Bothell Paint and Decorating Remedial Investigation/Feasibility Study Revision No. 1

Prepared for

City of Bothell 9654 NE 182nd Street Bothell, WA 98011

Prepared by

Parametrix


411 108th Avenue NE, Suite 1800 Bellevue, WA 98004-5571 T. 425.458.6200 F. 425.458.6363 www.parametrix.com

CITATION

Parametrix. 2009. Bothell Paint and Decorating Remedial Investigation/Feasibility Study Revision No. 1. Prepared by Parametrix, Bellevue, Washington. December 2009.

CERTIFICATION

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.

Prepared by Sandra Matthews, LG, LHG

Checked by Brandon Ball, PE

Approved by Steve Fuller, LEG, PG

TABLE OF CONTENTS

1.	INT	RODUCTION	1-1
	1.1	PURPOSE /REGULATORY FRAMEWORK	1-1
	1.2	OVERVIEW OF RI/FS REPORT	1-2
2.	SITI	BACKGROUND	2-1
	2.1	SITE DESCRIPTION AND HISTORY	2-1
	2.2	PHYSICAL CHARACTERISTICS OF THE SITE	2-3
	,	2.2.1 Topography	2-3
	,	2.2.2 Geologic and Hydrogeologic Conditions	2-3
	,	2.2.3 Surface Water Hydrology	2-3
		2.2.4 Current Ecological Conditions	2-3
3.	REN	IEDIAL INVESTIGATION	3-1
	3.1	REMEDIAL INVESTIGATION ACTIVITIES	3-1
	,	3.1.1 Monitoring Well Installation and Sampling	3-1
	•	3.1.2 Push Probe Installation and Sampling	3-2
	•	3.1.3 Aquifer Testing	3-2
	•	3.1.4 Analytical/Physical Laboratory Testing	3-2
	3.2	NATURE AND EXTENT OF CONTAMINATION	3-2
		3.2.1 Soil	3-2
	•	3.2.2 Groundwater	3-4
	3.3	SUMMARY OF CHEMICALS OF POTENTIAL CONCERN	3-5
	3.4	CONCEPTUAL SITE MODEL	3-5
	,	3.4.1 Primary Sources of Contamination and Primary Release Mechanisms	3-5
	•	3.4.2 Secondary Sources and Release Mechanisms	3-5
		3.4.3 Pathways and Potential Receptors	3-5
	•	3.4.4 Fate and Transport	3-7
	3.5	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS	3-7
	3.6	ASSESSMENT OF RISK	3-8
	3.7	CLEANUP LEVELS SELECTION	3-8
	3.8	SUMMARY OF RESULTS	3-8
4.	FE <i>A</i>	SIBILITY STUDY	4-1
	4.1	REMEDIAL ACTION OBJECTIVES	4-1
	4.2	POINT OF COMPLIANCE	4-1
	4.3	REMEDIAL TECHNOLOGY SCREENING	
	4.4	RELEVANT TECHNOLOGY CATEGORIES	
	4.5	INITIAL SCREENING OF APPLICABLE TECHNOLOGIES	
		4.5.1 Screening Criteria	

TABLE OF CONTENTS (CONTINUED)

4.5.2	Screening of Applicable Technologies	4-2	
4.5.3			
4.6 REN	MEDIAL TECHNOLOGY DESCRIPTIONS	4-3	
4.6.1	Soil Remediation Technology—Chemical Oxidation	4-3	
4.6.2	Soil Remediation Technology—Electrokinetic Separation	4-4	
4.6.3	Soil Remediation Technology—Excavation and Off-Site Disposal	4-4	
4.6.4	Low Permeability Cap	4-5	
4.6.5	Groundwater Remediation Technology—Monitored Natural		
	Attenuation		
4.6.6	Groundwater Remediation Technology—Complexation	4-5	
4.6.7	Groundwater Remediation Technology—Adsorption/Absorption	4-6	
4.7 REN	MEDIAL ALTERNATIVE DEVELOPMENT	4-7	
4.7.1	Alternative 1—No Action	4-7	
4.7.2	Alternative 2—Chemical Oxidation, Electrokinetic Separation,		
	Low Permeability Cap and Complexation	4-7	
4.7.3	Alternative 3—Excavation, Off-Site Disposal, and Adsorption	4-9	
4.7.4	Alternative 4—Excavation, Off-Site Disposal, Low Permeability Cap, and Groundwater Extraction	4-10	
4.7.5	Alternative 5—Excavation, Off-Site Disposal, Low Permeability Cap, and Monitored Natural Attenuation	4-11	
4.8 THF	RESHOLD REQUIREMENTS		
4.8.1	Protection of Human Health and the Environment		
4.8.2	Compliance with Cleanup Standards		
4.8.3	Compliance with ARARs		
4.8.4	Provide for Compliance Monitoring		
4.8.5			
4.9 OTI	HER REQUIREMENTS		
4.9.1	Permanent Solutions		
4.9.2	Reasonable Restoration Time Frame		
4.9.3	Additional Performance Criteria		
	FERRED ALTERNATIVE		
RFFFRF	NCES	5-1	

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

- 1-1 Site Vicinity
- 1-2 Site Vicinity and Adjacent Properties
- 2-1 Site Plan
- 2-2 September 2009 Potentiometric Surface
- 2-3 November 2009 Potentiometric Surface
- 3-1 RI/FS Soil Results for Metals in Surface Soil
- 3-2 RI/RS Soil Results for Metals in Subsurface Soil
- 3-3 RI/FS Soil Results for TPH, cPAHs, SVOCs, and BTEX Compounds
- 3-4 Historical Soil Results
- 3-5 RI/FS Groundwater Results for Dissolved Metals
- 3-6 Conceptual Site Model
- 4-1 Remedial Alternative 2
- 4-2 Remedial Alternative 3
- 4-3 Remedial Alternative 4
- 4-4 Remedial Alternative 5

LIST OF TABLES

- 3-1 Summary of Soil Analytical Results
- 3-2 Summary of Groundwater Analytical Results
- 3-3 Summary of Historical Soil Analytical Results
- 3-4 Summary of Historical Groundwater Analytical Results
- 3-5 Potential Applicable or Relevant and Appropriate Requirements (ARARs)
- 4-1 Applicability Screening of Technologies for Soil
- 4-2 Applicability Screening of Technologies for Groundwater
- 4-3 Remedial Alternatives Estimated Costs
- 4-4 Remedial Alternative Permanent Solutions Criteria Summary
- 4-5 Cost Estimate for Alternative 2 Chemical Oxidation, Electokinetic Separation, Low Permeability Cap, and Complexation
- 4-6 Cost Estimate for Alternative 3 Excavation, Offsite Disposal, and Adsorption
- 4-7 Cost Estimate for Alternative 4 Excavation, Offsite Disposal, Low Permeability Cap, and Groundwater Extraction
- 4-8 Cost Estimate for Alternative 5 Excavation, Offsite Disposal, Low Permeability Cap, and Monitored Natural Attenuation

TABLE OF CONTENTS (CONTINUED)

APPENDICES

- A Bothell Downtown Subarea Plan (Figure 1.1)
- B Boring Logs
- C Analytical Data Validation and Laboratory Results
 - C1 Data Validation Memorandum
 - C2 Analytical Laboratory Reports
 - C3 Physical Laboratory Reports
 - C4 Historical Data Tables

ACRONYMS AND ABBREVIATIONS

ARAR applicable relevant and appropriate requirement

As arsenic

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

City of Bothell

COC contaminant of concern

COPC contaminant of potential concern

cPAH carcinogenic polyaromatic hydrocarbon

CSM conceptual site model

Ecology Washington State Department of Ecology
EPA U.S. Environmental Protection Agency

ESA environmental site assessment

Fe iron

ft/min feet per minute

GFH granular ferric hydroxide

gpm gallons per minute

HVOC halogenated volatile organic compound

HWA GeoSciences Inc

LUST leaking underground storage tank

 $\mu g/L$ microgram per liter

mg/kg milligrams per kilogram

Mn manganese

MRCTM Metals Remediation Compound

MTCA Model Toxics Control Act

NPDES National Pollutant Discharge Elimination System

PID photoionization detector

PVC polyvinyl chloride

RAO remedial action objective

RCRA Resource Conservation and Recovery Act
RI/FS Remedial Investigation/Feasibility Study

ROW right-of-way sf square feet

ACRONYMS AND ABBREVIATIONS (CONTINUED)

Site Bothell Paint and Decorating site

SR State Route

SVOC semivolatile organic compound

TCLP Toxicity Characteristic Leaching Procedure

TPH total petroleum hydrocarbons

USCS Unified Soil Classification System

UST underground storage tank

VOC volatile organic compound

WAC Washington Administrative Code

1. INTRODUCTION

This Remedial Investigation/Feasibility Study (RI/FS) is prepared for the Bothell Paint and Decorating site (Site) in Bothell, Washington (Figure 1-1). The RI/FS is being conducted under Agreed Order DE 6296, dated February 3, 2009, between the City of Bothell (City) and the Washington State Department of Ecology (Ecology). The purpose of the Agreed Order was to conduct an RI/FS and submit a cleanup action plan to address known contamination related to historical releases of hazardous substances.

The City currently owns the property. The 0.79-acre property consisting of two parcels is located on the south side of State Route (SR) 522, between SR 522 and 180th Street NE (Figure 1-2). Current property use is mixed commercial and retail. A portion of the property will accommodate the realignment of SR 522, scheduled for construction in 2010. Remnant portions of the property will be redeveloped as part of the City's overall Downtown Revitalization Plan. In general, cleanup approaches discussed in this document will address anticipated future property uses as envisioned in the Downtown Revitalization Plan. Figure 1.1 from the Bothell Downtown Subarea Plan is provided in Appendix A for reference. The figure shows proposed future land uses in the vicinity of the Site.

1.1 PURPOSE /REGULATORY FRAMEWORK

This RI/FS was completed per the Agreed Order and Washington Administrative Code (WAC) 173-340, Model Toxics Control Act (MTCA) (Ecology 2007). The purpose of the RI/FS was to evaluate the nature and extent of environmental contamination at the Site and to develop and evaluate cleanup action alternatives so that a cleanup action may be selected for the Site. MTCA requires an RI/FS to include cleanup action alternatives that protect human health and the environment by eliminating, reducing, or otherwise controlling risks posed through each exposure pathway and migration route. Each alternative may consist of one or more cleanup action components. Alternatives may include remediation levels to define when particular cleanup action components will be used. Each alternative shall be evaluated on the basis of the requirements stated in WAC 173-340-360:

- Protection of human health and the environment
- Compliance with cleanup standards
- Compliance with applicable state and federal laws
- Provision for compliance monitoring.

The selected cleanup action shall also use permanent solutions to the maximum extent practicable, provide for a reasonable restoration time frame, and consider public concerns. Cleanup standards under MTCA as defined in WAC 173-340-700(3) include:

- Cleanup levels for hazardous substances present at the Site
- The location where the cleanup levels must be met (point of compliance)
- Other regulatory requirements applicable to the Site.

The Site underwent a LUST removal in 1988. Groundwater assessment or monitoring was not performed after LUST removal by Northwest EnviroService, Inc (HWA 2008a). Neither groundwater assessment or monitoring was not performed after LUST removal.

1.2 OVERVIEW OF RI/FS REPORT

This report is divided into five chapters and includes:

- **Chapter 1: Introduction**—includes the purpose/regulatory framework for completing this report and an overview of the RI/FS report.
- Chapter 2: Site Background—describes Site information, including description and history, summary of historical investigations/remedial action, and physical characteristics (topography, geology/hydrogeology, surface water hydrology, and current ecological conditions).
- Chapter 3: Remedial Investigation—describes the nature and extent of contamination, the developed conceptual site model (CSM), applicable or relevant and appropriate requirement (ARAR) analysis results, an assessment of risk, selection of cleanup standards, and chapter summary.
- Chapter 4: Feasibility Study—discusses remedial action objectives (RAOs), the screening of remedial technologies, development of remedial alternatives, threshold requirements, a detailed analysis of remedial alternatives, and selection of a preferred remedial alternative.
- Chapter 5: References—provides completed citations for documents cited in this report.

2. SITE BACKGROUND

This chapter presents background information including a description of the Site and its history, a summary of previous investigation, and physical characteristics.

2.1 SITE DESCRIPTION AND HISTORY

The Paint and Decorating site is located on the south side of SR 522, between downtown Bothell and the Sammamish River (Figure 2-1) and is 0.79 acres. The property consists of two parcels: the Victory parcel (0.54 acre) and the Giannola parcel (0.25 acre). Historical operations on the Victory parcel included automobile repair and dealerships, retail paint and flooring, and sand blasting. Documented historical site use of the Giannola parcel is limited to residential usage and parking.

Victory Parcel

HWA GeoSciences Inc (HWA) completed a Phase I environmental site assessment (ESA) in April 2008 (HWA 2008a). According to historical information and interviews, the Site has been developed since 1914. A leaking underground storage tank (LUST) removal was conducted in 1988. The tank containing gasoline and Stoddard solvent (petroleum distillates) was found to have released product to soil and groundwater. A composite soil sample collected from the north and south sidewalls of the excavation contained 1,400 milligrams per kilogram (mg/kg) of gasoline-range petroleum hydrocarbons, above current Ecology cleanup levels. Soil over-excavation was not conducted at the time due to the proximity of structures and rockery adjacent to the west and north sides of the LUST excavation. Approximately 1,000 gallons of water and product were pumped from the excavation prior to backfilling. Neither a groundwater assessment nor monitoring was performed after LUST removal.

A sand blasting contractor operated on this parcel for approximately 40 years. According to tenant information, sand blast grit and soil staining reportedly related to compressor blowdown have been observed to the west and south of the tenant space now occupied by McVay Welding. Sand blasting grit was reportedly removed, but stained soils were not assessed or removed.

Historical information indicates that one of the buildings was used as a garage and body shop, and that petroleum companies were listed as lessees of the property in the 1920s and 1930s.

An agreement between King County and a former subject property owner dated 1963 allowed the import of fill onto the subject property. The source of this fill was not identified, although it may have been associated with dredging and channelization of the Sammamish River by King County.

The Phase II site investigation for the Victory parcel was conducted by HWA Geosciences in 2008 (HWA 2008d). Soil and groundwater samples were collected based on former activities on the parcel.

Soil samples from borings VB-6 and VB-7 northeast of the Affordable Flooring building were collected to assess the former LUST area. Diesel and oil-range hydrocarbons below MTCA Method A cleanup levels were detected in shallow soil. Volatile organic compounds (VOCs) below MTCA cleanup levels were detected in borings VB-6 and VB-7. The detected VOCs are likely associated with historical gasoline or Stoddard solvent used or released from the LUST.

Shallow soils in the southern portion of the property in the vicinity of former sand blasting activities (VB-8, VB-9, and VB-10) contained arsenic above MTCA Method A cleanup levels. These results likely indicate impacts from past sand blasting activities. Elevated metals concentrations are typically associated with sand blasting grit. Borings VB-3, VB-8, VB-9, and VB-10 contained petroleum hydrocarbons below the MTCA cleanup levels except VB-9. Oil-range petroleum hydrocarbons exceeding MTCA Method A cleanup levels were detected in boring VB-9 in samples collected at the southwest exterior corner of the McVay Welding building, at the location of a reported former compressor blowdown discharge pipe.

VB-8 contained cadmium exceeding Dangerous Waste criteria. A second sample collected at approximately 2 feet below ground surface (bgs) did not exceed Dangerous Waste screening criteria for cadmium though it did exceed MTCA cleanup levels.

Suspected fill soils in the center of the site (VB-1) contained arsenic above MTCA Method A cleanup levels. Soil samples collected from other locations at the subject property contained petroleum hydrocarbons, HVOCs, and metals, but at concentrations below MTCA cleanup levels.

Arsenic was detected in groundwater at concentrations exceeding MTCA cleanup levels at boring VB-3, located east of the former sand blasting tenant building. Low concentrations of HVOCs were detected in groundwater at the north end of the Victory property, possibly due to impacts to groundwater from historical UST and/or dry cleaner releases in the property vicinity. These concentrations were below MTCA cleanup levels and impacts appear to be limited. Low concentrations of HVOCs were detected in groundwater near the former LUST adjacent to the Affordable Flooring building. These concentrations were below MTCA cleanup levels and impacts appear to be limited. A deeper groundwater sample collected from one boring near the former LUST did not contain detectable concentrations of HVOCs.

Giannola Parcel

HWA completed a Phase I ESA at the subject property in March 2008 (HWA 2008b). According to historical information and interviews, the subject property has been developed since at least 1919, and use was originally residential. In the 1960s, the residence was demolished and the property has been used for parking since that time. An agreement between King County and a former subject property owner dated 1963 allowed the import of fill onto the subject property. The source of this fill may have been associated with dredging and channelization of the Sammamish River by King County.

HWA completed a Phase II site investigation in April 2008. Shallow fill soils in the southern portion of the property, in the vicinity of the former sand blasting activities on the Victory property, contained cadmium and lead exceeding Ecology MTCA Method A cleanup levels (HWA 2008c). A deeper soil sample was analyzed for metals and did not contain cadmium or lead above cleanup levels. The shallow fill soils also contained oil-range petroleum hydrocarbons and VOCs, but at concentrations below MTCA cleanup levels. Shallow fill soils on this parcel appear to be impacted by historical uses at the Victory parcel. Aromatic hydrocarbon (toluene and xylenes) concentrations below MTCA Method A cleanup levels were detected in groundwater at the north end of the subject property, possibly due to impacts to groundwater from historical UST releases in the property vicinity or an upgradient source.

Historical sampling locations for the above referenced investigations are shown on Figure 2-1.

A Phase II ESA was performed in the SR 522 right-of-way (ROW) by CDM during summer 2009 to identify contaminants within the ROW (CDM 2009). A total of 18 push-probe borings were drilled in the ROW, one (B-4) was located north of the Site. No halogenated volatile organic compounds (HVOCs) were detected in groundwater. The CDM report concluded that the Bothell dry cleaning facilities north of the Site do not appear to be a source of VOCs underlying SR 527 and SR 522 (CDM 2009).

Metals, in particular, arsenic, cadmium, and lead were detected in the soil around the former sand blasting building. Petroleum hydrocarbons were left in place during the removal of a LUST due to proximity to structures. Hydrocarbons adjacent to the compressor blowdown pipe were not addressed during the removal of some sand blasting grit present on the Site. VOCs were detected in the soil along the east side of the Site, at the northern Site boundary, and in the area of the former LUST.

Arsenic and lead were detected in groundwater at concentrations above the cleanup levels. Hydrocarbons and VOCs were detected in groundwater in the area where the two parcels meet.

2.2 PHYSICAL CHARACTERISTICS OF THE SITE

This section includes descriptions of the topography, geology, hydrogeology, surface water hydrology, and current ecological conditions.

2.2.1 Topography

The property slopes gently to the south/southeast with an elevation of approximately 30 feet above mean sea level (USGS 1981). A retaining wall is located in the west-central portion of the property. The surrounding land is generally flat or slopes down to the south and east.

2.2.2 Geologic and Hydrogeologic Conditions

Based on subsurface investigations conducted at nearby properties (HWA 2007), soils typically consist of silty sand fill over alluvial soil consisting of interbedded silt and peat. Interbedded alluvial sand and silt occurs below the peat. Much of the fill material is likely dredged spoils placed on the property from realignment of the Sammamish River in the 1960s (HWA 2008d). Boring logs from the various investigations are included in Appendix B.

Peat or silt beds with high organic content up to 2 feet thick are present within the alluvial soil, generally at depths greater than 10 feet bgs. These organic-rich beds appear to underlie most of the property but may not represent a contiguous layer. South of the Site the peat thickness increases to 4 to 8 feet.

Groundwater in monitoring wells on nearby properties was encountered between approximately 5.5 and 9.5 feet bgs. Based on water level surveys, groundwater flow is to the east-southeast, toward the Sammamish River. A site plan and groundwater potentiometric surface map for September 2009 groundwater levels is provided as Figure 2-2. A potentiometric surface map for November 2009 groundwater levels is provided as Figure 2-3. The nearest surface water body is the Sammamish River, which is located approximately 300 feet to the southeast. Groundwater typically occurs in soil borings at depths of approximately 5 to 16 feet bgs (HWA 2008c,d). During summer 2009 field activities, depth to water in monitoring wells ranged between 3.6 and 6.5 feet bgs. Groundwater flow was previously reported to vary from southeasterly to easterly based on the gauging data. The measured groundwater gradient ranged from 0.03536 to 0.0576.

The horizontal hydraulic conductivity was estimated using slug testing data collected during the September 2009 field activities (HWA 2009b). Based on the results of the slug test data analysis, the estimated hydraulic conductivity for the water-bearing zone ranged from 6.8 x 10⁻⁴ to 1.1 x 10⁻³ feet per minute (ft/min).

2.2.3 Surface Water Hydrology

The Sammamish River is located approximately 300 feet south of the property and separated from the property by NE 180th Street.

2.2.4 Current Ecological Conditions

Potential ecological receptors are defined as terrestrial animals (e.g., birds, mammals, and plants) that inhabit or use, or have the potential to inhabit or use, the terrestrial habitats of the Site. Birds such as the bald eagle and the American robin as well as various local bird species may visit the Site. A wide range of mammals including the short-tailed shrew, the raccoon, and the white-tailed deer could also frequent the Site.

3. REMEDIAL INVESTIGATION

The purpose of the RI is to collect and evaluate data necessary to adequately characterize the Site for the ultimate purpose of developing and evaluating cleanup action alternatives. The RI includes the results of the September 2009 investigation, including several historical investigations and characterization activities. This chapter presents the results of the RI including assessment of the nature and extent of contamination, determination of contaminants of potential concern, development of the CSM, identification of ARARs, and assessment of risk and associated cleanup standards.

3.1 REMEDIAL INVESTIGATION ACTIVITIES

The activities for this RI/FS study, detailed in the RI/FS work plan (HWA 2009) were selected to meet the requirements of the Agreed Order in accordance with the MTCA cleanup regulation (WAC 173-340), fill data gaps, complete a FS, and select a cleanup action as described in WAC 173-340-360 through 173-340-390. Activities performed during the RI comprised both surface and subsurface investigation and sampling and included the following:

- Installation of three new groundwater monitoring wells
- Placement of 26 soil push probes
- Collection of soil and groundwater samples from the wells and push probes
- Collection of groundwater samples from two existing monitoring wells
- Aquifer (slug) testing to determine aquifer hydraulic conductivity values
- Analytical and physical laboratory testing of selected soil and groundwater samples.

3.1.1 Monitoring Well Installation and Sampling

A total of three groundwater monitoring wells were installed during the RI. Two wells were installed on the Site (BPMW-1 and BPMW-3) and the third was completed off-Site south of NE 180th Street immediately south of BPMW-1 (BPMW-2). Locations of the wells are shown on Figure 3-1.

All borings for the well installation were advanced using a hollow-stem auger drill rig. Soil samples were collected from each of the borings at 5-foot intervals using a split-spoon sampler. Soil samples were visually examined and logged using the Unified Soil Classification System (USCS) and field screened using a photoionization detector (PID) for the presence of VOCs. Soil samples were collected from predetermined depths described in the work plan (HWA 2009a) or based on field screening. In general, samples included a shallow subsurface soil sample and a deeper sample collected at the groundwater table depth. All collected samples were placed into the appropriate containers and submitted for laboratory analysis.

At the desired depth, each well was constructed of 2-inch-diameter polyvinyl chloride (PVC) with a 0.010-inch slot screen spanning the bottom 5 to 10 feet. Wells were constructed using a filter sand pack to within 4 feet of the surface. Hydrated bentonite chips were used to create a seal to within 3 feet of the ground surface. The top 3 feet was filled with concrete and the well was secured with a locking cap and flush-mounted monument. Logs of each boring and well construction are provided in Appendix B. Appendix B also contains logs of historical borings and monitoring wells for reference. Following installation and construction, wells were allowed to sit for a minimum of 24 hours prior to development. All wells were fully developed using a surge and bail technique with a truck-mounted surge block and portable submersible pump until water quality parameters stabilized.

Following development, all newly installed wells were sampled using low-flow techniques and a down-hole, positive-displacement pump. The two existing wells (BC-10 and BC-11) were also sampled using the same method.

3.1.2 Push Probe Installation and Sampling

Twenty-four soil probes (BP-1 through BP-26, except BP-15 and BP-22) were advanced using a hydraulically operated probe rig to 15 and 20 feet bgs. Continuous samples were captured in acetate sleeves at 4-foot intervals and split at the surface to reveal the sample. Samples were logged and field screened in a similar fashion to borings for the monitoring well installation. Soil samples were collected from pre-determined depths submitted for laboratory analysis. A single groundwater sample was collected from probes BP-23 through BP-25 at the time of installation.

3.1.3 Aquifer Testing

In conjunction with the well installation and groundwater sampling, aquifer testing was conducted using a known volume (slug) to displace groundwater within each well. Recovery time and water levels were measured using pressure transducers. The results of the testing were used to determine an estimated hydraulic conductivity value for the aquifer at the well location. As reported in Section 2.2.2, the estimated hydraulic conductivity for the Site's shallow aquifer ranged from 6.8×10^{-4} to 1.1×10^{-3} ft/min. This indicates that the flow in the area is fast.

3.1.4 Analytical/Physical Laboratory Testing

Soil and groundwater samples collected during the RI were submitted to OnSite Environmental Inc. of Redmond, Washington for analytical testing. The samples were analyzed for contaminants of concern (COCs) including gasoline; diesel; lube oil; benzene, toluene, ethylbenzene, and total xylenes (BTEX); MTCA metals; and HVOCs. One probe boring sample was analyzed for semivolatile organic compounds (SVOCs) for possible future development. Analytical results for soil are summarized in Table 3-1 and groundwater results are summarized in Table 3-2. An analytical data validation memorandum, data tables, and analytical laboratory reports are provided in Appendix C.

One soil sample from the soil boring advanced for well BPMW-3 was submitted for physical testing including moisture content, particle size analysis, plasticity index, and hydraulic conductivity. The laboratory report for the physical tests is provided in Appendix C.

3.2 NATURE AND EXTENT OF CONTAMINATION

The objective of the RI sampling was to supplement the historical site data, address data gaps as identified in the RI/FS Work Plan (HWA 2009a), and provide a basis for selecting a cleanup action. The following sections describe contaminant nature and extent and are organized by medium and contaminant. Both current and historical analytical data were considered in evaluating the nature and extent of contamination. For clarity, summaries of pertinent RI/historical soil and groundwater analytical data are provided in Figures 3-1 through 3-5. Summaries of soil and groundwater analytical data from the HWA (2008c,d) Phase II ESA reports are presented in tabular form in Tables 3-3 and 3-4.

3.2.1 Soil

Historical site investigations have typically focused on the metals contamination from the sand blasting operation and petroleum contamination near the LUST removal site, as well as the compressor blowdown pipe south of the former sand blasting building. The 2008 Phase II ESAs by HWA also considered possible volatile contamination migration from upgradient sources. For evaluation of nature and extent of

contamination, the historical and current analytical data were compared to the following screening criteria:

- MTCA Method A Soil Cleanup Levels for Unrestricted Land Use (Table 740-1).
- MTCA Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals (Table 749-3). The lowest of three values (for plants, soil biota, and wildlife) was selected for the evaluation.
- Background metals concentrations per Natural Background Soil Metals Concentrations in Washington State (Ecology 1994) for the Puget Sound area.

Soil analytical results are compared to the screening criteria in Tables 3-1 and 3-3.

3.2.1.1 Metals

Sampling for metals was conducted during the 2008 HWA investigation and RI. In 2008, five locations were sampled and analyzed for Resource Conservation and Recovery Act (RCRA) metals including arsenic, barium, cadmium, chromium, lead, selenium, silver, and mercury. Samples collected during the RI were analyzed for MTCA metals, which include arsenic, cadmium, chromium, lead, and mercury.

Elevated metals concentrations were observed from the center to over the southeastern portion of the Site to a depth of 4 to 5 feet. Mercury concentrations generally did not exceed the MTCA Method A screening criteria. During the Phase II ESA (HWA 2008d), cadmium exceeded the Dangerous Waste criteria. During the RI sampling, cadmium was detected above the screening criteria in seven locations; however, none exceeded the Dangerous Waste criteria. Arsenic and lead concentrations exceeded the screening criteria for most of the samples analyzed and were particularly high in BP-8, BP-9, and BP-11. The borings that exceeded the ecological indicator concentration were located within the footprint of the future SR 522 alignment. Following the cleanup action during summer 2010, paving will eliminate this ecological contact receptor pathway.

3.2.1.2 Petroleum Hydrocarbons (including BTEX)

The LUST removal completed in 1988 removed a UST containing gasoline and Stoddard solvent (petroleum distillates) from the Site. Affected soil was left on the Site due to the proximity of the excavation to the building and a rock wall adjacent to the west and north sides of the UST excavation. A composite soil sample collected from the north and south sidewalls of the excavation contained 1,400 mg/kg of gasoline-range petroleum hydrocarbons, above MTCA Method A cleanup levels. Soil and groundwater were contaminated.

RI boring BP-23 was installed to investigate the southern extent of petroleum-contaminated soil. No hydrocarbons were detected in the soil or groundwater samples from that boring. During the HWA Phase II investigation (HWA 2008d), motor oil concentrations next to the blowdown compressor pipe at VB-9 were 1,800,000 mg/kg at 0.5 foot and 29,000 mg/kg at 1.5 feet bgs. During the RI sampling, motor oil was detected in the two soil samples analyzed from borings BP-20 and BP-21 adjacent to VB-9, at concentrations less than the screening criteria.

In RI boring BP-5, diesel range hydrocarbon concentrations were detected at less than the MTCA Method A cleanup criteria but greater than the ecological indicator. Benzene above the screening criteria was detected in BP-26. Motor oil hydrocarbons were detected in the shallow soil at the three new well locations (BPMW-1 through BPMW-3). All the soil samples (0.5 foot, 2 feet, and 5 feet) from BPMW-3 showed concentrations of motor oil hydrocarbons. The sample at 2 feet bgs exceeded the screening criteria for motor oil. Toluene and xylene were also detected in that sample at concentrations below the screening criteria.

3.2.1.3 HVOCs

No HVOCs were detected in Site soils during any of the investigations except where noted in association with hydrocarbons.

3.2.1.4 SVOCs

SVOCs were detected in the one soil sample analyzed at BP-26. Total carcinogenic polyaromatic hydrocarbons (cPAHs) were above the MTCA method A cleanup criteria. This sample was a shallow soil sample collected in area of potential future redevelopment outside of the new road alignment. Further investigation is required to determine the possible source of the cPAHs.

3.2.2 Groundwater

Groundwater at the Site has been investigated for metals, petroleum, and HVOCs. For evaluation purposes, both historical and current groundwater data were compared to the following screening criteria:

• MTCA Method A Cleanup Levels for Groundwater (Table 720-1).

Groundwater analytical results are compared to the screening criteria in Tables 3-2 and 3-4.

3.2.2.1 Metals

Historical data from 2008 compiled by HWA showed MTCA exceedances of total arsenic in the groundwater at VB-11, BC-10, and BC-11, and dissolved arsenic in the groundwater at VB-3 and VB-11. Elevated arsenic concentrations in alluvial aquifers of Snohomish and King Counties have been well documented as a regional issue (HWA 2008d), however, the concentrations of metals in surficial soil are likely contributing to elevated concentrations of arsenic above regional "background" concentrations. A total of six groundwater samples collected during the RI were analyzed for metals; arsenic was detected in all the samples at a concentration above the screening criterion except the samples from BPMW-2 and BC-11. Groundwater results for dissolved metals are provided in Figure 3-5.

3.2.2.2 Petroleum Hydrocarbons (including BTEX)

Petroleum hydrocarbons were detected in BC-10 in the motor oil range and GB-2 in the gasoline range. The BC-10 concentration was above the screening criteria and the GB-2 concentration was less than the screening criteria. BTEX was also detected in GB-1, GB-2, VB-2, VB-4, VB-5, and VB-6; all were detected at less than the screening criteria.

All groundwater samples collected during the RI were analyzed for petroleum hydrocarbons. One constituent (gasoline) was detected below the screening criterion in a single well (BPMW-2).

3.2.2.3 HVOCs

HVOCs were detected in the Phase II investigation in GB-2, VB-2, VB-4, VB-5, AND VB-6 at concentrations less than the screening criteria. No HVOCs were detected in any of the groundwater samples collected during the RI.

3.3 SUMMARY OF CHEMICALS OF POTENTIAL CONCERN

Based on the above evaluation, the chemicals of potential concern (COPCs) for soil at the Site include:

- Metals (arsenic, barium, cadmium, chromium, lead, silver, and mercury)
- Total petroleum hydrocarbons (diesel- and motor oil-range)
- Aromatic hydrocarbons (benzene).

For groundwater, COPCs include:

Metals (arsenic and lead).

3.4 CONCEPTUAL SITE MODEL

The CSM identifies the primary contaminant sources, release mechanisms, transport mechanisms, secondary contaminant sources, potential pathways, and exposure routes. Existing chemical data, Site characterization data, and identification of potential human and ecological receptors were used to develop the model presented in Figure 3-6. Further discussion of the CSM is presented below.

3.4.1 Primary Sources of Contamination and Primary Release Mechanisms

The primary contaminant source is the former sand blasting facility, including the compressor blowdown pipe and residual contamination from a LUST removal. The primary contaminants associated with the sand blasting business include metals and petroleum hydrocarbons.

Dust is the primary potential release mechanism for contaminants associated with metals in the surface soil. There are two sources of arsenic in Groundwater. The first is naturally occurring background concentrations. The second source is potential leaching of arsenic from sand blast grit and dust mixed with surface soil.

3.4.2 Secondary Sources and Release Mechanisms

When a released contaminant is retained in an environmental medium, such as soil, the medium functions as a secondary source for further chemical release. Secondary release mechanisms for contaminants potentially present at the Site include the following:

- Leaching from soil to groundwater
- Volatilization from soil and groundwater to air
- Downgradient discharge from groundwater to surface water.

The degree of contaminant leaching is limited by chemical properties of the contaminants, groundwater chemical properties, physical properties of the soil, characteristics of the groundwater flow system, and precipitation recharge. Volatilization is controlled by the concentration and chemical properties of the contaminants, physical properties of the soil, and soil gas characteristics. Contaminant discharge from groundwater to surface water is controlled limited by the groundwater flow path, and the concentrations present in groundwater at the point where it discharges into surface water.

3.4.3 Pathways and Potential Receptors

An exposure pathway is a mechanism by which receptors are assumed to contact COPCs. EPA (1989) describes a complete exposure pathway in terms of four components:

- A source and mechanism of chemical release (e.g., a release of COPCs to the subsurface)
- A retention or transport medium (e.g., groundwater)
- A receptor at a point of potential exposure to a contaminated medium (e.g., commercial worker in an on-Site building located above the groundwater plume)
- An exposure route at the exposure point (e.g., inhalation of vapors).

If any of these four components is not present, then a potential exposure pathway is considered incomplete and is not evaluated further in a risk assessment. If all four components are present, a pathway is considered complete.

Potential exposure routes for human and ecological receptors at the Site include the following:

- Dermal/Direct Contact. Exposure to chemicals in soil at the Site may occur through direct
 contact with soil. Direct contact is a potential exposure route for current and future on-Site
 workers, visitors or residence. Proposed zoning provides for the potential of residential housing
 and activity center. Burrowing or ground-dwelling mammals and invertebrates may be exposed
 directly to the soil contaminants.
- Inhalation. Particulates from soil can be transported by air and inhaled by potential on-Site and off-Site receptors. Emissions of volatile chemicals from soil and groundwater may also be transported as vapors by air. Terrestrial biota could also be exposed to chemicals volatilizing to outdoor air, but if this exposure actually occurs the duration of exposure is expected to be relatively short. Burrowing animals (e.g., shrew) may be exposed to volatile air contaminants in underground stagnant air while spending time within the burrow.
- **Ingestion.** Ingestion of chemicals in Site soil is a primary exposure route for human and ecological receptors. Uptake by plants is also a potential exposure route.

Potentially complete exposure pathways include the following:

- Current/future indoor retail worker:
 - > Inhalation of vapors from the subsurface (groundwater and soil) in indoor air
 - > Direct ingestion of contaminated groundwater used as drinking water.
- Current/future construction/utility worker:
 - > Incidental soil ingestion and dermal contact
 - > Inhalation of dust from the subsurface soil in outdoor air
 - > Inhalation of vapors or dermal contact with groundwater in a trench or excavation.
- Current/future Site visitor or residence (adult and child):
 - > Inhalation of dust from surface soil.
- Ecological receptors
 - Incidental soil ingestion and dermal contact
 - > Inhalation of vapors from the subsurface soil in outdoor air or in a burrow
 - > Inhalation of vapors from or dermal contact with groundwater in a burrow.

3.4.4 Fate and Transport

This section describes the general fate and transport processes for metals and petroleum that may be applicable to this site.

The primary contaminant transport mechanism is dispersion caused by seepage of groundwater through the Site's shallow aquifer. Leachable metals in the surface soils can be mobilized during infiltration of stormwater runoff through the unsaturated zone and affect groundwater in the upper aquifer. As the chemical equilibrium of the groundwater changes largely due to mixing with contaminated material—changes in dissolved gas concentrations, pH and redox potential, metals have the potential to come out of solution and adsorb onto the aquifer matrix. Arsenic is more mobile under reducing conditions.

Metals dissolved in groundwater are transported to surface water in the streams that originate as groundwater flow south of the Site. These metals can be transported downstream as dissolved components in surface water or can adsorb to sediments and particulate matter in the creek beds. Subsequent migration of metals in sediments can then occur under the influence of surface water flow.

Petroleum constituents desorb from contaminated soil particles into groundwater and are transported in the downgradient direction where they may resorb to clean soil particles. Analytical data suggest that petroleum constituents are transported only a short distance as concentrations of concern. Dissolved petroleum constituents are typically subject to biodegradation by naturally occurring aerobic soil bacteria. Low dissolved oxygen concentrations measured in monitoring wells during sampling suggest that anaerobic biodegradation is occurring (Table 3-3).

3.5 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Cleanup actions under MTCA (WAC 173-340-710) require the identification of all ARARs. These requirements are defined as:

"Applicable" requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a site.

"Relevant and appropriate" requirements means those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility siting laws that, while not "applicable" to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a site, address problems or situations sufficiently similar to those encountered at the site that their use is well suited to the particular site.

The potential ARARs for the Site include three types:

- Chemical-specific
- Location-specific
- Action-specific.

Chemical-specific ARARs are typically health- or risk-based values that when applied to site-specific conditions represent cleanup standards. Location-specific ARARs are related to the geographical position and/or physical condition of the site and may affect the type of remedial action selected for the site. Action-specific ARARs are usually technology-based or activity-based requirements or limitations on actions or conditions taken with respect to specific hazardous substances. The action-specific requirements do not determine the selected remedial alternative, but indicate how or to what level a selected alternative must perform.

Potential ARARs were identified for each medium of potential concern. These potential ARARs are shown in Table 3-5.

3.6 ASSESSMENT OF RISK

Exposure to contaminants could occur via the potentially complete exposure pathways described in Section 3.4.3 above. Based on the nature of the Site and the extent of contamination, current risks appear limited. The likely greatest potential risk to human receptors is inhalation of contaminant vapors and dust in the workplace. Note, however, that only one of the occupied buildings on the Site is underlain (partially) by contaminated soil and groundwater with the potential to cause vapor intrusion. The second most likely exposure risk is to construction workers during soil-disturbing activities. Ecological receptors have limited risk of exposure because the majority of the Site contains buildings or pavement. However, this risk increases under the future development scenario under which approximately the southern third of the Site may become park space (see Figure 1.1 in Appendix A).

These risks can be mitigated under a cleanup action that either removes the contaminants to concentrations that are protective to receptors or that places controls to prevent exposure. One example of a control is the placement of paving over contaminated soil to eliminate this direct contact exposure route. Such risk mitigation was a primary factor used in evaluating cleanup action alternatives under the FS (described in Chapter 4).

3.7 CLEANUP LEVELS SELECTION

Applicable cleanup levels were selected from WAC 173-340-720 through 173-340-760. A conservative approach was used to select standards that were most protective of human health and the environment for soil and groundwater. Selected standards by which media were evaluated against are listed below.

The following cleanup levels were selected for soil:

- MTCA Method A Soil Cleanup Levels for Unrestricted Land Use (WAC 173-340, Table 740-1).
- MTCA Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals (Table 749-3).
- Background metals concentrations per Natural Background Soil Metals Concentrations in Washington State (Ecology 1994) for the Puget Sound area.

Background concentrations were used to assess whether metals detected in soil above the MTCA criteria were possibly naturally occurring and not the result of past Site uses.

For groundwater, the following cleanup levels were selected:

• MTCA Method A Cleanup Levels for Groundwater (WAC 173-340, Table 720-1). However, the upgradient concentration of arsenic in groundwater is 0.01 mg/L which is elevated with respect to Method A (0.005 mg/L).

Background metals concentrations for the Puget Sound area based on peat content will also be considered.

3.8 SUMMARY OF RESULTS

RI results are summarized below to addresses data gaps identified in the RI/FS Work Plan:

• Elevated soil total petroleum hydrocarbon (TPH) concentrations have been documented in the soil of the former compressor blowdown area. Additional soil sampling data collected indicates the contaminated soil is limited in extent to within 30 feet of the pipe to 2 feet bgs.

- Elevated metals concentrations have been documented in soil in the former sand blasting area. Data were collected to delineate the extent of metal-contaminated soil. Contamination starts in the middle of the Site and extends into the ROW southeast of the property, and to a depth of 4 to 5 feet bgs.
- Elevated groundwater arsenic concentrations have been documented at the Site. New monitoring wells confirm arsenic in the groundwater is a Site-wide issue and may be contributed to by leaching from contaminated in soil in the former sand blast area. No other metals were detected.
- Site-specific data on the groundwater flow measurements were collected from a network of newly installed and existing monitoring wells in order to calculate direction and magnitude of hydraulic gradients, groundwater flow velocity, and seasonal variations in the groundwater flow system.
- Aquifer material is fill overlying interbedded peat and sand. Stratigraphy was recorded and physical testing of aquifer material completed to characterize aquifer materials.

4. FEASIBILITY STUDY

In this section, remediation alternatives are developed from remedial technologies to meet the goals of the cleanup in accordance with MTCA requirements and guidelines. The process of developing remediation alternatives begins with a broad overview of all types of remediation systems. A comprehensive list of relevant technologies was developed using professional knowledge and judgment, experience, and screening information prepared by the U.S. Environmental Protection Agency (EPA) for sites across the United States.

The list of technologies is given a cursory screening to eliminate any technologies that do not apply to the COCs or site-specific conditions. The technologies retained are then given a more comprehensive screening before being accepted or rejected. The accepted technologies are then combined to create a range of alternatives that represent various approaches to achieving the RAOs.

4.1 REMEDIAL ACTION OBJECTIVES

The following RAOs have been established for remediation alternatives:

- Achieve the MTCA Method A soil cleanup standards for heavy oil-range TPH, benzene, arsenic, cadmium, and lead.
- Reduce or eliminate human exposure through direct contact (incidental ingestion, skin contact, and inhalation of vapors) with contaminated soil and groundwater that exceed protective regulatory levels.
- Reduce or eliminate risks to ecological receptors from contaminated soil and groundwater.
- Use permanent solutions to the maximum extent practicable (which includes consideration of cost-effectiveness).

4.2 POINT OF COMPLIANCE

WAC 173-340-200 defines "Point of Compliance" as the point or points where cleanup levels established in accordance with WAC 173-340-720 through 173-340-760 shall be attained. The point of compliance for Site soil is the soils throughout the site from the ground surface to fifteen feet below the ground surface. The point of compliance for the Site groundwater is established throughout the site from the uppermost level of the saturated zone extending vertically to the lowest most depth which could potentially be affected by the site.

4.3 REMEDIAL TECHNOLOGY SCREENING

EPA technology screening guidance provides an assessment of general classes of technologies classified by media (soil and water) and type of treatment (in situ, ex situ, chemical, biological, etc.). The guidance is relatively comprehensive and recent, and was used to identify potential technologies for the Site in conjunction with professional knowledge, judgment, and Parametrix experience. The EPA guidance provides the information on an interactive Web site, which contains the latest version—EPA Technology Screening Matrix and Reference Guide, Version 4.0 (EPA 2001). This technology screening guidance can be accessed at http://www.frtr.gov/scrntools.htm.

4.4 RELEVANT TECHNOLOGY CATEGORIES

The EPA technology screening guidance offers seven general categories of treatment applicable to soil that include:

- In Situ Biological Treatment
- In Situ Physical/Chemical Treatment
- In Situ Thermal Treatment
- Ex Situ Biological Treatment
- Ex Situ Physical/Chemical Treatment
- Ex Situ Thermal Treatment
- Containment.

The EPA technology screening guidance offers five general categories of treatment applicable to groundwater that include:

- In Situ Biological Treatment
- In Situ Physical/Chemical Treatment
- Ex Situ Biological Treatment
- Ex Situ Physical/Chemical Treatment
- Containment

4.5 INITIAL SCREENING OF APPLICABLE TECHNOLOGIES

This section describes the results of an initial screening of the applicable technologies identified in this study.

4.5.1 Screening Criteria

The following are the Site-specific conditions that serve as screening criteria to determine relevant technologies:

- Media: Surface soil (0 4 feet); shallow groundwater
- Contaminants: Heavy oil-range TPH and metals
- Site Usage: Site is zoned commercial

4.5.2 Screening of Applicable Technologies

This section describes the initial screening of soil and groundwater remediation technologies.

4.5.2.1 Soil Remediation Technologies

For the seven relevant technology categories identified for soil, Table 4-1 provides a summary of the applicability screening of those technologies based on the specific circumstances at the Site. Technologies that are screened out because they are not applicable to the Site conditions and contaminants are lined out, and an explanation is provided for the reason for removal. Technologies that are retained for further evaluation are highlighted in bold.

4.5.2.2 Groundwater Remediation Technologies

For the five relevant technology categories identified for groundwater, Table 4-2 provides a summary of the applicability screening of those technologies based on the specific circumstances at the Site. Technologies that are screened out because they are not applicable to the Site conditions and contaminants are lined out, and an explanation is provided for the reason for removal. Technologies that are retained for further evaluation are highlighted in bold.

4.5.3 Technologies Retained for Further Screening

Treatment technologies retained for further screening are either ex situ or in situ. The in situ treatment technologies would be applied below ground, within the soil, and/or groundwater. All of the ex situ technologies would be applied above ground to either excavated soil or groundwater extracted through pumping. The technologies retained for further screening are as follows:

Soil Remediation Technologies:

- Chemical Oxidation (In Situ Physical/Chemical)
- Electrokinetic Separation (In Situ Physical/Chemical)
- Excavation and Off-Site Disposal (Containment)
- Low Permeability Cap (Containment)

Groundwater Remediation Technologies:

- Monitored Natural Attenuation
- Complexation (In Situ Physical/Chemical)
- Adsorption/Absorption (Ex Situ Physical/Chemical)

4.6 REMEDIAL TECHNOLOGY DESCRIPTIONS

Four remedial technologies for soil and three remedial technologies for groundwater pertinent to the Site are described in detail below.

4.6.1 Soil Remediation Technology—Chemical Oxidation

Chemical oxidation converts hazardous organic contaminants to non-hazardous or less toxic compounds that are more stable, less mobile, and/or inert. The oxidizing agents most commonly used are ozone, hydrogen peroxide, permanganate, proprietary formulations, and Fenton's Reagent (hydrogen peroxide mixed with an iron catalyst). Chemical oxidants have been able to cause the rapid and complete chemical destruction of many toxic organic chemicals. Other organics are amenable to partial degradation as an aid to subsequent bioremediation. In general the oxidants have been capable of achieving high treatment efficiencies (e.g., > 90 percent) for VOCs.

Both in situ and ex situ field applications have shown that matching the oxidant and delivery system to site conditions is the key to achieving successful implementation and performance goals. Given the relatively indiscriminate and rapid rate of reaction of the oxidants, the method of delivery and distribution throughout a subsurface region or mixing throughout an aboveground process is of paramount importance. Factors that may limit the applicability and effectiveness of chemical oxidation include the requirement for handling large quantities of hazardous oxidizing chemicals due to the oxidant demand of the target organic chemicals, the unproductive oxidant consumption of the material to be treated, and the potential for process-induced detrimental effects. Historically, ex situ field applications were used

because in situ delivery and mixing was difficult to accomplish and achieve an even distribution of oxidant within the soil matrix. Recently, in situ technologies have been developed that allow for adequate and repeatable mixing of many types of in situ soils to achieve results comparable to ex situ soil mixing.

4.6.2 Soil Remediation Technology—Electrokinetic Separation

The principle of electrokinetic remediation relies upon application of a low-intensity direct current through the soil between ceramic electrodes that are divided into a cathode array and an anode array. This process mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions, ammonium ions, and positively charged organic compounds move toward the cathode. Anions such as chloride, cyanide, fluoride, nitrate, and negatively charged organic compounds move toward the anode. The current creates an acid front at the anode and a base front at the cathode. This generation of acidic condition in situ may help to mobilize sorbed metal contaminants for transport to the collection system at the cathode.

Two primary mechanisms transport contaminants through the soil towards one or the other electrodes: electromigration and electroosmosis. In electromigration, charged particles are transported through the substrate. In contrast, electroosmosis is the movement of a liquid containing ions relative to a stationary charged surface. Of the two, electromigration is the main mechanism for the electrokinetic remediation process. The direction and rate of movement of an ionic species will depend on its charge, both in magnitude and polarity, as well as the magnitude of the electroosmosis-induced flow velocity. Non-ionic species, both inorganic and organic, will also be transported along with the electroosmosis-induced water flow.

Two approaches are taken during electrokinetic remediation: Enhanced Removal and Treatment without Removal.

- Enhanced Removal is achieved by electrokinetic transport of contaminants toward the polarized electrodes to concentrate the contaminants for subsequent removal and ex situ treatment. Removal of contaminants at the electrode may be accomplished by several means, among which are electroplating at the electrode; precipitation or co-precipitation at the electrode; pumping of water near the electrode; or complexing with ion exchange resins.
- Treatment without Removal is achieved by electro-osmotic transport of contaminants through treatment zones placed between electrodes. The polarity of the electrodes is reversed periodically, which reverses the direction of the contaminants back and forth through treatment zones. The frequency with which electrode polarity is reversed is determined by the rate of transport of contaminants through the soil. This approach can be used on in situ remediation of soils contaminated with organic species.

Electrokinetic separation is a new technology and has not been implemented on many full-scale remediation projects. The technology is primarily in the early stages of development and additional research is necessary to document feasibility for full-scale applications.

4.6.3 Soil Remediation Technology—Excavation and Off-Site Disposal

For this technology, contaminated material is excavated and transported to permitted off-site treatment and/or disposal facilities.

4.6.4 Low Permeability Cap

Caps can be used to:

- Minimize exposure to contaminated surface soil.
- Prevent vertical infiltration of water into contaminated soil.
- Contain contaminated soil while treatment is being applied.

Capping is a common form of remediation because it is generally less expensive than other technologies and effectively manages the human and ecological risks associated with a remediation site. When properly designed, capping can also be incorporated into redevelopment of contaminated property.

The most effective single-layer caps are composed of concrete or bituminous asphalt. These materials are used to form a surface barrier between the contaminated soil and the environment. An asphalt concrete cap would reduce leaching of contaminants from soil to the aquifer below.

Capping does not lessen toxicity or the volume of hazardous substances, but does mitigate mobility. Caps are most effective where most of the underlying contamination is above the water table. A cap, by itself, cannot prevent the horizontal flow of groundwater through the contaminated material, only the vertical entry of water into the contamination zone.

Institutional Control

Institutional controls provide protection from exposure through the use of non-engineered or legal controls that limit land or resource use, such as access controls and property restrictions. Although institutional controls provide no reduction of toxicity, volume, or mobility of contaminants, they can reduce or eliminate direct exposure pathways and resultant risk. Institutional controls are usually most effective when used in combination with other measures, such as source removal, containment and MNA.

4.6.5 Groundwater Remediation Technology—Monitored Natural Attenuation

Natural attenuation generally describes a range of physical and biological processes which, unaided, reduce the concentration, toxicity, or mobility of chemical contaminants. These processes take place whether or not other active cleanup measures are in place.

Groundwater monitoring is necessary to demonstrate that contaminant concentrations continue to decrease at a rate sufficient to ensure that they will not become a health threat or violate regulatory criteria at the point of compliance. Monitoring should be designed to verify that potentially toxic transformation products are not created at levels that are a threat to human health; that a plume is not expanding; that there are no further releases that could affect the remedy; and that there are no changes in hydrogeological, geochemical, or microbiological parameters that might reduce the effectiveness of natural attenuation. Natural attenuation is not appropriate where imminent site risks are present.

4.6.6 Groundwater Remediation Technology—Complexation

Metals Remediation Compound (MRCTM) is a proprietary compound produced by Regenesis. MRCTM directly affects geochemical processes to remove metals from groundwater quickly, effectively, and at a relatively low cost.

MRCTM is a non-toxic formulation that, upon injection into the contaminated subsurface, removes dissolved metals from groundwater under reducing conditions.

The active compound in MRCTM is a benign organosulfur compound that is environmentally safe. Once MRCTM becomes hydrated and subject to microbial biodegradation, it slowly releases the organosulfur

compound. Upon contact with metal ions, the organosulfur compound irreversibly reacts to produce a metal-organosulfur complex (complexation). This metal-organosulfur complex sorbs strongly to soil and is immobile in the subsurface. Over time, the immobilized metals may be incorporated into the soil matrix as sulfide solids. The immobilized metals are stable under low redox potential and may be stable under oxidizing conditions.

Based on vendor documentation and bench-scale testing, MRCTM is applicable to treat arsenic within the groundwater; however, our understanding of the chemical processes involved with complexation of arsenic would preclude the use of MRCTM under reducing conditions. Full-scale implementation of MRCTM has only been used to remediate hexavalent chromium.

4.6.7 Groundwater Remediation Technology—Adsorption/Absorption

Adsorption mechanisms are generally categorized as either physical adsorption, chemisorption, or electrostatic adsorption. Weak molecular forces, such as Van der Waals forces, provide the driving force for physical adsorption, while a chemical reaction forms a chemical bond between the compound and the surface of the solid in chemisorption. Electrostatic adsorption involves the adsorption of ions through Coulombic forces.

The most common adsorbents for the removal of arsenic include activated alumina, granular ferric hydroxide, iron removal processes, and synthetic resins.

Activated Alumina

Activated alumina is a filter media made by treating aluminum ore so that it becomes porous and highly adsorptive. Activated alumina will remove a variety of contaminants, including excessive fluoride, arsenic, and selenium. The medium requires influent water pH adjustment and periodic cleaning with an appropriate regenerant such as alum or acid in order to remain effective.

Granular Ferric Hydroxide

Granular ferric hydroxide (GFH) is a filter media whose main application is the removal of the reduced form of arsenic (As III) and the dominant, oxidized form of arsenic (As V). Several commercial vendors currently sell GFH. GFH is produced from a ferric chloride solution by neutralization and precipitation with sodium hydroxide. Following precipitation, the ferric hydroxide precipitate is centrifuged and then granulated. Because no drying procedure is included in its preparation, all the pores of the GFH are completely filled with water. This saturation leads to a high density of available adsorption sites and a high adsorption capacity. GFH is proven to reduce both As(III) and As(V) to levels less than 5 micrograms per liter (μ g/L) in drinking water; however, GFH is less effective on As(III). GFH operates as a fixed bed adsorber, functioning similarly to conventional filters with a downward water flow. GFH media life is affected by:

- Concentration and species of arsenic in the influent. GFH is less effective for removing As(III).
- Concentration of interfering chemical components including silica, phosphorous-based compounds, nitrates, sulfates, and trace metals such as vanadium.
- Water pH. Optimal arsenic adsorption to GFH occurs with a water pH between 6 and 8.

A GFH adsorptive media treatment approach is now being used extensively in water systems across the United States to provide arsenic removal to $10 \mu g/L$ in order to meet the new EPA arsenic regulation under the federal Safe Drinking Water Act. The GFH treatment approach has been identified by the EPA (according to the 2003 EPA Arsenic Treatment Technology Evaluation Handbook for Small Systems) as one of the primary iron-based adsorbent media treatment methods to remove arsenic from drinking water supplies. Because of the wide-spread use of the media, its ability to treat both As(III) and As(V) species,

and the lack of water pretreatment necessary, the GFH media was chosen over the other media noted earlier that include activated alumina, iron removal processes, and synthetic resins.

Iron Removal Processes

Iron and manganese can be removed from source water by several technologies (EPA 2006). The traditional removal method for both elements involves a two-step process: (1) oxidation of the soluble iron (Fe) and manganese (Mn) forms to the common insoluble forms, and (2) filtration of these formed precipitates. Arsenic in source waters can be removed by taking advantage of the arsenic adsorptive capacity of natural iron particles formed following the oxidation of Fe(II) to Fe(III). Arsenic removal is achieved through two primary mechanisms: adsorption, which involves the attachment of arsenic to the surface of Fe(III) particles; and coprecipitation, which involves the entrapment of arsenic within growing Fe(III) particles by inclusion, occlusion, or adsorption. Iron removal processes also can act as effective arsenic removal processes; however, the capacity of a given iron removal process to remove arsenic depends largely on the amount of arsenic and natural iron in the source water, water chemistry, operating considerations, and the sequence of treatment processes.

Several variations on traditional iron removal oxidation/filtration technology for groundwater exist; the basic process includes oxidation, contact time (optional), and filtration. To achieve arsenic removal by iron removal, the use of a strong chemical oxidant is required. The oxidation step is usually followed by detention (contact time) and filtration. Filtration options consist of sand (only), anthracite and sand (dual media), manganese greensand, manganese dioxide, and various synthetic filtration media. The manganese greensand and manganese dioxide media are special media that remove iron and manganese by a combination of oxidation, adsorption, and filtration all within the media itself.

Synthetic Ion Exchange Resins

Synthetic ion exchange resins are typically more expensive than other adsorption technologies, but can be designed to achieve higher degrees of selectivity and adsorption capacity for certain compounds. Resins are typically regenerated using acids, bases, or organic solvents, instead of thermal methods, so they are better suited for thermally unstable compounds such as explosives, and are resistant to deactivation due to the adsorption of dissolved solids.

4.7 REMEDIAL ALTERNATIVE DEVELOPMENT

Considering the nature and extent of contamination, MTCA requirements for selection of cleanup actions (WAC 173-340-360) and the remediation technologies retained after screening, the following remediation alternatives have been assembled for the soil and groundwater contamination present at the Site:

4.7.1 Alternative 1—No Action

The No Action Alternative is retained throughout the alternative development and analysis process as a baseline for comparison to other alternatives. The No Action Alternative consists of allowing the Site to remain in its present condition, with no measures beyond the planned construction of the SR 522 realignment to reduce or monitor soil and groundwater contamination.

4.7.2 Alternative 2—Chemical Oxidation, Electrokinetic Separation, Low Permeability Cap and Complexation

Alternative 2, involving chemical oxidation, electrokinetic separation, low permeability cap, and complexation, would consist of the following:

• Chemical oxidation would be used within the soil around monitoring well BPMW-3 at a depth of approximately three feet and an area with a radius of approximately 30 feet from the well up to

the property line to remediate heavy oil-range TPH. BPMW-3 is located adjacent to the northern property line and additional contamination may be present underneath the existing roadway.

- Chemical oxidation would be used within the soil around historical boring VB-9 at a depth of approximately four feet and an area with a radius of approximately 25 feet from the boring to remediate heavy oil-range TPH.
- Electrokinetic separation would be used within the soil outside the SR 522 realignment footprint to a depth of approximately four feet and an area of approximately 1,200 square feet (sf) to remediate arsenic, cadmium, and lead.
- A low permeability cap (i.e., realignment of SR 522) with institutional controls would limit exposure to the majority of the metals-contaminated soil.
- Complexation would be used from a depth of five feet to 15 feet bgs to remediate arsenic in groundwater. A grid would be placed downgradient of each well that contains groundwater above cleanup levels.

RegenOxTM by Regenesis is the product used as the basis for Alternative 2 for the remediation of the organic soil contamination. RegenOxTM uses a solid alkaline oxidant built around a sodium percarbonate complex, which is activated using a multi-part catalytic formula to maximize performance. The product is delivered as two parts that are combined and mixed into the subsurface using specialized mixing equipment. Once in contact with the soil, the combined product produces an effective oxidation reaction comparable to that of Fenton's Reagent yet without a violent exothermic hazard.

Electrokinetic separation for the metals soil contamination would consist of installing specialized monitoring wells on a grid with a spacing of approximately five feet. The monitoring wells would include either an anode or cathode and liquid removal assembly to extract the concentrated metals from the subsurface for ex situ treatment and disposal. The fluid within the liquid removal assembly would be recirculated through an ion exchange media for the removal of the metals.

MRCTM, also by Regenesis, is the product used as the basis for Alternative 2 for the remediation of the metals groundwater contamination. The product is also delivered as two parts that are combined and injected into the subsurface via injection wells organized in a grid pattern. The grids would be placed downgradient of any wells with groundwater contamination above cleanup levels and would be spaced approximately 10 feet apart.

Bench-scale treatability and pilot tests would be conducted to help refine the full-scale treatment approach for Alternative 2. Results of the treatability and pilot tests would be used to refine the full-scale treatment approach for both contaminated soil and groundwater.

Full-scale implementation of Alternative 2 would consist of a specialized soil mixer attached to an excavator to mix the RegenOxTM with the contaminated soil to a depth of three to four feet. The areas to be treated with RegenOxTM (see Figure 4-1) total approximately 3,400 sf. The areas would be mixed or tilled with the soil mixer while spraying the RegenOxTM in a liquid form at a rate of approximately 11 pounds per cubic yard. Full-scale implementation of the groundwater technology would consist of a grid of injection wells installed with a direct-push probe rig to a depth of approximately 15 feet for injection of the MRCTM. A total of 22 injection wells would be installed downgradient of six wells that show arsenic groundwater concentrations above cleanup levels. MRCTM would be injected at a rate of approximately 80 pounds per well. It is assumed a total of two treatments would be necessary to reduce soil organic and groundwater metals concentrations below regulatory levels. A total of 87 specialized monitoring wells would be installed to a depth of approximately four feet with a direct-push probe rig for implementation of the electrokinetic separation in the southeast portion of the Site. Anodes, cathodes, and associated liquid removal assemblies would be installed in the wells. The liquid removal assemblies

would be connected to a small treatment plant with a footprint of approximately 600 sf. The treatment plant would contain three ion exchange media vessels in series with associated piping, monitoring instrumentation (differential pressure gauges, flow meters), and manually operated valves. The ion exchange media was chosen because it is the only single media that can remove arsenic, cadmium, and lead from a waste stream. The treated liquid would be recirculated back into the liquid removal assemblies to allow the removal of additional metals from the subsurface.

Confirmation soil sampling would take place on the sidewalls and bottom of the excavations. An estimated twelve confirmation soil samples would be collected.

The planned realignment of SR 522 would be maintained directly over the untreated soil contamination in order to eliminate exposure pathways associated with surface and subsurface soil (see Figure 4-1). The planned roadway construction consists of a minimum of four inches of asphaltic concrete paving on top of a minimum of 12 inches of engineered subbase. Institutional controls would be put in place to provide protection from exposure through the use of legal controls that limit access and exposure to the contaminated soil in the case of excavation in the area. The necessity for specific institutional controls would be evaluated during remedial design.

Groundwater monitoring would be conducted for four quarters after realignment of the roadway is complete to verify the contaminated groundwater in the area has been remediated. In order to adequately monitor the area, five downgradient wells would be installed and seven wells would be monitored for four successive quarters.

4.7.3 Alternative 3—Excavation, Off-Site Disposal, and Adsorption

Alternative 3, involving excavation, off-site disposal, and adsorption, would consist of the following:

- Excavation of the soil around monitoring well BPMW-3 at a depth of approximately three feet and an area with a radius of approximately 30 feet from the well up to the property line to remove heavy oil-range TPH. BPMW-3 is located adjacent to the northern property line and additional contamination may be present underneath the existing roadway.
- Excavation of the soil to a depth of approximately four feet and an area of approximately 10,800 sf to remove heavy oil-range TPH, arsenic, cadmium, and lead in the southeastern portion of the Site.
- Installation of a pump and treat system to remove contaminated groundwater and also remove the arsenic from the groundwater ex situ via filter vessels containing GFH.

Approximately 1,900 cubic yards or 3,000 tons of contaminated soil would be excavated with heavy equipment (see Figure 4-2). The contaminated soil would be trucked to the Allied Waste Third and Lander Recycling and Transfer Station. The contaminated soil would then be transported to the Roosevelt Regional Landfill in Klickitat County for final disposal. Confirmation soil sampling would take place on the sidewalls and bottom of the excavations. An estimated 23 confirmation soil samples would be collected. The excavated areas would then be backfilled with clean material.

A bench-scale treatability test would be conducted to help refine the full-scale groundwater treatment approach for Alternative 3. Results of the treatability test would also be used to determine if a pilot test is required before full-scale treatment is completed.

A total of four extraction wells would be installed at the Site (see Figure 4-2). The extraction wells would be constructed of four-inch-diameter PVC and would be installed to a depth of approximately 15 feet. Submersible pumps would be installed to extract the groundwater at a rate of approximately 12 gallons per minute. A radius of influence for each well is assumed to be approximately 50 feet. The extraction wells would be piped to a building containing the GFH treatment system.

The GFH treatment system would be set up in a simple configuration in which arsenic-contaminated water passes through a GFH-packed media bed. Typically, a GFH-based treatment system consists of a lead/lag pressure filter configuration. Contaminated water is pumped under pressure into the lead column and then through a lag-positioned column. The lag-positioned media column provides further polishing treatment for arsenic while protecting from breakthrough conditions that will gradually start to occur as the media adsorption sites are occupied. A backwash system is also typically necessary to periodically remove accumulated solids from the filter beds.

Sizing for GFH was based on removing a maximum influent arsenic concentration of 50 μ g/L to less than 4 μ g/L at a flow rate of 50 gallons per minute (gpm). Based on Table 6 of the King County Groundwater Protection Program, Ambient Groundwater Monitoring 2001 – 2004 Results report dated March 2005, the average background concentration of arsenic within the Redmond-Bear Creek Valley Sites is 3.9 μ g/L. The main GFH media equipment consists of two steel pressure tanks holding GFH media with associated piping, monitoring instrumentation (differential pressure gauges, flow meters), and manually operated valves. The skid approximate area footprint is 8 feet by 12 feet. Each media tank with associated piping is approximately 8.5 feet high. The total footprint area required for GFH treatment is approximately 1,000 sf. Two full skid units are assumed to be necessary to provide backup capacity during servicing, repairs, and maintenance of the system.

The effluent of the treatment system would discharge to a storm drain located to the south of the Site that would discharge to the Sammamish River. The discharge would be authorized under the existing City of Bothell Phase II Western Washington Municipal Stormwater Permit. The backwash water would be discharged to the sanitary sewer under a wastewater discharge permit.

Spent granular ferric oxide media has been determined to pass the federal Toxicity Characteristic Leaching Procedure (TCLP) requirements. Spent media from the Site would need to be tested for arsenic leachability and potentially other toxicity characteristics before a waste designation could be made; however, it has been assumed that depleted GFH media would be designated as "non-hazardous waste."

After excavation, backfill, and installation of the groundwater pump and treat system, the planned realignment of SR 522 would be constructed over the excavated area. The roadway construction would consist of a minimum of four inches of asphaltic concrete paving on top of a minimum of 12 inches of engineered subbase. Institutional controls would be put in place to provide protection from exposure through the use of legal controls that limit access and exposure to the contaminated groundwater in the case of exposure in the area. The necessity for specific institutional controls would be evaluated during remedial design. Groundwater monitoring would be conducted for the life of the groundwater pump and treat system (i.e., 10 years) to verify the groundwater in the area has been remediated. In order to adequately monitor the area, five downgradient wells would be installed and a total of seven wells would be monitored annually for an assumed 10 years. A remediation time frame of 10 years was assumed as a way to compare each of the applicable alternatives; however, the remediation time frame could vary greatly based on various parameters including groundwater extraction rate, actual arsenic concentrations and speciation, subsurface lithology, groundwater flow, and background arsenic concentration.

4.7.4 Alternative 4—Excavation, Off-Site Disposal, Low Permeability Cap, and Groundwater Extraction

Alternative 4, involving excavation, off-site disposal, groundwater extraction, and low permeability cap, would consist of the following:

• Excavation of the soil around monitoring well BPMW-3 at a depth of approximately three feet and an area with a radius of approximately 30 feet from the well up to the property line to remove heavy oil-range TPH. BPMW-3 is located adjacent to the northern property line and additional contamination may be present underneath the existing roadway.

- Excavation of the soil to a depth of approximately four feet and an area of approximately 2,200 sf to remove arsenic, cadmium, and lead in the southeastern portion of the site. A low permeability cap (i.e., realignment of SR 522) with institutional controls would limit exposure to the majority of the contaminated soil.
- Installation of a pump and treat system to remove contaminated groundwater and discharge the untreated groundwater to the sanitary sewer.

Approximately 330 cubic yards or 530 tons of contaminated soil would be excavated with heavy equipment (see Figure 4-3). The contaminated soil would be trucked to the Allied Waste Third and Lander Recycling and Transfer Station. The contaminated soil would then be transported to the Roosevelt Regional Landfill in Klickitat County for final disposal. Confirmation soil sampling would take place on the sidewalls and bottom of the excavations. An estimated eight confirmation soil samples would be collected. The excavated areas would then be backfilled with clean material.

A total of four extraction wells would be installed at the Site (see Figure 4-3). The extraction wells would be constructed of four-inch-diameter PVC and would be installed to a depth of approximately 15 feet. Submersible pumps would be installed to extract the groundwater at a rate of approximately 12 gallons per minute. A radius of influence for each well is assumed to be approximately 50 feet. The extraction wells would discharge to the sanitary sewer located to the south of the Site that would discharge to the King County wastewater treatment plant. Discussions with the King County wastewater treatment plant operator have determined the discharge can contain up to $1,000 \,\mu\text{g/L}$ of arsenic.

After excavation, backfill, and installation of the groundwater extraction system, the planned realignment of SR 522 would be constructed over the excavated area. The roadway construction would consist of a minimum of four inches of asphaltic concrete paving on top of a minimum of 12 inches of engineered subbase. Institutional controls would be put in place to provide protection from exposure through the use of legal controls that limit access and exposure to the contaminated groundwater in the case of exposure in the area. The necessity for specific institutional controls would be evaluated during remedial design. Groundwater monitoring would be conducted for the life of the groundwater extraction system to verify the groundwater in the area has been remediated. In order to adequately monitor the area, five downgradient wells would be installed and a total of seven wells would be monitored annually for an assumed 10 years. A remediation time frame of 10 years was assumed as a way to compare each of the applicable alternatives; however, the remediation time frame could vary greatly based on a variety of parameters including groundwater extraction rate, actual arsenic concentrations and speciation, subsurface lithology, groundwater flow, and background arsenic concentration.

4.7.5 Alternative 5—Excavation, Off-Site Disposal, Low Permeability Cap, and Monitored Natural Attenuation

Alternative 5, involving excavation, off-site disposal, low permeability cap, and monitored natural attenuation, would consist of the following:

- Excavation of the soil around monitoring well BPMW-3 at a depth of approximately three feet and an area with a radius of approximately 30 feet from the well up to the property line to remove heavy oil-range TPH. BPMW-3 is located adjacent to the northern property line and additional contamination may be present underneath the existing roadway.
- Excavation of the soil to a depth of approximately four feet and an area of approximately 2,200 sf to remove arsenic, cadmium, and lead in the southeastern portion of the Site. A low permeability cap (i.e., realignment of SR 522) with institutional controls would limit exposure to the majority of the contaminated soil.

• Active groundwater remediation is not considered for Alternative 5. Natural attenuation via physical dilution and dispersion would be the primary mechanism for achieving the RAOs at the point of compliance.

Approximately 330 cubic yards or 530 tons of contaminated soil would be excavated with heavy equipment (see Figure 4-4). The contaminated soil would be trucked to the Allied Waste Third and Lander Recycling and Transfer Station. The contaminated soil would then be transported to the Roosevelt Regional Landfill in Klickitat County for final disposal. Confirmation soil sampling would take place on the sidewalls and bottom of the excavations. An estimated eight confirmation soil samples would be collected. The excavated areas would then be backfilled with clean material.

After excavation and backfill, the planned realignment of SR 522 would be constructed over the excavated area. The roadway construction would consist of a minimum of four inches of asphaltic concrete paving on top of a minimum of 12 inches of engineered subbase. Institutional controls would be put in place to provide protection from exposure through the use of legal controls that limit access and exposure to the contaminated groundwater in the case of exposure in the area. The necessity for specific institutional controls would be evaluated during remedial design. Groundwater monitoring would be conducted for approximately 10 years to ensure arsenic levels in groundwater do not exceed cleanup standards at the point of compliance. In order to adequately monitor the area, five downgradient wells would be installed and a total of seven wells would be monitored annually for an assumed 10 years. A remediation time frame of 10 years was assumed as a way to compare each of the applicable alternatives; however, the remediation time frame could vary greatly based on various parameters including actual arsenic concentrations and speciation, subsurface lithology, groundwater flow, and background arsenic concentration.

4.8 THRESHOLD REQUIREMENTS

MTCA established minimum requirements and procedures for selecting cleanup actions in WAC 173-340-360. MTCA requires that all cleanup actions meet the threshold requirements that are part of the minimum requirements. Any alternatives that do not meet the threshold requirements are dropped from further consideration. This section uses the threshold requirement to further screen the initial list of four alternatives developed. Under MTCA, remediation alternatives must meet the following threshold requirements as defined in WAC 173-340-360(2)(a):

- Protection of human health and the environment
- Compliance with cleanup standards
- Compliance with ARARs
- Provision for compliance monitoring

Each alternative is evaluated individually against the threshold criteria in the following sections. Alternatives that do not meet the threshold requirements are not carried forward to the evaluation of other requirements as stated in WAC 173-340-360(2)(b).

4.8.1 Protection of Human Health and the Environment

As a threshold criterion, protection of human health and the environment addresses whether a remediation alternative would result in sufficiently low residual risk to human and ecological receptors after completion of the alternative.

Alternative 1 would not be protective of human health and the environment because the contaminated soil and groundwater would not be remediated. Alternative 1 would slightly reduce the exposures to human

health and the environment because the planned realignment of SR 522 would be maintained over a majority of the soil contamination.

Alternative 2 would be protective of human health and the environment by treating the COCs within the soil and groundwater by either removing mass or altering the COCs to less toxic compounds. Alternative 2 would be slightly less protective because electrokinetic separation and complexation are unproven technologies for the COCs in full-scale operations and residual concentrations of COCs may remain in place after treatment. Residual concentrations of the COCs beneath the planned realignment of SR 522 would remain above regulatory levels; however, exposure and associated risk would be limited or negated because of the low permeability cap and implementation of institutional controls should future excavation in the area of residual contamination be completed.

Alternative 3 would provide the highest level of protection to human health and the environment by removing all the soil contamination above regulatory standards via excavation and removing the arsenic from groundwater via the pump and treat system. The contamination would be removed from the Site and remaining concentrations would be below regulatory limits with minimal chance of residual concentrations of COCs remaining.

Alternative 4 would be protective of human health and the environment by removing some soil contamination via excavation and limiting access to the remaining soil contamination by a low permeability cap. The contaminated groundwater would be removed from the site; however, treatment would occur off-site at the King County wastewater treatment plant. Alternative 4 would be slightly less protective because residual concentrations of the COCs beneath the planned realignment of SR 522 would remain above regulatory levels; however, exposure and associated risk would be limited or negated because of the low permeability cap and implementation of institutional controls should future excavation in the area of residual contamination be completed.

Alternative 5 would be protective of human health and the environment by removing some soil contamination via excavation and limiting access to the remaining soil contamination by a low permeability cap. The contaminated groundwater would be left untreated; however, dilution and dispersion would occur such that arsenic concentrations in groundwater at the point of compliance would be below cleanup standards. Alternative 4 would be slightly less protective because residual soil and groundwater concentrations of the COCs beneath the planned realignment of SR 522 would remain above regulatory levels; however, exposure and associated risk would be limited or negated because of the low permeability cap and implementation of institutional controls should future excavation in the area of residual contamination be completed.

4.8.2 Compliance with Cleanup Standards

Compliance with cleanup standards is defined by meeting the requirements of WAC 173-340-700 through WAC 173-340-760. A conditional point of compliance for groundwater is proposed approximately 50 feet from the south and west property lines in accordance WAC 173-340-720(8)(d)(ii) based on the discussion in Section 4.9.

Alternatives 2, 4, and 5 comply with cleanup standards by attaining cleanup levels at the point(s) of compliance within a reasonable period of time and in accordance with WAC 173-340-740(6)(f). Alternative 3 is also in compliance with cleanup standards due to treatment/removal of the contaminated soil and groundwater.

4.8.3 Compliance with ARARs

Compliance with ARARs for all alternatives requires, in addition to meeting cleanup standards, that the actions also meet location-specific and action-specific state and federal requirements. Alternatives 2, 3, 4,

and 5 meet this threshold criterion for both soil and groundwater; however, the discharges of either treated or contaminated groundwater via the extraction well system for Alternatives 3 and 4 may be limited by National Pollutant Discharge Elimination System (NPDES) contaminant discharge levels.

4.8.4 Provide for Compliance Monitoring

Compliance monitoring requirements are defined in WAC 173-340-410. Compliance monitoring includes: 1) "protection monitoring" to confirm that human health and the environment are adequately protected during implementation of an alternative; 2) "performance monitoring" to confirm that cleanup standards or other performance standards have been attained; and 3) "conformation monitoring" to monitor the long-term effectiveness of the remedy after completion of the alternative.

Alternatives 2, 3, 4, and 5 would include performance monitoring during remedial action to evaluate the effectiveness of the treatment and determine that the RAOs had been met. Performance monitoring would be provided during operation and maintenance activities for Alternatives 3 and 4 to determine the effluent quality of the discharged groundwater. Compliance monitoring would be a component of any alternative selected as the final remedy for the Site and would include the following:

- Installation of five downgradient wells (see Figure 4-1) to adequately characterize the on-Site contamination and allow for appropriate triangulation of the Site to determine groundwater flow direction.
- Annual monitoring of groundwater for 10 years through sampling of seven monitoring wells to confirm groundwater is being remediated in the area and is not affected by any residual on-Site soil contamination.

4.8.5 Summary of Preliminary Alternative Screening

Alternatives 2, 3, 4, and 5 meet all of the MTCA threshold requirements and are carried forward for detailed evaluation. Alternative 1 is also carried forward as a baseline for comparison to other alternatives; however, Alternative 1 does not meet any of the MTCA threshold requirements.

4.9 OTHER REQUIREMENTS

In addition to the threshold requirements, WAC 173-340-360(2)(b) requires cleanup actions to meet "other requirements" or "additional requirements" that are part of the minimum requirements for the alternatives. These other requirements include the following:

- Use permanent solutions to the maximum extent practicable including consideration for public concerns.
- Provide for a reasonable restoration time frame.
- Consider additional performance criteria.

4.9.1 Permanent Solutions

This section describes the permanent solutions criteria and compares each of the alternatives regarding the criteria.

4.9.1.1 Permanent Solutions Criteria

WAC 173-340-360(2)(b)(i) requires, to the maximum extent practicable, the use of permanent solutions. Permanence criteria are further defined in WAC 173-340-360(3).

The determination of "maximum extent practicable" is based on a "disproportionate cost analysis," which evaluates the costs and benefits of the alternatives. Seven criteria are cited in WAC 173-340-360(3)(f) as appropriate to evaluate alternatives for the disproportionate cost analysis determination.

The specified criteria below will be used to evaluate the remedial alternatives:

- Protectiveness—addresses overall protectiveness of human health and the environment, including the degree to which existing risks are reduced, the time required to reduce the risk and attain cleanup standards, the on-Site and off-Site risks resulting from implementation, and improvement of the overall environmental quality. This criterion is derived from the evaluation of the other criteria.
- **Permanence**—addresses the degree to which a remediation alternative reduces the inherent toxicity, the ability of contaminants to migrate in the environment, or the quantity of contaminated material.
- Cost—used to consider the costs of performing the alternative, including capital, long-term operation and maintenance, monitoring, and institutional costs. Alternative costs are compared on a net present value basis. Known implementation difficulties with quantifiable cost impacts are included in the cost estimates. Table 4-3 includes a summary of the construction (capital) and yearly operations and maintenance costs for the four remedial alternatives. Detailed cost estimates are located in Tables 4-5 through 4-8. Costs are available from four sources: the professional opinion of Parametrix's remedial design engineers, quotes requested from remediation firms, published literature, and similar projects. All costs are order-of-magnitude preliminary estimates that will be used to evaluate and compare the alternatives.
- **Effectiveness Over the Long Term**—based on the degree of certainty that the alternative will be a success, the long-term reliability, the magnitude of residual risk, and the effectiveness of controls required to manage treatment of residual or remaining waste.
- Management of Short-Term Risks—addresses short-term effects on human health and the environment while the alternative is being implemented. The evaluation includes consideration of the following factors:
 - Risk to Site workers
 - > Risk to the community
 - > Risk to the environment (short-term ecological risk)
- **Technical and Administrative Implementability**—addresses the degree of difficulty in implementing the alternative. Implementability issues are important because they address the potential for delays, cost overruns, and failure. Implementability is evaluated by considering the following:
 - > Technical Feasibility: Technical feasibility addresses the potential for problems during implementation of the alternative and related uncertainties. The evaluation includes the likelihood of delays due to technical problems and the ease of modifying the alternative, if required.
 - Availability of Services and Materials: The availability of experienced contractors and personnel, equipment, and materials needed to implement the alternative.
 - > Administrative Feasibility: The degree of difficulty anticipated due to regulatory constraints and the degree of coordination required among various agencies.

- > Scheduling: The time required until remedial action would be complete, and any difficulties associated with scheduling.
- > Complexity and Size: The more complex or larger a remedial action, the more difficult it is to construct or implement. Sufficient space must be available at the Site to enable efficient implementation of the alternative in a manner that achieves the specific time constraints.
- > Other Considerations: Monitoring requirements, access for construction, operation and maintenance, integration with existing operations, current or potential remedial action, and other factors were considered in accordance with WAC 173-340-410.
- Consideration of Public Concerns—public participation is an integral part of MTCA. Ecology's goal is to provide the public with timely information and meaningful opportunities for participation. This goal is met through a public participation program that includes:
 - > The early planning and development of a site-specific public participation plan
 - > The provision of public notices
 - Public meetings or hearings
 - > The participation of regional citizen's advisory committees

4.9.1.2 Permanent Solutions Evaluation

In this subsection, each of the four remedial alternatives is evaluated against the criteria presented in Section 4.9.1.1.

Protectiveness

Alternatives 2, 3, 4, and 5 meet the goal of protectiveness because they all provide a permanent method of containment and reduce or eliminate exposure pathways. Alternative 3 is the most protective of the alternatives because of the complete removal of the contaminated soil and groundwater. Alternatives 2, 4, and 5 are also protective; however, the alternatives leave contaminated soil and/or groundwater in place and the alternatives depend on institutional controls to limit exposures. Alternative 2 would provide the fastest remediation of both soil and groundwater.

Permanent Reduction in Toxicity, Mobility, and Volume

Alternatives 2, 3, 4, and 5 provide permanent reduction in the toxicity, mobility, and volume of contaminants in the environment. Alternative 3 provides the largest permanent reduction in toxicity, mobility, and volume due to the complete removal of the soil and groundwater contamination. Alternatives 2, 4, and 5 reduce the toxicity, mobility, and volume of the soil and groundwater contamination; however, the alternatives provide a slightly lesser permanent reduction because the low permeability cap only eliminates water infiltration into the subsurface and has no effect on toxicity or volume of the soil contamination left in place. However, the mobility of metals remaining in soil and the potential for contamination leaching to groundwater is greatly reduced or eliminated with the presence of the cap.

Cost

Alternatives 2, 4, and 5 include the construction of the realignment of SR 522 as an integral portion of the alternative; however, the roadway siting and construction will take place regardless of which alternative is chosen. The costs for the realignment of SR 522 are not included in the alternative costs.

Alternative 2 consists of bench-scale treatability and pilot tests to determine if the alternative is appropriate for the Site. The alternative also includes soil remediation including mixing of Site soils with the RegenOxTM product for two treatments, installation of 87 four-feet deep specialized monitoring wells

for installation of the electrokinetic separation liquid removal assemblies, a 600-sf building for the ion exchange vessels, operation and maintenance costs for three months, confirmation sampling to verify the soil contamination is below regulatory standards, institutional controls, and four quarters of groundwater monitoring costs. Groundwater remediation costs include bench-scale treatability and pilot tests to determine if the alternative is appropriate for the Site, installation of 22 injection wells to a depth of 15 feet, and injection of MRCTM into each well over the course of two events. The net present value of Alternative 2 is approximately \$3,200,000 (see Table 4-5).

Alternative 3 consists of a bench-scale treatability test to determine if the groundwater remediation technology is appropriate for the Site; excavation, stockpiling, hauling, and disposing of the contaminated soil; confirmation sampling to verify the soil contamination is below regulatory standards; importing, placing, and compacting granular common borrow; and groundwater monitoring. Groundwater remediation costs include installation of four extraction wells to a depth of approximately 15 feet, a 1,000-sf building for the GFH filter vessels, two GFH filter vessel skids, a backwash system, and permit acquisition and maintenance fees. The alternative also includes operation and maintenance costs including power, media replacement, media disposal, analytical testing, general operations and maintenance, and wastewater discharge fees for the backwash water for a period of 10 years. The net present value of Alternative 3 is approximately \$3,800,000 (see Table 4-6).

Alternative 4 consists of excavation, stockpiling, hauling, and disposing of the contaminated soil; confirmation sampling to verify the soil contamination is below regulatory standards; importing, placing, and compacting granular common borrow; providing institutional controls; and conducting groundwater monitoring. The alternative also includes the installation of four groundwater extraction wells and associated pumps as well as operations and maintenance costs including power, analytical testing, general operations and maintenance, permit acquisition and maintenance fees, and wastewater discharge fees. The net present value of Alternative 4 is approximately \$2,200,000 (see Table 4-7).

Alternative 5 consists of excavation, stockpiling, hauling, and disposing of the contaminated soil; confirmation sampling to verify the soil contamination is below regulatory standards; importing, placing, and compacting granular common borrow; providing institutional controls; and conducting groundwater monitoring. The net present value of Alternative 5 is approximately \$340,000 (see Table 4-8). The cost of Alternative 5 is approximately six to 10 times less than the other alternatives.

Long-Term Effectiveness

All four alternatives are effective for soil contamination because either removal or containment would effectively reduce or minimize the risks to human health and the environment associated with the contaminants left in place. Institutional controls would be in place to ensure effectiveness of the remedy and to minimize exposure scenarios.

Alternative 5 would be less effective over the long term compared to the other three alternatives because the residual risk is greater due to contaminated soil and groundwater being left in place with contaminant levels greater than regulatory standards. Alternative 5 would require institutional controls in perpetuity. However, residual risk compared to the other alternatives would be minimal regarding exposure to contaminated soil and groundwater because the exposure pathways for direct contact, ingestion, and inhalation would be minimized or eliminated. Exposure and associated risk would be limited or negated because of the low permeability cap and implementation of institutional controls should future excavation in the area of residual contamination be completed.

Alternative 2 would be less effective than Alternative 4 over the long term because the residual risk is greater due to contaminated soil and groundwater being left in place with contaminant levels greater than regulatory standards. Alternative 2 would require institutional controls in perpetuity. The reliability of Alternative 2 is also slightly limited because there are many more factors determining the contaminant

reduction quantity due to mixing, application rate, contaminant concentrations, and soil type. Also, remedial technologies used for Alternative 2 have not been used for many full-scale remediations regarding arsenic; therefore, long-term effectiveness is unknown and rebound of the contaminant concentrations is a possibility in both soil and groundwater. Also, complexation of arsenic may not be effective based on the current reducing conditions of the Site.

Alternative 3 would be the most effective over the long term because the risk associated with the contaminated soil is eliminated with excavation; moreover, the long-term risk associated with the contaminated groundwater is eliminated by removing the arsenic. Also, the magnitude of residual risk is small and institutional controls will not be required to manage the exposure to residual or remaining contaminated soil.

Alternative 4 would be less effective than Alternative 3 over the long term because the residual risk is greater due to contaminated soil being left in place with contaminant levels greater than regulatory standards. Alternative 4 would require institutional controls in perpetuity.

Management of Short-Term Risks

Short-term risks for implementation of the four alternatives are relatively low. Standard construction safety and traffic controls will be needed to provide safe operations. The primary risk to Site workers would be construction accidents during construction activities. Direct exposure to contaminated soil and groundwater would be limited because the quantity of soil and method of excavation or treatment do not typically require direct worker contact. Any contaminated soil and groundwater generated during construction activities would be managed in accordance with applicable laws for disposal.

The increased risk to the community for the four alternatives would primarily result from the increased traffic and construction resulting from the remedial actions. This risk can be controlled through increased traffic control and site security during remedial activities.

Short-term risks to the environment would be minimized by acquiring and maintaining compliance with required construction permits. Also, Site security and prior use of the Site as a commercial retail and parking area help to minimize exposures to the environment.

Implementability (Technical and Administrative)

Alternative 2 is the least technically implementable of the alternatives because full-scale implementation of both electrokinetic separation and in situ complexation of arsenic has not been accomplished and the technologies have only been shown effective in bench-scale treatability testing. Administratively, Alternative 2 is readily implementable. Alternative 2 would require the shortest time to complete remediation; however, the technologies used could cause a rebound in COC concentrations, which would substantially increase the completion time of the alternative.

Alternative 3 is technically implementable and GFH treatment of arsenic has been used in full-scale operations at multiple facilities; however, due to the limited groundwater chemistry data available for the Site (i.e., silica and phosphorus), the level of 4 μ g/L arsenic (background) within the effluent may not be attainable. Also, acquiring an NPDES permit for the discharge of treated water through the storm drain into the Sammamish River may not be feasible. Alternatives 3 and 4 are equal in the completion time to remediate the Site.

Alternative 4 is technically implementable and the technologies have been used in full-scale operations at multiple facilities. The alternative depends on the acceptance of the arsenic-laden groundwater by the King County wastewater treatment plant without pretreatment. Depending on the effluent metals concentrations from the Site, acquiring a wastewater discharge permit may not be feasible. Alternatives 3 and 4 are equal in the completion time to remediate the Site.

Alternative 5 is technically implementable and the technologies have been used in full-scale operations at multiple facilities. Alternative 5 would be less administratively implementable because groundwater contamination exceeding cleanup standards would remain; however, based on limited groundwater sampling conducted during the RI, the arsenic levels in groundwater may be below cleanup standards at the point of compliance.

Consideration of Public Concerns

Ecology prepared a public participation program in accordance with WAC 173-340-410 for the Site. The City and Ecology will take into consideration reasonable public comments with respect to the final remedy for the soil contamination at the Site.

A summary comparison of the four selected alternatives based on the criteria listed in Section 4.9.1.2 is provided in Table 4-4.

4.9.2 Reasonable Restoration Time Frame

This section describes each reasonable restoration time frame criterion and compares each of the alternatives regarding the criteria.

4.9.2.1 Reasonable Restoration Time Frame Criteria and Evaluation

Specific requirements and procedures for determining whether a cleanup action provides for a reasonable restoration time frame, as required under WAC 173-340-360(2)(b)(i), are provided in WAC 173-340-360(4). Factors to be considered when determining whether a cleanup action provides for a reasonable restoration time frame and a discussion regarding the alternatives follow:

- Potential risk posed by the Site to human health and the environment—Currently, the only risks posed by the Site are from direct exposure to the contaminated soil, the potable use of groundwater, or to the occasional worker who may encounter contaminated soil and groundwater during trenching activities. The majority of the facility is paved thereby reducing the chance of direct exposure to contaminated soil. Risk due to the potable use of groundwater is mitigated because the affected groundwater is perched and is not used for potable water. Procedures can be taken to protect the worker's health during trenching activities. These facts are unaffected by any alternative; therefore, a fast restoration time frame is not required by the risk posed by the Site.
- Practicability of achieving a shorter restoration time frame—The cleanup time frame is less than six months for Alternative 2 for both soil and groundwater. The cleanup time frame for Alternatives 3, 4, and 5 is approximately 30 days for soil and up to approximately 10 years for groundwater. The groundwater cleanup time frame for Alternatives 3 and 4 depends on the ability of the pump and treat system to contain and extract the arsenic from the subsurface. The extraction rate of arsenic cannot be increased unless substantial deleterious changes are made to the perched aquifer including acidification.
- Current and future use of the Site, surrounding area, and associated resources that are or may be affected by releases from the Site—The current use of the Site, surrounding area, and associated resources are not anticipated to change until the realignment of SR 522. New receptors will not be introduced and further impacts to groundwater resources are not anticipated.
- Availability of alternative water supply—An alternative water supply is not necessary for the Site
 because any water used by current Site occupants comes from the municipal water supply. The
 perched groundwater that is affected is not used as a water supply.

- Likely effectiveness and reliability of institutional controls—Institutional controls, including excavation limitations and notifications, will be effective and reliable in preventing contact with the contaminated soil and groundwater under Alternatives 2, 4, and 5.
- Ability to control and monitor migration of hazardous substances—The migration of contaminants within the soil will be controlled by each of the alternatives. Groundwater monitoring will be performed to verify migration of the contaminants is not taking place.
- Toxicity of hazardous substances at the site—The toxicity of the contamination at the Site does not warrant a fast restoration time frame. Direct exposure to the contaminated soil is unlikely due to the current and future use of the Site. Groundwater exposure is also unlikely because the water is not used by the occupants of the Site or any off-Site receptors.
- Natural processes and reduced concentrations of hazardous substances—The natural degradation
 of petroleum hydrocarbons has been document at numerous other sites. The natural degradation
 of metals would occur through dilution and dispersion.

Based on consideration of all the subcriteria associated with the evaluation of the reasonable restoration time frame, as well as the various scenarios associated with the Site, Alternatives 2, 3, 4, and 5 provide restoration within a reasonable time frame.

4.9.3 Additional Performance Criteria

In addition to meeting the minimum requirements, MTCA provides direction regarding the requirements of alternatives on a number of other performance criteria. These criteria and the performance of the alternatives based on the criteria are described below.

4.9.3.1 Institutional Controls and Financial Assurances

WAC 173-340-360(2)(e) requires cleanup actions to use institutional controls and financial assurances where required under WAC 173-340-440. Institutional controls are actions taken to limit or prohibit activities that may interfere with the integrity of an interim or cleanup action or that may result in exposure of hazardous substances at a site. They are required to ensure the continued protection of human health and the environment and the integrity of an interim action. Institutional controls may include:

- Physical measures
- Restriction on the use of the property or affected resource
- Maintenance requirements for engineering controls
- Education programs
- Financial assurance

Alternatives 2, 4, and 5 will require institutional controls to notify workers prior to excavation in the area that contaminated soil and groundwater exist at levels above regulatory levels.

4.9.3.2 Release and Migration

Cleanup actions under MTCA (WAC 173-340-360(2)(f)) are required to prevent or minimize present and future releases and migration of hazardous substances in the environment. Alternatives 2, 3, and 4 prevent the migration of hazardous substances through the use of caps, destruction, and containment. Alternative 5 also prevents the migration of hazardous substances from the soil through the use of caps and containment; however, groundwater contamination is allowed to migrate to allow dilution and dispersion to reduce arsenic groundwater concentrations to below cleanup standards.

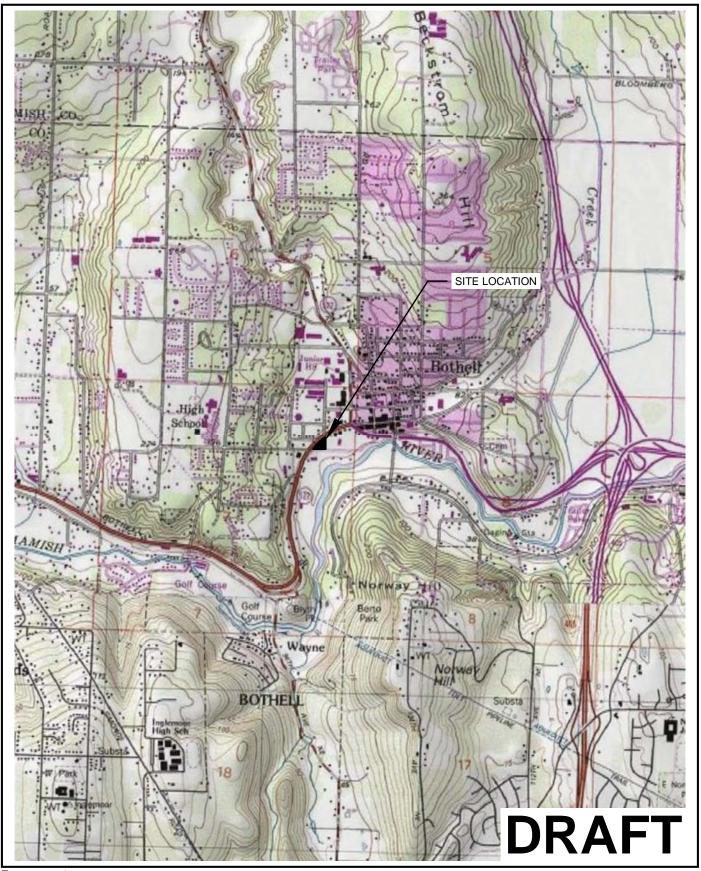
4.9.3.3 Dilution and Dispersion

Cleanup actions under MTCA (WAC 173-340-360(2)(g)) cannot rely primarily on dilution and dispersion unless the incremental costs of any active remedial measure grossly exceed the incremental degree of benefits of active remedial measures over the benefits of dilution and dispersion. Alternatives 2, 3, and 4 do not rely on the use of dilution or dispersion to achieve cleanup levels or eliminate exposure pathways. Alternative 5 does rely on the use of in situ groundwater dilution and dispersion to achieve arsenic cleanup levels at the point of compliance. Alternative 5 is approximately six to 10 times less costly than the other alternatives. The incremental degree of benefits of the active groundwater remediation for Alternatives 2, 3, and 4 is minimal versus the use of dilution and dispersion under Alternative 5. Also, the incremental residual risks and exposure scenarios associated with Alternative 5 are minimal as compared to the other alternatives.

4.9.3.4 Remediation Levels

Cleanup actions under MTCA (WAC 173-340-360(2)(h) that use remediation levels shall meet each of the minimum requirements specified above. Cleanup actions that use a remediation level are required, in part, to conduct a determination that a more permanent cleanup action is not practicable, based on a disproportionate cost analysis and a demonstration that the action is protective of human health and the environment. Remediation levels are not included as part of the implementation of the remedial alternatives.

4.10 PREFERRED ALTERNATIVE


Based on the analysis discussed above, Alternative 5, involving excavation, off-site disposal, low permeability cap, and monitored natural attenuation, is the recommended preferred alternative. Alternatives 2, 3, 4 and 5 meet the RAOs for the Site; however, Alternative 2 meets the RAOs on the shortest schedule. Also, Alternatives 2, 3, 4, and 5 meet the threshold criteria for the Site; although, Alternatives 2, 4, and 5 require the use of institutional controls to meet the cleanup standards for the Site at the point of compliance. However, the exposure potential and risks associated with the contaminated material left in place are minimal compared to Alternative 3. Alternatives 2, 3, 4, and 5 meet the permanent solutions criteria; however, Alternative 3 more fully matches the criteria for protectiveness, reduction of toxicity, mobility, volume, long-term effectiveness, and public concerns. Alternatives 2, 3, 4, and 5 meet the reasonable restoration time frame criteria; however, Alternatives 3, 4, and 5 require a longer time frame to achieve cleanup standards at the Site due to the groundwater remediation technologies employed. Finally, Alternatives 2, 3, 4, and 5 meet the additional performance criteria; however, Alternative 3 more fully matches the performance criteria because it does not use institutional controls, better prevents the migration of hazardous substances, does not use dilution or dispersion to meet the cleanup levels, and does not use remediation levels.

Alternative 3 more closely matches the evaluation criteria set forth by MTCA; however, based on a disproportional cost analysis, Alternative 5 is the recommended preferred alternative. The incremental degree of benefits of the active groundwater remediation alternatives is minimal compared to Alternative 5 because the restoration time frame is not substantially decreased, the treatment technologies associated with active groundwater treatment may not be able to treat arsenic to cleanup levels, and current off-Site groundwater arsenic levels downgradient from the Site are less than cleanup standards. The risks and potential exposure scenarios for human health and the environment associated with Alternative 5 compared to Alternative 3 are minimal and do not justify a 10-fold cost differential.

5. REFERENCES

- CDM. 2009. Phase II Environmental Site Assessment, City of Bothell Crossroads Redevelopment Project, Bothell, Washington. Prepared for King County Solid Waste Division. June 26, 2009.
- Ecology (Washington State Department of Ecology). 1994. Natural Background Soil Metals Concentrations in Washington State. Publication #94-115. October 1994.
- Ecology. 2007. Model Toxics Control Act Cleanup Regulations. Washington Administrative Code (WAC) 173-340. November 2007.
- EPA (U.S. Environmental Protection Agency). 1989. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A), Interim Final. Office of Emergency and Remedial Response, Washington, D.C. EPA/540/1-89/002. July 1989.
- EPA. 2001. EPA Technology Screening Matrix and Reference Guide, Version 4.0. Available at: http://www.frtr.gov/scrntools.htm.
- EPA. 2006. Design Manual, Removal of Arsenic from Drinking Water Supplies by Iron Removal Process. U.S. Environmental Protection Agency. Office of Research and Development. National Risk Management Research Laboratory. EPA/600/R-06/030. April 2006.
- HWA (HWA GeoSciences Inc). 2007. Phase II Environmental Site Assessment, Beta Bothell Landing Property, Parcels No. 9457200015 & 9457200020, Bothell, Washington. Prepared for the City of Bothell. November 1, 2007.
- HWA. 2008a. Phase I Environmental Site Assessment, Victory Development Property, 18004 Bothell Way NE, Bothell, Washington. Prepared for City of Bothell. April 24, 2008.
- HWA. 2008b. Phase I Environmental Site Assessment, Giannola Parcel / Parcel No. 9457200072, 18004 Bothell Way NE, Bothell, Washington. Prepared for City of Bothell. April 25, 2008.
- HWA. 2008c. Phase II Environmental Site Assessment, Giannola Parcel / Parcel No. 9457200072, Bothell, Washington. Prepared for City of Bothell. April 30, 2008.
- HWA. 2008d. Phase II Environmental Site Assessment, Victory Development Property Parcel No. 9457200081, Bothell, Washington. Prepared for City of Bothell. April 30, 2008.
- HWA. 2009a. Remedial Investigation and Feasibility Study Work Plan, Bothell Paint and Decorating Facility, Bothell, Washington. Prepared for City of Bothell. Compiled by Parametrix. August 26, 2009.
- HWA. 2009b. Aquifer Testing and Permeability Estimates, Bothell Crosroads RI/FS, Bothell, Washington. Prepared for City of Bothell. Compiled by Parametrix. October 6, 2009.
- USGS (U.S. Geological Survey). 1981. Bothell Quadrangle. Washington State. 7.5 Minute Series Topographic. 1:24,000 Denver Colorado. 1951. Photo revised 1981.

FIGURES

Parametrix DATE: Dec 03, 2009 FILE: BR1647019P02T0410_F-01-1 Image Source: USGS Bothell Quadrangle 1981

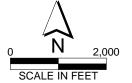
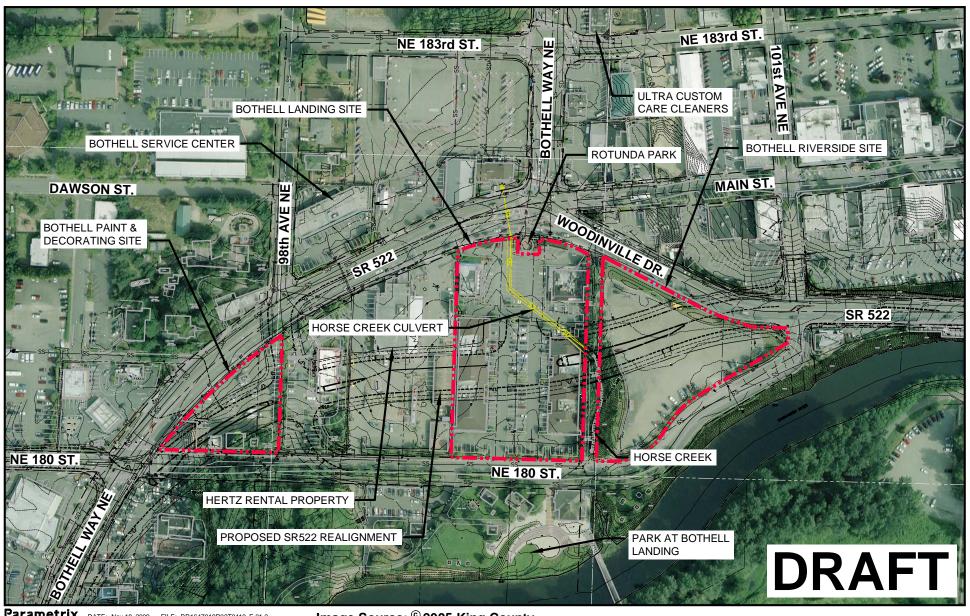



Figure 1-1 City of Bothell Bothell Paint & Decorating Site Site Vicinity

Parametrix DATE: Nov 18, 2009 FILE: BR1647019P02T0410_F-01-2

Image Source: © 2005 King County

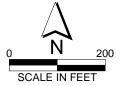
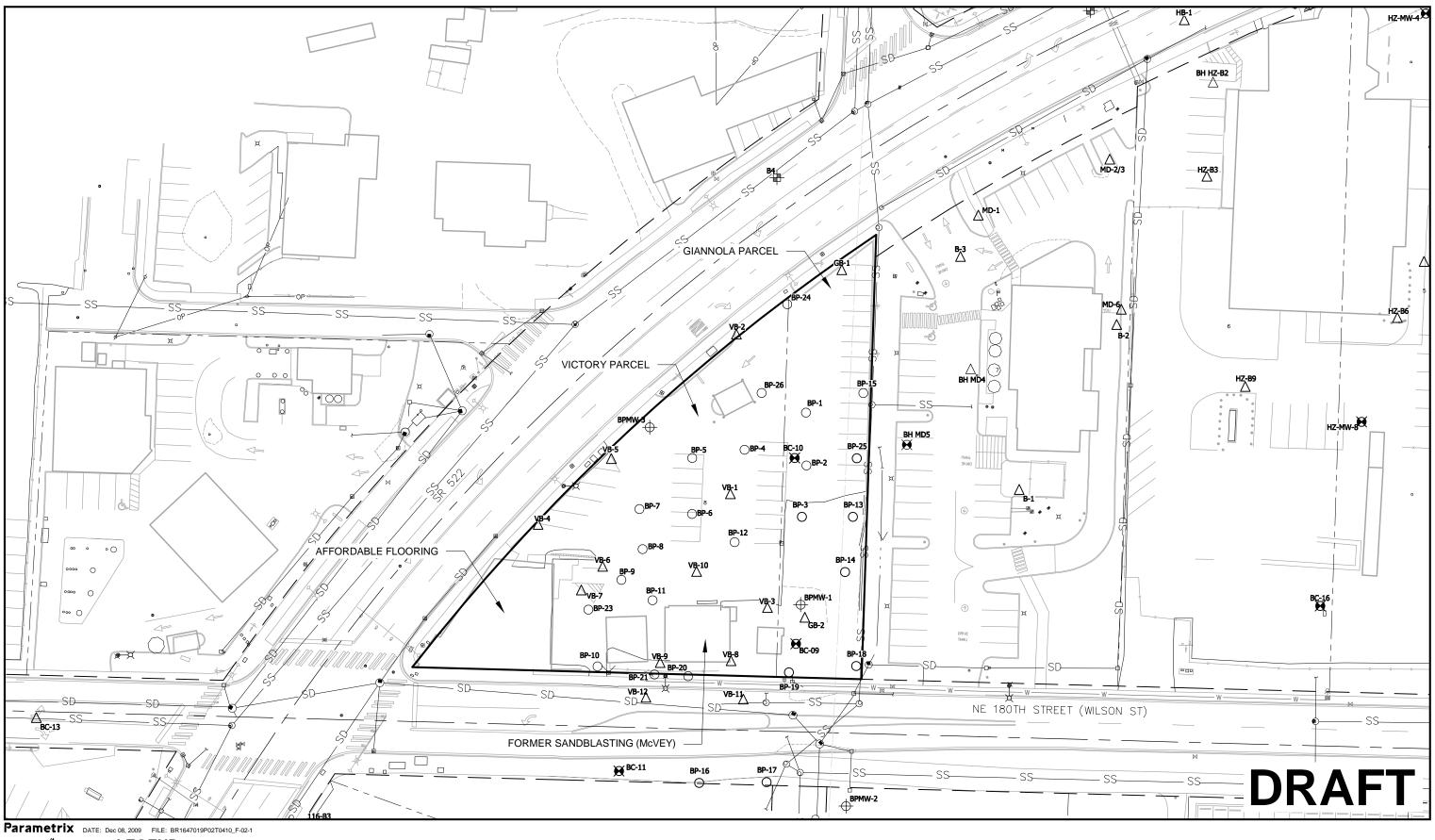
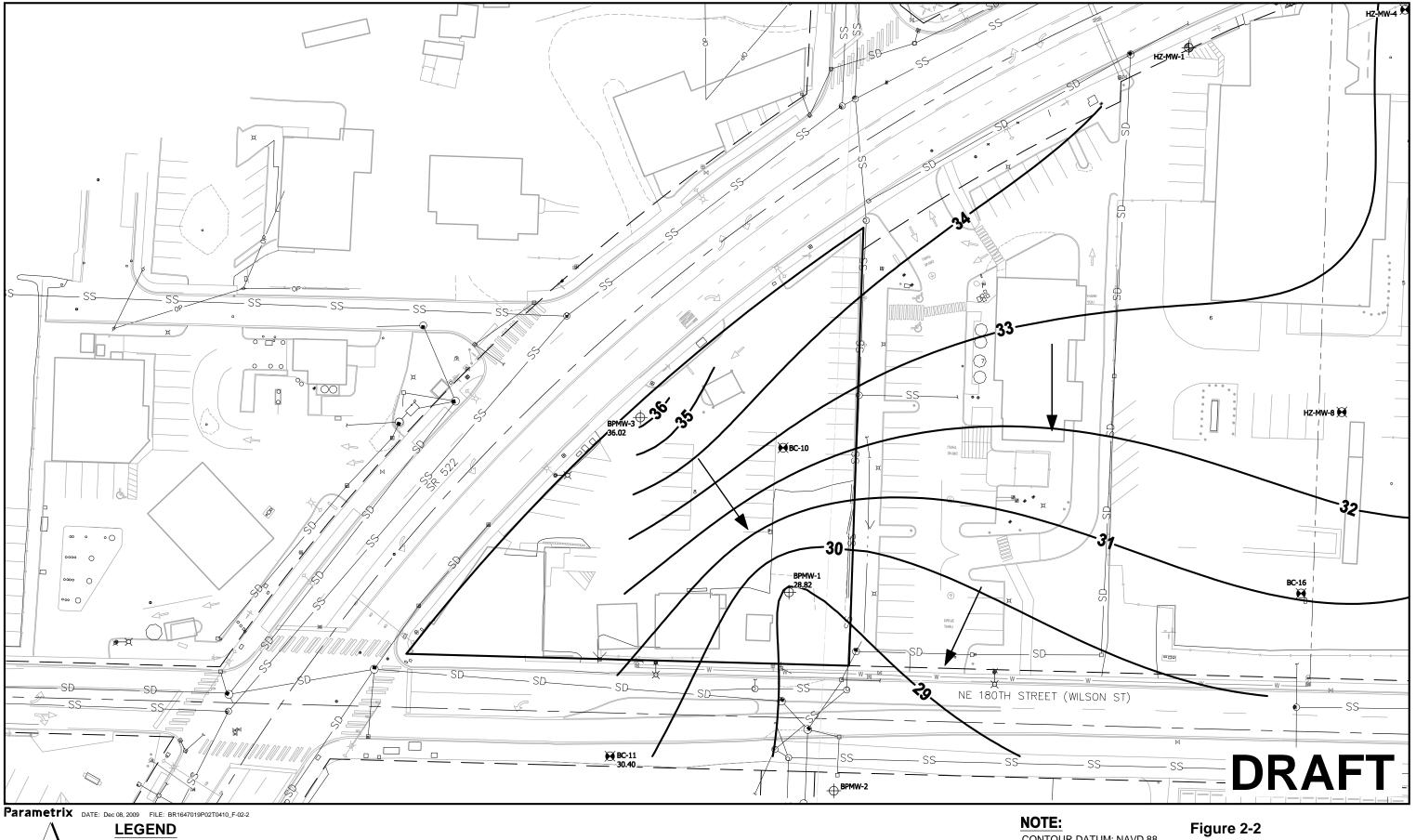



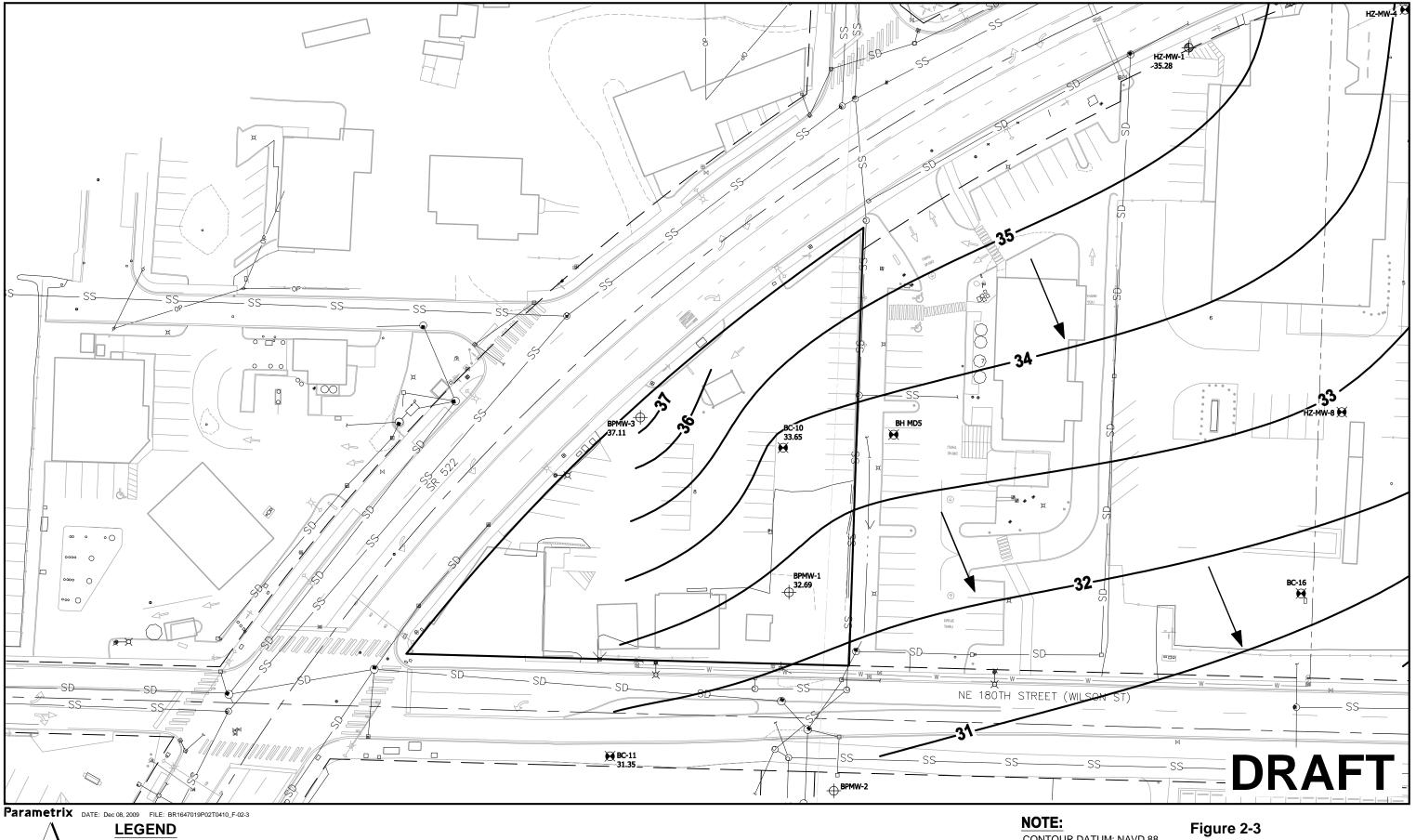
Figure 1-2 **City of Bothell Bothell Paint & Decorating Site Site Vicinity and Adjacent Properties**



LEGEND

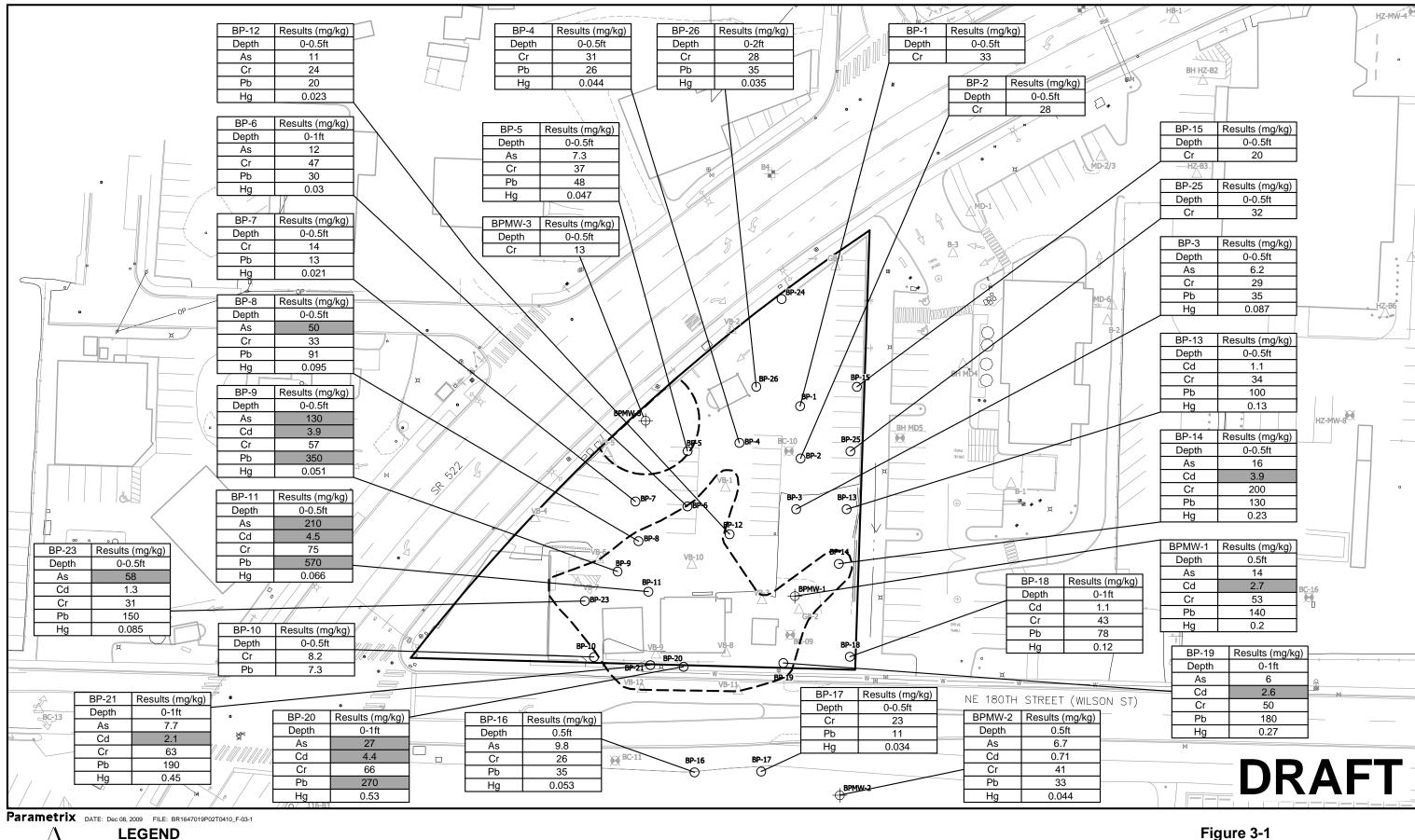
HWA 2007 PHASE II ESA BORINGS

O PMX 2009 RI/FS BORING LOCATIONS

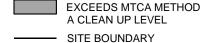

PMX 2009 RI/FS WELL LOCATIONS SITE BOUNDARY HWA 2007 PHASE II ESA WELL LOCATIONS 🖶 CDM 2009 ROW BORING LOCATIONS ---- PARCEL BOUNDARY Figure 2-1 City of Bothell **Bothell Paint & Decorating Site** Site Plan

HWA 2007 PHASE II ESA WELL LOCATIONS GROUNDWATER TABLE ELEVATION MEASURED AT WELL ON 09/24/09 -29 — INFERRED POTENTIOMETRIC SURFACE ELEVATION CONTOUR PMX 2009 RI/FS WELL LOCATIONS SITE BOUNDARY - GROUNDWATER FLOW DIRECTION

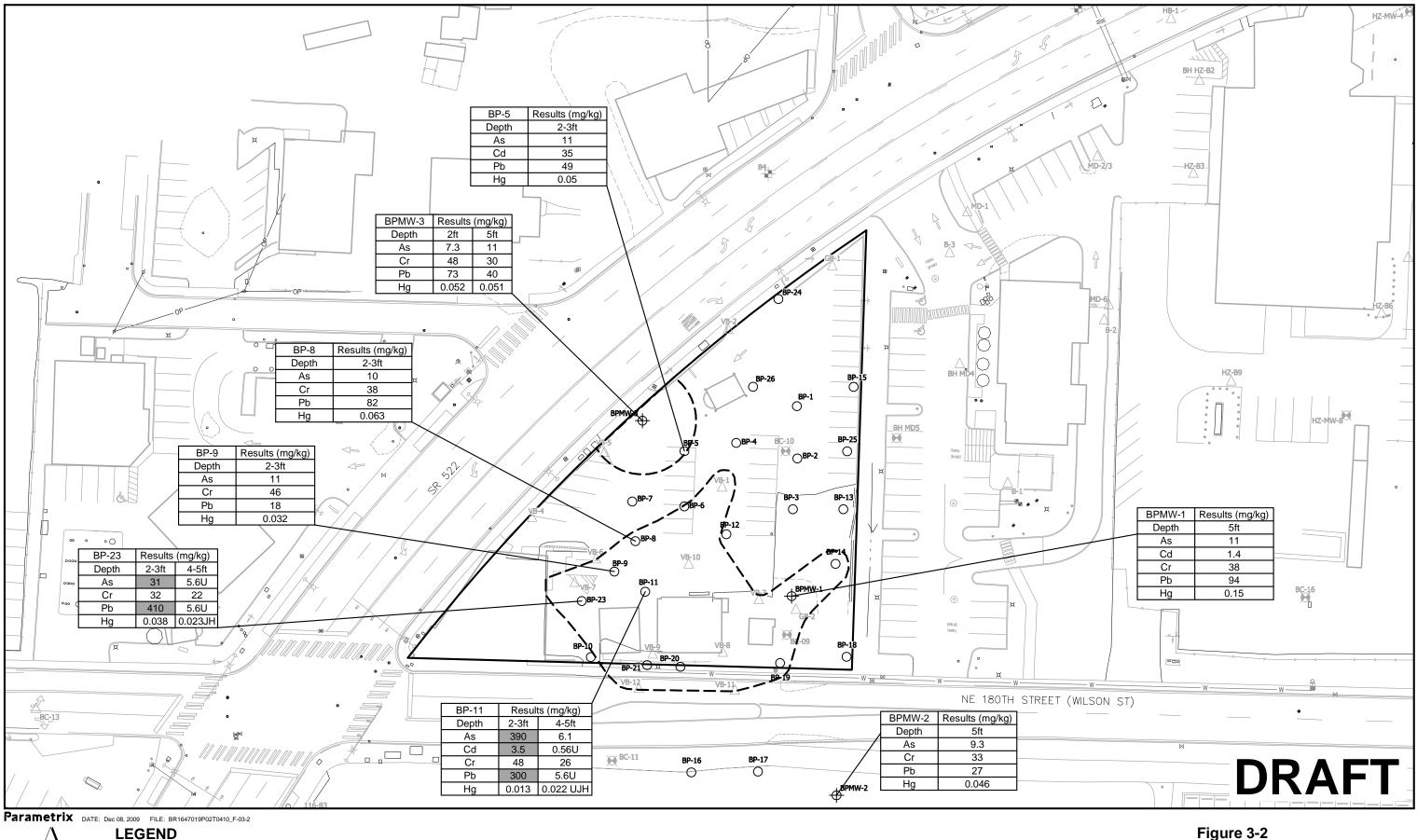
CONTOUR DATUM: NAVD 88


City of Bothell **Bothell Paint & Decorating Site** September 2009 Potentiometric Surface

HWA 2007 PHASE II ESA WELL LOCATIONS GROUNDWATER TABLE ELEVATION MEASURED AT WELL ON 11/06/09 -29 — INFERRED POTENTIOMETRIC SURFACE ELEVATION CONTOUR PMX 2009 RI/FS WELL LOCATIONS SITE BOUNDARY - GROUNDWATER FLOW DIRECTION


CONTOUR DATUM: NAVD 88

City of Bothell **Bothell Paint & Decorating Site November 2009 Potentiometric** Surface

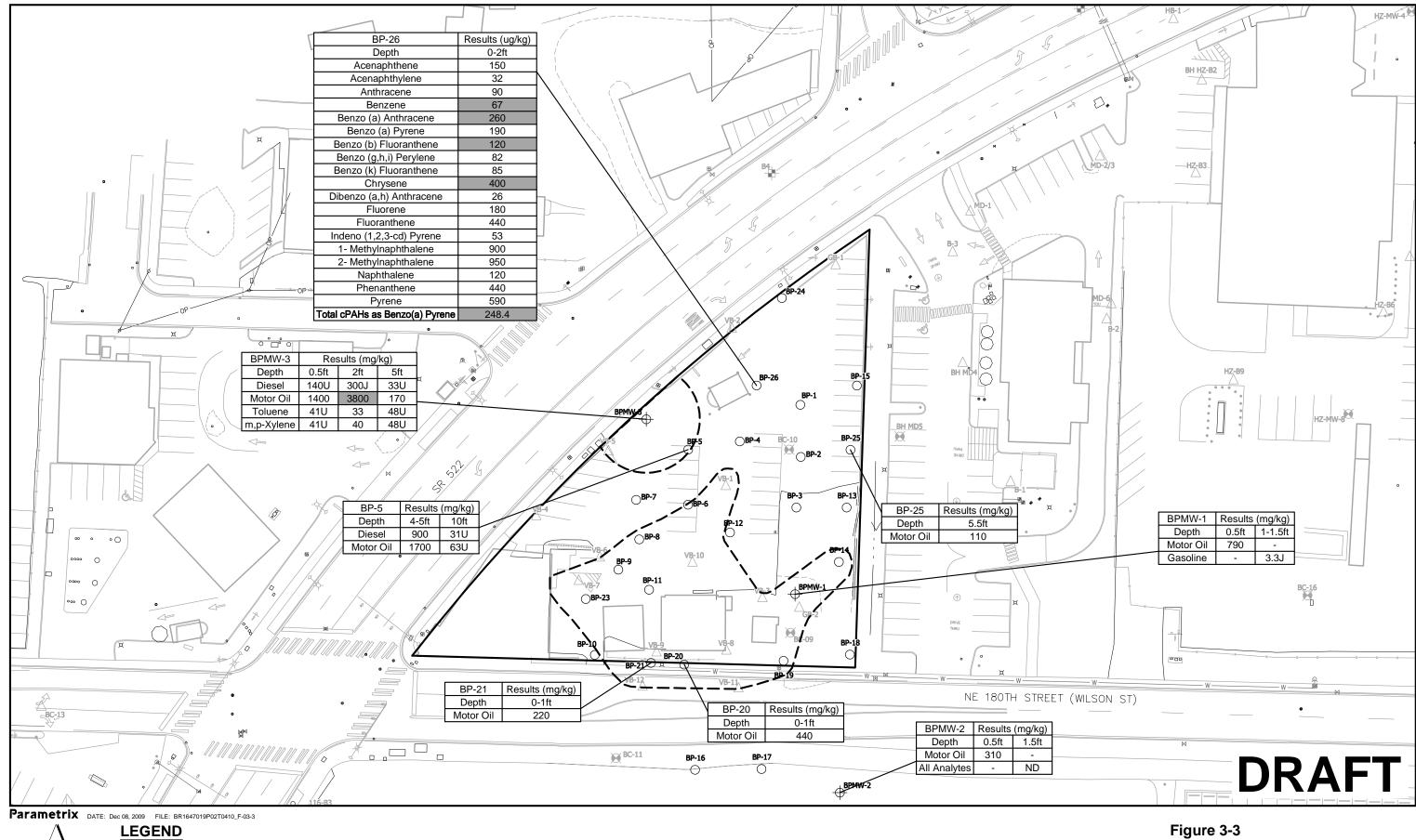


- HWA 2007 PHASE II ESA BORINGS
- 0 PMX 2009 RI/FS BORING LOCATIONS
- PMX 2009 RI/FS WELL LOCATIONS
- HWA 2007 PHASE II ESA WELL LOCATIONS 🖶 CDM 2009 ROW BORING LOCATIONS

--- ESTIMATED EXTENT OF SOIL CONTAMINATED WITH METALS AND PETROLEUM ABOVE MTCA METHOD A CLEANUP LEVELS

City of Bothell **Bothell Paint & Decorating Site** RI/FS Soil Results for Metals in Surface Soil

- HWA 2007 PHASE II ESA BORINGS
- HWA 2007 PHASE II ESA WELL LOCATIONS
- 0 PMX 2009 RI/FS BORING LOCATIONS
- PMX 2009 RI/FS WELL LOCATIONS
- CDM 2009 ROW BORING LOCATIONS
- SITE BOUNDARY


- ANALYTE NOT DETECTED AT GIVEN PRACTICAL QUANTITATION LIMIT
- ND NOT DETECTED
- UJH ESTIMATED CONCENTRATION HOLDING TIME EXCEEDED

EXCEEDS MTCA METHOD A CLEAN UP LEVEL

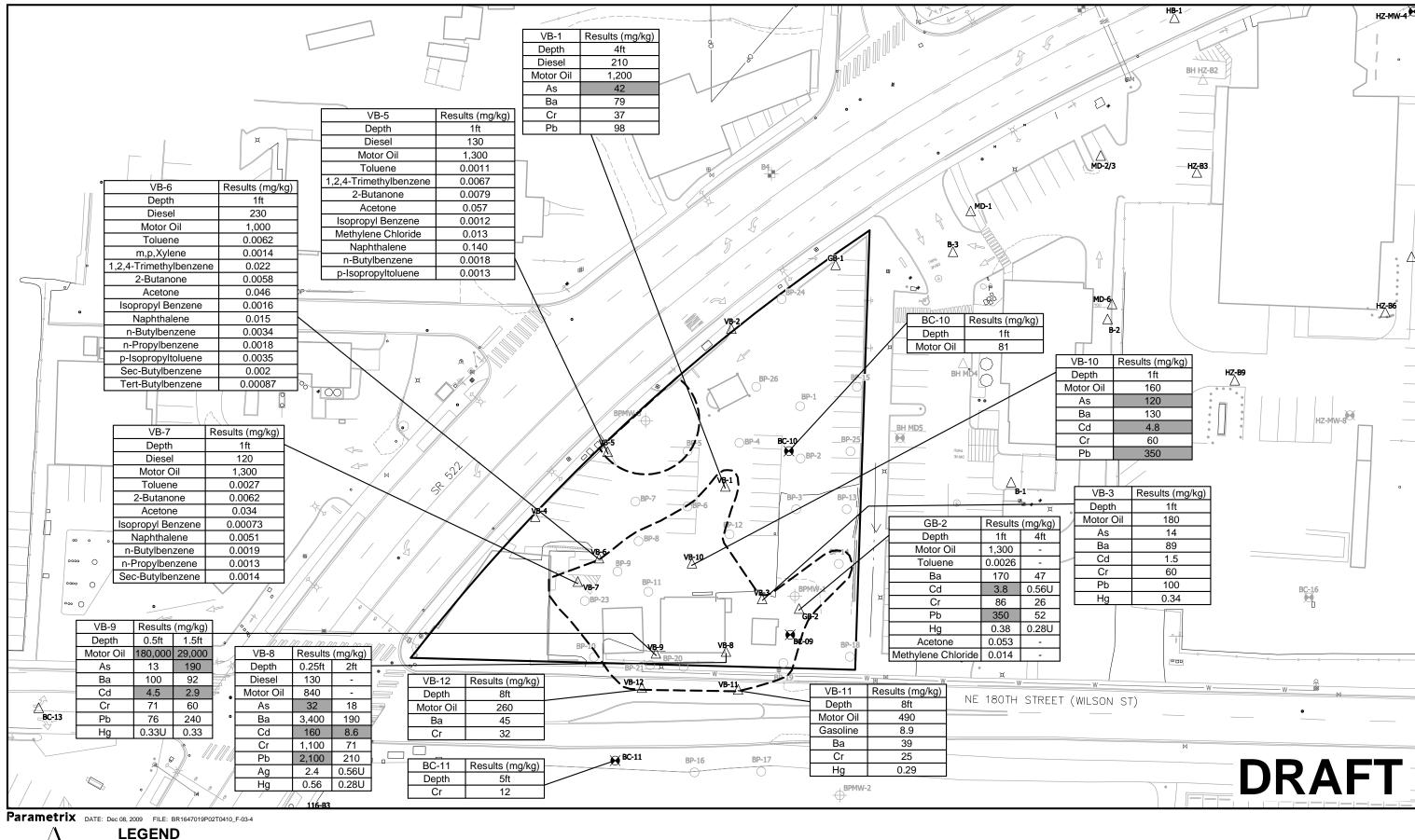
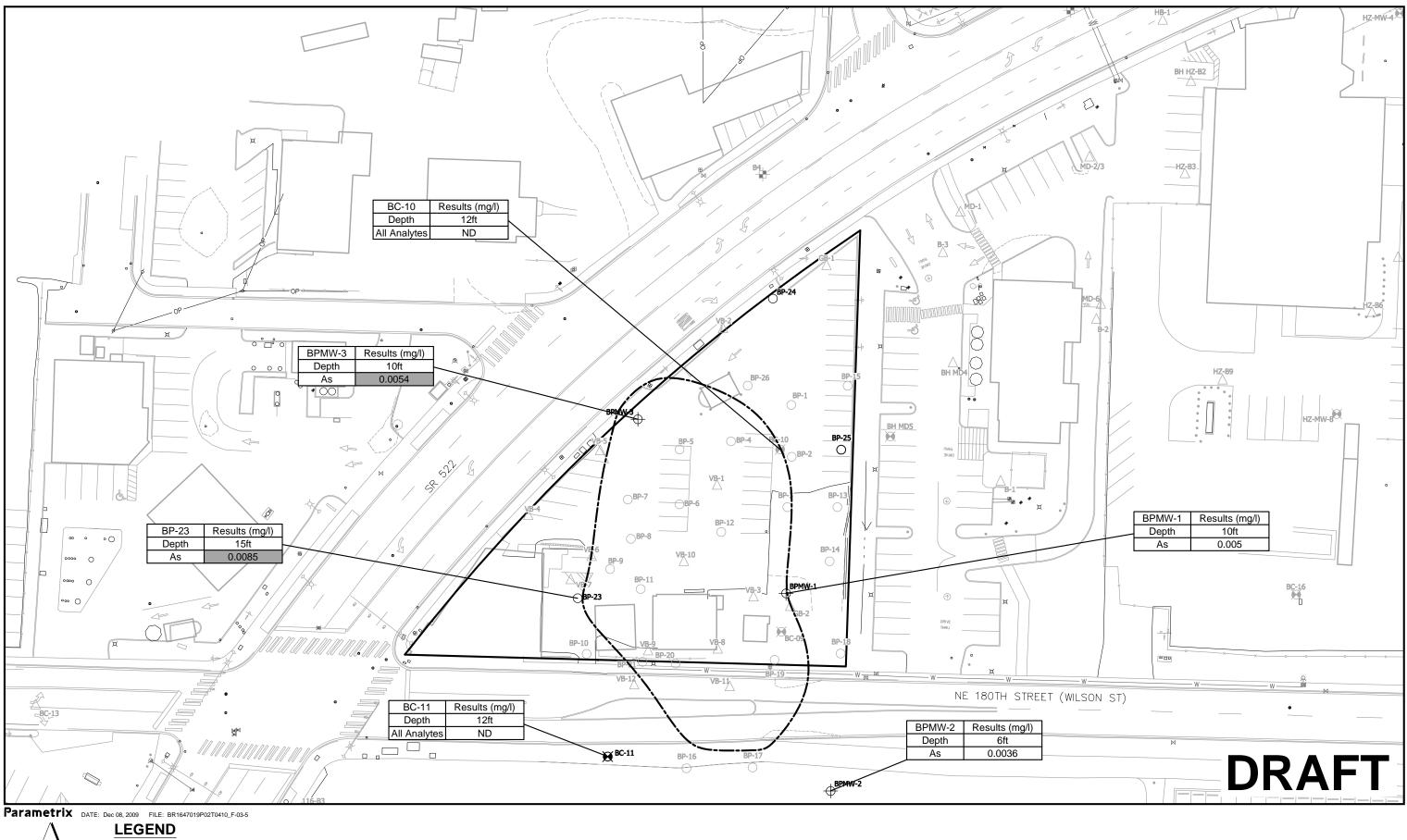

--- ESTIMATED EXTENT OF SOIL CONTAMINATED WITH METALS AND PETROLEUM ABOVE MTCA METHOD A CLEANUP LEVELS

Figure 3-2 City of Bothell **Bothell Paint & Decorating Site** RI/FS Soil Results for Metals in Subsurface Soil

City of Bothell EXCEEDS MTCA METHOD HWA 2007 PHASE II ESA BORINGS PMX 2009 RI/FS WELL LOCATIONS ESTIMATED CONCENTRATION **Bothell Paint & Decorating Site** A CLEAN UP LEVEL HWA 2007 PHSE II ESA WELL LOCATIONS CDM 2009 ROW BORING LOCATIONS ANALYTE NOT DETECTED AT GIVEN RI/FS Soil Results for TPH, cPAHs, PRACTICAL QUANTITATION LIMIT SITE BOUNDARY \circ --- ESTIMATED EXTENT OF SOIL CONTAMINATED PMX 2009 RI/FS BORING LOCATIONS SCALE IN FEET WITH METALS AND PETROLEUM ABOVE MTCA **SVOCs, & BTEX Compounds**

METHOD A CLEANUP LEVELS

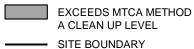

- HWA 2007 PHASE II ESA BORINGS
- HWA 2007 PHSE II ESA WELL LOCATIONS
- PMX 2009 RI/FS BORING LOCATIONS
- PMX 2009 RI/FS WELL LOCATIONS
- PMX 2009 RI/FS SURFACE SOIL LOCATIONS
- CDM 2009 ROW BORING LOCATIONS
- J ESTIMATED CONCENTRATION
- ANALYTE NOT DETECTED AT GIVEN PRACTICAL QUANTITATION LIMIT SITE BOUNDARY

EXCEEDS MTCA METHOD A CLEAN UP LEVEL

ESTIMATED EXTENT OF SOIL CONTAMINATED WITH METALS AND PETROLEUM ABOVE MTCA METHOD A CLEANUP LEVELS

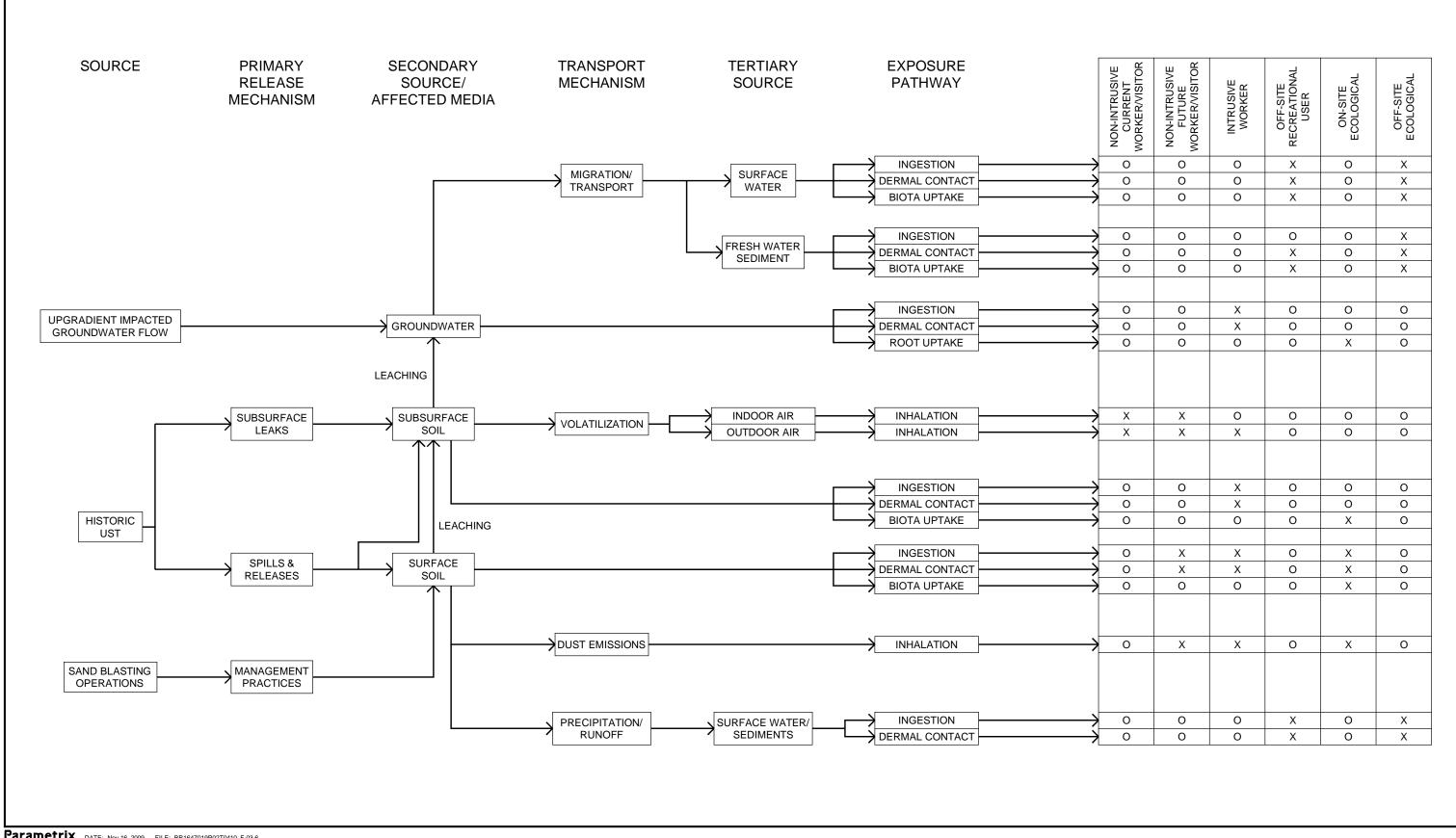
Figure 3-4 City of Bothell **Bothell Paint & Decorating Site Historical Soil Results**

HWA 2007 PHASE II ESA BORINGS


HWA 2007 PHASE II ESA WELL LOCATIONS

PMX 2009 RI/FS BORING LOCATIONS

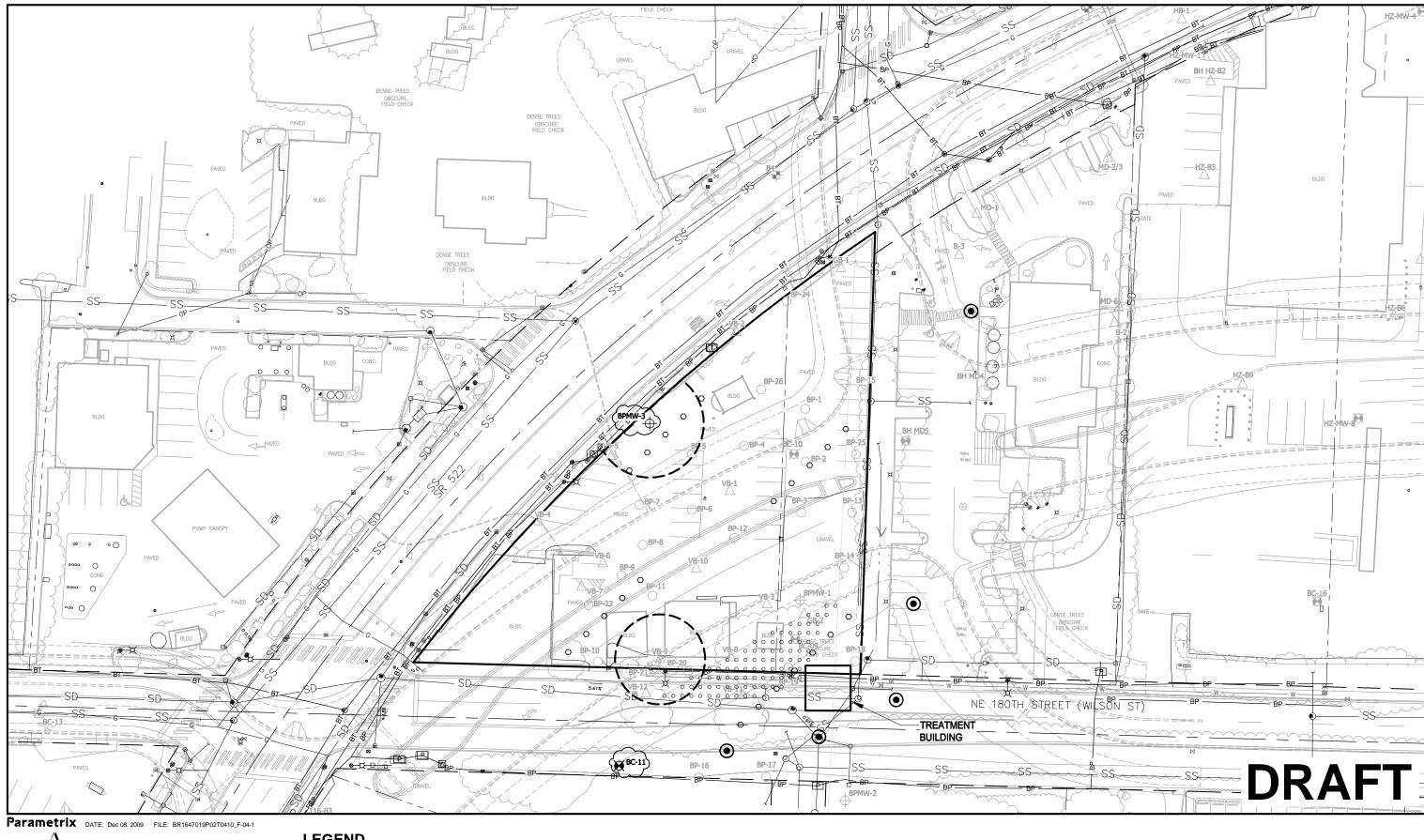
PMX 2009 RI/FS WELL LOCATIONS


CDM 2009 ROW BORING LOCATIONS

ND NOT DETECTED

ESTIMATED AREA OF GROUNDWATER CONTAMINATED ABOVE MTCA METHOD A CLEAN UP LEVELS

Figure 3-5 City of Bothell **Bothell Paint & Decorating Site Groundwater Results for Dissolved Metals**

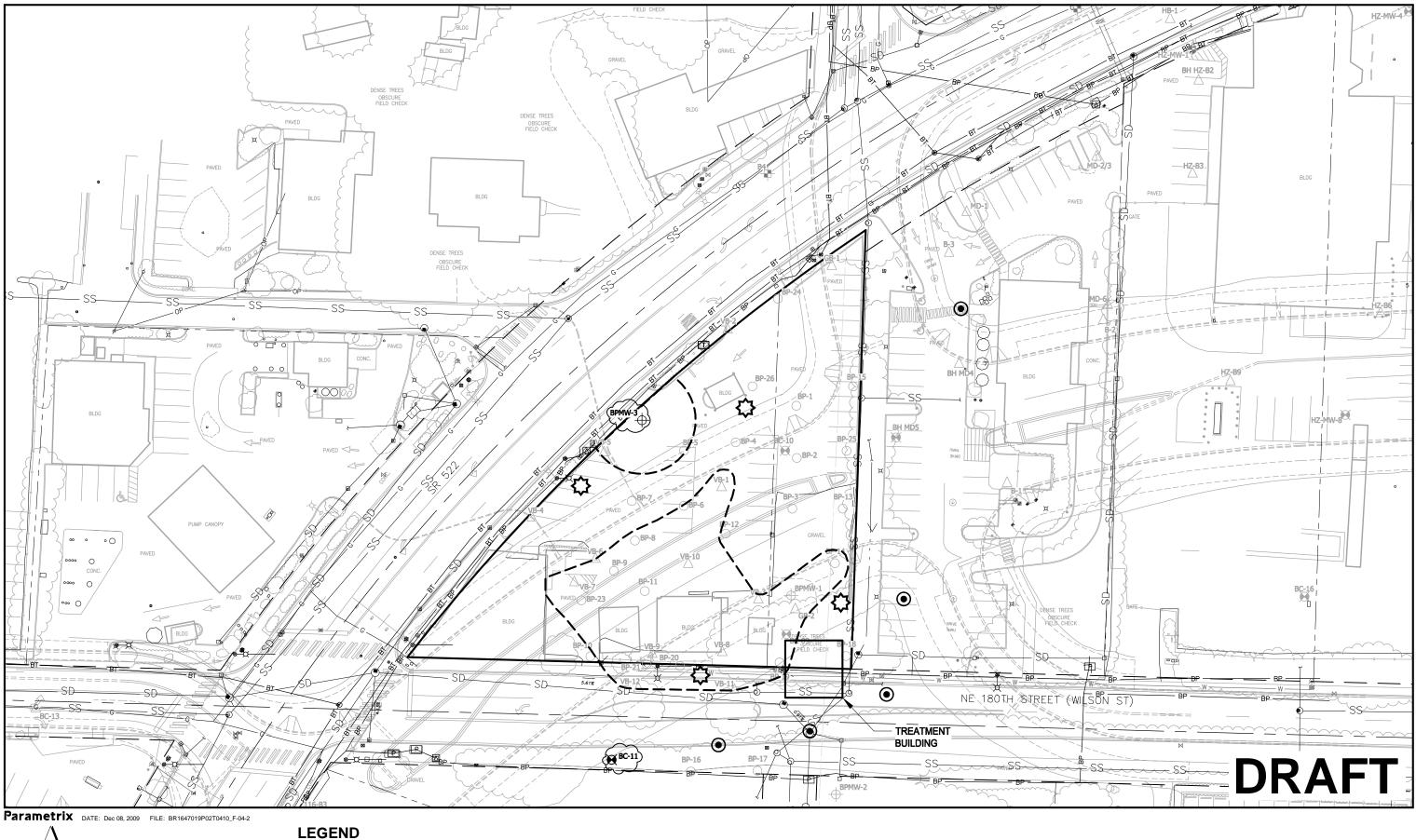

Parametrix DATE: Nov 16, 2009 FILE: BR1647019P02T0410_F-03-6

LEGEND

- X COMPLETE
- 0 INCOMPLETE

Figure 3-6 **City of Bothell Bothell Paint & Decorating Site Conceptual Site Model**

LEGEND

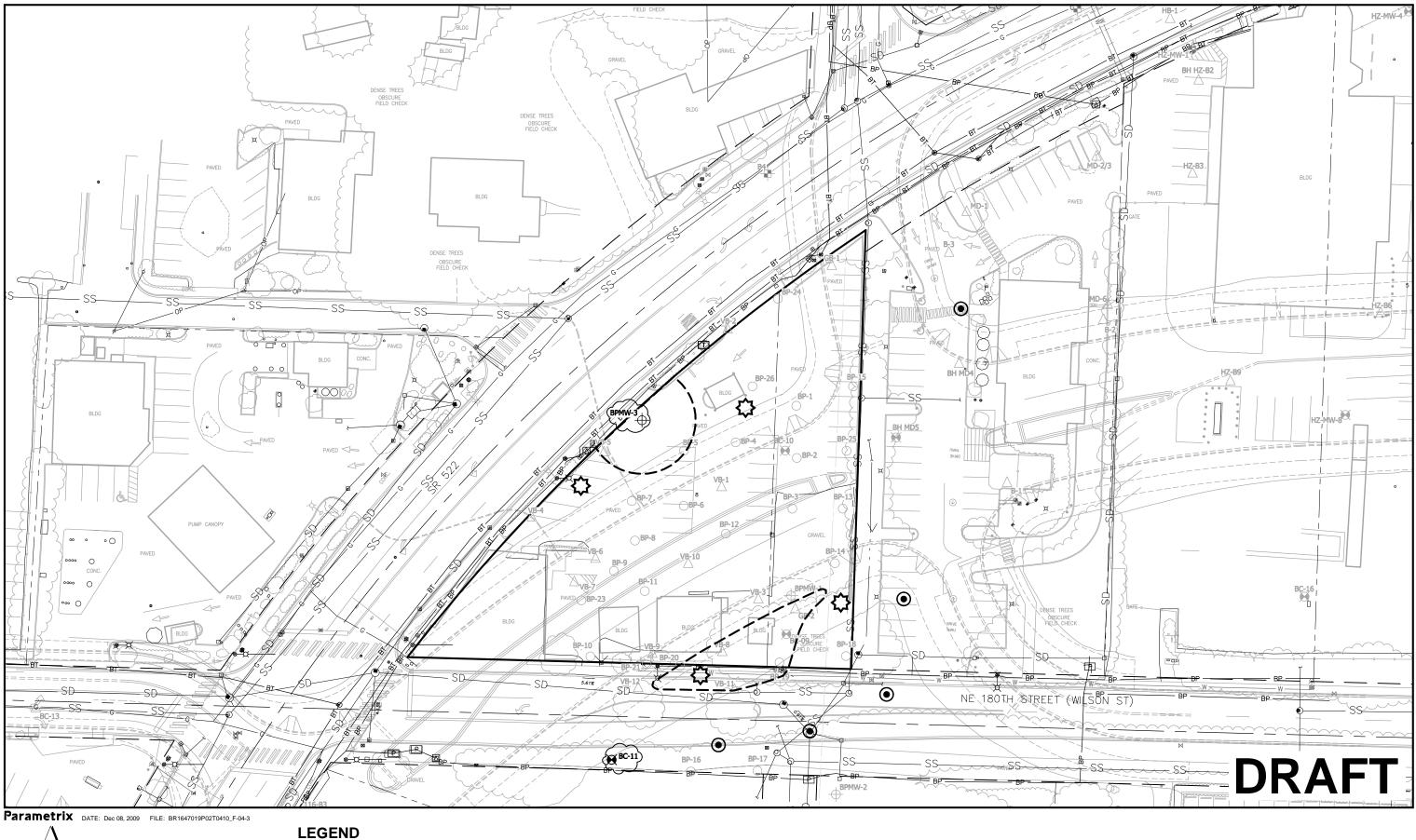

- PROPOSED MRC INJECTION WELLS
- PROPOSED ELECTROKINETIC SEPARATION WELLS
- PROPOSED NEW MONITORING WELLS

AREAS OF SOIL REMEDIATION VIA CHEMICAL OXIDATION

EXISTING MONITORING WELL TO BE USED FOR LONG TERM MONITORING

SITE BOUNDARY

Figure 4-1 City of Bothell **Bothell Paint & Decorating Site Remedial Alternative 2**


PROPOSED NEW EXTRACTION WELLS PROPOSED NEW MONITORING WELLS

EXISTING MONITORING WELL TO BE USED FOR LONG TERM MONITORING

AREAS OF SOIL REMEDIATION VIA EXCAVATION

SITE BOUNDARY

Figure 4-2 City of Bothell **Bothell Paint & Decorating Site Remedial Alternative 3**

PROPOSED NEW EXTRACTION WELLS PROPOSED NEW MONITORING WELLS

AREAS OF SOIL REMEDIATION VIA EXCAVATION EXISTING MONITORING WELL TO BE USED FOR LONG TERM MONITORING

SITE BOUNDARY

Figure 4-3 City of Bothell **Bothell Paint & Decorating Site Remedial Alternative 4**

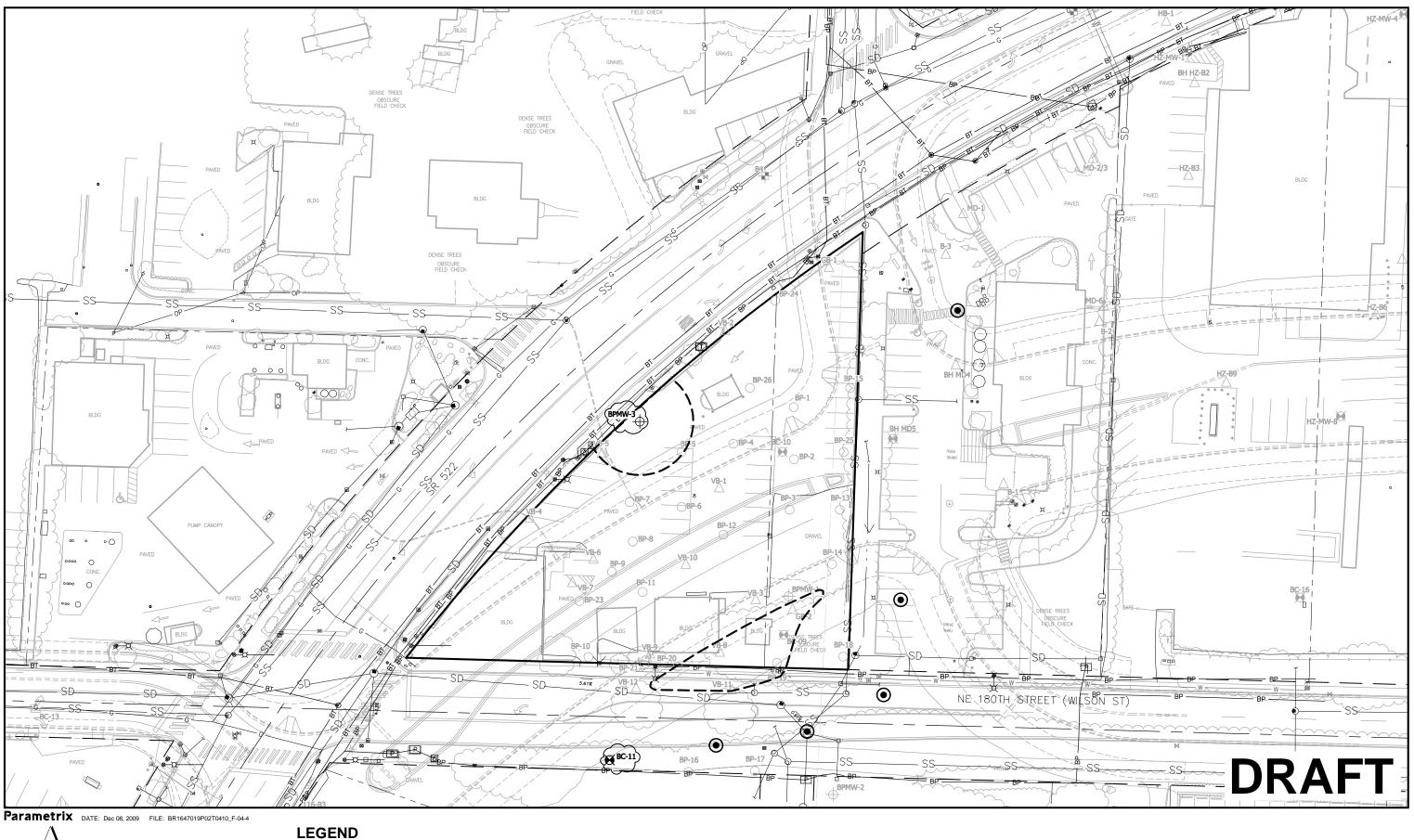


Figure 4-4
City of Bothell
Bothell Paint & Decorating Site
Remedial Alternative 5

TABLES

					Ecological	Sample No.:	BP-1 0'-0.5'	BP-2 0-0.5	BP-3 0-0.5	BP-4 0-0.5	BP-5 0-0.5	BP-5 2-3	BP-5 4-5	BP-5 10	BP-6 0-1	BP-7 0-0.5
		Analytical		MTCA B	Indicator	Depth (ft):	0-0.5	0-0.5	0-0.5	0-0.5	10	2-3	4-5	10	0-1	0-0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009
PETROLEUM HYDROCARBONS	i															
Diesel	mg/kg	NWTPH-Dx	2,000		200								900	31 U		
Motor Oil	mg/kg	NWTPH-Dx	2,000										1,700	63 U		
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100											
Benzene	μg/kg	SW8021B	30	4.483			-			= =						
Toluene	μg/kg	SW8021B	7,000				-			= =						
m,p-Xylene	μg/kg	SW8021B	9,000*XY													
METALS																_
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30	5.3 U	5.3 U	6.2	5.4 U	7.3	11			12	5.2 U
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	0.53 U	0.53 U	0.54 U	0.54 U	0.54 U	0.57 U			0.53 U	0.52 U
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15	33	28	29	31	37	35			47	14
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	5.3 U	5.3 U	35	26	48	49			30	13
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.021 U	0.021 U	0.087	0.044	0.047	0.05			0.03	0.021
METALS (TCLP Extract-wet)																
Arsenic	mg/L	SW6010B-Total														
Cadmium	mg/L	SW6010B-Total														
Chromium	mg/L	SW6010B-Total														
Lead	mg/L	SW6010B-Total														
VOLATILE ORGANICS																
All Analytes	μg/kg	SW8260B														
SEMIVOLATILE ORGANICS																
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA													
2-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA													
Acenaphthene	μg/kg	SW8270D SIM			20,000											
Acenaphthylene	μg/kg	SW8270D SIM														
Anthracene	μg/kg	SW8270D SIM														
Benzo(a)anthracene	μg/kg	SW8270D SIM														
Benzo(a)pyrene	μg/kg	SW8270D SIM			12,000											
Benzo(b)fluoranthene	μg/kg	SW8270D SIM														
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM														
Benzo(k)fluoranthene	μg/kg	SW8270D SIM														
Chrysene	μg/kg	SW8270D SIM														
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM														
Fluoranthene	μg/kg	SW8270D SIM														
Fluorene	μg/kg	SW8270D SIM			30,000											
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM														
Naphthalene	μg/kg	SW8270D SIM	5,000*NA													
Phenanthrene	μg/kg	SW8270D SIM														
Pyrene	μg/kg	SW8270D SIM														
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100													

(Table Continues)

Page 1 of 5

					Ecological	Sample No.:	BP-8 0-0.5	BP-8 2-3	BP-9 0-0.5	BP-9 2-3	BP-10 0-0.5	BP-11 0-0.5	BP-11 2-3	BP-11 4-5	BP-12 0-0.5
		Analytical		MTCA B	Indicator	Depth (ft):	0-0.5	2-3	0-0.5	2-3	0-0.5	0-0.5	2-3	4-5	0-0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009
PETROLEUM HYDROCARBONS	3														
Diesel	mg/kg	NWTPH-Dx	2,000		200									28 U	
Motor Oil	mg/kg	NWTPH-Dx	2,000											56 U	
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100									1.4 U	
Benzene	μg/kg	SW8021B	30	4.483				= =				= =	= =	20 U	
Toluene	μg/kg	SW8021B	7,000											28 U	
m,p-Xylene	μg/kg	SW8021B	9,000*XY											28 U	
METALS															
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30	50	10	130	11	5.1 U	210	390	6.1	11
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	0.54 U	0.6 U	3.9	0.54 U	0.51 U	4.5	3.5	0.56 U	0.53 U
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15	33	38	57	46	8.2	75	48	26	24
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	91	82	350	18	7.3	570	300	5.6 U	20
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.095	0.063	0.051	0.032	0.02 U	0.066	0.073	0.022 UJH	0.023
METALS (TCLP Extract-wet)															
Arsenic	mg/L	SW6010B-Total										0.40 U	0.96		
Cadmium	mg/L	SW6010B-Total										0.045	0.13		
Chromium	mg/L	SW6010B-Total										0.022	0.020 U		
Lead	mg/L	SW6010B-Total										0.70	0.32		
VOLATILE ORGANICS															
All Analytes	μg/kg	SW8260B													
SEMIVOLATILE ORGANICS															
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA												
2-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA												
Acenaphthene	μg/kg	SW8270D SIM			20,000										
Acenaphthylene	μg/kg	SW8270D SIM													
Anthracene	μg/kg	SW8270D SIM													
Benzo(a)anthracene	μg/kg	SW8270D SIM													
Benzo(a)pyrene	μg/kg	SW8270D SIM			12,000										
Benzo(b)fluoranthene	μg/kg	SW8270D SIM													
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM													
Benzo(k)fluoranthene	μg/kg	SW8270D SIM													
Chrysene	μg/kg	SW8270D SIM													
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM													
Fluoranthene	μg/kg	SW8270D SIM													
Fluorene	μg/kg	SW8270D SIM			30,000										
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM													
Naphthalene	μg/kg	SW8270D SIM	5,000*NA												
Phenanthrene	μg/kg	SW8270D SIM													
Pyrene	μg/kg	SW8270D SIM													
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100												

(Table Continues)

Page 2 of 5

		Analytical		MTCA B	Ecological	Sample No.: Depth (ft):	BP-13 0-0.5 0-0.5	BP-14 0-0.5 0-0.5	BP-15-0-0.5 0-0.5	BP-16-0-0.5 0-0.5	BP-17-0-0.5 0-0.5	BP-18-0-1 0-1	BP-19-0-1 0-1	BP-20-0-1 0-1	DUP-0904 (BP-20-0-1)
PARAMETERS	Units	Method	MTCA A	soil to gw	Indicator Conc.	Background	9/2/2009	9/2/2009	9/3/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009
PETROLEUM HYDROCARBONS					00110.		0.2,200	0.2,200	0.0,=000	0, 1,2000	07.17.2000	0, 1, 2000	0, 1, 2000	0, 112000	37.17.2000
Diesel	mg/kg	NWTPH-Dx	2,000		200									140 U	37 UJH
Motor Oil	mg/kg	NWTPH-Dx	2,000											440	570 JH
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100										
Benzene	μg/kg	SW8021B	30	4.483											
Toluene	μg/kg	SW8021B	7,000												
m,p-Xylene	μg/kg	SW8021B	9,000*XY					= =							
METALS	100		·												
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30	5.5 U	16	5.5 U	9.8	5.4 U	5.4 U	6	27	37
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	1.1	3.9	0.55 U	0.54 U	0.54 U	1.1	2.6	4.4	6.1
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15	34	200	20	26	23	43	50	66	91
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	100	130	5.5 U	35	11	78	180	270	410
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.13	0.23	0.022 U	0.053	0.034	0.12	0.27	0.53	0.49
METALS (TCLP Extract-wet)															
Arsenic	mg/L	SW6010B-Total													
Cadmium	mg/L	SW6010B-Total						= =		= =					
Chromium	mg/L	SW6010B-Total													
Lead	mg/L	SW6010B-Total													
VOLATILE ORGANICS															
All Analytes	μg/kg	SW8260B													
SEMIVOLATILE ORGANICS															
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA												
2-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA												
Acenaphthene	μg/kg	SW8270D SIM			20,000										
Acenaphthylene	μg/kg	SW8270D SIM													
Anthracene	μg/kg	SW8270D SIM													
Benzo(a)anthracene	μg/kg	SW8270D SIM													
Benzo(a)pyrene	μg/kg	SW8270D SIM			12,000										
Benzo(b)fluoranthene	μg/kg	SW8270D SIM													
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM													
Benzo(k)fluoranthene	μg/kg	SW8270D SIM													
Chrysene	μg/kg	SW8270D SIM													
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM													
Fluoranthene	μg/kg	SW8270D SIM													
Fluorene	μg/kg	SW8270D SIM			30,000										
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM													
Naphthalene	μg/kg	SW8270D SIM	5,000*NA												
Phenanthrene	μg/kg	SW8270D SIM													
Pyrene	μg/kg	SW8270D SIM													
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100												

(Table Continues)

		Amelodical		MTOAR	Ecological	Sample No.:	BP-21-0-1	BP-23 0-5	BP-23 2-3	BP-23 4-5	BP-24-8	BP-25-0-0.5	BP-25-5.5	BP-26	BPMW-1-0.5
PARAMETERS		Analytical	MTOAA	MTCA B	Indicator	Depth (ft):		0-5	2-3	4-5	8	0-0.5	5.5	1-2	0.5
PETROLEUM HYDROCARBONS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/4/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/3/2009	9/3/2009	9/2/2009	9/2/2009
Diesel	mg/kg	NWTPH-Dx	2,000		200		27 U			28 U	33 U		29 U		140 U
Motor Oil	mg/kg	NWTPH-Dx	2,000		200		220			56 U	67 U		110		790
Gasoline		NWTPH-Gx	30/100*G		100					1.3 U				1.8 U	
	mg/kg			4 402	100									67	
Benzene Toluene	μg/kg	SW8021B SW8021B	7,000	4.483						20 U 27 U				36 U	
	μg/kg									27 U					
m,p-Xylene	μg/kg	SW8021B	9,000*XY							27 0				36 U	
METALS	mg/kg	CWC040D Tatal	20	0.000	7	7.00	7.7	50	24	5.0.11		5411		5.5.11	44
Arsenic		SW6010B-Total	20	2.803	7	7.30	7.7	58	31	5.6 U		5.4 U		5.5 U	14
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	2.1	1.3	0.55 U	0.56 U		0.54 U		0.55 U	2.7
Chromium	mg/kg	SW6010B-Total	2,000*CR	050	42	48.15	63	31	32	22		32		28	53
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	190	150	410	5.6 U		5.4 U		35	140
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.45	0.085	0.038	0.023 JH		0.022 U		0.035	0.2
METALS (TCLP Extract-wet)	mg/L	014/0040D T-1-1													
Arsenic		SW6010B-Total													
Cadmium	mg/L	SW6010B-Total													
Chromium	mg/L	SW6010B-Total													
Lead	mg/L	SW6010B-Total													
VOLATILE ORGANICS	//	OMOGOOD												ND	
All Analytes	μg/kg	SW8260B												ND	
SEMIVOLATILE ORGANICS	//	014/00705 0144	5 000*NIA											000	
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA											900	
2-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA		00.000									950	
Acenaphthene	μg/kg	SW8270D SIM			20,000									150	
Acenaphthylene	μg/kg	SW8270D SIM												32	
Anthracene	μg/kg	SW8270D SIM												90	
Benzo(a)anthracene	μg/kg	SW8270D SIM			40.000									260	
Benzo(a)pyrene	μg/kg "	SW8270D SIM			12,000									190	
Benzo(b)fluoranthene	μg/kg	SW8270D SIM												120	
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM												82	
Benzo(k)fluoranthene	μg/kg	SW8270D SIM												85	
Chrysene	μg/kg	SW8270D SIM												400	
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM												26	
Fluoranthene	μg/kg	SW8270D SIM												440	
Fluorene	μg/kg	SW8270D SIM			30,000									180	
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM												53	
Naphthalene	μg/kg	SW8270D SIM	5,000*NA											120	
Phenanthrene	μg/kg	SW8270D SIM												440	
Pyrene	μg/kg	SW8270D SIM												590	
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100											248	

(Table Continues)

Page 4 of 5

		Analytical		MTCA B	Ecological	Sample No.: Depth (ft):	BPMW-1-1.5 1.5	BPMW-1-5 5	BPMW-2-0.5 0.5	BPMW-2-1.5 1.5	BPMW-2-5 5	BPMW-3 0.5' 0.5	BPMW-3 2' 2	BPMW-3 5'
PARAMETERS	Units	Method	MTCA A	soil to gw	Indicator Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/8/2009	9/8/2009	9/8/2009
PETROLEUM HYDROCARBONS					30110.	20019.00110	0,2,2000	0,2,200	0,2,200	0,2,200	0.2,2000	0/0/2000	0.0.2000	0.0.200
Diesel	mg/kg	NWTPH-Dx	2,000		200				29 U		- -	140 U	300 J	33 U
Motor Oil	mg/kg	NWTPH-Dx	2,000		200				310			1,400	3,800	170
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100		3.3 J			1.5 U		2 U	1.6 U	2.4 U
Benzene	µg/kg	SW8021B	30	4.483			20 U			20 U		20 U	20 U	20 U
Toluene	μg/kg	SW8021B	7,000	1. 100			33 U			30 U		41 U	33	48 U
m,p-Xylene	μg/kg	SW8021B	9,000*XY				33 U			30 U		41 U	40	48 U
METALS	pg/ng	01100213	0,000 7(1										10	
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30		11	6.7		9.3	5.7 U	7.3	11
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77		1.4	0.71		0.81 U	0.57 U	0.57 U	0.66 U
Chromium	mg/kg	SW6010B-Total	2,000*CR	0.00	42	48.15		38	41		33	13	48	30
Lead	mg/kg	SW6010B-Total	250	250	50	16.83		94	33		27	5.7 U	73	40
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07		0.15	0.044		0.046	0.023 U	0.052	0.051
METALS (TCLP Extract-wet)		SW1471A-Total		2.000	0.1	0.07		0.13	0.044		0.040	0.025 0	0.032	0.031
Arsenic	mg/L	SW6010B-Total												
Cadmium	mg/L	SW6010B-Total												
Chromium	mg/L	SW6010B-Total												
Lead	mg/L	SW6010B-Total												
VOLATILE ORGANICS	9/ _	300010B-10tal												
All Analytes	μg/kg	SW8260B										ND	ND	ND
SEMIVOLATILE ORGANICS	ру/ку	3440200B										ND	ND	ND
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA											
2-Methylnaphthalene	μg/kg μg/kg	SW8270D SIM	5,000 NA 5,000*NA											
Acenaphthene	μg/kg μg/kg	SW8270D SIM	5,000 NA		20,000									
		SW8270D SIM			20,000									
Acenaphthylene	μg/kg													
Anthracene	μg/kg	SW8270D SIM												
Benzo(a)anthracene	μg/kg	SW8270D SIM			12.000									
Benzo(a)pyrene	μg/kg	SW8270D SIM			12,000									
Benzo(b)fluoranthene	µg/kg	SW8270D SIM												
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM												
Benzo(k)fluoranthene	μg/kg	SW8270D SIM												
Chrysene	μg/kg	SW8270D SIM												
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM												
Fluoranthene	μg/kg	SW8270D SIM												= =
Fluorene	μg/kg	SW8270D SIM			30,000									
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM	E 000****											
Naphthalene	μg/kg	SW8270D SIM	5,000*NA											
Phenanthrene	μg/kg	SW8270D SIM												
Pyrene	μg/kg	SW8270D SIM												
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100		I/IU - Estimate		Bold values exceed F							

NOTES:

- - = Not analyzed or not collected

*CR = Chromium Standards based on Chromium III

*G = 100 if no benzene and TEX < 1% gas; 30 for other mixtures UNITS:

*NA = Includes Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene

*XY = Applies to the sum of all xylenes

ND = Non-detect

J/JH = Estimated value
UJ/UJH= Estimated non-detect

Bold values exceed Ecological Indicator Concentration

Shaded values exceed MTCA

ft = feet

mg/kg = milligram/kilogram mg/L = milligram/liter

μg/kg = microgram/kilogram

SOURCES: Background: 90th percentile Puget Sound (Ecology's Publication #94-115; 10/1994)

Model Toxics Control Act (MTCA) from WA Administrative Code 173-340-900 MTCA Method A Soil Cleanup Levels for Unrestricted Land Use: Table 740-1

MTCA Method B soil to groundwater: site-specific calculated

Ecological Indicator Concentrations: Table 749-3

Table 3-2. Summary of Groundwater Analytical Results

PARAMETERS	Units	Analytical Method	MTCA A	Sample No. Depth (ft): Date:		BC-10-12-2 12 9/18/2009	BC-11-12 12 9/18/2009	BP-23-15 15 9/2/2009	BP-25-10 10 9/3/2009	BPMW-1-10 10 9/18/2009	BPMW-2-6 6 9/18/2009	BPMW-3-10 10 9/18/2009
FIELD DATA												
Conductivity	mmhos/cm				0.332		0.221			0.443	0.379	0.380
рН	std units				7.36		7.05			7.57	7.91	6.70
Temperature	Celsius				16.6		78.8			13.8	13.7	22.5
Dissolved Oxygen	mg/L				2.63		2.91			2.97	2.96	3.91
PETROLEUM HYDROCARBONS												
Gasoline Range Hydrocarbons	mg/L	NWTPH-Gx	0.8/1*G		0.100 U	0.100 U	0.100 U	0.100 U		0.100 U	0.320	0.100 U
TOTAL METALS												
Arsenic	mg/L	200.8/6020-Total	0.005		0.0051	0.0067	0.0033 U			0.0051	0.0039	0.01
Chromium	mg/L	200.8/6020-Total			0.027	0.034	0.0067 U			0.0067 U	0.0091	0.061
Lead	mg/L	200.8/6020-Total	0.015		0.0079	0.0093	0.0011 U			0.0011 U	0.0017	0.0074
DISSOLVED METALS												
Arsenic	mg/L	200.8/6020-Diss	0.005		0.003 U	0.003 U	0.003 U	0.0085		0.005	0.0036	0.0054
VOLATILE ORGANICS												
All Analytes	μg/L	SW8260			ND	ND		ND	ND	ND		ND

NOTES:

- - = Not analyzed or not collected

ND = Non-detect

U = Not detected above the given practical quantitation limit

*G = 1 if no benzene ; 0.8 if benzene

Shaded values exceed MTCA

SOURCES:

Model Toxics Control Act (MTCA) from WA Administrative Code 173-340-900 MTCA Method A Soil Cleanup Levels for Ground Water: Table 720-1

UNITS:

ft = foot mmhos/cm = millimhos/centimeter mg/L = milligrams/liter µg/L = micrograms/liter

Table 3-3. Summary of Historical Soil Analytical Results

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BC-10-1 1	BC-11-5 5	GB-2-1 1	GB-2-4 4	VB-1-4 4	VB-3-1	VB-5-1	VB-6-1	VB-7-1 1
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	10/28/2008	06/25/2008	2/13/2008	2/13/2008	2/13/2008	2/13/2008	2/14/2008	2/14/2008	2/14/2008
PETROLEUM HYDROCARBON	NS														
Diesel	mg/kg	NWTPH-Dx	2,000		200		27 U				210	28 U		230	120
Motor Oil	mg/kg	NWTPH-Dx	2,000				81	55 U	1,300		1,200	180	1,300	1,000	1,300
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100		4.8 U		3.9 U				6.6 U	3.2 U	3.2 U
Toluene	μg/kg	SW8021B	7,000				48 U								
Toluene	μg/kg	SW8260B	7,000						2.6				1.1	6.2	2.7
m,p-Xylene	μg/kg	SW8021B	9,000*XY				48 U								
m,p-Xylene	μg/kg	SW8260B	9,000*XY						2.3 U				2.3 U	1.4	1.2 U
METALS															
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30		11 U		11 U		14			
Barium	mg/kg	SW6010B			102				170	47	79	89			
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77		0.55 U		0.56 U					
Chromium	mg/kg	SW6010B-Total			42	48.15		12	86	26	37	60			
Lead	mg/kg	SW6010B-Total	250	250	50	16.83		5.5 U		52	98	100			
Silver	mg/kg	SW6010B			2				0.57 U	0.56 U					
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07			0.38	0.28 U	0.29 U	0.34			
METALS (TCLP Extract-wet)															
Arsenic	mg/L	SW6010B-Total													
Barium	mg/L	SW6010B													
Cadmium	mg/L	SW6010B-Total													
VOLATILE ORGANICS															
1,2,4-Trimethylbenzene	μg/kg	SW8260							1.1 U				6.7	22	0.6 U
2-Butanone	μg/kg	SW8260B							5.7 U				7.9	5.8	6.2
Acetone	μg/kg	SW8260B							53				57	46	34
cis-1,2-Dichloroethene	μg/kg	SW8260B							1.1 U				1.1 U	0.6 U	
Isopropylbenzene	μg/kg	SW8260							1.1 U				1.2	1.6	0.73
Methylene Chloride	μg/kg	SW8260B	20						14				13	3 U	
Naphthalene	μg/kg	SW8260	500						1.1 U				140	15	5.1
n-Butylbenzene	μg/kg	SW8260							1.1 U				1.8	3.4	1.9
n-Propylbenzene	μg/kg	SW8260							1.1 U				1.1 U	1.8	1.3
p-Isopropyltoluene	μg/kg	SW8260							1.1 U				1.3	3.5	0.6 U
sec-Butylbenzene	µg/kg	SW8260							1.1 U				1.1 U	2	1.4
tert-Butylbenzene	µg/kg	SW8260							1.1 U				1.1 U	0.87	0.6 U
Tetrachloroethene	μg/kg	SW8260B	50						1.1 U				1.1 U	0.6 U	
Trichloroethene	μg/kg	SW8260B	30						1.1 U				1.1 U	0.6 U	0.6 U

(Table continues)

Table 3-3. Summary of Historical Soil Analytical Results

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	VB-8-0.25 0.25	VB-8-2 2	VB-9-0.5 0.5	VB-9-1.5 1.5	VB-10-1	VB-11-8 8	VB-12-8 8
PARAMETERS	Units	Method	MTCA A	_	Conc.	Background	2/14/2008	2/14/2008	2/14/2008	2/14/2008	2/14/2008	4/3/2008	4/3/2008
PETROLEUM HYDROCARBON	IS					_							
Diesel	mg/kg	NWTPH-Dx	2,000		200		130		4,900 U	1,800 U	28 U	28 U	28 U
Motor Oil	mg/kg	NWTPH-Dx	2,000				840		180,000	29,000	160	490	260
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100							8.9	5.4 U
Toluene	μg/kg	SW8021B	7,000										
Toluene	μg/kg	SW8260B	7,000										
m,p-Xylene	μg/kg	SW8021B	9,000*XY										
m,p-Xylene	μg/kg	SW8260B	9,000*XY										
METALS													
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30	32	18	13	190	120	11 U	
Barium	mg/kg	SW6010B			102		3,400	190	100	92	130	39	45
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	160	8.6	4.5	2.9	4.8	0.56 U	0.56 U
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15	1,100	71	71	60	60	25	32
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	2,100	210	76	240	350	5.6 U	5.6 U
Silver	mg/kg	SW6010B			2		2.4	0.56 U	0.66 U	0.58 U	0.55 U		0.56 U
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.56	0.28 U	0.33 U	0.33	0.27 U	0.29	0.28 U
METALS (TCLP Extract-wet)													
Arsenic	mg/L	SW6010B-Total								0.46			
Barium	mg/L	SW6010B					3.8						
Cadmium	mg/L	SW6010B-Total					3.3						
VOLATILE ORGANICS													
1,2,4-Trimethylbenzene	μg/kg	SW8260											
2-Butanone	μg/kg	SW8260B											
Acetone	μg/kg	SW8260B											
cis-1,2-Dichloroethene	μg/kg	SW8260B											
Isopropylbenzene	μg/kg	SW8260											
Methylene Chloride	μg/kg	SW8260B	20										
Naphthalene	μg/kg	SW8260	500										
n-Butylbenzene	μg/kg	SW8260											
n-Propylbenzene	μg/kg	SW8260											
p-Isopropyltoluene	μg/kg	SW8260											
sec-Butylbenzene	μg/kg	SW8260											
tert-Butylbenzene	μg/kg	SW8260											
Tetrachloroethene	μg/kg	SW8260B	50										
Trichloroethene	μg/kg	SW8260B	30										

NOTES: --= Not analyzed or not collected

*CR = Chromium Standards based on Chromium III

*G = 100 if no benzene and TEX < 1% gas; 30 for other mixtures

*XY = Applies to the sum of all xylenes

U = Not detected above the given practical quantitation limit

Shaded values exceed MTCA

Bold Bold values exceed Ecological Indicator Concentration

UNITS: ft = feet

mg/kg = milligram/kilogram mg/L = milligram/liter μg/kg = microgram/kilogram SOURCES: Background: 90th percentile Puget Sound (Ecology's Publication #94-115; 10/1994)

Model Toxics Control Act (MTCA) from WA Administrative Code 173-340-900

MTCA Method A Soil Cleanup Levels for Unrestricted Land Use: Table 740-1

MTCA Method B soil to groundwater: site-specific calculated

Ecological Indicator Concentrations: Table 749-3

Page 2 of 2

Table 3-4. Summary of Historical Groundwater Analytical Results

PARAMETERS	Units	Analytical Method	Sample No.: MTCA A	B4-W 4/2/2009	BC-10 2/4/2009	BC-11 12/30/2008	BC-12 2/4/2009	GB-1-W 2/13/2008	GB-2-W 2/13/2008	VB-2-W 2/13/2008	VB-3-W 2/14/2008	VB-4-W 2/14/2008	VB-5-W 2/14/2008	VB-6-W 2/14/2008
PETROLEUM HYDROCARBONS	Units	Wethou	WITCA A	4/2/2009	2/4/2009	12/30/2006	2/4/2009	2/13/2006	2/13/2006	2/13/2006	2/14/2006	2/14/2006	2/14/2006	2/14/2006
Motor Oil	mg/L	NWTPH-Dx	0.5		1.4	0.40 U	0.41 U		0.46 U	0.43 U		0.45 U	0.41 U	0.42 U
Gasoline Range Hydrocarbons	mg/L	NWTPH-Gx	0.8/1*G		0.10 U	0.40 U	0.41 U		0.40 0	0.43 U		0.45 U	0.41 U	0.100 U
Benzene	μg/L	SW8260	5		0.10 U	0.10 U	0.10 U			0.100 U		0.100 U	0.400 U	0.100 U
Toluene	μg/L	SW8260	1,000		1.0 U	1.0 U	1.0 U		9.9	0.63		0.58	0.41	0.43
Ethylbenzene	μg/L	SW8260	700		0.20 U	0.20 U	0.20 U		1.7	0.03 0.2 U		0.50 0.2 U	0.4 T	0.43 0.2 U
m,p-Xylene	μg/L	SW8260	1,000*XY		0.20 0	0.20 0	0.20 0	0.93	7.5	0.52		0.2 0	0.2 U	0.2 U
o-Xylene	μg/L	SW8260	1,000 X1					0.46	3.9	0.32		0.43	0.4 U	0.4 U
Total Xylenes	μg/L	SW8260	1,000 X1 1,000*XY		0.40 U	0.40 U	0.40 U		3.9	0.20		0.21	0.2 0	0.2 0
TOTAL METALS	μg/∟	3770200	1,000 / 1		0.40 0	0.40 0	0.40 0							
Arsenic	mg/L	SW7060	0.005		0.037	0.0033	0.011							
Barium	mg/L	SW6010	0.005		0.037	0.0055								
Chromium	mg/L	SW6010			0.230	0.011 U	0.036							
Lead	mg/L	SW7421	0.015		0.230	0.0011 U	0.030							
Selenium	mg/L	SW6010	0.013		0.076	0.0011 0	0.100							
Silver	mg/L	SW6010												
DISSOLVED METALS	IIIg/L	3770010												
Arsenic	mg/L	SW7060	0.005						0.005		0.35			
Barium	mg/L	SW6010	0.003						0.003		0.33			
VOLATILE ORGANICS	IIIg/L	3770010							0.044		0.13			
1,2,4-Trimethylbenzene	μg/L	SW8260						0.47	2.4	0.41		0.22	0.2 U	0.2 U
1,3,5-Trimethylbenzene		SW8260						0.47 0.2 U	0.61	0.4 T		0.2 U	0.2 U	0.2 U
Acetone	μg/L μg/L	SW8260						5 U	5.3	5 U		5 U	5 U	5 U
Chloroethane	μg/L	SW8260		1.0 U				1 U				1 U	1 U	1 U
Chloromethane		SW8260		1.0 U				1 U				1 U	1 U	1 U
cis-1,2-Dichloroethene	μg/L μg/L	SW8260		0.20 U	0.20 U	0.20 U	0.20 U					0.2 U	0.2 U	0.2 U
Naphthalene		SW8260	160	0.20 0	0.20 0			1 U	0.2 U			1 U	5	1.1
p-Isopropyltoluene	µg/L	SW8260	100					0.2 U	0.2 U			0.2 U	0.2 U	0.2 U
tert-Butylbenzene	μg/L	SW8260						0.2 U	0.2 U			0.2 U	0.2 U	0.2 U
	μg/L	SW8260		0.20 11										0.2 U
trans-1,3-Dichloropropene	μg/L		0.2	0.20 U	0.20.11	0.20.11	0.20.11	0.2 U	0.2 U			0.2 U	0.2 U	
Vinyl Chloride	μg/L	SW8260	0.2	0.20 U	0.20 U	0.20 U	0.20 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U

(Table continues)

Table 3-4. Summary of Historical Groundwater Analytical Results

		Analytical	Sample No.:	VB-7-W	VB-7-W2	VB-WD	VB-10-W	VB-11-W	VB-12-W
PARAMETERS	Units	Method	MTCA A	2/14/2008	2/14/2008	2/14/2008	2/14/2008	4/3/2008	4/3/2008
PETROLEUM HYDROCARBONS									
Motor Oil	mg/L	NWTPH-Dx	0.5	0.41 U		0.4 U		0.4 U	0.35 U
Gasoline Range Hydrocarbons	mg/L	NWTPH-Gx	0.8/1*G	0.100 U		0.100 U		0.100 U	0.100 U
Benzene	μg/L	SW8260	5	0.2 U	0.2 U	0.2 U			
Toluene	μg/L	SW8260	1,000	0.2 U	0.2 U	0.2 U			
Ethylbenzene	μg/L	SW8260	700	0.2 U	0.2 U	0.2 U			
m,p-Xylene	μg/L	SW8260	1,000*XY	0.4 U	0.4 U	0.4 U			
o-Xylene	μg/L	SW8260	1,000*XY	0.2 U	0.2 U	0.2 U			
Total Xylenes	μg/L	SW8260	1,000*XY						
TOTAL METALS									
Arsenic	mg/L	SW7060	0.005					0.023	0.0046
Barium	mg/L	SW6010						0.044	0.028 U
Chromium	mg/L	SW6010						0.011 U	0.011 U
Lead	mg/L	SW7421	0.015					0.0011 U	0.0011 U
Selenium	mg/L	SW6010						0.0056 U	0.0056 U
Silver	mg/L	SW6010						0.011 U	0.011 U
DISSOLVED METALS									
Arsenic	mg/L	SW7060	0.005				0.003 U	0.02	0.0041
Barium	mg/L	SW6010					0.05	0.039	0.025 U
VOLATILE ORGANICS									
1,2,4-Trimethylbenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,3,5-Trimethylbenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Acetone	μg/L	SW8260		5 U	5 U	5 U			
Chloroethane	μg/L	SW8260		1 U	1 U	1 U			
Chloromethane	μg/L	SW8260		1 U	1 U	1 U			
cis-1,2-Dichloroethene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Naphthalene	μg/L	SW8260	160	1 U	1 U	1 U			
p-Isopropyltoluene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
tert-Butylbenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
trans-1,3-Dichloropropene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Vinyl Chloride	μg/L	SW8260	0.2	0.2 U	0.2 U	0.2 U			

NOTES:

- - = Not analyzed or not collected

*G = 1 if no benzene ; 0.8 if benzene

*XY = Applies to the sum of all xylenes

U = Not detected above the given practical quantitation limit

Shaded values exceed MTCA A

SOURCES:

Model Toxics Control Act (MTCA) from WA Administrative Code 173-340-900 MTCA Method A Soil Cleanup Levels for Ground Water: Table 720-1

UNITS:

mg/L = milligrams/liter μg/L = micrograms/liter

	Table 3-5. Potential Applicable or Relevant and Appropriate Requirements	(ARARS)
ARAR	Description	Applicability
Soil		
Model Toxics Control Act (WAC 173-340-740, -747)	MTCA regulates the investigation and cleanup of releases to the environment that may pose a threat to human health or the environment. Establishes cleanup levels for soil, including derivation of soil concentrations protective of groundwater.	MTCA cleanup levels are applicable to Site soil.
Groundwater		
Safe Drinking Water Act, Primary Drinking Water Regulations (40 Code of Federal Regulations [CFR] 141.50 and 141.61(a))	These regulations protect the quality of public drinking water supplies through regulation of chemical parameters and constituent concentrations as maximum concentration limits (MCLs).	MCLs are potentially relevant and appropriate where groundwater is a potential source of drinking water.
Model Toxics Control Act (WAC 173-340-720)	MTCA regulates the investigation and cleanup of releases to the environment that may pose a threat to human health or the environment. Establishes cleanup levels for groundwater.	MTCA cleanup levels are applicable to Site groundwater.
Surface Water		
Clean Water Act, Section 304, National Recommended Water Quality Criteria, EPA Office of Science and Technology (4304T, 2004).	There are no ambient water quality criteria for PCE for protection of freshwater organisms.	Surface water quality criteria are potentially relevant and appropriate to ambient surface water quality for point-source discharges to Horse Creek.
Clean Water Act, National Pollutant Discharge Elimination System (40 CFR Part 122) and Washington State National Pollutant Discharge Elimination System Permit Program (WAC 173- 220).	The National Pollutant Discharge Elimination System (NPDES) program requires that permits be obtained for point-source discharges of pollutants to surface water. Under this regulation, a point-source discharge to a surface water body cannot cause an exceedance of water quality standards in the receiving water body outside the mixing zone.	Substantive regulatory requirements of the NPDES permit program are potentially applicable to the direct discharge of treated groundwater to a surface water body such as Horse Creek or Sammamish River.
Clean Water Act's National Toxics Rule (NTR) (40 CFR 131.36)	Provides values that have to be met for point-source discharges to surface water.	Potentially applicable to point-source discharges to Horse Creek should remedial activities cause release to surface water. If applicable, these values would have to be met at the mixing zone boundary established for the discharge.
Clean Water Act, General Pretreatment Regulations (40 CFR Part 403).	The regulations limit pollutants in wastewater discharges to sanitary sewer systems to protect publicly owned treatment works (POTWs) from accepting wastewater that would damage their system or cause them to exceed their NPDES permit discharge limits.	These regulations are potentially applicable to the discharge of treated groundwater to City of Bothell POTWs.
Washington State Water Quality Standards for Surface Waters (WAC 173-201A)	Washington State water quality standards protect freshwater aquatic life by specifying protection criteria by stretch of surface waters. WAC 173-201A provides limitations on other parameters such as turbidity, temperature, dissolved oxygen, and pH for protection of organisms. Tributaries of waters whose uses are designated salmon and trout spawning, core rearing and migration, or extraordinary primary contact recreation are protected at the same level as the waters themselves.	The substantive requirements of this regulation are potentially applicable for remedial actions affecting Horse Creek.
Washington Surface Water Quality Standards, Short-Term Modifications (WAC 173-201A-410)	Washington State provides for short-term modifications of standards for specific water bodies on a short-term basis when necessary to accommodate essential activities, respond to emergencies, or to otherwise protect the public interest.	These would be potentially applicable to remedial actions affecting Horse Creek.
Model Toxics Control Act (WAC 173-340-730)	MTCA regulates the investigation and cleanup of releases to the environment that may pose a threat to human health or the environment. Establishes cleanup levels for surface water.	MTCA cleanup levels may be applicable to the Site if remedial activities cause a release to surface water.
Air		
National Emission Standards for Hazardous Air Pollutants	Establishes specific emissions levels allowed for toxic air pollutants.	Applicable to treatment alternatives that may emit toxic pollutants to the air.
(NESHAPs) (40 CFR Part 261)		
Washington Clean Air Act and Implementing Regulations (WAC 173-400; WAC 173-460; WAC 173-490)	WAC 173-400 requires air emissions at the Site boundary to fall below the acceptable source impact limit (ASIL). WAC 173-400 also requires control of fugitive dust emissions during construction and defines general emission discharge treatment requirements. WAC 173-460 requires systemic control of new sources emitting air pollutants. WAC 173-490 sets emission standards and source control for volatile organic compounds.	Applicable for air stripping/sparging remedial technology.
Model Toxics Control Act (WAC 173-340-750)	MTCA regulates the investigation and cleanup of releases to the environment that may pose a threat to	MTCA cleanup levels may be applicable to the Site if remedial activities cause a

Page 1 of 2

Table 3-5. Potential Applicable or Relevant and A	Appropriate Requirements (ARARs)
---	----------------------------------

	pproduct of the same of the sa								
ARAR	Description	Applicability							
Miscellaneous									
Protection of Wetlands, Executive Order 11990 (40 CFR Part 6, Appendix A)	This executive order mandates that response actions taken by federal agencies must be designed to avoid long- and short-term impacts to wetlands. If remediation activities are located near/in wetlands, the activities must be designed to avoid adverse impact to the wetlands wherever possible, including minimizing wetlands destruction and preserving wetland values.	This Act would be potentially applicable to remedial activities at the Site.							
Endangered Species Act (50 CFR Parts 17, 402)	Section 7 of the Endangered Species Act (ESA) and 40 CFR Part 402 require that federal agencies consider the effects of their proposed actions on federal listed species. It requires consultation between the agency proposing the action and the U.S. Fish and Wildlife Service (USFWS) or National Oceanic and Atmospheric Administration (NOAA) Fisheries, as appropriate. Preparation of a biological assessment is conducted, addressing the potential effects to listed species in the area and methods to minimize those effects.	The ESA is potentially applicable to remedial actions at the Site because the USFWS has determined that federal threatened species (bald eagle and bull trout) may use the project area. Therefore, they could potentially be affected by these actions.							
Native American Graves Protection and Repatriation Act (43 CFR Part 10)	Native American Graves Protection and Repatriation Act regulations protect Native American burials from desecration through the removal and trafficking of human remains and "cultural items," including funerary and sacred objects.	This Act is potentially applicable to remedial actions at the Site because it is possible that the disturbance of Native American materials could occur as a result of work in the stream bed or subsurface excavations elsewhere at the Site. Such materials are not known to be present at the Site, but could be inadvertently uncovered during soil or sediment removal.							
National Historic Preservation Act (36 CFR Parts 60, 63, and 800)	National Historic Preservation Act (NHPA) regulations require federal agencies to consider the possible effects on historic sites or structures of actions proposed for federal funding or approval. Historic sites or structures as defined in the regulations are those on or eligible for the National Register of Historic Places, generally at least 50 years old.	This Act is potentially applicable to stream bed or other subsurface work at the Site. No such sites are known to be present in the area.							
Washington Hazardous Waste Management Act (WAC 173-303)	Establishes standards for the generation, transport, treatment, storage, or disposal of designated dangerous waste in the state.	This regulation is potentially applicable to alternatives that would involve handling of contaminated media at the Site. The area of contamination policy allows contaminated media to be consolidated within the same area of a site without triggering Resource Conservation and Recovery Act or Washington dangerous waste regulations.							
Department of Transportation of Hazardous Wastes (49 CFR 105 – 180)	Establishes specific U.S. Department of Transportation rules and technical guidelines for the off-site transport of hazardous materials.	Applicable to remedial activities that involve the off-site transportation of hazardous waste.							
Washington Solid Waste Handling Standards (WAC 173-350)	Establishes standards for handling and disposal of solid non-hazardous waste in Washington.	These regulations are potentially applicable to solid nonhazardous wastes and are potentially relevant and appropriate to on-site remedial actions governing contaminated media management.							
Washington Water Well Construction Act Regulations (WAC 173-160)	Provides requirements for water well construction.	These regulations are potentially applicable to the installation, operation, or closure of monitoring and treatment wells at the Site.							

Page 2 of 2

Table 4-1. Applicability Screening of Technologies for Soil

Technology	Applicability	Screening Comments
In Situ Biological Treatment		
Enhanced biodegradation	Not applicable	Not applicable as access to provide and maintain enhancements limited.
Natural attenuation	Not applicable	Not applicable to COCs, specifically metals.
Bioventing	Not applicable	Not applicable to COCs, specifically metals and minimally effective on oils.
Phytoremediation	Not applicable	Not applicable due to site usage.
In Situ Physical/ Chemical Treat	ment	
Chemical Oxidation	Applicable	Not applicable to metals COCs; however, can be used for other site COCs.
Electrokinetic Separation	Applicable	Not applicable to TPH COCs; however, can be used for metals COCs.
Fracturing	Not applicable	Not applicable due to depth of contaminants.
Soil Flushing	Not applicable	Creates additional waste streams for treatment.
Soil Vapor Extraction	Not applicable	Not applicable to COCs.
Solidification/Stabilization	Not applicable	Not applicable due to site usage.
In Situ Thermal Treatment		
Thermal Treatment	Not applicable	Not applicable to COCs, specifically metals. Creates additional waste streams for treatment.
Ex Situ Biological Treatment		
Biopiles	Not applicable	Replacement back into excavation not feasible due to time constraints.
Composting	Not applicable	Replacement back into excavation not feasible due to time constraints.
Landfarming	Not applicable	Replacement back into excavation not feasible due to time constraints.
Slurry Phase Biological Treatment	Not applicable	Creates additional waste streams for treatment.
Ex Situ Physical/Chemical Treat	ment	
Chemical Extraction	Not applicable	Creates additional waste streams for treatment.
Chemical Reduction/Oxidation	Not applicable	Not applicable to COCs, specifically metals.
Separation	Not applicable	Creates additional waste streams for treatment.
Soil Washing	Not applicable	Creates additional waste streams for treatment.
Solidification/Stabilization	Not applicable	Not applicable due to COC levels (i.e., hazardous waste disposal not required).
Ex Situ Thermal Treatment		
Hot Gas Decontamination	Not applicable	Not applicable to COCs.
Incineration	Not applicable	Not applicable to COCs, specifically metals.
Open Burn/Open Detonation	Not applicable	Not applicable to COCs.
Pyrolysis	Not applicable	Creates additional waste streams for treatment.
Thermal Desorption	Not applicable	Not applicable to COCs, specifically metals. Creates additional waste streams for treatment.
Containment		
Excavation and Offsite Disposal	Applicable	
Low Permeability Cap	Applicable	
Cap Enhancements/Alternatives	Not applicable	Not applicable due to site usage.

Note: Technologies in bold are retained, those that are lined out are dropped

Table 4-2. Applicability Screening of Technologies for Groundwater

Technology	Applicability	Screening Comments
In Situ Biological Treatment		
Enhanced bioremediation	Not applicable	Not applicable as access to provide and maintain enhancements limited.
Monitored Natural attenuation	Applicable	
Phytoremediation	Not applicable	Not applicable due to site usage.
In Situ Physical/ Chemical Treatme	nt	
Air Sparging	Not applicable	Not applicable to COCs.
Bioslurping	Not applicable	Not applicable to COCs.
Complexation	Applicable	
Directional Wells	Not applicable	Not applicable due to site usage.
Dual Phase Extraction	Not applicable	Not applicable to COCs.
Thermal Treatment	Not applicable	Not applicable to COCs.
Hydrofracturing Enhancements	Not applicable	Not applicable to subsurface conditions.
In-Well Air Stripping	Not applicable	Not applicable to COCs.
Passive/Reactive Treatment Walls	Not applicable	Not applicable to COCs and subsurface conditions.
Ex Situ Biological Treatment (Pump	and Treat)	
Bioreactors	Not applicable	Not applicable to COCs.
Constructed Wetlands	Not applicable	Not applicable due to site usage.
Ex Situ Physical/Chemical Treatme	nt (Pump and Tre	eat)
Adsorption/Absorption	Applicable	
Advanced Oxidation Processes	Not applicable	Not applicable to COCs.
Air Stripping	Not applicable	Not applicable to COCs.
Granular Activated Carbon	Not applicable	Not applicable to COCs.
lon Exchange	Not applicable	Not applicable due to groundwater chemistry and creates additional waste streams for treatment.
Precipitation/Coagulation/Flocculation	Not applicable	Creates additional waste streams for treatment.
Separation	Not applicable	Not applicable to COCs.
Sprinkler Irrigation	Not applicable	Not applicable to COCs.
Containment		
Physical Barriers	Not applicable	Not applicable due to regional groundwater quality.
Deep Well Injection	Not applicable	Not applicable to COCs.

Note: Technologies in bold are retained, those that are lined out are dropped

Table 4-3. Remedial Alternatives Estimated Costs

	Remedial Alternatives								
Criteria	1. No Action	2. Chemical Oxidation, Electrokinetic Separation, Low Permeability Cap, and Complexation	3. Excavation, Off-site Disposal, and Adsorption	4. Excavation, Off-site Disposal, Low Permeability Cap, and Groundwater Extraction	5. Excavation, Off-site Disposal, and Low Permeability Cap				
Construction Costs	\$0	\$3,013,100	\$2,040,290	\$346,768	\$217,689				
Operation and Maintenance Costs	\$0	\$190,854	\$1,760,559	\$1,847,789	\$118,854				
Total Costs	\$0	\$3,203,954	\$3,800,849	\$2,194,557	\$336,542				

Table 4-4. Remedial Alternative Permanent Solutions Criteria Summary

	Remedial Alternatives									
Criteria	1. No Action	2. Chemical Oxidation, Electrokinetic Separation, Low Permeability Cap, and Complexation	3. Excavation, Off-site Disposal, and Adsorption	4. Excavation, Off-site Disposal, Low Permeability Cap, and Groundwater Extraction	5. Excavation, Off-site Disposal, and Low Permeability Cap					
Protectiveness	Low	Medium	High	Medium	Medium					
Permanence	Low	Medium	High	Medium	Medium					
Cost	\$0	\$3,200,000	\$3,800,000	\$2,200,000	\$340,000					
Long-Term Effectiveness	Low	Low to Medium	High	Medium	Medium					
Short-Term Risks	High	Low	Low	Low	Low					
Implementability	High	Low	Medium	Medium	Medium					
Public Concern	High	Medium	Low	Low	Medium					

Table 4-5. Cost Estimate for Alternative 2 Chemical Oxidation, Electokinetic Separation, Low Permeability Cap, and Complexation

					O&M	Cost Present	
Item	Quantity	Units	Unit Cost	Capital Cost	Annual	Worth ²	Source
Bench-Scale Treatability Test	1	LS	\$15,000	\$15,000			Similar Project
Pilot Test	1	LS	\$150,000	\$150,000			Similar Project
Mobilization	1	LS	\$235,000	\$235,000			Similar Project; 8% of Capital Costs
Chemical Oxidation Implementation							
Mix Site Soils	1,007	CY	\$40	\$40,296			Similar Project
RegenOx TM	11,081	LB	\$2.50	\$27,704			Similar Project
Portland Cement for Soil Stabilization	30	Ton	\$130	\$3,900			Engineers Est.
Electrokinetic Separation Implementation							
Monitoring Well Installation	87	ea	\$2,000	\$174,000			Similar Project
Liquid Removal Assemblies	87	ea	\$5,000	\$435,000			EPA frtr website
Building (metal frame)							
Metal Structure	625	sf	\$50	\$31,250			Similar Project
Floor and Foundations	25	CY	\$600	\$15,000			Similar Project
General utilities, plumbing, lighting, power	1	LS	\$25,000	\$25,000			Similar Project
Treatment System Equipment							
Base Media Vessel Skid	2	LS	\$100,000	\$200,000			Similar Project
Influent pumps	2	ea	\$2,500	\$5,000			Similar Project
Electrical and I&C	20% of	Implementa	ation Cost	\$177,050			Engineer's Estimate
Equipment Installation & Piping	20% of	Implementa	ation Cost	\$177,050			Engineer's Estimate
Operation and Maintenance							Three months O&M
Power	193,778	kWh	\$0.06		\$11,627	\$10,866	EPA frtr website (500 kWh/m3)
Media Replacement	1	LS	\$10,000		\$10,000	\$9,346	Engineer's Estimate
Media Disposal	1	LS	\$5,000		\$5,000	\$4,673	Engineer's Estimate
Analytical Testing	1	LS	\$2,000		\$2,000	\$1,869	Engineer's Estimate
General Maintenance	1	LS	\$5,000		\$5,000	\$4,673	Engineer's Estimate
Operations Labor	720	hrs	\$100		\$72,000	\$67,290	Engineer's Estimate
Complexation Implementation							
Injection Well Installation	22	ea	\$4,000	\$88,000			Similar Project
MRC^{TM}	3,520	LB	\$9.50	\$33,440			Similar Project
Dosing Event (two events)	2	LS	\$5,000.00	\$10,000			Similar Project

Table 4-5. Cost Estimate for Alternative 2
Chemical Oxidation, Electokinetic Separation, Low Permeability Cap, and Complexation

					O&N	l Cost Present	
Item	Quantity	Units	Unit Cost	Capital Cost	Annual	Worth ²	Source
Subtotal				\$1,842,690			
Contingency	25%	of Capita	l Cost	\$460,673			
Construction/Project Management	10%	of Capita	l Cost	\$184,269			
Engineering (PS&E)	10%	of Capita	l Cost	\$184,269			
Construction Cost Subtotal				\$2,671,901			
Sales Tax			8.9%	\$237,799			
Environmental Oversight							
Institutional Controls							
Land Use Restrictions ¹	1	LS	\$12,000	\$12,000	\$500	\$7,143	Engineer's Estimate
Cleanup Action Plan	1	LS	\$9,000	\$9,000			
Oversight and Sample Collection	1	LS	\$50,000	\$50,000			Engineer's Estimate
Sample Analysis	12	ea	\$200	\$2,400			Engineer's Estimate
Reporting	1	LS	\$10,000	\$10,000			Engineer's Estimate
Monitoring Well Installation	5	ea	\$4,000	\$20,000			Similar Project
Groundwater Monitoring							
Sample Collection (Quarterly)	4	ea	\$4,000		\$16,000	\$14,953	Engineer's Estimate
Sample Analysis (Quarterly)	4	ea	\$3,000		\$12,000	\$11,215	Engineer's Estimate
Reporting (3 memos + 1 sum. report)	1	LS	\$10,000		\$10,000	\$9,346	Engineer's Estimate
Subtotal				\$103,400			
Operation and Maintenance Subtotal						\$141,373	
O&M Project Management and Support	10% of	O&M Pres	ent Worth			\$14,137	
O&M Contingency	25% of	O&M Pres	ent Worth			\$35,343	
Operation and Maintenance Total						\$190,854	
NET PRESENT WORTH						\$3,203,954	

Notes:

¹ - Annual institutional controls costs occur each year in perpetuity.

² - Discount rate of seven percent used for all present worth calculations.

Table 4-6. Cost Estimate for Alternative 3 Excavation, Offsite Disposal, and Adsorption

					O&M	Cost	
Item	Quantity	Units	Unit Cost	Capital Cost	Annual	Present Worth ²	Source
Bench-Scale Treatability Test	Quantity	LS	\$15,000	\$15,000	Allilual	WOITH	Similar Project
Pilot Test	1	LS	\$100,000	\$100,000			•
Mobilization	1	LS	\$275,000	\$275,000			Similar Project Similar Project; 8% of Capital Costs
Excavation and Offsite Disposal Implementation	ı	LS	φ275,000	φ275,000			Similar Project, 8% of Capital Costs
·							
Excavate, Stockpile, Haul, and Dispose Contaminated Soil	3,000	Ton	\$70	\$210,000			Similar Project
Import, Place, and Compact Granular	3,000	1011	Ψί	Ψ210,000			Oliffinal i Toject
Common Borrow	3,000	Ton	\$15.00	\$45,000			Similar Project
Adsorption Implementation	3,000	1011	Ψ13.00	ψ+0,000			Similar Froject
Extraction Well Installation	4	ea	\$4,000	\$16,000			Similar Project
Building (metal frame)	7	Ga	φ+,000	Ψ10,000			Similar Froject
Metal Structure	1,000	sf	\$50	\$50,000			Similar Project
Floor and Foundations	40	CY	\$600	\$24,000			Similar Project
General utilities, plumbing, lighting, power	1	LS	\$25,000	\$25,000			Similar Project
Treatment System Equipment	•	20	Ψ20,000	Ψ20,000			Cirmar i Tojoot
Base GFH Filter Vessel Skid	2	LS	\$100,000	\$200,000			Similar Project
GFH Backwash Tank	1	LS	\$25,000	\$25,000			Similar Project
Influent Pumps	4	ea	\$2,500	\$10,000			Similar Project
GFH Backwash Pump	1	ea	\$1,500	\$1,500			Similar Project
Electrical and I&C	20% of	Implementa		\$70,000			Engineer's Estimate
Equipment Installation & Piping		Implementa		\$70,000			Engineer's Estimate
Operation and Maintenance				, ,,,,,,,			Three months O&M
Power	300,000	kWh/yr	\$0.06		\$18,000	\$126,424	EPA frtr website (500 kWh/m3)
Media Replacement	4	LS/yr	\$4,100		\$16,400	\$115,187	Engineer's Estimate
Media Disposal	188	cf/yr	\$20		\$3,760	\$26,409	Engineer's Estimate
Analytical Testing	1	LS/yr	\$2,000		\$2,000	\$14,047	Engineer's Estimate
General Maintenance	1	LS/yr	\$20,000		\$20,000	\$140,472	Engineer's Estimate
Operations Labor	1,460	hrs/yr	\$75		\$109,500	\$769,082	Engineer's Estimate
Wastewater Discharge Fees	1,000	100 gal/yr	\$0.50		\$500	\$3,512	Engineer's Estimate

Table 4-6. Cost Estimate for Alternative 3 Excavation, Offsite Disposal, and Adsorption

					O&M	Cost	
Item	Quantity	Units	Unit Cost	Capital Cost	Annual	Present Worth ²	Source
Subtotal	•			\$1,136,500			
Contingency	25%	6 of Capital	Cost	\$284,125			
Construction/Project Management	10%	6 of Capital	Cost	\$113,650			
Engineering (PS&E)	10%	6 of Capital	Cost	\$113,650			
Stormwater Discharge Permit	10%	6 of Capital	Cost	\$113,650			
Wastewater Discharge Permit	1	LS	\$15,000	\$15,000			
Construction Cost Total				\$1,776,575			
Sales Tax			8.9%	\$158,115			
Environmental Oversight							
Institutional Controls							
Land Use Restrictions ¹	1	LS	\$12,000	\$12,000	\$500	\$7,143	Engineer's Estimate
Cleanup Action Plan	1	LS	\$9,000	\$9,000			Engineer's Estimate
Oversight and Sample Collection	1	LS	\$50,000	\$50,000			Engineer's Estimate
Sample Analysis	23	ea	\$200	\$4,600			Engineer's Estimate
Reporting	1	LS	\$10,000	\$10,000			Engineer's Estimate
Monitoring Well Installation	5	ea	\$4,000	\$20,000			Similar Project
Groundwater Monitoring							
Sample Collection (Annually)	10	ea	\$4,000		\$4,000	\$28,094	Engineer's Estimate
Sample Analysis (Annually)	10	ea	\$3,000		\$3,000	\$21,071	Engineer's Estimate
Reporting	10	LS	\$7,500		\$7,500	\$52,677	Engineer's Estimate
Subtotal				\$105,600			
Operation and Maintenance Subtotal						\$1,304,117	
O&M Project Management and Support	10% of	O&M Prese	ent Worth			\$130,412	
O&M Contingency	25% of	O&M Prese	ent Worth			\$326,029	
Operation and Maintenance Total						\$1,760,559	
NET PRESENT WORTH						\$3,800,849	

Notes:

¹ - Annual institutional controls costs occur each year in perpetuity.

 $^{^{\}rm 2}$ - Discount rate of seven percent used for all present worth calculations.

Table 4-7. Cost Estimate for Alternative 4
Excavation, Offsite Disposal, Low Permeability Cap, and Groundwater Extraction

					0&I	// Cost	
Itam	Ougatitu	lleite	Unit	Canital Coat	Annual	Present Worth ²	Source
Item	Quantity	Units	Cost	Capital Cost	Annual	worth	
Mobilization	1	LS	\$85,000	\$85,000			Similar Project; 8% of Capital Costs
Excavation and Offsite Disposal Implementation							
Excavate, Stockpile, Haul, and Dispose Contaminated Soil	530	Ton	\$70	\$37,100			Similar Project
Import, Place, and Compact Granular Common Borrow	530	Ton	\$15.00	\$7,950			Similar Project
Groundwater Extraction Implementation							
Extraction Well Installation	4	ea	\$4,000	\$16,000			Similar Project
Extraction System Equipment			. ,				•
Influent Pumps	4	ea	\$2,500	\$10,000			Similar Project
Electrical and I&C	20% of	Implementati	ion Cost	\$5,200			Engineer's Estimate
Equipment Installation & Piping		Implementati		\$5,200			Engineer's Estimate
Operation and Maintenance		•					Three months O&M
Power	5,000	kWh/yr	\$0.06		\$300	\$2,107	EPA frtr website (500 kWh/m3)
Analytical Testing	1	LS/yr	\$2,000		\$2,000	\$14,047	Engineer's Estimate
General Maintenance	1	LS/yr	\$2,000		\$2,000	\$14,047	Engineer's Estimate
Operations Labor	365	hrs/yr	\$75		\$27,375	\$192,271	Engineer's Estimate
Wastewater Discharge Fees	262,800	100 gal/yr	\$0.60		\$157,680	\$1,107,478	Engineer's Estimate
Subtotal				\$166,450			
Contingency	259	% of Capital 0	Cost	\$41,613			
Construction/Project Management	109	% of Capital 0	Cost	\$16,645			
Engineering	109	% of Capital 0	Cost	\$16,645			
Wastewater Discharge Permit	1	LS	\$15,000	\$15,000			
Construction Cost Total				\$256,353			
Sales Tax			8.9%	\$22,815			
Environmental Oversight							
Institutional Controls							
Land Use Restrictions ¹	1	LS	\$12,000	\$12,000	\$500	\$7,143	Engineer's Estimate
Cleanup Action Plan	1	LS	\$9,000	\$9,000	•	• •	Engineer's Estimate

Table 4-7. Cost Estimate for Alternative 4
Excavation, Offsite Disposal, Low Permeability Cap, and Groundwater Extraction

					O&M	Cost	
Item	Quantity	Units	Unit Cost	Capital Cost	Annual	Present Worth ²	Source
Oversight and Sample Collection	1	LS	\$20,000	\$20,000			Engineer's Estimate
Sample Analysis	8	ea	\$200	\$1,600			Engineer's Estimate
Reporting	1	LS	\$5,000	\$5,000			Engineer's Estimate
Monitoring Well Installation	5	ea	\$4,000	\$20,000			Similar Project
Groundwater Monitoring							
Sample Collection (Annually)	10	ea	\$4,000		\$4,000	\$28,094	Engineer's Estimate
Sample Analysis (Annually)	10	ea	\$3,000		\$3,000	\$21,071	Engineer's Estimate
Reporting	10	LS	\$5,000		\$5,000	\$35,118	Engineer's Estimate
Subtotal				\$67,600			
Operation and Maintenance Subtotal						\$1,421,376	
O&M Project Management and Support	5% of C	&M Preser	nt Worth			\$71,069	
O&M Contingency	25% of (D&M Prese	nt Worth			\$355,344	
Operation and Maintenance Total						\$1,847,789	
NET PRESENT WORTH						\$2,194,557	

Notes:

¹ - Annual institutional controls costs occur each year in perpetuity.

² - Discount rate of seven percent used for all present worth calculations.

Table 4-8. Cost Estimate for Alternative 5
Excavation, Offsite Disposal, Low Permeability Cap, and Monitored Natural Attenuation

					O&M	Cost	
			Unit	Capital		Present	
Item	Quantity	Units	Cost	Cost	Annual	Worth ²	Source
Mobilization	1	LS	\$50,000	\$50,000			Similar Project; 8% of Capital Costs
Excavation and Offsite Disposal Implementation							
Excavate, Stockpile, Haul, and Dispose	500	T	#70	ФО Т 400			O're'less Basis at
Contaminated Soil Import, Place, and Compact Granular Common	530	Ton	\$70	\$37,100			Similar Project
Borrow	530	Ton	\$15.00	\$7,950			Similar Project
Subtotal			ψ.σ.σσ	\$95,050			
Contingency	25%	of Capital Co	ost	\$23,763			
Construction/Project Management		of Capital Co		\$9,505			
Engineering		of Capital Co		\$9,505			
Construction Cost Total				\$137,823			
Sales Tax			8.9%	\$12,266			
Environmental Oversight							
Institutional Controls							
Land Use Restrictions ¹	1	LS	\$12,000	\$12,000	\$500	\$7,143	Engineer's Estimate
Cleanup Action Plan	1	LS	\$9,000	\$9,000			Engineer's Estimate
Oversight and Sample Collection	1	LS	\$20,000	\$20,000			Engineer's Estimate
Sample Analysis	8	ea	\$200	\$1,600			Engineer's Estimate
Reporting	1	LS	\$5,000	\$5,000			Engineer's Estimate
Monitoring Well Installation	5	ea	\$4,000	\$20,000			Similar Project
Groundwater Monitoring							
Sample Collection (Annually)	10	ea	\$4,000		\$4,000	\$28,094	Engineer's Estimate
Sample Analysis (Annually)	10	ea	\$3,000		\$3,000	\$21,071	Engineer's Estimate
Reporting	10	LS	\$5,000		\$5,000	\$35,118	Engineer's Estimate
Subtotal				\$67,600			
Operation and Maintenance Subtotal						\$91,426	
O&M Project Management and Support	5% of O	&M Present	Worth			\$4,571	
O&M Contingency	25% of C	0&M Present	Worth			\$22,856	
Operation and Maintenance Total						\$118,854	
NET PRESENT WORTH						\$336,542	

Notes

¹ - Annual institutional controls costs occur each year in perpetuity.

² - Discount rate of seven percent used for all present worth calculations.

APPENDIX A

Bothell Downtown Subarea Plan (Figure 1.1)

C. THE ENVISIONED FUTURE DOWNTOWN

This section provides an overview of the desired physical outcomes intended to result from implementing the combined regulations and planned public actions contained in this Plan.

The Downtown Subarea is composed of a multitude of privately held properties and miles of public rights-of-way under public ownership. The overarching purpose of the Downtown Plan is to orchestrate investment in changes made to this multiplicity of properties to produce greater value than any separate development could achieve, by providing a common purpose that all investors can rely upon, contribute to, and derive value from. This section describes the common purpose to which all investments shall be directed: a vision of the future that is sufficiently specific to provide a common purpose, yet broad enough to respond to opportunities and to the changes in the marketplace that will inevitably arise.

Note: The specific outcomes described and illustrated in this section are not part of the formal regulating code, and new development proposals will not be required to mimic the specific designs presented in the illustrations.

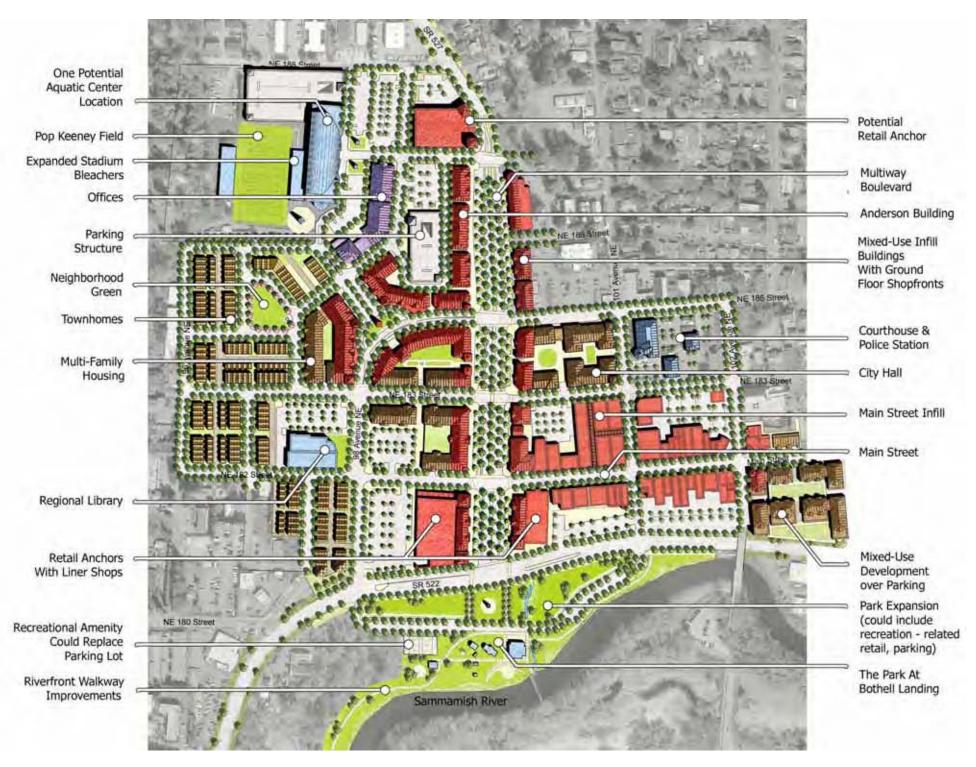
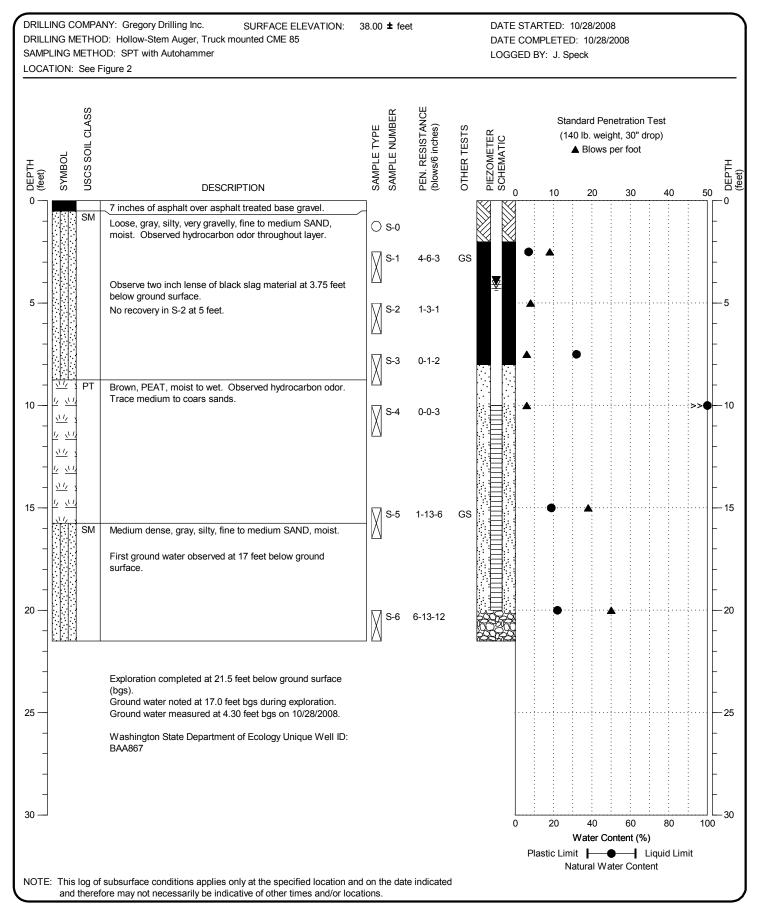
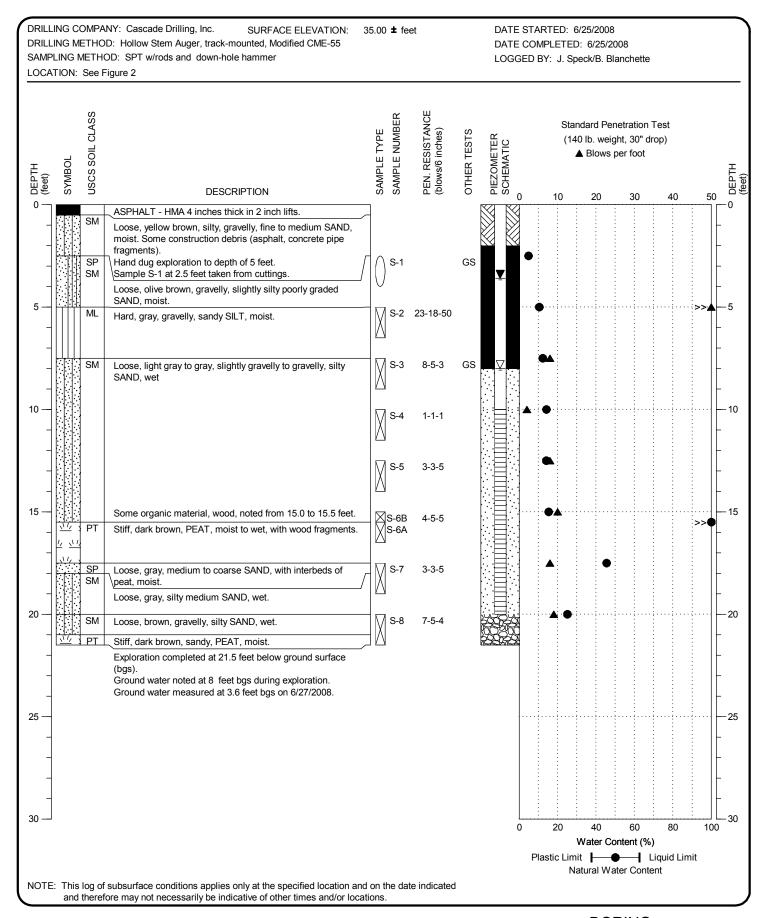



FIG. 1.1 A VISION OF POTENTIAL FUTURE DEVELOPMENT IN DOWNTOWN BOTHELL SHOWING ONE SCENARIO FOCUSING ON REDEVELOPMENT IN THE CORE AREA

APPENDIX B

Boring Logs

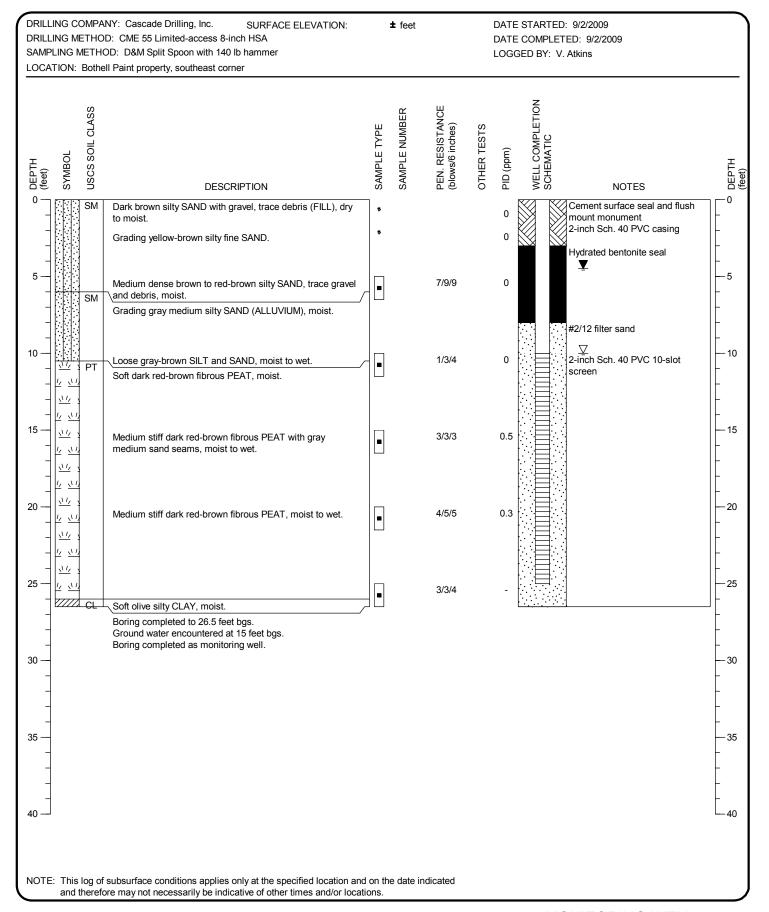


SR 522 PRELOAD RECOMMENDATIONS
BOTHELL CROSSROADS PROJECT
IC BOTHELL, WASHINGTON

BORING: BC-10

PAGE: 1 of 1

PROJECT NO.: 2007-098 FIGURE: 11

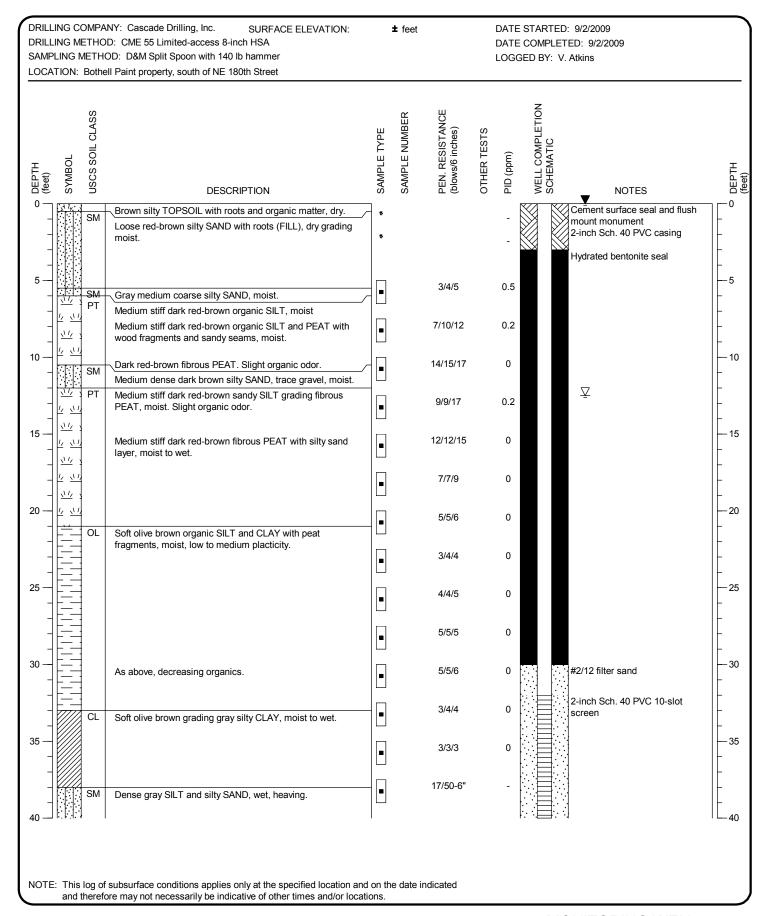

SR 522 PRELOAD RECOMMENDATIONS
BOTHELL CROSSROADS PROJECT

IC BOTHELL, WASHINGTON

BORING: BC-11

PAGE: 1 of 1

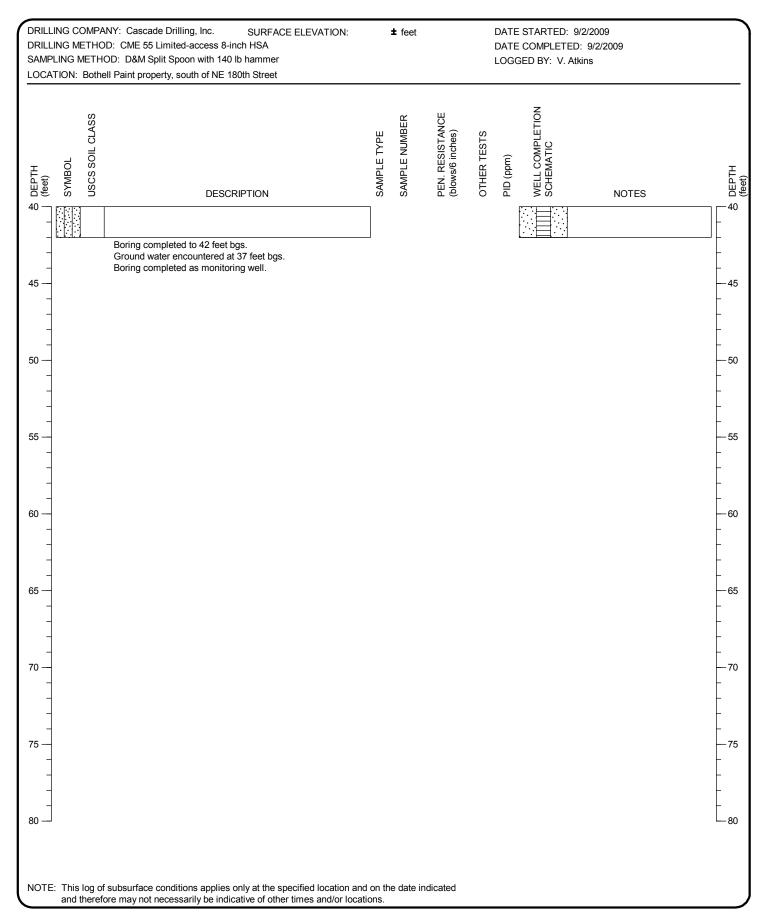
PROJECT NO.: 2007-098 FIGURE: 12



MONITORING WELL: BPMW-1

PAGE: 1 of 1

PROJECT NO.: 2007-098-800 FIGURE:



MONITORING WELL: BPMW-2

PAGE: 1 of 2

PROJECT NO.: 2007-098-800 FIGURE:

MONITORING WELL: BPMW-2

PAGE: 2 of 2

PROJECT NO.: 2007-098-800 FIGUR

MONITORING WELL: BPMW-3

PAGE: 1 of 1

PROJECT NO.: 2007-098-800 FIGURE:

APPENDIX C

Analytical Data Validation and Laboratory Results

APPENDIX C1

Data Validation Memorandum

Parametrix

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

411 108th AVENUE NE, SUITE 1800 BELLEVUE, WA 98004-5571 T. 425.458.6200 F. 425.458.6363 www.parametrix.com

TECHNICAL MEMORANDUM

Date: October 23, 2009

To: Project File

From: Annika Deutsch

Subject: City of Bothell Paint and Decorating Facility September 2009 Data Validation

cc: Sandra Matthews

Project Number: 555-1647-019-02-0404

Project Name: Bothell Hazardous Materials On-Call

INTRODUCTION

This technical memorandum summarizes the results of an internal quality assurance/quality control (QA/QC) review of analytical results for soil and groundwater samples collected on September 2-4, 8, and 18, 2009. Forty soil samples (including a field duplicate), nine groundwater samples, and three trip blanks were submitted to OnSite Environmental, Inc. (OnSite; Redmond, WA) for analysis. Twenty-eight additional soil samples were submitted to OnSite to be held for potential future analysis.

Soil samples were analyzed for a combination of diesel extended (Dx); gasoline extended (Gx); benzene, toluene, ethylbenzene, and xylenes (BTEX); halogenated organic compounds (HVOCs); semivolatile organic compounds (SVOCs); and total Model Toxics Control Act (MTCA) metals. All soil samples were analyzed for percent moisture. Groundwater samples were analyzed for a combination of Dx, Gx, HVOCs, and total and dissolved MTCA metals. The trip blanks were analyzed only for HVOCs and, in one case, Gx.

Final laboratory data were submitted to Parametrix via a Tier II-type data report (OnSite Laboratory Reference Number 09-029, 09-034, 09-035, 09-043, 09-057, 09-057B, 09-068, 09-180). All data and analytical QC elements were reviewed against laboratory and method QC criteria, and qualifiers were applied where judged appropriate.

DATA REVIEW SUMMARY

All samples collected were prepared and analyzed using standard methods. All method holding times were met, with the following exceptions:

- Dx for sample Dup-0904, which was analyzed three days over the 14-day method holding time.
- Mercury for samples BP-23 4-5, BP-11 4-5, BP-11 0-0.5, and BP-11 2-3 which were analyzed outside of the 28-day method holding time.

All analyses requested on the COC were conducted.

No trip blank or laboratory method blank contamination was observed, with the exception of Methylene Chloride $(1.2 \, \mu g/L)$ in the 09-180 trip blank. No associated samples had detections of Methylene Chloride; therefore, no samples were qualified as a result of this blank contamination.

All other analytical QC results were in control, indicating acceptable analytical accuracy and precision, with the exception of the following:

- According to the OnSite's case narratives, Internal Standard 1,4-Dichlorobenzene-d4 did not meet
 acceptance criteria for sample BP-26 (09-029) due to sample matrix interference. Therefore, HVOCs
 from Bromobenzene through 1,2,3-Trichlorobenzene for BP-26 (none detected at PQL) were qualified
 "UJ" for estimated non-detect.
- BPMW-3 2' (09-068) was qualified by the lab for hydrocarbons in the lube oil range impacting the diesel range results. Therefore, the diesel value for this sample was qualified "J" for estimated.
- BPMW-1-1.5 (09-034) was qualified by the lab for hydrocarbons indicative of heavier fuels present in the sample impacting the gasoline result. Therefore, the gasoline value for this sample was qualified "J" for estimated.

One soil field duplicate was collected and analyzed: original sample BP-20-01 and duplicate Dup-0904. The original sample was analyzed for Dx, total MTCA metals, and percent moisture. The duplicate was analyzed for only total MTCA metals and percent moisture. The results of these analyses were acceptable. Dx analysis was added to the chain-of-custody past holding time for comparison to the original sample. Due to the holding time exceedance, the diesel was qualified "UJH" for estimated non-detect and lube oil results were qualified "JH" for estimated. One groundwater field duplicate was collected and analyzed: original sample BC-10-12 and duplicate BC-10-12-2. These samples were analyzed for Gx/BTEX, Dx, HVOCs, and dissolved and total metals. The results of these analyses were acceptable. Table 1 summarizes all data qualified based on this review (i.e., does not include laboratory qualified data).

Table 1. Qualified Paint and Decorating Facility Soil Data

Sample ID	Matrix	Analyte	Result	Qualifier	Reason
BP-26	Soil	Bromobenzene	<0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	1,1,2,2-Tetrachloroethane	< 0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	1,2,3-Trichloropropane	<0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	2-Chlorotoluene	< 0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	4-Chlorotoluene	<0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	1,3-Dichlorobenzene	< 0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	1,4-Dichlorobenzene	<0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	1,2-Dichlorobenzene	< 0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	1,2-Dibromo-3- chloropropane	<0.003	UJ	OnSite internal standard not met.
BP-26	Soil	1,2,4-Trichlorobenzene	<0.00069	UJ	OnSite internal standard not met.
BP-26	Soil	Hexachlorobutadiene	<0.0034	UJ	OnSite internal standard not met.
BP-26	Soil	1,2,3-Trichlorobenzene	< 0.00069	UJ	OnSite internal standard not met.
BPMW-1-1.5	Soil	Gasoline	3.3	J	Heavier fuel range interference.
BPMW-3 2'	Soil	Diesel	300	J	Lube oil range interference.
BP-23 4-5	Soil	Mercury	0.023	JH	Holding time exceeded.
BP-11 4-5	Soil	Mercury	<0.022	UJH	Holding time exceeded.
BP-11 0-0.5	Soil	Mercury	<0.0050 mg/L	UJH	Holding time exceeded.
BP-11 2-3	Soil	Mercury	<0.0050 mg/L	UJH	Holding time exceeded.
Dup-0904	Soil	Diesel	<37	UJH	Holding time exceeded.

TECHNICAL MEMORANDUM (CONTINUED)

Sample	ID Matrix	Analyte	Result	Qualifier	Reason
Dup-090	4 Soil	Lube Oil	570	JH	Holding time exceeded.
J	Analyte was detected; th	e reported concentration shoul	d be considered an esti	mate due to lube	oil range interference.
UJ	Analyte was not detected	d at the PQL. Concentration rep	ported should be consid-	ered an estimate	due to internal standards not met.
JH	Analyte was detected; th	e reported concentration shoul	d be considered an esti	mate due to hold	ing time exceedance.
UJH	Analyte was not detecte	d at the PQL. Concentration re	ported should be consid	dered an estimate	e due to holding time exceedance.
Units	mg/kg, except where not	ed.			

CONCLUSION

All samples were analyzed within holding times, with the exception of Dx for Dup0904 and the mercury analyses noted above, and appropriate standard methods were used. No trip blank or laboratory method blank contamination was observed, with the exception noted above. Analytical accuracy and precision were determined to be generally acceptable based on this review. Field duplicate results were acceptable. All data reported should be considered valid as qualified and acceptable for further use.

		Analytical		MTCA B	Ecological	Sample No.: Depth (ft):	BP-1 0'-0.5' 0-0.5	BP-2 0-0.5 0-0.5	BP-3 0-0.5 0-0.5	BP-4 0-0.5 0-0.5	BP-5 0-0.5 10	BP-5 2-3 2-3	BP-5 4-5 4-5	BP-5 10 10	BP-6 0-1 0-1	BP-7 0-0.5 0-0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Indicator Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009
PETROLEUM HYDROCARBONS					GOIIO.	29.0	0,2,200	0,2,200	0,2,200	0,2,200	0,2,200	0,2,200	0,2,200	0,2,200	0,2,200	0.2,2000
Diesel	mg/kg	NWTPH-Dx	2,000		200								900	31 U		
Motor Oil	mg/kg	NWTPH-Dx	2,000										1,700	63 U		
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100											
Benzene	μg/kg	SW8021B	30	4.483												
Toluene	μg/kg	SW8021B	7,000													
Ethylbenzene	μg/kg	SW8021B	6,000													
m,p-Xylene	μg/kg	SW8021B	9,000*XY													
o-Xylene	μg/kg	SW8021B	9,000*XY													
METALS	P-9-1-9		-,													
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30	5.3 U	5.3 U	6.2	5.4 U	7.3	11			12	5.2 U
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	0.53 U	0.53 U	0.54 U	0.54 U	0.54 U	0.57 U			0.53 U	0.52 U
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15	33	28	29	31	37	35			47	14
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	5.3 U	5.3 U	35	26	48	49			30	13
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.021 U	0.021 U	0.087	0.044	0.047	0.05			0.03	0.021
METALS (TCLP Extract-wet)					-											
Arsenic	mg/L	SW6010B-Total														
Cadmium	mg/L	SW6010B-Total														
Chromium	mg/L	SW6010B-Total														
Lead	mg/L	SW6010B-Total														
Mercury	mg/L	SW7471A-Total														
VOLATILE ORGANICS																
1,1,1,2-Tetrachloroethane	μg/kg	SW8260B														
1,1,1-Trichloroethane	μg/kg	SW8260B												= =		
1,1,2,2-Tetrachloroethane	μg/kg	SW8260B														
1,1,2-Trichloroethane	μg/kg	SW8260B														
1,1-Dichloroethane	μg/kg	SW8260B														
1,1-Dichloroethene	μg/kg	SW8260B														
1,1-Dichloropropene	μg/kg	SW8260B														
1,2,3-Trichlorobenzene	μg/kg	SW8260B			20,000											
1,2,3-Trichloropropane	μg/kg	SW8260B														
1,2,4-Trichlorobenzene	μg/kg	SW8260B			20,000											
1,2-Dibromo-3-chloropropane	μg/kg	SW8260B														
1,2-Dibromoethane	μg/kg	SW8260B														
1,2-Dichlorobenzene	μg/kg	SW8260B														
1,2-Dichloroethane	μg/kg	SW8260B														
1,2-Dichloropropane	μg/kg	SW8260B			700,000											
1,3-Dichlorobenzene	μg/kg	SW8260B														
1,3-Dichloropropane	μg/kg	SW8260B														
1,4-Dichlorobenzene	μg/kg	SW8260B			20,000											
2,2-Dichloropropane	μg/kg	SW8260B												= =		
2-Chloroethyl Vinyl Ether	μg/kg	SW8260B														
2-Chlorotoluene	μg/kg	SW8260B														
4-Chlorotoluene	μg/kg	SW8260B												= =		
Bromobenzene	μg/kg	SW8260B												= =		
Bromochloromethane	μg/kg	SW8260B												= =		
Bromodichloromethane	μg/kg	SW8260B														
Bromoform	μg/kg	SW8260B														

					Ecological	Sample No.:	BP-1 0'-0.5'	BP-2 0-0.5	BP-3 0-0.5	BP-4 0-0.5	BP-5 0-0.5	BP-5 2-3	BP-5 4-5	BP-5 10	BP-6 0-1	BP-7 0-0.5
PARAMETERS	Units	Analytical Method	MTCA A	MTCA B soil to gw	Indicator Conc.	Depth (ft): Background	0-0.5 9/2/2009	0-0.5 9/2/2009	0-0.5 9/2/2009	0-0.5 9/2/2009	10 9/2/2009	2-3 9/2/2009	4-5 9/2/2009	10 9/2/2009	0-1 9/2/2009	0-0.5 9/2/2009
VOLATILE ORGANICS (contin		Metriod	MITCAA	SOII TO GW	Conc.	Dackground	3/2/2009	3/2/2003	3/2/2003	3/2/2003	3/2/2009	3/2/2003	3/2/2009	3/2/2003	3/2/2003	3/2/2009
Bromomethane	μg/kg	SW8260B									- -					
Carbon Tetrachloride		SW8260B														
Chlorobenzene	μg/kg μg/kg	SW8260B			40,000											
Chloroethane	μg/kg μg/kg	SW8260B			40,000											
Chloroform	μg/kg	SW8260B														
Chloromethane	μg/kg μg/kg	SW8260B														
cis-1,2-Dichloroethene	μg/kg μg/kg	SW8260B														
cis-1,3-Dichloropropene		SW8260B														
Dibromochloromethane	μg/kg	SW8260B														
Dibromomethane	μg/kg	SW8260B														
Dichlorodifluoromethane	μg/kg	SW8260B														
	μg/kg															
Hexachlorobutadiene Methyl Lodida	μg/kg	SW8260B														
Methyloge Chleride	μg/kg	SW8260B	20													
Methylene Chloride Tetrachloroethene	μg/kg	SW8260B	20 50													
	μg/kg	SW8260B	50													
trans-1,2-Dichloroethene	μg/kg	SW8260B														
trans-1,3-Dichloropropene	μg/kg	SW8260B	20													
Trichloroethene	μg/kg	SW8260B	30													
Trichlorofluoromethane	μg/kg	SW8260B														
Vinyl Chloride	μg/kg	SW8260B														
SEMIVOLATILE ORGANICS	//	CWOOZOD														
1,2,4-Trichlorobenzene	μg/kg	SW8270D														
1,2-Dichlorobenzene	μg/kg	SW8270D														
1,2-Dinitrobenzene	μg/kg	SW8270D														
1,2-Diphenylhydrazine	μg/kg	SW8270D														
1,3-Dichlorobenzene	μg/kg	SW8270D														
1,3-Dinitrobenzene 1,4-Dichlorobenzene	μg/kg	SW8270D														
	μg/kg	SW8270D														
1,4-Dinitrobenzene	μg/kg	SW8270D	5 000*NIA													
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA													
2,3,4,6-Tetrachlorophenol	μg/kg	SW8270D														
2,3,5,6-Tetrachlorophenol	μg/kg	SW8270D														
2,3-Dichloroaniline	μg/kg	SW8270D														
2,4,5-Trichlorophenol	μg/kg	SW8270D														
2,4,6-Trichlorophenol	μg/kg	SW8270D														
2,4-Dichlorophenol	μg/kg	SW8270D														
2,4-Dimethylphenol	μg/kg	SW8270D			20.000											
2,4-Dinitrophenol	μg/kg	SW8270D			20,000											
2,4-Dinitrotoluene	μg/kg	SW8270D														
2,6-Dinitrotoluene	μg/kg	SW8270D														
2-Chloronaphthalene	μg/kg	SW8270D														
2-Chlorophenol	μg/kg	SW8270D SIM	E 000*NIA													
2-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA													
2-Methylphenol	μg/kg															
2-Nitroaniline	μg/kg															
2-Nitrophenol	μg/kg	SW8270D														
3,3'-Dichlorobenzidine	μg/kg	SW8270D														

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BP-1 0'-0.5' 0-0.5	BP-2 0-0.5 0-0.5	BP-3 0-0.5 0-0.5	BP-4 0-0.5 0-0.5	BP-5 0-0.5 10	BP-5 2-3 2-3	BP-5 4-5 4-5	BP-5 10 10	BP-6 0-1 0-1	BP-7 0-0.5 0-0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009
SEMIVOLATILE ORGANICS (co	ontinued)															
3+4-Methylphenol	μg/kg	SW8270D														
3-Nitroaniline	μg/kg	SW8270D														
4,6-Dinitro-2-Methylphenol	μg/kg	SW8270D														
4-Bromophenyl-phenylether	μg/kg	SW8270D														
4-Chloro-3-methylphenol	μg/kg	SW8270D														
4-Chloroaniline	μg/kg	SW8270D														
4-Chlorophenyl-phenylether	μg/kg	SW8270D														
4-Nitroaniline	μg/kg	SW8270D														
4-Nitrophenol	μg/kg	SW8270D			7,000											
Acenaphthene	μg/kg	SW8270D SIM			20,000											
Acenaphthylene	μg/kg	SW8270D SIM			20,000											
Aniline	μg/kg	SW8270D														
Anthracene	μg/kg μg/kg	SW8270D SIM														
Benzidine	μg/kg μg/kg	SW8270D SIM														
Benzo(a)anthracene	μg/kg	SW8270D SIM														
Benzo(a)pyrene	μg/kg μg/kg	SW8270D SIM			12,000											
Benzo(b)fluoranthene	μg/kg μg/kg	SW8270D SIM			12,000											
Benzo(g,h,i)perylene		SW8270D SIM														
	μg/kg															
Benzo(k)fluoranthene	μg/kg	SW8270D SIM														
Benzyl Alcohol	μg/kg	SW8270D														
bis(2-Chloroethoxy) Methane	μg/kg	SW8270D														
bis-(2-Chloroethyl) Ether	μg/kg	SW8270D														
bis(2-Chloroisopropyl)ether	μg/kg	SW8270D SW8270D														
bis(2-Ethylhexyl)phthalate	μg/kg															
bis-2-Ethylhexyladipate	μg/kg	SW8270D														
Butylbenzylphthalate	μg/kg	SW8270D														
Carbazole	μg/kg	SW8270D														
Chrysene	μg/kg	SW8270D SIM														
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM														
Dibenzofuran	μg/kg	SW8270D														
Diethylphthalate	μg/kg	SW8270D			100,000											
Dimethylphthalate	μg/kg	SW8270D			200,000											
Di-n-Butylphthalate	μg/kg	SW8270D			200,000											
Di-n-Octyl phthalate	μg/kg	SW8270D														
Fluoranthene	μg/kg	SW8270D SIM														
Fluorene	μg/kg	SW8270D SIM			30,000											
Hexachlorobenzene	μg/kg	SW8270D														
Hexachlorobutadiene	μg/kg	SW8270D														
Hexachlorocyclopentadiene	μg/kg	SW8270D														
Hexachloroethane	μg/kg	SW8270D														
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM														
Isophorone	μg/kg	SW8270D														
Naphthalene	μg/kg	SW8270D SIM	5,000*NA													
Nitrobenzene	μg/kg	SW8270D			40,000											
N-Nitrosodimethylamine	μg/kg	SW8270D			20,000											
N-Nitroso-Di-N-Propylamine	μg/kg	SW8270D														
N-Nitrosodiphenylamine	μg/kg	SW8270D														

PARAMETERS	Units	Analytical Method	MTCA A	MTCA B	Ecological Indicator Conc.	Sample No.: Depth (ft): Background	BP-1 0'-0.5' 0-0.5 9/2/2009	BP-2 0-0.5 0-0.5 9/2/2009	BP-3 0-0.5 0-0.5 9/2/2009	BP-4 0-0.5 0-0.5 9/2/2009	BP-5 0-0.5 10 9/2/2009	BP-5 2-3 2-3 9/2/2009	BP-5 4-5 4-5 9/2/2009	BP-5 10 10 9/2/2009	BP-6 0-1 0-1 9/2/2009	BP-7 0-0.5 0-0.5 9/2/2009
SEMIVOLATILE ORGANICS (co	ntinued)															
Pentachlorophenol	μg/kg	SW8270D														
Phenanthrene	μg/kg	SW8270D SIM														
Phenol	μg/kg	SW8270D			30,000											
Pyrene	μg/kg	SW8270D SIM														
Pyridine	μg/kg	SW8270D														
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100													

(Table Continues)

		Analytical		MTCA B	Ecological	Sample No.: Depth (ft):	BP-8 0-0.5 0-0.5	BP-8 2-3 2-3	BP-9 0-0.5 0-0.5	BP-9 2-3 2-3	BP-10 0-0.5 0-0.5	BP-11 0-0.5 0-0.5	BP-11 2-3 2-3	BP-11 4-5 4-5	BP-12 0-0.5 0-0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Indicator Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009
PETROLEUM HYDROCARBON					00		0,4,400	0.2.2.00		0	0.4.200				0.111000
Diesel	mg/kg	NWTPH-Dx	2,000		200									28 U	
Motor Oil	mg/kg	NWTPH-Dx	2,000											56 U	
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100									1.4 U	
Benzene	μg/kg	SW8021B	30	4.483										20 U	
Toluene	μg/kg	SW8021B	7,000											28 U	
Ethylbenzene	μg/kg	SW8021B	6,000											28 U	
m,p-Xylene	µg/kg	SW8021B	9,000*XY											28 U	
o-Xylene	μg/kg	SW8021B	9,000*XY											28 U	
METALS	13 3		-,												
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30	50	10	130	11	5.1 U	210	390	6.1	11
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	0.54 U	0.6 U	3.9	0.54 U	0.51 U	4.5	3.5	0.56 U	0.53 U
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15	33	38	57	46	8.2	75	48	26	24
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	91	82	350	18	7.3	570	300	5.6 U	20
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.095	0.063	0.051	0.032	0.02 U	0.066	0.073	0.022 UJH	0.023
METALS (TCLP Extract-wet)															
Arsenic	mg/L	SW6010B-Total										0.40 U	0.96		
Cadmium	mg/L	SW6010B-Total										0.045	0.13		
Chromium	mg/L	SW6010B-Total						= =				0.022	0.020 U		
Lead	mg/L	SW6010B-Total										0.70	0.32		
Mercury	mg/L	SW7471A-Total										0.0050 UJI	0.0050 UJI		
VOLATILE ORGANICS															
1,1,1,2-Tetrachloroethane	μg/kg	SW8260B													
1,1,1-Trichloroethane	μg/kg	SW8260B													
1,1,2,2-Tetrachloroethane	μg/kg	SW8260B													
1,1,2-Trichloroethane	μg/kg	SW8260B													
1,1-Dichloroethane	μg/kg	SW8260B													
1,1-Dichloroethene	μg/kg	SW8260B													
1,1-Dichloropropene	μg/kg	SW8260B													
1,2,3-Trichlorobenzene	μg/kg	SW8260B			20,000										
1,2,3-Trichloropropane	μg/kg	SW8260B													
1,2,4-Trichlorobenzene	μg/kg	SW8260B			20,000										
1,2-Dibromo-3-chloropropane	μg/kg	SW8260B													
1,2-Dibromoethane	μg/kg	SW8260B							= =						
1,2-Dichlorobenzene	μg/kg	SW8260B													
1,2-Dichloroethane	μg/kg	SW8260B													
1,2-Dichloropropane	μg/kg	SW8260B			700,000										
1,3-Dichlorobenzene	μg/kg	SW8260B													
1,3-Dichloropropane	μg/kg	SW8260B													
1,4-Dichlorobenzene	μg/kg	SW8260B			20,000										
2,2-Dichloropropane	μg/kg	SW8260B													
2-Chloroethyl Vinyl Ether	μg/kg	SW8260B													
2-Chlorotoluene	μg/kg	SW8260B													
4-Chlorotoluene	μg/kg	SW8260B													
Bromobenzene	μg/kg	SW8260B													
Bromochloromethane	μg/kg	SW8260B													
Bromodichloromethane	μg/kg	SW8260B													
Bromoform	μg/kg	SW8260B											= =		

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BP-8 0-0.5 0-0.5	BP-8 2-3 2-3	BP-9 0-0.5 0-0.5	BP-9 2-3 2-3	BP-10 0-0.5 0-0.5	BP-11 0-0.5 0-0.5	BP-11 2-3 2-3	BP-11 4-5 4-5	BP-12 0-0.5 0-0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009
VOLATILE ORGANICS (contin	nued)														
Bromomethane	μg/kg	SW8260B													
Carbon Tetrachloride	μg/kg	SW8260B													
Chlorobenzene	μg/kg	SW8260B			40,000										
Chloroethane	μg/kg	SW8260B			,										
Chloroform	μg/kg	SW8260B													
Chloromethane	μg/kg	SW8260B													
cis-1,2-Dichloroethene	μg/kg	SW8260B													
cis-1,3-Dichloropropene	μg/kg	SW8260B													
Dibromochloromethane	μg/kg	SW8260B													
Dibromomethane	μg/kg	SW8260B													
Dichlorodifluoromethane	μg/kg	SW8260B													
Hexachlorobutadiene	μg/kg	SW8260B													
Methyl lodide	<u>μg/kg</u> μg/kg	SW8260B													
Methylene Chloride	μg/kg μg/kg	SW8260B	20												
Tetrachloroethene	μg/kg μg/kg	SW8260B	50												
trans-1,2-Dichloroethene	μg/kg μg/kg	SW8260B													
trans-1,3-Dichloropropene	μg/kg μg/kg	SW8260B													
Trichloroethene	μg/kg μg/kg	SW8260B	30												
Trichlorofluoromethane	μg/kg μg/kg	SW8260B	30												
Vinyl Chloride	μg/kg μg/kg	SW8260B													
SEMIVOLATILE ORGANICS	ру/ку	3770200B													
1,2,4-Trichlorobenzene	μg/kg	SW8270D													
1,2-Dichlorobenzene	μg/kg μg/kg	SW8270D													
1,2-Dinitrobenzene	μg/kg μg/kg	SW8270D													
1,2-Diphenylhydrazine	μg/kg μg/kg	SW8270D													
1,3-Dichlorobenzene	μg/kg μg/kg	SW8270D													
1.3-Dinitrobenzene	μg/kg μg/kg	SW8270D													
1,4-Dichlorobenzene	μg/kg μg/kg	SW8270D													
1,4-Dinitrobenzene	μg/kg μg/kg	SW8270D													
1-Methylnaphthalene	μg/kg μg/kg	SW8270D SIM	5,000*NA												
2,3,4,6-Tetrachlorophenol	μg/kg μg/kg	SW8270D	3,000 NA												
2,3,5,6-Tetrachlorophenol		SW8270D													
2,3-Dichloroaniline	μg/kg μg/kg	SW8270D													
2,4,5-Trichlorophenol	μg/kg μg/kg	SW8270D													
2,4,6-Trichlorophenol	μg/kg μg/kg	SW8270D													
2,4-Dichlorophenol	μg/kg μg/kg	SW8270D													
2,4-Dimethylphenol	μg/kg μg/kg	SW8270D													
2,4-Dinitrophenol	μg/kg μg/kg	SW8270D			20,000										
2,4-Dinitrotoluene	μg/kg μg/kg	SW8270D			20,000										
2,6-Dinitrotoluene	μg/kg μg/kg	SW8270D													
2-Chloronaphthalene	μg/kg μg/kg	SW8270D													
2-Chlorophenol	μg/kg μg/kg	SW8270D													
2-Methylnaphthalene		SW8270D SIM	5,000*NA												
	μg/kg		3,000 INA												
2-Methylphenol	μg/kg	SW8270D													
2-Nitrophonol	μg/kg	SW8270D SW8270D													
2-Nitrophenol 3,3'-Dichlorobenzidine	μg/kg	SW8270D SW8270D													
3,3 -DICHIOTODENZIGINE	μg/kg	34402100													

					Ecological	Sample No.:	BP-8 0-0.5	BP-8 2-3	BP-9 0-0.5	BP-9 2-3	BP-10 0-0.5	BP-11 0-0.5	BP-11 2-3	BP-11 4-5	BP-12 0-0.5
DADAMETEDO		Analytical		MTCA B	Indicator	Depth (ft):	0-0.5	2-3	0-0.5	2-3	0-0.5	0-0.5	2-3	4-5	0-0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009
SEMIVOLATILE ORGANICS (c															
3+4-Methylphenol	μg/kg	SW8270D													
3-Nitroaniline	μg/kg	SW8270D													
4,6-Dinitro-2-Methylphenol	μg/kg	SW8270D													
4-Bromophenyl-phenylether	μg/kg	SW8270D													
4-Chloro-3-methylphenol	μg/kg	SW8270D													
4-Chloroaniline	μg/kg	SW8270D													
4-Chlorophenyl-phenylether	μg/kg	SW8270D													
4-Nitroaniline	μg/kg	SW8270D													
4-Nitrophenol	μg/kg	SW8270D			7,000										
Acenaphthene	μg/kg	SW8270D SIM			20,000										
Acenaphthylene	μg/kg	SW8270D SIM													
Aniline	μg/kg	SW8270D													
Anthracene	μg/kg	SW8270D SIM													
Benzidine	μg/kg	SW8270D													
Benzo(a)anthracene	μg/kg	SW8270D SIM													
Benzo(a)pyrene	μg/kg	SW8270D SIM			12,000										
Benzo(b)fluoranthene	μg/kg	SW8270D SIM													
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM													
Benzo(k)fluoranthene	μg/kg	SW8270D SIM													
Benzyl Alcohol	μg/kg	SW8270D													
bis(2-Chloroethoxy) Methane	μg/kg	SW8270D													
bis-(2-Chloroethyl) Ether	μg/kg	SW8270D													
bis(2-Chloroisopropyl)ether	μg/kg	SW8270D													
bis(2-Ethylhexyl)phthalate	μg/kg	SW8270D													
bis-2-Ethylhexyladipate	μg/kg	SW8270D													
Butylbenzylphthalate	μg/kg	SW8270D													
Carbazole	μg/kg	SW8270D													
Chrysene	μg/kg	SW8270D SIM													
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM													
Dibenzofuran	μg/kg	SW8270D													
Diethylphthalate	μg/kg	SW8270D			100,000										
Dimethylphthalate	μg/kg	SW8270D			200,000										
Di-n-Butylphthalate	μg/kg	SW8270D			200,000										
Di-n-Octyl phthalate	μg/kg	SW8270D													
Fluoranthene	μg/kg	SW8270D SIM													
Fluorene	μg/kg	SW8270D SIM			30,000		-								
Hexachlorobenzene	μg/kg	SW8270D													
Hexachlorobutadiene	μg/kg	SW8270D													
Hexachlorocyclopentadiene	μg/kg	SW8270D													
Hexachloroethane	μg/kg	SW8270D													
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM													
Isophorone	μg/kg	SW8270D													
Naphthalene	μg/kg	SW8270D SIM	5,000*NA												
Nitrobenzene	μg/kg	SW8270D			40,000										
N-Nitrosodimethylamine	μg/kg	SW8270D			20,000										
N-Nitroso-Di-N-Propylamine	μg/kg	SW8270D													
N-Nitrosodiphenylamine	μg/kg	SW8270D					- 1								

PARAMETERS	Units	Analytical Method	MTCA A	MTCA B soil to gw	Ecological Indicator Conc.	Sample No.: Depth (ft): Background	BP-8 0-0.5 0-0.5 9/2/2009	BP-8 2-3 2-3 9/2/2009	BP-9 0-0.5 0-0.5 9/2/2009	BP-9 2-3 2-3 9/2/2009	BP-10 0-0.5 0-0.5 9/2/2009	BP-11 0-0.5 0-0.5 9/2/2009	BP-11 2-3 2-3 9/2/2009	BP-11 4-5 4-5 9/2/2009	BP-12 0-0.5 0-0.5 9/2/2009
SEMIVOLATILE ORGANICS (co	ntinued)														
Pentachlorophenol	μg/kg	SW8270D													
Phenanthrene	μg/kg	SW8270D SIM													
Phenol	μg/kg	SW8270D			30,000										
Pyrene	μg/kg	SW8270D SIM													
Pyridine	μg/kg	SW8270D													
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100												

(Table Continues)

		Analytical		MTCA B	Ecological	Sample No.: Depth (ft):	BP-13 0-0.5 0-0.5	BP-14 0-0.5 0-0.5	BP-15-0-0.5 0-0.5	BP-16-0-0.5 0-0.5	BP-17-0-0.5 0-0.5	BP-18-0-1 0-1	BP-19-0-1 0-1	BP-20-0-1 0-1	DUP-0904 (BP-20-0-1)
PARAMETERS	Units	Method	MTCA A	soil to gw	Indicator Conc.	Background	9/2/2009	9/2/2009	9/3/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009
PETROLEUM HYDROCARBONS		mounou		con to gii	Oone.	Daonground	0/2/2000	0/2/2000	0/0/2000	0/ 1/2000	<i>07 112000</i>	07 17 2000	57 II 2000	07 172000	0/1/2000
Diesel	mg/kg	NWTPH-Dx	2,000		200									140 U	37 UJH
Motor Oil	mg/kg	NWTPH-Dx	2,000											440	570 JH
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100										
Benzene	μg/kg	SW8021B	30	4.483											
Toluene	μg/kg	SW8021B	7,000												
Ethylbenzene	μg/kg	SW8021B	6,000												
m,p-Xylene	μg/kg	SW8021B	9,000*XY												
o-Xylene	μg/kg	SW8021B	9,000*XY												
METALS	13 3		-,												
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30	5.5 U	16	5.5 U	9.8	5.4 U	5.4 U	6	27	37
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	1.1	3.9	0.55 U	0.54 U	0.54 U	1.1	2.6	4.4	6.1
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15	34	200	20	26	23	43	50	66	91
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	100	130	5.5 U	35	11	78	180	270	410
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.13	0.23	0.022 U	0.053	0.034	0.12	0.27	0.53	0.49
METALS (TCLP Extract-wet)												-	-		
Arsenic	mg/L	SW6010B-Total													
Cadmium	mg/L	SW6010B-Total													
Chromium	mg/L	SW6010B-Total													
Lead	mg/L	SW6010B-Total													
Mercury	mg/L	SW7471A-Total													
VOLATILE ORGANICS															
1,1,1,2-Tetrachloroethane	μg/kg	SW8260B													
1,1,1-Trichloroethane	μg/kg	SW8260B													
1,1,2,2-Tetrachloroethane	μg/kg	SW8260B													
1,1,2-Trichloroethane	μg/kg	SW8260B													
1,1-Dichloroethane	μg/kg	SW8260B													
1,1-Dichloroethene	μg/kg	SW8260B													
1,1-Dichloropropene	μg/kg	SW8260B													
1,2,3-Trichlorobenzene	μg/kg	SW8260B			20,000										
1,2,3-Trichloropropane	μg/kg	SW8260B													
1,2,4-Trichlorobenzene	μg/kg	SW8260B			20,000			= =	= =		= =				
1,2-Dibromo-3-chloropropane	μg/kg	SW8260B			<u> </u>										
1,2-Dibromoethane	μg/kg	SW8260B						= =	= =		= =				==
1,2-Dichlorobenzene	μg/kg	SW8260B						= =	= =		= =				
1,2-Dichloroethane	μg/kg	SW8260B													
1,2-Dichloropropane	μg/kg	SW8260B			700,000										
1,3-Dichlorobenzene	μg/kg	SW8260B			·										
1,3-Dichloropropane	μg/kg	SW8260B													
1,4-Dichlorobenzene	μg/kg	SW8260B			20,000			= =	= =		= =				
2,2-Dichloropropane	μg/kg	SW8260B													
2-Chloroethyl Vinyl Ether	μg/kg	SW8260B													
2-Chlorotoluene	μg/kg	SW8260B													
4-Chlorotoluene	μg/kg	SW8260B													
Bromobenzene	μg/kg	SW8260B													
Bromochloromethane	μg/kg	SW8260B													
Bromodichloromethane	μg/kg	SW8260B													
Bromoform	μg/kg	SW8260B													
-							<u> </u>								

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BP-13 0-0.5 0-0.5	BP-14 0-0.5 0-0.5	BP-15-0-0.5 0-0.5	BP-16-0-0.5 0-0.5	BP-17-0-0.5 0-0.5	BP-18-0-1 0-1	BP-19-0-1 0-1	BP-20-0-1 0-1	DUP-0904 (BP-20-0-1)
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/3/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009
VOLATILE ORGANICS (contin	ued)														
Bromomethane	μg/kg	SW8260B													
Carbon Tetrachloride	μg/kg	SW8260B													
Chlorobenzene	μg/kg	SW8260B			40,000										
Chloroethane	μg/kg	SW8260B													
Chloroform	μg/kg	SW8260B													
Chloromethane	μg/kg	SW8260B													
cis-1,2-Dichloroethene	μg/kg	SW8260B													
cis-1,3-Dichloropropene	μg/kg	SW8260B													
Dibromochloromethane	μg/kg	SW8260B													
Dibromomethane	μg/kg	SW8260B													
Dichlorodifluoromethane	μg/kg	SW8260B													
Hexachlorobutadiene	μg/kg	SW8260B					-								
Methyl Iodide	μg/kg	SW8260B													
Methylene Chloride	μg/kg	SW8260B	20												
Tetrachloroethene	μg/kg	SW8260B	50												
trans-1,2-Dichloroethene	μg/kg	SW8260B													
trans-1,3-Dichloropropene	μg/kg	SW8260B													
Trichloroethene	μg/kg	SW8260B	30												
Trichlorofluoromethane	μg/kg	SW8260B													
Vinyl Chloride	μg/kg	SW8260B													
SEMIVOLATILE ORGANICS															
1,2,4-Trichlorobenzene	μg/kg	SW8270D													
1,2-Dichlorobenzene	μg/kg	SW8270D													
1,2-Dinitrobenzene	μg/kg	SW8270D													
1,2-Diphenylhydrazine	μg/kg	SW8270D													
1,3-Dichlorobenzene	μg/kg	SW8270D													
1,3-Dinitrobenzene	μg/kg	SW8270D													
1,4-Dichlorobenzene	μg/kg	SW8270D													
1,4-Dinitrobenzene	μg/kg	SW8270D						= =							
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA												
2,3,4,6-Tetrachlorophenol	μg/kg	SW8270D													
2,3,5,6-Tetrachlorophenol	μg/kg	SW8270D					-	= =					= =		
2,3-Dichloroaniline	μg/kg	SW8270D													
2,4,5-Trichlorophenol	μg/kg	SW8270D													
2,4,6-Trichlorophenol	μg/kg	SW8270D													
2,4-Dichlorophenol	μg/kg	SW8270D													
2,4-Dimethylphenol	μg/kg	SW8270D													
2,4-Dinitrophenol	μg/kg	SW8270D			20,000										
2,4-Dinitrotoluene	μg/kg	SW8270D													
2,6-Dinitrotoluene	μg/kg	SW8270D													
2-Chloronaphthalene	μg/kg	SW8270D													
2-Chlorophenol	μg/kg	SW8270D													
2-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA				-								
2-Methylphenol	μg/kg	SW8270D													
2-Nitroaniline	μg/kg	SW8270D													
2-Nitrophenol	μg/kg	SW8270D													
3,3'-Dichlorobenzidine	μg/kg	SW8270D													

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BP-13 0-0.5 0-0.5	BP-14 0-0.5 0-0.5	BP-15-0-0.5 0-0.5	BP-16-0-0.5 0-0.5	BP-17-0-0.5 0-0.5	BP-18-0-1 0-1	BP-19-0-1 0-1	BP-20-0-1 0-1	DUP-0904 (BP-20-0-1)
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/3/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009	9/4/2009
SEMIVOLATILE ORGANICS (co	ontinued)														
3+4-Methylphenol	μg/kg	SW8270D													
3-Nitroaniline	μg/kg	SW8270D					-	= =			= =		= =		
4,6-Dinitro-2-Methylphenol	μg/kg	SW8270D					-	= =			= =		= =		
4-Bromophenyl-phenylether	μg/kg	SW8270D													
4-Chloro-3-methylphenol	μg/kg	SW8270D													
4-Chloroaniline	μg/kg	SW8270D													
4-Chlorophenyl-phenylether	μg/kg	SW8270D													
4-Nitroaniline	μg/kg	SW8270D													
4-Nitrophenol	μg/kg	SW8270D			7,000										
Acenaphthene	μg/kg	SW8270D SIM			20,000										
Acenaphthylene	μg/kg	SW8270D SIM													
Aniline	μg/kg	SW8270D													
Anthracene	μg/kg	SW8270D SIM													
Benzidine	μg/kg	SW8270D													
Benzo(a)anthracene	μg/kg	SW8270D SIM													
Benzo(a)pyrene	μg/kg	SW8270D SIM			12,000										
Benzo(b)fluoranthene	μg/kg	SW8270D SIM			•			= =			= =				
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM						= =			= =				
Benzo(k)fluoranthene	μg/kg	SW8270D SIM													
Benzyl Alcohol	μg/kg	SW8270D													
bis(2-Chloroethoxy) Methane	μg/kg	SW8270D													
bis-(2-Chloroethyl) Ether	μg/kg	SW8270D													
bis(2-Chloroisopropyl)ether	μg/kg	SW8270D													
bis(2-Ethylhexyl)phthalate	μg/kg	SW8270D													
bis-2-Ethylhexyladipate	μg/kg	SW8270D													
Butylbenzylphthalate	μg/kg	SW8270D													
Carbazole	μg/kg	SW8270D													
Chrysene	μg/kg	SW8270D SIM													
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM													
Dibenzofuran	μg/kg	SW8270D													
Diethylphthalate	μg/kg	SW8270D			100,000										
Dimethylphthalate	μg/kg	SW8270D			200,000										
Di-n-Butylphthalate	μg/kg	SW8270D			200,000										
Di-n-Octyl phthalate	μg/kg	SW8270D			200,000										
Fluoranthene	μg/kg	SW8270D SIM													
Fluorene	μg/kg μg/kg	SW8270D SIM			30,000										
Hexachlorobenzene	μg/kg μg/kg	SW8270D			55,555										
Hexachlorobutadiene	μg/kg μg/kg	SW8270D													
Hexachlorocyclopentadiene	μg/kg μg/kg	SW8270D													
Hexachloroethane	μg/kg μg/kg	SW8270D													
Indeno(1,2,3-cd)pyrene	μg/kg μg/kg	SW8270D SIM													
Isophorone		SW8270D SIM													
Naphthalene	μg/kg	SW8270D SIM	5,000*NA												
 	μg/kg		5,000 NA		40,000										
Nitrobenzene N. Nitrosodimothylamino	μg/kg	SW8270D													
N-Nitrosodimethylamine	μg/kg	SW8270D			20,000										
N-Nitroso-Di-N-Propylamine	μg/kg	SW8270D													
N-Nitrosodiphenylamine	μg/kg	SW8270D													

PARAMETERS	Units	Analytical Method	MTCA A	MTCA B soil to gw	Ecological Indicator Conc.	Sample No.: Depth (ft): Background	BP-13 0-0.5 0-0.5 9/2/2009	BP-14 0-0.5 0-0.5 9/2/2009	BP-15-0-0.5 0-0.5 9/3/2009	BP-16-0-0.5 0-0.5 9/4/2009	BP-17-0-0.5 0-0.5 9/4/2009	BP-18-0-1 0-1 9/4/2009	BP-19-0-1 0-1 9/4/2009	BP-20-0-1 0-1 9/4/2009	DUP-0904 (BP-20-0-1) 9/4/2009
SEMIVOLATILE ORGANICS (co	ntinued)														
Pentachlorophenol	μg/kg	SW8270D													
Phenanthrene	μg/kg	SW8270D SIM													
Phenol	μg/kg	SW8270D			30,000										
Pyrene	μg/kg	SW8270D SIM													
Pyridine	μg/kg	SW8270D													
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100				-								

(Table Continues)

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BP-21-0-1 0-1	BP-23 0-5 0-5	BP-23 2-3 2-3	BP-23 4-5 4-5	BP-24-8 8	BP-25-0-0.5 0-0.5	BP-25-5.5 5.5	BP-26 1-2	BPMW-1-0.5 0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/4/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/3/2009	9/3/2009	9/2/2009	9/2/2009
PETROLEUM HYDROCARBON	IS														
Diesel	mg/kg	NWTPH-Dx	2,000		200		27 U			28 U	33 U		29 U		140 U
Motor Oil	mg/kg	NWTPH-Dx	2,000				220		= =	56 U	67 U		110		790
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100					1.3 U				1.8 U	
Benzene	μg/kg	SW8021B	30	4.483						20 U				67	
Toluene	μg/kg	SW8021B	7,000							27 U				36 U	
Ethylbenzene	μg/kg	SW8021B	6,000							27 U				36 U	
m,p-Xylene	μg/kg	SW8021B	9,000*XY							27 U				36 U	
o-Xylene	μg/kg	SW8021B	9,000*XY							27 U				36 U	
METALS															
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30	7.7	58	31	5.6 U		5.4 U		5.5 U	14
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77	2.1	1.3	0.55 U	0.56 U		0.54 U		0.55 U	2.7
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15	63	31	32	22		32		28	53
Lead	mg/kg	SW6010B-Total	250	250	50	16.83	190	150	410	5.6 U		5.4 U		35	140
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07	0.45	0.085	0.038	0.023 JH		0.022 U		0.035	0.2
METALS (TCLP Extract-wet)					-										
Arsenic	mg/L	SW6010B-Total													
Cadmium	mg/L	SW6010B-Total													
Chromium	mg/L	SW6010B-Total													
Lead	mg/L	SW6010B-Total													
Mercury	mg/L	SW7471A-Total													
VOLATILE ORGANICS		OWITIATOLA													
1,1,1,2-Tetrachloroethane	μg/kg	SW8260B												0.69 U	
1,1,1-Trichloroethane	μg/kg μg/kg	SW8260B												0.69 U	
1,1,2,2-Tetrachloroethane	μg/kg μg/kg	SW8260B												0.69 UJ	
1,1,2-Trichloroethane		SW8260B												0.69 U	
1,1-Dichloroethane	μg/kg μg/kg	SW8260B												0.69 U	
1,1-Dichloroethene		SW8260B												0.69 U	
	μg/kg														
1,1-Dichloropropene	μg/kg	SW8260B			20,000									0.69 U	
1,2,3-Trichlorobenzene	μg/kg	SW8260B			20,000									0.69 UJ	
1,2,3-Trichloropropane	μg/kg	SW8260B			20.000									0.69 UJ	
1,2,4-Trichlorobenzene	μg/kg	SW8260B			20,000									0.69 UJ	
1,2-Dibromo-3-chloropropane	μg/kg	SW8260B												3.4 UJ	
1,2-Dibromoethane	μg/kg	SW8260B												0.69 U	
1,2-Dichlorobenzene	μg/kg	SW8260B												0.69 UJ	
1,2-Dichloroethane	μg/kg	SW8260B			700.000									0.69 U	
1,2-Dichloropropane	μg/kg	SW8260B			700,000									0.69 U	
1,3-Dichlorobenzene	μg/kg	SW8260B												0.69 UJ	
1,3-Dichloropropane	μg/kg	SW8260B												0.69 U	
1,4-Dichlorobenzene	μg/kg	SW8260B			20,000									0.69 UJ	
2,2-Dichloropropane	μg/kg	SW8260B												0.69 U	
2-Chloroethyl Vinyl Ether	μg/kg	SW8260B												3.4 U	
2-Chlorotoluene	μg/kg	SW8260B												0.69 UJ	
4-Chlorotoluene	μg/kg	SW8260B												0.69 UJ	
Bromobenzene	μg/kg	SW8260B												0.69 UJ	
Bromochloromethane	μg/kg	SW8260B												0.69 U	
Bromodichloromethane	μg/kg	SW8260B												0.69 U	
Bromoform	μg/kg	SW8260B												0.69 U	

					Ecological	Sample No.:	BP-21-0-1	BP-23 0-5	BP-23 2-3	BP-23 4-5	BP-24-8	BP-25-0-0.5	BP-25-5.5	BP-26	BPMW-1-0.5
DADAMETERO		Analytical	мтолл	MTCA B	Indicator	Depth (ft):		0-5	2-3	4-5	8	0-0.5	5.5	1-2	0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/4/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/3/2009	9/3/2009	9/2/2009	9/2/2009
VOLATILE ORGANICS (continue	•	CIMOCOD												0.00.11	
Bromomethane	μg/kg	SW8260B												0.69 U	
Carbon Tetrachloride	μg/kg	SW8260B			40.000									0.69 U	
Chlorobenzene	μg/kg	SW8260B			40,000									0.69 U	
Chloroethane	μg/kg	SW8260B												3.4 U	
Chloroform	μg/kg	SW8260B												0.69 U	
Chloromethane	μg/kg	SW8260B												3.4 U	
cis-1,2-Dichloroethene	μg/kg	SW8260B												0.69 U	
cis-1,3-Dichloropropene	μg/kg	SW8260B												0.69 U	
Dibromochloromethane	μg/kg	SW8260B												0.69 U	
Dibromomethane	μg/kg	SW8260B												0.69 U	
Dichlorodifluoromethane	µg/kg	SW8260B												0.69 U	
Hexachlorobutadiene	μg/kg	SW8260B												3.4 UJ	
Methyl lodide	μg/kg	SW8260B												3.4 U	
Methylene Chloride	μg/kg	SW8260B	20											3.4 U	
Tetrachloroethene	μg/kg	SW8260B	50											0.69 U	
trans-1,2-Dichloroethene	μg/kg	SW8260B												0.69 U	
trans-1,3-Dichloropropene	μg/kg	SW8260B												0.69 U	
Trichloroethene	μg/kg	SW8260B	30											0.69 U	
Trichlorofluoromethane	μg/kg	SW8260B												0.69 U	
Vinyl Chloride	μg/kg	SW8260B												0.69 U	
SEMIVOLATILE ORGANICS															
1,2,4-Trichlorobenzene	μg/kg	SW8270D												180 U	
1,2-Dichlorobenzene	μg/kg	SW8270D												180 U	
1,2-Dinitrobenzene	μg/kg	SW8270D												180 U	
1,2-Diphenylhydrazine	μg/kg	SW8270D												180 U	
1,3-Dichlorobenzene	μg/kg	SW8270D												180 U	
1,3-Dinitrobenzene	μg/kg	SW8270D												180 U	
1,4-Dichlorobenzene	μg/kg	SW8270D												180 U	
1,4-Dinitrobenzene	μg/kg	SW8270D												180 U	
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA											900	
2,3,4,6-Tetrachlorophenol	μg/kg	SW8270D												180 U	
2,3,5,6-Tetrachlorophenol	μg/kg	SW8270D												180 U	
2,3-Dichloroaniline	μg/kg	SW8270D												180 U	
2,4,5-Trichlorophenol	μg/kg	SW8270D												180 U	
2,4,6-Trichlorophenol	μg/kg	SW8270D												180 U	
2,4-Dichlorophenol	μg/kg	SW8270D												180 U	
2,4-Dimethylphenol	μg/kg	SW8270D												180 U	
2,4-Dinitrophenol	μg/kg	SW8270D			20,000									920 U	
2,4-Dinitrotoluene	μg/kg	SW8270D												180 U	
2,6-Dinitrotoluene	μg/kg	SW8270D												180 U	
2-Chloronaphthalene	μg/kg	SW8270D												180 U	
2-Chlorophenol	μg/kg	SW8270D												180 U	
2-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA											950	
2-Methylphenol	μg/kg	SW8270D	,											180 U	
2-Nitroaniline	μg/kg	SW8270D												180 U	
2-Nitrophenol	μg/kg	SW8270D												180 U	
	μg/kg	SW8270D												1800 U	

					Ecological	Sample No.:	BP-21-0-1	BP-23 0-5	BP-23 2-3	BP-23 4-5	BP-24-8	BP-25-0-0.5	BP-25-5.5	BP-26	BPMW-1-0.5
		Analytical		MTCA B	Indicator	Depth (ft):		0-5	2-3	4-5	8	0-0.5	5.5	1-2	0.5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/4/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/3/2009	9/3/2009	9/2/2009	9/2/2009
SEMIVOLATILE ORGANICS (c	•														
3+4-Methylphenol	μg/kg	SW8270D												180 U	
3-Nitroaniline	μg/kg	SW8270D												180 U	
4,6-Dinitro-2-Methylphenol	μg/kg	SW8270D												920 U	
4-Bromophenyl-phenylether	μg/kg	SW8270D												180 U	
4-Chloro-3-methylphenol	μg/kg	SW8270D												180 U	
4-Chloroaniline	μg/kg	SW8270D												180 U	
4-Chlorophenyl-phenylether	μg/kg	SW8270D												180 U	
4-Nitroaniline	μg/kg	SW8270D												180 U	
4-Nitrophenol	μg/kg	SW8270D			7,000									180 U	
Acenaphthene	μg/kg	SW8270D SIM			20,000									150	
Acenaphthylene	μg/kg	SW8270D SIM												32	
Aniline	μg/kg	SW8270D												180 U	
Anthracene	μg/kg	SW8270D SIM												90	
Benzidine	μg/kg	SW8270D												1800 U	
Benzo(a)anthracene	μg/kg	SW8270D SIM												260	
Benzo(a)pyrene	μg/kg	SW8270D SIM			12,000									190	
Benzo(b)fluoranthene	μg/kg	SW8270D SIM												120	
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM												82	
Benzo(k)fluoranthene	μg/kg	SW8270D SIM												85	
Benzyl Alcohol	μg/kg	SW8270D												180 U	
bis(2-Chloroethoxy) Methane	μg/kg	SW8270D												180 U	
bis-(2-Chloroethyl) Ether	μg/kg	SW8270D												180 U	
bis(2-Chloroisopropyl)ether	μg/kg	SW8270D												180 U	
bis(2-Ethylhexyl)phthalate	μg/kg	SW8270D												180 U	
bis-2-Ethylhexyladipate	μg/kg	SW8270D												180 U	
Butylbenzylphthalate	μg/kg	SW8270D												180 U	
Carbazole	μg/kg	SW8270D												180 U	
Chrysene	μg/kg	SW8270D SIM												400	
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM												26	
Dibenzofuran	μg/kg	SW8270D												180 U	
Diethylphthalate	μg/kg	SW8270D			100,000									180 U	
Dimethylphthalate	μg/kg	SW8270D			200,000									180 U	
Di-n-Butylphthalate	μg/kg	SW8270D			200,000									180 U	
Di-n-Octyl phthalate	μg/kg	SW8270D												180 U	
Fluoranthene	μg/kg	SW8270D SIM												440	
Fluorene	μg/kg	SW8270D SIM			30,000									180	
Hexachlorobenzene	μg/kg	SW8270D												180 U	
Hexachlorobutadiene	μg/kg	SW8270D												180 U	
Hexachlorocyclopentadiene	μg/kg	SW8270D												180 U	
Hexachloroethane	μg/kg	SW8270D												180 U	
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM												53	
Isophorone	μg/kg	SW8270D												180 U	
Naphthalene	μg/kg	SW8270D SIM	5,000*NA											120	
Nitrobenzene	μg/kg	SW8270D			40,000									180 U	
N-Nitrosodimethylamine	μg/kg μg/kg	SW8270D			20,000									180 U	
N-Nitroso-Di-N-Propylamine	μg/kg	SW8270D			,,									180 U	
N-Nitrosodiphenylamine	μg/kg	SW8270D												180 U	
	M9/N9	J. 10210D					1							100 0	

PARAMETERS	Units	Analytical Method	MTCA A	MTCA B	Ecological Indicator Conc.	Sample No.: Depth (ft): Background	BP-21-0-1 0-1 9/4/2009	BP-23 0-5 0-5 9/2/2009	BP-23 2-3 2-3 9/2/2009	BP-23 4-5 4-5 9/2/2009	BP-24-8 8 9/2/2009	BP-25-0-0.5 0-0.5 9/3/2009	BP-25-5.5 5.5 9/3/2009	BP-26 1-2 9/2/2009	BPMW-1-0.5 0.5 9/2/2009
SEMIVOLATILE ORGANICS (cor	tinued)														
Pentachlorophenol	μg/kg	SW8270D												920 U	
Phenanthrene	μg/kg	SW8270D SIM												440	
Phenol	μg/kg	SW8270D			30,000									180 U	
Pyrene	μg/kg	SW8270D SIM												590	
Pyridine	μg/kg	SW8270D												180 U	
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100				-							248	

(Table Continues)

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BPMW-1-1.5 1.5	BPMW-1-5 5	BPMW-2-0.5 0.5	BPMW-2-1.5 1.5	BPMW-2-5 5	BPMW-3 0.5' 0.5	BPMW-3 2'	BPMW-3 5' 5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/8/2009	9/8/2009	9/8/2009
PETROLEUM HYDROCARBON	IS													
Diesel	mg/kg	NWTPH-Dx	2,000		200				29 U			140 U	300 J	33 U
Motor Oil	mg/kg	NWTPH-Dx	2,000						310			1,400	3,800	170
Gasoline	mg/kg	NWTPH-Gx	30/100*G		100		3.3 J			1.5 U		2 U	1.6 U	2.4 U
Benzene	μg/kg	SW8021B	30	4.483			20 U			20 U		20 U	20 U	20 U
Toluene	μg/kg	SW8021B	7,000				33 U			30 U		41 U	33	48 U
Ethylbenzene	μg/kg	SW8021B	6,000				33 U			30 U		41 U	32 U	48 U
m,p-Xylene	μg/kg	SW8021B	9,000*XY				33 U			30 U		41 U	40	48 U
o-Xylene	μg/kg	SW8021B	9,000*XY				33 U			30 U		41 U	32 U	48 U
METALS														
Arsenic	mg/kg	SW6010B-Total	20	2.803	7	7.30		11	6.7		9.3	5.7 U	7.3	11
Cadmium	mg/kg	SW6010B-Total	2	0.69	4	0.77		1.4	0.71		0.81 U	0.57 U	0.57 U	0.66 U
Chromium	mg/kg	SW6010B-Total	2,000*CR		42	48.15		38	41		33	13	48	30
Lead	mg/kg	SW6010B-Total	250	250	50	16.83		94	33		27	5.7 U	73	40
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07		0.15	0.044		0.046	0.023 U	0.052	0.051
METALS (TCLP Extract-wet)														
Arsenic	mg/L	SW6010B-Total												
Cadmium	mg/L	SW6010B-Total												
Chromium	mg/L	SW6010B-Total								= =				
Lead	mg/L	SW6010B-Total												
Mercury	mg/L	SW7471A-Total												
VOLATILE ORGANICS	_													
1,1,1,2-Tetrachloroethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,1,1-Trichloroethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,1,2,2-Tetrachloroethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,1,2-Trichloroethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,1-Dichloroethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,1-Dichloroethene	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,1-Dichloropropene	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,2,3-Trichlorobenzene	μg/kg	SW8260B			20,000							0.62 U	0.5 U	0.73 U
1,2,3-Trichloropropane	μg/kg	SW8260B			20,000							0.62 U	0.5 U	0.73 U
1,2,4-Trichlorobenzene	μg/kg μg/kg	SW8260B			20,000							0.62 U	0.5 U	0.73 U
1,2-Dibromo-3-chloropropane	μg/kg	SW8260B			20,000							3.1 U	2.5 U	3.7 U
1,2-Dibromoethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,2-Dichlorobenzene	μg/kg μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,2-Dichloroethane	μg/kg μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
1,2-Dichloropropane	μg/kg μg/kg	SW8260B			700,000							0.62 U	0.5 U	0.73 U
1,3-Dichlorobenzene	μg/kg μg/kg	SW8260B			, 50,000							0.62 U	0.5 U	0.73 U
1,3-Dichloropropane		SW8260B										0.62 U	0.5 U	0.73 U
	μg/kg				20.000									
1,4-Dichlorobenzene 2,2-Dichloropropane	μg/kg	SW8260B SW8260B			20,000							0.62 U 0.62 U	0.5 U 0.5 U	0.73 U
	μg/kg													0.73 U
2-Chloroethyl Vinyl Ether	μg/kg	SW8260B										3.1 U	2.5 U	3.7 U
2-Chlorotoluene	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
4-Chlorotoluene	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Bromobenzene	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Bromochloromethane	μg/kg "	SW8260B										0.62 U	0.5 U	0.73 U
Bromodichloromethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Bromoform	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U

		Analytical		MTCA B	Ecological	Sample No.: Depth (ft):	BPMW-1-1.5 1.5	BPMW-1-5 5	BPMW-2-0.5 0.5	BPMW-2-1.5 1.5	BPMW-2-5 5	BPMW-3 0.5' 0.5	BPMW-3 2'	BPMW-3 5'
PARAMETERS	Units	Method	MTCA A	soil to gw	Indicator Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/8/2009	9/8/2009	9/8/2009
VOLATILE ORGANICS (continu	ued)													
Bromomethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Carbon Tetrachloride	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Chlorobenzene	μg/kg	SW8260B			40,000							0.62 U	0.5 U	0.73 U
Chloroethane	μg/kg	SW8260B										3.1 U	2.5 U	3.7 U
Chloroform	μg/kg	SW8260B						= =				0.62 U	0.5 U	0.73 U
Chloromethane	μg/kg	SW8260B										3.1 U	2.5 U	3.7 U
cis-1,2-Dichloroethene	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
cis-1,3-Dichloropropene	μg/kg	SW8260B						= =				0.62 U	0.5 U	0.73 U
Dibromochloromethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Dibromomethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Dichlorodifluoromethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Hexachlorobutadiene	μg/kg	SW8260B										3.1 U	2.5 U	3.7 U
Methyl Iodide	μg/kg	SW8260B										3.1 U	2.5 U	3.7 U
Methylene Chloride	μg/kg	SW8260B	20									3.1 U	2.5 U	3.7 U
Tetrachloroethene	μg/kg	SW8260B	50									0.62 U	0.5 U	0.73 U
trans-1,2-Dichloroethene	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
trans-1,3-Dichloropropene	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Trichloroethene	μg/kg	SW8260B	30									0.62 U	0.5 U	0.73 U
Trichlorofluoromethane	μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
Vinyl Chloride	μg/kg μg/kg	SW8260B										0.62 U	0.5 U	0.73 U
SEMIVOLATILE ORGANICS	<u>му/чу</u>	0110200B										0.02 0	0.0 0	0.70 0
1,2,4-Trichlorobenzene	μg/kg	SW8270D												
1,2-Dichlorobenzene	μg/kg	SW8270D												
1,2-Dinitrobenzene	μg/kg	SW8270D												
1,2-Diphenylhydrazine	μg/kg	SW8270D												
1,3-Dichlorobenzene	μg/kg	SW8270D												
1,3-Dinitrobenzene	μg/kg	SW8270D												
1,4-Dichlorobenzene	μg/kg	SW8270D												
1,4-Dinitrobenzene	μg/kg	SW8270D												
1-Methylnaphthalene	μg/kg	SW8270D SIM	5,000*NA											
2,3,4,6-Tetrachlorophenol	μg/kg	SW8270D	0,000 1471											
2,3,5,6-Tetrachlorophenol	μg/kg	SW8270D												
2,3-Dichloroaniline	μg/kg	SW8270D												
2,4,5-Trichlorophenol	μg/kg	SW8270D												
2,4,6-Trichlorophenol	μg/kg	SW8270D												
2,4-Dichlorophenol	μg/kg	SW8270D												
2,4-Dimethylphenol	μg/kg	SW8270D												
2,4-Dinitrophenol	μg/kg	SW8270D			20,000									
2,4-Dinitrotoluene	μg/kg μg/kg	SW8270D			20,000									
2,6-Dinitrotoluene	μg/kg μg/kg	SW8270D												
2-Chloronaphthalene	μg/kg	SW8270D												
2-Chlorophenol	μg/kg μg/kg	SW8270D												
2-Methylnaphthalene	μg/kg μg/kg	SW8270D SIM	5,000*NA											
2-Methylphenol	μg/kg μg/kg	SW8270D SIW	0,000 INA											
2-Nitroaniline	μg/kg μg/kg	SW8270D												
2-Nitrophenol		SW8270D												
	µg/kg													
3,3'-Dichlorobenzidine	μg/kg	SW8270D												

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BPMW-1-1.5 1.5	BPMW-1-5 5	BPMW-2-0.5 0.5	BPMW-2-1.5 1.5	BPMW-2-5 5	BPMW-3 0.5' 0.5	BPMW-3 2' 2	BPMW-3 5' 5
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/2/2009	9/8/2009	9/8/2009	9/8/2009
SEMIVOLATILE ORGANICS (d	continued)													
3+4-Methylphenol	μg/kg	SW8270D												
3-Nitroaniline	μg/kg	SW8270D												
4,6-Dinitro-2-Methylphenol	μg/kg	SW8270D												
4-Bromophenyl-phenylether	μg/kg	SW8270D												
4-Chloro-3-methylphenol	μg/kg	SW8270D												
4-Chloroaniline	μg/kg	SW8270D												
4-Chlorophenyl-phenylether	μg/kg	SW8270D												
4-Nitroaniline	μg/kg	SW8270D												
4-Nitrophenol	μg/kg	SW8270D			7,000									
Acenaphthene	μg/kg	SW8270D SIM			20,000									
Acenaphthylene	μg/kg	SW8270D SIM												
Aniline	μg/kg	SW8270D												
Anthracene	μg/kg	SW8270D SIM												
Benzidine	μg/kg	SW8270D												
Benzo(a)anthracene	μg/kg	SW8270D SIM												
Benzo(a)pyrene	μg/kg	SW8270D SIM			12,000									
Benzo(b)fluoranthene	μg/kg	SW8270D SIM												
Benzo(g,h,i)perylene	μg/kg	SW8270D SIM												
Benzo(k)fluoranthene	μg/kg	SW8270D SIM												
Benzyl Alcohol	μg/kg	SW8270D												
bis(2-Chloroethoxy) Methane	μg/kg	SW8270D												
bis-(2-Chloroethyl) Ether	μg/kg	SW8270D												
bis(2-Chloroisopropyl)ether	μg/kg	SW8270D												
bis(2-Ethylhexyl)phthalate	μg/kg	SW8270D												
bis-2-Ethylhexyladipate	μg/kg	SW8270D												
Butylbenzylphthalate	μg/kg	SW8270D												
Carbazole	μg/kg	SW8270D												
Chrysene	μg/kg	SW8270D SIM												
Dibenz(a,h)anthracene	μg/kg	SW8270D SIM												
Dibenzofuran	μg/kg	SW8270D												
Diethylphthalate	μg/kg	SW8270D			100,000									
Dimethylphthalate	μg/kg	SW8270D			200,000									
Di-n-Butylphthalate	μg/kg	SW8270D			200,000									
Di-n-Octyl phthalate	μg/kg	SW8270D												
Fluoranthene	μg/kg	SW8270D SIM												
Fluorene	μg/kg	SW8270D SIM			30,000									
Hexachlorobenzene	μg/kg	SW8270D												
Hexachlorobutadiene	μg/kg	SW8270D												
Hexachlorocyclopentadiene	μg/kg	SW8270D												
Hexachloroethane	μg/kg	SW8270D												
Indeno(1,2,3-cd)pyrene	μg/kg	SW8270D SIM												
Isophorone	μg/kg	SW8270D												
Naphthalene	μg/kg	SW8270D SIM	5,000*NA											
Nitrobenzene	μg/kg	SW8270D			40,000									
N-Nitrosodimethylamine	μg/kg	SW8270D			20,000									
N-Nitroso-Di-N-Propylamine	μg/kg	SW8270D			<u> </u>									
N-Nitrosodiphenylamine	μg/kg	SW8270D												

PARAMETERS	Units	Analytical Method	MTCA A	MTCA B	Ecological Indicator Conc.	Sample No.: Depth (ft): Background		BPMW-1-5 5 9/2/2009	BPMW-2-0.5 0.5 9/2/2009	BPMW-2-1.5 1.5 9/2/2009	BPMW-2-5 5 9/2/2009	BPMW-3 0.5' 0.5 9/8/2009	BPMW-3 2' 2 9/8/2009	BPMW-3 5' 5 9/8/2009
SEMIVOLATILE ORGANICS (co	ntinued)													
Pentachlorophenol	μg/kg	SW8270D												
Phenanthrene	μg/kg	SW8270D SIM												
Phenol	μg/kg	SW8270D			30,000									
Pyrene	μg/kg	SW8270D SIM												
Pyridine	μg/kg	SW8270D												
Total cPAHs Using Tox. Equiv.	μg/kg	Calculated	100				-							
NOTES:					J/JH = Estimate	d value	Bold values exceed	l Ecological Indicator	Concentration					

- - = Not analyzed or not collected

*CR = Chromium Standards based on Chromium III

*G = 100 if no benzene and TEX < 1% gas; 30 for other mixtures

*NA = Includes Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene

*XY = Applies to the sum of all xylenes

ND = Non-detect

U = Not detected above the given practical quantitation limit

UJ/UJH= Estimated non-detect

Shaded values exceed MTCA

ft = feet

UNITS:

mg/kg = milligram/kilogram mg/L = milligram/liter

μg/kg = microgram/kilogram

SOURCES: Background: 90th percentile Puget Sound (Ecology's Publication #94-115; 10/1994)

Model Toxics Control Act (MTCA) from WA Administrative Code 173-340-900

MTCA Method A Soil Cleanup Levels for Unrestricted Land Use: Table 740-1

MTCA Method B soil to groundwater: site-specific calculated

Ecological Indicator Concentrations: Table 749-3

Groundwater Analytical Results

DADAMETEDO		Analytical		Sample No. Depth (ft):	12	BC-10-12-2 12	BC-11-12 12	BP-23-15 15	BP-25-10 10	BPMW-1-10 10	BPMW-2-6 6	BPMW-3-10 10
PARAMETERS	Units	Method	MTCA A	Date:	9/18/2009	9/18/2009	9/18/2009	9/2/2009	9/3/2009	9/18/2009	9/18/2009	9/18/2009
FIELD DATA	mmh ag/am				0.222		0.224			0.442	0.270	0.200
Conductivity	mmhos/cm				0.332		0.221			0.443 7.57	0.379	0.380
pH	std units Celsius				7.36		7.05				7.91 13.7	6.70
Temperature Dissolved Oxygen					16.6		78.8 2.91			13.8 2.97		22.5
PETROLEUM HYDROCARBONS	mg/L				2.63		2.91			2.91	2.96	3.91
Diesel Range Hydrocarbons	ma/l	NWTPH-Dx	0.5		0.28 U	0.29 U	0.28 U	0.3 U	0.3 U	0.31 U	0.29 U	0.28 U
Motor Oil	mg/L mg/L	NWTPH-Dx	0.5		0.26 U	0.29 U	0.26 U	0.3 U	0.3 U	0.31 U	0.29 U	
Gasoline Range Hydrocarbons	mg/L	NWTPH-Gx	0.8/1*G		0.100 U	0.40 U	0.100 U	0.48 U		0.100 U	0.320	0.100 U
Benzene	•	SW8260	5		1 U	0.100 U	1 U	1 U		0.100 U		
Toluene	μg/L μg/L	SW8260	1000		1 U	1 U	1 U	1 U		1 U	1 U	
Ethylbenzene		SW8260	700		1 U	1 U	1 U	1 U		1 U	1 U	
	μg/L	SW8260	1,000*XY		1 U	1 U	1 U	1 U		1 U	1 U	
m,p-Xylene o-Xylene	μg/L	SW8260	1,000 X1 1,000*XY		1 U	1 U	1 U	1 U		1 U	1 U	
TOTAL METALS	μg/L	3770200	1,000 🗡 1		10	1 0	1 0	1 0		1 0	1 0	10
	m a/l	200.8/6020-Total	0.005		0.0051	0.0067	0.0033 U			0.0051	0.0039	0.01
Arsenic Cadmium	mg/L	200.8/6020-Total	0.005		0.0051 0.0044 U	0.0067 0.0044 U	0.0033 U 0.0044 U			0.0051 0.0044 U	0.0039 0.0044 U	0.01 0.0044 U
Chromium	mg/L	200.8/6020-Total	0.005		0.0044 0	0.0044 0	0.0044 U			0.0044 U	0.0044 0	0.0044 0
Lead	mg/L	200.8/6020-Total	0.045		0.027	0.0093	0.0067 U			0.0067 U	0.0091	0.0074
	mg/L		0.015									
Mercury DISSOLVED METALS	mg/L	200.8/6020-Total	0.002		0.0002 U	0.0002 U	0.0002 U			0.0002 U	0.0002 U	0.0002 U
	/I	200 0/0020 Diag	0.005		0.000.11	0.002.11	0.000.11	0.0005		0.005	0.0000	0.0054
Arsenic	mg/L	200.8/6020-Diss	0.005		0.003 U	0.003 U	0.003 U	0.0085		0.005	0.0036	0.0054
Cadmium	mg/L	200.8/6020-Diss	0.005		0.004 U	0.004 U	0.004 U	0.004 U		0.004 U	0.004 U	
Chromium	mg/L	200.8/6020-Diss	0.045		0.007 U	0.007 U	0.007 U	0.01 U		0.007 U	0.007 U	0.007 U
Lead	mg/L	200.8/6020-Diss	0.015		0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	
Mercury	mg/L	200.8/6020-Diss	0.002		0.0002 U	0.0002 U	0.0002 U	0.0005 U		0.0002 U	0.0002 U	0.0002 U
VOLATILE ORGANICS	/1	CMOOCO			0.011	0.0.11		0.011	0.0.11	0.0.11		0.011
1,1,1,2-Tetrachloroethane	μg/L	SW8260	000		0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,1,1-Trichloroethane	μg/L	SW8260	200		0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,1,2,2-Tetrachloroethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,1,2-Trichloroethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,1-Dichloroethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,1-Dichloroethene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,1-Dichloropropene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,2,3-Trichlorobenzene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,2,3-Trichloropropane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,2,4-Trichlorobenzene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,2-Dibromo-3-chloropropane	μg/L	SW8260			1 U	1 U		1 U	1 U	1 U		1 U
1,2-Dibromoethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,2-Dichlorobenzene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,2-Dichloroethane	μg/L	SW8260	5		0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,2-Dichloropropane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,3-Dichlorobenzene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,3-Dichloropropane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
1,4-Dichlorobenzene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
2,2-Dichloropropane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
2-Chloroethyl Vinyl Ether	μg/L	SW8260			1 U	1 U		1 U				1 U
2-Chlorotoluene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U

Groundwater Analytical Results

		Analytical		Sample No. Depth (ft):		BC-10-12-2 12	BC-11-12 12	BP-23-15 15	BP-25-10 10	BPMW-1-10 10	BPMW-2-6 6	BPMW-3-10 10
PARAMETERS	Units	Method	MTCA A	Date:	9/18/2009	9/18/2009	9/18/2009	9/2/2009	9/3/2009	9/18/2009	9/18/2009	9/18/2009
VOLATILE ORGANICS (continued)												
4-Chlorotoluene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Bromobenzene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Bromochloromethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Bromodichloromethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Bromoform	μg/L	SW8260			1 U	1 U		1 U	1 U	1 U		1 U
Bromomethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Carbon Tetrachloride	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Chlorobenzene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Chloroethane	μg/L	SW8260			1 U	1 U		1 U	1 U	1 U		1 U
Chloroform	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Chloromethane	μg/L	SW8260			1 U	1 U		1 U	1 U	1 U		1 U
cis-1,2-Dichloroethene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
cis-1,3-Dichloropropene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Dibromochloromethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Dibromomethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Dichlorodifluoromethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Hexachlorobutadiene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Methyl lodide	μg/L	SW8260			1 U	1 U		1 U	1 U	1 U		1 U
Methylene Chloride	μg/L	SW8260	5		1 U	1 U		1 U	1 U	1 U		1 U
Tetrachloroethene	μg/L	SW8260	5		0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
trans-1,2-Dichloroethene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
trans-1,3-Dichloropropene	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Trichloroethene	μg/L	SW8260	5		0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Trichlorofluoromethane	μg/L	SW8260			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
Vinyl Chloride	μg/L	SW8260	0.2		0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.2 U
All Analytes	μg/L	SW8260			ND	ND		ND	ND	ND		ND

NOTES:

- - = Not analyzed or not collected

ND = Non-detect

U = Not detected above the given practical quantitation limit

*G = 1 if no benzene ; 0.8 if benzene

Shaded values exceed MTCA

SOURCES:

Model Toxics Control Act (MTCA) from WA Administrative Code 173-340-900 MTCA Method A Soil Cleanup Levels for Ground Water: Table 720-1

UNITS:

ft = foot mmhos/cm = millimhos/centimeter mg/L = milligrams/liter µg/L = micrograms/liter

APPENDIX C2

Analytical Laboratory Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 14, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-029

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 2, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 14, 2009 Samples Submitted: September 2, 2009

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

Case Narrative

Samples were collected on September 2, 2009, and received by the laboratory on September 2, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Halogenated Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Internal Standard 1,4-Dichlorobenzene-d4 does not meet acceptance criteria for sample BP-26 due to sample matrix effects. The sample was re-analyzed with similar results. All results, including Practical Quantitation Limits, from Bromobenzene onward should be considered estimates.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

 Client ID:
 BP-26
 BP-23 4-5

 Lab ID:
 09-029-03
 09-029-36

	Result	Flags	PQL	Result	Flags	PQL
Benzene	0.067		0.020	ND		0.020
Toluene	ND		0.036	ND		0.027
Ethyl Benzene	ND		0.036	ND		0.027
m,p-Xylene	ND		0.036	ND		0.027
o-Xylene	ND		0.036	ND		0.027
TPH-Gas	ND		1.8	ND		1.3
Surrogate Recovery: Fluorobenzene	100%			99%		

Date of Report: September 14, 2009 Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029

Project: 555-1647-019 02/0403 / Paint

NWTPH-Gx/BTEX

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Fluorobenzene

Client ID: **BP-11 4-5**Lab ID: 09-029-42

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.028
Ethyl Benzene	ND		0.028
m,p-Xylene	ND		0.028
o-Xylene	ND		0.028
TPH-Gas	ND		1.4
Surrogate Recovery:			

102%

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0904S2

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
TPH-Gas	ND		5.0

Surrogate Recovery:

Fluorobenzene 92%

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted: 9-4-09
Date Analyzed: 9-4&8-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID:	09-034-02 Original	09-034-02 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery:				
Fluorobenzene	94%	97%		

Date of Report: September 14, 2009 Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029

Project: 555-1647-019 02/0403 / Paint

NWTPH-Gx/BTEX SB/SBD QUALITY CONTROL

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0904S1 SB	Percent Recovery	SBD0904S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.927	93	0.940	94	1	
Toluene	0.939	94	0.952	95	1	
Ethyl Benzene	0.963	96	0.975	98	1	
m,p-Xylene	0.977	98	0.987	99	1	
o-Xylene	0.975	98	0.984	98	1	

Surrogate Recovery:

Fluorobenzene 91% 91% Date of Report: September 14, 2009 Samples Submitted: September 2, 2009

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

NWTPH-Gx/BTEX

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: ug/L (ppb)

Client ID: **BP-23-15**Lab ID: 09-029-35

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100

Surrogate Recovery:

Fluorobenzene 89%

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0903W1

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100

Surrogate Recovery:

Fluorobenzene 92%

Date of Report: September 14, 2009 Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029

Project: 555-1647-019 02/0403 / Paint

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: ug/L (ppb)

Fluorobenzene

09-039-02 Lab ID: 09-039-02 Original **Duplicate RPD Flags** Benzene ND ND NA Toluene ND ND NA Ethyl Benzene ND ND NA m,p-Xylene ND ND NA o-Xylene ND ND NA **TPH-Gas** ND ND NA Surrogate Recovery:

92%

91%

Date of Report: September 14, 2009 Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029

Project: 555-1647-019 02/0403 / Paint

NWTPH-Gx/BTEX SB/SBD QUALITY CONTROL

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: ug/L (ppb)

Spike Level: 50.0 ppb

Lab ID:	SB090903 SB	Percent Recovery	SBD090903 SBD	Percent Recovery	RPD	Flags
Benzene	48.1	96	46.8	94	3	
Toluene	48.1	96	46.0	92	4	
Ethyl Benzene	49.9	100	46.7	93	7	
m,p-Xylene	50.2	100	46.5	93	8	
o-Xylene	49.9	100	47.3	95	5	

Surrogate Recovery:

Fluorobenzene 91% 88%

NWTPH-Dx

Date Extracted: 9-3-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Client ID: Lab ID:	BP-24-8 09-029-01	BP-23 4-5 09-029-36	BP-11 4-5 09-029-42
Diesel Range: PQL:	ND 33	ND 28	ND 28
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	67	56	56
Identification:			
Surrogate Recovery			
o-Terphenyl:	80%	96%	84%
Flags:	Υ	Υ	Υ

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-3-09
Date Analyzed:	9-3-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0903S1

Diesel Range: ND PQL: 25

Identification: ---

Lube Oil Range: ND PQL: 50

Identification: ---

Surrogate Recovery

o-Terphenyl: 74%

Flags: Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	9-3-09
Date Analyzed:	9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-01 09-034-01 DUP

Diesel Range: ND ND PQL: 25 25

RPD: N/A

Surrogate Recovery

o-Terphenyl: 85% 79%

Flags: Y Y

NWTPH-Dx

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: mg/L (ppm)

 Client ID:
 BP-24
 BP-23-15

 Lab ID:
 09-029-02
 09-029-35

Diesel Range: ND ND

PQL: 0.31 0.3

Identification: --- ---

Lube Oil Range: ND ND

PQL: 0.49 0.48

Identification: --- ---

Surrogate Recovery

o-Terphenyl: 68% 67%

Flags: Y Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: mg/L (ppm)

Lab ID: MB0903W1

Diesel Range: **ND**PQL: 0.25

Identification: ---

Lube Oil Range: **ND**PQL: 0.40

Identification: ---

Surrogate Recovery

o-Terphenyl: 79%

Flags: Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: mg/L (ppm)

Lab ID: 08-219-01 08-219-01 DUP

Diesel Range: **ND ND** PQL: 0.25 0.25

RPD: N/A

Surrogate Recovery

o-Terphenyl: 75% 71%

Flags: Y Y

NWTPH-Dx

Date Extracted: 9-4-09 Date Analyzed: 9-8-09

Matrix: Soil

Units: mg/kg (ppm)

 Client ID:
 BP-5 4-5
 BP-5 10

 Lab ID:
 09-029-18
 09-029-19

 Diesel Range:
 900
 ND

 PQL:
 140
 31

Identification: Diesel Fuel#2 ---

 Lube Oil Range:
 1700
 ND

 PQL:
 280
 63

Identification: Lube Oil ---

Surrogate Recovery

o-Terphenyl: 90% 81%

Flags: Y Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-4-09
Date Analyzed:	9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0904S2

Diesel Range: ND PQL: 25

Identification: ---

Lube Oil Range: ND PQL: 50

Identification: ---

Surrogate Recovery

o-Terphenyl: 88%

Flags: Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

	DUPLICATE QUALITY CONTROL	
Date Extracted: Date Analyzed:	9-4-09 9-8-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	09-043-07	09-043-07 DUP
Diesel Range:	ND	ND
PQL:	25	25
RPD:	N/A	
Surrogate Recovery		
o-Terphenyl:	92%	84%

Υ

Flags:

Υ

Date of Report: September 14, 2009 Samples Submitted: September 2, 2009

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-03 **Client ID: BP-26**

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	i lugo	0.00069
Chloromethane	ND		0.0034
Vinyl Chloride	ND		0.00069
Bromomethane	ND		0.00069
Chloroethane	ND		0.0034
Trichlorofluoromethane	ND		0.00069
1,1-Dichloroethene	ND		0.00069
Iodomethane	ND		0.0034
Methylene Chloride	ND		0.0034
(trans) 1,2-Dichloroethene	ND		0.00069
1,1-Dichloroethane	ND		0.00069
2,2-Dichloropropane	ND		0.00069
(cis) 1,2-Dichloroethene	ND		0.00069
Bromochloromethane	ND		0.00069
Chloroform	ND		0.00069
1,1,1-Trichloroethane	ND		0.00069
Carbon Tetrachloride	ND		0.00069
1,1-Dichloropropene	ND		0.00069
1,2-Dichloroethane	ND		0.00069
Trichloroethene	ND		0.00069
1,2-Dichloropropane	ND		0.00069
Dibromomethane	ND		0.00069
Bromodichloromethane	ND		0.00069
2-Chloroethyl Vinyl Ether	ND		0.0034
(cis) 1,3-Dichloropropene	ND		0.00069
(trans) 1,3-Dichloropropene	ND		0.00069

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: 09-029-03 **Client ID: BP-26**

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00069
Tetrachloroethene	ND		0.00069
1,3-Dichloropropane	ND		0.00069
Dibromochloromethane	ND		0.00069
1,2-Dibromoethane	ND		0.00069
Chlorobenzene	ND		0.00069
1,1,1,2-Tetrachloroethane	ND		0.00069
Bromoform	ND		0.00069
Bromobenzene	ND		0.00069
1,1,2,2-Tetrachloroethane	ND		0.00069
1,2,3-Trichloropropane	ND		0.00069
2-Chlorotoluene	ND		0.00069
4-Chlorotoluene	ND		0.00069
1,3-Dichlorobenzene	ND		0.00069
1,4-Dichlorobenzene	ND		0.00069
1,2-Dichlorobenzene	ND		0.00069
1,2-Dibromo-3-chloropropane	ND		0.0034
1,2,4-Trichlorobenzene	ND		0.00069
Hexachlorobutadiene	ND		0.0034
1,2,3-Trichlorobenzene	ND		0.00069

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	113	55-125
Toluene-d8	90	56-127
4-Bromofluorobenzene	78	54-130

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0904S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	- 3 -	0.0010
Chloromethane	ND		0.0050
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0050
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Iodomethane	ND		0.0050
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichloroethane	ND		0.0010
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

Lab ID: MB0904S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Bromoform	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	96	55-125
Toluene-d8	103	56-127
4-Bromofluorobenzene	94	54-130

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted: 9-4-09
Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: SB0904S1

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	0.0500	0.0435	87	0.0407	81	70-130	
Benzene	0.0500	0.0436	87	0.0413	83	70-128	
Trichloroethene	0.0500	0.0429	86	0.0422	84	70-124	
Toluene	0.0500	0.0445	89	0.0434	87	73-123	
Chlorobenzene	0.0500	0.0446	89	0.0435	87	73-115	

	RPD	Limit	Flags
1,1-Dichloroethene	7	16	
Benzene	5	15	
Trichloroethene	2	14	
Toluene	3	14	
Chlorobenzene	2	13	

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-029-35 **Client ID: BP-23-15**

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	3	0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
Iodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID: 09-029-35 Client ID: BP-23-15

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	92	71-126
Toluene-d8	94	76-116
4-Bromofluorobenzene	82	70-123

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Date Extracted: 9-3-09 Date Analyzed: 9-3-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0903W1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	3	0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

Lab ID: MB0903W1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	91	71-126
Toluene-d8	93	76-116
4-Bromofluorobenzene	81	70-123

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted: 9-3-09
Date Analyzed: 9-3-09

Matrix: Water Units: ug/L (ppb)

Lab ID: SB0903W1

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	10.0	9.94	99	10.2	102	70-130	
Benzene	10.0	9.68	97	10.2	102	70-130	
Trichloroethene	10.0	9.31	93	9.83	98	70-123	
Toluene	10.0	10.0	100	10.6	106	77-120	
Chlorobenzene	10.0	9.44	94	9.63	96	73-115	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	3	21	
Benzene	5	18	
Trichloroethene	5	18	
Toluene	5	17	
Chlorobenzene	2	18	

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-029-43
Client ID: TRIP BLANK

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID: 09-029-43 Client ID: **TRIP BLANK**

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control		
Surrogate	Recovery	Limits		
Dibromofluoromethane	89	71-126		
Toluene-d8	94	76-116		
4-Bromofluorobenzene	90	70-123		

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0904W1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	3-	0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

Lab ID: MB0904W1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	71-126
Toluene-d8	92	76-116
4-Bromofluorobenzene	91	70-123

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted: 9-4-09
Date Analyzed: 9-4-09

Matrix: Water Units: ug/L (ppb)

Lab ID: SB0904W1

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	10.0	9.60	96	9.43	94	70-130	
Benzene	10.0	9.50	95	9.64	96	70-130	
Trichloroethene	10.0	9.74	97	9.66	97	70-123	
Toluene	10.0	9.58	96	9.57	96	77-120	
Chlorobenzene	10.0	9.61	96	9.80	98	73-115	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	2	21	
Benzene	1	18	
Trichloroethene	1	18	
Toluene	0	17	
Chlorobenzene	2	18	

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Offits. Hig/Kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	BP-26			•	•	
Laboratory ID:	09-029-03					
N-Nitrosodimethylamine	ND	0.18	EPA 8270	9-4-09	9-4-09	
Pyridine	ND	0.18	EPA 8270	9-4-09	9-4-09	
Phenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
Aniline	ND	0.18	EPA 8270	9-4-09	9-4-09	
bis(2-Chloroethyl)ether	ND	0.18	EPA 8270	9-4-09	9-4-09	
2-Chlorophenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
1,3-Dichlorobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
1,4-Dichlorobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
Benzyl alcohol	ND	0.18	EPA 8270	9-4-09	9-4-09	
1,2-Dichlorobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
2-Methylphenol (o-Cresol)	ND	0.18	EPA 8270	9-4-09	9-4-09	
bis(2-Chloroisopropyl)ether	ND	0.18	EPA 8270	9-4-09	9-4-09	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.18	EPA 8270	9-4-09	9-4-09	
N-Nitroso-di-n-propylamine	ND	0.18	EPA 8270	9-4-09	9-4-09	
Hexachloroethane	ND	0.18	EPA 8270	9-4-09	9-4-09	
Nitrobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
Isophorone	ND	0.18	EPA 8270	9-4-09	9-4-09	
2-Nitrophenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,4-Dimethylphenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
bis(2-Chloroethoxy)methane	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,4-Dichlorophenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
1,2,4-Trichlorobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
Naphthalene	0.12	0.015	EPA 8270/SIM	9-4-09	9-4-09	
4-Chloroaniline	ND	0.18	EPA 8270	9-4-09	9-4-09	
Hexachlorobutadiene	ND	0.18	EPA 8270	9-4-09	9-4-09	
4-Chloro-3-methylphenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
2-Methylnaphthalene	0.95	0.18	EPA 8270	9-4-09	9-4-09	
1-Methylnaphthalene	0.90	0.18	EPA 8270	9-4-09	9-4-09	
Hexachlorocyclopentadiene	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,4,6-Trichlorophenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,3-Dichloroaniline	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,4,5-Trichlorophenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
2-Chloronaphthalene	ND	0.18	EPA 8270	9-4-09	9-4-09	
2-Nitroaniline	ND	0.18	EPA 8270	9-4-09	9-4-09	
1,4-Dinitrobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
Dimethylphthalate	ND	0.18	EPA 8270	9-4-09	9-4-09	
1,3-Dinitrobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,6-Dinitrotoluene	ND	0.18	EPA 8270	9-4-09	9-4-09	
1,2-Dinitrobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
Acenaphthylene	0.032	0.015	EPA 8270/SIM	9-4-09	9-4-09	
3-Nitroaniline	ND	0.18	EPA 8270	9-4-09	9-4-09	

-,----

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	BP-26					
Laboratory ID:	09-029-03					
2,4-Dinitrophenol	ND	0.92	EPA 8270	9-4-09	9-4-09	
Acenaphthene	0.15	0.015	EPA 8270/SIM	9-4-09	9-4-09	
4-Nitrophenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,4-Dinitrotoluene	ND	0.18	EPA 8270	9-4-09	9-4-09	
Dibenzofuran	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,3,5,6-Tetrachlorophenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
2,3,4,6-Tetrachlorophenol	ND	0.18	EPA 8270	9-4-09	9-4-09	
Diethylphthalate	ND	0.18	EPA 8270	9-4-09	9-4-09	
4-Chlorophenyl-phenylether	ND	0.18	EPA 8270	9-4-09	9-4-09	
4-Nitroaniline	ND	0.18	EPA 8270	9-4-09	9-4-09	
Fluorene	0.18	0.015	EPA 8270/SIM	9-4-09	9-4-09	
4,6-Dinitro-2-methylphenol	ND	0.92	EPA 8270	9-4-09	9-4-09	
N-Nitrosodiphenylamine	ND	0.18	EPA 8270	9-4-09	9-4-09	
1,2-Diphenylhydrazine	ND	0.18	EPA 8270	9-4-09	9-4-09	
4-Bromophenyl-phenylether	ND	0.18	EPA 8270	9-4-09	9-4-09	
Hexachlorobenzene	ND	0.18	EPA 8270	9-4-09	9-4-09	
Pentachlorophenol	ND	0.92	EPA 8270	9-4-09	9-4-09	
Phenanthrene	0.44	0.18	EPA 8270	9-4-09	9-4-09	
Anthracene	0.090	0.015	EPA 8270/SIM	9-4-09	9-4-09	
Carbazole	ND	0.18	EPA 8270	9-4-09	9-4-09	
Di-n-butylphthalate	ND	0.18	EPA 8270	9-4-09	9-4-09	
Fluoranthene	0.44	0.18	EPA 8270	9-4-09	9-4-09	
Benzidine	ND	1.8	EPA 8270	9-4-09	9-4-09	
Pyrene	0.59	0.18	EPA 8270	9-4-09	9-4-09	
Butylbenzylphthalate	ND	0.18	EPA 8270	9-4-09	9-4-09	
ois-2-Ethylhexyladipate	ND	0.18	EPA 8270	9-4-09	9-4-09	
3,3'-Dichlorobenzidine	ND	1.8	EPA 8270	9-4-09	9-4-09	
Benzo[a]anthracene	0.26	0.18	EPA 8270	9-4-09	9-4-09	
Chrysene	0.40	0.18	EPA 8270	9-4-09	9-4-09	
bis(2-Ethylhexyl)phthalate	ND	0.18	EPA 8270	9-4-09	9-4-09	
Di-n-octylphthalate	ND	0.18	EPA 8270	9-4-09	9-4-09	
Benzo[b]fluoranthene	0.12	0.015	EPA 8270/SIM	9-4-09	9-4-09	
Benzo[k]fluoranthene	0.085	0.015	EPA 8270/SIM	9-4-09	9-4-09	
Benzo[a]pyrene	0.19	0.18	EPA 8270	9-4-09	9-4-09	
Indeno[1,2,3-cd]pyrene	0.053	0.015	EPA 8270/SIM	9-4-09	9-4-09	
Dibenz[a,h]anthracene	0.026	0.015	EPA 8270/SIM	9-4-09	9-4-09	
Benzo[g,h,i]perylene	0.082	0.015	EPA 8270/SIM	9-4-09	9-4-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	67	19 - 97				
Phenol-d6	<i>78</i>	22 - 108				
Nitrobenzene-d5	78	21 - 106				
2-Fluorobiphenyl	82	29 - 107				
2,4,6-Tribromophenol	80	44 - 121				
Terphenyl-d14	87	37 - 120				

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

Offits. Hig/Kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
					,	J -
Laboratory ID:	MB0904S1					
N-Nitrosodimethylamine	ND	0.033	EPA 8270	9-4-09	9-4-09	
Pyridine	ND	0.033	EPA 8270	9-4-09	9-4-09	
Phenol	ND	0.033	EPA 8270	9-4-09	9-4-09	
Aniline	ND	0.033	EPA 8270	9-4-09	9-4-09	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	9-4-09	9-4-09	
2-Chlorophenol	ND	0.033	EPA 8270	9-4-09	9-4-09	
1,3-Dichlorobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
1,4-Dichlorobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
Benzyl alcohol	ND	0.033	EPA 8270	9-4-09	9-4-09	
1,2-Dichlorobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	9-4-09	9-4-09	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270	9-4-09	9-4-09	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	9-4-09	9-4-09	
N-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	9-4-09	9-4-09	
Hexachloroethane	ND	0.033	EPA 8270	9-4-09	9-4-09	
Nitrobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
Isophorone	ND	0.033	EPA 8270	9-4-09	9-4-09	
2-Nitrophenol	ND	0.033	EPA 8270	9-4-09	9-4-09	
2,4-Dimethylphenol	ND	0.033	EPA 8270	9-4-09	9-4-09	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	9-4-09	9-4-09	
2,4-Dichlorophenol	ND	0.033	EPA 8270	9-4-09	9-4-09	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
Naphthalene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
4-Chloroaniline	ND	0.033	EPA 8270	9-4-09	9-4-09	
Hexachlorobutadiene	ND	0.033	EPA 8270	9-4-09	9-4-09	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	9-4-09	9-4-09	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270	9-4-09	9-4-09	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270	9-4-09	9-4-09	
2,3-Dichloroaniline	ND	0.033	EPA 8270	9-4-09	9-4-09	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270	9-4-09	9-4-09	
2-Chloronaphthalene	ND	0.033	EPA 8270	9-4-09	9-4-09	
2-Nitroaniline	ND	0.033	EPA 8270	9-4-09	9-4-09	
1,4-Dinitrobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
Dimethylphthalate	ND	0.033	EPA 8270	9-4-09	9-4-09	
1,3-Dinitrobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	9-4-09	9-4-09	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
3-Nitroaniline	ND	0.033	EPA 8270	9-4-09	9-4-09	

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0904S1 ND	0.17	EPA 8270	9-4-09	9-4-09	
2,4-Dinitrophenol	ND ND	0.17	EPA 8270/SIM	9-4-09	9-4-09	
Acenaphthene 4-Nitrophenol	ND ND	0.0087	EPA 8270/31W	9-4-09	9-4-09	
2,4-Dinitrotoluene	ND ND	0.033	EPA 8270	9-4-09	9-4-09	
2,4-Dimitroloidene Dibenzofuran	ND ND	0.033	EPA 8270	9-4-09	9-4-09	
2,3,5,6-Tetrachlorophenol	ND ND	0.033	EPA 8270	9-4-09	9-4-09	
2,3,4,6-Tetrachlorophenol	ND ND	0.033	EPA 8270	9-4-09	9-4-09	
Diethylphthalate	ND	0.033	EPA 8270	9-4-09	9-4-09	
4-Chlorophenyl-phenylether	ND ND	0.033	EPA 8270	9-4-09	9-4-09	
4-Nitroaniline	ND ND	0.033	EPA 8270	9-4-09	9-4-09	
Fluorene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
4,6-Dinitro-2-methylphenol	ND	0.0007	EPA 8270	9-4-09	9-4-09	
N-Nitrosodiphenylamine	ND	0.033	EPA 8270	9-4-09	9-4-09	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270	9-4-09	9-4-09	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270	9-4-09	9-4-09	
Hexachlorobenzene	ND	0.033	EPA 8270	9-4-09	9-4-09	
Pentachlorophenol	ND	0.17	EPA 8270	9-4-09	9-4-09	
Phenanthrene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Anthracene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Carbazole	ND	0.0007	EPA 8270	9-4-09	9-4-09	
Di-n-butylphthalate	ND	0.033	EPA 8270	9-4-09	9-4-09	
Fluoranthene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Benzidine	ND	0.33	EPA 8270	9-4-09	9-4-09	
Pyrene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Butylbenzylphthalate	ND	0.0007	EPA 8270	9-4-09	9-4-09	
bis-2-Ethylhexyladipate	ND	0.033	EPA 8270	9-4-09	9-4-09	
3,3'-Dichlorobenzidine	ND	0.33	EPA 8270	9-4-09	9-4-09	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Chrysene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
bis(2-Ethylhexyl)phthalate	ND	0.033	EPA 8270	9-4-09	9-4-09	
Di-n-octylphthalate	ND	0.033	EPA 8270	9-4-09	9-4-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Indeno[1,2,3-cd]pyrene	ND ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Dibenz[a,h]anthracene	ND ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Benzo[g,h,i]perylene	ND ND	0.0067	EPA 8270/SIM	9-4-09	9-4-09	
Surrogate:	Percent Recovery	Control Limits	LI / COLI O/ OIIVI	J + 0J	J 1 -0J	
2-Fluorophenol	55	19 - 97				
Phenol-d6	60	22 - 108				
Nitrobenzene-d5	59	22 - 106 21 - 106				
2-Fluorobiphenyl	65	29 - 107				
2,4,6-Tribromophenol	87	44 - 121				
Terphenyl-d14	94	37 - 120				

SEMIVOLATILES by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-0	10-03									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	1.06	1.09	1.33	1.33	ND	80	82	38 - 97	3	30	
2-Chlorophenol	1.11	1.14	1.33	1.33	ND	83	86	28 - 102	3	38	
1,4-Dichlorobenzene	0.501	0.520	0.667	0.667	ND	75	78	14 - 84	4	41	
N-Nitroso-di-n-propylamine	0.525	0.560	0.667	0.667	ND	79	84	25 - 104	6	39	
1,2,4-Trichlorobenzene	0.493	0.508	0.667	0.667	ND	74	76	23 - 93	3	37	
4-Chloro-3-methylphenol	1.10	1.16	1.33	1.33	ND	83	87	49 - 113	5	31	
Acenaphthene	0.510	0.517	0.667	0.667	ND	76	78	37 - 101	1	40	
4-Nitrophenol	1.21	1.22	1.33	1.33	ND	91	92	30 - 136	1	31	
2,4-Dinitrotoluene	0.563	0.561	0.667	0.667	ND	84	84	36 - 122	0	32	
Pentachlorophenol	1.20	1.15	1.33	1.33	ND	90	86	15 - 143	4	34	
Pyrene	0.581	0.578	0.667	0.667	ND	87	87	24 - 138	1	39	
Surrogate:											
2-Fluorophenol						72	74	19 - 97			
Phenol-d6						74	76	22 - 108			
Nitrobenzene-d5						<i>73</i>	<i>78</i>	21 - 106			
2-Fluorobiphenyl						74	<i>75</i>	29 - 107			
2,4,6-Tribromophenol						<i>75</i>	74	44 - 121			
Terphenyl-d14						83	81	37 - 120			

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-03 Client ID: **BP-26**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.5
Cadmium	6010B	ND	0.55
Chromium	6010B	28	0.55
Lead	6010B	35	5.5
Mercury	7471A	0.035	0.022

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-04 Client ID: **BP-1 0'-0.5'**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.3
Cadmium	6010B	ND	0.53
Chromium	6010B	33	0.53
Lead	6010B	ND	5.3
Mercury	7471A	ND	0.021

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-07 Client ID: **BP-2 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.3
Cadmium	6010B	ND	0.53
Chromium	6010B	28	0.53
Lead	6010B	ND	5.3
Mercury	7471A	ND	0.021

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-10 Client ID: **BP-3 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	6.2	5.4
Cadmium	6010B	ND	0.54
Chromium	6010B	29	0.54
Lead	6010B	35	5.4
Mercury	7471A	0.087	0.022

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-13 Client ID: **BP-4 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.4
Cadmium	6010B	ND	0.54
Chromium	6010B	31	0.54
Lead	6010B	26	5.4
Mercury	7471A	0.044	0.022

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-16 Client ID: **BP-5 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	7.3	5.4
Cadmium	6010B	ND	0.54
Chromium	6010B	37	0.54
Lead	6010B	48	5.4
Mercury	7471A	0.047	0.022

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-20 Client ID: **BP-6 0-1**

Analyte	Method	Result	PQL
Arsenic	6010B	12	5.3
Cadmium	6010B	ND	0.53
Chromium	6010B	47	0.53
Lead	6010B	30	5.3
Mercury	7471A	0.030	0.021

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-23 Client ID: **BP-7 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.2
Cadmium	6010B	ND	0.52
Chromium	6010B	14	0.52
Lead	6010B	13	5.2
Mercury	7471A	0.021	0.021

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-26 Client ID: **BP-8 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	50	5.4
Cadmium	6010B	ND	0.54
Chromium	6010B	33	0.54
Lead	6010B	91	5.4
Mercury	7471A	0.095	0.022

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29
Client ID: **BP-9 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	130	5.4
Cadmium	6010B	3.9	0.54
Chromium	6010B	57	0.54
Lead	6010B	350	5.4
Mercury	7471A	0.051	0.022

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-32 Client ID: **BP-23 0-5**

Analyte	Method	Result	PQL
Arsenic	6010B	58	5.3
Cadmium	6010B	1.3	0.53
Chromium	6010B	31	0.53
Lead	6010B	150	5.3
Mercury	7471A	0.085	0.021

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-37 Client ID: **BP-10 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.1
Cadmium	6010B	ND	0.51
Chromium	6010B	8.2	0.51
Lead	6010B	7.3	5.1
Mercury	7471A	ND	0.020

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-40 Client ID: **BP-11 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	210	5.5
Cadmium	6010B	4.5	0.55
Chromium	6010B	75	0.55
Lead	6010B	570	5.5
Mercury	7471A	0.066	0.022

> TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0908S3&MB0909S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.020

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-8&9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	122	127	4	5.0	
Cadmium	3.63	4.08	12	0.50	
Chromium	53.4	55.6	4	0.50	
Lead	328	323	2	5.0	
Mercury	0.0475	0.0573	19	0.020	

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-8&9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	206	84	209	87	2	
Cadmium	50	47.6	88	47.9	89	1	
Chromium	100	148	95	147	94	0	
Lead	250	533	82	536	83	1	
Mercury	0.50	0.468	94	0.466	93	0	

Laboratory Reference: 0909-029 Project: 555-1647-019 02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A

Date Analyzed: 9-9&11-09

Matrix: Water

Units: ug/L (ppb)

Lab ID: 09-029-35 **Client ID: BP-23-15**

Analyte	Method	Result	PQL
Arsenic	200.8	8.5	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.50

DISSOLVED METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Analyzed: 9-9&11-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0909D1&MB0911D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.50

DISSOLVED METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 9-9&11-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-029-35

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	8.50	8.97	5	3.0	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Mercury	ND	ND	NA	0.50	

DISSOLVED METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Analyzed: 9-9&11-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-029-35

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	213	102	207	99	3	
Cadmium	200	214	107	204	102	5	
Chromium	200	185	93	180	90	3	
Lead	200	193	97	196	98	1	
Mercury	12.5	12.0	96	12.1	97	1	

% MOISTURE

Date Analyzed: 9-3,4&8-09

Client ID	Lab ID	% Moisture
BP-24-8	09-029-01	25
BP-26	09-029-03	9
BP-1 0'-0.5'	09-029-04	6
BP-2 0-0.5	09-029-07	6
BP-3 0-0.5	09-029-10	7
BP-4 0-0.5	09-029-13	8
BP-5 0-0.5	09-029-16	8
BP-5 4-5	09-029-18	11
BP-5 10	09-029-19	20
BP-6 0-1	09-029-20	5
BP-7 0-0.5	09-029-23	3
BP-8 0-0.5	09-029-26	8
BP-9 0-0.5	09-029-29	7
BP-23 0-5	09-029-32	6
BP-23 4-5	09-029-36	10
BP-10 0-0.5	09-029-37	1
BP-11 0-0.5	09-029-40	9
BP-11 4-5	09-029-42	11

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page 1 of 5

Environmental Inc.		Turnaround Request (in:Working;days) Laboratory Numb						nbe	er:	Requested Amplysts											
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)									Req	uezi	ed A	neily	gg	蒵				
Project Number:	🗆 Sa	me Day		1 Day	4/350		-X35281619-3	CHESSISSISS			*********	eggo o sector.	9002359255				式	24443		eganicosare	LIMB COLORS
555-1647-019 02/0403	2 [Day		3 Day					8260B						1	3	2				
Project Name: Bothell Crossing Paint Site Project Manager:	Sta	andard (7 w	orking da	ays)					s by 8	9	5			8	707		MTCA Mets: As, Coly, Co., H				
Project Manager:	─ (TF	H analysis	5 workir	ng days)		X		30B	olatile	y 8270D	MIS/	3	8151A	tals (1		n:				
Sandra Mathews Sampled by:		(-41	\		CID	NWTPH-Gx/BTEX	×	y 8260B	Halogenated Volatiles by	Semivolatiles by	PAHs by 8270D /	CBs by 8082	by d	Total RCRA Metals (8)	als,	664	M				၂ စ
L. Vagelatos & S. Matthews		· Bankskingerstersterstersterstersterster	ner)		PH-	PH-G	NWTPH-Dx	/olatiles by	genat	ivolat	s by 8	PCBs by 8082	Herbicides by	RCH	TCLP Metals	HEM by 1664	7	Hold	1		% Moisture
Lab ID Sample Identification	Date Sampled	Time: Sampled		7700 Cont	LMN	N N	N N	Volai	Halo	Sem	PAH	PCB	Her S	Total	귤	HE S	×	ユ			≥ %
1 BP-24-8	9/2/09	09 05	Soil	1			X														X
2 BP-24	9/2/09	0910	HZÓ	2			X	ande.							٠.						+
3 BP-26	1		Seil	#6		X		当义	(X)	X					契	7	X				
4 BP-1 0'-0.6'		1010	1	J					•						X	<u> </u>	Χ				
5 BP-1 1.5'-2'		1012		1											矣	¥_		X		-	
6 BP-1 4.0'-6'		1015		1														K			
7 BP-2 0-0.5		1020		1											X		X	1/4			X
8 88-2 25-3		1025		1											 ^		N	K			
				1										-					1	_	
9 38-2 4.5-5		1030		γ													Ni Ni	N.		_	
10 BP-3 0-0.5	مل	1040	سلد		SKI77544		The state of the s		1200				****		X		M	*****		One of the same	
Relinquished by Flu 16 - 1 a t		Company/	(o /			intic	•	·	90mm H.J				Gilone 1/2 i	D .		1	And the Control of the	Metro n
any vagarnoz-		tare	met	/i }/		1	2/0			ic		1.4	٧	al	\ ₁	ساـ	- (·	ana	lyse	. 5	
Received by Con Favruse		SPGED		55.			109		10	20 33		-									
Relinquished by		11					<u> </u>														
Received by Ch) (2	The s	Etu-		70	z(c	ר"	l	5	<u> </u>										
Relinquished by									_												
Received by																					
Reviewed by/Date		Reviewed by/Date . Chromatograms with final report □																			

Chain of Custody

Environmental Inc.	Turnaround Request (in Working days) Laboratory Number: 09-02 Requested Analysis (Check One)									29	}										
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	_	(Chec	(One)									Re	gues	icel.	Anei	yste	.9	L			
Project Number:	☐ Sai	ne Day Pay] 1 Day] 3 Day					8260B							Ą	1. N. V.	8			
Project Name: Rothell Crossing, Punt Site Project Manager: Sandra Matthews Sampled by: L. Vageretes J. S. Matthews	Sta	ndard (7 w H analysis (ot	orking of the state of the stat	days) king days)	/TPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx		>	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	TCLP Metals	#ひ レ の HEM by 1664	MICK MAS: As Cal Co. H.		Holo		% Moisture
	2010 1409	Sampled W45	1	e Cons	N	2	2	Ŝ	Ha	Š	AZ_	PC	<u>a</u> :			出	Z		X		%
12 819-3 4.5-5	1	1048	1	1															X		
13 BP-4 0-05		1000)	(X				X
14 BP-4 2-3		1008																	x		
15 BP-4 4.5-5		1100																	K		
16 BP-5 0-0.5		1110													\	〈	K				X
17 BP-5 2-3		1112																	K		
18 BP-5 4-5		1116					X)											X	•	Œ
19 BP-6 10		1120					X											-	X	-	(Z
20 BP-6 0-1	بك	1135	L	ىل		i Densousis		*******	12003-0000	SOLUTION OF			*1.200.459.664		2	X	X		STATE STATES	W. 10 W.	X
Relinquished by Lly Vagelotos Received by Undercom		PMX SKepe	, M	55.		9/2		9	いい しりし /ケー	0		Ho	Д- М-				naly 14(c	1515 A	5 ~~		
Relinquished by	4	Steery 11				0/2	H	_	15	35		(C)	ノヤ	taa	, eq	5	TA	<i>,</i> (احسلك		
Received by	> <	OV	53	y Ev	<u>-</u>	9(z	lo	5	15	3	5				٠						
Relinquished by			•																		
Received by																					
Reviewed by/Date		Reviewed by/Date									Chromatograms with final report □										

Chain of Custody

Page 3 of 6

Environmental Inc.	Turnaround (in workin	Turnaround Request (in Working days) (Check One) Laboratory Number: 09-029 Requested Analysis											
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	(Check	: One)					Reques	A Dept	idlysk	و			
Project Number:	Same Day	· 🗌 1 Day								CAHAN P			
	2 Day	☐ 3 Day			8260B					3			
Project Name:	Standard (7 wo	orking days)			l > l	5		(8)	经分	3			
Project Manager:	(TPH analysis	5 working days)	<u> </u>	908	olatile y 827	MIS / C	081A	s151 A	=	¥;			
Sampled by:		204)	SX/BT	y 826	ted Vo	3270	2000 by 8	s by 8	tals 664	Wed			9
Project Name: Both Crossing Paint Site Project Manager: Sundra Matthews Sampled by: L. Vyslatos J. S. Matthews	(oth	ier)	NWTPH-HCID NWTPH-Gx/BT	Volatiles by 8260B	Halogenated Volatiles b Semivolatiles by 8270D	PAHs by 8270D	Poss by 9082 Pesticides by 8081A	Herbicides by 8151A Total RCRA Metals (8)	TCLP Metals HEM by 1664	MTC& Mcts: No CA	popor		% Moisture
Lab (D Sample Identification Sam	nte Time pled: «Sampled»	#.of Matrix Gont	N N	Vola	Halo Sem	PAH	Pest :	Tota Tota	12 로	圣	- 1 - 1-		≥ %
21 BP-62-3 9/2	409 1138	经1									X		
	209 1140	1 1									X		
	169 1200	50,7							X	X			X
24 BP-7 2-3	1205	1									X		
25 BP-7 4-5	1208										χ		
26 BP-8 0-0.5 Y2		Soil 1			-				X	X			X
27 BP-8 2-3	1220	1 1									X		
27 BP-8 2-3 28 BP-8 4.5-5		1 1									X		
29 BP-9 0-0.6 9/2		Soil 1							X	Х			X
30 BP-9 2-3 1	, 1233										X		
Signature	Company	an and an	Die	Grand Seas	TIVE		omuens				730.77239		
Relinquished by Lily Vaccelatos	PMI	χ	9/2	1/09	1510	·)	HOLD	TC	LP a	qualy:	si5		İ
Received by Lauren	SPEEDIN	MES.	9/2	log	1520	1				•			
Relinquished by	11		1	,	153:								
Received by	05	- Hartin	9/Z	109	1535								
Relinquished by													
Received by							•						
Reviewed by/Date	Reviewed	Reviewed by/Date Chromatograms with final report □											

Chain of Custody

Page 4 of 5

Environmental Inc.		Turnaround Request (in Working days) Laboratory Number							er:	r: 0.9-0.29 Requested Ainstysts													
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)									Re	igue.	Bigg	i Ar	cily	3B						
Parametrix Project Number:		me Day] 1 Day														و زر	,_				
7Bothell Crossing, Paint Site Project Name:	2 [ay		3 Day					3260E									200	155				
Project Name:	X Sta	ndard (7 w	orking	days)					s by a	Q0,	5			,	(8)			4	. ``	3			
Project Manager:	(TF	H analysis	5 work	king days)	Ä		90B	olatile		MIS/C		3081A	31514	etals (Z	Metals				
Sampled by:	$\dashv \square$	(ot)	ner)		- 일	Gx/B1	ă	oy 82	ited V	tiles b	8270I	8082	s by 8	s by {	AA M	tals	1664	r Me	Z	٨			are
Sandra Matthews Sampled by: L. Vagelatos + S. Mathews	Date	Time		# of	NWTPH-HCID	NWTPH-Gx/BTEX	VWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by	PAHs by 8270D /	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MTCA Metale	MTCA	old			% Moisture
LabilD Sample Identification	Sampled.	Sampled	Matrix	c Conts	Ž Ž	Ž	Š Z	Vola	Halc	Sen-	PA PA	PCE	Pes	Her	Tota	<u>고</u>	빞	Σ	Σ	- 1		<u> </u>	%
	9/2/09	1235	Soil	I																X			
32 BP-23 6-5	1	1310																X					X
33 88-23 2-3		1312										!								X			
34 BP-23 4-4.5		1315		1									===							X			
34 BP-23 4-4.5 35 BP-23 - 45 36 BP-23 4-5	17	19	HZO			V	X.	550 - X	X										X				•
36 BP-23 4-5		13/4	50,1			X	X	7											•				∇
			1	<u> </u>			/\			-								X					
31 BP-10 D-0.5		1440	-		+	-												_		X		+	
38 BP-10 2-3		1442	-					ļ								<u> </u>				_		\vdash	
39 BP-10 4-5		1445		<u>l</u>																X		1	
40 BP-11 0-05	4	1500	V		OSTONENSKI I		100 A 100 A			West Service	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20000		1225		******		X					
Relinquished by PA 14 A 1		PM	` <u> </u>			1	la la) 9	1			(COL)	inend	<i>9</i> 609	ann	asiqi	BIOLE	¥ ·					Sec. 1
Relinquished by Received by Received by Received by	-			سرر بر		11	41	29	1	20													
Relinquished by		SPERT	-•	NES &		1-7	2/0	99	<u> </u>	20													
Received by							U .	<u>سر</u>	1	3:													
(h)	(96	Ki S	e E	υ	100	40	7	ري	35	<u> </u>	-										•	
Relinquished by				· · · · · · · · · · · · · · · · · · ·								-											
Received by		Dovinus -	bu/Det-																				
Reviewed by/Date	Reviewed by/Date Chromatograms with final report □																						

Chain of Custody

Page 10 of 5

Environmental Inc.	Turnaround Request (in working days) Laboratory Number: (Check One) Requested An												09-029											
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	One)		2							Re	elites	100	An	alys	iis							
Company: Pay a Met VIX Project Number:	☐ San	ne Day ay		1 Day 3 Day					8260B															
Lab ID Sample Identification S	(TP	ndard (7 w H analysis (oth	5 workii ner)	ng days)	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	>	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Iotal HCHA Metals (8)	≥	HEM by 1664			Word			% Moisture	
41 BP-V 0-0-W 2-3 9	Mos	1502	5011	1				٠)	$\langle $				
42 131-11 4-5	1	Voot	√	3		X	X												4	X 3	300)	
43 TRUP BLANK			W	1					X)														
		4.1																						
																								-
Signature 1	******	Company		NAME OF TAXABLE		Date							عانوار											
Received by Lily Vargetator Received by Lily Vargetator	9/2/09 1620 (8) Added 9/4/09 25 1 1/1 1535																							
		SPoon,	RES	~ ~		9/2	10	7	15	26	5 TA													
Relinquished by					•		<u> </u>		15	<i>3</i> 5														
Received by	<u> </u>	05	eite	- Lu	•	21	Zlc	جو ا	15	35														
Relinquished by																								
Received by																								_
Reviewed by/Date		Reviewed by/Date										Chrc	omato	gran	ns w	vith f	inal ı	repor	t 🗆					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 24, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-029B

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 2, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 2, 2009, and received by the laboratory on September 2, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-21&23-09 Date Analyzed: 9-23-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-17 Client ID: **BP-5 2-3**

Analyte	Method	Result	PQL
Arsenic	6010B	11	5.7
Cadmium	6010B	ND	0.57
Chromium	6010B	35	0.57
Lead	6010B	49	5.7
Mercury	7471A	0.050	0.023

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-21&23-09 Date Analyzed: 9-23-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-27 Client ID: **BP-8 2-3**

Analyte	Method	Result	PQL
Arsenic	6010B	10	6.0
Cadmium	6010B	ND	0.60
Chromium	6010B	38	0.60
Lead	6010B	82	6.0
Mercury	7471A	0.063	0.024

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-21&23-09 Date Analyzed: 9-23-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-30 Client ID: **BP-9 2-3**

Analyte	Method	Result	PQL
Arsenic	6010B	11	5.4
Cadmium	6010B	ND	0.54
Chromium	6010B	46	0.54
Lead	6010B	18	5.4
Mercury	7471A	0.032	0.022

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-21&23-09 Date Analyzed: 9-23-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-33 Client ID: **BP-23 2-3**

Analyte	Method	Result	PQL
Arsenic	6010B	31	5.5
Cadmium	6010B	ND	0.55
Chromium	6010B	32	0.55
Lead	6010B	410	5.5
Mercury	7471A	0.038	0.022

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-21&23-09 Date Analyzed: 9-23-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-41 Client ID: **BP-11 2-3**

Analyte	Method	Result	PQL
Arsenic	6010B	390	5.6
Cadmium	6010B	3.5	0.56
Chromium	6010B	48	0.56
Lead	6010B	300	5.6
Mercury	7471A	0.073	0.022

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 9-21-09
Date Analyzed: 9-21-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0921S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0923S4

Analyte Method Result PQL

Mercury 7471A **ND** 0.020

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 9-21-09 Date Analyzed: 9-21-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-157-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	5.0	
Cadmium	ND	ND	NA	0.50	
Chromium	16.5	18.3	10	0.50	
Lead	7.02	5.83	19	5.0	

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-148-01

Sample Duplicate

Analyte Result RPD PQL Flags

Mercury **0.0252 0.0256** 2 0.020

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 9-21-09 Date Analyzed: 9-21-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-157-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	79.8	80	84.2	84	5	
Cadmium	50	44.7	89	45.4	91	2	
Chromium	100	108	91	108	92	0	
Lead	250	218	85	219	85	0	

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-148-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.50	0.480	96	0.495	99	3	

% MOISTURE

Date Analyzed: 9-21-09

Client ID	Lab ID	% Moisture
BP-5 2-3	09-029-17	12
BP-8 2-3	09-029-27	16
BP-9 2-3	09-029-30	8
BP-23 2-3	09-029-33	9
BP-11 2-3	09-029-41	10

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

	4	
Page	1c	of /O

Environmental Inc.		Turnaround (in Worki		it	La	bor	ato	ry l	Nur	nbe	er:			·				02	9			
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)									Re	e ll e	300			is.	3			1	
PMX		me Day		1 Day	Salara	No. of Concession	essanees:	210010000		e constante	**********	27.2076.2	1445	1977	1000		**************************************	- 33	2.000-000-00-00-00-00-00-00-00-00-00-00-0		1.40.00	220974783
555-1647-019 02/0403	2 0	Day		3 Day					8260B				,			4		240				
Project Number: 555-1647-019 026403 Project Name: Bothell Crossing Paint Site Project Manager: Sandra Matthews Sampled by:		andard (7 w							s by 8	Q0,	>				(8)	HOLL		: As, Coly Co, H				
Project Manager:	(TF	PH analysis	5 workir	ng days)		M		go go	latile	y 8270D	/ SIM		081A	1514	tals (-14				j		
Sampled by:	$\dashv \Box$				문	x/BT	×	y 826	od Vc	les p	270C	3082	by 8	ξģ	A Me	als .	364	\mathbf{X}				o l
L. Vagelatos + S. Matthews			ner)	The Control of Pales of Mary	FH-H	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by	PAHs by 8270D /	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MTCA Mass	Hold			% Moisture
<u>Lab ID</u> Sample (dentification	Date Sampled	Time Sampled		#01 Cont	MM	NWT	NWT	Volati	Halo	Semi	PAHs	PCB	Pesti	Herbi	Total	뒫	HEM	Z	H			W %
1 BP-24-8	9/2/09	905	Soil	1			Х															X
2 BP-24	9/2/09	0910	HZO	2			X	illile.									.,					+
3 BP-26	1	0950	Seil	#6		X		WK	(X)	X						契	Y	X				
4 BP-1 0'-0.5'		1010	1	1												Х		Х				
5 BP-1 1.5'-2'		1012		1											2	X	!		Х			
		1015		1												,			K.			
6 BP-1 4.5'-5' 7 BP-2 0-0.5		1020		L												X		X.				X
8 88-2 2.5-3		1025		1									i			,	- :	-	X			
9 39-2 4.5-5		1030		V															X			
10 BP-3 0-0.5	الد	1040	1	١												V		N	-			X
Signatüre		@Onleany				Date			infine			(O)11	nens	/Spec	END	Title	lions					
Relinquished by Lily Vaculatos		Pare	met	νίχ		9/	2/0	9	15	1C	<u>) </u>	Ho	pk	a	ll	TO	CL	P o	anal	yse.	5	
Received by Lily Vacuator Received by Lily Vacuator		SPGED				9/2/	109		15	20	う	1								l		ļ
Relinquished by		- 11	1			1			15.	33		1)Ac	lde	d 9	1/15	-lo	7 . D	3			
Received by)	05	The	5		20	z(c	×7		3	35	\ 	, -									
Relinquished by				·····																		
Received by				•												:						
Reviewed by/Date		Reviewed	by/Date .									Chr	omat	ograi	ms v	vith f	final	report [

Chain of Custody

Page _______ of ______

Environmental Inc.		Turnaroun (in worki	d Reque ng days	st)	La	abor	rato	ry N	lum	ber	:			1	0 9) –	02	9			
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Checl	(One)								: 13	च्याह	90	lAn	ellys	ek	2				
Project Number:	_ □ Sar	ne Day] 1 Day					_								- X 2				
•	2 C	ay] 3 Day	,				8260B						Ą		Z				,
Project Name: Radia M. Canada	X Sta	ndard (7 w	orking o	days)				.	>	a				6	HOLD		ব্			į	
Project Manager:		'H analysis			s)	X		30B	olatile 1907	y 827	5	081A	151A	tals (.A.				
Sampled by: A L	$\dashv \Box$	/	1	···-	_ 달	x/BT	×	ıy 826	ed Vc	iles bi	3082	by 8	s by 8	A Me	als	664	7				<u>e</u>
Project Name: Bother Crossing, Punt Site Project Manager: Sandra Matthews Sampled by: L. Vageratos J. S. Matthews		CONTRACTOR	ner)		NWTPH-HCID	NWTPH-Gx/BT	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270D PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MICA MAS: AS CA, CO, US,	700	•		% Moisture
ab 10 Sample (dentification	Date Sampled	Time Sampled	Matrix	24.00 CON	N N	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N N	Vola	Halo	Sem PAH	PCB	Pest	Herb	Total	걸	문	¥	===			%
11 80-3 2-3	9/1/09	1045	Soi!	1														X			
12 810-3 4.5-5	/	1048	1														,	X			
13 84-4 0-0.5		1000													Χ		X				X
14 BP-4 2-3		1008																K			
		1100																K			
15 BP-4 4.15-15 16 BP-5 0-0.15		1110													X		K				X
16 BP-5 0-0.5 17 BP-5 2-3	•	1112															0	,X	00 Col		0
18 BP-5 4-5		1115					X)										, t	- J		B
19 BP-6 10		1120					(X)											X			Z
20 BP-6 0-1	4	1135	上		,										X		X !	-			X
Signature		(Company				Date			ime		Ç ed	indin	/Spe	alalilla	alite	llons	/ V				
Relinquished by Kelly Vagelatos		PMX	7 N			9/	2/0	9	Gi	٥	H	old.	TC	LE)	and	alys	515 7 3			
Received by Um Queum		Steery	1 M	35.		9/	2/0	9/	152	20		(X	Δ.	so.	d (al	મ <i>ા</i>	7 🔂	SP .		
Relinquished by	·	11				1	H		153	35		ノ ⁽	100	ω··	^ <	3	A -				
Received by	\ (OV	75	ψ I		912	zlo	3	(5	35		Ad	١				~ ^				
Relinquished by												10	ded	9	1510	99.	VB			•	
Received by																					
Reviewed by/Date		Reviewed	by/Date								Ch	roma	togra	ıms v	with t	final	report				

Chain of Custody

Environmental Inc.		Turnaroun	d Reques ng days)	st	La	aboı	rato	ory	Nur	mbe	er:				!	0 9) -	02	9			
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Checl	k One)									Re	(PE	ale		elly	ale	2				
Project Number:	□ Sar	me Day		1 Day					m									74. 74.				
David Manager	2 0	ay		3 Day					8260B									3				
Project Name: Bother Crossing Paint Site		ındard (7 w								Q0,	Σ			_	(8)	ADA.		<u> </u>				
Project Manager:	(TF	PH analysis	5 workii	ng days)		ĕ		60B	olatile	y 827	IS/C		3081A	3151/	etals (H		4×6				
Project Name: Both Crossing Paint Site Project Manager: Sundry Matthews Sampled by: L. Yugelwas + S. Matthews	$ \Box$	(ot	her)		무	Gx/B]	ă	by 82	ted V	tiles t	8270	8082	s by 8	s by {	AA Me	tals	1664	\$				ற
L. Vagelatos J. S. Matinens	Date	Time		# 01	NWTPH-H	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	Mich Wids: As Col, Co., Hy,	Photol		Moisturo /	/JOISIU
Lab ID Sample Itlentification	Sampled	Sampled	1		⋛	<u></u>	Š	Slo N	별	Sen	PAF	PCE	Pes	Heri	Tota	뒫	띺	7			9	<u> </u>
21 134-62-3	42409	1138	2.1	1															X			
22 BP-6 4-6	9/2/09	1140	1	1															X			
23 BP-670-0.5	9/2/09	1200	50,7	l		-										X		X				\overline{X}
24 BP-7 2-3	1	1205	1	1															X			
25 BP-7 4-5	1	1208													-				χ			
26 BP-8 0-0.5	1/2/09	1217	Soil	1												X		X	1	-		×
	12101		(1			-			ļ <u></u>						X _i			ي معرد		 	<u> </u>
	+	1220	7			-												\cup	X	b ₂	++	<u>ー</u>
28 BP-8 4.5-5		1221		•															X		 	J
29 BP-9 0-0.6	9/2/09		50,1	1	ļ	-										X		χ,	$\perp \perp$		/	X
30 BP-9 2-3	7	1233	\ \	7	Section Section	i sanoativisano		Transcontante	VIII DOMENTA DE PO		DEPOSITOR OF THE PARTY OF THE P	This are are an in-	esecuti E haarbig	to Norme though	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	STANIST NAME OF STREET		<u> </u>	X	٠ ١		<u>ට</u>
Signature Sent 1/ 1	100000000000000000000000000000000000000	Company	<u> </u>				r i							<i>1</i> 800 -		ence D	erion	درا م				
Relinquished by Lily Vagelato	>	PM;					2/		1	ic		110	LP	\	ر اسار	- [·	aly.	>1)			
Received by Lucius		SPEEDY	, ME.	5,		9/	40	9)	0	Ad	J. d	91	1.5	109	- D1	s <i>is</i> 3			
Relinquished by							11		15	35	5		• /-									
Received by	\rangle	35	<u> </u>	o tv	-	91	ZO	<u> </u>	15	35												
Relinquished by	-				-																	
Received by																						
Reviewed by/Date		Reviewed	by/Date									Chr	omat	togra	ıms v	with f	inal r	eport [<u> </u>			

Chain of Custody

Page 4 of 5

Environmental Inc.	Turnaround Request Laboratory Number:										09-029												
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	-	(Checl	(One)									Re	gue	900		ielly	die.						
Parametrix Project Number:	□ Sa	me Day] 1 Day	COMPANY.	1000000	on this will be the	and the second second	m	30,000,000,000	1000 2000	***************************************		OUR MARKETON				ور	سري ا		CONTROL OF THE PROPERTY OF	SI-MINIST SP	SECON SECURE
7Bothell Crossing, Paint Site Project Name:	2[-] 3 Day					8260B									, cd,	55.				
×		andard (7 w PH analysis							les by	8270D	SIM		∢	∢	(8)		l.	2 A 2	3				
Project Manager: Sandra Matthews		anaiysis	S WOIK	ing days)		3TEX		260B	Volati	by 82	_	Ci	8081	/ 8151	Metals			(eta)	Metal			ļ	
Sandra Matthews Sampled by: L. Vagelatos + S. Mathews		(ot	ner)		NWTPH-HCID	NWTPH-Gx/BTEX	XQ-H	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by	PAHs by 8270D	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MICA Metal	4	10			sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# 01 0001	WTPI	WTP	NWTPH-Dx	/olatile	Haloge	Semivo	PAHs t	CBs t	Pesticio	Herbici	Total R	ICLP I	√EM b	N N	M ₁₀	Hol			% Moisture
	9/2/09		So,1	Z						0,										X			
32 RP-23 6-5	1	1310		1														X	-				X
33 BP-23 2-3 34 BP-23 4-4.5		1312																0		X	D Sign		0
34 BP-23 4-4.5		1315		V																X			
35 BP-23 - HT	17	1940	H20			χ	χ.	7	X										Χ				
36 BP-23 4-6		13/4	50,1	2		X	X																X
37 BP-10 D-05		1440		1														X					
38 BP-10 2-3		1442	.	L																X			
39 BP-10 4-5		1445		l																Χ			
40 BP-11 0-05	4	1500	$ \downarrow \rangle$	<u>l</u>														X					X
Signature XA / / / 1 +		Gomesiny Dx A	_			Date	electronic contract					1	mente					i i					-
Relinquished by Received by	•	PM Species		1,,,		T				20		1) a	dd	ıθ	4/	151	109.	Di	3			
Relinquished by) feets		les o	······································	1	2] [U	99	12	720	<u> </u>												
Received by		1		e E		ı) F3	10	<i>3:</i>													
Relinquished by	(× 010	~ FL	<u>ر</u>		- (1)		,	- / (•												
Received by																						•	
Reviewed by/Date		Reviewed	by/Date			1						Chr	omat	ogra	ms '	with	final	repo	rt 🗆			-	

Chain of Custody

Page 10 of 15

	Environmental Inc.		Turnaroun (in worki	d Reque ng days)	st	La	bor	ato	ry	Nui	nbe	er:							<u>0</u> 9	- C	12	9		
Company:	Phone: (425) 883-3881 • Fax: (425) 885-4603		(Checl	k One)									Re	ojue	ae	ΩΩ	ielly	dis.	Z .					
Company: Project Number	1etrix	□ Sa	me Day		l 1 Day					m									CSH					
Project Name:		2 [Day		3 Day					8260									187 160					
Bothel	1 Crossins Paint Site	X Sta	andard (7 w	orking d	ays)					es by	9	M			٨	(8)) su					
Project Manage	1 Crossing Paint Site a Monthers elatos + 2, Monthers		PH analysis	5 worki	ng days)		Ä		60B	Halogenated Volatiles by 8260B	Semivolatiles by 8270D	PAHs by 8270D / SIM		Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)			nroa merans lascolut					
Sampled by:	1 6 1 6 1 1	$\neg \neg -$	(otl	her)		PH-HCID	NWTPH-Gx/BTEX	Ϋ́Ö́	Volatiles by 8260B	ated \	tiles	8270	PCBs by 8082	s by	es by	RAM	etals	1664	4				ā	ა -
	PLATOS + 2, NYAKINGNOS	. Date	Time		# of	/TPH	/TPH	NWTPH-Dx	atiles	logen	mivola	Hs by	Bs by	sticide	rbicide	al RC	TCLP Metals	HEM by 1664	11.6	15,17,17	1		% Moisture	NO.
Cabio	Sample Identification		Sampled.		Gont	NWT	2	Ž	<u>></u>	Ha	Se	<u>A</u> _	<u> </u>	P. P.	He	Tot	2	뿐	$\stackrel{\sim}{\rightarrow}$	- X				
41 31	2-11 4-6 2-3	9/2/09		5.11	1		<u></u>												0	X	28	2	(<u>ر</u>
42 131	2-11 4-5		1505	V	3		X	K												*			2	<u>X</u>
43 TR1	P BLANK			ω	1					X														
			•••																	-			+	
		<u> </u>					<u> </u>																+	_
										,													-	_
	Signature		Gompany		V	olles (s	loate	100	e tu e e	Salinis			(eau	mente	ISTA	a en en				en e Avera	, and the same			
Relinquished b	y Silve Yangla Kan		PMX					2/0				_											<u> </u>	23832
Received by	" Lily Vagglatoz		Spour		e u		9/	10	~	/9	32 20		()		Az	40	od	9	1410°	1-2	-			
Relinquished b			N. A.	, ,, 0,,,				1	/ 															
Received by			Ostate Fin			4 1535 Field 1535				OAdded 91,5/09.DB														
Relinquished b			<u> </u>		- 0		U		~~	<u>, </u>	<u>د></u>			7/4	ÇI CIC	,	.,,	<i>)</i>		•				
Received by																								
Reviewed by/D)ate		Reviewed	by/Date			<u></u>						Chr	omat	ogra	ms v	with ·	final	report					
													- C1110	Jiilal	Jyiu			mai	Sport					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 8, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-029C

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 2, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

Case Narrative

Samples were collected on September 2, 2009, and received by the laboratory on September 2, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 6010B/7471A Analysis

Samples BP-23 4-5 and BP-11 4-5 were analyzed outside the 28 day holding time for mercury.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-30&10-5-09 Date Analyzed: 9-30&10-6-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-36 Client ID: **BP-23 4-5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.6
Cadmium	6010B	ND	0.56
Chromium	6010B	22	0.56
Lead	6010B	ND	5.6
Mercury	7471A	0.023	0.022

Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-30&10-5-09 Date Analyzed: 9-30&10-6-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-42 Client ID: **BP-11 4-5**

Analyte	Method	Result	PQL
Arsenic	6010B	6.1	5.6
Cadmium	6010B	ND	0.56
Chromium	6010B	26	0.56
Lead	6010B	ND	5.6
Mercury	7471A	ND	0.022

Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 10-5-09
Date Analyzed: 10-5-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB1005S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0

Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-30-09
Date Analyzed: 9-30-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0930S1

Analyte Method Result PQL

Mercury 7471A **ND** 0.02

Date of Report: October 8, 2009

Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 10-5-09 Date Analyzed: 10-5-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-236-06

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	5.0	
Cadmium	ND	ND	NA	0.50	
Chromium	5.50	6.55	17	0.50	
Lead	ND	ND	NA	5.0	

Date of Report: October 8, 2009

Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-30-09 Date Analyzed: 9-30-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-42

Sample Duplicate

Analyte Result Reput Reput Result RPD PQL Flags

Mercury **0.0206 ND** NA 0.020

Date of Report: October 8, 2009 Samples Submitted: September 2, 2009

Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 10-5-09 Date Analyzed: 10-5-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-236-06

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	93.8	94	95.2	95	2	
Cadmium	50	49.4	99	49.9	100	1	
Chromium	100	103	97	102	96	1	
Lead	250	234	94	236	94	1	

Date of Report: October 8, 2009

Samples Submitted: September 2, 2009 Laboratory Reference: 0909-029C Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-30-09 Date Analyzed: 9-30-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-42

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.50	0.517	103	0.511	102	1	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page 1 of 15

Environmental Inc.		Turnaround (in worki			La	bor	ato	ry I	Nur	nbe	er:				0	9		2	9			
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)									Re	elic	ded)	Alici	lyei	G :	<u>,</u>				September 1
PMX		me Day		1 Day													1	ZŽ.				1
Project Number: 555-1647-019 026403	. 2 [) Dav		3 Day					8260B						/	4		3				
Project Name:	⊢, .	andard (7 w							by 8%	۵						7		75				
Project Name: Bothell Crossing, Paint Site Project Manager:		PH analysis				$ _{\times}$		<u></u>	atiles	8270	SIM		31A	8151A	o) -	7,	•	₹				
Sandra Mothews Sampled by:					₽	/BTE		8260	Nol8	s by	7007	82	y 808	3y 81	N 1	,	<u> </u>	Ag.				
L. Vagelatos & S. Matthews		(oth	ner)		무	1-Gx	H-Dx	s by	natec	latile	y 82	y 8082	d sək	des t	Vetal	186	Ž -	N.	-3		sture	
	Date	in a			NWTP	NWTPH-Gx/BTEX	NWTPH-Dx	/olatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270D	PAHs by 8270D	PCBs by	Pesticides by 8081A	Terbicides by 8151A	TCLP Metals	JEM by 1867		MICA Mats : As, Col, Co., H.	Hold		% Moisture	
Sample (tentification		Sampled			Z	Z		Š	Ţ	ιŏ	<u></u>	مَ	مّ	Ĭ j		- I	<u>ר</u>				- ×	F
BP-24-8	9/2/09			1			X				<u> </u>		-	-							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
2 BP-24	912/09	0910	HZO	2			X	WK	_							41	,				- 1	_
3 BP-26	(0950	4.1	H6		X		WK.	(\aleph)	X					3	FY)	$\langle $				
4 BP-1 0'-0,5'		1010		i											Ϋ́		1	X			\downarrow	,
5 BF-1 1.5'-2'		1012		}											×	1			X			1
6 BP-1 4.5'-5'		1015		l															K.			1
7 BP-2 0-0.5		1020].												ζ	١,	X·	7		X	7
8 BB-2 2.5-3		1026		1											1				X			١
9 38-2 4.5-5		1030		· ·															K			1
10 BP-3 0-0.5		1040	1	1												(,	N			X	Ģ
Signature 1		Сощения				Date:		ingles et a	illine				nenis				20158				r Kicay	
Relinquished by Lily Varylator		Pare	met	κίχ		9/-	2/0	9	15	1 C)	Ho	bk	a	11-	TC	-1-1	P 0	ina	yses		
Received by Aily Vagulator Received by Aily Vagulator		SPGO				9/2/		'	15	27	<u> </u>							•		l		
Relinquished by		: 11	-	7.		F			15.	33	_	(4)Ad	deo	(9)	15	109	. D	3			
Received by		ا حکاف	The s			20	zlo	87	[5	35		٠,٠	lad	9	20	Jne	. <i>D)</i> 21 - I	×2			
Relinquished by													170	،سور	'		- ₁ ·	, -	シ			
Received by																						
Reviewed by/Date		Reviewed	by/Date .									Chr	omate	ogran	ns wit	h fir	nal re	eport [

OnSite Environmental Inc.

Chain of Custody

Page 2 of 5

Environmental Inc.	Turnaround Request (in working days) (Check One) Laboratory Number: 09-029 Requested Analysis																				
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)		*						R	alie	SIG	I Ayri		ale	בק	19			
Project Number:	_ □ Sar	ne Day		1 Day												i	- X				
•	_ □ 2 D	ay		3 Day				0000				1			HOLD		B My M				
Project Name: Rothell Crossing, Punt Site Project Manager:	X Sta	ndard (7 w	orking da	ays)				غ ا	>					(8)	40		- 4				
Project Manager:	(TP	H analysis	5 workir	ng days)		Ε̈́		8260B	natile v 827	MIS/0		081A	3151A	stals (.¥.				
Sampled by: L. Vagglades J. J. Mathers	$\exists \Box$	(a+l	ner)		. 달	3x/BT	×	by 826	red vo	3270	8082	by 8	s by 8	₹A Me	tals	664	4				<u>o</u>
h. Vacchates + 3. Matheris		,			NWTPH-HCID	NWTPH-Gx/BTEX	XD-H4TWN	Volatiles by	naloge rated volatiles b	PAHs by 8270D /	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MYCLA Hats: As Cal	Holor			% Moisture
ab ID. Sample Identification (Date Sampled	Time Sampled	Watnix	entiage Gode	N N	MN	ZWN	Vola	Sem	PAH	PCB	Pest	Her	Tota	TCL	팊	¥		-		≥
11 80-3 2-3	Moq	1045	Ser!	. 1													,	X			
12 810-3 4.5-5	/	1048									,							X			
13 89-4 0-05		1066													X		X				X
14 BP-4 2-3		1008					,											K			
		11/00																K			
15 BP-4 4.5-5 16 BP-5 0-0.5		1110								1					X		K			+	X
16 BP-5 0-0.5 17 BP-5 2-3		1112													1.		0	×.	(O)		0
18 BP-6 4-6		1116					X)	-		 							1	DV		8
19 BP-6 10		1120				<u> </u>					-							- X		+	
		1135				-	\otimes				·				<u> </u>		N/	1			(X)
20 BP-6 0-1		11/20	ere apal vistas a								8	meas	<i>1</i> 9		<u> </u>		<u>X</u> (\$ # OK 12			
Relinquished by Language Tangan		PMX		***************************************	7515768		2/09		りに									را ن		652,630,331	957299
Received by Ly Vagelatos Received by		SKEDY		T		-1						- -	· ·	<u>,</u>	,			1 >	<i>C</i>		*
Relinquished by		11					2 00 		153	<u>0</u> 5	⊣ હ	Hold TCLP analysis (X) Added 914109 350 STA									
Received by		DV	- Nc	F	· -	9(2	zloc			35		STA OAdded 91509. DB									
Relinquished by			,								$ \big] \mathcal{O}$	JAdded 965109. VB									
Received by																					
Reviewed by/Date		Reviewed	by/Date								Chi	omat	ogra	ms v	with	final	report				

OnSite Environmental Inc.

Chain of Custody

Environmental Inc.	Turnaround Request Laboratory Number: 09-029 (Check One) Requested Analysis 9																					
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Checl	k One)		100							Re	ijue:	ied)	Anell	yelia	Q.					
Project Number:	_ ☐ Sar	ne Day		1 Day													سلا تنسا	:				
r roject Number.	☐ 2 D	ay		3 Day					8260B								C. H.	-				
Project Name:	M Sta	ndard (7 w	orkina d	avs)						ا ۾	_				2 2 4	<u> </u>	1 -	- 1				
Project Manager:		'H analysis				EX		 B	atiles	8270	/ SIM		81A	A 0	3	7	*	-				
Sampled by:					응	/BTE	,	8260	lo V	es by	270D	382	oy 80	Met	ရှု	64	T					
Project Name: Both Crossing Paint Site Project Manager: Sundry Mathews Sampled by: L. Vyslatos J. S. Mathews		(ot	her)] }]	Ę.	Ή-D>	es by	enate	olatil	by 82	by 8(ides	san:	Meta	by 16	Mack Wats to Col	.	<u> </u>		1	% Moisture
<u>Lab</u> (D Sample:Identification	Date Sampled:	Time Sampled	Matrix	#201 (km)	NWTPH-HCID	NWTPH-Gx/BT	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270D	PAHs by 8270D /	PCBs by 8082	Pesticides by 8081A	Total BCBA Metals (8)	TCLP Metals	HEM by 1664	₹ F	75	3		2	% IVIC
21 134-42-3	42109		4:1	1		_												X				
22 BP-6 4-6	9/2/09	1140	1	1														X				
	9/2/69	1200	Soil	l											X	,	X					\overline{X}
24 BP-7 2-3	1	1205																X				
25 BP-7 4-5	1	1208	1	1														λ				
	12/09	1217	Sent	1											X	<i>y</i>	X					X
27 BP-8 2-3		1220															0	X	الأهم		- (0
27 BP-8 2-3 28 BP-8 4.5-5	A	1221	4	1																		
29 188-9 0-0.5	1/2/09	1230	Sen	1											X		X					X
30 BP-9 2-3	7	1233	1	7											MACAL TAN Y		0	X	10,000	200400	(2
Signature :		Company.				Date	N SAN E. L S S S S S S S.				\ \			3000E	Most - L T	igion	ا م. ا م.	./ <i>C</i> .'<			*01**	
Relinquished by Lily Vaculator	•	PM.				1	2/			<u>i</u> C	_	110	LP	λC	-IT	4	nai	עוב ץ				
Received by Junes		SPEEDY	ME	5,		9/-	2/O			20)	0	Add	20	91,5	-10	9.	ysi5 Di3				
Relinquished by		//	·				11		15	<u> 3</u> 3			* /0 -					•				
Received by		36	<u> √6 </u>	o Ev.	-	9/2	ZO	9		35												
Relinquished by																						
Received by																						
Reviewed by/Date		Reviewed	by/Date									Chro	omato	gran	ıs wit	n fina	l repo	rt 🗆				

OnSite Environmental Inc

Chain of Custody

Page 4 of 5

Environmental Inc.	(In working days) (Check One) Laboratory Number: 0.9-0.29 Requested Analysis													}									
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)									Re	idio	gled	i) Ai	ally	als.						
Parametrix	_ ☐ Sar	me Day] 1 Day							Mary and Comments							ورد					
i Toject Number.		Dav		3 Day					8260B									2,6	4155.				
7 Bothell Crossing, Paint Site Project Name:	ا ر ا	andard (7 w							ģ	ا ما					_			\$ ±	2.5				
Project Manager:		PH analysis)	×		ш	tilles	8270D	SIM		31A	51A	(8) sn			ज	, , ,				
Sandra Mathews					GB	/BTE		8260	Nola Vola	s by	/ Q02	85	y 808	y 81	Meta	S	4	40 je	Metal				
Sampled by: L. Vagelatos + S. Mathews		(oth	ner)		- 웃	H-GX	H-Dx	s by	nated	latile	y 82	y 80	d səp	des t	CRA	Vetal	y 166	4	4	-0			sture
	Date	Time		# 01	VTP	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MTCA Meials	170	Hold			% Moisture
	1/2/09	Sampal		1	® Z	Z	Z	>_	I	S	<u>a</u>	<u>с</u>	_	<u> </u>	<u> </u>	<u> </u>	I			X			
20	10/04		Seil	<u></u>		-	:		 								:			^		-	
32 BP-23 6-5		1310																X				_	A
33 BP-23 2-3		1312																0		X	313		0
34 BP-23 4-4.5		1315		$\downarrow \downarrow$																X			
35 BP-23 - HT	13	1	HZO	-		χ	χ.	5 (S)	X										Χ				•
36 BP-23 4-5		13/4	50,1	12		χ	X											0					X
37 BP-10 D-0.5		1440	1	1														X					
38 BP-10 2-3	1	1442		1														-		入			
39 BP-10 4-5		1445		l																X			
40 BP-11 0-05	4	1500		1														X		•			X
• Signature		Company				Date			ining				mente				ulone						
Relinquished by Lily Vaculator		PM	χ			9/	2/0	9	15	20)		1 4	الما	1	9/	151	109. Olo	Di	3			
Received by In Jurus		Specia	2, N	150		9	2/0	59	15	20	>	() 4	0.0	1		٠ .	,	` /	<u>~</u> 5	>		
Relinquished by		4					u	-	15	2c 31	5		A	المل	ወ ዓ	٠ ٧	13	O (0	, ۳	1015	>		
Received by		96	K	e E	- -	70	zlo	9	15	35	<u> </u>											•	
Relinquished by																							
Received by				,																			
Reviewed by/Date		Reviewed by/Date Chromatograms with final report □									ogra	-											

OnSite Environmental Inc.

Chain of Custody

Page b of b

Environ	mental Inc.		Turnaround (in Worki	i Reque ig days)	st	La	bor	ato	ry N	lum	nbe	r:						•	gg	3 -	0 3	29		
Phone: (425) 883-	-3881 • Fax: (425) 885-4603	_	(Check	(One)									Re	que	30	i) (Ar	ielly	JĞ.	₹.			r e		
Company: Project Number:		□ Sar	ne Day		1 Day	Several de la constant de la constan	-	in the interest		<u>m</u>	40 m 94 m 0	1000000		oute any or the	ogla stopado	************			As, Color		N. HO. S. HAT.		- N. W. W. W. W.	
			ay		3 Day					8260B									187					
Project Name: Both Crass M Project Manager: A M	y Paint Site ens + 5, Mathens	Sta (TP	ndard (7 w 'H analysis	orking d 5 worki	ays) ng days)		EX		30B	> 1	y 8270D	MIS/C		081A	3151A	etals (8)			METANS (
Sampled by: L. Vage 1005	+ 5, Monthers			ner)		NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	genated V	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MJCA N	-	70			% Moisture
ab ID Samo	le (dentification	Date Sampled	Time Sampled	Matrix	##Off Cont	NWT	NWT	NWT	Volat	Halo	Semi	PAH	PCB	Pesti	Herb	Total	15 12	HEM	B	_	N/6/Vd			W %
41 BP-V 0 42 BP-11 4: 43 TRUP BLA		9/2/09	1502	5611	1														0	.)	_)B		0
42 131-11 4	-5		Voot	↓	3		X	K												+2		350		X
43 TRUP BIA	N M			W	1				1	X))			ĺ										
	701~			00																				
																					+	_		
	· · · · · · · · · · · · · · · · · · ·																				_			
																-								\top
		-					<u> </u>								-									-
				-		-																•	_	
																	<u> </u>							
s	ignature:		Company				1							nente		cialili	elidi	ilons						
Relinquished by	Cily Vagglatos		PMX	•			9/2	2/0	9	15	<u>32</u>	0.	NO ALKON 914109											
Received by	Dr. Fairur		Spoun	NES,	~		9/2	10	$\widetilde{\gamma}$	15	20	s	(X) Added 9141091 DE											
Relinquished by	_ N		X					4	•	15	_ 35	5-												
Received by	3 m	(06	eite	- Eu	-	7	(Zla	جر ا			$\overline{}$	(DA	dda	ed	91	5/	09.	DZ				
Relinquished by													2	A	بالمل	الىو	9	30	09 -	Di	>			
Received by														1	Added 91,5/09.DB Added 9/30/09-DB									
Reviewed by/Date			Reviewed	by/Date									Chr	omat	ogra	matograms with final report □								

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 20, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-029D

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 2, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 2, 2009, and received by the laboratory on September 2, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

TCLP Metals EPA 1311/6010B/7470A Analysis

Samples BP-11 0-0.5 and BP-11 2-3 were analyzed outside the 28 day holding time for mercury.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

TCLP Metals EPA 1311/6010B/7470A

Date Prepared: 10-13-09

Date Extracted: 10-15&16-09

Date Analyzed: 10-15&16-09

Matrix: TCLP Extract Units: mg/L (ppm)

Lab ID: 09-029-40
Client ID: **BP-11 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	0.40
Cadmium	6010B	0.045	0.020
Chromium	6010B	0.022	0.020
Lead	6010B	0.70	0.20
Mercury	7470A	ND	0.0050

TCLP Metals EPA 1311/6010B/7470A

Date Prepared: 10-13-09

Date Extracted: 10-15&16-09

Date Analyzed: 10-15&16-09

Matrix: TCLP Extract Units: mg/L (ppm)

Lab ID: 09-029-41 Client ID: **BP-11 2-3**

Analyte	Method	Result	PQL
Arsenic	6010B	0.96	0.40
Cadmium	6010B	0.13	0.020
Chromium	6010B	ND	0.020
Lead	6010B	0.32	0.20
Mercury	7470A	ND	0.0050

TCLP Metals EPA 1311/6010B/7470A METHOD BLANK QUALITY CONTROL

 Date Prepared:
 10-13-09

 Date Extracted:
 10-15&16-09

 Date Analyzed:
 10-15&16-09

Matrix: TCLP Extract Units: mg/L (ppm)

Lab ID: MB1015T1&MB1016T1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	0.40
Cadmium	6010B	ND	0.020
Chromium	6010B	ND	0.020
Lead	6010B	ND	0.20
Mercury	7470A	ND	0.0050

TCLP Metals EPA 1311/6010B/7470A DUPLICATE QUALITY CONTROL

Date Prepared: 10-13-09

Date Extracted: 10-15&16-09

Date Analyzed: 10-15&16-09

Matrix: TCLP Extract Units: mg/L (ppm)

Lab ID: 09-029-40

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	0.40	
Cadmium	0.0454	0.0436	4	0.020	
Chromium	0.0216	ND	NA	0.020	
Lead	0.700	0.730	4	0.20	
Mercury	ND	ND	NA	0.0050	

TCLP Metals EPA 1311/6010B/7470A MS/MSD QUALITY CONTROL

Date Prepared: 10-13-09

Date Extracted: 10-15&16-09

Date Analyzed: 10-15&16-09

Matrix: TCLP Extract Units: mg/L (ppm)

Lab ID: 09-029-40

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD
Arsenic	4.0	4.03	101	3.98	100	1
Cadmium	2.0	1.96	96	1.93	94	1
Chromium	4.0	3.88	96	3.85	96	1
Lead	10	9.94	92	9.88	92	1
Mercury	0.050	0.0545	109	0.0548	110	1

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page ______ of _____

Environmental Inc.		Turnaround (in workir	Reques g days)	Request (deys) Laboratory Number: 09-029 One) Requested Airclysts																		
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	One)									Re	e u e	3(0)		elly	als.	로			1	
PMX	□ Sa	me Day		1 Day	24.234.84				m		to an acree mos					^						
555-1647-019 026403	2 [Day		3 Day					8260B							7		2 pg				
Project Name: Bothell Crossing, Paint Site Project Manager: Sandra Mothews Sampled by:		andard (7 w							se by	8270D	Σ			_	(8)	HOLY		Ant				
Project Manager:	TF (TF	PH analysis	5 workir	ng days)		ĕ		60B	olatile	y 827	IS/C		3081A	8151/	etals	-		, i		-		
Sampled by:	$\neg \neg -$	(oth	ner)		HCID	NWTPH-Gx/BTEX	ă	Volatiles by 8260E	Halogenated Volatiles by	Semivolatiles by	PAHs by 8270D / SIM	8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	stals _	HEM by 1664	MTCA Mets: As, Coly, Co. H.	=			re
L. Vagelatos + S. Matthews	Date	Time		# 01	표	TPH-	NWTPH-Dx	tilles	gens	ivola	ls by	PCBs by	ticide	bicide	I RC	TCLP Metals	/ by	12	Holy	3		% Moisture
Lab ID Sample Identification		Sampled	Matrix		NWT	Š	Ž	§	Halo	Sen_	₽ P	PCE	Pes	Ę.	Tota	TCL	핖	$\mathbf{\Sigma}$				8
01 - 0	9/2/09	0905	Soil	1			X															X
2 BP-24	9/2/09	0910	HZÓ	2			X	ши								n 1.d	,					+
3 BP-26	1	0950	5.1	H6		X		X	(X)	X						奖	Y	X				
4 BP-1 0'-0,5'		1010	1	1												X		Х				1
5 BP-1 1.5'-2'		1012		1												契			X			
6 BP-1 4.0'-5'		1015		ļ															K			
7 BP-2 0-0.5		1020		l												X		X.				X
8 88-2 2.5-3		1026		١															X			
9 138-2 4.5-5		1030		V															X			
10 BP-3 0-0.5	ل	1040	L	1.												Х		Ň				X
Signature	The state of the s	"Gompany				Date	A CONTRACTOR OF THE PARTY OF TH)		27.2	ments	77.335.	17,0000,000	elitie	llons				0.59	
Received by Aily Vaguator Received by Aily Vaguator		Pare	met	νίχ		9/	2/0	9	15	1C	<u> </u>	He	yd_	0	ιll	T	CL	P	ana	lyse:	5	
Received by Ch Fluxur		SPGS	, Mb.	55.		9/2/	109		15	27	>											
Relinquished by		. 11	<i>'</i>			1			15	33	_	DAdded 91,5 log. Di3										
Received by		0	The	5th		20	z(c	× 1	[5	DAdded 9/15/09. DB BAdded 9/30/09. DB. Added 10/12/09. DB.											
Relinquished by													170	10.1	m.	121	/~(` }4	า อาริ	9	-		
Received by												4	Elok	NEO \	· 'Y	!1	٠ I ،	417				
Reviewed by/Date		Reviewed	by/Date .						_		Chromatograms with final report □											

OnSite Environmental Inc.

Chain of Custody

Page ______ of ______

Environmental Inc.		Turnaround (in workin			La	bor	ato	ry N	Nun	nbe	r:	09-029									
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)	1			i top					icoli.	este	d Ai	ielly	ele	Į,				
Project Number:	☐ Sar	me Day av		l 1 Day					8260B						Ą		J. Sylv				
Project Name: Bothew Crossing, Punt Gite Project Manager: Sandra Matthews Sampled by: L. Vagglates J. J. Mathlews	X Sta	ndard (7 w 'H analysis	orking d	lays)		TEX		260B	Volatiles by 8	by 8270D	MIS / Q	- 8081A	8151A	fetals (8)	404		MICA Hato: Ag Cal, Cr, Hg,				
	Date	Time	ner)	#ol	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by	PAHs by 8270D / SIM	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MCA HA	177	10101		% Moisture
11 80-3 2-3	W109	Sampled W		J J	Z	Ź	Ź	λ	Ĭ	Š		4	Ĭ	≌_	Ĕ	工		X			- %
12 310-3 4.5-5		1048	1															X	4		
13 84-4 0-0.5		1000													X		X				X
14 BP-4 2-3		1008																X			
15 bp-4 4.5-5		1100																K			
16 BP-5 0-0.5 17 BP-5 2-3		1110		ŀ											X		X				X
17 BP-5 2-3		1112															0	X	CO I		0
18 18-5 4-5		1116					X)										-*			Ø
19 BP-6 10		1120					X											X			(X)
20 BP-6 0-1	الم	1135	1	سله											X		Xí				X
Relinquished by Hagelator		Company PMX				9/:	Z/0,		ume G	0		Hold					alys	515			
Received by Relinquished by		Skepy 11	M	T		9/	2/0º	9	15	20 35	-	Hold TCLP analysis (X) Added 9/4/09 300									
Received by Relinquished by			- N	T	<u> </u>	912				3,5		OAdded 96109. DB									
Received by																					<u> </u>
Reviewed by/Date		Reviewed	by/Date									Chrom	hromatograms with final report \square								

OnSite Environmental Inc

Chain of Custody

Environmental Inc.		Turnaround (in workii	d Reques ig days)	t	La	bor	ato	ry	Nui	nbe	er:	09-029									
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)									Re	្សា	ico)	Anel	yele					
Project Number:		me Day		1 Day												:					
	2 C	ay		3 Day					3260E	-						_	3				
Project Name: Refugl (Voscovic Pariotal Section)	X Sta	ndard (7 w	orking da	ays)					s by 8	00	5			ء ا ھ	ζ	3	3				
Project Manager:	(TF	PH analysis	5 workir	ng days)		Ĕ		30B	olatile	y 827	/SI		081A	A I C I S	1	5	*				
Sampled by:	$\dashv \Box$ _	/ottl	204/		PH-HCID	X/BT	×	y 826	ted V	les b	3270	3082	by 8	S Dy A	tals	664	3				<u>e</u>
Project Name: Both Crossing Paint Site Project Manager: Sundry Matthews Sampled by: L. Myslados + S. Matthews		anno antique de la companya de la co	ner)			NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Total RCBA Metals (8)	TCLP Metals	HEM by 1664	MTCA Mch: As CA, Cr. Hg, P	79	‡ │		% Moisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	NWT	NWT	NWT	Volat	Halo	Sem	PAH	PCB	Pest	Total	둳	HEM	五		1		W W
21 134-6 2-3	9/2/09	1138	401	1														X			
22 BP-6 4-5	9/2/09	1140	1	+														X			
23 BP-670-0.5	9/2/09	1200	50,7	t											X	9	X				X
94 BP-7 2-3	1	1205	1	1									-	-	'			X			
25 BP-7 4-5	1	1208																X		<u> </u>	-
ا العالم		-	Soll	-1	\vdash	<u> </u>								-			X				V
	12/09	1217	2011	1		 								+	\x						0
27 BP-8 2-3 28 BP-8 4.5-5		1220			-	<u> </u>		-							-	-	0		16°54		\vdash
	4	1221	A	V	_	<u> </u>								_	_			<u> </u> X		-	
	9/2/09	1230	501	1											X		X				X
30 BP-9 Z-3	7	1233	7	7													0	X	10 30)		0
Signature :		Company	_			030						Com (I o		Speak		udion	را م	10.0			
Relinquished by Lily Vaccelator	>	PM'						०१	l .	ilC	<i>)</i>	110	LD	7.6	ノーナ	a	nally	(>1)			
Received by Lucius		Skeepy	ME.	5.		9/	40	9			<u> </u>	0	Ada	20	9/13	5/0	9. J	2,3			
Relinquished by		//			•		1/			35	,	HOLD TCLP analysis OAdded 91,5/09. D13									
Received by	'	05	<u> </u>	o Ev		9/2	zw	<u> </u>	15	<u> 3</u>											ļ
Relinquished by						ļ															
Received by													· ·								
Reviewed by/Date		Reviewed	by/Date									Chr	Chromatograms with final report								

OnSite Fryironmental Inc

Chain of Custody

Page 4 of 5

Environmental Inc.		Turnaroun ≳:(in worki	d Reque ig cays	et)	La	aboratory Number: 09-029																
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Checl	(One)									. Re	igie	3(0)	JAi	100	1.00					
Parametrix Project Number:	□ Sa	me Day] 1 Day					_							METAL		برم				
7Bothell Crossing, Paint Site Project Name:	2 [Day		3 Day					8260B							ME		As. Cd., 146, Pi	155.			
Project Name:		andard (7 w							s by	Q0,	⋝				(8)	4		لہ				
Project Manager:	(TF	PH analysis	5 work	ing days)		ĕ		80B	olatile	y 827	MIS/C		081A	3151/	etals (MTE		12	Metal			
Sandra Mathews Sampled by:	$\neg \Box -$	(ot)	her)		문	Gx/B1	 ă	by 82	rted V	tiles b	8270D /	8082	s by 8	s by 8	3A Me		1664	r Me				<u>9</u>
L. Vagelatos + S. Mathews) Date	Time	101)	# of	TPH-I	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270D	PAHs by	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Motals	HEM by 1664	MTCA Metals	MTCA	olo		% Moisture
Lab ID Sample Identification	Sampled	Sampled-	Matrix	Goile	NWTP	}	\}_	₩	Hal	Sen	PA	S.	Pes	Her	Tots	고 고	빞	Σ	Σ	エ		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
31 BP-9 4-5	9/2/09	1235	Soil	I			<u> </u>													$X \mid$		
32 BP-23 6-5		1310		1														X				X
33 BP-23 2-3		1312	}															0		Kro	342	0
34 BP-23 4-4.5	1315 J V																					
35 BP-23 - HT	17	13 13 H20 8				¥	χ.	550 -X	X									,	Χ			
36 BP-23 4-0		13/4	50,1	12_		X	_	7_		ļ. <u></u>							X					
20/0-			1	1			/\					<u>.</u>		_				X		+		
00		1440																X		$\frac{1}{\lambda}$		
00		1442	+-	1	-															-		
39 BP-10 4-5		1445	\vdash	<u>l</u>		_								_						X		
40 BP-11 0-05	$\overline{\Lambda}$	1500	V	<u> </u>	TO STREET	O sources		ATTHEW PROP	I Was to N			eachers:	2018 F 1086		70591325	Δ	THE PROPERTY.	X		***********		
Relinquished by		PM	V			900		~ ~	Ī.,				ments								OUR BEAUTIFURE	
Relinquished by Received by 1			!	1,,,,			2/0			20		1) A	dd	cd	9/1	51	09.	カド	>		
Relinquished by		SPEER	•	UES 9		1] [2] [] [2] [2]	99	15		<u> </u>	added 9/30/09. DB										
Received by		1								3:	<u> </u>	- O Added 9/15/09. DB - Added 10/12/09. DB - △ Added 10/12/09. DB										
Relinquished by		96	7 17	e E	_ سو	70	40	7	2	35	<u> </u>	Z Addia 10[12[01:17]										
Received by				 		-																
Reviewed by/Date		Povinus d	bu/Data					_														
neviewed by/Date		Reviewed	ру/рате									Chr	omat	ograi	ms v	with t	final ı	repor	t 🗆			

OnSite Environmental Inc.

Chain of Custody

Page 10 of 15

Environmental Inc.		Turnaround (in.workin	l Reque g days)	st	La	bor	ato	ry l	Nun	nbe	r:			- '			D S	3 -	0 2	. 9		
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	One)									Ree	الجالا	÷0/A	nely	giğ	<u>क्ष</u> ७					
Company: Project Number:	_ ☐ Sar	ne Day		1 Day					В								(ks,cd/4)					
Project Name:	☐ 2 D	-		3 Day					, 8260						4		1870					
Bothell Crossing Paint Site		ndard (7 w 'H analysis							(q səli	270D	Σ		∢ ≰	(8)	m re A							
Samalar Marthagus] \	TT analysis	O WOTE	ng dayo,	⁰	втех		3260B	Volat	8 kg s	3/ Q0,	χ _ζ δ	y 815	Metals	1		METAIS					
Sampled by: L. Vagelistos + 5, Marthers		(oth	ner)		H-HC	H-Gx/	H-Dx	s by {	nated	olatile	by 827	So so	des by Ides b	CRA	Metals	y 166	MTCA	4	~			sture
	Date Samuled	Time Sampled	a Matrix	#of Cont	NWTPH-HCID	WTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	B		Nobol			% Moisture
41 BP-V D-0-W4 2-3	9/2/04		5.1						-14				4 4		Δ		0	. X	(0	5		0
41 BP-11 4-5		Mos	\	3		X	X										•	<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_		X
43 TRUP BLANK	_		ω	1			, ,	1	X)									<u> </u>		 	, 3
			0-																			
																				-		
						_																
Signature:		Company				Date			Mine			onio Onio	මා <i>ම</i>	colair		ilons	2 281			# 15 T T T T		
Relinquished by Luly Vagelatos		PMX				9/2	2/0	9	[0	32	0	(¥	<u>۵</u>		Can	. 9	(પાડ	بر المثل	Ь			
Received by Lily Varadator Received by Lily Varadator		Stown	NES,	, ,		9/2	10	7	15	32 20	<u> </u>	<u>(v</u>	'		ν ε (·	TA	` -E	_			
Relinquished by							4		15	35	_											
Received by		05	eite	- Fu	_	2	(ZPC	يحز	15	35	_	0	Ado	led	97	1,5/09.DB 30/09-DB 12/09-DB						
Relinquished by								@ Added						9	301	09 -	Di	>				
Received by			_									Δ	Add	ed	10)	210	19.	DB				
Reviewed by/Date		Reviewed	by/Date								(Chro	matog	rams	with	final	repor	t 🗆				

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 17, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-034

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 3, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 17, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-034

Project: 555-1647-019 02/0403 / Paint

Case Narrative

Samples were collected on September 2, 2009, and received by the laboratory on September 3, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

Date Extracted: 9-3-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

 Client ID:
 BPMW-2-0.5
 BPMW-1-0.5

 Lab ID:
 09-034-01
 09-034-04

Diesel Range: ND ND PQL: 29 140

Identification: --- ---

 Lube Oil Range:
 310
 790

 PQL:
 58
 280

Identification: Lube Oil Lube Oil

Surrogate Recovery

o-Terphenyl: 85% 82%

Flags: Y Y

Flags:

NWTPH-Dx METHOD BLANK QUALITY CONTROL

	METHOD BLANK QUALITY CON
Date Extracted: Date Analyzed:	9-3-09 9-3-09
Matrix: Units:	Soil mg/kg (ppm)
Lab ID:	MB0903S1
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification:	
Surrogate Recovery o-Terphenyl:	74%

Υ

NWTPH-Dx DUPLICATE QUALITY CONTROL

	DUPLICATE QUAL	ITY CONTROL
Date Extracted: Date Analyzed:	9-3-09 9-4-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	09-034-01	09-034-01 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery o-Terphenyl:	85%	79%
Flags:	Υ	Υ

NWTPH-Gx/BTEX

Date Extracted: 9-4-09
Date Analyzed: 9-4&8-09

Matrix: Soil

Units: mg/kg (ppm)

 Client ID:
 BPMW-2-1.5
 BPMW-1-1.5

 Lab ID:
 09-034-02
 09-034-05

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.030	ND		0.033
Ethyl Benzene	ND		0.030	ND		0.033
m,p-Xylene	ND		0.030	ND		0.033
o-Xylene	ND		0.030	ND		0.033
TPH-Gas	ND		1.5	3.3	0	1.6
Surrogate Recovery: Fluorobenzene	94%			96%		

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0904S2

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
TPH-Gas	ND		5.0

Surrogate Recovery:

Fluorobenzene 92%

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted: 9-4-09
Date Analyzed: 9-4&8-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID:	09-034-02 Original	09-034-02 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	94%	97%		
Fluorobenzene	94%	91%		

> NWTPH-Gx/BTEX SB/SBD QUALITY CONTROL

Date Extracted: 9-4-09
Date Analyzed: 9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0904S1 SB	Percent Recovery	SBD0904S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.927	93	0.940	94	1	
Toluene	0.939	94	0.952	95	1	
Ethyl Benzene	0.963	96	0.975	98	1	
m,p-Xylene	0.977	98	0.987	99	1	
o-Xylene	0.975	98	0.984	98	1	

Surrogate Recovery:

Fluorobenzene 91% 91%

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-03 Client ID: **BPMW-2-5**

Analyte	Method	Result	PQL
Arsenic	6010B	9.3	8.1
Cadmium	6010B	ND	0.81
Chromium	6010B	33	0.81
Lead	6010B	27	8.1
Mercury	7471A	0.046	0.032

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-06 Client ID: **BPMW-1-5**

Analyte	Method	Result	PQL
Arsenic	6010B	11	6.0
Cadmium	6010B	1.4	0.60
Chromium	6010B	38	0.60
Lead	6010B	94	6.0
Mercury	7471A	0.15	0.024

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0908S3&MB0909S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.020

Date of Report: September 17, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-034

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-8&9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	122	127	4	5.0	
Cadmium	3.63	4.08	12	0.50	
Chromium	53.4	55.6	4	0.50	
Lead	328	323	2	5.0	
Mercury	0.0475	0.0573	19	0.020	

Date of Report: September 17, 2009 Samples Submitted: September 3, 2009

Laboratory Reference: 0909-034 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-8&9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	206	84	209	87	2	
Cadmium	50	47.6	88	47.9	89	1	
Chromium	100	148	95	147	94	0	
Lead	250	533	82	536	83	1	
Mercury	0.50	0.468	94	0.466	93	0	

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-01 Client ID: **BPMW-2-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	6.7	5.8
Cadmium	6010B	0.71	0.58
Chromium	6010B	41	0.58
Lead	6010B	33	5.8
Mercury	7471A	0.044	0.023

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-04 Client ID: **BPMW-1-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	14	5.6
Cadmium	6010B	2.7	0.56
Chromium	6010B	53	0.56
Lead	6010B	140	5.6
Mercury	7471A	0.20	0.022

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0915S4

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0915S1

Analyte Method Result PQL

Mercury 7471A **ND** 0.020

Date of Report: September 17, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-034

Laboratory Reference: 0909-034 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 9-15-09 Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	5.73	ND	NA	5.0	
Cadmium	0.614	0.521	16	0.50	
Chromium	35.3	30.4	15	0.50	
Lead	28.2	24.2	15	5.0	

Date of Report: September 17, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-034

Laboratory Reference: 0909-034 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-15-09 Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-100-01

Sample Duplicate

Analyte Result Reput Reput Result RPD PQL Flags

Mercury ND ND NA 0.020

Date of Report: September 17, 2009 Samples Submitted: September 3, 2009

Laboratory Reference: 0909-034 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 9-15-09 Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	95.7	90	97.5	92	2	
Cadmium	50	49.7	98	49.0	97	1	
Chromium	100	128	93	140	104	9	
Lead	250	258	92	315	115	20	

Date of Report: September 17, 2009 Samples Submitted: September 3, 2009

Laboratory Reference: 0909-034 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-15-09 Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-100-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.50	0.473	95	0.473	95	0	

% MOISTURE

Date Analyzed: 9-3&8-09

Client ID	Lab ID	% Moisture
	22.22.4.24	
BPMW-2-0.5	09-034-01	14
BPMW-2-1.5	09-034-02	7
BPMW-2-5	09-034-03	38
BPMW-1-0.5	09-034-04	10
BPMW-1-1.5	09-034-05	12
BPMW-1-5	09-034-06	16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

+WA-

HWA GEOSCIENCES INC.

19730 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425) 774-0106

Chain of Custody and Laboratory Analysis Request

DATE: Ghlog

PAGE:) of (

PROJECT NAME:	Barne	LR1	153	#. N	9-034					AN	ALY	SIS R	EQU	ESTE	D				·			
SITE CODE: Bar		22.5	-555-//	1047-1019 100	101103		1		1 2				T	Π	T			Ħ				
SITE CODE: 15 SAMPLERS NAME SAMPLERS SIGNA	. 0-		1000 10	PHONE: 26	\$6-794-		13		STEEL STATES								1 1	20				
CAMPIEDO CICNA	TUDE:	()	O _A	FHONE.	3124	15	8	MCTALS	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									13				
SAMPLERS SIGNA	TUKE.				<u> </u>	APA-DA	30	E	MTCA									8				
HWA CONTACT: Parametria	36090		" 	_PHONE: 43	6-428 -	S	1	¥	1									2				
-arameticia	Savar	K 10 Cas	THOM		8200		2	C	0									3				
HWA SAMPLE ID				LAB ID	# OF BOTTLE	3	Muspe - Ga/03553	MTCB	13/									Gomossale		REMA	RKS	
BPMW-2-05	9/2/09	دوع	Saic	1	(K		8	,						T	T		$\overline{\mathbf{x}}$				
BPnw-2-115		810		2	र		7			-												
BPMW-2-5		900		3	l I			X														
BPMW-2-5 PRMW-1-05 BPMW-1-1.5		1743		4	1			Ø)									T				
BPMW-1-1.5		נגנו	1	5	S		×															
BPMW-1-5		1400	V	6	1			×										V				
						<u> </u>																
							_															
				ļ							_							6	X) Ac	(ded	9/11/09.	BG
 														<u> </u>	_					SIA	-	
/				-		l						-										
/						 													·			
/								igwdown						-					···································			
		····			<u> </u>													_				
					 		_						-									
	-					 						_	-	\vdash				-				
1		•				 	_	-					-	\vdash			-					
· · · · · · · · · · · · · · · · · · ·			·	1					_							_						
PP	INT NAM				CICALATURE		<u></u>							<u> </u>			<u> </u>					
	-1		10		SIGNATURE			+				MPAN				DAT		TIM		RE	MARKS	
	landra M	AT IN LA	<u> </u>		anhuc					10	wan	ret	'.X_			9/2/0 1310	29	10	20			
Relinquished by:	VUUN			Me						Ø	<u>E</u>				9	1310	<u>↓</u>	100	かし			
Received by:	· · · · · · · · · · · · · · · · · · ·				1			_													· · · · · · · · · · · · · · · · · · ·	
received by.				<u> 1 ·</u>	1						· ·		· · <u></u>				<u>_</u>					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 16, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-035

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 3, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 2, 2009, and received by the laboratory on September 3, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8,9&11-09
Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-035-01 Client ID: **BP-12 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	11	5.3
Cadmium	6010B	ND	0.53
Chromium	6010B	24	0.53
Lead	6010B	20	5.3
Mercury	7471A	0.023	0.021

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8,9&11-09
Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-035-04 Client ID: **BP-13 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.5
Cadmium	6010B	1.1	0.55
Chromium	6010B	34	0.55
Lead	6010B	100	5.5
Mercury	7471A	0.13	0.022

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8,9&11-09
Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-035-07 Client ID: **BP-14 0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	16	5.4
Cadmium	6010B	3.9	0.54
Chromium	6010B	200	0.54
Lead	6010B	130	5.4
Mercury	7471A	0.23	0.022

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-8&9-09
Date Analyzed: 9-8&9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0908S3&MB0909S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.020

Date of Report: September 16, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-035

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 9-11-09 9-11-09 Date Analyzed:

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0911S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0

Date of Report: September 16, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-035

Laboratory Reference: 0909-035 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-8&9-09 Date Analyzed: 9-8&9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	122	127	4	5.0	
Cadmium	3.63	4.08	12	0.50	
Chromium	53.4	55.6	4	0.50	
Lead	328	323	2	5.0	
Mercury	0.0475	0.0573	19	0.020	

Date of Report: September 16, 2009 Samples Submitted: September 3, 2009

Laboratory Reference: 0909-035 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 9-11-09
Date Analyzed: 9-11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-07

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	5.0	
Cadmium	1.03	0.917	12	0.50	
Chromium	39.5	35.6	11	0.50	
Lead	72.1	72.9	1	5.0	

Date of Report: September 16, 2009 Samples Submitted: September 3, 2009

Laboratory Reference: 0909-035 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-8&9-09 Date Analyzed: 9-8&9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	206	84	209	87	2	
Cadmium	50	47.6	88	47.9	89	1	
Chromium	100	148	95	147	94	0	
Lead	250	533	82	536	83	1	
Mercury	0.50	0.468	94	0.466	93	0	

Date of Report: September 16, 2009 Samples Submitted: September 3, 2009

Laboratory Reference: 0909-035 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 9-11-09
Date Analyzed: 9-11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-07

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	95.7	96	94.8	95	1	
Cadmium	50	47.9	94	49.6	97	4	
Chromium	100	150	111	143	103	5	
Lead	250	287	86	302	92	5	

% MOISTURE

Date Analyzed: 9-8-09

Client ID	Lab ID	% Moisture
BP-12 0-0.5	09-035-01	6
BP-13 0-0.5	09-035-04	9
BP-14 0-0.5	09-035-07	7

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

	1	
Page	of	

Environmental Inc.		Turnaroun ::(in worki	a Requ no⊧days	SI.		La	bor	ato	ry	Nur	nbe	er:								09	-	U a	1 5	'
Phone: (425) 883-3881 • Fax: (425) 885-4603	PERMANDENCE ILE	(Checl		A STATE OF THE STA	12-03/11/20					in her			1:1	101113	នាខា	n 🗥	ielly	สล					V	
Project Name: Project Manager: Project Manager:	☐ 2 C	me Day	corking		ay		×		98	atiles by 8260B	8270D	/ SIM							MTG MAS: AS CA, CA, WILLE, 190					
Laid ID Sample Identification S	Date ampled	Tune Sampled	Matti		Oi.	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	MT4 MA	Hold				% Moisture
	12/09	1515	2.1	1	.														\times					X
2 BP-12 2-3		1517																		X				
3' BP-12 4-5		1520																		1				
4 BP-13 0-0.5		1533																	X					X
4 BP-13 0-0.5 5 BP-13 2-3		1535																		*				
6 BP-13 4-5	1	1638				•														X				
6 BP-13 4-5 7 BP-14 0-05		1542		+1															√	^				∇
7 BP-14 0-0.5 8 BP-14 2-3		1545		11																X				
9 BP-14 4-5	1	1547	1		7															人			\dashv	
1 1 4-5	lacksquare	المال	V	1	'																		\dashv	
sion 3		Combany			000000	Det Si	Date	Traven	ora ven		10.55(1)	78 E F	6	-1909 (A)	To ac	Sem.	197	ilons	CONTROL OF	artin extensi	21 16 272-21	******		
Relinquished by Received by		Paras (OZ)	uet E	ly X	-	Sport galler	.,,,,,,,,,	<i>13/0</i> 310	9	D	20 02	1			((1)-11				er e Comercia de La Caractería		(ng tr Aggriff ()		<u> 22.55800</u>	<u>Tanaka kifi</u>
Relinquished by	.						,																	
Received by		-						· ·	-															
Relinquished by																								
Received by																								
Reviewed by/Date		Reviewed	by/Date			,							Chr	omat	ogra	ıms v	with 1	final	report [

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 14, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-043

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 3, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009

Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

Case Narrative

Samples were collected on September 3, 2009, and received by the laboratory on September 3, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx

Date Extracted: 9-4-09 Date Analyzed: 9-8-09

Matrix: Soil

Units: mg/kg (ppm)

Client ID: BP-25-5.5 Lab ID: 09-043-07

Diesel Range: ND PQL: 29

Identification: ---

Lube Oil Range: 110
PQL: 57

Identification: Lube Oil

Surrogate Recovery

o-Terphenyl: 92%

Flags: Y

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-043

Project: 555-1647-019 02/0403 / Paint

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-4-09
Date Analyzed:	9-4-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0904S2

ND Diesel Range: PQL: 25

Identification:

ND Lube Oil Range: PQL: 50

Identification:

Surrogate Recovery

o-Terphenyl: 88%

Υ Flags:

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-043

Project: 555-1647-019 02/0403 / Paint

NWTPH-Dx

	DUPLICATE	QUALITY CONTROL
Date Extracted: Date Analyzed:	9-4-09 9-8-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	09-043-07	09-043-07 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery o-Terphenyl:	92%	84%
Flags:	Υ	Y

NWTPH-Dx

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Water Units: mg/L (ppm)

Client ID: BP-25-10 Lab ID: 09-043-08

Diesel Range: **ND**PQL: 0.30

Identification: ---

Lube Oil Range: **ND**PQL: 0.48

Identification: ---

Surrogate Recovery

o-Terphenyl: 77%

Flags: Y

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-043

Project: 555-1647-019 02/0403 / Paint

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-4-09
Date Analyzed:	9-4-09

Water Matrix: Units: mg/L (ppm)

Lab ID: MB0904W1

ND Diesel Range: PQL: 0.25

Identification:

ND Lube Oil Range: PQL: 0.4

Identification:

Surrogate Recovery

o-Terphenyl: 68%

Υ Flags:

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Water Units: mg/L (ppm)

Lab ID: 09-032-01 09-032-01 DUP

Diesel Range: **1.70 1.67** PQL: 0.26 0.25

RPD: 2

Surrogate Recovery

o-Terphenyl: 90% 87%

Flags: Y Y

Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-043-08 **Client ID: BP-25-10**

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	1 10.90	0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
Iodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID: 09-043-08 Client ID: **BP-25-10**

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	79	71-126
Toluene-d8	87	76-116
4-Bromofluorobenzene	86	70-123

Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-043-09
Client ID: TRIP BLANK

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID: 09-043-09 Client ID: **TRIP BLANK**

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	71-126
Toluene-d8	91	76-116
4-Bromofluorobenzene	89	70-123

Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0904W1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	90	0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

Lab ID: MB0904W1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	71-126
Toluene-d8	92	76-116
4-Bromofluorobenzene	91	70-123

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted: 9-4-09 Date Analyzed: 9-4-09

Matrix: Water Units: ug/L (ppb)

Lab ID: SB0904W1

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	10.0	9.60	96	9.43	94	70-130	
Benzene	10.0	9.50	95	9.64	96	70-130	
Trichloroethene	10.0	9.74	97	9.66	97	70-123	
Toluene	10.0	9.58	96	9.57	96	77-120	
Chlorobenzene	10.0	9.61	96	9.80	98	73-115	

		RPD	
	RPD	Limit	Flags
1,1-Dichloroethene	2	21	
Benzene	1	18	
Trichloroethene	1	18	
Toluene	0	17	
Chlorobenzene	2	18	

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-043-01 Client ID: **BP-15-0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.5
Cadmium	6010B	ND	0.55
Chromium	6010B	20	0.55
Lead	6010B	ND	5.5
Mercury	7471A	ND	0.022

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-043-04 Client ID: **BP-25-0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.4
Cadmium	6010B	ND	0.54
Chromium	6010B	32	0.54
Lead	6010B	ND	5.4
Mercury	7471A	ND	0.022

Date of Report: September 14, 2009 Samples Submitted: September 3, 2009 Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0908S3&MB0909S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.020

Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-8&9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	122	127	4	5.0	
Cadmium	3.63	4.08	12	0.50	
Chromium	53.4	55.6	4	0.50	
Lead	328	323	2	5.0	
Mercury	0.0475	0.0573	19	0.020	

Laboratory Reference: 0909-043 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-8&9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-029-29

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	206	84	209	87	2	
Cadmium	50	47.6	88	47.9	89	1	
Chromium	100	148	95	147	94	0	
Lead	250	533	82	536	83	1	
Mercury	0.50	0.468	94	0.466	93	0	

Project: 555-1647-019 02/0403 / Paint

% MOISTURE

Date Analyzed: 9-4&8-09

Client ID	Lab ID	% Moisture
BP-15-0-0.5	09-043-01	9
BP-25-0-0.5	09-043-04	7
BP-25-5.5	09-043-07	13

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

A	L OnSite
	Environmental Inc.
	Environmentai inc.

Chain of Custody

	t		i	
age		_ of _	<u> </u>	

Environmental Inc.		Turnaround (in workir	i Heque ig days	ıst)	La	bor	ato	ry I	Nun	nbe	r:						۵	0.9	-	J 4	3	
Phone: (425) 883-3881 • Fax: (425) 885-4603	National States and St	(Check		Canada (Caranta and America)							Visit Car	JR(a)	illes	G1/2	Virelly	ag.	<u> </u>		us			
Company: Para metri x Project Number:	☐ Sai	me Day] 1 Day						195			u.				مود اعل					38
555-1647-019 02/0403	□ 2 □	ay		3 Day					8260B						4		5,Cd,Cr,	:				
Project Name: Bothell Crossing Paint Project Manager:	1	ndard (7 wo							iles by	8270D	SIM		ξ 1 Α	s (8)	107		Metals:As,					
Sandra Mathews			o work	ing dayo)	읈	ВТЕХ		Volatiles by 8260B	Halogenated Volatiles	s by 8	PAHs by 8270D / SIM	82	Pesticides by 8081A Herbicides by 81514	Total RCRA Metals (8)	S		de to					
L. Vag elatos	5077820025398	(oth		Market of the control of the	PH-HO	NWTPH-Gx/BT	NWTPH-DX	les by	yenate	Semivolatiles by	by 82	PCBs by 8082	cides b	RCRA	Metals	HEM by 1664		(170			% Moisture	
Lab ID Sample Identification S	ampled	- Sampled	Wente	Cont	NWT	N.V.	MA MA	Volati	Halo	Semi	PAHs	PCB	Pesti	Total	TCLP	HEM	MTCA	H H			Ž %	
BP-15-0-0.5	13/09	0820	Soil	1													X				_ >	\leq
2 BP-16-2-3		0823			ļ ·		1								_			X			_	_
3 BP-15-4-5		0825																X				
4 BP-25-0-0.5		0830															X				<u>\</u>	\leq
5 BP-25-2.5-3		0833			ļ <u>.</u>													X				
6 BP-25-4.5-5 7 BP-25-5.5		0835																X				_
7 BP-25-5.5		०४५०	1				X														\nearrow	
8 BP-25-10		0930	Hzo	4			X		X													
9 TRIP BLANK	1	0000	1	1					X												4	7
			.		68:09:00:0	THE PARTY NAMED IN	2000 DE 1000 D	OMBIGUES !	INCOMESTIC	120000000	PROPERTY.	25256750		FT 17 15 15 15 15 15 15 15 15 15 15 15 15 15	W-100 - 100	NA PROPERTY.	300 1131 174					
Signature		Company				Date	40 sesti		wine			(Colini	itane	pedal)	weid	Glori			STATES ET	110	Sept.	
Received by Charles Receiv	8	Speco Speco	Me	frix		91	3/0	9	91	51	<u></u>											
Relinquished by Relinquished by Relinquished by		Speci	14/	1 <i>es</i> s . U		9/0	וכני מבני	109		<u>ع: از</u>	3.7)						•					
Received by		1020	<u> </u>	· · · · · · · · · · · · · · · · · · · ·		913	119	3	15	<u> </u>	1											
Relinquished by		ع د حون	>			100	<i></i>		<u>د ی</u>	<i></i>												
Received by																						
Reviewed by/Date		Reviewed										Chro	omato	grams	with	final	report					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 15, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-057

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 4, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

Case Narrative

Samples were collected on September 4, 2009, and received by the laboratory on September 4, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: September 15, 2009 Samples Submitted: September 4, 2009 Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

NWTPH-Dx

Date Extracted: 9-10-09
Date Analyzed: 9-10&11-09

Matrix: Soil

Units: mg/kg (ppm)

Client ID: BP-20-0-1 BP-21-0-1 Lab ID: 09-057-09 09-057-10

Diesel Range: ND ND PQL: 140 27

Identification: --- ---

 Lube Oil Range:
 440
 220

 PQL:
 270
 53

Identification: Lube Oil Lube Oil

Surrogate Recovery

o-Terphenyl: 76% 79%

Flags: Y Y

Project: 555-1647-019 02/0403 / Paint

o-Terphenyl:

Flags:

NWTPH-Dx METHOD BI ANK QUALITY CONTROL

	WIETHOU BLANK QUALITY CON
Date Extracted: Date Analyzed:	9-10-09 9-10-09
Matrix: Units:	Soil mg/kg (ppm)
Lab ID:	MB0910S1
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL: Identification:	ND 50
Surrogate Recovery	

99%

Υ

Project: 555-1647-019 02/0403 / Paint

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	9-10-09
Date Analyzed:	9-10-09

Matrix:

Units: mg/kg (ppm)

Soil

Lab ID: 09-057-09 09-057-09 DUP

ND ND Diesel Range: PQL: 130 130

RPD: N/A

Surrogate Recovery

76% 73% o-Terphenyl:

Υ Υ Flags:

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-9&11-09 Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-01 Client ID: **BP-17-0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.4
Cadmium	6010B	ND	0.54
Chromium	6010B	23	0.54
Lead	6010B	11	5.4
Mercury	7471A	0.034	0.022

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-9&11-09 Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-04 Client ID: **BP-16-0-0.5**

Analyte	Method	Result	PQL
Arsenic	6010B	9.8	5.4
Cadmium	6010B	ND	0.54
Chromium	6010B	26	0.54
Lead	6010B	35	5.4
Mercury	7471A	0.053	0.022

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-9&11-09 Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-07 Client ID: **BP-18-0-1**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.4
Cadmium	6010B	1.1	0.54
Chromium	6010B	43	0.54
Lead	6010B	78	5.4
Mercury	7471A	0.12	0.022

Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-9&11-09 Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-08 Client ID: **BP-19-0-1**

Analyte	Method	Result	PQL
Arsenic	6010B	6.0	5.3
Cadmium	6010B	2.6	0.53
Chromium	6010B	50	0.53
Lead	6010B	180	5.3
Mercury	7471A	0.27	0.021

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-9&11-09 Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-09 Client ID: **BP-20-0-1**

Analyte	Method	Result	PQL
Arsenic	6010B	27	5.4
Cadmium	6010B	4.4	0.54
Chromium	6010B	66	0.54
Lead	6010B	270	5.4
Mercury	7471A	0.53	0.022

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-9&11-09 Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-10 Client ID: **BP-21-0-1**

Analyte	Method	Result	PQL
Arsenic	6010B	7.7	5.3
Cadmium	6010B	2.1	0.53
Chromium	6010B	63	0.53
Lead	6010B	190	5.3
Mercury	7471A	0.45	0.021

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-9&11-09 Date Analyzed: 9-9&11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-11 Client ID: **DUP-0904**

Analyte	Method	Result	PQL
Arsenic	6010B	37	5.5
Cadmium	6010B	6.1	0.55
Chromium	6010B	91	0.55
Lead	6010B	410	5.5
Mercury	7471A	0.49	0.022

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 9-11-09
Date Analyzed: 9-11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0911S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0909S1

Analyte Method Result PQL

Mercury 7471A **ND** 0.020

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 9-11-09
Date Analyzed: 9-11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-07

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	5.0	
Cadmium	1.03	0.917	12	0.50	
Chromium	39.5	35.6	11	0.50	
Lead	72.1	72.9	1	5.0	

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-060-01

Sample Duplicate

Analyte Result Reput Reput Result RPD PQL Flags

Mercury **ND 0.0464** NA 0.020

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 9-11-09
Date Analyzed: 9-11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-057-07

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	95.7	96	94.8	95	1	
Cadmium	50	47.9	94	49.6	97	4	
Chromium	100	150	111	143	103	5	
Lead	250	287	86	302	92	5	

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-060-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.50	0.509	102	0.533	107	5	

Laboratory Reference: 0909-057 Project: 555-1647-019 02/0403 / Paint

% MOISTURE

Date Analyzed: 9-10-09

Client ID	Lab ID	% Moisture
BP-17-0-0.5	09-057-01	8
BP-16-0-0.5	09-057-04	7
BP-18-0-1	09-057-07	8
BP-19-0-1	09-057-08	5
BP-20-0-1	09-057-09	8
BP-21-0-1	09-057-10	6
DUP-0904	09-057-11	9

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page $\underline{\hspace{1cm}}$ of $\underline{\hspace{1cm}}$

Environmental Inc.		Turnaround (in working	Reques g days)		La	bora	ator	y Nu	mbe	er:						2	09	-0	57	7
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	One)								Re	gresi	GGI A	nelly	96	Ť				
Parametrix Project Number:	☐ Sar	ne Day		1 Day	5264000%	OFFICE RECEIPED BY	100000000000000000000000000000000000000		10000	-	39951124.32		an in the same	Service Automotive Control		17.	acontenta de pro-	2012 (30.000)	No. in contract of the contrac	corenta.
556-1647-019 02/0403 Project Name:	□ 2 D	ay		3 Day				8260B								As, Cd. Cg				
Bethell Crossing Paint Project Manager:		ndard (7 w						s by	8270D	SIM		4	(8)							
		H analysis	5 workin	ig days)		STEX		8260B d Volatil	by 82	_	a	8081A	/etals			eta(
Sampled by: L. Vagelatos		(oth	ner)		NWTPH-HCID	NWTPH-Gx/BTEX	χď.	Volatiles by 8260B Halogenated Volatile	Semivolatiles by	PAHs by 8270D	PCBs by 8082	Pesticides by 8081A Herbicides by 8151A	Total RCRA Metals (8)	rcLP Metals	HEM by 1664	MTCA Metals	070			sture
		.v Tilme		#01	NTP	νТР	XQ-HdLMN	Volatiles by	mivo	Hs b	SBs b	sticic	tal P.	Y.P.N	MΞ	110				% Moisture
Sample State of the State of th		. Sampled a.		Contact	Ź	Ź	2 :	<u> </u>	၂ီလ	PΑ	8	<u> </u>			Ϊ		#			% \
1 BP-17-0-0.5	14/09	1402	Soil	1									_			X	\ <u>\</u>			
2 BP-17-2-3	14/09	1405	Soil	1	ļ	`											X			\square
3 BP-17-4-5		1407		\perp													X		<u> </u>	
7 BP-16-0-0.5		1355														χ				X
5 BP-16-2-3		1358															X			
6 BP-16-4-5		1400															X			
7 BP-18-0-1		1414								•						X				X
8 BP-19-0-1		1430														X				
9 BP-20-0-1		1437					(X)									X				
10 BP-ZI-0-1	1	1440		1			\otimes									χ				1
Signature		Фотрацу	National design	an service	ene sa es	Date			C T		(G911)	nene <i>k</i>	peolali	heid	elione					
Relinquished by Kily Vagelato	_	Para	met	ri X	•	9/	4/0	a 1	4	9		\mathcal{J}_{α}	11	19	18	109.	D2			
Received by		(QQ	E			9/4	10	8 L	641 641	5		XIH!	ICICO	` <i>\</i>	10	<i>(</i>	עע			
Relinquished by																				
Received by			-	•																
Relinquished by																				
Received by																				
Reviewed by/Date		Reviewed	by/Date								Chr	omato	grams	with	final	report [

OnSite Environmental Inc.

Chain of Custody

Page _______ of _________

Environmental Inc.		Turnaround ⊵(in workir	l Reques ig days)		La	bor	ato	ry I	Nur	nbe	r:							H F	0	9 -	.0	5	7
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	132.56927477703.1	(Check	(One)	economic desirence in the control of							POLICE ROP OF	Re	gre	gigeil	Avie		is .	Ŧ					
Parametrix	_ ☐ Sar	ne Day		1 Day	6935 3 950	25 Secretzes	623710 51445	at altra sales	C C	ANIAN ARCHA	ema-tere	SE 50+0220	ones as a		- Cont. 15 42/2	entranta a	(CERTAIN ART	S S S	AL HOLD BE CHANGE	CHIEFERENCA	e se como esta	19 (Babers)	notes a section
556 1647 019	_	ay		3 Day					8260B									8					
Project Number: 556 1647 019 Project Name: Bothell Crossing Paint Project Manager: Sandra Matthews Sampled by: L. Vagelatos sampled by: Sampled by: Sampled by: L. Vagelatos		ndard (7 w 'H analysis				×		3B	Halogenated Volatiles by 8	Semivolatiles by 8270D	/ SIM		81A	151A	TOTAL METALS (0)			TCA Mutals, A					
Sandra Matthews					CID	x/BTE	×	/ 826	ол ре	es by	270D	082	py 80	8 Ag	Me Me	als	994	3					
L. Vagelatos		(oth	ner)	Such Arrenante	H-H-	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	jenate	volatil	PAHs by 8270D	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	ב ב ב	TCLP Metals	HEM by 1664	1C/					% Moisture
abilD Sample Identification	Date Sampled	(oth Time Sampled	Watrix	ilio) Cont	ILMN	NWT	E NN	Volati	Halog	Semi	PAHs	PCBs	Pestic	Herbi	Tolal Tolal	TCLF	HEM	Σ					% Mc
11 Dup-0904	9/4/09	1442	Soil	1									-					X					X
											,												
		· · ·																					
								·		•													
						ļ.,														-			
															+					-			
	West Constitution		Section 1	Constant	en en en		200	76.54 M. P.		1100	1187			djedi	10.0			7 TAN 184		******	******	es men	
Relinquished by Silv. 1/2 and other	_	Parca	100 00	٠, ٢		4/	4 /	19	16	, , H		eein	DISIUE.	ASS STATE	zuine.	:Yanicaica:	isinin			4 10 18 18 18 18 18 18 18 18 18 18 18 18 18		T-12-100	<u> </u>
Relinquished by Received by Received by	0	Para (OS)	<u> </u>)Y		3/4	1/19	9	16	48													
Relinquished by		<u> </u>					ιυ																
Received by																							
Relinquished by																							
Received by																							
Reviewed by/Date		Reviewed	by/Date			1						Chr	omat	ogran	ns w	/ith fi	inal r	eport					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 22, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403 / Paint

Laboratory Reference No. 0909-057B

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 4, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 4, 2009, and received by the laboratory on September 4, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx Analysis

The sample Dup-0904 was extracted and analyzed after hold time was exceeded.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

Date Extracted: 9-21-09 Date Analyzed: 9-21-09

Matrix: Soil

Units: mg/kg (ppm)

 Client ID:
 Dup-0904

 Lab ID:
 09-057-11

Diesel Range: ND PQL: 37

Identification: ---

Lube Oil Range: **570** PQL: 55

Identification: Lube Oil

Surrogate Recovery

o-Terphenyl: 105%

Flags: Y,U1

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-21-09
Date Analyzed:	9-21-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0921S1

Diesel Range: ND PQL: 25

Identification: ---

Lube Oil Range: ND PQL: 50

Identification: ---

Surrogate Recovery

o-Terphenyl: 94%

Flags: Y

NWTPH-Dx

	DUPLICATE QU	JALITY CONTROL
Date Extracted: Date Analyzed:	9-21-09 9-21-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	09-153-12	09-153-12 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery		
o-Terphenyl:	105%	106%
Flags:	Υ	Υ

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page _____ of ___ 2

Environmental Inc.		Turnaround (in workir	l Regu io clay	est 3)		La	bor	ato	ry	Nui	nbe	er:							S P	0 9	} -1	05	7	
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	_	(Check	(One)					i, T					Re	ONE	BIE		relly	36	MARKET CONTRACTOR OF THE PARTY					
Company: Parametrix Project Number: 555-1647-019 02/0403 Project Name:	☐ Sar	me Day Day] 1] 3	-	Transferonce		3. Transport		8260B									As, Cd, Cg					100,000
Project Name: Bethell Crossing Paint Project Manager: Sandra Mathews Sampled by: L. Vagelatos		indard (7 wo	5 worl			H-HCID	NWTPH-Gx/BTEX	-Dx	by 8260B	Halogenated Volatiles by 8	Semivolatiles by 8270D	8270D / SIM	, 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	etals	1664	MTCA Metals, As,	0	, 		ire	5
	l Dale: amolei	Time Sampled			(20) (20)	NWTPH	WTPH	WTPH-Dx	Volatiles by	Halogen	Semivola	PAHs by	PCBs by 8082	Pesticide	Herbicid	rotal RC	TCLP Metals	HEM by 1664	MTc/	70 H			% Moisture	/0 IFICIE
1 RP-17-0-0.5	14/09	1402			1			_							<u></u>				Х				$\sum_{i=1}^{n}$	<
2 BP-17-2-3	14/09	1405	So i	1	1															X		_		
3 BP-17-4-5		1407			1															X				,
4 BP-16-0-0.5		1355																	X				\rangle	\langle
5 BP-16-2-3 6 BP-16-4-5 7 BP-18-0-1		1358								,										X	-			_
6 BP-16-4-5		1400																		X				
7 BP-18-0-1		1414										-			-				X				$ \downarrow $	Ź
8 BP-19-0-1		1430																	X					Γ
9 BP-20-0-1		1437		_				(X)											X					
10 BP-21-0-1	1	1440	4		V		-	8											X					
Relinquished by $2 \cdot 1 \cdot $		Company		(9/	4/		l			Com						i					
Received by Received by Received by		Para (O)	ne	Tr	i X		9/4	110	18	16	64 545	<u>)</u> }		χſ	J dd	rd	9	18	109.	DB				
Relinquished by																								
Received by				٠																				
Relinquished by																								
Received by														•										
Reviewed by/Date		Reviewed I	by/Date										Chr	omat	ogra	ms v	with '	final	report []				

OnSite Environmental Inc.

Chain of Custody

 $P_{\text{age}} \quad 2_{\text{of}} \quad 2_{\text{of}}$

Environmental Inc.	Turnaround Request (in working days)	Laboratory Number: 09-057
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company: Parametrix Project Number: 556 1647 019 Project Name: Bothell Crossing Paint Project Manager: Sandra Matthews Sampled by: L. Vagelatos	(Check One) Same Day 1 Day 2 Day Standard (7 working days) (TPH analysis 5 working days)	NWTPH-GX/BTEX NWTPH-GX/BTEX NWTPH-GX/BTEX NWTPH-DX Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270D PAHS by 8270D / SIM PCBs by 8082 Herbicides by 8151A TCLP Metals HEM by 1664 M TCA Wulals, As CAC H
Lab ID Sample Identification S	4/09 1442 Soil I	NW NW NW NW NW NW NW NW
·		
·		
Signature	**Gonipany	Date Time (comments/Special/Instituctions)
Relinquished by Received by Received by		9/4/9 1645 9/4/09 1648 Comments/Special/Institutations/ OAdded 9/2/109. DB
Relinquished by Received by	·	
Relinquished by Received by		
Reviewed by/Date	Reviewed by/Date	Chromatograms with final report □

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 18, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403

Laboratory Reference No. 0909-068

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 8, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

Case Narrative

Samples were collected on September 8, 2009, and received by the laboratory on September 8, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX and Halogenated Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 555-1647-019 02/0403

NWTPH-Dx

Date Extracted: 9-9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Client ID: Lab ID:	BPMW-3 0.5 ° 09-068-01	BPMW-3 2 ' 09-068-02	BPMW-3 5 ′ 09-068-03
Diesel Range:	ND 140	300 140	ND 33
Identification:		Diesel Fuel#2	
Lube Oil Range:	1400	3800	170
PQL:	280	290	66
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	97%	97%	80%
Flags:	Υ	Y,N	Υ

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

Flags:

NWTPH-Dx METHOD BLANK QUALITY CONTROL

	METHOD BLANK QUALITY CON
Date Extracted: Date Analyzed:	9-9-09 9-9-09
Matrix: Jnits:	Soil mg/kg (ppm)
_ab ID:	MB0909S1
Diesel Range: PQL:	ND 25
dentification:	
Lube Oil Range: PQL:	ND 50
dentification:	
Surrogate Recovery o-Terphenyl:	97%

Υ

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

NWTPH-Dx DUPLICATE QUALITY CONTROL

	DOI LICATE QUALI	I I CONTROL
Date Extracted: Date Analyzed:	9-9-09 9-9-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	09-065-04	09-065-04 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery		
o-Terphenyl:	79%	78%
Flags:	Υ	Υ

Project: 555-1647-019 02/0403

NWTPH-Gx/BTEX

Date Extracted: 9-10-09
Date Analyzed: 9-11-09

Matrix: Soil

Units: mg/kg (ppm)

Client ID: **BPMW-3 0.5' BPMW-3 2'** Lab ID: 09-068-01 09-068-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.041	0.033		0.032
Ethyl Benzene	ND		0.041	ND		0.032
m,p-Xylene	ND		0.041	0.040		0.032
o-Xylene	ND		0.041	ND		0.032
TPH-Gas	ND		2.0	ND		1.6
Surrogate Recovery: Fluorobenzene	104%			98%		

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

NWTPH-Gx/BTEX

Date Extracted: 9-10-09
Date Analyzed: 9-11-09

Matrix: Soil

Units: mg/kg (ppm)

Client ID: **BPMW-3 5'** Lab ID: 09-068-03

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.048
Ethyl Benzene	ND		0.048
m,p-Xylene	ND		0.048
o-Xylene	ND		0.048
TPH-Gas	ND		2.4
Surrogata Pacayary:			

Surrogate Recovery:

Fluorobenzene 105%

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted: 9-10-09 Date Analyzed: 9-10-09

Matrix: Soil

Units: mg/kg (ppm)

Fluorobenzene

Lab ID: MB0910S1

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
TPH-Gas	ND		5.0
Surrogate Recovery:			

98%

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted: 9-10-09
Date Analyzed: 9-11-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID:	09-067-01 Original	09-067-01 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	0.0668	0.0493	30	
o-Xylene	0.0415	0.0336	21	
TPH-Gas	7.84	7.89	1	
Surrogate Recovery: Fluorobenzene	93%	97%		
FIUUTUDETIZETIE	9370	3170		

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

NWTPH-Gx/BTEX SB/SBD QUALITY CONTROL

Date Extracted: 9-10-09
Date Analyzed: 9-10-09

Matrix: Soil

Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0910S1 SB	Percent Recovery	SBD0910S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.968	97	0.966	97	0	
Toluene	0.985	99	0.971	97	1	
Ethyl Benzene	1.01	101	0.993	99	2	
m,p-Xylene	1.02	102	1.00	100	2	
o-Xylene	1.02	102	1.01	101	1	

Surrogate Recovery:

Fluorobenzene 97% 94%

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B

page 1 of 2

Date Extracted: 9-9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-068-01 Client ID: BPMW-3 0.5'

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	J	0.00062
Chloromethane	ND		0.0031
Vinyl Chloride	ND		0.00062
Bromomethane	ND		0.00062
Chloroethane	ND		0.0031
Trichlorofluoromethane	ND		0.00062
1,1-Dichloroethene	ND		0.00062
lodomethane	ND		0.0031
Methylene Chloride	ND		0.0031
(trans) 1,2-Dichloroethene	ND		0.00062
1,1-Dichloroethane	ND		0.00062
2,2-Dichloropropane	ND		0.00062
(cis) 1,2-Dichloroethene	ND		0.00062
Bromochloromethane	ND		0.00062
Chloroform	ND		0.00062
1,1,1-Trichloroethane	ND		0.00062
Carbon Tetrachloride	ND		0.00062
1,1-Dichloropropene	ND		0.00062
1,2-Dichloroethane	ND		0.00062
Trichloroethene	ND		0.00062
1,2-Dichloropropane	ND		0.00062
Dibromomethane	ND		0.00062
Bromodichloromethane	ND		0.00062
2-Chloroethyl Vinyl Ether	ND		0.0031
(cis) 1,3-Dichloropropene	ND		0.00062
(trans) 1,3-Dichloropropene	ND		0.00062

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

Lab ID: 09-068-01 Client ID: BPMW-3 0.5'

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00062
Tetrachloroethene	ND		0.00062
1,3-Dichloropropane	ND		0.00062
Dibromochloromethane	ND		0.00062
1,2-Dibromoethane	ND		0.00062
Chlorobenzene	ND		0.00062
1,1,1,2-Tetrachloroethane	ND		0.00062
Bromoform	ND		0.00062
Bromobenzene	ND		0.00062
1,1,2,2-Tetrachloroethane	ND		0.00062
1,2,3-Trichloropropane	ND		0.00062
2-Chlorotoluene	ND		0.00062
4-Chlorotoluene	ND		0.00062
1,3-Dichlorobenzene	ND		0.00062
1,4-Dichlorobenzene	ND		0.00062
1,2-Dichlorobenzene	ND		0.00062
1,2-Dibromo-3-chloropropane	ND		0.0031
1,2,4-Trichlorobenzene	ND		0.00062
Hexachlorobutadiene	ND		0.0031
1,2,3-Trichlorobenzene	ND		0.00062

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	97	55-125
Toluene-d8	88	56-127
4-Bromofluorobenzene	81	54-130

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B

page 1 of 2

Date Extracted: 9-9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-068-02 **Client ID: BPMW-3 2**'

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00050
Chloromethane	ND		0.0025
Vinyl Chloride	ND		0.00050
Bromomethane	ND		0.00050
Chloroethane	ND		0.0025
Trichlorofluoromethane	ND		0.00050
1,1-Dichloroethene	ND		0.00050
lodomethane	ND		0.0025
Methylene Chloride	ND		0.0025
(trans) 1,2-Dichloroethene	ND		0.00050
1,1-Dichloroethane	ND		0.00050
2,2-Dichloropropane	ND		0.00050
(cis) 1,2-Dichloroethene	ND		0.00050
Bromochloromethane	ND		0.00050
Chloroform	ND		0.00050
1,1,1-Trichloroethane	ND		0.00050
Carbon Tetrachloride	ND		0.00050
1,1-Dichloropropene	ND		0.00050
1,2-Dichloroethane	ND		0.00050
Trichloroethene	ND		0.00050
1,2-Dichloropropane	ND		0.00050
Dibromomethane	ND		0.00050
Bromodichloromethane	ND		0.00050
2-Chloroethyl Vinyl Ether	ND		0.0025
(cis) 1,3-Dichloropropene	ND		0.00050
(trans) 1,3-Dichloropropene	ND		0.00050

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

Lab ID: 09-068-02 **Client ID: BPMW-3 2**'

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00050
Tetrachloroethene	ND		0.00050
1,3-Dichloropropane	ND		0.00050
Dibromochloromethane	ND		0.00050
1,2-Dibromoethane	ND		0.00050
Chlorobenzene	ND		0.00050
1,1,1,2-Tetrachloroethane	ND		0.00050
Bromoform	ND		0.00050
Bromobenzene	ND		0.00050
1,1,2,2-Tetrachloroethane	ND		0.00050
1,2,3-Trichloropropane	ND		0.00050
2-Chlorotoluene	ND		0.00050
4-Chlorotoluene	ND		0.00050
1,3-Dichlorobenzene	ND		0.00050
1,4-Dichlorobenzene	ND		0.00050
1,2-Dichlorobenzene	ND		0.00050
1,2-Dibromo-3-chloropropane	ND		0.0025
1,2,4-Trichlorobenzene	ND		0.00050
Hexachlorobutadiene	ND		0.0025
1,2,3-Trichlorobenzene	ND		0.00050

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	101	55-125
Toluene-d8	102	56-127
4-Bromofluorobenzene	84	54-130

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B

page 1 of 2

Date Extracted: 9-10-09
Date Analyzed: 9-10-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-068-03 **Client ID: BPMW-3 5**'

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00073
Chloromethane	ND		0.0037
Vinyl Chloride	ND		0.00073
Bromomethane	ND		0.00073
Chloroethane	ND		0.0037
Trichlorofluoromethane	ND		0.00073
1,1-Dichloroethene	ND		0.00073
lodomethane	ND		0.0037
Methylene Chloride	ND		0.0037
(trans) 1,2-Dichloroethene	ND		0.00073
1,1-Dichloroethane	ND		0.00073
2,2-Dichloropropane	ND		0.00073
(cis) 1,2-Dichloroethene	ND		0.00073
Bromochloromethane	ND		0.00073
Chloroform	ND		0.00073
1,1,1-Trichloroethane	ND		0.00073
Carbon Tetrachloride	ND		0.00073
1,1-Dichloropropene	ND		0.00073
1,2-Dichloroethane	ND		0.00073
Trichloroethene	ND		0.00073
1,2-Dichloropropane	ND		0.00073
Dibromomethane	ND		0.00073
Bromodichloromethane	ND		0.00073
2-Chloroethyl Vinyl Ether	ND		0.0037
(cis) 1,3-Dichloropropene	ND		0.00073
(trans) 1,3-Dichloropropene	ND		0.00073

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

Lab ID: 09-068-03 **Client ID: BPMW-3 5**'

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00073
Tetrachloroethene	ND		0.00073
1,3-Dichloropropane	ND		0.00073
Dibromochloromethane	ND		0.00073
1,2-Dibromoethane	ND		0.00073
Chlorobenzene	ND		0.00073
1,1,1,2-Tetrachloroethane	ND		0.00073
Bromoform	ND		0.00073
Bromobenzene	ND		0.00073
1,1,2,2-Tetrachloroethane	ND		0.00073
1,2,3-Trichloropropane	ND		0.00073
2-Chlorotoluene	ND		0.00073
4-Chlorotoluene	ND		0.00073
1,3-Dichlorobenzene	ND		0.00073
1,4-Dichlorobenzene	ND		0.00073
1,2-Dichlorobenzene	ND		0.00073
1,2-Dibromo-3-chloropropane	ND		0.0037
1,2,4-Trichlorobenzene	ND		0.00073
Hexachlorobutadiene	ND		0.0037
1,2,3-Trichlorobenzene	ND		0.00073

	Percent	Control	
Surrogate	Recovery	Limits	
Dibromofluoromethane	97	55-125	
Toluene-d8	102	56-127	
4-Bromofluorobenzene	89	54-130	

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Date Extracted: 9-9-09 Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0909S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	•	0.0010
Chloromethane	ND		0.0050
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0050
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
lodomethane	ND		0.0050
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichloroethane	ND		0.0010
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Lab ID: MB0909S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Bromoform	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	103	55-125
Toluene-d8	102	56-127
4-Bromofluorobenzene	97	54-130

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Date Extracted: 9-10-09
Date Analyzed: 9-10-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0910S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	J	0.0010
Chloromethane	ND		0.0050
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0050
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
lodomethane	ND		0.0050
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichloroethane	ND		0.0010
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Lab ID: MB0910S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Bromoform	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	101	55-125
Toluene-d8	103	56-127
4-Bromofluorobenzene	95	54-130

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted: 9-9-09
Date Analyzed: 9-9-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: SB0909S1

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	0.0500	0.0436	87	0.0453	91	70-130	
Benzene	0.0500	0.0431	86	0.0438	88	70-128	
Trichloroethene	0.0500	0.0415	83	0.0425	85	70-124	
Toluene	0.0500	0.0424	85	0.0436	87	73-123	
Chlorobenzene	0.0500	0.0431	86	0.0430	86	73-115	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	4	16	
Benzene	2	15	
Trichloroethene	2	14	
Toluene	3	14	
Chlorobenzene	0	13	

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted: 9-10-09
Date Analyzed: 9-10-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: SB0910S1

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	0.0500	0.0444	89	0.0449	90	70-130	
Benzene	0.0500	0.0444	89	0.0445	89	70-128	
Trichloroethene	0.0500	0.0445	89	0.0454	91	70-124	
Toluene	0.0500	0.0458	92	0.0459	92	73-123	
Chlorobenzene	0.0500	0.0452	90	0.0442	88	73-115	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	1	16	
Benzene	0	15	
Trichloroethene	2	14	
Toluene	0	14	
Chlorobenzene	2	13	

Project: 555-1647-019 02/0403

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-068-01 Client ID: **BPMW-3 0.5**'

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.7
Cadmium	6010B	ND	0.57
Chromium	6010B	13	0.57
Lead	6010B	ND	5.7
Mercury	7471A	ND	0.023

Project: 555-1647-019 02/0403

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-068-02 Client ID: **BPMW-3 2**'

Analyte	Method	Result	PQL
Arsenic	6010B	7.3	5.7
Cadmium	6010B	ND	0.57
Chromium	6010B	48	0.57
Lead	6010B	73	5.7
Mercury	7471A	0.052	0.023

Project: 555-1647-019 02/0403

TOTAL METALS EPA 6010B/7471A

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-068-03 Client ID: **BPMW-3 5**'

Analyte	Method	Result	PQL
Arsenic	6010B	11	6.6
Cadmium	6010B	ND	0.66
Chromium	6010B	30	0.66
Lead	6010B	40	6.6
Mercury	7471A	0.051	0.026

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0915S4

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0915S1

Analyte Method Result PQL

Mercury 7471A **ND** 0.020

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	5.73	ND	NA	5.0	
Cadmium	0.614	0.521	16	0.50	
Chromium	35.3	30.4	15	0.50	
Lead	28.2	24.2	15	5.0	

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-100-01

Sample Duplicate

Analyte Result Reput Reput Result RPD PQL Flags

Mercury ND ND NA 0.020

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 9-15-09 Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-034-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	95.7	90	97.5	92	2	
Cadmium	50	49.7	98	49.0	97	1	
Chromium	100	128	93	140	104	9	
Lead	250	258	92	315	115	20	

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-15-09
Date Analyzed: 9-15-09

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-100-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Mercury	0.50	0.473	95	0.473	95	0	

Laboratory Reference: 0909-068 Project: 555-1647-019 02/0403

% MOISTURE

Date Analyzed: 9-9-09

Client ID	Lab ID	% Moisture
BPMW-3 0.5'	09-068-01	12
BPMW-3 2'	09-068-02	13
BPMW-3 5'	09-068-03	24

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

TAX:

HWA GEOSCIENCES INC

19730 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425) 774-0106

Chain of Custody and Laboratory Analysis Request

09-068 DATE: 9/8/09 PAGE: 0f)

PROJECT NAME: Bothel	RIFS Pain	H #: 10L	103				ANALYSIS REQUESTED											
SITE CODE: Bothell Pain	+				X		50											
SAMPLERS NAME: V DIKIN	5F	HONE: 206 7	143124		+876x		36	_										
SAMPLERS SIGNATURE:					+	\	\$7	۱ خ							2			
HWA CONTACT: Sandra M	latthews f	PHONE: 425-	458-6323	X	1 4 5	$ \chi $	<u> </u>	ļ		İ			i		3			
You and this x				TO 4 CT	16	N	2		ŀ						Gmorsange			
		•	# OF	2 2	RH	工	72						:	-	Ę			
HWA SAMPLE ID DATE TIME	MATRIX	LAB ID	BÖTTLE	<u>_</u>	,		Z					$oldsymbol{\perp}$			23	ı	REMARKS	
BPN0W-3 0.5 9809 1240	501		4	X	X	X	×								X			
BPMW-3 21 1 1245 BPMW-3 5' V 1250		<u> </u>		X	×	¥	×					_						
BPMW-3 5' V 1250	1	3	$ \psi $	X	×	×	7		+			-		-	V			
	-		`						1						 			·
	 								 		+				 			
									+ 1		1	-		-			· · · · · · · · · · · · · · · · · · ·	· · · · · · -
									1 1		1	1		1				
)	<u> </u>																	
										_	\perp	_						
					ļ				1 1	_								
			<u> </u>	-					-			-		\perp				
)									1									
					-				 					+		· · · · ·		
					-	-					+		\dashv		 			·
)									1		+	_		1				
(
PRINT NAME		ASIC	SNATURE						OMP	ANY			DAT	ΓE	TIME		REMAR	KS
Relinquished by: VANCE ATKIN	ر-	Ja	Q-				1	tus	-				9/1/	39j	1505	-	W. M. A. T. C. T.	<u>-,</u>
Received by: Van		__\	lan					Sp	Q.				7 80		1505			
Relinquished by: Van			<u> </u>					عالات	a Qb			[180	1	1524			
Received by: Blair Good	(ん				<u> </u>	€ (Ky	FU			18		1525			
	DISTRIBUTE	ON: WHITE - R	eturn to HW	Ά; Υ	'ELL	.OW	- Re	etain b	y Lab	; PINK	- Ret	ain l	by Sa	mple	r			

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 30, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019-02/0403 / Paint

Laboratory Reference No. 0909-180

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 18, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

Case Narrative

Samples were collected on September 18, 2009, and received by the laboratory on September 18, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Gx/BTEX

Date Extracted: 9-22-09 Date Analyzed: 9-22-09

Matrix: Water Units: ug/L (ppb)

Client ID: **BC-10-12**Lab ID: 09-180-01 09-180-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	95%			95%		

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Gx/BTEX

Date Extracted: 9-22-09 Date Analyzed: 9-22-09

Matrix: Water Units: ug/L (ppb)

Client ID: TRIP BLANK
Lab ID: 09-180-03

BC-10-12-2 09-180-04

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	95%			94%		

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Gx/BTEX

Date Extracted: 9-22-09 Date Analyzed: 9-22-09

Matrix: Water Units: ug/L (ppb)

Client ID: **BPMW-3-10 BPMW-1-10** Lab ID: 09-180-05 09-180-06

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	95%			95%		

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Gx/BTEX

Date Extracted: 9-22-09 Date Analyzed: 9-22-09

Matrix: Water Units: ug/L (ppb)

Client ID: **BPMW-2-6**Lab ID: 09-180-07

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	320	Т	100

Surrogate Recovery:

Fluorobenzene 94%

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted: 9-22-09 Date Analyzed: 9-22-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0922W1

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100

Surrogate Recovery:

Fluorobenzene 96%

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted: 9-22-09 Date Analyzed: 9-22-09

Matrix: Water Units: ug/L (ppb)

Lab ID:	09-180-01 Original	09-180-01 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	95%	94%		

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Gx/BTEX SB/SBD QUALITY CONTROL

Date Extracted: 9-22-09 Date Analyzed: 9-22-09

Matrix: Water Units: ug/L (ppb)

Spike Level: 50.0 ppb

Lab ID:	SB0922W1 SB	Percent Recovery	SBD0922W1 SBD	Percent Recovery	RPD	Flags
Benzene	49.6	99	51.6	103	4	
Toluene	53.2	106	55.8	112	5	
Ethyl Benzene	55.8	112	59.0	118	6	
m,p-Xylene	56.8	114	59.7	119	5	
o-Xylene	55.9	112	59.0	118	5	

Surrogate Recovery:

Fluorobenzene 98% 98%

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Dx

Date Extracted: 9-24-09 Date Analyzed: 9-24-09

Matrix: Water
Units: mg/L (ppm)

Client ID: Lab ID:	BC-10-12 09-180-01	BC-11-12 09-180-02	BC-10-12-2 09-180-04
Diesel Range: PQL:	ND 0.28	ND 0.28	ND 0.29
Identification:			
Lube Oil Range: PQL: Identification:	ND 0.44 	ND 0.44 	ND 0.46
Surrogate Recovery o-Terphenyl:	83%	78%	85%
Flags:	Υ	Υ	Υ

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Dx

Date Extracted: 9-24-09 Date Analyzed: 9-24-09

Matrix: Water Units: mg/L (ppm)

Client ID: Lab ID:	BPMW-3-10 09-180-05	BPMW-1-10 09-180-06	BPMW-2-6 09-180-07
Diesel Range:	ND 0.28	ND 0.31	ND 0.29
Identification:			
Lube Oil Range: PQL:	ND 0.45	ND 0.49	ND 0.46
Identification:			
Surrogate Recovery o-Terphenyl:	86%	89%	74%
Flags:	Υ	Υ	Y

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-24-09
Date Analyzed:	9-24-09

Matrix: Water Units: mg/L (ppm)

Lab ID: MB0924W1

Diesel Range: **ND**PQL: 0.25

Identification: ---

Lube Oil Range: **ND**PQL: 0.40

Identification: ---

Surrogate Recovery

o-Terphenyl: 80%

Flags: Y

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	9-24-09
Date Analyzed:	9-24-09

Matrix: Water Units: mg/L (ppm)

Lab ID: 09-181-01 09-181-01 DUP

 Diesel Range:
 ND
 ND

 PQL:
 0.31
 0.29

RPD: N/A

Surrogate Recovery

o-Terphenyl: 97% 83%

Flags: Y Y

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-01 Client ID: BC-10-12

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	3-	0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	101	71-126
Toluene-d8	94	76-116
4-Bromofluorobenzene	81	70-123

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-03
Client ID: TRIP BLANK

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	1.2	Н	1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: 09-180-03
Client ID: TRIP BLANK

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	100	71-126
Toluene-d8	91	76-116
4-Bromofluorobenzene	80	70-123

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-04 **Client ID: BC-10-12-2**

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
Iodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: 09-180-04 **Client ID: BC-10-12-2**

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	100	71-126
Toluene-d8	92	76-116
4-Bromofluorobenzene	81	70-123

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-05 **Client ID: BPMW-3-10**

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: 09-180-05
Client ID: BPMW-3-10

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	100	71-126
Toluene-d8	93	76-116
4-Bromofluorobenzene	82	70-123

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-06
Client ID: BPMW-1-10

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	90	0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: 09-180-06
Client ID: BPMW-1-10

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	99	71-126
Toluene-d8	93	76-116
4-Bromofluorobenzene	81	70-123

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0923W1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	3-	0.20
Chloromethane	ND		1.0
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

Lab ID: MB0923W1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	97	71-126
Toluene-d8	92	76-116
4-Bromofluorobenzene	81	70-123

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted: 9-23-09 Date Analyzed: 9-23-09

Matrix: Water Units: ug/L (ppb)

Lab ID: SB0923W1

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	10.0	8.59	86	9.00	90	70-130	
Benzene	10.0	9.55	96	10.2	102	70-130	
Trichloroethene	10.0	9.97	100	10.5	105	70-123	
Toluene	10.0	10.1	101	10.5	105	77-120	
Chlorobenzene	10.0	9.34	93	9.66	97	73-115	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	5	21	
Benzene	7	18	
Trichloroethene	5	18	
Toluene	4	17	
Chlorobenzene	3	18	

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-01 Client ID: BC-10-12

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	7.0
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-02 **Client ID: BC-11-12**

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	7.0
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-04

Client ID: BC-10-12-12

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	7.0
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-05

Client ID: BPMW-3-10

Analyte	Method	Result	PQL
Arsenic	200.8	5.4	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	7.0
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-06

Client ID: BPMW-1-10

Analyte	Method	Result	PQL
Arsenic	200.8	5.0	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	7.0
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-07

Client ID: BPMW-2-6

Analyte	Method	Result	PQL
Arsenic	200.8	3.6	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	7.0
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0923D1&MB0929D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	7.0
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-130-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	5.02	4.65	8	3.0	
Cadmium	ND	ND	NA	4.0	
Chromium	8.49	7.42	14	7.0	
Lead	ND	ND	NA	1.0	
Mercury	ND	ND	NA	0.20	

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

DISSOLVED METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Analyzed: 9-25&29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-130-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	220	108	217	106	1	
Cadmium	200	218	109	214	107	2	
Chromium	200	199	95	203	97	2	
Lead	200	206	103	210	105	2	
Mercury	12.5	11.8	94	11.8	94	0	

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A

Date Extracted: 9-28&29-09 Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-01 Client ID: BC-10-12

Analyte	Method	Result	PQL
Arsenic	200.8	5.1	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	27	6.7
Lead	200.8	7.9	1.1
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A

Date Extracted: 9-28&29-09 Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-02 **Client ID: BC-11-12**

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	ND	6.7
Lead	200.8	ND	1.1
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A

Date Extracted: 9-28&29-09 Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-04
Client ID: BC-10-12-12

Analyte	Method	Result	PQL
Arsenic	200.8	6.7	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	34	6.7
Lead	200.8	9.3	1.1
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A

Date Extracted: 9-28&29-09 Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-05
Client ID: BPMW-3-10

Analyte	Method	Result	PQL
Arsenic	200.8	10	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	61	6.7
Lead	200.8	7.4	1.1
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A

Date Extracted: 9-28&29-09 Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-06
Client ID: BPMW-1-10

Analyte	Method	Result	PQL
Arsenic	200.8	5.1	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	ND	6.7
Lead	200.8	ND	1.1
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A

Date Extracted: 9-28&29-09 Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-07

Client ID: BPMW-2-6

Analyte	Method	Result	PQL
Arsenic	200.8	3.9	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	9.1	6.7
Lead	200.8	1.7	1.1
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-28&29-09
Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0928W2&MB0929W2

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	ND	6.7
Lead	200.8	ND	1.1
Mercury	7470A	ND	0.20

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Extracted: 9-28&29-09 Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.3	
Cadmium	ND	ND	NA	4.4	
Chromium	ND	ND	NA	6.7	
Lead	ND	ND	NA	1.1	
Mercury	ND	ND	NA	0.20	

Laboratory Reference: 0909-180 Project: 555-1647-019-02/0403 / Paint

TOTAL METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Extracted: 9-28&29-09 Date Analyzed: 9-29-09

Matrix: Water Units: ug/L (ppb)

Lab ID: 09-180-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	110	111	101	109	99	2	
Cadmium	110	115	104	112	102	2	
Chromium	110	109	99	106	96	3	
Lead	110	114	104	112	102	1	
Mercury	12.5	11.8	94	11.8	94	0	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in the diesel range are impacting the lube oil range result.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical gas.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

A OnSite		Cř	ain	of (Cu	st	10	ły										S	Pag	je	of _		
Environmental Inc.		Turnaroun (in worki	d Reques	il Services	La	bor	ato	ry 1	Nur	nbe	er:	(9 () –	1	8 ()	<u> </u>					_
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Checl	(One)									Re	em	SE	al Avi		sis /	ď				44	
Project Number:	□ Sa	me Day		1 Day	\$1984C												NO SERVICE	H	ر الم				32
Froject.Number.	□ 2 [Dav		3 Day					8260B									ر ان	6.				
Project Name: Bothell Crossing Paint Project Manager:	 ☑ Sta	andard (7 w PH analysis	orking da	ays)		X		8260B	Halogenated Volatiles by 82	Semivolatiles by 8270D	MIS/		381A	8151A	tals (8)			MTCA Moles As, G. C., H	1 5/2/				
Sandra Mathews Sampled by: L. Vagelatos	┦□	(otl	ner)		H-HCID	NWTPH-Gx/BTEX	Ă	by 826	ated Vc	atiles b	PAHs by 8270D	, 8082	Pesticides by 8081A	es by 8	Total RCRA Metals	etals	1664	A Me	4 M4				nre
LabilD Sample Identification	Date	Time Sampled			NWTPH	WTPH	VWTPH-Dx	olatiles by	alogen	emivola	AHs by	PCBs by 8082	esticide	Herbicides by	otal RC	TCLP Metals	HEM by 1664	710,	MTC				% Moisture
1 BC-10-12	9/18/09		H20	_		X	X	<u>></u>	X	0	ш_	а.	<u>a</u>	_l_	F	 -	1	X	X				2
2 BC-11-12	9/19/09	1510	H20			X	Х											X	X				_
3 TRIP BLANK	Vialog	0000	Hzo	3		X			X														
4 BC-10-12-Z	9/veloa	1420		9		X	X		X									X	λ				
5 BPMW-3-10		1215	H20	9		X	X		X									X	X				
6 BPMW-1-10		1005		1		8	8		8									8	8				
7 BPMW-2-6	1	1100	<u> </u>	6		X	X											X	Y			\perp	
. &							-																_
											-									-		\dashv	
Signature	79.06 T. 10.06	e«Comnanv.s				โดลส			Tribute	171 TO 000		655		1000	രില്ല	Sirii	ilous				72.7(2.50)		
Relinquished by Lily Varaglate	љ	Para	W 2	x:~		9/1													PR	3			16%
Received by	(04	`	tr	. 4	7/0							יעב	7ac V	عود	, (
Relinquished by	_											_			-,								
Received by																							
Relinquished by Received by																							
		<u> </u>																					_
Reviewed by/Date		Reviewed	py/Date									Chr	oma	toara	me	with .	final	rono	+ 🗀				

Chromatograms with final report 🗆

APPENDIX C3

Physical Laboratory Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 21, 2009

Sandra Matthews Parametrix 411 108th Avenue NE, Suite 1800 Bellevue, WA 98004

Re: Analytical Data for Project 555-1647-019 02/0403, Paint

Laboratory Reference No. 0910-072

Dear Sandra:

Enclosed are the analytical results and associated quality control data for samples submitted on September 8, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Geotechnical & Pavement Engineering · Hydrogeology · Geoenvironmental · Inspection & Testing

October 15, 2009 HWA Project No. 2007-098-23 Task 801

On-Site Environmental, Inc.

14648 NE 95th Street Redmond, Washington 98052

Attention:

Mr. David Baumeister

Subject:

SOIL LABORATORY TESTING REPORT

Physical Properties and Hydraulic Conductivity

Bothell Paint, Bothell WA

Dear Mr. Baumeister;

As requested, HWA GeoSciences Inc. (HWA) performed laboratory testing for the subject project. Herein we present the results of our laboratory analyses, which are summarized on the attached reports. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE DESCRIPTION: The subject project soil sample was delivered to our laboratory on September 8, 2009 by OSE personnel. The sample was enclosed in brass sample rings, and additional material was provided in a plastic bag.

PARTICLE SIZE ANALYSIS OF SOILS: The selected sample was tested to determine the particle size distribution in general accordance with **ASTM D422 (wet sieve method)**. The results are summarized on the attached Grain Size Distribution reports, Figure 1, which also details information regarding the classification of the sample and the moisture content at the time of testing.

MOISTURE CONTENT OF SOIL: The moisture content of the sample was determined in general accordance with ASTM D 2216. The indicated moisture content is based on the dry weight of soil, and is presented on Figure 1.

UNIT WEIGHT OF SOILS: The selected sample was tested in general accordance with **ASTM D2937**. The volume of the sample was calculated from three individual measurements of its length and diameter. The unit weight was calculated from the sample volume and mass. The unit weight is detailed in Table 1 below.

19730 - 64th Avenue W. Suite 200

Lynnwood, WA 98036.5957

Tel: 425.774.0106 Fax: 425.774.2714 www.hwageo.com

Table 1 – Unit Weight of Soils

Sample	Moisture Content (%)	Wet Density (pcf)	Dry Density (pcf)
BPMW-3 @ 15 ft	13.0	138.1	122.2

MOISTURE CONTENT, ASH, AND ORGANIC MATTER: The selected sample was tested in general accordance with method ASTM D 2974, using moisture content method 'A' (oven dried at 105° C) and ash content method 'C' (burned at 440° C). The test results are summarized in Table 2 below. The results are percent by weight of dry soil.

Table 2 - Organic Material Content of Soils

Sample	Ash Content (%)	Organic Content (%)
BPMW-3 @ 15 ft	98.78	1.22

HYDRAULIC CONDUCTIVITY OF SOIL (FLEXI-WALL TRIAXIAL CHAMBER METHOD): The hydraulic conductivity (also commonly referred to as coefficient of permeability) of the selected sample was measured in general accordance with method ASTM D 5084. The sample was extruded from the rings, trimmed, and weighed prior to placement within a flexible membrane within a triaxial pressure chamber. An effective confining pressure of 1.5 psi was applied to simulate near-surface ground conditions. Saturation was induced by subjecting the test specimen to a flow gradient of about 5, generated by a back-pressure differential of 2 psi and testing was conducted until inflow was approximately equal to outflow and the hydraulic conductivity was essentially steady. The test results are presented in detail on Figure 2.

CLOSURE: Experience has shown that test values on soil and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested samples may represent. HWA also makes no warranty as to how representative either the samples tested or the test results obtained are to actual field conditions. It is a well established fact that sampling methods present varying degrees of disturbance that affect sample representativeness.

No copy should be made of this report except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

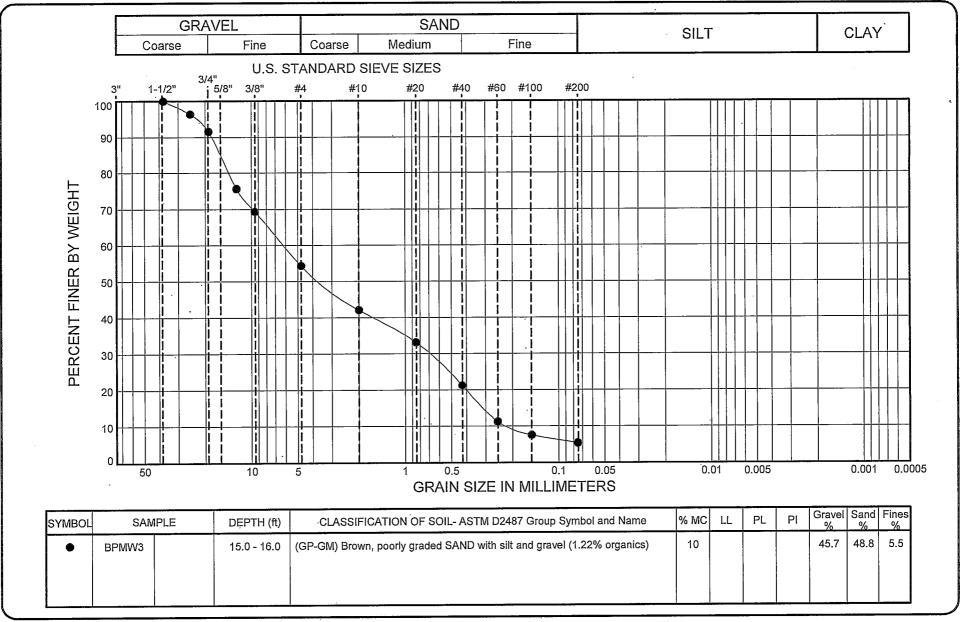
Harold Benny

Materials Laboratory Manager

Steven E. Greene, L.G., L.E.G.

Vice President

Attachments


Figure 1

Particle-Size Analysis of Soils

Figure 2

Hydraulic Conductivity Test Report

HWA Chain of Custody & Laboratory Analysis Request

Bothell Paint
On-Site Environmental

PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

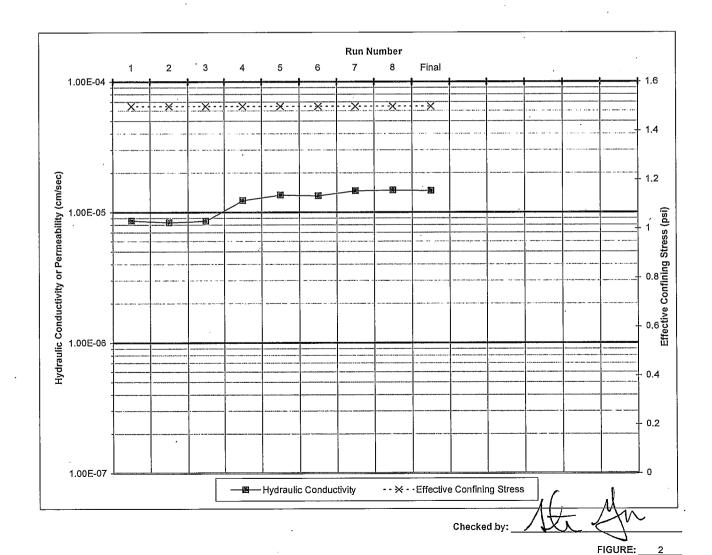
PROJECT NO.: 2007-098 T801

FIGURE: 1

. Hydraulic Conductivity (a.k.a. Permeability) Test Report

Method ASTM D 5084

Project Client Bothell RI/FS Assumed Specific Gravity 2.65 City of Bothell 2007-098 Initial Sample Area (cm2) 29.28 Initial Sample Length (cm) 12.37 Project number Date 09/16/2009 Initial Sample Volume (cc) 362.2 Initial moisture (%) 13.0 Technician НВ Initial wet unit wt. (pcf) 138.1 BPMW-3 Sample point Sample number Initial dry unit wt. (pcf) 122.2 Sample depth Initial void ratio 0.353 15-16.5 Initial porosity 0.261 Sample description Poorly graded SAND with silt and gravel. Initial saturation (%) 97.6


-FWA-

HWAGEOSCIENCES INC.

Final Sample Area (cm2) 28,68 Final Sample Length (cm) 12.37 Final Sample Volume (cc) 354.7 Final moisture (%) 10.2 Final wet unit weight (pcf) 144.0 Final dry unit weight (pcf) 130.7 Final void ratio 0.265 Final porosity 0.210 Final saturation (%) 101.9

Run No.	Hydraulic Conductivity (cm/s)	Running Average of 4 Readings (cm/s)	Maximum % Deviation from Average (should be less than 25%)	Flow Ratio (0.75 to 1.25 required)	Effective Confining Stress (psi
1	8.6E-06	n.a.	·	1.01	1.5
2	8.4E-06	n.a.		1.00	1.5
3	8.6E-06	n.a.		1.00	1.5
4	1.2E-05	9.5E-06	30.0%	0.98	1.5
5	1.4E-05	1.1E-05	26.6%	88.0	1.5
6	1.3E-05	1.2E-05	28.3%	1.00	1.5
7	1.5E-05	1,3E-05	8.5%	1.00	1.5
8 ,	1.5E-05	1.4E-05	4.9%	1.00	1.5
Final	1.5E-05	1.4E-05	6.6%	1.00	1.5

Other
Information
Maximum Gradient
7.6
Minimum Gradient
1.2
Max. Back Pressure (psi)
18.0
Min. Back Pressure (psi)
18.0

HWA GEOSCIENCES INC. 19730 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425) 774-0106

Chain of Custody and Laboratory Analysis Request

DATE:				
DACE.	i	~ 5	-1	

Received by: H. Benny HBann HWA 9/8/39 Relinquished by:				· · · · · · · · · · · · · · · · · · ·	5. 4 - 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.															1.7	<u> </u>	<u></u>	
SITE CODE: SAMPLERS NAME: VDA PHONE: SAMPLERS SIGNATURE: HWA CONTACT: H. Beary PHONE: 206-437-446 WAS SAMPLE ID DATE TIME MATRIX LAB ID BOTTLE WAS SAMPLE ID DATE TIME MATRIX LAB ID BOTTLE WAXXX PRINT NAME SIGNATURE COMPANY DATE TIME REMARKS Relinguished by: Received by: Received by: Received by: Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by:	PROJECT NAME:				#:						ANA	LYSI	SRE	QUE	STE	D							
SAMPLERS NAME: SAMPLERS SIGNATURE: HWA CONTACT: H. Beans, PHONE: 206-437-444 **OF BOTTLE **OF BOTTLE REMARKS REMARKS REMARKS REMARKS PRINT NAME SIGNATURE COMPANY DATE TIME REMARKS REMARKS REInquished by: Relinquished by:					···	"	7	1		3													
PRINT NAME Relinquished by: Received by: Relinquished by:	SAMPLERS NAME	· VD	A		PHONE:		1	7	b^{T}	D. T.													
PRINT NAME Relinquished by:							The state of the s	12	7	9													
PRINT NAME Relinquished by:				4	PHONE: 206	-437-446	3	neal	カナ	ari C													
PRINT NAME PRINT NAME SIGNATURE SIGNATURE COMPANY DATE TIME REMARKS Relinquished by: Received by: Relinquished by: Relinquished by: Relinquished by: Relinquished by:						# OF	S	É	Jni	5	7												
PRINT NAME SIGNATURE COMPANY DATE TIME REMARKS Relinquished by: Received by: H. Benny Relinquished by: Relinquished by:	TO MUL- 7	DAIL	IIME		LAB ID	BOTTLE			<u> </u>	2		+	<u> </u>				1		_		REN	MARKS	
PRINT NAME SIGNATURE COMPANY DATE TIME REMARKS Relinquished by: Received by: H. Benny HBanny HWA 9931 Relinquished by:	6 15 HW 5		 	201			X	\times	X	X							_	_					
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:	(e 15-16.5						-					-	-										
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:			<u> </u>								-	-				_							
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:							<u> </u>								-		\dashv		_				
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:																		_				- · · · · · · · · · · · · · · · · · · ·	
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:																Ì							~~ ^
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:																							
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:																							
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:																							
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:		<u> </u>					_					\perp							_				
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:							ļ										-	_					
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:							<u> </u>											_	_				
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:	·												-					_	\perp			···	
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:		-				ļ											_	+	+				
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:							-						-				\dashv			_		· · ·	
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:		<u> </u>					-				\dashv				-	\dashv	-	\dashv	\dashv	-			
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:		1											+				+	+	+				
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:							-				+		1		\dashv	1	\dashv	$\neg \neg$	\dashv				
Relinquished by: Received by: H. Benny HBanny HWA 9/8/39 Relinquished by:	PR	INT NAM	IE		s	IGNATURE	<u> </u>			<u>1</u>		COM	PAN	/				TE		TIME		REMARK	s
Received by: H. Benny HBann HWA 9/8/39 Relinquished by:	Relinquished by:				, -				T							寸	<i>f</i>	1	$\overline{}$		1		
Relinquished by:		4. B	ennu	/	HB	um/					}	fu	1A				9/8	18	î				
Received by:	Relinquished by:		7			0						· · · · ·				Ť	7	-					7
	Received by:																						

APPENDIX C4

Historical Data Tableg '

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	BC-10-1 1	BC-11-5 5	GB-2-1 1	GB-2-4 4	VB-1-4 4	VB-3-1 1	VB-5-1 1	VB-6-1 1	VB-7-1 1
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	10/28/2008	06/25/2008	2/13/2008	2/13/2008	2/13/2008	2/13/2008	2/14/2008	2/14/2008	2/14/2008
PETROLEUM HYDROCARBON		NWTPH-Dx	2.000		200		27 U	20.11	28 U		240	20.11	120	220	120
Diesel Motor Oil	mg/kg	NWTPH-Dx	2,000 2,000		200		81	28 U 55 U			210 1,200	28 U 180	130 1,300	230 1,000	120
Gasoline	mg/kg	NWTPH-Dx	2,000 30/100*G		100		4.8 U		3.9 U		1,200		6.6 U		3.2 U
	mg/kg			4 400	100										·
Benzene	μg/kg	SW8021B SW8260B	30 30	4.483 4.483			20 U		1.1 U				1.1 U	0.6 U	0.6 U
Benzene Toluene	µg/kg	SW8021B	7,000	4.403			48 U		1.1 0						
Toluene	µg/kg	SW8260B	7,000						2.6				1.1	6.2	2.7
Ethylbenzene	µg/kg	SW8021B	6,000				 48 U		2.0				1.1	0.2	2.1
Ethylbenzene	μg/kg	SW8260B	6,000				40 U		1.1 U				1.1 U		0.6 U
m,p-Xylene	μg/kg	SW8021B	9,000*XY				48 U		1.1 0				1.1 0	0.6 0	
m,p-Xylene	µg/kg	SW8260B	9,000 X1 9,000*XY						2.3 U				2.3 U		1.2 U
o-Xylene	μg/kg	SW8021B	9,000 X Y 9,000*XY				48 U								
o-Xylene	µg/kg	SW8260B	9,000 XY 9,000*XY						1.1 U				1.1 U	1.2	0.6 U
METALS	μg/kg	37702000	9,000 🗡 1						1.1 0				1.1 U	1.2	0.6 0
Arsenic	ma/ka	SW6010B-Total	20	2.803	7	7.30		11 U	11 U	11 U	42	14			
Barium	mg/kg	SW6010B	20	2.003	102	7.30			170	47	79	89			
Cadmium	mg/kg	SW6010B SW6010B-Total	2	0.69	4	0.77		0.55 U		0.56 U	0.59 U				
Chromium	mg/kg	SW6010B-Total		0.69	42	48.15		12	86	26	37	60			
Lead	mg/kg	SW6010B-Total	250 250	250		16.83		5.5 U		52	98	100			
Selenium	mg/kg	SW6010B-10lai	250	250	50	10.03			11 U	11 U			 I		
Silver	mg/kg	SW6010B SW6010B			0.3				0.57 U	0.56 U					
Mercury	mg/kg	SW7471A-Total	2	2.088	0.1	0.07			0.37 0	0.56 U					
METALS (TCLP Extract-wet)	mg/kg	3W141 TA-10tal		2.000	0.1	0.07			0.30	0.20 0	0.29 0	0.34			
Arsenic	mg/L	SW6010B-Total													
Barium	mg/L	SW6010B													
Cadmium	mg/L	SW6010B-Total													
Chromium	mg/L	SW6010B-Total													
Lead	mg/L	SW6010B-Total													
VOLATILE ORGANICS	my/L	3W0010D-10tal													
1,1,1,2-Tetrachloroethane	μg/kg	SW8260B							1.1 U				1.1 U	0.6 U	0.6 U
1,1,1-Trichloroethane	μg/kg μg/kg	SW8260B							1.1 U				1.1 U		0.6 U
1,1,2,2-Tetrachloroethane	μg/kg	SW8260B							1.1 U				1.1 U		
1,1,2-Trichloroethane	μg/kg	SW8260B							1.1 U				1.1 U		
1,1-Dichloroethane	<u>μg/kg</u> μg/kg	SW8260B							1.1 U				1.1 U		
1,1-Dichloroethene	<u>μg/kg</u> μg/kg	SW8260B							1.1 U				1.1 U		
1,1-Dichloropropene	<u>μg/kg</u> μg/kg	SW8260							1.1 U				1.1 U		0.6 U
1,2,3-Trichlorobenzene	μg/kg	SW8260			20,000				1.1 U				1.1 U		0.6 U
1,2,3-Trichloropropane	μg/kg	SW8260B			20,000				1.1 U				1.1 U		
1,2,4-Trichlorobenzene	μg/kg	SW8260			20,000				1.1 U				1.1 U		
1,2,4-Trimethylbenzene	<u>μg/kg</u> μg/kg	SW8260			20,000				1.1 U				6.7	22	0.6 U
1,2-Dibromo-3-chloropropane	<u>μg/kg</u> μg/kg	SW8260B							5.7 U				5.7 U		
1,2-Dibromoethane	<u>μg/kg</u> μg/kg	SW8260							1.1 U				1.1 U		0.6 U
1,2-Distribution 1,2-Dichlorobenzene	μg/kg μg/kg	SW8260B			700,000				1.1 U				1.1 U		0.6 U
1,2-Dichloroethane	μg/kg μg/kg	SW8260B			, 50,500				1.1 U				1.1 U		0.6 U
1,2-Dichloropropane	μg/kg μg/kg	SW8260B							1.1 U				1.1 U		
1,3,5-Trimethylbenzene	μg/kg μg/kg	SW8260							1.1 U				1.1 0	3.5	0.6 U
1,3-Dichlorobenzene	μg/kg μg/kg	SW8260							1.1 U				1.2 1.1 U		
1,0-010110100061126116	μg/kg	3770200							1.1 U				1.1 U	0.0 0	0.0 0

		Analytical	MTC	Ecologica A B Indicator	_	BC-11-5 5	GB-2-1 1	GB-2-4 4	VB-1-4 4	VB-3-1 1	VB-5-1 1	VB-6-1 1	VB-7-1 1
PARAMETERS	Units	Method	MTCA A soil to		Background	06/25/2008	2/13/2008	2/13/2008	2/13/2008	2/13/2008	2/14/2008	2/14/2008	2/14/2008
VOLATILE ORGANICS (contin	nued)				_								
1,3-Dichloropropane	μg/kg	SW8260				 	1.1 U				1.1 U	0.6 U	0.6 U
1,4-Dichlorobenzene	μg/kg	SW8260B		20,000		 	1.1 U				1.1 U		
2,2-Dichloropropane	μg/kg	SW8260				 	1.1 U				1.1 U		
2-Butanone	μg/kg	SW8260B				 	5.7 U				7.9	5.8	6.2
2-Chloroethyl Vinyl Ether	μg/kg	SW8260				 	11 U				11 U	6 U	
2-Chlorotoluene	μg/kg	SW8260				 	1.1 U				1.1 U		
2-Hexanone	μg/kg	SW8260B				 	5.7 U				5.7 U		
4-Chlorotoluene	μg/kg	SW8260				 	1.1 U				1.1 U		
Acetone	μg/kg	SW8260B				 	53				57	46	34
Bromobenzene	μg/kg	SW8260				 	1.1 U				1.1 U		
Bromochloromethane	μg/kg	SW8260B				 	1.1 U				1.1 U		
Bromodichloromethane	μg/kg	SW8260B				 	1.1 U				1.1 U		
Bromoform	<u>μg</u> /kg	SW8260B				 	1.1 U				1.1 U		
Bromomethane	μg/kg	SW8260B				 	1.1 U				1.1 U		
Carbon Disulfide	μg/kg	SW8260B				 	1.1 U				1.1 U		
Carbon Tetrachloride	μg/kg	SW8260B				 	1.1 U				1.1 U		
Chlorobenzene	μg/kg	SW8260B		40,000		 	1.1 U				1.1 U		
Chloroethane	μg/kg	SW8260B		10,000		 	5.7 U				5.7 U		
Chloroform	μg/kg	SW8260B				 	1.1 U				1.1 U		
Chloromethane	μg/kg	SW8260B				 	5.7 U				5.7 U		
cis-1,2-Dichloroethene	<u>μg/kg</u> μg/kg	SW8260B				 	1.1 U				1.1 U		
cis-1,3-Dichloropropene	<u>μg/kg</u> μg/kg	SW8260B				 	1.1 U				1.1 U		
Dibromochloromethane	<u>μg/kg</u> μg/kg	SW8260B				 	1.1 U				1.1 U		
Dibromomethane	<u>μg/kg</u> μg/kg	SW8260B				 	1.1 U				1.1 U		
Dichlorodifluoromethane	<u>μg/kg</u> μg/kg	SW8260				 	1.1 U				1.1 U		
Hexachlorobutadiene	<u>μg/kg</u> μg/kg	SW8260				 	5.7 U				5.7 U		
Isopropylbenzene	μg/kg μg/kg	SW8260				 	1.1 U				1.2	1.6	0.73
Methyl Iodide	μg/kg μg/kg	SW8260B				 	5.7 U				5.7 U		
Methyl Isobutyl Ketone	μg/kg μg/kg	SW8260				 	5.7 U				5.7 U		
Methyl t-Butyl Ether	μg/kg μg/kg	SW8260	100			 	1.1 U				1.1 U		
Methylene Chloride	μg/kg μg/kg	SW8260B	20			 	1.1 0				13	3 U	
Naphthalene	μg/kg μg/kg	SW8260	500			 	1.1 U				140	15	5.1
n-Butylbenzene	μg/kg μg/kg	SW8260	300			 	1.1 U				1.8	3.4	1.9
n-Propylbenzene		SW8260				 	1.1 U				1.1 U		1.3
p-Isopropyltoluene	µg/kg	SW8260				 	1.1 U				1.1 0	3.5	0.6 U
sec-Butylbenzene	µg/kg	SW8260				 	1.1 U				1.3 1.1 U		1.4
Styrene	μg/kg	SW8260B		300,000			1.1 U				1.1 U		
VOLATILE ORGANICS (contin	μg/kg	3002000		300,000		 	1.1 U				1.1 0	0.6 0	0.6 0
•	•	SW8260					1.1 U				1.1 U	0.07	0611
tert-Butylbenzene	μg/kg		F0			 							0.6 U
Tetrachloroethene	µg/kg	SW8260B	50			 	1.1 U				1.1 U		
trans-1,2-Dichloroethene	μg/kg	SW8260B				 	1.1 U				1.1 U		
trans-1,3-Dichloropropene	μg/kg	SW8260B	20			 	1.1 U				1.1 U		
Trichloroethene	μg/kg	SW8260B	30			 	1.1 U				1.1 U		
Trichlorofluoromethane	μg/kg	SW8260B				 	1.1 U				1.1 U		
Vinyl Chlorida	μg/kg	SW8260B				 	5.7 U				5.7 U		
Vinyl Chloride	μg/kg	SW8260B				 (Table continu	1.1 U				1.1 U	0.6 U	0.6 U

(Table continues)

Units	BA = 41. = .1		MTCA B	Indicator	Depth (ft):	0.25	2	0.5	1.5	1	8	8
	Method	MTCA A	soil to gw	Conc.	Background	2/14/2008	2/14/2008	2/14/2008	2/14/2008	2/14/2008	4/3/2008	4/3/2008
	NATOLLO	0.000		000		400		4.000.11	4 000 11	00.11	00.11	00.11
mg/kg	NWTPH-Dx	2,000		200		130		4,900 U	1,800 U	28 U	28 U	28 U
				400					•	160		260
				100								5.4 U
			4.483									
μg/kg												
µg/kg												
µg/kg	SW8021B	9,000*XY										
μg/kg	SW8260B	9,000*XY				-						
μg/kg	SW8021B	9,000*XY										
μg/kg	SW8260B	9,000*XY										
mg/kg	SW6010B-Total	20	2.803	7	7.30	32	18	13	190	120	11 U	11 U
	SW6010B			102		3,400	190	100	92	130	39	45
		2	0.69	4	0.77							0.56 U
												32
		· ·	250									5.6 U
												11 U
		2	2 088		0.07							0.28 U
mg/ng	OVVI II II TOTAL		2.000	0.1	0.01	0.00	0.20 0	0.00 0	0.00	0.27 0	0.23	0.20 0
ma/l	SW6010B-Total								0.46			
mg/L	3000010D-101a1					0.2 0						
/1	CMOCCOD											
µg/kg												
µg/kg				20,000								
μg/kg												
µg/kg				20,000								
µg/kg	SW8260											
μg/kg	SW8260B											
µg/kg	SW8260											
	SW8260B			700,000								
	SW8260B			<u> </u>								
μg/kg	SW8260											
	mg/kg mg/kg µg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/L mg/L mg/L mg/L mg/L mg/L pg/kg µg/kg	mg/kg NWTPH-Dx mg/kg SW8021B μg/kg SW8260B μg/kg SW8260B μg/kg SW8260B μg/kg SW8021B μg/kg SW8260B μg/kg SW8021B μg/kg SW8260B μg/kg SW8021B μg/kg SW8260B μg/kg SW8021B μg/kg SW8021B μg/kg SW8021B μg/kg SW80260B μg/kg SW80260B mg/kg SW6010B-Total mg/kg SW6010B-Total mg/kg SW6010B-Total mg/kg SW6010B-Total mg/kg SW6010B mg/kg SW6010B-Total mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/L SW6010B-Total mg/L SW	mg/kg NWTPH-Dx 2,000 mg/kg NWTPH-Gx 30/100*G μg/kg SW8021B 30 μg/kg SW8260B 30 μg/kg SW8260B 7,000 μg/kg SW8260B 7,000 μg/kg SW8260B 7,000 μg/kg SW8260B 6,000 μg/kg SW8260B 6,000 μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8021B 2000*CR mg/kg SW6010B-Total 2 mg/kg SW6010B-Total 2 mg/kg SW6010B-Total 2 mg/kg SW6010B-Total 250 mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW8060B μg/kg SW8060B μg/kg SW8060B μg/kg SW8260B	mg/kg NWTPH-Dx 2,000 mg/kg NWTPH-Gx 30/100*G μg/kg SW8021B 30 4.483 μg/kg SW8260B 30 4.483 μg/kg SW8260B 7,000 μg/kg SW8260B 7,000 μg/kg SW8260B 6,000 μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8260B 9,000*XY μg/kg SW8021B 2000*XY μg/kg SW80610B-Total 20 2.803 mg/kg SW6010B-Total 2 0.69 mg/kg SW6010B-Total 2.000*CR mg/kg SW6010B-Total 2.000*CR mg/kg SW6010B-Total 250 250 mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW6010B mg/kg SW80010B mg/kg SW8260B μg/kg SW8260B	mg/kg NWTPH-Dx 2,000 mg/kg NWTPH-Gx 30/100*G 100 µg/kg SW8021B 30 4.483 µg/kg SW8260B 30 4.483 µg/kg SW8260B 7,000 µg/kg SW8260B 7,000 µg/kg SW8260B 6,000 µg/kg SW8260B 6,000 µg/kg SW8260B 9,000*XY µg/kg SW6010B-Total 20 2.803 7 mg/kg SW6010B-Total 2 0.69 4 mg/kg SW6010B-Total 2 0.69 4 mg/kg SW6010B-Total 2 2.088	mg/kg NWTPH-Dx 2,000 mg/kg NWTPH-Gx 30/100°G 100 pg/kg SW8021B 30 4.483 pg/kg SW8021B 7,000 pg/kg SW8026B 7,000 pg/kg SW8021B 7,000 pg/kg SW8026B 6,000 pg/kg SW8021B 9,000°XY pg/kg SW8021B 9,000°XY pg/kg SW8021B 9,000°XY pg/kg SW8021B 9,000°XY pg/kg SW8021B 9,000°XY pg/kg SW8021B 9,000°XY pg/kg SW8021B 9,000°XY pg/kg SW8026B 9,000°XY pg/kg SW8026B 9,000°XY pg/kg SW8010B-Total 20 2.803 7 7.30 mg/kg SW6010B-Total 2 0.69 4 0.77 mg/kg SW6010B-Total 2 0.69 4 0.77 mg/kg SW6010B-Total 250 250 50 16.83 mg/kg SW6010B-Total 250 250 50 16.83 mg/kg SW6010B 0.3 mg/kg SW6010B 0.3 mg/kg SW6010B 0.3 mg/kg SW6010B-Total 2 0.088 0.1 0.07 mg/L SW6010B-Total 2 0.088 0.1 0.07 mg/L SW6010B-Total 2 0.089 0.1 0.07 mg/L SW6010B-Total 2 0.09°CR 0.007 mg/L SW6010B-Total 0.007 mg/L S	mg/kg NWTPH-Dx 2,000 mg/kg NWTPH-Gx 30/100°G 100 µg/kg NW8021B 30 4,483 µg/kg SW8021B 7,000 µg/kg SW8021B 7,000 µg/kg SW8021B 6,000 µg/kg SW8021B 6,000 µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8021B 9,000°XY µg/kg SW8010B 102 3,400 mg/kg SW6010B-Total 20 2,803 7 7,30 32 mg/kg SW6010B-Total 2 0,69 4 0,77 160 mg/kg SW6010B-Total 2,000°CR 42 48.15 1,100 mg/kg SW6010B-Total 2,000°CR 42 48.15 1,100 mg/kg SW6010B-Total 250 250 50 16.83 2,100 mg/kg SW6010B 0.3 14 U mg/kg SW6010B 0.3 14 U mg/kg SW6010B 0.3 14 U mg/kg SW6010B 0.3 3.3 14 U mg/kg SW6010B 0.3 3.3 14 U mg/kg SW6010B-Total 0.3 3.3 14 U mg/kg SW6010B-Total 0.0 2.008 0.1 0.07 0.56 mg/L SW6010B-Total 0.0 0.3 0.3 1.0 0.07 0.56 mg/L SW6010B-Total 0.0 0.0 0.0 0.56 mg/L SW6010B-Total 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	mg/kg NWTPH-DX 2,000 840	mg/kg NWTPH-IOX 2,000 mg/kg NWTPH-IOX 30/100°G mg/kg NWTPH-IOX 30/100°G mg/kg NWTPH-IOX 30/100°G mg/kg SW8021B 30 4.483	mg/kg	Mark NMTPH-Dx 2,000 840 180,000 29,000 160 Mark NMTPH-Dx 30100°G 100 Mark SW8021B 30 4,483 Mark SW8021B 7,000 rk SW8021B 7,000 Mark SW8021B 7,000 Mark SW8021B 7,000 Mark SW8021B 7,000 Mark SW8021B 7,000 Mark SW8021B 7,000 Mark SW8021B 7,000 Mark SW8021B 7,000 M	NWTPH-DX

		Analytical		MTCA B	Ecological Indicator	Sample No.: Depth (ft):	0.25	VB-8-2 2	VB-9-0.5 0.5	VB-9-1.5 1.5	VB-10-1 1	VB-11-8 8	VB-12-8 8
PARAMETERS	Units	Method	MTCA A	soil to gw	Conc.	Background	2/14/2008	2/14/2008	2/14/2008	2/14/2008	2/14/2008	4/3/2008	4/3/2008
VOLATILE ORGANICS (cont	•												
1,3-Dichloropropane	μg/kg	SW8260											
1,4-Dichlorobenzene	μg/kg	SW8260B			20,000								
2,2-Dichloropropane	μg/kg	SW8260											
2-Butanone	μg/kg	SW8260B											
2-Chloroethyl Vinyl Ether	μg/kg	SW8260											
2-Chlorotoluene	μg/kg	SW8260											
2-Hexanone	μg/kg	SW8260B											
4-Chlorotoluene	μg/kg	SW8260											
Acetone	μg/kg	SW8260B											
Bromobenzene	μg/kg	SW8260											
Bromochloromethane	μg/kg	SW8260B											
Bromodichloromethane	μg/kg	SW8260B					-						
Bromoform	μg/kg	SW8260B					1						
Bromomethane	μg/kg	SW8260B											
Carbon Disulfide	μg/kg	SW8260B											
Carbon Tetrachloride	μg/kg	SW8260B											
Chlorobenzene	μg/kg	SW8260B			40,000								
Chloroethane	μg/kg	SW8260B											
Chloroform	μg/kg	SW8260B											
Chloromethane	μg/kg	SW8260B											
cis-1,2-Dichloroethene	μg/kg	SW8260B											
cis-1,3-Dichloropropene	μg/kg	SW8260B											
Dibromochloromethane	μg/kg	SW8260B											
Dibromomethane	μg/kg	SW8260B											
Dichlorodifluoromethane	μg/kg	SW8260											
Hexachlorobutadiene	μg/kg	SW8260											
Isopropylbenzene	μg/kg	SW8260											
Methyl Iodide	μg/kg	SW8260B											
Methyl Isobutyl Ketone	µg/kg	SW8260											
Methyl t-Butyl Ether	μg/kg	SW8260	100										
Methylene Chloride	μg/kg	SW8260B	20										
Naphthalene	μg/kg	SW8260	500										
n-Butylbenzene	µg/kg	SW8260											
n-Propylbenzene	μg/kg	SW8260											
p-Isopropyltoluene	µg/kg	SW8260											
sec-Butylbenzene	μg/kg	SW8260											
Styrene	μg/kg	SW8260B			300,000								
VOLATILE ORGANICS (cont		01102002			300,000								
tert-Butylbenzene	μg/kg	SW8260											
Tetrachloroethene	μg/kg μg/kg	SW8260B	50										
trans-1,2-Dichloroethene	μg/kg μg/kg	SW8260B											
trans-1,3-Dichloropropene	μg/kg μg/kg	SW8260B											
Trichloroethene		SW8260B	30										
Trichlorofluoromethane	μg/kg μg/kg	SW8260B	50										
Vinyl Acetate		SW8260B											
Vinyl Chloride	μg/kg	SW8260B							<u></u>				
viriyi Cilionae	μg/kg	SVVOZOUD											

NOTES: - - = Not analyzed or not collected

*CR = Chromium Standards based on Chromium III

*G = 100 if no benzene and TEX < 1% gas; 30 for other mixtures

*NA = Includes Naphthelene, 1-Methylnaphthalene, and 2-Methylnaphthalene

*XY = Applies to the sum of all xylenes

U = Not detected above the given practical quantitation limit Shaded values exceed MTCA

Bold Bold values exceed Ecological Indicator Concentration

UNITS: ft = feet

> mg/kg = milligram/kilogram mg/L = milligram/liter μg/kg = microgram/kilogram

SOURCES: Background: 90th percentile Puget Sound (Ecology's Publication #94-115; 10/1994)

Model Toxics Control Act (MTCA) from WA Administrative Code 173-340-900

MTCA Method A Soil Cleanup Levels for Unrestricted Land Use: Table 740-1 MTCA Method B soil to groundwater: site-specific calculated

Ecological Indicator Concentrations: Table 749-3

PARAMETERS	Units	Analytical Method	Sample No.: MTCA A	B4-W 4/2/2009	BC-10 2/4/2009	BC-11 12/30/2008	BC-12 2/4/2009	GB-1-W 2/13/2008	GB-2-W 2/13/2008	VB-2-W 2/13/2008	VB-3-W 2/14/2008	VB-4-W 2/14/2008	VB-5-W 2/14/2008	VB-6-W 2/14/2008
PETROLEUM HYDROCARBONS														
Diesel Range Hydrocarbons	mg/L	NWTPH-Dx	0.5		0.31	0.25 U	0.26 L	J	0.29 U	0.27 U		0.28 U	0.26 U	0.27 U
Motor Oil	mg/L	NWTPH-Dx	0.5		1.4	0.40 U	0.41 L	J	0.46 U	0.43 U		0.45 U	0.41 U	0.42 U
Gasoline Range Hydrocarbons	mg/L	NWTPH-Gx	0.8/1*G		0.10 U	0.10 U	0.10 L	0.100 U	0.110	0.100 U		0.100 U	0.400 U	0.100 U
Benzene	μg/L	SW8260	5		0.20 U	0.20 U	0.20 L	0.2 U	1.4	0.2 U		0.2 U	0.2 U	0.2 U
Toluene	μg/L	SW8260	1,000		1.0 U	1.0 U	1.0 L	0.86	9.9	0.63		0.58	0.41	0.43
Ethylbenzene	μg/L	SW8260	700		0.20 U	0.20 U	0.20 L	0.2 U	1.7	0.2 U		0.2 U	0.2 U	0.2 U
m,p-Xylene	µg/L	SW8260	1,000*XY					0.93	7.5	0.52		0.45	0.4 U	0.4 U
o-Xylene	μg/L	SW8260	1,000*XY					0.46	3.9	0.28		0.21	0.2 U	0.2 U
Total Xylenes	μg/L	SW8260	1,000*XY		0.40 U	0.40 U	0.40 L	J						
TOTAL METALS	1.0		,											
Arsenic	mg/L	SW7060	0.005		0.037	0.0033	0.011							
Barium	mg/L	SW6010												
Cadmium	mg/L	SW6010	0.005		0.0044 U	0.0044 U	0.0044 L	J						
Chromium	mg/L	SW6010			0.230	0.011 U	0.036							
Lead	mg/L	SW7421	0.015		0.078	0.0011 U	0.160							
Mercury	mg/L	SW7471	0.002		0.0005 U	0.0005 U	0.0005 L	J						
Selenium	mg/L	SW6010	0.002											
Silver	mg/L	SW6010												
DISSOLVED METALS	111g/ L	0110010												
Arsenic	mg/L	SW7060	0.005						0.005		0.35			
Barium	mg/L	SW6010	0.000						0.044		0.13			
Cadmium	mg/L	SW6010	0.005						0.004 U		0.004 U			
Chromium	mg/L	SW6010	0.000						0.01 U		0.01 U			
Lead	mg/L	SW7421	0.015						0.001 U		0.001 U			
Mercury	mg/L	SW7471	0.002						0.005 U		0.001 U			
Selenium	mg/L	SW6010	0.002						0.01 U		0.003 U			
Silver	mg/L	SW6010							0.0005 U		0.0005 U			
VOLATILE ORGANICS	IIIg/L	3770010							0.0003 0		0.0003 0			
1,1,1,2-Tetrachloroethane	ua/l	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
1,1,1-Trichloroethane	μg/L	SW8260	200	0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
1,1,2,2-Tetrachloroethane	μg/L	SW8260	200	0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	μg/L	SW8260		0.20 U						0.2 U				0.2 U
	μg/L							0.2 U	0.2 U			0.2 U	0.2 U	
1,1-Dichloroethane	µg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
1,1-Dichloroethene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
1,1-Dichloropropene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
1,2,3-Trichlorobenzene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,2,3-Trichloropropane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,2,4-Trichlorobenzene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,2,4-Trimethylbenzene	μg/L	SW8260						0.47	2.4	0.41		0.22	0.2 U	
1,2-Dibromo-3-chloropropane	μg/L	SW8260		1.0 U				1 U	1 U			1 U	1 U	
1,2-Dibromoethane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,2-Dichlorobenzene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,2-Dichloroethane	μg/L	SW8260	5	0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,2-Dichloropropane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,3,5-Trimethylbenzene	μg/L	SW8260						0.2 U	0.61	0.2 U		0.2 U	0.2 U	
1,3-Dichlorobenzene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,3-Dichloropropane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	
1,4-Dichlorobenzene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U

		Analytical	Sample No.:	B4-W	BC-10	BC-11	BC-12	GB-1-W	GB-2-W	VB-2-W	VB-3-W	VB-4-W	VB-5-W	VB-6-W
PARAMETERS	Units	Method	MTCA A	4/2/2009	2/4/2009	12/30/2008	2/4/2009	2/13/2008	2/13/2008	2/13/2008	2/14/2008	2/14/2008	2/14/2008	2/14/2008
VOLATILE ORGANICS (continued)														
2,2-Dichloropropane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
2-Butanone	μg/L	SW8260						5 U	5 U	5 U		5 U	5 U	5 U
2-Chloroethylvinylether	μg/L	SW8260		1.0 U				1 U	1 U	1 U		1 U	1 U	1 U
2-Chlorotoluene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
2-Hexanone	μg/L	SW8260						2 U	2 U	2 U		2 U	2 U	2 U
4-Chlorotoluene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Acetone	μg/L	SW8260						5 U	5.3	5 U		5 U	5 U	5 U
Bromobenzene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Bromochloromethane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Bromodichloromethane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Bromoform	μg/L	SW8260		1.0 U				1 U	1 U	1 U		1 U	1 U	1 U
Bromomethane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Carbon Disulfide	μg/L	SW8260						0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Carbon Tetrachloride	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Chlorobenzene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Chloroethane	μg/L	SW8260		1.0 U				1 U	1 U	1 U		1 U	1 U	1 U
Chloroform	μg/L	SW8260		0.20 U	0.20 L	0.20 U	0.20 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Chloromethane	μg/L	SW8260		1.0 U				1 U	1 U	1 U		1 U	1 U	1 U
cis-1,2-Dichloroethene	μg/L	SW8260		0.20 U	0.20 L	0.20 U	0.20 U	0.2 U	0.2 U	0.53		0.2 U	0.2 U	0.2 U
cis-1,3-Dichloropropene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Dibromochloromethane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Dibromomethane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Dichlorodifluoromethane	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Hexachlorobutadiene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Isopropylbenzene (Cumene)	μg/L	SW8260						0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Methyl lodide	μg/L	SW8260		1.0 U				1 U	1 U	1 U		1 U	1 U	1 U
Methyl Isobutyl Ketone	μg/L	SW8260						2 U	2 U	2 U		2 U	2 U	2 U
Methyl t-Butyl Ether	μg/L	SW8260	20					0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Methylene Chloride	μg/L	SW8260	5	2.0 U				1 U	1 U	1 U		1 U	1 U	1 U
Naphthalene	μg/L	SW8260	160					1 U	1 U	1 U		1 U	5	1.1
n-Butylbenzene	μg/L	SW8260						0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
n-Propylbenzene	μg/L	SW8260						0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
p-Isopropyltoluene	μg/L	SW8260						0.2 U	0.2 U	0.4		0.2 U	0.2 U	0.2 U
sec-Butylbenzene	μg/L	SW8260						0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Styrene	μg/L	SW8260						0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
tert-Butylbenzene	μg/L	SW8260						0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Tetrachloroethene	μg/L	SW8260	5	0.20 U	0.20 L	0.20 U	0.20 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
trans-1,2-Dichloroethene	μg/L	SW8260		0.20 U	0.20 L	0.20 U	0.20 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
trans-1,3-Dichloropropene	μg/L	SW8260		0.20 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U
Trichloroethene	μg/L	SW8260	5	0.20 U	0.20 L	0.20 U	0.20 U		0.2 U	0.2 U		0.2 U	0.2 U	
Trichlorofluoromethane	μg/L	SW8260		0.20 U				0.2 U	0.2 U			0.2 U	0.2 U	
Thenlorondornethane														
Vinyl Acetate	μg/L	SW8260						1 U	1 U	1 U		1 U	1 U	1 U

(Table continues)

PARAMETERS	Units	Analytical Method	Sample No.: MTCA A	VB-7-W 2/14/2008	VB-7-W2 2/14/2008	VB-WD 2/14/2008	VB-10-W 2/14/2008	VB-11-W 4/3/2008	VB-12-W 4/3/2008
PETROLEUM HYDROCARBONS									
Diesel Range Hydrocarbons	mg/L	NWTPH-Dx	0.5	0.26 U		0.25 U		0.25 U	0.22 U
Motor Oil	mg/L	NWTPH-Dx	0.5	0.41 U		0.4 U		0.4 U	0.35 U
Gasoline Range Hydrocarbons	mg/L	NWTPH-Gx	0.8/1*G	0.100 U		0.100 U		0.100 U	0.100 U
Benzene	μg/L	SW8260	5	0.2 U	0.2 U	0.2 U			
Toluene	μg/L	SW8260	1,000	0.2 U	0.2 U	0.2 U			
Ethylbenzene	μg/L	SW8260	700	0.2 U	0.2 U	0.2 U			
m,p-Xylene	μg/L	SW8260	1,000*XY	0.4 U	0.4 U	0.4 U			
o-Xylene	μg/L	SW8260	1,000*XY	0.2 U	0.2 U	0.2 U			
Total Xylenes	μg/L	SW8260	1,000*XY						
TOTAL METALS			·						
Arsenic	mg/L	SW7060	0.005					0.023	0.0046
Barium	mg/L	SW6010						0.044	0.028 U
Cadmium	mg/L	SW6010	0.005					0.0044 U	0.0044 U
Chromium	mg/L	SW6010						0.011 U	0.011 U
Lead	mg/L	SW7421	0.015					0.0011 U	0.0011 U
Mercury	mg/L	SW7471	0.002					0.0005 U	0.0005 U
Selenium	mg/L	SW6010						0.0056 U	0.0056 U
Silver	mg/L	SW6010						0.011 U	0.011 U
DISSOLVED METALS	g/ =								
Arsenic	mg/L	SW7060	0.005				0.003 U	0.02	0.0041
Barium	mg/L	SW6010	0.000				0.05	0.039	0.025 U
Cadmium	mg/L	SW6010	0.005				0.004 U	0.004 U	0.004 U
Chromium	mg/L	SW6010	0.000				0.01 U	0.01 U	0.01 U
Lead	mg/L	SW7421	0.015				0.001 U	0.001 U	0.001 U
Mercury	mg/L	SW7471	0.002				0.005 U	0.0005 U	0.0005 U
Selenium	mg/L	SW6010	0.002				0.01 U	0.005 U	0.005 U
Silver	mg/L	SW6010					0.0005 U	0.01 U	0.01 U
VOLATILE ORGANICS	g, <u>_</u>	• • • • • • • • • • • • • • • • • • • •					0.0000	0.01	0.01 0
1,1,1,2-Tetrachloroethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,1,1-Trichloroethane	μg/L	SW8260	200	0.2 U	0.2 U	0.2 U			
1,1,2,2-Tetrachloroethane	μg/L	SW8260	200	0.2 U	0.2 U	0.2 U			
1,1,2-Trichloroethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,1-Dichloroethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,1-Dichloroethene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,1-Dichloropropene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,2,3-Trichlorobenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,2,3-Trichloropropane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,2,4-Trichlorobenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,2,4-Trimethylbenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,2-Dibromo-3-chloropropane	μg/L μg/L	SW8260		1 U	1 U	1 U			
1,2-Dibromoethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,2-Dichlorobenzene	μg/L μg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,2-Dichloroethane	μg/L	SW8260	5	0.2 U	0.2 U	0.2 U			
1,2-Dichloropropane	μg/L μg/L	SW8260	J	0.2 U	0.2 U	0.2 U			
1,3,5-Trimethylbenzene		SW8260		0.2 U	0.2 U	0.2 U			
	µg/L	SW8260		0.2 U	0.2 U	0.2 U			
1,3-Dichloropenana	μg/L			0.2 U					
1,3-Dichloropropane	μg/L	SW8260			0.2 U	0.2 U			
1,4-Dichlorobenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			

DADAMETERO	l luite	Analytical	Sample No.:		VB-7-W2	VB-WD	VB-10-W	VB-11-W	VB-12-W
PARAMETERS	Units	Method	MTCA A	2/14/2008	2/14/2008	2/14/2008	2/14/2008	4/3/2008	4/3/2008
VOLATILE ORGANICS (continued)	,,	011/0000				0.0.11			
2,2-Dichloropropane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
2-Butanone	μg/L	SW8260		5 U	5 U	5 U			
2-Chloroethylvinylether	μg/L	SW8260		1 U	1 U	1 U			
2-Chlorotoluene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
2-Hexanone	μg/L	SW8260		2 U	2 U	2 U			
4-Chlorotoluene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Acetone	μg/L	SW8260		5 U	5 U	5 U			
Bromobenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Bromochloromethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Bromodichloromethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Bromoform	μg/L	SW8260		1 U	1 U	1 U			
Bromomethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Carbon Disulfide	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Carbon Tetrachloride	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Chlorobenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Chloroethane	μg/L	SW8260		1 U	1 U	1 U			
Chloroform	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Chloromethane	μg/L	SW8260		1 U	1 U	1 U			
cis-1,2-Dichloroethene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
cis-1,3-Dichloropropene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Dibromochloromethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Dibromomethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Dichlorodifluoromethane	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Hexachlorobutadiene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Isopropylbenzene (Cumene)	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Methyl Iodide	μg/L	SW8260		1 U	1 U	1 U			
Methyl Isobutyl Ketone	μg/L	SW8260		2 U	2 U	2 U			
Methyl t-Butyl Ether	μg/L	SW8260	20	0.2 U	0.2 U	0.2 U			
Methylene Chloride	μg/L	SW8260	5	1 U	1 U	1 U			
Naphthalene	μg/L	SW8260	160	1 U	1 U	1 U			
n-Butylbenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
n-Propylbenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
p-Isopropyltoluene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
sec-Butylbenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Styrene	μg/L	SW8260		0.2 U		0.2 U			
tert-Butylbenzene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Tetrachloroethene	μg/L	SW8260	5	0.2 U	0.2 U	0.2 U			
trans-1,2-Dichloroethene	μg/L	SW8260	-	0.2 U	0.2 U	0.2 U			
trans-1,3-Dichloropropene	μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Trichloroethene	μg/L	SW8260	5	0.2 U	0.2 U	0.2 U			
Trichlorofluoromethane	<u>μg/L</u> μg/L	SW8260		0.2 U	0.2 U	0.2 U			
Vinyl Acetate	μg/L	SW8260		1 U		1 U			
Vinyl Chloride	μg/L	SW8260	0.2	0.2 U		0.2 U			
viriyi Officiae	µg/∟	3440200	0.2	0.2 0	0.∠ 0	0.2 0			

NOTES:

- - = Not analyzed or not collected
*G = 1 if no benzene ; 0.8 if benzene
*XY = Applies to the sum of all xylenes

U = Not detected above the given practical quantitation limit

Shaded values exceed MTCA A

SOURCES:

Model Toxics Control Act (MTCA) from WA Administrative Code 173-340-900 MTCA Method A Soil Cleanup Levels for Ground Water: Table 720-1

UNITS:

mg/L = milligrams/liter μg/L = micrograms/liter