

BP Tranche 2 Project

Limited Site Investigation Report

Former ARCO Facility No. 00862 Manhole 34 Facility Vicinity of North 6th Street and Yakima Valley Highway, Sunnyside, WA

October 7, 2011

thin honom

Kevin Freeman, PG, RG Principal Hydrogeologist

Thomas F. Mullen, LHG Senior Hydrogeologist

2011 Limited Site Investigation Report

Manhole 34 Facility Vicinity of North 6th Street and Yakima Valley Highway, Sunnyside, WA

Prepared for:

BP West Coast Products, LLC

Prepared by:
ARCADIS
2310 N. Molter Road
Suite 101
Liberty Lake, Washington 99019
Tel 509-535-725
Fax 509-535-7361

Our Ref.: GP09BPNA.WA59

Date: October 7, 2011

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

1.	Introdu	ıction		5
2.	Proper	ty Infor	mation	5
	2.1	Proper	ty Description & Use	5
3.	Geolog	gy & Hy	drogeology	6
4.	Discov Action		Summary of Previous Site Investigations and Remedial	7
5.	Potent	ial Cons	stituents of Concern	8
6.	Subsu	rface In	vestigation	9
	6.1	North F	Recovery Trench Range-of-Influence Testing	9
	6.2	Hydrau	ulic Property Testing	10
	6.3	Soil Bo	oring Installation	11
		6.3.1	Soil Sample Collection and Analysis	15
		6.3.2	Soil Sample Analytical Results	17
	6.4	Ground	dwater Sample Collection and Analysis	18
		6.4.1	Groundwater Sample Analysis	18
		6.4.2	Groundwater Sample Analytical Results	19
	6.5	Manag	ement of Investigation Derived Wastes	19
7.	Timelir	ne for N	atural Attenuation	20
	7.1	BIOSC	REEN Model Parameters	20
		7.1.1	Hydrogeology	20
		7.1.2	Dispersion	21
		7.1.3	Adsorption	21
		7.1.4	Biodegradation	21
		7.1.5	Soluble Mass	21
		7.1.6	General	21

ARCADIS 2011 Limited Site **Investigation Report** Manhole 34 Facility Sunnyside, WA 8. Current Petroleum Hydrocarbon Impacts 22 8.1 Soil 22 8.2 Groundwater 22 8.3 Surface Waters 22 22 8.4 **Ecological and Natural Resources** 8.5 Cultural and Archaeological Resources 23 9. Conclusions 23 10. References 24 **Tables** Table 1 Select Soil Sampe Analytical Data Table 2 Soil Polycyclic Aromatic Hydrocarbons Analytical Data Table 3 Soil Volatile and Extractable Hydrocarbons Analytical Data Table 4 Select Groundwater Analytical Data Table 5 Groundwater Polycyclic Aromatic Hydrocarbons Analytical Data Table 6 Groundwater Volatile and Extractable Hydrocarbons Analytical Data

Figures

Figure 1	Site Location
Figure 2	Site Plan with Investigation Area
Figure 3	Soil Boring Locations
Figure 4	Inferred Petroleum Hydrocarbon Impacted Area
Figure 5	Potentiometric Surface – Feburary 2011
Figure 6	LPH Thickness Contour Map – Feburary 2011
Figure 7	Plume and Source Area for Bioscreen Calculation

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

Appendices

- A Range of Infulence Testing Results and Field Data
- B Hydraulic Property Testing Results and Field Data
- C Soil Boring Logs
- D Soil Analytical Results
- E Groundwater Analytical Results
- F Bioscreen Outputs and Supporting Data

Acronyms and Abbreviations

ARCADIS U.S., Inc.
bgs below ground surface
BMP best management practice

BTEX benzene, toluene, ethylbenzene, total xylenes

btoc below top of casing
CAP cleanup action plan
cfm cubic feet per minute

cy cubic yards

COC constituents of concern CSM conceptual site model

CL cleanup levels

Ecology Washington State Department of Ecology

DPVE dual phase vacuum extraction

DRO diesel range organics
EDB 1,2-dibromoethane
EDC 1,2-dichloroethane
FA Further Action
ft/ft foot per foot

GRO gasoline range organics
HSA hollow stem auger

HO heavy oil

IDW investigation-derived waste

lbs pounds

LNAPL light nonaqueous phase liquids
LUST leaking underground storage tank

ARCADIS

2011 Limited Site
Investigation Report

Manhole 34 Facility Sunnyside, WA

MSL mean sea level

mg/kg milligrams per kilogram
MTBE methyl tertiary-butyl ether
MTCA Model Toxics Control Act

NFA No Further Action

NWTPH Northwest Total Petroleum Hydrocarbons

O&M operation and maintenance
PID photoionization detector
PQL Practical Quantitation Limit

PVC polyvinyl chloride RP responsible parties

Site Manhole 34 Facility, North 6th Street and Yakima Valley

Highway, Sunnyside, Washington Standard Industrial Classification

SIC Standard Industrial Classification
SVE soil vapor extraction system
TEE Terrestrial Ecological Evaluation
TEH total extractable hydrocarbons

μg/L micrograms per liter

USCS Unified Soil Classification System

USGS U.S. Geologic Society

USEPA U.S. Environmental Protection Agency

UST underground storage tank VCP Voluntary Cleanup Program

WADNR Washington State Department of Natural Resources

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

1. Introduction

On behalf of BP West Coast Products, LLC, ARCADIS U.S., Inc. (ARCADIS) has prepared this Limited Site Investigation Report for Manhole 34 Facility located in the Vicinity of North 6th Street and Yakima Valley Highway, Sunnyside, WA. This Report presents a thorough record of activities undertaken by ARCADIS as outlined in the Site Review Work Plan (the "Work Plan"). The Work Plan was drafted in response to the October 25, 2010 Comprehensive Review Request submitted to ARCADIS and BP by Mr. Norm Hepner of the Washington State Department of Ecology (Ecology).

2. Property Information

The Site is located in the vicinity of Yakima Valley Highway and North 6th Avenue in Sunnyside, Washington (**Figure 1**). The Site currently consists of three private properties and portions of Yakima Valley Highway (U.S. Highway 12) and North 6th Avenue in the vicinity of these properties.

2.1 Property Description & Use

The Site currently consists of three private properties and portions of Yakima Valley Highway (U.S. Highway 12) and North 6th Avenue in the vicinity of these properties. The private properties associated with the facility are:

- Yakima County Parcels No. 221025-21425 and 221025-21439. Sunnyside Food Mart (former Jackpot Food Mart) at 600 Yakima Valley Highway. Currently owned by Jugesh & Bhawana Kumar and Joginder & Irene Kumar.
- Yakima County Parcel No. 221025-21452. Vacant undeveloped lot (location of former Sunnyside Tire Center) at 604 Yakima Valley Highway. Currently owned by La Mas Barata Properties LLC.
- Yakima County Parcel No. 221025-21454. Vacant paved lot (location of former R&R Tires) at 601 Yakima Valley Highway. Currently owned by Marisol Madriz.

A number of Responsible Parties (RPs) were associated with the Site under the May 4, 2004 Consent Decree (No. 04201467) between the RPs and Ecology. Through various settlements, the RPs undertaking the remedial efforts for the Site (the "Manhole 34 Coordinating Group") were Atlantic Richfield Company (ARCO), ChevronTexaco Corporation, and Time Oil Company. ARCO was associated with past operations at the

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

Sunnyside Tire Center property, ChevronTexaco Corporation was associated with past operations at the R&R Tires property, and Time Oil Company was associated with past operations at the Jackpot Food Mart property. Through assorted acquisitions and/or sales, responsibility for the ARCO liability has transferred to BP West Coast Products Company (BP) and responsibility for the Time Oil Company liability has transferred to Pacific Convenience & Fuels LLC.

An additional property at 613 Yakima Valley Highway (Yakima County Parcel No. 221025-21428) was determined to be impacted by facility operations but not a contributor or RP. This property is currently occupied by the China Wok Restaurant. The property is currently owned by Anna Yit Chi.

The former Sunnyside Tire Center property (the "STC Property") is currently a vacant unpaved lot. The Sunnyside Food Mart (the "Food Mart") consists of a convenience store, canopy, and three retail fuel dispensers on one dispenser island. Associated with the fuel dispensers are one 6,000-gallon gasoline underground storage tank (UST), one 8,000-gallon gasoline UST, and one 12,000-gallon gasoline UST. The former R&R Tires property (the "R&R Property") is currently an undeveloped paved lot used as a used automobile dealership. A mobile office facility is located on the R&R Property. A complete site investigation history was presented in the November 9, 1994 "Interim Actions and Remedial Investigation/Feasibility Study, Manhole 34 Facility, Sunnyside Washington" as prepared by SEACOR International Inc. (SEACOR, 1994) A facility site plan is presented as **Figure 2**.

3. Geology & Hydrogeology

The Washington State Department of Natural Resources Map *Geologic Map of the East Half of the Toppenish 1:10,0000 Quadrangle, Washington* compiled by J. Shuster in 1994 shows the Site to be situated in Quaternary-age alluvium deposits. These deposits are stated to be directly related to the Yakima River, currently located southwest of the Site.

Previous subsurface investigations at the Site, including borehole and monitoring well installation, have shown the shallow subsurface sediments to be composed of stratified alluvial sediments. Grain sizes encountered range from silt to gravel with silt content decreasing with depth. Near-surface soils are characterized as silt and sandy silt; depths greater than 15-feet are characterized as silty sand to sand. Gravels were encountered at depths greater than 40 feet.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

Topography at the Site is generally flat, with an elevation of approximately 750 feet above mean sea level (amsl). Measured groundwater elevations indicate the potentiometric surface at the facility ranges from approximately 738 to 740 feet amsl, with little seasonable variation. During the summer months, the water table elevation increases; this increase is likely to due to the effect of seasonal irrigation. Groundwater flow direction is difficult to define for the Site due to the presence of numerous utilities in conjunction with relatively shallow groundwater depths. The general site groundwater flow direction is calculated as northeast to southwest, towards the Yakima River, at a hydraulic gradient of 0.006 foot per foot. Previous hydraulic testing by SEACOR estimated a hydraulic conductivity of 3.3 × 10⁻³ feet per minute (approximately 4.7 feet per day) in the vicinity of MW-5.

4. Discovery and Summary of Previous Site Investigations and Remedial Action

In 1989, the presence of light nonaqueous phase liquid (LNAPL) petroleum hydrocarbon ("free-phase" hydrocarbon) was discovered by Ecology and city of Sunnyside officials following reports of gasoline odors in the site area. Following the LNAPL discovery, numerous subsurface investigations were conducted to determine the extent and source of hydrocarbon contamination. Sixty-eight (68) soil borings were advanced for investigative purposes, with 26 being completed as monitoring wells. The result of these investigative efforts was the determination that shallow groundwater and site soils were impacted by dissolved and free phase hydrocarbons. A Cleanup Action Plan (CAP) was adopted August 6, 2001. The CAP dictates compliance monitoring, and removal of LNAPL through Dual Phase Vacuum Extraction (DPVE) at selected points within recovery trenches, monitoring wells, storm water access points (manholes), and recovery wells. Quarterly DPVE operations have been ongoing since adoption of the CAP.

ARCADIS became the Implementing Consultant for the Site in January 2010. Work completed by ARCADIS since that time is in accordance with the Consent Decree for the Site. Cleanup action activities performed by ARCADIS are currently performed according to the Ecology-accepted CAP. The CAP specifies a schedule of biannual compliance monitoring and quarterly DPVE. DPVE uses a vacuum-assisted pumping system to concurrently remove groundwater, LNAPL, and associated vapors from the subsurface by creating a localized vacuum in a remedial groundwater well and/or recovery well. ARCADIS subcontracted with Emerald Services, Inc. (Emerald) of Seattle, Washington to provide vacuum truck services. The vacuum truck is capable of applying a high vacuum to a drop tube placed at a given depth below the LNAPL layer within selected monitoring and recovery wells, recovery trenches, and storm drain

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

access areas (manholes). Extracted fluids are removed through a drop tube and stored in the vacuum truck. Extracted vapors are emitted to the atmosphere via a stack on the vacuum truck. The recovered liquids (groundwater and LNAPL) are transported to an approved facility for treatment and/or disposal.

5. Potential Constituents of Concern

According to Ecology's Model Toxics Control Act (MTCA) 173-340-900, Table 830-1 "Required Testing for Petroleum Releases," several potential COCs are associated with the current and past use of the Site. Potential COCs associated with the past storage and distribution of gasoline and diesel at the property include:

- Potential COCs Associated with GRO:
 - o BTEX
 - o 1,2-Dibromoethane (EDB)
 - o 1,2-Dichloroethane (EDC)
 - Methyl tertiary-butyl ether (MTBE)
 - o Total lead
 - o Naphthalenes
- Potential COCs Associated with diesel range organics (DRO):
 - o BTEX
 - o Carcinogenic polycyclic aromatic hydrocarbons (cPAHs)
 - o Naphthalenes

During historic site characterization activities several of these COCs were identified in soil and groundwater at the Site at concentrations exceeding MTCA Method A CLs.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

6. Subsurface Investigation

The October 25, 2010 Comprehensive Review Request from Ecology called for an evaluation of the current remedial system and its ability to effectively treat the LNAPL petroleum hydrocarbon plume present between monitoring wells MW-4 and MW-5. Specifically, ARCADIS was requested to perform the following investigation tasks:

- Evaluate the range of influence of the existing recovery trenches and their ability to actively and effectively recover LNAPL from the LNAPL plume present in the MW-4/MW-5 LNAPL area.
- Evaluate the levels and depth of soil contamination on the STC Property adjacent to and within the MW-4/MW-5 plume.
- Evaluate the predicted timeline for natural attenuation of the plume with and without additional remediation measures.

This investigation is primarily focused on and associated with the former STC Property area and its immediate vicinity. ARCADIS utilized the following scope of work to accomplish the investigation tasks.

6.1 North Recovery Trench Range-of-Influence Testing

On May 26, 2011, ARCADIS performed active hydraulic testing of the North Recovery Trench (NRT). This testing was designed to assess the range-of-influence (ROI) of the NRT as it relates to capturing LNAPL from the petroleum hydrocarbon plume present in the well MW-4/MW-5 area.

ARCADIS deployed data logger/pressure transducers in wells MW-4, MW-7 and MW-30 prior to the commencement of the ROI testing. The North Trench A2 (NT-A2) deep sump port (DSP) served as the "pumping well" for the ROI test. Observation wells MW-4, MW-7, and MW-30 are approximately 60.4, 53.2, and 78.3 feet from NT-A2. Fluid pumping from NT-A2 DSP was accomplished using vacuum extraction techniques. The vacuum truck was provided and operated by Emerald. At the time of ROI testing, The NT-A2 DSP was located 8.11 feet below top of casing (btoc) based on direct measurement; depth to water in the NT-A2 DSP was measured to be 5.19 feet btoc, which provided approximately 3 feet of hydraulic head available for drawdown during the test.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

Prior to conducting the ROI test, ARCADIS assumed for planning purposes an estimated recovery rate similar to historical rates recorded during previous extraction events. Typical measured flow rates at the Site have ranged from 3 to 5 gallons per minute (gpm). As such, ARACDIS estimated a total pumping time measured in multiple hours to achieve the 2,500-gallon target for total fluid extraction. However, due to seasonally high groundwater elevation, and a corresponding high fluid volume in the recovery trench, the 2500-gallon fluid extraction target was reached in less than one hour, giving an average extraction rate of approximately 40 gallons per minute.

Data collected by pressure transducers installed in monitoring wells MW-4, MW-7, and MW-30 indicate that the three wells experienced a drawdown as a result of fluid extraction in the trench. The amount of drawdown was directly related to the horizontal distance between the pumping well and the observation well. Monitoring well MW-30 experienced the greatest drawdown effect, calculated to be 0.896 foot. Well MW-7 experienced 0.239 foot of drawdown, and MW-4 experienced 0.148 foot of drawdown. These results indicate a range of influence with respect to dewatering capabilities to be nonlinear. The range of influence is best described logarithmically with respect to horizontal distance and vertical drawdown of the water table. Further, analysis of the distance-drawdown data for time equal to 76 minutes indicates that the ROI while extracting fluid from NT-A2 is approximately 88 feet. Range-of-Influence testing results and supporting field data are included as **Appendix A**.

6.2 Hydraulic Property Testing

ARCADIS investigated the hydraulic properties of the MW-4/MW-5 area using well RW-1 as a pumping well and well MW-4 as an observation well. ARCADIS deployed a data logger/pressure transducer (Solinst Levelogger™) in well MW-4 approximately12 hours prior to initiating DPVE operations to record short-term background water level conditions and/or fluctuations. Fluid pumping from well RW-1 was accomplished using vacuum extraction techniques. Pumping discharge was monitored and measured during the extraction event. Depth to water in well RW-1 was measured at 15-minute intervals over the duration of the pumping test.

Pumping continued for approximately 8 hours or until 2000 gallons of fluid was extracted from well RW-1. Upon reaching a pumping test duration limit, fluid extraction was stopped and a recovery test was performed. Water levels in the observation well MW-4 were measured and recorded for a period of approximately 13 hours during the recovery test portion. Recorded data was evaluated using aquifer testing analytical methods.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

Drawdown data collected in MW-4 was analyzed using the Jacob Straight Line analytical method. Analysis of the drawdown data resulted in a transmissivity of 104 feet² per day and a storativity of 2.3 x10⁻³. Assuming an aquifer thickness of 13 feet based on the well log of MW-4, a hydraulic conductivity of 8.0 feet per day is calculated. Hydraulic property testing results and supporting field data are included as **Appendix B**.

6.3 Soil Boring Installation

To assess the lateral and vertical extent of hydrocarbon impact to soil within the MW-4/MW-5 area at the STC Property, ARCADIS completed 20 exploratory soil borings within an area near the Food Mart/STC Property boundary (**Figure 2**). All borings were located on STC Property.

Twenty soil borings were advanced within the investigation area depicted on **Figure 3**. The initial 3 feet of the boreholes were cleared using hand tools to reduce potential for damage to undetected underground utilities. The borings were installed using direct-push (Geoprobe[™]-type) methods. The direct-push rig was provided and operated by Cascade Drilling, L.P. (Cascade) of Woodinville, Washington. The work was performed in general accordance with American Society for Testing and Materials (ASTM) D6282 - *Standard Guide for Direct Push Soil Sampling for Environmental Site Characterizations*.

Two of the borings were advanced to a depth of 36 feet bgs; the purpose of these borings was to further characterize the lithology of the saturated soils at the STC property. The remaining 18 borings were advanced to approximately 5 feet below the presence of water-saturated soils (the "water table"). Encountered lithology is described below and boring logs are presented in **Appendix C**.

Soil Boring One (BH-1): Fine, light brown silt with trace coarse gravel, and increasing black sand content with depth, was encountered from the surface to nine feet below the ground surface (bgs). From 9 to 14 feet bgs stiff, black, saturated silt was encountered. Sand content increased with depth. Below this was fine, brown, medium sand with a lense of stiff brown silt. Total boring depth was 16.5 feet bgs. Groundwater as encountered at 8.5 feet bgs. Petroleum hydrocarbon impacts were observed from 4 to 16.5 feet bgs.

<u>Soil Boring Two (BH-1a)</u>: From the ground surface to 3 feet bgs was light brown, gravelly silt, darkening to with depth. Below this, brown silty sand was encountered,

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

becoming gray with depth. The boring was advanced to a depth of 7 feet bgs. Groundwater was encountered at 7 feet bgs. Hydrocarbon impacts were observed from 3 to 7 feet bgs.

<u>Soil Boring Three (BH-1b)</u>: Fine, brown silt with fine sand and coarse gravel was encountered from the ground surface to 8.5 feet bgs. Soil color transitioned from brown to gray with depth. From 8.5 to 9 feet bgs was wet, gray, fine to medium silty sand. Wet, gray sandy silt was encountered from 9 to 11.5 feet bgs. Below this was moist, brown, fine to medium sand. The boring was advance to a total depth of 12 feet bgs. Groundwater was encountered a 4 feet bgs. Petroleum Hydrocarbon impacts were observed from 4.5 to 10 feet bgs.

Soil Boring Four (BH-2): Brown gravelly silt with trace sand was encountered from the surface to 9 feet bgs. Below this was a 3 inch layer of very stiff silt. From approximately 9 to 14 feet bgs was wet, brown, silty sand. Wet, brown, fine-to-medium sand was encountered from 14 to 15.5 feet bgs. Below this was wet, stiff, brown silt with fine sand and trace subangular gravel to a depth of 26 feet bgs. From 26 to 34 feet bgs was very stiff, moist brown silt increasing in sand content with depth. Soil also had inclusions of organics and coarse subrounded gravel. Below this, to a depth of 36 feet bgs, was very hard, brown, fine-to-medium sand with subrounded basalt cobbles. A swirling, cream-colored, silt-sized material was also encountered at this depth. The boring was advanced to a total depth of 36 feet. Groundwater was encountered at 3.5 feet bgs. Petroleum hydrocarbon impacts were observed from 3 to 9 feet bgs.

<u>Soil Boring Five (BH-3)</u>: From the surface to 1.5 feet bgs was brown gravelly sand and silt. Below this, to a depth of 7 feet bgs, black and gray, fine sandy silt with trace gravel was encountered. From 7 to 8 feet bgs was wet, dark gray silt with some fine sand. Below this to a depth of 11 feet bgs was dark gray, fine to medium sand with traces of silt and subrounded gravel. From 11 to 12 feet bgs was wet, dark gray, sandy silt. The boring was advanced to a total depth of 12 feet bgs. Groundwater was encountered at 5.5 feet bgs. Petroleum hydrocarbon impacts were observed form 4 to 7 feet bgs.

<u>Soil Boring Six (BH-4)</u>: From the surface to 3 feet bgs was brown gravelly silt with some cobbles. Below this, moist, dark brown and grayish silty sand was encountered to a depth of 4.5 feet. From 4.5 to 10 feet bgs was wet brownish gray silt with some fine sand. Fine to medium silty sand was encountered from 10 to 11.5 feet bgs. Below this was approximately 6 inches of wet, grayish brown silt. The boring was advanced to a total depth of 12 feet bgs. Groundwater was encountered at 4.5 feet bgs. Petroleum hydrocarbon impacts were observed from 3 to 11.5 feet bgs.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

Soil Boring Seven (BH-4a): From the surface to 2 feet bgs was moist, brown, fine sand with silt. Below to 4.5 feet bgs was moist, fine, brown sand with silt. From 4.5 to 8.5 feet bgs wet, dark brown to grayish brown silt with fine sand was encountered. Below this, was a 6-inch layer of fine to medium, gray, silty sand. From 8.5 to 11 feet was gray silty sand with beds of 1- to 2- inch thick stiff silt. Below this, to a depth of 14 feet was stiff, brownish gray silt with a 3- to 4-inch thick interbed of fine sand. Wet, brown, fine to medium silty sand was encountered for 14 to 26 feet. From 26 to 36 feet bgs, dry, very stiff, brown silt with trace clay and organics was encountered. The boring was advanced to a total depth of 26 feet. Groundwater was encountered at 4.5 feet bgs. Petroleum hydrocarbon impacts were observed from 3 to 13 feet bgs.

Soil Boring Eight (BH-5): The first 1-foot of soil was gravelly silt with some cobbles. Below this, to a depth of 10 feet bgs, dry, brown, fine, silty sand with trace gravel was encountered. Soil moistened with depth. At 10 feet bgs, a 6-inch bed of wet, gray, stiff silt was encountered. Below this was wet, fine to medium, gray sand to a depth of 12 feet bgs. The boring was advanced to a total depth of 12 feet bgs. Groundwater was encountered at approximately 4.5 feet bgs. Petroleum hydrocarbon impacts were observed from 4.5 to 12 feet bgs.

Soil Boring Nine (BH-6): The first 1-foot of soil was gravelly silt with some cobbles. Dry, fine, brown and black sand was encountered from 2 to 4 feet bgs. Below this, to a depth of 6 feet bgs was wet, gray, sandy silt. From 6 to 11 feet bgs, fine, wet, dark gray to black sand with silt was encountered. Below this was wet, gray, fine to medium, sand with some silt. A 2-inch interbed of stiff gray silt was present just below 10 feet bgs. The boring was advanced to a total depth of 11 feet bgs. Groundwater was first encountered at 4.5 feet bgs. Petroleum hydrocarbon impacts were observed from 4 to 11 feet bgs.

Soil Boring Ten (BH-7): The first 1.5 feet of soil was gravelly silt with some cobbles. Below this, dry, dark gray to grayish brown, fine, silty sand with grace coarse gravel was encountered to a depth of 4.5 feet. A 6-inch layer of dark gray, fine to medium sand was encountered below this. From 5 to 7.5 feet bgs, wet, blackish gray, fine sand was present. Below this, from 7.5 to 10 feet bgs, wet, gray, stiff silt was encountered. An interbed of swirling, light brown to cream colored, silt sized grains was observed at 11 feet bgs.

Soil Boring Eleven (BH-8): Dark brown silty fine sand and some coarse gravel was present in the first 6 feet of the boring. Below this was a 1-foot layer of wet, gray, stiff silt. From 7 to 9 feet bgs, wet, fine, loose gray, silty sand was encountered. Below this

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

was a 1- to 2-inch layer of stiff, gray silt. From 9 to 11.5 feet bgs wet, gray, fine silty sand was encountered. Below this was a 6-inch layer of wet, grayish brown, stiff silt. The boring was advanced to a total depth of 12 feet bgs. Groundwater was encountered at 4 feet bgs. Petroleum hydrocarbon impacts were observed form 3 to 12 feet bgs.

Soil Boring Twelve (BH-9): The first 3 feet bgs consisted of brown fine silty sand with some gravel. From 3 to 5 feet bgs was moist, brown fine sand with silt. Below this, wet dark gray silt with fine sand was encountered to a depth of 7 feet bgs. From 7 to 11 feet bgs was wet, dark, blackish gray silt with fine sand. An interbed of swirling, light brown to cream colored, silt sized grains was observed at 9 feet bgs. Below this was 1-foot of wet, dark gray, fine sand with silt. The boring was advanced to a total depth of 12 feet bgs. Groundwater was encountered at 4 feet bgs. Petroleum hydrocarbon impacts were observed from 5 to 12 feet bgs.

Soil Boring Thirteen (BH-10): From the surface to 3 feet bgs, dry, brown, stiff silt with trace angular gravel was encountered. From 3 to 6 feet bgs was fine to medium, brown sand with trace silt. Below this was a 1-foot layer of wet, gray, stiff silt. From 7 to 9.5 feet bgs, wet, gray, loose, fine silty sand was encountered. Below this was a 6-inch layer of wet, gray, stiff silt. From 10 to 12 feet bgs was wet, gray, stiff, fine silty sand coarsening with depth. The boring was advanced to a total depth of 12 feet bgs. Groundwater was encountered a 4 feet bgs. Petroleum hydrocarbon impacts were observed from 3 to 12 feet bgs.

Soil Boring Fourteen (BH-10a): The initial 4 feet of the boring consisted of brown fine sand with trace silt. Below this, wet, gray, loose, fine silty sand was encountered to a depth of 9 feet bgs. From 9 to 11 feet bgs was wet, gray, stiff silt with a 6-inch interbed of loose fine sand. Below this was 1 foot of wet, loose, fine sand with trace silt. The boring was advanced to a total depth of 12 feet bgs. Groundwater was encountered at 4 feet bgs. Petroleum hydrocarbon impacts were observed from 4 to 10 feet bgs.

<u>Soil Boring Fifteen (BH-10b)</u>: From the surface to 3 feet bgs was dry, brown, stiff silt. Below this, to a depth of 5 feet bgs, dry, brown, fine silty sand was encountered. From 5 to 8 feet bgs was fine to medium sand. The boring was advanced to a depth of 8 feet bgs. Groundwater was encountered at 5 feet bgs. Petroleum hydrocarbon impacts were observed from 5 to 8 feet bgs.

<u>Soil Boring Sixteen (BH-10c)</u>: From the surface to 7 feet bgs, brown, fine silty sand with trace fine gravel was encountered. Soil became gray with depth. The boring was

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

advanced to a total depth of 7 feet bgs. Groundwater was encountered at 5 feet bgs. Petroleum hydrocarbon impacts were observed from 5 to 7 feet bgs.

<u>Soil Boring Seventeen (BH-10d)</u>: From the surface to 7 feet bgs, brown, fine silty sand with trace fine gravel was encountered. Soil became gray and increasingly silty with depth. The boring was advanced to a total depth of 7 feet bgs. Groundwater was encountered at 4 feet bgs. Petroleum hydrocarbon impacts were observed from 2 to 7 feet bgs.

<u>Soil Boring Eighteen (BH-10e)</u>: From the surface to 7 feet bgs, brown, fine silty sand with trace fine gravel was encountered. Soil became gray and increasingly silty with depth. The boring was advanced to a total depth of 7 feet bgs. Groundwater was encountered at 4 feet bgs. Petroleum hydrocarbon impacts were observed from 4 to 7 feet bgs.

<u>Soil Boring Nineteen (BH-10f)</u>: The initial 4 feet of the boring consisted of dry, brown, fine silty sand. Below this was a 6-inch bed of dry, stiff, brown silt. From 3.5 to 4.5 feet bgs was wet, gray, fine silty sand. Below this was wet, gray, stiff silt. The boring was advanced to a total depth of 7 feet bgs. Groundwater was encountered at 4 feet bgs. Petroleum hydrocarbon impacts were observed from 4 to 7 feet bgs.

<u>Soil Boring Twenty (Bh-10g)</u>: From the surface to 8 feet bgs, brown fine silty sand with some gravel was encountered. An interbed of swirling, light brown to cream colored, silt-sized grains was observed at 6 feet bgs. From 8 to 16 feet bgs, wet, brown, fine silty sand with stiff silt interbeds was encountered. The boring was advanced to a depth of 16 feet bgs. Groundwater was encountered at 4 feet bgs. Petroleum hydrocarbon impacts were not observed at this boring location.

6.3.1 Soil Sample Collection and Analysis

Samples were collected using a continuous-drive ("Macro-Core®") soil sampling system. The sampler used was a stainless-steel, 4-foot long, 1.5-inch diameter, piston-operated sampler with a positive release system. A polyvinyl chloride (PVC) liner was placed in the sample barrel prior to advancement. Soils were contained in the PVC liner for lithologic description ("logging") and selection of soil samples for chemical analysis. The soils were logged over the entire length of the boring. Soils were described using ASTM D2487 – Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) and recorded on field boring logs.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

Soil samples for chemical analysis were collected in a manner consistent with the ARCADIS *Surface and Subsurface Soil Sampling Using Manual Methods* standard operating procedure (SOP) (Attachment B). The collected soil cores were inspected and field-screened for the presence of petroleum hydrocarbons. Field screening was accomplished by hydrophobic dye testing according to the ARCADIS *Field Screening for NAPL using Hydrophobic Dyes* SOP (Attachment C) and inspection for volatile organic compounds (VOCs) via a photoionization detector (PID) instrument with a 10.2 eV lamp. The field screening observations, including PID readings and other pertinent data, were recorded on the boring logs.

Soil sample were collected based on field screening results. Samples were collected from the 1-foot interval containing soils with the most positive indication of petroleum hydrocarbons as based on field screening results or from the 1-foot interval directly above the water table (the "capillary fringe"). Soil samples for VOC analysis were collected and preserved using EPA Method 5035A - Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples. Samples were placed in laboratory-provided containers and stored in an ice-chilled cooler prior to delivery to the analytical laboratory.

The soil samples were analyzed within allowable holding times for the following parameters:

- Gasoline range organics (GRO) by NWTPH-Gx method
- Diesel range organics (DRO) and heavy oil range organics (HRO) by NWTPH-Dx method
- Volatile petroleum hydrocarbons (VPH) by VPH method
- Extractable petroleum hydrocarbons (EPH) by EPH method
- Benzene, toluene, ethylbenzene, total xylenes, and naphthalene (BTEXN) by EPA
 Method 8260
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C
- Total organic carbon (TOC) by dichromate extraction (Walkley-Black method)
- Particle size analysis by ASTM D6913

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

• Soil Moisture Content by ASTM D2216

6.3.2 Soil Sample Analytical Results

A total of eight soil samples from five boring locations were submitted for laboratory analysis. Analytical results are as described below:

- <u>BH-1b</u> A soil sample was collected at 3 feet bgs. COCs were not detected above laboratory method reporting limits (MRLs) for BTEX, naphthalene, DRO, HRO, or GRO.
- BH-3 A soil sample was collected at 2.5 feet bgs. Benzene was detected above the MTCA Method A Soil Cleanup Level (CL) with a concentration of 0.140 milligram per kilogram (mg/kg). All other COCs were not detected above their respective MTCA Method A Soil CLs.
- BH-4 A soil sample was collected at 3 feet bgs. Benzene and xylenes were
 detected above MTCA Method A soil CLs at concentrations of 0.574 and 150
 mg/kg, respectively. GRO was also detected at 2,880 mg/kg. All other COCs were
 not detected above their respective MTCA Method A Soil CLs..
- BH-4a A soil sample was collected at 2.5 feet bgs. BTEX were detected above MTCA Method A CLs in this sample. Benzene was detected at a concentration of 20.7 mg/kg, ethylbenzene at 51.2 mg/kg, toluene at 109 mg/kg, and xylenes at 523 mg/kg. GRO was also detected above the MTCA Method A CL at 6,430 mg/kg. All other COCs were not detected above their respective MTCA Method A Soil CLs.
- <u>BH-7</u> A soil sample was collected a 2 feet bgs. Benzene was detected above the MTCA Method A CL at 0.0571 mg/kg. GRO was also above the MTCA Method A CL at 35.1 mg/kg. All other COCs were not detected above their respective MTCA Method A Soil CLs.
- BH-10 A soil sample was collected at 3 feet bgs. COCs were not detected above MTCA Method A CLs for BTEX, naphthalene, DRO, HRO, or GRO.
- BH-10c A soil sample was collected at 2 feet bgs. Benzene was detected above the MTCA Method A CL at 0.195 mg/kg. All other COCs were not detected above their respective MTCA Method A Soil CLs.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

 BH-10f - A soil sample was collected at 3 feet bgs. COCs were not detected above their respective MRLs for BTEX, naphthalene, DRO, HRO, or GRO.

Grain size analysis identified the subject soil and sandy silt to silty sand. Complete soil laboratory analytical results are included as **Appendix D**.

6.4 Groundwater Sample Collection and Analysis

Samples for evaluation of remediation through natural attenuation (RNA) were collected concurrent with the soil investigation. The RNA samples were collected from existing wells MW-1, MW-8 and MW-30. These wells were selected based on their proximity to the current LNAPL groundwater plume and lack of measureable LNAPL. The samples were collected as described in the ARCADIS *Standard Groundwater Sampling for Monitoring Wells* SOP (Attachment D). Samples were collected using low-flow purging and sampling techniques. One duplicate sample was collected for data quality control purposes. Dissolved samples were field-filtered using a 0.45-micron (µm) capsule filter. The following field parameters were measured at each well following completion of purging but prior to sampling using a Hanna HI 9828 portable multi-parameter water quality meter:

- pH
- Turbidity
- Specific conductance
- Temperature
- Oxidation-reduction potential (ORP)
- Dissolved oxygen

6.4.1 Groundwater Sample Analysis

Collected groundwater samples were submitted to an Ecology-certified laboratory for analysis. Chain-of-custody procedures were followed from the time the samples were collected until the time the samples were relinquished to the laboratory. The soil samples were analyzed within allowable holding times for the following parameters:

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

- GRO by NWTPH-Gx method
- DRO and HRO by NWTPH-Dx method
- VPH by NWTPH/VPH method
- EPH by NWTPH/EPH method
- BTEXN by EPA Method 8260
- PAHs by EPA Method 8270C
- Methane, ethane, and ethene by EPA Method RSK-175
- Dissolved chloride, nitrate, and sulfate by EPA Method 300.0
- Dissolved ferrous iron (Fe²⁺) by Standard Method (SM) 3500 Fe D
- Dissolved total alkalinity by EPA Method 310.1

The laboratory will analyze method blanks in conjunction with the groundwater samples. The analytical laboratory will report the method detection limit (MDL) and MRL in conjunction with the sample analytical results. The laboratory will endeavor (as feasible) to ensure that the MRL is less than the analyzed constituent's respective MTCA Method A Cleanup Level for Groundwater (if codified).

6.4.2 Groundwater Sample Analytical Results

Groundwater was submitted for analysis from wells MW-1 and MW-8. GRO were detected in MW-1 above the MTCA Method A Cleanup Level for Ground Water at a concentration of 2,450 µg/L. All other COCs were not detected above their respective MTCA Method A groundwater CLs in MW-1. All COCs were below their respective MRLs in the groundwater sample collected from MW-8. Complete groundwater laboratory analytical results are included as **Appendix E**.

6.5 Management of Investigation Derived Wastes

Waste water generated during the field activities were contained in Department of Transportation-approved 55-gallon steel drums. The investigation-derived waste (IDW)

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

was appropriately labeled and stored on site pending disposal. Following receipt of laboratory analytical data, the soil and water IDW will be transported off site for proper disposal.

7. Timeline for Natural Attenuation

ARCADIS used the U.S. EPA BIOSCREEN Natural Attenuation Decision Support System Model (EPA BIOSCRN Version 1.4, 1997) to simulate transport and remediation through natural attenuation (RNA) of dissolved hydrocarbons at the site. The model is based on the Domenico analytical solute transport model and has the ability to simulate dominant biodegradation processes of advection, dispersion, adsorption, aerobic decay, and anaerobic reactions. The model is designed to simulate biodegradation by both aerobic and anaerobic reactions. BIOSCREEN uses an analytical solute transport model with two options for simulating in-situ biodegradation: (1) first-order decay and (2) instantaneous reaction. The model will predict the maximum extent of plume migration, which may then be compared to the distance to potential points of exposure.

Monitoring Well A1/VE1 was selected as the center of the "Source Area" for BIOSCREEN modeling purposes (**Figure 7**). Benzene was selected to be modeled as the Site's primary constituent of concern (COC).

The BIOSCREEN model requires a data input set that is specific to a well location, in order to evaluate groundwater solute transport. Groundwater monitoring data for Source Area is not available as wells containing LNAPL are not sampled. The effective solubility of benzene was used to estimate the dissolved benzene concentrations in groundwater where LNAPL is present on the water table. Site monitoring wells without LNAPL did not contain benzene above detection limits; therefore, the MRL for benzene was assumed an appropriate concentration for these monitoring wells. The derived concentrations were used to (1) model the contaminant concentration in the Source Area and (2) provide field data for comparison to the model.

7.1 BIOSCREEN Model Parameters

7.1.1 Hydrogeology

 Hydraulic conductivity (K) of 1.7×10⁻³ centimeters per second (cm/s). This value is based on the results of hydraulic property testing at the site.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

- Hydraulic gradient (i) of 0.01 ft/ft. This value is based the hydraulic gradients
 calculated from groundwater potentiometric contours developed as part of
 groundwater monitoring activities and reported in previous site reports.
- Effective porosity (n) of 0.3 (30 percent). This value is based on Site observations
 of the subsurface lithology and represents a typical value for silty sands.
- Seepage velocity (Vs) of 58.6 feet per year. This value is calculated by BIOSCREEN using the site-specific hydrogeologic parameters.

7.1.2 Dispersion

Dispersion is calculated by BIOSCREEN using a site groundwater plume length (Lp) of 420 feet. The plume length was calculated based on previous groundwater monitoring data for the Site and represents the approximate distance from the Source Area.

7.1.3 Adsorption

Retardation factor (R) values for the model were taken from the Practical Guide to Groundwater and Solute Transport Modeling (1996) presented below.

7.1.4 Biodegradation

A half-life (t-half) value for benzene was taken from Practical Guide to Groundwater and Solute Transport Modeling (1996) presented below.

7.1.5 Soluble Mass

The soluble mass of the LNAPL in the source area was calculated using depth and area of LNAPL observed in soil borings during site investigations. Using the volume of the source area, porosity of the source materials, and density of fuel, a source soluble mass of 1.3x10⁵ kilograms (kg), or approximately 146 tons, was estimated.

7.1.6 General

The model length of 1,000 feet was based on the approximate distance between the Source Area and southwest limits of the Site. The model width of 700 feet is based on the distance between the Source Area and site monitoring wells. A model simulation time of 20 years is assumed. Under a seepage velocity of 58.6 feet per

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

year, dissolved solutes could not migrate more than 1,100 feet in 20 years. The BIOSCREEN model outputs and supporting data is presented in **Appendix F**.

8. Current Petroleum Hydrocarbon Impacts

8.1 Soil

During the site investigation petroleum hydrocarbon impacts were observed in soil borings. LNAPL was found to be present in 18 of the 20 borings advanced into the investigation area. Soil boring locations and the inferred impacted area is depicted in **Figure 4**.

8.2 Groundwater

Groundwater sampling conducted during the site investigation revealed petroleum hydrocarbon impacts to groundwater in MW-1. LNAPL is present on the groundwater table in the investigation area and extends to the southwest. **Figure 5** illustrates the potentiometric surface of the Manhole 34 Site as measured in February 2011. A LNAPL thickness contour map is included as **Figure 6** as measured in February 2011.

8.3 Surface Waters

Annual average rainfall is approximately 7 inches in Sunnyside, Washington. Surface water at the Site is limited to runoff from precipitation. The Site is predominantly paved; thus, infiltration of surface water into the groundwater table is unlikely. Surface water, surface drainage, floodplains, wetlands and area of sediment deposition are not applicable at this Site. Therefore, no known impacts to surface waters have occurred due to the past operation of the Site as a retail gasoline station.

8.4 Ecological and Natural Resources

The Site is located in a commercially developed area of Sunnyside, Washington. Because there are no contiguous undeveloped lands in the vicinity of the Site, this area is not considered to be suitable habitat to support native vegetation and/or wildlife. Furthermore, traffic corridors and similar features surrounding the Site further reduce the potential use of the area by wildlife.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

8.5 Cultural and Archaeological Resources

There is no indication that cultural and/or archaeological resources are present at the Site. Therefore, no known impacts to cultural and archaeological resources have occurred due to retail gasoline station operations at the Site.

9. Conclusions

The site investigation performed by ARCADIS indicates the following:

- Range-of-influence testing determined that the amount of drawdown was directly related to the horizontal distance between the pumping well and the observation wells. Monitoring well MW-30 experienced the greatest drawdown effect, calculated to be 0.896 foot. Well MW-7 experienced 0.239 foot of drawdown, and MW-4 experienced 0.148 foot of drawdown. These results indicate a ROI with respect to dewatering capabilities to be nonlinear. The range of influence is best described logarithmically with respect to horizontal distance and vertical drawdown of the water table. Further, analysis of the distance-drawdown data for time equal to 76 minutes indicates that the ROI while extracting fluid from NT-A2 is approximately 88 feet. that extracting fluid from NT-A2 at 40 gpm
- Hydraulic property testing consisted of the analysis of drawdown data collected in MW-4 while extracting fluid from RW-1 at a discharge rate of 4.5 gpm. Analysis of the drawdown data resulted in a transmissivity of 104 feet² per day and a storativity of 2.3 x10⁻³. Assuming an aquifer thickness of 13 feet based on the well log of MW-4, a hydraulic conductivity of 8.0 feet per day is calculated.
- Soil borings advanced into the investigation area revealed impacts along the
 western and southern boundaries of the investigation area. COC's are highest in
 concentration near the center of the investigation area (BH-4 & BH-4a). The depth
 of impacted soil was found to be from 3 to 11 feet bgs. Petroleum hydrocarbon
 impacts were not found along the northern portion of the western boundary (BH10f).
- Groundwater monitoring performed during the Site investigation revealed petroleum hydrocarbon impacts in MW-1. Quarterly groundwater monitoring has shown LNAPL to be present in A1/VE1, MW-4, MW-5, MW-7, MW-10, MW-33 and DMW-3.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

 Based on the transport and fate analysis conducted using the BIOSCREEN model, the contaminant mass of the source will only be reduced by 1.1 percent in 20 years. BIOSCREEN predicts the benzene concentrations (1000 feet downgradient) to be approximately 6.5 mg/L after the 20-year simulation period.

10. References

- ARCADIS, U.S. (ARCADIS), 2011. Site Review Work Plan for Manhole 34 Facility, March 9.
- SEACOR International, Inc. (SEACOR), 1994. *Interim Actions and Remedial Investigation/Feasibility Study, Manhole 34 Facility, Sunnyside Washington*; November 9.
- Spitz, K., Moerno, J., 1996, A Practical Guide to Groundwater and Solute Transport Modeling.
- The Washington State Department of Natural Resources Map Geologic Map of the East Half of the Toppenish 1:10,0000 Quadrangle, Washington compiled by J. Shuster in 1994.

2011 Limited Site Investigation Report

Manhole 34 Facility Sunnyside, WA

Tables

TABLE 1 Select Soil Analytical Data Limited Site Investigation Report Manhole 34 Facility N 6th Street & Yakima Valley Highway, Sunnyside, WA

							Vo	latile Organic Hydr	ocarbons	
Sample ID	D Date Depth (1		GRO ⁽²⁾	DRO ⁽³⁾	HRO ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene	Ethylbenzene	Xylenes (Total)	Napthalene
BH-1b-3	5/9/2011	3.0	ND ⁽⁸⁾	ND	ND	ND	ND	ND	ND	ND
Bh-3-2.5	5/9/2011	2.5	27.7	ND	ND	0.140	0.551	0.354	1.94	0.350
BH-4-3	5/10/2011	3.0	2880	840	69.4	0.574	2.78	1.47	150	ND
BH-4a-2.5	5/10/2011	2.5	6430	634	1390	20.7	109	51.2	523	ND
BH-7-2	5/10/2011	2.0	35.1	ND	ND	0.0571	ND	ND	ND	0.440
BH-10-3	5/11/2011	3.0	32.4	1140	61.7	ND	ND	ND	ND	ND
Bh-10c-2	5/11/2011	2.0	19.2	ND	ND	0.195	0.565	0.0265	1.44	ND
BH-10f-4.5	5/11/2011	4.5	ND	ND	ND	ND	ND	ND	ND	ND
MTCA Method A	Soil Cleanup Le	vels ⁽⁶⁾	100 ⁽⁷⁾ /30	2,000	2,000	0.03	7	6	9	5

Notes:

- (1) Depth of sample in feet below ground surface (bgs)
- (2) GRO = Gasoline range organics by Method NWTPH-Gx
- (3) DRO = Diesel range organics by Method NWTPH-Dx
- (4) HRO = Heavy oil range organics by Method NWTPH-DX
- (5) All concentrations are presented in milligrams per kilogram (mg/kg)
- (6) Ecology Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, WAC Chapter 173-340-900, Table 740-1
- (7) Soil Cleanup Level for gasoline mixtures (GRO) without benzene <u>and</u> the total of toluene, ethylbenzene, and xylenes are less than 1% of the gasoline mixture
- (8) ND = Not detected at or above laboratory method reporting limit (MRL) for the given analysis

Indicates a concentration in average of the respective MCTA Method A Cail Cleanus
Indicates a concentration in excess of the respective MCTA Method A Soil Cleanup
Level for Unrestricted Land Uses

Prepared By:	LS	Date:	9/20/2011
Checked By:	TFM	Date:	9/26/2011

TABLE 2 Soil Analytical Data Polycyclic Aromatic Hydrocarbons Manhole 34 Facility

North 6th Street and Yakima Valley Highway, Sunnyside, WA

Sample ID	Date	Depth ⁽¹⁾	Acenaphthene	Acenaphthylene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghl) perylene	Benzo (k) fluoranthene	Chrysene	Dibenzo (a,h) anthracene	Fluoranthene	Fluorene	Indeno)1,2,3-cd) pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenathrene	Pyrene
BH-1b-3	5/9/2011	3.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bh-3-2.5	5/9/2011	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0709	0.126	0.109	ND	ND
BH-4-3	5/10/2011	3.0	0.0218	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0133	ND	ND	5.77	10.9	12.5	0.188	ND
BH-4a-2.5	5/10/2011	2.5	0.0137	ND	ND	ND	ND	0.0169	0.0137	0.0169	0.0169	ND	0.0161	ND	ND	11.8	15.4	24.1	0.0540	0.0226
BH-7-2	5/10/2011	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0357	0.0531	0.0277	ND	ND
BH-10-3	5/11/2011	3.0	0.113	ND	0.219	0.0433	0.0170	0.0332	0.0116	ND	0.0286	ND	0.0749	0.206	ND	5.87	9.50	1.47	0.636	0.100
Bh-10c-2	5/11/2011	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-10f-4.5	5/11/2011	4.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTCA Method A	Soil Clean	up Levels ⁽²⁾	— ⁽³⁾		_	0.1	0.1	0.1	_	0.1	0.1	0.1	_	_	0.1	_	_	5	_	_

Notes:

(1) Depth of sample in feet below ground surface (bgs)

(2) Ecology Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, WAC Chapter 173-340-900, Table 740-1

(3) — No cleanup value established

Indicates a concentration in excess of the respective MCTA

Method A Soil Cleanup Level for Unrestricted Land Uses

Prepared By: LS Date: 9/20/2011

Soil Analytical Data

Volatile and Extractable Hydrocarbons

Manhole 34 Facility

North 6th Street and Yakima Valley Highway, Sunnyside, WA

					Volati	ile Petroleu	m Hydroca	rbons			Extractable Petroleum Hydrocarbons										
Sample ID	Date	Depth ⁽¹⁾	C5-C6 Aliphatics	C6-C8 Aliphatics	C8-C10 Alphatics	C10-C12 Alphatics	C8-C10 Aromatics	C10-C12 Aromatics	C12-C13 Aromatics	Total VPH	C10-C12 Alphatics	C12-C16 Alphatics	C16-C-21 Alphatics	C21-C34 Alphatics	C12-C16 Aromatics	C16-C21 Aromatics	C21-C34 Aromatics				
BH-1b-3	5/9/2011	3.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
Bh-3-2.5	5/9/2011	2.5	ND	ND	ND	ND	2.9	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND				
BH-4-3	5/10/2011	3.0	ND	100	260	290	310	360	150	1500	39	39	26	6.2	34	6.5	ND				
BH-4a-2.5	5/10/2011	2.5	47	180	310	310	740	510	210	2500	100	79	140	1100	110	45	480				
BH-7-2	5/10/2011	2.0	ND	ND	ND	ND	7.2	4.5	ND	ND	ND	ND	ND	ND	ND	ND	ND				
BH-10-3	5/11/2011	3.0	ND	ND	ND	ND	4.9	4.5	ND	ND	66	100	100	28	97	67	19				
Bh-10c-2	5/11/2011	2.0	ND	ND	ND	ND	2.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
BH-10f-4.5	5/11/2011	4.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				

Notes:

(1) Depth of sample in feet below ground surface (bgs)

All concentrations are presented in milligrams per kilogram (mg/kg)

Prepared By: ____LS ___ Date: ___9/20/2011

Checked By: ____TFM ____ Date: ___9/26/2011

Select Groundwater Analytical Results Limited Site Investigation Report Manhole 34 Facility

N 6th Street & Yakima Valley Highway, Sunnyside, WA

Volatile Organic Compounds

Monitoring Well	Sample Date	GRO ⁽¹⁾ (μg/L) ⁽⁴⁾	DRO (2)	ΗΟ ⁽³⁾ (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene	Xylenes (Total) (μg/L)	Napthalene	MTBE ⁽⁸⁾ (µg/L)	Alkalinity		Nitrates (mg/L)	Sulfates (mg/L)	Methane (µg/L)	
		(μg/L) · ·	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(IIIg/L)	(IIIg/L)	(µg/L)	
MW-1	5/11/2011	2,450	1.27	ND	ND	ND	5.51	34.1	19.8	ND	500	54.6	5.8	148	0.68	
MW-8	5/11/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	305	31.2	15.7	101	ND	
MTCA Method A Cleanu Levels for Ground Water		800/ 1,000 ⁽⁷⁾	500	500	5	1,000	700	1,000	160	20	_	1	-	1	_	

Notes:

(1) GRO - Gasoline Range Organics (GRO)

(2) DRO - Diesel Range Orgaincs (DRO)

(3) HO - Heavy Oils (HRO)

(4) µg/L - micrograms per liter

(5) ND - Analyte not detected at or above the Method Detection Limit (MDL)

(6) Model Toxic Control Act (MTCA) Method A Cleanup Levels for Ground Water, WAC 173-340-900, Table 720-1

(7) GRO Cleanup Level of 1,000 μg/L when no detectable benzene is present in ground water

Prepared By: LS Date: 9/20/2011

Checked By: TFM Date: 9/26/2011

Groundwater Analytical Data

Polycyclic Aromatic Hydrocarbons

Manhole 34 Facility

North 6th Street and Yakima Valley Highway, Sunnyside, WA

Sample ID	Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghl) perylene	Benzo (k) fluoranthene	Chrysene	Dibenzo (a,h) anthracene	Fluoranthene	Fluorene	Indeno)1,2,3-cd) pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenathrene	Pyrene
MW-1	5/11/2011	0.12	ND	0.012	0.059	0.042	0.067	0.030	0.022	0.057	ND	0.24	0.036	0.021	0.38	ND	0.74	ND	0.30
MW-8	5/11/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.010	ND	ND	ND	0.032	ND	ND
MTCA Method A Groundwater Cleanup Levels ⁽¹⁾		— ⁽²⁾	_	_	_	0.1	_	_	_	_	_	_	_	_	_	_	160	_	_

Notes

(1) Ecology Model Toxics Control Act (MTCA) Method A Cleanup Levels for Groundwater, WAC Chapter 173-340-900, Table 720-1

(2) — No cleanup value established

(3) Analyzed by Method 8270C SIM

Prepared By: LS

Date: 9/20/2011

Checked By: TFM

Date: 9/26/2011

Groundwater Analytical Data Volatile and Extractable Hydrocarbons Manhole 34 Facility

North 6th Street and Yakima Valley Highway, Sunnyside, WA

				Volati	le Petroleu	Extractable Petroleum Hydrocarbons											
Sample ID	Date	C5-C6 Aliphatics	C6-C8 Aliphatics	C8-C10 Alphatics	C10-C12 Alphatics	C8-C10 Aromatics	C10-C12 Aromatics	C12-C13 Aromatics	Total VPH	C10-C12 Alphatics	C12-C16 Alphatics	C16-C-21 Alphatics	C21-C-34 Alphatics	C10-C12 Aromatics	C12-C16 Aromatics	C16-C21 Aromatics	C21-C34 Aromatics
MW-1	5/11/2011	230	570	150	440	120	390	110	2000	ND	ND	ND	ND	240	78	ND	ND
MW-8	5/11/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

 $\frac{Notes:}{\text{All concentrations are presented in micrograms per liter }(\mu\text{g/L})}{\text{Analyzed by Methods NWTPH/VPH and NWTPH/EPH}}$

ND = Not detected

Prepared By: LS Date: 9/20/2011

Checked By: ____TFM ___ Date: ___9/26/2011

2011 Limited Site Investigation Report

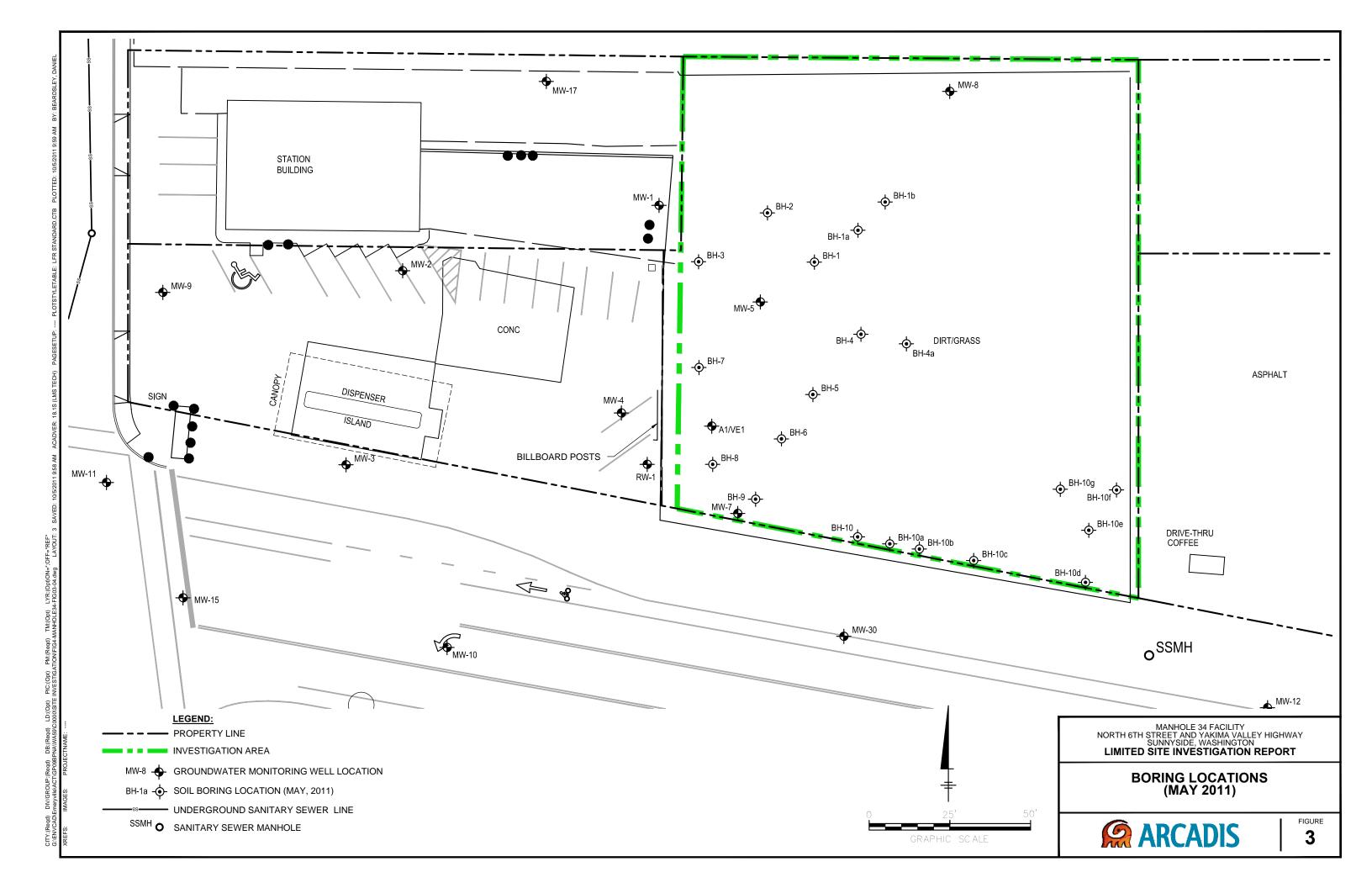
Manhole 34 Facility Sunnyside, WA

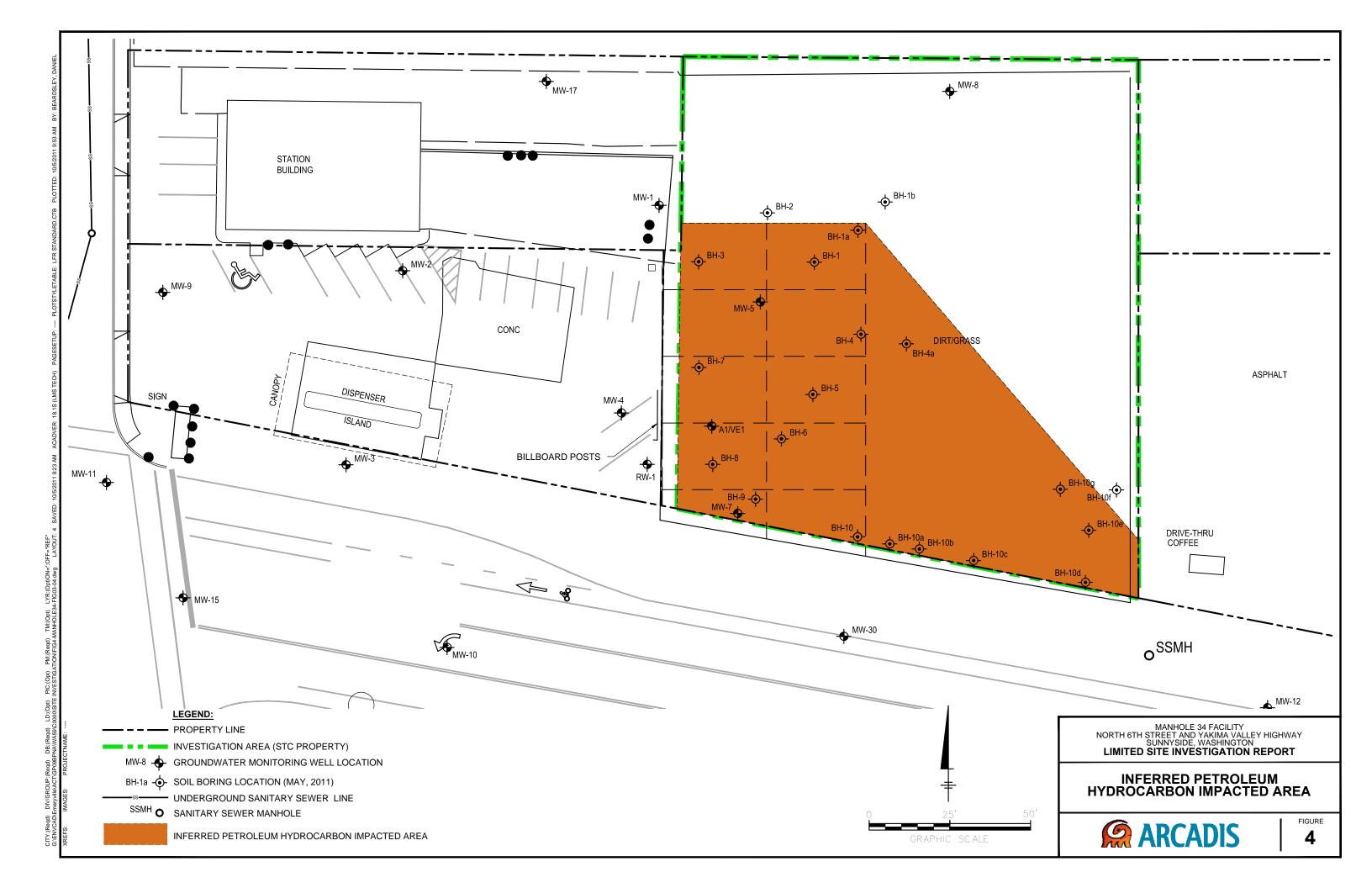
Figures

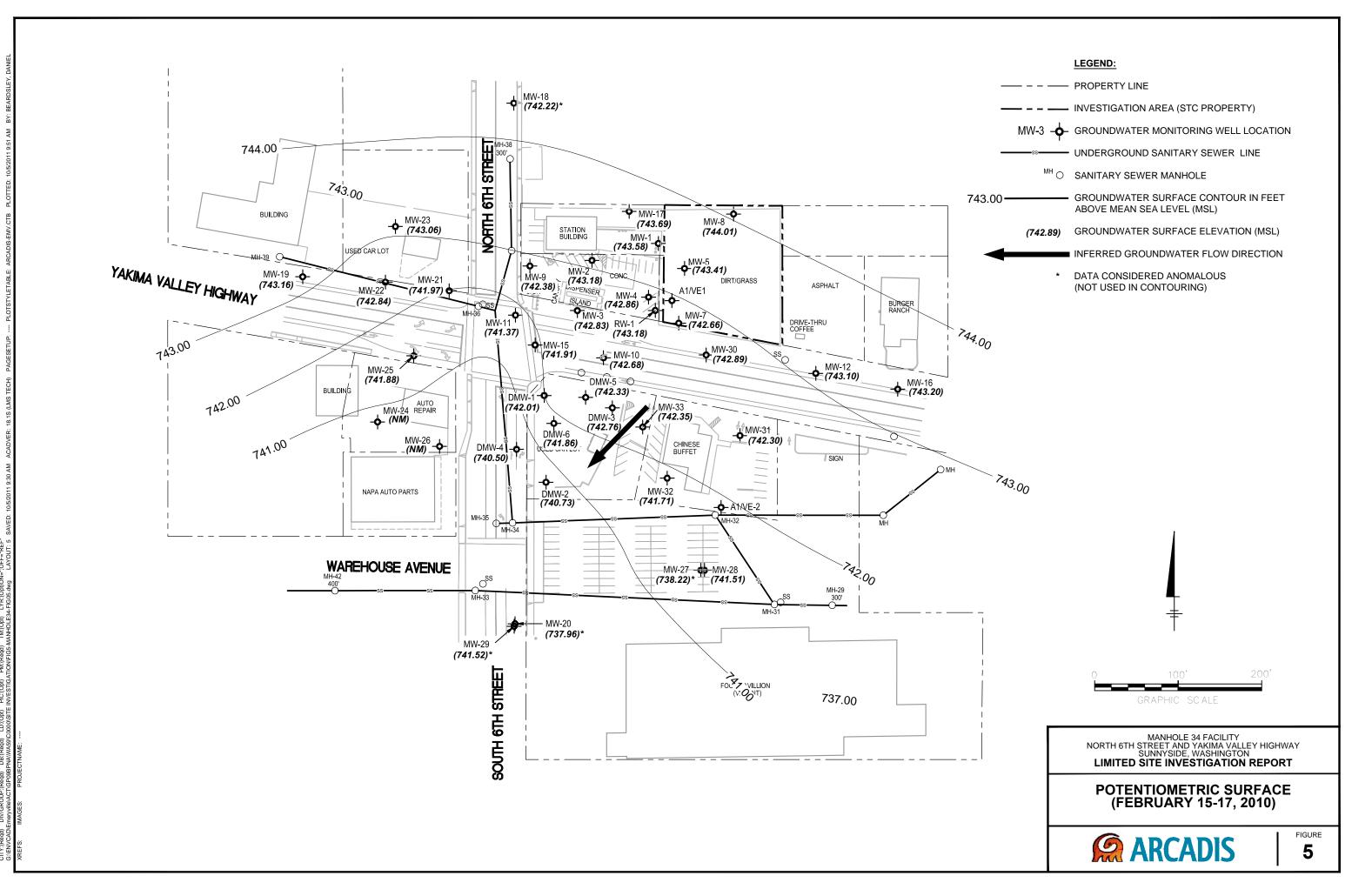
WASHINGTON

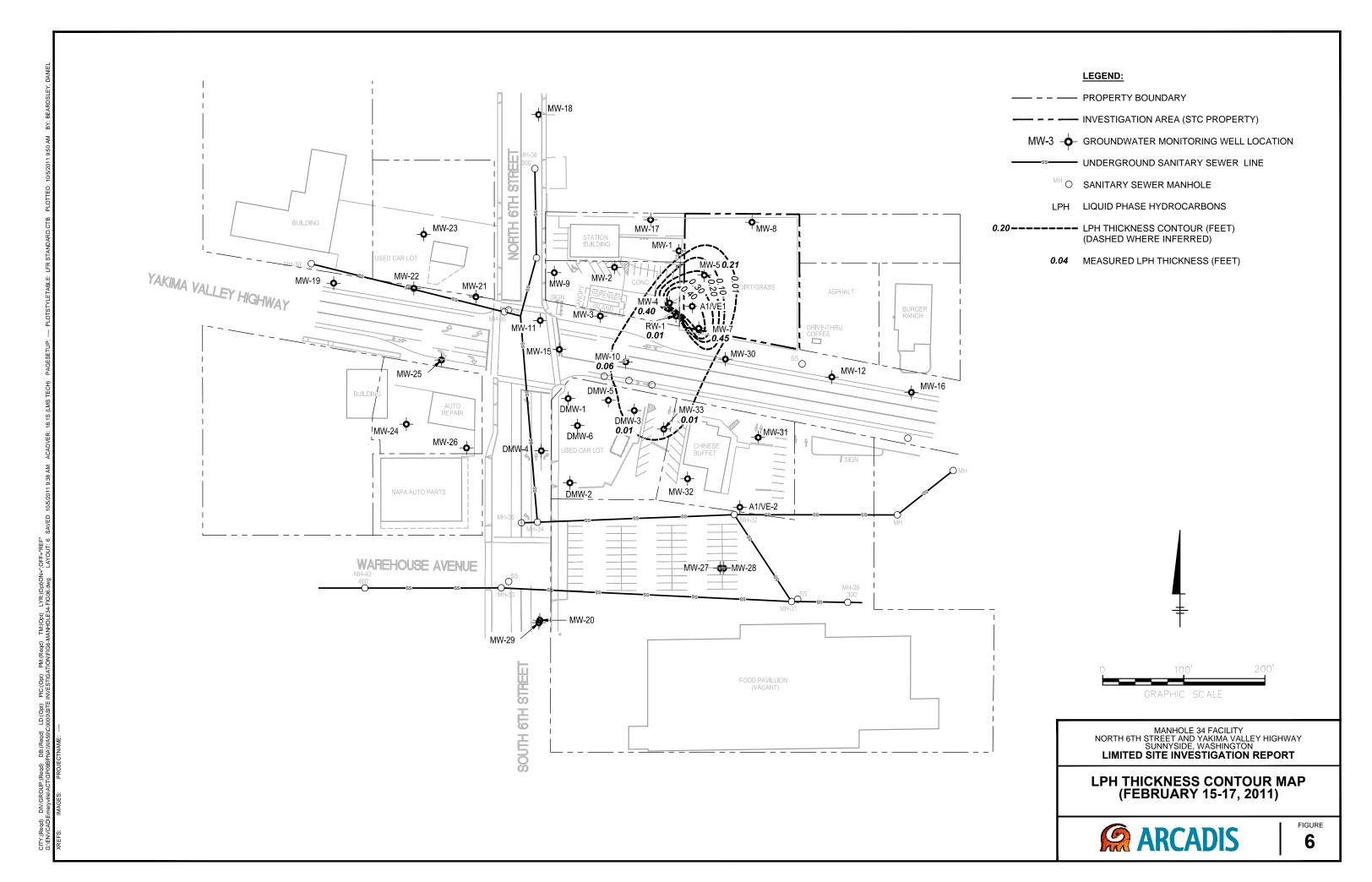
FIGURE

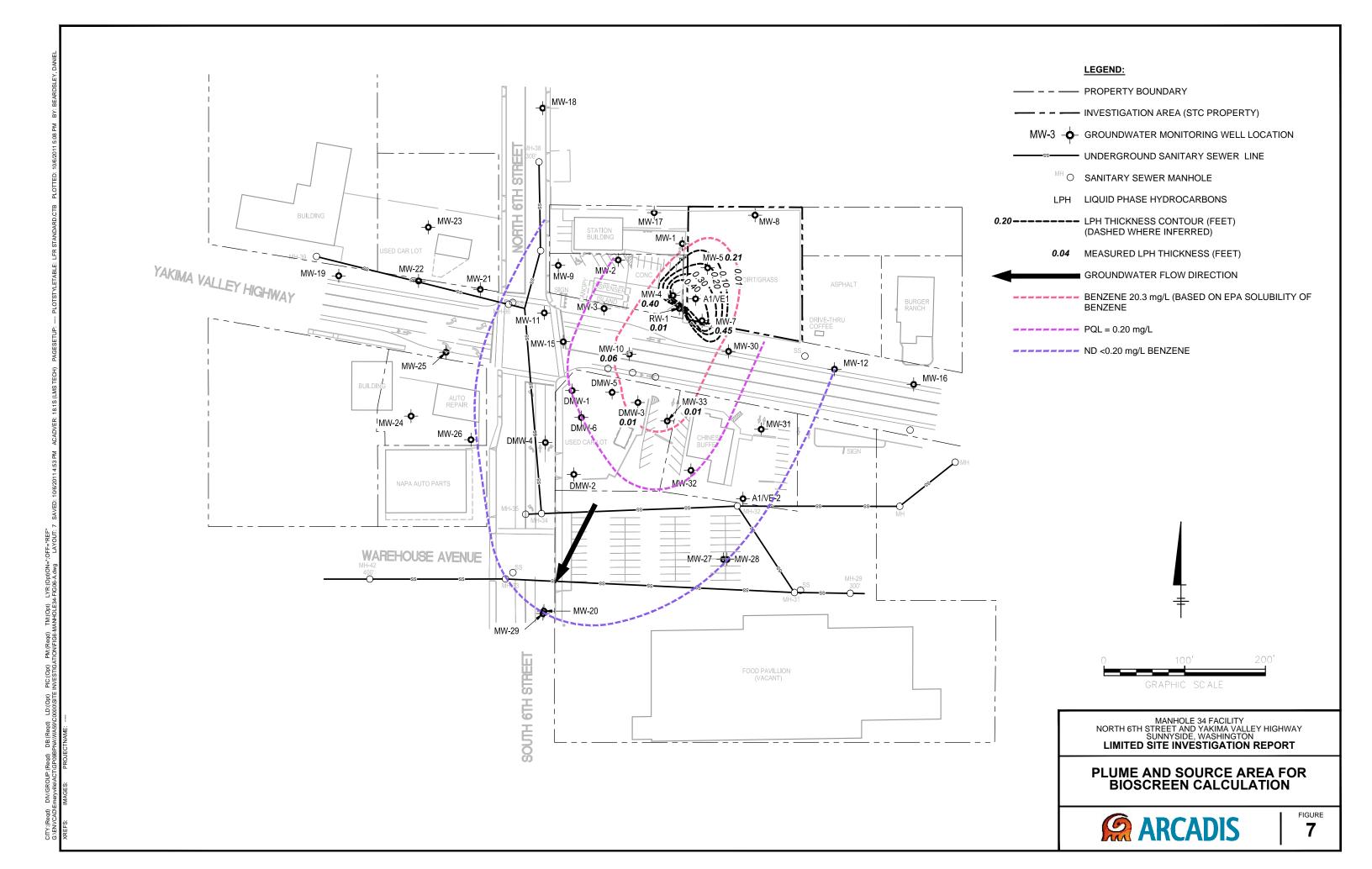
1

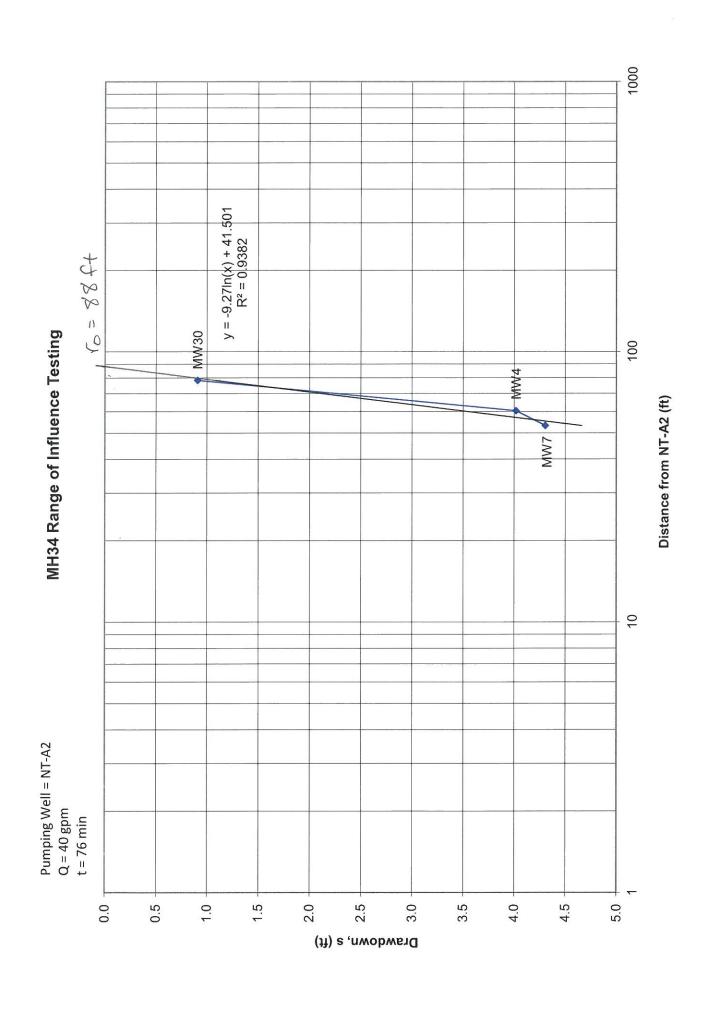

ARCADIS

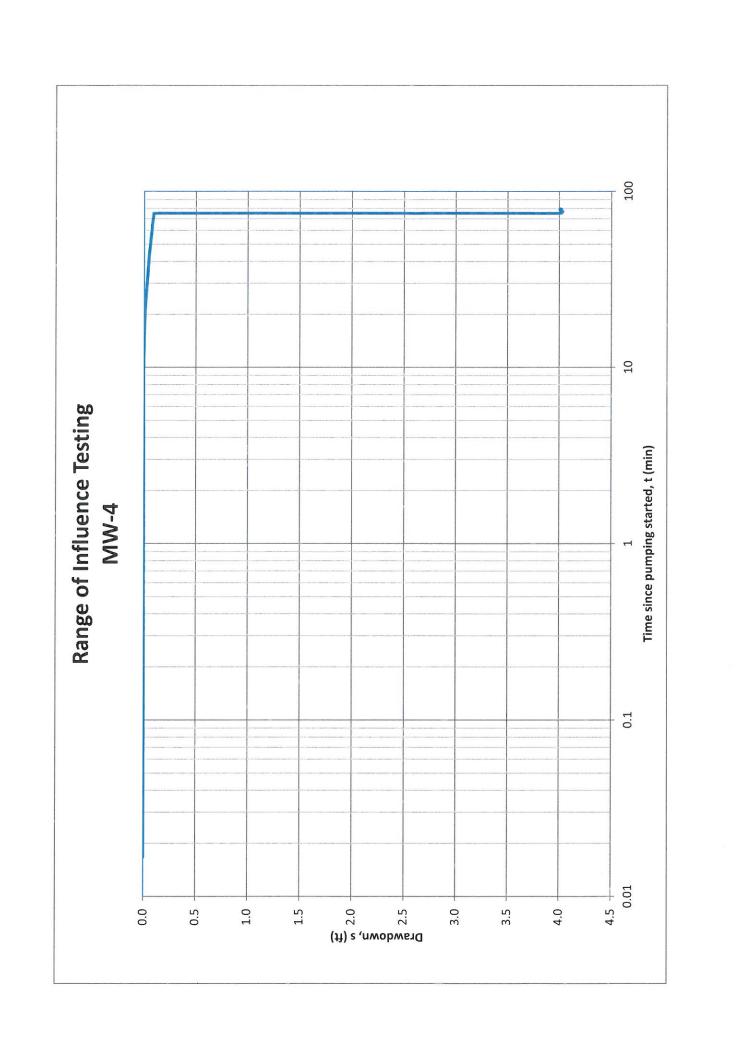

---- PLOTSTYLETABLE: ARCADIS.CTB PLOTTED: 10/5/2011 9:58 AM BY: BEARDSLEY, DANIEL

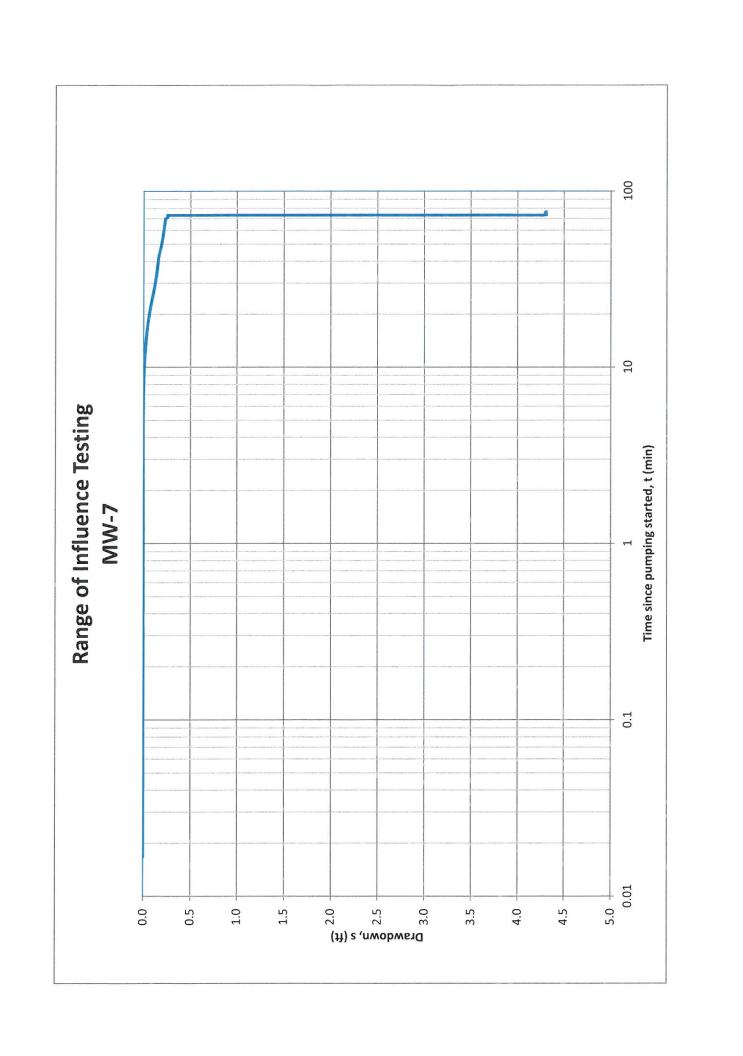

FIGURE

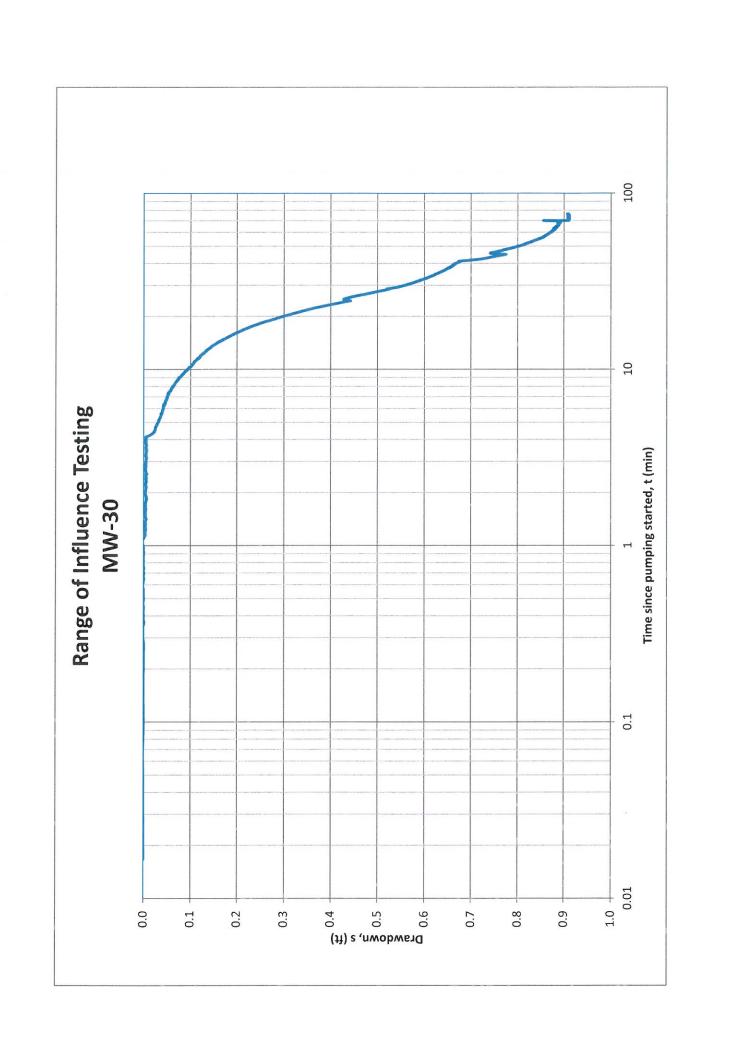

2


CITY:(Regd) DIV/GROUP:(Regd) DB:(Regd) LD:(Opt) PIC:(Opt) PM:(Regd) TM:(Opt) LYR:(Opt)ON=*;Control of the control of the contr

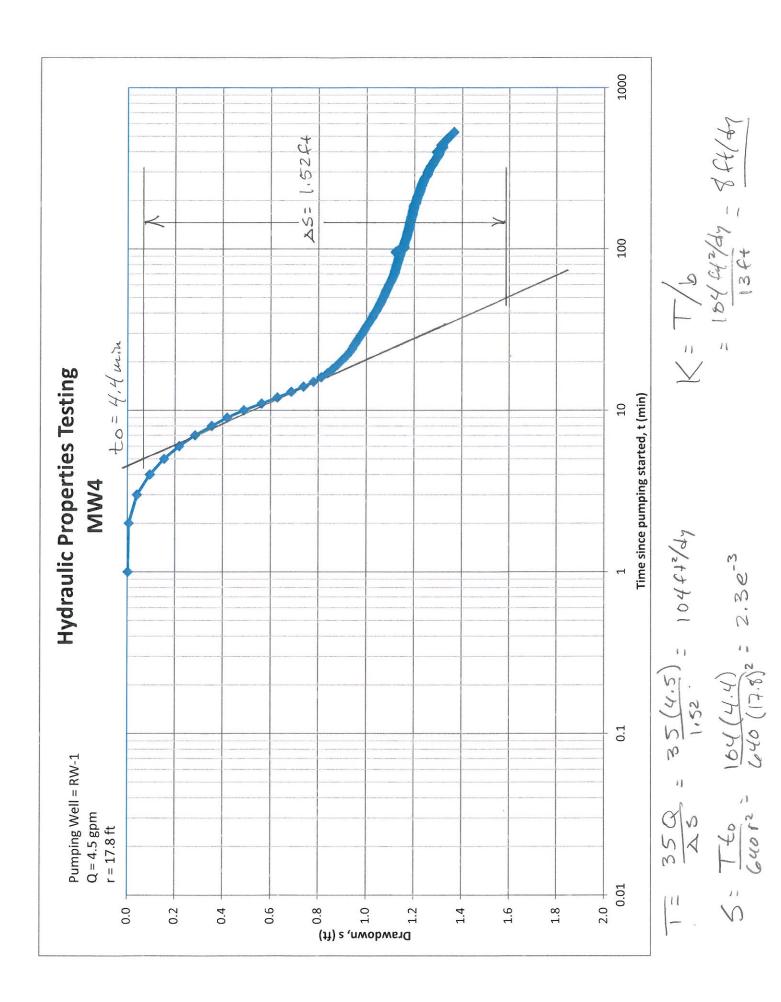





ARCADIS


Appendix A

Range of Influence Testing Results and Field Data



ARCADIS

Appendix B

Hydraulic Property Testing Results and Field Data

ARCADIS

Appendix C

Soil Boring Logs

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 16.5 ft **First Water:** 8.5 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-1

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

Fine. Light Brown SILT. Soft. Dry. Trace rounded coarse gravel. Hand cleared to 4.5 ft.		Well/Boring Construction	
Becomes dark brown. Hydrocarbon odor.	- - -		
ML/SM ML	Bentonite Chip	Bentoni Chip	■ Bentonite
Black product and saturated silt. Stiff.			
ML/SM			
Brown, fine to medium SAND. Some silt. Wet.			

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-1 Date: 6/22/2011 Page: 1 of 2

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 16.5 ft **First Water:** 8.5 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-1

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
-------	-------------------	-----------	-----------------	----------	-----------------	---------------------------	-----------------------------

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level;
GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available;
PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample,
SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-1 Date: 6/22/2011

Page: 2 of 2

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 7 ft First Water: 7 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-1a

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

								J
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction	
0								_0
				ML/SM		Light brown, gravelly SILT. Soft. Hand cleared to 3 ft. Dark brown silt with fine sand and some coarse gravel. No odor.		-
- - 5 -		280		ML		Strong odor. Product laden brown SILT with fine sand. Becomes gray color. Product laden.	Bentonite Chip	5

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 12 ft First Water: 3.5 - 4 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-1b

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

Stratigraphic Description Well/Boring Construction O BH-1b-3 0 ML/SM A17 SP SP SP Miss fine to medium silly SAND. Wet. Strong odor. Gray. ML/SM No odor. Brown. ML/SM No odor. Brown. ML/SM No odor. Brown. ML/SM No odor. Brown.							, i		
BH-1b-3 O ML/SM ML/SM Light brown, soft SILT with coarse gravel. Wet. No odor. Becomes gray. Strong odor. Wet. Bentonite Chip	DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description		
BH-1b-3 O ML/SM ML/SM Light brown, soft SILT with coarse gravel. Wet. No odor. Becomes gray. Strong odor. Wet. Bentonite Chip	0								Λ
BH-1b-3 O ML/SM ML/SM Becomes gray. Strong odor. Wet. Bentonite Chip	Γ						Light brown, soft SILT with coarse gravel.		U
BH-1b-3 O ML/SM ML/SM Becomes gray. Strong odor. Wet. Bentonite Chip									
BH-1b-3 O ML/SM ML/SM Becomes gray. Strong odor. Wet. Bentonite Chip							Dark brown SILT with fine sand.		
-5 1114 1114 -5 Bentonite Chip	-								
-5 1114 1114 -5 Bentonite Chip							Wat No oder		
-5 1114 1114 -5 Bentonite Chip	-	BH-1b-3					wet. No odol.	1	
-5 1114 1114 -5 Bentonite Chip			0			l I I I I I I I I I			
-5 1114 1114 -5 Bentonite Chip	Ī				ML/SM		Becomes gray. Strong odor. Wet.	1	
- Bentonite - Chip	_5								5
Chip			1114						•
	-							Bentonite -	
SP Fine to medium silty SAND. Wet. Strong odor. Gray. Gray SILT with fine sand. Sheen/Wet. No odor. Brown. O SP W Moist fine to medium SAND. No odor. Brown.									
SP Sp Fine to medium silty SAND. Wet. Strong odor. Gray. Compared to the strong odor. Gray. Compared to the strong od	-							-	
SP SP Fine to medium silty SAND. Wet. Strong odor. Gray. Gray SILT with fine sand. Sheen/Wet. No odor. Brown. SP SP SP SP Moist fine to medium SAND. No odor. Brown.									
Fine to medium silty SAND. Wet. Strong odor. Gray. Compared to the strong odor. Gray. Compared to the strong odor. Gr			417			1 1 1 1 1 1 1 1			
- 10 ML/SM	-				SP				
ML/SM No odor. Brown.			275				Gray SILT with fine sand. Sheen/Wet.		
80 No odor. Brown. 0 SP Moist fine to medium SAND. No odor. Brown.	-10				MI /SNA				10
0 SP SP Moist fine to medium SAND. No odor. Brown.			80		IVIL/SIVI		No odor. Brown.		
O SP Moist fine to medium SAND. No odor. Brown.	<u> </u>							-	
			0		SP		Moist fine to medium SAND. No odor. Brown.		

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Page: 1 of 1

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-1b Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 36 ft **First Water:** 3.5 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-2

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
0							0
				GM		Silty GRAVEL. Dry. Hand cleared to 3 ft. Brown, soft SILT with some coarse angular gravel. Dry.	
- - -5 -		0 0 858		ML/SM		Decreasing gravel. When at 3.5 ft bgs. No odor. Brown, soft SILT. Wet. Trace to fine sand. Becomes black/gray. Strong odor. Wet. Hand cleared to 3 ft.	-5
-10		0		SM	1.1.1.1.1	in of stiff silt. No odor beyond. Srown, silty fine SAND. Wet.	- 10
- 15		0		SP		Frown, fine to medium SAND. Trace to some silt. Wet. No odor.	

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank Drilling Method: Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 36 ft First Water: 3.5 ft

Description By: Kevin Knesek Reviewed By: Kevin Freeman

Well/Boring ID: BH-2

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed By: Kevin Freeman		
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction	
- 20 25		0		ML/SM		Dark brown silt. Moist. Trace coarse subangular gravel. Brown silty sand and sandy silt. Sand is fine. Wet. Brown, stiff silt. Trace fine sand. Wet. Silty brown fine sand. Wet. Coarse. Brown, stiff silt with some fine sand. Wet. Brown, stiff silt. Trace plant organics. Moist.		20
- 30		0		ML				30

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34 Data File: MH34 BH-2

Date: 6/22/2011 Page: 2 of 3

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 36 ft First Water: 3.5 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-2

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed by. Reviii i leenian		
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction	
- - - 35				SP		Increasing fine to medium sand. Trace to some. Slightly moist. Trace, coarse subrounded gravel. Wet from 33 to 34.5 ft bgs, then dry to slightly moist. Brown, fine to medium SAND. Very hard. Subrounded 1.5 in diameter basalt cobble. Swirling cream colored hard material in sand. Refusal at 36 ft bgs.		35

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-2 Date: 6/22/2011 Page: 3 of 3

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 12 ft **First Water:** 5.5 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-3

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed by. Reviri recinal	
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
0							0
				GP		Gravelly sand and silt. Brown. Dry.	
- - -5	BH-3-2.5	750		ML/SM		Black and dark gray fine sandy SILT with fine gravel. Strong hydrocarbon odor. Dry. Slightly moist. Product at 4 - 7 ft bgs. Becomes gray.	Bentonite Chip
		636		ML		Dark gray SILT to some fine sand. Wet.	
- 10		27.2		SM	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	Dark gray, fine SAND with silt. Trace subrounded gravel. Dark gray fine to medium sand with silt.	- 10
		623		ML		Dark gray sandy SILT. Wet.	

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-3 Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 12 ft **First Water:** 4.5 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-4

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed By: Kevin Freeman	
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
0							
_				ML		Gravelly, soft brown SILT. Some cobbles. Dry. Hand cleared to 3 ft.	
	BH-4-3	324		SP		Grayish, dark brown fine SAND. Some silt. Strong "sweet" odor. Slightly moist.	
-5		1424 719		ML		Product soaked. Wet. Brown to gray SILT with some fine sand.	Bentonite - Chip
-10		21		SP	7000 7000 7000 7000 7000 7000	Fine to medium SAND. some silt. Strong odor.	
L		- 1		ML		Grayish brown SILT. Wet.	

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-4 Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank Drilling Method: Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 36 ft First Water: 4.5 ft

Description By: Kevin Knesek Reviewed By: Kevin Freeman

Well/Boring ID: BH-4a

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
_				ML		Gravelly light brown SILT with cobbles. Dry. Hand cleared to 3 ft.	
_	BH-4a-2.5	205		SP		Fine brown SAND with silt.	
- 5		1165		ML		Dark brown to grayish brown wet SILT. Some fine sand. Strong hydrocarbon odor.	-5
-		1613		0.0		Final and Final and CAMP with all Comme	-
-10		819		SP SM		Fine to medium gray SAND with silt. Coarse. Gray silty SAND with some beds of stiff silt (1-2 in thick).	1
-		39.9		ML SM		Stiff, grayish brown silt. Slight hydrocarbon odor. Wet. Brownish-gray fine SAND with silt. Odor. Wet.	
		20.9		ML		Brown SILT with fine sand. Wet.	- -
- - 15				SM		Fine medium brown SAND with silt. Wet. Coarse, brown, silty fine SAND. Wet.	- 1

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-4a Date: 6/22/2011 Page: 1 of 3

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank Drilling Method: Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 36 ft First Water: 4.5 ft

Description By: Kevin Knesek Reviewed By: Kevin Freeman

Well/Boring ID: BH-4a

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
		17.1					
-				SP		ne to medium SAND. Brown . Trace to some silt. Wet.	Bentonite -
-				SM	II. I. I. I	own silty fine SAND. Wet.	Chip
				SP	DO DO F	ne to medium SAND. Trace to some silt. Wet.	
- 20		10.1		SM		ty fine, trace medium SAND. Brown. Wet.	
-		0		SP		own fine to medium SAND. Trace to some silt. Wet.	
- 25		3.2		SM		own silty SAND. Increasing silt and stiffness with depth. Loose. We	et. — 2
- 30		0		ML	Т	own SILT. Moist from 26-26.5 ft then dry. Trace plant organics. SIL ace clay.	LT is stiff.

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-4a Date: 6/22/2011 Page: 2 of 3

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank Drilling Method: Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Northing: Easting:

Casing Elevation:

Borehole Depth: 36 ft First Water: 4.5 ft

Well/Boring ID: BH-4a

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

Samp	oling Me	ethod:	Geo	ргоре		Reviewed By: Kevin Knesek Reviewed By: Kevin Freeman	
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
		0		SP	70,00 70,00	Brown, fine to medium SAND. Some silt. Trace coarse subrounded gravel.	
				-33.5		Brown silty fine SAND. Loose. Wet.	
- 35		0		SP		Fine to medium SAND. Trace to some silt. Wet to 35.5 ft then dry. Trace to some coarse subrounded gravel. Sand is reddish brown. Gravel is mostly basalt. Sand is very hard. Swirls of cream colored silt sized particles.	

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-4a Date: 6/22/2011 Page: 3 of 3

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 11.5 ft **First Water:** 4.5 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-5

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed By: Kevin Freeman		
ОЕРТН	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction	
0				ML		Gravelly SILT with cobbles. Hand cleared to 3 ft.		0
-5		0 0 360 752		SM		Brown, silty fine SAND. Trace coarse gravel. Dry. No odor. Becomes gray. Strong hydrocarbon odor. Wet. LNAPL.	Bentonite Chip	5
		135		ML	72, <i>2</i> 2	Gray stiff SILT. Hydrocarbon odor. Wet. Fine to medium gray SAND. Wet. Hydrocarbon odor.		. 0
				SP				

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-5 Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 11 ft

First Water:

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-6

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
0	•						
				ML		Gravelly brown SILT. Some cobbles. Dry. Hand cleared to 3 ft.	
_	BH-4-3			SP		Fine brown and black SAND. Some silt. Dry.	
- -5		370		ML		Gray, wet SILT. Some fine sand. Strong hydrocarbon odor.	Bentonite Chip
-		875		SM		Dark gray to black fine SAND with silt. LNAPL visible.	
-10				SP		Dark gray fine to medium SAND with some silt. Wet.	- 10
		89.8		ML		Stiff, gray SILT. Strong hydrocarbon odor. Wet.	
L		09.0		SP		Fine to medium gray SAND with some silt. Wet. Slight hydrocarbon odor.	

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Page: 1 of 1

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-6 Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 12 ft First Water:

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-7

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						, in the second	
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
_ 0							
				ML		Dark brown dry SILT.	
-				GP		GRAVEL and cobble with silt.	
-	BH-7-2	187		SM		Grayish to dark grayish brown fine silty SAND. Trace coarse gravel. Hydrocarbon odor. LNAPL	
-5				SP	A 700	Blackish gray fine to medium SAND. Some silt. Trace fine gravel.	
_		908		SM		Blackish gray silty fine sand. LNAPL. Wet.	Bentonite - Chip
		918		ML		Gray stiff SILT. Wet. Cream silt sized gravel with gray.	
- 10 -				SM		Gray silty fine SAND. Loose. Wet. Sheen. Strong odor.	- 10
		44.2		SP		Fine SAND with some silt. Trace medium sand. Wet. Strong odor and then slight odor at 12 ft.	

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34
Data File: MH34 BH-7 Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 12 ft **First Water:** 4 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-8

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed By. Reviii Freeman			
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description		Well/Boring Construction	
0									- 0
-		475		SM		Dark brown silty fine SAND. Dry. Some coarse gravel. Hand cleared to 3 ft.	•	Bentonite	5
				ML		Gray stiff SILT. Strong odor. Wet.		Chip]
-				SM ML		Gray loose silty SAND. Fine. Wet. Sheen present on standing water. Stiff gray SILT. Wet. Strong odor.			
- 10 -				SM		Gray loose silty fine SAND. Sheen.			10
				ML		Grayish brown stiff SILT. Wet. Hydrocarbon odor.			

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-8 Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 12 ft **First Water:** 4 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-9

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed by. Reviin recinali		
ОЕРТН	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction	
0							-	0
				GP	- V.	Coarse GRAVEL with silt.		
-				SM		Fine grown silty SAND. No odor. Pieces of asphalt.	-	
- - -5		0		SM		Brown fine SAND with silt. Moist.		5
-		1445		ML		Dark gray SILT with fine sand. Wet. Odor and sheen.	Bentonite - Chip	
						Dark blackish gray SILT with fine sand. Wet. Odor.		
-		434		ML		Light gray silt size ribbons. Black silt with sand.		
-10							_	10
		127		SM		Dark gray fine SAND with silt. Wet. Odor.		

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-9 Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 12 ft **First Water:** 4 ft

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-10

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed by. Reviiri recinan			
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description		Well/Boring Construction	
0									-
-				ML		Brown stiff SILT. Trace angular gravel. Hand cleared to 3 ft.			
- - -5	BH-10-3	80.1		SP		Brown fine to medium SAND. Trace silt. Hydrocarbon odor and gray at 3 ft. Wet at 4 ft. Sheen, very strong hydrocarbon odor.	•	Bentonite Chip	-5 -5
-				ML		Gray wet stiff SILT. Hydrocarbon odor.			-
				SM		Gray wet loose silty fine SAND. Sheen.			_
-10		779		ML		Stiff gray wet SILT. Hydrocarbon odor.			10
-				SM		Stiff silty fine gray SAND. Wet. Hydrocarbon odor.			
		59.6		SP		Fine to medium gray SAND. Wet. Hydrocarbon odor.			

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-10 Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 12 ft

First Water:

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-10a

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

ОЕРТН	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
0							
5		118 1618 84.9		SP		own fine SAND. Trace to some silt. Dry. Hand cleared to 3 ft.	Bentonite Chip
		960					
-10		58.4		ML SM ML SP	Loc	by stiff wet SILT. Sheen. Dose fine silty SAND. Sheen. By stiff SILT. Slight odor. By SAND. Trace silt. Loose. Wet. No odor.	- 1

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-10a Date: 6/24/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank Drilling Method: Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 8 ft First Water:

Description By: Kevin Knesek Reviewed By: Kevin Freeman

Well/Boring ID: BH-10b

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
0							
-				ML		Brown stiff SILT. Dry. No odor. Hand cleared to 3 ft.	
- - -5		0.4 962		SM		Brown stiff fine silty SAND. Dry to slightly moist. No odor.	Bentonite - Chip
-		1062		SP		Slightly fine SAND. NAPL.	
		860					

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-10b Date: 6/24/2011 Page: 1 of 1

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 7 ft First Water:

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-10c

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

]
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction	
0								0
-5	BH-10c-2	234		SM	Bed	e silty SAND. Trace fine gravel. Brown. comes gray. Hydrocarbon odor. ce gravel.	Bentonite Chip	5

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-10c Date: 6/22/2011 Page: 1 of 1

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 7 ft First Water:

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-10d

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						,	
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction
0							
-		293				wn silty fine SAND with gravel. Hand cleared to 3 ft. omes gray. Hydrocarbon odor.	
- 5		530		SM		omes wet. Sheen.	Bentonite Chip
		1478			Incr	easing silt.	

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-10d Date: 6/22/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 7 ft First Water:

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-10e

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction	
0								0
-5		26.2		SM		wn fine silty SAND. Dry. No odor. comes gray. Wet. NAPL. Trace coarse rounded gravel. reasing silt.	Bentonite Chip	5

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; http://deaphology.com/D = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-10 Date: 6/22/2011

Date Start/Finish: 5/11/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank **Drilling Method:** Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 16 ft First Water:

Description By: Kevin Knesek **Reviewed By:** Kevin Freeman

Well/Boring ID: BH-10f

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

DEPTH Sample Run Number OVM (ppm) Recovery (feet) U.S.C.S.					ĺ		J	
			U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction		
0							•	- _0
-5	BH-10f- 4.5	26.2 1220 5.2 7.9 3.9		SM	De Cre	dish brown fine silty SAND. Dry. No odor. oris am colored fine sand. omes gray. Wet. No odor. fine gravelly material. omes brown. No odor. Wet. ne cream colored silt particles in swirl pattern.		-5
				ML		wn stiff SILT. Wet. Coarse.	Bentonite Chip]
-				SP	 	SAND. Loose. Wet.		-
				SM	Bro	wn silty fine SAND. Wet.		
-10				ML	Bro	wn wet stiff SILT.		10
_		5.1		SP		wn fine SAND. Some medium wet sand with some silt.		_
-				ML	Stif	brown SILT. Wet.		1
- - 15				SM		wn loose silty fine SAND. Wet.		15
				ML	Bro	wn stiff SILT. Wet.		

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-10f Date: 6/22/2011

Date Start/Finish: 5/11/2011

Drilling Company: Cascade Drilling, L.P.

Driller's Name: Frank Drilling Method: Geoprobe

Bit Size:

Hole Diameter: 2 in

Rig Type:

Sampling Method: Geoprobe

Northing: Easting:

Casing Elevation:

Borehole Depth: 16 ft

First Water:

Description By: Kevin Knesek Reviewed By: Kevin Freeman

Well/Boring ID: BH-10g

Client: British Petroleum

Location: Manhole 34 Facility

North 6th Street and Yakima Valley

Highway

Sunnyside, Washington

						Reviewed By: Reviii'i rooman		
DEPTH	Sample Run Number	OVM (ppm)	Recovery (feet)	U.S.C.S.	Geologic Column	Stratigraphic Description	Well/Boring Construction	
0								0
-				SM		Brown fine silty SAND. No odor. Dry. Hand cleared to 3 ft.		
				ML		Brown stiff SILT. Dry.	Bentonite	1
- -5 -		50.1		SM		Fine gray silty SAND. Wet at 4 ft. Sheen visible.	Chip _	5
		971		ML		Gray wet stiff SILT. Hydrocarbon odor.		ı

Remarks: ft = feet; " = inch; bgs = below ground surface; msl = mean sea level; GP = Geoprobe; OD = Outer Diamer; NA = Not applicable / Available; PID = Photoionization Detector; PVC = Poly Vinyl Chloride, G=Grab Sample, SB=Split Barrel, TS=Top Soil, C=Concrete, AS=Asphalt

Project: GP09BPNAWA59 Template: Boring Long BP MH34

Data File: MH34 BH-10g Date: 6/22/2011 Page: 1 of 1

ARCADIS

Appendix D

Soil Analytical results

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SUE0077

Client Project/Site: GP09BPNA.WA59.00000 Client Project Description: WA59/MH-34

For:

ARCADIS U.S., Inc. - Liberty Lake 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Attn: Kevin Knesek

tandissector

Authorized for release by: 05/26/2011 10:39:03 AM

Randee Decker Project Manager

Randee.Decker@testamericainc.com

results through
Total Access

Have a Question?

----- LINKS -----

Review your project

Ask The Expert

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 37 05/26/2011

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	24
Certification Summary	34
Method Summary	35
Chain of Custody	36

3

4

0

9

Case Narrative

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0077

Job ID: SUE0077

Laboratory: TestAmerica Austin

Narrative

SUE0077

This report contains results for the samples received under chain-of-custody by TestAmerica Laboratories, Inc. 5/13/2011 8:45:00 AM.

These samples are associated with your ARCADIS project.

All samples were received in good condition and within temperature requirements.

All applicable quality control procedures met method specified acceptance criteria except where flagged on the result pages or noted in the case narrative.

If you should have any questions, please feel free to contact me at neal.salcher@testamericainc.com or (512) 310-5215.

Note that if this report contains tests performed for the following methods, the associated method deviations are applicable.

EPA 410.4, COD: Laboratory uses different analytical wavelength as specified by instrument manufacturer.

EPA 340.2, Fluoride: Preliminary Bellack distillation not performed.

EPA 624: The laboratory uses a different desorb time and purge volume than stated in the method.

Iowa OA1: Benzene, toluene, ethylbenzene and xylenes (BTEX) are not analyzed along with the Gasoline Range Organics if client does not require BTEX.

EPA TO-12: Samples not analyzed in duplicate.

EPA TO-14A and TO-15: Zero humidified nitrogen is used in place of air for method blanks.

SUE0077

Laboratory: TestAmerica Burlington

Narrative

CASE NARRATIVE

Client: TestAmerica Laboratories, Inc

Project: Liberty Lake

Report Number: 200-5162-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 05/13/2011; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.7 C.

Case Narrative

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0077

.

Job ID: SUE0077 (Continued)

Laboratory: TestAmerica Burlington (Continued)

GRAIN SIZE

Samples SUE0077-02, SUE0077-03, SUE0077-04, SUE0077-05 and SUE0077-07 were analyzed for grain size in accordance with D422 grain size. The samples were analyzed on 05/17/2011.

No difficulties were encountered during the grain size analyses.

All quality control parameters were within the acceptance limits.

WATER CONTENT OF SOIL AND ROCK BY MASS

Samples SUE0077-01, SUE0077-02, SUE0077-03, SUE0077-04, SUE0077-05, SUE0077-06, SUE0077-07 and SUE0077-08 were analyzed for Water Content of Soil and Rock by Mass in accordance with ASTM D2216-90. The samples were analyzed on 05/17/2011.

No difficulties were encountered during the moisture content analyses.

All quality control parameters were within the acceptance limits.

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA - NWTPH/VPH

4-BFB surrogate recovery for the following sample was outside control limits: SUE0077-04 (580-26174-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed. The results have been "XI" flagged and reported.

The matrix spike duplicate (MSD) recoveries for sample SUE0077-02 (580-26174-2) in batch 86471 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The results have been "F" flagged and reported.

No other analytical or quality issues were noted.

GC Semi VOA - NWTPH/EPH

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for SUE0077-02 (580-26174-2) in batch 86069 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The results have been "F" flagged and reported.

The laboratory control sample (LCS) for batch 86239 recovered below the control limits for the following analytes: Aromatic C10-C12. This failure is most likely attributed to human error during the extraction procedures. All associated samples have been analyzed for the VPH analysis, and the affected analyte range is reported from the VPH analysis.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep - Method 3550B

Sample SUE0077-03 (580-26174-3) had about 1 mL of water in the KD tip along with the extract. Sodium sulfate was added to soak up the water. The extract was blown down by N-EVAP and vialed at 2 mL final volume. Method 3550B, EPH. Batch 86239.

No other analytical or quality issues were noted.

5

8

9

Sample Summary

Matrix

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID

BH-1b-3

BH-3-2.5

BH-4a-2.5

BH-4-3

BH-7-2

BH-10-3

BH-10c-2

BH-10f-4.5

Lab Sample ID

SUE0077-01

SUE0077-02

SUE0077-03

SUE0077-04

SUE0077-05

SUE0077-06

SUE0077-07

SUE0077-08

TestAmerica Job ID: SUE0077

Collected	Received
05/09/11 12:22	05/12/11 12:07
05/09/11 16:00	05/12/11 12:07
05/10/11 08:15	05/12/11 12:07
05/10/11 09:05	05/12/11 12:07
05/10/11 13:55	05/12/11 12:07

05/11/11 08:45

05/11/11 10:35

05/11/11 12:20

4

5

6

05/12/11 12:07

05/12/11 12:07

05/12/11 12:07

Ω

9

Definitions/Glossary

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0077

Qualifiers

GCMS Volatiles

Qualifier Qua

 Qualifier
 Qualifier Description

 ZX
 Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Semivolatiles

Qualifier Qualifier Description

Z2 Surrogate recovery was above the acceptance limits. Data not impacted.

GC VOA

F MS or MSD exceeds the control limits

I Indicates the presence of an interference, recovery is not calculated.

X Surrogate is outside control limits

GC Volatiles

ZX Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

GC Semi VOA

F MS or MSD exceeds the control limits

Wet Chemistry

M1 The MS and/or MSD were outside the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis.

EPA United States Environmental Protection Agency

ND Not Detected above the reporting level.

MDL Method Detection Limit

RL Reporting Limit

RE, RE1 (etc.) Indicates a Re-extraction or Reanalysis of the sample.

%R Percent Recovery

RPD Relative Percent Difference, a measure of the relative difference between two points.

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: BH-1b-3 Date Collected: 05/09/11 12:22

Date Received: 05/12/11 12:07

TestAmerica Job ID: SUE0077

Lab Sample ID: SUE0077-01

Matrix: Soil
Percent Solids: 82.4

Analyte	Result Q	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.0218	mg/kg dry	*	05/20/11 09:49	05/20/11 12:03	1.00
Ethylbenzene	ND	0.145	mg/kg dry	₩	05/20/11 09:49	05/20/11 12:03	1.00
Toluene	ND	0.145	mg/kg dry	₩	05/20/11 09:49	05/20/11 12:03	1.00
o-Xylene	ND	0.290	mg/kg dry	₽	05/20/11 09:49	05/20/11 12:03	1.00
m,p-Xylene	ND	0.581	mg/kg dry	₩	05/20/11 09:49	05/20/11 12:03	1.00
Methyl tert-butyl ether	ND	0.0436	mg/kg dry	₽	05/20/11 09:49	05/20/11 12:03	1.00
Naphthalene	ND	0.290	mg/kg dry	*	05/20/11 09:49	05/20/11 12:03	1.00

Surrogate	% Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac
Toluene-d8	93.0		50.8 - 132	05/20/11 09:4	9 05/20/11 12:03	1.00
4-bromofluorobenzene	104		51 - 136	05/20/11 09:4	9 05/20/11 12:03	1.00
Dibromofluoromethane	98.2		42.7 - 151	05/20/11 09:4	9 05/20/11 12:03	1.00

Method: EPA 8270 mod. - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 09:54	1.00
2-Methylnaphthalene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
1-Methylnapthalene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Acenaphthylene	ND		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 09:54	1.00
Acenaphthene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Fluorene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Phenanthrene	ND		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 09:54	1.00
Anthracene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Fluoranthene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Pyrene	ND		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 09:54	1.00
Benzo (a) anthracene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Chrysene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Benzo (b) fluoranthene	ND		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 09:54	1.00
Benzo (k) fluoranthene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Benzo (a) pyrene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 09:54	1.00
Dibenzo (a,h) anthracene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00
Benzo (ghi) perylene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 09:54	1.00

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67.8		30 - 140	05/20/11 09:28	05/23/11 09:54	1.00
2-FBP	63.2		30 - 140	05/20/11 09:28	05/23/11 09:54	1.00
p-Terphenyl-d14	150		30 - 150	05/20/11 09:28	05/23/11 09:54	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

p-Terphenyl-d14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Diesel Range Hydrocarbons	ND		12.1		mg/kg dry	₩	05/19/11 07:03	05/19/11 10:15	1.00	
Heavy Oil Range Hydrocarbons	ND		30.3		mg/kg dry	₽	05/19/11 07:03	05/19/11 10:15	1.00	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-FBP	101		50 - 150				05/19/11 07:03	05/19/11 10:15	1.00	

50 - 150

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		3.3		mg/Kg	\	05/21/11 10:29	05/22/11 23:02	1
C6-C8 Aliphatics	ND		3.3		mg/Kg	₩	05/21/11 10:29	05/22/11 23:02	1

1.00

05/19/11 07:03 05/19/11 10:15

2

3

5

6

8

40

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: BH-1b-3

Date Collected: 05/09/11 12:22

Date Received: 05/12/11 12:07

TestAmerica Job ID: SUE0077

Lab Sample ID: SUE0077-01

Matrix: Soil

Percent Solids: 78.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics	ND ND		3.3		mg/Kg	☼	05/21/11 10:29	05/22/11 23:02	•
C10-C12 Aliphatics	ND		3.3		mg/Kg	₽	05/21/11 10:29	05/22/11 23:02	1
C8-C10 Aromatics	ND		3.3		mg/Kg	₽	05/21/11 10:29	05/22/11 23:02	1
C10-C12 Aromatics	ND		3.3		mg/Kg	₽	05/21/11 10:29	05/22/11 23:02	1
C12-C13 Aromatics	ND		3.3		mg/Kg	☼	05/21/11 10:29	05/22/11 23:02	1
Total VPH	ND		23		mg/Kg	₽	05/21/11 10:29	05/22/11 23:02	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	101		60 - 140				05/21/11 10:29	05/22/11 23:02	
BFB - PID	103		60 - 140				05/21/11 10:29	05/22/11 23:02	-

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		6.37	mg/kg dry	*	05/20/11 13:03	05/20/11 15:37	1.00
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-BFB (FID)			50 - 150			05/20/11 13:03	05/20/11 15:37	1.00

Method: NWTPH/EPH - Northy	vest - Extractable Petroleum H	lydrocarbons	(GC)					
Analyte	Result Qualifier	RL	MDL Ur	Init	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND ND	6.3	m _i	ng/Kg	*	05/18/11 10:13	05/23/11 19:38	1
C12-C16 Aliphatics	ND	6.3	m	ng/Kg	₽	05/18/11 10:13	05/23/11 19:38	1
C16-C21 Aliphatics	ND	6.3	m	ng/Kg	₽	05/18/11 10:13	05/23/11 19:38	1
C21-C34 Aliphatics	ND	6.3	m	ng/Kg	₽	05/18/11 10:13	05/23/11 19:38	1
C12-C16 Aromatics	ND	6.3	m	ng/Kg	₽	05/18/11 10:13	05/23/11 19:38	1
C16-C21 Aromatics	ND	6.3	m	ng/Kg	₽	05/18/11 10:13	05/23/11 19:38	1
C21-C34 Aromatics	ND	6.3	m	ng/Kg	₽	05/18/11 10:13	05/23/11 19:38	1

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	83		60 - 140	05/18/11 10:13	05/23/11 19:38	1
1-Chlorooctadecane	82		60 - 140	05/18/11 10:13	05/23/11 19:38	1

Method: MSA 29-3.5.2 - General Ch	nemistry Para	ameters							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		2480		mg/kg dry	₽	05/17/11 13:36	05/17/11 16:58	1.00

Method: D2216-90 - Water (Moistur	re) Content								
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Moisture Content	26.5				%			05/17/11 08:44	1

Client Sample ID: BH-3-2.5	Lab Sample ID: SUE00/7-02
Date Collected: 05/09/11 16:00	Matrix: Soil
Date Received: 05/12/11 12:07	Percent Solids: 87.5

Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.140	0.02)3	mg/kg dry	₩	05/20/11 09:49	05/20/11 12:31	1.00
Ethylbenzene	0.354	0.1	36	mg/kg dry	₩	05/20/11 09:49	05/20/11 12:31	1.00
Toluene	0.551	0.1	36	mg/kg dry	₩	05/20/11 09:49	05/20/11 12:31	1.00
o-Xylene	0.483	0.2	71	mg/kg dry	₩	05/20/11 09:49	05/20/11 12:31	1.00
m,p-Xylene	1.46	0.5	12	mg/kg dry	₩	05/20/11 09:49	05/20/11 12:31	1.00
Methyl tert-butyl ether	ND	0.04)7	mg/kg dry	₽	05/20/11 09:49	05/20/11 12:31	1.00

TestAmerica Spokane 05/26/2011

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: BH-3-2.5

Lab Sample ID: SUE0077-02

TestAmerica Job ID: SUE0077

Date Collected: 05/09/11 16:00 Matrix: Soil Date Received: 05/12/11 12:07 Percent Solids: 87.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.350		0.271		mg/kg dry		05/20/11 09:49	05/20/11 12:31	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8	97.6		50.8 - 132				05/20/11 09:49	05/20/11 12:31	1.00
4-bromofluorobenzene	112		51 - 136				05/20/11 09:49	05/20/11 12:31	1.00
Dibromofluoromethane	92.4		42.7 - 151				05/20/11 09:49	05/20/11 12:31	1.00

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.109	0.0114		mg/kg dry	₩	05/20/11 09:28	05/23/11 10:20	1.00
2-Methylnaphthalene	0.126	0.0114		mg/kg dry	₩	05/20/11 09:28	05/23/11 10:20	1.00
1-Methylnapthalene	0.0709	0.0114		mg/kg dry	₩	05/20/11 09:28	05/23/11 10:20	1.00
Acenaphthylene	ND	0.0114		mg/kg dry	₽	05/20/11 09:28	05/23/11 10:20	1.00
Acenaphthene	ND	0.0114		mg/kg dry	⇔	05/20/11 09:28	05/23/11 10:20	1.00
Fluorene	ND	0.0114		mg/kg dry	₩	05/20/11 09:28	05/23/11 10:20	1.00
Phenanthrene	ND	0.0114		mg/kg dry	₽	05/20/11 09:28	05/23/11 10:20	1.00
Anthracene	ND	0.0114		mg/kg dry	☼	05/20/11 09:28	05/23/11 10:20	1.00
Fluoranthene	ND	0.0114		mg/kg dry	₩	05/20/11 09:28	05/23/11 10:20	1.00
Pyrene	ND	0.0114		mg/kg dry	₽	05/20/11 09:28	05/23/11 10:20	1.00
Benzo (a) anthracene	ND	0.0114		mg/kg dry	☼	05/20/11 09:28	05/23/11 10:20	1.00
Chrysene	ND	0.0114		mg/kg dry	₽	05/20/11 09:28	05/23/11 10:20	1.00
Benzo (b) fluoranthene	ND	0.0114		mg/kg dry	₽	05/20/11 09:28	05/23/11 10:20	1.00
Benzo (k) fluoranthene	ND	0.0114		mg/kg dry	⇔	05/20/11 09:28	05/23/11 10:20	1.00
Benzo (a) pyrene	ND	0.0114		mg/kg dry	₩	05/20/11 09:28	05/23/11 10:20	1.00
Indeno (1,2,3-cd) pyrene	ND	0.0114		mg/kg dry	₽	05/20/11 09:28	05/23/11 10:20	1.00
Dibenzo (a,h) anthracene	ND	0.0114		mg/kg dry	☼	05/20/11 09:28	05/23/11 10:20	1.00
Benzo (ghi) perylene	ND	0.0114		mg/kg dry	₩	05/20/11 09:28	05/23/11 10:20	1.00
Surrogate	% Recovery	Qualifier Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	87.0	30 - 140				05/20/11 09:28	05/23/11 10:20	1.00
2-FBP	93.2	30 - 140				05/20/11 09:28	05/23/11 10:20	1.00
p-Terphenyl-d14	118	30 - 150				05/20/11 09:28	05/23/11 10:20	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		11.4		mg/kg dry	*	05/19/11 07:03	05/19/11 11:01	1.00
Heavy Oil Range Hydrocarbons	ND		28.6		mg/kg dry	≎	05/19/11 07:03	05/19/11 11:01	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	101		50 - 150				05/19/11 07:03	05/19/11 11:01	1.00
p-Terphenyl-d14	110		50 - 150				05/19/11 07:03	05/19/11 11:01	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		2.4		mg/Kg		05/21/11 10:29	05/23/11 00:21	1
C6-C8 Aliphatics	ND		2.4		mg/Kg	₽	05/21/11 10:29	05/23/11 00:21	1
C8-C10 Aliphatics	ND		2.4		mg/Kg	₽	05/21/11 10:29	05/23/11 00:21	1
C10-C12 Aliphatics	ND		2.4		mg/Kg	₽	05/21/11 10:29	05/23/11 00:21	1
C8-C10 Aromatics	2.9		2.4		mg/Kg	₽	05/21/11 10:29	05/23/11 00:21	1
C10-C12 Aromatics	2.5		2.4		mg/Kg	₽	05/21/11 10:29	05/23/11 00:21	1
C12-C13 Aromatics	ND		2.4		mg/Kg	₽	05/21/11 10:29	05/23/11 00:21	1
Total VPH	ND		17		mg/Kg	₽	05/21/11 10:29	05/23/11 00:21	1

Page 9 of 37

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: BH-3-2.5

Date Collected: 05/09/11 16:00

Date Received: 05/12/11 12:07

TestAmerica Job ID: SUE0077

Lab Sample ID: SUE0077-02

Matrix: Soil

Percent Solids: 84.3

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		60 - 140	05/21/11 10:29	05/23/11 00:21	1
BFB - PID	101		60 - 140	05/21/11 10:29	05/23/11 00:21	1

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Gasoline Range Hydrocarbons	27.7		7.33		mg/kg dry	<u>∓</u>	05/20/11 13:03	05/20/11 16:02	1.00		
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-BFB (FID)	124		50 - 150				05/20/11 13:03	05/20/11 16:02	1.00		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		5.9		mg/Kg	₩	05/18/11 10:13	05/23/11 20:02	1
C12-C16 Aliphatics	ND		5.9		mg/Kg	₽	05/18/11 10:13	05/23/11 20:02	1
C16-C21 Aliphatics	ND		5.9		mg/Kg	₩	05/18/11 10:13	05/23/11 20:02	1
C21-C34 Aliphatics	ND		5.9		mg/Kg	₽	05/18/11 10:13	05/23/11 20:02	1
C12-C16 Aromatics	ND		5.9		mg/Kg	₩	05/18/11 10:13	05/23/11 20:02	1
C16-C21 Aromatics	ND		5.9		mg/Kg	₽	05/18/11 10:13	05/23/11 20:02	1
C21-C34 Aromatics	ND		5.9		mg/Kg	*	05/18/11 10:13	05/23/11 20:02	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	88		60 - 140				05/18/11 10:13	05/23/11 20:02	1
1-Chlorooctadecane	86		60 - 140				05/18/11 10:13	05/23/11 20:02	1

Method: MSA 29-3.5.2 - General Cl	nemistry Parameters						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2970	2390	mg/kg dry	-	05/17/11 13:36	05/17/11 16:58	1.00

Method: D2216-90 - Water (Moisture) Content										
	Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
	Moisture Content	34.1				%			05/17/11 08:44	1

Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Gravel	0.0				%			05/17/11 08:48	1
Sieve Size 3 inch - Percent Finer	100.0				% Passing			05/17/11 08:48	1
Sand	37.5				%			05/17/11 08:48	1
Sieve Size 2 inch - Percent Finer	100.0				% Passing			05/17/11 08:48	1
Coarse Sand	0.2				%			05/17/11 08:48	1
Sieve Size 1.5 inch - Percent Finer	100.0				% Passing			05/17/11 08:48	1
Medium Sand	1.8				%			05/17/11 08:48	1
Sieve Size 1 inch - Percent Finer	100.0				% Passing			05/17/11 08:48	1
Fine Sand	35.5				%			05/17/11 08:48	1
Sieve Size 0.75 inch - Percent Finer	100.0				% Passing			05/17/11 08:48	1
Sieve Size 0.375 inch - Percent Finer	100.0				% Passing			05/17/11 08:48	1
Silt	53.7				%			05/17/11 08:48	1
Clay	8.8				%			05/17/11 08:48	1
Sieve Size #4 - Percent Finer	100.0				% Passing			05/17/11 08:48	1
Sieve Size #10 - Percent Finer	99.8				% Passing			05/17/11 08:48	1
Sieve Size #20 - Percent Finer	99.1				% Passing			05/17/11 08:48	1
Sieve Size #40 - Percent Finer	98.0				% Passing			05/17/11 08:48	1
Sieve Size #60 - Percent Finer	95.4				% Passing			05/17/11 08:48	1

Lab Sample ID: SUE0077-02

TestAmerica Job ID: SUE0077

Matrix: Soil

Date Collected: 05/09/11 16:00 Date Received: 05/12/11 12:07

Client Sample ID: BH-3-2.5

	Method: D422 - Grain Size (Continued)									
	Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
	Sieve Size #80 - Percent Finer	92.0				% Passing			05/17/11 08:48	1
İ	Sieve Size #100 - Percent Finer	88.9				% Passing			05/17/11 08:48	1
	Sieve Size #200 - Percent Finer	62.5				% Passing			05/17/11 08:48	1

Client Sample ID: BH-4-3 Lab Sample ID: SUE0077-03

Date Collected: 05/10/11 08:15

Date Received: 05/12/11 12:07

Matrix: Soil
Percent Solids: 85.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.574		0.0185		mg/kg dry	☼	05/20/11 09:49	05/20/11 12:59	1.00
Ethylbenzene	1.47		0.123		mg/kg dry	₩	05/20/11 09:49	05/20/11 12:59	1.00
Toluene	2.78		0.123		mg/kg dry	₩	05/20/11 09:49	05/20/11 12:59	1.00
o-Xylene	145		24.7		mg/kg dry	₽	05/20/11 09:49	05/20/11 16:13	100
m,p-Xylene	4.71		0.494		mg/kg dry	₩	05/20/11 09:49	05/20/11 12:59	1.00
Methyl tert-butyl ether	ND		0.0370		mg/kg dry	₩	05/20/11 09:49	05/20/11 12:59	1.00
Naphthalene	ND		0.247		mg/kg dry	₽	05/20/11 09:49	05/20/11 12:59	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8	109		50.8 - 132				05/20/11 09:49	05/20/11 12:59	1.00
4-bromofluorobenzene	358	ZX	51 ₋ 136				05/20/11 09:49	05/20/11 12:59	1.00
Dibromofluoromethane	90.2		42.7 - 151				05/20/11 09:49	05/20/11 12:59	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	12.5		0.585		mg/kg dry	☼	05/20/11 09:28	05/23/11 14:19	50.0
2-Methylnaphthalene	10.9		0.585		mg/kg dry	☼	05/20/11 09:28	05/23/11 14:19	50.0
1-Methylnapthalene	5.77		0.585		mg/kg dry	☼	05/20/11 09:28	05/23/11 14:19	50.0
Acenaphthylene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Acenaphthene	0.0218		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Fluorene	ND		0.0117		mg/kg dry	☼	05/20/11 09:28	05/23/11 15:11	1.00
Phenanthrene	0.188		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Anthracene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Fluoranthene	0.0133		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Pyrene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Benzo (a) anthracene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Chrysene	ND		0.0117		mg/kg dry	☼	05/20/11 09:28	05/23/11 15:11	1.00
Benzo (b) fluoranthene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Benzo (k) fluoranthene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Benzo (a) pyrene	ND		0.0117		mg/kg dry	₩	05/20/11 09:28	05/23/11 15:11	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Dibenzo (a,h) anthracene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Benzo (ghi) perylene	ND		0.0117		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:11	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80.0		30 - 140				05/20/11 09:28	05/23/11 14:19	50.0
2-FBP	58.4		30 - 140				05/20/11 09:28	05/23/11 15:11	1.00
p-Terphenyl-d14	109		30 - 150				05/20/11 09:28	05/23/11 15:11	1.00

Client Sample ID: BH-4-3

Date Collected: 05/10/11 08:15

Date Received: 05/12/11 12:07

Lab Sample ID: SUE0077-03

Matrix: Soil
Percent Solids: 85.5

Method: NWTPH-Dx - Semivolat	ile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	840		11.7		mg/kg dry	₩	05/19/11 07:03	05/19/11 11:46	1.00
Heavy Oil Range Hydrocarbons	69.4		29.2		mg/kg dry	₩	05/19/11 07:03	05/19/11 11:46	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	128		50 - 150				05/19/11 07:03	05/19/11 11:46	1.00
p-Terphenyl-d14	111		50 - 150				05/19/11 07:03	05/19/11 11:46	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		53		mg/Kg	₽	05/21/11 10:29	05/23/11 05:37	25
C6-C8 Aliphatics	100		53		mg/Kg	₩	05/21/11 10:29	05/23/11 05:37	25
C8-C10 Aliphatics	260		53		mg/Kg	₩	05/21/11 10:29	05/23/11 05:37	25
C10-C12 Aliphatics	290		53		mg/Kg	₩	05/21/11 10:29	05/23/11 05:37	25
C8-C10 Aromatics	310		53		mg/Kg	₩	05/21/11 10:29	05/23/11 05:37	25
C10-C12 Aromatics	360		53		mg/Kg	₩	05/21/11 10:29	05/23/11 05:37	25
C12-C13 Aromatics	150		53		mg/Kg	₩	05/21/11 10:29	05/23/11 05:37	25
Total VPH	1500		370		mg/Kg	₽	05/21/11 10:29	05/23/11 05:37	25
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	131		60 - 140				05/21/11 10:29	05/23/11 05:37	25
BFB - PID	113		60 - 140				05/21/11 10:29	05/23/11 05:37	25

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline Range Hydrocarbons	2880		305		mg/kg dry	≎	05/20/11 13:03	05/23/11 15:46	50.0
	Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	4-BFB (FID)	167	ZX	50 - 150				05/20/11 13:03	05/23/11 15:46	50.0

Junioguto	70 Necovery	Quanner	Lillits				rrepareu	Allalyzeu	Diriac
4-BFB (FID)	167	ZX	50 - 150				05/20/11 13:03	05/23/11 15:46	50.0
- Method: NWTPH/EPH - Nort	hwest - Extractable	Petroleum	n Hydrocarbons	(GC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	39		5.8		mg/Kg	₩	05/18/11 10:13	05/23/11 21:15	1
C12-C16 Aliphatics	39		5.8		mg/Kg	≎	05/18/11 10:13	05/23/11 21:15	1
C16-C21 Aliphatics	26		5.8		mg/Kg	₽	05/18/11 10:13	05/23/11 21:15	1
C21-C34 Aliphatics	6.2		5.8		mg/Kg	₩	05/18/11 10:13	05/23/11 21:15	1
C12-C16 Aromatics	34		5.8		mg/Kg	₽	05/18/11 10:13	05/23/11 21:15	1
C16-C21 Aromatics	6.5		5.8		mg/Kg	☼	05/18/11 10:13	05/23/11 21:15	1
C21-C34 Aromatics	ND		5.8		mg/Kg	₽	05/18/11 10:13	05/23/11 21:15	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	72		60 - 140				05/18/11 10:13	05/23/11 21:15	1
1-Chlorooctadecane	70		60 - 140				05/18/11 10:13	05/23/11 21:15	1
- Method: MSA 29-3.5.2 - Gen	eral Chemistry Para	ameters							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	7320		2340		mg/kg dry	\$	05/17/11 13:36	05/17/11 16:58	1.00

Method: D2216-90 - Water (Moistui	e) Content								
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Moisture Content	14.8				%			05/17/11 08:44	1

TestAmerica Job ID: SUE0077

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Date Received: 05/12/11 12:07

Client Sample ID: BH-4-3 Date Collected: 05/10/11 08:15

Lab Sample ID: SUE0077-03

Matrix: Soil

Method: D422 - Grain Size Analyte NONE **NONE Unit** Result Qualifier Analyzed Dil Fac Prepared Gravel 05/17/11 08:51 1.5 Sieve Size 3 inch - Percent Finer 100.0 % Passing 05/17/11 08:51 46.7 % 05/17/11 08:51 Sand Sieve Size 2 inch - Percent Finer 100.0 % Passing 05/17/11 08:51 **Coarse Sand** % 05/17/11 08:51 1.4 Sieve Size 1.5 inch - Percent Finer 100.0 % Passing 05/17/11 08:51 05/17/11 08:51 **Medium Sand** 3.2 % % Passing 05/17/11 08:51 Sieve Size 1 inch - Percent Finer 100.0 **Fine Sand** % 05/17/11 08:51 42.1 Sieve Size 0.75 inch - Percent Finer 100.0 % Passing 05/17/11 08:51 Sieve Size 0.375 inch - Percent Finer 100.0 % Passing 05/17/11 08:51 05/17/11 08:51 Silt 41.8 % Clay % 05/17/11 08:51 10.0 05/17/11 08:51 % Passing Sieve Size #4 - Percent Finer 98.5 Sieve Size #10 - Percent Finer 97.1 % Passing 05/17/11 08:51 05/17/11 08:51 Sieve Size #20 - Percent Finer 95.6 % Passing % Passing 05/17/11 08:51 Sieve Size #40 - Percent Finer 93.9 05/17/11 08:51 % Passing Sieve Size #60 - Percent Finer 88.8 05/17/11 08:51 Sieve Size #80 - Percent Finer 82.5 % Passing Sieve Size #100 - Percent Finer 78.1 % Passing 05/17/11 08:51 Sieve Size #200 - Percent Finer 51.8 % Passing 05/17/11 08:51

Client Sample ID: BH-4a-2.5 Lab Sample ID: SUE0077-04

Date Collected: 05/10/11 09:05 Date Received: 05/12/11 12:07

Matrix: Soil Percent Solids: 82.7

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	20.7	2.88		mg/kg dry	₩	05/20/11 09:49	05/20/11 16:41	100
Ethylbenzene	51.2	19.2		mg/kg dry	₩	05/20/11 09:49	05/20/11 16:41	100
Toluene	109	19.2		mg/kg dry	₽	05/20/11 09:49	05/20/11 16:41	100
o-Xylene	323	38.3		mg/kg dry	₽	05/20/11 09:49	05/20/11 16:41	100
m,p-Xylene	200	76.7		mg/kg dry	₽	05/20/11 09:49	05/20/11 16:41	100
Methyl tert-butyl ether	ND	5.75		mg/kg dry	₽	05/20/11 09:49	05/20/11 13:26	100
Naphthalene	ND	38.3		mg/kg dry	₽	05/20/11 09:49	05/20/11 13:26	100
Surrogate	% Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8	106		50.8 - 132	05/20/11 09:4	9 05/20/11 13:26	100
4-bromofluorobenzene	197	ZX	51 - 136	05/20/11 09:4	9 05/20/11 13:26	100
Dibromofluoromethane	91.4		42.7 - 151	05/20/11 09:4	9 05/20/11 13:26	100

Method: EPA 8270 mod.	- Polynuclear Aromatic	Compounds by GC/M	S with Selected Ion Monitoring
-----------------------	------------------------	-------------------	--------------------------------

	Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Naphthalene	24.1		0.242	mg/kg dry	₩	05/20/11 09:28	05/23/11 11:13	20.0
	2-Methylnaphthalene	15.4	().242	mg/kg dry	₽	05/20/11 09:28	05/23/11 11:13	20.0
	1-Methylnapthalene	11.8	0).242	mg/kg dry	₽	05/20/11 09:28	05/23/11 11:13	20.0
İ	Acenaphthylene	ND	0.	0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 15:38	1.00
ı	Acenaphthene	0.0137	0.	0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 15:38	1.00
	Fluorene	ND	0.	0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 15:38	1.00
İ	Phenanthrene	0.0540	0.	0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 15:38	1.00

Page 13 of 37

Date Received: 05/12/11 12:07

Client Sample ID: BH-4a-2.5

Date Collected: 05/10/11 09:05

Lab Sample ID: SUE0077-04

Matrix: Soil

Percent Solids: 82.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	ND		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 15:38	1.00
Fluoranthene	0.0161		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 15:38	1.00
Pyrene	0.0226		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:38	1.00
Benzo (a) anthracene	ND		0.0121		mg/kg dry	≎	05/20/11 09:28	05/23/11 15:38	1.00
Chrysene	0.0169		0.0121		mg/kg dry	≎	05/20/11 09:28	05/23/11 15:38	1.00
Benzo (b) fluoranthene	0.0169		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:38	1.00
Benzo (k) fluoranthene	ND		0.0121		mg/kg dry	≎	05/20/11 09:28	05/23/11 15:38	1.00
Benzo (a) pyrene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:38	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 15:38	1.00
Dibenzo (a,h) anthracene	ND		0.0121		mg/kg dry	≎	05/20/11 09:28	05/23/11 15:38	1.00
Benzo (ghi) perylene	0.0137		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 15:38	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	102		30 - 140				05/20/11 09:28	05/23/11 15:38	1.00
2-FBP	58.6		30 - 140				05/20/11 09:28	05/23/11 15:38	1.00
p-Terphenyl-d14	107		30 - 150				05/20/11 09:28	05/23/11 15:38	1.00
Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	634		60.5		mg/kg dry	₽	05/19/11 07:03	05/19/11 13:17	5.00
Heavy Oil Range Hydrocarbons	1390		151		mg/kg dry	☼	05/19/11 07:03	05/19/11 13:17	5.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	101		50 - 150				05/19/11 07:03	05/19/11 13:17	5.00
p-Terphenyl-d14	119		50 - 150				05/19/11 07:03	05/19/11 13:17	5.00
Method: NWTPH/VPH - Northwe	est - Volatile Per	troleum Hv	drocarbons (G0	C) - DL					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	47		30		mg/Kg	<u> </u>	05/21/11 10:29	05/23/11 04:44	10
						y4v			

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
47		30		mg/Kg	*	05/21/11 10:29	05/23/11 04:44	10
210		30		mg/Kg	₩	05/21/11 10:29	05/23/11 04:44	10
Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
174	IX	60 - 140				05/21/11 10:29	05/23/11 04:44	10
101		60 - 140				05/21/11 10:29	05/23/11 04:44	10
	210 Recovery 174 101	Recovery Qualifier 174 IX 101	30 30 30	30 30 30 30 30	A7 30 mg/Kg 210 30 mg/Kg Recovery Qualifier Limits 174 1X 60 - 140 101 60 - 140	47 30 mg/Kg 210 30 mg/Kg 210 30 mg/Kg 210 21	A7 30 mg/Kg 05/21/11 10:29 210 30 mg/Kg 05/21/11 10:29 Recovery Qualifier Limits Prepared 174 1X 60 - 140 05/21/11 10:29 101 60 - 140 05/21/11 10:29	47 30 mg/Kg © 05/21/11 10:29 05/23/11 04:44 210 30 mg/Kg © 05/21/11 10:29 05/23/11 04:44 Recovery Qualifier Limits Prepared Analyzed 174 IX 60 - 140 05/21/11 10:29 05/23/11 04:44 101 60 - 140 05/21/11 10:29 05/23/11 04:44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C8 Aliphatics	180		75		mg/Kg	*	05/23/11 14:19	05/23/11 20:45	25
C8-C10 Aliphatics	310		75		mg/Kg	₽	05/23/11 14:19	05/23/11 20:45	25
C10-C12 Aliphatics	310		75		mg/Kg	₩	05/23/11 14:19	05/23/11 20:45	25
C8-C10 Aromatics	740		75		mg/Kg	₽	05/23/11 14:19	05/23/11 20:45	25
C10-C12 Aromatics	510		75		mg/Kg	₽	05/23/11 14:19	05/23/11 20:45	25
Total VPH	2500		530		mg/Kg	₽	05/23/11 14:19	05/23/11 20:45	25

Method: NWTPH-Gx - Gasoline H	lydrocarbons l	oy NWTPH-0	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	6430		154		mg/kg dry	☼	05/20/11 13:03	05/20/11 17:17	10.0
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	314	ZX	50 - 150				05/20/11 13:03	05/20/11 17:17	10.0

TestAmerica Job ID: SUE0077

Dil Fac

Analyzed

Client: ARCADIS U.S., Inc. - Liberty Lake

Project/Site: GP09BPNA.WA59.00000

Analyte

Sieve Size #200 - Percent Finer

Lab Sample ID: SUE0077-04 Client Sample ID: BH-4a-2.5

Date Collected: 05/10/11 09:05 Matrix: Soil Date Received: 05/12/11 12:07 Percent Solids: 88.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	100		23		mg/Kg	*	05/18/11 10:13	05/23/11 21:39	1
C12-C16 Aliphatics	79		23		mg/Kg	≎	05/18/11 10:13	05/23/11 21:39	1
C16-C21 Aliphatics	140		23		mg/Kg	☼	05/18/11 10:13	05/23/11 21:39	1
C21-C34 Aliphatics	1100		23		mg/Kg	₽	05/18/11 10:13	05/23/11 21:39	1
C12-C16 Aromatics	110		23		mg/Kg	₽	05/18/11 10:13	05/23/11 21:39	1
C16-C21 Aromatics	45		23		mg/Kg	☼	05/18/11 10:13	05/23/11 21:39	1
C21-C34 Aromatics	480		23		mg/Kg	₽	05/18/11 10:13	05/23/11 21:39	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80		60 - 140				05/18/11 10:13	05/23/11 21:39	1
1-Chlorooctadecane	86		60 - 140				05/18/11 10:13	05/23/11 21:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	22700		2320		mg/kg dry	- -	05/17/11 13:36	05/17/11 16:58	1.00
Method: D2216-90 - Water (Moistur	re) Content								

NONE

Result Qualifier

32.0

NONE Unit

% Passing

D

Prepared

1 2 3	itoouit	Q uumioi			0	_	opa. ca	raidiyeda	D uo
Moisture Content	12.3				%			05/17/11 08:44	1
Method: D422 - Grain Size									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Gravel	6.7				%			05/17/11 08:53	1
Sieve Size 3 inch - Percent Finer	100.0				% Passing			05/17/11 08:53	1
Sand	61.3				%			05/17/11 08:53	1
Sieve Size 2 inch - Percent Finer	100.0				% Passing			05/17/11 08:53	1
Coarse Sand	4.2				%			05/17/11 08:53	1
Sieve Size 1.5 inch - Percent Finer	100.0				% Passing			05/17/11 08:53	1
Medium Sand	5.4				%			05/17/11 08:53	1
Sieve Size 1 inch - Percent Finer	100.0				% Passing			05/17/11 08:53	1
Fine Sand	51.7				%			05/17/11 08:53	1
Sieve Size 0.75 inch - Percent Finer	100.0				% Passing			05/17/11 08:53	1
Sieve Size 0.375 inch - Percent Finer	96.4				% Passing			05/17/11 08:53	1
Silt	25.5				%			05/17/11 08:53	1
Clay	6.5				%			05/17/11 08:53	1
Sieve Size #4 - Percent Finer	93.3				% Passing			05/17/11 08:53	1
Sieve Size #10 - Percent Finer	89.1				% Passing			05/17/11 08:53	1
Sieve Size #20 - Percent Finer	85.9				% Passing			05/17/11 08:53	1
Sieve Size #40 - Percent Finer	83.7				% Passing			05/17/11 08:53	1
Sieve Size #60 - Percent Finer	78.7				% Passing			05/17/11 08:53	1
Sieve Size #80 - Percent Finer	71.6				% Passing			05/17/11 08:53	1
Sieve Size #100 - Percent Finer	65.8				% Passing			05/17/11 08:53	1
I and the second									

Client Sample ID: BH-7-2 Lab Sample ID: SUE0077-05

Date Collected: 05/10/11 13:55 Matrix: Soil Date Received: 05/12/11 12:07 Percent Solids: 84.1

Method: EPA 8260B - Volatile Org	anic Compou	nds by EPA	Method 8260	B					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0571		0.0225		mg/kg dry	<u> </u>	05/20/11 09:49	05/20/11 17:09	1.00

Page 15 of 37

05/17/11 08:53

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: BH-7-2 Date Collected: 05/10/11 13:55

Date Received: 05/12/11 12:07

TestAmerica Job ID: SUE0077

Lab Sample ID: SUE0077-05

Matrix: Soil

Percent Solids: 84.1

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed
Ethylbenzene	ND	0.150		mg/kg dry	₩	05/20/11 09:49	05/20/11 17:09
Toluene	ND	0.150		mg/kg dry	₽	05/20/11 09:49	05/20/11 17:09
o-Xylene	ND	0.300		mg/kg dry	₽	05/20/11 09:49	05/20/11 17:09
m,p-Xylene	ND	0.601		mg/kg dry	≎	05/20/11 09:49	05/20/11 17:09
Methyl tert-butyl ether	ND	0.0450		mg/kg dry	₽	05/20/11 09:49	05/20/11 17:09
Naphthalene	0.444	0.300		mg/kg dry	₽	05/20/11 09:49	05/20/11 17:09

Surrogate % Recovery Qualifier Limits Dil Fac Prepared Analyzed 05/20/11 09:49 05/20/11 17:09 Toluene-d8 50.8 - 132 106 1.00 136 51 - 136 05/20/11 09:49 05/20/11 17:09 1.00 4-bromofluorobenzene Dibromofluoromethane 95.0 42.7 - 151 1.00

Method: EPA 8270 mod Polynuclear	r Aromatic Compounds b	by GC/MS with Selected	Ion Monitoring
----------------------------------	------------------------	------------------------	----------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.0277		0.0119		mg/kg dry	<u> </u>	05/20/11 09:28	05/23/11 11:40	1.00
2-Methylnaphthalene	0.0531		0.0119		mg/kg dry	₩	05/20/11 09:28	05/23/11 11:40	1.00
1-Methylnapthalene	0.0357		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Acenaphthylene	ND		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Acenaphthene	ND		0.0119		mg/kg dry	₩	05/20/11 09:28	05/23/11 11:40	1.00
Fluorene	ND		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Phenanthrene	ND		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Anthracene	ND		0.0119		mg/kg dry	≎	05/20/11 09:28	05/23/11 11:40	1.00
Fluoranthene	ND		0.0119		mg/kg dry	≎	05/20/11 09:28	05/23/11 11:40	1.00
Pyrene	ND		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Benzo (a) anthracene	ND		0.0119		mg/kg dry	₩	05/20/11 09:28	05/23/11 11:40	1.00
Chrysene	ND		0.0119		mg/kg dry	≎	05/20/11 09:28	05/23/11 11:40	1.00
Benzo (b) fluoranthene	ND		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Benzo (k) fluoranthene	ND		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Benzo (a) pyrene	ND		0.0119		mg/kg dry	≎	05/20/11 09:28	05/23/11 11:40	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Dibenzo (a,h) anthracene	ND		0.0119		mg/kg dry	₩	05/20/11 09:28	05/23/11 11:40	1.00
Benzo (ghi) perylene	ND		0.0119		mg/kg dry	₽	05/20/11 09:28	05/23/11 11:40	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	78.4		30 - 140				05/20/11 09:28	05/23/11 11:40	1.00

Carrogato	70 Necovery	Quanner	Lillits	rrepared	Allalyzeu	Diriac	
Nitrobenzene-d5	78.4		30 - 140	05/20/11 09:28	05/23/11 11:40	1.00	
2-FBP	87.6		30 - 140	05/20/11 09:28	05/23/11 11:40	1.00	
p-Terphenyl-d14	120		30 - 150	05/20/11 09:28	05/23/11 11:40	1.00	

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND ND	11.9	mg/kg dry	₩	05/19/11 07:03	05/19/11 13:33	1.00
Heavy Oil Range Hydrocarbons	ND	29.7	mg/kg dry	₽	05/19/11 07:03	05/19/11 13:33	1.00
Surrogate	% Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate 2-FBP	86.6 Qualifier				Prepared 05/19/11 07:03	Analyzed 05/19/11 13:33	1.00

		•	,				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND —	3.4	mg/Kg	₩	05/21/11 10:29	05/22/11 23:54	1
C6-C8 Aliphatics	ND	3.4	mg/Kg	₽	05/21/11 10:29	05/22/11 23:54	1
C8-C10 Aliphatics	ND	3.4	mg/Kg	₩	05/21/11 10:29	05/22/11 23:54	1

TestAmerica Spokane 05/26/2011

2

3

5

Dil Fac

1.00

1.00

1.00

1.00 1.00

1.00

ס

8

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: BH-7-2

Date Collected: 05/10/11 13:55

Date Received: 05/12/11 12:07

BFB - PID

TestAmerica Job ID: SUE0077

Lab Sample ID: SUE0077-05

Matrix: Soil Percent Solids: 81.3

Analyte	Result 0	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		3.4		mg/Kg	₽	05/21/11 10:29	05/22/11 23:54	1
C8-C10 Aromatics	7.2		3.4		mg/Kg	₽	05/21/11 10:29	05/22/11 23:54	1
C10-C12 Aromatics	4.5		3.4		mg/Kg	₩	05/21/11 10:29	05/22/11 23:54	1
C12-C13 Aromatics	ND		3.4		mg/Kg	₽	05/21/11 10:29	05/22/11 23:54	1
Total VPH	ND		24		mg/Kg	₩	05/21/11 10:29	05/22/11 23:54	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		60 - 140				05/21/11 10:29	05/22/11 23:54	1

Method: NWTPH-Gx - Gasoline	Hydrocarbons I	y NWTPH-	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	35.1		12.1		mg/kg dry	₩	05/20/11 13:03	05/20/11 17:42	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	112		50 - 150				05/20/11 13:03	05/20/11 17:42	1.00

60 - 140

Method: NWTPH/EPH - Norti	hwest - Extractable Petroleum H	ydrocarbons	(GC)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND ND	6.0	mg/Kg	<u> </u>	05/18/11 10:13	05/23/11 22:03	1
C12-C16 Aliphatics	ND	6.0	mg/Kg	≎	05/18/11 10:13	05/23/11 22:03	1
C16-C21 Aliphatics	ND	6.0	mg/Kg	₽	05/18/11 10:13	05/23/11 22:03	1
C21-C34 Aliphatics	ND	6.0	mg/Kg	₩	05/18/11 10:13	05/23/11 22:03	1
C12-C16 Aromatics	ND	6.0	mg/Kg	≎	05/18/11 10:13	05/23/11 22:03	1
C16-C21 Aromatics	ND	6.0	mg/Kg	₩	05/18/11 10:13	05/23/11 22:03	1
C21-C34 Aromatics	ND	6.0	mg/Kg	₩	05/18/11 10:13	05/23/11 22:03	1

ı	Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	o-Terphenyl	79		60 - 140	05/18/11 10:13	05/23/11 22:03	1
	1-Chlorooctadecane	81		60 - 140	05/18/11 10:13	05/23/11 22:03	1

Method: MSA 29-3.5.2 - General Cr	neters								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	11300		2460		mg/kg dry	₽	05/17/11 13:36	05/17/11 16:58	1.00

Method: D2216-90 - Water (Moisture) Content										
	Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
	Moisture Content	17.5				%			05/17/11 08:44	1

Analyte	Result Qualifier	NONE NONE	Unit D	Prepared	Analyzed	Dil Fac
Gravel	0.0		%		05/17/11 08:56	1
Sieve Size 3 inch - Percent Finer	100.0		% Passing		05/17/11 08:56	1
Sand	30.9		%		05/17/11 08:56	1
Sieve Size 2 inch - Percent Finer	100.0		% Passing		05/17/11 08:56	1
Coarse Sand	0.3		%		05/17/11 08:56	1
Sieve Size 1.5 inch - Percent Finer	100.0		% Passing		05/17/11 08:56	1
Medium Sand	1.9		%		05/17/11 08:56	1
Sieve Size 1 inch - Percent Finer	100.0		% Passing		05/17/11 08:56	1
Fine Sand	28.7		%		05/17/11 08:56	1
Sieve Size 0.75 inch - Percent Finer	100.0		% Passing		05/17/11 08:56	1
Sieve Size 0.375 inch - Percent Finer	100.0		% Passing		05/17/11 08:56	1

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Lab Sample ID: SUE0077-05

o dampie ib. oozoorr oo

05/17/11 08:56

TestAmerica Job ID: SUE0077

Matrix: Soil

Client Sample ID: BH-7-2
Date Collected: 05/10/11 13:55
Date Received: 05/12/11 12:07

Sieve Size #200 - Percent Finer

Method: D422 - Grain Size (Contir	nued)					
Analyte	Result Qualifier	NONE NO	NE Unit	D Prepared	Analyzed	Dil Fac
Silt	62.6		%	_	05/17/11 08:56	1
Clay	6.6		%		05/17/11 08:56	1
Sieve Size #4 - Percent Finer	100.0		% Passing		05/17/11 08:56	1
Sieve Size #10 - Percent Finer	99.7		% Passing		05/17/11 08:56	1
Sieve Size #20 - Percent Finer	99.0		% Passing		05/17/11 08:56	1
Sieve Size #40 - Percent Finer	97.8		% Passing		05/17/11 08:56	1
Sieve Size #60 - Percent Finer	94.4		% Passing		05/17/11 08:56	1
Sieve Size #80 - Percent Finer	89.8		% Passing		05/17/11 08:56	1
Sieve Size #100 - Percent Finer	86.3		% Passing		05/17/11 08:56	1

Client Sample ID: BH-10-3 Lab Sample ID: SUE0077-06

% Passing

Date Collected: 05/11/11 08:45

Date Received: 05/12/11 12:07

Matrix: Soil
Percent Solids: 86.3

69.1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.0214		mg/kg dry	₩	05/20/11 09:49	05/20/11 14:22	1.00
Ethylbenzene	ND	0.143		mg/kg dry	≎	05/20/11 09:49	05/20/11 14:22	1.00
Toluene	ND	0.143		mg/kg dry	₽	05/20/11 09:49	05/20/11 14:22	1.00
o-Xylene	ND	0.285		mg/kg dry	₽	05/20/11 09:49	05/20/11 14:22	1.00
m,p-Xylene	ND	0.571		mg/kg dry	≎	05/20/11 09:49	05/20/11 14:22	1.00
Methyl tert-butyl ether	ND	0.0428		mg/kg dry	₽	05/20/11 09:49	05/20/11 14:22	1.00
Naphthalene	ND	0.285		mg/kg dry	≎	05/20/11 09:49	05/20/11 14:22	1.00

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8	105		50.8 - 132	05/20/11 09:49	05/20/11 14:22	1.00
4-bromofluorobenzene	155	ZX	51 - 136	05/20/11 09:49	05/20/11 14:22	1.00
Dibromofluoromethane	92.0		42.7 - 151	05/20/11 09:49	05/20/11 14:22	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.47		0.290		mg/kg dry	<u> </u>	05/20/11 09:28	05/23/11 16:16	25.0
2-Methylnaphthalene	9.50		0.290		mg/kg dry	☼	05/20/11 09:28	05/23/11 16:16	25.0
1-Methylnapthalene	5.87		0.290		mg/kg dry	₩	05/20/11 09:28	05/23/11 16:16	25.0
Acenaphthylene	ND		0.0116		mg/kg dry	₽	05/20/11 09:28	05/23/11 12:06	1.00
Acenaphthene	0.113		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Fluorene	0.206		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Phenanthrene	0.636		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Anthracene	0.219		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Fluoranthene	0.0749		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Pyrene	0.100		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Benzo (a) anthracene	0.0433		0.0116		mg/kg dry	₽	05/20/11 09:28	05/23/11 12:06	1.00
Chrysene	0.0286		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Benzo (b) fluoranthene	0.0332		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Benzo (k) fluoranthene	ND		0.0116		mg/kg dry	₽	05/20/11 09:28	05/23/11 12:06	1.00
Benzo (a) pyrene	0.0170		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00
Dibenzo (a,h) anthracene	ND		0.0116		mg/kg dry	☼	05/20/11 09:28	05/23/11 12:06	1.00
Benzo (ghi) perylene	0.0116		0.0116		mg/kg dry	₩	05/20/11 09:28	05/23/11 12:06	1.00

Page 18 of 37

3

6

8

9

Client Sample ID: BH-10-3

Date Collected: 05/11/11 08:45

Date Received: 05/12/11 12:07

Lab Sample ID: SUE0077-06

Matrix: Soil

Percent Solids: 86.3

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	95.0		30 - 140	05/20/11 09:28	05/23/11 16:16	25.0
2-FBP	51.2		30 - 140	05/20/11 09:28	05/23/11 12:06	1.00
p-Terphenyl-d14	113		30 - 150	05/20/11 09:28	05/23/11 12:06	1.00

	70 110001019	Quamiio		•	reparea	rinaryzou	2111 40
Nitrobenzene-d5	95.0		30 - 140	05/2	0/11 09:28	05/23/11 16:16	25.0
2-FBP	51.2		30 - 140	05/2	0/11 09:28	05/23/11 12:06	1.00
p-Terphenyl-d14	113		30 - 150	05/2	0/11 09:28	05/23/11 12:06	1.00
_							

Method: NWTPH-Dx - Semivolat	ile Petroleum P	roducts by I	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	1140		11.6		mg/kg dry	☼	05/19/11 07:03	05/19/11 12:32	1.00
Heavy Oil Range Hydrocarbons	61.7		29.0		mg/kg dry	≎	05/19/11 07:03	05/19/11 12:32	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	134		50 - 150				05/19/11 07:03	05/19/11 12:32	1.00
p-Terphenyl-d14	107		50 - 150				05/19/11 07:03	05/19/11 12:32	1 00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		2.6		mg/Kg	₩	05/21/11 10:29	05/23/11 03:51	1
C6-C8 Aliphatics	ND		2.6		mg/Kg	₩	05/21/11 10:29	05/23/11 03:51	1
C8-C10 Aliphatics	ND		2.6		mg/Kg	₽	05/21/11 10:29	05/23/11 03:51	1
C10-C12 Aliphatics	ND		2.6		mg/Kg	₽	05/21/11 10:29	05/23/11 03:51	1
C8-C10 Aromatics	4.9		2.6		mg/Kg	₽	05/21/11 10:29	05/23/11 03:51	1
C10-C12 Aromatics	4.5		2.6		mg/Kg	₩	05/21/11 10:29	05/23/11 03:51	1
C12-C13 Aromatics	ND		2.6		mg/Kg	₽	05/21/11 10:29	05/23/11 03:51	1
Total VPH	ND		18		mg/Kg	\$	05/21/11 10:29	05/23/11 03:51	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorohenzene	107		60 140				05/21/11 10:20	05/23/11 03:51	

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	107		60 - 140	05/21/11 10:29	05/23/11 03:51	1
BFB - PID	103		60 - 140	05/21/11 10:29	05/23/11 03:51	1

Method: NWTPH-Gx - Gasolin	e Hydrocarbons	by NWTPH-	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	32.4		6.72		mg/kg dry	₽	05/20/11 13:03	05/20/11 18:07	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	103		50 - 150				05/20/11 13:03	05/20/11 18:07	1.00

– Method: NWTPH/EPH - Norti	hwest - Extractable Petrole	um Hydrocarbons	(GC)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	66	5.6	mg/Kg	*	05/18/11 10:13	05/23/11 22:27	1
C12-C16 Aliphatics	100	5.6	mg/Kg	₩	05/18/11 10:13	05/23/11 22:27	1
C16-C21 Aliphatics	100	5.6	mg/Kg	₩	05/18/11 10:13	05/23/11 22:27	1
C21-C34 Aliphatics	28	5.6	mg/Kg	₽	05/18/11 10:13	05/23/11 22:27	1
C12-C16 Aromatics	97	5.6	mg/Kg	₽	05/18/11 10:13	05/23/11 22:27	1
C16-C21 Aromatics	67	5.6	mg/Kg	₽	05/18/11 10:13	05/23/11 22:27	1
C21-C34 Aromatics	19	5.6	mg/Kg	₽	05/18/11 10:13	05/23/11 22:27	1
Surrogate	% Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	94	60 - 140			05/18/11 10:13	05/23/11 22:27	1
1-Chlorooctadecane	84	60 - 140			05/18/11 10:13	05/23/11 22:27	1

_ Method: D2216-90 - Water (Moisture) Content								
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Moisture Content	13.3				%			05/17/11 08:44	1

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: BH-10c-2

Date Collected: 05/11/11 10:35

Lab Sample ID: SUE0077-07

TestAmerica Job ID: SUE0077

Matrix: Soil

Date Received: 05/12/11 12:0	7							Percent Soli	ds: 82.4
Method: EPA 8260B - Volati	le Organic Compou	nds by EP	A Method 8260E	}					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.195		0.0190		mg/kg dry	₽	05/20/11 09:49	05/20/11 14:50	1.00
Ethylbenzene	0.265		0.127		mg/kg dry	⇔	05/20/11 09:49	05/20/11 14:50	1.00
Toluene	0.565		0.127		mg/kg dry	₩	05/20/11 09:49	05/20/11 14:50	1.00
o-Xylene	0.437		0.253		mg/kg dry	₩	05/20/11 09:49	05/20/11 14:50	1.00
m,p-Xylene	0.998		0.507		mg/kg dry	☼	05/20/11 09:49	05/20/11 14:50	1.00
Methyl tert-butyl ether	ND		0.0380		mg/kg dry	⇔	05/20/11 09:49	05/20/11 14:50	1.00
Naphthalene	ND		0.253		mg/kg dry	₩	05/20/11 09:49	05/20/11 14:50	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8	108		50.8 - 132				05/20/11 09:49	05/20/11 14:50	1.00
4-bromofluorobenzene	139	ZX	51 - 136				05/20/11 09:49	05/20/11 14:50	1.00
Dibromofluoromethane	88.8		42.7 - 151				05/20/11 09:49	05/20/11 14:50	1.00

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
2-Methylnaphthalene	ND		0.0121	mg/kg dry	☼	05/20/11 09:28	05/23/11 12:33	1.00
1-Methylnapthalene	ND		0.0121	mg/kg dry	☼	05/20/11 09:28	05/23/11 12:33	1.00
Acenaphthylene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Acenaphthene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Fluorene	ND		0.0121	mg/kg dry	≎	05/20/11 09:28	05/23/11 12:33	1.00
Phenanthrene	ND		0.0121	mg/kg dry	≎	05/20/11 09:28	05/23/11 12:33	1.00
Anthracene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Fluoranthene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Pyrene	ND		0.0121	mg/kg dry	≎	05/20/11 09:28	05/23/11 12:33	1.00
Benzo (a) anthracene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Chrysene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Benzo (b) fluoranthene	ND		0.0121	mg/kg dry	≎	05/20/11 09:28	05/23/11 12:33	1.00
Benzo (k) fluoranthene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Benzo (a) pyrene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0121	mg/kg dry	≎	05/20/11 09:28	05/23/11 12:33	1.00
Dibenzo (a,h) anthracene	ND		0.0121	mg/kg dry	₽	05/20/11 09:28	05/23/11 12:33	1.00
Benzo (ghi) perylene	ND		0.0121	mg/kg dry	₩	05/20/11 09:28	05/23/11 12:33	1.00
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77.8		30 - 140			05/20/11 09:28	05/23/11 12:33	1.00
2-FBP	86.4		30 - 140			05/20/11 09:28	05/23/11 12:33	1.00
p-Terphenyl-d14	129		30 - 150			05/20/11 09:28	05/23/11 12:33	1.00

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		12.1	mg/kg dry	₩	05/19/11 07:03	05/19/11 12:47	1.00
Heavy Oil Range Hydrocarbons	ND		30.3	mg/kg dry	₽	05/19/11 07:03	05/19/11 12:47	1.00
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-FBP	103		50 - 150			05/19/11 07:03	05/19/11 12:47	1.00
p-Terphenyl-d14	112		50 ₋ 150			05/19/11 07:03	05/19/11 12:47	1.00

Method: NWTPH/VPH - Northwest	- Volatile Per	troleum Hyd	rocarbons (GC	;)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		2.6		mg/Kg	₩	05/21/11 10:29	05/23/11 04:18	1
C6-C8 Aliphatics	ND		2.6		mg/Kg	₩	05/21/11 10:29	05/23/11 04:18	1

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: BH-10c-2

Date Collected: 05/11/11 10:35

TestAmerica Job ID: SUE0077

Lab Sample ID: SUE0077-07

	Matrix: Soil	
Percent	Solide: 81.6	

Method: NWTPH/VPH - Nor	thwest - Volatile Per	troleum Hy	drocarbons (G	C) (Conti	nued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics	ND		2.6		mg/Kg	☼	05/21/11 10:29	05/23/11 04:18	•
C10-C12 Aliphatics	ND		2.6		mg/Kg	₽	05/21/11 10:29	05/23/11 04:18	1
C8-C10 Aromatics	2.8		2.6		mg/Kg	₽	05/21/11 10:29	05/23/11 04:18	1
C10-C12 Aromatics	ND		2.6		mg/Kg	₽	05/21/11 10:29	05/23/11 04:18	1
C12-C13 Aromatics	ND		2.6		mg/Kg	₽	05/21/11 10:29	05/23/11 04:18	
Total VPH	ND		18		mg/Kg	₽	05/21/11 10:29	05/23/11 04:18	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	106		60 - 140				05/21/11 10:29	05/23/11 04:18	
BFB - PID	102		60 - 140				05/21/11 10:29	05/23/11 04:18	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	19.2		6.96	mg/kg dry	₽	05/20/11 13:03	05/20/11 18:57	1.00
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-BFB (FID)	105		50 - 150			05/20/11 13:03	05/20/11 18:57	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		6.1		mg/Kg	*	05/18/11 10:13	05/23/11 23:38	1
C12-C16 Aliphatics	ND		6.1		mg/Kg	₽	05/18/11 10:13	05/23/11 23:38	1
C16-C21 Aliphatics	ND		6.1		mg/Kg	₽	05/18/11 10:13	05/23/11 23:38	1
C21-C34 Aliphatics	ND		6.1		mg/Kg	₽	05/18/11 10:13	05/23/11 23:38	1
C12-C16 Aromatics	ND		6.1		mg/Kg	₽	05/18/11 10:13	05/23/11 23:38	1
C16-C21 Aromatics	ND		6.1		mg/Kg	₽	05/18/11 10:13	05/23/11 23:38	1
C21-C34 Aromatics	ND		6.1		mg/Kg	₽	05/18/11 10:13	05/23/11 23:38	1

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	85		60 - 140	05/18/11 10:13	05/23/11 23:38	1
1-Chlorooctadecane	80		60 - 140	05/18/11 10:13	05/23/11 23:38	1
_						

Method: D2216-90 - Water (Moisture) Content										
	Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
	Moisture Content	20.9				%			05/17/11 08:44	1

Method: D422 - Grain Size Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Gravel -	0.5				%		· · · · · · · · · · · · · · · · · · ·	05/17/11 09:01	1
Sieve Size 3 inch - Percent Finer	100.0				% Passing			05/17/11 09:01	1
Sand	21.1				%			05/17/11 09:01	1
Sieve Size 2 inch - Percent Finer	100.0				% Passing			05/17/11 09:01	1
Coarse Sand	0.7				%			05/17/11 09:01	1
Sieve Size 1.5 inch - Percent Finer	100.0				% Passing			05/17/11 09:01	1
Medium Sand	2.9				%			05/17/11 09:01	1
Sieve Size 1 inch - Percent Finer	100.0				% Passing			05/17/11 09:01	1
Fine Sand	17.5				%			05/17/11 09:01	1
Sieve Size 0.75 inch - Percent Finer	100.0				% Passing			05/17/11 09:01	1
Sieve Size 0.375 inch - Percent Finer	100.0				% Passing			05/17/11 09:01	1
Silt	65.3				%			05/17/11 09:01	1
Clay	13.1				%			05/17/11 09:01	1
Sieve Size #4 - Percent Finer	99.5				% Passing			05/17/11 09:01	1

Client Sample ID: BH-10c-2

Lab Sample ID: SUE0077-07

Matrix: Soil

Date Collected: 05/11/11 10:35 Date Received: 05/12/11 12:07

Method: D422 - Grain Size (Contin	iued)						
Analyte	Result Qualifier	NONE N	ONE Unit	D	Prepared	Analyzed	Dil Fac
Sieve Size #10 - Percent Finer	98.8		% Passing			05/17/11 09:01	1
Sieve Size #20 - Percent Finer	97.5		% Passing			05/17/11 09:01	1
Sieve Size #40 - Percent Finer	95.9		% Passing			05/17/11 09:01	1
Sieve Size #60 - Percent Finer	94.1		% Passing			05/17/11 09:01	1
Sieve Size #80 - Percent Finer	92.6		% Passing			05/17/11 09:01	1
Sieve Size #100 - Percent Finer	91.3		% Passing			05/17/11 09:01	1
Sieve Size #200 - Percent Finer	78.4		% Passing			05/17/11 09:01	1

Client Sample ID: BH-10f-4.5 Lab Sample ID: SUE0077-08

 Date Collected: 05/11/11 12:20
 Matrix: Soil

 Date Received: 05/12/11 12:07
 Percent Solids: 82.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0220		mg/kg dry	☼	05/20/11 09:49	05/20/11 15:17	1.00
Ethylbenzene	ND		0.147		mg/kg dry	₩	05/20/11 09:49	05/20/11 15:17	1.00
Toluene	ND		0.147		mg/kg dry	₩	05/20/11 09:49	05/20/11 15:17	1.00
o-Xylene	ND		0.294		mg/kg dry	₽	05/20/11 09:49	05/20/11 15:17	1.00
m,p-Xylene	ND		0.587		mg/kg dry	₽	05/20/11 09:49	05/20/11 15:17	1.00
Methyl tert-butyl ether	ND		0.0440		mg/kg dry	₩	05/20/11 09:49	05/20/11 15:17	1.00
Naphthalene	ND		0.294		mg/kg dry	₩	05/20/11 09:49	05/20/11 15:17	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8	107		50.8 - 132				05/20/11 09:49	05/20/11 15:17	1.00
4-bromofluorobenzene	124		51 - 136				05/20/11 09:49	05/20/11 15:17	1.00
Dibromofluoromethane	90.4		42.7 - 151				05/20/11 09:49	05/20/11 15:17	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0121		mg/kg dry	*	05/20/11 09:28	05/23/11 13:52	1.00
2-Methylnaphthalene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
1-Methylnapthalene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
Acenaphthylene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 13:52	1.00
Acenaphthene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
Fluorene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
Phenanthrene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 13:52	1.00
Anthracene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
Fluoranthene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
Pyrene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 13:52	1.00
Benzo (a) anthracene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
Chrysene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
Benzo (b) fluoranthene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 13:52	1.00
Benzo (k) fluoranthene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 13:52	1.00
Benzo (a) pyrene	ND		0.0121		mg/kg dry	☼	05/20/11 09:28	05/23/11 13:52	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 13:52	1.00
Dibenzo (a,h) anthracene	ND		0.0121		mg/kg dry	₽	05/20/11 09:28	05/23/11 13:52	1.00
Benzo (ghi) perylene	ND		0.0121		mg/kg dry	₩	05/20/11 09:28	05/23/11 13:52	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	89.0		30 - 140				05/20/11 09:28	05/23/11 13:52	1.00
2-FBP	103		30 - 140				05/20/11 09:28	05/23/11 13:52	1.00

Client Sample ID: BH-10f-4.5 Date Collected: 05/11/11 12:20

Date Received: 05/12/11 12:07

Lab Sample ID: SUE0077-08

Dil Fac

Percent Solids: 82.9

Matrix: Soil

Method: EPA 8270 mod.	- Polynuclear	Aromatic Compou	unds by GC/MS wit	th Selected Ion Monitorin	g (Continued)
-----------------------	---------------	-----------------	-------------------	---------------------------	---------------

Surrogate	% Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	132		30 - 150	05/20/11 09:28	05/23/11 13:52	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		12.1		mg/kg dry	☼	05/19/11 07:03	05/19/11 13:02	1.00
Heavy Oil Range Hydrocarbons	ND		30.2		mg/kg dry	₩	05/19/11 07:03	05/19/11 13:02	1.00

Surrogate	% Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
2-FBP	93.1		50 - 150	05/19/11	1 07:03	05/19/11 13:02	1.00
p-Terphenyl-d14	105		50 - 150	05/19/11	1 07:03	05/19/11 13:02	1.00

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		2.4		mg/Kg	₩	05/21/11 10:43	05/22/11 23:28	1
C6-C8 Aliphatics	ND		2.4		mg/Kg	₽	05/21/11 10:43	05/22/11 23:28	1
C8-C10 Aliphatics	ND		2.4		mg/Kg	₽	05/21/11 10:43	05/22/11 23:28	1
C10-C12 Aliphatics	ND		2.4		mg/Kg	₩	05/21/11 10:43	05/22/11 23:28	1
C8-C10 Aromatics	ND		2.4		mg/Kg	₩	05/21/11 10:43	05/22/11 23:28	1
C10-C12 Aromatics	ND		2.4		mg/Kg	₽	05/21/11 10:43	05/22/11 23:28	1
C12-C13 Aromatics	ND		2.4		mg/Kg	₩	05/21/11 10:43	05/22/11 23:28	1
Total VPH	ND		17		mg/Kg	₩	05/21/11 10:43	05/22/11 23:28	1

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	103		60 - 140	05/21/11 10:43	05/22/11 23:28	1
BFB - PID	103		60 - 140	05/21/11 10:43	05/22/11 23:28	1

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx Analyte

Gasoline Range Hydrocarbons	ND	7.34	mg/kg dry	05/20/11 13:03	05/20/11 19:22	1.00
Surrogate	% Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-BFB (FID)	89.1	50 - 150		05/20/11 13:03	05/20/11 19:22	1.00

RL

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		5.9		mg/Kg	₽	05/18/11 10:13	05/24/11 00:01	1
C12-C16 Aliphatics	ND		5.9		mg/Kg	₽	05/18/11 10:13	05/24/11 00:01	1
C16-C21 Aliphatics	ND		5.9		mg/Kg	₽	05/18/11 10:13	05/24/11 00:01	1
C21-C34 Aliphatics	ND		5.9		mg/Kg	₩	05/18/11 10:13	05/24/11 00:01	1
C12-C16 Aromatics	ND		5.9		mg/Kg	₽	05/18/11 10:13	05/24/11 00:01	1
C16-C21 Aromatics	ND		5.9		mg/Kg	₽	05/18/11 10:13	05/24/11 00:01	1
C21-C34 Aromatics	ND		5.9		mg/Kg	₩	05/18/11 10:13	05/24/11 00:01	1

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	81	60 - 140	05/18/11 10:13	05/24/11 00:01	1
1-Chlorooctadecane	79	60 - 140	05/18/11 10:13	05/24/11 00:01	1

Method: D2216-90 - Water (Moisture) Content

	Analyte	•	Qualifier	NONE	NONE	Unit	D		Prepared	Analyzed	Dil Fac
l	Moisture Content	19.3				%		_		05/17/11 08:44	1

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 11E0112-BLK1

Matrix: Soil

Analysis Batch: 11E0112

Client Sample ID: 11E0112-BLK1

Prep Type: Total

Prep Batch: 11E0112_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0150		mg/kg wet		05/20/11 09:49	05/20/11 11:08	1.00
Ethylbenzene	ND		0.100		mg/kg wet		05/20/11 09:49	05/20/11 11:08	1.00
Toluene	ND		0.100		mg/kg wet		05/20/11 09:49	05/20/11 11:08	1.00
o-Xylene	ND		0.200		mg/kg wet		05/20/11 09:49	05/20/11 11:08	1.00
m,p-Xylene	ND		0.400		mg/kg wet		05/20/11 09:49	05/20/11 11:08	1.00
Methyl tert-butyl ether	ND		0.0300		mg/kg wet		05/20/11 09:49	05/20/11 11:08	1.00
Naphthalene	ND		0.200		mg/kg wet		05/20/11 09:49	05/20/11 11:08	1.00

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8	86.6		50.8 - 132	05/20/11 09:49	05/20/11 11:08	1.00
4-bromofluorobenzene	90.8		51 - 136	05/20/11 09:49	05/20/11 11:08	1.00
Dibromofluoromethane	96.4		42.7 - 151	05/20/11 09:49	05/20/11 11:08	1.00

Lab Sample ID: 11E0112-BS1

Matrix: Soil

Analysis Batch: 11E0112

Client Sample ID: 11E0112-BS1

Prep Type: Total
Prep Batch: 11E0112_P

Spike LCS LCS % Rec. Analyte Added Result Qualifier Unit % Rec Limits Benzene 1.00 1.01 mg/kg wet 101 50 - 150 Ethylbenzene 1.00 0.929 mg/kg wet 50 - 150 92.9 Toluene 1.00 0.989 mg/kg wet 98.9 50 - 150 106 o-Xylene 1.00 1.06 mg/kg wet 50 - 150 m,p-Xylene 2.00 2.05 mg/kg wet 102 50 - 150 Methyl tert-butyl ether 1.00 0.856 mg/kg wet 85.6 50 - 150 1.00 0.872 87.2 50 - 150 Naphthalene mg/kg wet

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Toluene-d8	93.8		50.8 - 132
4-bromofluorobenzene	113		51 - 136
Dibromofluoromethane	112		42.7 - 151

Lab Sample ID: 11E0112-BSD1

Matrix: Soil

Analysis Batch: 11E0112

Client Sample ID: 11E0112-BSD1

Prep Type: Total

Prep Batch: 11E0112_P

		Spike	LCS Dup	LCS Dup				% Rec.		RPD	
	Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
	Benzene	1.00	0.977		mg/kg wet	_	97.7	50 - 150	3.32	25	
ı	Ethylbenzene	1.00	1.02		mg/kg wet		102	50 - 150	9.73	25	
l	Toluene	1.00	1.06		mg/kg wet		106	50 - 150	6.84	25	
	o-Xylene	1.00	1.17		mg/kg wet		117	50 - 150	10.1	25	
İ	m,p-Xylene	2.00	2.07		mg/kg wet		103	50 - 150	1.02	25	
١	Methyl tert-butyl ether	1.00	0.966		mg/kg wet		96.6	50 - 150	12.1	25	
	Naphthalene	1.00	1.10		mg/kg wet		110	50 - 150	22.9	25	

	LCS Dup	LCS Dup LCS Dup					
Surrogate	% Recovery	Qualifier	Limits				
Toluene-d8	99.0		50.8 - 132				
4-bromofluorobenzene	131		51 - 136				
Dibromofluoromethane	95.6		427-151				

Method: EPA 8270 mod. - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 11E0111-BLK1 Client Sample ID: 11E0111-BLK1

Matrix: Soil Prep Type: Total Analysis Batch: 11E0111 Prep Batch: 11E0111_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
2-Methylnaphthalene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
1-Methylnapthalene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Acenaphthylene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Acenaphthene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Fluorene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Phenanthrene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Anthracene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Fluoranthene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Pyrene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Benzo (a) anthracene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Chrysene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Benzo (b) fluoranthene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Benzo (k) fluoranthene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Benzo (a) pyrene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Dibenzo (a,h) anthracene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00
Benzo (ghi) perylene	ND		0.0100		mg/kg wet		05/20/11 09:28	05/23/11 09:01	1.00

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77.2		30 - 140	05/20/11 09:28	05/23/11 09:01	1.00
2-FBP	98.0		30 - 140	05/20/11 09:28	05/23/11 09:01	1.00
p-Terphenyl-d14	151	Z2	30 - 150	05/20/11 09:28	05/23/11 09:01	1.00

Lab Sample ID: 11E0111-BS1

Matrix: Soil

Client Sample ID: 11E0111-BS1

Prep Type: Total

Analysis Batch: 11E0111

Indeno (1,2,3-cd) pyrene

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit % Rec Limits Naphthalene 0.133 0.121 mg/kg wet 90.5 40 - 120 40 - 130 Fluorene 0.133 0.123 mg/kg wet 92.0 0.133 0.128 96.0 41 - 130 Chrysene mg/kg wet

0.130

0.133

 Surrogate
 % Recovery
 Qualifier
 Limits

 Nitrobenzene-d5
 96.8
 30 - 140

 2-FBP
 105
 30 - 140

 p-Terphenyl-d14
 111
 30 - 150

Lab Sample ID: 11E0111-MS1
Matrix: Soil

Analysis Batch: 11E0111

	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits
Naphthalene	0.00728		0.162	0.145		mg/kg dry	**	85.0	30 - 120
Fluorene	ND		0.162	0.155		mg/kg dry	₩	95.5	30 - 140
Chrysene	ND		0.162	0.155		mg/kg dry	₩	96.0	30 - 133
Indeno (1,2,3-cd) pyrene	ND		0.162	0.146		mg/kg dry	₩	90.0	30 - 140

TestAmerica Spokane 05/26/2011

Prep Batch: 11E0111_P

97.5

mg/kg wet

40 - 130

Client Sample ID: BH-10c-2

Prep Type: Total Prep Batch: 11E0111_P

Method: EPA 8270 mod. - Polynuclear Aromatic Compounds by GC/MS with Selected Ion **Monitoring (Continued)**

30 - 150

Lab Sample ID: 11E0111-MS1

Matrix: Soil

Surrogate Nitrobenzene-d5 2-FBP

Analysis Batch: 11E0111

Client Sample ID: BH-10c-2 **Prep Type: Total**

Prep Batch: 11E0111_P

Matrix Spike	Matrix Spike	
% Recovery	Qualifier	Limits
84.4		30 - 140
92.2		30 - 140

107

Lab Sample ID: 11E0111-MSD1

Matrix: Soil

p-Terphenyl-d14

Analysis Batch: 11E0111

Client Sample ID: BH-10c-2 **Prep Type: Total**

Prep Batch: 11E0111 P

7 mary or Datom 1120111									.op =ato.	•	
	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spil	ke Dup			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Naphthalene	0.00728		0.162	0.149		mg/kg dry	*	87.5	30 - 120	2.75	35
Fluorene	ND		0.162	0.155		mg/kg dry	₩	96.0	30 - 140	0.52 2	35
Chrysene	ND		0.162	0.153		mg/kg dry	₩	94.5	30 - 133	1.57	35
Indeno (1,2,3-cd) pyrene	ND		0.162	0.161		mg/kg dry	₩	99.5	30 - 140	10.0	35

Matrix Spike Dup M	latrix Spike	Dup
--------------------	--------------	-----

Surrogate	% Recovery	Qualifier	Limits
Nitrobenzene-d5	87.6		30 - 140
2-FBP	94.0		30 - 140
p-Terphenyl-d14	104		30 - 150

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

117

Lab Sample ID: 11E0102-BLK1

Matrix: Soil

Analysis Batch: 11E0102

Client Sample ID: 11E0102-BLK1

Prep Type: Total Prep Batch: 11E0102_P

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		10.0		mg/kg wet		05/19/11 07:03	05/19/11 09:45	1.00
Heavy Oil Range Hydrocarbons	ND		25.0		mg/kg wet		05/19/11 07:03	05/19/11 09:45	1.00
	Blank	Blank							
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	109	-	50 - 150				05/19/11 07:03	05/19/11 09:45	1.00

50 - 150

Lab Sample ID: 11E0102-BS1

Matrix: Soil

p-Terphenyl-d14

Analysis Batch: 11E0102

Diesel Range Hydrocarbons

Client Sample ID: 11E0102-BS1

73 - 133

99.1

Prep Type: Total Prep Batch: 11E0102_P

1.00

Spike LCS LCS % Rec. Analyte Added Result Qualifier Limits Unit % Rec

83.3

82.5

mg/kg wet

	LCS	LCS	
Surrogate	% Recovery	Qualifier	Limits
2-FBP	109		50 - 150
p-Terphenyl-d14	109		50 - 150

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx (Continued)

Lab Sample ID: 11E0102-MS1 Client Sample ID: BH-1b-3 **Matrix: Soil Prep Type: Total** Analysis Batch: 11E0102 Prep Batch: 11E0102_P Sample Sample Spike Matrix Spike Matrix Spike % Rec.

									,	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Diesel Range Hydrocarbons	ND		101	98.7		mg/kg dry	₩	97.6	70.1 - 139	

	Matrix Spike	Matrix Spike	
Surrogate	% Recovery	Qualifier	Limits
2-FBP	106		50 - 150
p-Terphenyl-d14	108		50 - 150

Lab Sample ID: 11E0102-DUP1 Client Sample ID: BH-1b-3

Matrix: Soil Prep Type: Total Analysis Batch: 11E0102 Prep Batch: 11E0102_P

Sample Sample **Duplicate Duplicate** Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit ☼ Diesel Range Hydrocarbons ND ND mg/kg dry 40 ₩

Heavy Oil Range Hydrocarbons ND ND mg/kg dry 40 **Duplicate Duplicate** % Recovery Qualifier Limits Surrogate 2-FBP 90.6 50 - 150

50 - 150

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC)

102

Client Sample ID: MB 580-86463/1-A Lab Sample ID: MB 580-86463/1-A **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 86471

p-Terphenyl-d14

Matrix: Solid

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac C5-C6 Aliphatics ND 2.0 mg/Kg 05/21/11 10:29 05/22/11 21:43 1 C6-C8 Aliphatics ND 2.0 mg/Kg 05/21/11 10:29 05/22/11 21:43 C8-C10 Aliphatics ND 2.0 mg/Kg 05/21/11 10:29 05/22/11 21:43 2.0 C10-C12 Aliphatics ND 05/22/11 21:43 mg/Kg 05/21/11 10:29 C8-C10 Aromatics ND 2.0 mg/Kg 05/21/11 10:29 05/22/11 21:43 C10-C12 Aromatics ND 05/22/11 21:43 20 mg/Kg 05/21/11 10:29 C12-C13 Aromatics ND 2.0 05/21/11 10:29 05/22/11 21:43 mg/Kg Total VPH ND 14 mg/Kg 05/21/11 10:29 05/22/11 21:43

	MB	MB				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	103		60 - 140	05/21/11 10:29	05/22/11 21:43	1
a,a,a-Trifluorotoluene (fid)	106			05/21/11 10:29	05/22/11 21:43	1
a,a,a-Trifluorotoluene (pid)	105			05/21/11 10:29	05/22/11 21:43	1
BFB - PID	103		60 - 140	05/21/11 10:29	05/22/11 21:43	1

Lab Sample ID: LCS 580-86463/2-A Client Sample ID: LCS 580-86463/2-A

Analysis Batch: 86471

Prep Batch: 86463 Spike LCS LCS % Rec. Added Result Qualifier Limits Analyte Unit % Rec C5-C6 Aliphatics 8.00 96 7.68 mg/Kg 70 - 130C6-C8 Aliphatics 4.00 70 - 130 3.83 mg/Kg 96 C8-C10 Aliphatics 8.00 8.77 mg/Kg 110 70 - 130

Prep Type: Total/NA

Prep Batch: 86463

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCS 580-86463/2-A

Matrix: Solid

Analysis Batch: 86471

Client Sample ID: LCS 580-86463/2-A

Prep Type: Total/NA Prep Batch: 86463

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
C10-C12 Aliphatics	4.00	3.71		mg/Kg		93	70 - 130	
C8-C10 Aromatics	16.0	15.3		mg/Kg		96	70 - 130	
C10-C12 Aromatics	4.00	3.71		mg/Kg		93	70 - 130	
C12-C13 Aromatics	8.00	7.39		mg/Kg		92	70 - 130	

LCS LCS Surrogate % Recovery Qualifier Limits 60 - 140 4-Bromofluorobenzene 104 a,a,a-Trifluorotoluene (fid) 100 a,a,a-Trifluorotoluene (pid) 95 BFB - PID 101 60 - 140

Lab Sample ID: 580-26174-2 MS

Matrix: Solid

Analysis Batch: 86471

Client Sample ID: SUE0077-02 Prep Type: Total/NA

Prep Batch: 86463

	Sample Sample	Spike	MS	MS				% Rec.	
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
C5-C6 Aliphatics	ND ND	11.3	12.2		mg/Kg	<u> </u>	100	70 - 130	
C6-C8 Aliphatics	ND	5.63	8.67		mg/Kg	₩	114	70 - 130	
C8-C10 Aliphatics	ND	11.3	14.5		mg/Kg	₩	122	70 - 130	
C10-C12 Aliphatics	ND	5.63	8.38		mg/Kg	☼	126	70 - 130	
C8-C10 Aromatics	2.9	22.5	24.0		mg/Kg	☼	94	70 - 130	
C10-C12 Aromatics	2.5	5.63	8.11		mg/Kg	☼	99	70 - 130	
C12-C13 Aromatics	ND	11.3	10.2		mg/Kg	₩	78	70 - 130	

MS MS Surrogate % Recovery Qualifier Limits 4-Bromofluorobenzene 104 60 - 140 BFB - PID 95 60 - 140

Lab Sample ID: 580-26174-2 MSD

Matrix: Solid

Analysis Batch: 86471

Client Sample ID: SUE0077-02 Prep Type: Total/NA

Prep Batch: 86463

Sample Sample Spike MSD MSD RPD % Rec. Analyte Result Qualifier Added Result Qualifier Unit D % Rec I imits **RPD** Limit ₩ C5-C6 Aliphatics ND 11.3 12.9 mg/Kg 107 70 - 130 6 25 ₩ C6-C8 Aliphatics ND 5.63 9.32 126 70 - 130 7 25 mg/Kg ₩ C8-C10 Aliphatics ND 11.3 16.3 F mg/Kg 138 70 - 130 11 25 ND 9.43 F ₩ C10-C12 Aliphatics 5.63 mg/Kg 144 70 - 130 12 25 ₩ 70 - 130 2 C8-C10 Aromatics 2.9 22.5 24.5 mg/Kg 96 25 ₩ 70 - 130 4 C10-C12 Aromatics 2.5 5.63 8.42 mg/Kg 105 25 ₩ C12-C13 Aromatics ND 11.3 11.4 mg/Kg 89 70 - 130 12 25 ℧ Naphthalene 0.35 5.63 5.65 mg/Kg 94 12 ₩ Benzene 0.15 5.63 5.54 mg/Kg 96 70 - 130 1 25 ά 5.63 95 70 - 130 2 25 Ethylbenzene 0.23 5.59 mg/Kg ₩ 95 2 25 m-Xylene & p-Xylene 0.94 11.3 11.6 mg/Kg 70 - 130 Methyl tert-butyl ether ND 5.63 5.19 mg/Kg ℧ 92 70 - 130 3 25 ₩ 94 70 - 130 2 o-Xylene 0.29 5.63 5.56 mg/Kg 25 ₩ Toluene 0.39 5.63 5.81 mg/Kg 96 70 - 130 2 25

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: 580-26174-2 MSD

Matrix: Solid

Analysis Batch: 86471

Client Sample ID: SUE0077-02 Prep Type: Total/NA

Prep Batch: 86463

MSD MSD

% Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 60 - 140 106 BFB - PID 95 60 - 140

Lab Sample ID: LCS 580-86536/2-A

Matrix: Solid

Analysis Batch: 86551

Client Sample ID: LCS 580-86536/2-A

Prep Type: Total/NA

Prep Batch: 86536

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
C5-C6 Aliphatics	8.00	9.31		mg/Kg		116	70 - 130	
C6-C8 Aliphatics	4.00	4.60		mg/Kg		115	70 - 130	
C8-C10 Aliphatics	8.00	10.1		mg/Kg		127	70 - 130	
C10-C12 Aliphatics	4.00	4.71		mg/Kg		118	70 - 130	
C8-C10 Aromatics	16.0	16.0		mg/Kg		100	70 - 130	
C10-C12 Aromatics	4.00	3.76		mg/Kg		94	70 - 130	
C12-C13 Aromatics	8.00	6.53		mg/Kg		82	70 - 130	
C8-C10	24.0	26.1		mg/Kg		109	70 - 130	

	LCS	LCS	
Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	105		60 - 140
a,a,a-Trifluorotoluene (fid)	112		
a,a,a-Trifluorotoluene (pid)	106		
BFB - PID	99		60 - 140

Lab Sample ID: 580-26123-A-17-C MS

Matrix: Solid

Analysis Batch: 86551

Client Sample ID: 580-26123-A-17-C MS

Prep Type: Total/NA

Prep Batch: 86536

	Sample	Sample	Spike	MS	MS				% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
C5-C6 Aliphatics	ND		7.25	8.63		mg/Kg	<u></u>	112	70 - 130	
C6-C8 Aliphatics	6.2		3.63	10.2		mg/Kg	₽	111	70 - 130	
C8-C10 Aliphatics	7.8		7.25	17.4	F	mg/Kg	₽	133	70 - 130	
C10-C12 Aliphatics	5.5		3.63	10.1		mg/Kg	\$	126	70 - 130	
C8-C10 Aromatics	3.9		14.5	17.4		mg/Kg	☼	93	70 - 130	
C10-C12 Aromatics	4.7		3.63	7.67		mg/Kg	₩	82	70 - 130	
C12-C13 Aromatics	2.9		7.25	8.76		mg/Kg	₽	81	70 - 130	

	MS	MS	
Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	137		60 - 140
BFB - PID	99		60 - 140

Lab Sample ID: 580-26123-A-17-D MSD

Matrix: Solid

Analysis Batch: 86551

Client Sample ID: 580-26123-A-17-D MSD

Prep Type: Total/NA

Prep Batch: 86536

ı		Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
l	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
l	C5-C6 Aliphatics	ND		7.25	8.78		mg/Kg	\(\tilde{\pi} \)	115	70 - 130	2	25
١	C6-C8 Aliphatics	6.2		3.63	10.3		mg/Kg	₽	113	70 - 130	0	25
ı	C8-C10 Aliphatics	7.8		7.25	17.6	F	mg/Kg	≎	136	70 - 130	1	25
ı	C10-C12 Aliphatics	5.5		3.63	9.94		mg/Kg	₽	123	70 - 130	1	25

TestAmerica Spokane 05/26/2011

2

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: 580-26123-A-17-D MSD

Matrix: Solid

Analysis Batch: 86551

Client Sample ID: 580-26123-A-17-D MSD

Prep Type: Total/NA

Prep Batch: 86536

Sample Sample Spike MSD MSD % Rec. RPD Result Qualifier Added Result Qualifier Unit D % Rec Limits RPD Limit C8-C10 Aromatics 3.9 14.5 17.2 mg/Kg ₩ 91 70 - 130 25 ₩ 25 C10-C12 Aromatics 3.63 7.44 75 70 - 130 3 4.7 mg/Kg C12-C13 Aromatics 7.25 8.20 ä 73 2.9 mg/Kg 70 - 130 25

 Surrogate
 % Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 136
 60 - 140

 BFB - PID
 97
 60 - 140

Lab Sample ID: MB 580-86551/5

Matrix: Solid

Client Sample ID: MB 580-86551/5

Prep Type: Total/NA

Analysis Batch: 86551

MB MB

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C5-C6 Aliphatics	ND		0.050		mg/Kg			05/23/11 15:29	1
C6-C8 Aliphatics	ND		0.050		mg/Kg			05/23/11 15:29	1
C8-C10 Aliphatics	ND		0.050		mg/Kg			05/23/11 15:29	1
C10-C12 Aliphatics	ND		0.050		mg/Kg			05/23/11 15:29	1
C8-C10 Aromatics	ND		0.050		mg/Kg			05/23/11 15:29	1
C10-C12 Aromatics	ND		0.050		mg/Kg			05/23/11 15:29	1
C12-C13 Aromatics	ND		0.050		mg/Kg			05/23/11 15:29	1
Total VPH	ND		0.35		mg/Kg			05/23/11 15:29	1
C8-C10	ND		0.050		mg/Kg			05/23/11 15:29	1

MB MB Qualifier Limits Analyzed Dil Fac Surrogate % Recovery Prepared 4-Bromofluorobenzene 107 60 - 140 05/23/11 15:29 a,a,a-Trifluorotoluene (fid) 05/23/11 15:29 a,a,a-Trifluorotoluene (pid) 05/23/11 15:29 BFB - PID 105 60 - 140 05/23/11 15:29

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 11E0114-BLK1

Matrix: Soil

Client Sample ID: 11E0114-BLK1

Prep Type: Total

Analysis Batch: 11E0114 Prep Batch: 11E0114_P

	Diank	Diank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.00		mg/kg wet		05/20/11 13:03	05/20/11 20:37	1.00
	Rlank	Rlank							

 Surrogate
 % Recovery Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 4-BFB (FID)
 81.8
 50 - 150
 05/20/11 13:03
 05/20/11 20:37
 1.00

Lab Sample ID: 11E0114-BS1

Matrix: Soil

Client Sample ID: 11E0114-BS1

Prep Type: Total

Analysis Batch: 11E0114

Prep Batch: 11E0114_P

Spike LCS LCS % Rec

 Analyte
 Added
 Result Qualifier
 Unit
 D
 % Rec.

 Gasoline Range Hydrocarbons
 25.0
 24.8
 mg/kg wet
 99.3
 74.4 - 124

Client Sample ID: 11E0114-BS1

Prep Type: Total

3.17

Prep Batch: 11E0114_P

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx (Continued)

Lab Sample ID: 11E0114-BS1

Matrix: Soil Analysis Batch: 11E0114

LCS LCS

Surrogate % Recovery Qualifier Limits 4-BFB (FID) 50 - 150 113

Lab Sample ID: 11E0114-BSD1

Client Sample ID: 11E0114-BSD1 **Matrix: Soil Prep Type: Total** Analysis Batch: 11E0114 Prep Batch: 11E0114 P

24.0

Spike LCS Dup LCS Dup % Rec. RPD Added Result Qualifier % Rec Limits Limit Unit RPD

96.2

74.4 - 124

mg/kg wet

25.0 Gasoline Range Hydrocarbons LCS Dup LCS Dup

Surrogate % Recovery Qualifier Limits 4-BFB (FID) 109 50 - 150

Lab Sample ID: 11E0114-DUP1

Analysis Batch: 11E0114

Client Sample ID: BH-10-3 **Matrix: Soil Prep Type: Total**

Prep Batch: 11E0114_P

Sample Sample **Duplicate Duplicate RPD** Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit ₩ 32.4 31.6 mg/kg dry 2.48 32.3 Gasoline Range Hydrocarbons

Duplicate Duplicate % Recovery Qualifier Surrogate Limits 4-BFB (FID) 103 50 - 150

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-86239/1-B

Matrix: Solid

Analysis Batch: 86477

Client Sample ID: MB 580-86239/1-B

Prep Type: Total/NA Prep Batch: 86239

MB MB RL MDL Unit Analyte Result Qualifier Prepared Analyzed Dil Fac C10-C12 Aliphatics 5.0 05/18/11 10:13 05/23/11 18:49 ND mg/Kg 5.0 C12-C16 Aliphatics ND 05/23/11 18:49 05/18/11 10:13 mg/Kg 1 C16-C21 Aliphatics ND 5.0 05/18/11 10:13 05/23/11 18:49 mg/Kg ND C21-C34 Aliphatics 5.0 mg/Kg 05/18/11 10:13 05/23/11 18:49 C12-C16 Aromatics ND 5.0 mg/Kg 05/18/11 10:13 05/23/11 18:49 C16-C21 Aromatics ND 5.0 05/18/11 10:13 05/23/11 18:49 mg/Kg C21-C34 Aromatics ND 5.0 05/18/11 10:13 05/23/11 18:49 mg/Kg

MB MB

Qualifier Surrogate % Recovery Limits Prepared Analyzed Dil Fac o-Terphenyl 79 60 - 140 05/18/11 10:13 05/23/11 18:49 1-Chlorooctadecane 84 60 - 140 05/18/11 10:13 05/23/11 18:49

Lab Sample ID: LCS 580-86239/2-B

Matrix: Solid

Analysis Batch: 86477

Client Sample ID: LCS 580-86239/2-B Prep Type: Total/NA

Prep Batch: 86239

Alialysis Dalcii. 00411							Fieh	Datell.	00233
	Spike	LCS	LCS				% Rec.		
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits		
C12-C16 Aromatics	10.0	7.73		mg/Kg		77	70 - 130		
C16-C21 Aromatics	20.0	15.3		mg/Kg		76	70 - 130		

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCS 580-86239/2-B Client Sample ID: LCS 580-86239/2-B **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 86477** Prep Batch: 86239 Spike LCS LCS % Rec.

Added Result Qualifier Unit % Rec Limits C21-C34 Aromatics 26.7 26.8 mg/Kg 101 70 - 130

LCS LCS % Recovery Surrogate Qualifier Limits o-Terphenyl 80 60 - 140

Lab Sample ID: LCS 580-86239/2-B Client Sample ID: LCS 580-86239/2-B Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 86567 Prep Batch: 86239

Spike LCS LCS % Rec. Analyte Added Result Qualifier Unit % Rec Limits C10-C12 Aliphatics 3.33 ND 70 - 130 mg/Kg 82 C12-C16 Aliphatics 6.67 5.65 mg/Kg 85 70 - 130 C16-C21 Aliphatics 10.0 9.14 mg/Kg 91 70 - 130 C21-C34 Aliphatics 20.0 17.1 mg/Kg 85 70 - 130

LCS LCS Qualifier Limits Surrogate % Recovery 1-Chlorooctadecane 87 60 - 140

Lab Sample ID: 580-26174-2 MS Client Sample ID: SUE0077-02

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 86477** Prep Batch: 86239

Spike Sample Sample MS MS % Rec. Result Qualifier Added Result Qualifier Unit % Rec Limits C10-C12 Aliphatics ND 3.88 ND F mg/Kg * 67 70 - 130 ₩ 70 - 130 C12-C16 Aliphatics ND 7.76 6.14 mg/Kg 79 ₩ C16-C21 Aliphatics ND 11.6 10.3 mg/Kg 88 70 - 130 ₽ C21-C34 Aliphatics ND 23.3 20.0 86 70 - 130 mg/Kg ND ℧ C12-C16 Aromatics 11.6 11.2 mg/Kg 96 70 - 130 C16-C21 Aromatics ND 23.3 19.8 mg/Kg 85 70 - 130 C21-C34 Aromatics ND 31.0 34.3 mg/Kg 110 70 - 130

MS MS Surrogate % Recovery Qualifier Limits o-Terphenyl 89 60 - 140 1-Chlorooctadecane 82 60 - 140

Lab Sample ID: 580-26174-2 MSD Client Sample ID: SUE0077-02 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 86477

	Sample S	ample Spike	MSD	MSD				% Rec.		RPD
Analyte	Result Q	ualifier Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
C10-C12 Aliphatics	ND	3.87	ND		mg/Kg	\	71	70 - 130	5	25
C12-C16 Aliphatics	ND	7.74	6.32		mg/Kg	☼	82	70 - 130	3	25
C16-C21 Aliphatics	ND	11.6	10.6		mg/Kg	≎	91	70 - 130	3	25
C21-C34 Aliphatics	ND	23.2	20.3		mg/Kg	₽	87	70 - 130	2	25
C12-C16 Aromatics	ND	11.6	10.8		mg/Kg	☼	93	70 - 130	3	25
C16-C21 Aromatics	ND	23.2	19.5		mg/Kg	☼	84	70 - 130	2	25
C21-C34 Aromatics	ND	30.9	33.0		mg/Kg	₽	107	70 - 130	4	25

Prep Batch: 86239

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

Limits

Lab Sample ID: 580-26174-2 MSD

Matrix: Solid

Analysis Batch: 86477

Client Sample ID: SUE0077-02 Prep Type: Total/NA

Prep Batch: 86239

Prep Type: Total

Prep Type: Total

Prep Batch: 11E0192_P

MSD MSD Surrogate % Recovery Qualifier

o-Terphenyl 60 - 140 87 1-Chlorooctadecane 81 60 - 140

Method: MSA 29-3.5.2 - General Chemistry Parameters

Lab Sample ID: 11E0192-BLK1 Client Sample ID: 11E0192-BLK1

Matrix: Solid Prep Type: Total Analysis Batch: 11E0192 Prep Batch: 11E0192_P

Blank Blank

Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed Total Organic Carbon ND 2000 05/17/11 13:36 05/17/11 16:58 mg/kg wet

Lab Sample ID: 11E0192-BS1 Client Sample ID: 11E0192-BS1

Matrix: Solid

Analysis Batch: 11E0192

Spike LCS LCS % Rec.

Analyte Added Result Qualifier Unit % Rec Limits Total Organic Carbon 6480 6650 103 80 - 120 mg/kg

Lab Sample ID: 11E0192-MS1 Client Sample ID: AUE0050-02

Matrix: Solid

Analysis Batch: 11E0192

Prep Type: Total Prep Batch: 11E0192 P

Spike Matrix Spike Matrix Spike % Rec. Sample Sample

Result Qualifier Added Result Qualifier Limits Analyte Unit % Rec Total Organic Carbon 5670 5000 9000 M1 mg/kg wet 66 75 - 125

Lab Sample ID: 11E0192-MSD1 Client Sample ID: AUE0050-02

Matrix: Solid

Prep Type: Total Analysis Batch: 11E0192 Prep Batch: 11E0192_P Sample Sample Spike Matrix Spike Dup Matrix Spike Dup % Rec. RPD

Result Qualifier Added Result Qualifier Unit Limits RPD Limit Analyte % Rec 5670 5000 9780 75 - 125 Total Organic Carbon mg/kg wet 82 8 20

Lab Sample ID: 11E0108-DUP1 Client Sample ID: BH-10f-4.5

Matrix: Soil

Total Organic Carbon

Analysis Batch: 11E0192

Prep Batch: 11E0192_P Sample Sample **Duplicate Duplicate** RPD Result Qualifier Result Qualifier Unit D RPD Limit

5100

mg/kg dry

Lab Sample ID: 11E0114-DUP1 Client Sample ID: BH-10-3

Matrix: Soil Prep Type: Total Analysis Batch: 11E0192 Prep Batch: 11E0192_P

Sample Sample **Duplicate Duplicate RPD** Result Qualifier Result Qualifier D RPD Analyte Unit Limit Total Organic Carbon 4530 mg/kg dry

Certification Summary

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0077

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Spokane	Alaska	Alaska UST	10	UST-071
TestAmerica Spokane	Washington	State Program	10	C569
TestAmerica Austin		USDA		P330-08-00046
TestAmerica Austin	Arkansas	State Program	6	88-0685
TestAmerica Austin	California	State Program	9	2411
TestAmerica Austin	Kansas	NELAC	7	E-10165
TestAmerica Austin	Louisiana	NELAC	6	30736
TestAmerica Austin	North Carolina	North Carolina DENR	4	302
TestAmerica Austin	Oklahoma	State Program	6	8720
TestAmerica Austin	Pennsylvania	NELAC	3	68-04085
TestAmerica Austin	South Carolina	State Program	4	82003
TestAmerica Austin	Texas	NELAC	6	T104704217-10-6
TestAmerica Burlington		USDA		P330-11-00093
TestAmerica Burlington	ACLASS	DoD ELAP	0	ADE-1492
TestAmerica Burlington	Connecticut	State Program	1	PH-0751
TestAmerica Burlington	Delaware	Delaware DNREC	3	NA
TestAmerica Burlington	Maine	State Program	1	VT00008
TestAmerica Burlington	Minnesota	State Program	5	050-999-436
TestAmerica Burlington	New Hampshire	NELAC	1	200610
TestAmerica Burlington	New Jersey	NELAC	2	VT972
TestAmerica Burlington	New York	NELAC	2	10391
TestAmerica Burlington	Pennsylvania	NELAC	3	68-00489
TestAmerica Burlington	Rhode Island	State Program	1	LAO00298
TestAmerica Burlington	Vermont	State Program	1	VT-4000
TestAmerica Seattle		USDA		P330-11-00222
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022
TestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP	0	L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025	0	L2236
TestAmerica Seattle	Louisiana	NELAC	6	05016
TestAmerica Seattle	Montana	MT DEQ UST	8	N/A
TestAmerica Seattle	Oregon	NELAC	10	WA100007
TestAmerica Seattle	Washington	State Program	10	C553

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Method Summary

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0077

Method	Method Description	Protocol	Laboratory
EPA 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL SPK
EPA 8270 mod.	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH/VPH	Northwest - Volatile Pertroleum Hydrocarbons (GC)	NWTPH	TAL SEA
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
NWTPH/EPH	Northwest - Extractable Petroleum Hydrocarbons (GC)	NWTPH	TAL SEA
Moisture	Percent Moisture	EPA	TAL SEA
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK
ASTM D2216-90	General Chemistry Parameters		TAL AUS
MSA 29-3.5.2	General Chemistry Parameters		TAL AUS
D2216-90	Water (Moisture) Content	ASTM	TAL BUR
D422	Grain Size	ASTM	TAL BUR

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

Laboratory References:

TAL AUS = TestAmerica Austin, 14050 Summit Drive, Suite A100, Austin, TX 78728, TEL 512-244-0855

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Δ

8

9

estAmericc

THE LEADER IN ENVIRONMENTAL TESTING

PHONE: Stg. 535-785 FAX:

P.O. NUMBER:

PROJECT NAME: WASY / MH-34

SAMPLED BY: K. KINGSK + L. SCHEST PROJECT NUMBER: GROBENA, WAST, COOCO

CLIENT SAMPLE IDENTIFICATION

SAMPLING DATE/TIME

GRO

DRO

HRO

VPH.

EAH

BIEXN

PAHS

100

Partiele Size Soil Moisture

MATRIX (W, S, O)

OF CONT.

LOCATION/ COMMENTS

TA WOID

 $\mathcal{O}_{\mathcal{I}}$ (1)

Q Q Turnaround Requests less than standard may incur Rush Charges

OTHER Specify:

REQUESTED ANALYSES

PRESERVATIVE

10 7

5 4 3 2
Petroleum Hydrocarbon Analyses Organic & Inorganic Analyses

<u>^</u>

in Business Days *

84-4-3 84-3-2.5

5-10-11

5-9-11

110D がる

87-10-10 10-10

5-9-11 / 1222

BH-4a-2,5

5-10-11

PRINT NAME: RELEASED PAT

Kirese

FIRM:

FIRM:

MECADIA

DATE: TIME:

DATE: 5/12/2011

RECEIVED BY

2

7

U)

Ω. $\overline{\mathcal{Q}}$ C) S

1207

PRINT NAME: TOUCH

my water

FIRM: HESTAMONICY TIME: 120

DATES 121

FIRM:

TIME: DATE:

TEMP:

PAGE \ OF TAL-1000(0408)

PRINT NAME: RECEIVED BY: 8H-10f-4.5 BH-100-2

5-11-11

1220 1222

グニー 5-11-11

81-10-3

84-7-2

5-10-11

RELEASED BY:

ADDITIONAL REMARKS:

REPORT TO: KENIN LINESEL ADDRESS: 2310 N. MILYC RU \$101

CLIENT:

SIL SKARA

CHAIN OF CUSTODY REPORT INVOICE TO: ARCADIS-US 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 1720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 11922 E. First Ave, Spokane, WA 99206-5302 Work Order #: SUE0077 TURNAROUND REQUEST 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

(2) S

Q \mathcal{Q}

Page 36 of 37

05/26/2011

	u

Work Order #: SUE0077 client: ArradiS				Project: WA	59/MH-	34 ²	, , , , , , , , , , , , , , , , , , ,
Date/Time Received: K-12-11 12-07	By:RD			•		7- 6-81 - 41	
Samples Delivered By: Shipping Service Courier Gallent	Other:_					- 31	
List Air Bill Number(s) or Attach a photocopy of the Air Bill:							
Receipt Phase	Yes	No	NA NA		Comments		1.00
Were samples received in a cooler:	X	ļ	ļ	•		autor r y	a
Custody Seals are present and intact:		X				ac et ta ge	
Are CoC documents present:	メ					4/4/1/10/20	
Necessary signatures:	X						
Thermal Preservation Type: Blue Ice Gel Ice XReal Ice	Dry Ice [_None []Other:	•		- 200 MG F F MM - Made	-4 -4
Temperature by IR Gun: 3.4 °C Thermometer Serial #8150	00 (accept	ance criteri	a 0-6 °C)			ar . Pad Paga . A Per las	
Temperature out of range: Not enough ice Ice melted //w/i	n 4hrs of c	ollection []NA []Oti	ner:			
Log-in Phase Date/Time: 5-12-11 18:20 By:	Yes	No.	NA		Comments		
Are sample labels affixed and completed for each container	X					546 7 44 5-144	
Samples containers were received intact:	\downarrow						
Do sample IDs match the CoC	X					6.46; 6.46;	-
Appropriate sample containers were received for tests requested	Х,	PSI2111			•••	·	
Are sample volumes adequate for tests requested	//	X		enough 1	chille FC	9-Moi Grains	ا محلا
Appropriate preservatives were used for the tests requested	1			3		مر الارساوات ا	-1
pH of inorganic samples checked and is within method specification			7	•		returne.	
Are VOC samples free of bubbles >6mm (1/4" diameter)			7			rroun ac	
Are dissolved parameters field filtered			*			estapas estapas	
Do any samples need to be filtered or preserved by the lab		1				* ** ******** * ******	1
• Does this project require quick turnaround analysis		+				Pro#12.0	3
Are there any short hold time tests (see chart below)		*		•	•	#23*** 	2
Are any samples within 2 days of or past expiration		· *		•		***************************************	
Was the CoC scanned	4						£
Were there Non-conformance issues at login	X		Poliply				
If yes, was a CAR generated #	X						
		***************************************			· ·· · · · · · · · · · · · · · · · · ·	4 Per 30	Ţ

TestAmerica Spokane Sample Receipt Form

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

ARCADIS

Appendix E

Groundwater Analytical Results

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

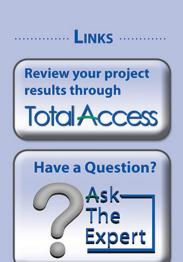
TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SUE0076

Client Project/Site: GP09BPNA.WA59.00000 Client Project Description: WA59/MH-34

For:

ARCADIS U.S., Inc. - Liberty Lake 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019


Attn: Kevin Knesek

tandissector

Authorized for release by: 05/26/2011 01:34:17 PM

Randee Decker Project Manager

Randee.Decker@testamericainc.com

www.testamericainc.com

Visit us at:

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 23 05/26/2011

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	10
Certification Summary	20
Method Summary	
Chain of Custody	22

Case Narrative

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0076

Job ID: SUE0076

Laboratory: TestAmerica Denver

Narrative

CASE NARRATIVE

Client: TestAmerica Laboratories, Inc

Project: Arcadis-Liberty Lake

Report Number: 280-15829-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 05/13/2011; the samples arrived in good condition and on ice. The temperature of the cooler at receipt was 1.2°C.

DISSOLVED GASES - METHOD RSK-175

Matrix Spike / Matrix Spike Duplicate (MS/MSD) samples were not requested and could not be performed due to insufficient sample volume. Method precision and accuracy have been verified by the acceptable LCS/LCSD analysis.

No other difficulties were encountered.

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The following samples were improperly preserved in the field. Ambers of both samples for EPH required adjustment with HCl from lot 50267.

All other samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC/MS Semi VOA

No analytical or quality issues were noted.

GC Semi VOA

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

TestAmerica Spokane 05/26/2011

2

3

4

5

Sample Summary

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0076

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SUE0076-01	MW-1	Water	05/11/11 16:10	05/12/11 12:07
SUE0076-02	MW-8	Water	05/11/11 15:00	05/12/11 12:07

2

4

_

_

_

Q

Definitions/Glossary

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Qualifier Description

TestAmerica Job ID: SUE0076

Qualifiers

GCMS Volatiles

Qualifier

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS). ZX

Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

GC VOA Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Volatiles

Qualifier **Qualifier Description** ZX

Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis.

EPA United States Environmental Protection Agency ND Not Detected above the reporting level.

MDL Method Detection Limit RLReporting Limit

RE, RE1 (etc.) Indicates a Re-extraction or Reanalysis of the sample.

%R Percent Recovery

RPD Relative Percent Difference, a measure of the relative difference between two points.

> TestAmerica Spokane 05/26/2011

Client Sample Results

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0076

Client Sample ID: MW-1 Lab Sample ID: SUE0076-01

Date Collected: 05/11/11 16:10 Matrix: Water

Date Received: 05/12/11 12:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.200		ug/l		05/13/11 10:47	05/16/11 14:11	1.00
Ethylbenzene	5.51		1.00		ug/l		05/13/11 10:47	05/16/11 14:11	1.00
Toluene	ND		1.00		ug/l		05/13/11 10:47	05/16/11 14:11	1.00
o-Xylene	22.2		1.00		ug/l		05/13/11 10:47	05/16/11 14:11	1.00
m,p-Xylene	11.9		2.00		ug/l		05/13/11 10:47	05/16/11 14:11	1.00
Naphthalene	19.8		2.00		ug/l		05/13/11 10:47	05/16/11 14:11	1.00
Methyl tert-butyl ether	ND		1.00		ug/l		05/13/11 10:47	05/16/11 14:11	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8	101		68.9 - 112				05/13/11 10:47	05/16/11 14:11	1.00
4-bromofluorobenzene	136	ZX	69.7 - 129				05/13/11 10:47	05/16/11 14:11	1.00
Dibromofluoromethane	116		88.8 - 135				05/13/11 10:47	05/16/11 14:11	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.74		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
2-Methylnaphthalene	ND		0.013		ug/L		05/16/11 14:08	05/17/11 20:48	1
1-Methylnaphthalene	0.38		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Acenaphthylene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Acenaphthene	0.12		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Fluorene	0.036		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Phenanthrene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Anthracene	0.012		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Fluoranthene	0.24		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Pyrene	0.30		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Benzo[a]anthracene	0.059		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Chrysene	0.057		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Benzo[a]pyrene	0.042		0.020		ug/L		05/16/11 14:08	05/17/11 20:48	1
Indeno[1,2,3-cd]pyrene	0.021		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Dibenz(a,h)anthracene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Benzo[g,h,i]perylene	0.030		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Benzo[b]fluoranthene	0.067		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Benzo[k]fluoranthene	0.022		0.010		ug/L		05/16/11 14:08	05/17/11 20:48	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	68		20 - 150				05/16/11 14:08	05/17/11 20:48	1

Method: NWTPH-Dx - Semivola	atile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	1.27		1.04		mg/l		05/18/11 07:54	05/18/11 12:09	1.00
Heavy Oil Range Hydrocarbons	ND		2.07		mg/l		05/18/11 07:54	05/18/11 12:09	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	91.7		50 - 150				05/18/11 07:54	05/18/11 12:09	1.00
p-Terphenyl-d14	103		50 - 150				05/18/11 07:54	05/18/11 12:09	1.00

Method: NWTPH/VPH - Northwest	- Volatile Pertroleum Hydro	ocarbons (G0	C)			
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	440	50	ug/L		05/24/11 02:01	1
C10-C12 Aromatics	390	50	ug/L		05/24/11 02:01	1
C12-C13 Aromatics	110	50	ug/L		05/24/11 02:01	1
C8-C10 Aliphatics	150	50	ug/L		05/24/11 02:01	1

TestAmerica Spokane 05/26/2011

3

5

6

8

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: MW-1

Lab Sample ID: SUE0076-01

Matrix: Water

Date Collected: 05/11/11 16:10 Date Received: 05/12/11 12:07

Surrogate

o-Terphenyl

1-Chlorooctadecane

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aromatics	120		50		ug/L			05/24/11 02:01	1
C5-C6 Aliphatics	230		50		ug/L			05/24/11 02:01	1
C6-C8 Aliphatics	570		50		ug/L			05/24/11 02:01	1
Total VPH	2000		350		ug/L			05/24/11 02:01	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
BFB - PID	81		60 - 140					05/24/11 02:01	1
4-Bromofluorobenzene	132		60 - 140					05/24/11 02:01	1
Method: RSK-175 - Dissolved (Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	0.68	J	5.0	0.22	ug/L			05/18/11 14:07	1
Ethylene	ND		5.0	0.40	ug/L			05/18/11 14:07	1
	ND			0.57	/1			05/18/11 14:07	1
Method: NWTPH-Gx - Gasoline	•	-		0.57	-		D anage d		
Ethane Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	Hydrocarbons t	oy NWTPH Qualifier		0.57 MDL	-	<u>D</u>	Prepared 05/18/11 17:12	Analyzed 05/18/11 20:46	Dil Fac
Method: NWTPH-Gx - Gasoline Analyte	Hydrocarbons b	Qualifier	-Gx RL		Unit	<u>D</u>	<u> </u>	Analyzed	Dil Fac
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	Hydrocarbons b Result 2450	Qualifier Qualifier	-Gx - RL 100		Unit	<u>D</u>	05/18/11 17:12	Analyzed 05/18/11 20:46	Dil Fac
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	Hydrocarbons to Result 2450 % Recovery 179	Qualifier Qualifier ZX	RL 100 Limits 37.9 - 162	MDL	Unit	<u>D</u>	05/18/11 17:12 Prepared	Analyzed 05/18/11 20:46 Analyzed	Dil Fac
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: NWTPH/EPH - Northw	Hydrocarbons to Result 2450 ### Recovery 179 est - Extractable	Qualifier Qualifier ZX	RL 100 Limits 37.9 - 162	MDL	Unit ug/l	<u>D</u>	05/18/11 17:12 Prepared	Analyzed 05/18/11 20:46 Analyzed	Dil Fac
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	Hydrocarbons to Result 2450 ### Recovery 179 est - Extractable	Qualifier Qualifier ZX Petroleum	-Gx	MDL (GC)	Unit ug/l		05/18/11 17:12 Prepared 05/18/11 17:12	Analyzed 05/18/11 20:46 Analyzed 05/18/11 20:46	Dil Fac 1.00 Dil Fac 1.00
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: NWTPH/EPH - Northw Analyte C10-C12 Aliphatics	Hydrocarbons to Result 2450 % Recovery 179 est - Extractable Result	Qualifier Qualifier ZX Petroleum	-Gx RL 100 - Limits 37.9 - 162 Hydrocarbons RL	MDL (GC)	Unit ug/l		05/18/11 17:12 Prepared 05/18/11 17:12 Prepared	Analyzed 05/18/11 20:46 Analyzed 05/18/11 20:46 Analyzed	Dil Fac
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: NWTPH/EPH - Northw Analyte C10-C12 Aliphatics C10-C12 Aromatics	Hydrocarbons to Result 2450 % Recovery 179 est - Extractable Result ND	Qualifier Qualifier ZX Petroleum	-Gx	MDL (GC)	Unit ug/l		05/18/11 17:12 Prepared 05/18/11 17:12 Prepared 05/16/11 12:37	Analyzed 05/18/11 20:46 Analyzed 05/18/11 20:46 Analyzed 05/23/11 17:37	Dil Fac
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: NWTPH/EPH - Northw Analyte C10-C12 Aliphatics C10-C12 Aromatics C12-C16 Aliphatics	Hydrocarbons to Result 2450 % Recovery 179 est - Extractable Result ND 240	Qualifier Qualifier ZX Petroleum	-Gx RL 100	MDL (GC)	Unit ug/l Unit ug/L ug/L		05/18/11 17:12 Prepared 05/18/11 17:12 Prepared 05/16/11 12:37 05/16/11 12:37	Analyzed 05/18/11 20:46 Analyzed 05/18/11 20:46 Analyzed 05/23/11 17:37 05/23/11 17:37	Dil Fac
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: NWTPH/EPH - Northw Analyte C10-C12 Aliphatics C12-C16 Aliphatics C12-C16 Aromatics	Hydrocarbons to Result 2450 % Recovery 179 est - Extractable Result ND 240 ND	Qualifier Qualifier ZX Petroleum	RL 100 Limits 37.9 - 162 Hydrocarbons RL 60 60 60	MDL (GC)	Unit ug/l Unit ug/L ug/L ug/L		05/18/11 17:12 Prepared 05/18/11 17:12 Prepared 05/16/11 12:37 05/16/11 12:37	Analyzed 05/18/11 20:46 Analyzed 05/18/11 20:46 Analyzed 05/23/11 17:37 05/23/11 17:37	Dil Fac 1.00 Dil Fac 1.00 Dil Fac 1.00 1.00
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: NWTPH/EPH - Northw Analyte C10-C12 Aliphatics C12-C16 Aliphatics C12-C16 Aromatics C12-C16 Aromatics C16-C21 Aliphatics C16-C21 Aliphatics	Hydrocarbons to Result 2450 % Recovery 179 est - Extractable Result ND 240 ND 78	Qualifier Qualifier ZX Petroleum	RL 100 Limits 37.9 - 162 Hydrocarbons RL 60 60 60 60 60	MDL (GC)	Unit ug/I Unit ug/L ug/L ug/L ug/L		05/18/11 17:12 Prepared 05/18/11 17:12 Prepared 05/16/11 12:37 05/16/11 12:37 05/16/11 12:37	Analyzed 05/18/11 20:46 Analyzed 05/18/11 20:46 Analyzed 05/23/11 17:37 05/23/11 17:37 05/23/11 17:37	Dil Fac 1.00 Dil Fac 1.00 Dil Fac 1.00 1.00
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: NWTPH/EPH - Northw Analyte	Hydrocarbons to Result 2450 % Recovery 179 est - Extractable Result ND 240 ND 78 ND ND	Qualifier Qualifier ZX Petroleum	RL 100 Limits 37.9 - 162 Hydrocarbons RL 60 60 60 60 60 60	MDL (GC)	Unit ug/I Unit ug/L ug/L ug/L ug/L ug/L ug/L		05/18/11 17:12 Prepared 05/18/11 17:12 Prepared 05/16/11 12:37 05/16/11 12:37 05/16/11 12:37 05/16/11 12:37	Analyzed 05/18/11 20:46 Analyzed 05/18/11 20:46 Analyzed 05/23/11 17:37 05/23/11 17:37 05/23/11 17:37 05/23/11 17:37	Dil Fac 1.00 Dil Fac 1.00 Dil Fac 1.00 1.00 1.00 1.00

Method: EPA 300.0 - Anions by EPA Method 300.0									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	54.6		16.0		mg/l		05/16/11 14:00	05/16/11 16:23	20.0
Nitrate-Nitrogen	5.80		0.500		mg/l		05/12/11 14:10	05/12/11 17:15	1.00
Sulfate	148		10.0		mg/l		05/16/11 14:00	05/16/11 16:23	20.0

Limits

60 - 140

60 - 140

% Recovery Qualifier

76

75

Method: SM 2320B - Conventional	Chemistry Parameters by	APHA/EPA M	ethods				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity	500	4.00	mg/l		05/19/11 07:02	05/19/11 15:22	1.00

Dil Fac

1

Analyzed

05/23/11 17:37

05/23/11 17:37

Prepared

05/16/11 12:37

05/16/11 12:37

Client Sample Results

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0076

Lab Sample ID: SUE0076-02

Matrix: Water

Date Collected: 05/11/11 15:00 Date Received: 05/12/11 12:07

Client Sample ID: MW-8

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		0.200		ug/l		05/13/11 10:47	05/13/11 20:04	1.00
Ethylbenzene	ND		1.00		ug/l		05/13/11 10:47	05/13/11 20:04	1.00
Toluene	ND		1.00		ug/l		05/13/11 10:47	05/13/11 20:04	1.00
o-Xylene	ND		1.00		ug/l		05/13/11 10:47	05/13/11 20:04	1.00
m,p-Xylene	ND		2.00		ug/l		05/13/11 10:47	05/13/11 20:04	1.00
Naphthalene	ND		2.00		ug/l		05/13/11 10:47	05/13/11 20:04	1.00
Methyl tert-butyl ether	ND		1.00		ug/l		05/13/11 10:47	05/13/11 20:04	1.00
Surrogate	% Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8	79.8		68.9 - 112				05/13/11 10:47	05/13/11 20:04	1.00
4-bromofluorobenzene	80.2		69.7 - 129				05/13/11 10:47	05/13/11 20:04	1.00
Dibromofluoromethane	129		88.8 - 135				05/13/11 10:47	05/13/11 20:04	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.032		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
2-Methylnaphthalene	ND		0.013		ug/L		05/16/11 14:08	05/17/11 21:07	1
1-Methylnaphthalene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Acenaphthylene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Acenaphthene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Fluorene	0.010		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Phenanthrene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Anthracene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Fluoranthene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Pyrene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Benzo[a]anthracene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Chrysene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Benzo[a]pyrene	ND		0.019		ug/L		05/16/11 14:08	05/17/11 21:07	1
Indeno[1,2,3-cd]pyrene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Dibenz(a,h)anthracene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Benzo[g,h,i]perylene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Benzo[b]fluoranthene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Benzo[k]fluoranthene	ND		0.0097		ug/L		05/16/11 14:08	05/17/11 21:07	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	62		20 - 150				05/16/11 14:08	05/17/11 21:07	1

Method: NWTPH-Dx - Semivola	itile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.992		mg/l		05/18/11 07:54	05/18/11 12:24	1.00
Heavy Oil Range Hydrocarbons	ND		1.98		mg/l		05/18/11 07:54	05/18/11 12:24	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	93.1		50 - 150				05/18/11 07:54	05/18/11 12:24	1.00
p-Terphenyl-d14	102		50 - 150				05/18/11 07:54	05/18/11 12:24	1.00

Method: NWTPH/VPH - Northw	est - Volatile Pertroleum Hydr	ocarbons (GC	()			
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND -	50	ug/L		05/24/11 02:27	1
C10-C12 Aromatics	ND	50	ug/L		05/24/11 02:27	1
C12-C13 Aromatics	ND	50	ug/L		05/24/11 02:27	1
C8-C10 Aliphatics	ND	50	ug/L		05/24/11 02:27	1

TestAmerica Spokane 05/26/2011

Page 8 of 23

2

3

<u>5</u>

6

0

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Client Sample ID: MW-8 Lab Sample ID: SUE0076-02

Date Collected: 05/11/11 15:00 Matrix: Water

Date Received: 05/12/11 12:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aromatics	ND		50		ug/L			05/24/11 02:27	1
C5-C6 Aliphatics	ND		50		ug/L			05/24/11 02:27	1
C6-C8 Aliphatics	ND		50		ug/L			05/24/11 02:27	1
Total VPH	ND		350		ug/L			05/24/11 02:27	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
BFB - PID	106		60 - 140			_		05/24/11 02:27	1
4-Bromofluorobenzene	107		60 - 140					05/24/11 02:27	1
Method: RSK-175 - Dissolv	ed Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		5.0	0.22	ug/L			05/18/11 14:21	1
Ethylene	ND		5.0	0.40	ug/L			05/18/11 14:21	1
Ethane	ND		5.0	0.57	ug/L			05/18/11 14:21	1

Method: NWTPH-GX - Gasoline Hy	drocarbons i	Dy NWIPH	-GX						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/l		05/18/11 17:12	05/18/11 21:11	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	83.8		37.9 - 162				05/18/11 17:12	05/18/11 21:11	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		59		ug/L		05/16/11 12:37	05/23/11 18:01	1
C10-C12 Aromatics	ND		59		ug/L		05/16/11 12:37	05/23/11 18:01	1
C12-C16 Aliphatics	ND		59		ug/L		05/16/11 12:37	05/23/11 18:01	1
C12-C16 Aromatics	ND		59		ug/L		05/16/11 12:37	05/23/11 18:01	1
C16-C21 Aliphatics	ND		59		ug/L		05/16/11 12:37	05/23/11 18:01	1
C16-C21 Aromatics	ND		59		ug/L		05/16/11 12:37	05/23/11 18:01	1
C21-C34 Aliphatics	ND		59		ug/L		05/16/11 12:37	05/23/11 18:01	1
C21-C34 Aromatics	ND		59		ug/L		05/16/11 12:37	05/23/11 18:01	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	78		60 - 140				05/16/11 12:37	05/23/11 18:01	1
1-Chlorooctadecane	74		60 - 140				05/16/11 12:37	05/23/11 18:01	1

Mictilod. El A 000.0 - Allion	s by EPA Method 300.0					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Chloride	31.2	16.0	mg/l	05/16/11 14:00	05/16/11 16:41	20.0
Nitrate-Nitrogen	15.7	0.500	mg/l	05/12/11 14:10	05/12/11 17:33	1.00
Sulfate	101	10.0	mg/l	05/16/11 14:00	05/16/11 16:41	20.0

Method: SM 2320B - Conventional Chemistry Parameters by APHA/EPA Methods									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Total Alkalinity	305	4.00	mg/l		05/19/11 07:02	05/19/11 15:22	1.00	

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 11E0069-BLK1

Matrix: Water

Analysis Batch: 11E0069

Client Sample ID: 11E0069-BLK1

Prep Type: Total

Prep Batch: 11E0069_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.200		ug/l		05/13/11 10:47	05/13/11 12:39	1.00
Ethylbenzene	ND		1.00		ug/l		05/13/11 10:47	05/13/11 12:39	1.00
Toluene	ND		1.00		ug/l		05/13/11 10:47	05/13/11 12:39	1.00
o-Xylene	ND		1.00		ug/l		05/13/11 10:47	05/13/11 12:39	1.00
m,p-Xylene	ND		2.00		ug/l		05/13/11 10:47	05/13/11 12:39	1.00
Naphthalene	ND		2.00		ug/l		05/13/11 10:47	05/13/11 12:39	1.00
Methyl tert-butyl ether	ND		1.00		ug/l		05/13/11 10:47	05/13/11 12:39	1.00

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8	80.6		68.9 - 112	05/13/11 10:47	05/13/11 12:39	1.00
4-bromofluorobenzene	82.0		69.7 - 129	05/13/11 10:47	05/13/11 12:39	1.00
Dibromofluoromethane	122		88.8 - 135	05/13/11 10:47	05/13/11 12:39	1.00

Lab Sample ID: 11E0069-BS1

Matrix: Water

Analysis Batch: 11E0069

Client Sample ID: 11E0069-BS1

Prep Type: Total

Prep Batch: 11E0069_P

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene	10.0	10.8		ug/l		108	72.9 - 120	
Ethylbenzene	10.0	9.79		ug/l		97.9	79.5 - 124	
Toluene	10.0	11.1		ug/l		111	72.4 - 132	
o-Xylene	10.0	9.78		ug/l		97.8	80 - 120	
m,p-Xylene	20.0	22.4		ug/l		112	79.6 - 133	
Naphthalene	10.0	9.93		ug/l		99.3	47.1 - 150	
Methyl tert-butyl ether	10.0	12.0		ug/l		120	47.6 - 150	

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Toluene-d8	76.6		68.9 - 112
4-bromofluorobenzene	89.8		69.7 - 129
Dibromofluoromethane	120		88.8 - 135

Lab Sample ID: 11E0069-MS1

Matrix: Water

Analysis Batch: 11E0069

Client Sample ID: SUE0062-02

Prep Type: Total

Prep Batch: 11E0069_P

	Sample Sample	Spike	Matrix Spike	Matrix Spi	ke			% Rec.	_
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene	0.960	10.0	12.3		ug/l		114	72.3 - 120	
Ethylbenzene	1.68	10.0	11.2		ug/l		94.9	71.2 - 128	
Toluene	0.650	10.0	11.2		ug/l		106	62.7 - 137	
o-Xylene	1.20	10.0	11.3		ug/l		101	78.5 - 120	
m,p-Xylene	4.13	20.0	26.0		ug/l		110	70 - 134	
Naphthalene	2.34	10.0	18.0	M7	ug/l		156	45.4 - 150	
Methyl tert-butyl ether	1.50	10.0	16.8	M7	ug/l		154	44.3 - 150	

	Matrix Spike	Matrix Spike			
Surrogate	% Recovery	Qualifier	Limits		
Toluene-d8	71.2		68.9 - 112		
4-bromofluorobenzene	84.4		69.7 - 129		
Dibromofluoromethane	129		88 8 - 135		

TestAmerica Job ID: SUE0076

Client Sample ID: SUE0062-02

78.5 - 120

44.3 - 150

162 45.4 - 150

70 - 134

97.6

108

149

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11E0069-MSD1 Matrix: Water

Matrix: Water									Pre	p Type:	Total
Analysis Batch: 11E0069								Prep Batch: 11E0069_P			
	Sample	Sample	Spike Mat	trix Spike Dup	Matrix Spil	ke Dup			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	0.960		10.0	12.0		ug/l		110	72.3 - 120	2.88	10.7
Ethylbenzene	1.68		10.0	11.2		ug/l		95.0	71.2 - 128	0.08 95	13.4
Toluene	0.650		10.0	10.9		ug/l		102	62.7 - 137	3.08	13

11.0

25.8

16.4

18.6 M7

ug/l

ug/l

ug/l

ug/l

10.0

20.0

10.0

69.7 - 129

88.8 - 135

Methyl tert-butyl ether 10.0 1.50 Matrix Spike Dup Matrix Spike Dup Surrogate % Recovery Qualifier Toluene-d8 71.2 68.9 - 112

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

1.20

4.13

2.34

85.6

126

% Recovery Qualifier

68

Lab Sample ID: MB 580-86086/1-A

4-bromofluorobenzene

Dibromofluoromethane

o-Xylene

m,p-Xylene

Naphthalene

Analysis Batch: 86171

Client Sample ID: MB 580-86086/1-A **Matrix: Water** Prep Type: Total/NA

Prep Batch: 86086

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
2-Methylnaphthalene	ND		0.013		ug/L		05/16/11 14:08	05/17/11 19:49	1
1-Methylnaphthalene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Acenaphthylene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Acenaphthene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Fluorene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Phenanthrene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Anthracene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Fluoranthene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Pyrene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Benzo[a]anthracene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Chrysene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Benzo[a]pyrene	ND		0.020		ug/L		05/16/11 14:08	05/17/11 19:49	1
Indeno[1,2,3-cd]pyrene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Dibenz(a,h)anthracene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Benzo[g,h,i]perylene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Benzo[b]fluoranthene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
Benzo[k]fluoranthene	ND		0.010		ug/L		05/16/11 14:08	05/17/11 19:49	1
	MB	MB							

Limits

1.00

20 - 150

Lab Sample ID: LCS 580-86086/2-A

Matrix: Water

Surrogate

Analyte

Naphthalene

Terphenyl-d14

Analysis Batch: 86171

Client Sample ID: LCS 580-86086/2-A Prep Type: Total/NA Prep Batch: 86086 Spike LCS LCS % Rec. Added % Rec Result Qualifier Unit Limits

ug/L

Prepared

TestAmerica Spokane 05/26/2011

Analyzed

50 - 125

05/16/11 14:08 05/17/11 19:49

76

Dil Fac

Page 11 of 23

0.762

13.1

14

14.9

15.7

3.05

1.00

3.50

2.65

TestAmerica Job ID: SUE0076

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Analysis Batch: 86171

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Client Sample ID: LCS 580-86086/2-A

Prep Type: Total/NA Prep Batch: 86086

Lab Sample ID: LCS 580-86086/2-A **Matrix: Water**

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D '	% Rec	Limits	
2-Methylnaphthalene	1.00	0.767		ug/L		77	60 - 130	
1-Methylnaphthalene	1.00	0.734		ug/L		73	50 - 125	
Acenaphthylene	0.999	0.835		ug/L		84	60 - 140	
Acenaphthene	1.00	0.715		ug/L		71	60 - 125	
Fluorene	1.00	0.772		ug/L		77	65 - 125	
Phenanthrene	1.00	0.831		ug/L		83	60 - 125	
Anthracene	1.00	0.722		ug/L		72	60 - 130	
Fluoranthene	1.00	0.850		ug/L		85	70 - 140	
Pyrene	1.00	0.808		ug/L		81	65 - 130	
Benzo[a]anthracene	1.00	0.862		ug/L		86	65 - 125	
Chrysene	1.00	0.924		ug/L		92	65 - 125	
Benzo[a]pyrene	1.00	0.711		ug/L		71	65 - 130	
Indeno[1,2,3-cd]pyrene	1.00	0.835		ug/L		84	55 - 140	
Dibenz(a,h)anthracene	0.999	0.859		ug/L		86	55 - 135	
Benzo[g,h,i]perylene	1.00	0.796		ug/L		80	55 - 130	
Benzo[b]fluoranthene	1.00	0.887		ug/L		89	65 - 130	
Benzo[k]fluoranthene	1.00	0.711		ug/L		71	65 - 130	

LCS LCS

Surrogate % Recovery Qualifier Limits Terphenyl-d14 69 20 - 150

Lab Sample ID: LCSD 580-86086/3-A

Matrix: Water

Analysis Batch: 86171

Client Sam	ple ID:	LCSD	580-	86086/3-	Α
-------------------	---------	------	------	----------	---

Prep Type: Total/NA

Prep Batch: 86086

7 many one Dattern Conn.									
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Naphthalene	1.00	0.734		ug/L		73	50 - 125	4	20
2-Methylnaphthalene	1.00	0.744		ug/L		74	60 - 130	3	20
1-Methylnaphthalene	1.00	0.704		ug/L		70	50 - 125	4	20
Acenaphthylene	0.999	0.803		ug/L		80	60 - 140	4	20
Acenaphthene	1.00	0.685		ug/L		68	60 - 125	4	20
Fluorene	1.00	0.731		ug/L		73	65 - 125	6	20
Phenanthrene	1.00	0.809		ug/L		81	60 - 125	3	20
Anthracene	1.00	0.733		ug/L		73	60 - 130	1	20
Fluoranthene	1.00	0.832		ug/L		83	70 - 140	2	20
Pyrene	1.00	0.804		ug/L		80	65 - 130	0	20
Benzo[a]anthracene	1.00	0.826		ug/L		83	65 - 125	4	20
Chrysene	1.00	0.881		ug/L		88	65 - 125	5	20
Benzo[a]pyrene	1.00	0.717		ug/L		72	65 - 130	1	20
Indeno[1,2,3-cd]pyrene	1.00	0.801		ug/L		80	55 - 140	4	20
Dibenz(a,h)anthracene	0.999	0.819		ug/L		82	55 - 135	5	20
Benzo[g,h,i]perylene	1.00	0.760		ug/L		76	55 - 130	5	20
Benzo[b]fluoranthene	1.00	0.855		ug/L		85	65 - 130	4	20
Benzo[k]fluoranthene	1.00	0.704		ug/L		70	65 - 130	1	20

LCSD	LCSD

Surrogate	% Recovery	Qualifier	Limits
Terphenyl-d14	67		20 - 150

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Lab Sample ID: 11E0089-BLK1

Matrix: Water

Analysis Batch: 11E0089

Client Sample ID: 11E0089-BLK1 **Prep Type: Total**

Prep Batch: 11E0089_P

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.250		mg/l		05/18/11 07:54	05/18/11 10:53	1.00
Heavy Oil Range Hydrocarbons	ND		0.500		mg/l		05/18/11 07:54	05/18/11 10:53	1.00

Blank Blank

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-FBP	90.1		50 - 150	05/18/11 07:54	05/18/11 10:53	1.00
p-Terphenyl-d14	101		50 - 150	05/18/11 07:54	05/18/11 10:53	1.00

Lab Sample ID: 11E0089-BS1 Client Sample ID: 11E0089-BS1 **Prep Type: Total**

Matrix: Water

Analysis Batch: 11E0089

Prep Batch: 11E0089_P Spike LCS LCS % Rec.

Added Result Qualifier Unit D % Rec Limits Diesel Range Hydrocarbons 2.50 2.13 mg/l 85.2 54.5 - 136

Limits

LCS LCS % Recovery Qualifier

2-FBP 89.3 50 - 150 50 - 150 p-Terphenyl-d14 98.5

Lab Sample ID: 11E0089-BSD1 Client Sample ID: 11E0089-BSD1

Surrogate

Prep Type: Total Matrix: Water Analysis Batch: 11E0089 Prep Batch: 11E0089_P Spike LCS Dup LCS Dup % Rec. RPD

Added Result Qualifier Limits RPD Analyte Unit % Rec Limit 2.50 2.23 89.2 54.5 - 136 Diesel Range Hydrocarbons mg/l 4.57 32.5

LCS Dup LCS Dup Surrogate % Recovery Qualifier Limits 2-FBP 95.7 50 - 150 50 - 150 p-Terphenyl-d14 99 9

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC)

106

Analysis Batch: 86601

4-Bromofluorobenzene

Lab Sample ID: MB 580-86601/24 Client Sample ID: MB 580-86601/24 **Matrix: Water** Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		50		ug/L			05/23/11 23:49	1
C10-C12 Aromatics	ND		50		ug/L			05/23/11 23:49	1
C12-C13 Aromatics	ND		50		ug/L			05/23/11 23:49	1
C8-C10 Aliphatics	ND		50		ug/L			05/23/11 23:49	1
C8-C10 Aromatics	ND		50		ug/L			05/23/11 23:49	1
C5-C6 Aliphatics	ND		50		ug/L			05/23/11 23:49	1
C6-C8 Aliphatics	ND		50		ug/L			05/23/11 23:49	1
Total VPH	ND		350		ug/L			05/23/11 23:49	1

l	10001 1111	110		000	ug/ L		00/20/11/20:10	•
		МВ	MB					
	Surrogate	% Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
l	BFB - PID	104		60 - 140			05/23/11 23:49	

60 - 140

TestAmerica Spokane 05/26/2011

05/23/11 23:49

Page 13 of 23

TestAmerica Job ID: SUE0076

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCS 580-86601/25

Matrix: Water

Analysis Batch: 86601

Analyte

C10-C12 Aliphatics

C10-C12 Aromatics

C12-C13 Aromatics

C8-C10 Aliphatics

C8-C10 Aromatics

C5-C6 Aliphatics

C6-C8 Aliphatics

Total VPH

Client Sample ID: LCS 580-86601/25 Prep Type: Total/NA

Spike LCS LCS % Rec. Added Result Qualifier Unit % Rec Limits 100 93.4 70 - 130 ug/L 93 100 90.3 ug/L 90 70 - 130 200 181 91 70 - 130 ug/L 200 232 ug/L 116 70 - 130 70 - 130 400 393 ug/L 98 200 202 ug/L 101 70 - 130 70 - 130 100 105 ug/L 105

ug/L

LCS LCS

Surrogate	% Recovery Qualifier	Limits
BFB - PID	100	60 - 140
4-Bromofluorobenzene	106	60 - 140

Lab Sample ID: LCSD 580-86601/27

Matrix: Water

Analysis Batch: 86601

Client Sample ID: LCSD 580-86601/27

70 - 130

99

Prep Type: Total/NA

	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
C10-C12 Aliphatics	100	95.3		ug/L		95	70 - 130	2	25
C10-C12 Aromatics	100	91.6		ug/L		92	70 - 130	1	25
C12-C13 Aromatics	200	197		ug/L		98	70 - 130	8	25
C8-C10 Aliphatics	200	222		ug/L		111	70 - 130	4	25
C8-C10 Aromatics	400	394		ug/L		99	70 - 130	0	25
C5-C6 Aliphatics	200	193		ug/L		97	70 - 130	4	25
C6-C8 Aliphatics	100	97.3		ug/L		97	70 - 130	7	25
Total VPH	1600	1590		ug/L		99	70 - 130	0	25

1600

1590

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
BFB - PID	101		60 - 140
4-Bromofluorobenzene	105		60 - 140

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 280-67984/4

Matrix: Water

Analysis Batch: 67984

Client Sample ID: MB 280-67984/4

Client Sample ID: LCS 280-67984/2

Prep Type: Total/NA

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		5.0	0.22	ug/L			05/18/11 12:32	1
Ethylene	ND		5.0	0.40	ug/L			05/18/11 12:32	1
Ethane	ND		5.0	0.57	ug/L			05/18/11 12:32	1

Lab Sample ID: LCS 280-67984/2

Matrix: Water

Analysis Batch: 67984

Allalysis Datch: 0/304						
	Spil	ke LCS	LCS			% Rec.
Analyte	Adde	d Result	Qualifier U	nit D	% Rec	Limits
Methane	73	.2 68.7	——— u	g/L	94	75 - 125
Ethylene	12	28 121	uģ	g/L	95	75 - 125

TestAmerica Spokane 05/26/2011

Prep Type: Total/NA

Page 14 of 23

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCS 280-67984/2 Client Sample ID: LCS 280-67984/2 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 67984 LCS LCS

Spike % Rec Added Result Qualifier Unit % Rec Limits Ethane 137 131 ug/L 96 75 - 125

Lab Sample ID: LCSD 280-67984/3 Client Sample ID: LCSD 280-67984/3

Matrix: Water Prep Type: Total/NA

Analysis Batch: 67984

LCSD LCSD Spike % Rec. **RPD** Analyte Added Result Qualifier Unit D % Rec Limits **RPD** Limit 73.2 75 - 125 Methane 66.7 91 3 20 ug/L Ethylene 128 120 ug/L 94 75 - 125 1 20 Ethane 137 127 ug/L 93 75 - 125 3 20

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 11E0100-BLK1 Client Sample ID: 11E0100-BLK1

Prep Type: Total Matrix: Water Analysis Batch: 11E0100 Prep Batch: 11E0100_P

Blank Blank Qualifier MDL Unit Dil Fac Result RL Prepared Analyzed Gasoline Range Hydrocarbons ND 100 05/18/11 17:12 05/18/11 23:15 1.00 ug/l Blank Blank

% Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 4-BFB (FID) 85.7 37.9 - 162 05/18/11 17:12 05/18/11 23:15 1.00

Lab Sample ID: 11E0100-BS1 Client Sample ID: 11E0100-BS1 **Matrix: Water Prep Type: Total**

Analysis Batch: 11E0100 Prep Batch: 11E0100_P Spike LCS LCS % Rec.

Analyte Added Result Qualifier Unit D % Rec Limits

Gasoline Range Hydrocarbons 1000 822 ug/l 82.2 80 - 120

LCS LCS

Surrogate % Recovery Qualifier Limits 4-BFB (FID) 37.9 - 162 102

Lab Sample ID: 11E0100-BSD1 Client Sample ID: 11E0100-BSD1 **Matrix: Water Prep Type: Total**

Analysis Batch: 11E0100 Prep Batch: 11E0100 P

Spike LCS Dup LCS Dup % Rec. Result Qualifier Added Limits RPD Limit Unit % Rec

Analyte Gasoline Range Hydrocarbons 1000 972 97.2 80 - 120 16.8 20 ug/l

LCS Dup LCS Dup % Recovery Qualifier Limits Surrogate 4-BFB (FID) 37.9 - 162 110

Lab Sample ID: 11E0100-DUP1 Client Sample ID: SUE0071-14 **Prep Type: Total Matrix: Water**

Analysis Batch: 11E0100 Prep Batch: 11E0100_P Sample Sample **Duplicate Duplicate** RPD

Result Qualifier Result Qualifier Unit D RPD Limit ND ND 35 Gasoline Range Hydrocarbons ug/l

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx (Continued)

Lab Sample ID: 11E0100-DUP1

Matrix: Water

Analysis Batch: 11E0100

Client Sample ID: SUE0071-14

Prep Type: Total Prep Batch: 11E0100_P

Duplicate Duplicate

% Recovery Qualifier Surrogate

4-BFB (FID) 87.0

Limits 37.9 - 162

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-86069/1-B

Matrix: Water

Analysis Batch: 86477

Client Sample ID: MB 580-86069/1-B

Prep Type: Total/NA

Prep Batch: 86069

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		50		ug/L		05/16/11 12:37	05/23/11 15:37	1
C10-C12 Aromatics	ND		50		ug/L		05/16/11 12:37	05/23/11 15:37	1
C12-C16 Aliphatics	ND		50		ug/L		05/16/11 12:37	05/23/11 15:37	1
C12-C16 Aromatics	ND		50		ug/L		05/16/11 12:37	05/23/11 15:37	1
C16-C21 Aliphatics	ND		50		ug/L		05/16/11 12:37	05/23/11 15:37	1
C16-C21 Aromatics	ND		50		ug/L		05/16/11 12:37	05/23/11 15:37	1
C21-C34 Aliphatics	ND		50		ug/L		05/16/11 12:37	05/23/11 15:37	1
C21-C34 Aromatics	ND		50		ug/L		05/16/11 12:37	05/23/11 15:37	1

мв мв

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	80	60 - 140	05/16/11 12:37	05/23/11 15:37	1
1-Chlorooctadecane	90	60 - 140	05/16/11 12:37	05/23/11 15:37	1

Lab Sample ID: LCS 580-86069/17-B

Matrix: Water

Analysis Batch: 86477

Client Sample ID: LCS 580-86069/17-B

Prep Type: Total/NA

Prep Batch: 86069

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
C10-C12 Aromatics	100	85.6		ug/L		86	70 - 130	
C12-C16 Aromatics	300	256		ug/L		85	70 - 130	
C16-C21 Aromatics	600	491		ug/L		82	70 - 130	
C21-C34 Aromatics	800	885		ua/l		111	70 - 130	

LCS LCS

% Recovery Qualifier Limits Surrogate 60 - 140 o-Terphenyl 88

Lab Sample ID: LCS 580-86069/17-B

Matrix: Water

Analysis Batch: 86567

Client Sample ID: LCS 580-86069/17-B

Prep Type: Total/NA

Prep Batch: 86069

	Spike	LUS	LUS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
C10-C12 Aliphatics	100	85.0		ug/L		85	70 - 130	
C12-C16 Aliphatics	200	176		ug/L		88	70 - 130	
C16-C21 Aliphatics	300	287		ug/L		96	70 - 130	
C21-C34 Aliphatics	600	511		ug/L		85	70 - 130	

Cnika

LCS LCS

% Recovery Qualifier Surrogate Limits 1-Chlorooctadecane 93 60 - 140

> TestAmerica Spokane 05/26/2011

Page 16 of 23

Client Sample ID: LCSD 580-86069/18-B

Prep Type: Total/NA Prep Batch: 86069

TestAmerica Job ID: SUE0076

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCSD 580-860	69/18-B					(Client Sa	mple ID	: LCSD 58	0-86069	3/18-B
Matrix: Water									Prep Ty	/pe: To	tal/NA
Analysis Batch: 86477									Prep	Batch:	86069
			Spike	LCSD	LCSD				% Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
C10-C12 Aromatics			100	76.0		ug/L		76	70 - 130	12	25
C12-C16 Aromatics			300	238		ug/L		79	70 - 130	7	25
C16-C21 Aromatics			600	470		ug/L		78	70 - 130	4	25
C21-C34 Aromatics			800	838		ug/L		105	70 - 130	5	25
	LCSD	LCSD									
Surrogate	% Recovery	Qualifier	Limits								
o-Terphenyl	83		60 - 140								

Lab Sample ID: LCSD 580-86069/18-B

Analyte

Nitrate-Nitrogen

Analysis Batch: 86567

Matrix: Water

Spike	LCSD	LCSD				% Rec.		RPD
Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
100	83.4		ug/L		83	70 - 130	2	25
200	174		ug/L		87	70 - 130	1	25
300	287		ug/L		96	70 - 130	0	25
600	529		ug/L		88	70 - 130	4	25
	Added 100 200 300	Added Result 100 83.4 200 174 300 287	Added Result Qualifier 100 83.4 200 174 300 287	Added Result Qualifier Unit 100 83.4 ug/L 200 174 ug/L 300 287 ug/L	Added Result Qualifier Unit D 100 83.4 ug/L 200 174 ug/L 300 287 ug/L	Added Result Qualifier Unit D % Rec 100 83.4 ug/L 83 200 174 ug/L 87 300 287 ug/L 96	Added Result Qualifier Unit D % Rec Limits 100 83.4 ug/L 83 70 - 130 200 174 ug/L 87 70 - 130 300 287 ug/L 96 70 - 130	Added Result Qualifier Unit D % Rec Limits RPD 100 83.4 ug/L 83 70 - 130 2 200 174 ug/L 87 70 - 130 1 300 287 ug/L 96 70 - 130 0

LCSD LCSD Surrogate % Recovery Qualifier Limits 1-Chlorooctadecane 87 60 - 140

Method: EPA 300.0 - Anions by EPA Method 300.0

Lab Sample ID: 11E0059-BLK1										C	lient Sar	mple ID: 11E00	59-BLK1
Matrix: Water												Prep Ty	pe: Total
Analysis Batch: 11E0059												Prep Batch: 11	E0059_P
	Blank	Blank											
Analyte	Result	Qualifier		RL	М	DL U	nit		D	Pre	epared	Analyzed	Dil Fac
Nitrate-Nitrogen	ND			0.500		m	ıg/l		_	05/12	/11 11:45	05/12/11 14:15	1.00
Lab Sample ID: 11E0059-BS1											Client Sa	ample ID: 11E0	059-BS1
Matrix: Water												Prep Ty	pe: Total
Analysis Batch: 11E0059												Prep Batch: 11	E0059_P
-			Spike		LCS	LCS						% Rec.	
Analyte			Added		Result	Quali	fier	Unit		D	% Rec	Limits	
Nitrate-Nitrogen			5.00		4.91			mg/l			98.2	90 - 110	
Lab Sample ID: 11E0059-MS1											Client S	Sample ID: SUI	= 0070-03
Matrix: Water												Prep Ty	pe: Total
Analysis Batch: 11E0059												Prep Batch: 11	E0059 P

Spike

Added

5.00

Sample Sample

10.3

Result Qualifier

% Rec.

Limits

80 - 120

% Rec

86.8

Matrix Spike Matrix Spike

14.6

Result Qualifier

Unit

mg/l

Prep Batch: 11E0066 P

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Analysis Batch: 11E0066

Method: EPA 300.0 - Anions by EPA Method 300.0 (Continued)

Lab Sample ID: 11E0059-MSD	1							Client	Sample ID): SUE00	70-03	
Matrix: Water									Pre	ep Type:	Total	
Analysis Batch: 11E0059									Prep Bato	h: 11E0	059_P	
	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spi	ke Dup			% Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
Nitrate-Nitrogen	10.3		5.00	14.6		ma/l		87.0	80 - 120	0.0683	12.1	

Lab Sample ID: 11E0059-DUP1 Client Sample ID: SUE0070-03 **Matrix: Water Prep Type: Total** Analysis Batch: 11E0059 Prep Batch: 11E0059_P Sample Sample **Duplicate Duplicate** RPD Result Qualifier Result Qualifier Analyte Unit RPD Limit Nitrate-Nitrogen 10.3 10.3 0.194 13 1 mg/l

Lab Sample ID: 11E0066-BLK1

Matrix: Water

Client Sample ID: 11E0066-BLK1

Prep Type: Total

Blank Blank

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Chloride	ND		0.800		mg/l		05/16/11 14:00	05/16/11 16:59	1.00
Sulfate	ND		0.500		mg/l		05/16/11 14:00	05/16/11 16:59	1.00

Lab Sample ID: 11E0066-BS1

Matrix: Water

Analysis Batch: 11E0066

Prep Batch: 11E0066_P

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit % Rec Limits Chloride 5.00 5.44 mg/l 109 90 - 110 Sulfate 5.00 5.12 102 90 - 110 mg/l

Lab Sample ID: 11E0066-MS1

Matrix: Water

Analysis Batch: 11E0066

Client Sample ID: MW-8

Prep Type: Total

Prep Batch: 11E0066_P

Sample Sample Spike Matrix Spike Matrix Spike % Rec. Analyte Result Qualifier Added Result Qualifier Unit % Rec Limits Chloride 31.2 100 147 mg/l 116 80 - 120 Sulfate 80 - 120 101 100 195 93.6 mg/l

Lab Sample ID: 11E0066-MSD1

Matrix: Water

Client Sample ID: MW-8
Prep Type: Total

Analysis Batch: 11E0066 Prep Batch: 11E0066 P RPD Sample Sample Spike Matrix Spike Dup Matrix Spike Dup % Rec. Limits RPD Analyte Result Qualifier Added Result Qualifier Unit % Rec Limit Chloride 31.2 100 142 mg/l 110 80 - 120 4.01 10 Sulfate 101 100 193 mg/l 92.4 80 - 120 0.61 10

Lab Sample ID: 11E0066-DUP1

Matrix: Water

Analysis Batch: 11E0066

Client Sample ID: MW-8

Prep Type: Total

Prep Batch: 11E0066_P

Sample Sample **Duplicate Duplicate** Result Qualifier Result Qualifier Analyte Unit D RPD Limit Chloride 31.2 30.6 mg/l 1.94 18.8 Sulfate 101 104 mg/l 2.73 15.7

QC Sample Results

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

Lab Sample ID: 11E0101-BS1

TestAmerica Job ID: SUE0076

Client Sample ID: 11E0101-BS1

Method: SM 2320B - Conventional Chemistry Parameters by APHA/EPA Methods

Lab Sample ID: 11E0101-BLK1

Matrix: Water

Analysis Batch: 11E0101

Prep Batch: 11E0101_P

	Dialik	DIAIIK							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity	ND		4.00		mg/l		05/19/11 07:02	05/19/11 15:22	1.00
Carbonate Alkalinity	ND		4.00		mg/l		05/19/11 07:02	05/19/11 15:22	1.00
Total Alkalinity	ND		4.00		mg/l		05/19/11 07:02	05/19/11 15:22	1.00

Matrix: Water Prep Type: Total Analysis Batch: 11E0101 Prep Batch: 11E0101_P LCS LCS Spike % Rec. Added Result Qualifier Unit % Rec Limits 500 Bicarbonate Alkalinity 475 90 - 110 mg/l 95.0 **Total Alkalinity** 500 475 95.0 90 - 110 mg/l

Lab Sample ID: 11E0101-DUP1

Matrix: Water

Analysis Batch: 11E0101

Client Sample ID: MW-1

Prep Type: Total

Prep Batch: 11E0101_P

Duplicate Duplicate Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit 498 Bicarbonate Alkalinity 503 mg/l 0.999 10 Carbonate Alkalinity ND 1.88 10 mg/l **Total Alkalinity** 500 505 0.99 10 mg/l 5

TestAmerica Job ID: SUE0076

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Seattle

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Spokane	Alaska	Alaska UST	10	UST-071
TestAmerica Spokane	Washington	State Program	10	C569
TestAmerica Denver		USDA		P330-08-00036
TestAmerica Denver	A2LA	DoD ELAP	0	2907.01
TestAmerica Denver	A2LA	ISO/IEC 17025	0	2907.01
TestAmerica Denver	Alabama	State Program	4	
TestAmerica Denver	Alaska	Alaska UST	10	UST-30
TestAmerica Denver	Arizona	State Program	9	AZ0713
TestAmerica Denver	Arkansas	State Program	6	88-0687
TestAmerica Denver	California	State Program	9	2513
TestAmerica Denver	Colorado	State Program	8	N/A
TestAmerica Denver	Connecticut	State Program	1	PH-0686
TestAmerica Denver	Florida	NELAC	4	E87667
TestAmerica Denver	Georgia	State Program	4	N/A
TestAmerica Denver	Idaho	State Program	10	CO00026
TestAmerica Denver	Illinois	NELAC	5	200017
TestAmerica Denver	Iowa	State Program	7	370
TestAmerica Denver	Louisiana	NELAC	6	30785
TestAmerica Denver	Maine	State Program	1	CO0002
TestAmerica Denver	Maryland	State Program	3	268
TestAmerica Denver	Minnesota	NELAC	5	8-999-405
TestAmerica Denver	Nevada	State Program	9	CO0026
TestAmerica Denver	New Hampshire	NELAC	1	205310
TestAmerica Denver	New Jersey	NELAC	2	CO004
TestAmerica Denver	New Mexico	State Program	6	N/A
TestAmerica Denver	New York	NELAC	2	11964
TestAmerica Denver	North Carolina	North Carolina DENR	4	358
TestAmerica Denver	North Dakota	State Program	8	R-034
TestAmerica Denver	Oklahoma	State Program	6	8614
TestAmerica Denver	Oregon	NELAC	10	CO200001
TestAmerica Denver	Pennsylvania	NELAC	3	68-00664
TestAmerica Denver	South Carolina	State Program	4	72002
TestAmerica Denver	Tennessee	State Program	4	TN02944
TestAmerica Denver	Texas	NELAC	6	T104704183-08-TX
TestAmerica Denver	Utah	NELAC	8	QUAN5
TestAmerica Denver	Washington	State Program	10	C1284
TestAmerica Denver	West Virginia	West Virginia DEP	3	354
TestAmerica Denver	Wisconsin	State Program	5	999615430
		· ·	· ·	
TestAmerica Seattle		USDA		P330-11-00222
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022
TestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP	0	L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025	0	L2236
TestAmerica Seattle	Louisiana	NELAC	6	05016
TestAmerica Seattle	Montana	MT DEQ UST	8	N/A
TestAmerica Seattle	Oregon	NELAC	10	WA100007

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

State Program

Washington

4

4

0

1

C553

Method Summary

Client: ARCADIS U.S., Inc. - Liberty Lake Project/Site: GP09BPNA.WA59.00000

TestAmerica Job ID: SUE0076

Method	Method Description	Protocol	Laboratory
EPA 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL SPK
8270C SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SEA
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH/VPH	Northwest - Volatile Pertroleum Hydrocarbons (GC)	NWTPH	TAL SEA
RSK-175	Dissolved Gases (GC)	RSK	TAL DEN
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
NWTPH/EPH	Northwest - Extractable Petroleum Hydrocarbons (GC)	NWTPH	TAL SEA
EPA 300.0	Anions by EPA Method 300.0		TAL SPK
SM 2320B	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

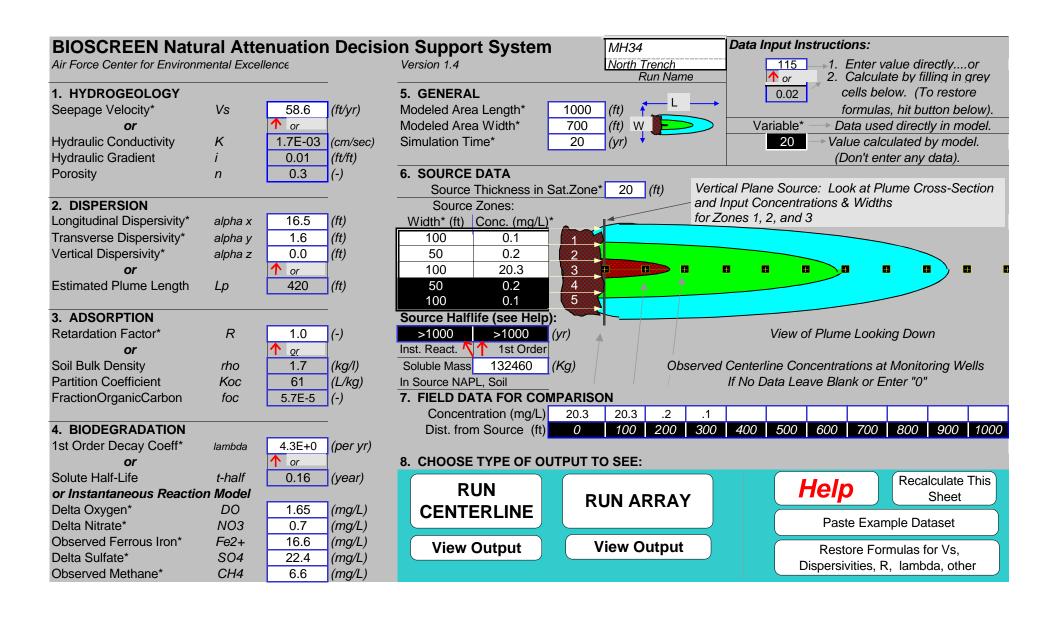
7

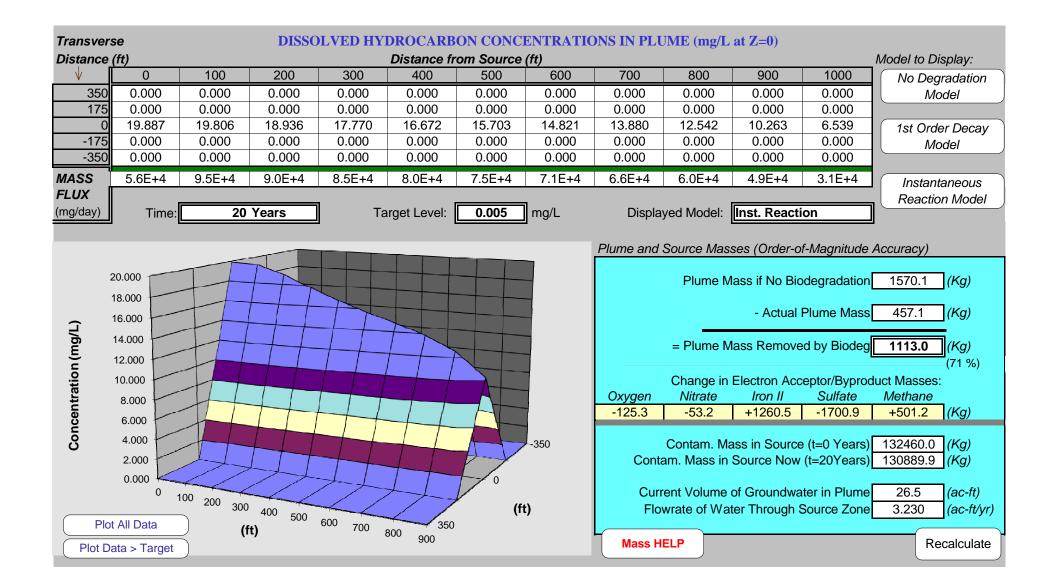
8

9

TA WO ID 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 Turnaround Requests less than standard may incur Rush Charges **^**1 FIRMACY MONDO TIME 120 DATE OF THE <u>-1</u> TURNAROUND REQUEST Work Order #: 016076 LOCATION/ COMMENTS Organic & Inorganic Analyses **分が** in Business Days * OTHER Specify: 3 # OF CONT. _ 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 MATRIX (W, S, O) 3 HUM PRINT NAME: ACANOLO **#4.**= CHAIN OF CUSTODY REPORT ARCADA-US RECEIVED BY: PRESERVATIVE DATE 5/12/2011 TIME: 1207 PONUMBER INVOICE TO: CMIDE IS DATE: TIME 487WW 6<u>80</u> ATWW FIRM: ARCKOR THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica** 5051 SAMPLING DATE/TIME PROJECT NUMBER: 6769 87A WAS9 2/11/2011 5/11/por Library Lake, Ut PHONE: (509) 535-7225 FAX: ADDRESS: 2310 N. Mork REPORT TO: Kenin Knesel SAMPLED BY: K. Knessek PROJECT NAME: MH-34 ACAD TO CLIENT SAMPLE IDENTIFICATION ADDITIONAL REMARKS: MW-B MW-RELEASED BY: RELEASED BY PRINT NAME: PRINT NAME: CLIENT:

ŢestAm	erica	Sp	okane
Sample	Rece	ipt	Form

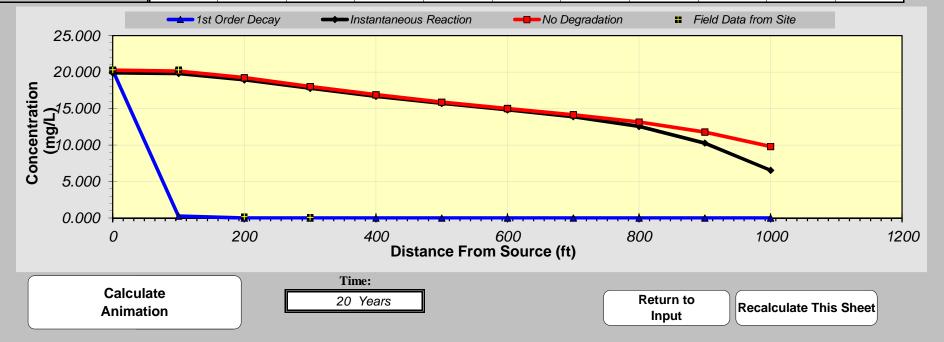

Work Order #: SUE0071 Client: Armolis				Project: MH-3H	
Date/Time Received: 5-12-11 12:0-7	By: RD				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Samples Delivered By: Shipping Service Courier Client	Other:_				
List Air Bill Number(s) or Attach a photocopy of the Air Bill:			•	-	
Receipt Phase	Yes	No	NA.	Comments	(and a
Were samples received in a cooler:	Χ				
Custody Seals are present and intact:		χ			
Are CoC documents present:	χ	Í			
Necessary signatures:	X				
Thermal Preservation Type: Blue Ice Gel Ice Real Ice	Dry ice]None [Other:	•	1.
Temperature by IR Gun: 34 °C Thermometer Serial #8150	00 (accepta	ance criteria	a 0-6 °C)		
	n 4hrs of co	lection [NA Oth	ner:	
Log-in Phase Date/Time: 5-12-11 18:40 By:	Yes	No	NA	Comments	
Are sample labels affixed and completed for each container	X		•		6. ; ;cm;
Samples containers were received intact:	X				
Do sample IDs match the CoC	X				a considerate
Appropriate sample containers were received for tests requested	メ				i ay ii
Are sample volumes adequate for tests requested	X			•	patent par mini di s
Appropriate preservatives were used for the tests requested	. *	•		• • • • • • • • • • • • • • • • • • • •	ege said
pH of inorganic samples checked and is within method specification	X				. 5%.
Are VOC samples free of bubbles >6mm (1/4" diameter)	X				1
Are dissolved parameters field filtered			X		- 1227 - 122
Do any samples need to be filtered or preserved by the lab		,			 / /
Does this project require quick turnaround analysis				•	era di Liberara State and
Are there any short hold time tests (see chart below)					10 gr 11 day 10 21
Are any samples within 2 days of or past expiration					100 Sam 2 19 1 17 -10 Mar 1
Was the CoC scanned					complete across across
Were there Non-conformance issues at login				•	in in early
If yes, was a CAR generated #			•		erga zerin egile ereni egile ereni


24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

ARCADIS

Appendix F

Bioscreen Outputs and Supporting Data



DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

Distance from Source (ft)

TYPE OF MODEL	0	100	200	300	400	500	600	700	800	900	1000
No Degradation	20.237	20.125	19.218	18.015	16.882	15.886	15.002	14.148	13.158	11.781	9.805
1st Order Decay	20.237	0.253	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Inst. Reaction	19.887	19.806	18.936	17.770	16.672	15.703	14.821	13.880	12.542	10.263	6.539
Field Data from Site	20.300	20.300	0.200	0.100							

