## **Remediation Documentation Report**

Wishram, Washington

## **BNSF Railway Company**

K/J 036026.02 March 2007

Kennedy/Jenks Consultants

## REMEDIATION DOCUMENTATION REPORT WISHRAM, WASHINGTON

## Prepared for

## **BNSF RAILWAY COMPANY**

KENNEDY/JENKS CONSULTANTS ENGINEERS AND SCIENTISTS 32001 32<sup>nd</sup> Avenue South, Suite 100 Federal Way, Washington 98001 253-874-0555

K/J 036026.02

March 2007

## **TABLE OF CONTENTS**

|            |        |                                                                                                                                   | Page<br><u>Number</u> |
|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| LIST       | OF TAE | 3LES                                                                                                                              | iii                   |
| LIST       | OF FIG | URES                                                                                                                              | iii                   |
| LIST       | OF API | PENDICES                                                                                                                          | iii                   |
| 1.0        | INTR   | ODUCTION                                                                                                                          | 1-1                   |
| 2.0        | BAC    | KGROUND                                                                                                                           | 2-1                   |
|            | 2.1    | SITE LOCATION AND DESCRIPTION                                                                                                     | 2-1                   |
| 3.0        | PRO    | JECT ACTIVITIES                                                                                                                   | 3-1                   |
|            | 3.1    | PERMITTING                                                                                                                        | 3-1                   |
|            | 3.2    | EXCAVATION AND DISPOSAL  3.2.1 Pump House Foundation at Maintenance Building  3.2.2 Former Fueling Island and Lubricating Oil UST | 3-2<br>3-3            |
|            | 3.3    | CONFIRMATION SAMPLING AND ANALYSIS                                                                                                | 3-7<br>3-8            |
|            | 3.4    | GROUNDWATER MONITORING                                                                                                            | 3-10                  |
| <b>4</b> ∩ | SUM    | MARY AND RECOMMENDATIONS                                                                                                          | 4-1                   |

## **TABLE OF CONTENTS**

## LIST OF TABLES

TABLE 1 CONFIRMATION SOIL SAMPLE ANALYTICAL RESULTS FOR DETECTED COMPOUNDS

TABLE 2 GROUNDWATER ANALYTICAL RESULTS

## **LIST OF FIGURES**

FIGURE 1 SITE LOCATION MAP

FIGURE 2 REMEDIATION AREA

## LIST OF APPENDICES

APPENDIX A LABORATORY ANALYTICAL RESULTS

## 1.0 INTRODUCTION

Kennedy/Jenks Consultants prepared this report on behalf of BNSF Railway Company (BNSF) to describe remediation activities conducted in 2005 at the Wishram Railyard (site) located in Wishram, Washington (project). The project included excavating and disposing of petroleum-containing soil, an underground storage tank (UST), and abandoned piping. NRC Environmental Services (NRC) of Portland, Oregon, completed the project between 24 October and 11 November 2005 in conformance with Remediation Work Plan, Wishram Washington (Work Plan) prepared by Kennedy/Jenks Consultants and dated June 2005. The Work Plan was provided to the Washington State Department of Ecology (Ecology) and the Klickitat County Health Department prior to conducting the remediation project.

This report also summarizes analytical data for groundwater monitoring conducted prior to remediation in 2003 and 2004 and approximately one year after excavation in November 2006.

## 2.0 BACKGROUND

## 2.1 SITE LOCATION AND DESCRIPTION

The town of Wishram is located in Klickitat County, Washington, approximately 13 miles northeast of The Dalles, Oregon, and 0.75 mile south of Washington State Route 14 (see Figure 1). The site extends for approximately 1 mile along the southern boundary of Wishram, along the northern shoreline of the Columbia River. The site, near the western end of the railyard, lies primarily within the southwestern quarter of the southwestern quarter of Section 17, Township 2 North, Range 15, east of the Willamette Meridian (W.M.), extending between 40 and 100 feet into the southeastern quarter of Section 18, Township 2 North, Range 15, east of the W.M.

The site is slightly less than 3 acres and is bounded by Wishram to the north, railyard right-of-way to the east and west, and the Columbia River to the south and southwest (see Figure 2). Apart from a berm along the river shoreline, the ground surface is relatively flat and lies at an elevation of approximately 175 feet above mean sea level (msl). Surface water bodies near the site include the adjacent Columbia River and a stormwater drainage ditch located approximately 1,000 feet to the west.

Soil at the site is composed of 15 to 40 feet of dune deposits and loose sandy fill overlying basalt bedrock, the upper surface of which descends toward the Columbia River at depths ranging from approximately 15 to 40 feet below ground surface (bgs). In the northern half of the site, where bedrock has been encountered at approximately 15 feet bgs, groundwater occurs seasonally in localized perched zones between 10 and 15 feet bgs. Nearer to the river, groundwater has been encountered year round at approximately 10 to 15 feet bgs and appears to flow south-southwest with a gradient of approximately 0.006 feet per foot (ft/ft).

## 3.0 PROJECT ACTIVITIES

## 3.1 PERMITTING

Permitting for the remediation project was required because of the volume of soil proposed for removal and because of the project area's close proximity to the Columbia River. A Joint Aquatic Resources Permit Application (JARPA), a State Environmental Policy Act (SEPA) checklist, a work plan, and an application fee were submitted to the Klickitat County Planning Department on 5 July 2005. Klickitat County and Ecology approved the project permit on 17 October 2005.

## 3.2 EXCAVATION AND DISPOSAL

Areas excavated in 2005 are shown on Figure 2. These included the location of a former pump house, the area around a former fueling island and lubricating oil UST, and the former location of a boiler house.

A total of 3,656 tons of petroleum-containing soil, other petroleum-containing debris, and concrete were removed and transported via truck to the Regional Disposal Company Landfill in Roosevelt, Washington (Roosevelt Landfill). Approximately 10 tons of clean, abandoned piping and other metals encountered during excavation were transported for recycling to Schnitzer Steel Industries (Schnitzer) in Portland, Oregon. Approximately 1,800 gallons of fuel and oils removed from abandoned piping and an UST were transported by NRC to Oil Re-refining Company (ORRCO), a recycling facility in Portland, Oregon. Approximately 500 to 1,000 cubic yards of clean overburden removed from excavation areas were replaced as backfill.

Excavated areas were backfilled as soon as possible after confirmation sampling to minimize the potential for collapse of the surrounding sandy soil. NRC obtained clean pit-run for backfilling the excavations and basalt gravel for top course from Pacific

Northwest Aggregates (PNA) located approximately 1 mile west of Wishram on State Route 14. Soil was placed into excavations in 1 foot thick lifts and compacted using the excavator bucket and/or a large front-end loader. Density testing performed by Tenneson Engineers of The Dalles, Oregon, indicated 90 percent compaction or better in all test locations. After compaction and testing, the ground surface was graded to approximate surrounding conditions, and a 3-inch-thick layer of top course gravel was spread over all backfilled areas.

## 3.2.1 Pump House Foundation at Maintenance Building

Site characterization data gathered in 2003 and 2004 indicated the presence of dieseland gasoline-range hydrocarbons in soil and groundwater southeast of the former pump
house foundation and west of the maintenance building (see Figure 2). Remediation in
2005 included removing the pump house foundation and approximately 50 feet of
associated piping, then excavating soil exhibiting odors or stains, to the extent
practicable, within the area bounded by the roadway to the north, the maintenance
building to the east, and the mainline railroad track to the south. An approximately
15,000-gallon, sand-filled, abandoned septic tank located a few feet west of the
maintenance building also limited the extent of excavation. A total of approximately
900 tons of soil was excavated from the area, to depths ranging from 5 to 15 feet bgs,
and disposed of at the Roosevelt Landfill.

During excavation, a 12-inch-diameter east/west trending sewer pipe was encountered, extending from the maintenance building to a point near boring location WSB-04-6 (Figure 2). The western terminus of the pipe was open and, when tested, discharged drain water from the maintenance building bathroom. BNSF personnel indicated that it was an abandoned branch of a sewer pipe that should be capped. NRC capped the pipe with a rubber boot and ring clamp.

After collection of confirmation soil samples (described in Section 3.2), NRC tilled 200 pounds of oxygen release compound (ORC) into saturated soil exposed in the bottom of the excavation. The area was then backfilled, graded, and covered with

gravel. Analytical results for confirmation samples collected from the bottom of the excavation, from areas where ORC was applied, contained gasoline-range hydrocarbons at concentrations ranging from 225 to 233 milligrams per kilogram (mg/kg) and diesel-range hydrocarbon concentrations ranging from 89.9 to 2,690 mg/kg. Only trace concentrations of ethylbenzene and xylenes were detected in the samples, suggesting that residual petroleum hydrocarbons in the vadose and saturated zones are relatively weathered.

## 3.2.2 Former Fueling Island and Lubricating Oil UST

## 3.2.2.1 Fueling Island

Soil removal near the center of the site was initiated by removing the 300 cubic yard concrete fueling island pad and excavating soil beneath the pad to approximately 8 feet bgs. Although 2004 site characterization results suggested the presence of petroleum-containing soil between 5 and 10 feet bgs at boring location WSB-04-9, no staining or odors were encountered during excavation (Figure 2). Based on the earlier site characterization results, approximately 10 cubic yards of soil from the location of boring WSB-04-9 were stockpiled for disposal. The remaining soil from beneath the pad and approximately 100 cubic yards of broken concrete were stockpiled separately for use as backfill. Approximately 200 cubic yards of the concrete were disposed of at the Roosevelt landfill. Rebar removed from the pad was transported, along with other metals, to Schnitzer.

Two confirmation samples were collected from the fueling island excavation in the locations of pipes that protruded from the island surface. One of the samples, FI-EAST-6, contained diesel-range hydrocarbons at a concentration of 152 mg/kg, which is below the MTCA Method A cleanup level of 2,000 mg/kg. This was the only detection in the two fueling island confirmation samples.

## 3.2.2.2 Lube Oil UST Area

Approximately 5 feet west of the fueling island, stained soil was encountered at 3 feet bgs around a buried valve and joint in a 6-inch diameter, abandoned fuel pipe. Soil was removed southward and westward from the pipe joint to depths ranging between 8 and 15 feet bgs. Where practicable, soil was removed until field observations and/or photoionization detector (PID) measurements indicated the presence of "clean" soil in the excavation sidewall or bottom. The northern boundary of the excavation was limited to an alignment approximately 20 feet south of and parallel to the mainline tracks to minimize the potential for undermining the tracks. Approximately 1,500 tons of petroleum-containing soil were removed from the area and transported to the Roosevelt Landfill.

The fuel pipe encountered west of the fueling island appeared to extend from the northeast from the former pump house and under the mainline tracks. The valve at the joint was removed, and approximately 300 gallons of diesel fuel and water were vacuumed from the pipeline for offsite disposal. After cleaning, the pipe section extending from the north, under the tracks, was capped with a rubber boot and ring clamp. Other pipes encountered in the excavation included two 6-inch diameter cast-iron fuel pipes, a 3-inch diameter steel pipe (empty), and a steam line that, together, formed a large oval originating and ending at pipe stubs in the former location of the boiler house (described below). Residual bunker C oil in the piping was either pumped out using a vacuum truck or, if spilled while removing the pipe, scraped up along with surrounding soils and stockpiled for disposal. Approximately 200 gallons of bunker C oil were recovered from the pipe and transported to ORRCO in Portland, Oregon. The 6-inch oil pipe was disposed of along with other debris and petroleum-containing soil at the Roosevelt landfill.

Several pieces of insulation-wrapped pipe (a total of 30 feet) were encountered at 10 feet bgs near the western end of the excavation. The pipes and insulation were sprayed with water, wrapped in asbestos containment bags, and disposed of at the Roosevelt Landfill as potential asbestos-containing materials.

A 5,000-gallon, single-walled steel UST was encountered at 6 feet bgs approximately 40 feet southwest of the western end of the former fueling island. The UST contained approximately 1,500 gallons of unused lubricating oil, which was vacuumed out and transported to ORRCO in Portland, Oregon. NRC staff, registered to decommission USTs, inerted the tank using 100 pounds of dry ice, pressure washed the interior, and then lifted the tank to the ground surface. The cleaned tank was cut into pieces and stockpiled with other metal for recycling. Kennedy/Jenks Consultants personnel notified Ecology of the UST removal via telephone. However, Ecology staff indicated that the UST was not registered and, therefore, could be removed without filing a formal notification.

In portions of the excavated area where groundwater or moist soil was encountered (>10 feet bgs), ORC was tilled into the excavation bottom prior to backfilling (a total of 150 pounds). One confirmation sample collected from saturated soil at 12 feet bgs contained gasoline-range hydrocarbons at a concentration of 10.4 mg/kg, diesel-range hydrocarbons at a concentration of 908 mg/kg, and oil-range hydrocarbons at a concentration of 1,920 mg/kg. Benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds were not detected in the sample at concentrations greater than laboratory reporting limits. ORC was tilled into the saturated soil to increase oxygen levels, thus, potentially enhancing biodegredation of the weathered petroleum compounds.

## 3.2.3 Former Boiler House

In 2004, analytical results for samples collected from soil boring WSB-5 and monitoring well MW-2 (see Figure 2) suggested the presence of petroleum in soil and groundwater beneath the remnants of the former boiler house foundation. Field observations during excavation indicated that a large part of what was originally thought to be a foundation was a concrete lid on top of a subterranean, soil-filled, concrete bunker measuring 40 feet long by 12 feet wide by 15 feet deep. After removing approximately 250 tons of petroleum-containing soil from the bunker, the interior walls were pressure washed and the concrete-lined void was backfilled with clean soil.

Additional excavation around the outside of the bunker revealed that monitoring well MW-2 and soil boring WSB-5 had been advanced within a few inches of the outside of the concrete walls and that a portion of the well screen of well MW-2 was positioned within a small mass of oily timbers near the bunker's base (15 feet bgs). In addition to the timbers, relatively localized petroleum-containing soil was encountered, extending from approximately 12 to 18 feet bgs. The MW-2 well casing and as much of the affected soil as possible was removed within the boundaries shown on Figure 2, but collapse of the sidewalls during excavation made it necessary to leave some of the petroleum-containing soil in place. The collapse also precluded collection of confirmation samples other than PH-1-10 and PH-2-17 (described below).

A total of approximately 700 tons of soil was removed from this area and disposed of at the Roosevelt Landfill. Sixty pounds of ORC were mixed into the base of the excavation (including both stained soil and soil that collapsed from the sidewalls), and the excavated area was backfilled and compacted. Confirmation samples collected from the excavation, prior to its collapse, did not contain petroleum hydrocarbons or BTEX. However, visual observation of the excavation indicated slight to moderate staining of some soil left in place. ORC tilled into the excavation appears to have been placed in contact with the localized, stained soil.

## 3.3 CONFIRMATION SAMPLING AND ANALYSIS

Confirmation soil samples were collected from sidewalls and bottoms of excavations (see Figure 2) by scraping a small quantity of soil onto the teeth of the excavator bucket and transferring the soil into laboratory provided containers. Samples were submitted under chain-of-custody to North Creek Analytical Laboratory (NCA) in Bothell, Washington, for one or more of the following analyses:

- Diesel-range hydrocarbons using the NWTPH-Dx Method with silica gel cleanup
- Gasoline-range hydrocarbons using the NWTPH-G Method

- BTEX using EPA Method 8021B
- Volatile organic compounds (VOCs) using EPA Method 8260B (collected using EPA Method 5035)
- Total lead using EPA 6000/7000 Series Methods
- Polychlorinated biphenyls (PCBs) using EPA Method 8082.

Analytical results for compounds detected in confirmation samples are summarized in Table 1 and discussed below. Laboratory reports are provided in Appendix A.

## 3.3.1 Former Pump House Confirmation Sample Results

Thirteen confirmation soil samples were collected from the sidewalls and bottom of the excavation advanced near the former pump house. Analytical results for the samples, identified with the prefix "M," are summarized in Table 1.

Gasoline-range hydrocarbons were detected in two samples collected from saturated soil at approximately 14 feet bgs (M-9-14 and M-10-14), at concentrations of 225 and 233 mg/kg. These concentrations exceed the Ecology Model Toxics Control Act Method A cleanup level for Industrial Properties (MTCA Method A cleanup level) of 100 mg/kg. The same samples contained trace concentrations of ethylbenzene and xylenes below MTCA Method A cleanup levels. Benzene and toluene were not detected.

In nine of the 13 samples from the former pump house excavation, diesel-range hydrocarbons were detected at concentrations ranging from 53.4 to 324 mg/kg, below the MTCA Method A cleanup level of 2,000 mg/kg. Sample M-9-14, from saturated soil at 14 feet bgs, contained a diesel-range hydrocarbon concentration of 2,690 mg/kg.

Results of confirmation sampling in the former pump house area indicate elevated diesel- and gasoline-range hydrocarbon concentrations remain in the saturated zone

3-7

approximately 30 feet northwest of monitoring well MW-7 (see Figure 2). Other samples from the same depth (M-1-14, M-2-14, and M-7-14) contained diesel-range hydrocarbons at concentrations below MTCA Method A cleanup levels suggesting that the elevated concentrations are relatively localized. Based on previous site investigation results, the saturated zone in this area is perched on bedrock and appears to be less than approximately 5 feet thick.

## 3.3.2 Fueling Island/UST Area Confirmation Sample Results

As described above, no stains or odors were observed in soil directly beneath the former fueling island, including a location for which previous site investigation results suggested the presence of diesel-range hydrocarbons. Two confirmation samples collected from locations directly beneath the former fueling island (FI-MID-10 and FI-EAST-6) were analyzed for diesel- and oil-range hydrocarbons. Diesel-range hydrocarbons were detected in sample FI-EAST-6, from 6 feet bgs, at a concentration of 152 mg/kg. Petroleum compounds were not detected in sample FI-MID-10 collected from 10 feet bgs.

Nine confirmation samples collected from the excavation, advanced west and southwest of the former fueling island, are identified in Table 1 and on Figure 1 with the prefix "FIEXC." Petroleum hydrocarbon compounds were not detected at concentrations greater than laboratory reporting limits in six of the samples. One sample (FIEXC-E-8) contained diesel-range hydrocarbons at a concentration of 56.1 mg/kg and oil-range hydrocarbons at a concentration of 37.2 mg/kg, both below MTCA Method A cleanup levels.

Two of the samples (FIEX-B-1-12 and FIEX-N-8E) were collected from locations where olfactory observations indicated petroleum soil was still present in the excavation sidewall. At these two locations, the excavation had to be terminated because of adjacent structures. FIEXC-N-8, collected west of the fueling island and a short distance south of a mainline track, contained a diesel-range hydrocarbon concentration of 853 mg/kg and an oil-range hydrocarbon concentration of 3,390 mg/kg. Although the

oil-range concentration exceeded the MTCA Method A cleanup level of 2,000 mg/kg, soil was not excavated north of this sample location to minimize the potential for undermining the nearby mainline track. FIEXC-B-1-12 was collected from a localized mass of soil left in place around the base of a large concrete vault that extends to a depth of approximately 15 feet bgs (see Figure 2). Detections in this sample included diesel-range hydrocarbons at a concentration of 908 mg/kg, oil-range hydrocarbons at a concentration of 1,920 mg/kg, and gasoline-range hydrocarbons at a concentration of 10.4 mg/kg. Detected concentrations in FIEXC-B-1-12 were below MTCA Method A cleanup levels.

## 3.3.3 Former Boiler House Confirmation Sample Results

Only two confirmation samples were collected from the former boiler house excavation because: 1) the majority of petroleum-containing soil encountered in this location was within a sub-grade concrete vault, and 2) the walls of the excavation outside of the vault collapsed continually during removal, thus precluding "safe" collection of additional samples. Analytical results for the two samples that were collected (PH-1-10 and PH-2-17) do not indicate detections of gasoline-, diesel-, or oil-range hydrocarbons. Lead was detected in sample PH-1-10 at a concentration of 10 mg/kg.

As described above, visual observations during excavation indicated that a localized mass of stained soil was left in place around the base of the sub-grade concrete vault at a depth of approximately 18 feet bgs. Sample PH-2-17, collected from 17 feet bgs approximately 10 feet west of the stained soil mass, did not contain petroleum hydrocarbons at concentrations greater than laboratory reporting limits. Sample PH-1-10 was collected from a depth of 10 feet bgs, approximately 25 feet south of the stained soil, between the concrete vault and the river (Figure 2).

### 3.4 GROUNDWATER MONITORING

Monitoring wells were installed at the site in 2003 and 2004, prior to soil excavation. Analytical results for samples collected from the wells before and after excavation are summarized in Table 2 and discussed below.

In 2003, monitoring wells MW-1 and MW-4 were constructed along and as close as practicable to the river shoreline, downgradient of former fueling areas. With the exception of a slightly elevated diesel-range hydrocarbon concentration detected in a September 2003 sample from monitoring well MW-1, pre-excavation samples collected from these downgradient wells did not contain petroleum-hydrocarbons at concentrations exceeding MTCA Method A cleanup levels for groundwater (MTCA Method A cleanup levels). The most recent groundwater sample collected from well MW-1, in November 2006, did not contain petroleum hydrocarbon or BTEX compounds at concentrations greater than laboratory reporting limits. Observations during the November 2006 monitoring round indicate well MW-4 was recently destroyed during railyard grading operations.

Well MW-2 was installed in the former location of the boiler house but was removed because, as discovered during excavation, its screen had been constructed within a mass of oily timbers. Diesel- and oil-range hydrocarbons and benzene were detected in samples collected from this well prior to excavation at concentrations exceeding MTCA Method A cleanup levels. However, the analytical results were biased by the surrounding timbers and not representative of groundwater conditions in this area.

Well MW-3 was installed downgradient of the former fueling island, approximately midway between the island and monitoring well MW-1. A groundwater sample collected from this well in September 2003 contained diesel-range hydrocarbons at a concentration of 253 micrograms per liter ( $\mu$ g/L). In November 2006, diesel-range hydrocarbons were detected at a concentration of 659  $\mu$ g/L, which exceeds the MTCA Method A cleanup level of 500  $\mu$ g/L. Gasoline-range hydrocarbons were also detected in November 2006, but at a concentration below MTCA Method A cleanup levels.

Monitoring well MW-5 was installed approximately 200 feet east of the former fueling island in 2004 to aid in monitoring the groundwater flow direction and to evaluate the potential for easterly migration of petroleum hydrocarbons in the event of fluctuations in the groundwater flow direction. Petroleum hydrocarbons and BTEX compounds have not been detected in samples collected from well MW-5.

Well MW-6 was installed in 2004 to monitor groundwater downgradient of the fueling island (the UST location was unknown in 2004). A groundwater sample collected from well MW-6 in 2004 did not contain petroleum hydrocarbons or BTEX at concentrations exceeding MTCA Method A cleanup levels. This well had to be removed during excavation to access and remove the lubricating oil UST.

Well MW-7 was installed west of the maintenance building to evaluate groundwater conditions downgradient of the former pump house. Prior to excavation (in 2004), a groundwater sample collected from well MW-7 contained gasoline- and diesel-range hydrocarbons at concentrations greater than MTCA Method A cleanup levels (see Table 2). During monitoring in November 2006, one year after excavation, approximately 0.1 foot of light non-aqueous phase liquid (LNAPL) was encountered in the well. The LNAPL was removed using a disposable bailer, and no sample was collected for analysis. The well was observed again and additional LNAPL was removed in December 2006 and March 2007.

## 4.0 SUMMARY AND RECOMMENDATIONS

Remediation activities conducted at the site in 2005 resulted in the removal and offsite disposal of approximately 3,600 tons of petroleum-containing soil and debris, removal and recycling of approximately 1,800 gallons of petroleum from an UST and piping, and removal and recycling of 10 tons of metals. Results of confirmation soil sampling suggest that the majority of the petroleum hydrocarbon mass in soil at the site was removed. With the exception of detections in two confirmation samples collected from the former pump house area (M-9-14 and M-10-14) and one sample collected west of the former fueling island (FIEXC-N-8), no compounds were detected at concentrations exceeding Ecology Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Industrial Properties.

Post-excavation groundwater monitoring results from November 2006 suggest the presence of localized, elevated petroleum hydrocarbon concentrations in groundwater near well locations MW-7 and MW-3. A small amount of LNAPL has also been encountered in well MW-7. However, based on observations of the excavation advanced around well MW-7 in 2005, this LNAPL appears to be limited to soil left in place around the well casing. Neither pre- nor post-excavation monitoring results for wells MW-1 and MW-4 indicate sustained concentrations of petroleum hydrocarbons greater than MTCA Method A cleanup levels downgradient of the former fueling area. Petroleum hydrocarbons and/or BTEX were not detected in a sample collected from well MW-1 in November 2006.

Because a significant mass of the subsurface soil source of petroleum hydrocarbons was removed by excavation, it is anticipated that localized residual concentrations in saturated zone soil will attenuate naturally over time. Additional remedial measures to enhance natural attenuation such as ORC or ozone injection could be implemented. However, because downgradient groundwater monitoring results do not indicate migration toward the Columbia River and because the land will remain a railyard for the foreseeable future, additional remedial measures would not further reduce an already low risk posed by the residual concentrations and would not be a cost-effective

alternative to natural attenuation. Semiannual groundwater monitoring is recommended for approximately 2 to 3 years to evaluate the progress of natural attenuation and the concentration of petroleum hydrocarbons in downgradient wells.

| Tables |
|--------|
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |

TABLE 1

# CONFIRMATION SOIL SAMPLE ANALYTICAL RESULTS FOR DETECTED COMPOUNDS **BNSF Wishram Railyard**

## Former Pump House

|                 | M-1-14            | M-2-8    | M-2-14 | M-3-8    | M-4-10 | M-5-8  | M-6-10 | M-7-8                | M-7-14 | M-8-6 | M-8-14 | M-8-14 M-9-14 M-10-14 | M-10-14 |
|-----------------|-------------------|----------|--------|----------|--------|--------|--------|----------------------|--------|-------|--------|-----------------------|---------|
| TPH (mg/kg)     |                   |          |        |          |        |        |        |                      |        |       |        | 1                     |         |
| Gasoline-range  | NA <sup>(b)</sup> | ¥        | Ą      | Ą        | AN     | NA     | NA     | NA                   | N      | NA    | NA     | 233                   | 225     |
| Diesel-range    | 121               | 89.9     | 182    | 183      | 164    | 53.4   | 107    | <11.0 <sup>(c)</sup> | 324    | <11.2 | 9.87   | 2,690                 | Ą       |
| Oil-range -     | <27.8             | <27.3    | <27.7  | <27.1    | <27.5  | <27.4  | <27.4  | <27.5                | <27.9  | <28.1 | <27.3  | <285                  | ¥       |
| BTEX (mg/kg)    |                   |          |        |          |        |        |        |                      |        |       |        |                       |         |
| Ethylbenzene    | NA                | Ą        | AN     | NA<br>NA | AN     | N<br>A | NA     | W                    | W      | NA    | A.     | 0.125                 | 0.124   |
| Xylenes (total) | NA<br>A           | NA       | NA     | NA       | NA     | NA     | NA     | NA                   | NA     | NA    | NA     | 0.209                 | 0.222   |
| Lead (mg/kg)    | NA                | NA<br>AN | NA     | NA       | NA     | NA     | 4.10   | NA                   | NA     | NA    | NA     | 3.64                  | NA      |

## Former Fueling Island and Boiler House

| Cilici i dennig island and Dones node | Stalla alla 20 | 2000                                                                                                                                           |              |              |              |           |            |           |            |           |           |         |         |
|---------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|-----------|------------|-----------|------------|-----------|-----------|---------|---------|
| Analyte                               | FIEXC-B-1-12   | FIEXC-8-1-12 FIEXC-8-3-15 FIEXC-8-5-10 FIEXC-8-6-10 FIEXC-8-7-10 FIEXC-8-8 FIEXC-W-10 FIEXC-N-8 FIEXC-S-10 FI-EAST-6 FI-MID-10 PH-1-10 PH-2-17 | FIEXC-B-5-10 | FIEXC-B-6-10 | FIEXC-B-7-10 | FIEXC-E-8 | FIEXC-W-10 | FIEXC-N-8 | FIEXC-S-10 | FI-EAST-6 | FI-MID-10 | PH-1-10 | PH-2-17 |
| TPH (mg/kg)                           |                |                                                                                                                                                |              |              |              |           |            |           | =          |           |           |         |         |
| Gasoline-range                        | 10.4           | Ą                                                                                                                                              | NA           | NA<br>NA     | A<br>A       | NA        | <6.77      | <6.16     | <6.13      | NA        | ¥         | <6.27   | <7.29   |
| Diesel-range                          | 806            | <10.9                                                                                                                                          | <10.4        | <11.1        | <10.5        | 56.1      | <10.5      | 853       | 52.5       | 152       | <10.9     | <10.4   | <10.6   |
| Oil-range                             | 1,920          | <27.2                                                                                                                                          | <26.1        | <27.7        | <26.2        | 37.2      | <26.3      | 3,390     | 493        | <26.8     | <27.4     | <26.0   | <26.5   |
| BTEX (mg/kg)                          |                |                                                                                                                                                |              |              |              |           |            |           |            |           |           |         |         |
| Ethylbenzene                          | <0.0670        | A<br>A                                                                                                                                         | NA<br>NA     | ¥            | Ą            | NA        | <0.0677    | <0.0616   | <0.0613    | NA        | NA        | <0.0627 | <0.0729 |
| Xylenes (total)                       | <0.134         | NA<br>A                                                                                                                                        | NA           | NA<br>NA     | NA           | NA        | <0.135     | <0.123    | <0.123     | NA        | ¥         | <0.125  | <0.146  |
| Lead (mg/kg)                          | 4.37           | NA                                                                                                                                             | NA           | NA           | NA           | NA        | 2.74       | NA        | WA         | NA<br>NA  | Ą         | 10.0    | NA      |
|                                       |                |                                                                                                                                                |              |              |              |           |            |           |            |           |           |         |         |

## Notes:

- (a) Analyses:
- Diesel- and oil-range hydrocarbons by the Northwest Total Petroleum Hydrocarbons Diesel Extended (NWTPH-Dx) Method with
  - Gasoline-range hydrocarbons by the Northwest Total Petroleum Hydrocarbons Gasoline Extended Method (NWTPH-Gx).
    - BTEX analyzed by either EPA Method 8021B or EPA Method 8260B.
- Lead analyzed using EPA Method 6020.
- (b) "NA" indicates not analyzed.
- (c) "<" indicates analyte was not detected at a concentration greater than the specified laboratory reporting limit.

Only detected compounds are summarized in the table

Analytes detected at concentrations greater than the laboratory reporting limit are shown in bold.

## **TABLE 2**

## **GROUNDWATER ANALYTICAL RESULTS**

Wishram Railyard

| Sample ID                         |                   | WMW-1     |           | 7-MMM-5   | W-2       |           | WMW-3     |               | WMW-4     | N-4                  | WW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WMW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WWW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WMW-7     | MTCA Method      |
|-----------------------------------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|
| Date                              | 9/17/2003         | 4/15/2004 | 11/9/2006 | 9/18/2003 | 4/15/2004 | 9/17/2003 | 4/16/2004 | 11/9/2006     | 9/18/2003 | 4/15/2004            | 4/16/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/9/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4/16/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4/16/2004 | A <sup>(8)</sup> |
| Petroleum Hydrocarbons (µg/L) (b) |                   |           |           |           |           |           |           |               |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |
| Gasoline-Range Hydrocarbons       | NA <sup>(c)</sup> | 329       | <250      | ¥.        | 750       | ¥         | AN        | 209           | NA        | <80.0 <sup>(d)</sup> | <80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <50[<50.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,790     | 800              |
| Diesel-Range Hydrocarbons         | 593 [605] (*)     | 426       | <236      | 4,170     | 844       | 253       | <250      | 629           | 409       | <250                 | <250 [<250]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,220     | 200              |
| Oil-Range Hydrocarbons            | <500 [<500]       | <500      | <472      | 2,450     | <500      | <500      | <500      | <500          | <500      | <500                 | <500 [<500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <500      | 500              |
| BTEX (μg/L) <sup>(f)</sup>        |                   |           |           |           |           |           |           |               |           |                      | And an examination of the second of the seco |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |
| Benzene                           | <0.500 [0.500]    | <0.500    | <2.50     | 5.71      | 17.4      | <0.500    | ΑΝ        | <0.500        | <0.500    | <0.500               | <0.500 [<0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.500 [<0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <5.00 (9) | 5                |
| Toluene                           | <0.500 [0.500]    | <0.500    | <2.50     | 23.5      | 3.66      | <0.500    | ¥         | <0.500        | <0.500    | <0.500               | <0.500 [<0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.500 [<0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <5.00 (9) | 1,000            |
| Ethylbenzene                      | <0.500 [0.500]    | <0.500    | <2.50     | 5.84      | 17.4      | <0.500    | ¥         | <0.500        | <0.500    | <0.500               | <0.500 [<0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.500 [<0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <5.00 (9) | 700              |
| Total Xylenes                     | <1.00 [1.02]      | 2.33      | <5.00     | 11.8      | 37.2      | <1.00     | ΨX        | <1.00         | <1.00     | <1.50                | <1.50 [<1.50]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1.00 [<1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <15.0 (9) | 1,000            |
| VOCs (µg/L) <sup>(h)</sup>        |                   |           |           |           |           |           |           |               |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |
| n-Propylbenzene                   | AN                | 1.63      | A Z       | ¥         | A N       | ¥         | ¥         | ¥             | ¥         | AN                   | <1.00 (<1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ą                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <1.00     | ⊖_               |
| 1,2,4-Trimethylbenzene            | AN                | 15.0      | ΑZ        | ΑN        | 4 Z       | ¥<br>X    | ž         | Y Y           | ¥ Z       | Ϋ́                   | <1.00 [<1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ¥.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.2      | 1                |
| sec-Butylbenzene                  | Ϋ́                | <1.00     | AN        | ΑΝ        | Ϋ́        | ĄZ        | ¥ Z       | ¥Z            | ¥<br>Z    | Ą                    | <1.00 [<1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.47      | 1                |
| PAHS/CPAHS (ua/L) (i)             |                   |           |           |           |           |           |           |               |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |
| Acenaphthene                      | AZ<br>AZ          | ¥Z        | AN N      | Ą         | <10.0     | Ą Z       | Ą         | ¥ Z           | ¥<br>Z    | Ą                    | <0.100 [<0.100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AN<br>AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.65      | ı                |
| Fluorene                          | AN                | ¥         | AN        | ΑΧ        | <10.0     | ¥         | ¥ Z       | ¥ X           | ¥         | ¥                    | <0.100 [<0.100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AN<br>AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.839     | -                |
| Benzo(a)anthracene                | <0.100 [<0.100]   | ¥Z        | NA<br>V   | 0.304     | <10.0     | <0.100    | ¥ Z       | Ą             | <0.100    | ¥                    | <0.100 [<0.100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.400    |                  |
| Benzo(a)pyrene                    | <0.100 [<0.100]   | ¥         | ¥Z        | <0.200    | <10.0     | <0.100    | ¥         | Š             | <0.100    | ¥<br>¥               | <0.100 [<0.100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.400    |                  |
| Benzo(b)fluoranthene              | <0.100 [<0.100]   | ¥ Z       | ¥Z        | <0.200    | <10.0     | <0.100    | A Z       | ¥             | <0.100    | ٩N                   | <0.100 [<0.100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΑΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.400    |                  |
| Benzo(k)fluoranthene              | <0.100 [<0.100]   | ¥Z        | Ą         | <0.200    | <10.0     | <0.100    | Ą         | ¥             | <0.100    | Ą                    | <0.100 [<0.100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΑΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.400    | 1(k)             |
| Chrysene                          | <0.100 [<0.100]   | ₹<br>Z    | ¥         | 0.516     | <10.0     | <0.100    | ¥ X       | ¥             | <0.100    | <b>∀</b> Z           | <0.100 [<0.100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.400    | <del>.</del>     |
| Dibenz(a,h)anthracene             | <0.200 [<0.200]   | ¥ Z       | ¥.        | <0.400    | <20.0     | <0.200    | NA        | AN            | <0.200    | Ą                    | <0.200 [<0.200]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.800    |                  |
| Indeno(1,2,3-cd)pyrene            | <0.100 [<0.100]   | ž         | ¥         | <0.200    | <10.0     | <0.100    | Ą         | Ā             | <0.100    | Ą                    | <0.100 [<0.100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.400    |                  |
| Total cPAHs (K)                   |                   |           |           | 0.25      |           |           |           |               |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |
| Metals (µg/L) <sup>(i)</sup>      |                   |           | -         |           |           |           |           |               |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And Administration of the second of the seco |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |
| Arsenic                           | ¥                 | ¥         | ¥.        | A<br>A    | 18.4      | N<br>A    | 8.54      | Ą             | Y Y       | ď<br>Z               | 7.03 (7.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ¥<br>Z    | 9                |
| Barium                            | ¥                 | Ž         | ¥         | ΨZ        | 16.4      | Y.        | 55.9      | Ą             | A<br>A    | A<br>A               | 58.0 [58.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ϋ́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Υ<br>Υ    | •                |
| Cadmium                           | Ϋ́                | ď         | ¥ Z       | A<br>V    | <1.0      | NA        | <1.0      | ΑΝ            | Ϋ́        | ¥<br>¥               | <1.0 [<1.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ϋ́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>₹</b>  | ro.              |
| Chromium (total)                  | ¥                 | ¥<br>Z    | ¥         | ΑN        | 4.39      | AN        | <1.0      | Ą             | Y<br>Y    | ¥<br>Z               | <1.0 [<1.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ϋ́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ¥         | 20               |
| Lead                              | Ϋ́                | Ą         | Ą         | AN        | ×1.0      | ¥         | o.t>      | <b>∢</b><br>Z | Ϋ́        | Y.                   | <1.0 [<1.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ΑΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₹<br>Z    | 15               |
| Mercury                           | Ϋ́                | ¥<br>Z    | ¥<br>Z    | Ą         | <0.20     | Ϋ́        | <0.20     | Ϋ́            | ¥         | Ž                    | <0.20 [<0.20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ϋ́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ą.        | 2                |
| Selenium                          | Ā                 | ¥         | ĄZ        | ΨZ        | 4.28      | Ϋ́        | <1.0      | ď             | Y<br>Y    | NA<br>NA             | <1.0 [<1.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ϋ́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ¥Z        |                  |
| Silver                            | Ą                 | A'N       | ¥         | ΝΑ        | <1.0      | NA        | <1.0      | NA            | NA        | A<br>A               | <1.0 [<1.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ϋ́        | 1                |
| Water Quality Parameters          |                   |           |           |           |           |           |           |               |           |                      | or published the summer of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vacance is to reduce deciminate designs of the distribution of the second section of the section o |           |                  |
| Groundwater Elevation (feet) (m)  | 78.47             | 83.89     | 84.75     | NM(a)     | 84.15     | 78.5      | 84.55     | 84.67         | 78.51     | 83.92                | 84.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.52     | 1                |
| Temperature (°C)                  | 19.8              | 17.2      | 19.3      | 14.9      | ≥Z        | 20.0      | 17.4      | 18.8          | 18.3      | 15.9                 | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.4      | •                |
| pH (standard units)               | 8.9               | 7.4       | 7.1       | 7.5       | ΣZ        | 7.4       | 7.5       | 7.2           | 7.5       | 7.7                  | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.2       |                  |
| Specific Conductance (mS/cm)      | 1,561             | 1,375     | 1,078     | 3,018     | Ž         | 086       | 1,106     | 1,100         | 696       | 920                  | 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,397     | 1                |
| Dissolved Oxygen (mg/L)           | 0.37              | 0.35      | 0.22      | 0.78      | ΣŽ        | 0.56      | 0.62      | 0.12          | 0.42      | 0.36                 | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.41      | -                |
| Eh (millivolts)                   | 330               | 117       | -147      | 200       | NN        | 310       | 222       | -77           | 320       | 200                  | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 236       | 1                |

Notes: (a) (b)

Values are from The Washington State Department of Ecology Model Toxics Control Act (MTCA) Method A Cleanup Level for Groundwater (12 February 2001) unless otherwise stated.

- Diesel- and oil-range hydrocarbons by the Northwest Total Petroleum Hydrocarbons Diesel Extended (NWTPH-Dx) Method with silica gel cleanup. - Gasoline-range hydrocarbons by the Northwest Total Petroleum Hydrocarbons Gasoline Extended Method (NWTPH-Gx).

"NA" indicates not analyzed."

"NA" indicates analyte was not detected at a concentration greater than the specified reporting limit.

"I indicates result for field blind duplicate analysis.

BTEX analyzed by EPA Method 8021B.

Reporting limit raised because of dilution necessary for analysis.

"OCs analyzed by EPA Method 8260B.

"-" indicates that a MTCA Method A cleanup level is not available for the analyte or field measured parameter.

Total cPAH value is equal to the sum of individual analyte concentrations multiplied by toxicity equivalency factors (TEFs) as described in WAC 173-340-708(8).

Where analytes were not detected, but there is potential for their presence based on PAH results, a concentration equal to 0.5 the reporting limit was multiplied by the TEF. The total value was compared to the MTCA Method B cleanup level for benzo(a)pyrene of 0.1 µg/L.

Metals analyzed by EPA 6000/7000 series methods.

Monitoring well casings were surveyed relative to a benchmark established at the railyard for the site assessment. The benchmark was assigned an arbitrary elevation of 10. PAHs and cPAHs analyzed by EPA Method 8270M-SIM. 

to a benchmark established at the railyard for the site assessment. The benchmark was assigned an arbitrary elevation of 100 feet.

(i) Metals analyzed by EPA 6000/7000 series methods.
 (m) Monitoring well casings were surveyed relative to a benchmark established
 (n) "NM" indicates not measured.
 Bold value exceeds the MTCA Method A groundwater cleanup level.
 Table includes only those analytes that were detected in one or more samples.

| Figures |
|---------|
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |



## Kennedy/Jenks Consultants

THE BURLINGTON NORTHERN AND SANTA FE RAILWAY CO. WISHRAM, WA

## SITE LOCATION MAP

036026.00/FIG\_1.CDR

FIGURE 1





## Appendix A

**Laboratory Analytical Results** 



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

## **CASE NARRATIVE for B5K0301**

Client: Kennedy/Jenks Consultants Project Manager: Galen Davis Project Name: BNSF - Wishram Project Number: 036026.02

## 1.0 DESCRIPTION OF CASE

Thirteen soil samples and one trip blank were submitted for analysis of:

- Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B
- Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up
- Total Metals by EPA 6000/7000 Series Methods

### 2.0 COMMENTS ON SAMPLE RECEIPT

The samples were received November 11th, 2005 by North Creek Analytical Bothell. The temperature of the samples at the time of receipt was 4.7 degrees Celsius. For sample M10-14, one VOA vial with methanol and one unpreserved VOA vial were received for the sample. The sample aliquot for dry weight correction was taken from the unpreserved VOA vial per Galen Davis' approval.

## 3.0 PREPARATIONS AND ANALYSIS

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of this report.

## Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of this report.

## Total Metals by EPA 6000/7000 Series Methods

Cato Dung

No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

Kate Haney Project Manager

North Creek Analytical

RECEIVED

DEC -8 2005

**VJ Federal Way** 

North Creek Analytical, Inc. Environmental Laboratory Network
Page 1 of 1



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

05 December 2005

Galen Davis
Kennedy/Jenks Consultants
32001 32nd Ave S Ste 100
Federal Way, WA/USA 98001

RE: BNSF-Wishram, WA

Enclosed are the results of analyses for samples received by the laboratory on 11/11/05 09:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kate Haney

**Project Manager** 



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported: 12/05/05 18:17

## ANALYTICAL REPORT FOR SAMPLES

| Sample ID |           |       |     |              | Laboratory ID | Matrix |    | Date Sampled   | Date Received  |   |
|-----------|-----------|-------|-----|--------------|---------------|--------|----|----------------|----------------|---|
| M-2-14    | borrest . | 0 = 2 | - 4 | ne propiniti | B5K0301-01    | Soil   |    | 11/08/05 15:10 | 11/11/05 09:30 |   |
| M-4-10    |           |       |     |              | B5K0301-02    | Soil   |    | 11/09/05 13:10 | 11/11/05 09:30 |   |
| M-2-8     |           |       |     |              | B5K0301-03    | Soil   |    | 11/08/05 15:15 | 11/11/05 09:30 |   |
| M-6-10    |           |       |     |              | B5K0301-04    | Soil   |    | 11/10/05 08:00 | 11/11/05 09:30 |   |
| M-3-8     |           |       |     |              | B5K0301-05    | Soil   |    | 11/08/05 15:00 | 11/11/05 09:30 |   |
| M-10-14   |           |       |     |              | B5K0301-06    | Soil   | 10 | 11/10/05 10:00 | 11/11/05 09:30 | b |
| M-9-14    |           |       |     |              | B5K0301-07    | Soil   |    | 11/10/05 09:00 | 11/11/05 09:30 |   |
| M-1-14    |           |       |     |              | B5K0301-08    | Soil   |    | 11/08/05 15:00 | 11/11/05 09:30 |   |
| M-5-8     |           |       |     |              | B5K0301-09    | Soil   |    | 11/09/05 13:00 | 11/11/05 09:30 |   |
| M-8-6     |           |       |     |              | B5K0301-10    | Soil   |    | 11/10/05 11:05 | 11/11/05 09:30 |   |
| M-7-8     |           |       |     |              | B5K0301-11    | Soil   |    | 11/10/05 12:00 | 11/11/05 09:30 |   |
| M-8-14    |           |       |     |              | B5K0301-12    | Soil   |    | 11/10/05 11:00 | 11/11/05 09:30 |   |
| M-7-14    |           |       |     |              | B5K0301-13    | Soil   |    | 11/10/05 12:05 | 11/11/05 09:30 |   |
| TRIP BLA  | NK        |       |     |              | B5K0301-14    | Soil   |    | 11/10/05 12:05 | 11/11/05 09:30 |   |
|           |           |       |     |              |               |        |    |                |                |   |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 18:17

## Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

| Analyte                             | D N           | Reporting   |                |            |          |          | ## E     | - 10-2-            | T RINCORD |
|-------------------------------------|---------------|-------------|----------------|------------|----------|----------|----------|--------------------|-----------|
| Amage May :: First Atom Tourist     | Result        | Limit       | Units          | Dilution   | Batch    | Prepared | Analyzed | Method             | Not       |
| M-10-14 (B5K0301-06) Soil Sampled   | : 11/10/05 10 | :00 Receive | ed: 11/11/05 0 | 9:30       |          |          |          |                    | Tricher-V |
| Benzene                             | ND            | 0.0271      | mg/kg dry      | 1          | 5K15033  | 11/15/05 | 11/16/05 | NWTPH-Gx/8021B     |           |
| Toluene                             | ND            | 0.0678      | (a) 1 10 20    | н          | 11       | н        | #        | m                  |           |
| Ethylbenzene                        | 0.124         | 0.0678      |                | н          | н        | #        | **       | n                  |           |
| Xylenes (total)                     | 0.222         | 0.136       | "              | 11         | n        | tt       | **       |                    | 497       |
| Surrogate: 4-BFB (FID)              | 83.0 %        | 50-150      | = infl care    | (6)        | "        | ,,       | "        | n                  |           |
| Surrogate: 4-BFB (PID)              | 114 %         | 53-142      |                |            | **       | "        | "        | "                  |           |
| M-10-14 (B5K0301-06RE1) Soil Sam    | pled: 11/10/0 | 5 10:00 Re  | ceived: 11/11/ | 05 09:30   |          |          |          |                    |           |
| Gasoline Range Hydrocarbons         | 225           | 33.9        | mg/kg dry      | 5          | 5K16028  | 11/16/05 | 11/16/05 | NWTPH-Gx/8021B     | G-0       |
| Surrogate: 4-BFB (FID)              | 113 %         | 50-150      |                |            | "        | "        | "        | "                  |           |
| M-9-14 (B5K0301-07) Soil Sampled: 1 | 11/10/05 09:0 | 0 Received  | : 11/11/05 09: | 30         |          |          |          |                    |           |
| Benzene                             | ND            | 0.0328      |                |            | 57/15000 | 11/17/07 |          |                    |           |
| Foluene                             | ND            | 0.0328      | mg/kg dry      | 1 "        | 5K15033  | 11/15/05 | 11/16/05 | NWTPH-Gx/8021B     |           |
| Ethylbenzene                        | 0.125         | 0.0819      | n 1911 3       | ,,         | ,,       | "        | . 11     | n                  |           |
| Xylenes (total)                     | 0.209         | 0.164       |                |            | "        | "        | "        | rt<br>Pt           |           |
| Surrogate: 4-BFB (PID)              | 123 %         | 53-142      |                | *          | "        | "        | "        | "                  |           |
| M-9-14 (B5K0301-07RE1) Soil Sample  | ed: 11/10/05  | 09:00 Rece  | ived: 11/11/05 | 00-30      |          |          |          |                    |           |
| Gasoline Range Hydrocarbons         | 233           | 41.0        | mg/kg dry      |            | 5K16028  | 11/16/05 | 11/16/05 | NWTPH-Gx/8021B     | G-01      |
| Surrogate: 4-BFB (FID)              | 110 %         | 50-150      |                |            | 77       | n        | "        | "                  |           |
| TRIP BLANK (B5K0301-14) Soil Sam    | pled: 11/10/  | 05 12:05 Re | eceived: 11/11 | /05 09:30  |          |          |          |                    |           |
| Gasoline Range Hydrocarbons         | ND            | 5.00        | mg/kg wet      |            | 5K15033  | 11/15/05 | 11/16/05 | NWTPH-Gx/8021B     |           |
| Benzene                             | ND            | 0.0200      | "              | 11         | "        | "        | 11/10/05 | 1 W 1 Pri-GX/8021B |           |
| oluene                              | ND            | 0.0500      | **             | **         | "        |          | "        |                    |           |
| Ethylbenzene                        | ND            | 0.0500      | **             | 11         | **       | **       | #1       |                    |           |
| Zylenes (total)                     | ND            | 0.100       |                | e <b>n</b> | **       | 11       | **       | n                  |           |
| urrogate: 4-BFB (FID)               | 77.3 %        | 50-150      |                |            | n        | "        | "        | ,,                 |           |
| urrogate: 4-BFB (PID)               | 96.3 %        | 53-142      |                |            | "        | ,,       | "        | <b>"</b> -         |           |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 2 of 15



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 18:17

## Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte                     | Experior.  | Result         | Reporting<br>Limit | Units          | Dilution   | Batch    | Prepared | Analyzed   | Method        | Notes      |
|-----------------------------|------------|----------------|--------------------|----------------|------------|----------|----------|------------|---------------|------------|
| M-2-14 (B5K0301-01) Soil    | Sampled:   | 11/08/05 15:10 | Received           | l: 11/11/05 09 | :30        | 14,23    |          | T U-THENKS |               |            |
| Diesel Range Hydrocarbons   |            | 182            | 11.1               | mg/kg dry      | 1          | 5K19002  | 11/19/05 | 11/20/05   | NWTPH-Dx      | D-06       |
| Lube Oil Range Hydrocarbons |            | ND             | 27.7               | m m            | 11         | **       |          | Ħ          | ROTAL HOLLAND | 11 42 11   |
| Surrogate: 2-FBP            |            | 93.3 %         | 50-150             |                |            | n        | , "      | n          | "             |            |
| Surrogate: Octacosane       |            | 96.7 %         | 50-150             |                |            | n        | n        | H          | " Estresian   |            |
| M-4-10 (B5K0301-02) Soil    | Sampled:   | 11/09/05 13:10 | Received           | l: 11/11/05 09 | :30        | Benin ay | 787 7    |            |               | 190 Mail - |
| Diesel Range Hydrocarbons   |            | 164            | 11.0               | mg/kg dry      | 1          | 5K19002  | 11/19/05 | 11/20/05   | NWTPH-Dx      | D-06       |
| Lube Oil Range Hydrocarbons |            | ND             | 27.5               | 11 11          | <b>F</b> 1 | n        | 91       | 11         | n             |            |
| Surrogate: 2-FBP            |            | 99.0 %         | 50-150             |                |            | - "      | "        | "          | "             |            |
| Surrogate: Octacosane       |            | 103 %          | 50-150             |                |            | n        | **       | "          | "             |            |
| M-2-8 (B5K0301-03) Soil     | Sampled: 1 | 1/08/05 15:15  | Received:          | 11/11/05 09:   | 30         | Number 1 |          |            | 1             |            |
| Diesel Range Hydrocarbons   |            | 89.9           | 10.9               | mg/kg dry      | 1          | 5K19002  | 11/19/05 | 11/20/05   | NWTPH-Dx      | D-06       |
| Lube Oil Range Hydrocarbons |            | ND             | 27.3               | н              | n          | n        | li li    | 11         | н             |            |
| Surrogate: 2-FBP            |            | 101 %          | 50-150             | 0              |            | "        | " "      | "          | "             |            |
| Surrogate: Octacosane       |            | 98.5 %         | 50-150             |                |            | n        | "        | n          | "             |            |
| M-6-10 (B5K0301-04) Soil    | Sampled:   | 11/10/05 08:00 | Received           | l: 11/11/05 09 | :30        | 40.0     |          |            | S IIII VIII V |            |
| Diesel Range Hydrocarbons   |            | 107            | 11.0               | mg/kg dry      | 1          | 5K19002  | 11/19/05 | 11/21/05   | NWTPH-Dx      | D-06       |
| Lube Oil Range Hydrocarbons |            | ND             | 27.4               | n e            | "          | 2 H      | n        | "          | *             |            |
| Surrogate: 2-FBP            |            | 97.9 %         | 50-150             |                |            | **       | "        | "          | "             |            |
| Surrogate: Octacosane       |            | 97.4 %         | 50-150             |                | 15         | **       | "        | "          | "             |            |
| M-3-8 (B5K0301-05) Soil     | Sampled: 1 | 1/08/05 15:00  | Received:          | 11/11/05 09:   | 30         | meal.    |          | ui naeri   | rue (T) Wh    |            |
| Diesel Range Hydrocarbons   |            | 183            | 10.8               | mg/kg dry      | 1          | 5K19002  | 11/19/05 | 11/21/05   | NWTPH-Dx      | D-06       |
| Lube Oil Range Hydrocarbons |            | ND             | 27.1               | 11             | **         | "        | 11       | "          |               |            |
| Surrogate: 2-FBP            |            | 92.9 %         | 50-150             |                |            | 91,0     | "        | "          | n             |            |
| Surrogate: Octacosane       |            | 100 %          | 50-150             |                |            | •        | "        | "          |               |            |
|                             |            |                |                    |                |            |          |          |            |               |            |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kato Dung



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 18:17

## Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte                                                  | i esta      | Result            | Reporting<br>Limit |                | Dilution | Batch    | Prepared | Analyzed | Method     | Notes      |
|----------------------------------------------------------|-------------|-------------------|--------------------|----------------|----------|----------|----------|----------|------------|------------|
| M-9-14 (B5K0301-07) Soi                                  | l Sampled:  | 11/10/05 09:0     | 0 Receive          | d: 11/11/05 09 | :30      | Sasti A. | 31 11 11 |          | Endighes M | Year New Y |
| Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons    |             | <b>2690</b><br>ND | 114<br>285         | mg/kg dry      | 10       | 5K19002  | 11/19/05 | 11/21/05 | NWTPH-Dx   |            |
| Surrogate: 2-FBP Surrogate: Octacosane                   |             | 131 %<br>92.3 %   | 50-150<br>50-150   |                |          |          | - n      | "        | "          |            |
| M-1-14 (B5K0301-08) Soi                                  | Sampled:    | 11/08/05 15:0     | ) Receive          | d: 11/11/05 09 | :30      |          |          |          |            | Later St.  |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | . 141       | 121<br>ND         | 11.1               | mg/kg dry      | 1 "      | 5K19002  | 11/19/05 | 11/21/05 | NWTPH-Dx   | D-06       |
| Surrogate: 2-FBP<br>Surrogate: Octacosane                |             | 89.4 %<br>91.3 %  | 50-150<br>50-150   |                |          | " "      | "        | "        | "          | -          |
| M-5-8 (B5K0301-09) Soil                                  | Sampled: 1  | 1/09/05 13:00     | Received:          | 11/11/05 09:3  | 80       |          |          |          |            |            |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | liar        | <b>53.4</b> ND    | 11.0<br>27.4       | mg/kg dry      | 1 "      | 5K19002  | 11/19/05 | 11/21/05 | NWTPH-Dx   | D-06       |
| Surrogate: 2-FBP<br>Surrogate: Octacosane                |             | 102 %<br>102 %    | 50-150<br>50-150   |                |          | "        | "        | n        | "          |            |
| M-8-6 (B5K0301-10) Soil                                  | Sampled: 11 | 1/10/05 11:05     | Received:          | 11/11/05 09:3  | 0        |          |          |          |            |            |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons |             | ND<br>ND          | 11.2<br>28.1       | mg/kg dry      | 1 "      | 5K19002  | 11/19/05 | 11/21/05 | NWTPH-Dx   |            |
| Surrogate: 2-FBP<br>Surrogate: Octacosane                |             | 105 %<br>104 %    | 50-150<br>50-150   |                |          | "        | "        | "        | "          | 11320501=  |
| M-7-8 (B5K0301-11) Soil                                  | Sampled: 11 | /10/05 12:00      | Received:          | 11/11/05 09:3  | 0.00     |          |          |          | W > 110.74 |            |
| Diesel Range Hydrocarbons  Lube Oil Range Hydrocarbons   |             | ND<br>ND          | 11.0<br>27.5       | mg/kg dry      | 1 "      | 5K19002  | 11/19/05 | 11/21/05 | NWTPH-Dx   |            |
| Surrogate: 2-FBP<br>Surrogate: Octacosane                |             |                   | 50-150<br>50-150   |                |          | s n =    | " "      | n<br>n   | "          | 8-4        |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 4 of 15



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509,924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 Anchorage

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported:

12/05/05 18:17

## Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte                                                  | Less.      | Result           | Reporting<br>Limit | Units         | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------------------------|------------|------------------|--------------------|---------------|----------|---------|----------|----------|----------|-------|
| M-8-14 (B5K0301-12) Soil                                 | Sampled:   | 11/10/05 11:00   | Received           | l: 11/11/05 ( | 09:30    | M 1 60  | Mar I    |          |          |       |
| Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons    | V, IIVEVII | 78.6<br>ND       | 10.9<br>27.3       | mg/kg dry     | 1        | 5K19002 | 11/19/05 | 11/21/05 | NWTPH-Dx |       |
| Surrogate: 2-FBP Surrogate: Octacosane                   | The same   | 89.8 %<br>96.0 % | 50-150<br>50-150   |               |          | "       | n<br>n   | 91<br>11 | "        | 2000  |
| M-7-14 (B5K0301-13) Soil                                 | Sampled:   | 11/10/05 12:05   | 5 Received         | l: 11/11/05 ( | 9:30     |         |          |          |          |       |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | 9          | <b>324</b><br>ND | 11.1<br>27.9       | mg/kg dry     | 1        | 5K19002 | 11/19/05 | 11/21/05 | NWTPH-Dx |       |
| Surrogate: 2-FBP<br>Surrogate: Octacosane                |            | 89.1 %<br>95.8 % | 50-150<br>50-150   | -             |          | "       | n        | n<br>n   | "        |       |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported:

12/05/05 18:17

## Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

| g = 1000 = 1000          |                         | Reporting |              |          |             | 7,411       |              |           |                  |
|--------------------------|-------------------------|-----------|--------------|----------|-------------|-------------|--------------|-----------|------------------|
| Analyte                  | Result                  | Limit     | Units        | Dilution | Batch       | Prepared    | Analyzed     | Method    | Notes            |
| M-6-10 (B5K0301-04) Soil | Sampled: 11/10/05 08:00 | Received  | : 11/11/05 0 | 9:30     | Paring full | an and said | Sherozen (9) | Berthille | 112 12           |
| Lead                     | 4.10                    | 0.544     | mg/kg dry    | 1 8      | 5K16035     | 11/16/05    | 11/19/05     | EPA 6020  | SU CHOOSE STREET |
| M-9-14 (B5K0301-07) Soil | Sampled: 11/10/05 09:00 | Received  | : 11/11/05 0 | 9:30     |             |             |              |           |                  |
| Lead                     | 3.64                    | 0.597     | mg/kg dry    | 1        | 5K16035     | 11/16/05    | 11/19/05     | EPA 6020  |                  |

North Creek Analytical - Bothell

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. **Environmental Laboratory Network**



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 18:17

## Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

|             |                |              |               | Reporting   |             |                 |            |           |          |                 | 100     |
|-------------|----------------|--------------|---------------|-------------|-------------|-----------------|------------|-----------|----------|-----------------|---------|
| Analyte     | 2) FICAL       | Later        | Result        | Limit       | Units       | Dilution        | Batch      | Prepared  | Analyzed | Method          | Notes   |
| M-2-14 (B5  | K0301-01) Soil | Sampled: 11  | /08/05 15:10  | Received:   | 11/11/05    | 09:30           |            | 3.1       | 490      |                 | SHE'N   |
| Dry Weight  |                |              | 90.4          | 1.00        | %           | 1               | 5K22039    | 11/22/05  | 11/23/05 | BSOPSPL003R08   |         |
| M-4-10 (B5  | K0301-02) Soil | Sampled: 11  | /09/05 13:10  | Received:   | 11/11/05    | 09:30           | 1000       | 301 1 102 |          |                 | WARE IN |
| Dry Weight  | 100            |              | 91.2          | 1.00        | %           | 1               | 5K22039    | 11/22/05  | 11/23/05 | BSOPSPL003R08   |         |
| M-2-8 (B5K  | (0301-03) Soil | Sampled: 11/ | 08/05 15:15   | Received: 1 | 1/11/05 0   | 9:30            | ami II     |           |          |                 |         |
| Dry Weight  |                |              | 90.6          | 1.00        | %           | 1               | 5K22039    | 11/22/05  | 11/23/05 | BSOPSPL003R08   |         |
| M-6-10 (B5) | K0301-04) Soil | Sampled: 11  | /10/05 08:00  | Received:   | 11/11/05    | 09:30           | yezhoù kan |           |          | THE PART IN STA |         |
| Dry Weight  |                |              | 91.0          | 1.00        | %           | 1               | 5K22039    | 11/22/05  | 11/23/05 | BSOPSPL003R08   |         |
| M-3-8 (B5K  | (0301-05) Soil | Sampled: 11/ | 08/05 15:00   | Received: 1 | 1/11/05 0   | 9:30            |            |           |          |                 |         |
| Dry Weight  |                |              | 90.9          | 1.00        | %           | 1               | 5K22039    | 11/22/05  | 11/23/05 | BSOPSPL003R08   |         |
| M-10-14 (B  | 5K0301-06) Soi | l Sampled: 1 | 1/10/05 10:00 | Received    | l: 11/11/05 | 5 09:30         |            |           |          | R               |         |
| Dry Weight  |                |              | 85.5          | 1.00        | %           | <sub>53</sub> 1 | 5K14052    | 11/14/05  | 11/15/05 | BSOPSPL003R08   |         |
| M-9-14 (B5  | K0301-07) Soil | Sampled: 11  | /10/05 09:00  | Received:   | 11/11/05    | 09:30           |            |           |          |                 |         |
| Dry Weight  |                |              | 87.2          | 1.00        | %           | 1               | 5K22039    | 11/22/05  | 11/23/05 | BSOPSPL003R08   |         |
| M-1-14 (B5) | K0301-08) Soil | Sampled: 11  | /08/05 15:00  | Received:   | 11/11/05    | 09:30           |            |           |          |                 |         |
| Dry Weight  |                | 78           | 89.9          | 1.00        | %           | 1               | 5K22039    | 11/22/05  | 11/23/05 | BSOPSPL003R08   |         |
| M-5-8 (B5K  | (0301-09) Soil | Sampled: 11/ | 09/05 13:00   | Received: 1 | 1/11/05 0   | 9:30            |            |           |          |                 |         |
| Dry Weight  |                |              | 91.4          | 1.00        | %           | <b>1</b>        | 5K22039    | 11/22/05  | 11/23/05 | BSOPSPL003R08   |         |
|             |                |              |               |             |             |                 |            |           |          |                 |         |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported:

12/05/05 18:17

## Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

| Analyte                  | Result                  | Reporting<br>Limit | Units         | Dilution | Batch       | Prepared          | Analyzed | Method          | Notes       |
|--------------------------|-------------------------|--------------------|---------------|----------|-------------|-------------------|----------|-----------------|-------------|
| M-8-6 (B5K0301-10) Soil  | Sampled: 11/10/05 11:05 | Received:          | : 11/11/05 09 | 0:30     | social niis | 32. F MIT 889.2 F | ا ا      | a moreonalis va |             |
| Dry Weight               | 90.6                    | 1.00               | %             | 1        | 5K22039     | 11/22/05          | 11/23/05 | BSOPSPL003R08   | užurije Vid |
| M-7-8 (B5K0301-11) Soil  | Sampled: 11/10/05 12:00 | Received:          | 11/11/05 09   | :30      |             |                   |          |                 |             |
| Dry Weight               | 91.0                    | 1.00               | %             | 1        | 5K22039     | 11/22/05          | 11/23/05 | BSOPSPL003R08   |             |
| M-8-14 (B5K0301-12) Soil | Sampled: 11/10/05 11:00 | Received           | l: 11/11/05 0 | 9:30     |             | 2                 |          |                 |             |
| Dry Weight               | 90.8                    | 1.00               | %             | 1        | 5K22039     | 11/22/05          | 11/23/05 | BSOPSPL003R08   | 315 IV 15 0 |
| M-7-14 (B5K0301-13) Soil | Sampled: 11/10/05 12:05 | Received           | l: 11/11/05 0 | 9:30     |             |                   |          |                 |             |
| Dry Weight               | 88.8                    | 1.00               | %             | 1        | 5K22039     | 11/22/05          | 11/23/05 | BSOPSPL003R08   | time of yo  |

North Creek Analytical - Bothell

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 18:17

# Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

#### North Creek Analytical - Bothell

| Company of the Compan |          | 75-17   | Reporting |           | Spike     | Source    |          | %REC   |          | RPD       |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-----------|-----------|-----------|-----------|----------|--------|----------|-----------|----------------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Result  | Limit     | Units     | Level     | Result    | %REC     | Limits | RPD      | Limit     | Notes          |
| Batch 5K15033: Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/15/05 | Using 1 | EPA 5030E | В (МеОН)  | A - 14 13 |           |          |        | eka n    | Anjewi em | u w sutsi      |
| Blank (5K15033-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |         | MARIE     |           | N. S.     |           | LG-      |        | - 101    | on La     | Vierning-L. Vi |
| Gasoline Range Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W IS     | ND      | 5.00      | mg/kg     | H I I     |           | -9-4     |        |          | 11=5.00   | III Ing        |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | ND      | 0.0200    | 11        |           |           |          |        |          |           |                |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | ND      | 0.0500    | 14        |           |           | .2       |        |          |           |                |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | ND      | 0.0500    | и 193     |           |           |          |        |          |           |                |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ND      | 0.100     | #         |           |           |          |        |          |           |                |
| Surrogate: 4-BFB (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 2.41    | 200002    | "         | 3.00      |           | 80.3     | 50-150 | •**      |           |                |
| Surrogate: 4-BFB (PID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 2.70    |           | "         | 3.00      |           | 90.0     | 53-142 |          |           |                |
| LCS (5K15033-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |           |           |           |           |          |        |          |           |                |
| Gasoline Range Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bar.     | 49.4    | 5.00      | mg/kg     | 50.0      |           | 98.8     | 75-125 | ·· ·· ·· | AVEL II   |                |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0.660   | 0.0200    | н         | 0.565     |           | 117      | 75-125 |          |           |                |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 4.09    | 0.0500    | ir        | 4.22      |           | 96.9     | 75-125 |          |           |                |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0.888   | 0.0500    | Ħ         | 0.845     |           | 105      | 75-125 |          |           |                |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4.84    | 0.100     | н         | 4.92      |           | 98.4     | 75-125 |          | 330       |                |
| Surrogate: 4-BFB (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 2.17    |           | "         | 3.00      | Call Co   | 72.3     | 50-150 |          |           | 5/4            |
| Surrogate: 4-BFB (PID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 2.70    |           | "         | 3.00      |           | 90.0     | 53-142 |          |           |                |
| LCS Dup (5K15033-BSD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         |           |           |           |           |          |        |          |           |                |
| Gasoline Range Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 52.1    | 5.00      | mg/kg     | 50.0      |           | 104      | 75-125 | 5.32     | 25        | _ =    = -     |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0.531   | 0.0200    | "         | 0.565     |           | 94.0     | 75-125 | 21.7     | 25        |                |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 3.30    | 0.0500    | n         | 4.22      |           | 78.2     | 75-125 | 21.4     | 25        |                |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0.713   | 0.0500    | Ħ         | 0.845     |           | 84.4     | 75-125 | 21.9     | 25        |                |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3.89    | 0.100     |           | 4.92      |           | 79.1     | 75-125 | 21.8     | 25        |                |
| Surrogate: 4-BFB (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 2.93    |           | "         | 3.00      | 2011.11   | 97.7     | 50-150 | ****     |           | - A            |
| Surrogate: 4-BFB (PID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A DIGIT  | 2.75    |           | " "       | 3.00      |           | 91.7     | 53-142 |          |           |                |
| Matrix Spike (5K15033-MS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |           |           |           | Source: B | 5K0310-0 | 01     |          |           |                |
| Gasoline Range Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 55.6    | 5.11      | mg/kg dry | 51.1      | 1.31      | 106      | 42-125 |          |           | 1 - 2 - ili    |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0.595   | 0.0205    | #         | 0.578     | ND        | 103      | 45-125 |          |           |                |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 3.64    | 0.0511    | 11        | 4.32      | 0.0149    | 83.9     | 55-125 |          |           |                |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0.788   | 0.0511    | H         | 0.864     | 0.00736   | 90.4     | 53-123 |          |           |                |
| Kylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4.28    | 0.102     | n         | 5.03      | 0.0284    | 84.5     | 59-125 |          |           |                |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kato Dung

North Creek Analytical, Inc. Environmental Laboratory Network



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100

Project: BNSF-Wishram, WA

Project Number: 036026.02

Reported: 12/05/05 18:17

Federal Way, WA/USA 98001

Project Manager: Galen Davis

#### Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

#### North Creek Analytical - Bothell

| Analyte        |                   | Result  | Reporting<br>Limit | Units  | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------|-------------------|---------|--------------------|--------|----------------|------------------|------|----------------|-----|--------------|-------|
| Batch 5K15033: | Prepared 11/15/05 | Using 1 | EPA 5030B          | (MeOH) |                |                  |      |                |     |              |       |

| Matrix Spike (5K15033-MS1)      | - N   |        | (11)      | AM (6) | Source: B | 5K0310          | -01    | light factor |          | water Garage |
|---------------------------------|-------|--------|-----------|--------|-----------|-----------------|--------|--------------|----------|--------------|
| Surrogate: 4-BFB (FID)          | 2.79  |        | mg/kg dry | 3.07   |           | 90.9            | 50-150 |              |          | 23411        |
| Surrogate: 4-BFB (PID)          | 2.77  |        | n 1977    | 3.07   |           | 90.2            | 53-142 |              |          |              |
| Matrix Spike Dup (5K15033-MSD1) |       |        |           |        | Source: B | 5 <b>K</b> 0310 | -01    |              |          |              |
| Gasoline Range Hydrocarbons     | 61.8  | 5.11   | mg/kg dry | 51.1   | 1.31      | 118             | 42-125 | 10.6         | 40       |              |
| Benzene                         | 0.590 | 0.0205 | Ħ         | 0.578  | ND        | 102             | 45-125 | 0.844        | 40       |              |
| Toluene                         | 3.63  | 0.0511 | H.        | 4.32   | 0.0149    | 83.7            | 55-125 | 0.275        | 40       |              |
| Ethylbenzene                    | 0.795 | 0.0511 | n         | 0.864  | 0.00736   | 91.2            | 53-132 | 0.884        | 40       |              |
| Xylenes (total)                 | 4.31  | 0.102  | tr        | 5.03   | 0.0284    | 85.1            | 59-125 | 0.698        | 40       |              |
| Surrogate: 4-BFB (FID)          | 3.04  |        | n         | 3.07   |           | 99.0            | 50-150 |              | L God la |              |
| Surrogate: 4-BFB (PID)          | 2.76  |        | "         | 3.07   |           | 89.9            | 53-142 |              |          |              |

| Batch 5K16028: Prepared     | 11/16/05 | Using E | PA 5030B | (P/T) |       | GLOS.   |      |        |       |
|-----------------------------|----------|---------|----------|-------|-------|---------|------|--------|-------|
| Blank (5K16028-BLK1)        |          |         |          |       |       | 1,2     | - Ac |        | - 350 |
| Gasoline Range Hydrocarbons |          | ND      | 5.00     | mg/kg |       | =11     | 107  |        |       |
| Benzene                     |          | ND      | 0.0200   | #     |       |         |      |        |       |
| Toluene                     |          | ND      | 0.0500   | n n   |       |         |      | 6      |       |
| Ethylbenzene                |          | ND      | 0.0500   | 11    |       |         |      |        |       |
| Xylenes (total)             |          | ND      | 0.100    | н     |       |         |      |        |       |
| Surrogate: 4-BFB (FID)      |          | 2.54    |          | "     | 3.00  |         | 84.7 | 50-150 |       |
| Surrogate: 4-BFB (PID)      |          | 2.99    |          | "     | 3.00  |         | 99.7 | 53-142 |       |
| LCS (5K16028-BS1)           |          |         |          |       |       |         |      |        |       |
| Gasoline Range Hydrocarbons |          | 54.4    | 5.00     | mg/kg | 50.0  | 00/1 11 | 109  | 75-125 |       |
| Benzene                     |          | 0.627   | 0.0200   | es n  | 0.565 |         | 111  | 75-125 |       |
| Toluene                     |          | 3.85    | 0.0500   | No.   | 4.22  |         | 91.2 | 75-125 |       |
| Ethylbenzene                |          | 0.833   | 0.0500   | п     | 0.848 |         | 98.2 | 75-125 |       |
| Xylenes (total)             |          | 4.42    | 0.100    | n     | 4.92  |         | 89.8 | 75-125 |       |
| Surrogate: 4-BFB (FID)      |          | 3.13    |          | "     | 3.00  |         | 104  | 50-150 |       |
| Surrogate: 4-BFB (PID)      |          | 2.80    |          | "     | 3.00  |         | 93.3 | 53-142 |       |
|                             |          |         |          |       |       |         |      |        |       |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** 

Page 10 of 15



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

Project: BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project Number: 036026.02 Project Manager: Galen Davis Reported: 12/05/05 18:17

## Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

#### North Creek Analytical - Bothell

| I have                |                   |         | Reporting | Maria Article | Spike | Source    | 111     | %REC   |                                       | RPD       |             |
|-----------------------|-------------------|---------|-----------|---------------|-------|-----------|---------|--------|---------------------------------------|-----------|-------------|
| Analyte               |                   | Result  | Limit     | Units         | Level | Result    | %REC    | Limits | RPD                                   | Limit     | Notes       |
| Batch 5K16028:        | Prepared 11/16/05 | Using I | EPA 5030E | 3 (P/T)       | *     |           |         |        |                                       | 10 (0.32) | 11 -140     |
| LCS Dup (5K16028      | B-BSD1)           |         | 77.       |               | C Dep | щ         | 3134    |        |                                       | X 'Eq     |             |
| Gasoline Range Hydro  | carbons           | 51.4    | 5.00      | mg/kg         | 50.0  |           | 103     | 75-125 | 5.67                                  | 25        | #           |
| Benzene               |                   | 0.608   | 0.0200    | я п           | 0.565 |           | 108     | 75-125 | 3.08                                  | 25        | 1           |
| Toluene               |                   | 3.78    | 0.0500    | п             | 4.22  |           | 89.6    | 75-125 | 1.83                                  | 25        |             |
| Ethylbenzene          |                   | 0.812   | 0.0500    | n             | 0.848 |           | 95.8    | 75-125 | 2.55                                  | 25.       |             |
| Xylenes (total)       |                   | 4.32    | 0.100     | н —           | 4.92  |           | 87.8    | 75-125 | 2.29                                  | 25        |             |
| Surrogate: 4-BFB (FIL | ))                | 3.17    | _ 8       | "             | 3.00  |           | 106     | 50-150 |                                       |           |             |
| Surrogate: 4-BFB (PIL | ))                | 2.88    |           | . "           | 3.00  |           | 96.0    | 53-142 |                                       |           |             |
| Matrix Spike (5K1)    | 6028-MS1)         |         |           |               |       | Source: B | 5K0134- | 17     |                                       |           |             |
| Gasoline Range Hydrod | carbons           | 52.0    | 5.15      | mg/kg dry     | 51.5  | 0.969     | 99.1    | 42-125 |                                       |           |             |
| Benzene               |                   | 0.608   | 0.0206    | n             | 0.582 | ND        | 104     | 45-125 |                                       |           |             |
| Toluene               |                   | 3.76    | 0.0515    | n             | 4.35  | 0.0222    | 85.9    | 55-125 |                                       |           |             |
| Ethylbenzene          |                   | 0.806   | 0.0515    |               | 0.873 | 0.00989   | 91.2    | 53-132 |                                       |           |             |
| Xylenes (total)       |                   | 4.32    | 0.103     | Ħ             | 5.07  | 0.0384    | 84.4    | 59-125 |                                       |           |             |
| Surrogate: 4-BFB (FIL | )                 | 3.29    |           | - vi "        | 3.09  |           | 106     | 50-150 |                                       |           |             |
| Surrogate: 4-BFB (PIL | ))                | 2.97    |           | "             | 3.09  |           | 96.1    | 53-142 |                                       |           |             |
| Matrix Spike Dup (    | 5K16028-MSD1)     |         |           |               |       | Source: B | 5K0134- | 17     |                                       |           |             |
| Gasoline Range Hydrod | arbons            | 53.6    | 5.15      | mg/kg dry     | 51.5  | 0.969     | 102     | 42-125 | 3.03                                  | 40        | K           |
| Benzene               |                   | 0.616   | 0.0206    | н             | 0.582 | ND        | 106     | 45-125 | 1.31                                  | 40        |             |
| Toluene               |                   | 3.80    | 0.0515    | n             | 4.35  | 0.0222    | 86.8    | 55-125 | 1.06                                  | 40        |             |
| Ethylbenzene          |                   | 0.820   | 0.0515    | H             | 0.873 | 0.00989   | 92.8    | 53-132 | 1.72                                  | 40        | i.          |
| Xylenes (total)       |                   | 4.39    | 0.103     | n             | 5.07  | 0.0384    | 85.8    | 59-125 | 1.61                                  | 40        |             |
| Surrogate: 4-BFB (FID | )                 | 3.31    |           | "             | 3.09  | ш.        | 107     | 50-150 | · · · · · · · · · · · · · · · · · · · |           | <del></del> |
| Surrogate: 4-BFB (PID | )                 | 2.99    |           | n             | 3.09  |           | 96.8    | 53-142 |                                       |           |             |
| 1                     |                   |         |           |               |       |           |         |        |                                       |           |             |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 11 of 15



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported: 12/05/05 18:17

## Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

|                                  |         | Reporting | 600 60      | Spike     | Source    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %REC   |      | RPD        |          |
|----------------------------------|---------|-----------|-------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------------|----------|
| Analyte                          | Result  | Limit     | Units       | Level     | Result    | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limits | RPD  | Limit      | Notes    |
| Batch 5K19002: Prepared 11/19/05 | Using I | EPA 3550B |             | INI A     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |            |          |
| Blank (5K19002-BLK1)             |         |           |             | us (flya) | 4200      | THE SECTION AND ADDRESS OF THE PERSON AND AD | THE TO |      | i seile    | :3 5 6 7 |
| Diesel Range Hydrocarbons        | ND      | 10.0      | mg/kg       |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      | 10.02 0    | - 43.4   |
| Lube Oil Range Hydrocarbons      | ND      | 25.0      | н           | Con S     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |            |          |
| Surrogate: 2-FBP                 | 7.85    | 16        | "           | 8.33      | Efffr     | 94.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50-150 |      |            | Similar  |
| Surrogate: Octacosane            | 8.39    |           | <b>"</b> 10 | 8.33      |           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50-150 |      |            |          |
| LCS (5K19002-BS1)                |         |           |             |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |            |          |
| Diesel Range Hydrocarbons        | 68.1    | 10.0      | mg/kg       | 66.7      |           | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61-120 |      |            | (2),21   |
| Surrogate: 2-FBP                 | 7.78    |           | "           | 8.33      | 71-14-1   | 93.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50-150 |      |            |          |
| LCS Dup (5K19002-BSD1)           |         |           |             |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |            |          |
| Diesel Range Hydrocarbons        | 73.1    | 10.0      | mg/kg       | 66.7      |           | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61-120 | 7.08 | 40         |          |
| Surrogate: 2-FBP                 | 8.14    | - N       | n<br>IZ     | 8.33      |           | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50-150 |      | OI 1 15-11 | 312.0    |
| Duplicate (5K19002-DUP1)         |         |           |             |           | Source: E | 5K0404-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01     |      |            |          |
| Diesel Range Hydrocarbons        | 1050    | 120       | mg/kg dry   | - 1       | 452       | 91.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 79.6 | 50         | Q-0      |
| Lube Oil Range Hydrocarbons      | 57.7    | 299       | 100 11      |           | 26.9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      | 50         | lwwl -   |
| Surrogate: 2-FBP                 | 9.13    | -         | н           | 9.96      |           | 91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50-150 | -    |            | 3        |
| Surrogate: Octacosane            | 9.23    |           | rt          | 9.96      |           | 92.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50-150 |      |            |          |

North Creek Analytical - Bothell

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 18:17

#### Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

| 4                  |                   |         | Reporting |           | Spike  | Source    |        | %REC     |      | RPD             |             |
|--------------------|-------------------|---------|-----------|-----------|--------|-----------|--------|----------|------|-----------------|-------------|
| Analyte            |                   | Result  | Limit     | Units     | Level  | Result    | %REC   | Limits   | RPD  | Limit           | Notes       |
| Batch 5K16035:     | Prepared 11/16/05 | Using I | EPA 3050B |           | 153    | STEP OF   | m/s    | 31/39/11 |      | 1 3             | HIS.ET      |
| Blank (5K16035-B)  | LK1)              |         |           |           |        |           |        |          |      | 4. 11.          | W HORE      |
| Lead               |                   | ND      | 0.500     | mg/kg     | PE 116 | 11.       | 710.1  |          |      |                 |             |
| LCS (5K16035-BS1   | 1)                |         |           |           |        |           |        |          |      |                 |             |
| Lead               |                   | 37.4    | 0.500     | mg/kg     | 40.0   |           | 93.5   | 80-120   | 6    | i<br>Ny inj≢, I | ويعظران مكس |
| LCS Dup (5K16035   | 5-BSD1)           |         |           |           |        |           |        |          |      |                 |             |
| Lead               |                   | 38.5    | 0.495     | mg/kg     | 39.6   |           | 97.2   | 80-120   | 2.90 | 20              |             |
| Matrix Spike (5K1) | 6035-MS1)         |         |           |           |        | Source: B | 5K0301 | -04      |      |                 |             |
| Lead               |                   | 42.3    | 0.555     | mg/kg dry | 44.4   | 4.10      | 86.0   | 29-166   |      |                 |             |
| Matrix Spike Dup ( | 5K16035-MSD1)     |         |           |           |        | Source: B | 5K0301 | -04      |      |                 |             |
| Lead               |                   | 46.1    | 0.544     | mg/kg dry | 43.5   | 4.10      | 96.6   | 29-166   | 8.60 | 40              |             |
| Post Spike (5K1603 | 5-PS1)            |         |           |           |        | Source: B | 5K0301 | -04      |      |                 |             |
| Lead               |                   | 0.103   | 2         | ug/ml     | 0.100  | 0.00754   | 95.5   | 75-125   |      |                 |             |
|                    |                   |         |           |           |        |           |        |          |      |                 |             |

North Creek Analytical - Bothell

Kate Haney, Project Manager

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 18:17

### Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

| Analyte           | ill.e             | Result   | Reporting<br>Limit | Units | 4714    | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits                        | RPD    | RPD<br>Limit | Notes       |
|-------------------|-------------------|----------|--------------------|-------|---------|----------------|------------------|---------|---------------------------------------|--------|--------------|-------------|
| Batch 5K14052:    | Prepared 11/14/05 | Using Dr | y Weight           | ***** | 70,000  | A A A          | MF X TO          | - Driet | 2)\27\15                              | em com | 112.55       | WEREN       |
| Blank (5K14052-B) | LK1)              |          |                    |       |         |                |                  |         |                                       |        | 11 BL-25 V   | Horse Stell |
| Dry Weight        |                   | 100      | 1.00               | %     | - Pari  | r 24°          |                  | (D)     | * 181                                 |        |              | 1969        |
| Batch 5K22039:    | Prepared 11/22/05 | Using Dr | y Weight           |       |         |                |                  |         |                                       |        |              | - 1.0% 2Q   |
| Blank (5K22039-B) | LK1)              | u love   | D.G.               | j.    | rights. | in the         | 470              | 500     | · · · · · · · · · · · · · · · · · · · | 1-1    |              | × 780       |
| Dry Weight        |                   | 100      | 1.00               | %     | IA.     |                |                  |         |                                       | 165    | 10/12/2      |             |
|                   | 7811 11211002     |          |                    |       |         |                |                  |         |                                       |        |              |             |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. **Environmental Laboratory Network**



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 18:17

#### **Notes and Definitions**

D-06 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

G-01 Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons.

Q-07 The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does

not represent an out-of-control condition for the batch.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 11922 E 1st Ave, Spokane, WA 99206-5302
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 20332 Empire Ave, Ste F1, Bend, OR 97701-5712
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

FAX 420-9210 FAX 924-9290 FAX 906-9210 FAX 382-7388 FAX 563-9210

425-420-9200 509-924-9200 503-906-9200 541-383-9310 907-563-9200

|                               | ט                  | CHAIN OF CUST            | COSI                              | Q                    | ODY REPORT   | RT                 |                                 |              |                   | Work Order #:       | 65               | 6540301                                     |                |
|-------------------------------|--------------------|--------------------------|-----------------------------------|----------------------|--------------|--------------------|---------------------------------|--------------|-------------------|---------------------|------------------|---------------------------------------------|----------------|
| REPORT TO: Golden Dewy        | 18 4               | Kennedy Tenks Consulkuts | Su lkut                           |                      | INVOICE TO   | F- BRU             | NOICETO:<br>BNSF-BRUCE Sheppuel | -8           | s ultic           |                     | TURNARC<br>in Bu | TURNAROUND REQUEST<br>in Business Days      | н 1            |
| Felen way,                    |                    | \$ \$ \frac{1}{2}        | 5                                 |                      |              |                    | -                               |              | u eT              |                     | rganic & In      | Organic & Inorganic Analyses                | -              |
| PHONE (253) 974-0555          | FAX:               |                          |                                   |                      | P.O. NUMBER: | R. See             | Jork                            | order        | Tim               |                     | Stroleum H.      | ocarbon A                                   | ]              |
| PROJECT NAME: BNSF - WISHRAM  | wighrem            |                          | -                                 | -                    |              | PRESERVATIVE       | ATIVE                           | -            |                   | <b>5</b> 2          | •                | -                                           | ₹              |
| PROJECT NUMBER: 036026.62     | 20.9               |                          | Ch                                |                      |              |                    |                                 |              |                   | E                   |                  |                                             | 1              |
| 7 7 8                         |                    |                          | de                                |                      |              | REQUESTED ANALYSES | NALYSES                         |              |                   | ت                   | OTRER            | Specify:                                    |                |
| SAMPLED BY: MULLA C.          | omi                |                          | P                                 | 010                  |              |                    |                                 |              |                   | ·                   | ,                | o flow condition large houre flood Charges. |                |
| CLIENT SAMPLE IDENTIFICATION  | SAMPLING DATE/TIME |                          | Rtwa<br>Iscièle<br>Intrua<br>X9TB | X318<br>6 A43<br>604 | e von        |                    |                                 |              |                   | MATRIX<br>(W, S, O) | # OF<br>CONT.    | LOCATION / COMMENTS                         | NCA<br>WO ID   |
| 41-2-W                        | 11 8 105           | 0151                     | X                                 |                      |              |                    |                                 | D D          | ing a co          | S                   | _                |                                             | 0/             |
| 01-H-W 2                      | 20/ 10/11          | 1310                     | ×                                 |                      |              |                    |                                 | - 12         |                   | 5                   |                  |                                             | B              |
| 8-2-W E                       | b) 8 los           | 1515                     | X                                 |                      |              |                    |                                 |              | men.              | S                   |                  |                                             | $\mathcal{B}$  |
| 4 M-6-10                      | 20/01/11           | 0 800                    | X                                 | X                    |              |                    |                                 |              |                   | 2                   |                  | ш                                           | 40             |
| 5 M-3-8                       | 11/4/05            | 1500                     | X                                 |                      |              |                    |                                 |              |                   | 8                   | 12.,             |                                             | 05             |
| 6 M-10-14                     | Soforfu            | 1000                     | ×                                 |                      |              |                    |                                 | 217/002      |                   | 8                   | N                |                                             | 00             |
| 7 M-9-14                      | 1/10/05            | 0060                     | ×                                 | X                    |              |                    |                                 | ufff23       |                   | Ŋ                   | M                | -                                           | 20             |
| 4-1-14                        | 50/8/11            | 1500                     | X                                 |                      |              |                    |                                 | Čillarii.    |                   | 5                   |                  | den                                         | 000            |
| 8-5-We                        | 11/9/05            | 1300                     | X                                 |                      |              |                    | ш                               | eror fo      |                   | 5                   |                  |                                             | 60             |
| 10 M-8-6                      | 11/10/05           | 1105                     | X                                 |                      |              |                    |                                 | arks         | e d'us            | 7                   | _                |                                             | 10/            |
| RELEASED BY: Hollin C. Borrie | Davie              |                          |                                   |                      | DATE: 11)    | 11/10/05           | RECEIVED BY:                    | Jon /        | 1/2               | X                   | 0                | DATE: 1                                     | DATE: 11/11/05 |
| PRINT NAME: Galley DOWIS      | Suni 5             | FIRM: RJ                 |                                   |                      | TIME: 15     | 1500               | PRINT NAME:                     | Bas          | Bankinskip        | J. I                | FIRM: NCA        | 4 TIME: 0930                                | 28             |
| RELEASED BY:                  |                    |                          |                                   |                      | DATE:        |                    | RECEIVED BY:                    | ere<br>ov li | riegi<br>National | (g 11               |                  | DATE                                        | 1              |
| PRINT NAME:                   |                    | FIRM:                    |                                   |                      | TIME:        |                    | PRINT NAME:                     |              |                   | HRM:                | M:               | TIME:                                       | . **           |
| ADDITIONAL REMARKS:           | Ø.                 |                          |                                   |                      |              | * *                |                                 | -            |                   |                     | - 3              |                                             |                |
| COC REV 09/04                 |                    |                          |                                   |                      |              |                    |                                 |              |                   |                     | 20               | T,T PAGE                                    | E OF           |



FAX 420-9210 FAX 924-9290 FAX 906-9210 FAX 382-7588 FAX 563-9210 425-420-9200 509-924-9200 503-906-9200 541-383-9310 907-563-9200 11720 North Creek Phwy N Suite 400, Bothell, WA 98011-8244
 11922 E 1st Ave, Spokane, WA 99206-5302
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 20332 Empire Ave, Ste Ft, Bend, OR 97701-5712
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

CHAIN OF CUSTODY REPORT

| CHAINO                                            | CHAIN OF CUSTODY REPORT             | REPORT             |                         | Work Order #:                                      |                         |
|---------------------------------------------------|-------------------------------------|--------------------|-------------------------|----------------------------------------------------|-------------------------|
| NCA CLIENT: BASF KJ                               |                                     | INVOICE TO:        |                         | TURNAROUND REQUEST                                 | QUEST                   |
| REPORT TO: Galen Dewn's Kennely Jenks<br>ADDRESS: | Consultants                         | BNSF-BAR           | BNSF-BARE Ship Royal    | ha Bustness Days e<br>Oresnic & Indresnic Analyses | a dania                 |
|                                                   |                                     |                    |                         |                                                    |                         |
| - 1                                               |                                     | P.O. NUMBER: See   | See Work ORDER          | <b>. 5</b>                                         | ĺ                       |
| PROJECT NAME: BUSF - WISHOW                       |                                     | PRESERV/           | TIVE                    |                                                    | ▽<br>-                  |
| PROJECT NUMBER: 0.36.026.02                       | 3v                                  |                    |                         | E.                                                 |                         |
|                                                   | إبرا                                | REQUESTED ANALYSES | NALYSES                 | OTHER Specify:                                     |                         |
| SAMPLED BY: Hallen Orcus                          | 2)-<br>2)-<br>0-                    |                    |                         | * Temperand Anguests has then stendard may a       | have first Charge.      |
| CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME   | NGTPU<br>12 12 [w<br>13 TB<br>X3 TB | 3                  |                         | MATRIX # OF LOCATION / (W, S, O) CONT. COMMENTS    | TON / NCA<br>ENTS WO ID |
| 1 M-7-8 11/1965 1200                              | ×                                   |                    |                         | 2                                                  | 11                      |
| 2 M-8-14 11/10/05 1100                            | X                                   |                    |                         | <i>N</i>                                           | ×                       |
| 3 M-7-14 11/10/05 1205                            | X                                   |                    |                         | ر<br>ا                                             | (3                      |
| 4 TRIP Black                                      | X                                   |                    |                         | mekan 1                                            | 14                      |
| \$                                                |                                     |                    |                         |                                                    |                         |
| 9                                                 |                                     |                    |                         |                                                    |                         |
| 7                                                 |                                     |                    |                         |                                                    |                         |
|                                                   |                                     |                    |                         |                                                    |                         |
| 6                                                 |                                     |                    |                         |                                                    |                         |
| 10                                                |                                     |                    |                         |                                                    |                         |
| RELEASED BY: Jallan C. Buni                       |                                     | DATE: 11/10/05     | RECEIVED BY: / on       | Jank Co o                                          | DATE: 11/11/05          |
| PRINT NAME: Galen Day 3 FIRM: KJC                 | ر<br>۲                              | TIME: 1500         | PRINT NAME: Blankinship | FIRM: NCA                                          | TIME: 0930              |
|                                                   |                                     | рате:              | RECEIVED BY:            |                                                    | DATE:                   |
| PRINT NAME: FIRM:                                 |                                     | TIME:              | PRINT NAME:             | FIRM:                                              | TDME:                   |
| ADDITIONAL REMARKS:                               | le o                                |                    |                         | ACA CAN                                            | 7 , 7                   |
| COC REV 09/04                                     |                                     |                    |                         | , L / / / /                                        | PAGE OF                 |



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 **Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

#### **CASE NARRATIVE for B5J0645**

Client: Kennedy/Jenks Consultants Project Manager: Galen Davis Project Name: BNSF – Wishram Project Number: 036026.02

#### 1.0 DESCRIPTION OF CASE

Five soil samples and one trip blank were submitted for analysis of:

- Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B
- Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up
- Total Metals by EPA 6000/7000 Series Methods
- Polychlorinated Biphenyls by EPA Method 8082
- Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

#### 2.0 COMMENTS ON SAMPLE RECEIPT

The samples were received October 29<sup>th</sup>, 2005 by North Creek Analytical Bothell. The temperature of the samples at the time of receipt was 4.7 degrees Celsius. There was no date/time on the label or COC for the trip blank. The sample was logged in with a sampled date/time of 10/26/05 1200. For the trip blank, NWTPH-G/BTEX analysis was requested, however the sample was received in a 5035 prepared VOA vial and the sample was analyzed for VOCs.

#### 3.0 PREPARATIONS AND ANALYSIS

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

#### Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of this report.

#### Total Metals by EPA 6000/7000 Series Methods

No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

#### Polychlorinated Biphenyls by EPA Method 8082

No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

RECEIVED

DEC -8 2005

K/J Ro/File\_\_\_\_

North Creek Analytical, Inc. Environmental Laboratory Network Page 1 of 2



425.420.9200 fax 425.420.9210

11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of this report.

Kate Haney Project Manager North Creek Analytical



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

05 December 2005

Galen Davis Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

to Shung

RE: BNSF-Wishram, WA

Enclosed are the results of analyses for samples received by the laboratory on 10/29/05 08:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kate Hanev

**Project Manager** 



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100

Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported: 12/05/05 17:58

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID  | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|------------|---------------|--------|----------------|----------------|
| FIEXC-W-10 | B5J0645-01    | Soil   | 10/27/05 08:00 | 10/29/05 08:50 |
| FIEXC-S-10 | B5J0645-02    | Soil   | 10/27/05 09:00 | 10/29/05 08:50 |
| FIEXC-N-8  | B5J0645-03    | Soil   | 10/27/05 08:30 | 10/29/05 08:50 |
| FI-EAST-6  | B5J0645-04    | Soil   | 10/26/05 16:20 | 10/29/05 08:50 |
| FI-MID-10  | B5J0645-05    | Soil   | 10/26/05 16:00 | 10/29/05 08:50 |
| TRIP BLANK | B5J0645-06    | Soil   | 10/26/05 12:00 | 10/29/05 08:50 |

North Creek Analytical - Bothell

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100

Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

## Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

| Analyte              | 15.11(d)     | form       | Result      | Reporting<br>Limit | Units        | Dilution   | Batch   | Prepared     | Analyzed | Method                                  | Notes    |
|----------------------|--------------|------------|-------------|--------------------|--------------|------------|---------|--------------|----------|-----------------------------------------|----------|
| FIEXC-W-10 (B5       | J0645-01) S  | oil Sampl  | ed: 10/27/0 | 5 08:00 Re         | ceived: 10/2 | 9/05 08:50 | Barry 1 | The state of | g (41 L  |                                         | weight.  |
| Gasoline Range Hydi  | rocarbons    |            | ND          | 6.77               | mg/kg dry    | g lps 1 =  | 5K02031 | 11/02/05     | 11/02/05 | NWTPH-Gx/8021B                          |          |
| Benzene              |              |            | ND          | 0.0271             | "            | 11         | **      | tr .         | "        | n                                       |          |
| Toluene              |              |            | ND          | 0.0677             | 11           | - 11       | н       |              | **       |                                         |          |
| Ethylbenzene         |              |            | ND          | 0.0677             |              |            | n l     | **           | н        | m                                       |          |
| Xylenes (total)      |              |            | ND          | 0.135              |              | n          |         |              |          | n                                       |          |
| Surrogate: 4-BFB (F. | ID)          |            | 88.7 %      | 50-150             |              |            | n       | "            | "        | "                                       |          |
| Surrogate: 4-BFB (P. | ID)          |            | 101 %       | 53-142             |              |            | n       | "            | n        | "                                       |          |
| FIEXC-S-10 (B5J      | 0645-02) So  | il Sampleo | l: 10/27/05 | 09:00 Rec          | eived: 10/29 | /05 08:50  |         |              |          |                                         |          |
| Gasoline Range Hydr  | ocarbons     |            | ND          | 6.13               | mg/kg dry    | 1          | 5K02031 | 11/02/05     | 11/02/05 | NWTPH-Gx/8021B                          | 11 4 11  |
| Benzene              |              |            | ND          | 0.0245             | "            | "          | H       | 11,02,05     | 11/02/03 | n                                       |          |
| Toluene              |              |            | ND          | 0.0613             | н            | 2011 22577 | **      |              |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |
| Ethylbenzene         |              |            | ND          | 0.0613             | **           |            | **      | 11           | 11       | m and a second                          |          |
| Xylenes (total)      |              |            | ND          | 0.123              | н            | "          | R       | **           | н —      | -224                                    |          |
| Surrogate: 4-BFB (FI | (D)          |            | 89.1 %      | 50-150             |              |            | "       | "            | "        | ,,                                      |          |
| Surrogate: 4-BFB (P) | (D)          |            | 104 %       | 53-142             |              |            | *       | "            | "        | "                                       |          |
| FIEXC-N-8 (B5J0      | 645-03) Soil | Sampled    | 10/27/05    | 08:30 Recei        | ved: 10/29/0 | 05 08:50   |         |              |          |                                         |          |
| Gasoline Range Hydro | ocarbons     |            | ND          | 6.16               | mg/kg dry    | 1          | 5K02031 | 11/02/05     | 11/02/05 | NWTPH-Gx/8021B                          |          |
| Benzene              |              |            | ND          | 0.0246             | "            | **         | **      | 11           | H        | H                                       |          |
| Toluene              |              |            | ND          | 0.0616             | 11           | tt         | 7 11 02 | 8            | **       |                                         |          |
| Ethylbenzene         |              |            | ND          | 0.0616             | 11           | н          | "       | **           | н        | н — =                                   |          |
| Kylenes (total)      |              |            | ND          | 0.123              |              |            | H178    | H 113        | Jahren   | west a chix o                           |          |
| Surrogate: 4-BFB (FI | D)           |            | 88.6 %      | 50-150             |              |            | n       | "            | "        | "                                       | - GE., E |
| Surrogate: 4-BFB (Pl | D)           |            | 105 %       | 53-142             |              |            |         | ,,           | "        | "                                       |          |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** 

Page 2 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02
Project Manager: Galen Davis

Reported: 12/05/05 17:58

## Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte                        | Result             | Reporting<br>Limit | Units         | Dilution   | Batch                                   | Prepared | Analyzed | Method      | Note       |
|--------------------------------|--------------------|--------------------|---------------|------------|-----------------------------------------|----------|----------|-------------|------------|
| FIEXC-W-10 (B5J0645-01) Soil   | Sampled: 10/27/0   | 5 08:00 Re         | ceived: 10/2  | 9/05 08:50 | (A) (I) (1)                             | 12.00    |          | 171,221,311 |            |
| Diesel Range Hydrocarbons      | ND                 | 10.5               | mg/kg dry     | 1 1        | 5J31090                                 | 11/01/05 | 11/03/05 | NWTPH-Dx    | 22100 5221 |
| Lube Oil Range Hydrocarbons    | ND                 | 26.3               | "             | "          | u u                                     | 11       | #        | 11          |            |
| Surrogate: 2-FBP               | 95.3 %             | 50-150             |               |            | outill ,                                | "        | ,,       | "           |            |
| Surrogate: Octacosane          | 109 %              | 50-150             |               |            | H H                                     | ,,       | "        | "           | ,          |
| FIEXC-S-10 (B5J0645-02) Soil   | Sampled: 10/27/05  | 09:00 Rec          | eived: 10/29/ | 05 08:50   |                                         |          |          |             |            |
| Diesel Range Hydrocarbons      | 52.5               | 21.9               | mg/kg dry     | 2          | 5J31090                                 | 11/01/05 | 11/03/05 | NWTPH-Dx    | D-06       |
| Lube Oil Range Hydrocarbons    | 493                | 54.7               | "             | **         | 11                                      | **       | 11       | 11          | 200        |
| Surrogate: 2-FBP               | 94.5 %             | 50-150             | Paylow, 1     | II heiger  | n                                       | n        | n        |             |            |
| Surrogate: Octacosane          | 96.1 %             | 50-150             |               |            | n                                       | "        | n        | "           |            |
| FIEXC-N-8 (B5J0645-03) Soil S  | ampled: 10/27/05 ( | 8:30 Recei         | ived: 10/29/( | 05 08:50   |                                         |          |          |             |            |
| Diesel Range Hydrocarbons      | 853                | 108                | mg/kg dry     | 10         | 5J31090                                 | 11/01/05 | 11/03/05 | NWTPH-Dx    | D-15       |
| Lube Oil Range Hydrocarbons    | 3390               | 269                | 11            | **         | n                                       | 11       | 11       | 11          | D-15       |
| Surrogate: 2-FBP               | ND                 | 50-150             |               |            | "                                       | n        | n        | n           | S-01       |
| Surrogate: Octacosane          | ND                 | 50-150             |               |            | "                                       | "        | "        | "           | S-01       |
| FI-EAST-6 (B5J0645-04) Soil Sa | mpled: 10/26/05 1  | 6:20 Receiv        | ved: 10/29/0  | 5 08:50    |                                         |          |          |             |            |
| Diesel Range Hydrocarbons      | 152                | 10.7               | mg/kg dry     | 1          | 5J31090                                 | 11/01/05 | 11/03/05 | NWTPH-Dx    | D-06       |
| Lube Oil Range Hydrocarbons    | ND                 | 26.8               | "             | 11         | н                                       | **       | #        | H           | D 00       |
| Surrogate: 2-FBP               | 91.6%              | 50-150             |               |            | "                                       | "        | "        | п           |            |
| Surrogate: Octacosane          | 113 %              | 50-150             |               | 350        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 77       | "        | "           |            |
| FI-MID-10 (B5J0645-05) Soil Sa | mpled: 10/26/05 1  | 6:00 Receiv        | ved: 10/29/0  | 5 08:50    |                                         |          |          |             |            |
| Diesel Range Hydrocarbons      | ND                 | 10.9               | mg/kg dry     | 1          | 5J31090                                 | 11/01/05 | 11/03/05 | NWTPH-Dx    | V=_ 11 =11 |
| Lube Oil Range Hydrocarbons    | ND                 | 27.4               | "             | - 11       |                                         | н        | 11       | H           |            |
| Surrogate: 2-FBP               | 102 %              | 50-150             |               |            | n                                       | "        | "        | "           |            |
| Surrogate: Octacosane          | 114 %              | 50-150             |               |            | **                                      | "        | "        | ,,          |            |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 17:58

#### Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

| Analyte                      |      | Result      | Reporting<br>Limit | Units        | Dilution   | Batch   | Prepared  | Analyzed | Method   | Notes   |
|------------------------------|------|-------------|--------------------|--------------|------------|---------|-----------|----------|----------|---------|
| FIEXC-W-10 (B5J0645-01) Soil | Samp | ed: 10/27/0 | 5 08:00 Re         | ceived: 10/2 | 9/05 08:50 | 1 1136  | Wing Mark |          |          | 5.34.31 |
| Lead                         | 50 P | 2.74        | 0.518              | mg/kg dry    | gawit1     | 5K04071 | 11/04/05  | 11/07/05 | EPA 6020 |         |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 4 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02
Project Manager: Galen Davis

**Reported:** 12/05/05 17:58

## Polychlorinated Biphenyls by EPA Method 8082 North Creek Analytical - Bothell

| Analyte                       | Result            | Reporting<br>Limit | Units       | Dilution  | Batch     | Prepared  | Analyzed  | Method        | Notes     |
|-------------------------------|-------------------|--------------------|-------------|-----------|-----------|-----------|-----------|---------------|-----------|
| FIEXC-N-8 (B5J0645-03) Soil   | Sampled: 10/27/05 | 08:30 Rece         | ived: 10/29 | /05 08:50 | E World B | ACS-MEDIC | novež tav | decimal de la | aliz seon |
| Aroclor 1016                  | ND                | 27.3               | ug/kg dry   | various I | 5K04050   | 11/04/05  | 11/07/05  | EPA 8082      | Sec.      |
| Aroclor 1221                  | ND                | 54.6               | "           | II.       | 11        | 11.04.05  | "         | EFA 6062      |           |
| Aroclor 1232                  | ND                | 27.3               | 11          |           | 11        | n         | **        |               |           |
| Aroclor 1242                  | ND                | 27.3               | 11          | п         | н         |           |           | "             |           |
| Aroclor 1248                  | ND                | 27.3               | 11          |           |           |           |           |               | •         |
| Aroclor 1254                  | ND                | 27.3               | **          | н         | "         | "         | "         | н             |           |
| Aroclor 1260                  | ND                | 27.3               | **          |           | **        |           | **        | R             |           |
| Aroclor 1262                  | ND                | 27.3               | 11          | " "       | " "       | **        | . "       | n             |           |
| Aroclor 1268                  | ND                | 27.3               | 11          | ,,        | "         | **        | "         | n             |           |
| Surrogate: TCX                | 73.1 %            | 39-139             | 70          |           | "         |           |           | n             |           |
| Surrogate: Decachlorobiphenyl | 69.2 %            | 33-163             |             |           | "         | "         | "         | "             |           |

North Creek Analytical - Bothell

Kate Haney, Project Manager

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 5 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

Project: BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

#### Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

| Analyte                      |                         | orting<br>Limit | Units         | Dilution | Batch   | Prepared  | Analyzed    | Method    | Notes            |
|------------------------------|-------------------------|-----------------|---------------|----------|---------|-----------|-------------|-----------|------------------|
| FIEXC-S-10 (B5J0645-02) Soil | Sampled: 10/27/05 09:00 | Rec             | eived: 10/29/ | 05 08:50 | 0100111 | or Miller | story 1 100 |           | A-02             |
| Acetone                      | ND                      | 30.6            | ug/kg dry     | goreo I  | 5K09038 | 11/09/05  | 11/09/05    | EPA 8260B | III EQUINITIES S |
| Benzene                      | ND                      | 1.53            | 17            | n H      | "       | 11        | er          | н         |                  |
| Bromobenzene                 | ND                      | 5.10            | **            | Ħ        | **      | 11        | **          | and and   |                  |
| Bromochloromethane           | ND                      | 5.10            | n             | 11       | n       | 11        | **          | 17        |                  |
| Bromodichloromethane         | ND                      | 5.10            | n             | **       | н       | **        | 91          | n         |                  |
| Bromoform                    | ND                      | 5.10            | **            | 11       | n       | **        | ***         | н         |                  |
| Bromomethane                 | ND                      | 10.2            | **            | Ħ        | n       | 11        | **          | Ħ         |                  |
| 2-Butanone                   | ND                      | 15.3            | н             | 11       | Ħ       | 11        | **          | n         |                  |
| n-Butylbenzene               | ND                      | 5.10            | н             | **       | n       | 11        | 11          | 77        |                  |
| sec-Butylbenzene             | ND                      | 5.10            | tt tt         | **       | ***     | 11        | 11          | Ħ         |                  |
| tert-Butylbenzene            | ND                      | 5.10            | **            | **       | **      | М н       | 11          | π         |                  |
| Carbon disulfide             | ND                      | 3.06            | e             | # =      | 97      | 11        | 11          | **        |                  |
| Carbon tetrachloride         | ND                      | 5.10            | · ·           | н        |         | н         | 11          | Ħ         |                  |
| Chlorobenzene                | ND                      | 2.04            | **            | n        | **      | n         | 11          | **        |                  |
| Chloroethane                 | ND                      | 5.10            | **            | **       | "       | 11        | н           | II.       |                  |
| Chloroform                   | ND                      | 2.55            | "             | 8        | 11      | 11        | H           | n         |                  |
| Chloromethane                | ND                      | 10.2            |               | н        | **      | 11        | **          | n         |                  |
| 2-Chlorotoluene              | ND                      | 5.10            | **            | **       | "       | 11        | 11          | 11        |                  |
| 4-Chlorotoluene              | ND                      | 5.10            | н             | **       | **      | 21        | 11          | n         |                  |
| Dibromochloromethane         | ND                      | 5.10            | н             | H S      | "       | Ħ         | tt          | 17        |                  |
| 1,2-Dibromo-3-chloropropane  | ND                      | 10.2            | n             | 200      | **      | н         | ***         | n         |                  |
| 1,2-Dibromoethane (EDB)      | ND                      | 5.10            | **            | n        | \$1     | #         | **          | **        |                  |
| Dibromomethane               | ND                      | 5.10            | **            | **       | 11      | **        | **          | 11        |                  |
| 1,2-Dichlorobenzene          | ND                      | 5.10            | 11            | н        | 11      | 11        | **          | **        |                  |
| 1,3-Dichlorobenzene          | ND                      | 5.10            | 11            | **       | 11      | 11        | 11          | **        |                  |
| 1,4-Dichlorobenzene          | ND                      | 5.10            | н             | **       | n       | 11        |             | n         |                  |
| Dichlorodifluoromethane      | ND                      | 5.10            | **            | H.       | Ħ       | **        | Ħ           | Ħ         |                  |
| 1,1-Dichloroethane           | ND                      | 2.04            | 11            | "        | - 11    | 11        | **          | Ħ         |                  |
| 1,2-Dichloroethane           | ND                      | 1.28            | **            | "        | 11      | **        | "           |           |                  |
| 1,1-Dichloroethene           | ND                      | 3.06            | н             | - 11     | 0.5 H   | 11        | ıı          | H         |                  |
| cis-1,2-Dichloroethene       | ND                      | 3.06            | u             | **       | n ·     | - 11      | n           | n         |                  |
| trans-1,2-Dichloroethene     | ND                      | 2.55            | n             |          | **      | н         | Ħ           | 11        |                  |
| 1,2-Dichloropropane          | ND                      | 5.10            | **            | "        | **      | **        | **          | n         |                  |
| 1,3-Dichloropropane          | ND                      | 5.10            | **            | "        | 11      | **        | 11          | **        |                  |
| 2,2-Dichloropropane          | ND                      | 10.2            | 11            | "        | 11      | **        | **          | 11        |                  |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

**Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported:

12/05/05 17:58

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

| PIEXC S-10 (B530645-02) Soil   Sampled: 10/27/05 09:00   Received: 10/29/05 08:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyte                      | Result           | Reporting<br>Limit | Units                  | Dilution   | Batch      | Prepared   | Analyzed     | Method                                 | Note          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|--------------------|------------------------|------------|------------|------------|--------------|----------------------------------------|---------------|
| 1,1-Dichloropropene ND 5.10 ug/kg dry 1 5K09038 11/09/05 11/09/05 "cis-1,3-Dichloropropene ND 5.10 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FIEXC-S-10 (B5J0645-02) Soil | Sampled: 10/27/0 | 5 09:00 Rec        | eived: 10/29           | 0/05 08:50 | a suesto s | enilăre a  | Waring No. 1 |                                        | - A-02        |
| Description      | 1,1-Dichloropropene          |                  |                    | Tarrett of the control |            | 5K09038    | 11/09/05   | 11/00/05     |                                        | A-0.          |
| Ethylbenzene ND 4.08 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | ND               | 5.10               |                        |            |            |            |              |                                        |               |
| Hexachlorobutadiene   ND   5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trans-1,3-Dichloropropene    | ND               | 1.28               | **                     | н          |            | <b>= 1</b> | **           | **                                     |               |
| Methyl tert-butyl ether ND 1.02 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ethylbenzene                 | ND               | 4.08               | **                     | tr .       | н          |            | 11           | ,                                      | 14 7 AC 14 AC |
| 2-Hexanone ND 20.4 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hexachlorobutadiene          | ND               | 5.10               | **                     | "          | ti         | **         | **           | **                                     | A - 0.1       |
| 2-Hexanone ND 20.4 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methyl tert-butyl ether      | ND               | 1.02               | "                      |            | 11         | 11         | 11           |                                        | A-01          |
| p-Isopropyltoluene  ND 5.10 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-Hexanone                   | ND               | 20.4               |                        |            |            | . 0        |              |                                        |               |
| p-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sopropylbenzene              | ND               | 5.10               | **                     | n          | н          |            | "            | **                                     |               |
| 4-Methyl-2-pentanone Methylene chloride ND 3.57 Nphthalene ND 5.10 ND 5.10 ND 1.02 ND 1.02 ND 1.2,3-Trichlorobenzene ND 1.2,4-Trichlorobenzene ND 5.10 ND 5.10 ND 1.1,1,2-Tetrachloroethane ND 5.10 ND 1.1,1,2-Tetrachloroethane ND 5.10 ND 1.1,2,2-Trichloroethane ND 5.10 ND 1.1,2,2-Trichloroethane ND 5.10 ND 1.1,2,2-Trichloroethane ND 5.10 ND 1.53 ND 1.55 ND 1.51 ND 1.52 ND 1.53 ND 1.53 ND 1.54 ND 1.55 ND 1.55 ND 1.55 ND 1.51 ND 1.52 ND 1.51 ND 1.51 ND 1.52 ND 1.51 ND 1 | o-Isopropyltoluene           | ND               | 5.10               | ŧŧ                     |            | **         | **         |              |                                        |               |
| Methylene chloride         ND         3.57         """"""""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l-Methyl-2-pentanone         | ND               | 20.4               | n                      | 11         | 11         | #          |              |                                        |               |
| Naphthalene ND 5.10 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Methylene chloride           | ND               | 3.57               |                        | 11         | **         |            |              |                                        |               |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vaphthalene                  | ND               | 5.10               | н                      |            | **         | **         |              |                                        |               |
| 1,2,3-Trichlorobenzene   ND   1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -Propylbenzene               | ND               | 5.10               | 11                     | "          | **         | **         |              |                                        |               |
| 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,6-Trimethylbenzene 1,3 | Styrene                      | ND               |                    |                        |            | 11         |            |              |                                        |               |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,2,3-Trichlorobenzene        | ND               |                    | **                     |            | i 10       | "          |              |                                        |               |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,2,4-Trichlorobenzene        | ND               |                    | **                     | **         | **         |            |              |                                        |               |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,1,1,2-Tetrachloroethane     | ND               | 5.10               | , w                    |            | 11         |            | 10           |                                        |               |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,1,2,2-Tetrachloroethane     | ND               | 5.10               | 11                     | н          | 11         | 11         |              |                                        |               |
| Toluene ND 1.53 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | etrachloroethene             | ND               | 2.04               | **                     | **         | er er      |            |              |                                        |               |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oluene                       | ND               |                    | **                     |            |            |            |              |                                        |               |
| 1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,1,1-Trichloroethane         |                  |                    | **                     | n .        |            |            |              |                                        |               |
| Trichloroethene ND 2.55 " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,1,2-Trichloroethane         | ND               |                    | **                     | **         |            |            |              | 1.5                                    |               |
| Trichlorofluoromethane  ND 5.10 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | richloroethene               |                  |                    | "                      |            |            |            |              | ************************************** |               |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | richlorofluoromethane        |                  |                    | **                     | н          |            |            |              |                                        |               |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,3-Trichloropropane         |                  |                    |                        | ,,         |            |            |              |                                        |               |
| 7,3,5-Trimethylbenzene ND 5.10 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,4-Trimethylbenzene         | ND               |                    | 11                     |            |            |            |              |                                        |               |
| Vinyl chloride ND 2.55 " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,5-Trimethylbenzene         | ND               |                    | **                     | **         |            |            |              |                                        |               |
| Oatal Xylenes         ND         10.2         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inyl chloride                |                  |                    | "                      | H.         |            |            |              | "                                      |               |
| Surrogate: 1,2-DCA-d4 92.2 % 60-140 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | otal Xylenes                 |                  |                    |                        |            |            |            |              |                                        |               |
| urrogate: Toluene-d8 107 % 60-140 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | urrogate: 1,2-DCA-d4         | 92.2 %           |                    |                        | W          | "          | "          |              |                                        |               |
| Currogate: 4-BFB 103 % 60-140 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | urrogate: Toluene-d8         | 107 %            | 60-140             |                        |            | "          | n          | "            |                                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urrogate: 4-BFB              | 103 %            | 60-140             |                        |            | "          | n          | "            | "                                      |               |

North Creek Analytical - Bothell

Katoskun

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

Project: BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Number: 036026.02 Project Manager: Galen Davis

**Reported:** 12/05/05 17:58

## Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

| Analyte                     |                         | orting<br>Limit | Units        | Dilution | Batch     | Prepared | Analyzed | Method Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|-------------------------|-----------------|--------------|----------|-----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIEXC-N-8 (B5J0645-03) Soil | Sampled: 10/27/05 08:30 | Recei           | ved: 10/29/0 | 05 08:50 | E. 17.762 | 11.00 B  | ahngga 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acetone                     | ND PROCE                | 32.1            | ug/kg dry    | 1 3      | 5K02048   | 11/01/05 | 11/01/05 | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Benzene                     | ND                      | 1.61            | 11           | "        |           | **       | **       | THE BUILDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bromobenzene                | ND                      | 5.36            | **           |          | **        |          | 27       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bromochloromethane          | ND                      | 5.36            | ***          | 91       | n         | 052842   | 11       | n invated a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bromodichloromethane        | ND                      | 5.36            | n            | *        | н         | 11       | Ħ        | TOTAL THEORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bromoform                   | ND                      | 5.36            | PI .         | **       | 11        | 11       | 11       | . (4 / F. 19 TH W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bromomethane                | ND                      | 10.7            | "            | H 5      | n         | 17       | 11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Butanone                  | ND                      | 16.1            | "            | tt       | **        | n        | **       | H HOSPINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| n-Butylbenzene              | ND                      | 5.36            | 11           |          | **        | n        | 11       | H THE RESERVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| sec-Butylbenzene            | ND                      | 5.36            | **           | n e      | **        | er .     | **       | and the state of t |
| tert-Butylbenzene           | ND                      | 5.36            | 11           | 11       | n         | n        | **       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carbon disulfide            | ND                      | 3.21            | tt .         | 11       | i n       | H        | **       | 1109(01)//100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Carbon tetrachloride        | ND                      | 5.36            | H H          | - 11     | n         | **       | **       | n Suji rilyi i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chlorobenzene               | ND                      | 2.14            | H            | 11       |           | **       | **       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chloroethane                | ND                      | 5.36            | т. п         | 11       | ***       | 11       | "        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloroform                  | ND                      | 2.68            |              | n (1)    |           | **       | 11       | n Sillo-1/ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Chloromethane               | ND                      | 10.7            |              | n 14     | H H       | **       | n        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Chlorotoluene             | ND                      | 5.36            |              | 11       | le .      | **       | **       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4-Chlorotoluene             | ND                      | 5.36            | 11           | 00 H     | 11        | ,,       | **       | H OFFICE A II I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dibromochloromethane        | ND                      | 5.36            | 11           | 11       | 47        | н        | н        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,2-Dibromo-3-chloropropane | ND                      | 10.7            |              | · 10     | n n       | 11       | 11       | - THE P. S. LEWIS CO., LANSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1,2-Dibromoethane (EDB)     | ND                      | 5.36            |              | n        | **        | **       | 11       | GENTRE STORE TO SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dibromomethane              | ND                      | 5.36            |              | 11       | 11        | H        | 11       | H (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1,2-Dichlorobenzene         | ND                      | 5.36            | "            | er er    | H         |          | 11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,3-Dichlorobenzene         | ND                      | 5.36            | **           | 11       | н .       | 11       | **       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,4-Dichlorobenzene         | ND                      | 5.36            |              | н        |           | H        | ıı .     | H THE PROPERTY OF THE PARTY OF  |
| Dichlorodifluoromethane     | ND                      | 5.36            | 11 11        | 12 m     |           | **       | ti       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,1-Dichloroethane          | ND                      | 2.14            | **           |          | н         |          | "        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane          | ND                      | 1.34            | **           | **       | "         | "        | н        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethene          | ND                      | 3.21            | **           | **       |           | **       | tt       | Approximate the state of the state o         |
| cis-1,2-Dichloroethene      | ND                      | 3.21            | "            | "        | **        | 11       | **       | · V camera care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| trans-1,2-Dichloroethene    | ND                      | 2.68            | **           | н        | - n -0    | . 11     | ŧſ       | n Marian Separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,2-Dichloropropane         | ND                      | 5.36            | 11           | - **     | 11        | 11       | tt       | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1,3-Dichloropropane         | ND                      | 5.36            | 11           | Ħ        | n         | н        | 11       | я                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2,2-Dichloropropane         | ND                      | 10.7            | **           | **       | 11        | п        | н        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kato Dung



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9290 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

**Reported:** 12/05/05 17:58

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

| Analyte                     | Result            | Repo<br>I | rting<br>imit | Units       | Dilt   | ition | Batch   | Prepared | Analyzed     | Method                                  | Notes      |
|-----------------------------|-------------------|-----------|---------------|-------------|--------|-------|---------|----------|--------------|-----------------------------------------|------------|
| FIEXC-N-8 (B5J0645-03) Soil | Sampled: 10/27/05 | 08:30     | Recei         | ved: 10/29/ | 05 08: | 50    | e itali |          | 0.0% - 100 K | e recruit                               | 37 D 73 MB |
| 1,1-Dichloropropene         | ND                |           | 5.36          | ug/kg dry   |        | i     | 5K02048 | 11/01/05 | 11/01/05     | п                                       | 19 259     |
| cis-1,3-Dichloropropene     | ND                |           | 5.36          | 11          |        | •     | "       | 11/01/05 | 11/01/05     | ħ                                       |            |
| trans-1,3-Dichloropropene   | ND                |           | 1.34          | **          |        |       |         | "        | H            | **                                      |            |
| Ethylbenzene                | ND                |           | 4.28          | Ħ           | ,      | ,     | 89      | 41       | н            | ,                                       |            |
| Hexachlorobutadiene         | ND                |           | 5.36          | **          | ,      | ,     | 11      | **       | **           | n                                       |            |
| Methyl tert-butyl ether     | ND                |           | 1.07          | lt .        |        |       | **      | **       | H            |                                         |            |
| 2-Hexanone                  | ND                |           | 21.4          | n           | **     |       | **      | "        | 11           |                                         |            |
| Isopropylbenzene            | ND                |           | 5.36          | н           |        |       | 11      | **       | ,,           | ,,                                      |            |
| p-Isopropyltoluene          | ND                |           | 5.36          | 11          | tt     | - 1   |         | **       | 11           | "                                       |            |
| 4-Methyl-2-pentanone        | ND                | :         | 21.4          | 91          | n      |       |         |          | 11           | " "                                     |            |
| Methylene chloride          | ND                | 3         | 3.75          | e           | **     |       |         |          |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            |
| Naphthalene                 | ND                |           | 5.36          | **          | 11     |       | **      | н        | 89           | ,,                                      |            |
| n-Propylbenzene             | ND                |           | 5.36          | 11          |        |       |         | **       | #            | "                                       |            |
| Styrene                     | ND                |           | 1.07          | ,,          | н      |       | ,,      | **       | "            | **                                      |            |
| ,2,3-Trichlorobenzene       | ND                |           | 5.36          |             | **     |       | 11      |          | 11           | n                                       |            |
| ,2,4-Trichlorobenzene       | ND                |           | .36           | "           | **     |       |         | 7.80     | "            | "<br>n                                  |            |
| ,1,1,2-Tetrachloroethane    | ND                |           | .36           | **          |        |       | ,,      | - n      | "            | "                                       |            |
| ,1,2,2-Tetrachloroethane    | ND                |           | .36           | 11          | 11     |       |         |          | "            | n<br>n                                  |            |
| etrachloroethene            | ND                |           | .14           | н           | 11     |       |         | **       | "            | "                                       |            |
| oluene                      | ND                |           | .61           | ,,          | **     |       | **      |          | "            |                                         |            |
| ,1,1-Trichloroethane        | ND                |           | .68           | **          | *11    |       | **      | 3 H      | **           | *                                       |            |
| ,1,2-Trichloroethane        | ND                |           | .34           | **          |        |       |         | #        | "            | TO QUEITO 18                            |            |
| richloroethene              | ND                |           | .68           |             |        |       |         | "        | "            | H = 1112                                |            |
| richlorofluoromethane       | ND                |           | .36           |             |        |       |         | "        |              | п                                       |            |
| ,2,3-Trichloropropane       | ND                |           | .36           |             | 1      |       | "       | "        | #            | n                                       |            |
| 2,4-Trimethylbenzene        | ND                |           | .36           | ,,          | II     |       |         | "        | **           |                                         |            |
| 3,5-Trimethylbenzene        | ND                |           | .36           | "           | "      |       | " "     |          | Ħ            | "                                       |            |
| inyl chloride               | ND                |           | .68           | - 11        |        |       | "       | -167     | **           | 11                                      |            |
| otal Xylenes                | ND                |           | 0.7           | **          |        |       | ш и     | **       | #!<br>#!     | 11                                      |            |
| urrogate: 1,2-DCA-d4        | 127 %             | 60-140    |               |             |        |       | n       | ,,       | "            | "                                       |            |
| urrogate: Toluene-d8        | 128 %             | 60-140    |               |             |        |       | "       | "        | "<br>" 18 11 | "                                       |            |
| arrogate: 4-BFB             | 138 %             | 60-140    |               |             |        |       | "       | "        | "            | ***                                     |            |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 9 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

Project: BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

### Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

| Analyte                      | Result           | Reporting<br>Limit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dilution    | Batch   | Prepared | Analyzed    | Method     | Notes |
|------------------------------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------|-------------|------------|-------|
| TRIP BLANK (B5J0645-06) Soil | Sampled: 10/26/0 | 5 12:00 I          | Received: 10/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29/05 08:50 |         | 30 25    | 5-15 E.H.   | everywa.   | A-01a |
| Acetone                      | ND               | 30.0               | ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1           | 5K02060 | 11/02/05 | 11/02/05    | EPA 8260B  |       |
| Benzene                      | ND               | 1.50               | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H 30        |         | н        | н           |            |       |
| Bromobenzene                 | ND               | 5.00               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er II       | "       | **       | n           | Ħ          |       |
| Bromochloromethane           | ND               | 5.00               | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11          | 11      | H        | 11          |            |       |
| Bromodichloromethane         | ND               | 5.00               | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n           | н       | **       | <b>H</b> 10 | tt         |       |
| Bromoform                    | ND               | 5.00               | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "           | Ħ       | **       | **          | *          |       |
| Bromomethane                 | ND               | 10.0               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11          | 11      | n -      | **          | 11         |       |
| 2-Butanone                   | ND               | 15.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **          | 11      | - 11     | 11          | 11         |       |
| n-Butylbenzene               | ND               | 5.00               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n n         |         | Ħ        | B†          | 47         |       |
| sec-Butylbenzene             | ND               | 5.00               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n II        | т_ и    | Ħ        | 11          | 11         |       |
| tert-Butylbenzene            | ND               | 5.00               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "           | n       | 11       | **          | 91         |       |
| Carbon disulfide             | ND               | 3.00               | THE STATE OF THE S | Ħ           | 0 H     | н        | **          | Ħ          |       |
| Carbon tetrachloride         | ND               | 5.00               | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н           | 100 m   |          | **          | n          |       |
| Chlorobenzene                | ND               | 2.00               | II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · n         | n n     | **       | n           | н          |       |
| Chloroethane                 | ND               | 5.00               | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***         | **      | **       | **          | n (3-1)    |       |
| Chloroform                   | ND               | 2.50               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | **      | 11       | **          | W          |       |
| Chloromethane                | ND               | 10.0               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n           |         | 11       | **          | н          |       |
| 2-Chlorotoluene              | ND               | 5.00               | , ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n           | n n     | tt       | H           | н          |       |
| 4-Chlorotoluene              | ND               | 5.00               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11          | - п     | 11       | **          | и          |       |
| Dibromochloromethane         | ND               | 5.00               | , "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11          | eside o | **       | **          | н          |       |
| 1,2-Dibromo-3-chloropropane  | ND               | 10.0               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26          |         | 11       | **          | n          |       |
| 1,2-Dibromoethane (EDB)      | ND               | 5.00               | - "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | н       | #        | **          | n          |       |
| Dibromomethane               | ND               | 5.00               | т —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | ***     | 11       | ***         | m          |       |
| 1,2-Dichlorobenzene          | ND               | 5.00               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H           | **      | 11       | III         | n          |       |
| 1,3-Dichlorobenzene          | ND               | 5.00               | , "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **          |         | **       | **          | 11         |       |
| 1,4-Dichlorobenzene          | ND               | 5.00               | , ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "           | **      | **       | **          | n = 1      |       |
| Dichlorodifluoromethane      | ND               | 5.00               | , - "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11          | 11      | 11       | 11          | Ħ          |       |
| 1,1-Dichloroethane           | ND               | 2.00               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n           | n       | Ħ        | n           | **         |       |
| 1,2-Dichloroethane           | ND               | 1.25               | ; "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - n         | tr.     | **       | 11          | n          |       |
| 1,1-Dichloroethene           | ND               | 3.00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11          |         | 11       | н           | **         |       |
| cis-1,2-Dichloroethene       | ND               | 3.00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #1          | - n     | n        | it to       | **         |       |
| trans-1,2-Dichloroethene     | ND               | 2.50               | ) "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **          |         | **       | #           | ti         |       |
| 1,2-Dichloropropane          | ND               | 5.00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "           | **      |          | II          | 11         |       |
| 1,3-Dichloropropane          | ND               | 5.00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **          | 11      | "        | n           | <b>n</b> : |       |
| 2,2-Dichloropropane          | ND               | 10.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11          | **      | **       | 81          | Ħ.         |       |

North Creek Analytical - Bothell

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 **Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

| Analyte                      | Result        | Reporting<br>Limit | Units       | Dilution    | n Batch       | Prepared    | Analyzed   | Method            | Notes      |
|------------------------------|---------------|--------------------|-------------|-------------|---------------|-------------|------------|-------------------|------------|
| TRIP BLANK (B5J0645-06) Soil | Sampled: 10/2 | 5/05 12:00 R       | eceived: 10 | /29/05 08:5 | 0 0 5 5 5 0   | viitiis add | Mark Hilly | 2 1 5 5 7 1 1 1 1 |            |
| 1,1-Dichloropropene          | ND            | 5.00               | ug/kg wet   |             | 5K02060       | 11/02/05    | 11/02/05   | # #               | A-01a      |
| cis-1,3-Dichloropropene      | ND            | 5.00               | 11          |             | 31K02000      | 11/02/03    | 11/02/03   |                   |            |
| trans-1,3-Dichloropropene    | ND            | 1.25               | 11          | **          | **            |             | Ħ          | ,                 |            |
| Ethylbenzene                 | ND            | 4.00               | 11          | **          | - 11          | er          | **         | ,,                | -1001 100  |
| Hexachlorobutadiene          | ND            | 5.00               | н ,         | н Н         |               | **          | 11         |                   | and Market |
| Methyl tert-butyl ether      | ND            | 1.00               |             |             | **            | "           | 11         | "                 |            |
| 2-Hexanone                   | ND            | 20.0               | 11          | **          | **            |             | **         | "<br>"            |            |
| Isopropylbenzene             | ND            | 5.00               | li li       |             |               | 11          | 11         | n                 |            |
| p-Isopropyltoluene           | ND            | 5.00               | n           | **          |               | 11          | **         | "                 |            |
| 4-Methyl-2-pentanone         | ND            | 20.0               | **          | 17          | y             | H           |            | "                 |            |
| Methylene chloride           | ND            | 3.50               | Ħ           | "           | "             | PI .        | 17         | ,,                |            |
| Naphthalene                  | ND            | 5.00               |             | . "         |               |             |            | , "               |            |
| n-Propylbenzene              | ND            | 5.00               |             |             | n             | . 11        | **         | n 0               |            |
| Styrene                      | ND            | 1.00               | **          | н           | n             | "           | "          | ,                 |            |
| 1,2,3-Trichlorobenzene       | ND            | 5.00               | **          | **          | **            | 11          |            |                   |            |
| 1,2,4-Trichlorobenzene       | ND            | 5.00               |             | n           |               | "           | "<br>#     | #                 |            |
| 1,1,1,2-Tetrachloroethane    | ND            | 5.00               | n n         | **          |               | "           | "          | 11                |            |
| 1,1,2,2-Tetrachloroethane    | ND            | 5.00               | n           |             | (60) H        | "           | "          | Ħ                 |            |
| Tetrachloroethene            | ND            | 2.00               | н           |             | in i          |             | #          | it                |            |
| Toluene                      | ND            | 1.50               |             |             | " "           | **          |            | n                 |            |
| 1,1,1-Trichloroethane        | ND            | 2.50               | #           |             | "             | **          | 11         | "                 |            |
| ,1,2-Trichloroethane         | ND            | 1.25               | "           | _           |               | . 11        | 11         | "                 |            |
| Trichloroethene              | ND            | 2.50               | "           | "           | di.i. "       |             | Ħ          | н                 |            |
| richlorofluoromethane        | ND            | 5.00               |             | "           | "             | n.s.        | er         | н                 |            |
| ,2,3-Trichloropropane        | ND            | 5.00               | 11          | "           |               |             | **         | - 11              |            |
| ,2,4-Trimethylbenzene        | ND            | 5.00               |             |             |               |             | "          | Ħ                 |            |
| ,3,5-Trimethylbenzene        | ND            | 5.00               | ,           | 71          |               |             | Ħ          | **                |            |
| /inyl chloride               | ND            | 2.50               |             | ,           | **            |             | **         | n                 |            |
| otal Xylenes                 | ND            | 10.0               |             | "           | "             | "           | 11         | n                 |            |
| urrogate: 1,2-DCA-d4         | 136 %         | 60-140             |             |             | "             | "           | ,,         | ,,                |            |
| urrogate: Toluene-d8         | 137 %         | 60-140             |             |             | 115, <b>n</b> | 11 m        | ,,         | ,,                |            |
| urrogate: 4-BFB              | 136 %         | 60-140             |             |             | - n           | "           | "          | ,,                |            |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 11 of 31



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 17:58

## Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

|                      | Reporting                                                                                                                     | 20, 10, 275                                        | 54.5%                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result               | Limit                                                                                                                         | Units                                              | Dilution                                                                                                                                                                                                                                                                                                                       | Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| l Sampled: 10/27/05  | 08:00 Rec                                                                                                                     | eived: 10/2                                        | 29/05 08:50                                                                                                                                                                                                                                                                                                                    | 2 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 95.5                 | 1.00                                                                                                                          | %                                                  | 1                                                                                                                                                                                                                                                                                                                              | 5K03079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/03/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/07/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BSOPSPL003R08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SELVI ALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sampled: 10/27/05    | 9:00 Recei                                                                                                                    | ved: 10/2                                          | 9/05 08:50                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.10.1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | History and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carrie Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 91.4                 | 1.00                                                                                                                          | %                                                  | 1                                                                                                                                                                                                                                                                                                                              | 5K03079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/03/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/07/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BSOPSPL003R08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sampled: 10/27/05 0  | 8:30 Receiv                                                                                                                   | ved: 10/29                                         | /05 08:50                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 92.8                 | 1.00                                                                                                                          | %                                                  | 1                                                                                                                                                                                                                                                                                                                              | 5K03079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/03/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/07/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BSOPSPL003R08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sampled: 10/26/05 16 | 5:20 Receiv                                                                                                                   | ed: 10/29/                                         | 05 08:50                                                                                                                                                                                                                                                                                                                       | 5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = calliff c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 93.0                 | 1.00                                                                                                                          | %                                                  | 1                                                                                                                                                                                                                                                                                                                              | 5K03079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/03/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/07/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BSOPSPL003R08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sampled: 10/26/05 16 | :00 Receiv                                                                                                                    | ed: 10/29/                                         | 05 08:50                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 92.3                 | 1.00                                                                                                                          | %                                                  | 1                                                                                                                                                                                                                                                                                                                              | 5K03079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/03/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/07/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BSOPSPL003R08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | Sampled: 10/27/05 0 95.5  Sampled: 10/27/05 0 91.4  Sampled: 10/27/05 0 92.8  Sampled: 10/26/05 10 93.0  Sampled: 10/26/05 10 | Result Limit    Sampled: 10/27/05 08:00   Received | Result Limit Units    Sampled: 10/27/05 08:00   Received: 10/2   95.5   1.00 %     Sampled: 10/27/05 09:00   Received: 10/29/91.4   1.00 %     Sampled: 10/27/05 08:30   Received: 10/29/92.8   1.00 %     Sampled: 10/26/05 16:20   Received: 10/29/93.0   1.00 %     Sampled: 10/26/05 16:00   Received: 10/29/93.0   1.00 % | Result         Limit         Units         Dilution           I Sampled: 10/27/05 08:00         Received: 10/29/05 08:50           95.5         1.00         %         1           Sampled: 10/27/05 09:00         Received: 10/29/05 08:50         1           Sampled: 10/27/05 08:30         Received: 10/29/05 08:50         1           92.8         1.00         %         1           Sampled: 10/26/05 16:20         Received: 10/29/05 08:50         1           93.0         1.00         %         1           Sampled: 10/26/05 16:00         Received: 10/29/05 08:50         1 | Result         Limit         Units         Dilution         Batch           Sampled: 10/27/05 08:00         Received: 10/29/05 08:50           95.5         1.00         %         1         5K03079           Sampled: 10/27/05 09:00         Received: 10/29/05 08:50         5K03079           Sampled: 10/27/05 08:30         Received: 10/29/05 08:50         5K03079           Sampled: 10/26/05 16:20         Received: 10/29/05 08:50         5K03079           Sampled: 10/26/05 16:20         Received: 10/29/05 08:50         5K03079           Sampled: 10/26/05 16:00         Received: 10/29/05 08:50         5K03079 | Result         Limit         Units         Dilution         Batch         Prepared           I Sampled: 10/27/05 08:00         Received: 10/29/05 08:50         5K03079         11/03/05           Sampled: 10/27/05 09:00         Received: 10/29/05 08:50         5K03079         11/03/05           Sampled: 10/27/05 08:30         Received: 10/29/05 08:50         5K03079         11/03/05           Sampled: 10/26/05 16:20         Received: 10/29/05 08:50         5K03079         11/03/05           Sampled: 10/26/05 16:20         Received: 10/29/05 08:50         5K03079         11/03/05           Sampled: 10/26/05 16:00         Received: 10/29/05 08:50         10/29/05 08:50 | Result         Limit         Units         Dilution         Batch         Prepared         Analyzed           Sampled: 10/27/05 08:00 Received: 10/29/05 08:50           91.4         1.00         %         1         5K03079         11/03/05         11/07/05           Sampled: 10/27/05 09:00 Received: 10/29/05 08:50           91.4         1.00         %         1         5K03079         11/03/05         11/07/05           Sampled: 10/27/05 08:30 Received: 10/29/05 08:50           92.8         1.00         %         1         5K03079         11/03/05         11/07/05           Sampled: 10/26/05 16:20 Received: 10/29/05 08:50           93.0         1.00         %         1         5K03079         11/03/05         11/07/05           Sampled: 10/26/05 16:00 Received: 10/29/05 08:50 | Result         Limit         Units         Dilution         Batch         Prepared         Analyzed         Method           I Sampled: 10/27/05 08:00 Received: 10/29/05 08:50           95.5         1.00         %         1         5K03079         11/03/05         11/07/05         BSOPSPL003R08           Sampled: 10/27/05 09:00 Received: 10/29/05 08:50           91.4         1.00         %         1         5K03079         11/03/05         11/07/05         BSOPSPL003R08           Sampled: 10/27/05 08:30 Received: 10/29/05 08:50           92.8         1.00         %         1         5K03079         11/03/05         11/07/05         BSOPSPL003R08           Sampled: 10/26/05 16:20 Received: 10/29/05 08:50           93.0         1.00         %         1         5K03079         11/03/05         11/07/05         BSOPSPL003R08           Sampled: 10/26/05 16:00 Received: 10/29/05 08:50 |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 12 of 31



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported:

12/05/05 17:58

# Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

#### North Creek Analytical - Bothell

| Blank (5K02031-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Moses and the second se |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gasoline Range Hydrocarbons   ND   10.0   mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mac P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzene   ND   0,0400   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene ND 0.100 " Ethylbenzene ND 0.100 " Xylenes (total) ND 0.200 "  Surrogate: 4-BFB (FID) 5.24 " 6.00 87.3 50-150 Surrogate: 4-BFB (PID) 6.18 " 6.00 103 53-142  LCS (5K02031-BS1)  Gasoline Range Hydrocarbons 101 10.0 mg/kg 100 101 75-125 Benzene 1.29 0.0400 " 1.13 114 75-125 Toluene 8.18 0.100 " 8.45 96.8 75-125 Ethylbenzene 1.75 0.100 " 1.70 103 75-125  Xylenes (total) 9.55 0.200 " 9.85 97.0 75-125  Surrogate: 4-BFB (FID) 5.87 " 6.00 97.8 50-150 Surrogate: 4-BFB (FID) 5.80 " 6.00 97.8 50-150  Surrogate: 4-BFB (FID) 5.80 " 6.00 96.7 53-142  LCS Dup (5K02031-BSD1)  Gasoline Range Hydrocarbons 92.2 10.0 mg/kg 100 92.2 75-125 9.11 25 Gasoline Range Hydrocarbons 92.2 10.0 mg/kg 100 92.2 75-125 8.91 25 Toluene 7.54 0.100 " 1.13 104 75-125 8.91 25 Ethylbenzene 1.18 0.0400 " 1.13 104 75-125 8.91 25 Ethylbenzene 1.60 0.100 " 8.45 89.2 75-125 8.14 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Service of the servic |
| Xylenes (total)   ND   0.200   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95 134V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Surrogate: 4-BFB (FID) 5.24 " 6.00 87.3 50-150 Surrogate: 4-BFB (PID) 6.18 " 6.00 103 53-142  LCS (5K02031-BS1)  Gasoline Range Hydrocarbons 101 10.0 mg/kg 100 101 75-125  Benzene 1.29 0.0400 " 1.13 114 75-125  Toluene 8.18 0.100 " 8.45 96.8 75-125  Ethylbenzene 1.75 0.100 " 1.70 103 75-125  Xylenes (total) 9.55 0.200 " 9.85 97.0 75-125  Surrogate: 4-BFB (FID) 5.87 " 6.00 97.8 50-150  Surrogate: 4-BFB (PID) 5.80 " 6.00 96.7 53-142  LCS Dup (5K02031-BSD1)  Gasoline Range Hydrocarbons 92.2 10.0 mg/kg 100 92.2 75-125 9.11 25  Benzene 1.18 0.0400 " 1.13 104 75-125 8.91 25  Toluene 7.54 0.100 " 8.45 89.2 75-125 8.14 25  Ethylbenzene 1.60 0.100 " 8.45 89.2 75-125 8.14 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate: 4-BFB (PID)  6.18  " 6.00  103  53-142  LCS (5K02031-BS1)  Gasoline Range Hydrocarbons  101  10.0  mg/kg  100  101  75-125  Benzene  1.29  0.0400  " 1.13  114  75-125  Ethylbenzene  1.75  0.100  " 1.70  103  75-125  Xylenes (total)  9.55  0.200  " 9.85  97.0  75-125  Surrogate: 4-BFB (FID)  5.87  " 6.00  97.8  50-150  Surrogate: 4-BFB (PID)  5.80  " 6.00  96.7  53-142  LCS Dup (5K02031-BSD1)  Gasoline Range Hydrocarbons  92.2  10.0  mg/kg  100  92.2  75-125  9.11  25  Benzene  1.18  0.0400  " 1.13  104  75-125  8.91  25  Ethylbenzene  1.60  0.100  8.45  89.2  75-125  8.14  25  Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Surrogate: 4-BFB (PID)       6.18       "       6.00       103       53-142         LCS (5K02031-BS1)         Gasoline Range Hydrocarbons       101       10.0       mg/kg       100       101       75-125         Benzene       1.29       0.0400       "       1.13       114       75-125         Toluene       8.18       0.100       "       8.45       96.8       75-125         Ethylbenzene       1.75       0.100       "       1.70       103       75-125         Xylenes (total)       9.55       0.200       "       9.85       97.0       75-125         Surrogate: 4-BFB (FID)       5.87       "       6.00       97.8       50-150         Surrogate: 4-BFB (PID)       5.80       "       6.00       96.7       53-142         LCS Dup (5K02031-BSD1)         Gasoline Range Hydrocarbons       92.2       10.0       mg/kg       100       92.2       75-125       9.11       25         Benzene       1.18       0.0400       "       1.13       104       75-125       8.91       25         Ethylbenzene       1.60       0.100       "       8.45       89.2       75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | March 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gasoline Range Hydrocarbons       101       10.0       mg/kg       100       101       75-125         Benzene       1.29       0.0400       "       1.13       114       75-125         Toluene       8.18       0.100       "       8.45       96.8       75-125         Ethylbenzene       1.75       0.100       "       1.70       103       75-125         Xylenes (total)       9.55       0.200       "       9.85       97.0       75-125         Surrogate: 4-BFB (FID)       5.87       "       6.00       97.8       50-150         Surrogate: 4-BFB (PID)       5.80       "       6.00       96.7       53-142         LCS Dup (5K02031-BSD1)         Gasoline Range Hydrocarbons       92.2       10.0       mg/kg       100       92.2       75-125       9.11       25         Benzene       1.18       0.0400       "       1.13       104       75-125       8.91       25         Toluene       7.54       0.100       "       8.45       89.2       75-125       8.14       25         Ethylbenzene       1.60       0.100       "       1.77       1.78       1.78       1.78       1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene   1.29   0.0400   "   1.13   114   75-125     Toluene   8.18   0.100   "   8.45   96.8   75-125     Ethylbenzene   1.75   0.100   "   1.70   103   75-125     Xylenes (total)   9.55   0.200   "   9.85   97.0   75-125     Surrogate: 4-BFB (FID)   5.87   "   6.00   97.8   50-150     Surrogate: 4-BFB (PID)   5.80   "   6.00   96.7   53-142     LCS Dup (5K02031-BSD1)     Gasoline Range Hydrocarbons   92.2   10.0   mg/kg   100   92.2   75-125   9.11   25     Benzene   1.18   0.0400   "   1.13   104   75-125   8.91   25     Toluene   7.54   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100   "   8.45   89.2   75-125   8.14   25     Ethylbenzene   1.60   0.100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene   1.29   0.0400   "   1.13   114   75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene 8.18 0.100 " 8.45 96.8 75-125 Ethylbenzene 1.75 0.100 " 1.70 103 75-125  Xylenes (total) 9.55 0.200 " 9.85 97.0 75-125  Surrogate: 4-BFB (FID) 5.87 " 6.00 97.8 50-150  Surrogate: 4-BFB (PID) 5.80 " 6.00 96.7 53-142  LCS Dup (5K02031-BSD1)  Gasoline Range Hydrocarbons 92.2 10.0 mg/kg 100 92.2 75-125 9.11 25  Benzene 1.18 0.0400 " 1.13 104 75-125 8.91 25  Toluene 7.54 0.100 " 8.45 89.2 75-125 8.14 25  Ethylbenzene 1.60 0.100 " 8.45 89.2 75-125 8.14 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethylbenzene       1.75       0.100       "       1.70       103       75-125         Xylenes (total)       9.55       0.200       "       9.85       97.0       75-125         Surrogate: 4-BFB (FID)       5.87       "       6.00       97.8       50-150         Surrogate: 4-BFB (PID)       5.80       "       6.00       96.7       53-142         LCS Dup (5K02031-BSD1)         Gasoline Range Hydrocarbons       92.2       10.0       mg/kg       100       92.2       75-125       9.11       25         Benzene       1.18       0.0400       "       1.13       104       75-125       8.91       25         Toluene       7.54       0.100       "       8.45       89.2       75-125       8.14       25         Ethylbenzene       1.60       0.100       "       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Xylenes (total)       9.55       0.200       "       9.85       97.0       75-125         Surrogate: 4-BFB (FID)       5.87       "       6.00       97.8       50-150         Surrogate: 4-BFB (PID)       5.80       "       6.00       96.7       53-142         LCS Dup (5K02031-BSD1)         Gasoline Range Hydrocarbons       92.2       10.0       mg/kg       100       92.2       75-125       9.11       25         Benzene       1.18       0.0400       "       1.13       104       75-125       8.91       25         Toluene       7.54       0.100       "       8.45       89.2       75-125       8.14       25         Ethylbenzene       1.60       0.100       "       1.50       89.2       75-125       8.14       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate: 4-BFB (FID)       5.87       "       6.00       97.8       50-150         Surrogate: 4-BFB (PID)       5.80       "       6.00       96.7       53-142         LCS Dup (5K02031-BSD1)       Gasoline Range Hydrocarbons         Benzene       1.18       0.0400       "       1.13       104       75-125       8.91       25         Toluene       7.54       0.100       "       8.45       89.2       75-125       8.14       25         Ethylbenzene       1.60       0.100       "       1.50       8.25       89.2       75-125       8.14       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate: 4-BFB (PID) 5.80 " 6.00 96.7 53-142  LCS Dup (5K02031-BSD1)  Gasoline Range Hydrocarbons 92.2 10.0 mg/kg 100 92.2 75-125 9.11 25  Benzene 1.18 0.0400 " 1.13 104 75-125 8.91 25  Toluene 7.54 0.100 " 8.45 89.2 75-125 8.14 25  Ethylbenzene 1.60 0.100 " 8.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gasoline Range Hydrocarbons     92.2     10.0     mg/kg     100     92.2     75-125     9.11     25       Benzene     1.18     0.0400     "     1.13     104     75-125     8.91     25       Toluene     7.54     0.100     "     8.45     89.2     75-125     8.14     25       Ethylbenzene     1.60     0.100     "     1.50     1.50     1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene 1.18 0.0400 " 1.13 104 75-125 8.91 25 Toluene 7.54 0.100 " 8.45 89.2 75-125 8.14 25 Ethylbenzene 1.60 0.100 " 8.75 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene     1.18     0.0400     "     1.13     104     75-125     8.91     25       Toluene     7.54     0.100     "     8.45     89.2     75-125     8.14     25       Ethylbenzene     1.60     0.100     "     1.50     1.50     1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene 7.54 0.100 " 8.45 89.2 75-125 8.14 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethylbenzene 160 0100 7 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Xylenes (total) 1.70 94.1 75-125 8.96 25<br>8.77 0.200 " 9.85 89.0 75-125 8.52 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate: 4-BFB (FID) 6.23 " 6.00 104 50-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate: 4-BFB (PID) 5.99 " 6.00 99.8 53-142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Matrix Spike (5K02031-MS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Source: B5J0624-01 Gasoline Range Hydrocarbons 102 10.8 mg/kg dry 108 1.75 92.8 42-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzene 1.27 0.0431 " 1.22 ND 104 45-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene 9.06 0.100 " 107 43-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.06 0.108 " 9.10 0.0234 88.3 55-125<br>Chylbenzene 1.71 0.108 " 1.82 0.00829 93.5 53-132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kylenes (total)     9.38     0.215     "     10.6     0.0449     88.1     59-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 13 of 31



425.420.9200 fax 425.420.9210

11922 East 1st Avenue, Spokane Valley, WA 99206-5302

%REC

Limits

59-125

50-150

53-142

**RPD** 

0.749

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100

Federal Way, WA/USA 98001

Analyte

Xylenes (total)

Surrogate: 4-BFB (FID)

Surrogate: 4-BFB (PID)

Project: BNSF-Wishram, WA

Spike

Level

10.6

6.46

6.46

Source

Result

0.0449

%REC

87.4

102

99.7

Project Number: 036026.02 Project Manager: Galen Davis

Reporting

Limit

0.215

Result

9.31

6.62

6.44

Reported:

RPD

Limit

Notes

12/05/05 17:58

#### Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality **Control**

#### North Creek Analytical - Bothell

Units

| Batch 5K02031: Prepare      | ed 11/02/05 | Using E | PA 5030F | 3 (P/T)   |          |           |         |        |       |        | 4 12 3              |
|-----------------------------|-------------|---------|----------|-----------|----------|-----------|---------|--------|-------|--------|---------------------|
| Matrix Spike (5K02031-MS1)  | )           |         |          |           | livie- O | Source: B | 5J0624- | 01     |       | SH W S | other is the second |
| Surrogate: 4-BFB (FID)      |             | 6.60    | L        | mg/kg dry | 6.46     |           | 102     | 50-150 |       |        |                     |
| Surrogate: 4-BFB (PID)      |             | 6.25    |          | "         | 6.46     |           | 96.7    | 53-142 |       |        | 1 1 1 1 1 1 1       |
| Matrix Spike Dup (5K02031-  | MSD1)       |         |          |           |          | Source: B | 5J0624- | 01     |       |        |                     |
| Gasoline Range Hydrocarbons |             | 98.6    | 10.8     | mg/kg dry | 108      | 1.75      | 89.7    | 42-125 | 3.39  | 40     | 15 11               |
| Benzene                     |             | 1.25    | 0.0431   | , T       | 1.22     | ND        | 102     | 45-125 | 1.59  | 40     |                     |
| Toluene                     |             | 8.00    | 0.108    | 71        | 9.10     | 0.0234    | 87.7    | 55-125 | 0.747 | 40     |                     |
| Ethylbenzene                |             | 1.71    | 0.108    | 17        | 1.82     | 0.00829   | 93.5    | 53-132 | 0.00  | 40     |                     |

North Creek Analytical - Bothell

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02
Project Manager: Galen Davis

Reported: 12/05/05 17:58

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

| Analyte                |                   | Result  | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD       | RPD<br>Limit | Notes |
|------------------------|-------------------|---------|--------------------|-----------|----------------|------------------|----------|----------------|-----------|--------------|-------|
| Batch 5J31090:         | Prepared 11/01/05 | Using E | PA 3550B           | is j      | 18 ju          |                  | 101      |                |           |              | -37/  |
| Blank (5J31090-BL      | K1)               |         |                    |           | 1 24 1         |                  | ō is i   | ne)witte       | lee inget | s Rep        | 1258  |
| Diesel Range Hydrocar  | bons              | ND      | 10.0               | mg/kg     |                |                  |          |                | To be     | Turear       |       |
| Lube Oil Range Hydroc  | earbons           | ND      | 25.0               | H = -     |                |                  |          |                |           |              |       |
| Surrogate: 2-FBP       |                   | 8.78    | 1                  | - "       | 8.33           |                  | 105      | 50-150         |           | Mark         | *     |
| Surrogate: Octacosane  |                   | 9.55    |                    | H         | 8.33           |                  | 115      | 50-150         |           |              |       |
| LCS (5J31090-BS1)      |                   |         |                    |           |                |                  |          |                |           |              |       |
| Diesel Range Hydrocarl | oons              | 71.6    | 10.0               | mg/kg     | 66.7           |                  | 107      | 61-120         |           |              |       |
| Surrogate: 2-FBP       | Trap Span         | 7.58    | lu ta i            |           | 8.33           | : it             | 91.0     | 50-150         |           |              |       |
| LCS Dup (5J31090-      | BSD1)             |         |                    |           |                |                  |          |                |           |              |       |
| Diesel Range Hydrocart | oons              | 70.6    | 10.0               | mg/kg     | 66.7           | 14               | 106      | 61-120         | 1.41      | 40           |       |
| Surrogate: 2-FBP       |                   | 7.62    |                    | "         | 8.33           |                  | 91.5     | 50-150         |           |              |       |
| Duplicate (5J31090-    | DUP1)             |         |                    |           |                | Source: B        | SJ0645-0 | )1             |           |              |       |
| Diesel Range Hydrocart | oons              | ND      | 10.4               | mg/kg dry |                | ND               |          |                | NA        | 50           |       |
| Lube Oil Range Hydroc  | arbons            | ND      | 26.1               | n         |                | ND               |          |                | NA        | 50           |       |
| Surrogate: 2-FBP       |                   | 8.41    |                    | "         | 8.70           |                  | 96.7     | 50-150         | =         |              |       |
| Surrogate: Octacosane  |                   | 9.48    |                    | n         | 8.70           |                  | 109      | 50-150         |           |              |       |

North Creek Analytical - Bothell

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network



425.420.9200 fax 425.420.9210

11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

### Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

| Analyte             |                   | Result | Reporting |           |       |            |           | %REC   |              | RPD     |                |  |
|---------------------|-------------------|--------|-----------|-----------|-------|------------|-----------|--------|--------------|---------|----------------|--|
|                     |                   | Vezait | Limit     | Units     | Level | Result     | %REC      | Limits | RPD          | Limit   | Notes          |  |
| Batch 5K04071:      | Prepared 11/04/05 | Using  | EPA 3050B |           | 13:   | atte state | n 14614   |        | i dilinged S | E 1571  | di Auru        |  |
| Blank (5K04071-BL   | _K1)              | 10 TE  |           |           |       |            |           |        | . vop        | Ales-de | Step Dalish    |  |
| Lead                |                   | ND     | 0.500     | mg/kg     | Hg=   | . All      | 3.105     |        |              |         | 18504 no [955  |  |
| LCS (5K04071-BS1    | )                 |        |           |           |       |            | - 1       |        |              |         | Children and a |  |
| Lead                |                   | 39.1   | 0.495     | mg/kg     | 39.6  |            | 98.7      | 80-120 |              |         | Call Labor     |  |
| LCS Dup (5K04071-   | -BSD1)            |        |           |           |       |            |           |        |              |         |                |  |
| Lead                |                   | 39.2   | 0.495     | mg/kg     | 39.6  | IE         | 99.0      | 80-120 | 0.255        | 20      | ensil tella    |  |
| Matrix Spike (5K04  | 071-MS1)          |        |           |           |       | Source: I  | 35J0645-  | 01     |              |         |                |  |
| Lead                |                   | 43.6   | 0.524     | mg/kg dry | 41.9  | 2.74       | 97.5      | 29-162 |              |         | 1 1000         |  |
| Matrix Spike Dup (5 | 5K04071-MSD1)     | 115    |           |           |       | Source: I  | B5J0645-  | 01     |              |         |                |  |
| Lead                |                   | 43.9   | 0.524     | mg/kg dry | 41.9  | 2.74       | 98.2      | 29-162 | 0.686        | 30      | STANDARD AND   |  |
| Post Spike (5K04071 | I-PS1)            |        |           |           |       | Source: E  | 35J0645-4 | 01     |              |         |                |  |
| Lead                | -10-23            | 0.100  |           | ug/ml     | 0.100 | 0.00528    | 94.7      | 75-125 |              |         | A LET MEAN     |  |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

**Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported: 12/05/05 17:58

### Polychlorinated Biphenyls by EPA Method 8082 - Quality Control North Creek Analytical - Bothell

| Analyte                  | 0,000       | SHAPE I  | Result | Reporting<br>Limit | Units     | ene! | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD      | RPD<br>Limit | Notes      |
|--------------------------|-------------|----------|--------|--------------------|-----------|------|----------------|------------------|--------------------|----------------|----------|--------------|------------|
| Batch 5K04050:           | Prepared    | 11/04/05 | Using  | EPA 3550B          |           |      | I (n           | THE THE          | gentit.            | PS Forts       | 08148551 |              | ner dage   |
| Blank (5K04050-BLI       | <b>K1</b> ) |          |        |                    |           |      |                |                  |                    |                | 2        | 75.5         | (B) Lypted |
| Aroclor 1016             |             |          | ND     | 25.0               | ug/kg     | _35  |                | -d:              | EUT                |                |          |              |            |
| Aroclor 1221             | 4           |          | ND     | 50.0               | "         |      |                |                  |                    |                |          |              |            |
| Aroclor 1232             |             |          | ND     | 25.0               | - 11      |      |                |                  |                    |                |          |              |            |
| Aroclor 1242             |             |          | ND     | 25.0               | 11        |      |                |                  |                    |                |          |              |            |
| Aroclor 1248             |             |          | ND     | 25.0               | , "       |      |                |                  |                    |                |          |              |            |
| Aroclor 1254             |             |          | ND     | 25.0               | tr tr     |      |                |                  |                    |                |          |              |            |
| Aroclor 1260             |             |          | ND     | 25.0               | н         |      |                |                  |                    |                |          |              |            |
| Aroclor 1262             |             |          | ND     | 25.0               | H         |      |                |                  |                    |                |          |              |            |
| Aroclor 1268             |             |          | ND     | 25.0               | #         |      |                |                  |                    |                |          |              |            |
| Surrogate: TCX           |             |          | 5.83   | Starting           | "         |      | 6.67           |                  | 87.4               | 39-139         |          | ×            |            |
| Surrogate: Decachlorobij | phenyl      |          | 6.66   |                    | H #       |      | 6.67           |                  | 99.9               | 33-163         |          |              |            |
| LCS (5K04050-BS1)        |             |          |        |                    |           |      |                |                  |                    |                |          |              |            |
| Aroclor 1016             |             | 21 2010  | 77.2   | 25.0               | ug/kg     | -    | 83.3           |                  | 92.7               | 54-125         |          |              |            |
| Aroclor 1260             |             |          | 84.3   | 25.0               | n         |      | 83.3           |                  | 101                | 58-128         |          |              |            |
| Surrogate: TCX           |             |          | 5.65   |                    | **        |      | 6.67           |                  | 84.7               | 39-139         |          |              |            |
| Surrogate: Decachlorobij | ohenyl      |          | 6.90   |                    | "         |      | 6.67           |                  | 103                | 33-163         |          |              |            |
| LCS Dup (5K04050-E       | SD1)        |          |        |                    |           |      |                |                  |                    |                |          |              |            |
| Aroclor 1016             |             |          | 76.1   | 25.0               | ug/kg     |      | 83.3           |                  | 91.4               | 54-125         | 1.44     | 30           |            |
| Aroclor 1260             |             |          | 84.8   | 25.0               | н         |      | 83.3           |                  | 102                | 58-128         | 0.591    | 30           |            |
| Surrogate: TCX           |             |          | 5.46   |                    | "         |      | 6.67           |                  | 81.9               | 39-139         |          |              |            |
| Surrogate: Decachlorobip | ohenyl      |          | 6.78   |                    | "         |      | 6.67           |                  | 102                | 33-163         |          |              |            |
| Matrix Spike (5K0405     | 50-MS1)     |          |        |                    |           |      |                | Source: E        | 85 <b>J</b> 0583-1 | 8              |          |              |            |
| Aroclor 1016             |             |          | 90.0   | 29.2               | ug/kg dry | ,    | 97.4           | ND               | 92.4               | 47-134         |          |              |            |
| Aroclor 1260             |             |          | 96.4   | 29.2               | n         |      | 97.4           | ND               | 99.0               | 22-171         |          |              |            |
| Surrogate: TCX           | -4          |          | 6.66   |                    | "         |      | 7.79           |                  | 85.5               | 39-139         |          |              |            |
| Surrogate: Decachlorobip | ohenyl      |          | 7.89   |                    | "         |      | 7.79           |                  | 101                | 33-163         |          |              |            |

North Creek Analytical - Bothell

Katoblyund

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

%REC

Limits

**RPD** 

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Analyte

Project: BNSF-Wishram, WA

Spike

Level

Source

Result

%REC

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

**RPD** 

Limit

Notes

## Polychlorinated Biphenyls by EPA Method 8082 - Quality Control North Creek Analytical - Bothell

Units

Reporting

Limit

Result

| Batch 5K04050: Prepared 11/04/05 | Using EPA | 3550B |           | 37   |           | 240      | #se(M) |      | _ P 5/45 | 1.00      |
|----------------------------------|-----------|-------|-----------|------|-----------|----------|--------|------|----------|-----------|
| Matrix Spike Dup (5K04050-MSD1)  |           |       |           | 0.   | Source: 1 | B5J0583- | 18     | - VI | -Evant   | osti Juta |
| Aroclor 1016                     | 83.8      | 28.3  | ug/kg dry | 94.2 | ND        | 89.0     | 47-134 | 7.13 | 35       | 1157 442  |
| Aroclor 1260                     | 90.2      | 28.3  | н         | 94.2 | ND        | 95.8     | 22-171 | 6.65 | 35       |           |
| Surrogate: TCX                   | 6.69      |       | n         | 7.54 |           | 88.7     | 39-139 |      |          | 4         |
| Surrogate: Decachlorobiphenyl    | 7.55      |       | "         | 7.54 |           | 100      | 33-163 |      |          |           |

North Creek Analytical - Bothell

Kate Haney, Project Manager

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. Infernational Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02
Project Manager: Galen Davis

Reported: 12/05/05 17:58

## Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                   | 250×07<br>151.2 Efect | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD     | RPD<br>Limit | Notes     |
|---------------------------|-----------------------|--------|--------------------|-------|----------------|------------------|------|----------------|---------|--------------|-----------|
| Batch 5K02048: 1          | Prepared 11/01/05     | Using  | EPA 5035           |       | Over           | do Afrid         | wan. | and Line       | ne verk | E 16321      | 4-10-601  |
| Blank (5K02048-BLK        | (1)                   | 102460 | 7 e 4 J 30         |       |                |                  |      | 75 r Bir       | T-TRUE  | 98e 75 :     | the state |
| Acetone                   |                       | ND     | 30.0               | ug/kg | 4.0            | Ell .            |      |                |         |              | HIG THE   |
| Benzene                   | ÷ 2 no                | ND     | 1.50               | 11    |                |                  |      |                |         |              |           |
| Bromobenzene              |                       | ND     | 5.00               |       |                |                  |      |                |         |              |           |
| Bromochloromethane        |                       | ND     | 5.00               | **    |                |                  |      |                |         |              |           |
| Bromodichloromethane      |                       | ND     | 5.00               | н     |                |                  |      |                |         |              |           |
| Bromoform                 |                       | ND     | 5.00               | н     |                |                  |      |                |         |              |           |
| Bromomethane              |                       | ND     | 10.0               | -11   |                |                  |      |                |         |              |           |
| 2-Butanone                |                       | ND     | 15.0               |       |                |                  |      |                |         |              |           |
| n-Butylbenzene            |                       | ND     | 5.00               | n     |                |                  |      |                |         |              |           |
| sec-Butylbenzene          |                       | ND     | 5.00               | Ħ     |                |                  |      |                |         |              |           |
| tert-Butylbenzene         |                       | ND     | 5.00               | H     |                |                  |      |                |         |              |           |
| Carbon disulfide          |                       | ND     | 3.00               | Ħ     |                |                  |      |                |         |              |           |
| Carbon tetrachloride      |                       | ND     | 5.00               | 11    |                |                  |      |                |         |              |           |
| Chlorobenzene             |                       | ND     | 2.00               | n     |                |                  |      |                |         |              |           |
| Chloroethane              |                       | ND     | 5.00               | 11    |                |                  |      |                |         |              |           |
| Chloroform                |                       | ND     | 2.50               | Ħ     |                |                  |      |                |         |              |           |
| Chloromethane             |                       | ND     | 10.0               | **    |                |                  |      |                |         |              |           |
| 2-Chlorotoluene           |                       | ND     | 5.00               | 11    |                |                  |      |                |         |              |           |
| 4-Chlorotoluene           |                       | ND     | 5.00               | Ħ     |                |                  |      |                |         |              |           |
| Dibromochloromethane      |                       | ND     | 5.00               | n     |                | 37               |      |                |         |              |           |
| 1,2-Dibromo-3-chloropropa | ane                   | ND     | 10.0               | **    |                |                  |      |                |         |              |           |
| 1,2-Dibromoethane (EDB)   |                       | ND     | 5.00               | Ħ     |                |                  |      |                |         |              |           |
| Dibromomethane            |                       | ND     | 5.00               | 11    |                |                  |      |                |         |              |           |
| 1,2-Dichlorobenzene       |                       | ND     | 5.00               | **    |                |                  |      |                |         |              |           |
| ,3-Dichlorobenzene        |                       | ND     | 5.00               | 87    |                |                  |      |                |         |              |           |
| ,4-Dichlorobenzene        |                       | ND     | 5.00               | Ħ     |                |                  |      |                |         |              |           |
| Dichlorodifluoromethane   |                       | ND     | 5.00               | Ħ     |                |                  |      |                |         |              |           |
| ,1-Dichloroethane         |                       | ND     | 2.00               | Ħ     |                |                  |      |                |         |              |           |
| ,2-Dichloroethane         |                       | ND     | 1.25               | tr    |                |                  |      |                |         |              | -         |
| ,1-Dichloroethene         |                       | ND     | 3.00               | *     |                |                  |      |                |         |              |           |
| is-1,2-Dichloroethene     |                       | ND     | 3.00               | 71    |                |                  |      |                |         |              |           |
| rans-1,2-Dichloroethene   |                       | ND     | 2.50               | Ħ     |                |                  |      |                |         |              |           |
| ,2-Dichloropropane        |                       | ND     | 5.00               | n     |                |                  |      |                |         |              |           |
| ,3-Dichloropropane        |                       | ND     | 5.00               | **    |                |                  |      |                |         |              |           |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kato Dung



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

## Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                  | N/He     |          | Result  | Reporting<br>Limit | Units | Spike<br>Level |      |      | %REC<br>Limits | RPD  | RPD<br>Limit | Notes   |
|--------------------------|----------|----------|---------|--------------------|-------|----------------|------|------|----------------|------|--------------|---------|
| Batch 5K02048:           | Prepared | 11/01/05 | Using 1 | EPA 5035           | ***   |                | 87 m | إلاس | 21 (BV )       | 90,0 | 13:11        |         |
| Blank (5K02048-BL        | .K1)     |          |         |                    |       |                |      |      |                |      | 11111130     | 4270.20 |
| 2,2-Dichloropropane      |          | = 11.04- | ND      | 10.0               | ug/kg | 14 91          |      |      |                |      |              | 100     |
| 1,1-Dichloropropene      | 127      |          | ND      | 5.00               | n     |                |      |      |                |      |              |         |
| cis-1,3-Dichloropropene  | •        |          | ND      | 5.00               |       |                |      |      |                |      |              |         |
| trans-1,3-Dichloroprope  | ne       |          | ND      | 1.25               |       |                |      |      |                |      |              |         |
| Ethylbenzene             |          |          | ND      | 4.00               | Ħ     |                |      |      |                |      |              |         |
| Hexachlorobutadiene      |          |          | ND      | 5.00               | n     |                |      |      |                |      |              |         |
| Methyl tert-butyl ether  |          |          | ND      | 1.00               |       |                |      |      |                |      |              |         |
| 2-Hexanone               |          |          | ND      | 20.0               | Ħ     |                |      |      |                |      |              |         |
| Isopropylbenzene         |          |          | ND      | 5.00               | п     |                |      |      |                |      |              |         |
| p-Isopropyltoluene       |          |          | ND      | 5.00               | Ħ     |                |      |      |                |      |              |         |
| 4-Methyl-2-pentanone     |          |          | ND      | 20.0               | #1    |                |      |      |                |      |              |         |
| Methylene chloride       |          |          | ND      | 3.50               | н     |                |      |      |                |      |              |         |
| Naphthalene              |          |          | ND      | 5.00               | п     |                |      |      |                |      |              |         |
| n-Propylbenzene          |          |          | ND      | 5.00               | п     |                |      |      |                |      |              |         |
| Styrene                  |          |          | ND      | 1.00               | н     |                | 1155 |      |                |      |              | 8       |
| 1,2,3-Trichlorobenzene   |          |          | ND      | 5.00               | ıπ    |                |      |      |                |      |              |         |
| 1,2,4-Trichlorobenzene   |          |          | ND      | 5.00               | **    |                |      | 8    |                |      |              |         |
| 1,1,1,2-Tetrachloroethan | ie       |          | ND      | 5.00               | 17    |                |      |      |                |      |              |         |
| 1,1,2,2-Tetrachloroethan | e        |          | ND      | 5.00               | н     |                |      |      |                |      |              |         |
| Tetrachloroethene        |          |          | ND      | 2.00               | 11    | 2.             |      |      |                |      |              |         |
| Toluene                  |          |          | ND      | 1.50               | n     |                |      |      |                |      |              |         |
| 1,1,1-Trichloroethane    |          |          | ND      | 2.50               | 11    |                |      |      |                |      |              |         |
| 1,1,2-Trichloroethane    |          |          | ND      | 1.25               | II. e |                |      |      |                |      |              |         |
| Trichloroethene          |          |          | ND      | 2.50               | E     |                |      |      |                |      |              |         |
| Trichlorofluoromethane   |          |          | ND      | 5.00               | n     |                |      |      |                |      |              |         |
| 1,2,3-Trichloropropane   |          |          | ND      | 5.00               |       |                |      |      |                |      |              |         |
| 1,2,4-Trimethylbenzene   |          |          | ND      | 5.00               | н     |                |      |      |                |      |              |         |
| 1,3,5-Trimethylbenzene   |          |          | ND      | 5.00               |       |                |      |      |                |      |              |         |
| Vinyl chloride           |          |          | ND      | 2.50               | e u   |                |      |      |                |      |              |         |
| Total Xylenes            |          |          | ND      | 10.0               | Ħ     |                |      |      |                |      |              | 411     |
| Surrogate: 1,2-DCA-d4    |          |          | 44.6    |                    | "     | 40.0           |      | 112  | 60-140         |      |              |         |
| Surrogate: Toluene-d8    |          |          | 47.6    |                    | #     | 40.0           |      | 119  | 60-140         |      |              |         |
| Surrogate: 4-BFB         |          |          | 45.2    |                    | "     | 40.0           |      | 113  | 60-140         |      |              |         |
|                          |          |          |         |                    |       |                |      | 1000 | 3              |      |              |         |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis **Reported:** 12/05/05 17:58

## Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD       | RPD<br>Limit   | Notes    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|-------|----------------|------------------|--------|----------------|-----------|----------------|----------|
| Batch 5K02048:          | Prepared 11/01/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Using  | EPA 5035           |       | 2              | ne net           | W U    | i piu k        | enega jes | in di          | dila aya |
| LCS (5K02048-BS1)       | tage of the second of the seco | - N    |                    |       |                |                  | ······ |                |           | LULI           | MAY 11.9 |
| Acetone                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108    | 30.0               | ug/kg | 100            | tre .            | 108    | 70-130         |           | T <sub>D</sub> | TI 2002  |
| Benzene                 | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.5   | 1.50               | 11    | 10.0           |                  | 105    | 70-130         |           |                |          |
| 2-Butanone              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114    | 15.0               |       | 100            |                  | 114    | 70-130         |           |                | - 11     |
| Carbon disulfide        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.5   | 3.00               | n     | 10.0           |                  | 115    | 70-130         |           |                |          |
| Chlorobenzene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2   | 2.00               | Ħ     | 10.0           |                  | 102    | 70-130         |           |                |          |
| 1,1-Dichloroethane      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.8   | 2.00               | H .   | 10.0           |                  | 108    | 70-130         |           |                |          |
| 1,1-Dichloroethene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.9   | 3.00               | *1    | 10.0           |                  | 109    | 70-130         |           |                |          |
| cis-1,2-Dichloroethene  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.6   | 3.00               | н     | 10.0           |                  | 106    | 70-130         |           |                |          |
| Ethylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5   | 4.00               | 11    | 10.0           |                  | 105    | 70-130         |           |                |          |
| Hexachlorobutadiene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.79   | 5.00               | **    | 10.0           |                  | 97.9   | 70-130         |           |                |          |
| Methyl tert-butyl ether |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.3   | 1.00               | Ħ     | 10.0           |                  | 113    | 70-130         |           |                |          |
| 4-Methyl-2-pentanone    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113    | 20.0               | н     | 100            |                  | 113    | 70-130         |           |                |          |
| Tetrachloroethene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.7   | 2.00               | н     | 10.0           |                  | 107    | 70-130         |           |                |          |
| Toluene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4   | 1.50               | н     | 10.0           |                  | 104    | 70-130         |           |                |          |
| 1,1,1-Trichloroethane   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.1   | 2.50               | Ħ     | 10.0           |                  | 111    | 70-130         |           |                |          |
| Trichloroethene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2   | 2.50               | н     | 10.0           |                  | 102    | 70-130         |           |                |          |
| Surrogate: 1,2-DCA-d4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.8   |                    | "     | 40.0           |                  | 110    | 60-140         |           |                |          |
| Surrogate: Toluene-d8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.9   |                    | "     | 40.0           |                  | 110    | 60-140         |           |                |          |
| Surrogate: 4-BFB        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.0   |                    | "     | 40.0           |                  | 110    | 60-140         |           |                |          |
| LCS Dup (5K02048-I      | SSD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                    |       |                |                  |        |                |           |                |          |
| Acetone                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101    | 30.0               | ug/kg | 100            |                  | 101    | 70-130         | 6.70      | 30             |          |
| Benzene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.7   | 1.50               | #     | 10.0           |                  | 107    | 70-130         | 1.89      | 30             |          |
| -Butanone               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108    | 15.0               | п     | 100            |                  | 107    | 70-130         | 5.41      | 30             |          |
| Carbon disulfide        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0   | 3.00               | n     | 10.0           |                  | 110    | 70-130         | 4.44      | 30             |          |
| Chlorobenzene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.6   | 2.00               | **    | 10.0           |                  | 106    | 70-130         | 3.85      | 30             |          |
| ,1-Dichloroethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5   | 2.00               | Ħ     | 10.0           |                  | 105    | 70-130         | 2.82      | 30             |          |
| ,1-Dichloroethene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.7   | 3.00               | n     | 10.0           |                  | 107    | 70-130         | 1.85      | 30             |          |
| is-1,2-Dichloroethene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.7   | 3.00               | lt .  | 10.0           |                  | 107    | 70-130         | 0.939     | 30             | 140      |
| Ethylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4   | 4.00               | n     | 10.0           |                  | 104    | 70-130         | 0.957     | 30             |          |
| Iexachlorobutadiene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.21   | 5.00               | ,     | 10.0           |                  | 92.1   | 70-130         | 6.11      | 30             |          |
| lethyl tert-butyl ether |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.2   | 1.00               | n     | 10.0           |                  | 112    | 70-130         | 0.889     | 30             |          |
| -Methyl-2-pentanone     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108    | 20.0               | п     | 100            |                  | 108    | 70-130         | 4.52      | 30             |          |
| etrachloroethene        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.80   | 2.00               |       | 100            |                  | 100    | 10-130         | 7.32      | 30             |          |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Katoshung



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

**Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 17:58

### Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                 |                   | Result  | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |
|-------------------------|-------------------|---------|--------------------|-----------|----------------|------------------|-----------|----------------|-------|--------------|------------|
|                         | D 14410410        |         |                    |           | 20101          | A 400            | 741420    | HARMAN         | IG D  | I ASSUE      | 110003     |
| Batch 5K02048:          | Prepared 11/01/05 | Using E | EPA 5035           |           | ::25           |                  |           |                | 0.76  |              |            |
| LCS Dup (5K02048        | -BSD1)            |         |                    |           |                |                  |           |                |       | III IS III   | 11 12 11 1 |
| Toluene                 |                   | 10.4    | 1.50               | ug/kg     | 10.0           |                  | 104       | 70-130         | 0.00  | 30           |            |
| 1,1,1-Trichloroethane   | 2                 | 10.6    | 2.50               | n         | 10.0           |                  | 106       | 70-130         | 4.61  | 30           |            |
| Trichloroethene         |                   | 10.1    | 2.50               | TT TT     | 10.0           |                  | 101       | 70-130         | 0.985 | 30           | -          |
| Surrogate: 1,2-DCA-d4   | 1                 | 41.0    |                    | n n       | 40.0           |                  | 102       | 60-140         |       |              | The second |
| Surrogate: Toluene-d8   |                   | 37.7    |                    | "         | 40.0           |                  | 94.2      | 60-140         |       |              |            |
| Surrogate: 4-BFB        |                   | 36.8    |                    | n         | 40.0           |                  | 92.0      | 60-140         |       |              |            |
| Matrix Spike (5K02      | 048-MS1)          |         |                    |           |                | Source: E        | S5J0463-0 | )1             |       |              |            |
| Acetone                 |                   | 132     | 35.5               | ug/kg dry | 118            | 7.04             | 106       | 60-140         |       |              | 7-120-211  |
| Benzene                 |                   | 9.66    | 1.77               | n         | 11.8           | ND               | 81.9      | 60-140         |       |              |            |
| 2-Butanone              |                   | 103     | 17.7               | 11        | 118            | ND               | 87.3      | 60-140         |       |              |            |
| Carbon disulfide        |                   | 5.71    | 3.55               |           | 11.8           | ND               | 48.4      | 60-140         |       |              | Q-01       |
| Chlorobenzene           |                   | 7.95    | 2.37               | Ħ         | 11.8           | ND               | 67.4      | 60-140         |       |              |            |
| 1,1-Dichloroethane      |                   | 12.5    | 2.37               | н         | 11.8           | ND               | 106       | 60-140         |       |              |            |
| 1,1-Dichloroethene      |                   | 11.1    | 3.55               | n         | 11.8           | ND               | 94.1      | 60-140         |       |              |            |
| cis-1,2-Dichloroethene  |                   | 11.6    | 3,55               | n         | 11.8           | ND               | 98.3      | 60-140         |       |              |            |
| Ethylbenzene            |                   | 3.10    | 4.73               | ; n ;     | 11.8           | ND               | 26.3      | 60-140         |       |              | Q-01       |
| Hexachlorobutadiene     |                   | 3.88    | 5.91               | i ii      | 11.8           | ND               | 32.9      | 60-140         |       |              | Q-01       |
| Methyl tert-butyl ether |                   | 13.2    | 1.18               | m m       | 11.8           | ND               | 112       | 60-140         |       |              |            |
| 4-Methyl-2-pentanone    |                   | 103     | 23.7               | Ħ         | 118            | ND               | 87.3      | 60-140         |       |              |            |
| Tetrachloroethene       |                   | 8.41    | 2.37               | п         | 11.8           | ND               | 71.3      | 60-140         |       |              |            |
| Toluene                 |                   | 7.56    | 1.77               | n         | 11.8           | ND               | 64.1      | 60-140         |       |              |            |
| 1,1,1-Trichloroethane   |                   | 12.3    | 2.96               | н         | 11.8           | ND               | 104       | 60-140         |       |              |            |
| Trichloroethene         |                   | 18.2    | 2.96               | n         | 11.8           | ND               | 154       | 60-140         |       |              | Q-01       |
| Surrogate: 1,2-DCA-d4   |                   | 54.3    |                    | "         | 47.3           | -1112            | 115       | 60-140         |       |              |            |
| Surrogate: Toluene-d8   |                   | 35.5    |                    | "         | 47.3           |                  | 75.1      | 60-140         |       |              |            |
| Surrogate: 4-BFB        |                   | 43.1    |                    | "         | 47.3           |                  | 91.1      | 60-140         |       |              |            |
|                         |                   |         |                    |           |                |                  |           |                |       |              |            |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** 



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100

Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported:

12/05/05 17:58

## Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                    | 171 (4 T         | Result  | Reporting<br>Limit | Units |     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD    | RPD<br>Limit | Notes      |
|----------------------------|------------------|---------|--------------------|-------|-----|----------------|------------------|--------|----------------|--------|--------------|------------|
| Batch 5K02060: P           | repared 11/02/05 | Using 1 | EPA 5035           |       |     |                | SE MOU           | p fact | die pet        | aryina | , sklitts    | turž ilum  |
| Blank (5K02060-BLK1        | 1)               |         |                    |       |     |                |                  |        |                | 3190   | 1. 244       |            |
| Acetone                    | nadii - I        | ND      | 30.0               | ug/kg | 2.4 |                |                  |        |                |        |              |            |
| Benzene                    |                  | ND      | 1.50               | Ħ     |     |                |                  |        |                |        |              |            |
| Bromobenzene               |                  | ND      | 5.00               | н     |     |                |                  |        |                |        |              |            |
| Bromochloromethane         |                  | ND      | 5.00               | en .  |     |                |                  |        |                |        |              |            |
| Bromodichloromethane       |                  | ND      | 5.00               |       |     |                |                  |        |                |        |              |            |
| Bromoform                  |                  | ND      | 5.00               | **    |     |                |                  |        |                |        |              |            |
| Bromomethane               |                  | ND      | 10.0               | **    |     |                |                  |        |                |        |              |            |
| 2-Butanone                 |                  | ND      | 15.0               | **    |     |                |                  |        |                |        |              |            |
| n-Butylbenzene             |                  | ND      | 5.00               | n     |     |                |                  |        |                |        |              |            |
| sec-Butylbenzene           |                  | ND      | 2114 5.00          | n     |     |                |                  |        |                |        |              |            |
| tert-Butylbenzene          |                  | ND      | 5.00               | n     |     |                |                  |        |                |        |              |            |
| Carbon disulfide           |                  | ND      | 3.00               | . 17  |     |                |                  |        |                |        |              |            |
| Carbon tetrachloride       |                  | ND      | 5.00               |       |     |                |                  |        |                |        |              |            |
| Chlorobenzene              |                  | ND      | 2.00               | н     |     |                |                  |        |                |        |              |            |
| Chloroethane               |                  | ND      | 5.00               | н     |     |                |                  |        |                |        |              |            |
| Chloroform                 |                  | ND      | 2.50               |       |     |                |                  |        |                |        |              |            |
| Chloromethane              |                  | ND      | 10.0               | п     |     |                |                  |        |                |        |              | 11631 2651 |
| 2-Chlorotoluene            |                  | ND      | 5.00               | Ħ     |     |                |                  |        |                |        |              |            |
| 4-Chlorotoluene            |                  | ND      | 5.00               | . 17  |     |                |                  |        |                |        |              |            |
| Dibromochloromethane       |                  | ND      | 5.00               | ti .  |     | 4              |                  |        |                |        |              |            |
| 1,2-Dibromo-3-chloropropar |                  | ND      | 10.0               | **    |     |                |                  |        |                |        |              |            |
| 1,2-Dibromoethane (EDB)    |                  | ND      | 5.00               | n     |     |                |                  |        |                |        |              |            |
| Dibromomethane             |                  | ND      | 5.00               | 11    |     |                |                  |        |                |        |              |            |
| 1,2-Dichlorobenzene        |                  | ND      | 5.00               | **    |     |                |                  |        |                |        |              |            |
| 1,3-Dichlorobenzene        |                  | ND      | 5.00               | m ~   |     |                |                  |        |                |        |              |            |
| 1,4-Dichlorobenzene        |                  | ND      | 5.00               | 71    |     |                |                  |        |                |        |              |            |
| Dichlorodifluoromethane    |                  | ND      | 5.00               | **    |     |                |                  |        |                |        |              |            |
| 1,1-Dichloroethane         |                  | ND      | 2.00               | n     |     |                |                  |        |                |        |              |            |
| 1,2-Dichloroethane         |                  | ND      | 1.25               | Ħ     |     |                |                  |        |                |        |              |            |
| 1,1-Dichloroethene         |                  | ND      | 3.00               | m     |     |                |                  |        |                |        |              |            |
| cis-1,2-Dichloroethene     |                  | ND      | 3.00               | e     |     |                |                  |        |                |        |              |            |
| rans-1,2-Dichloroethene    |                  | ND      | 2.50               | #     |     |                |                  |        |                |        |              |            |
| 1,2-Dichloropropane        |                  | ND      | 5.00               | n     |     |                |                  |        |                |        |              |            |
| 1,3-Dichloropropane        |                  | ND      | 5.00               | **    |     |                |                  |        |                |        |              |            |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** 

Page 23 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

## Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                   |     |          | Result | Reporting<br>Limit | Units   | Spike                                    | Source | WREC | %REC            | DDD | RPD     | 1.95          |
|---------------------------|-----|----------|--------|--------------------|---------|------------------------------------------|--------|------|-----------------|-----|---------|---------------|
|                           | D   | 11/02/05 |        |                    | Omis    | Level                                    | Result | %REC | Limits          | RPD | Limit   | Notes         |
|                           |     | 11/02/05 | Using  | EPA 5035           |         | en e |        |      | No. of the last |     | 1101    | Marie Sala    |
| Blank (5K02060-BLK        | (1) |          |        |                    |         |                                          |        |      |                 |     | Tron. 3 | 310 505       |
| 2,2-Dichloropropane       |     |          | ND     | 10.0               | ug/kg   |                                          |        |      |                 |     |         |               |
| 1,1-Dichloropropene       | 45  |          | ND     | 5.00               | н       |                                          |        |      |                 |     |         |               |
| cis-1,3-Dichloropropene   |     |          | ND     | 5.00               |         |                                          |        |      |                 |     |         |               |
| trans-1,3-Dichloropropend | •   |          | ND     | 1.25               | H       |                                          |        |      |                 |     |         |               |
| Ethylbenzene              |     |          | ND     | 4.00               | T.T. PI |                                          |        |      |                 |     |         |               |
| Hexachlorobutadiene       |     |          | ND     | 5.00               | н       |                                          |        |      |                 |     |         |               |
| Methyl tert-butyl ether   |     |          | ND     | 1.00               | н       |                                          |        |      |                 |     |         |               |
| 2-Hexanone                |     |          | ND     | 20.0               | Ħ       |                                          |        |      |                 |     |         |               |
| Isopropylbenzene          |     |          | ND     | 5.00               | **      |                                          |        |      |                 |     |         |               |
| p-Isopropyltoluene        |     |          | ND     | 5.00               |         |                                          |        |      |                 |     |         |               |
| 4-Methyl-2-pentanone      |     |          | ND     | 20.0               | н       |                                          |        |      |                 |     |         |               |
| Methylene chloride        |     |          | ND     | 3.50               | - 17    |                                          |        |      |                 |     |         |               |
| Naphthalene               |     |          | ND     | 5.00               | *       |                                          |        |      |                 |     |         |               |
| n-Propylbenzene           |     |          | ND     | 5.00               | ir ir   |                                          |        |      |                 |     |         |               |
| Styrene                   |     |          | ND     | 1.00               | н       |                                          |        |      |                 |     |         |               |
| 1,2,3-Trichlorobenzene    |     |          | ND     | 5.00               | 87      |                                          |        |      |                 |     |         |               |
| 1,2,4-Trichlorobenzene    |     |          | ND     | 5.00               | **      |                                          |        |      |                 |     |         |               |
| 1,1,1,2-Tetrachloroethane |     |          | ND     | 5.00               | 71      |                                          |        |      |                 |     |         |               |
| 1,1,2,2-Tetrachloroethane |     |          | ND     | 5.00               | 11      |                                          |        |      |                 |     |         |               |
| Tetrachloroethene         |     |          | ND     | 2.00               | n       | 18                                       |        |      |                 |     | 548-20  |               |
| Toluene                   |     |          | ND     | 1.50               | **      |                                          |        |      |                 |     |         |               |
| 1,1,1-Trichloroethane     |     |          | ND     | 2.50               |         |                                          |        |      |                 |     |         |               |
| 1,1,2-Trichloroethane     |     |          | ND     | 1.25               |         |                                          |        |      |                 |     |         |               |
| Trichloroethene           |     |          | ND     | 2.50               |         |                                          |        |      |                 |     |         | newkin fills. |
| Trichlorofluoromethane    |     |          | ND     | 5.00               | **      |                                          |        |      |                 |     |         | 41.00         |
| 1,2,3-Trichloropropane    |     |          | ND     | 5.00               | n       |                                          |        |      |                 |     |         |               |
| 1,2,4-Trimethylbenzene    |     |          | ND     | 5.00               | n all   |                                          |        |      |                 |     |         |               |
| 1,3,5-Trimethylbenzene    |     |          | ND     | 5.00               |         |                                          |        |      |                 |     |         |               |
| Vinyl chloride            |     |          | ND     | 2.50               |         |                                          |        |      |                 |     |         |               |
| Total Xylenes             |     |          | ND     | 10.0               |         |                                          |        |      |                 |     |         |               |
| Surrogate: 1,2-DCA-d4     |     |          | 53.3   |                    | "       | 40.0                                     | par .  | 133  | 60-140          |     | = 31    |               |
| Surrogate: Toluene-d8     |     |          | 52.1   |                    | "       | 40.0                                     |        | 130  | 60-140          |     |         |               |
| Surrogate: 4-BFB          |     |          | 50.0   |                    | "       | 40.0                                     |        | 125  | 60-140          |     |         |               |
|                           |     |          |        |                    |         | 70.0                                     |        | 123  | JU-140          |     |         |               |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kato Shung



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

Project: BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                         | Result  | Reporting<br>Limit              | Units           | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD   | RPD<br>Limit | Notes       |
|---------------------------------|---------|---------------------------------|-----------------|----------------|------------------|---------|----------------|-------|--------------|-------------|
| Batch 5K02060: Prepared 11/02/0 | 5 Using | EPA 5035                        |                 | .07            | 10 44/1          | HALL ST | engiker:       |       | ¥ 199        | NE Hodge    |
| LCS (5K02060-BS1)               |         | a manufer englishing in aparina | a mares of term |                |                  |         |                |       | e-thirty     | tali - Tial |
| Acetone                         | 93.5    | 30.0                            | ug/kg           | 100            |                  | 93.5    | 70-130         |       | 1911         | man lagri s |
| Benzene                         | 10.4    | 1.50                            | Ħ               | 10.0           |                  | 104     | 70-130         |       |              |             |
| 2-Butanone                      | 77.1    | 15.0                            | н               | 100            |                  | 77.1    | 70-130         |       |              | 5.5         |
| Carbon disulfide                | 10.7    | 3.00                            | н               | 10.0           |                  | 107     | 70-130         |       |              |             |
| Chlorobenzene                   | 10.6    | 2.00                            | n               | 10.0           |                  | 106     | 70-130         |       |              |             |
| 1,1-Dichloroethane              | 10.3    | 2.00                            | п               | 10.0           |                  | 103     | 70-130         |       |              |             |
| 1,1-Dichloroethene              | 10.7    | 3.00                            | n               | 10.0           |                  | 107     | 70-130         |       |              |             |
| cis-1,2-Dichloroethene          | 10.7    | 3.00                            | Ħ               | 10.0           |                  | 107     | 70-130         |       |              |             |
| Ethylbenzene                    | 11.1    | 4.00                            | н               | 10.0           |                  | 111     | 70-130         |       |              |             |
| Hexachlorobutadiene             | 12.5    | 5.00                            | n               | 10.0           |                  | 125     | 70-130         |       |              |             |
| 4-Methyl-2-pentanone            | 81.2    | 20.0                            | n               | 100            |                  | 81.2    | 70-130         |       |              | 1007-1017   |
| Tetrachloroethene               | 11.3    | 2.00                            |                 | 10.0           |                  | 113     | 70-130         |       |              |             |
| Toluene                         | 10.3    | 1.50                            | н               | 10.0           |                  | 103     | 70-130         |       |              |             |
| ,1,1-Trichloroethane            | 10.8    | 2.50                            | **              | 10.0           |                  | 108     | 70-130         |       |              |             |
| Trichloroethene                 | 11.5    | 2.50                            | n               | 10.0           |                  | 115     | 70-130         |       |              |             |
| Surrogate: 1,2-DCA-d4           | 41.0    |                                 | "               | 40.0           |                  | 102     | 60-140         |       |              |             |
| Surrogate: Toluene-d8           | 51.8    |                                 | . "             | 40.0           |                  | 130     | 60-140         |       |              |             |
| Surrogate: 4-BFB                | 49.2    |                                 | "               | 40.0           |                  | 123     | 60-140         |       |              |             |
| CCS Dup (5K02060-BSD1)          |         |                                 |                 |                | 7                |         |                |       |              |             |
| Acetone                         | 104     | 30.0                            | ug/kg           | 100            |                  | 104     | 70-130         | 10.6  | 30           |             |
| Benzene                         | 10.3    | 1.50                            | "               | 10.0           |                  | 103     | 70-130         | 0.966 | 30           |             |
| -Butanone                       | 86.2    | 15.0                            | **              | 100            |                  | 86.2    | 70-130         | 11.1  | 30           |             |
| Carbon disulfide                | 10.9    | 3.00                            | н               | 10.0           |                  | 109     | 70-130         | 1.85  | 30           |             |
| Chlorobenzene                   | 11.3    | 2.00                            | n               | 10.0           | -3:              | 113     | 70-130         | 6.39  | 30           |             |
| ,1-Dichloroethane               | 10.7    | 2.00                            | 11              | 10.0           |                  | 107     | 70-130         | 3.81  | 30           |             |
| ,1-Dichloroethene               | 10.6    | 3.00                            | н               | 10.0           |                  | 106     | 70-130         | 0.939 | 30           |             |
| is-1,2-Dichloroethene           | 10.4    | 3.00                            | **              | 10.0           |                  | 104     | 70-130         | 2.84  | 30           |             |
| thylbenzene                     | 11.1    | 4.00                            | n               | 10.0           |                  | 111     | 70-130         | 0.00  | 30           |             |
| lexachlorobutadiene             | 12.0    | 5.00                            | 11              | 10.0           |                  | 120     | 70-130         | 4.08  | 30           |             |
| -Methyl-2-pentanone             | 91.0    | 20.0                            | 11              | 100            |                  | 91.0    | 70-130         | 11.4  | 30           |             |
| etrachloroethene                | 11.1    | 2.00                            |                 | 10.0           |                  | 111     | 70-130         | 1.79  | 30           |             |
| 'oluene                         | 10.4    | 1.50                            | Р н             | 10.0           |                  | 104     | 70-130         | 0.966 |              |             |
|                                 |         | 1.50                            |                 | 10.0           |                  | 104     | 10-130         | 0.700 | 30           |             |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** 

Page 25 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

%REC

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

Project: BNSF-Wishram, WA

Spike

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

RPD

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Reporting

| Analyte                    | Result       | Limit     | Units | Level | Result | %REC  | Limits | RPD  | Limit | Notes         |
|----------------------------|--------------|-----------|-------|-------|--------|-------|--------|------|-------|---------------|
| Batch 5K02060: Prepared 11 | /02/05 Using | EPA 5035  |       | 2     | DE AL  | بالغي | 11121  |      |       |               |
| LCS Dup (5K02060-BSD1)     |              |           |       |       |        |       |        |      |       | militi gasari |
| Frichloroethene            | 11.0         | 2.50      | ug/kg | 10.0  | 9 .    | 110   | 70-130 | 4.44 | 30    | The state of  |
| Surrogate: 1,2-DCA-d4      | 37.7         |           | n     | 40.0  |        | 94.2  | 60-140 |      |       |               |
| Surrogate: Toluene-d8      | 41.8         |           | "     | 40.0  |        | 104   | 60-140 |      |       |               |
| Surrogate: 4-BFB           | 41.4         |           | "     | 40.0  |        | 104   | 60-140 |      |       |               |
|                            | /00/05 Haine | FD A 5025 |       |       |        |       |        |      |       |               |
| Batch 5K09038: Prepared 11 | 709/05 Using | EPA 5035  |       | , II, | 1.0    | -     |        |      |       |               |
| Blank (5K09038-BLK1)       |              |           |       |       |        |       |        |      |       | _ went;       |
| Acetone                    | ND           | 30.0      | ug/kg |       |        |       |        |      |       | de la         |
| Senzene                    | ND           | 1.50      | 11    |       |        |       |        |      |       |               |
| romobenzene                | ND           | 5.00      | Ħ     |       |        |       |        |      |       |               |
| romochloromethane          | ND           | 5.00      | H     |       |        |       |        |      |       |               |
| romodichloromethane        | ND           | 5.00      | **    |       |        |       |        |      |       |               |
| romoform                   | ND           | 5.00      | n     |       |        |       |        |      |       |               |
| romomethane                | ND           | 10.0      | Ħ     |       |        |       |        |      |       |               |
| -Butanone                  | ND           | 15.0      | 11    |       |        |       |        |      |       |               |
| -Butylbenzene              | ND           | 5.00      | 11    |       |        |       |        |      |       |               |
| ec-Butylbenzene            | ND           | 5.00      | n     |       |        |       |        |      |       |               |
| ert-Butylbenzene           | ND           | 5.00      | "     |       |        |       |        |      |       |               |
| Carbon disulfide           | ND           | 3.00      | 97    | 378   |        |       |        |      |       |               |
| Carbon tetrachloride       | ND           | 5.00      | 11    |       | 28     |       |        |      |       |               |
| Chlorobenzene              | ND           | 2.00      | Ħ     |       |        |       |        |      |       |               |
| Chloroethane               | ND           | 5.00      | Ħ     |       |        |       |        |      |       |               |
| Chloroform                 | ND           | 2.50      | n     |       |        |       |        |      |       |               |
| Chloromethane              | ND           | 10.0      | **    |       |        |       |        |      |       |               |
| -Chlorotoluene             | ND           | 5.00      | n     |       |        |       |        |      |       |               |
| -Chlorotoluene             | ND           | 5.00      | **    |       |        |       |        |      |       |               |
| Dibromochloromethane       | ND           | 5.00      | **    |       |        |       |        |      |       |               |
| ,2-Dibromo-3-chloropropane | ND           | 10.0      | n     |       |        |       |        |      |       |               |
| ,2-Dibromoethane (EDB)     | ND           | 5.00      | п     |       |        |       |        |      |       |               |
| Dibromomethane             | ND           | 5.00      | Ħ     | 370   |        |       |        |      |       |               |
| ,2-Dichlorobenzene         | ND           | 5.00      | *1    |       |        |       |        |      |       |               |
| 1,3-Dichlorobenzene        | ND           | 5.00      | n     |       |        |       |        |      |       |               |
| 1,4-Dichlorobenzene        | ND           | 5.00      | n     |       |        |       |        |      |       |               |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                   | Sign point        | Result  | Reporting<br>Limit | Units | _ m | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD      | RPD<br>Limit | Notes    |
|---------------------------|-------------------|---------|--------------------|-------|-----|----------------|------------------|---------|----------------|----------|--------------|----------|
| Batch 5K09038:            | Prepared 11/09/05 | Using 1 | EPA 5035           | 2.    |     | -10            | 44 s 44          | rgenv = |                | ren evil | evil         | Late Res |
| Blank (5K09038-BL         |                   |         |                    |       |     |                |                  |         |                | VUITOI   | 10.0         |          |
| Dichlorodifluoromethan    | e 13 = 31 =       | ND      | 5.00               | ug/kg |     | _11            |                  |         |                | 101      |              |          |
| 1,1-Dichloroethane        |                   | ND      | 2.00               | #     |     |                |                  |         |                |          |              |          |
| 1,2-Dichloroethane        |                   | ND      | 1.25               | 71    |     |                |                  |         |                |          |              |          |
| 1,1-Dichloroethene        |                   | ND      | 3.00               | н     |     |                |                  |         |                |          |              | 2 10000  |
| cis-1,2-Dichloroethene    |                   | ND      | 3.00               | 77    |     |                |                  |         |                |          |              |          |
| trans-1,2-Dichloroethene  |                   | ND      | 2.50               | n     |     |                |                  |         |                |          |              |          |
| 1,2-Dichloropropane       |                   | ND      | 5.00               | н     |     |                |                  |         |                |          |              |          |
| 1,3-Dichloropropane       |                   | ND      | 5.00               | п     |     |                |                  |         |                |          |              |          |
| 2,2-Dichloropropane       |                   | ND      | 10.0               | Ħ     |     |                |                  |         |                |          |              |          |
| 1,1-Dichloropropene       |                   | ND      | 5.00               | 11    |     |                |                  |         |                |          |              |          |
| cis-1,3-Dichloropropene   |                   | ND      | 5.00               | Ħ     |     |                |                  |         |                |          |              |          |
| trans-1,3-Dichloroproper  | ne                | ND      | 1.25               | 71    |     |                |                  |         |                |          |              |          |
| Ethylbenzene              |                   | ND      | 4.00               | **    |     |                |                  |         |                |          |              |          |
| Hexachlorobutadiene       |                   | ND      | 5.00               | Ħ     |     |                |                  |         |                |          |              |          |
| Methyl tert-butyl ether   |                   | ND      | 1.00               | n     |     |                |                  |         |                |          |              |          |
| 2-Hexanone                |                   | ND      | 20.0               | 11    |     |                |                  |         |                |          |              |          |
| Isopropylbenzene          |                   | ND      | 5.00               | n     |     |                |                  |         |                |          |              |          |
| p-Isopropyltoluene        |                   | ND      | 5.00               | 11    |     |                |                  |         |                |          |              |          |
| 4-Methyl-2-pentanone      |                   | ND      | 20.0               | n     |     |                |                  |         |                |          |              |          |
| Methylene chloride        |                   | ND      | 3.50               | **    |     | 8 N            |                  |         |                |          |              |          |
| Naphthalene               |                   | ND      | 5.00               | н     |     |                |                  |         |                |          |              |          |
| n-Propylbenzene           |                   | ND      | 5.00               | 11    |     |                |                  |         |                |          |              |          |
| Styrene                   |                   | ND      | 1.00               | n     |     |                |                  |         |                |          |              |          |
| 1,2,3-Trichlorobenzene    |                   | ND      | 5.00               | n     |     |                |                  |         |                |          | 74           |          |
| 1,2,4-Trichlorobenzene    |                   | ND      | 5.00               | и .   |     |                |                  |         |                |          |              |          |
| 1,1,1,2-Tetrachloroethane |                   | ND      | 5.00               | Ħ     |     |                |                  |         |                |          |              |          |
| 1,1,2,2-Tetrachloroethane |                   | ND      | 5.00               | n     |     |                |                  |         |                |          |              |          |
| Tetrachloroethene         |                   | ND      | 2.00               | ņ     |     |                |                  |         |                |          |              |          |
| <b>Foluene</b>            |                   | ND      | 1.50               | n     |     |                |                  |         |                |          |              |          |
| 1,1,1-Trichloroethane     |                   | ND      | 2.50               | T     |     |                |                  |         |                |          |              |          |
| 1,1,2-Trichloroethane     |                   | ND      | 1.25               | **    |     |                |                  |         |                |          |              |          |
| Trichloroethene           |                   | ND      | 2.50               |       |     |                |                  |         |                |          |              |          |
| Trichlorofluoromethane    |                   | ND      | 5.00               | *     |     |                |                  |         |                |          |              |          |
| ,2,3-Trichloropropane     |                   | ND      | 5.00               | n     |     |                |                  |         |                |          |              |          |

North Creek Analytical - Bothell

Kate Haney, Project Manager

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 27 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100

Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported:

12/05/05 17:58

### Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                | Seal     |          | Result  | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits     | RPD      | RPD<br>Limit | Notes                                 |
|------------------------|----------|----------|---------|--------------------|-------|----------------|------------------|------|--------------------|----------|--------------|---------------------------------------|
| Batch 5K09038:         | Prepared | 11/09/05 | Using 1 | EPA 5035           |       | 2 1            | Acres 6          |      | V <sub>1</sub> (1) | 11 1 Y   | 10/21        | 1912                                  |
| Blank (5K09038-BL      | K1)      |          |         |                    |       |                |                  |      |                    | - Mingra | in Made U.S. |                                       |
| 1,2,4-Trimethylbenzene | E#4      | 1 2 1    | ND      | 5.00               | ug/kg | fogur i tr     |                  |      |                    |          |              |                                       |
| 1,3,5-Trimethylbenzene |          |          | ND      | 5.00               | H     |                |                  |      |                    |          |              |                                       |
| Vinyl chloride         |          |          | ND      | 2.50               | H     |                |                  | 13   |                    |          |              |                                       |
| Total Xylenes          |          |          | ND      | 10.0               | H     |                |                  |      |                    |          |              |                                       |
| Surrogate: 1,2-DCA-d4  | 16v      | Will be  | 40.7    |                    | "     | 40.0           |                  | 102  | 60-140             |          |              |                                       |
| Surrogate: Toluene-d8  |          |          | 41.3    |                    | "     | 40.0           |                  | 103  | 60-140             |          |              |                                       |
| Surrogate: 4-BFB       |          |          | 42.8    |                    | "     | 40.0           |                  | 107  | 60-140             |          |              |                                       |
| LCS (5K09038-BS1)      | 2027     |          |         |                    |       | 7.             |                  |      |                    |          |              | OF U. BHIDD                           |
| Acetone                |          | 1771-05  | 352     | 30.0               | ug/kg | 400            | 4                | 88.0 | 70-130             |          | TETĒTI       | i i i i i i i i i i i i i i i i i i i |
| Benzene                |          |          | 39.0    | 1.50               | **    | 40.0           |                  | 97.5 | 70-130             |          |              |                                       |
| 2-Butanone             |          |          | 369     | 15.0               | п     | 400            |                  | 92.2 | 70-130             |          |              |                                       |
| Carbon disulfide       |          |          | 39.7    | 3.00               | n e   | 40.0           |                  | 99.2 | 70-130             |          |              |                                       |
| Chlorobenzene          |          |          | 42.9    | 2.00               | ***   | 40.0           |                  | 107  | 70-130             |          |              |                                       |
| 1,1-Dichloroethane     |          |          | 39.0    | 2.00               | 11    | 40.0           |                  | 97.5 | 70-130             |          |              |                                       |
| 1,1-Dichloroethene     |          |          | 39.1    | 3.00               | 11    | 40.0           |                  | 97.8 | 70-130             |          |              |                                       |
| cis-1,2-Dichloroethene |          |          | 39.0    | 3.00               | our n | 40.0           |                  | 97.5 | 70-130             |          |              |                                       |
| Ethylbenzene           |          |          | 43.9    | 4.00               | н     | 40.0           |                  | 110  | 70-130             |          |              |                                       |
| Hexachlorobutadiene    |          |          | 41.4    | 5.00               | n     | 40.0           |                  | 104  | 70-130             |          |              |                                       |
| 4-Methyl-2-pentanone   |          |          | 353     | 20.0               | Ħ     | 400            |                  | 88.2 | 70-130             |          |              |                                       |
| Tetrachloroethene      |          |          | 43.8    | 2.00               | n     | 40.0           |                  | 110  | 70-130             |          |              |                                       |
| Toluene                |          |          | 41.5    | 1.50               | 11    | 40.0           |                  | 104  | 70-130             |          |              |                                       |
| 1,1,1-Trichloroethane  |          |          | 39.6    | 2.50               | n     | 40.0           |                  | 99.0 | 70-130             |          |              |                                       |
| Trichloroethene        |          |          | 38.2    | 2.50               | n     | 40.0           |                  | 95.5 | 70-130             |          |              |                                       |
| Surrogate: 1,2-DCA-d4  |          |          | 29.9    |                    | "     | 40.0           |                  | 74.8 | 60-140             |          |              |                                       |
| Surrogate: Toluene-d8  |          |          | 29.1    |                    | "     | 40.0           |                  | 72.8 | 60-140             |          |              |                                       |
| Surrogate: 4-BFB       |          |          | 32.6    |                    | "     | 40.0           |                  | 81.5 | 60-140             |          |              |                                       |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**  Page 28 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

Federal Way, WA/USA 98001

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                | 150                   | Result  | Reporting<br>Limit | Units | Spike | Source | A/DEG | %REC   |      | RPD   |                 |
|------------------------|-----------------------|---------|--------------------|-------|-------|--------|-------|--------|------|-------|-----------------|
|                        | Wilder School Control | result  | SHIPE CHINA        | Omis  | Level | Result | %REC  | Limits | RPD  | Limit | Notes           |
| Batch 5K09038:         | Prepared 11/09/05     | Using E | PA 5035            |       |       |        |       |        |      | 1     | TITLE MAYOR     |
| LCS Dup (5K09038       | B-BSD1)               |         | Harris III         |       |       | n -    |       |        |      | 134   | Mark States     |
| Acetone                |                       | 308     | 30.0               | ug/kg | 400   |        | 77.0  | 70-130 | 13.3 | 30    | man of Catholic |
| Benzene                |                       | 43.2    | 1.50               | 11    | 40.0  |        | 108   | 70-130 | 10.2 |       |                 |
| 2-Butanone             |                       | 323     | 15.0               | 17    | 400   |        | 80.8  | 70-130 | 13.3 | 30    | Sharing IV      |
| Carbon disulfide       |                       | 41.9    | 3.00               | n     | 40.0  |        | 105   | 70-130 |      | 30    |                 |
| Chlorobenzene          |                       | 46.0    | 2.00               |       | 40.0  |        | 115   |        | 5.39 | 30    |                 |
| 1,1-Dichloroethane     |                       | 41.6    | 2.00               |       | 40.0  |        |       | 70-130 | 6.97 | 30    |                 |
| 1,1-Dichloroethene     |                       | 41.5    | 3.00               | **    | 40.0  |        | 104   | 70-130 | 6.45 | 30    |                 |
| cis-1,2-Dichloroethene |                       | 41.4    | 3.00               | н     | 40.0  |        | 104   | 70-130 | 5.96 | 30    |                 |
| Ethylbenzene           |                       | 47.4    | 4.00               | 11    |       |        | 104   | 70-130 | 5.97 | 30    |                 |
| Hexachlorobutadiene    |                       | 52.6    |                    | 17    | 40.0  |        | 118   | 70-130 | 7.67 | 30    |                 |
| 1-Methyl-2-pentanone   | THE BANK              | 32.0    | 5.00               | **    | 40.0  |        | 132   | 70-130 | 23.8 | 30    | A-01            |
| Tetrachloroethene      |                       | 47.9    | 20.0               | н     | 400   |        | 80.0  | 70-130 | 9.81 | 30    |                 |
| Toluene                |                       |         | 2.00               |       | 40.0  |        | 120   | 70-130 | 8.94 | 30    |                 |
| ,1,1-Trichloroethane   |                       | 45.0    | 1.50               |       | 40.0  |        | 112   | 70-130 | 8.09 | 30    | 4 1 2d          |
| Frichloroethene        |                       | 42.8    | 2.50               | n     | 40.0  |        | 107   | 70-130 | 7.77 | 30    |                 |
|                        |                       | 42.1    | 2.50               | 11    | 40.0  |        | 105   | 70-130 | 9.71 | 30    |                 |
| Surrogate: 1,2-DCA-d4  |                       | 31.9    |                    | "     | 40.0  |        | 79.8  | 60-140 |      | Patie | HEAT DEED BY    |
| Surrogate: Toluene-d8  |                       | 35.2    |                    | "     | 40.0  |        | 88.0  | 60-140 |      |       |                 |
| urrogate: 4-BFB        |                       | 37.0    | 6.65               | "     | 40.0  |        | 92.5  | 60-140 |      |       |                 |
|                        |                       |         |                    |       |       |        |       |        |      |       |                 |

North Creek Analytical - Bothell

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

### Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

| Analyte           |                   | Result   | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD    | RPD<br>Limit | Notes |
|-------------------|-------------------|----------|--------------------|-------|----------------|------------------|--------------|----------------|--------|--------------|-------|
| Batch 5K03079:    | Prepared 11/03/05 | Using Dr | y Weight           |       | 72             |                  |              |                | - Iu D | Ziant .      | Hotes |
| Blank (5K03079-Bl | LK1)              |          | 17 0               |       | MIN. SAIT      |                  | to all lines | S   38         |        |              |       |
| Dry Weight        |                   | 100      | 1.00               | %     | Miller III I   | St. 12:1 11      |              | Layette 2      | ha ± = | 0            |       |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 30 of 31



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 17:58

### **Notes and Definitions**

| A-01 | The blank spike duplicate recovery of this analyte fell outside of | f acceptance criteria and was bised high. Sample was ND. |
|------|--------------------------------------------------------------------|----------------------------------------------------------|
|      | therefore results are not negatively impacted.                     | 3. 17 63.4                                               |

A-01a This sample was analyzed outside of the acceptable 12 hour QC window. No additional sample is available for re-analysis.

A-02 The sample aliquot for analysis was taken from the 4oz. jar.

The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

D-15 Hydrocarbon pattern most closely resembles a heavy fuel oil product.

Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.

S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

D-06

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

Kato Sur

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 SW Nimbus Ave, Beaverton, OR 97008-7145 20332 Empire Ave, Ste FI, Bend, OR 97701-5712 2000 W International Airport Rd Ste A10, Auctionage, AK 99502-1119 11720 North Creek Plwy N Suite 400, Bothell, WA 98011-8244 11922 E 1st Ave, Spokane, WA 99206-5302

FAX 420-9210 FAX 924-9290 FAX 906-9210 FAX 382-7588 FAX 563-9210

425-420-9200 509-924-9200 503-906-9200 541-383-9310 907-563-9200

Revised Chain of Custody

S Inca

CHAIN OF CUSTODY REPORT

| t                            |                                                                                     |        | 7         |                      | CHAIN OF COSTODI NEFORI |                             | Work Order #        |                   | ののとして                                           | <u> </u>     |
|------------------------------|-------------------------------------------------------------------------------------|--------|-----------|----------------------|-------------------------|-----------------------------|---------------------|-------------------|-------------------------------------------------|--------------|
| NCACLIENT: BUSE / KJ         |                                                                                     |        | 1         | Z,                   | INVOICE TO:             |                             |                     |                   | TURNAROUND REQUEST                              | )            |
| ADDRESS: 32001 32.           | Gasten Davis Kennely Tenks<br>32001 32" Ave South svik 100<br>Telegal Way, WA 98001 | 32/ 3  |           |                      | skice sikt              | BRUCE SIKEMARD - BANST      | <u> </u>            | h B<br>rganic & I | in Business Deys * Organic & Inorganic Analyses |              |
| PHONE: 253 942-3421 FAX: 253 | FAX: 25'3                                                                           |        |           | I<br>E               | P.O. NUMBER: See        | S WORK CORP                 | <b>∃ X!</b>         |                   |                                                 | 3<br>-       |
| PROJECT NAME: BASE LUISHRAM  | dishem                                                                              |        |           |                      | PRESE                   | TIVE                        |                     |                   | A Land                                          | ŗ            |
| PROJECT NUMBER: 036026,02    | 26,02                                                                               | ď      |           |                      |                         |                             |                     | _                 | <u>-</u> ]                                      | 7            |
| SAMPLED BY: 12 M.            | Brown                                                                               | 77     | 12        |                      | REQUESTE                | REQUESTED ANALYSES          |                     | OTHER             | Specify                                         |              |
|                              |                                                                                     | 124    | -//       | 50                   | 2                       |                             |                     | Townson / Report  | he des an des my har last Clares.               |              |
| DENTIFICATION                | SAMPLING<br>DATE/TIME                                                               | איש צו | 12 6016 4 | 31.8<br>31.8<br>31.8 | \$08<br>103<br>103      |                             | MATRIX<br>(W, S, O) | # OF<br>CONT.     | LOCATION /<br>COMMENTS                          | NCA<br>WO ID |
| 1 FIEXC - W - 10             | volentos c300                                                                       | X      | X         |                      | X                       |                             | Ŋ                   | 2                 |                                                 | 0.1          |
| 2 FIEX -5-10                 | 10/11/05 0900                                                                       | X      | X         | X                    |                         |                             | N                   | 7                 |                                                 | 62           |
| 3FIEXC-N-8                   | 10/21/05 0830                                                                       | X      | ×         | ×                    |                         |                             | S                   | 4                 |                                                 | -03          |
| ·FI-EAST-6                   | 10/26/05 1620                                                                       | X      | Į,        | <br>. The            |                         |                             | S                   | -                 |                                                 | 96           |
| 5 FI-MID -10                 | 10/26/05 1600                                                                       | ×      | Į,        | 4                    |                         |                             | Ŋ                   | -                 | ,                                               | 05           |
| · TRIP BIANK                 | 10/26/05 Pt 1200                                                                    |        | ×.        | 113                  |                         |                             | emp                 | -                 |                                                 | 90-          |
| 2                            |                                                                                     | V F    | ST :      |                      |                         | •                           | 100                 | 8  <br>8  <br>8   |                                                 |              |
| . 8                          |                                                                                     | CSW I  | 11        |                      |                         |                             |                     | 8 9 9             |                                                 |              |
| 6                            |                                                                                     | ¥. 1   |           |                      |                         |                             |                     |                   |                                                 | iic.         |
| 10                           |                                                                                     | 1      |           | 1 6                  |                         |                             | Į.                  | 17                |                                                 | 100          |
| 1                            | bui                                                                                 |        |           | DA                   | DATE: 1928/05           | RECEIVED BY: CALLEL LUCALE  | reaver              |                   | DATE: 10.29.05                                  | 8 8          |
| PRINT NAME: Gilen            | Daw, 5 FIRM: K.                                                                     | KJC    |           | TIME                 | IR 1600                 | PRINT NAME: COLETTO WILBURY |                     | FIRM: N/"A        |                                                 | (2)          |
| RELEASED BY:                 |                                                                                     |        |           | DATE                 | 3                       | RECEIVED BY:                |                     | 3                 | <u> </u>                                        | 3            |
| PRINT NAME:                  | FIRM:                                                                               |        |           | TIME                 |                         | PRINT NAME:                 | FIRM:               | -                 | TIME:                                           |              |
| COC REV 09/04                | FOR VOCS Check MTBE                                                                 | TBE    | 4         | + EDB                | Meas                    | Measure Temp USING          |                     | 34.               | TRAIP: 3/6                                      |              |
|                              |                                                                                     |        |           |                      |                         | このえか からない                   |                     |                   | PAGE                                            | 9            |



11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
11922 E 1st Ave, Spokane, WA 99206-5302
9405 SW Nimbus Ave, Beaverton, OR 97008-7145
20332 Empire Ave, Ste Ft, Bend, OR 97701-5712
2000 W International Airport Rd Ste A10, Auchorage, AK 99502-1119

FAX 906-9210 FAX 382-7588 FAX 563-9210

\$41-383-9310

FAX 420-9210 FAX 924-9290

425-420-9200 509-924-9200 503-906-9200

| REPORT TO: CALANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                     |       | À (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INVOICE 10:  |                         |                           |       |        |                     | TURNAR        | DNA DOTTAIN DECINEEN                 |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|---------------------------|-------|--------|---------------------|---------------|--------------------------------------|------------------|
| ADDRESS. 22-01 27-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kenney Jenks          | 2                   |       | $\overline{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ruce sh      | BRUCE SIKEPARD - BASSIT | BASS                      |       |        | ř<br>Ž              |               | I OKNAKOUND KEQUEST in Business Days |                  |
| Feleral Way,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | redeal Way, wh 48001  |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                         |                           |       |        | 2                   |               | ganic Analy                          |                  |
| PHONE: 253 942-3421 FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VX: 25/3              |                     |       | P.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P.O. NUMBER: | Sec 10                  | WORK ORDER                | RDER  |        |                     | _             |                                      | ₹<br>-           |
| PROJECT NAME: BNSF WISHEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ishem                 |                     | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PR           |                         | 1                         |       |        |                     |               | 1                                    | , [ <del>-</del> |
| PROJECT NUMBER: 036026,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20%                   | di                  |       | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                         |                           |       |        | E                   |               | 1                                    |                  |
| SAMPLED BY: THE A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Am                    | ופעי                | 12    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | REQUESTED ANALYSES      | SE                        |       |        |                     | OTHER.        | Specify:                             |                  |
| CLIENT SAMPLE IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPLING<br>DATE/TIME | 197 LLU<br>19 15 JW | STE X | SERVING STERVING STER | 7109<br>7009 |                         |                           |       |        | MATRIX<br>(W, S, O) | # OF<br>CONT. | LOCATION /<br>COMMENTS               | NCA<br>WO ID     |
| 1 FIEXC - W-10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | volenies coco         | X                   | X     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X            |                         |                           |       | 1      | S                   | 4             |                                      | 10-              |
| 2 FIEX-5-10 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10/21/05 0900 -       | X                   | X     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | ļ.                      |                           |       | +      | N                   | p             |                                      | 40               |
| 3 FIEXC-N-8 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0580 50/2/01          | X                   | X     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                         |                           |       |        | N                   | ٥             |                                      | -03              |
| 4FI-EAST-6 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10/20/65 1620         | X                   | 12    | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                         |                           |       |        | V                   |               |                                      | 10-              |
| 5 FI-MID-10 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/26/05 1600         | X                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                         |                           |       | 1      | N                   | 1.2           |                                      | 9                |
| 6 TRIP BIANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                     |                     | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                         |                           |       |        | emph                |               | 1                                    | 00-              |
| 7 42543555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                         |                           |       |        | × 1                 |               |                                      |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                     | EA.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                         |                           | İ     |        |                     | 7,110         |                                      |                  |
| 6 Hilliam Constitution of the constitution of |                       |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                         |                           |       |        |                     |               |                                      | i i              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                     | 9     | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                         |                           |       |        |                     |               |                                      |                  |
| RELEASED BY: Apply Bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · ·                 |                     |       | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 1928 05    |                         | RECEIVED BY: (            | Set   | 27.2   | sette meave         |               | DATE: IC                             | DATE: 10.29.05   |
| PRINT NAME: Gilen De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dewis FIRM: KTC       | 36                  |       | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                         | PRINT NAME: COLEHE WEBUST | 2/ett | 17/1/2 |                     | FIRM: NCA     |                                      | 1851             |
| RELEASED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                     |       | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                         | RECEIVED BY:              |       |        | 1                   |               | 3                                    |                  |
| PRINT NAME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIRM:                 |                     |       | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tii          | PRINT                   | PRINT NAME:               |       |        | E                   | FIRM:         | TIME                                 |                  |



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

### **CASE NARRATIVE for B5K0127**

Client: Kennedy/Jenks Consultants Project Manager: Galen Davis Project Name: BNSF – Wishram Project Number: 036026.02

#### 1.0 DESCRIPTION OF CASE

Eight soil samples and one trip blank were submitted for analysis of:

- Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B
- Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up
- Total Metals by EPA 6000/7000 Series Methods
- Polychlorinated Biphenyls by EPA Method 8082
- Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

#### 2.0 COMMENTS ON SAMPLE RECEIPT

The samples were received November 5<sup>th</sup>, 2005 by North Creek Analytical Bothell. The temperature of the samples at the time of receipt was 5.4 degrees Celsius. There was no date/time on the label or COC for the trip blank. The sample was logged in with a sampled date/time of 11/02/05 1200.

### 3.0 PREPARATIONS AND ANALYSIS

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of this report.

### Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

#### Total Metals by EPA 6000/7000 Series Methods

No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

### Polychlorinated Biphenyls by EPA Method 8082

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of this report.

DEC -8 2005

K/J Federal Way
K/J No/File\_\_\_\_\_
Route\_\_\_\_
Return To/By\_\_\_\_\_



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method)

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of this report.

Kato Dung

Kate Haney Project Manager North Creek Analytical



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

### 05 December 2005

Galen Davis Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

to Shung

RE: BNSF-Wishram, WA

Enclosed are the results of analyses for samples received by the laboratory on 11/05/05 10:05. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kate Haney

**Project Manager** 



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 18:15

### **ANALYTICAL REPORT FOR SAMPLES**

| Sample ID    | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|--------------|---------------|--------|----------------|----------------|
| FIEXC-B-7-10 | B5K0127-01    | Soil   | 11/02/05 13:00 | 11/05/05 10:05 |
| FIEXC-B-1-12 | B5K0127-02    | Soil   | 11/03/05 08:00 | 11/05/05 10:05 |
| PH-1-10      | B5K0127-03    | Soil   | 11/02/05 14:00 | 11/05/05 10:05 |
| FIEXC-E-8    | B5K0127-04    | Soil   | 11/02/05 09:00 | 11/05/05 10:05 |
| FIEXC-B-6-10 | B5K0127-05    | Soil   | 11/01/05 16:00 | 11/05/05 10:05 |
| FIEXC-B-5-10 | B5K0127-06    | Soil   | 11/01/05 11:00 | 11/05/05 10:05 |
| FIEXC-B-3-15 | B5K0127-07    | Soil   | 11/02/05 15:00 | 11/05/05 10:05 |
| РН-2-17      | B5K0127-08    | Soil   | 11/04/05 08:00 | 11/05/05 10:05 |
| TRIP BLANK   | B5K0127-09    | Soil   | 11/02/05 12:00 | 11/05/05 10:05 |

North Creek Analytical - Bothell

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 18:15

# Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

| Analyte                     | 1_000105      | Result        | Reporting<br>Limit | Units       | Dilution    | Batch   | Prepared    | Analyzed | Method         | Notes  |
|-----------------------------|---------------|---------------|--------------------|-------------|-------------|---------|-------------|----------|----------------|--------|
| Analyte Employer            |               | Ttobalt       | 23444              |             |             |         |             |          |                | 10000  |
| FIEXC-B-1-12 (B5K0127-02)   | ) Soil Sam    | pled: 11/03/  | 05 08:00 R         | eceived: 11 | /05/05 10:0 | 05      | Maria Sella | 401      |                |        |
| Gasoline Range Hydrocarbons | I THVIET, I K | 10.4          | 6.70               | mg/kg dry   | 1           | 5K07025 | 11/07/05    | 11/07/05 | NWTPH-Gx/8021B | G-01   |
| Benzene                     |               | ND            | 0.0268             |             | **          | т н     | 11          | 11       | H              |        |
| Toluene                     |               | ND            | 0.0670             | 11          | 11          |         | **          | 11       | n              |        |
| Ethylbenzene                |               | ND            | 0.0670             | n           | 11          | II II   | 11          | 11       | н              |        |
| Xylenes (total)             |               | ND            | 0.134              | "           | н           | н       | - 1         | Ħ        | п              |        |
| Surrogate: 4-BFB (FID)      |               | 81.6 %        | 50-150             |             |             | n       | "           | "        | n              |        |
| Surrogate: 4-BFB (PID)      |               | 98.0 %        | 53-142             |             |             | "       | "           | **       | и запада       |        |
| PH-1-10 (B5K0127-03) Soil   | Sampled:      | 11/02/05 14:0 | 00 Receive         | d: 11/05/05 | 10:05       |         |             |          |                |        |
| Gasoline Range Hydrocarbons |               | ND            | 6.27               | mg/kg dry   | 1           | 5K07025 | 11/07/05    | 11/07/05 | NWTPH-Gx/8021B |        |
| Benzene                     |               | ND            | 0.0251             | **          | 11          | Ħ       | Ħ           | **       | Ħ              |        |
| Toluene                     |               | ND            | 0.0627             | Ħ           | **          | 11      | **          | **       | n              |        |
| Ethylbenzene                |               | ND            | 0.0627             | **          | **          | 11      | **          | 11       | Ħ              |        |
| Xylenes (total)             |               | ND            | 0.125              | 11          |             | 55 H    | 10          | ***      | 11             | 7 = 11 |
| Surrogate: 4-BFB (FID)      |               | 83.0 %        | 50-150             |             |             | n       | n           | "        | #              |        |
| Surrogate: 4-BFB (PID)      |               | 97.1 %        | 53-142             |             |             | "       | "           | "        | n              |        |
| PH-2-17 (B5K0127-08) Soil   | Sampled:      | 11/04/05 08:  | 00 Receive         | d: 11/05/05 | 10:05       | - 1     |             |          |                |        |
| Gasoline Range Hydrocarbons |               | ND            | 7.29               | mg/kg dry   | 1           | 5K07025 | 11/07/05    | 11/07/05 | NWTPH-Gx/8021B |        |
| Benzene                     |               | ND            | 0.0292             | Ħ           | **          | 11      | **          | **       | н              |        |
| Toluene                     |               | ND            | 0.0729             | **          |             | ts      |             | Ħ        | **             |        |
| Ethylbenzene                |               | ND            | 0.0729             | **          |             | **      | **          | 11       | n              |        |
| Xylenes (total)             | - <u></u> '   | ND            | 0.146              | н           | **          | 11      | #           | 11       | 11             |        |
| Surrogate: 4-BFB (FID)      |               | 76.2 %        | 50-150             |             |             | n       | n           | "        | n              |        |
| Surrogate: 4-BFB (PID)      |               | 97.5 %        | 53-142             |             |             | n       | n<br>       | "        | "              |        |
|                             |               |               |                    |             |             |         |             |          |                |        |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported:

12/05/05 18:15

# Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

| Analyte                             | Result         | Reporting<br>Limit |                | Dilut   | ion B | atch  | Prepared   | Analyzed | Method             | Note      |
|-------------------------------------|----------------|--------------------|----------------|---------|-------|-------|------------|----------|--------------------|-----------|
| TRIP BLANK (B5K0127-09) Soil        | Sampled: 11/02 | 2/05 12:00         | Received: 11/0 | 05/05 1 | 0:05  | A.116 | a an Ababa | 70E 8    | . 2017 THE SECTION | Back and  |
| Gasoline Range Hydrocarbons Benzene | ND             | 5.00               | mg/kg wet      | 1       |       | 07025 | 11/07/05   | 11/07/05 | NWTPH-Gx/8021B     | E Walley  |
| Toluene                             | ND<br>ND       | 0.0200<br>0.0500   | 11 11          | **      |       | 11    |            | "        | n                  |           |
| Ethylbenzene<br>Xylenes (total)     | ND             | 0.0500             | н              | 11      |       | n     | 1.0        | 11       | п                  |           |
| Surrogate: 4-BFB (FID)              | ND 79.7 %      | 0.100<br>50-150    | 11             |         |       | H .   | · ·        | н        | n .                | - 12=1340 |
| Surrogate: 4-BFB (PID)              | 94.3 %         | 53-142             |                |         |       | "     | "          | "        | "                  |           |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Project: BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Kennedy/Jenks Consultants

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 18:15

### Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte                                                                                                                                                  |          | Result                                                         | Reporting<br>Limit                               | Units                               | Dilution             | Batch                   | Prepared     | Analyzed      | Method         | Notes     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------|--------------------------------------------------|-------------------------------------|----------------------|-------------------------|--------------|---------------|----------------|-----------|
| FIEXC-B-7-10 (B5K0127-01) So                                                                                                                             | il Sam   | oled: 11/02                                                    | 2/05 13:00 F                                     | Received: 11/0                      | 05/05 10:0           | 5 1 10 1                |              | 7 004         |                | 11/2/27   |
| Diesel Range Hydrocarbons                                                                                                                                | 29124    | ND                                                             | 10.5                                             | mg/kg dry                           | tac 1                | 5K09044                 | 11/09/05     | 11/10/05      | NWTPH-Dx       |           |
| Lube Oil Range Hydrocarbons                                                                                                                              |          | ND                                                             | 26.2                                             | 11                                  | - H 18               | Н                       | 9 11         |               | BIE II TUVE    | 7.1       |
| Surrogate: 2-FBP                                                                                                                                         | 41       | 75.2 %                                                         | 50-150                                           |                                     |                      | 11 PO                   | "            | "             | "              |           |
| Surrogate: Octacosane                                                                                                                                    |          | 94.7 %                                                         | 50-150                                           |                                     |                      | **                      | "            | "             | "              |           |
| FIEXC-B-1-12 (B5K0127-02) So                                                                                                                             | il Sam   | oled: 11/03                                                    | 7/05 08:00 F                                     | Received: 11/                       | 05/05 10:0           | 5                       | 11 1161      |               |                | The dated |
| Diesel Range Hydrocarbons                                                                                                                                | XUATI    | 908                                                            | 110                                              | mg/kg dry                           | 10                   | 5K09044                 | 11/09/05     | 11/10/05      | NWTPH-Dx       |           |
| Lube Oil Range Hydrocarbons                                                                                                                              |          | 1920                                                           | 274                                              | **                                  |                      | #1                      | 41           | Ħ             | was man        | THIRD SH  |
| Surrogate: 2-FBP                                                                                                                                         | Tree -   | 54.3 %                                                         | 50-150                                           |                                     |                      | n                       | "            | "             | "              |           |
| Surrogate: Octacosane                                                                                                                                    |          | 98.2 %                                                         | 50-150                                           |                                     |                      | "                       | т.           | "             | "              |           |
| PH-1-10 (B5K0127-03) Soil Sa                                                                                                                             | mpled: 1 | 1/02/05 14                                                     | :00 Receive                                      | d: 11/05/05 1                       | 0:05                 |                         |              | Trace and the | F4 18 14       |           |
| Diesel Range Hydrocarbons                                                                                                                                | 111      | ND                                                             | 10.4                                             | mg/kg dry                           | 1                    | 5K09044                 | 11/09/05     | 11/10/05      | NWTPH-Dx       |           |
| Lube Oil Range Hydrocarbons                                                                                                                              |          | ND                                                             | 26.0                                             | **                                  | "                    |                         | 11           | "             | n              |           |
| Surrogate: 2-FBP                                                                                                                                         |          | 75.8 %                                                         | 50-150                                           |                                     |                      |                         | "            | "             | - "            |           |
| Surrogate: Octacosane                                                                                                                                    |          | 93.3 %                                                         | 50-150                                           |                                     |                      | **                      | H            | n             | "              |           |
|                                                                                                                                                          |          |                                                                | 50 150                                           |                                     |                      |                         |              |               |                |           |
| FIEXC-E-8 (B5K0127-04) Soil                                                                                                                              | Sampled  |                                                                |                                                  | eived: 11/05/                       | 05 10:05             |                         |              |               |                |           |
| FIEXC-E-8 (B5K0127-04) Soil Diesel Range Hydrocarbons                                                                                                    | Sampled  |                                                                |                                                  | eived: 11/05/0<br>mg/kg dry         | 05 10:05<br>1        | 5K09044                 | 11/09/05     | 11/10/05      | NWTPH-Dx       |           |
| Diesel Range Hydrocarbons                                                                                                                                | Sampled  | l: 11/02/05                                                    | 09:00 Rec                                        |                                     |                      | 5K09044                 | 11/09/05     | 11/10/05      | NWTPH-Dx       |           |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons                                                                                                 | Sampled  | 1: 11/02/05<br>56.1                                            | 5 <b>09:00 Rec</b>                               | mg/kg dry                           | 1                    |                         | ,,           |               |                |           |
| Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons Surrogate: 2-FBP                                                                                   | Sampled  | 56.1<br>37.2                                                   | 5 09:00 Reco                                     | mg/kg dry                           | 1                    | n                       | Ħ            | н             | н              |           |
| Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons Surrogate: 2-FBP Surrogate: Octacosane                                                             |          | 1: 11/02/05<br>56.1<br>37.2<br>71.7 %<br>88.6 %                | 10.7<br>26.6<br>50-150<br>50-150                 | mg/kg dry                           | I<br>"               | " "                     | n            | 17            | "              |           |
| Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons Surrogate: 2-FBP Surrogate: Octacosane FIEXC-B-6-10 (B5K0127-05) So                                |          | 1: 11/02/05<br>56.1<br>37.2<br>71.7 %<br>88.6 %                | 10.7<br>26.6<br>50-150<br>50-150                 | mg/kg dry<br>"                      | I<br>"               | " "                     | n            | 17            | "              |           |
| Diesel Range Hydrocarbons  Lube Oil Range Hydrocarbons  Surrogate: 2-FBP  Surrogate: Octacosane  FIEXC-B-6-10 (B5K0127-05) So  Diesel Range Hydrocarbons |          | 1: 11/02/05<br>56.1<br>37.2<br>71.7 %<br>88.6 %<br>pled: 11/01 | 10.7<br>26.6<br>50-150<br>50-150                 | mg/kg dry " Received: 11/           | 1<br>"<br>05/05 10:0 | " "                     | n<br>n       | 11<br>17      | 11<br>11       |           |
| Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons Surrogate: 2-FBP                                                                                   |          | 1: 11/02/05<br>56.1<br>37.2<br>71.7 %<br>88.6 %<br>pled: 11/01 | 10.7<br>26.6<br>50-150<br>50-150<br>1/05 16:00 I | mg/kg dry " Received: 11/ mg/kg dry | 1<br>"<br>05/05 10:0 | "<br>"<br>95<br>5K09044 | " " 11/09/05 | " " 11/10/05  | " " " NWTPH-Dx |           |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** 

Page 4 of 22



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9290 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported:

12/05/05 18:15

# Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

| Analyte                                                  | Result           | Reporting<br>Limit | Units        | Dilution     | Batch   | Prepared   | Analyzed   | Method         | Notes                               |
|----------------------------------------------------------|------------------|--------------------|--------------|--------------|---------|------------|------------|----------------|-------------------------------------|
| FIEXC-B-5-10 (B5K0127-06) Soil                           | Sampled: 11/01   | 1/05 11:00         | Received: 1  | 1/05/05 10:0 | 15      | Mart deser | earl Hills | 74-17 (013)-71 | in the Lygina                       |
| Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons    | ND               | 10.4<br>26.1       | mg/kg dry    |              | 5K09044 | 11/09/05   | 11/10/05   | NWTPH-Dx       |                                     |
| Surrogate: 2-FBP<br>Surrogate: Octacosane                | 66.7 %<br>92.6 % | 50-150<br>50-150   |              |              | W. W.   | n          | "          | #<br># \$50.32 |                                     |
| FIEXC-B-3-15 (B5K0127-07) Soil                           | Sampled: 11/02   | /05 15:00 I        | Received: 11 | /05/05 10:0  | 5       |            |            |                |                                     |
| Diesel Range Hydrocarbons  Lube Oil Range Hydrocarbons   | ND<br>ND         | 10.9<br>27.2       | mg/kg dry    | 1            | 5K09044 | 11/09/05   | 11/10/05   | NWTPH-Dx       | ett i jask faeri<br>er vijk storen: |
| Surrogate: 2-FBP<br>Surrogate: Octacosane                | 74.8 %<br>96.7 % | 50-150<br>50-150   |              |              | "       | n          | "          | "              | 1925 <u> </u>                       |
| PH-2-17 (B5K0127-08) Soil Sample                         | d: 11/04/05 08:  | 00 Receive         | d: 11/05/05  | 10:05        |         |            |            | I to and nets  |                                     |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | ND<br>ND         | 10.6<br>26.5       | mg/kg dry    | 1 "          | 5K09044 | 11/09/05   | 11/10/05   | NWTPH-Dx       |                                     |
| Surrogate: 2-FBP<br>Surrogate: Octacosane                | 81.9 %<br>95.9 % | 50-150<br>50-150   |              |              | n       | n a        | n          | n<br>n         |                                     |
|                                                          |                  |                    |              |              |         |            |            |                |                                     |

North Creek Analytical - Bothell

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 18:15

### Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

| Analyte    | ness*            | 1-348       | Result       | Reporting<br>Limit | Units        | Dilution   | n Batch | Prepared  | Analyzed | Method              | Notes        |
|------------|------------------|-------------|--------------|--------------------|--------------|------------|---------|-----------|----------|---------------------|--------------|
| FIEXC-B-1  | 1-12 (B5K0127-02 | 2) Soil San | npled: 11/03 | /05 08:00 F        | Received: 11 | /05/05 10: | 05      | I PALES A |          | 1 1 1 1 2 1 2 1 1 1 |              |
| Lead       |                  | 1 = = 4     | 4.37         | 0.504              | mg/kg dry    | 1          | 5K14037 | 11/14/05  | 11/19/05 | EPA 6020            |              |
| PH-1-10 (B | 5K0127-03) Soil  | Sampled:    | 11/02/05 14: | 00 Receive         | d: 11/05/05  | 10:05      |         |           | 8        | ·                   | et II. gag   |
| Lead       | =                |             | 10.0         | 0.481              | mg/kg dry    | 1          | 5K14037 | 11/14/05  | 11/19/05 | EPA 6020            | II THE STILL |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** 

Page 6 of 22



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported:

12/05/05 18:15

# Polychlorinated Biphenyls by EPA Method 8082 North Creek Analytical - Bothell

| Analyte                       | Result                  | Reporting<br>Limit | Units       | Dilution   | Batch      | Prepared    | Analyzed | Method          | Notes |
|-------------------------------|-------------------------|--------------------|-------------|------------|------------|-------------|----------|-----------------|-------|
| PH-1-10 (B5K0127-03) Soil     | Sampled: 11/02/05 14:00 | Received           | 1: 11/05/05 | 10:05      | ia ou sa s | and obstace | Jeans    | All Comment     |       |
| Aroclor 1016                  | ND                      | 25.6               | ug/kg dry   | 1          | 5K09047    | 11/09/05    | 11/10/05 | EPA 8082        | Fun   |
| Aroclor 1221                  | ND                      | 51.3               | H           |            | 91         | n           | #        |                 |       |
| Aroclor 1232                  | ND                      | 25.6               |             | The Walled | 2000 p. 19 |             |          | Service Control |       |
| Aroclor 1242                  | ND                      | 25.6               |             | er er      | W          | .1151       | ,,       | ,,              |       |
| Aroclor 1248                  | ND                      | 25.6               | **          | 11         | ,,         |             | **       |                 | `     |
| Aroclor 1254                  | ND                      | 25.6               | **          |            | **         | ,,          | "        |                 |       |
| Aroclor 1260                  | ND                      | 25.6               | n           | ,,         | 11         | **          | "        | *               |       |
| Aroclor 1262                  | ND                      | 25.6               | **          | "          | ,,         | "           |          | п               |       |
| Aroclor 1268                  | ND                      | 25.6               | n           |            | 11         | "           | **       | n               |       |
| Surrogate: TCX                | 82.0 % 39               | -139               |             |            | "          | "           | "        | "               |       |
| Surrogate: Decachlorobiphenyl | 76.0 % 33               | -163               |             |            | "          | ,,          | ,,       | "               |       |

North Creek Analytical - Bothell

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210 **Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

**Reported:** 12/05/05 18:15

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

| Analyte                     | los son live   |            | Reporting<br>Limit | Units       | Dilution   | Batch     | Prepared | Analyzed  | Method     | Notes         |
|-----------------------------|----------------|------------|--------------------|-------------|------------|-----------|----------|-----------|------------|---------------|
| PH-1-10 (B5K0127-03) Soil   | Sampled: 11/02 | 2/05 14:00 | Receive            | d: 11/05/05 | 10:05      | W. 25     | 1954     | [P.] [a#] | 3711 B     |               |
| Acetone                     | TONTO VII      | ND         | 36.1               | ug/kg dry   | 1 to 1     | 5K08064   | 11/08/05 | 11/08/05  | EPA 8260B  | 3/2 or 10 mag |
| Benzene                     | 26             | ND         | 1.80               | "           | 11         | **        | n .      | tt        | "ATTENDED  |               |
| Bromobenzene                |                | ND         | 6.02               | н           | **         | B         | e e      | Ħ         | 6011111111 |               |
| Bromochloromethane          |                | ND         | 6.02               | н н         | n          | 11        | 11       | Ħ         | **         |               |
| Bromodichloromethane        |                | ND         | 6.02               |             |            | **        | n        | н         | Ħ          |               |
| Bromoform                   |                | ND         | 6.02               | 11 H        |            | n n       | n        | *1        | # ==#Th    |               |
| Bromomethane                |                | ND         | 12.0               | "           | - 11       |           | 11       | 11        | **         |               |
| 2-Butanone                  |                | ND         | 18.0               | n           | "          | н         | n n      | 11        |            |               |
| n-Butylbenzene              |                | ND         | 6.02               | 11          |            | 11        | H        | 11        | n          |               |
| sec-Butylbenzene            |                | ND         | 6.02               | 11          |            |           | **       | 11        |            |               |
| tert-Butylbenzene           |                | ND         | 6.02               | 11          | n n        | 11        | = 4      | n         | ıı         |               |
| Carbon disulfide            |                | ND         | 3.61               | 17          | н          | FE #      | 11       | n         | 11         |               |
| Carbon tetrachloride        | 1              | ND         | 6.02               | T H         | 11         | er        | "        | н         | 11         |               |
| Chlorobenzene               |                | ND         | 2.41               | н           | н          | P1        | **       | 11        | 91         |               |
| Chloroethane                |                | ND         | 6.02               | tt .        | n I        | **        | **       | n         | **         |               |
| Chloroform                  |                | ND         | 3.01               | н           | n = 4      | н .       | "        | **        | **         |               |
| Chloromethane               | 1              | ND         | 12.0               | n           |            | 11        | **       | "         | н          |               |
| 2-Chlorotoluene             | 1              | ND         | 6.02               | **          | "          | н         | **       | 11        | n n        |               |
| 4-Chlorotoluene             | 1              | ND         | 6.02               | n           | F 4        | 11        | Ħ        | ıı .      | 11         |               |
| Dibromochloromethane        | 1              | ND         | 6.02               | н           |            | 11        | er       | 11        | n          |               |
| 1,2-Dibromo-3-chloropropane | 34             | ND         | 12.0               |             | THE STREET | н         | in i     | 11        | 11         |               |
| 1,2-Dibromoethane (EDB)     | 1              | ND         | 6.02               |             | **         | // II n   | 11       | - n       | п          |               |
| Dibromomethane              | 1              | ND         | 6.02               | - "         | н          | 11        | n E      | 11        | **         |               |
| 1,2-Dichlorobenzene         |                | ND         | 6.02               | н           | **         |           |          | "         | n n        |               |
| 1,3-Dichlorobenzene         | 1              | ND         | 6.02               | n           | **         | 11        | n        | 11        |            |               |
| 1,4-Dichlorobenzene         | 1              | ND         | 6.02               |             | 11         | = #       | n        |           |            |               |
| Dichlorodifluoromethane     |                | ND         | 6.02               | 11          | 0 11       | 11        | Ħ        | u         | 11         |               |
| 1,1-Dichloroethane          | 1              | ND         | 2.41               |             | **         |           | 11       | 11        | **         |               |
| 1,2-Dichloroethane          | 1              | ND         | 1.50               | H H         | **         | н         | 11       | u         | и          |               |
| 1,1-Dichloroethene          | 1              | ND         | 3.61               | 11          | **         | н         |          | 11        | n          |               |
| cis-1,2-Dichloroethene      |                | ND         | 3.61               | н           | **         | н         |          | " -       |            |               |
| trans-1,2-Dichloroethene    |                | ND         | 3.01               | н           | **         | With Late | **       | **        | н          |               |
| 1,2-Dichloropropane         |                | ND         | 6.02               | **          | **         | н         | *1       | **        | н          |               |
| 1,3-Dichloropropane         | 1              | ND         | 6.02               | **          |            | *1        | **       |           |            |               |
| 2,2-Dichloropropane         |                | ND         | 12.0               | **          | 11         | Ħ         | **       | 11        | n          |               |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kato Dung



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02
Project Manager: Galen Davis

**Reported:** 12/05/05 18:15

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

| Analyte                   | Result              | Reporting<br>Limit | Units       | i I    | Dilutio | on    | Batch   | Prepared    | Analyzed  | Method                                  | Note         |
|---------------------------|---------------------|--------------------|-------------|--------|---------|-------|---------|-------------|-----------|-----------------------------------------|--------------|
| PH-1-10 (B5K0127-03) Soil | Sampled: 11/02/05 1 | 4:00 Receive       | d: 11/05/05 | 5 10:0 | )5      | risy  | e H     | 2 5/L       | . Hallena | - 2 (**P.23%_E)                         |              |
| 1,1-Dichloropropene       | ND                  | 6.02               | ug/kg dry   |        | 1       | nas 4 | 5K08064 | 11/08/05    | 11/08/05  | н                                       | 1/201        |
| cis-1,3-Dichloropropene   | ND                  | 6.02               |             |        | **      |       | **      |             | #         | n                                       |              |
| trans-1,3-Dichloropropene | ND                  | 1.50               | **          |        | **      |       | **      | **          | n         | 11                                      |              |
| Ethylbenzene              | ND                  | 4.81               | **          |        | **      |       | н       | 11          | **        | # EEL                                   | Parametric S |
| Hexachlorobutadiene       | ND                  | 6.02               |             |        | 11      |       | 11      |             | "         | n 111                                   | MANUFACTURE  |
| Methyl tert-butyl ether   | ND                  | 1.20               | н           |        | **      |       | **      | **          | **        | n                                       |              |
| 2-Hexanone                | ND                  | 24.1               | **          |        | **      |       | **      | "           | 11        | n                                       |              |
| sopropylbenzene           | ND                  | 6.02               |             |        | 11      |       | H       | н           | н         | n                                       |              |
| o-Isopropyltoluene        | ND                  | 6.02               | н           |        | н       |       |         | 11          | **        | н                                       |              |
| l-Methyl-2-pentanone      | ND                  | 24.1               |             |        | **      |       | "       |             | **        | **                                      |              |
| Methylene chloride        | ND                  | 4.21               | "           |        | "       |       | n       |             | н         | 0                                       |              |
| Naphthalene               | ND                  | 6.02               | н           |        | **      |       | 99      | **          | **        | "                                       |              |
| -Propylbenzene            | ND                  | 6.02               | "           |        | **      |       | 11      | **          | N         | Ħ                                       |              |
| Styrene                   | ND                  | 1.20               | n           |        | "       |       | er -    | н           | **        | n                                       |              |
| ,2,3-Trichlorobenzene     | ND                  | 6.02               | **          |        | **      |       | **      | н           | #         | Ħ                                       |              |
| ,2,4-Trichlorobenzene     | ND                  | 6.02               | #           |        | **      |       | н       | 11          | п         | **                                      |              |
| ,1,1,2-Tetrachloroethane  | ND                  | 6.02               | н           |        | н       |       |         | <b>87</b>   | tt        |                                         |              |
| ,1,2,2-Tetrachloroethane  | ND                  | 6.02               | ŧr          |        | **      |       |         | **          | 11        | **                                      |              |
| etrachloroethene          | ND                  | 2.41               | **          |        |         |       | 17      | н           | **        | n                                       |              |
| oluene                    | ND                  | 1.80               | н           |        | es      |       |         | **          | 11        | n                                       |              |
| ,1,1-Trichloroethane      | ND                  | 3.01               | **          |        | 111     |       | **      | н           | **        |                                         |              |
| ,1,2-Trichloroethane      | ND                  | 1.50               | н           |        | **      |       | H.      |             | "         | ,                                       |              |
| richloroethene            | ND                  | 3.01               | **          |        | **      |       | 17      |             | Ħ         | n                                       |              |
| richlorofluoromethane     | ND                  | 6.02               | **          |        | H       |       | n       | 11          | **        |                                         |              |
| 2,3-Trichloropropane      | ND                  | 6.02               | **          |        | **      |       |         | **          | **        | "                                       |              |
| 2,4-Trimethylbenzene      | ND                  | 6.02               | "           |        | н       |       | "       | н           | 11        | 11                                      |              |
| 3,5-Trimethylbenzene      | ND                  | 6.02               | **          |        | **      |       |         | #           | Ħ         | n                                       |              |
| inyl chloride             | ND                  | 3.01               | 91          |        | n       |       |         | <b>H</b> 9. | "         | н                                       |              |
| otal Xylenes              | ND                  | 12.0               | **          |        | ,,      |       | . 11    |             | **        | n                                       |              |
| urrogate: 1,2-DCA-d4      | 104 %               | 60-140             |             |        |         |       | n       | n           | "         | "                                       | HUN, ET      |
| urrogate: Toluene-d8      | 110 %               | 60-140             |             |        |         |       | "       | "           | n         | n B                                     |              |
| urrogate: 4-BFB           | 113 %               | 60-140             |             |        |         |       | "       | "           | "         | ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |

North Creek Analytical - Bothell

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis **Reported:** 12/05/05 18:15

# Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

| Analyte                          | Result            | Reporting<br>Limit | Units      | Dilution    | Batch   | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyzed   | Method        | Notes                    |
|----------------------------------|-------------------|--------------------|------------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|--------------------------|
| FIEXC-B-7-10 (B5K0127-01) Soil   | Sampled: 11/02/0  | 05 13:00 Re        | ceived: 11 | /05/05 10:0 | 5       | NAME OF THE PERSON OF THE PERS |            |               | m/Anni                   |
| Dry Weight                       | 95.3              | 1.00               | %          | 1           | 5K10044 | 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/11/05   | BSOPSPL003R08 | Video and                |
| FIEXC-B-1-12 (B5K0127-02) Soil   | Sampled: 11/03/0  | 5 08:00 Re         | ceived: 11 | /05/05 10:0 | 5       | H.EL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVE UNITED |               |                          |
| Dry Weight                       | 91.0              | 1.00               | %          | 1           | 5K10044 | 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/11/05   | BSOPSPL003R08 |                          |
| PH-1-10 (B5K0127-03) Soil Sampl  | ed: 11/02/05 14:0 | 0 Received:        | 11/05/05   | 10:05       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                          |
| Dry Weight                       | 96.2              | 1.00               | %          | 1           | 5K10044 | 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/11/05   | BSOPSPL003R08 | # 4=                     |
| FIEXC-E-8 (B5K0127-04) Soil Sar  | npled: 11/02/05 0 | 9:00 Receiv        | ved: 11/05 | /05 10:05   | 1 -     | χ=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               | ндарда То                |
| Dry Weight                       | 92.6              | 1.00               | %          | 1           | 5K10044 | 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/11/05   | BSOPSPL003R08 |                          |
| FIEXC-B-6-10 (B5K0127-05) Soil   | Sampled: 11/01/0  | 5 16:00 Re         | ceived: 11 | /05/05 10:0 | 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 4.0           | - 12 - 1                 |
| Dry Weight                       | 90.8              | 1.00               | %          | 1           | 5K10044 | 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/11/05   | BSOPSPL003R08 |                          |
| FIEXC-B-5-10 (B5K0127-06) Soil   | Sampled: 11/01/0  | 5 11:00 Re         | ceived: 11 | /05/05 10:0 | 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | T Might g     | ROTTERS 100 9            |
| Dry Weight                       | 95.3              | 1.00               | %          | 1           | 5K10044 | 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/11/05   | BSOPSPL003R08 | 7082                     |
| FIEXC-B-3-15 (B5K0127-07) Soil   | Sampled: 11/02/0  | 5 15:00 Red        | ceived: 11 | /05/05 10:0 | 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                          |
| Dry Weight                       | 91.1              | 1.00               | %          | 1           | 5K10044 | 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/11/05   | BSOPSPL003R08 | ficare i <sub>n</sub> su |
| PH-2-17 (B5K0127-08) Soil Sample | ed: 11/04/05 08:0 | 0 Received:        | 11/05/05   | 10:05       | E 6"    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                          |
| Dry Weight                       | 94.5              | 1.00               | %          | 1           | 5K10044 | 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/11/05   | BSOPSPL003R08 |                          |
|                                  |                   |                    |            |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                          |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

**Reported:** 12/05/05 18:15

# Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

### North Creek Analytical - Bothell

|                                  |         | Reporting |             | Spike | Source     | 0.0134   | %REC   | = , , , , , , ,    | RPD   | le = yu |
|----------------------------------|---------|-----------|-------------|-------|------------|----------|--------|--------------------|-------|---------|
| Analyte                          | Result  | Limit     | Units       | Level | Result     | %REC     | Limits | RPD                | Limit | Notes   |
| Batch 5K07025: Prepared 11/07/05 | Using I | EPA 5030I | B (P/T)     | 7     |            | V = +    |        |                    |       |         |
| Blank (5K07025-BLK1)             |         | 7.3       | a secondina |       |            |          |        | Part of the second | -     | 125     |
| Gasoline Range Hydrocarbons      | ND      | 5.00      | mg/kg       |       |            |          |        |                    |       |         |
| Benzene                          | ND      | 0.0200    |             |       |            |          |        |                    |       |         |
| Toluene                          | ND      | 0.0500    |             |       |            |          |        |                    |       |         |
| Ethylbenzene                     | ND      | 0.0500    | n           |       |            |          |        |                    |       |         |
| Xylenes (total)                  | ND      | 0.100     | *           |       |            |          |        |                    |       |         |
| Surrogate: 4-BFB (FID)           | 2.39    | 5.67      | "           | 3.00  | 100 1 1 10 | 79.7     | 50-150 | ZIIIIZ             |       |         |
| Surrogate: 4-BFB (PID)           | 2.79    |           | "           | 3.00  |            | 93.0     | 53-142 |                    |       |         |
| LCS (5K07025-BS1)                |         |           |             |       |            |          |        |                    |       |         |
| Gasoline Range Hydrocarbons      | 54.2    | 5.00      | mg/kg       | 50.0  |            | 108      | 75-125 |                    |       |         |
| Benzene                          | 0.545   | 0.0200    | н           | 0.565 |            | 96.5     | 75-125 |                    |       |         |
| Toluene                          | 3.42    | 0.0500    | n           | 4.22  |            | 81.0     | 75-125 |                    |       |         |
| Ethylbenzene                     | 0.722   | 0.0500    | Ħ           | 0.845 |            | 85.4     | 75-125 |                    |       |         |
| Xylenes (total)                  | 4.05    | 0.100     | o "I 5 I    | 4.92  |            | 82.3     | 75-125 |                    |       |         |
| Surrogate: 4-BFB (FID)           | 3.01    | 1/4021    | n           | 3.00  |            | 100      | 50-150 |                    |       |         |
| Surrogate: 4-BFB (PID)           | 2.81    |           | "           | 3.00  |            | 93.7     | 53-142 |                    |       |         |
| LCS Dup (5K07025-BSD1)           |         |           |             | 15    |            |          |        |                    |       |         |
| Gasoline Range Hydrocarbons      | 50.1    | 5.00      | mg/kg       | 50.0  |            | 100      | 75-125 | 7.86               | 25    |         |
| Benzene                          | 0.585   | 0.0200    | 11          | 0.565 |            | 104      | 75-125 | 7.08               | 25    |         |
| Toluene                          | 3.68    | 0.0500    | Ħ           | 4.22  |            | 87.2     | 75-125 | 7.32               | 25    |         |
| Ethylbenzene                     | 0.773   | 0.0500    | n           | 0.845 |            | 91.5     | 75-125 | 6.82               | 25    |         |
| Kylenes (total)                  | 4.32    | 0.100     | Ħ           | 4.92  |            | 87.8     | 75-125 | 6.45               | 25    |         |
| Surrogate: 4-BFB (FID)           | 2.62    |           | "           | 3.00  |            | 87.3     | 50-150 |                    |       |         |
| Surrogate: 4-BFB (PID)           | 2.80    |           | "           | 3.00  |            | 93.3     | 53-142 |                    |       |         |
| Matrix Spike (5K07025-MS1)       |         |           |             |       | Source: B  | 5K0127-0 | )2     |                    |       |         |
| Gasoline Range Hydrocarbons      | 86.5    | 6.70      | mg/kg dry   | 67.0  | 10.4       | 114      | 42-125 |                    |       |         |
| Benzene                          | 0.766   | 0.0268    | н           | 0.757 | ND         | 101      | 45-125 |                    |       |         |
| 'oluene                          | 4.83    | 0.0670    | Ħ           | 5.66  | 0.00503    | 85.2     | 55-125 |                    |       |         |
| thylbenzene                      | 1.01    | 0.0670    | **          | 1.13  | ND         | 89.4     | 53-132 |                    |       |         |
| Cylenes (total)                  | 5.64    | 0.134     | m           | 6.59  | 0.0192     | 85.3     | 59-125 |                    |       |         |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 11 of 22



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported: 12/05/05 18:15

RPD

# Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

### North Creek Analytical - Bothell

Reporting

| Analyte               |                   | Result   | Limit U      | Jnits Leve   | el Result | %REC Limits | RPD Li       | mit Notes                         |
|-----------------------|-------------------|----------|--------------|--------------|-----------|-------------|--------------|-----------------------------------|
| Batch 5K07025:        | Prepared 11/07/05 | Using El | PA 5030B (P/ | Γ)           |           |             | (20)         | FREDE IN                          |
| Matrix Spike (5K0     | 7025-MS1)         |          |              | 9180         | Source:   | B5K0127-02  | 9(H))99<br>V | njje v masižionak<br>Poudo debije |
| Surrogate: 4-BFB (FIL | D)                | 3.98     | mg           | /kg dry 4.02 | ?         | 99.0 50-150 |              |                                   |

| Surrogate: 4-BFB (PID)      |       | 3.75  |        | "         | 4.02  |           | 93.3   | 53-142 |      |     | 127 |
|-----------------------------|-------|-------|--------|-----------|-------|-----------|--------|--------|------|-----|-----|
| Matrix Spike Dup (5K07025-  | MSD1) |       | Y      |           |       | Source: B | 5K0127 | -02    |      |     |     |
| Gasoline Range Hydrocarbons |       | 92.2  | 6.70   | mg/kg dry | 67.0  | 10.4      | 122    | 42-125 | 6.38 | 40  |     |
| Benzene                     |       | 0.785 | 0.0268 | и и       | 0.757 | ND        | 104    | 45-125 | 2.45 | 40  |     |
| Toluene                     |       | 4.92  | 0.0670 | H .       | 5.66  | 0.00503   | 86.8   | 55-125 | 1.85 | 40  |     |
| Ethylbenzene                |       | 1.04  | 0.0670 | n         | 1.13  | ND        | 92.0   | 53-132 | 2.93 | 40  |     |
| Xylenes (total)             |       | 5.80  | 0.134  | - H       | 6.59  | 0.0192    | 87.7   | 59-125 | 2.80 | 40  |     |
| Surrogate: 4-BFB (FID)      |       | 4.11  |        | <i>"</i>  | 4.02  |           | 102    | 50-150 |      | *** |     |
| Surrogate: 4-BFB (PID)      |       | 3.78  |        | "         | 4.02  |           | 94.0   | 53-142 |      |     |     |

North Creek Analytical - Bothell

Kate Haney, Project Manager

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported:

12/05/05 18:15

# Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

| Analyte                          | Result  | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD          | RPD<br>Limit | Notes                                   |
|----------------------------------|---------|--------------------|-----------|----------------|------------------|---------|----------------|--------------|--------------|-----------------------------------------|
| Batch 5K09044: Prepared 11/09/05 | Using 1 | EPA 3550B          | er e      | KLP            | a T              | mandr   |                |              |              | 17 (183)                                |
| Blank (5K09044-BLK1)             |         |                    |           | 116            | EFFE EAST        | Tiva Y  | 28 T. IV       | PC (1) (5.1) | N RELEASE    | NE state                                |
| Diesel Range Hydrocarbons        | ND      | 10.0               | mg/kg     |                |                  |         |                | A STATE OF   |              |                                         |
| Lube Oil Range Hydrocarbons      | ND      | 25.0               | н         |                |                  |         |                |              | 27.11.20     |                                         |
| Surrogate: 2-FBP                 | 7.33    | 11 73              | n         | 8.33           |                  | 88.0    | 50-150         |              | 180 100      | •                                       |
| Surrogate: Octacosane            | 8.48    |                    | "         | 8.33           |                  | 102     | 50-150         |              |              |                                         |
| LCS (5K09044-BS1)                | in Mari |                    |           |                |                  |         |                |              |              | Mary of the                             |
| Diesel Range Hydrocarbons        | 74.9    | 10.0               | mg/kg     | 66.7           | UKS B            | 112     | 61-120         |              |              | 1 20002010                              |
| Surrogate: 2-FBP                 | 7.45    | 1 N/A 1            | "         | 8.33           | 707              | 89.4    | 50-150         |              |              |                                         |
| LCS Dup (5K09044-BSD1)           |         |                    |           |                |                  |         |                |              |              |                                         |
| Diesel Range Hydrocarbons        | 72.8    | 10.0               | mg/kg     | 66.7           |                  | 109     | 61-120         | 2.84         | 40           | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |
| Surrogate: 2-FBP                 | 7.23    |                    | #<br>43   | 8.33           |                  | 86.8    | 50-150         |              | Law mar      | 30000                                   |
| Duplicate (5K09044-DUP1)         |         |                    |           |                | Source: B        | 5K0166- | 03             |              |              |                                         |
| Diesel Range Hydrocarbons        | ND      | 12.1               | mg/kg dry |                | ND               |         |                | NA           | 50           |                                         |
| Lube Oil Range Hydrocarbons      | ND      | 30.2               | 17        |                | ND               |         |                | NA           | 50           |                                         |
| Surrogate: 2-FBP                 | 7.55    |                    | "         | 10.1           |                  | 74.8    | 50-150         |              |              | -                                       |
| Surrogate: Octacosane            | 9.08    |                    | "         | 10.1           |                  | 89.9    | 50-150         |              |              |                                         |

North Creek Analytical - Bothell

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210 Anchorage

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Reported: Project Manager: Galen Davis 12/05/05 18:15

### Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

|                             |                 | Reporting   | g411      | Spike        | Source    |           | %REC   |             | RPD    |             |
|-----------------------------|-----------------|-------------|-----------|--------------|-----------|-----------|--------|-------------|--------|-------------|
| Analyte                     | Res             | ılt Limi    | t Units   | Level        | Result    | %REC      | Limits | RPD         | Limit  | Notes       |
| Batch 5K14037: Prepare      | ed 11/14/05 Usi | ng EPA 3050 | В         | . 100        | 12, 13    | цуджаг    | ale vi | Faggir !    | S 1000 |             |
| Blank (5K14037-BLK1)        |                 |             |           |              |           |           |        | - 4         | ye is  | KIEL J.     |
| Lead                        | N               | D 0.500     | mg/kg     | <u>     </u> |           | Ŭ-s:      |        | <del></del> |        | 100         |
| LCS (5K14037-BS1)           |                 |             |           |              |           |           |        |             |        |             |
| Lead                        | 40              | .4 0.500    | mg/kg     | 40.0         |           | 101       | 80-120 |             |        |             |
| LCS Dup (5K14037-BSD1)      |                 |             |           |              |           | 1.94      |        |             |        |             |
| Lead                        | 40              | .1 0.500    | mg/kg     | 40.0         | 81.       | 100       | 80-120 | 0.745       | 20     | 10 1 10-2   |
| Matrix Spike (5K14037-MS1)  |                 |             |           |              | Source: I | R5160055_ | .03    |             |        |             |
| ead                         | 56              | 2 0.521     | mg/kg dry | 41.7         | 13.1      | 103       | 29-166 |             |        | 1 - L. 100- |
| Matrix Spike Dup (5K14037-M | (ISD1)          |             |           |              | Source: I | 35K0055-  | 03     |             |        |             |
| ead                         | 63.             | 8 0.516     | mg/kg dry | 41.3         | 13.1      | 123       | 29-166 | 12.7        | 40     |             |
| Post Spike (5K14037-PS1)    |                 |             |           |              | Source: I | 35K0055-  | 03     |             |        |             |
| ead                         | 0.12            | 9           | ug/ml     | 0.100        | 0.0249    | 104       | 75-125 |             |        | 1. 1 111    |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Reported: 12/05/05 18:15

Project Manager: Galen Davis

### Polychlorinated Biphenyls by EPA Method 8082 - Quality Control North Creek Analytical - Bothell

| Analyte                  | Leaf mond         | Result | Reporting<br>Limit | Units     | Spike<br>Level |             | %REC    | %REC<br>Limits | RPD     | RPD<br>Limit | Notes        |
|--------------------------|-------------------|--------|--------------------|-----------|----------------|-------------|---------|----------------|---------|--------------|--------------|
| Batch 5K09047:           | Prepared 11/09/05 | Using  | EPA 3550B          |           |                | Yrang Bhili | Eur     | ASSEZ I S      | Palifor |              | 1 192        |
| Blank (5K09047-BLK       | (1)               |        |                    | Ш         |                |             |         |                |         | A. TE. Valle | \$74[ runen* |
| Aroclor 1016             |                   | ND     | 12.5               | ug/kg     | -              |             | n-B     |                |         |              | - 4          |
| Aroclor 1221             | 43                | ND     | 25.0               | n         |                |             |         |                |         |              |              |
| Aroclor 1232             |                   | ND     | = 12.5 =           |           |                |             |         |                |         |              |              |
| Aroclor 1242             |                   | ND     | 12.5               | 9         |                |             |         |                |         |              |              |
| Aroclor 1248             |                   | ND     | 12.5               | Ħ         |                |             |         |                |         |              |              |
| Aroclor 1254             |                   | ND     | 12.5               | III N     |                |             |         |                |         |              |              |
| Aroclor 1260             |                   | ND     | 12.5               | n         |                |             |         |                |         |              |              |
| Aroclor 1262             |                   | ND     | 12.5               | n         |                |             |         |                |         |              |              |
| Aroclor 1268             |                   | ND     | 12.5               | *         |                |             |         |                |         |              |              |
| Surrogate: TCX           | 18:               | 2.99   | i en e             | "         | 3.33           |             | 89.8    | 39-139         | 9-17    |              | 1 0 a        |
| Surrogate: Decachlorobij | ohenyl do all     | 3.50   |                    | "         | 3.33           |             | 105     | 33-163         |         |              |              |
| LCS (5K09047-BS1)        | (L) (089          |        |                    |           |                |             |         |                |         |              |              |
| Aroclor 1016             |                   | 35.9   | 12.5               | ug/kg     | 41.7           |             | 86.1    | 54-125         |         |              |              |
| Aroclor 1260             |                   | 39.1   | 12.5               | **        | 41.7           |             | 93.8    | 58-128         |         |              |              |
| Surrogate: TCX           |                   | 3.04   |                    | "         | 3.33           |             | 91.3    | 39-139         |         |              |              |
| Surrogate: Decachlorobip | phenyl            | 3.33   |                    | ***       | 3.33           |             | 100     | 33-163         |         |              |              |
| LCS Dup (5K09047-B       | SD1)              |        |                    |           |                |             |         |                |         |              |              |
| Aroclor 1016             |                   | 35.5   | 12.5               | ug/kg     | 41.7           |             | 85.1    | 54-125         | 1.12    | 30           |              |
| Aroclor 1260             |                   | 41.3   | 12.5               | **        | 41.7           |             | 99.0    | 58-128         | 5.47    | 30           |              |
| Surrogate: TCX           |                   | 2.99   |                    | "         | 3.33           |             | 89.8    | 39-139         |         |              |              |
| Surrogate: Decachlorobip | henyl             | 3.53   |                    | "         | 3.33           |             | 106     | 33-163         |         |              |              |
| Matrix Spike (5K0904     | 7-MS1)            |        |                    |           |                | Source: B   | 5K0194- | 02             |         |              | C-02         |
| Aroclor 1016             |                   | 55.2   | 17.9               | ug/kg dry | 59.6           | ND          | 92.6    | 47-134         |         |              |              |
| Aroclor 1260             |                   | 57.5   | 17.9               | "         | 59.6           | ND          | 96.5    | 22-171         |         |              |              |
| Surrogate: TCX           |                   | 4.37   |                    | **        | 4.77           |             | 91.6    | 39-139         |         |              |              |
| Surrogate: Decachlorobip | henyl             | 4.83   |                    | "         | 4.77           |             | 101     | 33-163         |         |              |              |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 15 of 22



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

%REC

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Source

Project Number: 036026.02 Project Manager: Galen Davis

Reported:

RPD

12/05/05 18:15

### Polychlorinated Biphenyls by EPA Method 8082 - Quality Control North Creek Analytical - Bothell

Reporting

| 1998 - 196a F     | Result                             | Limit                                                               | Units                                                                      | Level                                                                                     | Result                                                                                                  | %REC                                                                                                          | Limits                                                                                                                            | RPD                                                                                                                                                                                                                 | Limit                                                   | Notes                                                                                                                                                                                                                          |
|-------------------|------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prepared 11/09/05 | Using EP                           | A 3550B                                                             | X Labor                                                                    | 1                                                                                         | 347.11                                                                                                  |                                                                                                               | EVIT BULL                                                                                                                         | Theeler,                                                                                                                                                                                                            | t with                                                  | BATA MELAN                                                                                                                                                                                                                     |
| 5K09047-MSD1)     |                                    |                                                                     |                                                                            |                                                                                           | Source: I                                                                                               | 35K0194-                                                                                                      | 02                                                                                                                                | U                                                                                                                                                                                                                   | 3. H. W                                                 | C-02                                                                                                                                                                                                                           |
|                   | 50.8                               | 17.7                                                                | ug/kg dry                                                                  | 59.0                                                                                      | ND                                                                                                      | 86.1                                                                                                          | 47-134                                                                                                                            | 8.30                                                                                                                                                                                                                | 35                                                      |                                                                                                                                                                                                                                |
| 161               | 56.1                               | 17.7                                                                | п                                                                          | 59.0                                                                                      | ND                                                                                                      | 95.1                                                                                                          | 22-171                                                                                                                            | 2.46                                                                                                                                                                                                                | 35                                                      |                                                                                                                                                                                                                                |
|                   | 4.04                               |                                                                     | n                                                                          | 4.72                                                                                      |                                                                                                         | 85.6                                                                                                          | 39-139                                                                                                                            | ·                                                                                                                                                                                                                   |                                                         | -                                                                                                                                                                                                                              |
| biphenyl          | 4.73                               |                                                                     | n                                                                          | 4.72                                                                                      |                                                                                                         | 100                                                                                                           | 33-163                                                                                                                            |                                                                                                                                                                                                                     |                                                         |                                                                                                                                                                                                                                |
|                   | Prepared 11/09/05<br>5K09047-MSD1) | Prepared 11/09/05 Using EP<br>5K09047-MSD1)<br>50.8<br>56.1<br>4.04 | Prepared 11/09/05 Using EPA 3550B  5K09047-MSD1)  50.8 17.7 56.1 17.7 4.04 | Prepared 11/09/05 Using EPA 3550B  5K09047-MSD1)  50.8 17.7 ug/kg dry 56.1 17.7 "  4.04 " | Prepared 11/09/05 Using EPA 3550B  5K09047-MSD1)  50.8 17.7 ug/kg dry 59.0 56.1 17.7 " 59.0 4.04 " 4.72 | Prepared 11/09/05 Using EPA 3550B  5K09047-MSD1)  50.8 17.7 ug/kg dry 59.0 ND 56.1 17.7 " 59.0 ND 4.04 " 4.72 | Prepared 11/09/05 Using EPA 3550B  Source: B5K0194-  50.8 17.7 ug/kg dry 59.0 ND 86.1  56.1 17.7 " 59.0 ND 95.1  4.04 " 4.72 85.6 | Result Limit Units Level Result %REC Limits  Prepared 11/09/05 Using EPA 3550B  5K09047-MSD1)  Source: B5K0194-02  50.8 17.7 ug/kg dry 59.0 ND 86.1 47-134 56.1 17.7 " 59.0 ND 95.1 22-171  4.04 " 4.72 85.6 39-139 | Prepared 11/09/05 Using EPA 3550B    Source: B5K0194-02 | Result Limit Units Level Result %REC Limits RPD Limit  Prepared 11/09/05 Using EPA 3550B  Source: B5K0194-02  50.8 17.7 ug/kg dry 59.0 ND 86.1 47-134 8.30 35 56.1 17.7 " 59.0 ND 95.1 22-171 2.46 35  4.04 " 4.72 85.6 39-139 |

North Creek Analytical - Bothell

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported: 12/05/05 18:15

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                          | Result   | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD     | RPD<br>Limit | Notes          |
|----------------------------------|----------|--------------------|-------|----------------|------------------|---------|----------------|---------|--------------|----------------|
| Batch 5K08064: Prepared 11/08/05 | Using    | EPA 5035           |       | 868            |                  | Bully T | HE GREAT AT    |         | 3040         | VARE Sate      |
| Blank (5K08064-BLK1)             | AND POST | 199 m 2            |       |                |                  |         | 7 1118         | e tepur | ato unit     | said i al      |
| Acetone                          | ND       | 30.0               | ug/kg | e/han H        |                  | 8174    |                |         |              | William albert |
| Benzene                          | ND       | 1.50               | 71    |                |                  | 1.55    |                |         |              | 1915 to 1986 t |
| Bromobenzene                     | ND       | 5.00               | H     |                |                  |         |                |         |              | The American   |
| Bromochloromethane               | ND       | 5.00               | 11    |                |                  |         |                |         |              |                |
| Bromodichloromethane             | ND       | 5.00               | Ħ     |                |                  |         |                |         |              |                |
| Bromoform                        | ND       | 5.00               | n     |                |                  |         |                |         |              |                |
| Bromomethane                     | ND       | 10.0               | ir    |                |                  |         |                |         |              |                |
| 2-Butanone                       | ND       | 15.0               | 11    |                |                  |         |                |         |              |                |
| n-Butylbenzene                   | ND       | 5.00               | н     |                |                  |         |                |         |              |                |
| sec-Butylbenzene                 | ND       | 5.00               | Ħ     |                |                  |         |                |         |              |                |
| tert-Butylbenzene                | ND       | 5.00               | n     |                |                  |         |                |         |              |                |
| Carbon disulfide                 | ND       | 3.00               | Ħ     |                |                  |         |                |         |              |                |
| Carbon tetrachloride             | ND       | 5.00               | Ħ     |                |                  |         |                |         |              |                |
| Chlorobenzene                    | ND       | 2.00               | H     |                |                  |         |                |         |              |                |
| Chloroethane                     | ND       | 5.00               | n     |                |                  |         |                | •       |              | ·              |
| Chloroform                       | ND       | 2.50               | 17    |                |                  |         |                |         |              |                |
| Chloromethane                    | ND       | 10.0               | m —   |                |                  |         |                |         |              |                |
| 2-Chlorotoluene                  | ND       | 5.00               | n     |                |                  |         |                |         |              |                |
| 4-Chlorotoluene                  | ND       | 5.00               | tr    |                |                  |         |                |         |              |                |
| Dibromochloromethane             | ND       | 5.00               | Ħ     | 75             |                  |         |                |         |              |                |
| 1,2-Dibromo-3-chloropropane      | ND       | 10.0               | m     |                |                  |         |                |         |              |                |
| 1,2-Dibromoethane (EDB)          | ND       | 5.00               | n     |                |                  |         |                |         |              |                |
| Dibromomethane                   | ND       | 5.00               | Ħ     |                |                  |         |                |         |              |                |
| ,2-Dichlorobenzene               | ND       | 5.00               | n     |                |                  |         |                |         |              |                |
| ,3-Dichlorobenzene               | ND       | 5.00               | n     |                |                  |         |                |         |              |                |
| ,4-Dichlorobenzene               | ND       | 5.00               | n     |                |                  |         |                |         |              |                |
| Dichlorodifluoromethane          | ND       | 5.00               | n     |                |                  |         |                |         |              |                |
| ,1-Dichloroethane                | ND       | 2.00               | 89    |                |                  |         |                |         |              |                |
| ,2-Dichloroethane                | ND       | 1.25               | Ħ     |                |                  |         |                |         |              |                |
| ,1-Dichloroethene                | ND       | 3.00               | n     |                |                  |         |                |         |              |                |
| ris-1,2-Dichloroethene           | ND       | 3.00               | Ħ     |                |                  |         |                |         |              |                |
| rans-1,2-Dichloroethene          | ND       | 2.50               | н     |                |                  |         |                |         |              |                |
| ,2-Dichloropropane               | ND       | 5.00               | н     |                |                  |         |                |         |              |                |
| ,3-Dichloropropane               | ND       | 5.00               | п .   |                |                  |         |                |         |              |                |

North Creek Analytical - Bothell

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 17 of 22



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100

Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis Reported: 12/05/05 18:15

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

|         |          |           |       |        |      |        |     | •     |       |
|---------|----------|-----------|-------|--------|------|--------|-----|-------|-------|
|         | Repor    | ing       | Spike | Source |      | %REC   |     | RPD   | _     |
| Analyte | Result L | mit Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

| Batch 5K08064:           | Prepared | 11/08/05                                | Using EF | A 5035 | 9     |        | 300 F. | (in help | 11.    | April 5-W min soull |
|--------------------------|----------|-----------------------------------------|----------|--------|-------|--------|--------|----------|--------|---------------------|
| Blank (5K08064-BL)       | K1)      | 111111111111111111111111111111111111111 |          |        |       |        |        |          |        |                     |
| 2,2-Dichloropropane      |          | VILL                                    | ND       | 10.0   | ug/kg | Toplem | 4H     |          |        | MACE SAN            |
| 1,1-Dichloropropene      | 2        |                                         | ND       | 5.00   |       |        |        |          |        | MINOSH              |
| cis-1,3-Dichloropropene  |          |                                         | ND       | 5.00   | **    |        |        |          |        |                     |
| trans-1,3-Dichloroproper | ne       |                                         | ND       | 1.25   |       |        |        |          |        |                     |
| Ethylbenzene             |          |                                         | ND       | 4.00   | Ħ     |        |        |          |        |                     |
| Hexachlorobutadiene      |          |                                         | ND       | 5.00   |       |        |        |          |        |                     |
| Methyl tert-butyl ether  |          |                                         | ND       | 1.00   | **    |        |        |          |        |                     |
| 2-Hexanone               |          |                                         | ND       | 20.0   |       |        |        |          |        |                     |
| Isopropylbenzene         |          |                                         | ND       | 5.00   | Ħ     |        |        |          |        |                     |
| p-Isopropyltoluene       |          |                                         | ND       | 5.00   |       |        |        |          |        |                     |
| 4-Methyl-2-pentanone     |          |                                         | ND       | 20.0   | 11    |        |        |          |        |                     |
| Methylene chloride       |          |                                         | ND       | 3.50   | Ħ     |        |        |          |        |                     |
| Naphthalene              |          |                                         | ND       | 5.00   |       |        |        |          |        |                     |
| n-Propylbenzene          |          |                                         | ND       | 5.00   | n     |        |        |          |        |                     |
| Styrene                  |          |                                         | ND       | 1.00   | T T   |        |        |          |        |                     |
| 1,2,3-Trichlorobenzene   |          |                                         | ND       | 5.00   | 11    |        |        |          |        |                     |
| 1,2,4-Trichlorobenzene   |          |                                         | ND       | 5.00   |       |        |        |          |        | We will be a second |
| 1,1,1,2-Tetrachloroethan | е        |                                         | ND       | 5.00   |       |        |        |          |        |                     |
| 1,1,2,2-Tetrachloroethan | e        |                                         | ND       | 5.00   | н     |        |        |          |        |                     |
| Tetrachloroethene        |          |                                         | ND       | 2.00   | **    | *      |        |          |        |                     |
| Toluene                  |          |                                         | ND       | 1.50   | No.   |        |        |          |        |                     |
| 1,1,1-Trichloroethane    |          |                                         | ND       | 2.50   | **    |        |        |          |        |                     |
| 1,1,2-Trichloroethane    |          |                                         | ND       | 1.25   | i ii  |        |        |          |        |                     |
| Trichloroethene          |          |                                         | ND       | 2.50   |       |        |        |          |        |                     |
| Trichlorofluoromethane   |          |                                         | ND       | 5.00   | **    |        |        |          |        |                     |
| 1,2,3-Trichloropropane   |          |                                         | ND       | 5.00   | n n   |        |        |          |        |                     |
| 1,2,4-Trimethylbenzene   |          |                                         | ND       | 5.00   |       |        |        |          |        |                     |
| 1,3,5-Trimethylbenzene   |          |                                         | ND       | 5.00   | 8 #   |        |        |          |        |                     |
| Vinyl chloride           |          |                                         | ND       | 2.50   | H H   |        |        |          |        |                     |
| Total Xylenes            |          |                                         | ND       | 10.0   | п     |        |        |          |        |                     |
| Surrogate: 1,2-DCA-d4    | bet      | Yazaki                                  | 42.5     |        | "     | 40     | 0.0    | 106      | 60-140 | media ar aran       |
| Surrogate: Toluene-d8    |          | 1 64                                    | 43.9     |        | "     | 40     | 0.0    | 110      | 60-140 |                     |
| Surrogate: 4-BFB         |          |                                         | 41.3     |        | "     | 40     | 0.0    | 103      | 60-140 |                     |
| -                        |          |                                         |          |        |       |        |        |          |        |                     |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Katoskung



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100

Federal Way, WA/USA 98001

Project Number: 036026.02

Project: BNSF-Wishram, WA

Project Manager: Galen Davis

Reported: 12/05/05 18:15

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

| Analyte                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dogule  | Reporting |       |      | Spike | Source  |        | %REC             |          | RPL  | )     |         |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------|------|-------|---------|--------|------------------|----------|------|-------|---------|
| When the second        | THE STATE OF THE S | Result  | Limit     | Units | e le | Level | Resul   | t %REC | Limits           | RPD      | Limi | it    | Notes   |
| Batch 5K08064:         | Prepared 11/08/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Using 1 | EPA 5035  |       |      | 3     | Sold Sa |        | an 85 m          | Bayl saf |      | ų, qn | ed for  |
| LCS (5K08064-BS1)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |       |      |       |         |        |                  |          | 18.  | LEST  | REMAN)  |
| Acetone                | Veta = 1 - 100 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 396     | 30.0      | ug/kg | -11, | 400   | 13.1    | 99.0   | 70-130           |          |      |       |         |
| Benzene                | ia .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.8    | 1.50      | н     |      | 40.0  |         | 102    | 70-130           |          |      |       |         |
| 2-Butanone             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 424     | 15.0      | n     |      | 400   |         | 106    | 70-130           |          |      |       |         |
| Carbon disulfide       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.1    | 3.00      | п     |      | 40.0  |         | 100    | 70-130           |          |      |       |         |
| Chlorobenzene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.9    | 2.00      | tr    |      | 40.0  |         | 99.8   | 70-130           |          |      |       |         |
| 1,1-Dichloroethane     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.3    | 2.00      | 11    |      | 40.0  |         | 101    | 70-130           |          | 377  |       |         |
| 1,1-Dichloroethene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0    | 3.00      |       |      | 40.0  |         | 100    | 70-130           |          |      |       |         |
| cis-1,2-Dichloroethene |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.6    | 3.00      | **    |      | 40.0  |         | 104    | 70-130           |          |      |       |         |
| Ethylbenzene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.2    | 4.00      | tr    |      | 40.0  |         | 103    | 70-130           |          |      |       |         |
| Hexachlorobutadiene    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.4    | 5.00      | n     |      | 40.0  |         | 98.5   | 70-130           |          |      |       |         |
| 4-Methyl-2-pentanone   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 392     | 20.0      | **    |      | 400   |         | 98.0   | 70-130           |          |      |       |         |
| Tetrachloroethene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.9    | 2.00      | **    |      | 40.0  |         | 102    | 70-130           |          |      |       |         |
| Toluene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.7    | 1.50      | н     |      | 40.0  |         | 99.2   |                  |          |      |       |         |
| 1,1,1-Trichloroethane  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.2    | 2.50      | it    |      | 40.0  |         | 98.0   | 70-130           |          |      |       |         |
| Trichloroethene        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.2    | 2.50      | **    |      | 40.0  |         | 106    | 70-130<br>70-130 |          |      |       |         |
| Surrogate: 1,2-DCA-d4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.6    |           | "     | -    | 40.0  |         | 99.0   | 60-140           |          |      |       |         |
| Surrogate: Toluene-d8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.4    |           | "     |      | 40.0  |         | 96.0   | 60-140           |          |      |       |         |
| Surrogate: 4-BFB       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.9    |           | "     |      | 40.0  |         | 94.8   | 60-140           |          |      |       |         |
| LCS Dup (5K08064-B     | SD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |           |       |      | į.    |         | 111    | 00 140           |          |      |       |         |
| Acetone                | 301)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 430     | 30.0      |       |      | 400   |         | 16/1   |                  |          |      | A.    | # B = 1 |
| Benzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.1    | 1.50      | ug/kg |      | 400   |         | 108    | 70-130           | 8.23     | 30   |       |         |
| -Butanone              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 457     |           | **    |      | 40.0  |         | 105    | 70-130           | 3.14     | 30   |       |         |
| Carbon disulfide       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.9    | 15.0      |       |      | 400   |         | 114    | 70-130           | 7.49     | 30   |       |         |
| Chlorobenzene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.9    | 3.00      |       |      | 40.0  |         | 107    | 70-130           | 6.75     | 30   |       |         |
| ,1-Dichloroethane      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.2    | 2.00      | **    |      | 40.0  |         | 105    | 70-130           | 4.89     | 30   |       |         |
| ,1-Dichloroethene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2.00      | ,,    |      | 40.0  |         | 108    | 70-130           | 6.95     | 30   |       |         |
| is-1,2-Dichloroethene  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.5    | 3.00      | "     |      | 40.0  |         | 106    | 70-130           | 6.06     | 30   |       |         |
| Ethylbenzene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.7    | 3.00      | ,,    |      | 40.0  |         | 107    | 70-130           | 2.61     | 30   |       |         |
| lexachlorobutadiene    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.1    | 4.00      |       |      | 40.0  |         | 105    | 70-130           | 2.16     | 30   |       |         |
| -Methyl-2-pentanone    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.7    | 5.00      | "     |      | 40.0  |         | 79.2   | 70-130           | 21.7     | 30   |       |         |
| etrachloroethene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 418     | 20.0      |       |      | 400   |         | 104    | 70-130           | 6.42     | 30   |       |         |
| oluene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.2    | 2.00      | Ħ     |      | 40.0  |         | 98.0   | 70-130           | 4.24     | 30   |       |         |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.9    | 1.50      | H     | 4    | 40.0  |         | 105    | 70-130           | 5.39     | 30   |       |         |
| ,1,1-Trichloroethane   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.2    | 2.50      | н     |      | 40.0  |         | 106    | 70-130           | 7.37     | 30   |       |         |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



425.420.9200 fax 425.420.9210

**Spokane** 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

%REC

**Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100

Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02

Project Manager: Galen Davis

Reported:

12/05/05 18:15

RPD

# Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Reporting

| Analyte               |                   | Result  | Limit   | Units | Level | Result | %REC     | Limits | RPD     | Limit     | Notes     |
|-----------------------|-------------------|---------|---------|-------|-------|--------|----------|--------|---------|-----------|-----------|
| Batch 5K08064:        | Prepared 11/08/05 | Using E | PA 5035 |       | , was | Witu G | cula , u | 9.35   | Mary La |           |           |
| LCS Dup (5K08064-     | BSD1)             |         |         |       |       |        |          |        |         | THE STATE | Eller Ave |
| Trichloroethene       |                   | 42.4    | 2.50    | ug/kg | 40.0  |        | 106      | 70-130 | 0.473   | 30        | 1-101-1-1 |
| Surrogate: 1,2-DCA-d4 | .te               | 39.0    |         | n     | 40.0  |        | 97.5     | 60-140 |         |           |           |
| Surrogate: Toluene-d8 |                   | 37.8    |         | "     | 40.0  |        | 94.5     | 60-140 |         |           |           |
| Surrogate: 4-BFB      |                   | 37.4    |         | "     | 40.0  |        | 93.5     | 60-140 |         |           |           |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kate Haney, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 20 of 22



425.420.9200 fax 425.420.9210

 Spokane
 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200
 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis

Reported: 12/05/05 18:15

# Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

| Analyte and a second se | Result    | porting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD  | RPD<br>Limit | Notes        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-------|----------------|------------------|---------|----------------|------|--------------|--------------|
| Batch 5K10044: Prepared 11/10/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Using Dry | Weight           |       | - Bur          | DE ANTE          | gell 15 | DOMESTIC E     |      | ı sikilgi    | TA WHELE     |
| Blank (5K10044-BLK1) Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.8      | 1.00             |       |                |                  |         |                | 1.00 | Tiphoni is   | IN INSTITUTE |

North Creek Analytical - Bothell

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 21 of 22



425.420.9200 fax 425.420.9210

Spokane 11922 East 1st Avenue, Spokane Valley, WA 99206-5302

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

**Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project: BNSF-Wishram, WA

Project Number: 036026.02 Project Manager: Galen Davis **Reported:** 12/05/05 18:15

#### **Notes and Definitions**

C-02 To reduce matrix interference, the sample extract has undergone copper clean-up, method 3660, which is specific to sulfur

contamination.

G-01 Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



509-924-9200 425-420-9200 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E 1st Ave, Spokane, WA 99206-5302 20332 Empire Ave, Ste F1, Bend, OR 97701-5712

541-383-9310 503-906-9200 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

CHAIN OF CUSTODY REPORT

FAX 382-7588 FAX 563-9210

FAX 420-9210 FAX 924-9290 FAX 906-9210

11/5/05 **▽** WO ID 6 3 2  $\mathcal{B}$ 30 7 etroleum Hydrocarbon Analyses DATE TIME LOCATION / COMMENTS TIME TURNAROUND REQUEST DATE Organic & Inorganic Analyses TEMP: Work Order #: 2540177 in Business Days Specify: #OF OTHER M • 4 MATRIX (W, S, O) S V) S V S S messore Temp by Tempolaruk P.O. NUMBER: SEE WOLK OKIK-R BRUCE SLEPPUR BNSF RECEIVED BY: RECEIVED BY: PRINT NAME: PRINT NAME: REQUESTED ANALYSES PRESERVATIVE DATE: 11/4/05 15'00 2010 6010 Ę 2808 5934 7-111200 2808 5934 7-111200 2007 2007 18-15-16 0-1814 TIME TIME DATE 圣树 X X COCREVOSING FOR VICES CARLE MITBE, EDB, EDC 1/1/ × NO X X X × 50,18,100 1500 00%C 0091 0011 0200 cennely jewks 1400 0800 1300 FIRM: PROJECT NAME: BASE WISHRAM DATE/TIME SAMPLING RELEASED BY: JALLA C. Jan 20/2/11 FIEXC-8-6-10 11/105 6 FIEXC-B-5-10 1111105 11/2/05 114165 11/2/05 1112105 11/3/05 PROJECT NUMBER: 036026,02 **Vans** ADDRESS: 32001 Jeans Aver ADDRESS: 32001 3200 Ave Rederal WAY, WA PHONE: 25.3 574 CSSS FAX: 18051 FIEXC-E-8 2 FIEXC - 13-1-12 7 FIEXL-B-3-15 PRINT NAME / TELLERA FIEXC-8-7-10 ADDITIONAL REMARKS: **IDENTIFICATION** CLIENT SAMPLE 9 TRID Blowk 8 PII-2-17 3 PH-1-10 RELEASED BY: PRINT NAME: SAMPLED BY: NCA CLIENT:



SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

November 30, 2006

Galen Davis Kennedy/Jenks Consultants 32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001

RE: BNSF-Wishram, WA

Enclosed are the results of analyses for samples received by the laboratory on 11/13/06 17:45. The following list is a summary of the Work Orders contained in this report, generated on 11/30/06 17:47.

If you have any questions concerning this report, please feel free to contact me.

Work Order **Project ProjectNumber** BPK0390 BNSF-Wishram, WA [none]

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the labo





SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Name:

BNSF-Wishram, WA

Project Number: Project Manager: [none]

Galen Davis

Report Created: 11/30/06 17:47

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| MW-1      | BPK0390-01    | Water  | 11/09/06 11:00 | 11/13/06 17:45 |
| MW-3      | BPK0390-02    | Water  | 11/09/06 11:50 | 11/13/06 17:45 |
| MW-5      | BPK0390-03    | Water  | 11/09/06 12:40 | 11/13/06 17:45 |
| MW-100    | BPK0390-04    | Water  | 11/09/06 12:45 | 11/13/06 17:45 |

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Name:

BNSF-Wishram, WA

Project Number: Project Manager: [none]

Galen Davis

Report Created:

11/30/06 17:47

### **Analytical Case Narrative**

TestAmerica - Seattle, WA

#### **BPK0390**

SAMPLE RECEIPT

Samples were received November 11th, 2006 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 4.2 degrees Celsius.

### PREPARATIONS AND ANALYSIS

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica - Seattle, WA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,





SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Kennedy/Jenks Consultants

Project Name:

BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Number: Project Manager:

[none] Galen Davis Report Created:

11/30/06 17:47

### Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

TestAmerica - Seattle, WA

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method                                                      | Result                              | MDL*           | MRL                                                                        | Units                                         | Dil      | Batch                  | Prepared       | Analyzed       | Notes       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|----------------|----------------------------------------------------------------------------|-----------------------------------------------|----------|------------------------|----------------|----------------|-------------|
| BPK0390-01 (MW-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | Wa                                  | iter           |                                                                            | Sampl                                         | ed: 11/0 | 9/06 11:00             |                |                | D-1         |
| Gasoline Range Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NWTPH-Gx/802                                                | ND                                  |                | 250                                                                        | ug/l                                          | 5x       | 6K21020                | 11/21/06 11:15 | 11/22/06 02:06 | per Turk    |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             | ND                                  |                | 2.50                                                                       | •                                             | •        |                        |                |                |             |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THE PERSON NAMED IN                                         | ND                                  |                | 2.50                                                                       |                                               |          |                        |                |                |             |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                           | ND                                  | _              | 2,50                                                                       | *                                             |          |                        |                | •              |             |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •                                                       | ND                                  |                | 5,00                                                                       | *                                             |          | •                      | •              |                |             |
| Surrogate(s): 4-BFB (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FID)                                                        |                                     | 91.7%          |                                                                            | 58 - 144 %                                    | lx       |                        |                |                | - Vote Gire |
| 4-BFB (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PID)                                                        |                                     | 97.0%          |                                                                            | 68 - 140 %                                    |          |                        |                |                |             |
| BPK0390-02 (MW-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | Wa                                  | iter           |                                                                            | Sample                                        | ed: 11/( | 9/06 11:50             |                |                |             |
| Gasoline Range Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 NWTPH-Gx/802                                             | 209                                 |                | 50.0                                                                       | ug/l                                          | 1x       | 6K21020                | 11/21/06 11:15 | 11/22/06 04:11 |             |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1B                                                          |                                     |                |                                                                            |                                               |          |                        |                |                |             |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                           | ND                                  |                | 0.500                                                                      | •                                             | •        | •                      | •              | •              |             |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             | ND                                  |                | 0.500                                                                      |                                               |          | •                      | •              | •              |             |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | ND                                  |                | 0.500                                                                      |                                               | •        | •                      | •              | •              |             |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                           | ND                                  |                | 1.00                                                                       |                                               | 94       |                        | *              | •              |             |
| Surrogate(s): 4-BFB (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FID)                                                        |                                     | 93.3%          |                                                                            | 58 - 144 %                                    | H        |                        |                | *              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                     |                |                                                                            |                                               |          |                        |                |                |             |
| 4-BFB (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PID)                                                        |                                     | 100%           |                                                                            | 68 - 140 %                                    | *        |                        |                | "              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P(D)                                                        | w                                   |                |                                                                            |                                               |          | 19/06 12:40            |                | *              |             |
| BPK0390-03 (MW-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                     | iter           |                                                                            | Sample                                        | ed: 11/( | 9/06 12:40             |                |                | · - · ·     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | Ws<br>ND                            |                | 50.0                                                                       |                                               |          | 09/06 12:40<br>6K21020 | 11/21/06 11:15 | 11/22/06 04:42 |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NWTPH-Gx/802                                                |                                     | iter           |                                                                            | Sample                                        | ed: 11/( |                        | 11/21/06 11:15 | 11/22/06 04:42 |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NWTPH-Gx/802                                                | ND                                  | iter           | 50,0                                                                       | Sample                                        | ed: 11/0 |                        | 11/21/06 11:15 | 11/22/06 04:42 |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons Benzene Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NWTPH-Gx/802                                                | ND<br>ND                            |                | 50.0                                                                       | Sample                                        | ed: 11/0 |                        | 11/21/06 11:15 | 11/22/06 04:42 |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NWTPH-Gx/802                                                | ND<br>ND<br>ND                      |                | 50.0<br>0.500<br>0.500                                                     | Sample                                        | ed: 11/0 |                        | 11/21/06 11:15 | 11/22/06 04:42 |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NWTPH-Gx/802<br>1B<br>"                                     | ND<br>ND<br>ND<br>ND                |                | 50.0<br>0.500<br>0.500<br>0.500<br>1.00                                    | Sample                                        | lx       | 6K21020                | :              | 11/22/06 04:42 |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NWTPH-Gx/802<br>1B<br>"<br>"<br>"                           | ND<br>ND<br>ND<br>ND                |                | 50.0<br>0.500<br>0.500<br>0.500<br>1.00                                    | Sample                                        | lx       | 6K21020                | :              |                |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total)  Surrogate(s): 4-BFB (1 4-BFB (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NWTPH-Gx/802<br>1B<br>" " " " " " " " " " " " " " " " " " " | ND<br>ND<br>ND<br>ND                | 88.3%          | 50.0<br>0.500<br>0.500<br>0.500<br>1.00                                    | Sample ug/l                                   | ed: 11/0 | 6K21020                | :              |                |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total)  Surrogate(s): 4-BFB (l.4-BFB | NWTPH-Gx/802  1B  " " " " " " " "  PID)  NWTPH-Gx/802       | ND<br>ND<br>ND<br>ND                | 88.3%<br>96.5% | 50.0<br>0.500<br>0.500<br>0.500<br>1.00                                    | Sample ug/l                                   | ed: 11/0 | 6K21020                | :              |                |             |
| BPK0390-03 (MW-5)  Gasoline Range Hydrocarbons  Benzene Toluene Ethylbenzene Xylenes (total)  Surrogate(s): 4-BFB (1 4-BFB (1) | NWTPH-Gx/802 1B                                             | ND ND ND ND ND ND                   | 88.3%<br>96.5% | 50.0<br>0.500<br>0.500<br>0.500<br>1.00                                    | Sample ug/l                                   | ed: 11/0 | 6K21020<br>            | :              | :              |             |
| BPK0390-03 (MW-5)  Gasoline Range Hydrocarbons  Benzene Toluene Ethylbenzene Xylenes (total)  Surrogate(s): 4-BFB (1 4-BFB (1) 4-BFB (1) Gasoline Range Hydrocarbons Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NWTPH-Gx/802  1B  " " " " " " " "  PID)  NWTPH-Gx/802       | ND ND ND ND ND ND ND                | 88.3%<br>96.5% | 50.0<br>0.500<br>0.500<br>0.500<br>1.00                                    | Sample ug/l                                   | ed: 11/0 | 6K21020<br>            | :              | :              |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total)  Surrogate(s): 4-BFB (1 4-BFB (1) 4-BFB (1) Gasoline Range Hydrocarbons Benzene Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NWTPH-Gx/802  1B  " " " " " " " "  PID)  NWTPH-Gx/802       | ND       | 88.3%<br>96.5% | 50.0<br>0.500<br>0.500<br>0.500<br>1.00<br>50.0<br>0.500<br>0.500          | Sample ug/l                                   | ed: 11/0 | 6K21020<br>            | :              | :              |             |
| BPK0390-03 (MW-5) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total)  Surrogate(s): 4-BFB (1 4-BFB (1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NWTPH-Gx/802  1B  " " " " " " " "  PID)  NWTPH-Gx/802       | ND ND ND ND ND ND ND                | 88.3%<br>96.5% | 50.0<br>0.500<br>0.500<br>0.500<br>1.00                                    | Sample ug/l                                   | ed: 11/0 | 6K21020<br>            | :              | :              |             |
| BPK0390-03 (MW-5)  Gasoline Range Hydrocarbons  Benzene Toluene Ethylbenzene Xylenes (total)  Surrogate(s): 4-BFB (1 4-BFB (1) 4-BFB (1) Gasoline Range Hydrocarbons Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NWTPH-Gx/802  1B                                            | ND | 88.3%<br>96.5% | 50.0<br>0.500<br>0.500<br>0.500<br>1.00<br>50.0<br>0.500<br>0.500<br>0.500 | Sample ug/l 58 - 144 % 68 - 140 % Sample ug/l | ed: 11/0 | 6K21020<br>            | 11/21/06 11:15 | :              |             |

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.



SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Name:

BNSF-Wishram, WA

Project Number:
Project Manager:

[none]
Galen Davis

Report Created: 11/30/06 17:47

### Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

| Analyte                     | Method                  | Result | MDL*    | MRL        | Units      | Dil     | Batch        | Prepared       | Analyzed        | Notes           |
|-----------------------------|-------------------------|--------|---------|------------|------------|---------|--------------|----------------|-----------------|-----------------|
| BPK0390-01 (MW-1)           | 16) A 110/FIX 2/33 (17) | W      | ater    | V 12       | Sampl      | ed: 11  | /09/06 11:00 | DDWW9-         |                 | 3 5             |
| Diesel Range Hydrocarbons   | NWTPH-Dx                | ND     |         | 0.236      | mg/l       | 1×      | 6K16025      | 11/16/06 10:48 | 11/17/06 22:02  | id a            |
| Lube Oil Range Hydrocarbons | TO THE PERSON OF        | ND     |         | 0,472      | Allille .  |         | 100          |                |                 |                 |
| Surrogate(s): 2-FBP         |                         |        | 109%    | 48         | 53 - 125 % | н       | 7811         | # 112          | н               |                 |
| Octacosane                  |                         |        | 94.9%   |            | 68 - 125 % |         |              |                | *               |                 |
| BPK0390-02 (MW-3)           |                         | W      | ater    |            | Sampl      | ed: 11/ | /09/06 11:50 |                |                 |                 |
| Diesel Range Hydrocarbons   | NWTPH-Dx                | 0.659  | TI, iii | 0.250      | mg/l       | lx      | 6K16025      | 11/16/06 10:48 | 11/17/06 22:28  | TAKE THE        |
| Lube Oil Range Hydrocarbons |                         | ND     | H S 100 | 0.500      | •          | •       | •            | •              | w tell y        | 17.77           |
| Surrogate(s): 2-FBP         |                         |        | 112%    |            | 53 - 125 % | **      |              |                | <b>"</b> 4.74   |                 |
| Octacosane                  |                         |        | 98.8%   | <b>S</b> C | 68 - 125 % | "       |              |                |                 | 1) 12           |
| BPK0390-03 (MW-5)           |                         | W      | ater    |            | Sampl      | ed: 11  | /09/06 12:40 |                |                 |                 |
| Diesel Range Hydrocarbons   | NWTPH-Dx                | ND     |         | 0.250      | mg/l       | 1x      | 6K16025      | 11/16/06 10:48 | 11/17/06 22:54  |                 |
| Lube Oil Range Hydrocarbons |                         | ND     |         | 0.500      | •          |         | •            |                |                 |                 |
| Surrogate(s): 2-FBP         |                         |        | 95.6%   | (1)        | 53 - 125 % | *       |              | 11             | *               |                 |
| Octacosane                  |                         |        | 93.2%   |            | 68 - 125 % | *       |              |                | ,               |                 |
|                             |                         |        |         |            |            |         |              |                |                 |                 |
| BPK0390-04 (MW-100)         | X Description           | W      | ater    | E          | Sampl      | ed: 11/ | 09/06 12:45  |                |                 | F               |
| Diesel Range Hydrocarbons   | NWTPH-Dx                | ND     |         | 0.248      | mg/l       | lx      | 6K16025      | 11/16/06 10:48 | 11/17/06 23:21  |                 |
| Lube Oil Range Hydrocarbons | mi sarêr Hesiên         | ND     | Ekokê   | 0.495      | ASCERSE:   |         |              | *              | ar Emalisari    |                 |
| Surrogate(s): 2-FBP         | 1 2                     | 1977   | 99.2%   | 2) th      | 53 - 125 % |         | agre.        | 14 HOTE 84     | <b>"</b> 1=-110 | I II III III II |
| Octacosane                  |                         |        | 91.9%   |            | 68 - 125 % | *       |              |                | *               |                 |

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Name:

BNSF-Wishram, WA

Project Number: Project Manager: [none]

Galen Davis

Report Created:

11/30/06 17:47

# Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica - Seattle, WA

| Analyte                                  | Method             | Result    | 241 -17        | MDL*   | MRL        | Units                  | Dil     | Source<br>Result | Spike<br>Amt | e %<br>REC | (Limits)    | %<br>RPD | (Limits) | Analyzed        | Notes      |
|------------------------------------------|--------------------|-----------|----------------|--------|------------|------------------------|---------|------------------|--------------|------------|-------------|----------|----------|-----------------|------------|
| Blank (6K21020-BLK1)                     | Terror during      | 4445      | 530            |        | ge First   | 6                      |         | 188              |              | 11/2       | 11/21/06 11 | :15      |          | sal nookym na   | 9.5        |
| Gasoline Range Hydrocarbons              | NWTPH-Gx/          | ND        |                |        | 50.0       | ug/l                   | 1x      | TRE              | -            | Ų-         | -           | -        | 3000     | 11/21/06 12:56  |            |
| Benzene                                  | 8021B              | ND        |                |        | 0,500      |                        | -01     | _                |              |            | _           |          | 33       | i - 1           | rwot       |
| Toluene                                  |                    | ND        |                |        | 0.500      |                        | 100     | -                |              |            | A           |          | 146      | 10 m            |            |
| Ethylbenzene                             | •                  | ND        |                |        | 0.500      |                        |         |                  | _            |            |             |          | _        |                 |            |
| Xylenes (total)                          |                    | ND        |                |        | 1.00       |                        |         | -                | -            | -          | -           |          | - 4      | Contraction of  |            |
| Surrogate(s): 4-BFB (FID)                | Shirt T            | Recovery: | 88.5%          | 1      | Limi       | ts: 58-144%            | ,,      | W. J.            |              | 150        | " V"        |          | 776      | 11/21/06 12:56  | 691 (NG)   |
| 4-BFB (PID)                              |                    |           | 99.5%          |        |            | 68-140%                | •       |                  |              |            |             |          |          | the street      |            |
| LCS (6K21020-BS1)                        |                    |           |                |        |            |                        |         |                  | Ext          | racted:    | 11/21/06 11 | :15      |          |                 |            |
| Gasoline Range Hydrocarbons              | NWTPH-Gx/          | 896       |                | 11 -   | 50.0       | ug/l                   | 1×      | -                | 1000         | 89.6%      | (80-120)    |          | -        | 11/21/06 13:31  |            |
| Surrogate(s): 4-BFB (FID)                | 8021B              | Recovery: | 93.2%          | 11,000 | Limi       | ts: 58-144%            |         |                  |              |            |             |          | - 0      | 11/21/06 13:31  | MEXICO (1) |
| LCC ((VA1020 DC2)                        |                    |           |                |        |            |                        |         |                  | -            | with       | ###D        |          |          | entries rest of |            |
| LCS (6K21020-BS2) Benzene                | NWTPH-Gx/          | 25.4      | - 1            | _      | 0.500      | ug/l                   | 1x      |                  | 30.0         | 84.7%      | (80-120)    | :15      | _        | 11/21/06 14:26  |            |
| Toluene                                  | 8021B              | 25.5      |                | - MITT | 0.500      |                        | ANN .   | _                |              | 85.0%      |             |          | _        |                 |            |
| Ethylbenzene                             | U .                | 24.9      |                |        | 0.500      |                        |         | _                |              | 83.0%      |             |          | 100350   | •               |            |
| Xylenes (total)                          |                    | 74.2      |                |        | 1.00       |                        | Netso I | -                | 90.0         | 82.4%      |             |          | - 1011   | Marce Service   |            |
| Surrogate(s): 4-BFB (PID)                | 1199001            | Recovery: | 97.0%          |        | Limi       | ts: 68-140%            | *       |                  |              | . 22T F    | scw1        |          | 1111166  | 11/21/06 14:26  | On Halley  |
| Duplicate (6K21020-DUP1)                 |                    |           |                |        | QC Source: | BPK0355-02             |         |                  | Ext          | racted:    | 11/21/06 11 | :15      | 1.650)   |                 |            |
| Gasoline Range Hydrocarbons              | NWTPH-Gx/<br>8021B | 2140      |                | - 55   | 250        | ug/l                   | 5x      | 2240             | -            |            | -           | 4.57%    | (25)     | 11/21/06 18:07  | PEROD      |
| Benzene                                  | 8021B              | ND        |                |        | 2,50       |                        |         | ND               | _ "          |            |             | 9.52%    |          | 7               |            |
| Toluene                                  |                    | ND        |                |        | 2.50       |                        |         | ND               |              |            | -           | 4.26%    | *        |                 |            |
| Ethylbenzene                             | •                  | ND        |                |        | 2.50       | •                      | •       | 18.3             |              | -          |             | 160%     | •        | •               | RP-        |
| Xylenes (total)                          | • •                | 57.8      |                |        | 5.00       | *                      | *       | 62.4             | -            |            |             | 7.65%    | •        | •               |            |
| Surrogate(s): 4-BFB (FID)<br>4-BFB (PID) |                    | Recovery: | 93.8%<br>102%  |        | Limi       | ts: 58-144%<br>68-140% | lx<br>" |                  |              |            |             |          |          | 11/21/06 18:07  |            |
| Duplicate (6K21020-DUP2)                 |                    |           |                |        | QC Source: | BPK0390-04             |         |                  | Ext          | racted:    | 11/21/06 11 | :15      |          |                 |            |
| Gasoline Range Hydrocarbons              | NWTPH-Gz/<br>8021B | ND        |                | -      | 50.0       | ug/l                   | 1x      | ND               | -            |            | -           | NR       | (25)     | 11/22/06 05:44  | -          |
| Benzene                                  | 8021B              | ND        |                |        | 0.500      |                        |         | ND               |              |            | -           | NR       |          | *               |            |
| Toluene                                  | •                  | ND        |                |        | 0.500      |                        | *       | ND               | -            | -          |             | NR       |          | •               |            |
| Ethylbenzene                             | • 11               | ND        |                |        | 0.500      |                        | *       | ND               | _            | -          |             | NR       |          |                 |            |
| Xylenes (total)                          |                    | ND        |                |        | 1.00       | •                      |         | ND               | -            | -          |             | NR       |          |                 | 14         |
| Surrogate(s): 4-BFB (F1D)<br>4-BFB (P1D) |                    | Recovery: | 89.8%<br>97.0% |        | Limi       | ts: 58-144%<br>68-140% | "       |                  |              |            |             |          |          | 11/22/06 05:44  |            |

TestAmerica - Seattle, WA

Jaw Dhuy

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Kennedy/Jenks Consultants

Project Name:

BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Number: Project Manager: [none] Galen Davis

Report Created: 11/30/06 17:47

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica - Seattle, WA

| QC Batch: 6K21020           | Water 1            |           |       | - R                       |               | REANTEL<br>LANCE | WATER TO         | 1HA          | \$250 0 k2 k1 K |             |          |          |                |       |
|-----------------------------|--------------------|-----------|-------|---------------------------|---------------|------------------|------------------|--------------|-----------------|-------------|----------|----------|----------------|-------|
| Analyte                     | Method             | Result    | MDL*  | MRL                       | Units         | Dil              | Source<br>Result | Spike<br>Amt | %<br>REC        | (Limits)    | %<br>RPD | (Limits) | ) Analyzed     | Notes |
| Matrix Spike (6K21020-MS1)  | STEWNE .           |           |       | QC Source:                | BPK0355-02    |                  | 1 4              | Extr         | acted:          | 11/21/06 11 | :15      | = 2 =    | And the second | 自怕    |
| Gasoline Range Hydrocarbons | NWTPH-Gx/<br>8021B | 6910      | -     | 250                       | ug/l          | 5x               | 2240             | 5000         | 93,4%           | (75-131)    | -        | -        | 11/21/06 18:39 |       |
| Surrogate(s): 4-BFB (FID)   |                    | Recovery: | 95.2% | Lim                       | nits: 58-144% | lx               |                  |              |                 |             |          |          | 11/21/06 18:39 |       |
| Matrix Spike (6K21020-MS2)  |                    |           |       | Extracted: 11/21/06 11:15 |               |                  |                  |              | 17              |             |          |          |                |       |
| Benzene                     | NWTPH-Gx/<br>8021B | 159       | _     | 2,50                      | ug/l          | 5x               | 1.54             | 150          | 105%            | (46-130)    | -        | -        | 11/21/06 19:13 | 31    |
| Toluene                     |                    | 154       |       | 2.50                      |               |                  | 1.20             |              | 102%            | (60-124)    |          |          |                |       |
| Ethylbenzene                |                    | 173       |       | 2,50                      |               |                  | 18.3             |              | 103%            | (56-141)    | _        |          | •              |       |
| Xylenes (total)             |                    | 513       |       | 5.00                      |               |                  | 62.4             | 450          | 100%            | (66-132)    | _        | _ =      | 77             |       |

TestAmerica - Seattle, WA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Kennedy/Jenks Consultants

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Name:

BNSF-Wishram, WA

Project Number: Project Manager: [none] Galen Davis Report Created:

11/30/06 17:47

| Semivolatile P                    | etroleum Pro | ducts by I                          | NWTPE         |         | cid/Silica G<br>a - Seattle, W. |       | an-up -          | Labor        | ratory   | Quality     | Cont     | trol Res | ults           |          |
|-----------------------------------|--------------|-------------------------------------|---------------|---------|---------------------------------|-------|------------------|--------------|----------|-------------|----------|----------|----------------|----------|
| QC Batch: 6K16025                 | Water I      | Water Preparation Method: EPA 3520C |               |         |                                 |       |                  |              |          |             |          |          |                | 40       |
| Analyte                           | Method       | Result                              | М             | DL* MR  | L Units                         | Dil   | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits  | ) Analyzed     | Notes    |
| Blank (6K16025-BLK1)              |              |                                     | 1             |         |                                 | -1++- |                  | Ext          | racted:  | 11/16/06 10 | :48      | MALES I  |                |          |
| Diesel Range Hydrocarbons         | NWTPH-Dx     | ND                                  | -             | - 0,250 | mg/l                            | 1x    | -                |              | -        |             | -        | -        | 11/17/06 20:18 | 111-0-0- |
| Lube Oil Range Hydrocarbons       |              | ND                                  | -             | - 0,500 |                                 | *     | _                |              |          |             | _        |          |                |          |
| Surrogate(s): 2-FBP Octacosane    |              | Recovery:                           | 100%<br>98.0% |         | Limits: 53-125%<br>68-125%      | "     |                  |              |          |             |          |          | 11/17/06 20:18 | -1755    |
|                                   |              |                                     |               |         |                                 |       |                  |              |          |             |          |          |                |          |
| LCS (6K16025-BS1)                 | n_init s     |                                     | 1,10          | 4 -     |                                 |       | Ext              |              |          |             |          |          |                |          |
| Diesel Range Hydrocarbons         | NWTPH-Dx     | 1.86                                | 17-           | - 0.250 | mg/l                            | 1x    |                  | 2.00         | 93.0%    | (61-132)    | -        | -        | 11/17/06 20:44 |          |
| Surrogate(s): 2-FBP<br>Octacosane | All to       | Recovery:                           | 106%<br>94.8% |         | Limits: 53-125%<br>68-125%      | "     |                  | Įū<br>N      |          |             |          |          | 11/17/06 20:44 | 1000     |
| Matrix Spike (6K16025-MS1)        |              |                                     |               | QC Sour | ce: BPK0393-10                  |       |                  | Ext          | racted:  | 11/16/06 10 | :48      |          |                |          |
| Diesel Range Hydrocarbons         | NWTPH-Dx     | 1.77                                |               | - 0.243 | mg/l                            | 1x    | ND               | 1.94         | 91.2%    | (32-143)    | _        | _        | 11/17/06 21:10 |          |
| Surrogate(s): 2-FBP Octacosane    |              | Recovery:                           | 104%<br>86.8% |         | Limits: 53-125%<br>68-125%      | ,     |                  |              |          |             |          |          | 11/17/06 21:10 | П        |
| Matrix Spike Dup (6K16025-MS      | SD1)         |                                     |               | QC Sour | ce: BPK0393-10                  |       |                  | Ext          | racted:  | 11/16/06 10 | :48      |          |                |          |
| Diesel Range Hydrocarbons         | NWTPH-Dx     | 1.81                                |               | 0.243   | mg/l                            | 1x    | ND               | 1.94         | 93.3%    | (32-143)    | 2.23%    | 6 (50)   | 11/17/06 21:36 |          |
| Surrogate(s): 2-FBP Octacosane    | ,            | Recovery:                           | 105%<br>93.4% |         | Limits: 53-125%<br>68-125%      |       |                  |              |          |             |          |          | 11/17/06 21:36 |          |

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





SEATTLE, WA

11720 NORTH CREEK PKWY N. SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Kennedy/Jenks Consultants

Project Name:

BNSF-Wishram, WA

32001 32nd Ave S Ste 100 Federal Way, WA/USA 98001 Project Number:

[none]

Project Manager: Galen Davis

Report Created: 11/30/06 17:47

#### **Notes and Definitions**

#### Report Specific Notes:

D-14

Diluted due to matrix effect.

RP-4

Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

#### **Laboratory Reporting Conventions:**

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA \_ Not Reported / Not Available

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL\* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. \*MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Limits

Dil

Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic Signature

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory



# NALYTICAL TESTING CORPORATION Test/Imerica

AND THE REPORT OF THE PROPERTY 
11922 E. First Ave, Spokane, WA 99206-5302 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 11720 North Creek Play N Suite 400, Bothell, WA 98011-8244 9405 SW Nimbus Ave, Beaverton, OR 97008-7145

425-420-9200 PAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

And the Control of th

Work Order # DP/ (1390) WO IA 63 DATE 1/13/06 Tade: 1333 T DATE TURNAROUND REQUES 4.26 LOCATION / in Business Days OTHER Specify. THE Francis CO Luna, Jr. MALTH-S 876 174S # OF CONT. 9 (W. S. O) 3 KISTO PENEW INVOICE LINET BCEIVED BY: M AV Fr 8TEX BCEIVED BY: REQUESTED ANALYSES PRESERVATIVE いっとのからはる十 INVOICE TO: RNS F 333 DATE: 1/1/3/06 CHAIN OF CUSTODY REPORT いがた DATE スメメス メメメ YOW (MTCA) REPORTING ADDRESS: SCOT 32-10 HE S. SHE-100 FEDEUAL WAY, WAY OF BOOK PHONE STOWNST PAX: 253-952-3435 × 大 BHOTON OF JANE (W 1150 0<del>1</del>2] Inda KORNDA MOL SAMPLING DATE/TIME ROJECT NAME: GUSF WISH TAM BNSF Railroad 11 9/06 CLIENT SAMPLE IDENTIFICATION LEASED BY: RUN ROJECT NUMBER MW-100 DOTTIONAL REMARKS: AW-3 AW-N J-MW SAMPLED BY: UNT NAME: LEASED BY: INT NAME CLIENT

weer. By relinquishing samples to fest America, client agrees to pay for the services requested on this chain of custody form and for any additional analyses performed on this project.

Payment for services is the within 30 days from the date of invoice unless otherwise contracted. Sample(s) will be disposed of after 30 days unless otherwise contracted.