

Soil and Groundwater Assessment Report

Trolley Barn Yakima, Washington

for

Washington State Department of Ecology

February 16, 2015

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Soil and Groundwater Assessment Report

Trolley Barn Yakima, Washington

File No. 0504-101-01

February 16, 2015

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program – Central Region Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Attention: Matthew Durkee, LHG

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509,363.3125

Scott H. Lathen, PE Environmental Engineer

Bruce D. Williams Managing Principal

SHL:BDW:tjh:mce

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	. 1
2.0	SITE DESCRIPTION AND BACKGROUND	. 1
	Trolley Barn Property	
2.2.	Central Washington Comprehensive Mental Health Property	
3.0	SCOPE AND TASKS	. 2
3.1.	Task 1: Soil Sampling and Laboratory Analysis	3
	Task 2: Groundwater Monitoring Well Installation	
	Task 3: Groundwater Sampling and Laboratory Analysis	
3.4.	Task 4: Data Evaluation and Reporting	. 5
4.0	FIELD ASSESSMENT	. 5
4.1.	Test Pit Excavations	. 5
4.2.	Soil Borings and Monitoring Well Installation	.5
	Subsurface Conditions	
	Field Screening Observations	
	Soil Sampling	
4.6.	Grab Groundwater Sample	
5.0	QUARTERLY GROUNDWATER MONITORING	. 7
	Monitoring Well Headspace Vapor Monitoring	
	Groundwater Elevation Monitoring	
5.3.	Groundwater Sampling	.8
6.0	CHEMICAL ANALYTICAL RESULTS	. 8
6.1.	Soil Chemical Analytical Results	. 8
6	S.1.1. Test Pit Soil Samples	8
6	S.1.2. Exploratory Boring and Monitoring Well Soil Samples	8
	Groundwater Chemical Analytical Results	
	S.2.1. Groundwater Sample from Boring GEI-B8, August 12, 2014	
	S.2.2. Groundwater Samples from Site Monitoring Wells, September 16, 2014 Groundwater Natural Attenuation Parameters	
7.0	SUMMARY AND RECOMMENDATIONS	L1
	Assessment Summary	
	Data Gaps	
	7.2.1. Trolley Barn Property	
	7.2.2. CWCMH Property	
	Supplemental Assessment Recommendations	
	7.3.2. CWCMH Property	
	REFERENCES	
0.0	ALI ENLINOES	-+

LIST OF TABLES

Table 1. Summary of Soil Field Screening Results - Metals

LIST OF TABLES (CONTINUED)

- Table 2. Summary of Groundwater Level Measurements
- Table 3. Summary of Field-Measured Natural Attentuation Parameters
- Table 4. Summary of Chemical Analytical Results Groundwater
- Table 5. Summary of Chemical Analytical Results Soil

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Exploration Locations
- Figure 3. Groundwater Contours and Elevations, September 16, 2014
- Figure 4. Proposed Monitoring Wells

APPENDICES

Appendix A. Field Procedures and Boring Logs

Figure A-1 – Key to Exploration Logs

Figures A-2 through A-10 - Logs of Borings

Figures A-11 through A-13 - Logs of Monitoring Wells

Figures A-14 through A-18 - Logs of Test Pits

Appendix B. Chemical Analytical Laboratory Reports

Appendix C. Report Limitations and Guidelines for Use

ACRONYMS AND ABBREVIATIONS

Able - Able Cleanup Technologies

AST – aboveground storage tank

ASTM - American Society for Testing and Materials

bgs - below ground surface

BTEX – benzene, toluene, ethylbenzene and total xylenes

Cascade - Cascade Drilling

COC - chain-of-custody

CUL - cleanup level

CWCMH - Central Washington Comprehensive Mental Health

DO - dissolved oxygen

DRPH - diesel-range petroleum hydrocarbons

Ecology - Washington State Department of Ecology

EDB - 1,2-dibromoethane

EDC - 1,2-dichloroethane

EPA – United States Environmental Protection Agency

ESA - environmental site assessment

ev - electron volt

GeoEngineers - GeoEngineers, Inc.

GIS - geographical information system

GRPH - gasoline-range petroleum hydrocarbons

GPS - global positioning system

HCID – hydrocarbon identification

HWA - HWA Geosciences, Inc.

IDW - investigation-derived waste

ACRONYMS AND ABBREVIATIONS (CONTINUED)

LCS - laboratory control sample

LCSD - laboratory control sample duplicate

µg/L - micrograms per liter

MCL - maximum contaminant level

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

MS - matrix spike

mS/cm - milliSiemens per centimeter

MSD - matrix spike duplicate

MTBE - methyl tert butyl ether

MTCA - Model Toxics Control Act

mV - millivolt

NAD83 - North American Datum of 1983

NAVD88 - North American Vertical Datum of 1988

NRC - NRC Environmental Services

ORP - oxidation-reduction potential

ORPH - oil-range petroleum hydrocarbons

PAH - polycyclic aromatic hydrocarbons

PCB – polychlorinated biphenyls

PID – photoionization detector

PLS - PLS, Inc.

PLSA - PLSA Engineering

ppm - parts per million

PVC - polyvinyl chloride

ACRONYMS AND ABBREVIATIONS (CONTINUED)

QA - quality assurance

QC - quality control

RCRA - Resource Conservation and Recovery Act

RPD - relative percent difference

S&W - Shannon and Wilson, Inc.

SDG - sample delivery group

TestAmerica - TestAmerica Laboratories, Inc.

Trolley Barn - Trolley Repair Barn

UST – underground storage tank

Utilities Plus - Utilities Plus, LLC

VOC - volatile organic compound

XRF - x-ray fluorescence

1.0 INTRODUCTION

This report summarizes soil and groundwater assessment activities conducted in 2014 at the Trolley Barn site (herein designated the site) located in Yakima, Washington, as shown in Vicinity Map, Figure 1. The site includes both the current Trolley Barn property, located at 404 South 3rd Avenue, and the adjacent parking lot to the west, currently operated by Central Washington Comprehensive Mental Health (CWCMH). The parking lot was formerly part of the Trolley Barn property until it was sold in the 1990s. This report has been prepared by GeoEngineers, Inc. (GeoEngineers) for the Washington State Department of Ecology (Ecology) under Contract Number C1100145.

Assessment actions included collecting soil samples from test pits, exploratory borings and groundwater monitoring wells, and groundwater samples from the three new wells and the well installed in 2007. A quarterly groundwater monitoring program was initiated following installation of the monitoring wells. This report summarizes results of soil assessment activities and the initial (first quarter) of groundwater monitoring. Site features and exploration locations are depicted in Exploration Locations, Figure 2.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1. Trolley Barn Property

The Yakima Valley Transportation Company Trolley Repair Barn (Trolley Barn) and Substation is located at the intersection of South 3rd Avenue and West Pine Street in Yakima, Washington. The property is owned by the City of Yakima and is used to house and maintain trolleys. Two buildings (the Trolley Barn and the Substation) are located on the site and a fenced yard contains vehicles and equipment. Trolley tracks and wires are located south and east of the Trolley Barn building.

The Trolley Barn contains two maintenance pits with concrete floors and sumps or drains; petroleum staining was observed on the walls and floors of the pits as a result of maintenance of the trolleys and drips from equipment. The presence of pre-1974 oil-filled electrical equipment, especially in the substation, suggests the possibility of polychlorinated biphenyls (PCBs).

Three underground storage tanks (USTs) were located at the north end of the site; two USTs (identified as UST#6 and UST#7) were located near the northeast corner of the site and one UST (identified as UST#8) was located west of the Trolley Barn, currently in CWCMH's parking lot. USTs #6, #7 and #8 were removed and adjacent soil was assessed in 1990. Total petroleum hydrocarbons were detected at relatively low concentrations (less than 100 parts per millions [ppm]) from the 10 UST soil assessment samples collected from the three UST excavations. Benzene was detected at concentrations greater than current Washington State Model Toxics Control Act (MTCA) Method A cleanup levels (Method A cleanup levels [CULs]) from eight of the 10 assessment samples. Toluene also exceeded the Method A CUL from one sample. A fourth apparent UST fill port was observed in the floor of the Substation. The content and capacity of the tank is unknown. A bulk fuel facility has been present approximately 350 feet south of the property for up to 50 years. Historic site features are depicted on Figure 2.

A Phase II Environmental Site Assessment (ESA) was conducted in 2007 by HWA Geosciences, Inc. (HWA). HWA advanced three hand-auger borings (Pit-1-N, Pit-1-S and Pit-2) in the maintenance pits, one soil boring (HWA-B1) located west of the Substation and installed a groundwater monitoring well (HWA-MW-1) south

of the Substation. Two oil samples (Switch-1 and Switch-2) also were collected from equipment in the Substation. Previous exploration locations are depicted on Figure 2. Chemical analytical results from the sampling indicated the following:

- Oil-range petroleum hydrocarbons (ORPH) were detected at concentrations exceeding the Method A CUL in soil samples collected from the maintenance pits. ORPH was not detected in the soil samples collected from HWA-B1 and HWA-MW-1 and the groundwater sample collected from HWA-MW-1.
- Lead, cadmium and chromium were detected in the maintenance pit soil samples at concentrations exceeding Method A CULs for unrestricted land use. Total and dissolved chromium were detected in the groundwater sample collected from HWA-MW-1 at concentrations greater than the Method A CUL. Note: HWA reported cadmium instead of chromium exceeding Method A CULs. A review of the laboratory report confirmed cadmium was not detected at concentrations greater than the laboratory reporting limit.
- PCBs were detected in the maintenance pit samples at concentrations less than Method A CULs. PCBs were not detected in the two oil samples collected from the substation equipment.

2.2. Central Washington Comprehensive Mental Health Property

A Phase II ESA was conducted at the CWCMH facility in 1996 by Shannon and Wilson, Inc. (S&W). The assessment included excavating five test pits (TP-1 through TP-5) and collecting a surface soil sample from near a waste oil above-ground storage tank (AST) at a location currently included in the CWCMH parking area. The historic test pits and waste oil tank locations are depicted on Figure 2. Chemical analytical results obtained from this Phase II ESA indicated lead, cadmium and ORPH were present at concentrations greater than Method A CULs in the surface soil sample collected near the waste oil AST. The potential contaminants (metals, polycyclic aromatic hydrocarbons [PAHs], diesel-range petroleum hydrocarbons [DRPH], ORPH and PCBs) analyzed from the test pit soil samples were either not detected or detected at concentrations less than Method A CULs.

Additionally, a limited Phase II ESA was conducted on portions of the site in 1991 by PLSA Engineering and Surveying (PLSA). As reported by S&W in a 1996 Phase I ESA, the PLSA Phase II ESA included excavating two test pits (TP-1 and TP-3) in the CWCMH parking area. Lead was detected in a soil sample obtained from test pit TP-1 (located at the same approximate location as the S&W TP-1) at a concentration greater than Method A CULs. Additionally, heavy oil was detected at 1,600 milligrams per kilogram (mg/kg), which exceeded the cleanup level at the time of sampling but is less than the current Method A CUL. No chemical analytical data was reported in the S&W Phase I ESA associated with PLSA test pit TP-3.

3.0 SCOPE AND TASKS

Based on our review of the previous assessment activities, in our opinion, additional investigation was required to evaluate data gaps and better define the extent of contamination. Our general approach consisted of focused site assessment activities, which included excavating test pits, drilling soil borings and collecting soil samples, installing additional groundwater monitoring wells and conducting quarterly groundwater monitoring from new and existing wells. These activities were conducted to define the nature and extent of possible contamination in soil and groundwater.

The following tasks were identified in the provided scope of services.

- Task 1 Soil Sampling and Laboratory Analysis
- Task 2 Groundwater Monitoring Well Installation
- Task 3 Groundwater Sampling and Laboratory Analysis
- Task 4 Data Evaluation and Reporting

A detailed description of the activities performed for each task is provided below.

3.1. Task 1: Soil Sampling and Laboratory Analysis

This task included initial field activities and collecting soil samples from test pits and soil borings, during separate mobilizations. Specific scope items included:

- 1. Coordinating underground utility locating using the one-call system and a subcontracted private utility locator, Utilities Plus, LLC (Utilities Plus).
- 2. Subcontracting NRC Environmental Services (NRC) to excavate five test pits (GEI-TP-1, GEI-TP-1a, and GEI-TP-2 through GEI-TP-4) in areas near former USTs and at exterior locations near the Substation and the Trolley Barn. Test pits were excavated to between about 9½ to 14 feet below ground surface (bgs). Excavated soil was field screened using the techniques described below.
- 3. Subcontracting Cascade Drilling (Cascade) to drill nine soil borings (GEI-B1 through GEI-B9) and three monitoring wells (GEI-MW-1 through GEI-MW-3) using sonic drilling techniques. Borings were advanced to between 10 to 20 feet bgs. Continuous soil samples were collected and select sub-samples were field screened using water sheen techniques, a photoionization detector and visual observations.
- 4. Submitting at least one soil sample from each test pit and boring to TestAmerica Laboratories, Inc. (TestAmerica) located in Spokane Valley, Washington for chemical analysis. Soil samples were analyzed using a combination of the following methods:
 - a. Hydrocarbon identification using Northwest Method NWTPH-HCID (HCID).
 - b. Gasoline-range petroleum hydrocarbons (GRPH) using Northwest Method NWTPH-Gx.
 - c. DRPH and ORPH using Northwest Method NWTPH-Dx.
 - d. Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) using Environmental Protection Agency (EPA) 200 Series Methods.
 - e. PCBs using EPA Method 8082.
 - f. Volatile organic compounds (VOCs) using EPA Method 8260. Specific VOCs analyzed using this method included: benzene, toluene, ethylbenzene and total xylenes (BTEX), 1,2-dichloroethane (EDC), and methyl-tert-butyl-ether (MTBE).
 - g. PAHs using EPA Method 8270.
- 5. Collecting one grab groundwater sample from soil boring GEI-B8. Groundwater was purged before sampling. The groundwater sample was submitted to TestAmerica for HCID, GRPH, DRPH, ORPH, VOCs, PAHs, PCBs and metals using the methods listed above.
- 6. Managing investigation-derived waste (IDW) generated during the investigation.

3.2. Task 2: Groundwater Monitoring Well Installation

This task included installing monitoring wells to assess groundwater for chemicals of potential concern and evaluating groundwater flow direction. Groundwater monitoring wells were installed during the same mobilization as drilling the soil borings. This task included:

- Constructing monitoring wells using 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC) casing and well screen material, with the top of the well screen located approximately 2 to 3 feet above the estimated groundwater level, and total well screen lengths of between 10 to 15 feet. The wells were completed with flush-mount surface monuments.
- 2. Subcontracting PLS, Inc. (PLS), a licensed surveyor, to survey the horizontal location and top of well casing elevation. Elevation was measured to the nearest 0.01 foot relative to the North American Vertical Datum of 1988 (NAVD88). The horizontal location was measured to within 0.1 foot to the North American Vertical Datum of 1983, updated 1991 (NAD83 [91]). Survey locations on the PVC well casing were marked by the surveyor on the north side of the casing.

3.3. Task 3: Groundwater Sampling and Laboratory Analysis

This task included conducting the first quarterly groundwater monitoring event for the existing well (HWA-MW-1) and the new wells (GEI-MW-1 through GEI-MW-3). Specific groundwater monitoring tasks included:

- 1. Inspecting the well cap and monument integrity and measuring depth to water in each well to calculate the groundwater elevation.
- Collecting groundwater samples using low-flow, low-stress sampling techniques. Groundwater quality
 field parameters were measured during purging activities, including pH, temperature, conductivity,
 dissolved oxygen (DO), oxidation-reduction potential (ORP) and turbidity. One duplicate sample was
 collected from GEI-MW-2.
- 3. Submitting groundwater samples to TestAmerica for the following chemical analyses using the methods listed above:
 - a. GRPH, DRPH and ORPH;
 - b. VOCs;
 - c. MTCA Metals (arsenic, cadmium, chromium, lead, and mercury);
 - d. PCBs;
 - e. PAHs;
 - f. In addition to DRPH analysis using NWTPH-Dx, groundwater samples collected during this event were analyzed using NWTPH-Dx with silica gel cleanup for comparison purposes; and
 - g. Samples collected during this event were analyzed for natural attenuation parameters including nitrate, soluble manganese (Mn⁺²), sulfate (SO₄), methane (CH₄) and alkalinity. Soluble ferrous iron (Fe²⁺), which has a 15-minute hold time, was analyzed in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method.
- 4. Managing IDW and coordinating disposal after obtaining chemical analytical results.

3.4. Task 4: Data Evaluation and Reporting

Upon completion of field exploration activities and the first quarterly groundwater sampling event, this assessment report was provided summarizing the field activities, soil analytical results, the first quarter of groundwater analytical results, a comparison of analytical results to MTCA Method A cleanup levels and an estimation of groundwater flow direction and gradient.

4.0 FIELD ASSESSMENT

This section describes the field assessment procedures and observations. Assessment actions included excavating test pits, advancing exploratory soil borings, installing monitoring wells and collecting soil and groundwater samples. The one-call utility notification was contacted to identify and mark underground utilities before conducting the subsurface explorations. Additionally, Utilities Plus identified and marked underground utilities near the proposed test pit, soil boring, and monitoring well locations.

4.1. Test Pit Excavations

Test pit explorations were conducted June 11, 2014. NRC excavated five test pits (GEI-TP-1, GEI-TP-1a, and GEI-TP-2 through GEI-TP-4) using a Takeuchi TB285 excavator to depths ranging between $9\frac{1}{2}$ to 14 feet bgs. Three test pits (GEI-TP-1, GEI-TP-1a, and GEI-TP-2) were excavated near historical USTs #6 and #7, one test pit (GEI-TP-3) was excavated south of the Trolley Barn and the final test pit (GEI-TP-4) was excavated south of the Substation. Based on the field screening results (discussed in "Section 4.4") observed from test pit GEI-TP-1, test pit GEI-TP-1a was excavated to assess the lateral extent of potential contamination to the east. Test pit locations are depicted on Figure 2. The test pits were backfilled with the excavated material and compacted with the excavator bucket.

4.2. Soil Borings and Monitoring Well Installation

Cascade drilled soil borings (GEI-B1 through GEI-B9) and monitoring wells (GEI-MW-1 through GEI-MW-3) on August 11 through 13, 2014 using sonic drilling methods. Soil borings were drilled to depths ranging between 10 to 20 feet bgs and monitoring wells were advanced to depths ranging from 20 to 25 feet bgs. Six soil borings (GEI-B1 through GEI-B6) were advanced in the CWCMH parking lot and three borings (GEI-B7 through GEI-B9) were advanced near historical USTs #6 and #7. Soil borings were backfilled with bentonite chips and patched with asphalt or gravel depending on location.

Cascade constructed the monitoring wells using 2-inch-diameter, Schedule 40 PVC casing and 0.010-slotted well screen material, with the top of the well screen located approximately 2 to 3 feet above the estimated groundwater level, and total well screen lengths of between 10 to 15 feet. The monitoring wells were completed with flush-mount surface monuments. Monitoring well GEI-MW-1 was installed at a downgradient/crossgradient location relative to historical USTs #6 and #7. Monitoring wells GEI-MW-2 and GEI-MW-3 were installed at crossgradient locations relative to the Trolley Barn building. **Note:** GEI-MW-3 was intended as an upgradient monitoring well based on an assumed groundwater flow direction to the southeast.

PLS surveyed the horizontal and vertical locations of the monitoring wells on August 26, 2014. The PVC casing was surveyed relative to the north side of the casing. The top of casing elevation ranged between 1,059.44 feet (HWA-MW-1) to 1,061.25 feet (GEI-MW-2). The casing elevations were surveyed relative to the NAVD88 vertical datum and the horizontal locations were surveyed relative to the NAD83/91

Washington South Zone. The exploratory soil boring and test pit locations were logged using a GPS capable device.

IDW, consisting of excess soil cuttings, decontamination and development water, generated from the soil borings and monitoring wells was drummed and stored near the shed in the northeast corner of the site. After receiving the soil and groundwater chemical analytical results, Able Cleanup Technologies (Able) was contracted to profile and dispose the accumulated IDW. IDW disposal will occur in November 2014.

4.3. Subsurface Conditions

GeoEngineers field representative observed each test pit and boring, classified the soil encountered, and prepared a detailed log of each exploration. Soil encountered in the borings was classified in the field in general accordance with ASTM International (ASTM) D 2488, the Standard Practice for Classification of Soils, Visual-Manual Procedure. Soil conditions observed from the explorations generally consisted of gravel with varying quantities of silt, sand and cobbles. Groundwater was not observed in the test pit explorations but was encountered in several soil borings at depths about 12 to 15 feet bgs. Test pit and soil boring logs are included in Appendix A.

4.4. Field Screening Observations

Soil sub-samples from each test pit and soil boring were field-screened for the presence of petroleum-related compounds using the procedures described in Appendix A. No sheens were observed on soil removed from the test pits. Headspace vapors were detected in test pit GEI-TP-1 at about 9½ feet bgs at 7.5 ppm. Headspace vapors were not detected greater than 1 ppm from the other test pits. Water sheens were not observed from the soil and monitoring well borings except a slight sheen in boring GEI-B8 from about 18 to 20 feet bgs. Headspace vapors were detected from the borings at concentrations ranging up to 770 ppm (from boring GEI-B8). Headspace vapors detected from the soil borings likely were caused by high daily temperatures (greater than 90 degrees Fahrenheit) causing interference with the photoionization detector (PID) readings. Field screening results are recorded on the boring logs included in Appendix A.

Ecology's on-site representative also used an X-ray fluorescence (XRF) instrument to screen soil samples obtained from the soil borings and monitoring wells for metals. XRF screening was conducted on samples obtained from borings GEI-B1 through GEI-B4, GEI-B6, GEI-B8 and monitoring well GEI-MW-3. XRF data is summarized in Summary of Soil Field Screening Results – Metals, Table 1. Arsenic was detected at concentrations potentially exceeding Method A CULs in three borings (GEI-B4, GEI-B6, and GEI-MW-3) at depths shallower than 6½ feet bgs. Lead was detected at concentrations potentially exceeding Method A CULs in each of the borings screened, except boring GEI-B2, at depths down to 6½ feet bgs. Mercury was detected in two borings (GEI-B1 and GEI-B4) at concentrations greater than Method A CULs, also at depths down to 6½ feet bgs. Cadmium and chromium were not detected at concentrations greater than the instruments limit of detection. XRF field screening data was used to select additional soil samples (from borings GEI-B4, GEI-B5 and GEI-B6) for metals laboratory analysis.

4.5. Soil Sampling

Soil samples were collected at regular intervals from the test pit, boring, and monitoring well explorations for potential chemical analysis. Soil samples were collected from the excavator bucket at about 3-foot intervals from test pits GEI-TP-1 through GEI-TP-4. Soil samples were collected from test pit GEI-TP-1a at about 9 and 12 feet bgs to assess the soil at similar depths where field screening was observed in GEI-TP-1.

One soil sample was submitted from test pits GEI-TP-1 through GEI-TP-4 for chemical analysis. Two soil samples were submitted for chemical analysis from test pit GEI-TP-1a at depths of 9 and 12 feet bgs.

Two or three soil samples were collected from each exploratory and monitoring well boring for potential chemical analysis. One soil sample was submitted for chemical analysis from the monitoring well borings (GEI-MW-1 through GEI-MW-3) and exploratory borings (GEI-B2, GEI-B3, and GEI-B7 through GEI-B9) at depths ranging between 7 to 15 feet bgs. Two soil samples were submitted for chemical analysis from borings GEI-B1 and GEI-B4 through GEI-B7 at depths ranging between 2 to 13 feet bgs.

4.6. Grab Groundwater Sample

Soil and groundwater with field screening indications of potential petroleum contamination were encountered at about 15 feet bgs in boring GEI-B8. Based on the field screening indications of contamination, a one-time reconnaissance groundwater sample (B8-081214) was collected from the boring using a temporary well screen. Approximately 3 gallons of water were purged from the boring before sampling. Sampling procedures are described in Appendix A.

5.0 QUARTERLY GROUNDWATER MONITORING

A groundwater monitoring program was initiated following construction of the monitoring wells. The first groundwater sampling event was conducted on September 16, 2014. Subsequent groundwater sampling events will be conducted quarterly for three additional quarters. The groundwater monitoring program includes both the existing monitoring well (HWA-MW-1) and the three recently installed monitoring wells (GEI-MW-1 through GEI-MW-3). Groundwater sampling procedures are described in Appendix A.

5.1. Monitoring Well Headspace Vapor Monitoring

GeoEngineers measured monitoring well headspace vapors using a PID. Headspace measurements were collected by inserting the PID probe into the well casing immediately after removing the well cap and recording the maximum observed concentration. Headspace vapor measurements were less than 1 ppm in each well casing. Results are presented in Summary of Groundwater Level Measurements, Table 2.

5.2. Groundwater Elevation Monitoring

GeoEngineers measured static depth to groundwater on September 16, 2014 using an electronic water level indicator. Depths ranged from 12.00 feet (HWA-MW-1) to 13.40 feet (GEI-MW-2) below the top of well casing. Groundwater elevations ranged from about 1,047.22 feet in GEI-MW-1 to 1,047.85 feet in GEI-MW-2.

Based on groundwater elevations measured on September 16, 2014, groundwater flow in shallow groundwater beneath the site generally was toward the east. Groundwater elevation contours generated using Golden Software's Surfer (version 12) by applying the ordinary kriging interpolation method (linear variogram model). The average hydraulic gradient was about 0.005 feet per foot (about 29 feet per mile). Groundwater elevations in the shallow unconfined aquifer underlying the site are influenced by the rate of groundwater recharge (infiltration of precipitation and snowmelt) within associated upland areas to the north, west and south of the site and, potentially, the stage of adjacent surface water within the irrigation canals and the Yakima River.

Groundwater depths and associated groundwater elevations are included in Table 2. Groundwater Contours and Elevations, September 16, 2014, Figure 3 presents groundwater elevations, approximate groundwater elevation contours and interpreted groundwater flow direction on September 16, 2014.

5.3. Groundwater Sampling

GeoEngineers purged and sampled project monitoring wells in general compliance with standard low-flow sampling methodology. A portable peristaltic pump equipped with disposable tubing was used to purge and sample each well. Groundwater water quality parameters were measured at 3-minute intervals during well purging. Groundwater samples were collected when each water quality parameter had stabilized in conformance with the criteria presented in Appendix A, or the maximum purge time had been achieved. Groundwater water quality parameters are summarized in Summary of Field-Measured Natural Attenuation Parameters. Table 3.

6.0 CHEMICAL ANALYTICAL RESULTS

Soil and groundwater samples were submitted to TestAmerica. Chemical analytical results are summarized in Summary of Chemical Analytical Results – Groundwater, Table 4 and Summary of Chemical Analytical Results – Soil, Table 5. Laboratory reports are included in Appendix B.

6.1. Soil Chemical Analytical Results

6.1.1. Test Pit Soil Samples

Six soil samples were submitted to TestAmerica for chemical analysis. Soil samples obtained from the test pits were analyzed for one or more of the following analytes: GRPH, ORPH, DRPH, VOCs, 1,2-dibromoethane (EDB), PAHs, PCBs and metals using the analytical methods described above. Test pit soil sample results are summarized by the following:

- GRPH, DRPH, ORPH, EDB, PAHS, PCBs, and metals were either not detected or detected at concentrations less than Method A CULs in site soil samples.
- VOCs were either not detected or detected at concentrations less than Method A CULs except from the sample collected from GEI-TP-2 at 12 feet bgs. Benzene was detected at a concentration (0.0458 mg/kg) that exceeded the Method A CULs (0.03 mg/kg). The other VOCs from this sample were either not detected or detected at a concentration less than Method A CULs.
- Cadmium was detected at a concentration of 2.02 mg/kg, which is greater than the Method A CUL of 2.0 mg/kg, in the sample collected from GEI-TP-2 at 12 feet bgs.
- Lead was detected at a concentration of 302 mg/kg, which is greater than the Method A CUL of 250 mg/kg, in the sample collected from GEI-TP-2 at 12 feet bgs.
- Metals were either not detected or were detected at concentrations less than Method A CULs in other site soil samples submitted.

6.1.2. Exploratory Boring and Monitoring Well Soil Samples

Sixteen soil samples (plus two duplicate samples) were submitted to TestAmerica from the soil borings and monitoring wells. Soil samples were analyzed for one or more of the following analytes: GRPH, ORPH, DRPH,

VOCs, EDB, PAHs, PCBs and metals using the analytical methods described above. Exploratory boring and monitoring well soil sample analytical results are summarized by the following:

- GRPH, VOCs, EDB, PAHs and PCBs were either not detected or were detected at concentrations less than Method A CULs.
- DRPH and ORPH were detected in boring GEI-B1 at about 2 to 3 feet bgs at concentrations (3,950 mg/kg and 15,000 mg/kg, respectively) exceeding Method A CULs (2,000 mg/kg). DRPH and ORPH were not detected in soil samples obtained from the other explorations.
- Cadmium was detected in borings GEI-B1 and GEI-B4 at about 2 to 3 feet bgs at concentrations (2.60 and 6.48 mg/kg, respectively) exceeding the Method A CUL (2 mg/kg).
- Lead was detected in borings GEI-B1, GEI-B4 and GEI-B6 at about 2 to 3 feet bgs at concentrations ranging from 343 to 865 mg/kg, exceeding the Method A CUL (250 mg/kg).
- Metals were either not detected or were detected at concentrations less than Method A CULs in the remaining site soil samples submitted.

6.2. Groundwater Chemical Analytical Results

Monitoring wells HWA-MW-1 and GEI-MW-1 through GEI-MW-3 were purged and sampled using low-flow/low-stress sampling methodology (EPA, 2010). A peristaltic pump and dedicated tubing was used to purge and sample each well. Groundwater water quality parameters generally were measured at 3-minute intervals during well purging. Groundwater samples were generally collected when each water quality parameter had stabilized, with the exception of DO in GEI-MW-3 (see Appendix A for additional information and stabilization criteria).

Purge water generated during groundwater sampling was drummed, labeled and stored near the northeast corner of the site pending analytical results for profiling and disposal.

6.2.1. Groundwater Sample from Boring GEI-B8, August 12, 2014

The groundwater sample obtained from boring GEI-B8 was submitted for analysis of the following analytes: GRPH, ORPH, DRPH, VOCs, PAHs, PCBs and metals, using the analytical methods listed in "Section 3.0." Though the groundwater sample was purged prior to sampling, elevated contaminant concentrations might be the result of turbidity in the water. Groundwater sample chemical analytical results are summarized by the following:

- GRPH was detected at a concentration of 1,200 micrograms per liter (μ g/L), which is greater than the MTCA Method A cleanup level of 800 μ g/L.
- DRPH and ORPH were detected at concentrations of 20,900 μ g/L and 766 μ g/L, respectively, which are greater than their MTCA Method A cleanup levels of 500 μ g/L.
- DRPH and ORPH were detected at concentrations of 18,000 μg/L and 1,000 μg/L, respectively, using Method NWTPH-HCID, which are greater than their MTCA Method A cleanup levels of 500 μg/L.
- Lead was detected at a concentration of 27.7 μ g/L which is greater than the MTCA Method A cleanup level of 15 μ g/L.

Other analytes were either not detected or were detected at concentrations less than their applicable cleanup levels.

6.2.2. Groundwater Samples from Site Monitoring Wells, September 16, 2014

The groundwater samples obtained from wells HWA-MW-1 and GEI-MW-1 through GEI-MW-3 were submitted for analysis of the following analytes: GRPH, ORPH, DRPH, VOCs, PAHs, PCBs and metals, using the analytical methods listed in "Section 3.0." The contaminants analyzed for were either not detected or were detected at concentrations less than their respective cleanup levels. However, we did observe the following results:

- EDB was analyzed using EPA Method 8260, which cannot achieve a reporting limit less than the applicable MTCA Method A CUL according to the analytical laboratory. As a result, EDB is reported as not detected, however at a reporting limit greater than the MTCA Method A CUL.
- Low GRPH and DRPH concentrations (less than the MTCA Method A CUL) were detected in monitoring well GEI-MW-3.
- Detectable concentrations of chloroform were observed in monitoring wells HWA-MW-1 and GEI-MW-2. Chloroform detections could result from a leaking sewer pipe. According to the City of Yakima online geographical information system (GIS) database, an 8-inch diameter sewer pipe is located approximately between the Trolley Barn and CWCMH properties (depicted on Figure 2).

6.3. Groundwater Natural Attenuation Parameters

In addition to the contaminants of concern, groundwater samples from the September 2014 event were analyzed for natural attenuation parameters. Natural attenuation parameters analyzed by TestAmerica included: nitrate, sulfate, dissolved iron, dissolved manganese, methane and total alkalinity. Chemical analytical results are tabulated and compared to MTCA Method A cleanup levels in Table 4. Laboratory reports are provided in Appendix B.

DO, temperature, specific conductivity, pH and ORP were measured in the field using a Troll 9500 multiparameter meter equipped with a flow-through cell. Reported field parameters, summarized in Table 3, reflect conditions at the conclusion of well purging during low-flow sampling. Ferrous iron (Fe^{2+}) concentrations also were measured in the field using a Hach IRC-18C color disc test kit and the 1,10 phenanthroline testing method. Field measurement results are summarized in Table 3. Field and laboratory analytical results for natural attenuation parameters are summarized by the following:

- Soluble manganese was detected at a concentration of 0.986 milligrams per liter (mg/L) in the sample from GEI-MW-3, which is greater than its Secondary Maximum Contaminant Level (MCL) of 0.05 mg/L. Soluble manganese was not detected or was detected at concentrations less than its MCL in samples from other site wells.
- DO ranged from 0.70 mg/L in GEI-MW-3 to 7.60 mg/L in GEI-MW-2.
- Temperature ranged from 18.05 degrees Celsius in GEI-MW-1 to 18.22 degrees Celsius in HWA-MW-1.
- Specific conductivity ranged from 0.2421 milliSiemens per centimeter (mS/cm) in HWA-MW-1 to 0.3054 mS/cm in GEI-MW-3.
- pH ranged from 6.65 in GEI-MW-1 to 6.80 in HWA-MW-1.

- Normalized ORP (relative to the standard hydrogen electrode) ranged from 68 millivolts (mV) in GEI-MW-3 to 458 mV in GEI-MW-2.
- Methane concentrations ranged from less than 0.00500 mg/L in HWA-MW-1, GEI-MW-1, and GEI-MW-2 to 0.00508 in GEI-MW-3.
- Total alkalinity ranged from 80.0 mg/L in GEI-MW-1 to 125 mg/L in GEI-MW-3.
- Soluble ferrous iron concentrations ranged from less than 0.2 mg/L in HWA-MW-1, GEI-MW-1, and GEI-MW-2 to approximately 0.75 mg/L in GEI-MW-3.

A qualitative assessment of the contamination biodegradation potential for biodegradation of contaminants at a site can be conducted by evaluating selected geochemical parameters of groundwater samples collected from monitoring wells. Though one sampling event does not provide enough data to establish natural attenuation trends, preliminary conclusions suggest natural attenuation might be occurring near GEI-MW-3. DO, ORP and nitrate-nitrogen were measured an order of magnitude less than the other wells sampled. Alkalinity, methane and manganese were detected at higher concentrations in GEI-MW-3 relative to the other monitoring wells. A summary of selected natural attenuation parameters measured during the August 2014 monitoring event are presented in Table 3.

7.0 SUMMARY AND RECOMMENDATIONS

7.1. Assessment Summary

Soil assessment activities were conducted June 11 and August 11 through 13, 2014 at the Trolley Barn site located at 404 South 3^{rd} Avenue, Yakima, Washington. Five test pits were excavated to depths ranging between $9\frac{1}{2}$ to 14 feet bgs. Twelve soil borings (GEI-B1 through GEI-B9 and GEI-MW-1 through GEI-MW-3) were advanced to depths between 10 and 25 feet. Three borings were completed as groundwater monitoring wells (GEI-MW-1 through GEI-MW-3).

Field screening conducted by Ecology, using an XRF instrument, indicated arsenic, lead and/or mercury were likely present at concentrations greater than MTCA Method A CULs at depths shallower than 6½ feet bgs in borings GEI-B1, GEI-B3, GEI-B4, GEI-B6, GEI-B8 and monitoring well GEI-MW-3. Laboratory chemical analytical results also indicated lead and cadmium were present at concentrations greater than MTCA Method A CULs in borings GEI-B1, GEI-B4, and GEI-B6 (described below).

Six soil samples from the test pit assessment and 18 samples from the exploratory and monitoring well boring assessment (including two duplicate samples) were submitted for analysis. Site contaminants of concern were either not detected or were detected at concentrations less than Method A CULs in site soil samples with the following exceptions:

- DRPH and ORPH were detected in the sample from boring GEI-B1 at about 2 to 3 feet bgs at concentrations exceeding Method A CULs.
- Benzene was detected in the sample collected from GEI-TP-2 at 12 feet bgs at a concentration that exceeded the Method A CUL.
- Cadmium was detected at concentrations exceeding the Method A CUL in test pit GEI-TP-2 at about 12 feet bgs and borings GEI-B1 and GEI-B4 at about 2 to 3 feet bgs.

■ Lead was detected at concentrations exceeding the Method A CUL in test pit GEI-TP-2 at about 12 feet bgs and borings GEI-B1, GEI-B4 and GEI-B6 at about 2 to 3 feet bgs.

Monitoring wells GEI-MW-1 through GEI-MW-3 were constructed on August 12 and 13, 2014. Monitoring well GEI-MW-1 was installed at a downgradient/crossgradient location relative to historical USTs #6 and #7. Monitoring wells GEI-MW-2 and GEI-MW-3 were installed at crossgradient locations relative to the Trolley Barn building. A grab groundwater sample (B8-081214) was collected from boring GEI-B8 using a temporary well screen on August 12, 2014. Groundwater samples were collected from wells GEI-MW-1 through GEI-MW-3 and HWA-MW-1 on September 16, 2014. Based on depth to groundwater measurements and the surveyed well elevations, groundwater flow beneath the site generally was toward the east. Site contaminants of concern were either not detected or were detected at concentrations less than Method A CULs in site groundwater samples with the following exception:

- GRPH, DRPH, ORPH and lead were detected in the grab groundwater sample from boring GEI-B8 at a concentration greater than the MTCA Method A cleanup level. Elevated contaminant concentrations might be caused by turbidity in the groundwater.
- Low levels (less than MTCA Method A CULs) of GRPH and DRPH were detected in the groundwater sample collected from monitoring well GEI-MW-3. Also, natural attenuation parameters indicate biodegradation might be occurring near monitoring well GEI-MW-3. DO and ORP concentrations are significantly lower in GEI-MW-3 relative to the other monitoring wells. Dissolved manganese, total alkalinity and ferrous iron were elevated in GEI-MW-3 relative to the other monitoring wells.
- Detectable concentrations of chloroform were observed in monitoring wells HWA-MW-1 and GEI-MW-2.

7.2. Data Gaps

Based on the results of the soil and groundwater samples collected to date we have identified the following data gaps:

7.2.1. Trolley Barn Property

- Based on the groundwater flow direction observed (to the east), GEI-MW-2 is not in a downgradient location relative to the Trolley Barn. A downgradient monitoring well would provide data regarding potential contaminant migration from the Trolley Barn maintenance pits. Note: groundwater monitoring conducted in December 2014 indicated a groundwater flow direction shift to the southeast. This data gap and associated recommendations will be discussed in the December 2014 groundwater monitoring report.
- The groundwater contamination extent near boring GEI-B8 is not defined. The groundwater sample collected from this boring was not obtained from a constructed and developed well; therefore, elevated turbidity in the sample might account for the elevated contaminant concentrations.
- The extent of soil contamination near test pit GEI-TP-2 is not defined. Benzene, cadmium, and lead were detected at concentrations slightly greater than their respective MTCA CULs at about 12 feet bgs.
- The source of GRPH and DRPH detections in the groundwater sample collected from GEI-MW-3 is unknown. Natural attenuation parameters also indicate that natural attenuation of a potential contaminant is occurring near monitoring well GEI-MW-3. A search of the City of Yakima GIS database indicated an 8-inch diameter sewer pipe, oriented north to south between the Trolley Barn and CWCMH

properties, is located about 30 to 40 feet west of the monitoring well. If the sewer pipe is leaking, that could be the cause for the low levels of petroleum-range contaminants detected in GEI-MW-3 and the chloroform detections in HWA-MW-1 and GEI-MW-2. The utility corridor trench, typically backfilled with a high permeability pipe bedding material, might also be a preferential flow path for petroleum hydrocarbon contaminants migrating from an unknown upgradient source.

7.2.2. CWCMH Property

- The lateral extent of shallow petroleum and metal contaminants near boring GEI-B1, drilled near a historical AST location, is unknown. DRPH, ORPH, cadmium, and lead concentrations each exceeded their respective MTCA Method A CUL in the sample collected from about 2 to 3 feet bgs.
- Shallow metals contamination was detected using the XRF and laboratory samples. The extent of shallow metals contaminated soil is not defined.

7.3. Supplemental Assessment Recommendations

Based on the groundwater flow direction, detected contaminant concentrations, and the data gaps identified, we recommend the following additional actions to assess the site (Note: the following recommendations will be revised in the December 2014 Groundwater Monitoring Report as necessary to reflect the data obtained during that monitoring event):

7.3.1. Trolley Barn Property

- 1. Install a groundwater monitoring well, identified as GEI-MW-5 on Proposed Monitoring Wells, Figure 4, downgradient (east) of the Trolley Barn to assess potential contaminant migration from the maintenance pits identified during historical assessment activities. Monitoring well GEI-MW-2 was installed southeast of the Trolley Barn to assess if contamination from the pits was migrating. However, the observed groundwater flow direction is to the east and groundwater impacts from the Trolley Barn pits might not be detectable in GEI-MW-2, which appears to be in a crossgradient location relative to the pits.
- 2. Install a groundwater monitoring well (identified as GEI-MW-4 on Figure 4) east (downgradient) of boring GEI-B8 to assess potential contaminant migration to the east. Similar to monitoring well GEI-MW-2, monitoring GEI-MW-1 was installed in an assumed downgradient (southeast) location relative to the soil and groundwater contaminant detections in exploratory boring GEI-B8. Potential groundwater contamination from this area might not be observed in monitoring well GEI-MW-1, because the observed groundwater flow direction was to the east.
- 3. Based on the groundwater measurements collected September 2014, monitoring well GEI-MW-3 is located crossgradient instead of the desired upgradient position relative to the Trolley Barn. We recommend installing a new monitoring well (identified as GEI-MW-6 on Figure 4) located west of the Trolley Barn in an upgradient location.
- 4. We do not recommend additional exploration and soil or groundwater analysis near GEI-MW-3 at this time. Although the natural attenuation parameters suggest biological activity is occurring near the well, the contaminant concentrations are slightly greater than the laboratory reporting limits and less than the MTCA Method A CULs.

7.3.2. CWCMH Property

We do not recommend additional data gap assessment on the CWCMH property at this time. Shallow metals and petroleum contamination was observed in three soil borings, however the property is paved with an asphalt parking lot that minimizes both the potential for direct contact with contaminated soils and precipitation infiltration that could mobilize contaminants. We recommend establishing an environmental covenant to govern future site development, including potential soil handling.

8.0 REFERENCES

- GeoEngineers, Inc., "Work Plan, Soil and Groundwater Assessment, Trolley Barn, Yakima, Washington" prepared for Washington State Department of Ecology, GEI File No. 0504-101-01. June 2, 2014.
- Puls, R.W. and Barcelona, M.J., Low-flow (minimal drawdown) ground-water sampling procedures: EPA Ground Water Issue, April 1996, p.1-9.
- U.S. Environmental Protection Agency, Region 1, Low stress (low-flow) purging and sampling procedure for the collection of ground water samples from monitoring wells. EPA SOP No. GW 0001, Revision No. 2. July 30, 1996.
- U.S. Environmental Protection Agency. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.

Table 1Summary of Soil Field Screening Results - Metals¹

Trolley Barn Yakima, Washington

	Depth	Arsei	nic	Cadm	ium	Chrom	ium	Lea	d	Merc	ury
Boring ID	(feet bgs)	Result (mg/kg)	+/- (mg/kg)	Result (mg/kg)	+/- (mg/kg)	Result (mg/kg)	+/- (mg/kg)	Result (mg/kg)	+/- (mg/kg)	Result (mg/kg)	+/- (mg/kg)
GEI-B1	1 ft	<lod< th=""><th>36.45</th><th><lod< th=""><th>46.59</th><th><lod< th=""><th>157.14</th><th>781.48</th><th>17.51</th><th><lod< th=""><th>19.91</th></lod<></th></lod<></th></lod<></th></lod<>	36.45	<lod< th=""><th>46.59</th><th><lod< th=""><th>157.14</th><th>781.48</th><th>17.51</th><th><lod< th=""><th>19.91</th></lod<></th></lod<></th></lod<>	46.59	<lod< th=""><th>157.14</th><th>781.48</th><th>17.51</th><th><lod< th=""><th>19.91</th></lod<></th></lod<>	157.14	781.48	17.51	<lod< th=""><th>19.91</th></lod<>	19.91
	2 ft	<lod< td=""><td>37.48</td><td><lod< td=""><td>45.18</td><td><lod< td=""><td>164.79</td><td>863.51</td><td>18.15</td><td><lod< td=""><td>18.75</td></lod<></td></lod<></td></lod<></td></lod<>	37.48	<lod< td=""><td>45.18</td><td><lod< td=""><td>164.79</td><td>863.51</td><td>18.15</td><td><lod< td=""><td>18.75</td></lod<></td></lod<></td></lod<>	45.18	<lod< td=""><td>164.79</td><td>863.51</td><td>18.15</td><td><lod< td=""><td>18.75</td></lod<></td></lod<>	164.79	863.51	18.15	<lod< td=""><td>18.75</td></lod<>	18.75
	3 ft	<lod< td=""><td>15.99</td><td><lod< td=""><td>46.14</td><td><lod< td=""><td>171.51</td><td>112.93</td><td>6.63</td><td>17.15</td><td>5.65</td></lod<></td></lod<></td></lod<>	15.99	<lod< td=""><td>46.14</td><td><lod< td=""><td>171.51</td><td>112.93</td><td>6.63</td><td>17.15</td><td>5.65</td></lod<></td></lod<>	46.14	<lod< td=""><td>171.51</td><td>112.93</td><td>6.63</td><td>17.15</td><td>5.65</td></lod<>	171.51	112.93	6.63	17.15	5.65
	3.5 ft	19.86	6.21	<lod< td=""><td>45.09</td><td><lod< td=""><td>157.40</td><td>177.69</td><td>7.81</td><td><lod< td=""><td>15.40</td></lod<></td></lod<></td></lod<>	45.09	<lod< td=""><td>157.40</td><td>177.69</td><td>7.81</td><td><lod< td=""><td>15.40</td></lod<></td></lod<>	157.40	177.69	7.81	<lod< td=""><td>15.40</td></lod<>	15.40
	4.5 ft	<lod< td=""><td>8.27</td><td><lod< td=""><td>47.50</td><td><lod< td=""><td>155.70</td><td><lod< td=""><td>10.75</td><td><lod< td=""><td>15.04</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.27	<lod< td=""><td>47.50</td><td><lod< td=""><td>155.70</td><td><lod< td=""><td>10.75</td><td><lod< td=""><td>15.04</td></lod<></td></lod<></td></lod<></td></lod<>	47.50	<lod< td=""><td>155.70</td><td><lod< td=""><td>10.75</td><td><lod< td=""><td>15.04</td></lod<></td></lod<></td></lod<>	155.70	<lod< td=""><td>10.75</td><td><lod< td=""><td>15.04</td></lod<></td></lod<>	10.75	<lod< td=""><td>15.04</td></lod<>	15.04
	7 ft	<lod< td=""><td>9.09</td><td><lod< td=""><td>47.92</td><td><lod< td=""><td>166.36</td><td><lod< td=""><td>11.37</td><td><lod< td=""><td>15.24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	9.09	<lod< td=""><td>47.92</td><td><lod< td=""><td>166.36</td><td><lod< td=""><td>11.37</td><td><lod< td=""><td>15.24</td></lod<></td></lod<></td></lod<></td></lod<>	47.92	<lod< td=""><td>166.36</td><td><lod< td=""><td>11.37</td><td><lod< td=""><td>15.24</td></lod<></td></lod<></td></lod<>	166.36	<lod< td=""><td>11.37</td><td><lod< td=""><td>15.24</td></lod<></td></lod<>	11.37	<lod< td=""><td>15.24</td></lod<>	15.24
	9 ft	<lod< td=""><td>8.61</td><td><lod< td=""><td>48.39</td><td><lod< td=""><td>186.21</td><td><lod< td=""><td>10.75</td><td><lod< td=""><td>14.35</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.61	<lod< td=""><td>48.39</td><td><lod< td=""><td>186.21</td><td><lod< td=""><td>10.75</td><td><lod< td=""><td>14.35</td></lod<></td></lod<></td></lod<></td></lod<>	48.39	<lod< td=""><td>186.21</td><td><lod< td=""><td>10.75</td><td><lod< td=""><td>14.35</td></lod<></td></lod<></td></lod<>	186.21	<lod< td=""><td>10.75</td><td><lod< td=""><td>14.35</td></lod<></td></lod<>	10.75	<lod< td=""><td>14.35</td></lod<>	14.35
	12 ft	<lod< td=""><td>8.88</td><td><lod< td=""><td>47.34</td><td><lod< td=""><td>171.62</td><td><lod< td=""><td>11.15</td><td><lod< td=""><td>14.76</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.88	<lod< td=""><td>47.34</td><td><lod< td=""><td>171.62</td><td><lod< td=""><td>11.15</td><td><lod< td=""><td>14.76</td></lod<></td></lod<></td></lod<></td></lod<>	47.34	<lod< td=""><td>171.62</td><td><lod< td=""><td>11.15</td><td><lod< td=""><td>14.76</td></lod<></td></lod<></td></lod<>	171.62	<lod< td=""><td>11.15</td><td><lod< td=""><td>14.76</td></lod<></td></lod<>	11.15	<lod< td=""><td>14.76</td></lod<>	14.76
GEI-B2	2 ft	<lod< td=""><td>10.13</td><td><lod< td=""><td>47.09</td><td><lod< td=""><td>152.53</td><td>26.88</td><td>4.26</td><td><lod< td=""><td>15.23</td></lod<></td></lod<></td></lod<></td></lod<>	10.13	<lod< td=""><td>47.09</td><td><lod< td=""><td>152.53</td><td>26.88</td><td>4.26</td><td><lod< td=""><td>15.23</td></lod<></td></lod<></td></lod<>	47.09	<lod< td=""><td>152.53</td><td>26.88</td><td>4.26</td><td><lod< td=""><td>15.23</td></lod<></td></lod<>	152.53	26.88	4.26	<lod< td=""><td>15.23</td></lod<>	15.23
	4 ft	<lod< td=""><td>14.86</td><td><lod< td=""><td>50.98</td><td><lod< td=""><td>209.29</td><td>69.67</td><td>6.09</td><td><lod< td=""><td>17.51</td></lod<></td></lod<></td></lod<></td></lod<>	14.86	<lod< td=""><td>50.98</td><td><lod< td=""><td>209.29</td><td>69.67</td><td>6.09</td><td><lod< td=""><td>17.51</td></lod<></td></lod<></td></lod<>	50.98	<lod< td=""><td>209.29</td><td>69.67</td><td>6.09</td><td><lod< td=""><td>17.51</td></lod<></td></lod<>	209.29	69.67	6.09	<lod< td=""><td>17.51</td></lod<>	17.51
	4.5 ft	<lod< td=""><td>13.41</td><td><lod< td=""><td>47.61</td><td><lod< td=""><td>168.46</td><td>72.16</td><td>5.60</td><td><lod< td=""><td>15.39</td></lod<></td></lod<></td></lod<></td></lod<>	13.41	<lod< td=""><td>47.61</td><td><lod< td=""><td>168.46</td><td>72.16</td><td>5.60</td><td><lod< td=""><td>15.39</td></lod<></td></lod<></td></lod<>	47.61	<lod< td=""><td>168.46</td><td>72.16</td><td>5.60</td><td><lod< td=""><td>15.39</td></lod<></td></lod<>	168.46	72.16	5.60	<lod< td=""><td>15.39</td></lod<>	15.39
	5 ft	<lod< td=""><td>7.70</td><td><lod< td=""><td>46.54</td><td><lod< td=""><td>159.06</td><td><lod< td=""><td>9.67</td><td><lod< td=""><td>14.05</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7.70	<lod< td=""><td>46.54</td><td><lod< td=""><td>159.06</td><td><lod< td=""><td>9.67</td><td><lod< td=""><td>14.05</td></lod<></td></lod<></td></lod<></td></lod<>	46.54	<lod< td=""><td>159.06</td><td><lod< td=""><td>9.67</td><td><lod< td=""><td>14.05</td></lod<></td></lod<></td></lod<>	159.06	<lod< td=""><td>9.67</td><td><lod< td=""><td>14.05</td></lod<></td></lod<>	9.67	<lod< td=""><td>14.05</td></lod<>	14.05
	6 ft	<lod< td=""><td>10.15</td><td><lod< td=""><td>53.45</td><td><lod< td=""><td>213.55</td><td>15.37</td><td>4.41</td><td><lod< td=""><td>16.56</td></lod<></td></lod<></td></lod<></td></lod<>	10.15	<lod< td=""><td>53.45</td><td><lod< td=""><td>213.55</td><td>15.37</td><td>4.41</td><td><lod< td=""><td>16.56</td></lod<></td></lod<></td></lod<>	53.45	<lod< td=""><td>213.55</td><td>15.37</td><td>4.41</td><td><lod< td=""><td>16.56</td></lod<></td></lod<>	213.55	15.37	4.41	<lod< td=""><td>16.56</td></lod<>	16.56
GEI-B3	1 ft	<lod< td=""><td>8.57</td><td><lod< td=""><td>45.55</td><td><lod< td=""><td>134.39</td><td>21.12</td><td>3.87</td><td><lod< td=""><td>13.37</td></lod<></td></lod<></td></lod<></td></lod<>	8.57	<lod< td=""><td>45.55</td><td><lod< td=""><td>134.39</td><td>21.12</td><td>3.87</td><td><lod< td=""><td>13.37</td></lod<></td></lod<></td></lod<>	45.55	<lod< td=""><td>134.39</td><td>21.12</td><td>3.87</td><td><lod< td=""><td>13.37</td></lod<></td></lod<>	134.39	21.12	3.87	<lod< td=""><td>13.37</td></lod<>	13.37
	2 ft	18.22	5.73	<lod< td=""><td>47.60</td><td><lod< td=""><td>168.75</td><td>133.53</td><td>7.11</td><td><lod< td=""><td>15.04</td></lod<></td></lod<></td></lod<>	47.60	<lod< td=""><td>168.75</td><td>133.53</td><td>7.11</td><td><lod< td=""><td>15.04</td></lod<></td></lod<>	168.75	133.53	7.11	<lod< td=""><td>15.04</td></lod<>	15.04
	5 ft	<lod< td=""><td>8.15</td><td><lod< td=""><td>48.03</td><td><lod< td=""><td>156.50</td><td><lod< td=""><td>11.22</td><td><lod< td=""><td>15.90</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.15	<lod< td=""><td>48.03</td><td><lod< td=""><td>156.50</td><td><lod< td=""><td>11.22</td><td><lod< td=""><td>15.90</td></lod<></td></lod<></td></lod<></td></lod<>	48.03	<lod< td=""><td>156.50</td><td><lod< td=""><td>11.22</td><td><lod< td=""><td>15.90</td></lod<></td></lod<></td></lod<>	156.50	<lod< td=""><td>11.22</td><td><lod< td=""><td>15.90</td></lod<></td></lod<>	11.22	<lod< td=""><td>15.90</td></lod<>	15.90
	6 ft	<lod< td=""><td>29.58</td><td><lod< td=""><td>47.98</td><td><lod< td=""><td>158.03</td><td>502.38</td><td>13.69</td><td><lod< td=""><td>16.71</td></lod<></td></lod<></td></lod<></td></lod<>	29.58	<lod< td=""><td>47.98</td><td><lod< td=""><td>158.03</td><td>502.38</td><td>13.69</td><td><lod< td=""><td>16.71</td></lod<></td></lod<></td></lod<>	47.98	<lod< td=""><td>158.03</td><td>502.38</td><td>13.69</td><td><lod< td=""><td>16.71</td></lod<></td></lod<>	158.03	502.38	13.69	<lod< td=""><td>16.71</td></lod<>	16.71
	8 ft	<lod< td=""><td>8.44</td><td><lod< td=""><td>47.74</td><td><lod< td=""><td>165.76</td><td><lod< td=""><td>10.92</td><td><lod< td=""><td>15.20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.44	<lod< td=""><td>47.74</td><td><lod< td=""><td>165.76</td><td><lod< td=""><td>10.92</td><td><lod< td=""><td>15.20</td></lod<></td></lod<></td></lod<></td></lod<>	47.74	<lod< td=""><td>165.76</td><td><lod< td=""><td>10.92</td><td><lod< td=""><td>15.20</td></lod<></td></lod<></td></lod<>	165.76	<lod< td=""><td>10.92</td><td><lod< td=""><td>15.20</td></lod<></td></lod<>	10.92	<lod< td=""><td>15.20</td></lod<>	15.20
GEI-B4	1 ft	26.89	8.69	<lod< td=""><td>48.92</td><td><lod< td=""><td>197.91</td><td>334.12</td><td>11.32</td><td><lod< td=""><td>17.44</td></lod<></td></lod<></td></lod<>	48.92	<lod< td=""><td>197.91</td><td>334.12</td><td>11.32</td><td><lod< td=""><td>17.44</td></lod<></td></lod<>	197.91	334.12	11.32	<lod< td=""><td>17.44</td></lod<>	17.44
	2.5 ft	43.94	9.47	<lod< td=""><td>46.56</td><td><lod< td=""><td>175.16</td><td>436.95</td><td>12.44</td><td>26.90</td><td>6.79</td></lod<></td></lod<>	46.56	<lod< td=""><td>175.16</td><td>436.95</td><td>12.44</td><td>26.90</td><td>6.79</td></lod<>	175.16	436.95	12.44	26.90	6.79
	4 ft	<lod< td=""><td>16.08</td><td><lod< td=""><td>51.80</td><td><lod< td=""><td>191.81</td><td>84.69</td><td>6.59</td><td><lod< td=""><td>16.84</td></lod<></td></lod<></td></lod<></td></lod<>	16.08	<lod< td=""><td>51.80</td><td><lod< td=""><td>191.81</td><td>84.69</td><td>6.59</td><td><lod< td=""><td>16.84</td></lod<></td></lod<></td></lod<>	51.80	<lod< td=""><td>191.81</td><td>84.69</td><td>6.59</td><td><lod< td=""><td>16.84</td></lod<></td></lod<>	191.81	84.69	6.59	<lod< td=""><td>16.84</td></lod<>	16.84
	5.5 ft	20.65	6.65	<lod< td=""><td>48.58</td><td><lod< td=""><td>189.22</td><td>177.27</td><td>8.35</td><td><lod< td=""><td>16.35</td></lod<></td></lod<></td></lod<>	48.58	<lod< td=""><td>189.22</td><td>177.27</td><td>8.35</td><td><lod< td=""><td>16.35</td></lod<></td></lod<>	189.22	177.27	8.35	<lod< td=""><td>16.35</td></lod<>	16.35
	6.5 ft	93.81	10.53	<lod< td=""><td>48.75</td><td><lod< td=""><td>177.03</td><td>458.55</td><td>13.26</td><td>42.52</td><td>7.82</td></lod<></td></lod<>	48.75	<lod< td=""><td>177.03</td><td>458.55</td><td>13.26</td><td>42.52</td><td>7.82</td></lod<>	177.03	458.55	13.26	42.52	7.82
	7 ft	<lod< td=""><td>8.28</td><td><lod< td=""><td>46.79</td><td><lod< td=""><td>168.13</td><td><lod< td=""><td>10.54</td><td><lod< td=""><td>13.74</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.28	<lod< td=""><td>46.79</td><td><lod< td=""><td>168.13</td><td><lod< td=""><td>10.54</td><td><lod< td=""><td>13.74</td></lod<></td></lod<></td></lod<></td></lod<>	46.79	<lod< td=""><td>168.13</td><td><lod< td=""><td>10.54</td><td><lod< td=""><td>13.74</td></lod<></td></lod<></td></lod<>	168.13	<lod< td=""><td>10.54</td><td><lod< td=""><td>13.74</td></lod<></td></lod<>	10.54	<lod< td=""><td>13.74</td></lod<>	13.74
	9 ft	<lod< td=""><td>7.96</td><td><lod< td=""><td>46.38</td><td><lod< td=""><td>166.00</td><td><lod< td=""><td>9.81</td><td><lod< td=""><td>14.42</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7.96	<lod< td=""><td>46.38</td><td><lod< td=""><td>166.00</td><td><lod< td=""><td>9.81</td><td><lod< td=""><td>14.42</td></lod<></td></lod<></td></lod<></td></lod<>	46.38	<lod< td=""><td>166.00</td><td><lod< td=""><td>9.81</td><td><lod< td=""><td>14.42</td></lod<></td></lod<></td></lod<>	166.00	<lod< td=""><td>9.81</td><td><lod< td=""><td>14.42</td></lod<></td></lod<>	9.81	<lod< td=""><td>14.42</td></lod<>	14.42
	9.5 ft	<lod< td=""><td>8.04</td><td><lod< td=""><td>46.69</td><td><lod< td=""><td>168.74</td><td><lod< td=""><td>10.79</td><td><lod< td=""><td>15.05</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.04	<lod< td=""><td>46.69</td><td><lod< td=""><td>168.74</td><td><lod< td=""><td>10.79</td><td><lod< td=""><td>15.05</td></lod<></td></lod<></td></lod<></td></lod<>	46.69	<lod< td=""><td>168.74</td><td><lod< td=""><td>10.79</td><td><lod< td=""><td>15.05</td></lod<></td></lod<></td></lod<>	168.74	<lod< td=""><td>10.79</td><td><lod< td=""><td>15.05</td></lod<></td></lod<>	10.79	<lod< td=""><td>15.05</td></lod<>	15.05
	11 ft	<lod< td=""><td>8.31</td><td><lod< td=""><td>48.83</td><td><lod< td=""><td>179.61</td><td><lod< td=""><td>10.58</td><td><lod< td=""><td>13.53</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.31	<lod< td=""><td>48.83</td><td><lod< td=""><td>179.61</td><td><lod< td=""><td>10.58</td><td><lod< td=""><td>13.53</td></lod<></td></lod<></td></lod<></td></lod<>	48.83	<lod< td=""><td>179.61</td><td><lod< td=""><td>10.58</td><td><lod< td=""><td>13.53</td></lod<></td></lod<></td></lod<>	179.61	<lod< td=""><td>10.58</td><td><lod< td=""><td>13.53</td></lod<></td></lod<>	10.58	<lod< td=""><td>13.53</td></lod<>	13.53
GEI-B6	1 ft	20.89	6.67	<lod< td=""><td>51.35</td><td><lod< td=""><td>199.33</td><td>159.59</td><td>8.33</td><td><lod< td=""><td>16.74</td></lod<></td></lod<></td></lod<>	51.35	<lod< td=""><td>199.33</td><td>159.59</td><td>8.33</td><td><lod< td=""><td>16.74</td></lod<></td></lod<>	199.33	159.59	8.33	<lod< td=""><td>16.74</td></lod<>	16.74
	2 ft	202.09	12.10	<lod< td=""><td>49.79</td><td><lod< td=""><td>186.54</td><td>484.67</td><td>13.93</td><td><lod< td=""><td>18.80</td></lod<></td></lod<></td></lod<>	49.79	<lod< td=""><td>186.54</td><td>484.67</td><td>13.93</td><td><lod< td=""><td>18.80</td></lod<></td></lod<>	186.54	484.67	13.93	<lod< td=""><td>18.80</td></lod<>	18.80
	3 ft	32.24	6.69	<lod< td=""><td>45.79</td><td><lod< td=""><td>157.38</td><td>197.56</td><td>8.25</td><td><lod< td=""><td>15.19</td></lod<></td></lod<></td></lod<>	45.79	<lod< td=""><td>157.38</td><td>197.56</td><td>8.25</td><td><lod< td=""><td>15.19</td></lod<></td></lod<>	157.38	197.56	8.25	<lod< td=""><td>15.19</td></lod<>	15.19
	3.5 ft	<lod< td=""><td>20.98</td><td><lod< td=""><td>45.85</td><td><lod< td=""><td>152.32</td><td>238.94</td><td>8.97</td><td><lod< td=""><td>15.71</td></lod<></td></lod<></td></lod<></td></lod<>	20.98	<lod< td=""><td>45.85</td><td><lod< td=""><td>152.32</td><td>238.94</td><td>8.97</td><td><lod< td=""><td>15.71</td></lod<></td></lod<></td></lod<>	45.85	<lod< td=""><td>152.32</td><td>238.94</td><td>8.97</td><td><lod< td=""><td>15.71</td></lod<></td></lod<>	152.32	238.94	8.97	<lod< td=""><td>15.71</td></lod<>	15.71
	4 ft	21.08	3.44	<lod< td=""><td>50.90</td><td><lod< td=""><td>169.29</td><td><lod< td=""><td>10.98</td><td><lod< td=""><td>15.72</td></lod<></td></lod<></td></lod<></td></lod<>	50.90	<lod< td=""><td>169.29</td><td><lod< td=""><td>10.98</td><td><lod< td=""><td>15.72</td></lod<></td></lod<></td></lod<>	169.29	<lod< td=""><td>10.98</td><td><lod< td=""><td>15.72</td></lod<></td></lod<>	10.98	<lod< td=""><td>15.72</td></lod<>	15.72

GEOENGINEERS

	Depth	pth Arsenic		Cadm	ium	Chromi	ium	Lea	d	Mercury		
Boring ID	(feet bgs)	Result (mg/kg)	+/- (mg/kg)	Result (mg/kg)	+/- (mg/kg)	Result (mg/kg)	+/- (mg/kg)	Result (mg/kg)	+/- (mg/kg)	Result (mg/kg)	+/- (mg/kg)	
GEI-B6	5 ft	<lod< td=""><td>8.58</td><td><lod< td=""><td>49.23</td><td><lod< td=""><td>173.16</td><td><lod< td=""><td>10.70</td><td><lod< td=""><td>15.27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.58	<lod< td=""><td>49.23</td><td><lod< td=""><td>173.16</td><td><lod< td=""><td>10.70</td><td><lod< td=""><td>15.27</td></lod<></td></lod<></td></lod<></td></lod<>	49.23	<lod< td=""><td>173.16</td><td><lod< td=""><td>10.70</td><td><lod< td=""><td>15.27</td></lod<></td></lod<></td></lod<>	173.16	<lod< td=""><td>10.70</td><td><lod< td=""><td>15.27</td></lod<></td></lod<>	10.70	<lod< td=""><td>15.27</td></lod<>	15.27	
(continued)	8 ft	<lod< td=""><td>7.77</td><td><lod< td=""><td>46.88</td><td><lod< td=""><td>154.22</td><td><lod< td=""><td>10.21</td><td><lod< td=""><td>13.56</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7.77	<lod< td=""><td>46.88</td><td><lod< td=""><td>154.22</td><td><lod< td=""><td>10.21</td><td><lod< td=""><td>13.56</td></lod<></td></lod<></td></lod<></td></lod<>	46.88	<lod< td=""><td>154.22</td><td><lod< td=""><td>10.21</td><td><lod< td=""><td>13.56</td></lod<></td></lod<></td></lod<>	154.22	<lod< td=""><td>10.21</td><td><lod< td=""><td>13.56</td></lod<></td></lod<>	10.21	<lod< td=""><td>13.56</td></lod<>	13.56	
	10 ft	<lod< td=""><td>9.25</td><td><lod< td=""><td>50.42</td><td><lod< td=""><td>201.08</td><td><lod< td=""><td>11.84</td><td><lod< td=""><td>14.94</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	9.25	<lod< td=""><td>50.42</td><td><lod< td=""><td>201.08</td><td><lod< td=""><td>11.84</td><td><lod< td=""><td>14.94</td></lod<></td></lod<></td></lod<></td></lod<>	50.42	<lod< td=""><td>201.08</td><td><lod< td=""><td>11.84</td><td><lod< td=""><td>14.94</td></lod<></td></lod<></td></lod<>	201.08	<lod< td=""><td>11.84</td><td><lod< td=""><td>14.94</td></lod<></td></lod<>	11.84	<lod< td=""><td>14.94</td></lod<>	14.94	
GEI-B8	0.5 ft	<lod< td=""><td>13.19</td><td><lod< td=""><td>49.71</td><td><lod< td=""><td>171.87</td><td>65.99</td><td>5.69</td><td><lod< td=""><td>15.37</td></lod<></td></lod<></td></lod<></td></lod<>	13.19	<lod< td=""><td>49.71</td><td><lod< td=""><td>171.87</td><td>65.99</td><td>5.69</td><td><lod< td=""><td>15.37</td></lod<></td></lod<></td></lod<>	49.71	<lod< td=""><td>171.87</td><td>65.99</td><td>5.69</td><td><lod< td=""><td>15.37</td></lod<></td></lod<>	171.87	65.99	5.69	<lod< td=""><td>15.37</td></lod<>	15.37	
	1 ft	<lod< td=""><td>24.02</td><td><lod< td=""><td>49.19</td><td><lod< td=""><td>175.04</td><td>283.76</td><td>10.40</td><td><lod< td=""><td>15.39</td></lod<></td></lod<></td></lod<></td></lod<>	24.02	<lod< td=""><td>49.19</td><td><lod< td=""><td>175.04</td><td>283.76</td><td>10.40</td><td><lod< td=""><td>15.39</td></lod<></td></lod<></td></lod<>	49.19	<lod< td=""><td>175.04</td><td>283.76</td><td>10.40</td><td><lod< td=""><td>15.39</td></lod<></td></lod<>	175.04	283.76	10.40	<lod< td=""><td>15.39</td></lod<>	15.39	
	4 ft	<lod< td=""><td>8.59</td><td><lod< td=""><td>48.65</td><td><lod< td=""><td>176.26</td><td><lod< td=""><td>11.44</td><td><lod< td=""><td>16.35</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.59	<lod< td=""><td>48.65</td><td><lod< td=""><td>176.26</td><td><lod< td=""><td>11.44</td><td><lod< td=""><td>16.35</td></lod<></td></lod<></td></lod<></td></lod<>	48.65	<lod< td=""><td>176.26</td><td><lod< td=""><td>11.44</td><td><lod< td=""><td>16.35</td></lod<></td></lod<></td></lod<>	176.26	<lod< td=""><td>11.44</td><td><lod< td=""><td>16.35</td></lod<></td></lod<>	11.44	<lod< td=""><td>16.35</td></lod<>	16.35	
GEI-MW3	0.5 ft	48.58	14.39	<lod< td=""><td>50.89</td><td><lod< td=""><td>198.15</td><td>947.04</td><td>21.05</td><td><lod< td=""><td>19.99</td></lod<></td></lod<></td></lod<>	50.89	<lod< td=""><td>198.15</td><td>947.04</td><td>21.05</td><td><lod< td=""><td>19.99</td></lod<></td></lod<>	198.15	947.04	21.05	<lod< td=""><td>19.99</td></lod<>	19.99	
	0.5 ft	<lod< td=""><td>31.54</td><td><lod< td=""><td>50.15</td><td><lod< td=""><td>197.48</td><td>509.57</td><td>14.53</td><td><lod< td=""><td>19.06</td></lod<></td></lod<></td></lod<></td></lod<>	31.54	<lod< td=""><td>50.15</td><td><lod< td=""><td>197.48</td><td>509.57</td><td>14.53</td><td><lod< td=""><td>19.06</td></lod<></td></lod<></td></lod<>	50.15	<lod< td=""><td>197.48</td><td>509.57</td><td>14.53</td><td><lod< td=""><td>19.06</td></lod<></td></lod<>	197.48	509.57	14.53	<lod< td=""><td>19.06</td></lod<>	19.06	
	1 ft	<lod< td=""><td>9.11</td><td><lod< td=""><td>47.50</td><td><lod< td=""><td>174.27</td><td>18.58</td><td>4.06</td><td><lod< td=""><td>14.32</td></lod<></td></lod<></td></lod<></td></lod<>	9.11	<lod< td=""><td>47.50</td><td><lod< td=""><td>174.27</td><td>18.58</td><td>4.06</td><td><lod< td=""><td>14.32</td></lod<></td></lod<></td></lod<>	47.50	<lod< td=""><td>174.27</td><td>18.58</td><td>4.06</td><td><lod< td=""><td>14.32</td></lod<></td></lod<>	174.27	18.58	4.06	<lod< td=""><td>14.32</td></lod<>	14.32	
	Brick-1 ft	<lod< td=""><td>8.26</td><td><lod< td=""><td>46.58</td><td><lod< td=""><td>158.62</td><td><lod< td=""><td>10.94</td><td><lod< td=""><td>14.35</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.26	<lod< td=""><td>46.58</td><td><lod< td=""><td>158.62</td><td><lod< td=""><td>10.94</td><td><lod< td=""><td>14.35</td></lod<></td></lod<></td></lod<></td></lod<>	46.58	<lod< td=""><td>158.62</td><td><lod< td=""><td>10.94</td><td><lod< td=""><td>14.35</td></lod<></td></lod<></td></lod<>	158.62	<lod< td=""><td>10.94</td><td><lod< td=""><td>14.35</td></lod<></td></lod<>	10.94	<lod< td=""><td>14.35</td></lod<>	14.35	
	2 ft	<lod< td=""><td>8.19</td><td><lod< td=""><td>49.16</td><td><lod< td=""><td>177.91</td><td><lod< td=""><td>10.54</td><td><lod< td=""><td>13.99</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.19	<lod< td=""><td>49.16</td><td><lod< td=""><td>177.91</td><td><lod< td=""><td>10.54</td><td><lod< td=""><td>13.99</td></lod<></td></lod<></td></lod<></td></lod<>	49.16	<lod< td=""><td>177.91</td><td><lod< td=""><td>10.54</td><td><lod< td=""><td>13.99</td></lod<></td></lod<></td></lod<>	177.91	<lod< td=""><td>10.54</td><td><lod< td=""><td>13.99</td></lod<></td></lod<>	10.54	<lod< td=""><td>13.99</td></lod<>	13.99	
	4.5 ft	<lod< td=""><td>8.58</td><td><lod< td=""><td>49.61</td><td><lod< td=""><td>190.76</td><td><lod< td=""><td>11.61</td><td><lod< td=""><td>14.48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8.58	<lod< td=""><td>49.61</td><td><lod< td=""><td>190.76</td><td><lod< td=""><td>11.61</td><td><lod< td=""><td>14.48</td></lod<></td></lod<></td></lod<></td></lod<>	49.61	<lod< td=""><td>190.76</td><td><lod< td=""><td>11.61</td><td><lod< td=""><td>14.48</td></lod<></td></lod<></td></lod<>	190.76	<lod< td=""><td>11.61</td><td><lod< td=""><td>14.48</td></lod<></td></lod<>	11.61	<lod< td=""><td>14.48</td></lod<>	14.48	
Surface near												
Oil Shed	Ground Surface	<lod< td=""><td>26.64</td><td><lod< td=""><td>65.61</td><td><lod< td=""><td>232.84</td><td>195.65</td><td>11.46</td><td><lod< td=""><td>24.28</td></lod<></td></lod<></td></lod<></td></lod<>	26.64	<lod< td=""><td>65.61</td><td><lod< td=""><td>232.84</td><td>195.65</td><td>11.46</td><td><lod< td=""><td>24.28</td></lod<></td></lod<></td></lod<>	65.61	<lod< td=""><td>232.84</td><td>195.65</td><td>11.46</td><td><lod< td=""><td>24.28</td></lod<></td></lod<>	232.84	195.65	11.46	<lod< td=""><td>24.28</td></lod<>	24.28	
MTCA Me	thod A CUL ²	20		2		19/20	00	250)	2		

Notes:

Bold font indicates the detected metals concentration is greater than the MTCA Method A CUL.

bgs = below ground surface; LOD = Limit of Detection; mg/kg = milligrams per kilogram.

¹Metals field screening results provided by the Washington State Department of Ecology. Data obtained using an X-ray fluorescence instrument.

²Model Toxics Control Act (MTCA) Method A cleanup level (CUL).

Table 2

Summary of Groundwater Level Measurements

Trolley Barn Yakima, Washington

Well Number	Top of Casing Elevation ¹ (feet)	Date Measured	Monitoring Well Headspace ² (ppm)	Depth to Groundwater ³ (feet)	Groundwater Elevation ¹ (feet)
HWA-MW-1	1,059.44	09/16/14	0.3	12.00	1,047.44
GEI-MW-1	1,060.41	09/16/14	0.1	13.19	1,047.22
GEI-MW-2	1,061.25	09/16/14	0.3	13.40	1,047.85
GEI-MW-3	1,061.06	09/16/14	0.1	13.34	1,047.72

Notes:

¹Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88). Wells were surveyed by Professional Land Surveyors, Inc. (PLS, Inc.) in August 2014.

²Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.

³Depth to water measurements obtained from north side of top of PVC well casing. ppm = parts per million

Table 3

Summary of Field-Measured Natural Attenuation Parameters¹

Trolley Barn Yakima, Washington

Well Number	Date Collected	pН	Specific Conductivity (mS/cm)	Oxidation Reduction Potential - Field ² (mV)	Oxidation Reduction Potential - Normalized ³ (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature	Ferrous Iron ⁴ (Fe ²⁺) (mg/L)	Stabilization (minutes)
HWA-MW-1	09/16/14	6.80	0.2419	178	379	7.26	0.2498	18.22	<0.2	15
GEI-MW-1	09/16/14	6.65	0.2514	96	297	4.94	1.107	18.05	<0.2	18
GEI-MW-2	09/16/14	6.79	0.2436	257	458	7.60	0.1365	18.20	<0.2	21
GEI-MW-3	09/16/14	7.55	0.3054	-133	68	0.70	10.19	18.10	0.75	54

Notes:

¹Reported water quality parameters reflect conditions at the conclusion of well purging during low-flow sampling.

 $^{^{2}}$ Field ORP values are relative to the reference electrode associated with the multi-parameter meter.

³Normalized ORP values have been normalized, using algorithms provided by the instrument manufacturer, to the standard hydrogen electrode (SHE).

⁴Ferrous iron measurements are approximate and based on visual assessment of a HACH Ferrous Iron IR-18C Test.

[°]C = degrees Celsius; mS/cm = millisiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; NTU = nephelometric turbidity units.

Table 4Summary of Chemical Analytical Results - Groundwater¹
Trolley Barn
Yakima, Washington

Boring/Test Pit	MTCA Method	B8-081214	HWA-MW-1	GEI-MW-1	GEI-MW-2	GEI-MW-3	MW-Dup
Date Sampled	Levels ²	08/12/14	09/16/14	09/16/14	09/16/14	09/16/14	09/16/14
Method EPA 8260C - NWTPH-Gx a	nd Volatile Organic	Compounds (µg/L)					
Gasoline-range hydrocarbons	800/1,000 ³	1,200	<100	<100	<100	128	<100
Methyl tert-butyl ether	20	<0.500	<1.00	<1.00	<1.00	<1.00	<1.00
Benzene	5	0.350	<0.200	<0.200	<0.200	<0.200	<0.200
Ethylbenzene	700	<0.500	<1.00	<1.00	<1.00	<1.00	<1.00
Toluene	1,000	0.570	<1.00	<1.00	<1.00	<1.00	<1.00
o-Xylene	1,0004	<0.500	<1.00	<1.00	<1.00	<1.00	<1.00
m,p-Xylene	1,000	<0.500	<2.00	<2.00	<2.00	<2.00	<2.00
Xylenes (total)	1,000	<1.50				-	
1,2-Dichloroethance (EDC)	5	<0.500	<1.00	<1.00	<1.00	<1.00	<1.00
1,2-Dibromoethane (EDB)	0.01		<1.00 ⁵	<1.00 ⁵	<1.00 ⁵	<1.00 ⁵	<1.00 ⁵
1,2-Dibromo-3-chloropropane	NE		<5.00	<5.00	<5.00	<5.00	<5.00
VOCs	Varies ⁶	-	Chloroform - 1.10		Chloroform - 1.21	-	Chloroform - 1.16
Method EPA 8270 mod Polynuci	ear Aromatic Compo	ounds (PAH) by GC/	MS with Selected Ion	Monitoring (μg/L)			-
Naphthalene		14.5	<0.0904	<0.0930	0.0961	<0.0901	<0.0898
2-Methylnaphthalene	160 ⁷	0.350	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
1-Methylnaphthalene		29.1	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Acenaphthylene	NE	0.778	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Acenaphthene	NE	0.642	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Fluorene	NE	0.447	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Phenanthrene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Anthracene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Fluoranthene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Pyrene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Benzo (ghi) perylene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898

Boring/Test Pit	MTCA Method	B8-081214	HWA-MW-1	GEI-MW-1	GEI-MW-2	GEI-MW-3	MW-Dup
Date Sampled	Levels ²	08/12/14	09/16/14	09/16/14	09/16/14	09/16/14	09/16/14
Benzo (a) anthracene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Chrysene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Benzo (b) fluoranthene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Benzo (k) fluoranthene	0.18	<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Benzo (a) pyrene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Indeno (1,2,3-cd) pyrene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Dibenzo (a,h) anthracene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Carcinogenic PAH TEQ ⁹	0.1	0.147	0.0683	0.0702	0.0677	0.0680	0.0678
Method NWTPH-DX - Semivolatile	Petroleum Products	(µg/L)					
Diesel-range hydrocarbons	500	20,900	<310	<230	<232	266	<228
Heavy oil-range hydrocarbons	500	766	<517 ⁵	<383	<386	<386	<381
Method NWTPH-HCID - Hydrocarbo	n Identification (μg	/L)					
Gasoline-range hydrocarbons	800/1,000 ³	<620			-		
Diesel-range hydrocarbons	500	18,000			-		
Heavy oil-range hydrocarbons	500	1,000		-	-		
Method 8082A - Polychlorinated B	iphenyls (μg/L)						
PCB-1016		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1221		< 0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1232		< 0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1242	0.1	< 0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1248	0.1	<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1254		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1260		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1268		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
Method EPA 200 Series - Total Me	tals (µg/L)						
Arsenic	5	<20.0 ⁵	<2.00	<2.00	<2.00	<2.00	<2.00
Cadmium	5	<4.00	<1.00	<1.00	<1.00	<1.00	<1.00
Chromium (total)	50	36.8	<2.00	<2.00	<2.00	<2.00	<2.00
Lead	15	27.7	<2.00	<2.00	<2.00	<2.00	<2.00
Method EPA 245.1 - Total Metal	s (µg/L)						
Mercury	2	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200

Boring/Test Pit	MTCA Method	B8-081214	HWA-MW-1	GEI-MW-1	GEI-MW-2	GEI-MW-3	MW-Dup
Date Sampled	Levels ²	08/12/14	09/16/14	09/16/14	09/16/14	09/16/14	09/16/14
Method EPA 200.7 - Dissolved N	/letals (mg/L)						
Manganese	0.05 ¹⁰		0.0337	0.0422 J	<0.0100	0.986	<0.0100
Method RSK-175 - Dissolved Ga	ses (mg/L)						
Methane	NE		<0.00500	<0.00500	<0.00500	0.00508	<0.00500
Method EPA 300.0 - Anions (mg	:/L)						
Nitrate-Nitrogen	10 ¹¹	1	3.12	3.58	3.34	1.05	3.26
Sulfate	250 ¹⁰		10.6	13.6	10.8	10.7	10.8
Method SM 2320B - Convention	al Chemistary Para	ameters (mg/L)					
Total Alkalinity	NE		90.0	80.0	85.0	125	85.0

Notes:

NT = not tested; NE = not established; EPA = Washington State Environmental Protection Agency

J qualifier indicates the data has been qualified as estimated due to the reasons stated in Appendix B.

μg/L = micrograms per liter; mg/L = milligrams per liter

¹Chemical analyses conducted by TestAmerica Laboratories, Inc. of Spokane, Washington.

²Washington State Model Toxics Control Act (MTCA) Method A Unrestricted Land Use cleanup levels. **Bold** font indicates analyte concentrations in excess of respective cleanup levels.

³Gasoline-range petroleum hydrocarbon cleanup levels in groundwater are 800 µg/L when benzene is detected and 1,000 µg/L when benzene is not detected.

⁴Cleanup level for total xylenes (m,p-xylene and o-xylene).

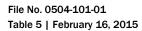
⁵Detection limit for analyte is greater than established cleanup level.

⁶Cleanup levels for VOCs vary based on analyte. Chloroform does not have an established cleanup level. Full list of analyzed VOCs is contained in the laboratory analytical report.

⁷Cleanup level refers to sum of naphthalenes (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene).

⁸Cleanup level referenced to benzo (a) pyrene. If other carcinogenic PAHs are present, the cleanup level represents the total equivalent carcinogenic PAH concentration.

⁹Carcincogenic PAH toxic equivalency (TEQ) calculated using the factors found in MTCA Table 708-2. The TEQ was calculated using one half the laboratory reporting limit for non-detec


 $^{^{\}tt 10} Secondary$ maximum contaminant level recommended by the Environmental Protection Agency.

¹¹Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

Table 5

Summary of Chemical Analytical Results - Soil¹ Trolley Barn Yakima, Washington

Boring/Test Pit	MTCA Method	GEI-TP-1 (9.5)	GEI-TP-1a (9)	GEI-TP-1a (12)	GEI-TP-2 (12)	GEI-TP-3 (9)	GEI-TP-4 (9)	GEI-MW-1 (12.5-13.5')	GEI-MW-2 (12-13')	GEI-MW-3 (12-13')	GEI-B1 (2-3')	GEI-B1 (12-13')	GEI-B2 (13-14')	GEI-B3 (7-8')	GEI-B4 (2-3')
Sample Depth (feet)	A Cleanup	9.5	9	12	12	9	9	12.5-13.5	12-13	12-13	2-3	12-13	13-14	7-8	2-3
Date Sampled	Levels ²	06/11/14	06/11/14	06/11/14	06/11/14	06/11/14	06/11/14	08/12/14	08/13/14	08/12/14	08/11/14	08/11/14	08/11/14	08/11/14	08/11/14
Method EPA 8260C - NWTPH-Gx an	d Volatile Organic	Compounds (mg/	kg)												
Gasoline-range hydrocarbons	30/100 ³	14.6	NA	NA	23.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	0.10	<0.0302	NA	NA	<0.0331	NA	NA	<0.0627	<0.0528	<0.0641	<0.0866	NA	<0.0522	<0.0586	NA
Hexane	NA	NA	NA	NA	NA	NA	NA	<0.125	<0.106	<0.128	<0.173	NA	<0.104	<0.117	NA
Tetrachloroethene (PCE)	0.05	NA	NA	NA	NA	NA	NA	<0.0501	<0.0422	<0.0513	<0.0693	NA	<0.0261	<0.0469	NA
Trichloroethene (TCE)	0.03	NA	NA	NA	NA	NA	NA	<0.0313	<0.0264	<0.0320	<0.0433	NA	<0.0417	<0.0293	NA
Benzene	0.03	0.0237	<0.0140	<0.0149	0.0458	NA	NA	<0.0188	<0.0158	<0.0192	<0.0260	NA	<0.0156	<0.0176	NA
Ethylbenzene	6	<0.101	<0.0933	<0.0995	<0.110	NA	NA	<0.125	<0.106	<0.128	<0.173	NA	<0.104	<0.117	NA
Toluene	7	0.124	<0.0933	<0.0995	0.279	NA	NA	<0.125	<0.106	<0.128	<0.173	NA	<0.104	<0.117	NA
o-Xylene	94	<0.201	<0.187	<0.199	<0.221	NA	NA	<0.251	<0.211	<0.256	<0.346	NA	<0.209	<0.234	NA
m,p-Xylene	9	<0.403	<0.373	<0.398	<0.441	NA	NA	<0.501	<0.422	<0.513	<0.693	NA	<0.417	<0.469	NA
Xylenes (total)	9 ⁴	<0.604	<0.560	<0.597	<0.662	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethance (EDC)	NE	<0.101	NA	NA	<0.110	NA	NA	<0.125	<0.106	<0.128	<0.173	NA	<0.104	<0.117	NA
Method EPA 8011 - EDB (μg/kg)															
1,2-Dibromoethane (EDB)	5	<1.02	NA	NA	<0.792	NA	NA	<0.842	<0.934	<0.867	<5.86	NA	<0.945	<0.853	NA
1,2-Dibromo-3-chloropropane	NE	NA	NA	NA	NA	NA	NA	<0.842	<0.934	<0.867	<5.86	NA	<0.945	<0.853	NA
Method EPA 8270 mod Polynucle	ear Aromatic Comp	ounds (PAH) by GC	MS with Selecte	ed Ion Monitoring (ı	mg/kg)										
Naphthalene		<0.373	NA	NA	0.0436	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
2-Methylnaphthalene	5 ⁵	<0.373	NA	NA	0.106	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
1-Methylnaphthalene		<0.373	NA	NA	0.0608	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Acenaphthylene	NE	<0.373	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Acenaphthene	NE	<0.373	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Fluorene	NE	<0.373	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Phenanthrene	NE	<0.373	NA	NA	0.0423	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Anthracene	NE	<0.373	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Fluoranthene	NE	<0.373	NA	NA	0.0330	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Pyrene	NE	<0.373	NA	NA	0.0277	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Benzo (ghi) perylene	NE	<0.373	NA	NA	0.0251	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Benzo (a) anthracene		<0.373 ⁸	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46 ⁸	NA	<0.0202	<0.0184	NA
Chrysene		<0.373 ⁸	NA	NA	0.0330	NA	NA	<0.0195	<0.0195	<0.0196	<1.46 ⁸	NA	<0.0202	<0.0184	NA
Benzo (b) fluoranthene		<0.373 ⁸	NA	NA	0.0409	NA	NA	<0.0195	<0.0195	<0.0196	<1.46 ⁸	NA	<0.0202	<0.0184	NA
Benzo (k) fluoranthene	0.16	<0.373 ⁸	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46 ⁸	NA	<0.0202	<0.0184	NA
Benzo (a) pyrene		<0.373 ⁸	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46 ⁸	NA	<0.0202	<0.0184	NA
Indeno (1,2,3-cd) pyrene		<0.373 ⁸	NA	NA	0.0225	NA	NA	<0.0195	<0.0195	<0.0196	<1.46 ⁸	NA	<0.0202	<0.0184	NA
Dibenzo (a,h) anthracene		<0.224 ⁸	NA	NA	0.0119	NA	NA	<0.0117	<0.0117	<0.0118	<0.873 ⁸	NA	<0.0121	<0.0111	NA
Carcinogenic PAH TEQ ⁷	0.1	0.274	NA	NA	0.0197	NA	NA	0.0143	0.0143	0.0144	1.073	NA	0.0148	0.0135	NA
Method NWTPH-DX - Semivolatile P	Petroleum Products	s (mg/kg)													
Diesel-range hydrocarbons	2,000	115	NA	NA	63.8	NA	86	NA	NA	NA	3,950 J	<10.7	NA	NA	NA
Heavy oil-range hydrocarbons	2,000	244	NA	NA	182	NA	86	NA	NA	NA	15,000	<26.8	NA	NA	NA

Boring/Test Pit	MTCA Method	GEI-TP-1 (9.5)	GEI-TP-1a (9)	GEI-TP-1a (12)	GEI-TP-2 (12)	GEI-TP-3 (9)	GEI-TP-4 (9)	GEI-MW-1 (12.5-13.5')	GEI-MW-2 (12-13')	GEI-MW-3 (12-13')	GEI-B1 (2-3')	GEI-B1 (12-13')	GEI-B2 (13-14')	GEI-B3 (7-8')	GEI-B4 (2-3')
Sample Depth (feet)	A Cleanup	9.5	9	12	12	9	9	12.5-13.5	12-13	12-13	2-3	12-13	13-14	7-8	2-3
Date Sampled	Levels ²	06/11/14	06/11/14	06/11/14	06/11/14	06/11/14	06/11/14	08/12/14	08/13/14	08/12/14	08/11/14	08/11/14	08/11/14	08/11/14	08/11/14
Method NWTPH-HCID - Hydrocarbon	n Identification (mg	g/kg)													
Gasoline-range hydrocarbons	30/100 ³	<36	<35	<37	<32	<37	<34	<41	<34	<37	<120	NA	<41	<38	NA
Diesel-range hydrocarbons	2,000	<91	<87	<93	<79	<92	<86	<100	<85	<92	3,100 J	NA	<100	<95	NA
Heavy oil-range hydrocarbons	2,000	210	170 J	110	220	<92	<86	<100	<85	<92	15,000	NA	<100	<95	NA
Method 8082A - Polychlorinated Bi	phenyls (µg/kg)														
PCB-1016		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1221		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1232		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1242	1,000	<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1248	1,000	<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1254		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1260		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	188	NA	<9.67	<10.4	NA
PCB-1268		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
Method EPA 6010C - Total Metals (mg/kg)														
Arsenic	20	4.74	2.91	NA	5.28	3.44	2.82	3.43	3.23	2.65	9.66	NA	3.06	2.66	14.3
Barium	NE	89.1	67.0	NA	261	56.7	40.1	NA	NA	NA	NA	NA	NA	NA	277 J
Cadmium	2	0.524	0.221	NA	2.02	<0.200	<0.207	<0.404	<0.223	<0.215	2.60	NA	<0.204	<0.197	6.78
Chromium	19/2,000	12.3 J	10.1	NA	14.3	13.0	15.8	17.1	11.5	11.3	20.2	NA	14.9	14.8	18.4 J
Lead	250	94.1	43.9	NA	302	4.71	2.27	4.16	2.96	4.51	806	NA	4.72	3.04	865
Selenium	NE	<2.64	<2.64	NA	<2.49	<2.50	<2.59	NA	NA	NA	NA	NA	NA	NA	<5.29
Silver	NE	<0.527	<0.528	NA	<0.498	<0.500	<0.518	NA	NA	NA	NA	NA	NA	NA	<1.06
Method EPA 7471B - Mercury (µg	g/kg)														
Mercury	2,000	72.1 J	<48.1	NA	106	43.0	<50.0	<47.2	<43.1	<37.9	512	NA	<37.3	<42.4	203 J

Boring/Test Pit	MTCA Method	GEI-B4 (7-8')	GEI-B5 (2-3')	GEI-B5 (7-8')	GEI-B6 (2-3')	GEI-B6 (13-14')	GEI-B7 (13-14')	GEI-B8 (14-15')	GEI-B9 (13-14')	Duplicate-1 ⁹	Duplicate-2 ⁹
Sample Depth (feet)	A Cleanup	7-8	2-3	7-8	2-3	13-14	13-14	14-15	13-14	NA	NA
Date Sampled	Levels ²	08/11/14	08/11/14	08/11/14	08/11/14	08/11/14	08/12/14	08/12/14	08/13/14	08/11/14	08/12/14
Method EPA 8260C - NWTPH-Gx and Volatile	Organic Compounds	(mg/kg)									
Gasoline-range hydrocarbons	30/100 ³	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	0.10	<0.0610	NA	<0.0623	NA	<0.0605	<0.0750	<0.0661	<0.0490	<0.0534	<0.0740
Hexane	NA	<0.122	NA	<0.125	NA	<0.121	<0.150	<0.132	<0.0980	<0.107	<0.148
Tetrachloroethene (PCE)	0.05	<0.0488	NA	<0.0498	NA	<0.0484	<0.0600	<0.0528	<0.0392	<0.0427	<0.0592
Trichloroethene (TCE)	0.03	<0.0305	NA	<0.0311	NA	<0.0303	<0.0375	<0.0330	<0.0245	<0.0267	<0.0370
Benzene	0.03	<0.0183	NA	<0.0187	NA	<0.0182	<0.0225	<0.0198	<0.0147	<0.0160	<0.0222
Ethylbenzene	6	<0.122	NA	<0.125	NA	<0.121	<0.150	<0.132	<0.0980	<0.107	<0.148
Toluene	7	<0.122	NA	<0.125	NA	<0.121	<0.150	<0.132	<0.0980	<0.107	<0.148
o-Xylene	94	<0.244	NA	<0.249	NA	<0.242	<0.300	<0.264	<0.196	<0.214	<0.296
m,p-Xylene	9	<0.488	NA	<0.498	NA	<0.484	<0.600	<0.528	<0.392	<0.427	<0.592
Xylenes (total)	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethance (EDC)	NE	<0.122	NA	<0.125	NA	<0.121	<0.150	<0.132	<0.0980	<0.107	<0.148
Method EPA 8011 - EDB (μg/kg)											
1,2-Dibromoethane (EDB)	5	<0.765	NA	<0.978	NA	<0.929	<1.05	<1.01	<0.922	<0.857	<1.08
1,2-Dibromo-3-chloropropane	NE	<0.765	NA	<0.978	NA	<0.929	<1.05	<1.01	<0.922	<0.857	NA
Method EPA 8270 mod Polynuclear Aromat	ic Compounds (PAH)	by GC/MS with Select	ed Ion Monitoring (mg	g/kg)							
Naphthalene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
2-Methylnaphthalene	5 ⁵	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
1-Methylnaphthalene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Acenaphthylene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Acenaphthene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Fluorene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Phenanthrene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Anthracene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Fluoranthene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Pyrene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (ghi) perylene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (a) anthracene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Chrysene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (b) fluoranthene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (k) fluoranthene	0.16	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (a) pyrene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Indeno (1,2,3-cd) pyrene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Dibenzo (a,h) anthracene		<0.0115	NA	<0.0129	NA	<0.0124	<0.0118	<0.0120	<0.0111	<0.0120	<0.0119
Carcinogenic PAH TEQ ⁷	0.1	0.0140	NA	0.0158	NA	0.0152	0.0145	0.0147	0.0136	0.0147	0.0146
Method NWTPH-DX - Semivolatile Petroleum	Products (mg/kg)										
Diesel-range hydrocarbons	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heavy oil-range hydrocarbons	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Boring/Test Pit	MTCA Method	GEI-B4 (7-8')	GEI-B5 (2-3')	GEI-B5 (7-8')	GEI-B6 (2-3')	GEI-B6 (13-14')	GEI-B7 (13-14')	GEI-B8 (14-15')	GEI-B9 (13-14')	Duplicate-1 ⁹	Duplicate-2 ⁹
Sample Depth (feet)	A Cleanup	7-8	2-3	7-8	2-3	13-14	13-14	14-15	13-14	NA	NA
Date Sampled	Levels ²	08/11/14	08/11/14	08/11/14	08/11/14	08/11/14	08/12/14	08/12/14	08/13/14	08/11/14	08/12/14
Method NWTPH-HCID - Hydrocarbon Identific	cation (mg/kg)										
Gasoline-range hydrocarbons	30/100 ³	<31	NA	<37	NA	<38	<41	<36	<34	<34	<37
Diesel-range hydrocarbons	2,000	<78	NA	<93	NA	<96	<100	<90	<85	<86	<92
Heavy oil-range hydrocarbons	2,000	<78	NA	<93	NA	<96	<100	<90	<85	<86	<92
Method 8082A - Polychlorinated Biphenyls	(µg/kg)										
PCB-1016		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1221		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1232		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1242	1,000	<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1248	1,000	<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1254		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1260		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1268		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
Method EPA 6010C - Total Metals (mg/kg)											
Arsenic	20	4.40	2.46	2.77	13.4	3.39	3.41	1.86	1.92	6.50	1.40
Barium	NE	NA	60.4	NA	93.4	NA	NA	NA	NA	NA	NA
Cadmium	2	<0.194	<0.187	<0.386	1.24	<0.219	<0.217	<0.195	<0.201	<0.199	<0.220
Chromium	19/2,000	13.5	7.33	16.6	13.2	15.7	15.1	9.40	9.33	15.2	8.83
Lead	250	2.20 J	24.8	3.68	343	4.77	3.71	3.81	3.48	1.40 J	3.11
Selenium	NE	NA	<2.34	NA	<2.62	NA	NA	NA	NA	NA	NA
Silver	NE	NA	<0.468	NA	<0.524	NA	NA	NA	NA	NA	NA
Method EPA 7471B - Mercury (µg/kg)											
Mercury	2,000	<49.0	48.8	194	126	<41.0	<48.1	<36.8	<47.2	<43.9	<49.0

Notes:

¹Chemical analyses conducted by TestAmerica Laboratories, Inc. of Spokane, Washington.

²Washington State Model Toxics Control Act (MTCA) Method A Unrestricted Land Use cleanup levels. **Bold** font indicates analyte concentrations in excess of respective cleanup levels.

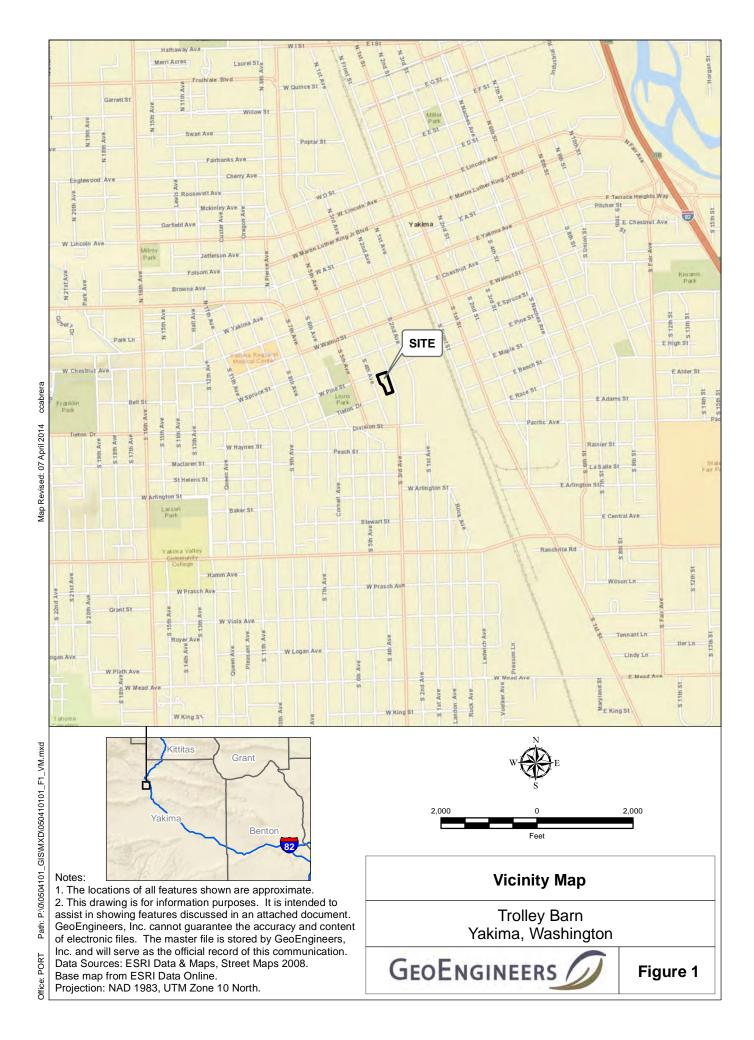
³Gasoline-range petroleum hydrocarbon cleanup levels in soil are 30 mg/kg when benzene is detected and 100 mg/kg when benzene is not detected.

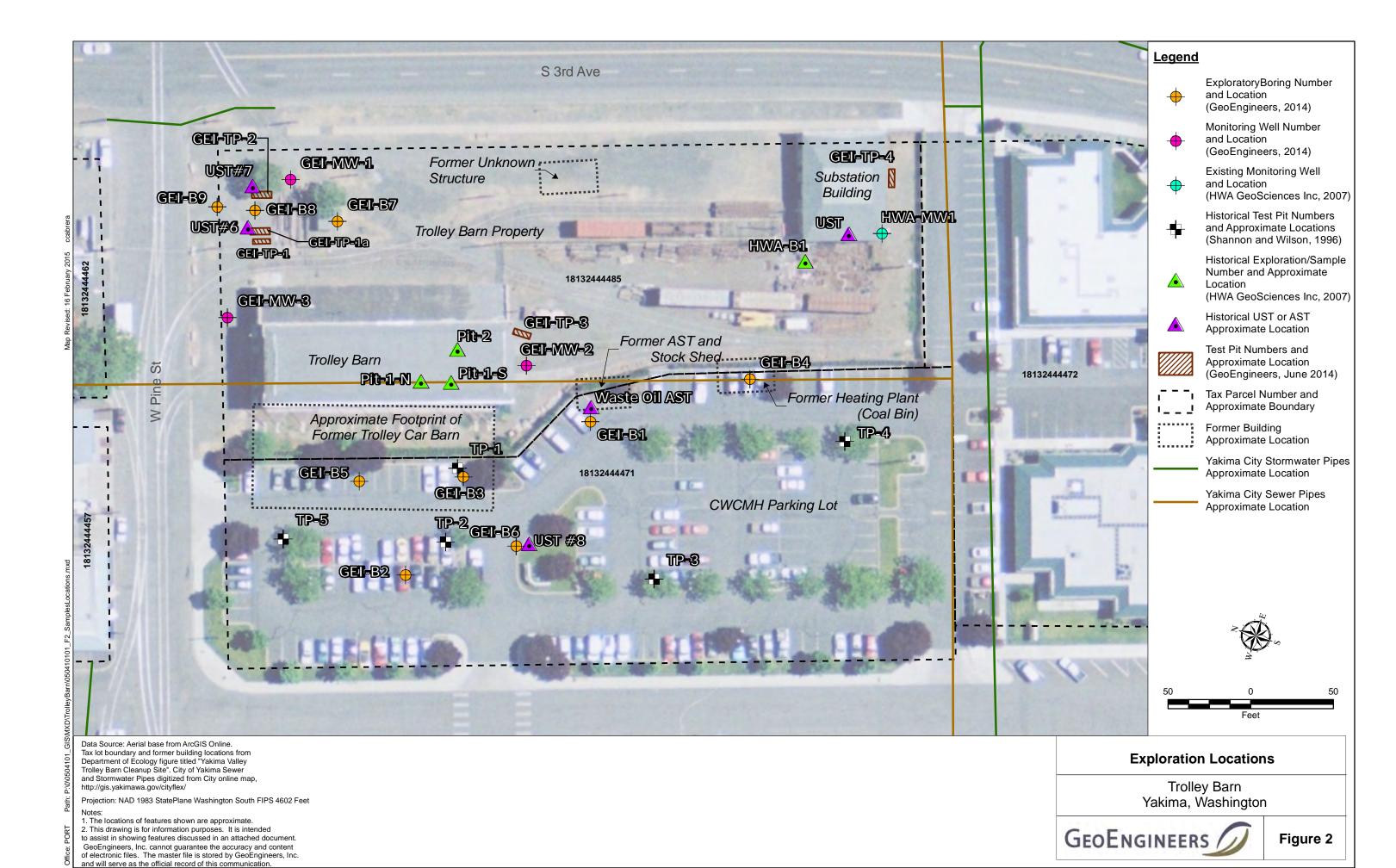
⁴Cleanup level for total xylenes (m,p-xylene and o-xylene).

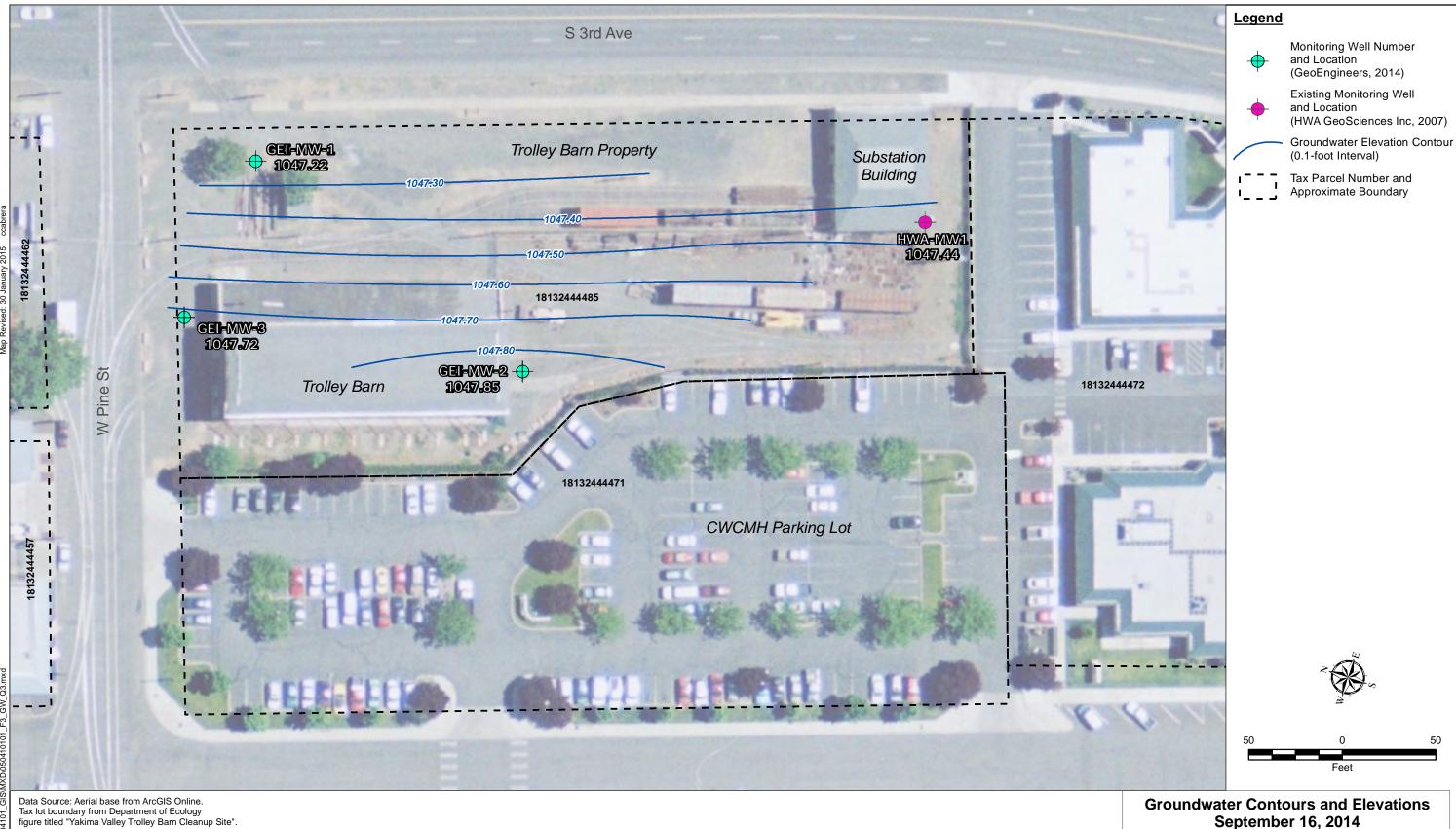
⁵Cleanup level refers to sum of naphthalenes (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene).

⁶Cleanup level referenced to benzo (a) pyrene. If other carcinogenic PAHs are present, the cleanup level represents the total equivalent carcinogenic PAH concentration.

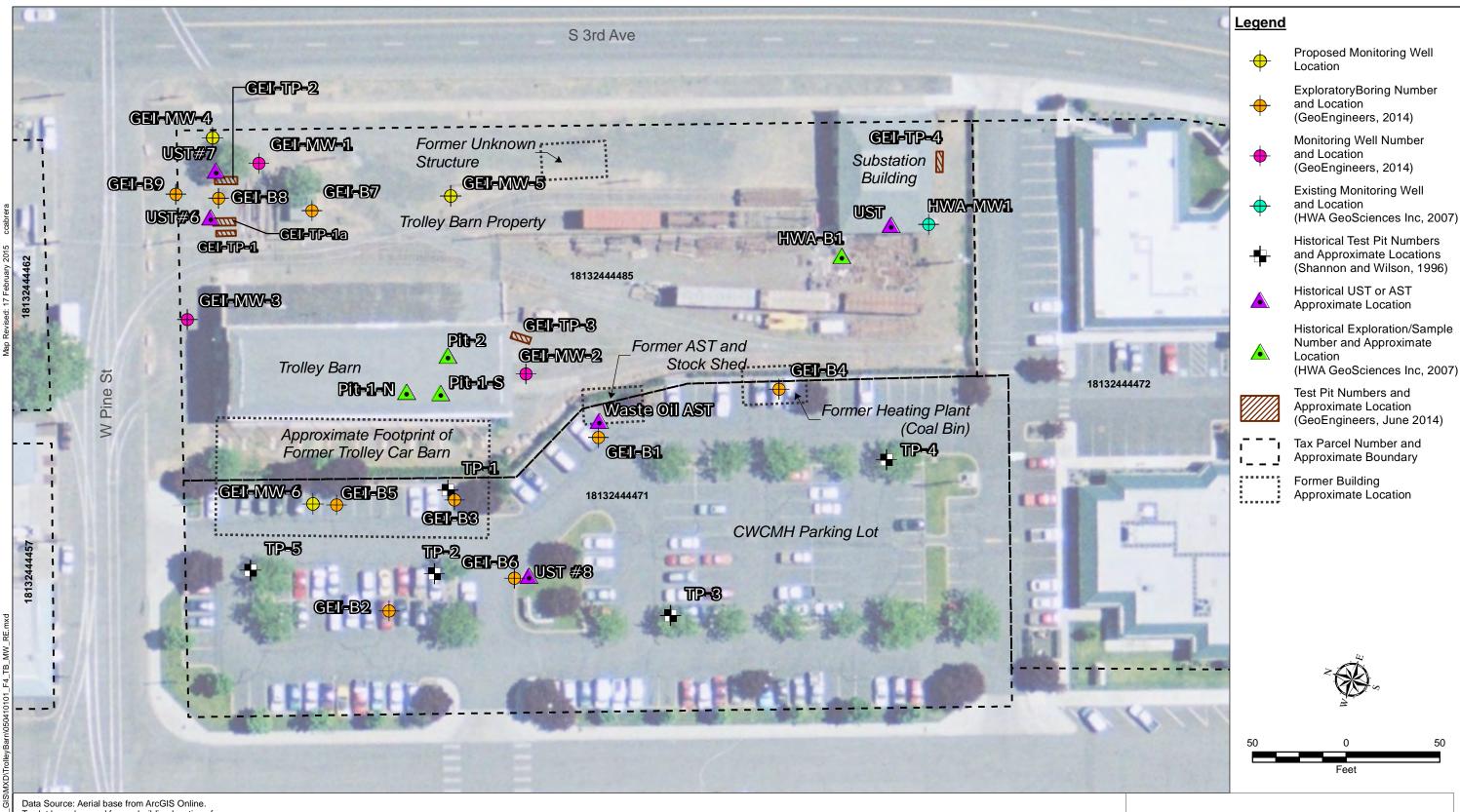
⁷Carcincogenic PAH toxic equivalency (TEQ) calculated using the factors found in MTCA Table 708-2. The TEQ was calculated using one half the laboratory reporting limit for non-detected analytes.


⁸Detection limit for analyte is greater than established cleanup level.


⁹Duplicate samples Duplicate-1 and Duplicate-2 were collected from samples GEI-B4(7-8) and GEI-B8(14-15), respectively.


mg/kg = milligrams per kilogram; NT = not tested; NE = not established; EPA = Washington State Environmental Protection Agency

J qualifier indicates the data has been qualified as an estimate due to the reasons stated in Appendix B.


Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Trolley Barn Yakima, Washington

Figure 3

Data Source: Aerial base from ArcGIS Online.
Tax lot boundary and former building locations from
Department of Ecology figure titled "Yakima Valley
Trolley Barn Cleanup Site".

Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet

Notes

1. The locations of features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Proposed Monitoring Wells

Trolley Barn Yakima, Washington

Figure 4

APPENDIX A Field Procedures and Boring Logs

APPENDIX A FIELD PROCEDURES AND BORING LOGS

General

Soil assessment activities were conducted on June 11, 2014 and August 11 through 13, 2014 at the Trolley Barn site located at 404 South 3rd Avenue, Yakima, Washington. Five test pits were excavated to depths ranging between 9½ to 14 feet bgs; excavated material was placed back into the test pit. Twelve soil borings (GEI-B1 through GEI-B9 and GEI-MW-1 through GEI-MW-3) were advanced to depths between 10 and 25 feet using sonic drilling methods. Soil borings were backfilled with bentonite chips and patched with asphalt or gravel depending on location. Three borings were completed as groundwater monitoring wells (GEI-MW-1 through GEI-MW-3), as described in this appendix. Soil exploration locations are shown on Figure 2.

Field methods generally were performed in compliance with the project Work Plan dated June 2, 2014 (GeoEngineers, 2014).

Soil Sample Collection

Where practicable, EPA 5035 sampling methods were used to collect the soil samples for GRPH, VOC and fractionalized petroleum hydrocarbon analyses. For analysis of other parameters, soil was placed in laboratory-supplied sample bottles and filled to minimize headspace. Soil samples were stored in a chilled cooler until delivery to the analytical laboratory.

The test pit exploration and sonic drilling operations were monitored by staff from our firm who examined and classified the soil encountered, obtained soil samples, and maintained a continuous log of exploration. Soil encountered in the test pits and borings was classified in general accordance with ASTM D 2488 and the classification chart listed in Key to Exploration Logs, Figure A-1. Logs of the borings are presented in Figures A-2 through A-10. Logs of the monitoring wells are shown in Figures A-11 through A-13. Logs of the test pits are shown in Figures A-14 through A-18. The logs are based on interpretation of the field data and indicate the depth at which subsurface materials or their characteristics change, although these changes might actually be gradual.

Field Screening of Soil Samples

Metals field screening was conducted by Ecology's site manager using an XRF device. Ecology provided the data from the field screening for inclusion in the report. GeoEngineers' field representative performed field-screening tests on soil samples obtained from the test pits and borings. Field screening results were used as a general guideline to assess areas of possible petroleum-related contamination. The field screening methods used include: (1) visual screening; (2) water-sheen screening; and (3) headspace-vapor screening using a MiniRAE PID calibrated to isobutylene on the day of testing.

Visual screening consisted of observing soil for stains indicative of metal- or petroleum-related contamination. Water-sheen screening involved placing soil in a pan of water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheens observed are classified as follows:

No Sheen	No visible sheen on the water surface.
Slight Sheen	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.
Moderate Sheen	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface.
Heavy Sheen	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag, and the bag was shaken to expose the soil to the air trapped in the bag. Headspace vapor screening targeted volatile petroleum hydrocarbon compounds. In this application, the PID measured concentration of organic vapors ionizable by a 10.6 electron volt (ev) lamp in the range between 1.0 and 2,000 ppm, with a resolution of +/-2 ppm.

Field screening results can be site specific. The effectiveness of field screening can vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of contaminants.

Monitoring Well Construction and Development

Monitoring wells GEI-MW-1 through GEI-MW-3 were constructed using approximate 2-inch-diameter Schedule 40 PVC pipe and well screen material with a 0.010-inch slot size. Processed 10-20 Colorado silica sand was used as filter pack. Bentonite chips were used as impermeable backfill. At the ground surface, the wells were protected by steel flush-mount monuments. Well construction details for monitoring wells GEI-MW-1 through GEI-MW-3 are presented graphically in Figures A-11 through A-13, respectively.

After installation, monitoring wells were developed by a combination of pumping and surging until purge water was relatively clear and free of suspended sediment.

Groundwater Elevations

Depths to groundwater were measured relative to the monitoring well casing rim using an electric water level indicator. The probe of the water level indicator was decontaminated between wells using a detergent wash, followed by two distilled water rinses.

Low-Flow Sampling Procedures

Groundwater sampling was performed consistent with the EPA's low-flow groundwater sampling procedure, as described by EPA (1996) and Puls and Barcelona (1996). Monitoring well purging and sampling activities were accomplished using a peristaltic pump with disposable tubing. During purging activities, water quality parameters, including pH, conductivity, temperature, turbidity, ORP and DO, were measured using an In-Situ Troll 9500 multi-parameter meter equipped with a flow-through cell; measurements were recorded approximately every 3 minutes. The meter calibration was verified at the beginning of each work day consistent with manufacturer recommendations prior to purging and sampling activities.

Groundwater samples were generally collected after (1) water quality parameters had stabilized; or (2) a maximum purge time of 60 minutes was achieved. During the September 2014 event, D0 did not stabilize in well GEI-MW-3 and purging was stopped at 54 minutes; however, D0 was only 0.073 mg/L greater than

the stabilization value and we do not expect this variation to affect the quality of the sample collected. During purging and sampling, purge rate was not allowed to exceed 400 milliliters per minute. Water quality parameter stabilization criteria include the following:

■ Turbidity: ±10 percent for values greater than 5 nephelometric turbidity units;

Conductivity: ±3 percent;

pH: ±0.1 unit;

Temperature: ±3 percent; and

■ Dissolved oxygen: ± 10 percent.

After groundwater quality stabilization criteria were reached, the pump's discharge tubing was disconnected from the flow-through cell and groundwater samples were collected for analysis.

Each sample was pumped directly into sample containers supplied by the laboratory. Groundwater samples collected for chemical analysis were kept cool during on-site storage and transport to the laboratory. Chain-of-custody (COC) procedures were observed during transport of the groundwater samples.

SOIL CLASSIFICATION CHART

М	AJOR DIVISI	ONS	SYMI	BOLS	TYPICAL		
141.	AUGIN DIVIO	0110	_	LETTER	DESCRIPTIONS		
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
	GRAVELLY SOILS MORE THAN 50% OF COARSE FRACTION	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
COARSE GRAINED SOILS		GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
00.20	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS		
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND		
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES		
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
			July July	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

ADDITIONAL MATERIAL SYMBOLS

SYMI	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	СС	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

Groundwater Contact

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata or geologic units

Approximate location of soil strata change within a geologic soil unit

Material Description Contact

Distinct contact between soil strata or geologic units

SS

MS

Approximate location of soil strata change within a geologic soil unit

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel

Standard Penetration Test (SPT)

Shelby tube

Direct-Push

Piston

Bulk or grab

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

A "P" indicates sampler pushed using the weight of the drill ria.

Laboratory / Field Tests

%F Percent fines Atterberg limits ΑL CA CP Chemical analysis Laboratory compaction test CS DS Consolidation test **Direct shear** HA Hydrometer analysis MC Moisture content MD Moisture content and dry density OC Organic content PΜ Permeability or hydraulic conductivity Plasticity index ы PP Pocket penetrometer **PPM** Parts per million Sieve analysis SA TX UC Triaxial compression Unconfined compression VS Vane shear **Sheen Classification** No Visible Sheen NS

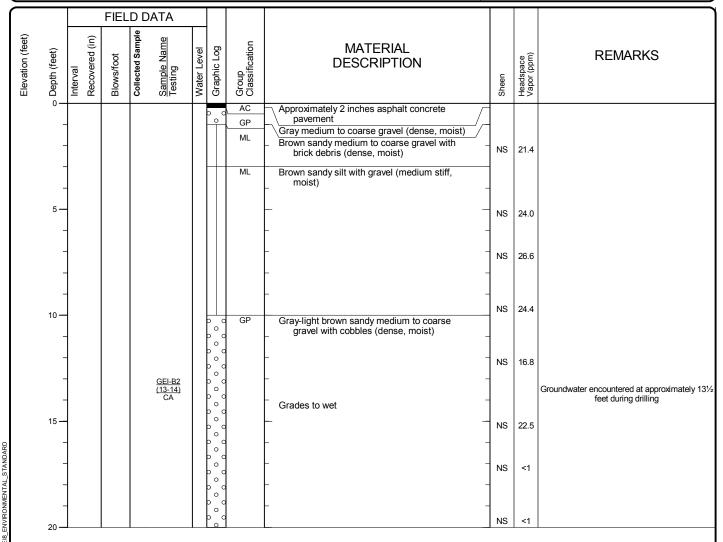
Moderate Sheen HS **Heavy Sheen** Not Tested

Slight Sheen

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

KEY TO EXPLORATION LOGS

<u>Start</u> Drilled 8/11/2014	<u>End</u> 8/11/2014	Total Depth (ft)	15	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment		Sonic, 8-inch	casing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:										



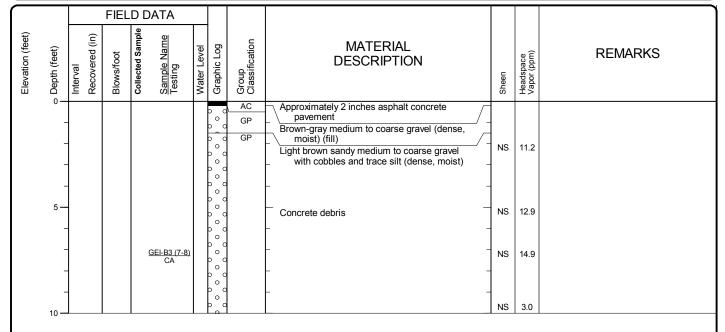
Log of Boring GEI-B1

Project: Trolley Barn

Project Location: Yakima, Washington

<u>Start</u> Drilled 8/11/2014	<u>End</u> 8/11/2014	Total Depth (ft)	20	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation (ft) Vertical Datum	Unde	ermined		Hammer Data			Drilling Equipment		Sonic, 8-inch o	asing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:								_		

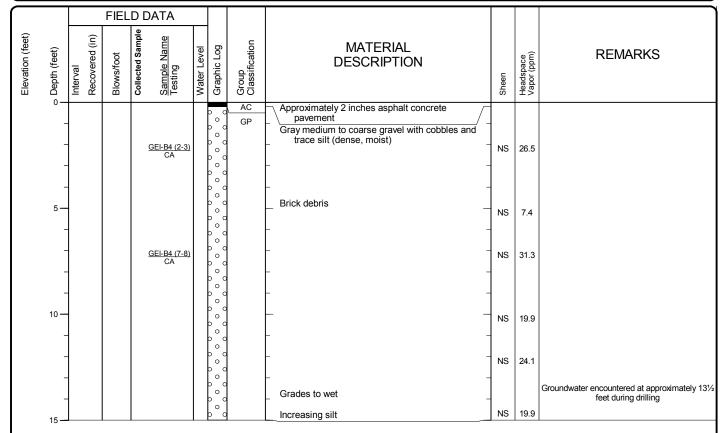
Project: Trolley Barn


Project Location: Yakima, Washington

Project Number: 0504-101-01

Figure A-3 Sheet 1 of 1

<u>Start</u> Drilled 8/11/2014	<u>End</u> 8/11/2014	Total Depth (ft)	10	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment		Sonic, 8-inch cas	sing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:								Not	encountered	

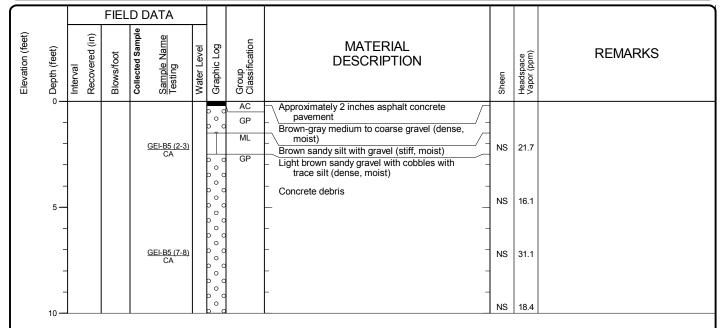


Log of Boring GEI-B3

Project: Trolley Barn

Project Location: Yakima, Washington

<u>Start</u> Drilled 8/11/2014	<u>End</u> 8/11/2014	Total Depth (ft)	15	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment		Sonic, 8-inch	casing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:										


GEOENGINEERS

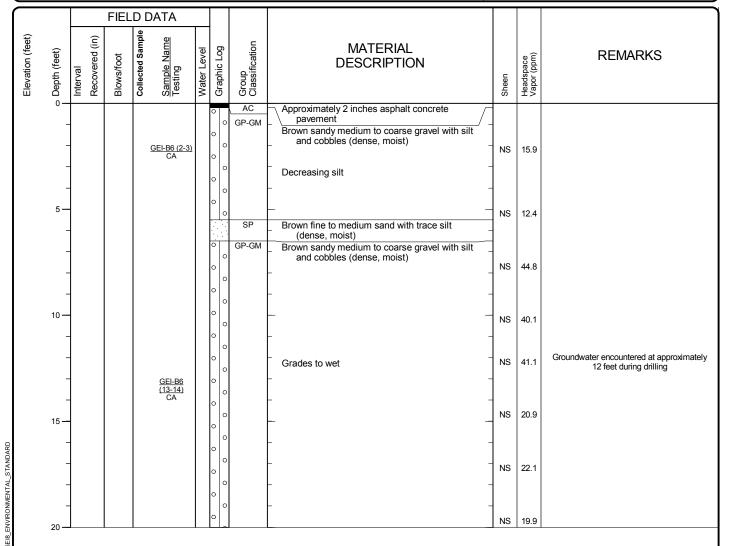
Project: Trolley Barn
Project Location: Yakima, Washington

Project Number: 0504-101-01

Figure A-5 Sheet 1 of 1

<u>Start</u> Drilled 8/11/2014	<u>End</u> 8/11/2014	Total Depth (ft)	10	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment		Sonic, 8-inch cas	sing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:								Not	encountered	

Log of Boring GEI-B5

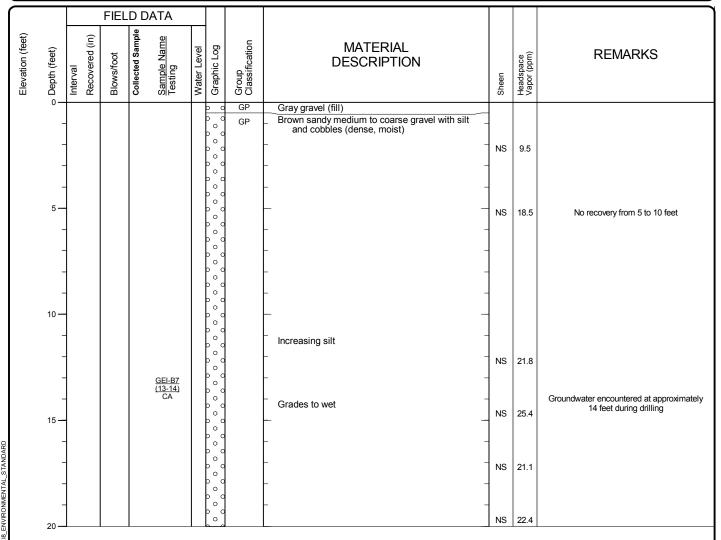

Project: Trolley Barn

Project Location: Yakima, Washington

Project Number: 0504-101-01

Figure A-6 Sheet 1 of 1

<u>Start</u> Drilled 8/11/2014	<u>End</u> 8/11/2014	Total Depth (ft)	20	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation (ft) Vertical Datum	Unde	ermined		Hammer Data			Drilling Equipment		Sonic, 8-inch o	asing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:								_		

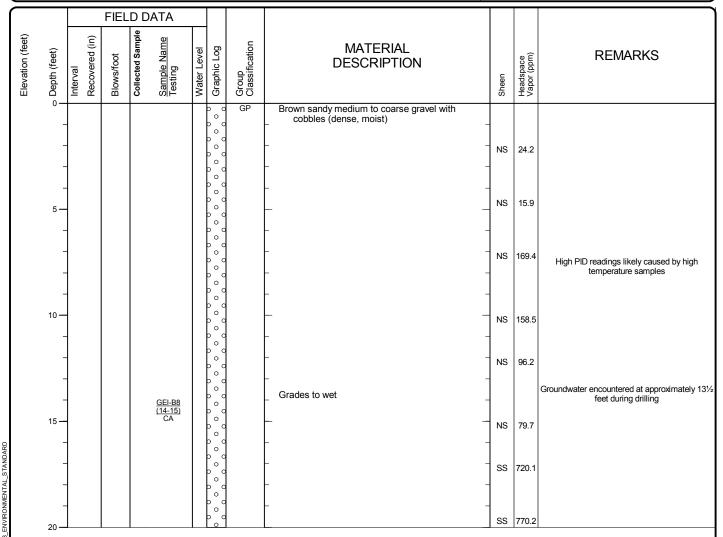


Project: Trolley Barn

Project Location: Yakima, Washington

<u>Start</u> Drilled 8/13/2014	<u>End</u> 8/13/2014	Total Depth (ft)	20	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment		Sonic, 8-inch	casing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:								_		

Project: Trolley Barn

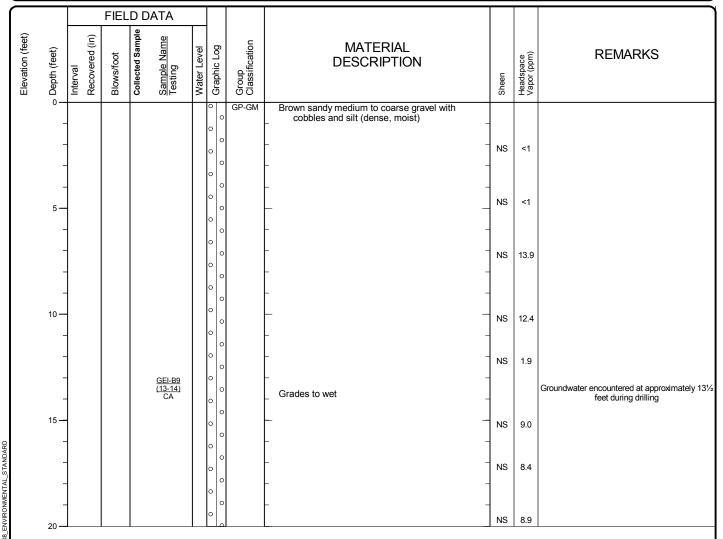

Project Location: Yakima, Washington

Project Number: 0504-101-01

Figure A-8 Sheet 1 of 1

<u>Start</u> Drilled 8/12/201	<u>End</u> 4 8/12/2014	Total Depth (ft)	20	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation Vertical Datum	^(ft) Unde	termined		Hammer Data			Drilling Equipment		Sonic, 8-inch	n casing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:								_		

Project: Trolley Barn

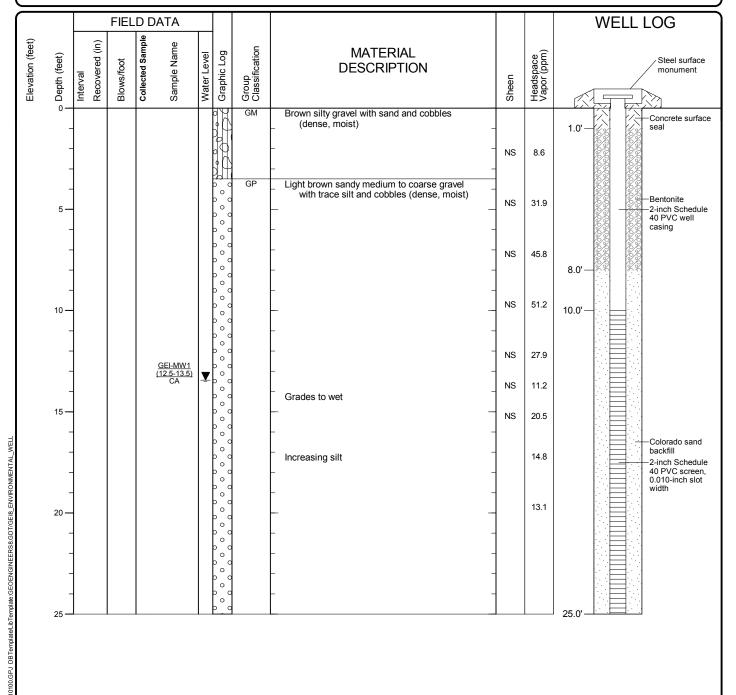

Project Location: Yakima, Washington

Project Number: 0504-101-01

Figure A-9 Sheet 1 of 1

<u>Start</u> Drilled 8/13/2014	<u>End</u> 8/13/2014	Total Depth (ft)	20	Logged By Checked By	AJF SHL	Driller Cascade Drilling		Drilling Method	Sonic	
Surface Elevation (ft) Vertical Datum	Unde	termined		Hammer Data			Drilling Equipment		Sonic, 8-ind	ch casing
Easting (X) Northing (Y)				System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:								_		

Project: Trolley Barn

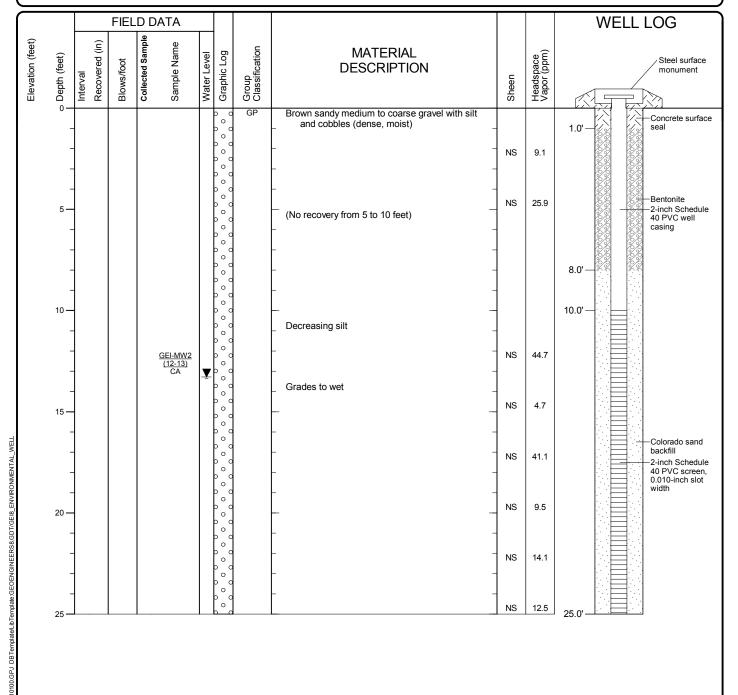

Project Location: Yakima, Washington

Project Number: 0504-101-01

Figure A-10 Sheet 1 of 1

Start Drilled 8/12/2014	<u>End</u> 8/12/2014	Total Depth (ft)	25	Logged By AJF Checked By SHL	Driller Cascade Drilling		Drilling Method Sonic	
Hammer Data				Drilling Sor Equipment	nic, 8-inch casing	A 2 (in) well was	s installed on 8/12/2014 to	a depth of 25 (ft).
Surface Elevation (ft) Vertical Datum Undetermined				Top of Casing Elevation (ft)		Groundwater	Depth to	
Easting (X) Northing (Y)				Horizontal Datum		Date Measured 8/12/2014	<u>Water (ft)</u> 13.5	Elevation (ft)
Notes:								

Log of Monitoring Well GEI-MW-1



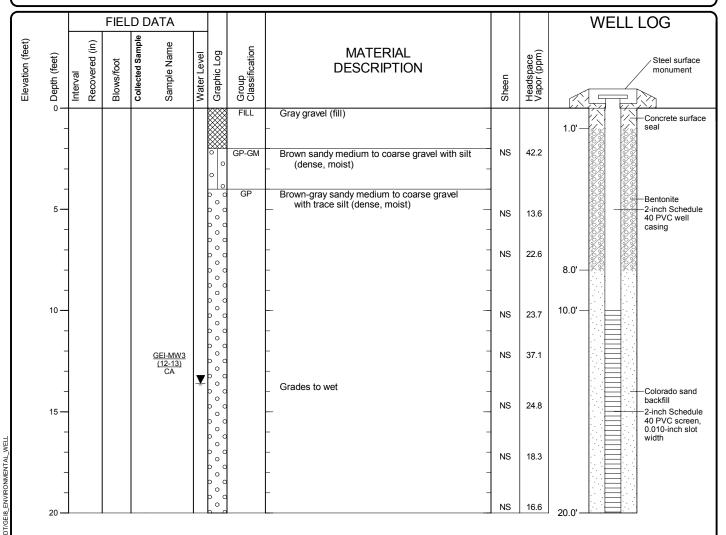
Note: See Figure A-1 for explanation of symbols.

Project: Trolley Barn

Project Location: Yakima, Washington

Start End Total 25 Drilled 8/13/2014 8/13/2014 Depth (ft) 25	Logged By AJF Checked By SHL Driller Cascade Drilling	Drilling Method Sonic		
Hammer Data	Drilling Equipment Sonic, 8-inch casing	A 2 (in) well was installed on 8/13/2014 to a depth of 25 (ft).		
Surface Elevation (ft) Vertical Datum Undetermined	Top of Casing Elevation (ft)	Groundwater Depth to		
Easting (X) Northing (Y)	Horizontal Datum	Date Measured Water (ft) Elevation (ft) 8/13/2014 13.3		
Notes:				

Log of Monitoring Well GEI-MW-2

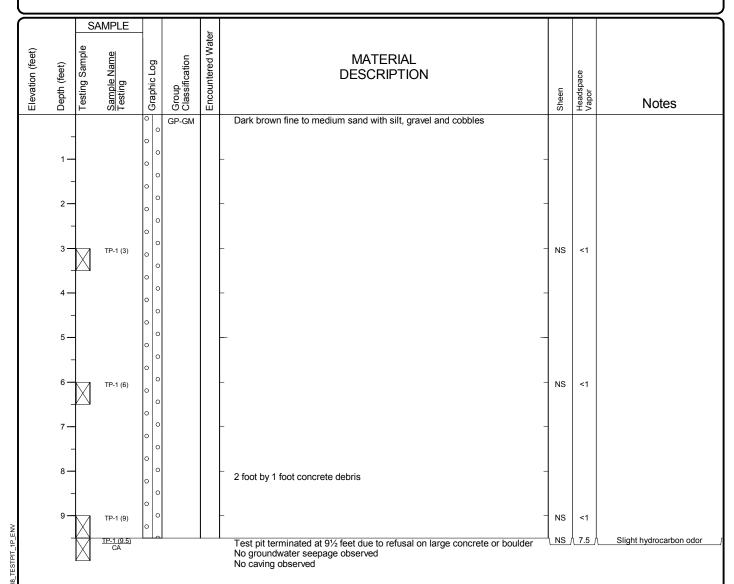


Note: See Figure A-1 for explanation of symbols.

Project: Trolley Barn

Project Location: Yakima, Washington

Start End Total 20 Drilled 8/12/2014 8/13/2014 Depth (ft) 20	Logged By AJF Checked By SHL Driller Cascade Drilling	Drilling Method Sonic		
Hammer Data	Drilling Sonic, 8-inch casing	A 2 (in) well was installed on 8/12/2014 to a depth of 20 (ft).		
Surface Elevation (ft) Vertical Datum Undetermined	Top of Casing Elevation (ft)	Groundwater Depth to		
Easting (X) Northing (Y)	Horizontal Datum	Date Measured Water (ft) Elevation (ft) 8/12/2014 13.6		
Notes:				


Log of Monitoring Well GEI-MW-3

Project: Trolley Barn

Project Location: Yakima, Washington

6/11/2014 JML Date Excavated: _ Logged By: _____ 9.5 TB285 Total Depth (ft) Equipment: _

Notes: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot.

GEOENGINEERS /

Log of Test Pit GEI-TP-1

Trolley Barn

Project Location: Yakima, Washington

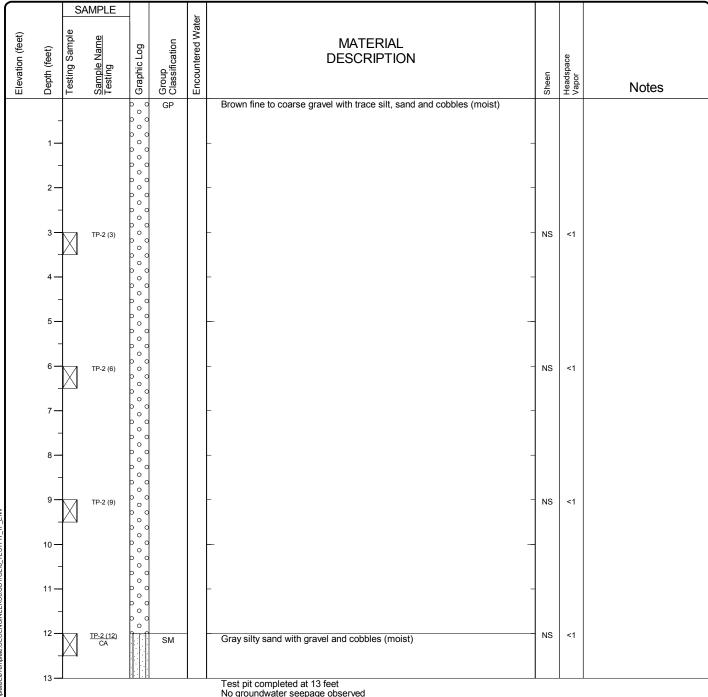
Project Number: 0504-101-01 Figure A-14 Sheet 1 of 1

Date Excavated:	6/11/2014	Logged By:	JML	
Equipment:	TB285	Total Depth (ft)	12.0	

Elevation (feet)	Depth (feet)	Testing Sample S	Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	1-	-			SP		Brown fine to medium sand with trace silt, gravel and cobbles	_		
	2 — 3 —	-					-	- NS	<1	
	4 — 5 —	-						_		
	6 — 7 — 8 —						Grades to medium sand	NS NS	<1	
ESTPIT_1P_ENV	9 —		<u>TP-1A (9)</u> CA					- NS	<1	
e:GEOENGINEERS8.GDT/GE18_T	- 11 — - 12 —		<u>TP-1A (12)</u> CA				Test pit terminated at 12 feet due to refusal on concrete slab or large boulder	NS	<u> </u>	
D60410100.GPJ DBTemplate/LbTemplate.GEOENGINEERS8.GDT/GE18_TESTPIT_IP_ENV							No groundwater seepage observed Caving observed at 2 to 9 feet			

Notes: See Figure A-1 for explanation of symbols.

The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot.


GEOENGINEERS /

Log of Test Pit GEI-TP-1a

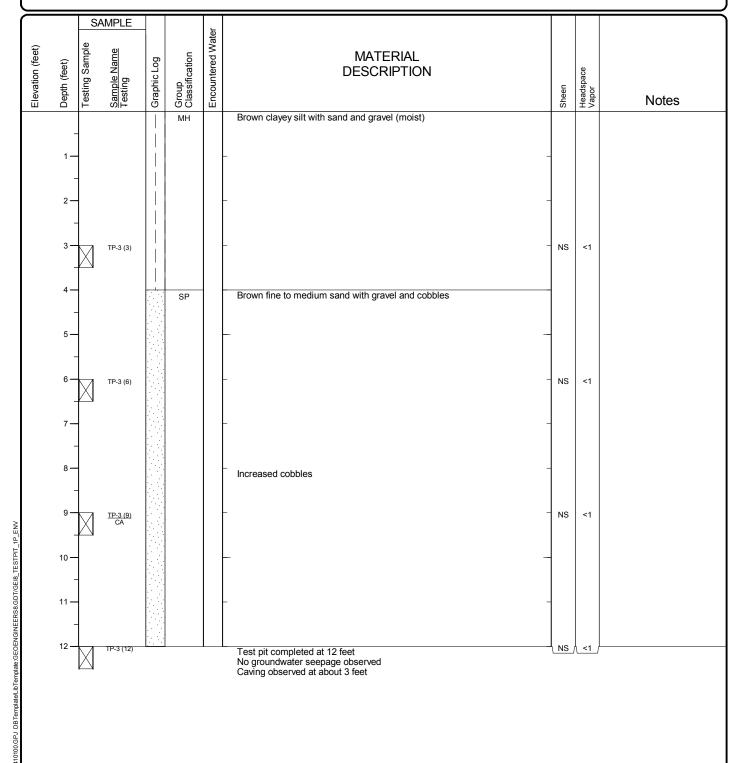
Project: Trolley Barn

Project Location: Yakima, Washington

Date Excavated:	6/11/2014	Logged By:	JML	_
Equipment:	TB285	Total Depth (ft)	13.0	_

Test pit completed at 13 feet No groundwater seepage observed No caving observed

Notes: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot.


GEOENGINEERS /

Log of Test Pit GEI-TP-2

Trolley Barn

Project Location: Yakima, Washington

Date Excavated:	6/11/2014	Logged By:	JML
Equipment:	TB285	Total Depth (ft)	12.0

Notes: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot.

GEOENGINEERS

Log of Test Pit GEI-TP-3

Project: **Trolley Barn**

Project Location: Yakima, Washington

Project Number: 0504-101-01 Figure A-17 Sheet 1 of 1

Date Excavated:	6/11/2014	Logged By:	JML
Equipment:	TB285	Total Depth (ft)	14.0

_			MPLE			/ater				
Elevation (feet)	(feet)	Testing Sample	Sample Name Testing	c Log	ication	Encountered Water	MATERIAL DESCRIPTION		ace	
Elevati	Depth (feet)	Testing	Sample Testing	Graphic Log	Group Classification	Encour		Sheen	Headspace Vapor	Notes
	_				GP		Brown gravel with sand and cobbles (moist)			
	1 —						-			
	2—						-			
	_			0 0						
	3 —		TP-4 (3)	000			-	NS	<1	
	4 —			000			-			
	5 —			0 0						
	-									
	6 —		TP-4 (6)				-	NS	<1	
	7—						-			
	8—			000			-			
	-			000						
	9 —		TP-4 (9) CA				-	NS	<1	
	10 —									
	11 —						-			
	-									
	12 —		TP-4 (12)				-	NS	<1	
	13 —									
	14 —		TD 4 /44					NS	\ <1 /	
	••		TP-4 (14)				Test pit completed at 14 feet No groundwater seepage observed Caving observed from 3 to 14 feet	INO		

Log of Test Pit GEI-TP-4

Project: Trolley Barn

Project Location: Yakima, Washington

Project Number: 0504-101-01

Figure A-18 Sheet 1 of 1

APPENDIX B Chemical Analytical Laboratory Reports

APPENDIX B CHEMICAL ANALYTICAL LABORATORY REPORTS

Samples

COC procedures were followed during the transport of the field samples to TestAmerica. The samples were held in cold storage pending extraction and/or analysis. The analytical results and quality control records are included in this appendix.

Analytical Data Review

This report documents the results of a United States EPA-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the 2014 sampling events, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Trolley Barn Site located at 404 South 3rd Street, Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with Quality Assurance Project Plan (Appendix A of the Work Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data package completeness;
- COC documentation;
- Holding times and sample preservation;
- Surrogate recoveries;
- Method blanks;
- Matrix spikes (MS)/matrix spike duplicates (MSD);
- Laboratory control samples (LCS)/laboratory control sample duplicates (LCSD);
- Laboratory and field duplicates; and
- Miscellaneous.

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table B-1.

TABLE B-1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
SXF0093	GEI-TP-1a(9), GEI-TP-1a(12), GEI-TP-1(9.5), GEI-TP-2(12), GEI-TP-3(9), GEI-TP-4(12)
SXH0089	GEI-B1 (2-3'), GEI-B1 (12-13'), GEI-B2 (13-14'), GEI-B3 (7-8'), GEI-B4 (2-3'), GEI-B4 (7-8'), Duplicate 1, GEI-B5 (2-3'), GEI-B5 (7-8'), GEI-B6 (2-3'), GEI-B6 (13-14'), GEI-B7 (13-14'), GEI-B8 (14-15'), Duplicate 2, GEI-B9 (13-14'), GEI-MW-1 (12.5-13.5'), GEI-MW-2 (12-13'), GEI-MW-3 (12-13'), HWA-MW1-Composite
SXH0092	B8-081214
SXI0111	GEI-MW-1-091614, GEI-MW-2-091614, MW-Dup-091614, GEI-MW-3-091614, HWA-MW-1-091614

CHEMICAL ANALYSIS PERFORMED

TestAmerica, located in Spokane, Washington, performed laboratory analysis on the soil and groundwater samples using one or more of the following methods:

- HCID (NWTPH-HCID) by Method NWTPH-HCID;
- GRPH (NWTPH-Gx) by Method NWTPH-Gx;
- DRPH and ORPH (NWTPH-Dx) by Method NWTPH-Dx;
- BTEX, MTBE, and EDC by Method SW8260C;
- VOCs by Method SW8260C;
- EDB by Method SW8011;
- PAHs by Method SW8270D-SIM;
- PCBs by Method SW8082A;
- Total metals by Method EPA6010C/EPA200.7/EPA200.8;
- Dissolved manganese by Method EPA200.7;
- Total mercury by Method EPA7471B/EPA245.1;
- Anions by Method EPA300.0;
- Total alkalinity by Method SM2320B; and
- Methane by method RSK-175.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory appears to have followed adequate corrective action processes; however, the laboratory analytical report does not contain a case narrative.

Chain-of-Custody Documentation

COC forms were provided with the laboratory analytical report. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in any of the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a MS analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. MSD analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if any element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits, with the following exceptions:

SDG SXF0093: (PCBs) The laboratory performed an MS/MSD sample set on Sample GEI-TP-2(12). The percent recoveries for Aroclor 1016 and Aroclor 1260 were greater than the control limits in the MS/MSD sample set extracted on June 18, 2014. There were no positive results for these target analytes in the associated field sample; therefore, no action was required for these outliers.

(Mercury) The laboratory performed an MS/MSD sample set on Sample GEI-TP-1(9.5). The RPD for mercury was greater than the control limit in the MS/MSD sample set extracted on June 24, 2014. The positive result for this target analyte was qualified as estimated (J) in this sample.

SDG SXH0089: (EDB) The laboratory performed an MS/MSD sample set on Sample Duplicate 2. The RPD for EDB was greater than the control limit in the MS/MSD sample set extracted on August 15, 2014. There were no positive results for this target analyte in the associated field sample; therefore, no action was required for this outlier.

(PCBs) The laboratory performed an MS/MSD sample set on Sample GEI-MW-1(12.5-13.5'). The percent recovery for Aroclor 1260 was greater than the control limits in the MSD extracted on August 19, 2014. The percent recovery for this target analyte was within the control limits in the corresponding MS. No action was required for this outlier.

(Total Metals) The laboratory performed an MS/MSD sample set on Sample GEI-B4(2-3'). The percent recovery for barium was greater than the control limits in the MS extracted on August 27, 2014. The percent recovery for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier. Also, the percent recovery for lead was outside the control limits in the same MS/MSD sample set. The parent sample concentration for this target analyte was greater than 4 times the amount spiked into the sample; therefore, no qualification of the data was required.

(Mercury) The laboratory performed an MS/MSD sample set on Sample GEI-B4(2-3'). The percent recovery for mercury was greater than the control limits in the MS extracted on August 28, 2014. The percent recovery for this target analyte was within the control limits in the corresponding MSD. Also, the RPD for mercury was greater than the control limit in the sample MS/MSD sample set. The positive result for this target analyte was qualified as estimated (J) in this sample.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A LCS is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD

analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than 5 times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit is 20 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exceptions:

SDG SXF0093: (NWTPH-HCID) A laboratory duplicate analysis was performed on Sample GEI-TP-1(9.5). The RPD for diesel-range hydrocarbons was greater than the control limit. There were no positive results for this target analyte in the associated field sample; therefore, no action was required for this outlier.

A laboratory duplicate analysis was performed on Sample GEI-TP-1a(9). The RPD values for diesel- and heavy oil-range hydrocarbons were greater than the control limit. The positive result for heavy oil-range hydrocarbons was qualified as estimated (J) in this sample. There were no positive results for diesel-range hydrocarbons in the associated field sample; therefore, no action was required.

(Total Metals) A laboratory duplicate analysis was performed on Sample GEI-TP-1(9.5). The RPD for chromium was greater than the control limit. The positive result for this target analyte was qualified as estimated (J) in this sample.

SDG SXH0089: (NWTPH-HCID) A laboratory duplicate analysis was performed on Sample GEI-MW-2 (12-13'). The RPD values for gasoline- and heavy oil-range hydrocarbons were greater than the control limit. There were no positive results for these target analytes in the associated field sample; therefore, no action was required for these outliers.

A laboratory duplicate analysis was performed on Sample GEI-MW-3(12-13'). The RPD values for gasoline-, diesel-, and heavy oil-range hydrocarbons were greater than the control limit. There were no positive results for these target analytes in the associated field sample; therefore, no action was required for these outliers.

(Total Metals) A laboratory duplicate analysis was performed with an RPD that exceeded the control limit; however, it was performed on a sample that was not associated with the samples in this SDG. For this reason, no action was required for this outlier.

A laboratory duplicate analysis was performed on Sample Duplicate 1. The RPD for lead was greater than the control limit. The positive results for this target analyte were qualified as estimated (J) in Samples GEI-B4(7-8') and Duplicate 1.

A laboratory duplicate analysis was performed on Sample GEI-B4(2-3'). The RPD values for barium and chromium were greater than the control limit. The positive results for these target analytes were qualified as estimated (J) in this sample.

(Mercury) A laboratory duplicate analysis was performed on Sample GEI-B4(2-3'). The RPD for mercury was greater than the control limit. The positive result for this target analyte was qualified as estimated (J) in this sample.

SDG SXIO111: (Dissolved Manganese) A laboratory duplicate analysis was performed on Sample GEI-MW-1-091614. The RPD for manganese was greater than the control limit. The positive result for this target analyte was qualified as estimated (J) in this sample.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 20 percent.

SDG SXH0089: There were two field duplicate sample pairs were submitted with this SDG:

- GEI-B4 (7-8')/Duplicate 1
- GEI-B8 (14-15')/Duplicate 2

The precision criteria for all target analytes were met for these sample pairs.

SDG SXI0111: One field duplicate sample pair, GEI-MW-2-091614 and MW-Dup-091614, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair.

Miscellaneous

SDG SXH00889: (NWTPH-HCID/NWTPH-Dx) For Sample GEI-B1(2-3'), the laboratory flagged the diesel-range hydrocarbons result with "Q6," indicating that the diesel-range hydrocarbons result was being influenced by the relative concentration of heavy oil-range hydrocarbons in the sample. For this reason, the positive result for diesel-range hydrocarbons was qualified as estimated (J) in Sample GEI-B1(2-3'), in order to signify a potential high bias.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS, and MS/MSD percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD and laboratory/field duplicate RPD values, with the exceptions noted above.

All data are acceptable for the intended use, with the following qualifications listed below in Table B-2.

TABLE B-2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
GEI-TP-1(9.5)	Mercury	J	MS/MSD RPD
	Chromium	J	Lab Dup RPD
GEI-TP-1a(9)	Heavy oil-range hydrocarbons	J	Lab Dup RPD
GEI-B1(2-3')	Diesel-range hydrocarbons	J	Other
GEI-B4(2-3')	Mercury	J	MS/MSD/Lab Dup RPD
	Barium	J	Lab Dup RPD
	Chromium	J	Lab Dup RPD
GEI-B4(7-8')	Lead	J	Lab Dup RPD
Duplicate 1	Lead	J	Lab Dup RPD
GEI-MW-1-091614	Manganese	J	Lab Dup RPD

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXF0093

Client Project/Site: 0504-101-01

Client Project Description: Trolley Barn

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Scott Lathen

dancue timington

Authorized for release by: 6/27/2014 4:59:16 PM

Randee Arrington, Project Manager (509)924-9200

Randee.Arrington@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Geo Engineers - Spokane Project/Site: 0504-101-01 TestAmerica Job ID: SXF0093

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	
QC Sample Results	12
Chronicle	23
Certification Summary	26
Method Summary	27
Chain of Custody	28

4

5

7

8

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

TestAmerica Job ID: SXF0093

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SXF0093-04	GEI-TP-1(9.5)	Soil	06/11/14 10:00	06/13/14 13:40
SXF0093-05	GEI-TP-1a(9)	Soil	06/11/14 10:40	06/13/14 13:40
SXF0093-06	GEI-TP-1a(12)	Soil	06/11/14 10:50	06/13/14 13:40
SXF0093-10	GEI-TP-2(12)	Soil	06/11/14 12:10	06/13/14 13:40
SXF0093-13	GEI-TP-3(9)	Soil	06/11/14 14:35	06/13/14 13:40
SXF0093-18	GEI-TP-4(12)	Soil	06/11/14 17:00	06/13/14 13:40

Definitions/Glossary

Client: Geo Engineers - Spokane

TestAmerica Job ID: SXF0093

Project/Site: 0504-101-01

Qualifiers

Semivolatiles

Quaimer	Qualifier Description
M1	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
RL2	Reporting limit raised due to high concentrations of hydrocarbons.

Fuels

Qualifier	Qualifier Description
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
Q6	Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
Metals	

Qualifier	Qualifier Description
R3	The RPD exceeded the acceptance limit due to sample matrix effects.
R	The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: GEI-TP-1(9.5)

Date Collected: 06/11/14 10:00
Date Received: 06/13/14 13:40

Lab Sample ID: SXF0093-04

Matrix: Soil
Percent Solids: 94.8

Date Received. 06/13/14 13.40								Percent Son	us. 34.0
- Method: EPA 8260C - Volatile	e Organic Compou	nds by EP	A Method 82600	;					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.0302		mg/kg dry	\	06/16/14 07:52	06/16/14 15:26	1.0
Benzene	0.0237		0.0151		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:26	1.0
Toluene	0.124		0.101		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:26	1.00
Ethylbenzene	ND		0.101		mg/kg dry	₽	06/16/14 07:52	06/16/14 15:26	1.00
m,p-Xylene	ND		0.403		mg/kg dry	₽	06/16/14 07:52	06/16/14 15:26	1.00
o-Xylene	ND		0.201		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:26	1.00
1,2-Dichloroethane (EDC)	ND		0.101		mg/kg dry	₽	06/16/14 07:52	06/16/14 15:26	1.00
Xylenes (total)	ND		0.604		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:26	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	99.0		42.4 - 163				06/16/14 07:52	06/16/14 15:26	1.0
1,2-dichloroethane-d4	92.5		50 - 150				06/16/14 07:52	06/16/14 15:26	1.0
Toluene-d8	103		45.8 - 155				06/16/14 07:52	06/16/14 15:26	1.0
4-bromofluorobenzene	103		41.5 - 162				06/16/14 07:52	06/16/14 15:26	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	14.6		5.03		mg/kg dry	\	06/16/14 07:52	06/16/14 15:26	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.0		42.4 - 163				06/16/14 07:52	06/16/14 15:26	1.00
Toluene-d8	103		45.8 - 155				06/16/14 07:52	06/16/14 15:26	1.00
4-bromofluorobenzene	103		41.5 - 162				06/16/14 07:52	06/16/14 15:26	1.00

Method: EPA 8011 - EDB by EPA Meti	nod 8011						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	1.02	ug/kg dry	₩	06/16/14 10:39	06/23/14 15:09	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		87.8		ug/kg dry	<u></u>	06/18/14 09:02	06/19/14 17:47	1.00
PCB-1221	ND		87.8		ug/kg dry	₽	06/18/14 09:02	06/19/14 17:47	1.00
PCB-1232	ND		87.8		ug/kg dry	₩	06/18/14 09:02	06/19/14 17:47	1.00
PCB-1242	ND		87.8		ug/kg dry	₽	06/18/14 09:02	06/19/14 17:47	1.00
PCB-1248	ND		87.8		ug/kg dry	₽	06/18/14 09:02	06/19/14 17:47	1.00
PCB-1254	ND		87.8		ug/kg dry	₩	06/18/14 09:02	06/19/14 17:47	1.00
PCB-1260	ND		87.8		ug/kg dry	₽	06/18/14 09:02	06/19/14 17:47	1.00
PCB-1268	ND		87.8		ug/kg dry	₩	06/18/14 09:02	06/19/14 17:47	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	107		46.2 - 210				06/18/14 09:02	06/19/14 17:47	1.00
Decachlorobiphenyl	101		65.6 - 186				06/18/14 09:02	06/19/14 17:47	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	RL2	0.373		mg/kg dry	*	06/16/14 08:14	06/16/14 19:35	20.0
2-Methylnaphthalene	ND	RL2	0.373		mg/kg dry	₩	06/16/14 08:14	06/16/14 19:35	20.0
1-Methylnaphthalene	ND	RL2	0.373		mg/kg dry	₩	06/16/14 08:14	06/16/14 19:35	20.0
Acenaphthylene	ND	RL2	0.373		mg/kg dry	₽	06/16/14 08:14	06/16/14 19:35	20.0
Acenaphthene	ND	RL2	0.373		mg/kg dry	₩	06/16/14 08:14	06/16/14 19:35	20.0
Fluorene	ND	RL2	0.373		mg/kg dry	☼	06/16/14 08:14	06/16/14 19:35	20.0

Client: Geo Engineers - Spokane TestAmerica Job ID: SXF0093

Project/Site: 0504-101-01

Client Sample ID: GEI-TP-1(9.5)

Lab Sample ID: SXF0093-04 Date Collected: 06/11/14 10:00

Matrix: Soil

Date Received: 06/13/14 13:40 Percent Solids: 94.8

Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Phenanthrene	ND	RL2	0.373		mg/kg dry	₩	06/16/14 08:14	06/16/14 19:35	20.
Anthracene	ND	RL2	0.373		mg/kg dry	₽	06/16/14 08:14	06/16/14 19:35	20.
Fluoranthene	ND	RL2	0.373		mg/kg dry	₩	06/16/14 08:14	06/16/14 19:35	20.
Pyrene	ND	RL2	0.373		mg/kg dry	₽	06/16/14 08:14	06/16/14 19:35	20.
Benzo (a) anthracene	ND	RL2	0.373		mg/kg dry	₩	06/16/14 08:14	06/16/14 19:35	20.
Chrysene	ND	RL2	0.373		mg/kg dry	₽	06/16/14 08:14	06/16/14 19:35	20.
Benzo (b) fluoranthene	ND	RL2	0.373		mg/kg dry	₽	06/16/14 08:14	06/16/14 19:35	20.
Benzo (k) fluoranthene	ND	RL2	0.373		mg/kg dry	₽	06/16/14 08:14	06/16/14 19:35	20.
Benzo (a) pyrene	ND	RL2	0.373		mg/kg dry	₽	06/16/14 08:14	06/16/14 19:35	20.
Indeno (1,2,3-cd) pyrene	ND	RL2	0.373		mg/kg dry	₩	06/16/14 08:14	06/16/14 19:35	20.0
Dibenzo (a,h) anthracene	ND	RL2	0.224		mg/kg dry	₽	06/16/14 08:14	06/16/14 19:35	20.
Benzo (ghi) perylene	ND	RL2	0.373		mg/kg dry	₩	06/16/14 08:14	06/16/14 19:35	20.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	64.0		36.3 - 152				06/16/14 08:14	06/16/14 19:35	20.
2-FBP	68.0		30.2 - 135				06/16/14 08:14	06/16/14 19:35	20.
p-Terphenyl-d14	76.0		65.1 - 134				06/16/14 08:14	06/16/14 19:35	20.
Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	115		62.3		mg/kg dry	\	06/19/14 08:02	06/20/14 14:14	1.0
Heavy Oil Range Hydrocarbons	244		156		mg/kg dry	₩	06/19/14 08:02	06/20/14 14:14	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	101		50 - 150				06/19/14 08:02	06/20/14 14:14	1.0
n-Triacontane-d62	98.6		50 - 150				06/19/14 08:02	06/20/14 14:14	1.0
Method: NWTPH-HCID - Hydrod	arbon Identifica	ition by NW	TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		36		mg/kg dry	*	06/16/14 10:43	06/16/14 18:02	1.
Diesel Range Hydrocarbons	ND		91		mg/kg dry	₩	06/16/14 10:43	06/16/14 18:02	1.0
	040		91		mg/kg dry	₩	06/16/14 10:43	06/16/14 18:02	1.0
Heavy Oil Range Hydrocarbons	210								
Heavy Oil Range Hydrocarbons Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
		Qualifier	Limits 50 - 150				Prepared 06/16/14 10:43	Analyzed 06/16/14 18:02	
Surrogate	%Recovery	Qualifier							1.
Surrogate 4-BFB (FID) 2-FBP	%Recovery 89.9	Qualifier	50 - 150				06/16/14 10:43	06/16/14 18:02	1.
Surrogate 4-BFB (FID)	89.9 98.2 88.7		50 - 150 50 - 150 50 - 150	Prep by I	EPA 3050B		06/16/14 10:43 06/16/14 10:43	06/16/14 18:02 06/16/14 18:02	1.
Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14	%Recovery 89.9 98.2 88.7 Pontent by EPA 6		50 - 150 50 - 150 50 - 150		EPA 3050B Unit	D	06/16/14 10:43 06/16/14 10:43	06/16/14 18:02 06/16/14 18:02	1. 1. 1.
Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Method: EPA 6010C - Metals Co	%Recovery 89.9 98.2 88.7 Pontent by EPA 6	010/7000 Se	50 - 150 50 - 150 50 - 150 eries Methods,			_ D	06/16/14 10:43 06/16/14 10:43 06/16/14 10:43	06/16/14 18:02 06/16/14 18:02 06/16/14 18:02	1. 1. 1. Dil Fa
Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Method: EPA 6010C - Metals Co	%Recovery 89.9 98.2 88.7 ontent by EPA 6 Result	010/7000 Se	50 - 150 50 - 150 50 - 150 eries Methods, l		Unit		06/16/14 10:43 06/16/14 10:43 06/16/14 10:43 Prepared	06/16/14 18:02 06/16/14 18:02 06/16/14 18:02 Analyzed	1. 1. 1. Dil Fa
Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Method: EPA 6010C - Metals Co	%Recovery 89.9 98.2 88.7 ontent by EPA 6 Result 4.74	010/7000 Se	50 - 150 50 - 150 50 - 150 eries Methods, l RL 1.32		Unit mg/kg dry	<u> </u>	06/16/14 10:43 06/16/14 10:43 06/16/14 10:43 Prepared 06/20/14 11:29	06/16/14 18:02 06/16/14 18:02 06/16/14 18:02 Malyzed 06/27/14 12:24	1. 1. 2. Dil Fa 1.0 1.0
Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Method: EPA 6010C - Metals Co Analyte Arsenic Barium Cadmium	%Recovery 89.9 98.2 88.7 entent by EPA 6 Result 4.74 89.1	010/7000 Se	50 - 150 50 - 150 50 - 150 eries Methods, l RL 1.32 0.527		mg/kg dry mg/kg dry	*	06/16/14 10:43 06/16/14 10:43 06/16/14 10:43 Prepared 06/20/14 11:29 06/20/14 11:29	06/16/14 18:02 06/16/14 18:02 06/16/14 18:02 06/16/14 12:24 06/27/14 12:24	1. 1. 1. Dil Fa 1.0 1.0
Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Method: EPA 6010C - Metals Co	%Recovery 89.9 98.2 88.7 Pontent by EPA 6 Result 4.74 89.1 0.524	010/7000 Se	50 - 150 50 - 150 50 - 150 eries Methods, l RL 1.32 0.527 0.211		mg/kg dry mg/kg dry mg/kg dry	* *	06/16/14 10:43 06/16/14 10:43 06/16/14 10:43 Prepared 06/20/14 11:29 06/20/14 11:29 06/20/14 11:29	06/16/14 18:02 06/16/14 18:02 06/16/14 18:02 06/16/14 18:02 Analyzed 06/27/14 12:24 06/27/14 12:24	1. 1. 1. Dil Fa 1.0 1.0 1.0 1.0
Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Method: EPA 6010C - Metals Co Analyte Arsenic Barium Cadmium Chromium	%Recovery 89.9 98.2 88.7 entent by EPA 6 Result 4.74 89.1 0.524 12.3	010/7000 Se	50 - 150 50 - 150 50 - 150 eries Methods, I RL 1.32 0.527 0.211		mg/kg dry mg/kg dry mg/kg dry mg/kg dry	# # # #	06/16/14 10:43 06/16/14 10:43 06/16/14 10:43 Prepared 06/20/14 11:29 06/20/14 11:29 06/20/14 11:29	06/16/14 18:02 06/16/14 18:02 06/16/14 18:02 06/16/14 18:02 Analyzed 06/27/14 12:24 06/27/14 12:24 06/27/14 12:24	Dil Fa 1. 1. Dil Fa 1.00 1.00 1.00 1.00 1.00 1.00

TestAmerica Spokane

Analyzed

06/24/14 15:57

Prepared

06/24/14 09:00

RL

49.0

MDL Unit

ug/kg dry

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods

Analyte

Mercury

Result Qualifier

72.1

Dil Fac

Client Sample ID: GEI-TP-1a(9)

Date Collected: 06/11/14 10:40 Date Received: 06/13/14 13:40 Lab Sample ID: SXF0093-05

Matrix: Soil

Percent Solids: 94.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0140		mg/kg dry	*	06/24/14 09:06	06/24/14 11:24	1.00
Toluene	ND		0.0933		mg/kg dry	₽	06/24/14 09:06	06/24/14 11:24	1.00
Ethylbenzene	ND		0.0933		mg/kg dry	₽	06/24/14 09:06	06/24/14 11:24	1.00
m,p-Xylene	ND		0.373		mg/kg dry	₽	06/24/14 09:06	06/24/14 11:24	1.00
o-Xylene	ND		0.187		mg/kg dry	₽	06/24/14 09:06	06/24/14 11:24	1.00
Xylenes (total)	ND		0.560		mg/kg dry	₩	06/24/14 09:06	06/24/14 11:24	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.9		42.4 - 163				06/24/14 09:06	06/24/14 11:24	1.00
1,2-dichloroethane-d4	96.3		50 - 150				06/24/14 09:06	06/24/14 11:24	1.00
Toluene-d8	104		45.8 - 155				06/24/14 09:06	06/24/14 11:24	1.00
4-bromofluorobenzene	97.5		41.5 - 162				06/24/14 09:06	06/24/14 11:24	1.00

Method: NWTPH-HCID - Hydroc	arbon Identifica	tion by NW	TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		35		mg/kg dry	\	06/16/14 10:43	06/16/14 18:50	1.0
Diesel Range Hydrocarbons	ND		87		mg/kg dry	₩	06/16/14 10:43	06/16/14 18:50	1.0
Heavy Oil Range Hydrocarbons	170		87		mg/kg dry	₽	06/16/14 10:43	06/16/14 18:50	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	98.2		50 - 150				06/16/14 10:43	06/16/14 18:50	1.0
2-FBP	102		50 - 150				06/16/14 10:43	06/16/14 18:50	1.0
p-Terphenyl-d14	89.8		50 - 150				06/16/14 10:43	06/16/14 18:50	1.0

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.91	1.32		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:43	1.00
Barium	67.0	0.528		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:43	1.00
Cadmium	0.221	0.211		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:43	1.00
Chromium	10.1	0.528		mg/kg dry	₽	06/20/14 11:29	06/27/14 12:43	1.00
Lead	43.9	1.32		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:43	1.00
Selenium	ND	2.64		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:43	1.00
Silver	ND	0.528		mg/kg dry	₽	06/20/14 11:29	06/27/14 12:43	1.00

Method: EPA 7471B - Total Metals	by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		48.1		ug/kg dry	*	06/24/14 09:00	06/24/14 16:06	1.00

Client Sample ID: GEI-TP-1a(12)

Lab Sample ID: SXF0093-06

 Date Collected: 06/11/14 10:50
 Matrix: Soil

 Date Received: 06/13/14 13:40
 Percent Solids: 94.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0149		mg/kg dry	₩	06/24/14 09:06	06/24/14 11:46	1.00
Toluene	ND		0.0995		mg/kg dry	₽	06/24/14 09:06	06/24/14 11:46	1.00
Ethylbenzene	ND		0.0995		mg/kg dry	₩	06/24/14 09:06	06/24/14 11:46	1.00
m,p-Xylene	ND		0.398		mg/kg dry	₩	06/24/14 09:06	06/24/14 11:46	1.00
o-Xylene	ND		0.199		mg/kg dry	₽	06/24/14 09:06	06/24/14 11:46	1.00
Xylenes (total)	ND		0.597		mg/kg dry	☼	06/24/14 09:06	06/24/14 11:46	1.00

Client Sample ID: GEI-TP-1a(12)

Date Collected: 06/11/14 10:50

Date Received: 06/13/14 13:40

Lab Sample ID: SXF0093-06

Matrix: Soil

Percent Sol	ids: 94.1
 	57.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		42.4 - 163	06/24/14 09:06	06/24/14 11:46	1.00
1,2-dichloroethane-d4	94.8		50 - 150	06/24/14 09:06	06/24/14 11:46	1.00
Toluene-d8	102		45.8 - 155	06/24/14 09:06	06/24/14 11:46	1.00
4-bromofluorobenzene	99.7		41.5 - 162	06/24/14 09:06	06/24/14 11:46	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		37		mg/kg dry	₩	06/23/14 16:14	06/23/14 17:30	1.0
Diesel Range Hydrocarbons	ND		93		mg/kg dry	₽	06/23/14 16:14	06/23/14 17:30	1.0
Heavy Oil Range Hydrocarbons	110		93		mg/kg dry	₩	06/23/14 16:14	06/23/14 17:30	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	131		50 - 150				06/23/14 16:14	06/23/14 17:30	1.0
2-FBP	108		50 ₋ 150				06/23/14 16:14	06/23/14 17:30	1.0
p-Terphenyl-d14	90.1		50 ₋ 150				06/23/14 16:14	06/23/14 17:30	1.0

Client Sample ID: GEI-TP-2(12) Lab Sample ID: SXF0093-10 Date Collected: 06/11/14 12:10 Matrix: Soil Date Received: 06/13/14 13:40 Percent Solids: 94.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0331		mg/kg dry	\	06/16/14 07:52	06/16/14 15:48	1.00
Benzene	0.0458		0.0166		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:48	1.00
Toluene	0.279		0.110		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:48	1.00
Ethylbenzene	ND		0.110		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:48	1.00
m,p-Xylene	ND		0.441		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:48	1.00
o-Xylene	ND		0.221		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:48	1.00
1,2-Dichloroethane (EDC)	ND		0.110		mg/kg dry	₩	06/16/14 07:52	06/16/14 15:48	1.00
Xylenes (total)	ND		0.662		mg/kg dry	₽	06/16/14 07:52	06/16/14 15:48	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	97.5		42.4 - 163				06/16/14 07:52	06/16/14 15:48	1.00
1,2-dichloroethane-d4	92.7		50 ₋ 150				06/16/14 07:52	06/16/14 15:48	1.00
Toluene-d8	104		45.8 - 155				06/16/14 07:52	06/16/14 15:48	1.00
4-bromofluorobenzene	106		41.5 - 162				06/16/14 07:52	06/16/14 15:48	1.00
Method: NWTPH-Gx - Gasoline	Hydrocarbons I	by NWTPH	-Gx						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	23.6		5.52		mg/kg dry	<u> </u>	06/16/14 07:52	06/16/14 15:48	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	97.5		42.4 - 163				06/16/14 07:52	06/16/14 15:48	1.00
Dibromofluoromethane	97.5								
Dibromofluoromethane Toluene-d8	97.5 104		45.8 - 155				06/16/14 07:52	06/16/14 15:48	1.00

Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.792		ug/kg dry	₽	06/16/14 10:39	06/23/14 16:19	1.00

Client Sample ID: GEI-TP-2(12)

Date Collected: 06/11/14 12:10 Date Received: 06/13/14 13:40

Gasoline Range Hydrocarbons

Lab Sample ID: SXF0093-10

Matrix: Soil

Percent Solids: 94.7

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND			94.4		ug/kg dry	<u> </u>	06/18/14 09:02	06/19/14 18:03	1.00
PCB-1221	ND			94.4		ug/kg dry	₩	06/18/14 09:02	06/19/14 18:03	1.00
PCB-1232	ND			94.4		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:03	1.00
PCB-1242	ND			94.4		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:03	1.00
PCB-1248	ND			94.4		ug/kg dry	₩	06/18/14 09:02	06/19/14 18:03	1.00
PCB-1254	ND			94.4		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:03	1.00
PCB-1260	ND			94.4		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:03	1.00
PCB-1268	ND			94.4		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:03	1.00
Surrogate	%Recovery	Qualifier	Lim	its				Prepared	Analyzed	Dil Fac
TCX	122		46.2 -	210				06/18/14 09:02	06/19/14 18:03	1.00
Decachlorobiphenyl	117		65.6 -	186				06/18/14 09:02	06/19/14 18:03	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.0436		0.0198		mg/kg dry	<u> </u>	06/16/14 08:14	06/17/14 14:02	1.00
2-Methylnaphthalene	0.106		0.0198		mg/kg dry	₽	06/16/14 08:14	06/17/14 14:02	1.00
1-Methylnaphthalene	0.0608		0.0198		mg/kg dry	⇔	06/16/14 08:14	06/17/14 14:02	1.00
Acenaphthylene	ND		0.0198		mg/kg dry	₽	06/16/14 08:14	06/17/14 14:02	1.00
Acenaphthene	ND		0.0198		mg/kg dry	⇔	06/16/14 08:14	06/17/14 14:02	1.00
Fluorene	ND		0.0198		mg/kg dry	₽	06/16/14 08:14	06/17/14 14:02	1.00
Phenanthrene	0.0423		0.0198		mg/kg dry	₽	06/16/14 08:14	06/17/14 14:02	1.00
Anthracene	ND		0.0198		mg/kg dry	⇔	06/16/14 08:14	06/17/14 14:02	1.00
Fluoranthene	0.0330		0.0198		mg/kg dry	₽	06/16/14 08:14	06/17/14 14:02	1.00
Pyrene	0.0277		0.0198		mg/kg dry	⇔	06/16/14 08:14	06/17/14 14:02	1.00
Benzo (a) anthracene	ND		0.0198		mg/kg dry	₽	06/16/14 08:14	06/17/14 14:02	1.00
Chrysene	0.0330		0.0198		mg/kg dry	₩	06/16/14 08:14	06/17/14 14:02	1.00
Benzo (b) fluoranthene	0.0409		0.0198		mg/kg dry	₩	06/16/14 08:14	06/17/14 14:02	1.00
Benzo (k) fluoranthene	ND		0.0198		mg/kg dry	☼	06/16/14 08:14	06/17/14 14:02	1.00
Benzo (a) pyrene	ND		0.0198		mg/kg dry	₩	06/16/14 08:14	06/17/14 14:02	1.00
Indeno (1,2,3-cd) pyrene	0.0225		0.0198		mg/kg dry	₽	06/16/14 08:14	06/17/14 14:02	1.00
Dibenzo (a,h) anthracene	0.0119		0.0119		mg/kg dry	₩	06/16/14 08:14	06/17/14 14:02	1.00
Benzo (ghi) perylene	0.0251		0.0198		mg/kg dry	₩	06/16/14 08:14	06/17/14 14:02	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	73.0		36.3 - 152				06/16/14 08:14	06/17/14 14:02	1.00
2-FBP	72.6		30.2 - 135				06/16/14 08:14	06/17/14 14:02	1.00
p-Terphenyl-d14	90.6		65.1 - 134				06/16/14 08:14	06/17/14 14:02	1.00

p-Terphenyl-d14	90.6		65.1 - 134				06/16/14 08:14	06/17/14 14:02	1.00
Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	63.8		16.3		mg/kg dry	\	06/19/14 08:02	06/20/14 14:37	1.00
Heavy Oil Range Hydrocarbons	182		40.8		mg/kg dry	₩	06/19/14 08:02	06/20/14 14:37	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	103		50 - 150				06/19/14 08:02	06/20/14 14:37	1.00
n-Triacontane-d62	103		50 - 150				06/19/14 08:02	06/20/14 14:37	1.00
Mathada NWTDU UCID	anda ana Intanstiti an	diam lass NIVA	ATRIL LIGID						
Method: NWTPH-HCID - Hydrod Analyte		Qualifier	VIPH-HCID RL		Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Spokane

06/16/14 10:43

mg/kg dry

32

ND

1.0

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Client Sample ID: GEI-TP-2(12)

Date Collected: 06/11/14 12:10 Date Received: 06/13/14 13:40 Lab Sample ID: SXF0093-10

Matrix: Soil

Percent Solids: 94.7

Method: NWTPH-HCID - Hydroca	arbon Identifica	ation by NW	TPH-HCID (Co	ntinued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		79		mg/kg dry	\	06/16/14 10:43	06/16/14 19:38	1.0
Heavy Oil Range Hydrocarbons	220		79		mg/kg dry	₽	06/16/14 10:43	06/16/14 19:38	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	96.1	-	50 - 150				06/16/14 10:43	06/16/14 19:38	1.0
2-FBP	99.4		50 - 150				06/16/14 10:43	06/16/14 19:38	1.0
p-Terphenyl-d14	87.4		50 ₋ 150				06/16/14 10:43	06/16/14 19:38	1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.28		1.25		mg/kg dry	\	06/20/14 11:29	06/27/14 12:47	1.00
Barium	261		0.498		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:47	1.00
Cadmium	2.02		0.199		mg/kg dry	₽	06/20/14 11:29	06/27/14 12:47	1.00
Chromium	14.3		0.498		mg/kg dry	₽	06/20/14 11:29	06/27/14 12:47	1.00
Lead	302		1.25		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:47	1.00
Selenium	ND		2.49		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:47	1.00
Silver	ND		0.498		mg/kg dry	₩.	06/20/14 11:29	06/27/14 12:47	1.00

Method: EPA 7471B - Total Metals									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	106		44.6		ug/kg dry	<u> </u>	06/24/14 09:00	06/24/14 16:08	1.00

Client Sample ID: GEI-TP-3(9)

Date Collected: 06/11/14 14:35

Date Received: 06/13/14 13:40

Lab Sample ID: SXF0093-13 Matrix: Soil

Percent Solids: 96.1

Method: NWTPH-HCID - Hydro	carbon Identifica	ntion by NW	TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		37		mg/kg dry	\	06/16/14 10:43	06/16/14 20:02	1.0
Diesel Range Hydrocarbons	ND		92		mg/kg dry	₩	06/16/14 10:43	06/16/14 20:02	1.0
Heavy Oil Range Hydrocarbons	ND		92		mg/kg dry	₩	06/16/14 10:43	06/16/14 20:02	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	99.4		50 - 150				06/16/14 10:43	06/16/14 20:02	1.0
2-FBP	101		50 - 150				06/16/14 10:43	06/16/14 20:02	1.0
p-Terphenyl-d14	96.7		50 - 150				06/16/14 10:43	06/16/14 20:02	1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.44		1.25		mg/kg dry	**	06/20/14 11:29	06/27/14 12:51	1.00
Barium	56.7		0.500		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:51	1.00
Cadmium	ND		0.200		mg/kg dry	₽	06/20/14 11:29	06/27/14 12:51	1.00
Chromium	13.0		0.500		mg/kg dry	₩	06/20/14 11:29	06/27/14 12:51	1.00
Lead	4.71		1.25		mg/kg dry	₽	06/20/14 11:29	06/27/14 12:51	1.00
Selenium	ND		2.50		mg/kg dry	₽	06/20/14 11:29	06/27/14 12:51	1.00
Silver	ND		0.500		mg/kg dry	φ.	06/20/14 11:29	06/27/14 12:51	1.00

Method: EPA 7471B - Total Metals	by EPA 6010/7000 Seri	es Methods					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	43.0	42.4	ug/kg	dry 🌣	06/24/14 09:00	06/24/14 16:10	1.00

Client Sample ID: GEI-TP-4(12)

Date Collected: 06/11/14 17:00 Date Received: 06/13/14 13:40 Lab Sample ID: SXF0093-18

Matrix: Soil

Percent Solids: 96.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		89.7		ug/kg dry	*	06/18/14 09:02	06/19/14 18:50	1.00
PCB-1221	ND		89.7		ug/kg dry	₩	06/18/14 09:02	06/19/14 18:50	1.00
PCB-1232	ND		89.7		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:50	1.00
PCB-1242	ND		89.7		ug/kg dry		06/18/14 09:02	06/19/14 18:50	1.00
PCB-1248	ND		89.7		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:50	1.00
PCB-1254	ND		89.7		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:50	1.00
PCB-1260	ND		89.7		ug/kg dry	₽	06/18/14 09:02	06/19/14 18:50	1.00
PCB-1268	ND		89.7		ug/kg dry	₩	06/18/14 09:02	06/19/14 18:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	91.8		46.2 - 210				06/18/14 09:02	06/19/14 18:50	1.00
Decachlorobiphenyl	80.7		65.6 - 186				06/18/14 09:02	06/19/14 18:50	1.00

Method: NWTPH-HCID - Hydro	carbon Identifica	tion by NW	TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	MD		34		mg/kg dry	₩	06/16/14 10:43	06/16/14 20:27	1.0
Diesel Range Hydrocarbons	ND		86		mg/kg dry	₩	06/16/14 10:43	06/16/14 20:27	1.0
Heavy Oil Range Hydrocarbons	ND		86		mg/kg dry	₽	06/16/14 10:43	06/16/14 20:27	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	96.7		50 - 150				06/16/14 10:43	06/16/14 20:27	1.0
2-FBP	99.0		50 - 150				06/16/14 10:43	06/16/14 20:27	1.0
p-Terphenyl-d14	96.6		50 - 150				06/16/14 10:43	06/16/14 20:27	1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.82		1.29		mg/kg dry	₩	06/20/14 11:29	06/27/14 13:09	1.00
Barium	40.1		0.518		mg/kg dry	⇔	06/20/14 11:29	06/27/14 13:09	1.00
Cadmium	ND		0.207		mg/kg dry	₽	06/20/14 11:29	06/27/14 13:09	1.00
Chromium	15.8		0.518		mg/kg dry	⇔	06/20/14 11:29	06/27/14 13:09	1.00
Lead	2.27		1.29		mg/kg dry	⇔	06/20/14 11:29	06/27/14 13:09	1.00
Selenium	ND		2.59		mg/kg dry	⇔	06/20/14 11:29	06/27/14 13:09	1.00
Silver	ND		0.518		mg/kg dry	₽	06/20/14 11:29	06/27/14 13:09	1.00

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		50.0		ug/kg dry	☼	06/24/14 09:00	06/24/14 16:13	1.00

TestAmerica Job ID: SXF0093

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID: 14F0097-BLK1

Matrix: Soil

Analysis Batch: 14F0097

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 14F0097_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0300		mg/kg wet		06/16/14 07:52	06/16/14 09:46	1.00
Benzene	ND		0.0150		mg/kg wet		06/16/14 07:52	06/16/14 09:46	1.00
Toluene	ND		0.100		mg/kg wet		06/16/14 07:52	06/16/14 09:46	1.00
Ethylbenzene	ND		0.100		mg/kg wet		06/16/14 07:52	06/16/14 09:46	1.00
m,p-Xylene	ND		0.400		mg/kg wet		06/16/14 07:52	06/16/14 09:46	1.00
o-Xylene	ND		0.200		mg/kg wet		06/16/14 07:52	06/16/14 09:46	1.00
1,2-Dichloroethane (EDC)	ND		0.100		mg/kg wet		06/16/14 07:52	06/16/14 09:46	1.00
Xylenes (total)	ND		0.600		mg/kg wet		06/16/14 07:52	06/16/14 09:46	1.00

Blank Blank

	Diami	Diami					
Surrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
Dibromofluoromethane	96.3		42.4 - 163	06/16/14 0	07:52	06/16/14 09:46	1.00
1,2-dichloroethane-d4	93.0		50 - 150	06/16/14 0)7:52	06/16/14 09:46	1.00
Toluene-d8	102		45.8 - 155	06/16/14 0)7:52	06/16/14 09:46	1.00
4-bromofluorobenzene	100		41.5 - 162	06/16/14 0)7:52	06/16/14 09:46	1.00
a,a,a - Trifluorotoluene	93.6		50 - 150	06/16/14 0)7:52	06/16/14 09:46	1.00

Lab Sample ID: 14F0097-BS1

Matrix: Soil

Analysis Batch: 14F0097

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 14F0097 P

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits Methyl tert-butyl ether 0.500 0.516 mg/kg wet 103 79 - 127 0.500 0.493 Benzene mg/kg wet 98.6 75.9 - 123 0.500 0.521 Toluene 104 mg/kg wet 77.3 - 126Ethylbenzene 0.500 0.485 97.0 80 - 120 mg/kg wet 0.500 0.500 100 80 - 120 m,p-Xylene mg/kg wet o-Xylene 0.500 0.502 mg/kg wet 100 80 - 120 Naphthalene 0.500 0.508 mg/kg wet 102 58.8 - 130 Xylenes (total) 1.00 1.00 mg/kg wet 100 80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	100		42.4 - 163
1,2-dichloroethane-d4	99.9		50 - 150
Toluene-d8	101		45.8 - 155
4-bromofluorobenzene	100		41.5 - 162
a,a,a - Trifluorotoluene	105		60 - 120

Lab Sample ID: 14F0097-BSD1

Matrix: Soil

Client Sample ID: Lab Control Sample Dup

Prep Type: Total

Prep Batch: 14F0097_P Analysis Batch: 14F0097 Spike LCS Dup LCS Dup RPD %Rec. Result Qualifier Analyte Added Unit %Rec Limits RPD Limit Methyl tert-butyl ether 0.500 0.484 79 _ 127 25 mg/kg wet 96.8 6.50 Benzene 0.500 0.453 mg/kg wet 90.6 75.9 _ 123 8.46 25

Toluene 0.500 0.475 mg/kg wet 77.3 - 126 9.24 25 95.0 Ethylbenzene 0.500 0.447 mg/kg wet 89.4 80 - 120 8.15 25 m,p-Xylene 0.500 0.456 mg/kg wet 91.1 80 - 120 9.41 25

TestAmerica Spokane

Page 12 of 32

6/27/2014

2

A

5

6

8

9

10

TestAmerica Job ID: SXF0093

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Diamir Diamir

Lab Sample ID: 14F0097-BSD1

Matrix: Soil

Analysis Batch: 14F0097

Client Sample ID: Lab Control Sample Dup **Prep Type: Total**

Prep Batch: 14F0097_P

	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
o-Xylene	0.500	0.457		mg/kg wet	_	91.4	80 - 120	9.29	25
Naphthalene	0.500	0.502		mg/kg wet		100	58.8 - 130	0.990	25
Xylenes (total)	1.00	0.912		mg/kg wet		91.2	80 - 120	9.35	25

LCS Dup LCS Dup %Recovery Qualifier Surrogate Limits Dibromofluoromethane 99.1 42.4 - 163 1,2-dichloroethane-d4 100 50 - 150

Toluene-d8 101 45.8 _ 155 4-bromofluorobenzene 98.4 41.5 - 162 a,a,a - Trifluorotoluene 101 60 - 120

Lab Sample ID: 14F0150-BLK1 Client Sample ID: Method Blank **Matrix: Soil Prep Type: Total** Analysis Batch: 14F0150

Prep Batch: 14F0150_P

	Віапк	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0300		mg/kg wet		06/24/14 09:06	06/24/14 10:39	1.00
Benzene	ND		0.0150		mg/kg wet		06/24/14 09:06	06/24/14 10:39	1.00
Toluene	ND		0.100		mg/kg wet		06/24/14 09:06	06/24/14 10:39	1.00
Ethylbenzene	ND		0.100		mg/kg wet		06/24/14 09:06	06/24/14 10:39	1.00
m,p-Xylene	ND		0.400		mg/kg wet		06/24/14 09:06	06/24/14 10:39	1.00
o-Xylene	ND		0.200		mg/kg wet		06/24/14 09:06	06/24/14 10:39	1.00
Xylenes (total)	ND		0.600		mg/kg wet		06/24/14 09:06	06/24/14 10:39	1.00

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		42.4 - 163	06/24/14 09:06	06/24/14 10:39	1.00
1,2-dichloroethane-d4	98.6		50 - 150	06/24/14 09:06	06/24/14 10:39	1.00
Toluene-d8	99.5		45.8 - 155	06/24/14 09:06	06/24/14 10:39	1.00
4-bromofluorobenzene	91.7		41.5 - 162	06/24/14 09:06	06/24/14 10:39	1.00

Lab Sample ID: 14F0150-BS1

Matrix: Soil

Analysis Batch: 14F0150

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 14F0150_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	0.500	0.568		mg/kg wet	_	114	79 - 127	
Benzene	0.500	0.462		mg/kg wet		92.4	75.9 - 123	
Toluene	0.500	0.520		mg/kg wet		104	77.3 - 126	
Ethylbenzene	0.500	0.530		mg/kg wet		106	80 - 120	
m,p-Xylene	0.500	0.515		mg/kg wet		103	80 - 120	
o-Xylene	0.500	0.516		mg/kg wet		103	80 - 120	
Naphthalene	0.500	0.449		mg/kg wet		89.8	58.8 - 130	
Xylenes (total)	1.00	1.03		mg/kg wet		103	80 - 120	

LCS	LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	99.9		42.4 - 163
1,2-dichloroethane-d4	104		50 ₋ 150

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14F0150-BS1

Matrix: Soil

Analysis Batch: 14F0150

Client Sample ID: Lab Control Sample **Prep Type: Total**

Prep Batch: 14F0150 P

LCS LCS

Surrogate %Recovery Qualifier Limits Toluene-d8 102 45.8 - 155 4-bromofluorobenzene 41.5 - 162 94 4

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 14F0097-BLK1

Matrix: Soil

Analysis Batch: 14F0097

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 14F0097_P

Blank Blank

Qualifier MDL Unit Result RL Prepared Analyzed Dil Fac Analyte 5.00 06/16/14 07:52 Gasoline Range Hydrocarbons 06/16/14 09:46 1.00 ND mg/kg wet

Blank Blank

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane 96.3 42.4 - 163 06/16/14 07:52 06/16/14 09:46 1.00 Toluene-d8 102 45.8 - 155 06/16/14 07:52 06/16/14 09:46 1.00 06/16/14 07:52 4-bromofluorobenzene 100 41.5 - 162 06/16/14 09:46 1.00

Lab Sample ID: 14F0097-BS2

Matrix: Soil

Analysis Batch: 14F0097

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14F0097 P

LCS LCS Spike %Rec. Added Result Qualifier Limits Unit %Rec 50.0 53.1 mg/kg wet 106 74.4 - 124 Gasoline Range Hydrocarbons

LCS LCS

Surrogate %Recovery Qualifier I imits Dibromofluoromethane 99.5 42.4 - 163 103 45.8 - 155 Toluene-d8 4-bromofluorobenzene 100 41.5 - 162

Lab Sample ID: 14F0097-BSD2

Matrix: Soil

Analysis Batch: 14F0097

Client Sample ID: Lab Control Sample Dup

Prep Type: Total

Prep Batch: 14F0097 P

%Rec. RPD

Spike LCS Dup LCS Dup Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Hydrocarbons 50.0 49.6 mg/kg wet 99.2 74.4 - 124

LCS Dup LCS Dup Surrogate %Recovery Qualifier

Limits Dibromofluoromethane 97.6 42.4 - 163 Toluene-d8 103 45.8 - 155 4-bromofluorobenzene 101 41.5 - 162

2

Client: Geo Engineers - Spokane Project/Site: 0504-101-01 TestAmerica Job ID: SXF0093

110,000,010.000110101

Method: EPA 8011 - EDB by EPA Method 8011

Lab Sample ID: 14F0102-BLK1

Matrix: Soil

Analysis Batch: 14F0102

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 14F0102_P

	Dialik Dialik						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	1.00	ug/kg wet		06/16/14 10:39	06/23/14 14:22	1.00
1,2-Dibromo-3-chloropropane	ND	1.00	ug/kg wet		06/16/14 10:39	06/23/14 14:22	1.00

Diank Blank

Lab Sample ID: 14F0102-BS1

Client Sample ID: Lab Control Sample

Matrix: Soil

Analysis Batch: 14F0102

Prep Type: Total

Prep Batch: 14F0102_P

•									_
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane	 	5.00	6.19		ug/kg wet	_	124	60 - 140	
1,2-Dibromo-3-chloropropane		5.00	5.36		ug/kg wet		107	60 - 140	

Lab Sample ID: 14F0102-MS1 Client Sample ID: GEI-TP-1(9.5)

Matrix: Soil

Analysis Batch: 14F0102

Prep Type: Total

Prep Batch: 14F0102_P

		Sample	Sample	Spike	Matrix Spike	Matrix Spil	(e			%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	1,2-Dibromoethane	ND		4.57	5.15		ug/kg dry	₩	113	60 - 140	
ı	1,2-Dibromo-3-chloropropane	ND		4.57	4.06		ug/kg dry	₽	88.8	60 - 140	

Lab Sample ID: 14F0102-MSD1 Client Sample ID: GEI-TP-1(9.5)

Matrix: Soil

Analysis Batch: 14F0102

Prep Type: Total

Prep Batch: 14F0102_P %Rec. RPD

	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	e Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	ND		4.83	5.18		ug/kg dry	₩	107	60 - 140	0.551	20
1,2-Dibromo-3-chloropropane	ND		4.83	3.94		ug/kg dry	₽	81.6	60 - 140	2.80	20

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082

Blank Blank

Lab Sample ID: 14F0115-BLK1

Matrix: Soil

Client Sample ID: Method Blank

Prep Type: Total

Analysis Batch: 14F0115 Prep Batch: 14F0115_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		100		ug/kg wet		06/18/14 09:02	06/19/14 16:59	1.00
PCB-1221	ND		100		ug/kg wet		06/18/14 09:02	06/19/14 16:59	1.00
PCB-1232	ND		100		ug/kg wet		06/18/14 09:02	06/19/14 16:59	1.00
PCB-1242	ND		100		ug/kg wet		06/18/14 09:02	06/19/14 16:59	1.00
PCB-1248	ND		100		ug/kg wet		06/18/14 09:02	06/19/14 16:59	1.00
PCB-1254	ND		100		ug/kg wet		06/18/14 09:02	06/19/14 16:59	1.00
PCB-1260	ND		100		ug/kg wet		06/18/14 09:02	06/19/14 16:59	1.00
PCB-1268	ND		100		ug/kg wet		06/18/14 09:02	06/19/14 16:59	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
TCX	94.0		46.2 - 210	06/18/14 09:02	06/19/14 16:59	1.00
Decachlorobiphenyl	122		65.6 - 186	06/18/14 09:02	06/19/14 16:59	1.00

TestAmerica Job ID: SXF0093

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082 (Continued)

Lab Sample ID: 14F0115-BS1 **Client Sample ID: Lab Control Sample Matrix: Soil Prep Type: Total** Analysis Batch: 14F0115 Prep Batch: 14F0115_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	66.7	68.1		ug/kg wet	_	102	44.4 - 180	
PCB-1260	66.7	77.6		ug/kg wet		116	60.3 - 169	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
TCX	81.5		46.2 - 210
Decachlorobiphenyl	123		65.6 - 186

Lab Sample ID: 14F0115-BSD1 **Client Sample ID: Lab Control Sample Dup Matrix: Soil Prep Type: Total Analysis Batch: 14F0115** Prep Batch: 14F0115_P

		Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	,	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016		66.7	70.1		ug/kg wet		105	44.4 - 180	2.77	25
PCB-1260		66.7	78.7		ug/kg wet		118	60.3 - 169	1.38	25

	LCS Dup	LCS Dup	
Surrogate	%Recovery	Qualifier	Limits
TCX	82.2		46.2 - 210
Decachlorobiphenyl	121		65.6 - 186

Lab Sample ID: 14F0115-MS1 Client Sample ID: GEI-TP-2(12) **Matrix: Soil Prep Type: Total**

Analysis Batch: 14F0115

Prep Batch: 14F0115_P Matrix Spike Matrix Spike %Rec. Sample Sample Spike

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		65.1	150	M1	ug/kg dry	☼	231	50.6 - 145	
PCB-1260	ND		65.1	99.7	M1	ug/kg dry	₽	153	57.6 - 120	
	Madain Oniin	Madain Oniin	_							

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
TCX	162		46.2 - 210
Decachlorobiphenyl	145		65.6 - 186

Lab Sample ID: 14F0115-MSD1 Client Sample ID: GEI-TP-2(12)

Matrix: Soil

Analysis Batch: 14F0115 Prep Batch: 14F0115_P

	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	e Duţ			%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
PCB-1016	ND		69.4	126	M1	ug/kg dry	☼	181	50.6 - 145	17.8	40	
PCB-1260	ND		69.4	85.3	M1	ug/kg dry	₽	123	57.6 - 120	15.6	27.4	

	Matrix Spike Dup	Matrix Spike	e Dup
Surrogate	%Recovery	Qualifier	Limits
TCX	127		46.2 - 210
Decachlorobinhenyl	116		65.6 186

TestAmerica Spokane

Prep Type: Total

2

TestAmerica Job ID: SXF0093

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 14F0098-BLK1

Matrix: Soil

Analysis Batch: 14F0098

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 14F0098_P

	Blank	Blank						•	_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
2-Methylnaphthalene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
1-Methylnaphthalene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Acenaphthylene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Acenaphthene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Fluorene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Phenanthrene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Anthracene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Fluoranthene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Pyrene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Benzo (a) anthracene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Chrysene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Benzo (b) fluoranthene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Benzo (k) fluoranthene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Benzo (a) pyrene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Dibenzo (a,h) anthracene	ND		0.00600		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00
Benzo (ghi) perylene	ND		0.0100		mg/kg wet		06/16/14 08:14	06/16/14 10:12	1.00

Blank Blank

Surrogate	%Recovery	Qualifier Limits	;	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	89.0	36.3 - 1	52	06/16/14 08:14	06/16/14 10:12	1.00
2-FBP	88.0	30.2 - 1	35	06/16/14 08:14	06/16/14 10:12	1.00
p-Terphenyl-d14	110	65.1 - 1	34	06/16/14 08:14	06/16/14 10:12	1.00

Lab Sample ID: 14F0098-BS1

Matrix: Soil

Analysis Batch: 14F0098

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14F0098_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	0.133	0.145		mg/kg wet		109	62.7 - 120	
Fluorene	0.133	0.146		mg/kg wet		110	67.9 - 124	
Chrysene	0.133	0.153		mg/kg wet		115	68.2 - 132	
Indeno (1,2,3-cd) pyrene	0.133	0.172		mg/kg wet		129	52.6 - 149	

LCS LCS

Surrogate	%Recovery C	Qualifier	Limits
Nitrobenzene-d5	81.0		36.3 - 152
2-FBP	86.0		30.2 - 135
p-Terphenyl-d14	102		65.1 - 134

Lab Sample ID: 14F0098-BSD1

Matrix: Soil

Analysis Batch: 14F0098

Client Sample ID:	Lab	Control	Sample	Dup

Prep Type: Total

Prep Batch: 14F0098_P

	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	0.133	0.133		mg/kg wet	_	100	62.7 - 120	8.15	35
Fluorene	0.133	0.134		mg/kg wet		100	67.9 - 124	8.57	35
Chrysene	0.133	0.141		mg/kg wet		106	68.2 _ 132	8.14	35

126

mg/kg wet

52.6 - 149

2.75

35

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Indeno (1,2,3-cd) pyrene

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 14F0098-BSD1 Client Sample ID: Lab Control Sample Dup **Matrix: Soil Prep Type: Total** Prep Batch: 14F0098_P Analysis Batch: 14F0098 Spike LCS Dup LCS Dup %Rec. RPD Limit Added Result Qualifier Unit Limits **RPD**

0.167

0.133

	LCS Dup	LCS Dup	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	81.8		36.3 - 152
2-FBP	87.2		30.2 - 135
p-Terphenyl-d14	99.4		65.1 - 134

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Lab Sample ID: 14F0124-BLK1

Matrix: Soil

Client Sample ID: Method Blank
Prep Type: Total

Analysis Batch: 14F0124

Blank Blank

Prep Type: Total

Prep Batch: 14F0124_P

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		20.0		mg/kg wet	_	06/19/14 08:02	06/19/14 15:13	1.00
Heavy Oil Range Hydrocarbons	ND		50.0		mg/kg wet		06/19/14 08:02	06/19/14 15:13	1.00

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	92.5		50 - 150	 06/19/14 08:02	06/19/14 15:13	1.00
n-Triacontane-d62	88.2		50 - 150	06/19/14 08:02	06/19/14 15:13	1.00

Lab Sample ID: 14F0124-BS1

Matrix: Soil

Client Sample ID: Lab Control Sample

Prep Type: Total

Analysis Batch: 14F0124 Prep Batch: 14F0124_P

 Analyte
 Added Diesel Range Hydrocarbons
 Result 66.7
 Ecs. 4CS
 Unit 70 mg/kg wet
 Dimits 70 mg/kg wet
 Unit 87.5
 50 - 150

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	99.5		50 - 150
n-Triacontane-d62	91.2		50 ₋ 150

Lab Sample ID: 14F0124-DUP1 Client Sample ID: Duplicate

Matrix: Soil Prep Type: Total Analysis Batch: 14F0124 Prep Batch: 14F0124_P

Sample Sample **Duplicate Duplicate** Analyte Result Qualifier Result Qualifier Unit D RPD Limit ₩ Diesel Range Hydrocarbons 545 442 Q6 mg/kg dry 40 Heavy Oil Range Hydrocarbons 2040 1680 mg/kg dry ₽ 19.3 40

	Duplicate	Duplicate	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	107		50 - 150
n-Triacontane-d62	92.6		50 ₋ 150

Duplicate Duplicate

1520 Q6

6080

Result Qualifier

TestAmerica Job ID: SXF0093

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Lab Sample ID: 14F0124-DUP2

Analysis Batch: 14F0124

Diesel Range Hydrocarbons

Heavy Oil Range Hydrocarbons

Matrix: Soil

Analyte

Surrogate

o-Terphenyl

n-Triacontane-d62

Client Sample ID: Duplicate

Prep Batch: 14F0124 P

Prep Type: Total

RPD Limit

D Unit ₽ mg/kg dry 13.1 40

Prepared

06/16/14 10:43

06/16/14 10:43

06/16/14 10:43

₩

mg/kg dry

₩ mg/kg dry 15.5 40

Duplicate Duplicate %Recovery Qualifier I imits 90.1 50 - 150 95.8 50 - 150

Sample Sample Result Qualifier

1330

5210

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx (Continued)

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

Lab Sample ID: 14F0103-BLK1

Matrix: Soil

Analysis Batch: 14F0103

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14F0103_P

	DIAIIK	DIAIIK						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		40	mg/kg	wet	06/16/14 10:43	06/16/14 17:38	1.00
Diesel Range Hydrocarbons	ND		100	mg/kg	wet	06/16/14 10:43	06/16/14 17:38	1.00
Heavy Oil Range Hydrocarbons	ND		100	mg/kg	wet	06/16/14 10:43	06/16/14 17:38	1.00

Blank Blank Surrogate %Recovery Qualifier Limits 4-BFB (FID) 101 50 - 150

2-FBP 95.8 50 - 150 50 - 150 p-Terphenyl-d14 93.9

Diank Blank

Client Sample ID: GEI-TP-1(9.5)

Analyzed

06/16/14 17:38

06/16/14 17:38

06/16/14 17:38

Prep Type: Total Prep Batch: 14F0103_P

Dil Fac

1.00

1.00

1.00

Analysis Batch: 14F0103

Lab Sample ID: 14F0103-DUP1

Matrix: Soil

Sample Sample RPD **Duplicate Duplicate** Analyte Result Qualifier Result Qualifier Unit D RPD Limit 77 Gasoline Range Hydrocarbons 8.44 8.41 mg/kg dry 0.378 25 ₩ Diesel Range Hydrocarbons 86.7 131 R4 mg/kg dry 40.9 25 Heavy Oil Range Hydrocarbons 206 211 mg/kg dry ₩ 2.70 25

Duplicate Duplicate %Recovery Qualifier Surrogate Limits 4-BFB (FID) 927 50 - 150 2-FBP 100 50 - 150 p-Terphenyl-d14 929 50 - 150

170

Client Sample ID: GEI-TP-1a(9) Lab Sample ID: 14F0103-DUP2

Matrix: Soil

Heavy Oil Range Hydrocarbons

Analysis Batch: 14F0103 Prep Batch: 14F0103_P Sample Sample **Duplicate Duplicate** Result Qualifier Result Qualifier RPD Limit Analyte Unit D ₽ Gasoline Range Hydrocarbons 7.11 6.65 mg/kg dry 6.76 25 ₽ Diesel Range Hydrocarbons 25.4 14.7 R4 53.4 25 mg/kg dry

95.8 R4

TestAmerica Spokane

Prep Type: Total

56.1

25

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID (Continued)

Lab Sample ID: 14F0103-DUP2

Matrix: Soil

Analysis Batch: 14F0103

Client Sample ID: GEI-TP-1a(9) **Prep Type: Total**

Prep Batch: 14F0103 P

Duplicate Duplicate %Recovery Qualifier Surrogate Limits 4-BFB (FID) 98.2 50 - 150 2-FBP 101 50 - 150 p-Terphenyl-d14 91.9 50 - 150

> Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14F0147_P

Dil Fac

1 00

1.00

1.00

Matrix: Soil Analysis Batch: 14F0147

Lab Sample ID: 14F0147-BLK1

Blank Blank Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac Gasoline Range Hydrocarbons ND 40 mg/kg wet 06/23/14 16:14 06/23/14 17:05 1.00 ND mg/kg wet Diesel Range Hydrocarbons 100 06/23/14 16:14 06/23/14 17:05 1.00 Heavy Oil Range Hydrocarbons ND 100 mg/kg wet 06/23/14 16:14 06/23/14 17:05 1.00

Blank Blank %Recovery Qualifier Surrogate Limits Prepared Analyzed 4-BFB (FID) 125 50 - 150 06/23/14 16:14 06/23/14 17:05 2-FBP 102 50 - 150 06/23/14 16:14 06/23/14 17:05 99.1 50 - 150 06/23/14 16:14 06/23/14 17:05 p-Terphenyl-d14

Client Sample ID: GEI-TP-1a(12) Lab Sample ID: 14F0147-DUP1 **Matrix: Soil**

Prep Type: Total

Prep Batch: 14F0147_P Analysis Batch: 14F0147

	Sample	Sample	Duplicate	Duplicate				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
Gasoline Range Hydrocarbons	12.6		14.3		mg/kg dry	₩	12.8	25	
Diesel Range Hydrocarbons	15.5		14.8		mg/kg dry	₽	4.73	25	
Heavy Oil Range Hydrocarbons	106		93.7		mg/kg dry	₽	12.1	25	

	Duplicate	Duplicate	
Surrogate	%Recovery	Qualifier	Limits
4-BFB (FID)	121		50 - 150
2-FBP	104		50 - 150
p-Terphenyl-d14	90.3		50 ₋ 150

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B

Lab Sample ID: 14F0138-BLK1 Client Sample ID: Method Blank **Matrix: Soil Prep Type: Total**

Analysis Batch: 14F0138 Prep Batch: 14F0138_P

	Blank	Biank						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	1.25		mg/kg wet		06/20/14 11:29	06/27/14 12:21	1.00
Barium	ND	0.500		mg/kg wet		06/20/14 11:29	06/27/14 12:21	1.00
Cadmium	ND	0.200		mg/kg wet		06/20/14 11:29	06/27/14 12:21	1.00
Chromium	ND	0.500		mg/kg wet		06/20/14 11:29	06/27/14 12:21	1.00
Lead	ND	1.25		mg/kg wet		06/20/14 11:29	06/27/14 12:21	1.00
Selenium	ND	2.50		mg/kg wet		06/20/14 11:29	06/27/14 12:21	1.00
Silver	ND	0.500		mg/kg wet		06/20/14 11:29	06/27/14 12:21	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B (Continued)

Client Sample ID: Lab Control Sample

Lab Sample ID: 14F0138-BS1 **Matrix: Soil** Analysis Batch: 14F0138

Prep Type: Total Pren Batch: 14F0138 P

Alialysis Batcii. 14F0136	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	50.0	49.6		mg/kg wet	_	99.2	80 - 120
Barium	50.0	50.5		mg/kg wet		101	80 - 120
Cadmium	50.0	50.0		mg/kg wet		99.9	80 - 120
Chromium	50.0	50.0		mg/kg wet		100	80 - 120
Lead	50.0	49.7		mg/kg wet		99.3	80 - 120
Selenium	500	496		mg/kg wet		99.2	80 - 120
Silver	50.0	50.1		mg/kg wet		100	80 - 120

Client Sample ID: GEI-TP-1(9.5)

Matrix: Soil

Analysis Batch: 14F0138

Lab Sample ID: 14F0138-MS1

Prep Type: Total Prep Batch: 14F0138 P

Analysis Batch: 141 0 100	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.	141 0 100_1
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	4.74		55.5	53.8		mg/kg dry	₩	88.3	75 - 125	
Barium	89.1		55.5	157		mg/kg dry	₽	122	75 - 125	
Cadmium	0.524		55.5	51.5		mg/kg dry	₩	91.9	75 - 125	
Chromium	12.3		55.5	63.9		mg/kg dry	₽	92.9	75 - 125	
Lead	94.1		55.5	150		mg/kg dry	₩	101	75 ₋ 125	
Selenium	ND		555	490		mg/kg dry	₩	88.3	75 - 125	
Silver	ND		55.5	42.6		mg/kg dry	₩	76.7	75 - 125	

Client Sample ID: GEI-TP-1(9.5)

Matrix: Soil

Lab Sample ID: 14F0138-MSD1

Prep Type: Total

Analysis Batch: 14F0138									Prep Batc	h: 14F0 [,]	138_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	4.74		49.8	49.8		mg/kg dry	☼	90.6	75 - 125	7.67	20
Barium	89.1		49.8	151		mg/kg dry	₩	124	75 - 125	3.85	20
Cadmium	0.524		49.8	46.9		mg/kg dry	₩	93.2	75 - 125	9.39	20
Chromium	12.3		49.8	57.2		mg/kg dry	₩	90.1	75 - 125	11.1	20
Lead	94.1		49.8	146		mg/kg dry	₩	104	75 - 125	3.09	20
Selenium	ND		498	443		mg/kg dry	₩	89.1	75 - 125	10.0	20
Silver	ND		49.8	39.3		mg/kg dry	₩	78.9	75 - 125	8.11	20

Lab Sample ID: 14F0138-DUP1 Client Sample ID: GEI-TP-1(9.5)

Matrix: Soil

Analysis Ratch: 14F0138

Prep Type: Total Pron Batch: 14F0138 P

Analysis Batch: 14F0138							Prep Batch: 14F0	138_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	4.74	·	4.30		mg/kg dry	₩	9.74	20
Barium	89.1		96.4		mg/kg dry	₩	7.89	20
Cadmium	0.524		0.450		mg/kg dry	₩	15.0	20
Chromium	12.3		15.2	R3	mg/kg dry	₩	20.6	20
Lead	94.1		90.4		mg/kg dry	₩	3.94	20
Selenium	ND		ND		mg/kg dry	₩		20
Silver	ND		ND		mg/kg dry	₩		20

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods

Lab Sample ID: 14F0148-BLK1	Client Sample ID: Method Blank
Matrix: Soil	Prep Type: Total
Analysis Batch: 14F0148	Prep Batch: 14F0148_P
Blank Blank	

	Dialik	Dialik							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		50.0		ug/kg wet		06/24/14 09:00	06/24/14 15:54	1.00

Lab Sample ID: 14F0148-BS1						Client	: Sample	e ID: Lab Co	ontrol Sa	ample
Matrix: Soil								Pre	p Type:	Total
Analysis Batch: 14F0148								Prep Batc	h: 14F01	148_P
		Spike	LCS	LCS				%Rec.		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury		200	208		ua/ka wet		104	80 - 120		

Lab Sample ID: 14F0148-MS1 Matrix: Soil								Client	•	GEI-TP-1(9.5) ep Type: Total
Analysis Batch: 14F0148									Prep Bato	:h: 14F0148_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spike	•			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	72.1		215	295		ua/ka drv	\\	104	80 - 120	

Lab Sample ID: 14F0148-MSD1								Client	Sample ID:	GEI-TP-	·1(9.5)
Matrix: Soil									Pre	ep Type:	Total
Analysis Batch: 14F0148									Prep Bato	:h: 14F0	148_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	e Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	72.1		176	213	R	ug/kg dry	₩	80.0	80 - 120	32.4	20

Lab Sample ID: 14F0148-DUP1							Client Sample ID: GEI-TP-1	1(9.5)
Matrix: Soil							Prep Type:	Total
Analysis Batch: 14F0148							Prep Batch: 14F01	48_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Mercury	72.1		55.7		ug/kg dry	₩	25.6	40

Client Sample ID: GEI-TP-1(9.5)

Date Collected: 06/11/14 10:00 Date Received: 06/13/14 13:40 Lab Sample ID: SXF0093-04

Matrix: Soil

Percent Solids: 94.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.903	14F0097_P	06/16/14 07:52	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14F0097	06/16/14 15:26	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.903	14F0097_P	06/16/14 07:52	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14F0097	06/16/14 15:26	CBW	TAL SPK
Total	Prep	EPA 3580		0.970	14F0102_P	06/16/14 10:39	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14F0102	06/23/14 15:09	NMI	TAL SPK
Total	Prep	EPA 3550B		1.66	14F0115_P	06/18/14 09:02	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14F0115	06/19/14 17:47	NMI	TAL SPK
Total	Prep	EPA 3550B		1.77	14F0098_P	06/16/14 08:14	MS	TAL SPK
Total	Analysis	EPA 8270D		20.0	14F0098	06/16/14 19:35	MRS	TAL SPK
Total	Prep	EPA 3550B		2.95	14F0124_P	06/19/14 08:02	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14F0124	06/20/14 14:14	MS	TAL SPK
Total	Prep	EPA 3580		0.86	14F0103_P	06/16/14 10:43	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14F0103	06/16/14 18:02	MS	TAL SPK
Total	Prep	EPA 3050B		1.00	14F0138_P	06/20/14 11:29	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14F0138	06/27/14 12:24	ICP	TAL SPK
Total	Prep	EPA 7471		0.980	14F0148_P	06/24/14 09:00	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14F0148	06/24/14 15:57	ZZZ	TAL SPK
Total	Prep	Wet Chem		1.00	14F0105_P	06/16/14 15:55	NI	TAL SPK
Total	Analysis	TA SOP		1.00	14F0105	06/17/14 10:16	NI	TAL SPK

Client Sample ID: GEI-TP-1a(9)

Date Collected: 06/11/14 10:40

Date Received: 06/13/14 13:40

Lab Sample ID: SXF0093-05

Matrix: Soil

Percent Solids: 94.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.831	14F0150_P	06/24/14 09:06	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14F0150	06/24/14 11:24	CBW	TAL SPK
Total	Prep	EPA 3580		0.83	14F0103_P	06/16/14 10:43	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14F0103	06/16/14 18:50	MS	TAL SPK
Total	Prep	EPA 3050B		1.00	14F0138_P	06/20/14 11:29	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14F0138	06/27/14 12:43	ICP	TAL SPK
Total	Prep	EPA 7471		0.962	14F0148_P	06/24/14 09:00	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14F0148	06/24/14 16:06	ZZZ	TAL SPK

Client Sample ID: GEI-TP-1a(12)

Date Collected: 06/11/14 10:50

Date Received: 06/13/14 13:40

Lab Sample ID: SXF0093-06

Matrix: Soil

Percent Solids: 94.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.877	14F0150_P	06/24/14 09:06	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14F0150	06/24/14 11:46	CBW	TAL SPK
Total	Prep	EPA 3580		0.87	14F0147_P	06/23/14 16:14	MS	TAL SPK

2

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Client Sample ID: GEI-TP-1a(12)

Date Collected: 06/11/14 10:50

Date Received: 06/13/14 13:40

Lab Sample ID: SXF0093-06

. Matrix: Soil

Percent Solids: 94.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	NWTPH-HCID		1.0	14F0147	06/23/14 17:30	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14F0173_P	06/26/14 09:00	MS	TAL SPK
Total	Analysis	TA SOP		1.00	14F0173	06/26/14 16:21	MS	TAL SPK

Client Sample ID: GEI-TP-2(12)

Lab Sample ID: SXF0093-10

Date Collected: 06/11/14 12:10 Matrix: Soil

Date Received: 06/13/14 13:40 Percent Solids: 94.7

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.992	14F0097_P	06/16/14 07:52	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14F0097	06/16/14 15:48	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.992	14F0097_P	06/16/14 07:52	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14F0097	06/16/14 15:48	CBW	TAL SPK
Total	Prep	EPA 3580		0.750	14F0102_P	06/16/14 10:39	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14F0102	06/23/14 16:19	NMI	TAL SPK
Total	Prep	EPA 3550B		1.79	14F0115_P	06/18/14 09:02	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14F0115	06/19/14 18:03	NMI	TAL SPK
Total	Prep	EPA 3550B		1.88	14F0098_P	06/16/14 08:14	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14F0098	06/17/14 14:02	MRS	TAL SPK
Total	Prep	EPA 3550B		0.774	14F0124_P	06/19/14 08:02	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14F0124	06/20/14 14:37	MS	TAL SPK
Total	Prep	EPA 3580		0.75	14F0103_P	06/16/14 10:43	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14F0103	06/16/14 19:38	MS	TAL SPK
Total	Prep	EPA 3050B		0.943	14F0138_P	06/20/14 11:29	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14F0138	06/27/14 12:47	ICP	TAL SPK
Total	Prep	EPA 7471		0.893	14F0148_P	06/24/14 09:00	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14F0148	06/24/14 16:08	ZZZ	TAL SPK

Client Sample ID: GEI-TP-3(9)

Date Collected: 06/11/14 14:35

Date Received: 06/13/14 13:40

Lab Sample	ID: SXF0093-13
	Matrix: Soil

Percent Solids: 96.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3580		0.88	14F0103_P	06/16/14 10:43	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14F0103	06/16/14 20:02	MS	TAL SPK
Total	Prep	EPA 3050B		0.962	14F0138_P	06/20/14 11:29	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14F0138	06/27/14 12:51	ICP	TAL SPK
Total	Prep	EPA 7471		0.847	14F0148_P	06/24/14 09:00	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14F0148	06/24/14 16:10	ZZZ	TAL SPK

Lab Chronicle

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

TestAmerica Job ID: SXF0093

Client Sample ID: GEI-TP-4(12)

Date Collected: 06/11/14 17:00

Date Received: 06/13/14 13:40

Lab Sample ID: SXF0093-18 Matrix: Soil Percent Solids: 96.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3550B		1.73	14F0115_P	06/18/14 09:02	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14F0115	06/19/14 18:50	NMI	TAL SPK
Total	Prep	EPA 3580		0.83	14F0103_P	06/16/14 10:43	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14F0103	06/16/14 20:27	MS	TAL SPK
Total	Prep	EPA 3050B		1.00	14F0138_P	06/20/14 11:29	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14F0138	06/27/14 13:09	ICP	TAL SPK
Total	Prep	EPA 7471		1.00	14F0148_P	06/24/14 09:00	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14F0148	06/24/14 16:13	ZZZ	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

TestAmerica Job ID: SXF0093

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

ı	Authority	Program	EPA Region	Certification ID	Expiration Date
	Alaska (UST)	State Program	10	UST-071	10-31-14
İ	Washington	State Program	10	C569	01-06-15

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

TestAmerica Job ID: SXF0093

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8082A	Polychlorinated Biphenyls by EPA Method 8082		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH-HCID	Hydrocarbon Identification by NWTPH-HCID		TAL SPK
EPA 6010C	Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B		TAL SPK
EPA 7471B	Total Metals by EPA 6010/7000 Series Methods		TAL SPK
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbos Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 X 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

Work Order #SVF7093

TURNAROUND REQUEST INVOICE TO: CLIENT: GEDERGINERS REPORT TO: SLATHEN C geoengness. com ADDRESS: 523 E Second Ann in Business Days " Organic & Inorganic Analyses 5 4 3 2 1 <1 Spokane, 6/A 99202 PHONE: 509-363-3/35 FAX: 509-363-3/26 P.O. NUMBER: 2 1 <1 PRESERVATIVE PROJECT NAME: Trolley Bon PROJECT NUMBER: 0564 - 101-01 OTHER Specify: REQUESTED ANALYSES Lanaround Requesis less than standard may incur Rush Charges. AUTPH-GA SAMPLED BY JAL A THIN 图》 紫 Z Z E 105 1 1 2 1 3 ALT D MATRIX LOCATION/ COMMENTS WOD SAMPLING (W, S, O) CONT CLIENT SAMPLE DATE/TIME IDENTIFICATION Page 411/2014 0935 0975 11 of 13 0955 X X X 1000 Х X * 1040 1050 1140 1155 1205 X X Χ × 6/13/2014 FIRM TOSHWATCHINE RECEIVED BY: DATE 1340 PRINTNAME: Geo DME FIRM RECEIVED BY DATE: RELEASED BY: TIME FIRM: FRINT NAME: EIME: TEM PRINT NAME: ADDITIONAL REMARKS: 6/20/2014 TAL-1000 (0612)

CHAIN OF CUSTODY REPORT

Page 28 of 32

Page 29 of 32

<u>TestAmerica</u>

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spekane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

THE LEADER IN ENVIRONMENTAL TESTING Work Order #: SXF CHAIN OF CUSTODY REPORT TURNAROUND REQUEST INVOICE TO: CLIENT: in Business Days * REPORT TO: Stather Egrongewas, com, ADDRESS: 523 E Second Ave Organic & morganic Analyses FRONE 509-363-3125 FAX: 509-363-3126 P.O. NUMBER 3 2 1 <1 PRESERVATIVE PROJECT NUMBER: 0504 - 101-01 OTHER REQUESTED ANALYSES WITH CA SAMPLED BY: JML PAH 医医 LOCATION WOLD SAMPLING COMMENTS (W, S, O) CONT CLIENT SAMPLE DATE/TIME IDENTIFICATION 1410 1420 5-day TAT *4 앜, X 1500 1630 TAT X DATE 6/13/2019 RECEIVED BY Geo PRINT NAME: RECEIVED BY: RELEASED BY: TEME: ERINT NAME: TIME: PRINT NAME: ADDITIONAL REMARKS:

6/20/2014

2021 2021 TAL-1000 (0612)

32

οĘ

Page 30 (

TAL-1000 (0612)

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 253-922-2310 FAX 922-5047 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order # XF/1092 TURNAROUND REQUEST INVOICE TO: REPORT TO: SLATHEN C geoengreen, com ADDRESS: 523 E Second AM in Business Days * Organic & Inorganic Analyses Spohare, WA 99202 PHONE: 509-363-3/25 FAX: 509-363-3/26 P.O. NUMBER: 2 PRESERVATIVE PROJECT NUMBER: 0564 - 101-01 REQUESTED ANALYSES SAMPLED BY: JML NUTPH-CA Turnaround Requests less than standard may incur Rush Charges EDB MATRIX LOCATION/ CLIENT SAMPLE SAMPLING CONT. COMMENTS WOID (W, S, O) IDENTIFICATION DATE/TIME 3 0935 0945 0955 X X X Χ 1000 X 1205 RECEIVED BY: DATE: TIME: PRINT NAME: RECEIVED BY: DATE: RELEASED BY: FIRM: TIME: PRINT NAME: PRINT NAME: TEMP: ADDITIONAL REMARKS:

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 FAX 906-9210

503-906-9200 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

					C	HAI	OF	CUST	ODY	REP	ORT	İ			Work ()rder #	:SXF	0093		
CLIENT: GEO Estimuch						INVOI	CE TO:					1						REQUEST		
REPORT TO: Stather @ 300	ensines icon												in Busîness Days *							
ADDRESS: 523 E Se	cond Ave											į			Organic & Inorganic Analyses					
Spokae WA	99202	0 -131											7 5 4 3 2 1 <1 SID. Petroleum Hydrocarbon Analyses							
PHONE: 5/7 - 363 - 3/25	FAX: 307 ~ 30	J-5126				P.O. NU	P.O. NUMBER: PRESERVATIVE							Petroleum	3 2	1 <	ก	ļ		
REPORT TO: SLATHAN E GROUNGINGES, COM ADDRESS: 523 E SECOND AVE Spokae, WA 99702 PHONE: 507-363-3125 FAX: 509-363-3126 PROJECT NAME: Trolley Barn					1	Τ"		l l			П	Ţ	T T	ST	<u>D.</u>	ت ت	تا لنا لـ	נ	}	
PROJECT NUMBER: 0504 ~	101-01		,	١	<u> </u>		!	REQUE	STED AN	IALYSES			<u> </u>	[<u>1</u>	 [(THER	Specify:			
SAMPLED BY: JML			Δ	एं	TĂ	Ι .		1	·	T .	1	100	\ <u>\{</u> \}		 * Turnaround	l Requests le		dard may incur R	tush Charges	j.
CLIENT SAMPLE IDENTIFICATION	SAMPLIN DATE/TIM		HUD	MUTPH-CA	MUTTH-D	10/2	PACKA PACA JACA	PCBS	BREX	EDB	703	MTBE	Nepholory	сРДН,	MATRIX (W, S, O)			CATION/ MMENTS	TA WO ID	
, GEI- TP-3(3)	6/11/2014	1410													S	3				7 20
2 / TP-3 (6.)	'/	1420																	ļ <u>.</u>	7
, (TP-3 (9)		1435	Х.				×	% €	<u> </u>			:			\perp		5-01ay	ACID ACID		0200
1 TP-3(12)		1500					ļ <u>.</u>					!							<u> </u>	
5 TP-4(3)		1630													 		ļ			
6 TP-4(6)		1640						*				<u> </u>								
7P-4(9)		1650										:								
8 TP-4(D)		1700	×				×-	X				1					5-day	TAT HCTD		
, V TP-4(14)	V	1710										<u> </u>			<u> </u>	1				
10 V TP-2(B).		12:20)											i de	-				1011	
PRINT NAME: 1703h	Lee	FIRM:	7 eU)		DATE TIME	: 6/1 : 13	3/20 24D	19	RECEIVI PRINT N	1 à l	K	Milm	Ī	FIRM	a Test	Americ	DATE: /	13.14 3.40	
RELEASED BY:	 -					DATE				RECEIVI	ED BY:		1				1-1-1-10-10-10-10-10-10-10-10-10-10-10-1	DATE:		
PRINT NAME: ADDITIONAL REMARKS:		FIRM:				TIME	·			PRINT N	AME:	1			 FIRM	<i>d</i> :		TIME:		-
DESTROYAL RESIGNACES:															 		<u> </u>	MP: O PAGE	Z 0FZ	

Work Order #SXF0093 client: Grent Eng	ialers)	-	Project: Trolley	Barn
Date/Time Received: (1-13-14 13:40	Ву.)			
Samples Delivered By: Shipping Service Courier Clier	nt ∐Othe	r:			
List Air Bill Number(s) or Attach a photocopy of the Air Bill:				N	
Receipt Phase	Yes	No	NA	Commo	ents
Were samples received in a cooler:	X				
Custody Seals are present and intact:		-	_X	,	
Are CoC documents present:	Х		<u></u> .		
Necessary signatures:	L X				,
Thermal Preservation Type: Blue Ice Gel Ice Real Ice	□Dry Ice	None	Other:		
Temperature: ^ °C Thermometer (Circle one Serial #12	22208348 K	eyring IR	Serial # 11	1874910 IR Gun 2)(acce	eptance criteria 0-6
Temperature out of range: Not enough ice Ice melted Cog-in Phase 1/1/2011	w/in 4hrs of	collection	□NA □	_Other:	
Date/Time: JOH 43 By: (1)	Yes	No	NA	Comme	ents
Are sample labels affixed and completed for each container	Χ				
Samples containers were received intact:	X				
Do sample IDs match the CoC	7	'	:		12/2
Appropriate sample containers were received for tests requested	X				47
Are sample volumes adequate for tests requested	7	<u></u>	, ,	100	
Appropriate preservatives were used for the tests requested	1				
pH of inorganic samples checked and is within method specification	×		,	·	
Are VOC samples free of bubbles >6mm (1/4" diameter)	- X-		-		
Are dissolved parameters field filtered			X		
Do any samples need to be filtered or preserved by the lab	l 		X_{\perp}		
Does this project require quick turnaround analysis		X			
Are there any short hold time tests (see chart below)		X			
Are any samples within 2 days of or past expiration		_X_		, ,	···
Was the CoC scanned	\rightarrow				
Were there Non-conformance issues at login			-		
If yes, was a CAR generated #			~		

TestAmerica Spokane Sample Receipt Form

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXH0089

Client Project/Site: 0504-101-01

Client Project Description: Trolley Barn

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Scott Lathen

Oun Stille.

Authorized for release by: 2/17/2015 7:35:35 AM
Chris Williams, Lab Director
Chris.Williams@testamericainc.com

Designee for

Randee Arrington, Project Manager (509)924-9200

Randee.Arrington@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: SXH0089

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	32
Chronicle	45
Certification Summary	53
Method Summary	
Chain of Custody	55

6

R

9

1

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

TestAmerica Job ID: SXH0089

		G
		o

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SXH0089-02	GEI-MW-1 (12.5-13.5')	Soil	08/12/14 14:45	08/14/14 10:00
SXH0089-04	GEI-MW-2 (12-13')	Soil	08/13/14 11:10	08/14/14 10:00
SXH0089-06	GEI-MW-3 (12-13')	Soil	08/12/14 08:30	08/14/14 10:00
SXH0089-07	GEI-B1 (2-3')	Soil	08/11/14 15:10	08/14/14 10:00
SXH0089-08	GEI-B1 (12-13')	Soil	08/11/14 15:40	08/14/14 10:00
SXH0089-10	GEI-B2 (13-14')	Soil	08/11/14 12:20	08/14/14 10:00
SXH0089-12	GEI-B3 (7-8')	Soil	08/11/14 10:55	08/14/14 10:00
SXH0089-13	GEI-B4 (2-3')	Soil	08/11/14 16:20	08/14/14 10:00
SXH0089-14	GEI-B4 (7-8')	Soil	08/11/14 16:10	08/14/14 10:00
SXH0089-15	GEI-B5 (2-3')	Soil	08/11/14 10:00	08/14/14 10:00
SXH0089-16	GEI-B5 (7-8')	Soil	08/11/14 10:10	08/14/14 10:00
SXH0089-17	GEI-B6 (2-3')	Soil	08/11/14 14:05	08/14/14 10:00
SXH0089-19	GEI-B6 (13-14')	Soil	08/11/14 14:25	08/14/14 10:00
SXH0089-21	GEI-B7 (13-14')	Soil	08/11/14 08:45	08/14/14 10:00
SXH0089-23	GEI-B8 (14-15')	Soil	08/11/14 12:15	08/14/14 10:00
SXH0089-25	GEI-B9 (13-14')	Soil	08/11/14 14:10	08/14/14 10:00
SXH0089-26	Duplicate 1	Soil	08/11/14 08:00	08/14/14 10:00
SXH0089-27	Duplicate 2	Soil	08/11/14 08:00	08/14/14 10:00
SXH0089-28	HWA-MW1-Composite	Soil	08/12/14 14:45	08/14/14 10:00

Definitions/Glossary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

TestAmerica Job ID: SXH0089

Qualifiers

Semivolatiles

Qualifier	Qualifier Description
R2	The RPD exceeded the acceptance limit.
M7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
Z2	Surrogate recovery was above the acceptance limits. Data not impacted.
RL1	Reporting limit raised due to sample matrix effects.
Euglo	

Fuels

Qualifier	Qualifier Description
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
Q6	Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
Metals	

Qualifier	Qualifier Description
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
M1	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M2	The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
R3	The RPD exceeded the acceptance limit due to sample matrix effects.
R	The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.
RL3	Reporting limit raised due to high concentrations of non-target analytes.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

Client Sample ID: GEI-MW-1 (12.5-13.5')

Date Collected: 08/12/14 14:45 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-02

Matrix: Soil

Percent Solids: 96.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0627		mg/kg dry	₩	08/15/14 08:49	08/15/14 11:14	1.00
Hexane	ND		0.125		mg/kg dry	⇔	08/15/14 08:49	08/15/14 11:14	1.00
Benzene	ND		0.0188		mg/kg dry	₩	08/15/14 08:49	08/15/14 11:14	1.00
1,2-Dichloroethane (EDC)	ND		0.125		mg/kg dry	₩	08/15/14 08:49	08/15/14 11:14	1.00
Trichloroethene	ND		0.0313		mg/kg dry	⇔	08/15/14 08:49	08/15/14 11:14	1.00
Toluene	ND		0.125		mg/kg dry	₩	08/15/14 08:49	08/15/14 11:14	1.00
Tetrachloroethene	ND		0.0501		mg/kg dry	₩	08/15/14 08:49	08/15/14 11:14	1.00
Ethylbenzene	ND		0.125		mg/kg dry	₩	08/15/14 08:49	08/15/14 11:14	1.00
m,p-Xylene	ND		0.501		mg/kg dry	₩	08/15/14 08:49	08/15/14 11:14	1.00
o-Xylene	ND		0.251		mg/kg dry	\$	08/15/14 08:49	08/15/14 11:14	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.5		80 - 120				08/15/14 08:49	08/15/14 11:14	1.00
1,2-dichloroethane-d4	97.7		74.7 - 120				08/15/14 08:49	08/15/14 11:14	1.00
Toluene-d8	103		78.5 - 125				08/15/14 08:49	08/15/14 11:14	1.00
4-bromofluorobenzene	100		69.8 - 140				08/15/14 08:49	08/15/14 11:14	1.00
Method: EPA 8011 - EDB by I	EPA Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.842		ug/kg dry	<u> </u>	08/15/14 10:04	08/15/14 13:26	1.00
1,2-Dibromo-3-chloropropane	ND		0.842		ug/kg dry	₩	08/15/14 10:04	08/15/14 13:26	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		8.68		ug/kg dry	\	08/19/14 08:36	08/19/14 16:17	1.00
PCB-1221	ND		8.68		ug/kg dry	₽	08/19/14 08:36	08/19/14 16:17	1.00
PCB-1232	ND		8.68		ug/kg dry	₩	08/19/14 08:36	08/19/14 16:17	1.00
PCB-1242	ND		8.68		ug/kg dry	₩	08/19/14 08:36	08/19/14 16:17	1.00
PCB-1248	ND		8.68		ug/kg dry	₩	08/19/14 08:36	08/19/14 16:17	1.00
PCB-1254	ND		8.68		ug/kg dry	₩	08/19/14 08:36	08/19/14 16:17	1.00
PCB-1260	ND		8.68		ug/kg dry	₽	08/19/14 08:36	08/19/14 16:17	1.00
PCB-1268	ND		8.68		ug/kg dry	₽	08/19/14 08:36	08/19/14 16:17	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	104		46.2 - 210				08/19/14 08:36	08/19/14 16:17	1.00
Decachlorobiphenyl	118		65.6 - 186				08/19/14 08:36	08/19/14 16:17	1.00

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0195		mg/kg dry	\	08/21/14 08:39	08/21/14 17:58	1.00
2-Methylnaphthalene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
1-Methylnaphthalene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
Acenaphthylene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
Acenaphthene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
Fluorene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
Phenanthrene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
Anthracene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
Fluoranthene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
Pyrene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 17:58	1.00
Benzo (a) anthracene	ND		0.0195		mg/kg dry	₩	08/21/14 08:39	08/21/14 17:58	1.00

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

Analyte

Chrysene

Benzo (b) fluoranthene

Benzo (k) fluoranthene

Indeno (1,2,3-cd) pyrene

Dibenzo (a,h) anthracene

Benzo (ghi) perylene

Benzo (a) pyrene

Client Sample ID: GEI-MW-1 (12.5-13.5')

Date Collected: 08/12/14 14:45 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-02

08/21/14 17:58

08/21/14 17:58

TestAmerica Job ID: SXH0089

Matrix: Soil

Percent Solids: 96.1

		i crecint don	43. 30.1
ring (Continued)		
D	Prepared	Analyzed	Dil Fac
₩	08/21/14 08:39	08/21/14 17:58	1.00
₽	08/21/14 08:39	08/21/14 17:58	1.00
₽	08/21/14 08:39	08/21/14 17:58	1.00
₩	08/21/14 08:39	08/21/14 17:58	1.00
φ.	08/21/14 08:39	08/21/14 17:58	1.00

08/21/14 08:39

08/21/14 08:39

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Nitrobenzene-d5 84.4 36.3 - 152 08/21/14 08:39 08/21/14 17:58 1.00 2-FBP 89.2 08/21/14 08:39 08/21/14 17:58 30.2 - 135 1.00 p-Terphenyl-d14 117 65.1 - 134 08/21/14 08:39 08/21/14 17:58 1.00

0.0195

0.0195

0.0195

0.0195

0.0195

0.0117

0.0195

MDL Unit

mg/kg dry

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND —	41	mg/kg dry	\\	08/15/14 11:27	08/15/14 21:07	1.0
Diesel Range Hydrocarbons	ND	100	mg/kg dry	₩	08/15/14 11:27	08/15/14 21:07	1.0
Heavy Oil Range Hydrocarbons	ND	100	mg/kg dry	₩	08/15/14 11:27	08/15/14 21:07	1.0

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-BFB (FID)	92.3		50 - 150	08/15/14 11:2	7 08/15/14 21:07	1.0
2-FBP	93.4		50 ₋ 150	08/15/14 11:2	7 08/15/14 21:07	1.0
p-Terphenyl-d14	104		50 - 150	08/15/14 11:2	7 08/15/14 21:07	1.0

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monit

ND

ND

ND

ND

ND

ND

ND

Result Qualifier

moundar in A do 100 mound of the moundary in the by in A do 100 moundary in the by									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.43		2.53		mg/kg dry	₩	08/18/14 09:11	08/27/14 17:37	2.00
Cadmium	ND	RL3	0.404		mg/kg dry	₽	08/18/14 09:11	08/27/14 17:37	2.00
Chromium	17.1		1.01		mg/kg dry	₽	08/18/14 09:11	08/27/14 17:37	2.00
Lead	4.16		2.53		mg/kg dry	₽	08/18/14 09:11	08/27/14 17:37	2.00

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury ND 47.2 ug/kg dry 08/28/14 07:10 08/28/14 15:15 1.00

Client Sample ID: GEI-MW-2 (12-13')

Date Collected: 08/13/14 11:10

Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-04

Percent Solids: 94.6

Method: EPA 8260C - Volatile Organic Compounds by EPA Methods 5035/8260C									
Analyte	Result Qualifi	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether	ND ND	0.0528		mg/kg dry	\	08/15/14 08:49	08/15/14 11:37	1.00	
Hexane	ND	0.106		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:37	1.00	
Benzene	ND	0.0158		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:37	1.00	
1,2-Dichloroethane (EDC)	ND	0.106		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:37	1.00	
Trichloroethene	ND	0.0264		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:37	1.00	
Toluene	ND	0.106		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:37	1.00	
Tetrachloroethene	ND	0.0422		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:37	1.00	
Ethylbenzene	ND	0.106		mg/kg dry	☼	08/15/14 08:49	08/15/14 11:37	1.00	
m,p-Xylene	ND	0.422		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:37	1.00	
o-Xylene	ND	0.211		mg/kg dry		08/15/14 08:49	08/15/14 11:37	1.00	

TestAmerica Spokane

Page 6 of 58

1.00

1.00

Matrix: Soil

2/17/2015

Client Sample ID: GEI-MW-2 (12-13')

Date Collected: 08/13/14 11:10 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-04

Matrix: Soil

Percent Solids: 94.6

	a					
Surrogate	%Recovery	Qualifier Li	mits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102	80	- 120	08/15/14 08:49	08/15/14 11:37	1.00
1,2-dichloroethane-d4	99.3	74.7	_ 120	08/15/14 08:49	08/15/14 11:37	1.00
Toluene-d8	102	78.5	- 125	08/15/14 08:49	08/15/14 11:37	1.00
4-bromofluorobenzene	102	69.8	₋ 140	08/15/14 08:49	08/15/14 11:37	1.00

Method: EPA 8011 - EDB by EPA I	Method 8011						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	0.934	ug/kg dry	*	08/15/14 10:04	08/15/14 13:41	1.00
1,2-Dibromo-3-chloropropane	ND	0.934	ug/kg dry	₩	08/15/14 10:04	08/15/14 13:41	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		10.3		ug/kg dry	☼	08/19/14 08:36	08/19/14 16:38	1.00
PCB-1221	ND		10.3		ug/kg dry	₩	08/19/14 08:36	08/19/14 16:38	1.00
PCB-1232	ND		10.3		ug/kg dry	₩	08/19/14 08:36	08/19/14 16:38	1.00
PCB-1242	ND		10.3		ug/kg dry	₽	08/19/14 08:36	08/19/14 16:38	1.00
PCB-1248	ND		10.3		ug/kg dry	₩	08/19/14 08:36	08/19/14 16:38	1.00
PCB-1254	ND		10.3		ug/kg dry	₩	08/19/14 08:36	08/19/14 16:38	1.00
PCB-1260	ND		10.3		ug/kg dry	₽	08/19/14 08:36	08/19/14 16:38	1.00
PCB-1268	ND		10.3		ug/kg dry	₽	08/19/14 08:36	08/19/14 16:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	104		46.2 - 210				08/19/14 08:36	08/19/14 16:38	1.00

	Surrogate	76Recovery	Qualifier	LIIIIII	riepareu	Allalyzeu	DII Fac
	TCX	104		46.2 - 210	08/19/14 08:3	6 08/19/14 16:38	1.00
	Decachlorobiphenyl	117		65.6 - 186	08/19/14 08:3	6 08/19/14 16:38	1.00
ı							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0195		mg/kg dry	₩	08/21/14 08:39	08/21/14 18:20	1.00
2-Methylnaphthalene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
1-Methylnaphthalene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Acenaphthylene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Acenaphthene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Fluorene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Phenanthrene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Anthracene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Fluoranthene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Pyrene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Benzo (a) anthracene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Chrysene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Benzo (b) fluoranthene	ND		0.0195		mg/kg dry	\$	08/21/14 08:39	08/21/14 18:20	1.00
Benzo (k) fluoranthene	ND		0.0195		mg/kg dry	☼	08/21/14 08:39	08/21/14 18:20	1.00
Benzo (a) pyrene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Dibenzo (a,h) anthracene	ND		0.0117		mg/kg dry	☼	08/21/14 08:39	08/21/14 18:20	1.00
Benzo (ghi) perylene	ND		0.0195		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:20	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	83 4		36.3 - 152				08/21/14 08:39	08/21/14 18:20	1 00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	83.4	36.3 - 152	08/21/14 08:39	08/21/14 18:20	1.00
2-FBP	82.2	30.2 - 135	08/21/14 08:39	08/21/14 18:20	1.00
p-Terphenyl-d14	111	65.1 _ 134	08/21/14 08:39	08/21/14 18:20	1.00

Project/Site: 0504-101-01

Analyte

PCB-1016

Client Sample ID: GEI-MW-2 (12-13')

Date Collected: 08/13/14 11:10 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-04

Matrix: Soil Percent Solids: 94.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		34		mg/kg dry	*	08/15/14 11:27	08/15/14 21:31	1.0
Diesel Range Hydrocarbons	ND		85		mg/kg dry	₽	08/15/14 11:27	08/15/14 21:31	1.0
Heavy Oil Range Hydrocarbons	ND		85		mg/kg dry	₩	08/15/14 11:27	08/15/14 21:31	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	88.7		50 - 150				08/15/14 11:27	08/15/14 21:31	1.0
2-FBP	90.2		50 - 150				08/15/14 11:27	08/15/14 21:31	1.0
p-Terphenyl-d14	100		50 ₋ 150				08/15/14 11:27	08/15/14 21:31	1.0

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.23		1.39		mg/kg dry	\$	08/18/14 09:11	08/27/14 15:29	1.00
Cadmium	ND		0.223		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:29	1.00
Chromium	11.5		0.556		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:29	1.00
Lead	2.96		1.39		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:29	1.00

Method: EPA 7471B - Total Metals	by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		43.1		ug/kg dry	\	08/28/14 07:10	08/28/14 15:24	1.00

Lab Sample ID: SXH0089-06 Client Sample ID: GEI-MW-3 (12-13')

Date Collected: 08/12/14 08:30 **Matrix: Soil**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0641		mg/kg dry	\	08/15/14 08:49	08/15/14 11:59	1.00
Hexane	ND		0.128		mg/kg dry	⇔	08/15/14 08:49	08/15/14 11:59	1.00
Benzene	ND		0.0192		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:59	1.00
1,2-Dichloroethane (EDC)	ND		0.128		mg/kg dry	⇔	08/15/14 08:49	08/15/14 11:59	1.00
Trichloroethene	ND		0.0320		mg/kg dry	≎	08/15/14 08:49	08/15/14 11:59	1.00
Toluene	ND		0.128		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:59	1.00
Tetrachloroethene	ND		0.0513		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:59	1.00
Ethylbenzene	ND		0.128		mg/kg dry	₽	08/15/14 08:49	08/15/14 11:59	1.00
m,p-Xylene	ND		0.513		mg/kg dry	⇔	08/15/14 08:49	08/15/14 11:59	1.00
o-Xylene	ND		0.256		mg/kg dry		08/15/14 08:49	08/15/14 11:59	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.1		80 - 120				08/15/14 08:49	08/15/14 11:59	1.00
1,2-dichloroethane-d4	99.4		74.7 - 120				08/15/14 08:49	08/15/14 11:59	1.00
Toluene-d8	103		78.5 - 125				08/15/14 08:49	08/15/14 11:59	1.00
4-bromofluorobenzene	99.5		69.8 - 140				08/15/14 08:49	08/15/14 11:59	1.00
Method: EPA 8011 - EDB by I	EPA Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.867		ug/kg dry	<u> </u>	08/15/14 10:04	08/15/14 13:55	1.00
1,2-Dibromo-3-chloropropane	ND		0.867		ug/kg dry	₩	08/15/14 10:04	08/15/14 13:55	1.00

TestAmerica Spokane

08/19/14 17:00

Prepared

08/19/14 08:36

ug/kg dry

9.57

Result Qualifier

ND

Dil Fac

TestAmerica Job ID: SXH0089

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Client Sample ID: GEI-MW-3 (12-13')

Lab Sample ID: SXH0089-06 Date Collected: 08/12/14 08:30

Matrix: Soil

Date Received: 08/14/14 10:00 Percent Solids: 93.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	ND		9.57		ug/kg dry	<u> </u>	08/19/14 08:36	08/19/14 17:00	1.00
PCB-1232	ND		9.57		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:00	1.00
PCB-1242	ND		9.57		ug/kg dry	₽	08/19/14 08:36	08/19/14 17:00	1.00
PCB-1248	ND		9.57		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:00	1.00
PCB-1254	ND		9.57		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:00	1.00
PCB-1260	ND		9.57		ug/kg dry	₽	08/19/14 08:36	08/19/14 17:00	1.00
PCB-1268	ND		9.57		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:00	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	110		46.2 - 210				08/19/14 08:36	08/19/14 17:00	1.00
Decachlorobiphenyl	118		65.6 - 186				08/19/14 08:36	08/19/14 17:00	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
2-Methylnaphthalene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
1-Methylnaphthalene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Acenaphthylene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Acenaphthene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Fluorene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Phenanthrene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Anthracene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Fluoranthene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Pyrene	ND		0.0196		mg/kg dry	φ	08/21/14 08:39	08/21/14 18:43	1.00
Benzo (a) anthracene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Chrysene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Benzo (b) fluoranthene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Benzo (k) fluoranthene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Benzo (a) pyrene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0196		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Dibenzo (a,h) anthracene	ND		0.0118		mg/kg dry	₽	08/21/14 08:39	08/21/14 18:43	1.00
Benzo (ghi) perylene	ND		0.0196		mg/kg dry	₩	08/21/14 08:39	08/21/14 18:43	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80.2		36.3 - 152				08/21/14 08:39	08/21/14 18:43	1.00
2-FBP	78.6		30.2 - 135				08/21/14 08:39	08/21/14 18:43	1.00
p-Terphenyl-d14	100		65.1 - 134				08/21/14 08:39	08/21/14 18:43	1.00

Method: NWTPH-HCID - Hydrod	carbon Identifica	tion by NW	TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		37		mg/kg dry	*	08/15/14 11:27	08/15/14 21:55	1.0
Diesel Range Hydrocarbons	ND		92		mg/kg dry	₽	08/15/14 11:27	08/15/14 21:55	1.0
Heavy Oil Range Hydrocarbons	ND		92		mg/kg dry	₽	08/15/14 11:27	08/15/14 21:55	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	90.3		50 - 150				08/15/14 11:27	08/15/14 21:55	1.0
2-FBP	91.8		50 - 150				08/15/14 11:27	08/15/14 21:55	1.0
p-Terphenyl-d14	99.2		50 - 150				08/15/14 11:27	08/15/14 21:55	1.0

Client Sample ID: GEI-MW-3 (12-13')

Date Collected: 08/12/14 08:30 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-06

Matrix: Soil

Percent Solids: 93.2

Method: EPA 6010C - Metals	Content by EPA 6010/7000 Se	ries Methods,	Prep by EPA 3050B				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.65	1.34	mg/kg dry	<u> </u>	08/18/14 09:11	08/27/14 15:33	1.00
Cadmium	ND	0.215	mg/kg dry	₽	08/18/14 09:11	08/27/14 15:33	1.00
Chromium	11.3	0.536	mg/kg dry	₽	08/18/14 09:11	08/27/14 15:33	1.00
Lead	4.51	1.34	mg/kg dry	₽	08/18/14 09:11	08/27/14 15:33	1.00

Method: EPA 7471B - Total Metals	by EPA 6010)/7000 Series	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		37.9		ug/kg dry	₽	08/28/14 07:10	08/28/14 15:26	1.00

Client Sample ID: GEI-B1 (2-3')

Date Collected: 08/11/14 15:10 Date Received: 08/14/14 10:00

Decachlorobiphenyl

Lab Sample ID: SXH0089-07

Matrix: Soil Percent Solids: 84.5

Method: EPA 8260C - Volatile Organic Compounds by EPA Methods 5035/8260C Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ₩ Methyl tert-butyl ether ND 0.0866 08/15/14 08:49 08/15/14 12:22 1.00 mg/kg dry ND 08/15/14 08:49 08/15/14 12:22 Hexane 0.173 mg/kg dry 1.00 ND Benzene 0.0260 08/15/14 08:49 08/15/14 12:22 mg/kg dry 1.00 ND 08/15/14 08:49 08/15/14 12:22 1,2-Dichloroethane (EDC) 0.173 mg/kg dry 1.00

Trichloroethene ND 0.0433 mg/kg dry 08/15/14 08:49 08/15/14 12:22 1.00 Toluene ND 0.173 mg/kg dry 08/15/14 08:49 08/15/14 12:22 1.00 Tetrachloroethene ND 0.0693 mg/kg dry 08/15/14 08:49 08/15/14 12:22 1.00 Ethylbenzene ND 0.173 mg/kg dry Ü 08/15/14 08:49 08/15/14 12:22 1.00 ND 08/15/14 08:49 08/15/14 12:22 1.00 m,p-Xylene 0.693 mg/kg dry o-Xylene ND 0.346 mg/kg dry 08/15/14 08:49 08/15/14 12:22 1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	95.5		80 - 120	08/15/14 08:49	08/15/14 12:22	1.00
1,2-dichloroethane-d4	94.3		74.7 - 120	08/15/14 08:49	08/15/14 12:22	1.00
Toluene-d8	105		78.5 - 125	08/15/14 08:49	08/15/14 12:22	1.00
4-bromofluorobenzene	101		69.8 - 140	08/15/14 08:49	08/15/14 12:22	1.00

Method: EPA 8011 - EDB by EPA I	Method 8011						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	5.86	ug/kg dry	☼	08/15/14 10:04	08/15/14 14:09	5.00
1,2-Dibromo-3-chloropropane	ND	5.86	ug/kg dry	₩	08/15/14 10:04	08/15/14 14:09	5.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		110		ug/kg dry	₩	08/19/14 08:36	08/20/14 11:49	10.0
PCB-1221	ND		110		ug/kg dry	₩	08/19/14 08:36	08/20/14 11:49	10.0
PCB-1232	ND		110		ug/kg dry	₩	08/19/14 08:36	08/20/14 11:49	10.0
PCB-1242	ND		110		ug/kg dry	₩	08/19/14 08:36	08/20/14 11:49	10.0
PCB-1248	ND		110		ug/kg dry	₩	08/19/14 08:36	08/20/14 11:49	10.0
PCB-1254	ND		110		ug/kg dry	₩	08/19/14 08:36	08/20/14 11:49	10.0
PCB-1260	188		110		ug/kg dry	₩	08/19/14 08:36	08/20/14 11:49	10.0
PCB-1268	ND		110		ug/kg dry	₽	08/19/14 08:36	08/20/14 11:49	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	91.2		46.2 - 210				08/19/14 08:36	08/20/14 11:49	10.0

TestAmerica Spokane

08/20/14 11:49

08/19/14 08:36

65.6 - 186

78.4

10.0

Client Sample ID: GEI-B1 (2-3')

Date Collected: 08/11/14 15:10 Date Received: 08/14/14 10:00

Chromium

Lab Sample ID: SXH0089-07

Matrix: Soil

Percent Solids: 84.5

Method: EPA 8270D - Polynucle	ar Aromatic Co	mpounds b	y GC/MS with S	Selected	Ion Monitor	ring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND	RL1	1.46		mg/kg dry	₩	08/21/14 08:39	08/21/14 19:05	20.0
2-Methylnaphthalene	ND	RL1	1.46		mg/kg dry	⇔	08/21/14 08:39	08/21/14 19:05	20.0
1-Methylnaphthalene	ND	RL1	1.46		mg/kg dry	₩	08/21/14 08:39	08/21/14 19:05	20.0
Acenaphthylene	ND	RL1	1.46		mg/kg dry	₩	08/21/14 08:39	08/21/14 19:05	20.0
Acenaphthene	ND	RL1	1.46		mg/kg dry	⇔	08/21/14 08:39	08/21/14 19:05	20.0
Fluorene	ND	RL1	1.46		mg/kg dry	⇔	08/21/14 08:39	08/21/14 19:05	20.0
Phenanthrene	ND	RL1	1.46		mg/kg dry	₩	08/21/14 08:39	08/21/14 19:05	20.0
Anthracene	ND	RL1	1.46		mg/kg dry	≎	08/21/14 08:39	08/21/14 19:05	20.0
Fluoranthene	ND	RL1	1.46		mg/kg dry	≎	08/21/14 08:39	08/21/14 19:05	20.0
Pyrene	ND	RL1	1.46		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:05	20.0
Benzo (a) anthracene	ND	RL1	1.46		mg/kg dry	⇔	08/21/14 08:39	08/21/14 19:05	20.0
Chrysene	ND	RL1	1.46		mg/kg dry	⇔	08/21/14 08:39	08/21/14 19:05	20.0
Benzo (b) fluoranthene	ND	RL1	1.46		mg/kg dry	φ.	08/21/14 08:39	08/21/14 19:05	20.0
Benzo (k) fluoranthene	ND	RL1	1.46		mg/kg dry	≎	08/21/14 08:39	08/21/14 19:05	20.0
Benzo (a) pyrene	ND	RL1	1.46		mg/kg dry	⇔	08/21/14 08:39	08/21/14 19:05	20.0
Indeno (1,2,3-cd) pyrene	ND	RL1	1.46		mg/kg dry	- -	08/21/14 08:39	08/21/14 19:05	20.0
Dibenzo (a,h) anthracene	ND	RL1	0.873		mg/kg dry	⇔	08/21/14 08:39	08/21/14 19:05	20.0
Benzo (ghi) perylene	ND	RL1	1.46		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:05	20.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	68.0	RL1	36.3 - 152				08/21/14 08:39	08/21/14 19:05	20.0
2-FBP	72.0	RL1	30.2 - 135				08/21/14 08:39	08/21/14 19:05	20.0
p-Terphenyl-d14	88.0	RL1	65.1 - 134				08/21/14 08:39	08/21/14 19:05	20.0
Method: NWTPH-Dx - Semivolat	ile Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	3950	Q6	391		mg/kg dry	₩	08/25/14 13:21	08/26/14 09:29	20.0
Heavy Oil Range Hydrocarbons	15000		979		mg/kg dry	₩	08/25/14 13:21	08/26/14 09:29	20.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	103		50 - 150				08/25/14 13:21	08/26/14 09:29	20.0
n-Triacontane-d62	126		50 - 150				08/25/14 13:21	08/26/14 09:29	20.0
Method: NWTPH-HCID - Hydroca	arbon Identifica	ation by NW	/TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		120		mg/kg dry	<u> </u>	08/15/14 11:27	08/15/14 22:19	1.0
Diesel Range Hydrocarbons	3100	Q6	290		mg/kg dry	₩	08/15/14 11:27	08/15/14 22:19	1.0
Heavy Oil Range Hydrocarbons	15000		290		mg/kg dry	₽	08/15/14 11:27	08/15/14 22:19	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-BFB (FID)	100		50 ₋ 150				08/15/14 11:27	08/15/14 22:19	1.0
2-FBP	106		50 - 150				08/15/14 11:27	08/15/14 22:19	1.0
p-Terphenyl-d14	102		50 - 150				08/15/14 11:27	08/15/14 22:19	1.0
Method: EPA 6010C - Metals Co	•		•						
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Arsenic	9.66		1.57		mg/kg dry	☆	08/18/14 09:11	08/27/14 15:37	1.00
Cadmium	2.60		0.252		mg/kg dry	☼	08/18/14 09:11	08/27/14 15:37	1.00
Cadmium	2.60		0.252		mg/kg ary		08/18/14 09:11	08/27/14 15:37	

TestAmerica Spokane

08/27/14 15:37

08/27/14 15:37

08/18/14 09:11

08/18/14 09:11

mg/kg dry

mg/kg dry

0.629

1.57

20.2

806

1.00

1.00

Client Sample ID: GEI-B1 (2-3')

Date Collected: 08/11/14 15:10 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-07

Matrix: Soil

Percent Solids: 84.5

Method: EPA 7471B - Total Metals	by EPA 6010	/7000 Series	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	512		47.2		ug/kg dry	<u> </u>	08/28/14 07:10	08/28/14 15:29	1.00

Client Sample ID: GEI-B1 (12-13')

Lab Sample ID: SXH0089-08

Date Collected: 08/11/14 15:40

Date Received: 08/14/14 10:00

Matrix: Soil
Percent Solids: 92.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		10.7		mg/kg dry	₩	08/25/14 13:21	08/25/14 18:41	1.00
Heavy Oil Range Hydrocarbons	ND		26.8		mg/kg dry	₩	08/25/14 13:21	08/25/14 18:41	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl			50 - 150				08/25/14 13:21	08/25/14 18:41	1.00
n-Triacontane-d62	114		50 ₋ 150				08/25/14 13:21	08/25/14 18:41	1.00

Client Sample ID: GEI-B2 (13-14')

Lab Sample ID: SXH0089-10

Date Collected: 08/11/14 12:20

Date Received: 08/14/14 10:00

Matrix: Soil
Percent Solids: 93.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0522		mg/kg dry	₽	08/15/14 08:49	08/15/14 12:44	1.00
Hexane	ND		0.104		mg/kg dry	₩	08/15/14 08:49	08/15/14 12:44	1.00
Benzene	ND		0.0156		mg/kg dry	₩	08/15/14 08:49	08/15/14 12:44	1.00
1,2-Dichloroethane (EDC)	ND		0.104		mg/kg dry	₽	08/15/14 08:49	08/15/14 12:44	1.00
Trichloroethene	ND		0.0261		mg/kg dry	₩	08/15/14 08:49	08/15/14 12:44	1.00
Toluene	ND		0.104		mg/kg dry	₽	08/15/14 08:49	08/15/14 12:44	1.00
Tetrachloroethene	ND		0.0417		mg/kg dry	₽	08/15/14 08:49	08/15/14 12:44	1.00
Ethylbenzene	ND		0.104		mg/kg dry	⇔	08/15/14 08:49	08/15/14 12:44	1.00
m,p-Xylene	ND		0.417		mg/kg dry	₽	08/15/14 08:49	08/15/14 12:44	1.00
o-Xylene	ND		0.209		mg/kg dry	₩	08/15/14 08:49	08/15/14 12:44	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		80 - 120				08/15/14 08:49	08/15/14 12:44	1.00
1,2-dichloroethane-d4	99.0		74.7 - 120				08/15/14 08:49	08/15/14 12:44	1.00
Toluene-d8	102		78.5 _ 125				08/15/14 08:49	08/15/14 12:44	1.00
4-bromofluorobenzene	100		69.8 - 140				08/15/14 08:49	08/15/14 12:44	1.00

Method: EPA 8011 - EDB by EPA	Method 8011						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	0.945	ug/kg dry	₩	08/15/14 10:04	08/15/14 14:24	1.00
1,2-Dibromo-3-chloropropane	ND	0.945	ug/kg dry	₽	08/15/14 10:04	08/15/14 14:24	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		9.67		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:42	1.00
PCB-1221	ND		9.67		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:42	1.00
PCB-1232	ND		9.67		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:42	1.00
PCB-1242	ND		9.67		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:42	1.00
PCB-1248	ND		9.67		ug/kg dry	₽	08/19/14 08:36	08/19/14 17:42	1.00
PCB-1254	ND		9.67		ug/kg dry	≎	08/19/14 08:36	08/19/14 17:42	1.00

Diesel Range Hydrocarbons

Client Sample ID: GEI-B2 (13-14')

Date Collected: 08/11/14 12:20 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-10

Matrix: Soil

Percent Solids: 93.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	ND		9.67		ug/kg dry	<u></u>	08/19/14 08:36	08/19/14 17:42	1.00
PCB-1268	ND		9.67		ug/kg dry	₩	08/19/14 08:36	08/19/14 17:42	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	102		46.2 - 210				08/19/14 08:36	08/19/14 17:42	1.00
Decachlorobiphenyl	106		65.6 - 186				08/19/14 08:36	08/19/14 17:42	1.00

	700		00.0 = 700				00/10/11/00.00	00, 10, 11, 11, 12	7.00
- Method: EPA 8270D - Polyni	uclear Aromatic Co	mpounds	by GC/MS with S	Selected	Ion Monito	rina			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0202		mg/kg dry	☼	08/21/14 08:39	08/21/14 19:28	1.00
2-Methylnaphthalene	ND		0.0202		mg/kg dry	☼	08/21/14 08:39	08/21/14 19:28	1.00
1-Methylnaphthalene	ND		0.0202		mg/kg dry	☼	08/21/14 08:39	08/21/14 19:28	1.00
Acenaphthylene	ND		0.0202		mg/kg dry	Φ.	08/21/14 08:39	08/21/14 19:28	1.00
Acenaphthene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Fluorene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Phenanthrene	ND		0.0202		mg/kg dry	Φ.	08/21/14 08:39	08/21/14 19:28	1.00
Anthracene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Fluoranthene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Pyrene	ND		0.0202		mg/kg dry	φ.	08/21/14 08:39	08/21/14 19:28	1.00
Benzo (a) anthracene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Chrysene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Benzo (b) fluoranthene	ND		0.0202		mg/kg dry	φ.	08/21/14 08:39	08/21/14 19:28	1.00
Benzo (k) fluoranthene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Benzo (a) pyrene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0202		mg/kg dry	Φ.	08/21/14 08:39	08/21/14 19:28	1.00
Dibenzo (a,h) anthracene	ND		0.0121		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Benzo (ghi) perylene	ND		0.0202		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:28	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	87.6		36.3 - 152				08/21/14 08:39	08/21/14 19:28	1.00
2-FRP	82.6		30.2 135				08/21/14 08:39	08/21/14 19:28	1 00

2-FBP	82.6	30.2 _ 135			08/21/14 08:39	08/21/14 19:28	1.00
p-Terphenyl-d14	105	65.1 - 134			08/21/14 08:39	08/21/14 19:28	1.00
Method: NWTPH-HCID - Hydrocarl	oon Identification I	by NWTPH-HCID					
Analyte	Result Quali	ifier RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND	41		mg/kg dry	08/15/14 11:27	08/15/14 23:08	1.0

Heavy Oil Range Hydrocarbons	ND	100	mg/kg dry	© 08/15/14 11:27	08/15/14 23:08	1.0
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-BFB (FID)	88.5	50 - 150		08/15/14 11:27	08/15/14 23:08	1.0
2-FBP	96.2	50 - 150		08/15/14 11:27	08/15/14 23:08	1.0
p-Terphenyl-d14	106	50 - 150		08/15/14 11:27	08/15/14 23:08	1.0

100

mg/kg dry

08/15/14 11:27

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.06		1.28		mg/kg dry	\	08/18/14 09:11	08/27/14 15:41	1.00
Cadmium	ND		0.204		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:41	1.00
Chromium	14.9		0.511		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:41	1.00
Lead	4.72		1.28		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:41	1.00

TestAmerica Spokane

08/15/14 23:08

1.0

Client Sample ID: GEI-B2 (13-14')

Date Collected: 08/11/14 12:20

Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-10

Matrix: Soil

Percent Solids: 93.2

Method: EPA 7471B - Total Metals	by EPA 6010/	7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		37.3		ug/kg dry	\	08/28/14 07:10	08/28/14 15:31	1.00

Client Sample ID: GEI-B3 (7-8') Lab Sample ID: SXH0089-12

Date Collected: 08/11/14 10:55

Date Received: 08/14/14 10:00

Matrix: Soil

Percent Solids: 95.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	-	0.0586		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:06	1.00
Hexane	ND		0.117		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:06	1.00
Benzene	ND		0.0176		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:06	1.00
1,2-Dichloroethane (EDC)	ND		0.117		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:06	1.00
Trichloroethene	ND		0.0293		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:06	1.00
Toluene	ND		0.117		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:06	1.00
Tetrachloroethene	ND		0.0469		mg/kg dry	☼	08/15/14 08:49	08/15/14 13:06	1.00
Ethylbenzene	ND		0.117		mg/kg dry	☼	08/15/14 08:49	08/15/14 13:06	1.00
m,p-Xylene	ND		0.469		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:06	1.00
o-Xylene	ND		0.234		mg/kg dry		08/15/14 08:49	08/15/14 13:06	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		80 - 120				08/15/14 08:49	08/15/14 13:06	1.00
1,2-dichloroethane-d4	99.9		74.7 - 120				08/15/14 08:49	08/15/14 13:06	1.00
Toluene-d8	103		78.5 - 125				08/15/14 08:49	08/15/14 13:06	1.00
4-bromofluorobenzene	101		69.8 - 140				08/15/14 08:49	08/15/14 13:06	1.00
Method: EPA 8011 - EDB by	FPΔ Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.853		ug/kg dry	-	08/15/14 10:04	08/15/14 14:38	1.00
1,2-Dibromo-3-chloropropane	ND		0.853		ug/kg dry	₩	08/15/14 10:04	08/15/14 14:38	1.00

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.853		ug/kg dry	*	08/15/14 10:04	08/15/14 14:38	1.00
1,2-Dibromo-3-chloropropane	ND		0.853		ug/kg dry	₽	08/15/14 10:04	08/15/14 14:38	1.00

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082 Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac PCB-1016 ND 10.4 ug/kg dry ₩ 08/19/14 08:36 08/19/14 18:03 1.00 PCB-1221 ND ₩ 10.4 ug/kg dry 08/19/14 08:36 08/19/14 18:03 1.00 PCB-1232 ND 08/19/14 08:36 10.4 ug/kg dry 08/19/14 18:03 1.00 PCB-1242 ND 10.4 ug/kg dry 08/19/14 08:36 08/19/14 18:03 1.00 PCB-1248 ND 08/19/14 08:36 08/19/14 18:03 1.00 10.4 ug/kg dry PCB-1254 ND 08/19/14 08:36 10.4 ug/kg dry 08/19/14 18:03 1.00 PCB-1260 ND 10.4 08/19/14 08:36 08/19/14 18:03 1.00 ug/kg dry PCB-1268 ND 10.4 ug/kg dry 08/19/14 08:36 08/19/14 18:03 1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
TCX	110		46.2 - 210	08/19/14 08:36	08/19/14 18:03	1.00
Decachlorobiphenyl	117		65.6 - 186	08/19/14 08:36	08/19/14 18:03	1.00

Method: EPA 8270D - Polynuclear A	romatic Compounds by GC/MS with Sel	lected Ion Monitoring

Michiga. El A del de - i digitacical	Alomatic oo	inpounds by C	Onitio With	Ociccica	IOII MOIIILO	ııııg			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0184		mg/kg dry	₩	08/21/14 08:39	08/21/14 19:50	1.00
2-Methylnaphthalene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
1-Methylnaphthalene	ND		0.0184		mg/kg dry	₩	08/21/14 08:39	08/21/14 19:50	1.00
Acenaphthylene	ND		0.0184		mg/kg dry	₩	08/21/14 08:39	08/21/14 19:50	1.00

Client Sample ID: GEI-B3 (7-8')

Lab Sample ID: SXH0089-12 Date Collected: 08/11/14 10:55

Matrix: Soil

Date Received: 08/14/14 10:00 Percent Solids: 95.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0184		mg/kg dry	\	08/21/14 08:39	08/21/14 19:50	1.00
Fluorene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Phenanthrene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Anthracene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Fluoranthene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Pyrene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Benzo (a) anthracene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Chrysene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Benzo (b) fluoranthene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Benzo (k) fluoranthene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Benzo (a) pyrene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0184		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Dibenzo (a,h) anthracene	ND		0.0111		mg/kg dry	₽	08/21/14 08:39	08/21/14 19:50	1.00
Benzo (ghi) perylene	ND		0.0184		mg/kg dry	₩	08/21/14 08:39	08/21/14 19:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	81.2	-	36.3 - 152				08/21/14 08:39	08/21/14 19:50	1.00
2-FBP	79.2		30.2 - 135				08/21/14 08:39	08/21/14 19:50	1.00
p-Terphenyl-d14	102		65.1 - 134				08/21/14 08:39	08/21/14 19:50	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		38		mg/kg dry	₩	08/15/14 11:27	08/15/14 23:32	1.0
Diesel Range Hydrocarbons	ND		95		mg/kg dry	₽	08/15/14 11:27	08/15/14 23:32	1.0
Heavy Oil Range Hydrocarbons	ND		95		mg/kg dry	₽	08/15/14 11:27	08/15/14 23:32	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	89.5		50 - 150				08/15/14 11:27	08/15/14 23:32	1.0
2-FBP	96.5		50 - 150				08/15/14 11:27	08/15/14 23:32	1.0
p-Terphenyl-d14	108		50 ₋ 150				08/15/14 11:27	08/15/14 23:32	1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.66		1.23		mg/kg dry	\	08/18/14 09:11	08/27/14 15:45	1.00
Cadmium	ND		0.197		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:45	1.00
Chromium	14.8		0.492		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:45	1.00
Lead	3.04		1.23		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:45	1.00

Method: EPA 7471B - Total Metals I	by EPA 6010	/7000 Series	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		42.4		ug/kg dry	\	08/28/14 07:10	08/28/14 15:38	1.00

Client Sample ID: GEI-B4 (2-3') Lab Sample ID: SXH0089-13 Date Collected: 08/11/14 16:20 Matrix: Soil

Date Received: 08/14/14 10:00 Percent Solids: 92.7

Method: EPA 6010C - Metals Cont	ent by EPA 601	10/7000 Series Method	ls, Prep by E	PA 3050B				
Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	14.3	2.64		mg/kg dry	₩	08/27/14 13:45	08/28/14 08:12	2.00
Barium	277	1.06		mg/kg dry	₩	08/27/14 13:45	08/28/14 08:12	2.00
Cadmium	6.78	0.423		mg/kg dry	₩	08/27/14 13:45	08/28/14 08:12	2.00

Client Sample ID: GEI-B4 (2-3')

Lab Sample ID: SXH0089-13

Matrix: Soil

Percent Solids: 92.7

Date Collected: 08/11/14 16:20	
Date Received: 08/14/14 10:00	

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	18.4		1.06		mg/kg dry	<u> </u>	08/27/14 13:45	08/28/14 08:12	2.00
Lead	865		2.64		mg/kg dry	\$	08/27/14 13:45	08/28/14 08:12	2.00
Selenium	ND		5.29		mg/kg dry	₽	08/27/14 13:45	08/28/14 08:12	2.00
Silver	ND	RL3	1.06		mg/kg dry	₽	08/27/14 13:45	08/28/14 08:12	2.00

Method: EPA 7471B - Total Metals	by EPA 6010/7000 Ser	ies Methods						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	203	37.9		ug/kg dry	₩	08/28/14 07:09	08/28/14 14:29	1.00

Client Sample ID: GEI-B4 (7-8')

Date Collected: 08/11/14 16:10 Date Received: 08/14/14 10:00

Decachlorobiphenyl

Lab Sample ID: SXH0089-14 Matrix: Soil

Percent Solids: 97.3

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.0610		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:29	1.00
Hexane	ND	0.122		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:29	1.00
Benzene	ND	0.0183		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:29	1.00
1,2-Dichloroethane (EDC)	ND	0.122		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:29	1.00
Trichloroethene	ND	0.0305		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:29	1.00
Toluene	ND	0.122		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:29	1.00
Tetrachloroethene	ND	0.0488		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:29	1.00
Ethylbenzene	ND	0.122		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:29	1.00
m,p-Xylene	ND	0.488		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:29	1.00
o-Xylene	ND	0.244		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:29	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
Dibromofluoromethane	101		80 - 120	08/15/14 (08:49	08/15/14 13:29	1.00
1,2-dichloroethane-d4	99.5		74.7 - 120	08/15/14 (08:49	08/15/14 13:29	1.00
Toluene-d8	104		78.5 - 125	08/15/14 (08:49	08/15/14 13:29	1.00
4-bromofluorobenzene	101		69.8 - 140	08/15/14 (08:49	08/15/14 13:29	1.00

Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.765		ug/kg dry	*	08/15/14 10:04	08/15/14 15:07	1.00
1,2-Dibromo-3-chloropropane	ND		0.765		ug/kg dry	₩	08/15/14 10:04	08/15/14 15:07	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		9.64		ug/kg dry	₩	08/19/14 08:36	08/19/14 18:46	1.00
PCB-1221	ND		9.64		ug/kg dry	₩	08/19/14 08:36	08/19/14 18:46	1.00
PCB-1232	ND		9.64		ug/kg dry	₩	08/19/14 08:36	08/19/14 18:46	1.00
PCB-1242	ND		9.64		ug/kg dry	₽	08/19/14 08:36	08/19/14 18:46	1.00
PCB-1248	ND		9.64		ug/kg dry	⇔	08/19/14 08:36	08/19/14 18:46	1.00
PCB-1254	ND		9.64		ug/kg dry	₩	08/19/14 08:36	08/19/14 18:46	1.00
PCB-1260	ND		9.64		ug/kg dry	⇔	08/19/14 08:36	08/19/14 18:46	1.00
PCB-1268	ND		9.64		ug/kg dry	₩	08/19/14 08:36	08/19/14 18:46	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	132		46.2 210				08/19/14 08:36	08/19/14 18:46	1.00

TestAmerica Spokane

08/19/14 18:46

08/19/14 08:36

65.6 - 186

119

1.00

Cadmium

Lead

Analyte

Mercury

Chromium

Client Sample ID: GEI-B4 (7-8')

Date Collected: 08/11/14 16:10 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-14

Matrix: Soil

Percent Solids: 97.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0191		mg/kg dry	*	08/21/14 08:39	08/21/14 20:13	1.00
2-Methylnaphthalene	ND		0.0191		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:13	1.00
1-Methylnaphthalene	ND		0.0191		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:13	1.00
Acenaphthylene	ND		0.0191		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:13	1.00
Acenaphthene	ND		0.0191		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:13	1.00
Fluorene	ND		0.0191		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:13	1.00
Phenanthrene	ND		0.0191		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:13	1.00
Anthracene	ND		0.0191		mg/kg dry	☼	08/21/14 08:39	08/21/14 20:13	1.00
Fluoranthene	ND		0.0191		mg/kg dry	☼	08/21/14 08:39	08/21/14 20:13	1.00
Pyrene	ND		0.0191		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:13	1.00
Benzo (a) anthracene	ND		0.0191		mg/kg dry	☼	08/21/14 08:39	08/21/14 20:13	1.00
Chrysene	ND		0.0191		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:13	1.00
Benzo (b) fluoranthene	ND		0.0191		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:13	1.00
Benzo (k) fluoranthene	ND		0.0191		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:13	1.00
Benzo (a) pyrene	ND		0.0191		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:13	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0191		mg/kg dry	₩.	08/21/14 08:39	08/21/14 20:13	1.00
Dibenzo (a,h) anthracene	ND		0.0115		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:13	1.00
Benzo (ghi) perylene	ND		0.0191		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:13	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	73.0		36.3 - 152				08/21/14 08:39	08/21/14 20:13	1.00
2-FBP	71.0		30.2 - 135				08/21/14 08:39	08/21/14 20:13	1.00
p-Terphenyl-d14	101		65.1 - 134				08/21/14 08:39	08/21/14 20:13	1.00
Method: NWTPH-HCID - Hydro	carbon Identifica	ation by NV	VTPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		31		mg/kg dry	₽	08/15/14 11:27	08/15/14 23:56	1.0
Diesel Range Hydrocarbons	ND		78		mg/kg dry	₩	08/15/14 11:27	08/15/14 23:56	1.0
Heavy Oil Range Hydrocarbons	ND		78		mg/kg dry	₽	08/15/14 11:27	08/15/14 23:56	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	89.3		50 - 150				08/15/14 11:27	08/15/14 23:56	1.0
2-FBP	94.8		50 - 150				08/15/14 11:27	08/15/14 23:56	1.0
p-Terphenyl-d14	105		50 - 150				08/15/14 11:27	08/15/14 23:56	1.0
Method: EPA 6010C - Metals C	ontent by EPA 6	010/7000 S	eries Methods, I	Prep by I	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	4.40		1.21		mg/kg dry	-	08/18/14 09:11	08/27/14 15:49	1.00
Arsenic	4.40		1.21		ilig/kg uly		00/10/14 09.11	00/2//14 13.49	1.00

08/27/14 15:49

08/27/14 15:49

08/27/14 15:49

Analyzed

08/28/14 15:40

1.00

1.00

1.00

Dil Fac

1.00

₽

D

08/18/14 09:11

08/18/14 09:11

08/18/14 09:11

Prepared

08/28/14 07:10

mg/kg dry

mg/kg dry

mg/kg dry

ug/kg dry

MDL Unit

0.194

0.485

1.21

RL

49.0

ND

13.5

2.20

ND

Result Qualifier

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods

Project/Site: 0504-101-01

Client Sample ID: GEI-B5 (2-3')

Date Collected: 08/11/14 10:00 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-15

Matrix: Soil

Percent Solids: 91.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.46		1.17		mg/kg dry	<u></u>	08/27/14 13:45	08/29/14 11:30	1.00
Barium	60.4		0.468		mg/kg dry	₩	08/27/14 13:45	08/29/14 11:30	1.00
Cadmium	ND		0.187		mg/kg dry	₩	08/27/14 13:45	08/29/14 11:30	1.00
Chromium	7.33		0.468		mg/kg dry	₩	08/27/14 13:45	08/29/14 11:30	1.00
Lead	24.8		1.17		mg/kg dry	⇔	08/27/14 13:45	08/29/14 11:30	1.00
Selenium	ND		2.34		mg/kg dry	⇔	08/27/14 13:45	08/29/14 11:30	1.00
Silver	ND		0.468		mg/kg dry	₩	08/27/14 13:45	08/29/14 11:30	1.00

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	48.8		48.1		ug/kg dry	\$	08/28/14 07:09	08/28/14 14:38	1.00	

Client Sample ID: GEI-B5 (7-8') Lab Sample ID: SXH0089-16

Date Collected: 08/11/14 10:10 Date Received: 08/14/14 10:00

Matrix: Soil Percent Solids: 91.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0623		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:51	1.00
Hexane	ND		0.125		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:51	1.00
Benzene	ND		0.0187		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:51	1.00
1,2-Dichloroethane (EDC)	ND		0.125		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:51	1.00
Trichloroethene	ND		0.0311		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:51	1.00
Toluene	ND		0.125		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:51	1.00
Tetrachloroethene	ND		0.0498		mg/kg dry	₽	08/15/14 08:49	08/15/14 13:51	1.00
Ethylbenzene	ND		0.125		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:51	1.00
m,p-Xylene	ND		0.498		mg/kg dry	₩	08/15/14 08:49	08/15/14 13:51	1.00
o-Xylene	ND		0.249		mg/kg dry	₩.	08/15/14 08:49	08/15/14 13:51	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98.7		80 - 120				08/15/14 08:49	08/15/14 13:51	1.00
1,2-dichloroethane-d4	98.9		74.7 - 120				08/15/14 08:49	08/15/14 13:51	1.00
Toluene-d8	102		78.5 - 125				08/15/14 08:49	08/15/14 13:51	1.00
4-bromofluorobenzene	98.3		69.8 - 140				08/15/14 08:49	08/15/14 13:51	1.00

Method: EPA 8011 - EDB by EPA Method 8011										
İ	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,2-Dibromoethane	ND		0.978		ug/kg dry	*	08/15/14 10:04	08/15/14 15:21	1.00
	1,2-Dibromo-3-chloropropane	ND		0.978		ug/kg dry	₽	08/15/14 10:04	08/15/14 15:21	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		10.1		ug/kg dry	₩	08/19/14 08:36	08/19/14 19:07	1.00
PCB-1221	ND		10.1		ug/kg dry	₽	08/19/14 08:36	08/19/14 19:07	1.00
PCB-1232	ND		10.1		ug/kg dry	₽	08/19/14 08:36	08/19/14 19:07	1.00
PCB-1242	ND		10.1		ug/kg dry	⇔	08/19/14 08:36	08/19/14 19:07	1.00
PCB-1248	ND		10.1		ug/kg dry	⇔	08/19/14 08:36	08/19/14 19:07	1.00
PCB-1254	ND		10.1		ug/kg dry	≎	08/19/14 08:36	08/20/14 11:07	1.00
PCB-1260	ND		10.1		ug/kg dry	⇔	08/19/14 08:36	08/19/14 19:07	1.00
PCB-1268	ND		10.1		ug/kg dry	₩	08/19/14 08:36	08/19/14 19:07	1.00

Client Sample ID: GEI-B5 (7-8')

Lab Sample ID: SXH0089-16 Date Collected: 08/11/14 10:10

Matrix: Soil Percent Solids: 91.8

Date Received: 08/14/14 10:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
TCX	134		46.2 - 210	08/19/14 08:36	08/19/14 19:07	1.00
Decachlorobiphenyl	114		65.6 - 186	08/19/14 08:36	08/19/14 19:07	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0215		mg/kg dry	<u> </u>	08/21/14 08:39	08/21/14 20:35	1.00
2-Methylnaphthalene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
1-Methylnaphthalene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Acenaphthylene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Acenaphthene	ND		0.0215		mg/kg dry	☼	08/21/14 08:39	08/21/14 20:35	1.00
Fluorene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Phenanthrene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Anthracene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Fluoranthene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Pyrene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Benzo (a) anthracene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Chrysene	ND		0.0215		mg/kg dry	☼	08/21/14 08:39	08/21/14 20:35	1.00
Benzo (b) fluoranthene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Benzo (k) fluoranthene	ND		0.0215		mg/kg dry	☼	08/21/14 08:39	08/21/14 20:35	1.00
Benzo (a) pyrene	ND		0.0215		mg/kg dry	☼	08/21/14 08:39	08/21/14 20:35	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Dibenzo (a,h) anthracene	ND		0.0129		mg/kg dry	☼	08/21/14 08:39	08/21/14 20:35	1.00
Benzo (ghi) perylene	ND		0.0215		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:35	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	73.4		36.3 - 152				08/21/14 08:39	08/21/14 20:35	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	73.4		36.3 - 152	08/21/14 08:3	08/21/14 20:35	1.00
2-FBP	78.0		30.2 - 135	08/21/14 08:3	39 08/21/14 20:35	1.00
p-Terphenyl-d14	108		65.1 - 134	08/21/14 08:	39 08/21/14 20:35	1.00

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID										
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
	Gasoline Range Hydrocarbons	ND ND	37	mg/kg dry	*	08/15/14 11:27	08/16/14 00:20	1.0		
	Diesel Range Hydrocarbons	ND	93	mg/kg dry	₩	08/15/14 11:27	08/16/14 00:20	1.0		
	Heavy Oil Range Hydrocarbons	ND	93	mg/kg dry	₩	08/15/14 11:27	08/16/14 00:20	1.0		

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-BFB (FID)	90.0		50 - 150	08/15/14 11::	08/16/14 00:20	1.0
2-FBP	96.9		50 ₋ 150	08/15/14 11::	27 08/16/14 00:20	1.0
p-Terphenyl-d14	106		50 - 150	08/15/14 11::	27 08/16/14 00:20	1.0

Method: EPA 6010C - Met	als Content by EPA 6	010/7000 Sei	ries Methods, I	Prep by	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.77		2.41		mg/kg dry	<u></u>	08/18/14 09:11	08/27/14 17:41	2.00
Cadmium	ND	RL3	0.386		mg/kg dry	⇔	08/18/14 09:11	08/27/14 17:41	2.00
Chromium	16.6		0.964		mg/kg dry	₽	08/18/14 09:11	08/27/14 17:41	2.00
Lead	3.68		2.41		mg/kg dry	₽	08/18/14 09:11	08/27/14 17:41	2.00

Ī										
	Method: EPA 7471B - Total Metals	by EPA 6010	/7000 Serie	s Methods						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	194		48.1		ug/kg dry	<u></u>	08/28/14 07:10	08/28/14 15:42	1.00

Client Sample ID: GEI-B6 (2-3')

Date Collected: 08/11/14 14:05 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-17

Matrix: Soil

Percent Solids: 90.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	13.4		1.31		mg/kg dry	<u> </u>	08/27/14 13:45	08/29/14 11:34	1.00
Barium	93.4		0.524		mg/kg dry	₽	08/27/14 13:45	08/29/14 11:34	1.00
Cadmium	1.24		0.210		mg/kg dry	₽	08/27/14 13:45	08/29/14 11:34	1.00
Chromium	13.2		0.524		mg/kg dry	₽	08/27/14 13:45	08/29/14 11:34	1.00
Lead	343		1.31		mg/kg dry	₽	08/27/14 13:45	08/29/14 11:34	1.00
Selenium	ND		2.62		mg/kg dry	₽	08/27/14 13:45	08/29/14 11:34	1.00
Silver	ND		0.524		mg/kg dry	₽	08/27/14 13:45	08/29/14 11:34	1.00

Method: EPA 7471B - Total Metals	by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	126		41.7		ug/kg dry	\	08/28/14 07:09	08/28/14 14:41	1.00

Client Sample ID: GEI-B6 (13-14')

Date Collected: 08/11/14 14:25

Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-19

Percent Solids: 95.3

Matrix: Soil

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0605		mg/kg dry	₩	08/15/14 08:49	08/15/14 14:14	1.00
Hexane	ND		0.121		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:14	1.00
Benzene	ND		0.0182		mg/kg dry	₩	08/15/14 08:49	08/15/14 14:14	1.00
1,2-Dichloroethane (EDC)	ND		0.121		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:14	1.00
Trichloroethene	ND		0.0303		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:14	1.00
Toluene	ND		0.121		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:14	1.00
Tetrachloroethene	ND		0.0484		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:14	1.00
Ethylbenzene	ND		0.121		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:14	1.00
m,p-Xylene	ND		0.484		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:14	1.00
o-Xylene	ND		0.242		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:14	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		80 - 120				08/15/14 08:49	08/15/14 14:14	1.00
1,2-dichloroethane-d4	102		74.7 - 120				08/15/14 08:49	08/15/14 14:14	1.00
Toluene-d8	101		78.5 ₋ 125				08/15/14 08:49	08/15/14 14:14	1.00
4-bromofluorobenzene	101		69.8 - 140				08/15/14 08:49	08/15/14 14:14	1.00

Method: EPA 8011 - EDB by EPA Method 8011										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,2-Dibromoethane	ND		0.929		ug/kg dry	*	08/15/14 10:04	08/15/14 15:36	1.00	
1,2-Dibromo-3-chloropropane	ND		0.929		ug/kg dry	₽	08/15/14 10:04	08/15/14 15:36	1.00	

Method: EPA 8082A - Poly	chlorinated Biphenyl	s by EPA Met	thod 8082						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		10.3		ug/kg dry	₩	08/19/14 08:36	08/19/14 19:28	1.00
PCB-1221	ND		10.3		ug/kg dry	₩	08/19/14 08:36	08/19/14 19:28	1.00
PCB-1232	ND		10.3		ug/kg dry	₩	08/19/14 08:36	08/19/14 19:28	1.00
PCB-1242	ND		10.3		ug/kg dry	₽	08/19/14 08:36	08/19/14 19:28	1.00
PCB-1248	ND		10.3		ug/kg dry	₽	08/19/14 08:36	08/19/14 19:28	1.00
PCB-1254	ND		10.3		ug/kg dry	☼	08/19/14 08:36	08/20/14 11:28	1.00
PCB-1260	ND		10.3		ug/kg dry	₽	08/19/14 08:36	08/19/14 19:28	1.00
PCB-1268	ND		10.3		ug/kg dry	₩	08/19/14 08:36	08/19/14 19:28	1.00

Project/Site: 0504-101-01

Client Sample ID: GEI-B6 (13-14')

Date Collected: 08/11/14 14:25 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-19

Matrix: Soil

Percent Solids: 95.3

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
TCX	102		46.2 - 210			08/19/14 08:36	08/19/14 19:28	1.00
Decachlorobiphenyl	113		65.6 - 186			08/19/14 08:36	08/19/14 19:28	1.00
Method: EPA 8270D - Polyr Analyte		mpounds l Qualifier	oy GC/MS with S RL	Ion Monitor Unit	ing D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0207	 mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00
2-Methylnaphthalene								
2 month in april and in a	ND		0.0207	mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0207		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:58	1.00
2-Methylnaphthalene	ND		0.0207		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:58	1.00
1-Methylnaphthalene	ND		0.0207		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00
Acenaphthylene	ND		0.0207		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:58	1.00
Acenaphthene	ND		0.0207		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00
Fluorene	ND		0.0207		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00
Phenanthrene	ND		0.0207		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:58	1.00
Anthracene	ND		0.0207		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00
Fluoranthene	ND		0.0207		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00
Pyrene	ND		0.0207		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:58	1.00
Benzo (a) anthracene	ND		0.0207		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00
Chrysene	ND		0.0207		mg/kg dry	≎	08/21/14 08:39	08/21/14 20:58	1.00
Benzo (b) fluoranthene	ND		0.0207		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:58	1.00
Benzo (k) fluoranthene	ND		0.0207		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00
Benzo (a) pyrene	ND		0.0207		mg/kg dry	≎	08/21/14 08:39	08/21/14 20:58	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0207		mg/kg dry	₽	08/21/14 08:39	08/21/14 20:58	1.00
Dibenzo (a,h) anthracene	ND		0.0124		mg/kg dry	≎	08/21/14 08:39	08/21/14 20:58	1.00
Benzo (ghi) perylene	ND		0.0207		mg/kg dry	₩	08/21/14 08:39	08/21/14 20:58	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	84.2		36.3 - 152	08/21/14 08:39	08/21/14 20:58	1.00
2-FBP	88.2		30.2 - 135	08/21/14 08:39	08/21/14 20:58	1.00
p-Terphenyl-d14	120		65.1 - 134	08/21/14 08:39	08/21/14 20:58	1.00

Method: NWTPH-HCID - Hydrod	arbon Identifica	ition by NW	TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		38		mg/kg dry	₩	08/15/14 11:27	08/16/14 00:44	1.0
Diesel Range Hydrocarbons	ND		96		mg/kg dry	₩	08/15/14 11:27	08/16/14 00:44	1.0
Heavy Oil Range Hydrocarbons	ND		96		mg/kg dry	₩	08/15/14 11:27	08/16/14 00:44	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-BFB (FID)	89.2		50 - 150	08/15/14 11:27	08/16/14 00:44	1.0
2-FBP	95.6		50 - 150	08/15/14 11:27	08/16/14 00:44	1.0
p-Terphenyl-d14	106		50 - 150	08/15/14 11:27	08/16/14 00:44	1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.39		1.37		mg/kg dry	\	08/18/14 09:11	08/27/14 15:57	1.00
Cadmium	ND		0.219		mg/kg dry	₩	08/18/14 09:11	08/27/14 15:57	1.00
Chromium	15.7		0.547		mg/kg dry	₽	08/18/14 09:11	08/27/14 15:57	1.00
Lead	4.77		1.37		mg/kg dry		08/18/14 09:11	08/27/14 15:57	1.00

_ Method: EPA 7471B - Total Metals	by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		41.0		ug/kg dry	\$	08/28/14 07:10	08/28/14 15:45	1.00

Project/Site: 0504-101-01

Client Sample ID: GEI-B7 (13-14')

Lab Sample ID: SXH0089-21 Date Collected: 08/11/14 08:45

Matrix: Soil Percent Solids: 93.9

TestAmerica Job ID: SXH0089

Date Received: 08/14/14 10:00

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND		0.0750		mg/kg dry	\	08/15/14 08:49	08/15/14 14:36	1.00
Hexane	ND		0.150		mg/kg dry	₩	08/15/14 08:49	08/15/14 14:36	1.00
Benzene	ND		0.0225		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:36	1.00
1,2-Dichloroethane (EDC)	ND		0.150		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:36	1.00
Trichloroethene	ND		0.0375		mg/kg dry	₩	08/15/14 08:49	08/15/14 14:36	1.00
Toluene	ND		0.150		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:36	1.00
Tetrachloroethene	ND		0.0600		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:36	1.00
Ethylbenzene	ND		0.150		mg/kg dry	₩	08/15/14 08:49	08/15/14 14:36	1.00
m,p-Xylene	ND		0.600		mg/kg dry	₩	08/15/14 08:49	08/15/14 14:36	1.00
o-Xylene	ND		0.300		mg/kg dry	φ.	08/15/14 08:49	08/15/14 14:36	1.00
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac

İ	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	Dibromofluoromethane	100		80 - 120	-	08/15/14 08:49	08/15/14 14:36	1.00
ı	1,2-dichloroethane-d4	97.9		74.7 - 120		08/15/14 08:49	08/15/14 14:36	1.00
İ	Toluene-d8	102		78.5 - 125		08/15/14 08:49	08/15/14 14:36	1.00
١	4-bromofluorobenzene	103		69.8 - 140		08/15/14 08:49	08/15/14 14:36	1.00

Method: EPA 8011 - EDB by EPA Method 8011

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.05		ug/kg dry	*	08/15/14 10:04	08/15/14 15:50	1.00
1,2-Dibromo-3-chloropropane	ND		1.05		ug/kg dry	☼	08/15/14 10:04	08/15/14 15:50	1.00

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082

Analyte	Result Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	9.29		ug/kg dry	₩	08/19/14 08:36	08/19/14 19:49	1.00
PCB-1221	ND	9.29	U	ug/kg dry	⇔	08/19/14 08:36	08/19/14 19:49	1.00
PCB-1232	ND	9.29	U	ug/kg dry	⇔	08/19/14 08:36	08/19/14 19:49	1.00
PCB-1242	ND	9.29	U	ug/kg dry	⇔	08/19/14 08:36	08/19/14 19:49	1.00
PCB-1248	ND	9.29	U	ug/kg dry	⇔	08/19/14 08:36	08/19/14 19:49	1.00
PCB-1254	ND	9.29	U	ug/kg dry	⇔	08/19/14 08:36	08/19/14 19:49	1.00
PCB-1260	ND	9.29	U	ug/kg dry	₽	08/19/14 08:36	08/19/14 19:49	1.00
PCB-1268	ND	9.29	U	ug/kg dry	₩	08/19/14 08:36	08/19/14 19:49	1.00
				0 0 ,				

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
TCX	130		46.2 - 210	08/19/14 08:36	08/19/14 19:49	1.00
Decachlorobiphenvl	117		65.6 - 186	08/19/14 08:36	08/19/14 19:49	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0197		mg/kg dry	\	08/21/14 08:39	08/21/14 21:20	1.00
2-Methylnaphthalene	ND		0.0197		mg/kg dry	⇔	08/21/14 08:39	08/21/14 21:20	1.00
1-Methylnaphthalene	ND		0.0197		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Acenaphthylene	ND		0.0197		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Acenaphthene	ND		0.0197		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Fluorene	ND		0.0197		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:20	1.00
Phenanthrene	ND		0.0197		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Anthracene	ND		0.0197		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:20	1.00
Fluoranthene	ND		0.0197		mg/kg dry	☼	08/21/14 08:39	08/21/14 21:20	1.00
Pyrene	ND		0.0197		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:20	1.00
Benzo (a) anthracene	ND		0.0197		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Chrysene	ND		0.0197		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:20	1.00

TestAmerica Spokane

Page 22 of 58

2/17/2015

TestAmerica Job ID: SXH0089

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Client Sample ID: GEI-B7 (13-14')

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

Lab Sample ID: SXH0089-21

Matrix: Soil

Date Collected: 08/11/14 08:45 Date Received: 08/14/14 10:00

Percent Solids: 93.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo (b) fluoranthene	ND		0.0197		mg/kg dry	\	08/21/14 08:39	08/21/14 21:20	1.00
Benzo (k) fluoranthene	ND		0.0197		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Benzo (a) pyrene	ND		0.0197		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0197		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Dibenzo (a,h) anthracene	ND		0.0118		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:20	1.00
Benzo (ghi) perylene	ND		0.0197		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:20	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67.4		36.3 - 152				08/21/14 08:39	08/21/14 21:20	1.00
2-FBP	65.0		30.2 - 135				08/21/14 08:39	08/21/14 21:20	1.00
p-Terphenyl-d14	118		65.1 - 134				08/21/14 08:39	08/21/14 21:20	1.00

Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND ND	41	mg/kg dry	₽	08/15/14 11:27	08/16/14 01:08	1.0
Diesel Range Hydrocarbons	ND	100	mg/kg dry	₽	08/15/14 11:27	08/16/14 01:08	1.0
Heavy Oil Range Hydrocarbons	ND	100	mg/kg dry	₽	08/15/14 11:27	08/16/14 01:08	1.0
Surrogate	%Recovery Qualifie	r Limits			Prepared	Analyzed	Dil Fac
4-BFB (FID)	94.7	50 - 150			08/15/14 11:27	08/16/14 01:08	1.0
2-FBP	98.8	50 - 150			08/15/14 11:27	08/16/14 01:08	1.0
p-Terphenyl-d14	110	50 ₋ 150			08/15/14 11:27	08/16/14 01:08	1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.41		1.36		mg/kg dry	\	08/18/14 09:11	08/27/14 16:01	1.00
Cadmium	ND		0.217		mg/kg dry	₩	08/18/14 09:11	08/27/14 16:01	1.00
Chromium	15.1		0.543		mg/kg dry	₽	08/18/14 09:11	08/27/14 16:01	1.00
Lead	3.71		1.36		mg/kg dry	₽	08/18/14 09:11	08/27/14 16:01	1.00

Method: EPA 7471B - Total Metals	by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		48.1		ug/kg dry	*	08/28/14 07:10	08/28/14 15:47	1.00

Client Sample ID: GEI-B8 (14-15') Lab Sample ID: SXH0089-23 Date Collected: 08/11/14 12:15 Matrix: Soil Date Received: 08/14/14 10:00 Percent Solids: 93.3

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0661		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
Hexane	ND		0.132		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
Benzene	ND		0.0198		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
1,2-Dichloroethane (EDC)	ND		0.132		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
Trichloroethene	ND		0.0330		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
Toluene	ND		0.132		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
Tetrachloroethene	ND		0.0528		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
Ethylbenzene	ND		0.132		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
m,p-Xylene	ND		0.528		mg/kg dry	₽	08/15/14 08:49	08/15/14 14:58	1.00
o-Xylene	ND		0.264		mg/kg dry	₩.	08/15/14 08:49	08/15/14 14:58	1.00

Client Sample ID: GEI-B8 (14-15')

Date Collected: 08/11/14 12:15 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-23

Matrix: Soil

Percent Solids: 93.3

					T CTCCTIC COIN	us. 50.0
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.9		80 - 120	08/15/14 08:49	08/15/14 14:58	1.00
1,2-dichloroethane-d4	100		74.7 - 120	08/15/14 08:49	08/15/14 14:58	1.00

78.5 - 125 Toluene-d8 102 08/15/14 08:49 08/15/14 14:58 1.00 4-bromofluorobenzene 103 69.8 - 140 08/15/14 08:49 08/15/14 14:58 1.00

Method: EPA 8011 - EDB by EPA Method 8011											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,2-Dibromoethane	ND		1.01		ug/kg dry		08/15/14 10:04	08/15/14 16:04	1.00		
1,2-Dibromo-3-chloropropane	ND		1.01		ug/kg dry	₩	08/15/14 10:04	08/15/14 16:04	1.00		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		9.46		ug/kg dry	☼	08/19/14 08:36	08/20/14 12:49	1.00
PCB-1221	ND		9.46		ug/kg dry	₩	08/19/14 08:36	08/20/14 12:49	1.00
PCB-1232	ND		9.46		ug/kg dry	₩	08/19/14 08:36	08/20/14 12:49	1.00
PCB-1242	ND		9.46		ug/kg dry	₽	08/19/14 08:36	08/20/14 12:49	1.00
PCB-1248	ND		9.46		ug/kg dry	₩	08/19/14 08:36	08/20/14 12:49	1.00
PCB-1254	ND		9.46		ug/kg dry	₩	08/19/14 08:36	08/20/14 12:49	1.00
PCB-1260	ND		9.46		ug/kg dry	₽	08/19/14 08:36	08/20/14 12:49	1.00
PCB-1268	ND		9.46		ug/kg dry	₽	08/19/14 08:36	08/20/14 12:49	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	100		46.2 - 210				08/19/14 08:36	08/20/14 12:49	1.00
Decachlorobiphenyl	119		65.6 - 186				08/19/14 08:36	08/20/14 12:49	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:43	1.00
2-Methylnaphthalene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:43	1.00
1-Methylnaphthalene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Acenaphthylene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:43	1.00
Acenaphthene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Fluorene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Phenanthrene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Anthracene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Fluoranthene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:43	1.00
Pyrene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Benzo (a) anthracene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:43	1.00
Chrysene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Benzo (b) fluoranthene	ND		0.0200		mg/kg dry	\$	08/21/14 08:39	08/21/14 21:43	1.00
Benzo (k) fluoranthene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Benzo (a) pyrene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:43	1.00
Dibenzo (a,h) anthracene	ND		0.0120		mg/kg dry	₽	08/21/14 08:39	08/21/14 21:43	1.00
Benzo (ghi) perylene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 21:43	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	51.8		36.3 - 152				08/21/14 08:39	08/21/14 21:43	1.00
2-FBP	55.4		30.2 - 135				08/21/14 08:39	08/21/14 21:43	1.00
p-Terphenyl-d14	103		65.1 - 134				08/21/14 08:39	08/21/14 21:43	1.00

Client Sample ID: GEI-B8 (14-15')

Date Collected: 08/11/14 12:15 Date Received: 08/14/14 10:00

PCB-1016

Lab Sample ID: SXH0089-23

TestAmerica Job ID: SXH0089

Matrix: Soil

Percent Solids: 93.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	MD		36		mg/kg dry	*	08/15/14 11:27	08/16/14 01:32	1.0
Diesel Range Hydrocarbons	ND		90		mg/kg dry	₽	08/15/14 11:27	08/16/14 01:32	1.0
Heavy Oil Range Hydrocarbons	ND		90		mg/kg dry	₩	08/15/14 11:27	08/16/14 01:32	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	92.4		50 - 150				08/15/14 11:27	08/16/14 01:32	1.0
2-FBP	99.8		50 - 150				08/15/14 11:27	08/16/14 01:32	1.0
p-Terphenyl-d14	108		50 ₋ 150				08/15/14 11:27	08/16/14 01:32	1.0

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B											
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Arsenic	1.86		1.22	mg/kg dry	₩	08/18/14 09:11	08/27/14 16:14	1.00			
Cadmium	ND		0.195	mg/kg dry	₩	08/18/14 09:11	08/27/14 16:14	1.00			
Chromium	9.40		0.487	mg/kg dry	₩	08/18/14 09:11	08/27/14 16:14	1.00			
Lead	3.81		1.22	mg/kg dry	₩	08/18/14 09:11	08/27/14 16:14	1.00			

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	ND		36.8		ug/kg dry	\$	08/28/14 07:10	08/28/14 15:49	1.00		

Client Sample ID: GEI-B9 (13-14')

Lab Sample ID: SXH0089-25

Date Collected: 08/11/14 14:10

Matrix: Soil

Pate Received: 08/14/14 10:00

Percent Solids: 96.5

Method: EPA 8260C - Volatile Organ	-	-				_			B.: F
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0490		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:20	1.00
Hexane	ND		0.0980		mg/kg dry	₩	08/15/14 08:49	08/15/14 15:20	1.00
Benzene	ND		0.0147		mg/kg dry	.	08/15/14 08:49	08/15/14 15:20	1.00
1,2-Dichloroethane (EDC)	ND		0.0980		mg/kg dry	₩	08/15/14 08:49	08/15/14 15:20	1.00
Trichloroethene	ND		0.0245		mg/kg dry	⇔	08/15/14 08:49	08/15/14 15:20	1.00
Toluene	ND		0.0980		mg/kg dry	₩	08/15/14 08:49	08/15/14 15:20	1.00
Tetrachloroethene	ND		0.0392		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:20	1.00
Ethylbenzene	ND		0.0980		mg/kg dry	⇔	08/15/14 08:49	08/15/14 15:20	1.00
m,p-Xylene	ND		0.392		mg/kg dry	⇔	08/15/14 08:49	08/15/14 15:20	1.00
o-Xylene	ND		0.196		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:20	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		80 - 120				08/15/14 08:49	08/15/14 15:20	1.00
1,2-dichloroethane-d4	100		74.7 - 120				08/15/14 08:49	08/15/14 15:20	1.00
Toluene-d8	101		78.5 - 125				08/15/14 08:49	08/15/14 15:20	1.00
4-bromofluorobenzene	101		69.8 - 140				08/15/14 08:49	08/15/14 15:20	1.00
Method: EPA 8011 - EDB by EPA M	ethod 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.922		ug/kg dry	⇔	08/15/14 10:04	08/15/14 16:19	1.00
1,2-Dibromo-3-chloropropane	ND		0.922		ug/kg dry	₩	08/15/14 10:04	08/15/14 16:19	1.00
Method: EPA 8082A - Polychlorinate	ed Biphenyl	ls by EPA I	Method 8082						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Spokane

1.00

08/19/14 20:32

10.1

ND

ug/kg dry

08/19/14 08:36

Client Sample ID: GEI-B9 (13-14')

Lab Sample ID: SXH0089-25

Matrix: Soil
Percent Solids: 96.5

Date Collected: 08/11/14 14:10 Date Received: 08/14/14 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	ND		10.1		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:32	1.00
PCB-1232	ND		10.1		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:32	1.00
PCB-1242	ND		10.1		ug/kg dry	₽	08/19/14 08:36	08/19/14 20:32	1.00
PCB-1248	ND		10.1		ug/kg dry	≎	08/19/14 08:36	08/19/14 20:32	1.00
PCB-1254	ND		10.1		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:32	1.00
PCB-1260	ND		10.1		ug/kg dry	₽	08/19/14 08:36	08/19/14 20:32	1.00
PCB-1268	ND		10.1		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:32	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
TCX	127		46.2 - 210	08/19/14 08:36	08/19/14 20:32	1.00
Decachlorobiphenyl	121		65.6 - 186	08/19/14 08:36	08/19/14 20:32	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0185		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:05	1.00
2-Methylnaphthalene	ND		0.0185		mg/kg dry	⇔	08/21/14 08:39	08/21/14 22:05	1.00
1-Methylnaphthalene	ND		0.0185		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Acenaphthylene	ND		0.0185		mg/kg dry	⇔	08/21/14 08:39	08/21/14 22:05	1.00
Acenaphthene	ND		0.0185		mg/kg dry	⇔	08/21/14 08:39	08/21/14 22:05	1.00
Fluorene	ND		0.0185		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Phenanthrene	ND		0.0185		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Anthracene	ND		0.0185		mg/kg dry	⇔	08/21/14 08:39	08/21/14 22:05	1.00
Fluoranthene	ND		0.0185		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Pyrene	ND		0.0185		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Benzo (a) anthracene	ND		0.0185		mg/kg dry	≎	08/21/14 08:39	08/21/14 22:05	1.00
Chrysene	ND		0.0185		mg/kg dry	⇔	08/21/14 08:39	08/21/14 22:05	1.00
Benzo (b) fluoranthene	ND		0.0185		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Benzo (k) fluoranthene	ND		0.0185		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Benzo (a) pyrene	ND		0.0185		mg/kg dry	⇔	08/21/14 08:39	08/21/14 22:05	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0185		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Dibenzo (a,h) anthracene	ND		0.0111		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:05	1.00
Benzo (ghi) perylene	ND		0.0185		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:05	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	78.2		36.3 - 152				08/21/14 08:39	08/21/14 22:05	1.00
2-FBP	75.2		30.2 - 135				08/21/14 08:39	08/21/14 22:05	1.00
p-Terphenyl-d14	118		65.1 - 134				08/21/14 08:39	08/21/14 22:05	1.00

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Gasoline Range Hydrocarbons	ND		34		mg/kg dry	<u> </u>	08/15/14 11:27	08/16/14 01:56	1.0			
Diesel Range Hydrocarbons	ND		85		mg/kg dry	₽	08/15/14 11:27	08/16/14 01:56	1.0			
Heavy Oil Range Hydrocarbons	ND		85		mg/kg dry	₩	08/15/14 11:27	08/16/14 01:56	1.0			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
4-BFB (FID)	95.1		50 - 150				08/15/14 11:27	08/16/14 01:56	1.0			
2-FBP	102		50 - 150				08/15/14 11:27	08/16/14 01:56	1.0			
p-Terphenyl-d14	112		50 - 150				08/15/14 11:27	08/16/14 01:56	1.0			

Client Sample ID: GEI-B9 (13-14')

Date Collected: 08/11/14 14:10 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-25

Matrix: Soil

Percent Solids: 96.5

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B											
Analyte	Result (Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Arsenic	1.92		1.26	mg/kg dry	\	08/18/14 09:11	08/27/14 16:18	1.00			
Cadmium	ND		0.201	mg/kg dry	₩	08/18/14 09:11	08/27/14 16:18	1.00			
Chromium	9.33		0.503	mg/kg dry	₩	08/18/14 09:11	08/27/14 16:18	1.00			
Lead	3.48		1.26	mg/kg dry	₽	08/18/14 09:11	08/27/14 16:18	1.00			

Method: EPA 7471B - Total Metals	Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	ND		47.2		ug/kg dry	<u> </u>	08/28/14 07:10	08/28/14 15:52	1.00		

Client Sample ID: Duplicate 1

Date Collected: 08/11/14 08:00 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-26

Matrix: Soil Percent Solids: 96.4

Method: EPA 8260C - Volatile Organic Compounds by EPA Methods 5035/8260C

Analyte	Result Qua	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.0534		mg/kg dry	₩	08/15/14 08:49	08/15/14 15:43	1.00
Hexane	ND	0.107		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00
Benzene	ND	0.0160		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00
1,2-Dichloroethane (EDC)	ND	0.107		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00
Trichloroethene	ND	0.0267		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00
Toluene	ND	0.107		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00
Tetrachloroethene	ND	0.0427		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00
Ethylbenzene	ND	0.107		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00
m,p-Xylene	ND	0.427		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00
o-Xylene	ND	0.214		mg/kg dry	₽	08/15/14 08:49	08/15/14 15:43	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		80 - 120	08/15/14 08:49	08/15/14 15:43	1.00
1,2-dichloroethane-d4	99.5		74.7 - 120	08/15/14 08:49	08/15/14 15:43	1.00
Toluene-d8	103		78.5 - 125	08/15/14 08:49	08/15/14 15:43	1.00
4-bromofluorobenzene	102		69.8 - 140	08/15/14 08:49	08/15/14 15:43	1.00

Method: EPA 8011 - EDB by EPA	Method 8011					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	A

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	0.857	ug/kg dry	☼	08/15/14 10:04	08/15/14 16:33	1.00
1,2-Dibromo-3-chloropropane	ND	0.857	ug/kg dry	₩	08/15/14 10:04	08/15/14 16:33	1.00

Method: EPA 8082A - Pol	lychlorinated Biphenyl	s by EPA Method 8082
-------------------------	------------------------	----------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		8.96		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:53	1.00
PCB-1221	ND		8.96		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:53	1.00
PCB-1232	ND		8.96		ug/kg dry	≎	08/19/14 08:36	08/19/14 20:53	1.00
PCB-1242	ND		8.96		ug/kg dry	₽	08/19/14 08:36	08/19/14 20:53	1.00
PCB-1248	ND		8.96		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:53	1.00
PCB-1254	ND		8.96		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:53	1.00
PCB-1260	ND		8.96		ug/kg dry	≎	08/19/14 08:36	08/19/14 20:53	1.00
PCB-1268	ND		8.96		ug/kg dry	₩	08/19/14 08:36	08/19/14 20:53	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
TCX	120		46.2 - 210	08/19/14 08:3	6 08/19/14 20:53	1.00
Decachlorobiphenyl	122		65.6 - 186	08/19/14 08:3	6 08/19/14 20:53	1.00

Client Sample ID: Duplicate 1

Lab Sample ID: SXH0089-26

Matrix: Soil

Percent Solids: 96.4

Date Collected: 08/11/14 08:00 Date Received: 08/14/14 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0200		mg/kg dry	\	08/21/14 08:39	08/21/14 22:27	1.00
2-Methylnaphthalene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:27	1.00
1-Methylnaphthalene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:27	1.00
Acenaphthylene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Acenaphthene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:27	1.00
Fluorene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Phenanthrene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Anthracene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:27	1.00
Fluoranthene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Pyrene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Benzo (a) anthracene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Chrysene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:27	1.00
Benzo (b) fluoranthene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Benzo (k) fluoranthene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Benzo (a) pyrene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:27	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0200		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:27	1.00
Dibenzo (a,h) anthracene	ND		0.0120		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Benzo (ghi) perylene	ND		0.0200		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:27	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	84.6		36.3 - 152				08/21/14 08:39	08/21/14 22:27	1.00
2-FBP	81.8		30.2 _ 135				08/21/14 08:39	08/21/14 22:27	1.00
p-Terphenyl-d14	110		65.1 - 134				08/21/14 08:39	08/21/14 22:27	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		34		mg/kg dry	₽	08/15/14 11:27	08/16/14 02:20	1.0
Diesel Range Hydrocarbons	ND		86		mg/kg dry	₽	08/15/14 11:27	08/16/14 02:20	1.0
Heavy Oil Range Hydrocarbons	ND		86		mg/kg dry	₩	08/15/14 11:27	08/16/14 02:20	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	91.9		50 - 150				08/15/14 11:27	08/16/14 02:20	1.0
2-FBP	97.5		50 - 150				08/15/14 11:27	08/16/14 02:20	1.0
p-Terphenyl-d14	109		50 - 150				08/15/14 11:27	08/16/14 02:20	1.0

Method: EPA 6010C - Metals (Content by EPA 60	10/7000 Series Methods	s, Prep by I	EPA 3050B				
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.50	1.25		mg/kg dry	*	08/21/14 14:35	08/22/14 12:47	1.00
Cadmium	ND	0.199		mg/kg dry	₽	08/21/14 14:35	08/22/14 12:47	1.00
Chromium	15.2	0.499		mg/kg dry	₽	08/21/14 14:35	08/22/14 12:47	1.00
Lead	1.40	1.25		mg/kg dry	₽	08/21/14 14:35	08/22/14 12:47	1.00

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		43.9		ug/kg dry		08/28/14 07:10	08/28/14 15:54	1.00

Date Collected: 08/11/14 08:00

Date Received: 08/14/14 10:00

Client Sample ID: Duplicate 2

Project/Site: 0504-101-01

Lab Sample ID: SXH0089-27

TestAmerica Job ID: SXH0089

Matrix: Soil Percent Solids: 91.9

Method: EPA 8260C - Volatile Organic Compounds by EPA Methods 5035/8260C Result Qualifier MDL Unit D Prepared Analyzed Dil Fac ₩ Methyl tert-butyl ether ND 0.0740 mg/kg dry 08/15/14 08:49 08/15/14 16:05 1.00 ND 08/15/14 08:49 Hexane 0.148 08/15/14 16:05 1.00 mg/kg dry Benzene ND 0.0222 mg/kg dry 08/15/14 08:49 08/15/14 16:05 1.00 1,2-Dichloroethane (EDC) ND 0.148 08/15/14 08:49 08/15/14 16:05 1.00 mg/kg dry Trichloroethene ND 0.0370 mg/kg dry 08/15/14 08:49 08/15/14 16:05 1.00 Toluene ND 0.148 08/15/14 08:49 08/15/14 16:05 1.00 mg/kg dry Tetrachloroethene ND 0.0592 mg/kg dry 08/15/14 08:49 08/15/14 16:05 1.00 Ethylbenzene ND 0.148 08/15/14 08:49 08/15/14 16:05 1.00 mg/kg dry ₽ ND 0.592 08/15/14 08:49 08/15/14 16:05 m,p-Xylene mg/kg dry 1.00 ND 0.296 08/15/14 08:49 08/15/14 16:05 1.00 o-Xylene mg/kg dry Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 80 - 120 08/15/14 08:49 08/15/14 16:05 Dibromofluoromethane 103 1.00 1,2-dichloroethane-d4 102 74.7 - 120 08/15/14 08:49 08/15/14 16:05 1.00 Toluene-d8 103 78.5 - 125 08/15/14 08:49 08/15/14 16:05 1.00 4-bromofluorobenzene 101 69.8 - 140 08/15/14 08:49 08/15/14 16:05 1.00

	Method: EPA 8011 - EDB by EPA I	Method 8011								
l	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,2-Dibromoethane	ND		1.08		ug/kg dry	*	08/15/14 10:04	08/15/14 16:47	1.00

Method: EPA 8082A - Poly	chlorinated Biphenyl	s by EPA I	Method 8082						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		8.86		ug/kg dry	₩	08/19/14 08:36	08/19/14 21:14	1.00
PCB-1221	ND		8.86		ug/kg dry	₽	08/19/14 08:36	08/19/14 21:14	1.00
PCB-1232	ND		8.86		ug/kg dry	₽	08/19/14 08:36	08/19/14 21:14	1.00
PCB-1242	ND		8.86		ug/kg dry	₽	08/19/14 08:36	08/19/14 21:14	1.00
PCB-1248	ND		8.86		ug/kg dry	₩	08/19/14 08:36	08/19/14 21:14	1.00
PCB-1254	ND		8.86		ug/kg dry	₩	08/19/14 08:36	08/19/14 21:14	1.00
PCB-1260	ND		8.86		ug/kg dry	₽	08/19/14 08:36	08/19/14 21:14	1.00
PCB-1268	ND		8.86		ug/kg dry	₩	08/19/14 08:36	08/19/14 21:14	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	99.1		46.2 - 210				08/19/14 08:36	08/19/14 21:14	1.00
Decachlorobiphenyl	114		65.6 - 186				08/19/14 08:36	08/19/14 21:14	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0198		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:50	1.00
2-Methylnaphthalene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
1-Methylnaphthalene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Acenaphthylene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Acenaphthene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Fluorene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Phenanthrene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Anthracene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Fluoranthene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Pyrene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Benzo (a) anthracene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Chrysene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00
Benzo (b) fluoranthene	ND		0.0198		mg/kg dry	₽	08/21/14 08:39	08/21/14 22:50	1.00

2

TestAmerica Job ID: SXH0089

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

2-FBP

p-Terphenyl-d14

Client Sample ID: Duplicate 2

Lab Sample ID: SXH0089-27

08/15/14 11:27

08/15/14 11:27

08/16/14 02:44

08/16/14 02:44

Matrix: Soil

1.0

1.0

Percent Solids: 91.9

Date Collected: 08/	11/14 08:00
Date Received: 08/	14/14 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo (k) fluoranthene	ND		0.0198		mg/kg dry	\	08/21/14 08:39	08/21/14 22:50	1.00
Benzo (a) pyrene	ND		0.0198		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:50	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0198		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:50	1.00
Dibenzo (a,h) anthracene	ND		0.0119		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:50	1.00
Benzo (ghi) perylene	ND		0.0198		mg/kg dry	₩	08/21/14 08:39	08/21/14 22:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	79.6	-	36.3 - 152				08/21/14 08:39	08/21/14 22:50	1.00
2-FBP	82.6		30.2 - 135				08/21/14 08:39	08/21/14 22:50	1.00
p-Terphenyl-d14	111		65.1 - 134				08/21/14 08:39	08/21/14 22:50	1.00

Method: NWTPH-HCID - Hydro	carbon Identifica	tion by NW	/TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		37		mg/kg dry	<u> </u>	08/15/14 11:27	08/16/14 02:44	1.0
Diesel Range Hydrocarbons	ND		92		mg/kg dry	₽	08/15/14 11:27	08/16/14 02:44	1.0
Heavy Oil Range Hydrocarbons	ND		92		mg/kg dry	₩	08/15/14 11:27	08/16/14 02:44	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	87.8		50 - 150				08/15/14 11:27	08/16/14 02:44	1.0

50 - 150

50 - 150

94.7

104

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.40		1.37		mg/kg dry	₩	08/21/14 14:35	08/27/14 16:22	1.00
Cadmium	ND		0.220		mg/kg dry	₩	08/21/14 14:35	08/27/14 16:22	1.00
Chromium	8.83		0.550		mg/kg dry	₩	08/21/14 14:35	08/27/14 16:22	1.00
Lead	3.11		1.37		mg/kg dry	₽	08/21/14 14:35	08/27/14 16:22	1.00

Method: EPA /4/1B - Total Metals	by EPA 6010//000 Series	wetnoas					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	49.0	ug/kg dry	₩	08/28/14 07:10	08/28/14 15:56	1.00

Client Sample ID: HWA-MW1-Composite

Date Collected: 08/12/14 14:45

Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-28

Matrix: Soil

Percent Solids: 94

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0343		mg/kg dry	\	08/15/14 08:49	08/15/14 16:27	1.00
Benzene	ND		0.0171		mg/kg dry	₽	08/15/14 08:49	08/15/14 16:27	1.00
Toluene	ND		0.114		mg/kg dry	₽	08/15/14 08:49	08/15/14 16:27	1.00
Ethylbenzene	ND		0.114		mg/kg dry	\$	08/15/14 08:49	08/15/14 16:27	1.00
m,p-Xylene	ND		0.457		mg/kg dry	₽	08/15/14 08:49	08/15/14 16:27	1.00
o-Xylene	ND		0.229		mg/kg dry	₽	08/15/14 08:49	08/15/14 16:27	1.00
1,2-Dichloroethane (EDC)	ND		0.114		mg/kg dry	₽	08/15/14 08:49	08/15/14 16:27	1.00
Xylenes (total)	ND		0.686		mg/kg dry	₽	08/15/14 08:49	08/15/14 16:27	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.2		80 - 120				08/15/14 08:49	08/15/14 16:27	1.00
1,2-dichloroethane-d4	101		74.7 - 120				08/15/14 08:49	08/15/14 16:27	1.00

Client Sample Results

Client: Geo Engineers - Spokane

Date Received: 08/14/14 10:00

Project/Site: 0504-101-01

Client Sample ID: HWA-MW1-Composite Lab Sample ID: SXH0089-28 Date Collected: 08/12/14 14:45

Matrix: Soil Percent Solids: 94

TestAmerica Job ID: SXH0089

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8	102		78.5 - 125	08/15/14 08:4	9 08/15/14 16:27	1.00
4-bromofluorobenzene	101		69.8 - 140	08/15/14 08:4	9 08/15/14 16:27	1.00

miculou. With the theriol - tryunocu	ibon identificati	on by NIII II-IIOID						
Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND	33		mg/kg dry	₩	08/15/14 11:27	08/16/14 03:08	1.0
Diesel Range Hydrocarbons	ND	83		mg/kg dry	₽	08/15/14 11:27	08/16/14 03:08	1.0
Heavy Oil Range Hydrocarbons	ND	83		mg/kg dry	₩	08/15/14 11:27	08/16/14 03:08	1.0

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-BFB (FID)	89.1		50 - 150	08/15/14 11:27	08/16/14 03:08	1.0
2-FBP	97.0		50 ₋ 150	08/15/14 11:27	08/16/14 03:08	1.0
p-Terphenyl-d14	108		50 ₋ 150	08/15/14 11:27	08/16/14 03:08	1.0

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B

	,								
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.33		1.22	m	ng/kg dry	₩	08/21/14 14:35	08/27/14 16:25	1.00
Cadmium	ND		0.195	m	ng/kg dry	₽	08/21/14 14:35	08/27/14 16:25	1.00
Chromium	11.2		0.488	m	ng/kg dry	₽	08/21/14 14:35	08/27/14 16:25	1.00
Lead	3.13		1.22	m	ng/kg dry	\$	08/21/14 14:35	08/27/14 16:25	1.00

Method: EPA 7471B - Total Metals by EPA	6010/7000 Series Methods
Michiga. El A 141 IB - Total Micials by El A	do for food octrics inclineds

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	37.9	ug/kg dry	\	08/28/14 07:10	08/28/14 15:59	1.00

TestAmerica Job ID: SXH0089

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Diank Blank

Lab Sample ID: 14H0077-BLK1

Matrix: Soil

Analysis Batch: 14H0077

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14H0077_P

	Dialik	DIAIIK							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0300		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
Benzene	ND		0.0150		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
Toluene	ND		0.100		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
Ethylbenzene	ND		0.100		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
m,p-Xylene	ND		0.400		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
o-Xylene	ND		0.200		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
1,2-Dichloroethane (EDC)	ND		0.100		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
Xylenes (total)	ND		0.600		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00

Blank Blank

	Diam.	- Juin				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		80 - 120	08/15/14 08:49	08/15/14 10:29	1.00
1,2-dichloroethane-d4	101		74.7 - 120	08/15/14 08:49	08/15/14 10:29	1.00
Toluene-d8	101		78.5 - 125	08/15/14 08:49	08/15/14 10:29	1.00
4-bromofluorobenzene	99.8		69.8 - 140	08/15/14 08:49	08/15/14 10:29	1.00

Lab Sample ID: 14H0077-BS1

Matrix: Soil

Analysis Batch: 14H0077

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14H0077_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	0.500	0.484		mg/kg wet	_	96.8	60 - 140	
Benzene	0.500	0.475		mg/kg wet		95.0	75.8 - 123	
Toluene	0.500	0.496		mg/kg wet		99.2	76.6 - 125	
Ethylbenzene	0.500	0.496		mg/kg wet		99.1	77.3 - 121	
m,p-Xylene	0.500	0.498		mg/kg wet		99.5	77.7 - 124	
o-Xylene	0.500	0.506		mg/kg wet		101	76.7 - 129	
Naphthalene	0.500	0.399		mg/kg wet		79.8	55.1 ₋ 142	
Xylenes (total)	1.00	1.00		mg/kg wet		100	76.5 - 124	
I and the second								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits		
Dibromofluoromethane	103		80 - 120		
1,2-dichloroethane-d4	104		74.7 _ 120		
Toluene-d8	101		78.5 - 125		
4-bromofluorobenzene	97.3		69.8 _ 140		

Method: EPA 8260C - Volatile Organic Compounds by EPA Methods 5035/8260C

Lab Sample ID: 14H0077-BLK1

Matrix: Soil

Analysis Batch: 14H0077

Client	Sample	ID:	Method Blank	

Prep Type: Total Prep Batch: 14H0077_P

Blank	Blank							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.0500		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
ND		0.100		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
ND		0.0150		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
ND		0.100		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
ND		0.0250		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
	Result ND ND ND ND	Result Qualifier ND ND ND ND	Result Qualifier RL ND 0.0500 ND 0.100 ND 0.0150 ND 0.100	Result Qualifier RL MDL ND 0.0500 ND 0.100 ND 0.0150 ND 0.100	Result Qualifier RL MDL Unit ND 0.0500 mg/kg wet ND 0.100 mg/kg wet ND 0.0150 mg/kg wet ND 0.100 mg/kg wet	Result Qualifier RL MDL Unit D ND 0.0500 mg/kg wet mg/kg wet ND 0.100 mg/kg wet ND 0.0150 mg/kg wet ND 0.100 mg/kg wet	Result Qualifier RL MDL Unit D Prepared ND 0.0500 mg/kg wet 08/15/14 08:49 ND 0.100 mg/kg wet 08/15/14 08:49 ND 0.0150 mg/kg wet 08/15/14 08:49 ND 0.100 mg/kg wet 08/15/14 08:49	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.0500 mg/kg wet 08/15/14 08:49 08/15/14 10:29 ND 0.100 mg/kg wet 08/15/14 08:49 08/15/14 10:29 ND 0.0150 mg/kg wet 08/15/14 08:49 08/15/14 10:29 ND 0.100 mg/kg wet 08/15/14 08:49 08/15/14 10:29

TestAmerica Spokane

Page 32 of 58

TestAmerica Job ID: SXH0089

Method: EPA 8260C - Volatile Organic Compounds by EPA Methods 5035/8260C (Continued)

Lab Sample ID: 14H0077-BLK1

Matrix: Soil

Analysis Batch: 14H0077

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14H0077_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.100		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
Tetrachloroethene	ND		0.0400		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
Ethylbenzene	ND		0.100		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
m,p-Xylene	ND		0.400		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00
o-Xylene	ND		0.200		mg/kg wet		08/15/14 08:49	08/15/14 10:29	1.00

Blank Blank

	DIdIIK	DIAIIK				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		80 - 120	08/15/14 08:49	08/15/14 10:29	1.00
1,2-dichloroethane-d4	101		74.7 - 120	08/15/14 08:49	08/15/14 10:29	1.00
Toluene-d8	101		78.5 - 125	08/15/14 08:49	08/15/14 10:29	1.00
4-bromofluorobenzene	99.8		69.8 - 140	08/15/14 08:49	08/15/14 10:29	1.00

Lab Sample ID: 14H0077-BS1

Matrix: Soil

Analysis Batch: 14H0077

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14H0077_P

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	0.500	0.484		mg/kg wet		96.8	60 - 140
Hexane	0.500	0.486		mg/kg wet		97.2	77 - 130
Benzene	0.500	0.475		mg/kg wet		95.0	75.8 - 123
1,2-Dichloroethane (EDC)	0.500	0.516		mg/kg wet		103	71.1 - 142
Trichloroethene	0.500	0.488		mg/kg wet		97.6	78.5 - 134
Toluene	0.500	0.496		mg/kg wet		99.2	76.6 - 125
Tetrachloroethene	0.500	0.512		mg/kg wet		102	80 - 127
Ethylbenzene	0.500	0.496		mg/kg wet		99.1	77.3 - 121
m,p-Xylene	0.500	0.498		mg/kg wet		99.5	77.7 - 124
o-Xvlene	0.500	0.506		ma/ka wet		101	76.7 - 129

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	103		80 - 120
1,2-dichloroethane-d4	104		74.7 - 120
Toluene-d8	101		78.5 - 125
4-bromofluorobenzene	97.3		69.8 - 140

Method: EPA 8011 - EDB by EPA Method 8011

Lab Sample ID: 14H0079-BLK1

Matrix: Soil

Analysis Batch: 14H0079

Client Sample ID: Method Blank

Prep Type: Total Prep Batch: 14H0079_P

Blank Blank

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND ND	1.00	ug/kg wet		08/15/14 10:04	08/15/14 12:29	1.00

2/17/2015

TestAmerica Job ID: SXH0089

Client: Geo Engineers - Spokane

1,2-Dibromoethane

Project/Site: 0504-101-01

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 14H0079-BS1 Client Sample ID: Lab Control Sample **Matrix: Soil Prep Type: Total** Analysis Batch: 14H0079 Prep Batch: 14H0079_P Spike LCS LCS %Rec.

Added Result Qualifier Limits Analyte Unit %Rec D 5.00 60 - 140 1,2-Dibromoethane 3.42 ug/kg wet 68.5

Client Sample ID: Lab Control Sample Lab Sample ID: 14H0079-BS2 Matrix: Soil **Prep Type: Total** Analysis Batch: 14H0079 Prep Batch: 14H0079_P LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits

5.00

Lab Sample ID: 14H0079-MS1 **Client Sample ID: Duplicate 2 Matrix: Soil Prep Type: Total** Analysis Batch: 14H0079 Prep Batch: 14H0079_P Sample Sample Spike Matrix Spike Matrix Spike %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits 1,2-Dibromoethane ND 4.84 5.16 Ü 107 60 - 140 ug/kg dry

4.68

ug/kg wet

93.6

60 - 140

Lab Sample ID: 14H0079-MSD1 Client Sample ID: Duplicate 2 **Matrix: Soil Prep Type: Total** Analysis Batch: 14H0079 Prep Batch: 14H0079 P Sample Sample Spike Itrix Spike Dup Matrix Spike Dup %Rec. RPD Result Qualifier Result Qualifier Analyte Added %Rec Limits Limit ND 6.56 7.19 R2 110 1,2-Dibromoethane ug/kg dry 60 - 140 32.9 20

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082

Blank Blank

Lab Sample ID: 14H0093-BLK1 Client Sample ID: Method Blank **Matrix: Soil Prep Type: Total** Analysis Batch: 14H0093 Prep Batch: 14H0093_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		10.0		ug/kg wet		08/19/14 08:36	08/19/14 14:54	1.00
PCB-1221	ND		10.0		ug/kg wet		08/19/14 08:36	08/19/14 14:54	1.00
PCB-1232	ND		10.0		ug/kg wet		08/19/14 08:36	08/19/14 14:54	1.00
PCB-1242	ND		10.0		ug/kg wet		08/19/14 08:36	08/19/14 14:54	1.00
PCB-1248	ND		10.0		ug/kg wet		08/19/14 08:36	08/19/14 14:54	1.00
PCB-1254	ND		10.0		ug/kg wet		08/19/14 08:36	08/19/14 14:54	1.00
PCB-1260	ND		10.0		ug/kg wet		08/19/14 08:36	08/19/14 14:54	1.00
PCB-1268	ND		10.0		ug/kg wet		08/19/14 08:36	08/19/14 14:54	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
TCX	103		46.2 - 210	08/19/14 08:36	08/19/14 14:54	1.00
Decachlorobiphenyl	112		65.6 - 186	08/19/14 08:36	08/19/14 14:54	1.00

Project/Site: 0504-101-01

TestAmerica Job ID: SXH0089

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082 (Continued)

Lab Sample ID: 14H0093-BLK2 Client Sample ID: Method Blank **Matrix: Soil Prep Type: Total** Analysis Batch: 14H0093 Prep Batch: 14H0093_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		10.0		ug/kg wet		08/19/14 08:36	08/20/14 12:28	1.00
PCB-1221	ND		10.0		ug/kg wet		08/19/14 08:36	08/20/14 12:28	1.00
PCB-1232	ND		10.0		ug/kg wet		08/19/14 08:36	08/20/14 12:28	1.00
PCB-1242	ND		10.0		ug/kg wet		08/19/14 08:36	08/20/14 12:28	1.00
PCB-1248	ND		10.0		ug/kg wet		08/19/14 08:36	08/20/14 12:28	1.00
PCB-1254	ND		10.0		ug/kg wet		08/19/14 08:36	08/20/14 12:28	1.00
PCB-1260	ND		10.0		ug/kg wet		08/19/14 08:36	08/20/14 12:28	1.00
PCB-1268	ND		10.0		ug/kg wet		08/19/14 08:36	08/20/14 12:28	1.00

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
TCX	109		46.2 - 210	08/19/14 08:36	08/20/14 12:28	1.00
Decachlorobiphenyl	147		65.6 - 186	08/19/14 08:36	08/20/14 12:28	1.00

Lab Sample ID: 14H0093-BS1 Client Sample ID: Lab Control Sample **Matrix: Soil**

Prep Type: Total Analysis Batch: 14H0093 Prep Batch: 14H0093_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 33.3	40.9		ug/kg wet	_	123	44.4 - 180	
PCB-1260	33.3	41.0		ug/kg wet		123	60.3 - 169	

	LCS	LUS	
Surrogate	%Recovery	Qualifier	Limits
TCX	112		46.2 - 210
Decachlorobiphenyl	114		65.6 - 186

Client Sample ID: Lab Control Sample Prep Type: Total

Lab Sample ID: 14H0093-BS2 **Matrix: Soil**

110

Analysis Batch: 14H0093 Prep Batch: 14H0093_P Spike LCS LCS %Rec.

Analyte	Added	Result	Qualifier U	Init D	%Rec	Limits	
PCB-1016	33.3	38.7	uç	g/kg wet	116	44.4 - 180	
PCB-1260	33.3	38.2	uç	g/kg wet	115	60.3 - 169	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
TCX	107		46.2 - 210
Decachlorobiphenyl	111		65.6 - 186

Client Sample ID: GEI-MW-1 (12.5-13.5') Lab Sample ID: 14H0093-MS1

Matrix: Soil

TCX

Prep Type: Total Analysis Batch: 14H0093 Prep Batch: 14H0093 P

	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	ND		31.4	38.0		ug/kg dry	₩	121	50.6 - 145
PCB-1260	ND		31.4	37.2		ug/kg dry	₩	119	57.6 - 120
	Matrix Spike	Matrix Spike							
Surrogate	%Recovery	Qualifier	Limits						

TestAmerica Spokane

46.2 - 210

Prep Type: Total

Prep Type: Total

Prep Batch: 14H0115_P

Prep Batch: 14H0093 P

Client Sample ID: GEI-MW-1 (12.5-13.5')

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082 (Continued)

Lab Sample ID: 14H0093-MS1 **Matrix: Soil**

Analysis Batch: 14H0093

Matrix Spike Matrix Spike

%Recovery Qualifier Limits Surrogate Decachlorobiphenyl 112 65.6 - 186

Lab Sample ID: 14H0093-MSD1 Client Sample ID: GEI-MW-1 (12.5-13.5')

Matrix: Soil

Prep Type: Total Analysis Batch: 14H0093 Prep Batch: 14H0093_P Spike ıtrix Spike Dup Matrix Spike Dur %Rec. RPD Sample Sample

Qualifier Analyte Result Added Result Qualifier D %Rec Limits RPD Limit PCB-1016 ND 31.5 38.5 122 50.6 - 145 40 ug/kg dry 1.36 PCB-1260 ND 31.5 38.8 M7 123 57.6 - 120 ug/kg dry 4.01 27 4

Matrix Spike Dup Matrix Spike Dup

Surrogate	%Recovery	Qualifier	Limits
TCX	105		46.2 - 210
Decachlorobiphenvl	115		65.6 ₋ 186

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Client Sample ID: Method Blank Lab Sample ID: 14H0115-BLK1

Matrix: Soil

Indeno (1,2,3-cd) pyrene

Dibenzo (a,h) anthracene

Benzo (ghi) perylene

Analysis Batch: 14H0115

Blank Blank MDL Unit Analyte Result Qualifier RLD Prepared Analyzed Dil Fac Naphthalene ND 0.0200 mg/kg wet 08/21/14 08:39 08/21/14 16:27 1.00 2-Methylnaphthalene ND 0.0200 08/21/14 08:39 08/21/14 16:27 1.00 mg/kg wet 1-Methylnaphthalene ND 0.0200 mg/kg wet 08/21/14 08:39 08/21/14 16:27 1.00 Acenaphthylene ND 0.0200 mg/kg wet 08/21/14 08:39 08/21/14 16:27 1.00 Acenaphthene ND 0.0200 mg/kg wet 08/21/14 08:39 08/21/14 16:27 1.00 Fluorene ND 0.0200 08/21/14 08:39 08/21/14 16:27 1.00 mg/kg wet ND Phenanthrene 0.0200 mg/kg wet 08/21/14 08:39 08/21/14 16:27 1.00 Anthracene ND 0.0200 08/21/14 08:39 08/21/14 16:27 1.00 mg/kg wet Fluoranthene ND 0.0200 08/21/14 08:39 08/21/14 16:27 1.00 mg/kg wet ND 08/21/14 08:39 Pyrene 0.0200 mg/kg wet 08/21/14 16:27 1.00 08/21/14 08:39 Benzo (a) anthracene NΠ 0.0200 08/21/14 16:27 1 00 mg/kg wet Chrysene ND 0.0200 08/21/14 08:39 08/21/14 16:27 1.00 mg/kg wet ND 08/21/14 16:27 Benzo (b) fluoranthene 0.0200 08/21/14 08:39 1.00 mg/kg wet Benzo (k) fluoranthene ND 0.0200 mg/kg wet 08/21/14 08:39 08/21/14 16:27 1.00 Benzo (a) pyrene ND 0.0200 08/21/14 08:39 08/21/14 16:27 1.00 mg/kg wet

Blank Blank

ND

ND

NΠ

Surrogate	%Recovery	Qualifier	Limits	Prepa	red	Analyzed	Dil Fac
Nitrobenzene-d5	100		36.3 - 152	08/21/14	08:39	08/21/14 16:27	1.00
2-FBP	96.2		30.2 _ 135	08/21/14	08:39	08/21/14 16:27	1.00
p-Terphenyl-d14	139	Z2	65.1 - 134	08/21/14	08:39	08/21/14 16:27	1.00

0.0200

0.0120

0.0200

mg/kg wet

mg/kg wet

mg/kg wet

08/21/14 08:39

08/21/14 08:39

08/21/14 08:39

08/21/14 16:27

08/21/14 16:27

08/21/14 16:27

1.00

1.00

1.00

TestAmerica Job ID: SXH0089

Project/Site: 0504-101-01

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 14H0115-BS1

Matrix: Soil

Analysis Batch: 14H0115

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14H0115_P

	Spike	LCS	LCS				%Rec.	_
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	0.267	0.203		mg/kg wet	_	76.0	62.7 - 120	
Fluorene	0.267	0.247		mg/kg wet		92.5	67.9 - 124	
Chrysene	0.267	0.249		mg/kg wet		93.5	68.2 - 132	
Indeno (1,2,3-cd) pyrene	0.267	0.273		mg/kg wet		102	52.6 - 149	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	95.2		36.3 - 152
2-FBP	91.6		30.2 - 135
p-Terphenyl-d14	122		65.1 - 134

Client Sample ID: GEI-MW-1 (12.5-13.5')

Lab Sample ID: 14H0115-MS1 **Matrix: Soil**

Analysis Batch: 14H0115

Prep Type: Total

Prep Batch: 14H0115_P

	Sample	Sample	Spike	Matrix Spike	Matrix Spil	(e			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	ND		0.275	0.219		mg/kg dry	☼	79.5	30 - 120	
Fluorene	ND		0.275	0.219		mg/kg dry	₩	79.5	30 - 140	
Chrysene	ND		0.275	0.241		mg/kg dry	₩	87.5	30 - 133	
Indeno (1,2,3-cd) pyrene	ND		0.275	0.242		mg/kg dry	₽	88.0	30 - 140	

Matrix Spike Matrix Spike

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	77.8		36.3 - 152
2-FBP	80.2		30.2 _ 135
p-Terphenyl-d14	102		65.1 ₋ 134

Client Sample ID: GEI-MW-1 (12.5-13.5')

Matrix: Soil

Analysis Batch: 14H0115

Lab Sample ID: 14H0115-MSD1

Prep Type: Total Prep Batch: 14H0115 P

7 manyone Batom 1 mio 110									op Bate		•
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		0.261	0.196		mg/kg dry	\	75.0	30 - 120	11.0	35
Fluorene	ND		0.261	0.200		mg/kg dry	₩	76.5	30 - 140	9.00	35
Chrysene	ND		0.261	0.216		mg/kg dry	₽	82.5	30 - 133	11.0	35
Indeno (1,2,3-cd) pyrene	ND		0.261	0.209		mg/kg dry	₽	80.0	30 - 140	14.7	35
	Analyte Naphthalene Fluorene Chrysene	Analyte Result Naphthalene ND Fluorene ND Chrysene ND	Analyte Result Qualifier Naphthalene ND Fluorene ND Chrysene ND	Analyte Result Qualifier Added Naphthalene ND 0.261 Fluorene ND 0.261 Chrysene ND 0.261	Sample Analyte Sample Result Naphthalene Sample Result ND Spike Itrix Spike Dup Added Result Naphthalene Fluorene ND 0.261 0.196 Chrysene ND 0.261 0.200	Analyte Result Naphthalene ND Qualifier Added A	Analyte Result Naphthalene ND Qualifier Added Added Added Added Added National Naphthalene Result Naphthalene ND 0.261 0.196 Qualifier mg/kg dry Fluorene ND 0.261 0.200 mg/kg dry Chrysene ND 0.261 0.216 mg/kg dry	Sample Analyte Sample Result Qualifier Spike Itrix Spike Dup Added Matrix Spike Dup Qualifier Matrix Spike Dup Qualifier Matrix Spike Dup Qualifier Unit Dup Qualifier D Naphthalene ND 0.261 0.196 mg/kg dry mg/kg dry </th <th>Sample Analyte Sample Result Qualifier Spike Itrix Spike Dup Added Matrix Spike Dup Qualifier Matrix Spike Dup Qualifier Matrix Spike Dup Qualifier Watrix Spike Dup Qualifier Mush (Prophet) Push</th> <th>Analyte Result Naphthalene Qualifier Added Added Added Nesult No.261 Result Qualifier Qualifier Added No.261 Qualifier No.261 Qualifier No.261 Unit No.261 D WRec No.261 WRec No.261 Matrix Spike Duţ Unit No.261 D WRec No.261 Limits No.261 Matrix Spike Duţ Unit No.261 Unit No.261 Unit No.261 Unit No.261 Unit No.261 Matrix Spike Duţ Unit Unit No.262 Unit No.262 Unit No.262 Unit No.262 Unit No.262 Unit No.262 No.2622 No.2622 No.2622 No.2622</th> <th>Analyte Result Naphthalene Qualifier Added Added Added Nesult No.261 Qualifier No.261 Qualifier No.261 Qualifier No.261 Qualifier No.261 Unit No.261 Do.261 Mg/kg dry No.261 75.0 30 - 120 11.0 Fluorene ND 0.261 0.200 mg/kg dry 76.5 30 - 140 9.00 Chrysene ND 0.261 0.216 mg/kg dry 82.5 30 - 133 11.0</th>	Sample Analyte Sample Result Qualifier Spike Itrix Spike Dup Added Matrix Spike Dup Qualifier Matrix Spike Dup Qualifier Matrix Spike Dup Qualifier Watrix Spike Dup Qualifier Mush (Prophet) Push	Analyte Result Naphthalene Qualifier Added Added Added Nesult No.261 Result Qualifier Qualifier Added No.261 Qualifier No.261 Qualifier No.261 Unit No.261 D WRec No.261 WRec No.261 Matrix Spike Duţ Unit No.261 D WRec No.261 Limits No.261 Matrix Spike Duţ Unit No.261 Unit No.261 Unit No.261 Unit No.261 Unit No.261 Matrix Spike Duţ Unit Unit No.262 Unit No.262 Unit No.262 Unit No.262 Unit No.262 Unit No.262 No.2622 No.2622 No.2622 No.2622	Analyte Result Naphthalene Qualifier Added Added Added Nesult No.261 Qualifier No.261 Qualifier No.261 Qualifier No.261 Qualifier No.261 Unit No.261 Do.261 Mg/kg dry No.261 75.0 30 - 120 11.0 Fluorene ND 0.261 0.200 mg/kg dry 76.5 30 - 140 9.00 Chrysene ND 0.261 0.216 mg/kg dry 82.5 30 - 133 11.0

Matrix Spike Dup Matrix Spike Dup

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	77.6		36.3 - 152
2-FBP	77.8		30.2 _ 135
p-Terphenyl-d14	101		65.1 - 134

TestAmerica Spokane

2/17/2015

TestAmerica Job ID: SXH0089

Project/Site: 0504-101-01

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Lab Sample ID: 14H0139-BLK1 **Matrix: Soil**

Analysis Batch: 14H0139

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14H0139_P

Blank Blank Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 10.0 Diesel Range Hydrocarbons ND mg/kg wet 08/25/14 13:21 08/25/14 17:08 1.00 Heavy Oil Range Hydrocarbons ND 25.0 mg/kg wet 08/25/14 13:21 08/25/14 17:08 1.00

Blank Blank

Qualifier Surrogate %Recovery I imits Prepared Analyzed Dil Fac o-Terphenyl 104 50 - 150 08/25/14 13:21 08/25/14 17:08 1.00 n-Triacontane-d62 106 50 - 150 08/25/14 13:21 08/25/14 17:08 1 00

Client Sample ID: Lab Control Sample

Matrix: Soil

Lab Sample ID: 14H0139-BS1

Analysis Batch: 14H0139

Prep Type: Total Prep Batch: 14H0139_P

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 66.7 60.8 91.2 Diesel Range Hydrocarbons mg/kg wet 50 - 150

LCS LCS

Surrogate %Recovery Qualifier Limits 112 50 - 150 o-Terphenyl n-Triacontane-d62 105 50 - 150

Lab Sample ID: 14H0139-DUP1 **Client Sample ID: Duplicate**

Matrix: Soil

Analysis Batch: 14H0139

Diesel Range Hydrocarbons

Heavy Oil Range Hydrocarbons

Prep Type: Total Prep Batch: 14H0139 P

Sample Sample **Duplicate Duplicate** RPD D Analyte Result Qualifier Result Qualifier Unit RPD Limit ₩ Diesel Range Hydrocarbons ND ND mg/kg dry 40 ND ₽ Heavy Oil Range Hydrocarbons ND mg/kg dry 40

Duplicate Duplicate

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	109		50 - 150
n-Triacontane-d62	109		50 ₋ 150

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

ND

ND

Lab Sample ID: 14H0081-BLK1 Client Sample ID: Method Blank Matrix: Soil

Analysis Batch: 14H0081 Prep Batch: 14H0081_P Blank Blank Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Hydrocarbons ND 40 mg/kg wet 08/15/14 11:27 08/15/14 19:53 1 00

100

100

mg/kg wet

mg/kg wet

08/15/14 11:27

08/15/14 11:27

Diamir Diamir

	DIAIIK	DIAIIK				
Surrogate	%Recovery	Qualifier Limit	s	Prepared	Analyzed	Dil Fac
4-BFB (FID)	93.7	50 - 1	50	08/15/14 11:27	08/15/14 19:53	1.00
2-FBP	94.7	50 - 1	50	08/15/14 11:27	08/15/14 19:53	1.00
p-Terphenyl-d14	103	50 - 1	50	08/15/14 11:27	08/15/14 19:53	1.00

TestAmerica Spokane

Prep Type: Total

1.00

1.00

08/15/14 19:53

08/15/14 19:53

TestAmerica Job ID: SXH0089

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID (Continued)

Lab Sample ID: 14H0081-DUP1

Matrix: Soil

Analysis Batch: 14H0081

Analysis Batch: 14H0081

Client Sample ID: GEI-MW-2 (12-13')

Prep Type: Total

Prep Batch: 14H0081_P

	Sample	Sample	Duplicate	Duplicate			•		RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Gasoline Range Hydrocarbons	5.78		ND	R4	mg/kg dry	<u> </u>		200	25
Diesel Range Hydrocarbons	10.5		10.4		mg/kg dry	≎		0.762	25
Heavy Oil Range Hydrocarbons	1.01		1.42	R4	mg/kg dry	≎		33.5	25

Duplicate Duplicate Surrogate %Recovery Qualifier Limits 4-BFB (FID) 94.2 50 - 150 2-FBP 50 - 150 95.2 50 - 150 p-Terphenyl-d14 106

Client Sample ID: GEI-MW-3 (12-13')

Lab Sample ID: 14H0081-DUP2 Matrix: Soil **Prep Type: Total**

Prep Batch: 14H0081_P

_	Sample	Sample	Duplicate	Duplicate			•		RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit	
Gasoline Range Hydrocarbons	5.16		3.27	R4	mg/kg dry	₩		45.0	25	
Diesel Range Hydrocarbons	10.7		16.8	R4	mg/kg dry	₩		44.2	25	
Heavy Oil Range Hydrocarbons	1.65		3.17	R4	mg/kg dry	₽		63.4	25	

Duplicate Duplicate %Recovery Qualifier Surrogate Limits 4-BFB (FID) 98.1 50 - 150 2-FBP 99.9 50 - 150 p-Terphenyl-d14 107 50 - 150

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B

Lab Sample ID: 14H0088-BLK1 Client Sample ID: Method Blank **Matrix: Soil Prep Type: Total** Analysis Batch: 14H0088 Prep Batch: 14H0088_P

Blank Blank Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Arsenic ND 1.25 mg/kg wet 08/18/14 09:11 08/26/14 09:43 1.00 Cadmium ND 0.200 mg/kg wet 08/18/14 09:11 08/26/14 09:43 1.00 Chromium 0.500 08/18/14 09:11 08/26/14 09:43 ND mg/kg wet 1.00 ND Lead 1.25 08/18/14 09:11 08/26/14 09:43 mg/kg wet 1.00

Lab Sample ID: 14H0088-BS1 **Client Sample ID: Lab Control Sample Matrix: Soil Prep Type: Total**

Analysis Batch: 14H0088 Prep Batch: 14H0088_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	50.0	49.5		mg/kg wet	_	99.1	80 - 120	
Cadmium	50.0	48.9		mg/kg wet		97.8	80 - 120	
Chromium	50.0	49.9		mg/kg wet		99.7	80 - 120	
Lead	50.0	50.5		mg/kg wet		101	80 - 120	

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B (Continued)

Lab Sample ID: 14H0088-MS1

Matrix: Soil

Analysis Batch: 14H0088

Client Sample ID: Matrix Spike

Prep Type: Total

Prep Batch: 14H0088_P

	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	3.80		54.2	50.7		mg/kg dry	₩	86.5	75 - 125	
Cadmium	0.160		54.2	48.3		mg/kg dry	₩	88.7	75 - 125	
Chromium	14.4		54.2	63.5		mg/kg dry	₩	90.5	75 - 125	
Lead	5.31		54.2	49.8		mg/kg dry	₩	82.0	75 - 125	

Lab Sample ID: 14H0088-MSD1

Matrix: Soil

Applyeic Patch: 14H0099

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total

Analysis Batch: 14H0088									Prep Batc	n: 14HU	U88_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	3.80		53.7	51.3		mg/kg dry	₩	88.4	75 - 125	1.07	20
Cadmium	0.160		53.7	49.1		mg/kg dry	₩	91.1	75 - 125	1.64	20
Chromium	14.4		53.7	57.3		mg/kg dry	₩	79.9	75 - 125	10.2	20
Lead	5.31		53.7	51.6		mg/kg dry	₽	86.2	75 ₋ 125	3.59	20

Lab Sample ID: 14H0088-DUP1

Matrix: Soil

Analysis Batch: 14H0088

Client Sample ID: Duplicate

Prep Type: Total

Prep Batch: 14H0088_P

	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	3.80		3.07	R4	mg/kg dry	₩	21.1	20
Cadmium	0.160		0.134		mg/kg dry	₩	17.9	20
Chromium	14.4		12.1		mg/kg dry	₩	17.7	20
Lead	5.31		4.84		mg/kg dry	₽	9.09	20

Lab Sample ID: 14H0122-BLK1

Matrix: Soil

Analyte

Analysis Batch: 14H0122

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 14H0122_P

Blank Blank Result Qualifier MDI Unit RΙ Prepared Analyzed Dil Fac

raidiyio	rtoouit	Qualifier		 O.I.I.	_	rioparoa	Analyzou	D uo
Arsenic	ND		1.25	mg/kg wet	_	08/21/14 14:35	08/22/14 11:47	1.00
Cadmium	ND		0.200	mg/kg wet		08/21/14 14:35	08/22/14 11:47	1.00
Chromium	ND		0.500	mg/kg wet		08/21/14 14:35	08/22/14 11:47	1.00
Lead	ND		1.25	mg/kg wet		08/21/14 14:35	08/22/14 11:47	1.00

Lab Sample ID: 14H0122-BS1

Matrix: Soil

Analysis Batch: 14H0122

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 14H0122_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	50.0	48.8		mg/kg wet	_	97.7	80 - 120	
Cadmium	50.0	49.3		mg/kg wet		98.5	80 - 120	
Chromium	50.0	50.1		mg/kg wet		100	80 - 120	
Lead	50.0	48.9		mg/kg wet		97.7	80 - 120	

TestAmerica Job ID: SXH0089

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B (Continued)

Lab Sample ID: 14H0122-MS1

Matrix: Soil

Analysis Batch: 14H0122

Client Sample ID: Duplicate 1

Prep Type: Total

Prep Batch: 14H0122_P

•	Sample	Sample	Spike	Matrix Spike	Matrix Spil	(e			%Rec.	_
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	6.50		50.9	52.5		mg/kg dry	₩	90.5	75 - 125	
Cadmium	0.0964		50.9	47.5		mg/kg dry	₩	93.2	75 - 125	
Chromium	15.2		50.9	61.1		mg/kg dry	₩	90.4	75 - 125	
Lead	1.40		50.9	45.5		mg/kg dry	₩	86.7	75 - 125	

Lab Sample ID: 14H0122-MSD1

Matrix: Soil

Analysis Batch: 14H0122

Client Sample ID: Duplicate 1

Prep Type: Total

Prep Batch: 14H0122 P

Analysis Daten. 14110122									i lep bate	11. 17110	122_1
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	6.50		51.4	54.5		mg/kg dry	₩	93.4	75 - 125	3.56	20
Cadmium	0.0964		51.4	49.4		mg/kg dry	₩	96.0	75 - 125	4.03	20
Chromium	15.2		51.4	63.9		mg/kg dry	₩	94.9	75 - 125	4.48	20
Lead	1.40		51.4	47.2		mg/kg dry	**	89.1	75 - 125	3.62	20

Lab Sample ID: 14H0122-DUP1

Matrix: Soil

Analysis Batch: 14H0122

Client Sample ID: Duplicate 1

Prep Type: Total

Prep Batch: 14H0122_P

	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	6.50		5.70		mg/kg dry	₩		20
Cadmium	0.0964		ND		mg/kg dry	₩		20
Chromium	15.2		15.9		mg/kg dry	₽	4.88	20
Lead	1.40		1.02	R4	mg/kg dry	₩	30.9	20

Lab Sample ID: 14H0160-BLK1

Matrix: Other (S)

Analysis Batch: 14H0160

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 14H0160_P

	Blank B	Blank							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.25		mg/kg wet		08/27/14 13:45	08/28/14 06:51	1.00
Barium	ND		0.500		mg/kg wet		08/27/14 13:45	08/28/14 06:51	1.00
Cadmium	ND		0.200		mg/kg wet		08/27/14 13:45	08/28/14 06:51	1.00
Chromium	ND		0.500		mg/kg wet		08/27/14 13:45	08/28/14 06:51	1.00
Lead	ND		1.25		mg/kg wet		08/27/14 13:45	08/28/14 06:51	1.00
Selenium	ND		2.50		mg/kg wet		08/27/14 13:45	08/28/14 06:51	1.00
Silver	ND		0.500		mg/kg wet		08/27/14 13:45	08/28/14 06:51	1.00

Lab Sample ID: 14H0160-BS1

Matrix: Other (S)

Analysis Batch: 14H0160

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14H0160_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	50.0	49.2		mg/kg wet		98.4	80 - 120	
Barium	50.0	50.5		mg/kg wet		101	80 - 120	
Cadmium	50.0	50.0		mg/kg wet		100	80 - 120	
Chromium	50.0	49.7		mg/kg wet		99.5	80 - 120	
Lead	50.0	49.4		mg/kg wet		98.8	80 - 120	

TestAmerica Spokane

Page 41 of 58

Client Sample ID: GEI-B4 (2-3')

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Lab Sample ID: 14H0160-MS1

Lab Sample ID: 14H0160-MSD1

Silver

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B (Continued)

Lab Sample ID: 14H0160-BS1						Client Sample ID: Lab Control Sample				
Matrix: Other (S)								Pr	ep Type: Total	
	Analysis Batch: 14H0160						Prep Bato	ch: 14H0160_P		
		Spike	LCS	LCS				%Rec.		
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
	Selenium	500	471		mg/kg wet		94.2	80 - 120		
	Silver	50.0	49.6		mg/kg wet		99.1	80 - 120		

Matrix: Other (S) Analysis Batch: 14H0160										ep Type: Tota ch: 14H0160_F
	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	14.3		53.4	67.8		mg/kg dry	\	100	75 - 125	
Barium	277		53.4	349	M1	mg/kg dry	₽	135	75 - 125	
Cadmium	6.78		53.4	58.3		mg/kg dry	₽	96.4	75 - 125	
Chromium	18.4		53.4	68.9		mg/kg dry	\$	94.5	75 - 125	
Lead	865		53.4	1030	M1	mg/kg dry	₽	300	75 - 125	
Selenium	ND		534	478		mg/kg dry	₽	89.6	75 - 125	
Silver	ND		53.4	46.4		mg/kg dry	₩	86.8	75 - 125	

Client Sample ID: GEI-B4 (2-3') Matrix: Other (S) **Prep Type: Total** Analysis Batch: 14H0160 Prep Batch: 14H0160_P Sample Sample Spike ıtrix Spike Dup Matrix Spike Dur %Rec. RPD Result Qualifier Result Qualifier Limit Analyte Added Unit D %Rec Limits RPD ₩ Arsenic 14.3 53.9 66.7 mg/kg dry 97.1 75 - 125 1.72 20 Barium 277 53.9 332 mg/kg dry ₩ 101 75 - 125 5.23 20 ₽ Cadmium 58.3 95.5 6.78 53.9 mg/kg dry 75 - 125 0.039 20 53.9 67.8 20 Chromium 18.4 91.4 75 - 125 1.69 mg/kg dry Lead 865 53.9 895 M2 mg/kg dry ₽ 54.7 75 - 125 13.6 20 Selenium ND 539 486 mg/kg dry 90.1 75 - 125 20 1.52 ₩

45.6

mg/kg dry

84.6

75 - 125

1.66

53.9

ND

Lab Sample ID: 14H0160-DUF Matrix: Other (S)				(Client Sample ID: GEI-B4 (2-3') Prep Type: Total			
Analysis Batch: 14H0160							Prep Batch: 14H0	160_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	14.3		14.2		mg/kg dry	\$	0.475	20
Barium	277		356	R4	mg/kg dry	₽	24.8	20
Cadmium	6.78		6.92		mg/kg dry	₽	2.10	20
Chromium	18.4		24.7	R4	mg/kg dry	\$	29.0	20
Lead	865		870		mg/kg dry	₽	0.552	20
Selenium	ND		ND		mg/kg dry	₽		20
Silver	ND		ND		mg/kg dry	₩		20

Client: Geo Engineers - Spokane

TestAmerica Job ID: SXH0089

Project/Site: 0504-101-01

Method: EPA 7471B - Total Metals by EPA 6010/7000 Series Methods

Lab Sample ID: 14H0162-BLK1 Client Sample ID: Method Blank **Matrix: Soil Prep Type: Total**

Analysis Batch: 14H0162 Prep Batch: 14H0162 P Blank Blank

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed ND 50.0 08/28/14 07:09 Mercury ug/kg wet 08/28/14 14:27

Lab Sample ID: 14H0162-BS1 Client Sample ID: Lab Control Sample **Matrix: Soil Prep Type: Total** Analysis Batch: 14H0162 Prep Batch: 14H0162_P LCS LCS Spike %Rec.

Added Analyte Result Qualifier Unit %Rec Limits Mercury 200 203 ug/kg wet 102 80 - 120 Lab Sample ID: 14H0162-MS1 Client Sample ID: GEI-B4 (2-3')

Matrix: Soil Prep Type: Total Analysis Batch: 14H0162 Prep Batch: 14H0162_P

Matrix Spike Matrix Spike Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 203 230 553 M1 152 80 - 120 Mercury ug/kg dry

Lab Sample ID: 14H0162-MSD1 Client Sample ID: GEI-B4 (2-3') Matrix: Soil **Prep Type: Total**

Analysis Batch: 14H0162 Prep Batch: 14H0162 P Sample Sample Spike Itrix Spike Dup Matrix Spike Dup %Rec. RPD Result Qualifier Added Result Qualifier Limits

Analyte Limit 203 186 396 104 Mercury ug/kg dry 80 120 33.1

Lab Sample ID: 14H0162-DUP1 Client Sample ID: GEI-B4 (2-3') **Matrix: Soil Prep Type: Total**

Mercury

Analysis Batch: 14H0162 Prep Batch: 14H0162_P RPD

Sample Sample **Duplicate Duplicate** Result Qualifier Result Qualifier RPD Limit Analyte Unit 203 R3 ug/kg dry 88.9 Mercury 529

Lab Sample ID: 14H0163-BLK1 Client Sample ID: Method Blank **Matrix: Soil Prep Type: Total**

Analysis Batch: 14H0163 Prep Batch: 14H0163 P Blank Blank

Result Qualifier RL MDL Unit Analyte Prepared Analyzed Dil Fac

08/28/14 07:10 ND 50.0 Mercury ug/kg wet 08/28/14 15:13

Lab Sample ID: 14H0163-BS1 Client Sample ID: Lab Control Sample **Matrix: Soil Prep Type: Total**

Analysis Batch: 14H0163 Prep Batch: 14H0163_P LCS LCS Spike %Rec.

Analyte babbA Result Qualifier Unit %Rec Limits Mercury 200 195 ug/kg wet 97.5 80 - 120

Lab Sample ID: 14H0163-MS1 Client Sample ID: GEI-MW-1 (12.5-13.5')

Matrix: Soil Prep Type: Total

221

22.4

Analysis Batch: 14H0163 Prep Batch: 14H0163_P Spike Matrix Spike Matrix Spike %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

249

TestAmerica Spokane

₩

ug/kg dry

102

80 - 120

QC Sample Results

Client: Geo Engineers - Spokane TestAmerica Job ID: SXH0089 Project/Site: 0504-101-01

Client Sample ID: GEI-MW-1 (12.5-13.5')

Lab Sample ID: 14H0163-MSD1 **Matrix: Soil**

Prep Type: Total Analysis Batch: 14H0163 Prep Batch: 14H0163_P Sample Sample Spike ıtrix Spike Dup Matrix Spike Dur %Rec.

Analyte Result Qualifier Added Result Qualifier Unit Limits RPD Limit %Rec ₩ 248 270 100 80 - 120 20 Mercury 22.4 ug/kg dry 8.08

Lab Sample ID: 14H0163-DUP1 Client Sample ID: GEI-MW-1 (12.5-13.5')

Matrix: Soil Prep Type: Total

Prep Batch: 14H0163_P

Analysis Batch: 14H0163 Sample Sample **Duplicate Duplicate** RPD

Result Qualifier Result Qualifier Limit Analyte Unit D # Mercury 22.4 32.4 ug/kg dry 36.6 40

2/17/2015

Lab Sample ID: SXH0089-02

Matrix: Soil

Percent Solids: 96.1

Client Sample ID: GEI-MW-1 (12.5-13.5')

Date Collected: 08/12/14 14:45 Date Received: 08/14/14 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.17	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 11:14	CBW	TAL SPK
Total	Prep	EPA 3580		0.809	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 13:26	NMI	TAL SPK
Total	Prep	EPA 3550B		0.834	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 16:17	NMI	TAL SPK
Total	Prep	EPA 3550B		1.87	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 17:58	NMI	TAL SPK
Total	Prep	EPA 3580		0.99	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/15/14 21:07	NMI	TAL SPK
Total	Prep	EPA 3050B		0.971	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		2.00	14H0088	08/27/14 17:37	ICP	TAL SPK
Total	Prep	EPA 7471		0.943	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:15	ZZZ	TAL SPK

Client Sample ID: GEI-MW-2 (12-13')

Lab Sample ID: SXH0089-04 Date Collected: 08/13/14 11:10 Matrix: Soil Date Received: 08/14/14 10:00 Percent Solids: 94.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.945	14H0077_P	08/15/14 08:49	CBW	TAL SPI
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 11:37	CBW	TAL SP
Total	Prep	EPA 3580		0.883	14H0079_P	08/15/14 10:04	NI	TAL SPI
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 13:41	NMI	TAL SPI
Total	Prep	EPA 3550B		0.971	14H0093_P	08/19/14 08:36	NI	TAL SPI
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 16:38	NMI	TAL SPI
Total	Prep	EPA 3550B		1.85	14H0115_P	08/21/14 08:39	NI	TAL SPI
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 18:20	NMI	TAL SPI
Total	Prep	EPA 3580		0.80	14H0081_P	08/15/14 11:27	NI	TAL SPI
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/15/14 21:31	NMI	TAL SPI
Total	Prep	EPA 3050B		1.05	14H0088_P	08/18/14 09:11	JSP	TAL SPI
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 15:29	ICP	TAL SP
Total	Prep	EPA 7471		0.862	14H0163_P	08/28/14 07:10	JSP	TAL SP
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:24	ZZZ	TAL SP

Client Sample ID: GEI-MW-3 (12-13')

Date Collected: 08/12/14 08:30 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-06 Matrix: Soil

Percent Solids: 93.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.13	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 11:59	CBW	TAL SPK
Total	Prep	EPA 3580		0.808	14H0079_P	08/15/14 10:04	NI	TAL SPK

Client Sample ID: GEI-MW-3 (12-13')

Lab Sample ID: SXH0089-06

Lab Sample ID: SXH0089-07

Matrix: Soil

Date Collected: 08/12/14 08:30 Date Received: 08/14/14 10:00 Percent Solids: 93.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 13:55	NMI	TAL SPK
Total	Prep	EPA 3550B		0.892	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 17:00	NMI	TAL SPK
Total	Prep	EPA 3550B		1.83	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 18:43	NMI	TAL SPK
Total	Prep	EPA 3580		0.86	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/15/14 21:55	NMI	TAL SPK
Total	Prep	EPA 3050B		1.00	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 15:33	ICP	TAL SPK
Total	Prep	EPA 7471		0.758	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:26	ZZZ	TAL SPK

Client Sample ID: GEI-B1 (2-3')

Date Collected: 08/11/14 15:10 Matrix: Soil Date Received: 08/14/14 10:00 Percent Solids: 84.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.31	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 12:22	CBW	TAL SPK
Total	Prep	EPA 3580		0.990	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		5.00	14H0079	08/15/14 14:09	NMI	TAL SPK
Total	Prep	EPA 3550B		0.925	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		10.0	14H0093	08/20/14 11:49	NMI	TAL SPK
Total	Prep	EPA 3550B		6.15	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		20.0	14H0115	08/21/14 19:05	NMI	TAL SPK
Total	Prep	EPA 3550B		1.65	14H0139_P	08/25/14 13:21	MS	TAL SPK
Total	Analysis	NWTPH-Dx		20.0	14H0139	08/26/14 09:29	NMI	TAL SPK
Total	Prep	EPA 3580		2.5	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/15/14 22:19	NMI	TAL SPK
Total	Prep	EPA 3050B		1.06	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 15:37	ICP	TAL SPK
Total	Prep	EPA 7471		0.943	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:29	ZZZ	TAL SPK

Client Sample ID: GEI-B1 (12-13')

Date Collected: 08/11/14 15:40 Matrix: Soil Date Received: 08/14/14 10:00 Percent Solids: 92.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3550B		0.992	14H0139_P	08/25/14 13:21	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0139	08/25/14 18:41	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14H0147_P	08/25/14 14:30	NI	TAL SPK
Total	Analysis	TA SOP		1.00	14H0147	08/26/14 10:36	NI	TAL SPK

TestAmerica Spokane

Lab Sample ID: SXH0089-08

Page 46 of 58

Client Sample ID: GEI-B2 (13-14')

Date Collected: 08/11/14 12:20 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-10

Matrix: Soil

Percent Solids: 93.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.904	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 12:44	CBW	TAL SPK
Total	Prep	EPA 3580		0.880	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 14:24	NMI	TAL SPK
Total	Prep	EPA 3550B		0.901	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 17:42	NMI	TAL SPK
Total	Prep	EPA 3550B		1.88	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 19:28	NMI	TAL SPK
Total	Prep	EPA 3580		0.95	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/15/14 23:08	NMI	TAL SPK
Total	Prep	EPA 3050B		0.952	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 15:41	ICP	TAL SPK
Total	Prep	EPA 7471		0.746	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:31	ZZZ	TAL SPK

Client Sample ID: GEI-B3 (7-8')

Date Collected: 08/11/14 10:55

Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-12

Percent Solids: 95.9

Matrix: Soil

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.08	14H0077_P	08/15/14 08:49	CBW	TAL SP
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 13:06	CBW	TAL SP
Total	Prep	EPA 3580		0.818	14H0079_P	08/15/14 10:04	NI	TAL SP
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 14:38	NMI	TAL SP
Total	Prep	EPA 3550B		1.00	14H0093_P	08/19/14 08:36	NI	TAL SP
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 18:03	NMI	TAL SP
Total	Prep	EPA 3550B		1.77	14H0115_P	08/21/14 08:39	NI	TAL SP
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 19:50	NMI	TAL SP
Total	Prep	EPA 3580		0.91	14H0081_P	08/15/14 11:27	NI	TAL SP
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/15/14 23:32	NMI	TAL SP
Total	Prep	EPA 3050B		0.943	14H0088_P	08/18/14 09:11	JSP	TAL SP
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 15:45	ICP	TAL SP
Total	Prep	EPA 7471		0.847	14H0163_P	08/28/14 07:10	JSP	TAL SP
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:38	ZZZ	TAL SPI

Client Sample ID: GEI-B4 (2-3')

Date Collected: 08/11/14 16:20

Date Received: 08/14/14 10:00

Lab Sample	ID: SXH0089-13
------------	----------------

Matrix: Soil

Percent Solids: 92.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3050B		0.980	14H0160_P	08/27/14 13:45	JSP	TAL SPK
Total	Analysis	EPA 6010C		2.00	14H0160	08/28/14 08:12	ICP	TAL SPK
Total	Prep	EPA 7471		0.758	14H0162_P	08/28/14 07:09	JSP	TAL SPK

Client Sample ID: GEI-B4 (2-3')

Date Collected: 08/11/14 16:20 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-13

Matrix: Soil Percent Solids: 92.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	EPA 7471B		1.00	14H0162	08/28/14 14:29	ZZZ	TAL SPK
Total	Prep	Wet Chem		1.00	14I0008_P	08/27/14 16:25	NI	TAL SPK
Total	Analysis	TA SOP		1.00	1410008	09/02/14 16:07	NI	TAL SPK

Client Sample ID: GEI-B4 (7-8')

Lab Sample ID: SXH0089-14

Date Collected: 08/11/14 16:10

Date Received: 08/14/14 10:00

Matrix: Soil
Percent Solids: 97.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.16	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 13:29	CBW	TAL SPK
Total	Prep	EPA 3580		0.745	14H0079_P	08/15/14 10:04	NI	TAL SPK
Γotal	Analysis	EPA 8011		1.00	14H0079	08/15/14 15:07	NMI	TAL SPK
Total	Prep	EPA 3550B		0.938	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total .	Analysis	EPA 8082A		1.00	14H0093	08/19/14 18:46	NMI	TAL SP
Γotal	Prep	EPA 3550B		1.86	14H0115_P	08/21/14 08:39	NI	TAL SPK
Γotal	Analysis	EPA 8270D		1.00	14H0115	08/21/14 20:13	NMI	TAL SP
Γotal	Prep	EPA 3580		0.76	14H0081_P	08/15/14 11:27	NI	TAL SPK
Γotal	Analysis	NWTPH-HCID		1.0	14H0081	08/15/14 23:56	NMI	TAL SP
Total	Prep	EPA 3050B		0.943	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Γotal	Analysis	EPA 6010C		1.00	14H0088	08/27/14 15:49	ICP	TAL SP
Γotal	Prep	EPA 7471		0.980	14H0163_P	08/28/14 07:10	JSP	TAL SP
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:40	ZZZ	TAL SP

Client Sample ID: GEI-B5 (2-3')

Date Collected: 08/11/14 10:00

Date Received: 08/14/14 10:00 Percent Solids: 91.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3050B		0.855	14H0160_P	08/27/14 13:45	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0160	08/29/14 11:30	ICP	TAL SPK
Total	Prep	EPA 7471		0.962	14H0162_P	08/28/14 07:09	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0162	08/28/14 14:38	ZZZ	TAL SPK

Client Sample ID: GEI-B5 (7-8')

Date Collected: 08/11/14 10:10

Date Received: 08/14/14 10:00 Percent Solids: 91.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.06	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 13:51	CBW	TAL SPK
Total	Prep	EPA 3580		0.898	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 15:21	NMI	TAL SPK

TestAmerica Spokane

Lab Sample ID: SXH0089-16

Page 48 of 58

4

7

U

9

10

Lab Sample ID: SXH0089-15

Matrix: Soil

Matrix: Soil

Lab Sample ID: SXH0089-16

Matrix: Soil

as campio is can

Percent Solids: 91.8

Client Sample ID: GEI-B5 (7-8')

Date Collected: 08/11/14 10:10 Date Received: 08/14/14 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3550B		0.924	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 19:07	NMI	TAL SPK
Total	Prep	EPA 3550B		0.924	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/20/14 11:07	NMI	TAL SPK
Total	Prep	EPA 3550B		1.97	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 20:35	NMI	TAL SPK
Total	Prep	EPA 3580		0.85	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/16/14 00:20	NMI	TAL SPK
Total	Prep	EPA 3050B		0.885	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		2.00	14H0088	08/27/14 17:41	ICP	TAL SPK
Total	Prep	EPA 7471		0.962	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:42	ZZZ	TAL SPK

Client Sample ID: GEI-B6 (2-3')

Date Collected: 08/11/14 14:05 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-17

Matrix: Soil Percent Solids: 90.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3050B		0.952	14H0160_P	08/27/14 13:45	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0160	08/29/14 11:34	ICP	TAL SPK
Total	Prep	EPA 7471		0.833	14H0162_P	08/28/14 07:09	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0162	08/28/14 14:41	ZZZ	TAL SPK

Client Sample ID: GEI-B6 (13-14')

Date Collected: 08/11/14 14:25 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0089-19

Matrix: Soil

Percent Solids: 95.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.11	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 14:14	CBW	TAL SPK
Total	Prep	EPA 3580		0.885	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 15:36	NMI	TAL SPK
Total	Prep	EPA 3550B		0.981	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 19:28	NMI	TAL SPK
Total	Prep	EPA 3550B		0.981	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/20/14 11:28	NMI	TAL SPK
Total	Prep	EPA 3550B		1.98	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 20:58	NMI	TAL SPK
Total	Prep	EPA 3580		0.91	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/16/14 00:44	NMI	TAL SPK
Total	Prep	EPA 3050B		1.04	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 15:57	ICP	TAL SPK
Total	Prep	EPA 7471		0.820	14H0163 P	08/28/14 07:10	JSP	TAL SPK

Lab Sample ID: SXH0089-19 Matrix: Soil

Percent Solids: 95.3

Client Sample ID: GEI-B6 (13-14') Date Collected: 08/11/14 14:25

Date Received: 08/14/14 10:00

l		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:45	ZZZ	TAL SPK

Client Sample ID: GEI-B7 (13-14') Lab Sample ID: SXH0089-21

Date Collected: 08/11/14 08:45

Matrix: Soil Date Received: 08/14/14 10:00 Percent Solids: 93.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.35	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 14:36	CBW	TAL SPK
Total	Prep	EPA 3580		0.989	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 15:50	NMI	TAL SPK
Total	Prep	EPA 3550B		0.873	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 19:49	NMI	TAL SPK
Total	Prep	EPA 3550B		1.85	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 21:20	NMI	TAL SPK
Total	Prep	EPA 3580		0.97	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/16/14 01:08	NMI	TAL SPK
Total	Prep	EPA 3050B		1.02	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 16:01	ICP	TAL SPK
Total	Prep	EPA 7471		0.962	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:47	ZZZ	TAL SPK

Client Sample ID: GEI-B8 (14-15')

Lab Sample ID: SXH0089-23 Date Collected: 08/11/14 12:15 Matrix: Soil Date Received: 08/14/14 10:00 Percent Solids: 93.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.17	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 14:58	CBW	TAL SPK
Total	Prep	EPA 3580		0.943	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 16:04	NMI	TAL SPK
Total	Prep	EPA 3550B		0.882	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/20/14 12:49	NMI	TAL SPK
Total	Prep	EPA 3550B		1.86	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 21:43	NMI	TAL SPK
Total	Prep	EPA 3580		0.84	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/16/14 01:32	NMI	TAL SPK
Total	Prep	EPA 3050B		0.909	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 16:14	ICP	TAL SPK
Total	Prep	EPA 7471		0.735	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:49	ZZZ	TAL SPK

TestAmerica Job ID: SXH0089

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Client Sample ID: GEI-B9 (13-14')

Date Collected: 08/11/14 14:10 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-25

Lab Sample ID: SXH0089-26

Matrix: Soil

Percent Solids: 96.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.911	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 15:20	CBW	TAL SPK
Total	Prep	EPA 3580		0.890	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 16:19	NMI	TAL SPK
Total	Prep	EPA 3550B		0.976	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 20:32	NMI	TAL SPK
Total	Prep	EPA 3550B		1.79	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 22:05	NMI	TAL SPK
Total	Prep	EPA 3580		0.82	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/16/14 01:56	NMI	TAL SPK
Total	Prep	EPA 3050B		0.971	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/27/14 16:18	ICP	TAL SPK
Total	Prep	EPA 7471		0.943	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:52	ZZZ	TAL SPK

Client Sample ID: Duplicate 1

Date Collected: 08/11/14 08:00

Matrix: Soil Date Received: 08/14/14 10:00 Percent Solids: 96.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.994	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 15:43	CBW	TAL SPK
Total	Prep	EPA 3580		0.826	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 16:33	NMI	TAL SPK
Total	Prep	EPA 3550B		0.864	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 20:53	NMI	TAL SPK
Total	Prep	EPA 3550B		1.93	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 22:27	NMI	TAL SPK
Total	Prep	EPA 3580		0.83	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/16/14 02:20	NMI	TAL SPK
Total	Prep	EPA 3050B		0.962	14H0122_P	08/21/14 14:35	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0122	08/22/14 12:47	ICP	TAL SPK
Total	Prep	EPA 7471		0.877	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:54	ZZZ	TAL SPK
Total	Prep	Wet Chem		1.00	14H0090_P	08/15/14 12:40	NI	TAL SPK
Total	Analysis	TA SOP		1.00	14H0090	08/18/14 10:06	NI	TAL SPK

Client Sample ID: Duplicate 2

Date Collected: 08/11/14 08:00

Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-27	
Matrix: Soil	

Percent Solids: 91.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.28	14H0077_P	08/15/14 08:49	CBW	TAL SPK

Client Sample ID: Duplicate 2

Date Collected: 08/11/14 08:00 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-27

Matrix: Soil

Percent Solids: 91.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 16:05	CBW	TAL SPK
Total	Prep	EPA 3580		0.992	14H0079_P	08/15/14 10:04	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0079	08/15/14 16:47	NMI	TAL SPK
Total	Prep	EPA 3550B		0.814	14H0093_P	08/19/14 08:36	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0093	08/19/14 21:14	NMI	TAL SPK
Total	Prep	EPA 3550B		1.82	14H0115_P	08/21/14 08:39	NI	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0115	08/21/14 22:50	NMI	TAL SPK
Total	Prep	EPA 3580		0.85	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/16/14 02:44	NMI	TAL SPK
Total	Prep	EPA 3050B		1.01	14H0122_P	08/21/14 14:35	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0122	08/27/14 16:22	ICP	TAL SPK
Total	Prep	EPA 7471		0.980	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:56	ZZZ	TAL SPK

Client Sample ID: HWA-MW1-Composite

Date Collected: 08/12/14 14:45 Date Received: 08/14/14 10:00

Lab Sample ID: SXH0089-28

Matrix: Soil Percent Solids: 94

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.01	14H0077_P	08/15/14 08:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0077	08/15/14 16:27	CBW	TAL SPK
Total	Prep	EPA 3580		0.78	14H0081_P	08/15/14 11:27	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0081	08/16/14 03:08	NMI	TAL SPK
Total	Prep	EPA 3050B		0.917	14H0122_P	08/21/14 14:35	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0122	08/27/14 16:25	ICP	TAL SPK
Total	Prep	EPA 7471		0.758	14H0163_P	08/28/14 07:10	JSP	TAL SPK
Total	Analysis	EPA 7471B		1.00	14H0163	08/28/14 15:59	ZZZ	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: Geo Engineers - Spokane

TestAmerica Job ID: SXH0089

Project/Site: 0504-101-01

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

	Authority	Program	EPA Region	Certification ID	Expiration Date
	Alaska (UST)	State Program	10	UST-071	10-31-15
l	Washington	State Program	10	C569	01-06-16

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

TestAmerica Job ID: SXH0089

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Methods 5035/8260C		TAL SPK
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8082A	Polychlorinated Biphenyls by EPA Method 8082		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH-HCID	Hydrocarbon Identification by NWTPH-HCID		TAL SPK
EPA 6010C	Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B		TAL SPK
EPA 7471B	Total Metals by EPA 6010/7000 Series Methods		TAL SPK
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ADDRESS: 323 E. SELENY AVE. , SPOKENE, WA 99202

8/12/14

8/12/14

8 13/14

8/13/14

812/14

SAMPLING

DATE/TIME

1400

1445

1015

1110

0800

DE30

1510

15 40

MTCA MESTALS

X

ҳ

X

ャ

展

ス

X

X

 χ

40

×

V

18

X

X

X

CLIENT: GEOFNGINEEZS

REPORT TO: SCOTT LATTIES

PHONE 54 313 3125 FAX:

PROJECT NAME: TESLIEY BAGN

PROJECT NUMBER: 0504 - 101-61

CLIENT SAMPLE

IDENTIFICATION

GEI-MW1 (12.5-13.5)

GET-MWI

GEI-MWZ

GEI-MW3

6GRI-MW3

GEI-BI

8 GEI-BI

4 GEI-MW2/12-13

SAMPLED BY: AAREN FLEDERIM

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

253-922-2310 FAX 922-5047 509-924-9200 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #5XHMM9 INVOICE TO: TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses Petroleum Hydrocarbon Analyses P.O. NUMBER: 3 2 1 <1 PRESERVATIVE REQUESTED ANALYSES Turnaround Requests less than standard may incur Rush Charges 255 \$756 PCBS PPL LOCATION/ MATRIX # OF TΑ COMMENTS (W, S, O) CONT. WO ID 3 5 HOLD 3 X × HOLD S 3 × X × \times

3 5 1125 8/11/14 HOLD GEL-BZ 8/11/14 1220 X × × Χ 10 GEI-32 DATE: 0,1414 DATE: 9/13/14 RECEIVED BY: FIRM: TestAmerora TIME: 10:00 TIME: 1500 FIRM: GEOTNAINEERS PRINT NAME: DATE: RECEIVED BY: RELEASED BY: TIME: PRINT NAME: PRINT NAME: FIRM: ADDITIONAL REMARKS:

 \sim

ャ

TAL-1000 (0612)

3

3

3

HOLD

HOLD

5

S

5

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

907-563-9200

Work Order #: SXHD099

CHAIN OF CUSTODY REPORT

CLIENT:		. 4				INVOI	E TO:								_		ΓURNA	ROUND REQUEST	
REPORT TO:															÷	L	in	Business Days *	
ADDRESS:																	Organic &	: Inorganic Analyses	
																$\begin{bmatrix} 10 \\ STD. \end{bmatrix}$ 7	5	4 3 2 1	<1
PHONE:	FAX:					P.O. NU	MBER:									_		Hydrocarbon Analyses	-
PROJECT NAME: Teolies	BARN							PRES	ERVATI	VE						5 STD	4	3 2 1 <1	
PROJECT NUMBER: 0504-1	01-0					Ĺ	<u></u>									·			
			<u> </u>	,	1			REQUEST	TED AN	ALYSES						┥ └──		Specify:	
SAMPLED BY: Apron	「CREDER	icy		' '												* Turnaround I	Requests le	ss than standard may incur R	ush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMF DATE		NEW FEE	MTCA	E0#	PAH >	PCBs	105								MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
, GEI-B3(3.5-4.5')	8/11/14	1045														5	3	Hous	
7	8/11/14	1055	χ	א	×	*	×	×								5	3		
3GEI-B4 (2-3')	8/11/14	1620														5	3	HOLD	
/	8/11/14	1610	х	×	×	×_	×						:			5	3		
5GEI-85(2-3')	8/11/14	1000												-		5	3	HOLD	ļ
	8/11/14	1010	X	×	×	*	×	4								5	3		
1.	8/11/14	1405														S	3	HOLD	
&GEI-B6 (7-8')	8/11/14	1410														5	3	HOLD	
«GEI-B6 (7-8') «GEIBG (13-14')	8/11/14	1425	×	*	×	×	×	×								5	3		
	5314	0800						4						i		5	3	Huo	
RELEASED BY:				-			8/13			RECEIVE	, , ,	1	1 11			11		DATE: %	1414
PRINT NAME: AARON FR	EDERUG	FIRM: G.	II.				: 15	<u> </u>		PRINT NA		<u>u L</u>	Staplel	ch.		FIRM	18514	MUNTA TIME: 11	200 <u> </u>
RELEASED BY:	•					DATE				RECEIVE			•			FIRM		DATE: TIME:	
PRINT NAME: ADDITIONAL REMARKS:		FIRM:				TIME				FRIINI NA	TATE:					FIRM		TEMP:	
ADDITIONAL REWARDS.																		46 PAGE	ZOF 3

TAL-1000 (0612)

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-

CHAIN OF CUSTODY REPORT Work Order #: XHM CLIENT: INVOICE TO: TURNAROUND REQUEST in Business Days * REPORT TO: ADDRESS: Organic & Inorganic Analyses P.O. NUMBER: PHONE: 3 2 1 <1 PROJECT NAME: -PRESERVATIVE PROJECT NUMBER: 0504-101-01 REQUESTED ANALYSES AARON FREDERICY Turnaround Requests less than standard may incur Rush Charges METAY 10Cs 8768 PCB. EOS 100 MATRIX LOCATION/ CLIENT SAMPLE SAMPLING DATE/TIME (W, S, O) CONT. COMMENTS WOD IDENTIFICATION S 3 8/13/14 0845 X X 1140 HOW 8/12/14 5 8/12/14 1215 7 × X HOLD 8/13/14 8 13/14 X X × X X X 8/11/14 0800 X DUPLICATE λ ፞ ኢ X と 8/12/14 DUPLICATE 2 **6800** ď X \sim X 8/13/14 HWA-MWI-COMPOSITE X 0900 X Χ DATE: 8/13/14 RECEIVED BY: TIME: PRINT NAME: TIME: RECEIVED BY: RELEASED BY: PRINT NAME: TIME: PRINT NAME: FIRM: ADDITIONAL REMARKS:

TAL-1000 (0612)

TestAmerica Spokane Sample Receipt Form

Work Order #SXH0689 cii	ient:GPOENOIN	eers			Project: Trolley	Barn
Date/Time Received: 8-14-14.	, J	ву:(\$				
Samples Delivered By: Shipping Service	_Courier _Client	Other				
List Air Bill Number(s) or Attach a photocopy of	f the Air Bill:		y - 1.0 1.00 1			
Receipt Phase		Yes	No	NA	Comm	ients
Were samples received in a cooler:		χ				
Custody Seals are present and intact:		,		Х		
Are CoC documents present;		χ				
Necessary signatures:		X				
Thermal Preservation Type: Blue Ice G	Gelice MRealice	□Dry Ice	□None	Other:		,
Temperature: 4:4 °C Thermometer (0	Circle one Serial #122	2208348 Ke	eyring IR	Serial # 11	1874910 IR Gun 2)(acc	ceptance criteria 0-6
Temperature out of range: Not enough ice	☐lce melted ☐w	//in 4hrs of	collection	□NA □	Other:	
Log-in Phase Date/Time: 9444 11723 By	: <i>(</i> %)	Yes	Νo	NA	Comm	ents
Are sample labels affixed and completed for ea	ach container	X				
Samples containers were received intact:		X				
Do sample IDs match the CoC		Х				
Appropriate sample containers were received for	or tests requested	×				
Are sample volumes adequate for tests request	ted	入	·-··		· · · · ·	
Appropriate preservatives were used for the tes	sts requested	×				
pH of inorganic samples checked and is within	method specification	X				, , ,
Are VOC samples free of bubbles >6mm (1/4"	diameter)			入		
Are dissolved parameters field filtered				_><_		
Do any samples need to be filtered or preserve	d by the lab			<i>P</i> _		
Does this project require quick turnaround analy	ysis		$-\frac{\lambda}{2}$			
Are there any short hold time tests (see chart b			_>_			
Are any samples within 2 days of or past expira	ition	\				
Was the CoC scanned		~	<u> </u>			
Were there Non-conformance issues at login			-	9		
If yes, was a CAR generated #						

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXH0092

Client Project/Site: 0504-101-01

Client Project Description: Trolley Barn

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Scott Lathen

dancue timington

Authorized for release by: 8/28/2014 4:49:49 PM

Randee Arrington, Project Manager (509)924-9200

Randee.Arrington@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: SXH0092

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	7
Chronicle	13
Certification Summary	14
Method Summary	15
Chain of Custody	16

3

4

5

7

8

9

1

Sample Summary

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

TestAmerica Job ID: SXH0092

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SXH0092-01	B8-081214	Water	08/12/14 13:00	08/14/14 10:00

3

5

6

R

Q

Definitions/Glossary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01 TestAmerica Job ID: SXH0092

300 ID. 3XI 10032

Qualifiers

Semivolatiles

RL7 Sample required dilution due to high concentrations of target analyte.

Fuels

Qualifier Qualifier Description

Q9 Hydrocarbon pattern most closely resembles weathered diesel.

Q7 The heavy oil range organics present are due to hydrocarbons eluting primarily in the diesel range.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: B8-081214

Date Collected: 08/12/14 13:00 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0092-01

Matrix: Water

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.5	500		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
Benzene	0.350		0.2	200		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
Toluene	0.570		0.5	500		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
Ethylbenzene	ND		0.5	500		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
m,p-Xylene	ND		0.5	500		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
o-Xylene	ND		0.5	500		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
1,2-Dichloroethane (EDC)	ND		0.5	500		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
Xylenes (total)	ND		1	1.50		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
Surrogate	%Recovery	Qualifier	Limits	;				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		71.2 - 14	13				08/18/14 07:34	08/18/14 12:01	1.00
1,2-dichloroethane-d4	96.7		70 - 14	10				08/18/14 07:34	08/18/14 12:01	1.00
Toluene-d8	101		74.1 - 13	35				08/18/14 07:34	08/18/14 12:01	1.00
4-bromofluorobenzene	114		68.7 - 14	1 1				08/18/14 07:34	08/18/14 12:01	1.00

Method: NWTPH-Gx - Gasoline	Hydrocarbons I	by NWTPH	-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	1200		100		ug/L		08/18/14 07:34	08/18/14 12:01	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	114		68.7 - 141				08/18/14 07:34	08/18/14 12:01	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.195		ug/L		08/26/14 13:42	08/26/14 17:37	1.00
PCB-1221	ND		0.195		ug/L		08/26/14 13:42	08/26/14 17:37	1.00
PCB-1232	ND		0.195		ug/L		08/26/14 13:42	08/26/14 17:37	1.00
PCB-1242	ND		0.195		ug/L		08/26/14 13:42	08/26/14 17:37	1.00
PCB-1248	ND		0.195		ug/L		08/26/14 13:42	08/26/14 17:37	1.00
PCB-1254	ND		0.195		ug/L		08/26/14 13:42	08/26/14 17:37	1.00
PCB-1260	ND		0.195		ug/L		08/26/14 13:42	08/26/14 17:37	1.00
PCB-1268	ND		0.195		ug/L		08/26/14 13:42	08/26/14 17:37	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	59.2		4.19 - 156				08/26/14 13:42	08/26/14 17:37	1.00
Decachlorobiphenyl	56.6		15.7 - 106				08/26/14 13:42	08/26/14 17:37	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	14.5		0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
2-Methylnaphthalene	0.350		0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
1-Methylnaphthalene	29.1		0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Acenaphthylene	0.778		0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Acenaphthene	0.642		0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Fluorene	0.447		0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Phenanthrene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Anthracene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Fluoranthene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Pyrene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Benzo (a) anthracene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Chrysene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00

Project/Site. 0504-101-01

Client Sample ID: B8-081214

Date Collected: 08/12/14 13:00 Date Received: 08/14/14 10:00 Lab Sample ID: SXH0092-01

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo (b) fluoranthene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Benzo (k) fluoranthene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Benzo (a) pyrene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Indeno (1,2,3-cd) pyrene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Dibenzo (a,h) anthracene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Benzo (ghi) perylene	ND	RL7	0.195		ug/L		08/15/14 13:17	08/15/14 17:35	2.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	114		32.7 - 135				08/15/14 13:17	08/15/14 17:35	2.00
2-FBP	79.4		44.3 - 120				08/15/14 13:17	08/15/14 17:35	2.00
p-Terphenyl-d14	102		59.5 - 154				08/15/14 13:17	08/15/14 17:35	2.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	20.9	Q9	0.259		mg/L		08/20/14 08:33	08/20/14 14:33	1.00
Heavy Oil Range Hydrocarbons	0.766	Q7	0.432		mg/L		08/20/14 08:33	08/20/14 14:33	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl			50 - 150				08/20/14 08:33	08/20/14 14:33	1.00
n-Triacontane-d62	105		50 ₋ 150				08/20/14 08:33	08/20/14 14:33	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		0.62		mg/L		08/20/14 10:07	08/21/14 10:52	1.0
Diesel Range Hydrocarbons	18		0.62		mg/L		08/20/14 10:07	08/21/14 10:52	1.0
Heavy Oil Range Hydrocarbons	1.0		0.62		mg/L		08/20/14 10:07	08/21/14 10:52	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	92.7		50 - 150				08/20/14 10:07	08/21/14 10:52	1.0
2-FBP	107		50 ₋ 150				08/20/14 10:07	08/21/14 10:52	1.0
			50 ₋ 150				08/20/14 10:07	08/21/14 10:52	1.0

Method: EPA 200.7 - Total Metals by EPA 200 Series Methods											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Arsenic	ND		0.0200		mg/L		08/18/14 09:35	08/27/14 20:18	1.00		
Cadmium	ND		0.00400		mg/L		08/18/14 09:35	08/27/14 20:18	1.00		
Chromium	0.0368		0.00800		mg/L		08/18/14 09:35	08/27/14 20:18	1.00		
Lead	0.0277		0.0140		mg/L		08/18/14 09:35	08/21/14 14:03	1.00		

Method: EPA 245.1 - Total Metals by EPA 200 Series Methods											
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac				
Mercury	ND	0.200	ug/L		08/21/14 08:45	08/21/14 15:04	1.00				

2

TestAmerica Job ID: SXH0092

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Rlank Rlank

Lab Sample ID: 14H0084-BLK1

Matrix: Water

Analysis Batch: 14H0084

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 14H0084_P

	Біапк	ыапк							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.500		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
Benzene	ND		0.200		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
Toluene	ND		0.500		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
Ethylbenzene	ND		0.500		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
m,p-Xylene	ND		0.500		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
o-Xylene	ND		0.500		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
Naphthalene	ND		2.00		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
1,2-Dichloroethane (EDC)	ND		0.500		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
1,2-Dibromoethane	ND		1.00		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
Xylenes (total)	ND		1.50		ug/L		08/18/14 07:34	08/18/14 10:08	1.00
Hexane	ND		1.00		ug/L		08/18/14 07:34	08/18/14 10:08	1.00

Blank Blank

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
Dibromofluoromethane	101		71.2 - 143	08/18/14	1 07:34	08/18/14 10:08	1.00
1,2-dichloroethane-d4	103		70 - 140	08/18/14	1 07:34	08/18/14 10:08	1.00
Toluene-d8	101		74.1 - 135	08/18/14	1 07:34	08/18/14 10:08	1.00
4-bromofluorobenzene	102		68.7 - 141	08/18/14	1 07:34	08/18/14 10:08	1.00

Lab Sample ID: 14H0084-BS1

Matrix: Water

Analysis Batch: 14H0084

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 14H0084_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	10.0	11.2		ug/L		112	80 - 128	
Benzene	10.0	10.4		ug/L		104	80 - 122	
Toluene	10.0	11.0		ug/L		110	80 - 123	
Ethylbenzene	10.0	10.6		ug/L		106	80 - 120	
m,p-Xylene	10.0	10.8		ug/L		108	80 - 120	
o-Xylene	10.0	11.2		ug/L		112	80 - 120	
Naphthalene	10.0	9.86		ug/L		98.6	62.8 - 132	
Xylenes (total)	20.0	21.9		ug/L		110	80 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	103	-	71.2 - 143
1,2-dichloroethane-d4	107		70 - 140
Toluene-d8	101		74.1 - 135
4-bromofluorobenzene	99.5		68.7 - 141

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 14H0084-BLK1

Matrix: Water

Analysis Batch: 14H0084

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14H0084_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		08/18/14 07:34	08/18/14 10:08	1.00

TestAmerica Spokane

Page 7 of 17

TestAmerica Job ID: SXH0092

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx (Continued)

Lab Sample ID: 14H0084-BLK1

Lab Sample ID: 14H0084-BS2

Analysis Batch: 14H0084

Matrix: Water

Matrix: Water

Analysis Batch: 14H0084

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14H0084 P

Blank Blank

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 68.7 - 141 08/18/14 07:34 08/18/14 10:08 4-bromofluorobenzene 102 1.00

LCS LCS

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total

Prep Batch: 14H0084_P

Spike Added Limits Analyte Result Qualifier Unit D %Rec Gasoline Range Hydrocarbons 1000 904 ug/L 90.4 80 - 120

LCS LCS

%Recovery Qualifier Limits Surrogate 99.0 68.7 - 141 4-bromofluorobenzene

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082

Lab Sample ID: 14H0149-BLK1

Matrix: Water

Analysis Batch: 14H0149

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14H0149_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.200		ug/L		08/26/14 13:42	08/26/14 16:34	1.00
PCB-1221	ND		0.200		ug/L		08/26/14 13:42	08/26/14 16:34	1.00
PCB-1232	ND		0.200		ug/L		08/26/14 13:42	08/26/14 16:34	1.00
PCB-1242	ND		0.200		ug/L		08/26/14 13:42	08/26/14 16:34	1.00
PCB-1248	ND		0.200		ug/L		08/26/14 13:42	08/26/14 16:34	1.00
PCB-1254	ND		0.200		ug/L		08/26/14 13:42	08/26/14 16:34	1.00
PCB-1260	ND		0.200		ug/L		08/26/14 13:42	08/26/14 16:34	1.00
PCB-1268	ND		0.200		ug/L		08/26/14 13:42	08/26/14 16:34	1.00

Blank Blank Qualifier %Recovery Dil Fac Surrogate Limits Prepared Analyzed TCX 4.19 _ 156 71.6 1.00 08/26/14 13:42 Decachlorobiphenyl 94.7 15.7 - 106 08/26/14 16:34 1.00

Lab Sample ID: 14H0149-BS1

Matrix: Water

Analysis Batch: 14H0149

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 14H0149_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	0.200	0.235		ug/L	_	118	23.1 - 140	
PCB-1260	0.200	0.216		ug/L		108	21.9 - 139	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
TCX	83.7		4.19 - 156
Decachlorobiphenyl	101		15.7 - 106

2

TestAmerica Job ID: SXH0092

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082 (Continued)

Lab Sample ID: 14H0149-MS1

Matrix: Water

Analysis Batch: 14H0149

Client Sample ID: B8-081214

Prep Type: Total

Prep Batch: 14H0149_P

	Sample	Sample	Spike	Matrix Spike	Matrix Spik	е			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		0.200	0.166		ug/L		83.0	50 - 150	
PCB-1260	ND		0.200	0.142		ug/L		71.3	50 - 150	

 Surrogate
 Matrix Spike %Recovery
 Matrix Spike Qualifier
 Limits

 TCX
 66.4
 4.19 - 156

 Decachlorobiphenyl
 55.9
 15.7 - 106

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 14H0082-BLK1

Matrix: Water

Analysis Batch: 14H0082

Client Sample ID: Method Blank
Prep Type: Total
Prep Batch: 14H0082

Prep Batch: 14H0082

				d Analyzad	5
MDL	Unit	D	Prepared	Analyzed	Dil Fac
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	ug/L		08/15/14 13:17	08/15/14 16:50	1.00
	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L ug/L 08/15/14 13:17	ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50 ug/L 08/15/14 13:17 08/15/14 16:50

Blank Blank Dil Fac %Recovery Qualifier Limits Surrogate Prepared Analyzed 87.6 32.7 - 135 08/15/14 13:17 08/15/14 16:50 1.00 Nitrobenzene-d5 2-FBP 44.3 - 120 08/15/14 13:17 08/15/14 16:50 83.0 1.00 p-Terphenyl-d14 146 59.5 - 154 08/15/14 13:17 08/15/14 16:50

Lab Sample ID: 14H0082-BS1 Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total Analysis Batch: 14H0082 Prep Batch: 14H0082_P

-	Spike	LCS	LCS				%Rec.	_
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	4.00	2.64	-	ug/L		66.0	27.8 - 143	
Fluorene	4.00	2.80		ug/L		70.0	59.2 - 120	
Chrysene	4.00	3.76		ug/L		94.0	69.1 _ 122	
Indeno (1,2,3-cd) pyrene	4.00	3.72		ug/L		93.0	56.1 ₋ 135	

TestAmerica Spokane

Page 9 of 17

8/28/2014

3

4

6

9

1

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 14H0082-BS1

Matrix: Water

Analysis Batch: 14H0082

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14H0082_P

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	73.8		32.7 - 135
2-FBP	73.6		44.3 - 120
p-Terphenyl-d14	111		59.5 - 154

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Lab Sample ID: 14H0100-BLK1

Matrix: Water

Analysis Batch: 14H0100

Diamir Diamir

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 14H0100_P

	Blank	Blank						
Analyte	Result	Qualifier	RL	MDL Un	nit C	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.240	mį	g/L	08/20/14 08:33	08/20/14 13:42	1.00
Heavy Oil Range Hydrocarbons	ND		0.400	mį	g/L	08/20/14 08:33	08/20/14 13:42	1.00
	Blank	Blank						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	107		50 - 150	08/20/14 08:33	08/20/14 13:42	1.00
n-Triacontane-d62	97.0		50 - 150	08/20/14 08:33	08/20/14 13:42	1.00

Lab Sample ID: 14H0100-BS1

Matrix: Water

Analysis Batch: 14H0100

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 14H0100_P

 Spike
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result Diesel Range Hydrocarbons
 Qualifier Mg/L
 Unit Mg/L
 D MRec MRec Limits

 81.2
 50 - 150

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	106		50 - 150
n-Triacontane-d62	94.2		50 - 150

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

Lab Sample ID: 14H0106-BLK1

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total

Analysis Batch: 14H0106

	Blank Blank						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND ND	0.63	mg/L		08/20/14 10:07	08/21/14 10:27	1.00
Diesel Range Hydrocarbons	ND	0.63	mg/L		08/20/14 10:07	08/21/14 10:27	1.00
Heavy Oil Range Hydrocarbons	ND	0.63	mg/L		08/20/14 10:07	08/21/14 10:27	1.00

Heavy Oil Range Hydrocarbons	ND	0.63	mg/L	08/20/14 10:07	08/21/14 10:27	1.00
	Blank Blank					
Surrogate	%Recovery Qualifier	r Limits		Prepared	Analyzed	Dil Fac
4-BFB (FID)	83.4	50 - 150		08/20/14 10:07	08/21/14 10:27	1.00
2-FBP	96.1	50 - 150		08/20/14 10:07	08/21/14 10:27	1.00
p-Terphenyl-d14	113	50 ₋ 150		08/20/14 10:07	08/21/14 10:27	1.00

TestAmerica Spokane

Prep Batch: 14H0106_P

TestAmerica Job ID: SXH0092

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 200.7 - Total Metals by EPA 200 Series Methods

Lab Sample ID: 14H0089-BLK1

Matrix: Water

Analysis Batch: 14H0089

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14H0089_P

, ,	Blank	Blank							_
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0200		mg/L		08/18/14 09:35	08/19/14 09:53	1.00
Cadmium	ND		0.00400		mg/L		08/18/14 09:35	08/19/14 09:53	1.00
Chromium	ND		0.00800		mg/L		08/18/14 09:35	08/19/14 09:53	1.00
Lead	ND		0.0140		mg/L		08/18/14 09:35	08/19/14 09:53	1.00

Lab Sample ID: 14H0089-BS1 **Client Sample ID: Lab Control Sample Prep Type: Total**

Matrix: Water

Analysis Batch: 14H0089 Prep Batch: 14H0089_P

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D %	Rec	Limits	
Arsenic	1.00	0.998	mg/L		99.8	85 - 115	
Cadmium	1.00	0.993	mg/L		99.3	85 - 115	
Chromium	1.00	1.02	mg/L		102	85 - 115	
Lead	1.00	0.992	mg/L		99.2	85 ₋ 115	

Lab Sample ID: 14H0089-MS1 Client Sample ID: Matrix Spike **Prep Type: Total**

Matrix: Water

Analysis Batch: 14H0089 Prep Batch: 14H0089_P

	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		1.00	1.04		mg/L		104	70 - 130	
Cadmium	0.00334		1.00	1.02		mg/L		101	70 - 130	
Chromium	ND		1.00	0.989		mg/L		98.9	75 - 125	
Lead	ND		1.00	0.937		mg/L		93.7	70 - 130	

Lab Sample ID: 14H0089-MSD1 Client Sample ID: Matrix Spike Duplicate **Prep Type: Total**

Matrix: Water

Lead

Analysis Batch: 14H0089 Prep Batch: 14H0089_P Sample Sample Spike Itrix Spike Dup Matrix Spike Dup %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D Limits RPD Limit %Rec ND 1.00 Arsenic 1.07 107 70 - 130 mg/L 3.39 20 Cadmium 0.00334 1.00 1.02 101 70 - 130 mg/L 0.015 20 6 Chromium ND 1.00 0.993 mg/L 99.3 75 - 125 0.360 20

Lab Sample ID: 14H0089-DUP1 Client Sample ID: Duplicate **Matrix: Water**

0.969

mg/L

96.9

70 - 130

1.00

Analysis Batch: 14H0089 Samnle Samnle Dunlicate Dunlicate

ND

	Sample	Sample	Duplicate	Duplicate					KFD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RP	D	Limit
Arsenic	ND		ND		mg/L				20
Cadmium	0.00334		0.00288		mg/L		15.	1	20
Chromium	ND		ND		mg/L				20
Lead	ND		ND		mg/L				20

TestAmerica Spokane

20

Prep Type: Total

3.43

Prep Batch: 14H0089_P

Client: Geo Engineers - Spokane

TestAmerica Job ID: SXH0092

Project/Site: 0504-101-01

Method: EPA 245.1 - Total Metals by EPA 200 Series Methods

Lab Sample ID: 14H0116-BLK1	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total
Analysis Batch: 14H0116	Prep Batch: 14H0116_P

Blank Blank

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND ND	0.200	ug/L		08/21/14 08:45	08/21/14 14:32	1.00

Lab Sample ID: 14H0116-BS1 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total** Prep Batch: 14H0116_P Analysis Batch: 14H0116 LCS LCS %Rec. Spike Limits Analyte Added Result Qualifier Unit %Rec Mercury 2.00 1.85 ug/L 92.5 85 - 115

Lab Sample ID: 14H0116-MS1 Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Total** Analysis Batch: 14H0116 Prep Batch: 14H0116_P Sample Sample Spike Matrix Spike Matrix Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Mercury ND 2.00 2.20 110 70 - 130 ug/L

Lab Sample ID: 14H0116-MSD1 Client Sample ID: Matrix Spike Duplicate **Matrix: Water Prep Type: Total** Analysis Batch: 14H0116 Prep Batch: 14H0116 P Spike ıtrix Spike Dup Matrix Spike Dur RPD Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Limits Limit %Rec ND 2.00 2.35 Mercury ug/L 118 70 - 130 6.59 18.2

Lab Sample ID: 14H0116-DUP1 **Client Sample ID: Duplicate Matrix: Water Prep Type: Total** Analysis Batch: 14H0116 Prep Batch: 14H0116_P Sample Sample **Duplicate Duplicate** RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit Mercury ND ND ug/L 17.1

Lab Chronicle

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

TestAmerica Job ID: SXH0092

Lab Sample ID: SXH0092-01

Matrix: Water

Client Sample ID: B8-081214 Date Collected: 08/12/14 13:00

Date Received: 08/14/14 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14H0084_P	08/18/14 07:34	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0084	08/18/14 12:01	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14H0084_P	08/18/14 07:34	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0084	08/18/14 12:01	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		1.95	14H0149_P	08/26/14 13:42	NI	TAL SPK
Total	Analysis	EPA 8082A		1.00	14H0149	08/26/14 17:37	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.973	14H0082_P	08/15/14 13:17	MS	TAL SPK
Total	Analysis	EPA 8270D		2.00	14H0082	08/15/14 17:35	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series	RE1	1.08	14H0100_P	08/20/14 08:33	NI	TAL SPK
Total	Analysis	NWTPH-Dx	RE1	1.00	14H0100	08/20/14 14:33	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.98	14H0106_P	08/20/14 10:07	NI	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14H0106	08/21/14 10:52	NMI	TAL SPK
Total	Prep	EPA 3005A		1.00	14H0089_P	08/18/14 09:35	JSP	TAL SPK
Total	Analysis	EPA 200.7		1.00	14H0089	08/21/14 14:03	ICP	TAL SPK
Total	Prep	EPA 3005A		1.00	14H0089_P	08/18/14 09:35	JSP	TAL SPK
Total	Analysis	EPA 200.7		1.00	14H0089	08/27/14 20:18	ICP	TAL SPK
Total	Prep	EPA 200 Series		1.00	14H0116_P	08/21/14 08:45	JSP	TAL SPK
Total	Analysis	EPA 245.1		1.00	14H0116	08/21/14 15:04	ZZZ	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

G

9

Certification Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01 TestAmerica Job ID: SXH0092

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

2

_

4

O

0

_

Method Summary

Client: Geo Engineers - Spokane

TestAmerica Job ID: SXH0092 Project/Site: 0504-101-01

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8082A	Polychlorinated Biphenyls by EPA Method 8082		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH-HCID	Hydrocarbon Identification by NWTPH-HCID		TAL SPK
EPA 200.7	Total Metals by EPA 200 Series Methods		TAL SPK
EPA 245.1	Total Metals by EPA 200 Series Methods		TAL SPK

Protocol References:

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317
11922 E. First Ave., Spokane WA 99206-5302
9405 SW Nimbus Ave., Beaverton, OR 97008-7145
2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

503-906-9200
FAX 906-9210
FAX 563-9210

DATE: \$1314 RECEIVED BY: FIRM: CLET TIME: / SOS FRINT NAME: FIRM: FIRM: CLET TIME: / SOS FRINT NAME: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FIRM: FRINT NAME: FRI						(CHAIN	OF	CUS1	CODY	REP	ORT				Worl	k Oı	rder#:	SXHOO	192	
PRINT IS SECRET AS AS SECRET AS SECRET AS SECRET AS AS A SECRET AS	CLIENT: GEOENGINE	eas					INVOI	CE TO:				-,									
DON NUMBER DON	REPORT TO: SCOTT LAN	HEN																in	Business Days *		
RODE SON SHOWN SHO	ADDRESS: 523 E. SECO:	rd Alt. Speinan	ne, was 9920	3T																	. —
REASED FF. AMAY FREDERING REASED FF. AMAY FREDRING REASED FF. AMAY																10			4 3	2 1	<1
REASED BY: ARROW TREEDERALY DATE: 100 CET TOWNSER: 0 SOCI-101-01 REQUESTED ANALYSIS OTHER Specify: The recommend Requests from the Charges MATRIX SAMPLES OF LOCATION WO ID RECOMMENTS WO ID RECOMMENT WO ID RECOMMENTS WO I	PHONE: 509-363-3127	FAX:					P.O. NU	MBER:									_	Petroleum	Hydrocarbon Ar	nalyses	1
REASED BY: ARROW TREEDERALY DATE: 100 CET TOWNSER: 0 SOCI-101-01 REQUESTED ANALYSIS OTHER Specify: The recommend Requests from the Charges MATRIX SAMPLES OF LOCATION WO ID RECOMMENTS WO ID RECOMMENT WO ID RECOMMENTS WO I	PROJECT NAME: Training	BARN					1	1	PR	ESERVA:	TVE		1		1 1		STD	الاا	3 2	1 <1	ļ
AMPLED BY: Arter's frequency from social may incur flush Charges CLIENT SAMPLED DATE TIME CLIENT SAMPLED SAMPLING DATE TIME FINANCE	PROJECT NUMBER: 0504	-101-01				ļ	1	1					<u> </u>								
CLIENT SAMPLE DATECTION SAMPLING DATECTION STATE STATE SAMPLING DATECTION STATE S	CAMPLED DV. AAAAA	a = n = area		-	T	T	1	1	REQUE	STED AL	NALYSES	1			1	* Turnor				an inaa Pu	iah Chanasa
BES-081214 SINTH 1300 X X X X X X X X X X X X X X X X X X				┥ᡓ	-		F 2	~ @		7 3											1
ELEASED BY: AMAGE TASSPERIUM FIRME CET TIME: / SOO FRONT NAME FIRME CET				E X	Norte PX	Ž	12 H	47.8	7C8	A TTC											
ELEASED BY: Annow Faredram FIRM: GET TIME: /Soo PRINT NAME: FIRM: FIRM: FIRM: TIME: DATE: B/U// PRINT NAME: FIRM: FIRM: TIME: DATE: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: B8-081214	8/12/14	1300	X	X	x	X	X	x	×						W)	10				
ELEASED BY: Annow Faredram FIRM: GET TIME: /Soo PRINT NAME: FIRM: FIRM: FIRM: FIRM: TIME: DATE: B/1// PRINT NAME: FIRM: FIRM: TIME: PRINT NAME: FIRM: FIRM: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME:																				Ì	
ELEASED BY: Annow Faredram FIRM: GET TIME: /Soo PRINT NAME: FIRM: FIRM: FIRM: TIME: DATE: B/U// PRINT NAME: FIRM: FIRM: TIME: DATE: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME:		1		+	<u> </u>		<u> </u>	<u> </u>	-									:			
ELEASED BY: Annow Faredram FIRM: GET TIME: /Soo PRINT NAME: FIRM: FIRM: FIRM: TIME: DATE: B/U// PRINT NAME: FIRM: FIRM: TIME: DATE: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME:																					
ELEASED BY: Annow Faredram FIRM: GET TIME: /Soo PRINT NAME: FIRM: FIRM: FIRM: FIRM: TIME: DATE: B/1// PRINT NAME: FIRM: FIRM: TIME: PRINT NAME: FIRM: FIRM: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME:										·									ļ		
ELEASED BY: Annow Faredram FIRM: GET TIME: /Soo PRINT NAME: FIRM: FIRM: FIRM: FIRM: TIME: DATE: B/1// PRINT NAME: FIRM: FIRM: TIME: PRINT NAME: FIRM: FIRM: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: 4		-	-	+			 		 												
ELEASED BY: Annow Faredram FIRM: GET TIME: /Soo PRINT NAME: FIRM: FIRM: FIRM: FIRM: TIME: DATE: B/1// PRINT NAME: FIRM: FIRM: TIME: PRINT NAME: FIRM: FIRM: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: 5		1					}												1	1	
ELEASED BY: RECEIVED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF																					
ELEASED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF	6					 		ļ						-							
ELEASED BY: RECEIVED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF	7		1																		
ELEASED BY: RECEIVED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF		·	i			ļ -															
ELEASED BY: RECEIVED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF	8			1				ļ <u>.</u>		ļ			ļ	1	<u> </u>						-
ELEASED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF			1																		
ELEASED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF			1	 	+									-	 						
ELEASED BY: RECEIVED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF	10		_ [<u> </u>	<u> </u>		<u>L, </u>			<u> </u>	L	_م_ا	1							6.2.2.1
ELEASED BY: RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TEMP: PAGE OF		DERIM	<i>^</i>					8/13	114		RECEIVE	DBY	- 1	anlit	<u></u>		_	-a-11	1	DATE:	班
RINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME: DDITIONAL REMARKS: PAGE OF	PRINT NAME		FIRM:	سقر					26				<i>لاك ب</i>	win	<u> </u>		FIRM:	16311			
DDITIONAL REMARKS: TEMP: PAGE OF	, r		FIRM:														FIRM:			-	
TAL-1000 (0612	ADDITIONAL REMARKS:										<u> </u>								111		
		····											• ***						14.1		

1

 ∞

.l . o

ယ

__

TestAmerica Spokane Sample Receipt Form

Work Order #SXH0092 Client: GROSTING	eevs			Project: Trolley	Barn
Date/Time Received: 81444 10:00	By: CS)			
Samples Delivered By: _\Shipping Service _\Courier _\Clier	ıt ∐Othe	". 			
List Air Bill Number(s) or Attach a photocopy of the Air Bill:		*p-3/			
Receipt Phase	Yes	No	NA.	Commen	ts
Were samples received in a cooler:	ديلا				
Custody Seals are present and intact:					
Are CoC documents present:	<u> </u>				
Necessary signatures:					
Thermal Preservation Type: Blue Ice Gel Ice Real Ice	Dry Ice	□None	_Other:_		
Temperature:°C Thermometer (Circle one Serial #12	22208348 K	eyring IR	Serial # 11	1874910 IR Gun 2)(accep	tance criteria 0-6
	w/in 4hrs of	collection	□NA [Other:	
Log-in Phase Date/Time: 9/4-14 (2:00 By: (*)	Yes	No	NA	Commen	ls
Are sample labels affixed and completed for each container	Х				
Samples containers were received intact:	文				
Do sample IDs match the CoC	<u>\</u>				
Appropriate sample containers were received for tests requested	×				
Are sample volumes adequate for tests requested	×				
Appropriate preservatives were used for the tests requested	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				
pH of inorganic samples checked and is within method specification	, p				
Are VOC samples free of bubbles >6mm (1/4" diameter)	,		\nearrow		
Are dissolved parameters field filtered			$\frac{1}{2}$		
Do any samples need to be filtered or preserved by the lab			<u>`</u>	<u></u>	
Does this project require quick turnaround analysis		<u>م</u> ر	·		
Are there any short hold time tests (see chart below)		حر		447	
Are any samples within 2 days of or past expiration					
Was the CoC scanned	\ <u> \</u>				
Were there Non-conformance issues at login					
If yes, was a CAR generated #		(

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXI0111

Client Project/Site: 0504-101-01

Client Project Description: Trolley Barn

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Scott Lathen

dancue timington

Authorized for release by: 10/3/2014 9:21:18 AM

Randee Arrington, Project Manager (509)924-9200

Randee.Arrington@testamericainc.com

----- LINKS -----

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: SXI0111

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	
QC Sample Results	23
Chronicle	34
Certification Summary	38
Method Summary	39
Chain of Custody	40

6

8

9

1

Sample Summary

Client: Geo Engineers - Spokane

TestAmerica Job ID: SXI0111 Project/Site: 0504-101-01

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SXI0111-01	GEI-MW-1-091614	Water	09/16/14 10:19	09/17/14 08:25
SXI0111-02	GEI-MW-2-091614	Water	09/16/14 12:18	09/17/14 08:25
SXI0111-03	GEI-MW-3-091614	Water	09/16/14 09:13	09/17/14 08:25
SXI0111-04	HWA-MW-1-091614	Water	09/16/14 11:16	09/17/14 08:25
SXI0111-05	MW-Dup-091614	Water	09/16/14 08:00	09/17/14 08:25
SXI0131-01	GEI-MW-1-091614	Water	09/16/14 10:19	09/19/14 09:50
SXI0131-02	GEI-MW-2-091614	Water	09/16/14 12:18	09/19/14 09:50
SXI0131-03	GEI-MW-3-091614	Water	09/16/14 09:13	09/19/14 09:50
SXI0131-04	HWA-MW-1-091614	Water	09/16/14 11:16	09/19/14 09:50
SXI0131-05	MW-Dup-091614	Water	09/16/14 08:00	09/19/14 09:50

Definitions/Glossary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01 TestAmerica Job ID: SXI0111

Qualifiers

Fuels

Qualifier	Qualifier Description	
C	Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.	

Metals

Qualifier	Qualifier Description
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

10/3/2014

Client Sample ID: GEI-MW-1-091614

Lab Sample ID: SXI0111-01

Date Collected: 09/16/14 10:19 Date Received: 09/17/14 08:25 Matrix: Water

Method: EPA 300.0 - Anions by El	PA Method 300.	.0						
Analyte	Result C	Qualifier F	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	3.58	0.20	0	mg/L		09/17/14 10:00	09/17/14 11:47	1.00
Sulfate	13.6	0.50	0	mg/L		09/17/14 10:00	09/17/14 11:47	1.00

6

l	Method: SM 2320B - Conventional Chemistry Parameters by APHA/EPA Methods										
l	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Total Alkalinity	80.0		4.00		mg/L		09/26/14 10:19	09/26/14 16:09	1.00	

7

Client Sample ID: GEI-MW-2-091614

Lab Sample ID: SXI0111-02

Date Collected: 09/16/14 12:18 Matrix: Water

Date Received: 09/17/14 08:25

: Water

Method: EPA 300.0 - Anions by EPA Method 300.0										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Nitrate-Nitrogen	3.34		0.200		mg/L		09/17/14 10:00	09/17/14 12:31	1.00
	Sulfate	10.8		0.500		mg/L		09/17/14 10:00	09/17/14 12:31	1.00

Method: SM 2320B - Conventional Chemistry Parameters by APHA/EPA MethodsAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal Alkalinity85.04.00mg/L09/26/14 10:1909/26/14 16:091.00

Client Sample ID: GEI-MW-3-091614

Lab Sample ID: SXI0111-03

Date Collected: 09/16/14 09:13 Date Received: 09/17/14 08:25

Matrix: Water

Method: EPA 300 0 - Anions by EPA Method 300 0

Method: EPA 300.0 - Anions by EPA Method 300.0								
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Nitrate-Nitrogen	1.05	0.200	mg/L		09/17/14 10:00	09/17/14 12:02	1.00	
Sulfate	10.7	0.500	mg/L		09/17/14 10:00	09/17/14 12:02	1.00	

Method: SM 2320B - Conventional	Chemistry Parameters by	y APHA/EPA I	Methods				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity	125	4.00	mg/L		09/26/14 10:19	09/26/14 16:09	1.00

Client Sample ID: HWA-MW-1-091614 Lab Sample ID: SXI0111-04

Date Collected: 09/16/14 11:16 Date Received: 09/17/14 08:25 Matrix: Water

Method: EPA 300.0 - Anions by EPA Method 300.0										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Nitrate-Nitrogen	3.12		0.200		mg/L		09/17/14 10:00	09/17/14 12:16	1.00	
Sulfate	10.6		0.500		ma/l		09/17/14 10:00	09/17/14 12:16	1 00	

Mothod: SM 2220D Conventional	Chamiata, D		N. ADUA/EDA	Mothodo					
Method: SM 2320B - Conventional Analyte	•	Qualifier	y APHA/EPA RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity	90.0		4.00		mg/L		09/26/14 10:19	09/26/14 16:09	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Client Sample ID: MW-Dup-091614

Date Collected: 09/16/14 08:00

Lab Sample ID: SXI0111-05 Matrix: Water

Date Received: 09/17/14 08:25

Method: EPA 300.0 - Anions by EPA Method 300.0									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	3.26		0.200		mg/L		09/17/14 10:00	09/17/14 12:45	1.00
Sulfate	10.8		0.500		mg/L		09/17/14 10:00	09/17/14 12:45	1.00

Method: SM 2320B - Conventional	Method: SM 2320B - Conventional Chemistry Parameters by APHA/EPA Methods										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Total Alkalinity	85.0		4.00		mg/L		09/26/14 10:19	09/26/14 16:09	1.00		

Client Sample ID: GEI-MW-1-091614

Lab Sample ID: SXI0131-01 Matrix: Water Date Collected: 09/16/14 10:19

Date Received: 09/19/14 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Methyl tert-butyl ether	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
1,1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
2,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Bromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Chloroform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Carbon tetrachloride	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
1,1,1-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
2-Butanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Hexane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
1,1-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Benzene	ND		0.200		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
tert-Butanol	ND		5.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
1,2-Dichloroethane (EDC)	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Trichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Dibromomethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
1,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Bromodichloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
cis-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
4-Methyl-2-pentanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
trans-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
Tetrachloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:28	1.00

TestAmerica Spokane

Page 6 of 43

10/3/2014

Date Received: 09/19/14 09:50

Client Sample ID: GEI-MW-1-091614

Lab Sample ID: SXI0131-01 Date Collected: 09/16/14 10:19

Matrix: Water

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued) Result Qualifier D Dil Fac Analyte RL Prepared Analyzed ND 1.00 09/23/14 07:49 09/24/14 15:28 Dibromochloromethane ug/L 1.00 ug/L 1,3-Dichloropropane ND 1 00 09/23/14 07:49 09/24/14 15:28 1 00 1,2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 2-Hexanone ND 10.0 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 Ethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 ND 1.00 09/24/14 15:28 Chlorobenzene ug/L 09/23/14 07:49 1.00 1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 ug/L ND 2.00 09/23/14 07:49 09/24/14 15:28 1.00 m,p-Xylene ND o-Xylene 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 Styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 ND Bromoform 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 09/23/14 07:49 Isopropylbenzene ND 1.00 ug/L 09/24/14 15:28 1.00 n-Propylbenzene ND 1 00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 ND 1 00 09/23/14 07:49 09/24/14 15:28 Bromobenzene ug/L 1 00 1,3,5-Trimethylbenzene ND 1.00 09/23/14 07:49 09/24/14 15:28 ug/L 1.00 ND ug/L 2-Chlorotoluene 1.00 09/23/14 07:49 09/24/14 15:28 1.00 1,2,3-Trichloropropane ND 1.00 09/23/14 07:49 09/24/14 15:28 ug/L 1.00 ND 1.00 09/23/14 07:49 09/24/14 15:28 4-Chlorotoluene ug/L 1.00 tert-Butylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 1,2,4-Trimethylbenzene ug/L ND 1.00 09/23/14 07:49 09/24/14 15:28 1.00 ND sec-Butylbenzene 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 p-Isopropyltoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 1,3-Dichlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 1,4-Dichlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 ND ug/L 1.00 09/23/14 07:49 09/24/14 15:28 1 00 n-Butvlbenzene 1,2-Dichlorobenzene ND 1.00 09/23/14 07:49 09/24/14 15:28 ug/L 1.00 1,2-Dibromo-3-chloropropane NΠ 5.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 Hexachlorobutadiene ND 2.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 1,2,4-Trichlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 Naphthalene ND 2.00 ug/L 09/23/14 07:49 09/24/14 15:28 1.00 ug/L 1,2,3-Trichlorobenzene ND 1.00 09/23/14 07:49 09/24/14 15:28 1.00 Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac 09/24/14 15:28 Dibromofluoromethane 99 5 71.2 - 143 09/23/14 07:49 1 00 1,2-dichloroethane-d4 90.2 09/23/14 07:49 09/24/14 15:28 70 - 140 1.00 105 Toluene-d8 74.1 - 135 09/23/14 07:49 09/24/14 15:28 1.00 4-bromofluorobenzene 102 68.7 - 141 09/23/14 07:49 09/24/14 15:28 1.00 Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx Result Qualifier MDL Dil Fac Analyte RL Unit D Prepared Analyzed Gasoline Range Hydrocarbons ND 100 09/23/14 07:49 09/24/14 15:28 ug/L 1.00

-				
Method: FPA 8082A -	Polychlorinated	Riphenyls by	FPA Method 8	082

%Recovery

102

Surrogate

4-bromofluorobenzene

Qualifier

mothod: El A 000EA I olyomornia	tou Diphonylo by El A inc	otilioa oooz						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
PCB-1016	ND	0.0964	ug/L		09/24/14 13:46	09/24/14 17:16	1.00	
PCB-1221	ND	0.0964	ug/L		09/24/14 13:46	09/24/14 17:16	1.00	

Limits

68.7 - 141

TestAmerica Spokane

Analyzed

09/24/14 15:28

Prepared

09/23/14 07:49

Dil Fac

1.00

Client Sample ID: GEI-MW-1-091614

Date Collected: 09/16/14 10:19 Date Received: 09/19/14 09:50 Lab Sample ID: SXI0131-01

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 17:16	1.00
PCB-1242	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 17:16	1.00
PCB-1248	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 17:16	1.00
PCB-1254	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 17:16	1.00
PCB-1260	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 17:16	1.00
PCB-1268	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 17:16	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	37.8		4.19 - 156				09/24/14 13:46	09/24/14 17:16	1.00
Decachlorobiphenyl	44.4		15.7 - 106				09/24/14 13:46	09/24/14 17:16	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
2-Methylnaphthalene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
1-Methylnaphthalene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Acenaphthylene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Acenaphthene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Fluorene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Phenanthrene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Anthracene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Fluoranthene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Pyrene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Benzo (a) anthracene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Chrysene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Benzo (b) fluoranthene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Benzo (k) fluoranthene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Benzo (a) pyrene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Dibenzo (a,h) anthracene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Benzo (ghi) perylene	ND		0.0930		ug/L		09/23/14 08:20	09/24/14 23:57	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	90.6		32.7 - 135				09/23/14 08:20	09/24/14 23:57	1.00
2-FBP	84.1		44.3 - 120				09/23/14 08:20	09/24/14 23:57	1.00
p-Terphenyl-d14	100		59.5 - 154				09/23/14 08:20	09/24/14 23:57	1.00

p-Terphenyl-d14	100		59.5 - 154				09/23/14 08:20	09/24/14 23:57	1.00
Method: NWTPH-Dx - Semivola	atile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.230		mg/L		09/24/14 08:30	09/24/14 15:42	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.383		mg/L		09/24/14 08:30	09/24/14 15:42	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	90.0		50 - 150				09/24/14 08:30	09/24/14 15:42	1.00
n-Triacontane-d62	107		50 - 150				09/24/14 08:30	09/24/14 15:42	1.00
Method: EPA 200.7 - Dissolved	· Metals by FPΔ :	200 Series	Methods - Disso	alved					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Spokane

10/01/14 18:49

0.0100

mg/L

09/30/14 10:40

0.0422

Manganese

1.00

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Date Received: 09/19/14 09:50

Client Sample ID: GEI-MW-1-091614

Lab Sample ID: SXI0131-01 Date Collected: 09/16/14 10:19

Matrix: Water

Method: EPA 245.1 - Total Metals by EPA 200 Series Methods

Result Qualifier RL MDL D Analyte Unit Prepared Analyzed Dil Fac ND 0.200 1.00

Mercury 09/24/14 08:52 09/24/14 15:55 ug/L

Method: 200.8 - Metals (ICP/MS)

Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed Result Arsenic ND 0.00200 mg/L 09/26/14 13:54 09/30/14 17:30 Cadmium ND 0.00100 mg/L 09/26/14 13:54 09/30/14 17:30 Chromium ND 09/26/14 13:54 09/30/14 17:30 0.00200 mg/L 09/26/14 13:54 Lead ND 0.00200 mg/L 09/30/14 17:30

Method: RSK-175 - Dissolved Gases (GC)

Analyte MDL Unit D Analyzed Result Qualifier RLPrepared Dil Fac Methane ND 0.00500 mg/L 09/30/14 12:47 09/30/14 12:47

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 109 62 - 124 09/30/14 12:47 09/30/14 12:47 Acetylene (Surr)

Client Sample ID: GEI-MW-2-091614 Lab Sample ID: SXI0131-02

Date Collected: 09/16/14 12:18 Matrix: Water

Date Received: 09/19/14 09:50

1.1-Dichloroethene

cis-1,2-Dichloroethene

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 1.00 Dichlorodifluoromethane 09/23/14 07:49 09/24/14 15:50 1 00 ug/L Chloromethane ND 3.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 Vinyl chloride ND 0.200 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 Bromomethane ND 5.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 ND ug/L Chloroethane 1.00 09/23/14 07:49 09/24/14 15:50 1 00 Trichlorofluoromethane ND 1.00 09/23/14 07:49 09/24/14 15:50 ug/L 1.00

1.00

ug/L Dichlorofluoromethane ND 0.200 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 Carbon disulfide ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 Methylene chloride ND 10.0 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 ug/L Acetone ND 25.0 09/23/14 07:49 09/24/14 15:50 1.00 trans-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 Methyl tert-butyl ether ND 1.00 uq/L 09/23/14 07:49 09/24/14 15:50 1.00 1,1,2-Trichlorotrifluoroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 1,1-Dichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00

NΠ

ND

2,2-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 Bromochloromethane ND 1 00 ug/L 09/23/14 07:49 09/24/14 15:50 1 00 1.00 09/24/14 15:50 Chloroform 1.21 ug/L 09/23/14 07:49 ug/L 09/24/14 15:50 Carbon tetrachloride ND 1.00 09/23/14 07:49 1.00 1,1,1-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 ND 10.0 09/24/14 15:50 2-Butanone ug/L 09/23/14 07:49 1.00

1.00

ug/L

Hexane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 ND 1.1-Dichloropropene 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 Benzene ND 0.200 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 tert-Butanol ND 5.00 ug/L 09/23/14 07:49 09/24/14 15:50

1.00 ND 1,2-Dichloroethane (EDC) 1.00 ug/L 09/23/14 07:49 09/24/14 15:50 1.00 ND Trichloroethene 1 00 ug/L 09/23/14 07:49 09/24/14 15:50 1 00

TestAmerica Spokane

09/23/14 07:49

09/23/14 07:49

09/24/14 15:50

09/24/14 15:50

1.00

1.00

1.00

10/3/2014

4-bromofluorobenzene

Client Sample ID: GEI-MW-2-091614

Date Collected: 09/16/14 12:18 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0131-02

Matrix: Water

Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,2-Dichloropropane	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
Bromodichloromethane	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
cis-1,3-Dichloropropene	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
Toluene	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
4-Methyl-2-pentanone	ND	10.0	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
trans-1,3-Dichloropropene	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
Tetrachloroethene	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
1,1,2-Trichloroethane	ND	1.00	ug/L	(09/23/14 07:49	09/24/14 15:50	1.00
Dibromochloromethane	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
1,3-Dichloropropane	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
1,2-Dibromoethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
2-Hexanone	ND	10.0	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
Ethylbenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
Chlorobenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
m,p-Xylene	ND	2.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
o-Xylene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
Styrene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
Bromoform	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
Isopropylbenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
n-Propylbenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
Bromobenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,3,5-Trimethylbenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
2-Chlorotoluene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,2,3-Trichloropropane	ND	1.00	ug/L ug/L		09/23/14 07:49	09/24/14 15:50	1.00
4-Chlorotoluene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
tert-Butylbenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,2,4-Trimethylbenzene	ND	1.00			09/23/14 07:49	09/24/14 15:50	1.00
	ND		ug/L				
sec-Butylbenzene		1.00	ug/L		09/23/14 07:49 09/23/14 07:49	09/24/14 15:50 09/24/14 15:50	1.00
p-Isopropyltoluene	ND	1.00	ug/L				1.00
1,3-Dichlorobenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,4-Dichlorobenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
n-Butylbenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,2-Dichlorobenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,2-Dibromo-3-chloropropane	ND	5.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
Hexachlorobutadiene	ND	2.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,2,4-Trichlorobenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
Naphthalene	ND	2.00	ug/L		09/23/14 07:49	09/24/14 15:50	1.00
1,2,3-Trichlorobenzene	ND	1.00	ug/L	C	09/23/14 07:49	09/24/14 15:50	1.00
Surrogate	%Recovery			_	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.1	71.2 - 143		(09/23/14 07:49	09/24/14 15:50	1.00
1,2-dichloroethane-d4	93.9	70 - 140		(09/23/14 07:49	09/24/14 15:50	1.00
Toluene-d8	102	74.1 - 135		C	09/23/14 07:49	09/24/14 15:50	1.00

TestAmerica Spokane

09/24/14 15:50

09/23/14 07:49

68.7 - 141

1.00

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

Client Sample ID: GEI-MW-2-091614

Date Collected: 09/16/14 12:18 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0131-02

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 15:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	104		68.7 - 141				09/23/14 07:49	09/24/14 15:50	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.0983		ug/L		09/24/14 13:46	09/24/14 17:38	1.00
PCB-1221	ND		0.0983		ug/L		09/24/14 13:46	09/24/14 17:38	1.00
PCB-1232	ND		0.0983		ug/L		09/24/14 13:46	09/24/14 17:38	1.00
PCB-1242	ND		0.0983		ug/L		09/24/14 13:46	09/24/14 17:38	1.00
PCB-1248	ND		0.0983		ug/L		09/24/14 13:46	09/24/14 17:38	1.00
PCB-1254	ND		0.0983		ug/L		09/24/14 13:46	09/24/14 17:38	1.00
PCB-1260	ND		0.0983		ug/L		09/24/14 13:46	09/24/14 17:38	1.00
PCB-1268	ND		0.0983		ug/L		09/24/14 13:46	09/24/14 17:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	36.6		4.19 - 156				09/24/14 13:46	09/24/14 17:38	1.00
Decachlorobiphenyl	45.9		15.7 - 106				09/24/14 13:46	09/24/14 17:38	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.0961		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
2-Methylnaphthalene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
1-Methylnaphthalene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Acenaphthylene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Acenaphthene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Fluorene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Phenanthrene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Anthracene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Fluoranthene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Pyrene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Benzo (a) anthracene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Chrysene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Benzo (b) fluoranthene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Benzo (k) fluoranthene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Benzo (a) pyrene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Dibenzo (a,h) anthracene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Benzo (ghi) perylene	ND		0.0897		ug/L		09/23/14 08:20	09/25/14 00:22	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	94.6		32.7 - 135				09/23/14 08:20	09/25/14 00:22	1.00
2-FBP	84.3		44.3 - 120				09/23/14 08:20	09/25/14 00:22	1.00
p-Terphenyl-d14	86.7		59.5 - 154				09/23/14 08:20	09/25/14 00:22	1.00

Method: NWTPH-Dx - Semivolatile	Petroleum Products by	y NWTPH-Dx						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND	0.232		mg/L		09/24/14 08:30	09/24/14 16:06	1.00
Heavy Oil Range Hydrocarbons	ND	0.386		mg/L		09/24/14 08:30	09/24/14 16:06	1.00

TestAmerica Spokane

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Client Sample ID: GEI-MW-2-091614

Date Collected: 09/16/14 12:18 Date Received: 09/19/14 09:50 Lab Sample ID: SXI0131-02

Matrix: Water

	_								
	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	90.2		50 - 150				09/24/14 08:30	09/24/14 16:06	1.00
n-Triacontane-d62 -	101		50 - 150				09/24/14 08:30	09/24/14 16:06	1.00
Method: EPA 200.7 - Dissolved Metals	by EPA	200 Series I	Methods - Disso	olved					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	ND		0.0100		mg/L		09/30/14 10:40	10/01/14 18:55	1.00
- Method: EPA 245.1 - Total Metals by El	PA 200 S	eries Metho	ods						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200		ug/L		09/24/14 08:52	09/24/14 15:57	1.00
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.00200		mg/L		09/26/14 13:54	09/30/14 17:35	
Cadmium	ND		0.00100		mg/L		09/26/14 13:54	09/30/14 17:35	
Chromium	ND		0.00200		mg/L		09/26/14 13:54	09/30/14 17:35	1
Lead	ND		0.00200		mg/L		09/26/14 13:54	09/30/14 17:35	,
- Method: RSK-175 - Dissolved Gases (G	SC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.00500		mg/L		09/30/14 12:50	09/30/14 12:50	1
Surrogate %	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Acetylene (Surr)	109		62 - 124				09/30/14 12:50	09/30/14 12:50	

Client Sample ID: GEI-MW-3-091614

Date Collected: 09/16/14 09:13

Date Received: 09/19/14 09:50

Lab	San	nple	ID:	SXIO	131-03	į

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Methyl tert-butyl ether	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
2,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Bromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Chloroform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Carbon tetrachloride	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00

TestAmerica Spokane

2

4

5

7

0

11

10

Client Sample Results

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

Client Sample ID: GEI-MW-3-091614

Lab Sample ID: SXI0131-03 Date Collected: 09/16/14 09:13 Matrix: Water

Date Received: 09/19/14 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.0
2-Butanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Hexane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,1-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Benzene	ND		0.200		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
tert-Butanol	ND		5.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,2-Dichloroethane (EDC)	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Trichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Dibromomethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Bromodichloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
cis-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
4-Methyl-2-pentanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
trans-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Tetrachloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Dibromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,3-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,2-Dibromoethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
2-Hexanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Ethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Chlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
m,p-Xylene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
o-Xylene	ND		1.00		ug/L ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Styrene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Bromoform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Isopropylbenzene	ND		1.00		ug/L ug/L		09/23/14 07:49	09/24/14 16:13	1.00
n-Propylbenzene	ND		1.00		ug/L ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1.1.2.2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Bromobenzene	ND		1.00		ug/L ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,3,5-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
2-Chlorotoluene	ND		1.00		_		09/23/14 07:49	09/24/14 16:13	1.00
	ND		1.00		ug/L			09/24/14 16:13	1.00
1,2,3-Trichloropropane 4-Chlorotoluene	ND ND		1.00		ug/L		09/23/14 07:49 09/23/14 07:49	09/24/14 16:13	1.00
					ug/L				
tert-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.0
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.0
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:13	1.0

TestAmerica Spokane

10/3/2014

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

Client Sample ID: GEI-MW-3-091614

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Date Collected: 09/16/14 09:13 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0131-03

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.9		71.2 _ 143	09/23/14 07:49 09	0/24/14 16:13	1.00
1,2-dichloroethane-d4	95.1		70 - 140	09/23/14 07:49 09	/24/14 16:13	1.00
Toluene-d8	102		74.1 - 135	09/23/14 07:49 09	/24/14 16:13	1.00
4-bromofluorobenzene	101		68.7 - 141	09/23/14 07:49 09)/24/14 16:13	1.00

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	128		100		ug/L		09/23/14 07:49	09/24/14 16:13	1.00
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene			68 7 - 141				09/23/14 07:49	09/24/14 16:13	1 00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.0967		ug/L		09/24/14 13:46	09/24/14 17:59	1.00
PCB-1221	ND		0.0967		ug/L		09/24/14 13:46	09/24/14 17:59	1.00
PCB-1232	ND		0.0967		ug/L		09/24/14 13:46	09/24/14 17:59	1.00
PCB-1242	ND		0.0967		ug/L		09/24/14 13:46	09/24/14 17:59	1.00
PCB-1248	ND		0.0967		ug/L		09/24/14 13:46	09/24/14 17:59	1.00
PCB-1254	ND		0.0967		ug/L		09/24/14 13:46	09/24/14 17:59	1.00
PCB-1260	ND		0.0967		ug/L		09/24/14 13:46	09/24/14 17:59	1.00
PCB-1268	ND		0.0967		ug/L		09/24/14 13:46	09/24/14 17:59	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	38.0		4.19 _ 156				09/24/14 13:46	09/24/14 17:59	1.00
Decachlorobiphenyl	40.8		15.7 - 106				09/24/14 13:46	09/24/14 17:59	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
2-Methylnaphthalene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
1-Methylnaphthalene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Acenaphthylene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Acenaphthene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Fluorene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Phenanthrene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Anthracene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Fluoranthene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Pyrene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Benzo (a) anthracene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Chrysene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Benzo (b) fluoranthene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Benzo (k) fluoranthene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Benzo (a) pyrene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Dibenzo (a,h) anthracene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Benzo (ghi) perylene	ND		0.0901		ug/L		09/23/14 08:20	09/25/14 00:46	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	92.3		32.7 - 135				09/23/14 08:20	09/25/14 00:46	1.00
2-FBP	86.3		44.3 - 120				09/23/14 08:20	09/25/14 00:46	1.00

TestAmerica Spokane

Client Sample ID: GEI-MW-3-091614

Date Collected: 09/16/14 09:13 Date Received: 09/19/14 09:50 Lab Sample ID: SXI0131-03

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	84.4		59.5 - 154	09/23/14 08:20	09/25/14 00:46	1.00

Method: NWTPH-Dx - Semivolatile	tile Petroleum Products by NWTPH-Dx								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	0.266		0.231		mg/L		09/24/14 08:30	09/24/14 16:30	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.386		mg/L		09/24/14 08:30	09/24/14 16:30	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	94.0		50 - 150	09/24/14 08:30	09/24/14 16:30	1.00
n-Triacontane-d62	107		50 - 150	09/24/14 08:30	09/24/14 16:30	1.00

Method: EPA 200.7 - Dissolved Metals by EPA 200 Series Methods - Dissolved

Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.986	0.0100	mg/L		09/30/14 10:40	10/01/14 19:16	1.00

Method: EPA 245.1 - Total Metals b	by EPA 200 Series Methods
Δnalvte	Result Qualifier

Analyte	Result C	Qualifier	KL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND ND		0.200		ug/L		09/24/14 08:52	09/24/14 16:00	1.00

Method:	200.8 -	Metals	(ICP/MS)
---------	---------	--------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.00200		mg/L		09/26/14 13:54	09/30/14 17:41	1
Cadmium	ND		0.00100		mg/L		09/26/14 13:54	09/30/14 17:41	1
Chromium	ND		0.00200		mg/L		09/26/14 13:54	09/30/14 17:41	1
Lead	ND		0.00200		mg/L		09/26/14 13:54	09/30/14 17:41	1

Method: RSK-175 - Dissolved Gases	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	0.00508		0.00500		mg/L		09/30/14 12:54	09/30/14 12:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Acetylene (Surr) 113 62 - 124 09/30/14 12:54 09/30/14 12:54 1

Client Sample ID: HWA-MW-1-091614 Lab Sample ID: SXI0131-04

Date Collected: 09/16/14 11:16 Date Received: 09/19/14 09:50

trans-1,2-Dichloroethene

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00	-	ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 16:35	1.00

TestAmerica Spokane

09/24/14 16:35

09/23/14 07:49

Page 15 of 43

1.00

ug/L

ND

1.00

Matrix: Water

Client Sample Results

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Date Received: 09/19/14 09:50

1,3,5-Trimethylbenzene

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

2-Chlorotoluene

4-Chlorotoluene

tert-Butvlbenzene

sec-Butylbenzene

p-Isopropyltoluene

1,3-Dichlorobenzene

Analyte

TestAmerica Job ID: SXI0111

Analyzed

Client Sample ID: HWA-MW-1-091614

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

Result Qualifier

Lab Sample ID: SXI0131-04 Date Collected: 09/16/14 11:16

RL

MDL

D

Prepared

Matrix: Water

Dil Fac

ND 1.00 09/23/14 07:49 09/24/14 16:35 1.00 Methyl tert-butyl ether ug/L 1,1,2-Trichlorotrifluoroethane ND 1 00 ug/L 09/23/14 07:49 09/24/14 16:35 1 00 1.1-Dichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 cis-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 2,2-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 1.00 Bromochloromethane ND ug/L 09/23/14 07:49 09/24/14 16:35 1 00 Chloroform 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 1.10 ND 1.00 09/23/14 07:49 09/24/14 16:35 1.00 Carbon tetrachloride ug/L ND 1.1.1-Trichloroethane 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 2-Butanone ND 10.0 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 Hexane ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 1,1-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 ND 09/24/14 16:35 Benzene 0.200 ug/L 09/23/14 07:49 1 00 tert-Butano ND 5.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 1,2-Dichloroethane (EDC) ND 1 00 ug/L 09/24/14 16:35 09/23/14 07:49 1 00 Trichloroethene ND 1.00 09/23/14 07:49 09/24/14 16:35 ug/L 1.00 ND ug/L Dibromomethane 1.00 09/23/14 07:49 09/24/14 16:35 1.00 1,2-Dichloropropane ND 1.00 09/23/14 07:49 09/24/14 16:35 ug/L 1.00 ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 Bromodichloromethane 1.00 cis-1,3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 Toluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 ND 10.0 4-Methyl-2-pentanone ug/L 09/23/14 07:49 09/24/14 16:35 1.00 trans-1,3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 Tetrachloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 1,1,2-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 ND Dibromochloromethane 1.00 09/23/14 07:49 09/24/14 16:35 1 00 ug/L ND 1.00 09/23/14 07:49 09/24/14 16:35 1,3-Dichloropropane ug/L 1.00 1.2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 2-Hexanone ND 10.0 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 ug/L ND 1.00 09/23/14 07:49 09/24/14 16:35 Ethylbenzene 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 m,p-Xylene ND 2.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 Styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 Bromoform ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 ND 09/23/14 07:49 Isopropylbenzene 1.00 ug/L 09/24/14 16:35 1.00 n-Propylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1.00 1.1.2.2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:35 1 00

TestAmerica Spokane

09/24/14 16:35

09/24/14 16:35

09/24/14 16:35

09/24/14 16:35

09/24/14 16:35

09/24/14 16:35

09/24/14 16:35

09/24/14 16:35

09/24/14 16:35

09/24/14 16:35

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1 00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1 00

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

Client Sample ID: HWA-MW-1-091614

Date Collected: 09/16/14 11:16 Date Received: 09/19/14 09:50 Lab Sample ID: SXI0131-04

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98.6		71.2 - 143				09/23/14 07:49	09/24/14 16:35	1.00
1,2-dichloroethane-d4	94.8		70 - 140				09/23/14 07:49	09/24/14 16:35	1.00
Toluene-d8	103		74.1 - 135				09/23/14 07:49	09/24/14 16:35	1.00
4-bromofluorobenzene	103		68.7 - 141				09/23/14 07:49	09/24/14 16:35	1.00

Method: NWTPH-Gx - Gasoline Hyd	drocarbons l	by NWTPH-0	Эx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 16:35	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	103		68.7 - 141				09/23/14 07:49	09/24/14 16:35	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.0962		ug/L		09/24/14 13:46	09/25/14 09:08	1.00
PCB-1221	ND		0.0962		ug/L		09/24/14 13:46	09/25/14 09:08	1.00
PCB-1232	ND		0.0962		ug/L		09/24/14 13:46	09/25/14 09:08	1.00
PCB-1242	ND		0.0962		ug/L		09/24/14 13:46	09/25/14 09:08	1.00
PCB-1248	ND		0.0962		ug/L		09/24/14 13:46	09/25/14 09:08	1.00
PCB-1254	ND		0.0962		ug/L		09/24/14 13:46	09/25/14 09:08	1.00
PCB-1260	ND		0.0962		ug/L		09/24/14 13:46	09/25/14 09:08	1.00
PCB-1268	ND		0.0962		ug/L		09/24/14 13:46	09/25/14 09:08	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TCX	49.6		4.19 - 156				09/24/14 13:46	09/25/14 09:08	1.00
Decachlorobiphenyl	50.8		15.7 - 106				09/24/14 13:46	09/25/14 09:08	1.00

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
2-Methylnaphthalene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
1-Methylnaphthalene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Acenaphthylene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Acenaphthene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Fluorene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Phenanthrene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Anthracene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Fluoranthene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Pyrene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Benzo (a) anthracene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Chrysene	ND	0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00

TestAmerica Spokane

Client: Geo Engineers - Spokane

Date Received: 09/19/14 09:50

Project/Site: 0504-101-01

Client Sample ID: HWA-MW-1-091614

Date Collected: 09/16/14 11:16

Lab Sample ID: SXI0131-04

Matrix: Water

Method: EPA 8270D - Polynuclea Analyte		Qualifier	RL		Unit	D D	Prepared	Analyzed	Dil Fac
Benzo (b) fluoranthene	ND		0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Benzo (k) fluoranthene	ND		0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Benzo (a) pyrene	ND		0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Dibenzo (a,h) anthracene	ND		0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Benzo (ghi) perylene	ND		0.0904		ug/L		09/23/14 08:20	09/25/14 01:11	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	89.2		32.7 - 135				09/23/14 08:20	09/25/14 01:11	1.00
2-FBP	79.8		44.3 - 120				09/23/14 08:20	09/25/14 01:11	1.00
p-Terphenyl-d14	91.6		59.5 - 154				09/23/14 08:20	09/25/14 01:11	1.00
Method: NWTPH-Dx - Semivolatil	e Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.310		mg/L		09/24/14 08:30	09/24/14 16:53	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.517		mg/L		09/24/14 08:30	09/24/14 16:53	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	86.7		50 - 150				09/24/14 08:30	09/24/14 16:53	1.00
n-Triacontane-d62	99.5		50 - 150				09/24/14 08:30	09/24/14 16:53	1.00
Method: EPA 200.7 - Dissolved M	•					_			D.: E
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.0337		0.0100		mg/L		09/30/14 10:40	10/01/14 19:21	1.00
Method: EPA 245.1 - Total Metals	•								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200		ug/L		09/24/14 08:52	09/24/14 16:02	1.00
Method: 200.8 - Metals (ICP/MS)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.00200		mg/L		09/26/14 13:54	09/30/14 17:56	1
Cadmium	ND		0.00100		mg/L		09/26/14 13:54	09/30/14 17:56	1
Chromium	ND		0.00200		mg/L		09/26/14 13:54	09/30/14 17:56	1
Method: 200.8 - Metals (ICP/MS) -		Ovalifier	DI	MDI	Unit		Drawarad	Amalumad	Dil Fee
Analyte		Qualifier		MIDL		D	Prepared	Analyzed	Dil Fac
Lead	ND		0.00200		mg/L		09/26/14 13:54	10/01/14 19:07	1
Method: RSK-175 - Dissolved Ga		Ouglifica	ы	MDI	Unit	D	Dropored	Analyzed	Dil Ec-
Analyte		Qualifier	0.00500	MDL	Unit	u	Prepared 00/20/14 12:10	09/30/14 13:10	Dil Fac
Methane	ND		0.00500		mg/L		09/30/14 13:10	09/30/14 13:10	1
Surrogate Acetylene (Surr)	%Recovery	Qualifier	Limits 62 - 124				Prepared 09/30/14 13:10	Analyzed 09/30/14 13:10	Dil Fac

Client Sample Results

Client: Geo Engineers - Spokane

TestAmerica Job ID: SXI0111

Project/Site: 0504-101-01

Client Sample ID: MW-Dup-091614

Lab Sample ID: SXI0131-05 Date Collected: 09/16/14 08:00

Matrix: Water

Method: EPA 8260C - Volatile O	•	-							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
trans-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Methyl tert-butyl ether	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
cis-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
2,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Bromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Chloroform	1.16		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Carbon tetrachloride	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,1,1-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
2-Butanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Hexane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,1-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Benzene	ND		0.200		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
tert-Butanol	ND		5.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,2-Dichloroethane (EDC)	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Trichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Dibromomethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Bromodichloromethane							09/23/14 07:49	09/24/14 16:58	1.0
	ND ND		1.00		ug/L				
cis-1,3-Dichloropropene			1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
4-Methyl-2-pentanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
trans-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Tetrachloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,1,2-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Dibromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,3-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,2-Dibromoethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
2-Hexanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Ethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Chlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
m,p-Xylene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
o-Xylene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Styrene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0
Bromoform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 16:58	1.0

TestAmerica Spokane

10/3/2014

Date Received: 09/19/14 09:50

Client Sample ID: MW-Dup-091614

Lab Sample ID: SXI0131-05 Date Collected: 09/16/14 08:00

Matrix: Water

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued) Analyte Result Qualifier RL D Prepared Dil Fac Analyzed ND 1.00 09/23/14 07:49 09/24/14 16:58 1.00 n-Propylbenzene ug/L ug/L 09/24/14 16:58 1,1,2,2-Tetrachloroethane ND 1.00 09/23/14 07:49 1.00 Bromobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 ug/L 1,2,3-Trichloropropane ND 1.00 09/23/14 07:49 09/24/14 16:58 1 00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 tert-Butylbenzene ug/L ND 1.00 09/23/14 07:49 09/24/14 16:58 1.00 ND 1,2,4-Trimethylbenzene 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 sec-Butylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 ND p-Isopropyltoluene 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 1,3-Dichlorobenzene ND 1.00 09/23/14 07:49 09/24/14 16:58 ug/L 1.00 1,4-Dichlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 n-Butylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 ND 1.00 ug/L 1,2-Dichlorobenzene 09/23/14 07:49 09/24/14 16:58 1 00 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 ND 2.00 Hexachlorobutadiene ug/L 09/23/14 07:49 09/24/14 16:58 1.00 1,2,4-Trichlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 ug/L Naphthalene ND 2.00 09/23/14 07:49 09/24/14 16:58 1.00 1,2,3-Trichlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 16:58 1.00 Limits Dil Fac %Recovery Qualifier Surrogate Prepared Analyzed Dibromofluoromethane 99.3 71.2 - 143 09/23/14 07:49 09/24/14 16:58 1.00 1,2-dichloroethane-d4 95.3 70 - 140 09/23/14 07:49 09/24/14 16:58 1.00 Toluene-d8 104 74.1 - 135 09/23/14 07:49 09/24/14 16:58 1.00 4-bromofluorobenzene 102 68.7 - 141 09/23/14 07:49 09/24/14 16:58 1.00

Method: NWTPH-Gx - Gasoline	Hydrocarbons I	by NWTPH	-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 16:58	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	102		68.7 - 141				09/23/14 07:49	09/24/14 16:58	1.00

PCB-1016 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1221 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1232 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1242 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1248 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1254 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1260 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	4-bromonuoropenzene –	102		08.7 - 141				09/23/14 07:49	09/24/14 16:58	1.00
Analyte Result Qualifier RL MDL Unit D Prepared Analyte PCB-1016 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1221 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1232 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1242 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1248 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1254 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1260 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Analytic TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	- Method: EPA 8082A - Poly	chlorinated Biphenyls	s by EPA I	Method 8082						
PCB-1221 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1232 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1242 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1248 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1254 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1260 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	•		-		MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1242 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1248 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1254 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1260 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	PCB-1016	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 18:41	1.00
PCB-1242 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1248 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1254 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1260 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	PCB-1221	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 18:41	1.00
PCB-1248 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1254 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1260 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	PCB-1232	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 18:41	1.00
PCB-1254 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1260 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	PCB-1242	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 18:41	1.00
PCB-1260 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	PCB-1248	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 18:41	1.00
PCB-1268 ND 0.0964 ug/L 09/24/14 13:46 09/24/14 Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	PCB-1254	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 18:41	1.00
Surrogate %Recovery Qualifier Limits Prepared Ana TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/14	PCB-1260	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 18:41	1.00
TCX 39.3 4.19 - 156 09/24/14 13:46 09/24/1	PCB-1268	ND		0.0964		ug/L		09/24/14 13:46	09/24/14 18:41	1.00
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decembroning 48.4 15.7 106 00/24/14.13:46 00/24/	TCX	39.3		4.19 - 156				09/24/14 13:46	09/24/14 18:41	1.00
Decacilioropipilenyi 40.4 10.1 - 100 09/24/14 10.40 09/24/	Decachlorobiphenyl	48.4		15.7 - 106				09/24/14 13:46	09/24/14 18:41	1.00

TestAmerica Spokane

Client Sample ID: MW-Dup-091614 Lab Sample ID: SXI0131-05

Date Collected: 09/16/14 08:00 Matrix: Water

Date Received: 09/19/14 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.00
2-Methylnaphthalene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
1-Methylnaphthalene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Acenaphthylene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Acenaphthene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.00
Fluorene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.00
Phenanthrene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.00
Anthracene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Fluoranthene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Pyrene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Benzo (a) anthracene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Chrysene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Benzo (b) fluoranthene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.00
Benzo (k) fluoranthene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Benzo (a) pyrene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Indeno (1,2,3-cd) pyrene	ND		0.0898		ug/L ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Dibenzo (a,h) anthracene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
Benzo (ghi) perylene	ND		0.0898		ug/L		09/23/14 08:20	09/25/14 01:35	1.0
berizo (gili) peryierie	ND		0.0696		ug/L		09/23/14 08.20	09/25/14 01.33	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	93.5		32.7 - 135				09/23/14 08:20	09/25/14 01:35	1.0
2-FBP	88.0		44.3 - 120				09/23/14 08:20	09/25/14 01:35	1.0
Method: NWTPH-Dx - Semivola Analyte		Qualifier	RL	MDL	Unit	_			
				IVIDE	Ullit	D	Prepared	Analyzed	Dil Fa
<u> </u>	ND		0.228	WIDE	mg/L	D	Prepared 09/24/14 08:30	Analyzed 09/24/14 17:17	
Diesel Range Hydrocarbons	ND ND	С		MDE		<u>D</u>			1.00
Diesel Range Hydrocarbons			0.228	MIDE	mg/L	D	09/24/14 08:30	09/24/14 17:17	1.00
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	ND		0.228	MDL	mg/L	<u>D</u>	09/24/14 08:30 09/24/14 08:30	09/24/14 17:17 09/24/14 17:17	1.00 1.00 1.00 Dil Fac
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	ND %Recovery		0.228 0.381 <i>Limits</i>	MBL	mg/L	<u>D</u>	09/24/14 08:30 09/24/14 08:30 Prepared	09/24/14 17:17 09/24/14 17:17 Analyzed	1.00 1.00 Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62	%Recovery 90.1 106	Qualifier	0.228 0.381 <i>Limits</i> 50 - 150 50 - 150		mg/L	<u>D</u>	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17	1.0 1.0 Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl	%Recovery 90.1 106 Metals by EPA	Qualifier	0.228 0.381 <i>Limits</i> 50 - 150 50 - 150		mg/L mg/L	<u>D</u>	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17	1.00 1.00 Dil Fa 1.00
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved	%Recovery 90.1 106 Metals by EPA	Qualifier 200 Series	0.228 0.381 - Limits 50 - 150 50 - 150 Methods - Disso	olved	mg/L mg/L		09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17	1.00 1.00 Dil Fa 1.00 1.00
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese	%Recovery 90.1 106 Metals by EPA Result ND	Qualifier 200 Series Qualifier	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100	olved	mg/L mg/L		09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed	1.0 1.0 Dil Fa 1.0
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte	%Recovery 90.1 106 Metals by EPA Result ND	Qualifier 200 Series Qualifier	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100	o lved MDL	mg/L mg/L		09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed	1.00 1.00 Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese Method: EPA 245.1 - Total Meta Analyte	%Recovery 90.1 106 Metals by EPA Result ND	Qualifier 200 Series Qualifier Geries Meth	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100	o lved MDL	mg/L mg/L Unit mg/L	<u>D</u>	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared 09/30/14 10:40	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed 10/01/14 19:24	1.0 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese Method: EPA 245.1 - Total Meta Analyte Mercury	Metals by EPA Result ND ND ND ND ND ND ND ND ND	Qualifier 200 Series Qualifier Geries Meth	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100 ods RL	o lved MDL	mg/L mg/L Unit mg/L Unit	<u>D</u>	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared 09/30/14 10:40 Prepared	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed 10/01/14 19:24 Analyzed	1.0 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese Method: EPA 245.1 - Total Meta Analyte Mercury Method: 200.8 - Metals (ICP/MS	Metals by EPA Result ND ND ND ND ND ND ND ND ND ND	Qualifier 200 Series Qualifier Geries Meth	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100 ods RL	o lved MDL	mg/L mg/L Unit mg/L Unit ug/L	<u>D</u>	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared 09/30/14 10:40 Prepared	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed 10/01/14 19:24 Analyzed	1.0 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa 1.0
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese Method: EPA 245.1 - Total Meta Analyte Mercury Method: 200.8 - Metals (ICP/MS Analyte	Metals by EPA Result ND ND ND ND ND ND ND ND ND ND	Qualifier 200 Series Qualifier Geries Meth Qualifier	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100 ods RL 0.200	olved MDL MDL	mg/L mg/L Unit mg/L Unit ug/L	D	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared 09/30/14 10:40 Prepared 09/24/14 08:52	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed 10/01/14 19:24 Analyzed 09/24/14 16:04	1.0 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese Method: EPA 245.1 - Total Meta Analyte Mercury Method: 200.8 - Metals (ICP/MS Analyte Arsenic	Metals by EPA Result ND ND NEST OF THE PROPERTY OF THE PROPE	Qualifier 200 Series Qualifier Geries Meth Qualifier	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100 ods RL 0.200	olved MDL MDL	mg/L mg/L Unit mg/L Unit ug/L	D	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared 09/30/14 10:40 Prepared 09/24/14 08:52 Prepared	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed 10/01/14 19:24 Analyzed 09/24/14 16:04 Analyzed	1.0 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese Method: EPA 245.1 - Total Meta Analyte Mercury Method: 200.8 - Metals (ICP/MS Analyte Arsenic Cadmium	Metals by EPA Result ND Alls by EPA 200 S Result ND Result ND	Qualifier 200 Series Qualifier Geries Meth Qualifier	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100 Ods RL 0.200	olved MDL MDL	mg/L mg/L Unit mg/L Unit ug/L Unit mg/L	D	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared 09/30/14 10:40 Prepared 09/24/14 08:52 Prepared 09/26/14 13:54	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed 10/01/14 19:24 Analyzed 09/24/14 16:04 Analyzed 09/30/14 18:01	1.0 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese Method: EPA 245.1 - Total Meta Analyte Mercury Method: 200.8 - Metals (ICP/MS Analyte Arsenic Cadmium Chromium	Metals by EPA Result ND Alls by EPA 200 S Result ND Result ND Result ND ND ND ND ND ND ND ND ND ND	Qualifier 200 Series Qualifier Geries Meth Qualifier	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100 Ods RL 0.200 RL 0.00200 0.00100	olved MDL MDL	mg/L mg/L Unit mg/L Unit ug/L Unit mg/L mg/L	D	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared 09/30/14 10:40 Prepared 09/24/14 08:52 Prepared 09/26/14 13:54 09/26/14 13:54	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed 10/01/14 19:24 Analyzed 09/24/14 16:04 Analyzed 09/30/14 18:01 09/30/14 18:01	1.0 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa 1.0 Dil Fa
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Dissolved Analyte Manganese Method: EPA 245.1 - Total Meta Analyte Mercury Method: 200.8 - Metals (ICP/MS Analyte Arsenic Cadmium	Metals by EPA Result ND Alls by EPA 200 S Result ND Result ND Result ND O Result ND ND ND ND ND ND ND ND ND ND	Qualifier 200 Series Qualifier Geries Meth Qualifier	0.228 0.381 Limits 50 - 150 50 - 150 Methods - Disso RL 0.0100 Ods RL 0.200 RL 0.00200 0.00100	olved MDL MDL	mg/L mg/L Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L	D	09/24/14 08:30 09/24/14 08:30 Prepared 09/24/14 08:30 09/24/14 08:30 Prepared 09/30/14 10:40 Prepared 09/24/14 08:52 Prepared 09/26/14 13:54 09/26/14 13:54	09/24/14 17:17 09/24/14 17:17 Analyzed 09/24/14 17:17 09/24/14 17:17 Analyzed 10/01/14 19:24 Analyzed 09/24/14 16:04 Analyzed 09/30/14 18:01 09/30/14 18:01	1.00 1.00 Dil Fa 1.00 Dil Fa 1.00

Client Sample Results

Client: Geo Engineers - Spokane TestAmerica Job ID: SXI0111
Project/Site: 0504-101-01

Client Sample ID: MW-Dup-091614 Lab Sample ID: SXI0131-05

Date Collected: 09/16/14 08:00 Matrix: Water
Date Received: 09/19/14 09:50

Method: RSK-175 - Dissolv	ved Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.00500		mg/L		09/30/14 13:15	09/30/14 13:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Acetylene (Surr)	105		62 - 124				09/30/14 13:15	09/30/14 13:15	1

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID: 14I0134-BLK1

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total**

Analysis Batch: 14I0134	Plank	Blank						Prep Batch: 14	10134_P
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00	WIDE	ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloromethane	ND		3.00		ug/L ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromomethane	ND		5.00		ug/L ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Trichlorofluoromethane	ND		1.00		ug/L ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloroethene	ND		1.00				09/23/14 07:49	09/24/14 09:49	1.00
Dichlorofluoromethane	ND ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Carbon disulfide	ND ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
					ug/L				
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Methyl tert-butyl ether	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloroform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Carbon tetrachloride	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,1-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Butanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Hexane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Benzene	ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
tert-Butanol	ND		5.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dichloroethane (EDC)	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Trichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dibromomethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromodichloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
cis-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
4-Methyl-2-pentanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
trans-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Tetrachloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dibromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dibromoethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Hexanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Ethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
m,p-Xylene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
o-Xylene	ND		1.00		ug/L ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Styrene	ND ND		1.00				09/23/14 07:49	09/24/14 09:49	1.00
Bromoform	ND ND		1.00		ug/L ug/L		09/23/14 07:49	09/24/14 09:49	1.00

TestAmerica Spokane

Page 23 of 43

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BLK1

Matrix: Water

Analysis Batch: 14I0134

Client Sample ID: Method Blank **Prep Type: Total** Prep Batch: 14I0134_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
n-Propylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3,5-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,3-Trichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
4-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
tert-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00

Blank Blank

	Diami	Diami				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		71.2 - 143	09/23/14 07:49	09/24/14 09:49	1.00
1,2-dichloroethane-d4	91.0		70 - 140	09/23/14 07:49	09/24/14 09:49	1.00
Toluene-d8	105		74.1 - 135	09/23/14 07:49	09/24/14 09:49	1.00
4-bromofluorobenzene	103		68.7 - 141	09/23/14 07:49	09/24/14 09:49	1.00

Lab Sample ID: 14I0134-BS1

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total

Analysis Batch: 14I0134	Spike	LCS	LCS				Prep Batch: 14I0134_P %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	10.0	11.0		ug/L		110	60 - 140
Chloromethane	10.0	10.2		ug/L		102	60 - 140
Vinyl chloride	10.0	10.4		ug/L		104	60 _ 140
Bromomethane	10.0	10.9		ug/L		109	60 - 140
Chloroethane	10.0	10.2		ug/L		102	60 - 140
Trichlorofluoromethane	10.0	9.91		ug/L		99.1	60 - 140
1,1-Dichloroethene	10.0	9.47		ug/L		94.7	78.1 - 155
Dichlorofluoromethane	10.0	9.75		ug/L		97.5	60 _ 140
Carbon disulfide	10.0	9.27		ug/L		92.7	60 - 140
Methylene chloride	10.0	11.2		ug/L		112	60 _ 140
Acetone	50.0	57.8		ug/L		116	60 _ 140
trans-1,2-Dichloroethene	10.0	9.25		ug/L		92.5	60 - 140
Methyl tert-butyl ether	10.0	9.70		ug/L		97.0	80.1 - 128
1,1,2-Trichlorotrifluoroethane	10.0	10.1		ug/L		101	60 - 140
1,1-Dichloroethane	10.0	10.1		ug/L		101	60 - 140

TestAmerica Spokane

Page 24 of 43

10/3/2014

Client: Geo Engineers - Spokane

Project/Site: 0504-101-01

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BS1 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total**

Analysis Batch: 14I0134	Spike	LCS	LCS				Prep Batch: 14I0134_F %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,2-Dichloroethene	10.0	10.1	-	ug/L		101	60 - 140
2,2-Dichloropropane	10.0	9.88		ug/L		98.8	60 - 140
Bromochloromethane	10.0	10.2		ug/L		102	60 - 140
Chloroform	10.0	9.55		ug/L		95.5	60 - 140
Carbon tetrachloride	10.0	9.96		ug/L		99.6	60 - 140
1,1,1-Trichloroethane	10.0	9.54		ug/L		95.4	60 - 140
2-Butanone	50.0	50.3		ug/L		101	60 - 140
Hexane	10.0	9.04		ug/L		90.4	60 - 140
1,1-Dichloropropene	10.0	9.95		ug/L		99.5	60 - 140
Benzene	10.0	9.38		ug/L		93.8	80 - 122
tert-Butanol	100	79.8		ug/L		79.8	60 - 140
1,2-Dichloroethane (EDC)	10.0	10.1		ug/L		101	63.9 _ 144
Trichloroethene	10.0	10.1		ug/L		101	74.8 - 123
Dibromomethane	10.0	9.80		ug/L		98.0	60 - 140
1,2-Dichloropropane	10.0	10.2		ug/L		102	60 - 140
Bromodichloromethane	10.0	8.94		ug/L		89.4	60 - 140
cis-1,3-Dichloropropene	10.0	9.51		ug/L		95.1	60 - 140
Toluene	10.0	9.53		ug/L		95.3	80 - 123
4-Methyl-2-pentanone	50.0	47.0		ug/L		94.0	60 - 140
trans-1,3-Dichloropropene	10.0	9.55		ug/L		95.5	60 - 140
Tetrachloroethene	10.0	10.4		ug/L		104	60 - 140
1,1,2-Trichloroethane	10.0	9.96		ug/L		99.6	60 - 140
Dibromochloromethane	10.0	9.62		ug/L		96.2	60 - 140
1,3-Dichloropropane	10.0	9.82		ug/L		98.2	60 - 140
1,2-Dibromoethane	10.0	10.2		ug/L		102	70 - 130
2-Hexanone	50.0	49.8		ug/L		99.6	60 - 140
Ethylbenzene	10.0	9.43		ug/L ug/L		94.3	80 ₋ 120
Chlorobenzene	10.0	9.63		ug/L		96.3	79.2 - 125
1,1,1,2-Tetrachloroethane	10.0	9.52				95.2	60 ₋ 140
	10.0	9.52		ug/L		95.2	80 ₋ 120
m,p-Xylene o-Xylene	10.0	9.30		ug/L		94.8	80 - 120
Styrene				ug/L			
•	10.0	9.95		ug/L		99.5	60 - 140
Bromoform	10.0	9.38		ug/L		93.8	60 - 140
Isopropylbenzene	10.0	9.16		ug/L		91.6	60 - 140
n-Propylbenzene	10.0	9.27		ug/L		92.7	60 - 140
1,1,2,2-Tetrachloroethane	10.0	9.86		ug/L		98.6	60 - 140
Bromobenzene	10.0	10.3		ug/L		103	60 - 140
1,3,5-Trimethylbenzene	10.0	9.33		ug/L		93.3	60 - 140
2-Chlorotoluene	10.0	9.69		ug/L		96.9	60 - 140
1,2,3-Trichloropropane	10.0	11.0		ug/L		110	60 - 140
4-Chlorotoluene	10.0	9.61		ug/L		96.1	60 - 140
tert-Butylbenzene	10.0	9.85		ug/L		98.5	60 - 140
1,2,4-Trimethylbenzene	10.0	9.55		ug/L		95.5	60 - 140
sec-Butylbenzene	10.0	9.38		ug/L		93.8	60 - 140
p-Isopropyltoluene	10.0	9.19		ug/L		91.9	60 - 140
1,3-Dichlorobenzene	10.0	9.61		ug/L		96.1	60 - 140
1,4-Dichlorobenzene	10.0	9.55		ug/L		95.5	60 - 140
n-Butylbenzene	10.0	8.92		ug/L		89.2	60 - 140

TestAmerica Spokane

10/3/2014

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Analysis Batch: 14I0134

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BS1 **Matrix: Water**

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 14I0134 P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichlorobenzene	10.0	9.72		ug/L		97.2	60 - 140	
1,2-Dibromo-3-chloropropane	10.0	9.98		ug/L		99.8	60 - 140	
Hexachlorobutadiene	10.0	9.82		ug/L		98.2	60 - 140	
1,2,4-Trichlorobenzene	10.0	9.68		ug/L		96.8	60 - 140	
Naphthalene	10.0	9.65		ug/L		96.5	62.8 - 132	
1,2,3-Trichlorobenzene	10.0	9.98		ug/L		99.8	60 - 140	

LCS LCS %Recovery Qualifier Limits 98.9 71.2 - 143 95.4 70 - 140

74.1 - 135

68.7 - 141

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

101

101

Lab Sample ID: 14I0134-BLK1

Matrix: Water

Surrogate

Toluene-d8

Dibromofluoromethane

1,2-dichloroethane-d4

4-bromofluorobenzene

Analysis Batch: 14I0134

Client Sample ID: Method Blank

Prep Type: Total Prep Batch: 14I0134_P

Blank Blank Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Gasoline Range Hydrocarbons ND 100 uq/L 09/23/14 07:49 09/24/14 09:49

Blank Blank

Qualifier Surrogate %Recovery Limits 4-bromofluorobenzene 103 68.7 - 141

Prepared

09/23/14 07:49

87.5

Dil Fac Analyzed 09/24/14 09:49 1.00

Dil Fac

1.00

Lab Sample ID: 14I0134-BS2

Matrix: Water

Analysis Batch: 14I0134

Gasoline Range Hydrocarbons

Client Sample ID: Lab Control Sample

80 - 120

Prep Type: Total Prep Batch: 14I0134_P

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

1000

875

ug/L

LCS LCS

Surrogate %Recovery Qualifier Limits 68.7 - 141 4-bromofluorobenzene 97.3

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082

Lab Sample ID: 14I0153-BLK1

Matrix: Water

Analysis Batch: 14I0153

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14I0153_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.100		ug/L		09/24/14 13:46	09/24/14 16:34	1.00
PCB-1221	ND		0.100		ug/L		09/24/14 13:46	09/24/14 16:34	1.00
PCB-1232	ND		0.100		ug/L		09/24/14 13:46	09/24/14 16:34	1.00
PCB-1242	ND		0.100		ug/L		09/24/14 13:46	09/24/14 16:34	1.00
PCB-1248	ND		0.100		ug/L		09/24/14 13:46	09/24/14 16:34	1.00

TestAmerica Spokane

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 8082A - Polychlorinated Biphenyls by EPA Method 8082 (Continued)

Lab Sample ID: 14I0153-BLK1 **Matrix: Water**

Analysis Batch: 14I0153

Client Sample ID: Method Blank **Prep Type: Total** Prep Batch: 14I0153 P

	Blank Blank							_
Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
PCB-1254	ND	0.100	u	ıg/L		09/24/14 13:46	09/24/14 16:34	1.00
PCB-1260	ND	0.100	u	ıg/L		09/24/14 13:46	09/24/14 16:34	1.00
PCB-1268	ND	0.100	u	ıg/L		09/24/14 13:46	09/24/14 16:34	1.00

Blank Blank Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac TCX 35.5 4.19 - 156 09/24/14 13:46 09/24/14 16:34 1.00 09/24/14 13:46 Decachlorobiphenyl 43.9 15.7 - 106 09/24/14 16:34 1.00

Lab Sample ID: 14I0153-BS1

Matrix: Water

Analysis Batch: 14I0153

Client Sample ID: Lab Control Sample
Prep Type: Total
Prep Batch: 14I0153_P

Spike LCS LCS %Rec. Analyte babbA Result Qualifier %Rec Limits Unit PCB-1016 23.1 - 140 2.00 1.76 ug/L 88.1 PCB-1260 2.00 1.71 85.3 21.9 - 139 ug/L

LCS LCS %Recovery Qualifier Surrogate Limits TCX 38.6 4.19 - 156 Decachlorobiphenyl 15.7 - 106 34.5

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Client Sample ID: Method Blank Lab Sample ID: 14I0135-BLK1 **Matrix: Water Prep Type: Total**

Analysis Batch: 14I0135

	Blank	Blank								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Naphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
2-Methylnaphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
1-Methylnaphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Acenaphthylene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Acenaphthene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Fluorene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Phenanthrene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Anthracene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Fluoranthene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Pyrene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Benzo (a) anthracene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Chrysene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Benzo (b) fluoranthene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Benzo (k) fluoranthene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Benzo (a) pyrene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Indeno (1,2,3-cd) pyrene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Dibenzo (a,h) anthracene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	
Benzo (ghi) perylene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00	

TestAmerica Spokane

Page 27 of 43

Prep Batch: 14I0135_P

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 14I0135-BLK1

Matrix: Water

Analysis Batch: 14I0135

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 14I0135_P

ı		Blank	Blank				
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Nitrobenzene-d5	102		32.7 - 135	09/23/14 08:20	09/24/14 18:22	1.00
ı	2-FBP	97.3		44.3 - 120	09/23/14 08:20	09/24/14 18:22	1.00
	p-Terphenyl-d14	94.5		59.5 - 154	09/23/14 08:20	09/24/14 18:22	1.00

Lab Sample ID: 14I0135-BS1

Matrix: Water

Analysis Batch: 14I0135

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14I0135_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	1.60	1.38		ug/L		86.2	27.8 - 143	
Fluorene	1.60	1.49		ug/L		92.9	59.2 - 120	
Chrysene	1.60	1.36		ug/L		85.0	69.1 _ 122	
Indeno (1,2,3-cd) pyrene	1.60	1.46		ug/L		91.1	56.1 - 135	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	85.8		32.7 - 135
2-FBP	81.1		44.3 - 120
p-Terphenyl-d14	69.0		59.5 - 154

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Blank Blank

Lab Sample ID: 14I0145-BLK1

Matrix: Water

Analysis Batch: 14I0145

Client Samp	le ID:	Method	Blank
-------------	--------	--------	-------

Prep Type: Total

Prep Batch: 14I0145 P

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.240		mg/L		09/24/14 08:30	09/24/14 13:22	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.400		mg/L		09/24/14 08:30	09/24/14 13:22	1.00
	Blank Blank		: Blank						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95.8		50 - 150				09/24/14 08:30	09/24/14 13:22	1.00
n-Triacontane-d62	107		50 150				00/24/14 08:30	00/24/14 13:22	1 00

Lab Sample ID: 14I0145-BS1

Matrix: Water

Analysis Batch: 14I0145

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 14I0145_P

%Rec. Limits

Spike LCS LCS Added Result Qualifier Unit Diesel Range Hydrocarbons 3.20 2.50 mg/L 78.0 50 - 150

LCS	LCS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	97.6		50 - 150
n-Triacontane-d62	109		50 ₋ 150

TestAmerica Spokane

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Manganese

Method: EPA 200.7 - Dissolved Metals by EPA 200 Series Methods

Lab Sample ID: 14I0196-BLK1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Dissolved** Analysis Batch: 14I0196 Prep Batch: 14I0196_P Blank Blank

mg/L

101

102

85 - 115

0.950

20

Result Qualifier MDL Unit RLD Dil Fac Analyte Prepared Analyzed 0.0100 ND 09/30/14 10:40 Manganese mg/L 10/01/14 18:47 1.00

Lab Sample ID: 14I0196-BS1 Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Dissolved** Analysis Batch: 14I0196 Prep Batch: 14I0196_P LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits

Lab Sample ID: 14I0196-MS1 Client Sample ID: GEI-MW-2-091614 **Matrix: Water Prep Type: Dissolved** Analysis Batch: 14I0196 Prep Batch: 14I0196_P

1.01

%Rec. Sample Sample Spike Matrix Spike Matrix Spike Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 1.00 1.01 101 75 _ 125 Manganese mg/L

1.00

Lab Sample ID: 14I0196-MSD1 Client Sample ID: GEI-MW-2-091614 **Matrix: Water Prep Type: Dissolved** Analysis Batch: 14I0196 Prep Batch: 14I0196 P %Rec. Sample Sample Spike Itrix Spike Dup Matrix Spike Dup RPD Result Qualifier Result Qualifier Analyte Added %Rec Limits Limit ND 1.00 1.02

Manganese mg/L 75 - 125 Lab Sample ID: 14I0196-DUP1 Client Sample ID: GEI-MW-1-091614 **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 14I0196 Prep Batch: 14I0196_P Sample Sample **Duplicate Duplicate** RPD Result Qualifier Limit Analyte Result Qualifier Unit D RPD Manganese 0.0422 R4 34.9 0.0297 mg/L 20

Method: EPA 245.1 - Total Metals by EPA 200 Series Methods

Lab Sample ID: 14I0148-BLK1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total** Analysis Batch: 14I0148 Prep Batch: 14I0148_P

Blank Blank

Result Qualifier RLAnalyte MDL Unit D Prepared Analyzed Dil Fac 0.200 Mercury ND ug/L 09/24/14 08:52 09/24/14 15:17

Lab Sample ID: 14I0148-BS1 Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total**

Analysis Batch: 14I0148 Prep Batch: 14I0148_P Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Mercury 2.00 2.12 ug/L 106 85 - 115

Mercury

TestAmerica Job ID: SXI0111

Method: EPA 245.1 - Total Metals by EPA 200 Series Methods (Continued)

Lab Sample ID: 14I0148-MS1				Client Sample ID: Matrix Spike
Matrix: Water				Prep Type: Total
Analysis Batch: 14I0148				Prep Batch: 14I0148_P
	Sample Sample	Spike	Matrix Spike Matrix Spike	%Rec.

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		3.33	3.47		ug/L		104	70 - 130	

Lab Sample ID: 14I0148-MSD1 Client Sample ID: Matrix Spike Duplicate **Matrix: Water Prep Type: Total** Analysis Batch: 14I0148 Prep Batch: 14I0148_P Sample Sample Spike Itrix Spike Dup Matrix Spike Dug %Rec. Result Qualifier Added Result Qualifier Limit Analyte Unit D %Rec Limits RPD Mercury ND 3.33 3.33 ug/L 100 70 - 130 18.2

Lab Sample ID: 14I0148-DUP1 **Client Sample ID: Duplicate Matrix: Water Prep Type: Total** Prep Batch: 14I0148_P Analysis Batch: 14I0148 Sample Sample RPD **Duplicate Duplicate** Analyte Result Qualifier Result Qualifier Unit **RPD** Limit

ND

ug/L

Method: EPA 300.0 - Anions by EPA Method 300.0

ND

Rlank Rlank

Lab Sample ID: 14I0103-BLK1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total** Analysis Batch: 14I0103 Prep Batch: 14I0103_P

	Bianik										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Nitrate-Nitrogen	ND		0.200		mg/L		09/17/14 07:52	09/17/14 14:39	1.00		
Sulfata	ND		0.500		ma/l		00/17/14 07:52	00/17/14 14:30	1 00		

Sulfate mg/L 09/17/14 07:52 09/17/14 14:39 Lab Sample ID: 14I0103-BS1 Client Sample ID: Lab Control Sample

Matrix: Water Analysis Batch: 14I0103 Prep Batch: 14I0103_P LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 5.00 4.85 97.0 90 - 110 Nitrate-Nitrogen mg/L

Sulfate 12.5 11.9 mg/L 95.0 90 - 110

Lab Sample ID: 14I0103-MS1 **Matrix: Water Prep Type: Total** Analysis Batch: 14I0103 Prep Batch: 14I0103_P

ı		Sample	Sample	Spike	Matrix Spike	Matrix Spik	е			%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Nitrate-Nitrogen	0.240		5.00	5.49		mg/L		105	80 - 120	
	Sulfate	27.5		12.5	39.2		mg/L		93.4	80 - 120	

Lab Sample ID: 14I0103-MSD1							Client Sa	ample II	D: Matrix S	pike Dup	licate
Matrix: Water									Pro	ep Type:	Total
Analysis Batch: 14I0103									Prep Bat	ch: 1410	103_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	e Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate-Nitrogen	0.240		5.00	5.50		mg/L		105	80 - 120	0.200	12.1

TestAmerica Spokane

Page 30 of 43

17.1

Client Sample ID: Matrix Spike

Client Sample ID: Duplicate

2 80

15.7

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: EPA 300.0 - Anions by EPA Method 300.0 (Continued)

Lab Sample ID: 14I0103-MSD1 Client Sample ID: Matrix Spike Duplicate **Matrix: Water Prep Type: Total** Analysis Batch: 14I0103 Prep Batch: 14I0103 P Sample Sample Spike Itrix Spike Dup Matrix Spike Dup %Rec. **RPD**

Analyte Result Qualifier Added Result Qualifier Unit RPD Limit D %Rec Limits Sulfate 27.5 12.5 39 1 93.3 80 - 120 10 mg/L 0.056

Lab Sample ID: 14I0103-DUP1

Matrix: Water

Sulfate

Prep Type: Total Analysis Batch: 14I0103 Prep Batch: 14I0103 P Sample Sample **Duplicate Duplicate** RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit 0.240 0.260 Nitrate-Nitrogen mg/L 8.00 13.1 27.5 26.7

mg/L

Method: SM 2320B - Conventional Chemistry Parameters by APHA/EPA Methods

Lab Sample ID: 14I0171-BLK1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total** Analysis Batch: 14I0171 Prep Batch: 14I0171_P

Blank Blank

Result Qualifier RL MDL Analyte Unit Prepared Analyzed Dil Fac **Total Alkalinity** ND 4.00 mg/L 09/26/14 10:19 09/26/14 16:09 1.00

Lab Sample ID: 14I0171-BS1 Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total**

Analysis Batch: 14I0171 Prep Batch: 14I0171_P Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits **Total Alkalinity** 500 490 mg/L 98.0 90 - 110

Lab Sample ID: 14I0171-DUP1 **Client Sample ID: Duplicate Prep Type: Total**

Matrix: Water

Analysis Batch: 14I0171

Prep Batch: 14I0171_P RPD Sample Sample **Duplicate Duplicate** Analyte Result Qualifier Result Qualifier Unit RPD Limit Total Alkalinity 70.0 72.5 mg/L 3.51 10

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: 194370-29 Client Sample ID: Method Blank **Prep Type: Total**

Matrix: Water Analysis Batch: 193503

Blank Blank Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 0.00200 09/26/14 13:54 Arsenic ND mg/L 09/30/14 16:54 Cadmium ND 0.00100 09/26/14 13:54 mg/L 09/30/14 16:54 Chromium NΠ 0.00200 mg/L 09/26/14 13:54 09/30/14 16:54 Lead ND 0.00200 mg/L 09/26/14 13:54 09/30/14 16:54

TestAmerica Spokane

Prep Batch: 193503 P

2

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 194370-30					Client	Sample	ID: Lab Contr	ol Sample
Matrix: Water							Prep T	ype: Total
Analysis Batch: 193503							Prep Batch:	193503_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.100	0.1031		mg/L		103	85 _ 115	
Cadmium	0.100	0.1045		mg/L		105	85 ₋ 115	
Chromium	0.100	0.1012		mg/L		101	85 _ 115	
Lead	0.100	0.1067		mg/L		107	85 ₋ 115	

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: 194128-4							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Typ	e: Tota
Analysis Batch: 194128								Prep Batch: 19	4128_F
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methane	ND		0.00500		mg/L		09/30/14 11:13	09/30/14 11:13	
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Acetylene (Surr)	105		62 - 124				09/30/14 11:13	09/30/14 11:13	

Matrix: Water									Prep Type: Total	
Analysis Batch: 194128									Prep Batch: 194128_P	
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methane			0.279	0.2943		mg/L		106	80 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Acetylene (Surr)	117		62 - 124							

Lab Sample ID: 194128-6						Clie	nt Sam	ple ID: I	Lab Contro	l Sampl	e Dup
Matrix: Water									Pre	p Type:	Total
Analysis Batch: 194128									Prep Bat	ch: 194	128_P
•			Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Methane			0.279	0.2997		mg/L		108	80 - 120	2	33
	LCS Dup	LCS Dup									
Surrogate	%Recovery	Qualifier	Limits								
Acetylene (Surr)	112		62 - 124								
- Lab Sample ID: 194128-8								Client	Sample ID	: Matrix	Spike
Matrix: Water									Pre	p Type:	Total
Analysis Batch: 194128									Prep Bat	ch: 194	128_P
•	Sample	Sample	Spike	Matrix Spike	Matrix Spik	е			%Rec.		_
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Methane			0.279	0.2473		mg/L		89	46 - 142		

TestAmerica Spokane

Limits

62 - 124

Matrix Spike Matrix Spike

%Recovery Qualifier

110

Surrogate

Acetylene (Surr)

QC Sample Results

Client: Geo Engineers - Spokane

TestAmerica Job ID: SXI0111

Project/Site: 0504-101-01

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: 194128-9

Matrix: Water

Analysis Batch: 194128

Sample Sample Sample Spike Itrix Spike Dup Matrix Spike Duplicate

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total

Prep Batch: 194128_P

RPD

Matrix Spike Dup

Matrix Spike Dup

Matrix Spike Dup

Matrix Spike Duplicate

Prep Type: Total

RPD

Analyte Result Qualifier Added Result Qualifier D %Rec Limits RPD Limit 0 30 Methane 0.279 0.2484 89 46 - 142

1

6

Client Sample ID: GEI-MW-1-091614

Date Collected: 09/16/14 10:19 Date Received: 09/17/14 08:25 Lab Sample ID: SXI0111-01

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14I0103_P	09/17/14 10:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410103	09/17/14 11:47	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	14I0171_P	09/26/14 10:19	MS	TAL SPK
Total	Analysis	SM 2320B		1.00	1410171	09/26/14 16:09	MS	TAL SPK

Client Sample ID: GEI-MW-2-091614

Date Collected: 09/16/14 12:18

Date Received: 09/17/14 08:25

Lab Sample ID: SXI0111-02

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14I0103_P	09/17/14 10:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410103	09/17/14 12:31	CBW	TAL SPK

Client Sample ID: GEI-MW-3-091614

Date Collected: 09/16/14 09:13

Date Received: 09/17/14 08:25

Lab Sample ID: SXI0111-03

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14I0103_P	09/17/14 10:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410103	09/17/14 12:02	CBW	TAL SPK

Client Sample ID: HWA-MW-1-091614

Date Collected: 09/16/14 11:16

Date Received: 09/17/14 08:25

Lab Sample ID: SXI0111-04	Lab S	Samp	le ID:	SXI01	11-04
---------------------------	-------	------	--------	--------------	-------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14I0103_P	09/17/14 10:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410103	09/17/14 12:16	CBW	TAL SPK

Client Sample ID: MW-Dup-091614

Date Collected: 09/16/14 08:00

Date Received: 09/17/14 08:25

.ab Sample I	D:	SXI01	11-05
--------------	----	--------------	-------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14I0103_P	09/17/14 10:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410103	09/17/14 12:45	CBW	TAL SPK

TestAmerica Spokane

Client Sample ID: GEI-MW-1-091614

Lab Sample ID: SXI0131-01 Date Collected: 09/16/14 10:19

Matrix: Water

Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 15:28	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 15:28	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.964	14I0153_P	09/24/14 13:46	IAB	TAL SPK
Total	Analysis	EPA 8082A		1.00	1410153	09/24/14 17:16	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		1.03	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 23:57	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.957	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 15:42	NMI	TAL SPK
Dissolved	Prep	EPA 3005A		1.00	14I0196_P	09/30/14 10:40	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	1410196	10/01/14 18:49	ICP	TAL SPK
Total	Prep	EPA 200 Series		1.00	14I0148_P	09/24/14 08:52	JSP	TAL SPK
Total	Analysis	EPA 245.1		1.00	1410148	09/24/14 15:55	ZZZ	TAL SPK
Total	Prep	200.8			193503_P	09/26/14 13:54		TAL NSH
Total	Analysis	200.8		1	193503	09/30/14 17:30	JBD	TAL NSH
Total	Analysis	RSK-175		1	194128	09/30/14 12:47	JML	TAL NSH
Total	Prep	NA			194128_P	09/30/14 12:47		TAL NSH

Client Sample ID: GEI-MW-2-091614

Date Collected: 09/16/14 12:18

Date Received: 09/19/14 09:50

Lab Sample ID:	SXI0131-02
	Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 15:50	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 15:50	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.983	14I0153_P	09/24/14 13:46	IAB	TAL SPK
Total	Analysis	EPA 8082A		1.00	1410153	09/24/14 17:38	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.996	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/25/14 00:22	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.966	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 16:06	NMI	TAL SPK
Dissolved	Prep	EPA 3005A		1.00	14I0196_P	09/30/14 10:40	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	1410196	10/01/14 18:55	ICP	TAL SPK
Total	Prep	EPA 200 Series		1.00	14I0148_P	09/24/14 08:52	JSP	TAL SPK
Total	Analysis	EPA 245.1		1.00	1410148	09/24/14 15:57	ZZZ	TAL SPK
Total	Prep	200.8			193503_P	09/26/14 13:54		TAL NSH
Total	Analysis	200.8		1	193503	09/30/14 17:35	JBD	TAL NSH
Total	Analysis	RSK-175		1	194128	09/30/14 12:50	JML	TAL NSH
Total	Prep	NA			194128 P	09/30/14 12:50		TAL NSH

Lab Sample ID: SXI0131-03

Lab Sample ID: SXI0131-04

Matrix: Water

Matrix: Water

Client Sample ID: GEI-MW-3-091614 Date Collected: 09/16/14 09:13

Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 16:13	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 16:13	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.967	14I0153_P	09/24/14 13:46	IAB	TAL SPK
Total	Analysis	EPA 8082A		1.00	1410153	09/24/14 17:59	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		1.00	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/25/14 00:46	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.965	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 16:30	NMI	TAL SPK
Dissolved	Prep	EPA 3005A		1.00	14I0196_P	09/30/14 10:40	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	1410196	10/01/14 19:16	ICP	TAL SPK
Total	Prep	EPA 200 Series		1.00	14I0148_P	09/24/14 08:52	JSP	TAL SPK
Total	Analysis	EPA 245.1		1.00	1410148	09/24/14 16:00	ZZZ	TAL SPK
Total	Prep	200.8			193503_P	09/26/14 13:54		TAL NSH
Total	Analysis	200.8		1	193503	09/30/14 17:41	JBD	TAL NSH
Total	Analysis	RSK-175		1	194128	09/30/14 12:54	JML	TAL NSH
Total	Prep	NA			194128_P	09/30/14 12:54		TAL NSH

Client Sample ID: HWA-MW-1-091614

Date Collected: 09/16/14 11:16

Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 16:35	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 16:35	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.962	14I0153_P	09/24/14 13:46	IAB	TAL SPK
Total	Analysis	EPA 8082A		1.00	1410153	09/25/14 09:08	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		1.00	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/25/14 01:11	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		1.29	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 16:53	NMI	TAL SPK
Dissolved	Prep	EPA 3005A		1.00	14I0196_P	09/30/14 10:40	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	1410196	10/01/14 19:21	ICP	TAL SPK
Total	Prep	EPA 200 Series		1.00	14I0148_P	09/24/14 08:52	JSP	TAL SPK
Total	Analysis	EPA 245.1		1.00	1410148	09/24/14 16:02	ZZZ	TAL SPK
Total	Prep	200.8			193503_P	09/26/14 13:54		TAL NSH
Total	Analysis	200.8		1	193503	09/30/14 17:56	JBD	TAL NSH
Total	Prep	200.8	RE1		193503_P	09/26/14 13:54		TAL NSH
Total	Analysis	200.8	RE1	1	193503	10/01/14 19:07	JBD	TAL NSH
Total	Analysis	RSK-175		1	194128	09/30/14 13:10	JML	TAL NSH
Total	Prep	NA			194128_P	09/30/14 13:10		TAL NSH

TestAmerica Spokane

Page 36 of 43

Lab Chronicle

TestAmerica Job ID: SXI0111

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

Client Sample ID: MW-Dup-091614

Date Collected: 09/16/14 08:00

Date Received: 09/19/14 09:50

Lab Sample ID: SXI0131-05

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 16:58	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 16:58	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.964	14I0153_P	09/24/14 13:46	IAB	TAL SPK
Total	Analysis	EPA 8082A		1.00	1410153	09/24/14 18:41	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.997	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/25/14 01:35	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.952	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 17:17	NMI	TAL SPK
Dissolved	Prep	EPA 3005A		1.00	14I0196_P	09/30/14 10:40	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	1410196	10/01/14 19:24	ICP	TAL SPK
Total	Prep	EPA 200 Series		1.00	14I0148_P	09/24/14 08:52	JSP	TAL SPK
Total	Analysis	EPA 245.1		1.00	1410148	09/24/14 16:04	ZZZ	TAL SPK
Total	Prep	200.8			193503_P	09/26/14 13:54		TAL NSH
Total	Analysis	200.8		1	193503	09/30/14 18:01	JBD	TAL NSH
Total	Prep	200.8	RE1		193503_P	09/26/14 13:54		TAL NSH
Total	Analysis	200.8	RE1	1	193503	10/01/14 19:12	JBD	TAL NSH
Total	Analysis	RSK-175		1	194128	09/30/14 13:15	JML	TAL NSH
Total	Prep	NA			194128_P	09/30/14 13:15		TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01

TestAmerica Job ID: SXI0111

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Dat
A2LA	A2LA		NA: NELAP & A2LA	12-31-15
A2LA	ISO/IEC 17025		0453.07	12-31-15
Alaska (UST)	State Program	10	UST-087	10-31-14
Arizona	State Program	9	AZ0473	05-05-15
Arkansas DEQ	State Program	6	88-0737	04-25-15
California	NELAP	9	1168CA	10-31-14
Connecticut	State Program	1	PH-0220	12-31-15
Florida	NELAP	4	E87358	06-30-15
Illinois	NELAP	5	200010	12-09-14
lowa	State Program	7	131	04-01-16
Kansas	NELAP	7	E-10229	10-31-14
Kentucky (UST)	State Program	4	19	06-30-15
Louisiana	NELAP	6	30613	06-30-15
Maryland	State Program	3	316	03-31-15
Massachusetts	State Program	1	M-TN032	06-30-15
Minnesota	NELAP	5	047-999-345	12-31-14
Mississippi	State Program	4	N/A	06-30-15
Montana (UST)	State Program	8	NA	02-24-20
Nevada	State Program	9	TN00032	07-31-15
New Hampshire	NELAP	1	2963	10-09-14
New Jersey	NELAP	2	TN965	06-30-15
New York	NELAP	2	11342	03-31-15
North Carolina (WW/SW)	State Program	4	387	12-31-14
North Dakota	State Program	8	R-146	06-30-14
Ohio VAP	State Program	5	CL0033	10-16-15
Oklahoma	State Program	6	9412	08-31-15
Oregon	NELAP	10	TN200001	04-29-15
Pennsylvania	NELAP	3	68-00585	06-30-15
Rhode Island	State Program	1	LAO00268	12-30-14
South Carolina	State Program	4	84009 (001)	02-28-15
South Carolina (DW)	State Program	4	84009 (002)	02-23-17
Tennessee	State Program	4	2008	02-23-17
Texas	NELAP	6	T104704077	08-31-15
USDA	Federal		S-48469	10-30-16
Utah	NELAP	8	TN00032	07-31-15
Virginia	NELAP	3	460152	06-14-15
Washington	State Program	10	C789	07-19-15
West Virginia DEP	State Program	3	219	02-28-15
Wisconsin	State Program	5	998020430	08-31-15
Wyoming (UST)	A2LA	8	453.07	12-31-15

TestAmerica Spokane

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-01 TestAmerica Job ID: SXI0111

/lethod	Method Description	Protocol	Laboratory
PA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
WTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
PA 8082A	Polychlorinated Biphenyls by EPA Method 8082		TAL SPK
PA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
PA 200.7	Dissolved Metals by EPA 200 Series Methods		TAL SPK
PA 245.1	Total Metals by EPA 200 Series Methods		TAL SPK
EPA 300.0	Anions by EPA Method 300.0		TAL SPK
SM 2320B	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK
200.8	Metals (ICP/MS)		TAL NSH
RSK-175	Dissolved Gases (GC)		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980 TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

3

4

5

0

8

9

9

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 253-922-2310 FAX 922-5047 11922 E. First Ave., Spokane WA 99206-5302 509-924-9200 FAX 924-9290 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 503-906-9200 FAX 906-9210 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

Work Order #SXII) CHAIN OF CUSTODY REPORT INVOICE TO: Greo Engineers in Business Days * Slather @ Goodsineeri.com Organic & Inorganic Analyses PHONE: 509-363-3125 FAX: 509-363-3126 P.O. NUMBER: 4 3 2 PROJECT NAME: Trolley Barn PRESERVATIVE PROJECT NUMBER: 0504 - 101 -01 REQUESTED ANALYSES Turnaround Requests less than standard may incur Rush Charges SAMPLED BY: Jup 7 EJ195 MATRIX SAMPLING CLIENT SAMPLE (W, S, O) CONT. COMMENTS WOD DATE/TIME IDENTIFICATION GEI-MU-1-091614 9/16/14 GEI-MU-2091614 9/16/14 1218 GEI - MW-3-091619 9/16/19 0913 4 HWR-MW-1-091614 9/16/14 5 MW-DOP -09/6/4 9/16/14 9/16/14 DATE: RECEIVED BY TIME: RECEIVED BY DATE: RELEASED BY: PRINT NAME: PRINT NAME: TEMP: ADDITIONAL REMARKS:

TAL-1000 (0612)

10

ဖ

TestAmerica Spokane Sample Receipt Form

Work Order #: WTOW Client: (18) Eminu	us_			Project: Trolly Bam
Date/Time Received: 9-1714 8:25	ву.СЅ			
Samples Delivered By: Shipping Service Courier Client	Other	<u> </u>		
List Air Bill Number(s) or Attach a photocopy of the Air Bill:		4		
Receipt Phase	Yes	No	NA	Comments
Were samples received in a cooler:	Χ			
Custody Seals are present and intact:	<i>(</i>		X	
Are CoC documents present:	X			
Necessary signatures:	X			
Thermal Preservation Type: Blue Ice Gel Ice Real Ice Temperature: Circle one Serial #122	Dry Ice 2208348 K	□None	□Other: Serial # 11	1874910 IR Gun 2)(acceptance criteria 0-6
Temperature out of range: Not enough ice lee melted Magain Phase (1911) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	//in 4hrs of	collection	□NA. [Other:
Date/Time: 1 14 830 By.	Yos	No	NA.	Comments
Are sample labels affixed and completed for each container	_X			
Samples containers were received intact:	Υ_			
Do sample IDs match the CoC	×			
Appropriate sample containers were received for tests requested	<u></u>			
Are sample volumes adequate for tests requested	У			
Appropriate preservatives were used for the tests requested	メ			
pH of inorganic samples checked and is within method specification	X			
Are VOC samples free of bubbles >6mm (1/4" diameter)	*			
Are dissolved parameters field filtered	· · · · · · · · · · · · · · · · · · ·		λ	
Do any samples need to be filtered or preserved by the lab			×	
Does this project require quick turnaround analysis			X	
Are there any short hold time tests (see chart below)	X			Nitrate
Are any samples within 2 days of or past expiration		χ		
Was the CoC scanned	X			
Were there Non-conformance issues at login		X		
If yes, was a CAR generated #			X	

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317
11922 E. First Ave., Spokane WA 99206-5302
9405 SW Nimbus Ave., Beaverton, OR 97008-7145
2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
575-63-9200
FAX 902-2010
FAX 906-9210
907-563-9200
FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #SXIII | 2| TURNAROUND REQUEST INVOICE TO: Greo Engineers REPORT TO: Scott Lather Slather @geoengineer, com in Business Days * Organic & Inorganic Analyses 5 4 3 2 1 <1 Spokene WA 99207 PHONE: 509-363-3125 FAX: 509-363-3126 P.O. NUMBER: 4 3 2 1 <1 PRESERVATIVE PROJECT NAME: Toiley Bosa PROJECT NUMBER: 0504-10(-01 REQUESTED ANALYSES Turnaround Requests less than standard may incur Rush Charges (A) JUNTPH: DX Methon SAMPLED BY: Jw ? SWAPH PKB4 PAMS LOCATION/ MATRIX #OF SAMPLING CLIENT SAMPLE COMMENTS WOID (W, S, O) CONT. DATE/TIME IDENTIFICATION 10 4/16/14 GEI-MW-1-091614 1019 1218 GEI-MW-2-091614 0913 3 GEI -MW-3-091614 1116 4 HWA-MW-1-091614 0800 MW-DUP-09614 DATE: 9/19/14 RECEIVED BY: RELEASED BY: FIRM: A TIME PRINT NAME: 0950 DATE: RECEIVED BY: RELEASED BY: TIME: FIRM: PRINT NAME: FIRM: PRINT NAME: ADDITIONAL REMARKS: TAL-1000 (0612)

10/3/2014

Page 42 of 43

м	
	ш.
-	

Work Order #SXTD13) Client 180 Fraingers			Project: Trolly Barn	
Date/Time Received: 9-19-14 9:50	By:(S			
Samples Delivered By: Shipping Service Courier Gillen	tOther	"		
List Air Bill Number(s) or Attach a photocopy of the Air Bill:		T.		
Receipt Phase	Yes	No	NA	Comments
Were samples received in a cooler:	8			
Custody Seals are present and intact:			<u> </u>	
Are CoC documents present:	<u>></u>			
Necessary signatures:	<u></u>			
Thermal Preservation Type: ☐Blue Ice ☐Gel Ice ☐Real Ice Temperature; 2.6	Dry Ice 22208348 K	None eyring IR	_Other:_ Serial # 11	1874910 IR Gun 2)(acceptance criteria 0-6
	w/in 4hrs of	collection	□NA [Other:
Log-in Phase Date/Time: 9-19-14 11:20 By: 🖒	Yes	No	NA	Comments
Are sample labels affixed and completed for each container	X			
Samples containers were received intact:	X			
Do sample IDs match the CoC	<u> </u>			
Appropriate sample containers were received for tests requested	X			
Are sample volumes adequate for tests requested	×			
Appropriate preservatives were used for the tests requested	X			
pH of inorganic samples checked and is within method specification	X			
Are VOC samples free of bubbles >6mm (1/4" diameter)	<u>X</u>			
Are dissolved parameters field filtered		X	'	Need to be filtered
Do any samples need to be filtered or preserved by the lab	X			W/HNO2
Does this project require quick turnaround analysis		X		
Are there any short hold time tests (see chart below)		X		
Are any samples within 2 days of or past expiration		Х		
Was the CoC scanned	X			
Were there Non-conformance issues at login		X	_	

TestAmerica Spokane Sample Receipt Form

24 hours or less	48 hours	7 days		
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS		
Chromium +6	Nitrate/Nitrite	Sulfide		
	Orthophosphate	Aqueous Organic Prep		

If yes, was a CAR generated #_

Form No. SP-FORM-SPL-002 12 December 2012

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Washington State Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Trolley Barn site located at 404 South 3rd Street, Yakima, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with Ecology and generally accepted environmental practices in this area at the time this report was prepared.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Environmental Regulations are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

No ESA can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable, but recognize that separating logs from the report can elevate risk.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Geoenvironmental Reports Should Not be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service?

Please let us know by visiting **www.geoengineers.com/feedback**.

www.geoengineers.com

