also referred to as Area A, occupies approximately 14.2 acres and is shown on Figure 2 (Anchor, 2010a). Area B, also shown in Figure 2, is associated with a facility expansion project and may be sampled and characterized at a future date. It is not covered by this suitability determination.

Concurrent with characterization of maintenance dredged material at Berth 1, the Department of Ecology conducted an investigation into a petroleum coke spill that was alleged to have occurred from the loading facilities associated with Berth 1. One of the areas of investigation was adjacent to the area proposed for maintenance dredging (see Figure 3). Results of that investigation – as they pertain to the suitability of the dredged material for flow-lane disposal – are discussed in section 7 of this suitability determination.

3. <u>Project Summary</u>. Table 1 includes project summary and tracking information.

Table 1. Project Summary

Project ranking	High (for this dredging cycle only)
Characterized volume	31,300 cy
Maintenance depth	-40 ft. CRD
1st draft SAP received	June 3, 2010
DMMP comments on 1st draft	June 21, 2010
Revised SAP received	August 11, 2010
Revised SAP approved	August 13, 2010
Sampling dates	August 31 - September 2, 2010

Data report received	November 2, 2010
DAIS Tracking number	CHINV-1-A-F-298
USACE Permit Application Number	NWS-2010-1220
Recency Determination	Cantanah an 2015
(moderate rank = 5 years)	September 2015

4. <u>Project Ranking and Sampling Requirements</u>. The Chinook Ventures facility would normally be ranked "moderate", given the type of facility and its location. However, due to the proximity of Ecology's area of investigation, the proposed dredging area was ranked "high" by the DMMP agencies for this round of characterization. The purpose of this ranking was to increase sampling density to investigate the presence or absence of petroleum coke.

In high-ranked areas with heterogeneous sediment, the minimum numbers of field samples and dredged material management units (DMMUs) are calculated using the following guidelines (DMMP, 2008a):

- Maximum volume of sediment represented by each field sample = 4,000 cy
- Maximum volume of sediment represented by each surface DMMU = 4,000 cy
- Maximum volume of sediment represented by each subsurface DMMU = 12,000 cy

Based on these guidelines, the proposed dredging volume of 31,300 cy (19,990 cy of surface material and 11,310 cy of subsurface material) would require a minimum of 8 field samples and 6 DMMUs. The SAP called for 9 field samples and 7 DMMUs.

Note: The sampling and analysis plan originally included 60,500 cy in 15 DMMUs. Subsequent to approval of the SAP, Chinook Ventures decided to scale back the dredging by eliminating DMMUs 7 through 14. Surface DMMUs 1 through 6 and subsurface DMMU 15 remained.

5. <u>Sampling</u>. Sampling took place from August 31 to September 2, 2010 using a vibracore sampler. Dense sand was encountered and vibracore refusal occurred where the deeper cores were planned in DMMU 15. Recovery was also poor at some locations. Anchor QEA consulted the Dredged Material Management Office regarding these problems. The DMMP agencies agreed with Anchor QEA's proposal to take two additional samples (A15 and A16) from locations in subsurface DMMU 15 where the dredge cut was thinner in order to recover adequate material for z-samples. The agencies also agreed that the core samples taken from DMMU 15, while they did not penetrate to the bottom of the dredging prism, were of adequate length to represent this dredging unit.

See Figures 4 and 5 for core sampling locations. Table 2 presents this information in tabular form. Table 3 includes compositing information.

**6.** <u>Chemical Analysis</u>. The approved analysis plan was followed (with minor exceptions) and quality control guidelines specified by the PSEP and DMMP programs were generally met, with only minor quality control deviations (Anchor, 2010b). The data were considered sufficient and acceptable for regulatory decision-making under the DMMP program.

For this project, the DMMP agencies agreed to use the SEF freshwater guidelines (RSET, 2006), supplemented by the DMMP marine guidelines (DMMP, 2008a) for those chemicals of concern for which freshwater guidelines do not exist. The preliminary chemical results included a single reporting

limit exceedance of a SEF freshwater screening level. Di-n-octylphthalate, while undetected in all DMMUs, had reporting limits exceeding the SL1 of 26 ug/kg. The laboratory re-analyzed these samples to achieve lower reporting limits for di-n-octylphthalate and, upon re-analysis, all samples remained undetected and reporting limits were below the SL1 value. There were no other exceedances of the freshwater or marine screening levels. See Table 4 for the chemistry results.

All seven DMMUs met suitability guidelines, based on chemistry alone, for flow-lane disposal in the Columbia River.

7. <u>Ecology's Petroleum Coke Spill Investigation</u>. Grab samples were collected from 7 sampling stations near the loading facilities associated with Berth 1 (see Figure 3) and tested for metals and PAHs. All sediment samples, including the grab samples from the area of investigation and the cores taken from the DMMUs, were visually screened for petroleum coke, alumina and cement during sampling. Quantitative estimates were also made during the grain-size analysis.

Results of the chemical analysis can be found in Table 5. There were no screening level exceedances for any of the grab samples. Results of the visual inspection and quantitative analysis are included in Table 6. In half the samples there was no petroleum coke, alumina or cement observed during sampling or grain-size analysis. The other samples had detectable quantities of petroleum coke, but in very small amounts. The one exception was SG-05, which was estimated to contain 2% petroleum coke. The sampling location for SG-05 is directly adjacent to the loading line and approximately 150 feet from the Berth 1 dredging area. The results do provide evidence of spillage. However, the consequences for the dredging area appear to be minimal. There were only minute amounts of petroleum coke found in the dredged material samples. On the basis of the evidence, the DMMP agencies agreed there was little risk posed by the dredging and disposal of the proposed dredged material.

- 8. Sediment Exposed by Dredging. Sediment exposed by dredging must either meet the State of Washington Sediment Quality Standards (SQS) (Ecology, 1995) or the State's antidegradation standard (DMMP, 2008b). Comparison of the proposed dredged material to SQS normally serves as a first-tier indicator for this purpose. However, in the case of the Chinook Ventures project, there are two arguments against the use of SQS. First, the SQS were developed for marine sediment; the Chinook Ventures site is in freshwater. Second, the total organic carbon (TOC) content ranged from 0.03 to 0.16% for the seven DMMUs. The Department of Ecology does not recommend carbon-normalization when TOC is below 0.5 percent. Therefore, the DMMP agencies agreed to use the freshwater SL1 guidelines for those chemicals for which these guidelines exist and the dry-weight-normalized marine SLs for the other chemicals of concern. As indicated in section 6 of this suitability determination, there were no exceedances of either the freshwater SL1s or the marine SLs. On this basis the agencies concluded that the project is in compliance with the State of Washington anti-degradation policy.
- 9. <u>Suitability Determination</u>. This memorandum documents the evaluation of the suitability of sediment proposed for dredging from the Chinook Ventures Berth 1 in Longview for flow-lane disposal. The approved sampling and analysis plan was followed (with minor exceptions) and the data gathered were deemed sufficient and acceptable for regulatory decision-making under the DMMP program.

Based on the results of the previously described testing, the DMMP agencies conclude that **all 31,300 cubic yards are suitable** for flow-lane disposal in the Columbia River. The material is also likely acceptable for upland disposal but the applicant should contact the local health district or the

Washington Department of Ecology for guidance in this regard, depending on where the material is placed.

The sediment characterization results do not support continued use of the "high" ranking that was used for this dredging cycle. Therefore, the recency determination period of 5 years is based on the normal ranking of "moderate".

### 10. References.

Anchor, 2010a. Sampling and Analysis Plan, Chinook Ventures Sediment Characterization, Longview, Washington. Prepared by Anchor QEA, LLC for Chinook Ventures, Inc. August 2010.

Anchor, 2010b. Sediment Characterization Report, Chinook Ventures Area A and Surficial Sediments, Longview, Washington. Prepared by Anchor QEA, LLC on behalf of Chinook Ventures, Inc. November 2010.

DMMP, 2008a. *Dredged Material Evaluation and Disposal Procedures (Users Manual)*. Dredged Material Management Program, July 2008.

DMMP, 2008b. Quality of Post-Dredge Sediment Surfaces (Updated). A Clarification Paper Prepared by David Fox (USACE), Erika Hoffman (EPA) and Tom Gries (Ecology) for the Dredged Material Management Program, June 2008.

Ecology, 1995. *Sediment Management Standards – Chapter 173-204 WAC.* Washington State Department of Ecology, December 1995.

RSET, 2006. *Northwest Regional Sediment Evaluation Framework, Interim Final.* Northwest Regional Sediment Evaluation Team, September 2006.

## 10. Agency Signatures.

Concur:

Date

David Fox, P.E. - Seattle District Corps of Engineers

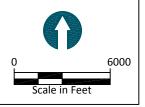
Date

Erika Hoffman - Environmental Protection Agency

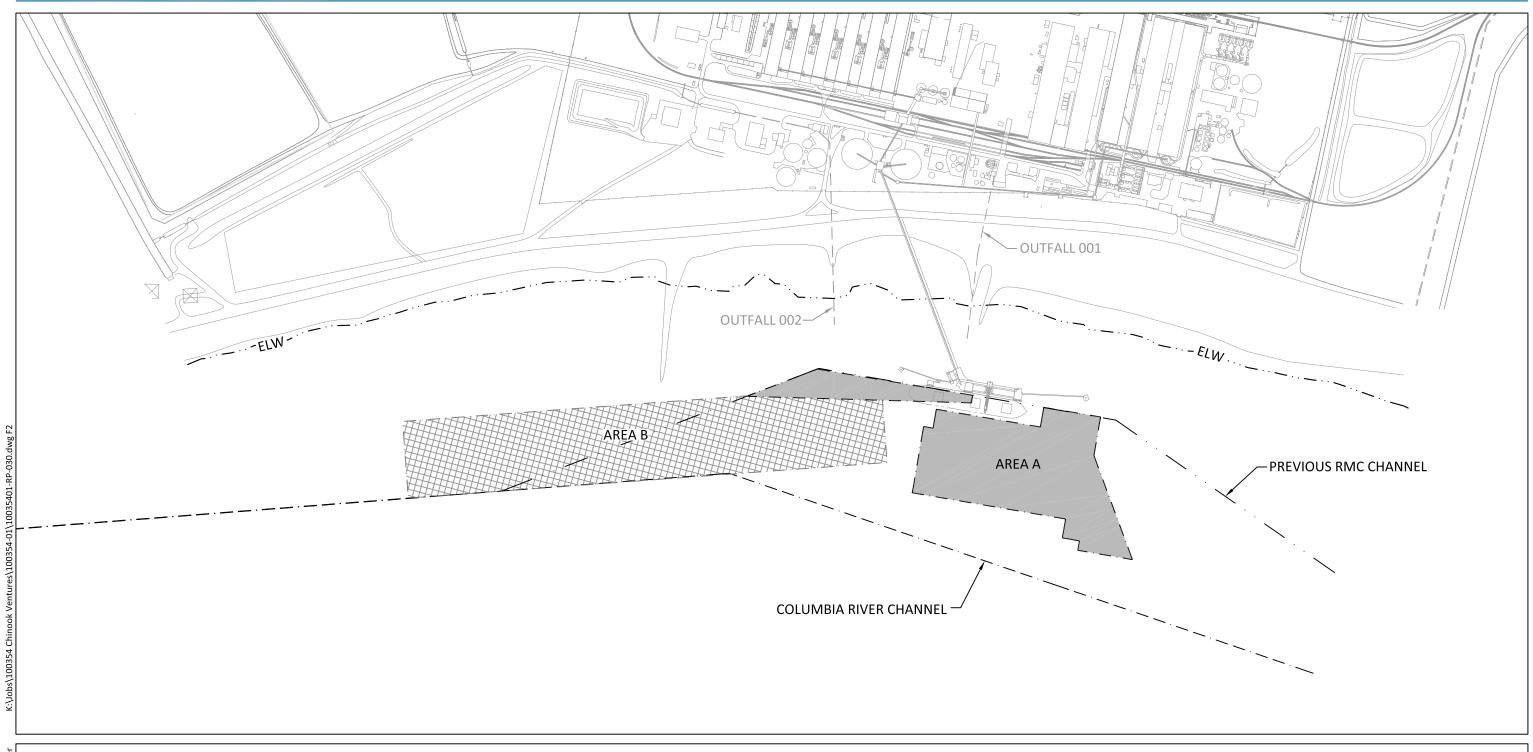
Date

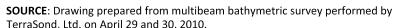
Laura Inouye, Ph.D. - Washington Department of Ecology

Date


Dave Vagt - Washington Department of Natural Resources

Copies furnished:


DMMP signatories
Danette Guy, Corps Regulatory
James Keithly, Anchor QEA
Rebecca Desrosiers Gardner, Anchor QEA
Dan Guy, NMFS
Jeremy Buck, USFWS




SOURCE: Aerial Image From Google Earth Pro 2009



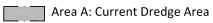




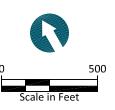


SOURCE: Drawing prepared from multibeam bathymetric survey performed by TerraSond, Ltd. on April 29 and 30, 2010.

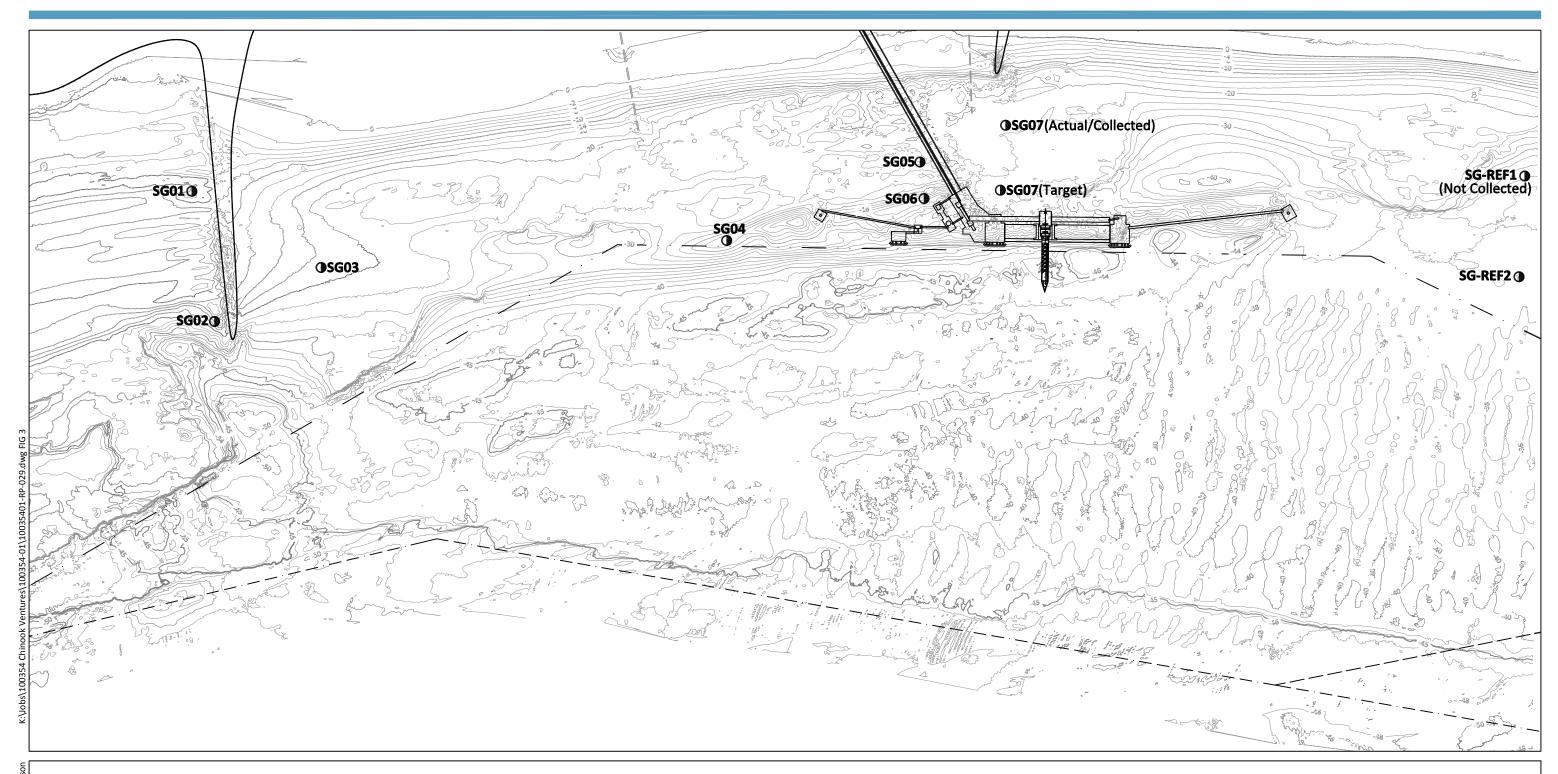
HORIZONTAL DATUM: Washington State Plane South, NAD83(91), US Survey Feet.


VERTICAL DATUM: Columbia River Datum (CRD) based on published tidal datums for NOAA Tide Station 944-0422 (1983-2001 epoch).

NOTE: Elevation 0.00 feet CRD is accepted as Extreme Low Water and the line


between Tide Lands and Bed Lands.

## LEGEND:


ELW Extreme Low Water



Area B: Potential Future Dredging

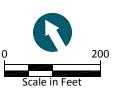




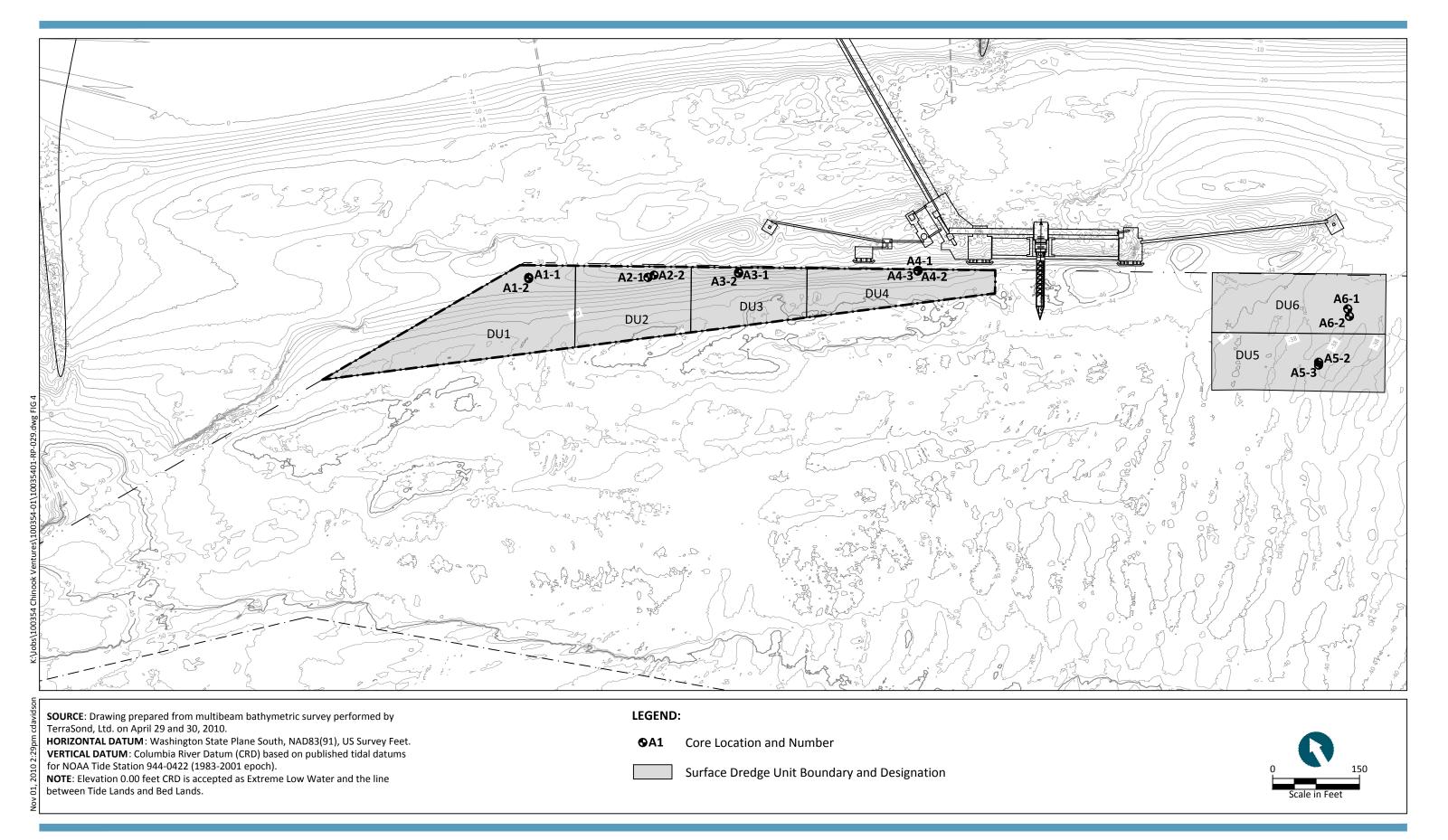


SOURCE: Drawing prepared from multibeam bathymetric survey performed by TerraSond, Ltd. on April 29 and 30, 2010.

HORIZONTAL DATUM: Washington State Plane South, NAD83(91), US Survey Feet.


VERTICAL DATUM: Columbia River Datum (CRD) based on published tidal datums for NOAA Tide Station 944-0422 (1983-2001 epoch).

NOTE: Elevation 0.00 feet CRD is accepted as Extreme Low Water and the line


between Tide Lands and Bed Lands.

LEGEND:

**OSG01** Grab Sample Location and Number









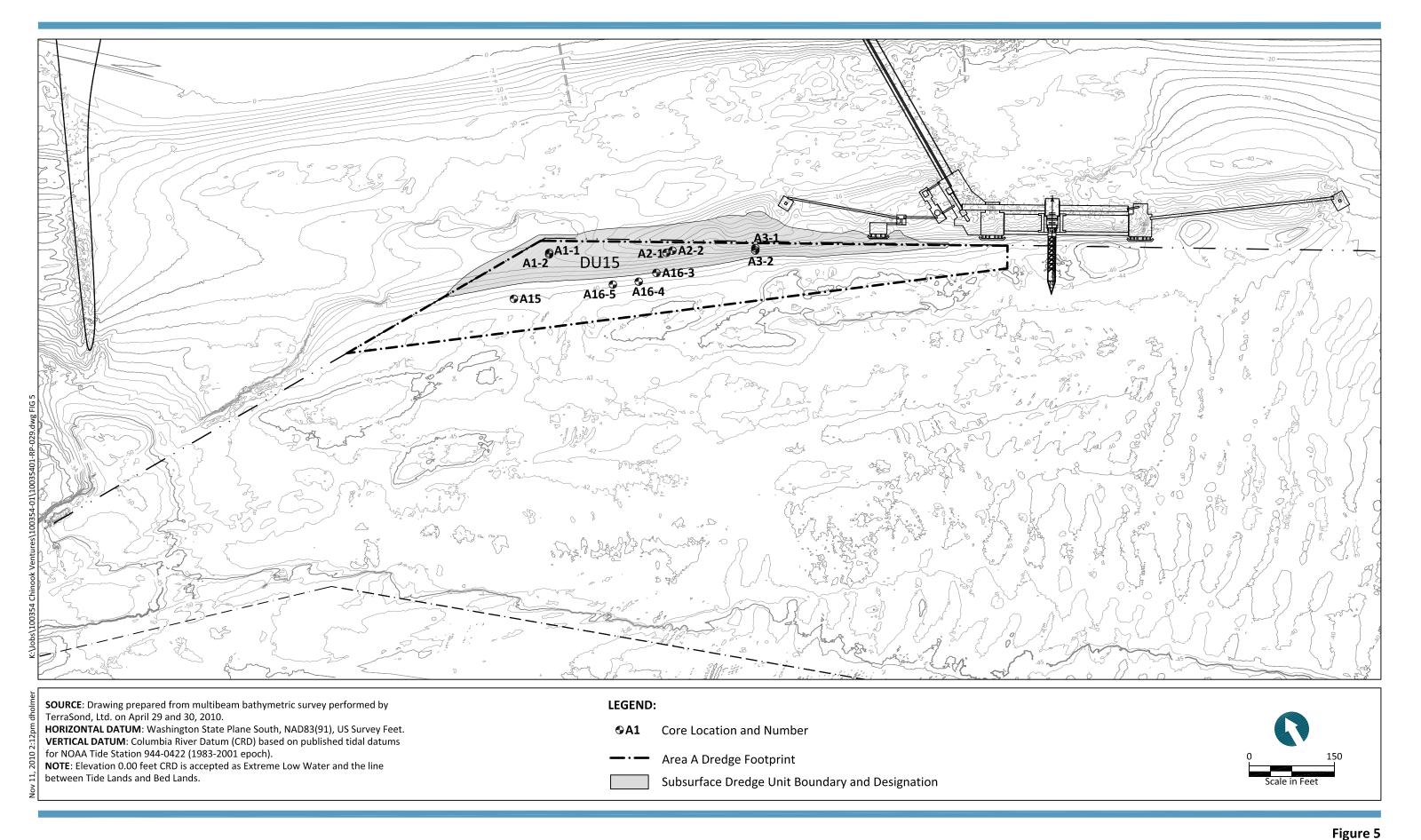





Table 2
Core Locations and Mudline Elevations
(adapted from Anchor, 2010b)

Location Name	Observation Date	Latitude	Longitude	Mudline Elevation
A1-1	09/02/2010	46.13649041	123.0047059	-28.4
A1-2	09/02/2010	46.13649041	123.0047059	-28.5
A2-1	09/01/2010	46.13614923	123.0040577	-25.5
A2-2	09/01/2010	46.13614034	123.0040157	-23.9
A3-1	09/01/2010	46.13590807	123.0035461	-29.1
A3-2	09/01/2010	46.13590807	123.0035461	-27.7
A4-1	09/01/2010	46.13540196	123.0025631	-34.2
A4-2	09/01/2010	46.13540196	123.0025631	-34.2
A4-3	09/01/2010	46.13540206	123.002565	-34.4
A5-2	08/31/2010	46.13390869	123.0007672	-38.9
A5-3	08/31/2010	46.13390869	123.0007672	-38.5
A6-1	08/31/2010	46.13402696	123.0003885	-37.5
A6-2	08/31/2010	46.13399421	123.0004103	-37.8
A15	09/02/2010	46.13641708	123.0050943	-40.2
A16-3	09/02/2010	46.13610115	123.0041978	-35.7
A16-4	09/02/2010	46.136119	123.004332	-40.0
A16-5	09/02/2010	46.13618339	123.0044874	-39.5

#### Notes:

- Mudline elevations are in Columbia River Datum and are corrected for river stage.
- Location Name extention indicates the coring attempt; due to poor recovery not all cores were used

Table 3
Core Recovery, Intervals, and Compositing Scheme
(adapted from Anchor, 2010b)

Dredge Unit	Volume (cy)	Composite Sample ID	Cores Composited	Percent Recovery	Uncorrected Core Interval (feet)	Recovery Corrected Core Interval (feet)	Targeted Sediment Interval (feet)
DU1	3,790	DU1-A-100903	A1-1	33%	0 to 1.3	0 to 3.9	0 to 4.0
			A1-2	55%	0 to 2.2	0 to 4.0	0 to 4.0
DU2	3,120	DU2-A-100902	A2-1	46%	0 to 1.8	0 to 3.9	0 to 4.0
			A2-2	40%	0 to 1.6	0 to 4.0	0 to 4.0
DU3	2,640	DU3-A-100902	A3-1	75%	0 to 3.0	0 to 4.0	0 to 4.0
			A3-2	41%	0 to 1.6	0 to 3.9	0 to 4.0
DU4	2,340	DU4-A-100902	A4-1	63%	0 to 2.5	0 to 4.0	0 to 4.0
			A4-2	56%	0 to 2.2	0 to 4.0	0 to 4.0
			A4-3	60%	0 to 2.4	0 to 4.0	0 to 4.0
DU5	4,050	DU5-A-100901	A5-2	54%	0 to 1.7	0 to 3.1	0 to 3.1
			A5-3	64%	0 to 2.3	0 to 3.6	0 to 3.5
DU6	4,050	DU6-A-100902	A6-1	66%	0 to 2.6	0 to 3.9	0 to 4.5
			A6-2	82%	0 to 3.3	0 to 4.0	0 to 4.2
DU15	11,310	DU15-B-100903	A1-1	33%	1.3 to 3.4	3.9 to 10.3	4.0 to 13.6
			A1-2	55%	2.2 to 5.4	4.0 to 9.8	4.0 to 13.5
			A2-1	46%	1.8 to 4.8	3.9 to 10.4	4.0 to 16.5
			A2-2	40%	1.6 to 3.7	4.0 to 9.3	4.0 to 18.1
			A3-1	75%	3.0 to 4.8	4.0 to 6.4	4.0 to 12.9
			A3-2	41%	1.6 to 3.9	3.9 to 9.5	4.0 to 14.3

#### Notes:

- Core intervals and targeted sediment intervals do not include z-samples
- Two additional stations not shown here (A15 and A16) were used for z-samples in DU 15

Table 4 - Analytical Results (from Anchor, 2010b)

	Task					Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment
	Location ID					A1	A2	A3	A4	A5	A6	DU15/Subsurface
	Sample ID					DU1-A-100903	DU2-A-100902	DU3-A-100902	DU4-A-100902	DU5-A-100901	DU6-A-100902	DU15-B-100903
S	Sample Date	SEF	SEF	SEF	SEF	09/03/2010	09/02/2010	09/02/2010	09/02/2010	09/01/2010	09/02/2010	09/03/2010
	Depth	MARINE	MARINE	FRESH	FRESH	0 - 4 ft	0 - 4 ft	0 - 4 ft	0 - 4 ft	0 - 3.6 ft	0 - 4 ft	4 - 10.5 ft
S	ample Type	SL1	SL2	SL1	SL2	Normal						
Conventional Parameters (mg/kg)		JLI	JLL	JLI	JLL			130111101	130111101			100111101
Ammonia						8.04	9.68	12.2	6.77	14.4 J	2.97	21.7
Sulfide						1.25 U	1.28 U	1.94	1.95	1.12	1.12 U	1.55
Conventional Parameters (pct)												
Gravel						0.07	0	0	0.01	1.7	3.24	0
Sand (coarse + medium + fine)						86.4	79.34	83.2	89.97	96.42	94.67	80.86
Coarse Sand						0.03	0	0	0.05	6.6	11.94	0
Medium Sand						27.2	15.9	23.4	42.4	85.9	78.4	21.1
Fine Sand						59.18	63.43	59.76	47.5	3.9	4.28	59.74
Silt						12.24	19.84	15.97	8.83	1.4	1.74	18.83
Clay						0.93	0.57	0.51	1.13	0.24	0.12	0
Fines (Silt + Clay)						13.17	20.41	16.48	9.96	1.64	1.86	18.83
Total organic carbon						0.155	0.101	0.0948	0.133	0.026	0.0416	0.147
Total solids						78.3	78.4	79	80.7	92.3	90.8	78.2
Metals (mg/kg)	<u>.                                      </u>		-			-	-	-		-		•
Antimony		150	150			0.649 UJ	0.653 UJ	0.647 UJ	0.627 UJ	0.552 UJ	0.557 UJ	0.638 UJ
Arsenic		57	93	20	51	0.707 J	0.582 J	0.621 J	0.671 J	0.69 J	0.752 J	0.759 J
Cadmium		5.1	6.7	1.1	1.5	0.649 UJ	0.0719 J	0.0712 J	0.069 J	0.0552 J	0.0725 J	0.0766 J
Chromium		260	270	95	100	3.52 J	3.08 J	4.5 J	3.32 J	3.33 J	3.93 J	4.15 J
Copper		390	390	80	830	11.5	13.6	12.8	11.4	8.85	8.87	13.5
Lead		450	530	340	430	0.798	0.778	0.9	0.903	0.761	2.36	0.925
Mercury		0.41	0.59	0.28	0.75	0.0519 U	0.0523 U	0.0518 U	0.0502 U	0.0441 U	0.0446 U	0.051 U
Nickel				60	70	5.01 J	4.69 J	5.49 J	5.46 J	6.13 J	6.17 J	5.53 J
Silver		6.1	6.1	2	2.5	0.649 U	0.653 U	0.647 U	0.627 U	0.552 U	0.557 U	0.638 U
Zinc		410	960	130	400	15.9	19.5	19.4	16.9	17.2	19.5	17.1
Aromatic Hydrocarbons (μg/kg)												
Total LPAH (U = 1/2)		5200	5200	6600	9200	9.1	6.73 U	12.0	14.7	2.88 U	13.2	11.8
Naphthalene		2100	2100	500	1300	6.72 UJ	6.73 UJ	6.61 UJ	6.61 UJ	2.88 UJ	5.87 UJ	6.77 UJ
Acenaphthylene		560	1300	470	640	3.35 U	3.35 U	3.29 U	3.29 U	1.43 U	2.92 U	3.37 U
Acenaphthene		500	500	1100	1300	3.35 U	3.35 U	3.29 U	3.29 U	1.43 U	2.92 U	3.37 U
Fluorene		540	540	1000	3000	3.35 UJ	3.35 UJ	3.29 UJ	3.29 UJ	1.43 UJ	2.92 UJ	3.37 UJ
Phenanthrene		1500	1500	6100	7600	2.37 J	3.35 U	5.34	5.9	1.43 U	7.37	5.03
Anthracene		960	960	1200	1600	3.35 U	3.35 U	3.29 U	3.29 U	1.43 U	2.92 U	3.37 U
2-Methylnaphthalene		670	670	470	560	6.72 UJ	6.73 UJ	6.61 UJ	3.8 UJ	2.88 UJ	5.87 UJ	6.77 UJ
Total HPAH (U = 1/2)		12000	17000	31000	55000	24.7	21.8	50.4	32.0	2.16 U	33.1	103.3
Fluoranthene		1700	2500	11000	15000	4.18	3.26 J	6.9	7.13	1.43 U	8.71	16.6
Pyrene		2600	3300	8800	16000	3.64	2.88 J	5.58	6.11	1.43 U	7.88	15.7
Benzo(a)anthracene		1300	1600	4300	5800	2.34 J	2.14 J	3.95	2.87 J	1.43 U	3.21	9.28

Table 4 - Analytical Results (from Anchor, 2010b)

Task					Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment
Location ID					A1	A2	A3	A4	A5	A6	DU15/Subsurface
Sample ID					DU1-A-100903	DU2-A-100902	DU3-A-100902	DU4-A-100902	DU5-A-100901	DU6-A-100902	DU15-B-100903
Sample Date	SEF	CEE	CEE	CEE	09/03/2010	09/02/2010	09/02/2010	09/02/2010	09/01/2010	09/02/2010	09/03/2010
Depth		SEF MARINE	SEF FRESH	SEF FRESH	0 - 4 ft	0 - 4 ft	0 - 4 ft	0 - 4 ft	0 - 3.6 ft	0 - 4 ft	4 - 10.5 ft
Sample Type	SL1	SL2	SL1	SL2	Normal						
Chrysene	1400	2800	5900	6400	2.52 J	1.77 J	7.92	3.53	1.43 U	2.93	10.9
Benzo(b)fluoranthene	3200	3600	600	4000	4.21 J	4.13 J	9.37	4.41 J	2.16 U	3.36 J	15.6
Benzo(k)fluoranthene	3200	3600	600	4000	5.03 U	5.04 U	4.48 J	4.95 U	2.16 U	4.39 U	6.07
Benzo(a)pyrene	1600	1600	3300	4800	4 J	3.82 J	6.75	4.23 J	2.16 U	3.75 J	14.4
Indeno(1,2,3-c,d)pyrene	600	690	4100	5300	3.35 U	3.35 U	2.57 J	3.29 U	1.43 U	2.92 U	7.11
Dibenzo(a,h)anthracene	230	230	800	840	3.35 U	3.35 U	3.29 U	3.29 U	1.43 U	2.92 U	3.37 U
Benzo(g,h,i)perylene	670	720	4000	5200	3.35 U	3.35 U	2.02 J	3.29 U	1.43 U	2.92 U	6.81
Total PAH (U = 1/2)	070	720	4000	3200	33.8	29.4	62.3	46.7	2.88 UJ	46.4	115.1
Chlorinated Hydrocarbons (μg/kg)					33.8	23.4	02.3	40.7	2.00 03	40.4	113.1
1,4-Dichlorobenzene	110	110			3.35 U	3.35 U	3.29 U	3.29 U	1.43 U	2.92 U	3.37 U
1,2-Dichlorobenzene	35	50			3.35 U	3.35 U	3.29 U	3.29 U	1.43 U	2.92 U	3.37 U
1,2,4-Trichlorobenzene	31	51			4.18 U	4.18 U	4.11 U	4.11 U	1.79 U	3.65 U	4.21 U
Hexachlorobenzene	22	70			1.01 UJ	1.9	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
Phthalates (µg/kg)	22	70			1.01 03	1.5	1.02 0	0.500 0	0.003 0	0.528 0	1.00 03
Dimethyl phthalate	71	160	46	440	10.1 U	10.1 U	9.91 U	9.9 U	4.31 U	8.79 U	10.1 U
Diethyl phthalate	200	200			10.1 U	10.1 U	9.91 U	9.9 U	4.31 U	8.79 U	10.1 U
Di-n-butyl phthalate	1400	1400			20.1 U	20.2 U	19.8 U	19.8 U	11.5 U	17.6 U	20.3 U
Butylbenzyl phthalate	63	900	260	370	20.1 U	20.2 U	19.8 U	19.8 U	11.6 U	17.6 U	20.3 U
Bis(2-ethylhexyl) phthalate	1300	1900	220	320	33.7 U	33.8 U	33.2 U	33.2 U	19.1 U	29.4 U	34 U
Di-n-octyl phthalate	6200	6200	26	45	16.7 U	16.8 U	16.5 U	16.5 U	14.4 U	14.6 U	16.9 U
Phenois (µg/kg)											
Phenol	420	1200			20.1 U	20.2 U	19.8 U	19.8 U	8.62 U	17.6 U	20.3 U
2-Methylphenol (o-Cresol)	63	63			6.72 U	6.73 U	6.61 U	6.61 U	2.88 U	5.87 U	6.77 U
4-Methylphenol and 3-methylphenol (m&p-Cresol)	670	670			6.72 U	6.73 U	6.61 U	6.61 U	2.88 U	5.87 U	6.77 U
2,4-Dimethylphenol	29	29			6.72 U	6.73 U	6.61 U	6.61 U	2.88 U	5.87 U	6.77 U
Pentachlorophenol	400	690			16.8 U	16.8 U	16.5 U	16.5 U	7.19 U	14.7 U	16.9 U
Miscellaneous Extractables (μg/kg)					•						
Benzyl alcohol	57	73			6.72 U	6.73 U	6.61 U	6.61 U	2.88 U	5.87 U	6.77 U
Benzoic acid	650	650			134 U	135 U	132 U	132 U	57.5 U	117 U	135 U
Dibenzofuran	540	540	400	440	3.35 U	3.35 U	3.29 U	3.29 U	1.43 U	2.92 U	3.37 U
Hexachlorobutadiene	11	120			1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
N-Nitrosodiphenylamine	28	40			6.69 U	6.71 U	6.59 U	6.58 U	2.87 U	5.84 U	6.74 U
Pesticides (μg/kg)				-	•		-				
4,4'-DDD (p,p'-DDD)	16	28			1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
4,4'-DDE (p,p'-DDE)	9	9.3			1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
4,4'-DDT (p,p'-DDT)	12	34			1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
Aldrin	9.5	9.5			1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
Total Chlordanes (sum of alpha, gamma, and oxy)	2.8	4.5			1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ

Table 4 - Analytical Results (from Anchor, 2010b)

Task Location ID Sample ID Sample Date Depth Sample Type	SEF MARINE SL1	SEF MARINE SL2	SEF FRESH SL1	SEF FRESH SL2	Area A Sediment A1 DU1-A-100903 09/03/2010 0 - 4 ft Normal	Area A Sediment A2 DU2-A-100902 09/02/2010 0 - 4 ft Normal	Area A Sediment A3 DU3-A-100902 09/02/2010 0 - 4 ft Normal	Area A Sediment A4 DU4-A-100902 09/02/2010 0 - 4 ft Normal	Area A Sediment A5 DU5-A-100901 09/01/2010 0 - 3.6 ft Normal	Area A Sediment  A6  DU6-A-100902  09/02/2010  0 - 4 ft  Normal	Area A Sediment DU15/Subsurface DU15-B-100903 09/03/2010 4 - 10.5 ft Normal
alpha-Chlordane (cis-Chlordane)					1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
gamma-Chlordane					1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
Oxychlordane					1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
Dieldrin	1.9	3.5			1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
Heptachlor	1.5	2			1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
gamma-Hexachlorocyclohexane (Lindane)					1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
cis-Nonachlor					1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
trans-Nonachlor					1.01 UJ	1.07 U	1.02 U	0.906 U	0.869 U	0.928 U	1.08 UJ
PCB Aroclors (µg/kg)											
Aroclor 1016					6.3 U	6.34 U	6.12 U	6.18 U	5.38 U	5.34 U	6.2 U
Aroclor 1221					6.3 U	6.34 U	6.12 U	6.18 U	5.38 U	5.34 U	6.2 U
Aroclor 1232					6.3 U	6.34 U	6.12 U	6.18 U	5.38 U	5.34 U	6.2 U
Aroclor 1242					6.3 U	6.34 U	6.12 U	6.18 U	5.38 U	5.34 U	6.2 U
Aroclor 1248					6.3 U	6.34 U	6.12 U	6.18 U	5.38 U	5.34 U	6.2 U
Aroclor 1254					6.3 U	6.34 U	6.12 U	6.18 U	5.38 U	5.34 U	6.2 U
Aroclor 1260					6.3 U	6.34 U	6.12 U	6.18 U	5.38 U	5.34 U	6.2 U
Total PCBs (U=0)	130	1000	60	120	6.3 U	6.34 U	6.12 U	6.18 U	5.38 U	5.34 U	6.2 U

Notes:

#### **Bold = Detected result**

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

All undetect results are reported at the reporting limit

Totals are calculated as the sum of all detected results and half of the **detection limit** of undetected results (U=1/2)

Totals are calculated as the sum of all detected results (U=0). If all results are not detected, the highest reporting limit value is reported as the sum

Total LPAH (Low PAH) are the total of 2-Methylnapthalene, Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, and Anthracene

Total HPAH (High PAH) are the total of Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(x)fluoranthenes, Benzo(a)pyrene, Indeno(1,2,3-c,d)pyrene, Dibenzo(a,h)anthracene, and Benzo(g,h,i)perylene

Gravel = particles larger than 2.0 mm; sand = 2.0 to 0.063 mm; coarse sand = 2.0 to 0.85 mm; medium sand = 0.85 to 0.15 mm; fine sand = 0.15 to 0.063 mm; silt = 0.063 to 0.0039 mm; clay = finer than 0.0039 mm

Table 5
Surface Sediment Grab Sample Analytical Results
(from Anchor, 2010b)

		1										
Task					Area A Sediment	Area A Sediment		Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment	Area A Sediment
Location ID					SG01	SG01	SG02	SG03	SG04	SG05	SG06	SG07
Sample ID					SG01-100830	SG51-100830	SG02-100830	SG03-100830	SG04-100830	SG05-100830	SG06-100830	SG07-100830
Sample Date	SEF	SEF	SEF	SEF	08/30/2010	08/30/2010	08/30/2010	08/30/2010	08/30/2010	08/30/2010	08/30/2010	08/30/2010
Depth	MARINE	MARINE	FRESH	FRESH	0 - 10 cm	0 - 10 cm	0 - 10 cm	0 - 10 cm	0 - 10 cm	0 - 10 cm	0 - 10 cm	0 - 10 cm
Sample Type	SL1	SL2	SL1	SL2	Normal	Field Duplicate	Normal	Normal	Normal	Normal	Normal	Normal
" '	Conventional Parameters (pct)											
Gravel					0.2	0.1	0.1	0.1	0.1	1.7	0.1	0.0
Sand (coarse + medium + fine)					87.1	87.3	56.8	91.9	85.8	81.3	70.0	17.8
Coarse Sand					0.1	0.1	0.0	0.0	0.1	0.4	0.0	1.1
Medium Sand					17.9	19.0	17.3	36.4	22.3	23.7	7.4	7.5
Fine Sand					69.2	68.2	39.5	55.5	63.5	57.1	62.6	9.2
Silt					12.3	11.4	42.8	7.6	12.8	14.8	27.6	44.0
Clay					0.0	1.0	0.1	0.1	1.0	1.1	2.1	19.9
Fines (Silt + Clay)					12.33	12.37	42.92	7.75	13.83	15.84	29.69	63.92
Total organic carbon					0.0941	0.128	0.128	0.123	0.156	0.181	0.255	5.44
Total solids					76.2	76.4	76.4	76.1	75.2	75.8	71.6	46.3
Metals (mg/kg)												
Antimony	150	150			0.101 J	0.209 J	0.18 J	0.0793 J	0.683 U	0.291 J	0.0921 J	0.393 J
Arsenic	57	93	20	51	0.908 J	0.85 J	0.76 J	0.767 J	0.799 J	0.948 J	0.892 J	8.49
Cadmium	5.1	6.7	1.1	1.5	0.114 J	0.0877 J	0.0933 J	0.0793 J	0.0751 J	0.108 J	0.12 J	0.525 J
Chromium	260	270	95	100	4.61 J	6.19 J	5.21 J	6.52 J	4.8 J	5.44 J	5.12 J	24.5 J
Copper	390	390	80	830	11.9	12.4	11.2	11.8	12.3	14.6	18.6	33.2
Lead	450	530	340	430	1.11	1.06	1.05	1.04	1.02	1.08	1.29	7.9
Mercury	0.41	0.59	0.28	0.75	0.0538 U	0.054 U	0.0533 U	0.0529 U	0.0546 U	0.0542 U	0.0567 U	0.0874 U
Nickel			60	70	6.29 J	7.68 J	6.8 J	8.02 J	6.32 J	6.66 J	6.28 J	25.3 J
Silver	6.1	6.1	2	2.5	0.672 U	0.675 U	0.666 U	0.661 U	0.683 U	0.677 U	0.708 U	1.09 U
Zinc	410	960	130	400	17.9	17.8	18.7	19.5	23.7	23.4	22.6	65.7
Aromatic Hydrocarbons (μg/kg)												
Total LPAH (U = 1/2)	5200	5200	6600	9200	97.9	123.6	4.8	23.6	6.9	27.8	17.1	5.62 U
Naphthalene	2100	2100	500	1300	2.73 J	2.42 J	3.38 UJ	3.49 UJ	3.49 UJ	8.74 UJ	3.7 UJ	5.6 UJ
Acenaphthylene	560	1300	470	640	1.64 U	1.62 U	1.69 U	1.74 U	1.74 U	4.37 U	1.85 U	2.8 U
Acenaphthene	500	500	1100	1300	15.4	16.9	1.69 U	3.95	1.74 U	4.37 U	1.88	2.8 U
Fluorene	540	540	1000	3000	4.7 J	6.28 J	1.69 UJ	2.83 J	1.74 UJ	4.37 UJ	1.75 J	2.8 UJ
Phenanthrene	1500	1500	6100	7600	57.1	75.3	1.42 J	12.5	2.46	14.6	9.46	2.8 U
Anthracene	960	960	1200	1600	16.7	21.5	1.69 U	2.12	1.4 J	3.28 J	1.74 J	2.8 U
2-Methylnaphthalene	670	670	470	560	3.29 UJ	3.25 UJ	3.4 UJ	3.5 UJ	3.5 UJ	4.44 J	3.71 UJ	5.62 UJ
Total HPAH (U = 1/2)	12000	17000	31000	55000	869.2	1127.3	12.9	60.9	49.6	138.4	76.2	28 U
Fluoranthene	1700	2500	11000	15000	134	176 J	2.5	13	16.2	31	21.7	2.8 U
Pyrene	2600	3300	8800	16000	133	165 J	2.24	10.8	12.9	28	19.4	2.8 U
Benzo(a)anthracene	1300	1600	4300	5800	81.2	111	1.4 J	5.04	4.81	13.9	6.18	2.8 U
Chrysene	1400	2800	5900	6400	89.9	127	1.45 J	4.57	6.72	14.6	6.96	2.8 U
Benzo(b)fluoranthene	3200	3600	600	4000	110	150 J	1.62 J	6.12	3.04	13.1	7.45	4.21 U

# Table 5 Surface Sediment Grab Sample Analytical Results (from Anchor, 2010b)

Task Location ID Sample ID Sample Date Depth Sample Type	SEF MARINE	SEF MARINE SL2	SEF FRESH SL1	SEF FRESH SL2	Area A Sediment SG01 SG01-100830 08/30/2010 0 - 10 cm Normal	Area A Sediment SG01 SG51-100830 08/30/2010 0 - 10 cm Field Duplicate	Area A Sediment SG02 SG02-100830 08/30/2010 0 - 10 cm Normal	Area A Sediment SG03 SG03-100830 08/30/2010 0 - 10 cm Normal	Area A Sediment SG04 SG04-100830 08/30/2010 0 - 10 cm Normal	Area A Sediment SG05 SG05-100830 08/30/2010 0 - 10 cm Normal	Area A Sediment SG06 SG06-100830 08/30/2010 0 - 10 cm Normal	Area A Sediment SG07 SG07-100830 08/30/2010 0 - 10 cm Normal
Benzo(k)fluoranthene	3200	3600	600	4000	41.5	50.4	2.54 U	2.02 J	2.62 U	3.8 J	2.48 J	4.21 U
Benzo(a)pyrene	1600	1600	3300	4800	98.7 J	128 J	2.54 UJ	5.38 J	2.09 J	13.1 J	4.54 J	4.21 UJ
Indeno(1,2,3-c,d)pyrene	600	690	4100	5300	81.3	104	0.983 J	6.3	1.35 J	6.66	3.21	28 U
Dibenzo(a,h)anthracene	230	230	800	840	17.6	23	1.69 U	1.27 J	1.74 U	4.22 J	0.984 J	28 U
Benzo(g,h,i)perylene	670	720	4000	5200	82	92.9	1.06 J	6.44	1.42 J	10 J	3.33	28 U
Total PAH (U = 1/2)					967.1	1250.9	17.8	84.5	56.5	166.2	93.4	28 U

2 of 2

#### Notes:

#### **Bold = Detected result**

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

All undetect results are reported at the reporting limit

Totals are calculated as the sum of all detected results and half of the **detection limit** of undetected results (U=1/2)

Totals are calculated as the sum of all detected results (U=0). If all results are not detected, the highest reporting limit value is reported as the sum

Total LPAH (Low PAH) are the total of 2-Methylnapthalene, Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, and Anthracene

Total HPAH (High PAH) are the total of Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(x)fluoranthenes, Benzo(a)pyrene, Indeno(1,2,3-c,d)pyrene, Dibenzo(a,h)anthracene, and Benzo(g,h,i)perylene Gravel = particles larger than 2.0 mm; sand = 2.0 to 0.063 mm; coarse sand = 2.0 to 0.85 mm; medium sand = 0.85 to 0.15 mm; fine sand = 0.15 to 0.063 mm; silt = 0.063 to 0.0039 mm; clay = finer than 0.0039 mm

Table 6
Petroleum Coke Observations in Grab and Core Samples
(from Anchor, 2010b)

Sample ID	Field or Core Processing Observation	Laboratory Observation	Laboratory Approximate Quantity						
Grab Sample Observations									
SG01-100830	None Observed	Possible petroleum coke in +20 fraction	0.09% of total sample						
SG51-100830	None Observed	Petroleum coke observed in +10 and possible	0.18% of total sample						
(field duplicate of SG01)		petroleum coke in +20 fraction							
SG02-100830	None Observed	None Observed	NA						
SG03-100830	None Observed	None Observed	NA						
SG04-100830	None Observed	None Observed	NA						
SG05-100830	Petroleum Coke Observed; <5% by volume	Petroleum coke observed in +4 fraction; +10 and	2.0% of total sample						
		+20 fractions are predominantly petroleum coke							
SG06-100830	None Observed	None Observed	NA						
SG07-100830	None Observed	None Observed	NA						
Core Observations									
DU1-A-100903	None Observed	1 to 2 spheres of petroleum coke in +20 fraction	0.03% of total sample						
DU2-A-100902	None Observed	None Observed	NA						
DU3-A-100902	None Observed	Possible petroleum coke in +20 fraction	1 grain, 0.01 grams, 0% of total sample						
DU4-A-100902	None Observed	Petroleum coke (2 pieces) in +20 fraction	2 grains, 0.05% of total sample						
DU5-A-100901	None Observed	Possible petroleum coke in +20 fraction	Not quantified						
DU6-A-100902	None Observed	None Observed	NA						
DU15/Subsurface	None Observed	None Observed	NA						
Nata.									

Note:

NA = Not applicable