Phase II Site Assessment Report

Tiger Oil - Summitview 5511 Summitview Road Yakima, Washington

for

Washington State Department of Ecology

January 30, 2015

Phase II Site Assessment Report

Tiger Oil – Summitview 5511 Summitview Road Yakima, Washington

for Washington State Department of Ecology

January 30, 2015

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Phase II Site Assessment Report

Tiger Oil – Summitview 5511 Summitview Road Yakima, Washington

File No. 0504-101-00

January 30, 2015

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program – Central Region Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Attention: Mary Monahan

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

JR Sugalski, PE Environmental Engineer

Bruce D. Williams Principal

JRS:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0 INTRODUCTION	. 1
2.0 SITE DESCRIPTION AND BACKGROUND	. 1
3.0 SCOPE OF SERVICES	. 2
4.0 FIELD ACTIVITIES	. 2
 4.1. Direct-Push Soil Borings	.3 .4 .5 .6 .6
4.4.3. Groundwater Sampling	.6
5.0 CHEMICAL ANALYTICAL RESULTS	. 7
 5.1. Soil Chemical Analytical Results	.7 .7 .8 .8
6.0 SUMMARY, INTERPRETATIONS AND RECOMMENDATIONS	. 9
 6.1. Soil Assessment 6.2. Groundwater Assessment 6.3. Chemical Analytical Results and Interpretations	.9 .9 .9 .9 10
7.0 REFERENCES	10

LIST OF TABLES

 Table 1. Summary of Groundwater Field Parameters

- Table 2. Summary of Groundwater Level Measurements
- Table 3. Summary Chemical Analytical Results Soil
- Table 4. Summary Chemical Analytical Results Groundwater
- Table 5. Summary of Chemical Analytical Results Groundwater, PAHs

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan and Sample Locations
- Figure 3. Subsurface Cross Section A-A' and PID Readings
- Figure 4. Subsurface Cross Section B-B' and PID Readings

APPENDICES

Appendix A. Field Methods and Boring Logs

APPENDICES (CONTINUED)

Figure A-1. Key to Exploration Logs

Figures A-2 through A-10. Logs of Borings and Groundwater Monitoring Wells

Appendix B. Laboratory Reports

Appendix C. Well Survey Report

Appendix D. Report Limitations and Guidelines for Use

ACRONYMS AND ABBREVIATIONS

- bgs below ground surface
- BTEX benzene, toluene, ethylbenzene and xylene
- COC contaminants of concern
- DOT Department of Transportation
- DRPH diesel-range petroleum hydrocarbons
- Ecology Washington State Department of Ecology
- EDB ethylene dibromide
- EDC 1,2-dichloroethane
- EPA Environmental Protection Agency
- ESA environmental site assessment
- GeoEngineers GeoEngineers, Inc.
- GPS global positioning system
- GRPH gasoline-range petroleum hydrocarbons
- IDW Investigation-derived waste
- LCS laboratory control sample
- LCSD laboratory control sample duplicate
- MRL Method Reporting Limit
- MS matrix spike
- MSD matrix spike duplicate
- MTBE methyl tertiary-butyl ether
- MTCA Model Toxics Control Act
- NAD83 North American Datum of 1983
- NAVD88 North American Vertical Datum of 1988
- ntu nephelometric turbidity units

- ORPH oil-range petroleum hydrocarbons
- PAH polycyclic aromatic hydrocarbons
- PID photoionization detector
- ppm parts per million
- PVC polyvinyl chloride
- QA/QC Quality Assurance/Quality Control
- RPD relative percent difference
- SAP Sampling and Analysis Plan
- SDG sample delivery group
- TestAmerica TestAmerica Laboratories, Inc.
- TOC total organic carbon
- TPH total petroleum hydrocarbons
- UST underground storage tank
- VOCs volatile organic compounds
- WAC Washington Administrative Code

1.0 INTRODUCTION

This report describes soil and groundwater assessment activities conducted at the Tiger Oil – Summitview site at 5511 Summitview Road in Yakima, Washington (herein designated "site"). The site is located as shown in the attached Vicinity Map, Figure 1.

Activities conducted as part of the assessment included:

- Advancing six direct-push borings and collecting soil and grab groundwater samples in April 2014.
- Installing three groundwater monitoring wells and collecting soil samples in late July and early August 2014.
- Conducting the first quarterly groundwater monitoring event in September 2014.

This report includes a brief description of the site, a summary of our scope of services, a description of field activities, a summary of chemical and analytical results, and our interpretations and recommendations. Assessment activities were conducted in general accordance with the approved work plan (GeoEngineers, 2014a) and supplemental monitoring well installation memo (GeoEngineers, 2014b). The work was performed under State of Washington Department of Ecology (Ecology) Contract No. C1100145, GeoEngineers Proposal No. 0504-101-00, dated March 6, 2014, and Work Assignment No. C11145RR.

2.0 SITE DESCRIPTION AND BACKGROUND

The site is located at 5511 Summitview road in Yakima, Washington. The site is bordered by arterial roadways Summitview Avenue to the south and North 56th Avenue to the west as shown on Site Plan and Sample Locations, Figure 2. A paved alley way is located to the north of the site and provides access to the bank building located to the east of the site.

The site operated as a retail gasoline station and convenience store until closure in 2001. The site contains two buildings and two historic fuel dispenser islands. Buildings at the site include the larger former convenience store in the northeast corner of the site and a smaller former satellite pay station in the southwest corner of the site. The convenience store has a glass face facing south where the former main entrance was. Observations of the building interior from the glass face indicate the presence of moisture and organic vegetation on the floor of the building. Former fuel dispenser islands are located in the south and west areas of the property. A single tank pit was located south of the former convenience store between the convenience store and the southern fuel dispenser island. The site is generally paved, except where three former underground storage tanks (USTs) were removed.

In 2005, three USTs were decommissioned and removed from the site. Underground fuel delivery lines were drained and capped with quick setting cement and the tank excavation was backfilled with imported sands, gravels and cobbles. The tanks removed from the site included:

- One 20,000-gallon steel regular gasoline tank
- Two 10,000-gallon steel unleaded gasoline tanks

According to the UST decommissioning and site assessment report (Tetra Tech, 2005), visual observations did not indicate holes in the steel tanks; however, examination of the underlying soil indicated possible historic spillage associated with fill tubes in the 20,000-gallon and center 10,000-gallon USTs. Soil samples collected during the tank removal in 2005 indicated petroleum contamination greater than Model Toxics Control Act (MTCA) Method A cleanup levels in the bottom of the tank pit.

Gasoline range petroleum hydrocarbons (GRPH), benzene, toluene, ethylbenzene and xylene (BTEX) and lead were identified approximately 11 to 15 feet below ground surface (bgs) in the soil of the tank beds during the tank removal site assessment. A follow up assessment for the dispensers and product lines indicated concentrations of GRPH and BTEX greater than MTCA Method A cleanup levels at the western most fuel dispenser island at a depth of 3½ feet (Wayne Perry, 2005). Samples taken along the product lines and at the southern fuel dispenser island did not indicate GRPH or BTEX greater than laboratory detection limits (Wayne Perry, 2005). Approximate locations of the subsurface product lines are shown on Figure 2.

3.0 SCOPE OF SERVICES

GeoEngineers prepared a Sampling and Analysis Plan (SAP), dated April 15, 2014, to guide assessment activities. A follow up memo describing installation activities for three groundwater monitoring wells was provided on July 21, 2014. Site assessment activities included:

- Advancing six direct push borings (SVDP-1 through SVDP-6);
- Observing and documenting subsurface soil conditions for each boring;
- Conducting field screening activities and collecting soil and groundwater samples from the borings;
- Submitting selected soil and groundwater samples from the soil borings for laboratory chemical analysis;
- Installing three groundwater monitoring wells at the site (SVMW-1 through SVMW-3);
- Observing and documenting subsurface soil conditions for each monitoring well;
- Conducting field screening activities and collecting soil samples during the monitoring well installation;
- Submitting selected soil samples from the well installation for laboratory chemical analysis;
- Developing the new groundwater monitoring wells using surge and purge techniques;
- Surveying the new groundwater monitoring wells for horizontal and vertical references;
- Conducting the first quarterly groundwater sample from the new wells; and
- Preparing Investigation-derived waste (IDW) for disposal.

4.0 FIELD ACTIVITIES

For each drilling program, locations were marked in the field and a one-call utility locate was requested before equipment was mobilized to the site. A private utility locator (Utilities Plus, LLC) was also contracted to locate site utilities near proposed drilling locations before drilling activities commenced. Soil borings, well construction and well development activities were conducted by Cascade Drilling, L.P. (Cascade

Drilling). Locations of the borings and groundwater monitoring wells were established in the field using a hand-held iPad with global positioning system (GPS) software before drilling commenced. The horizontal accuracy of the hand-held unit is within about 10 feet.

Direct-push soil borings were advanced on April 14, 2014 and groundwater monitoring well installation activities were conducted between July 28 and August 1, 2014. GeoEngineers observed and documented soil boring and well installation activities for compliance with the previously prepared guidance documentation (GeoEngineers, 2014a and 2014b). GeoEngineers collected soil samples from the direct-push and well borings as they were advanced. Groundwater samples were also collected from temporary wells installed in two soil borings where groundwater was encountered.

Soil borings and new well locations are shown on Figure 2. Selected samples were submitted to TestAmerica Laboratories, Inc. (TestAmerica) and analyzed in general accordance with the project documents.

Groundwater monitoring wells were developed by Cascade Drilling and then surveyed by a licensed professional surveyor, PLS, Inc. (PLS), on August 27, 2014. Subsequent groundwater sampling of the new groundwater monitoring wells was conducted on September 18, 2014 by GeoEngineers. IDW was contained in 55-gallon drums, labeled and stored on the subject property pending profiling and disposal.

Detailed descriptions of the soil borings, well installations and groundwater sampling events are provided below.

4.1. Direct-Push Soil Borings

Six direct push borings (SVDP-1 through SVDP-6) were advanced at the site on April 14, 2014 using a truckmounted Geoprobe 6600 operated by Cascade Drilling. Approximate locations are provided on Figure 2. In general, GeoEngineers followed the process below during the drilling program:

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities;
- Subcontracted Utilities Plus, LLC to locate potential utilities near each explorations before drilling;
- Subcontracted Cascade Drilling, LP (Cascade Drilling) to drill the direct-push soil borings at the site;
- Observed and documented subsurface soil conditions for each boring;
- Collected continuous soil samples during direct-push drilling. Select sub-samples were field-screened using visual observations, water sheen, and headspace vapor measurements with a photoionization detector (PID) to assess possible presence of petroleum-related contaminants;
- Collected grab water samples from temporary wells installed in two borings where groundwater was encountered;
- Backfilled exploratory boreholes with bentonite and repaired the surface with cold patch asphalt as needed; and
- Submitted six soil samples and two groundwater samples to TestAmerica of Spokane, Washington for chemical analysis.

Each soil boring was advanced to refusal which generally occurred at a depth of approximately 25 feet bgs when the limits of the equipment were reached and the push probe could not advance deeper. Observed subsurface conditions at the site during the test pit explorations ("Section 4.2") and groundwater well installations ("Section 4.3") indicate that silts and clays were located near the boring termination depths.

Groundwater was encountered at approximately 19 feet bgs in borings SVDP-1 and SVDP-2 only. Soil samples from SVDP-1, SVDP-2 (two samples), SVDP-3, SVDP-5, and SVDP-6 were submitted to TestAmerica for analysis. Duplicate samples were not collected because of minimal soil volume. Field screening did not indicate the presence of petroleum hydrocarbons from SVDP-4 and therefore a soil sample was not submitted for analysis for this location to assist with reducing analytical costs and in concurrence with Ecology. Samples were not submitted for extractable petroleum hydrocarbon (EPH) or volatile petroleum hydrocarbon (VPH) analysis. Logs of direct push borings are provided in Appendix A.

Groundwater samples were collected from temporary wells in borings SVDP-1 and SVDP-2 and submitted to TestAmerica for analysis. Groundwater was not encountered in borings SVDP-3 through SVDP-6. Groundwater was sampled by installing a temporary well screen which ranged in length from 3 to 10 feet at the bottom of SVDP-1 and SVDP-2 and lowering polyethylene tubing into the temporary well. The well was then purged using a peristaltic pump for approximately 3 to 5 minutes. Water was routed through a water quality meter and flow through cell during well purging and then the flow through cell was disconnected and a sample of the water was collected for chemical analysis.

Soil and groundwater samples were placed into coolers containing ice and then delivered to TestAmerica under chain of custody for chemical analysis. Soil cuttings from the investigation were drummed, labeled and stored on the subject property pending profiling and disposal.

4.2. Monitoring Well Installation

Three groundwater monitoring wells (SVMW-1, SVMW-2 and SVMW-3) were installed at the site between July 28 and August 1, 2014 using a 200C Spider sonic drill rig operated by Cascade Drilling. Wells were installed by advancing a 5-inch core barrel inside a 6-inch casing. Approximate well locations are provided on Figure 2. In general, GeoEngineers followed the process below:

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities;
- Subcontracted Utilities Plus, LLC to locate potential utilities near each exploration before drilling;
- Subcontracted Cascade Drilling to drill and construct the groundwater monitoring wells;
- Observed and documented subsurface soil conditions for each monitoring well;
- Collected continuous soil samples during drilling. Select sub-samples were field-screened using visual observations, water sheen and headspace vapor measurements with a PID to assess possible presence of petroleum-related contaminants;
- Developed the groundwater monitoring wells using surging and pumping techniques;
- Submitted four soil samples (one from each well location and one duplicate) to TestAmerica for chemical analysis; and
- Contracted with PLS to complete a horizontal and vertical survey of the wells.

SVMW-1 was advanced to a depth of 70-feet bgs. Water was encountered at approximately 61½ feet during drilling. After completion of the run to 70 feet, the water level rose to approximately 35½ feet. Observations during drilling did not indicate conditions conducive to confined aquifer conditions at depths from about 32 to 70 feet bgs. The hole was backfilled with bentonite chips to 42 feet and then sand from 42 to 40 feet bgs. The well was installed using 2-inch-diameter, schedule 40 polyvinyl chloride (PVC) pipe and screened from 30 to 40 feet bgs.

SVMW-2 was advanced to a depth of approximately 28 feet bgs. Water was observed at approximately 19 feet during drilling. The hole was backfilled with bentonite chips to 27 feet and then sand from 27 to 26 feet bgs. The well was installed using 2-inch-diameter, schedule 40 PVC pipe and screened from 11 to 26 feet bgs.

SVMW-3 was advanced to a depth of 25 feet bgs. Water was observed at approximately 18 feet during drilling. The well was installed using 2-inch-diameter, schedule 40 PVC pipe and screened from 10 to 25 feet bgs. Detailed well installation logs are provided in Appendix A.

Wells were packed with silica-sand up to 2 feet above the screen, sealed with bentonite chips to 1 foot bgs and then capped with a cement well monument for the remaining foot. Wells were developed by Cascade Drilling between August 14 and 15, 2014 using surge and purge methods. Soil cuttings and development water from the investigation were drummed, labeled and stored on the subject property pending profiling and disposal.

Discrete soil samples were collected for each monitoring well. Soil samples were field-screened to evaluate for petroleum hydrocarbons, using a PID and sheen pan. One soil sample from each well location was selected for chemical analysis, based on the results of the field screening. If no obvious signs of contamination were present, the sample collected just above the observed water level was submitted for analysis. Soil samples were placed into coolers containing ice and then delivered to TestAmerica under chain of custody for chemical analysis.

The three new groundwater monitoring wells installed at the site were surveyed on August 27, 2014 by PLS. The north edge of the top of the PVC casing, and north side of the top of the well monument were surveyed for horizontal and vertical coordinates relative to North American Datum of 1983 (NAD83) Washington South Zone and North American Vertical Datum of 1988 (NAVD88), respectively. PLS also marked the north side of each well casing for future depth to groundwater measurements. Well survey information is provided in Appendix C.

4.3. Subsurface Conditions

Borings SVDP-1 through SVDP-6 and SVMW-1 and SVMW-3 were drilled through asphalt with base layers of sand and gravel observed in SVMW-1, SVDP-1 and SVDP-6. SVMW-2 was drilled through a grassy lot to the south of the site. Observed soil conditions below imported surficial material generally are fine-grained and consist of brown sandy silts and silty fine sand with varying amounts of clay and gravel.

Brown silty fine sand and/or silt with variable sand and gravel content were generally observed below surficial material. Borings SVDP-4, SVDP-5 and SVDP-6 encountered clay at the bottom of each borings. Saturated soil conditions were encountered in borings SVDP-1, SVDP-2, SVMW-2 and SVMW-3 at approximately 19 feet. Saturated conditions were not observed in SVDP-3, SVDP-4, SVDP-5 or SVDP-6.

4.4. Groundwater Monitoring

In accordance with the SAP, the new groundwater monitoring wells will be sampled quarterly for 1 year. The first groundwater sampling event was conducted on September 18, 2014 after the wells had been surveyed and to allow for potential well settlement. The following sections provide a detailed description of the field activities conducted as part of the groundwater monitoring event.

4.4.1. Monitoring Well Headspace Vapor Monitoring

Monitoring well headspace vapors were measured using a PID. Headspace measurements were collected by inserting the PID probe into the well casing immediately after removing the well cap and recording the maximum observed concentration. Headspace vapors were measured at a concentration of 3.8 parts per million (ppm) in MW-3. Headspace vapor concentrations were less than 1.0 ppm for the remaining wells, as shown in Summary of Groundwater Field Parameters, Table 1.

4.4.2. Groundwater Elevation Monitoring

Static depth to groundwater was measured in groundwater monitoring wells SVMW-1 through SVMW-3 using an electronic water level indicator. Depth to groundwater ranged from 16.7 feet (MW-2) to 39.3 feet (MW-1) below the top of well casing, as presented in Summary of Groundwater level Measurements, Table 2. Groundwater elevations ranged from about 1,181.65 feet in SVMW-1 to 1,201.18 feet in SVMW-3 relative to the NAVD88. Groundwater measurements in SVMW-1 indicate that the well might not be screened within water bearing soils, as less than 1 foot of water was present in the well. Observed groundwater elevations for SVMW-1 are most likely not representative of actual conditions.

Based on groundwater elevations measured in SVMW-2 and SVMW-3 on September 18, 2014, groundwater flow in the shallow unconfined aquifer beneath the property generally was southerly. Gradient could not be determined because of the lack of water in SVMW-1.

4.4.3. Groundwater Sampling

Groundwater monitoring wells were purged and sampled using dedicated tubing, a peristaltic pump and standard low-flow sampling methodology (Environmental Protection Agency [EPA], 1996). Groundwater quality parameters were usually measured at 3-minute intervals during well purging and samples were generally collected when water quality parameter stabilized in conformance with the criteria presented in Appendix A or 30 minutes of purging had elapsed.

Laboratory prepared sample containers were filled, placed into a cooler on ice and submitted to the analytical laboratory for chemical analysis. One sample from each well was measured for soluble ferrous iron (Fe²⁺) in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method. A duplicate sample was collected from SVMW-2. Chemical analytical results are discussed in "Section 5.4." Groundwater field parameters are provided in Table 1. Purge water generated during groundwater sampling was drummed, labeled and stored on the subject property pending profiling and disposal.

5.0 CHEMICAL ANALYTICAL RESULTS

5.1. Soil Chemical Analytical Results

5.1.1. Direct Push Borings

Soil samples from the direct push borings advanced on April 14, 2014 were received by TestAmerica for chemical analysis on April 17, 2014. Soil samples were kept in iced coolers between sampling and delivery to the analytical laboratory. One soil sample from SVDP-1, SVDP-2, SVDP-3, SVDP-5 and SVDP-6 and a second sample from SVDP-2 was submitted for laboratory chemical analysis. Field screening from SVDP-4 did not indicate the presence of petroleum and therefore a soil sample was not submitted for chemical analysis. Soil samples from the direct push soil borings were submitted for the following chemical analyses:

- GRPH (NWTPH-Gx);
- Diesel Range Petroleum Hydrocarbons (DRPH) (NWTPH-Dx);
- Total Petroleum Hydrocarbons (TPH) (NWTPH-HCID), direct push soil borings only;
- BTEX by (EPA 8260C);
- Naphthalene (EPA 8270D);
- Ethylene Dibromide (EDB) (EPA 8011);
- 1,2-dichloroethane (EDC) (EPA 8260C);
- Methyl tertiary-butyl ether (MTBE) (EPA Method 8260C); and
- Total Lead (EPA 6010C).

Soil analytical results are summarized and compared to MTCA Method A cleanup levels in Summary of Chemical Analytical Results - Soil, Table 3. Chemical analytical results for the submitted soil samples are generally summarized by the following:

- SVDP-1 and SVDP-2 exceeded MTCA Method A cleanup levels for GRPH, BTEX and Naphthalene.
- DRPH was detected in SVDP-1, SVDP-2, SVMW-1 and SVMW-3 but concentrations were less than MTCA Method A cleanup levels.

Additional samples and chemical constituents analyzed were either not detected or detected at concentrations below MTCA Method A cleanup levels. Laboratory analytical reports are included in Appendix B.

5.1.2. Monitoring Well Installation

Three soil samples and one duplicate (one sample from each well installation) collected from the unsaturated zone were shipped to TestAmerica on August 4, 2014 for the chemical analyses listed in "Section 5.1.1." Soil samples from SVMW-1, SVMW-2 and SVMW-3 were collected on July 28, July 31 and August 1, 2014 respectively. A duplicate sample from SVMW-3 was collected on August 1, 2014. Soil samples were kept in ice filled coolers between sampling and delivery to the analytical laboratory.

Soil analytical results are summarized and compared to MTCA Method A cleanup levels in Table 3. Chemical analytical results for the submitted soil samples are generally summarized by the following:

SVMW-3 exceeded MTCA Method A cleanup levels for GRPH, benzene, ethylbenzene and xylenes.

Additional samples and chemical constituents analyzed were either not detected or detected at concentrations below MTCA Method A cleanup levels. Laboratory analytical reports are included in Appendix B.

5.2. Groundwater Chemical Analytical Results

5.2.1. Direct-Push Borings

Groundwater was encountered and sampled from SVDP-1 and SVDP-2 on April 14, 2014. Groundwater samples were analyzed for GRPH, DRPH and heavy oil-range petroleum hydrocarbons (ORPH) using the NWTPH-HCID method. Analytical results indicated the presence of GRPH, DRPH and ORPH in groundwater collected from SVDP-1 and SVDP-2.

5.2.2. Quarterly Groundwater Monitoring

Groundwater samples were collected from SVMW-1, SVMW-2 and SVMW-3 on September 18, 2014 and received by TestAmerica for chemical analysis on September 19, 2014. Groundwater samples were kept in iced coolers between sampling and delivery to the analytical laboratory. Groundwater samples from SVMW-2 and SVMW-3 were submitted for the following chemical analyses:

- GRPH (NWTPH-GX);
- DRPH (NWTPH-DX, with and without silica gel);
- Volatile organic compounds (VOCs) (EPA 8260c);
- Polycyclic Aromatic Hydrocarbons (PAHs) (EPA 8270D);
- Total Organic Carbon (TOC) (SM5310B); and
- Nitrate and Sulfate by (EPA 300).

Limited water available from SVMW-1 reduced the number of analyses that could be conducted. Water sampled from SVMW-1 was analyzed for GRPH, VOCs, PAHs, nitrate and sulfate. Water from SVMW-1 was not analyzed for DRPH or TOC. Chemical analytical results are summarized and compared to MTCA Method A cleanup levels in Summary of Chemical Analytical Results - Groundwater, Table 4. PAH analytical results are summarized and compared to MTCA Method A cleanup levels in Summary of Chemical analytical results for the submitted groundwater samples are summarized by the following:

SVMW-3 exceeded MTCA Method A cleanup levels for GRPH, BTEX and Naphthalene.

Additional samples and chemical constituents analyzed were either not detected or detected at concentrations less than MTCA Method A cleanup levels. Laboratory analytical reports are included in Appendix B.

6.0 SUMMARY, INTERPRETATIONS AND RECOMMENDATIONS

6.1. Soil Assessment

Observed subsurface conditions indicate the site is generally underlain by fine sand, silts and clays with occasional gravel. Soil observed in the borings indicate a possible low permeability layer at a depth of approximately 20 to 25 feet. Increased silt and clay contents were observed at depths from about 20 to 25 feet which is near the termination depth of most borings. Soil encountered in MW-1 indicate the low permeable layer might be approximately 12 feet thick. According to the soils observed during the installation of MW-1, the 12-foot-thick impermeable layer is underlain by approximately 5 to 6 feet of medium fine sand and then gravel with varying sand and silt content up to the termination depth of 70 feet. Soils observed in MW-1 indicate possible depositional settling beginning at a depth of about 20 feet, where coarser materials are overlain by progressively finer grained material.

6.2. Groundwater Assessment

Depth to groundwater was measured at the three groundwater monitoring wells in September 2014. Conditions observed in MW-1 indicate the well is not screened within a water bearing subsurface stratum. As observed from the two shallower groundwater monitoring wells (MW-2 and MW-3) groundwater flow direction might be southerly within the shallow unconfined aquifer. The southerly flow direction is indicated by the higher groundwater elevation calculated for SVMW-3 and comparing it to the lower groundwater elevation calculated for SVMW-3. A more accurate description of groundwater flow direction can't be made without a third monitoring well. Groundwater elevations are shown on Figure 2.

6.3. Chemical Analytical Results and Interpretations

6.3.1. Soil

Soil analytical results indicate the presence of GRPH, BTEX and naphthalenes contamination exceeding MTCA Method A cleanup levels near SVDP-1, SVDP-2 and SVMW-3 near the southern fuel dispenser island and former tank pit. DRPH was detected in SVDP-1, SVDP-2, SVMW-1 and SVMW-3, but concentrations were less than half the MTCA Method A cleanup levels. Shallow petroleum contamination noted near the western fuel dispenser island in 2005 was not observed during the 2014 direct-push soil sampling.

The locations of SVDP-2 and SVMW-3 relative to the former fuel dispenser island and former tank pit, indicate that gasoline subsurface contamination might have originated near the former tank pit/southern fuel dispenser island and migrated to the south. Historical documentation provided as a result of tank removal activities in 2005 indicated the presence of petroleum hydrocarbons at the bottom of the former tank pit. The western and southern extents of soil contamination is generally unknown.

Petroleum contamination might extend to the south under the sidewalk and Summitview Avenue. Observations during the installation of SVMW-2 do not indicate petroleum has migrated south of Summitview Avenue to the private residence. Underground utilities installed below and adjacent to Summitview Avenue might have impacted contaminant migration to the south, dependent of installed depths.

Contamination depths might extend from approximately 8 to 22 feet bgs. Field screening indicated the presence of contamination approximately 2 feet below the saturated zone of the upper unconfined aquifer and into the assumed low permeability layer. Subsurface cross sections and field PID readings are provided

in Subsurface Cross Section A-A' and PID Readings, Figure 3 and Subsurface Cross Section B-B' and PID Readings, Figure 4.

6.3.2. Groundwater

Groundwater laboratory analytical results indicate GRPH, benzene, xylenes and naphthalenes exceeding MTCA Method A cleanup criteria in SVMW-3, located south of the former tank pit and south fuel dispenser island. Analytical results of groundwater collected from SVMW-2 located across Summitview Avenue did not indicate the presence of petroleum hydrocarbons. Laboratory analytical results from SVMW-1 did not indicate the presence of petroleum related contaminants; however, this well is believed to be screened in a non-water bearing subsurface stratum and the limited water collected from the well might not be representative of actual subsurface conditions.

6.4. Recommendations

Soil and groundwater contamination greater than MTCA Method A cleanup levels was observed south and west of the former tank pit and fuel dispenser island. Further investigation is needed to delineate the extent of contamination at this site. We recommend the following activities to address data gaps at the site:

- Further investigation in the northeast, east and west portions of the site in order to delineate the extent of contamination. This could be accomplished using direct push soil borings.
- Installation of at least one additional monitoring well within the upper unconfined aquifer in order to determine site gradient and contamination extents.
- An investigation and assessment of utilities installed adjacent and under Summitview Avenue to estimate potential pathways for contaminant migrations into utility corridors.
- Possible remedial actions based on the results of continued monitoring.

7.0 REFERENCES

- GeoEngineers, Inc., 2014a. "Sampling and Analysis Plan Soil and Groundwater Assessment." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, April 15, 2014.
- GeoEngineers, Inc., 2014b. "Tiger Oil Work Plan Amendment Monitoring Wells." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, July 21, 2014.
- Puls, R.W. and Barcelona, M.J., Low-flow (minimal drawdown) ground-water sampling procedures: EPA Ground Water Issue, April 1996, p.1-9.
- Tetra Tech, 2005, "UST Decommissioning and Site Assessment at Tiger Oil Corporation Facility, 5511 Summitview Road, Yakima, Washington," March 29, 2005.
- U.S. Environmental Protection Agency, Region 1, Low stress (low-flow) purging and sampling procedure for the collection of ground water samples from monitoring wells. EPA SOP No. GW 0001, Revision No. 2, July 30, 1996.

U.S. Environmental Protection Agency. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.

U.S. Environmental Protection Agency. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.

- Washington State Department of Ecology, 2007. Model Toxics Control Act Cleanup Regulations, Washington Administrative Code, Chapter 173-340. November 2007.
- Wayne Perry, "Results of Underground Piping and Dispenser Island Sampling at Tiger Oil Corporation Facility, 5511 Summitview in Yakima, Washington," December 14, 2005.

Table 1

Summary of Groundwater Field Parameters¹

Tiger Oil Summitview

Yakima, Washington

				Specific	Dissolved				Soluble	Monitoring Well
Well	Date		Temperature	Conductivity	Oxygen	ORP - Field ²	ORP - Normalized ³	Turbidity	Ferrous Iron	Headspace ⁴
Number	Collected	рН	(°C)	(mS/cm)	(mg/L)	(mV)	(mV)	(NTU)	(mg/L)	(ppm)
MW-1	09/18/14	NM ⁵	NA	NM ⁵	NM ⁵	0.0				
MW-2	09/18/14	6.97	16.78	0.75	1.11	170	372	0.8	0.0	0.1
MW-3	09/18/14	6.81	17.14	0.78	0.96	-10	192	1.5	1.5	3.8

Notes:

¹Reported water quality parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling.

²Field ORP values are relative to the reference electrode associated with the multi-parameter meter.

³Normalized ORP values have been normalized, using algorithms provided by the instrument manufacturer, to the standard hydrogen electrode (SHE).

⁴Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.

⁵Not measured (NM) due to lack of water in well.

ORP = Oxidation reduction potential; °C = degrees Celsius; mS/cm = millisiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; NT = not tested

Table 2 Summary of Groundwater Level Measurements Tiger Oil Summitview

Yakima, Washington

			Top of			Depth to	Groundwater	Change in
Well	Grid Northing ¹	Grid Easting ¹	Casing Elevation ²	Screen Elevation ²	Date	Groundwater ³	Elevation ²	Groundwater
Number	(feet)	(feet)	(feet)	(feet)	Measured	(feet)	(feet)	Elevation ⁴ (feet)
SVMW-1	462054.5	1619556.5	1,220.95	1190.95 to 1180.95	09/18/14	39.30	1,181.65	NA
SVMW-2	461870.0	1619606.4	1,215.59	1204.59 to 1189.59	09/18/14	16.70	1,198.89	NA
SVMW-3	461949.3	1619606.4	1,218.38	1208.38 to 1193.38	09/18/14	17.20	1,201.18	NA

Notes:

¹Grid northing and easting are referenced to NAD83, Washington State Plane Coordinate System, South Zone.

²Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88).

³Depth to water measurements obtained from the north side of the top of PVC well casing.

⁴Represents change in groundwater elevation from previous monitoring event, as measured in monitoring wells.

ppm = parts per million; NA = Not Applicable; NM = Not Measured

Table 3

Summary of Chemical Analytical Results - Soil¹ Tiger Oil Summitview Yakima, Washington

Boring		SVDP-1	SVDP-2	SVDP-2	SVDP-3	SVDP-5	SVDP-6	SVMW-1	SVMW-2	SVMW-3	DUPLICATE (SVMW-3)
Sample Depth (feet)	Regulatory	13.5	19	21	7	19	18	17-18	7-8	17-18	17-18
Date Sampled	Levels ²	04/14/14	04/14/14	04/14/14	04/14/14	04/14/14	04/14/14	07/28/14	07/31/14	08/01/14	08/01/14
Method EPA 8260C - NWTPH-Gx and Volatile Organi	ic Compounds (mg	/kg)			_						
Gasoline-range hydrocarbons	30/100 ³	5,610	4,770	1,220	<5.83	<5.76	<6.74	<5.80	<6.27	1070	1160
Benzene	0.03	0.652	1.24	0.263	<0.00583	<0.00576	<0.00674	<0.0174	<0.0188	0.135	0.137
Ethylbenzene	6	86.1	51.4	9.47	<0.117	<0.115	<0.135	<0.116	<0.125	12.0	13.6
Toluene	7	98	81.2	10.9	<0.117	<0.115	<0.135	<0.116	<0.125	4.65	4.60
o-Xylene	9 ⁴	152	82.9	13.9	<0.233	<0.230	<0.270	<0.232	<0.251	18.7	20.6
m,p-Xylene	9 ⁴	388	215	34.3	<0.466	<0.461	<0.539	<0.464	<0.502	56.2	63.2
Xylenes (total)	9 ⁴	540	298	48.2	<0.699	<0.691	<0.809	<0.696	<0.753	74.9	83.8
Methyl tert-butyl ether (MTBE)	0.1	<0.0575	<0.0694	<0.0554	<0.00699	<0.00691	<0.00809	<0.0348	<0.0376	<0.0364	<0.0364
1,2-Dichloroethane (EDC)	NE	<0.958	<1.16	<0.924	<0.117	<0.115	<0.135	<0.116	<0.125	<0.121	<0.121
Method EPA 8011 - EDB (µg/kg)				-	•			-		•	•
1,2-Dibromoethane	5	<0.850	<1.04	<0.999	<1.13	<1.08	<1.11	<1.05	<0.950	<1.17	<1.15
Method EPA 8270D - Naphthalene by GC/MS with S	elected Ion Monit	oring (mg/kg)			•	•		•		•	•
Naphthalene	5 ⁵	17.8	9.46	0.296	<0.0117	<0.0120	<0.0130	<0.0215	<0.0208	1.68	1.58
2-Methylnaphthalene	5 ⁵	18.9	11.2	0.456	<0.0117	<0.0120	<0.0130	<0.0215	<0.0208	2.20	2.02
1-Methylnaphthalene	5 ⁵	8.11	5.01	0.199	<0.0117	<0.0120	<0.0130	<0.0215	<0.0208	1.14	1.18
Method NWTPH-Dx - Semivolatile Petroleum Produc	ts (mg/kg)	_						-			
Diesel-range hydrocarbons	2,000	640	344	51	<22.2	<24.3	<24.1	11.7	<10.9	51.6	41.6
Heavy oil-range hydrocarbons	2,000	<65.5	<93.8	<69.7	59.6	<60.7	<60.3	34.2	<27.3	<25.9	<30.5
Method NWTPH-HCID - Hydrocarbon Identification (ng/kg)	•						-			
Gasoline-range hydrocarbons	30/100	2,800	1,500	53	<43	<47	<47	-	-	-	-
Diesel-range hydrocarbons	2,000	920	470	<110	<110 <120 <120		-				
Heavy oil-range hydrocarbons	2,000	<93	<110	<110	<110	<120	<120	-	-	-	-
Method EPA 6010C - Metals Content (mg/kg)											
Lead	250	<2.86	5.23	3.39	6.21	4.79	4.87	4.62	4.95	5.25	5.24

Notes:

 $^{1}\mbox{Chemical}$ analyses conducted by TestAmerica of Spokane, Washington.

² Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

³ Gasoline-range petroleum hydrocarbon cleanup levels in soil are 30 mg/kg when benzene is detected and 100 mg/kg when benzene is not detected.

⁴ Cleanup level for total xylenes.

⁵ Cleanup level refers to sum of naphthalenes.

Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

mg/kg = milligrams per kilogram; EPA = Washington State Environmental Protection Agency; NE = not established

Table 4

Summary of Chemical Analytical Results - Groundwater^{1,2}

Tiger Oil Summitview

Yakima, Washington

Boring	Regulatory	Method B	SVDP-1	SVDP-2	SVMW-1	SVMW-2	Duplicate (MW-2)	SVMW-3			
Date Sampled	Levels ³	Cleanup Levels ⁴	04/14/14	04/14/14	9/18/2014	9/18/2014	9/18/2014	9/18/2014			
Method NWTPH-Gx - Hydrocarbon Identification (µ	g/L)			•							
Gasoline-range hydrocarbons	800/1,000		3,700	41,000	NT	NT	NT	NT			
Diesel-range hydrocarbons	500		950	16,000	NT	NT	NT	NT			
Heavy oil-range hydrocarbons	500		620	940	NT	NT	NT	NT			
Conventionals (mg/L)											
Nitrate-Nitrogen	10 ⁵		NT	NT	3.43	6.16	6.18	2.45			
Sulfate	250 ⁶		NT	NT	28.6	32.0	32.0	15.4			
Total Organic Carbon	NE		NT	NT	NT	4.39	2.34	3.45			
Method NWTPH-Gx - Gasoline Range (µg/L)				•	•						
Gasoline-range hydrocarbons	800/1,000		NT	NT	<100	<100	<100	12,700			
Method NWTPH-Dx - Diesel Range (mg/L)											
Diesel-range hydrocarbons	500		NT	NT	NT	<239	<243	815			
Diesel-range hydrocarbons w/silica gel	500		NT	NT	NT	NT	NT	968			
Heavy Oil-Range Hydrocarbons	500		NT	NT	NT	<399	<404	<385			
Heavy Oil-Range Hydrocarbons w/silica gel	500		NT	NT	NT	NT	NT	<385			
Method EPA 8260 - VOCs (µg/L)					•						
1,1,1,2-Tetrachloroethane		1.68			<1.00	<1.00	<1.00	<1.00			
1,1,1-Trichloroethane	200		NT	NT	<1.00	<1.00	<1.00	<1.00			
1,1,2,2-Tetrachloroethane		0.219	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)		240,000	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,1,2-Trichloroethane		0.768	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,1-Dichloroethane		7.68	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,1-Dichloroethene		0.481	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,1-Dichloropropene		NE	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,2,3-Trichlorobenzene		NE	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,2,3-Trichloropropane		0.00146	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,2,4-Trichlorobenzene		1.51	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,2,4-Trimethylbenzene		NE	NT	NT	<1.00	<1.00	<1.00	660			
1,2-Dibromo-3-Chloropropane		0.0547	NT	NT	<5.00	<5.00	<5.00	<5.00			
1,2-dibromoethane (EDB)	0.01		NT	NT	<1.00	<1.00	<1.00	<1.00			
1,2-Dichlorobenzene (o-Dichlorobenzene)		7.20	NT	NT	<1.00	<1.00	<1.00	<1.00			
1,2-Dichloroethane (EDC)	5		NT	NT	<1.00	<1.00	<1.00	<1.00			

Boring	Regulatory	Method B	SVDP-1	SVDP-2	SVMW-1	SVMW-2	Duplicate (MW-2)	SVMW-3
Date Sampled	Levels ³	Cleanup Levels ⁴	04/14/14	04/14/14	9/18/2014	9/18/2014	9/18/2014	9/18/2014
1,2-Dichloropropane		1.22	NT	NT	<1.00	<1.00	<1.00	<1.00
1,3,5-Trimethylbenzene		80	NT	NT	<1.00	<1.00	<1.00	140
1,3-Dichlorobenzene (m-Dichlorobenzene)		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
1,3-Dichloropropane		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
1,4-Dichlorobenzene (p-Dichlorobenzene)		8.1	NT	NT	<1.00	<1.00	<1.00	<1.00
2,2-Dichloropropane		0.438	NT	NT	<1.00	<1.00	<1.00	<1.00
2-Butanone (MEK)		4,800	NT	NT	<10.0	<10.0	<10.0	55.1
2-Butanone, 4-(Acetyloxy)-		4,800	NT	NT	<10.0	<10.0	<10.0	<10.0
2-Chlorotoluene		160	NT	NT	<1.00	<1.00	<1.00	<1.00
2-Hexanone		NE	NT	NT	<10.0	<10.0	<10.0	<10.0
2-Propanol, 2-methyl-		NE	NT	NT	<5.00	<5.00	<5.00	<5.00
4-Chlorotoluene		160	NT	NT	<1.00	<1.00	<1.00	<1.00
Acetone		7,200	NT	NT	<25.0	<25.0	<25.0	246
Benzene	5		NT	NT	<0.200	<0.200	<0.200	27.6
Bromobenzene		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
Bromochloromethane		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
Bromodichloromethane		0.706	NT	NT	<1.00	<1.00	<1.00	<1.00
Bromoform (Tribromomethane)		5.54	NT	NT	<1.00	<1.00	<1.00	<1.00
Bromomethane		11.2	NT	NT	<5.00	<5.00	<5.00	<5.00
Carbon Disulfide		800	NT	NT	<1.00	<1.00	<1.00	<1.00
Carbon Tetrachloride		0.625	NT	NT	<1.00	<1.00	<1.00	<1.00
Chlorobenzene		160	NT	NT	<1.00	<1.00	<1.00	<1.00
Chloroethane		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
Chloroform		1.41	NT	NT	<1.00	<1.00	<1.00	<1.00
Chloromethane		NE	NT	NT	<3.00	<3.00	<3.00	<3.00
cis-1,2-Dichloroethene		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
Cis-1,3-Dichloropropene		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
Dibromochloromethane		0.521	NT	NT	<1.00	<1.00	<1.00	<1.00
Dibromomethane		80	NT	NT	<1.00	<1.00	<1.00	<1.00
Dichlorodifluoromethane (CFC-12)		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
Ethylbenzene	700	1	NT	NT	<1.00	<1.00	<1.00	436
HCFC-21		NE	NT	NT	<0.200	<0.200	<0.200	0.270
Hexachlorobutadiene		0.561	NT	NT	<2.00	<2.00	<2.00	<2.00
Hexane		480	NT	NT	<1.00	<1.00	<1.00	80.0
Isopropylbenzene (Cumene)		800	NT	NT	<1.00	<1.00	<1.00	33.6
Methyl t-butyl ether (MTBE)	20		NT	NT	<1.00	<1.00	<1.00	<1.00
Methylene Chloride	5		NT	NT	<10.0	<10.0	<10.0	<10.0
Naphthalene	160		NT	NT	<2.00	<2.00	<2.00	236

Boring	Regulatory	Method B	SVDP-1	SVDP-2	SVMW-1	SVMW-2	Duplicate (MW-2)	SVMW-3
Date Sampled	Levels ³	Cleanup Levels ⁴	04/14/14	04/14/14	9/18/2014	9/18/2014	9/18/2014	9/18/2014
n-Butylbenzene		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
n-Propylbenzene		800	NT	NT	<1.00	<1.00	<1.00	82.0
p-lsopropyltoluene		NE	NT	NT	<1.00	<1.00	<1.00	11.2
Sec-Butylbenzene		NE	NT	NT	<1.00	<1.00	<1.00	545
Styrene		1,600	NT	NT	<1.00	<1.00	<1.00	<1.00
Tert-Butylbenzene		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
Tetrachloroethene	5		NT	NT	<1.00	<1.00	<1.00	<1.00
Toluene	1,000		NT	NT	<1.00	<1.00	<1.00	422
Trans-1,2-Dichloroethene		0.481	NT	NT	<1.00	<1.00	<1.00	<1.00
Trans-1,3-Dichloropropene		0.438	NT	NT	<1.00	<1.00	<1.00	<1.00
Trichloroethene	5		NT	NT	<1.00	<1.00	<1.00	<1.00
Trichlorofluoromethane (CFC-11)		NE	NT	NT	<1.00	<1.00	<1.00	<1.00
Vinyl Chloride	0.2		NT	NT	<0.200	<0.200	<0.200	<0.200
Xylene, m-,p-	1.0007		NT	NT	<2.00	<2.00	<2.00	2,000
Xylene, o-	1,000		NT	NT	<1.00	<1.00	<1.00	794

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

²Analytes presented either have applicable cleanup levels or were detected at concentrations greater than reporting limits. Additonal analyte results are provided in the analytical reports.

³ Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level, the maximum contaminant level (MCL) or the secondary maximum contaminant level (SMCL).

⁴Groundwater Method B cancer cleanup level, CLARC Data Tables, May 2014

⁵Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

⁶Secondary maximum contaminant level recommeded by the Environmental Protection Agency.

⁷Cleanup level for total xylenes.

Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

 μ g/L = micrograms per liter

Table 5

Summary of Chemical Analytical Results - Groundwater, PAHs¹ **Tiger Oil Summitview** Yakima, Washington

	Carcinogenic PAHs																				
			Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	сРАН ТЕQ ²	Naphthalene	2-Methylna phthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(ghi)perylene
		TEF ²	0.1	1	0.1	0.1	0.01	0.1	0.1												
Location	Sample ID	Date Collected	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg∕L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg∕L	µg∕L	µg/L
	SVDP-1	04/14/14	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	SVDP-2	04/14/14	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Tiger Oil -	SVMW-1	09/18/14	< 0.0260 ³	< 0.0442 ³	< 0.0286 ³	< 0.0390 ³	< 0.0286 ³	< 0.0338 ³	< 0.0572 ³	0.03 ⁴	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234
Summitview	SVMW-2	09/18/14	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	0.06	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856
	Duplicate (MW-2)	09/18/14	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	0.07	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863
	SVMW-3	09/18/14	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	0.06	178	48.4	29.3	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854
MTCA Meth	nod A Unrestricted La	nd Use CUL ⁵	NE	0.1	NE	NE	NE	NE	NE	0.1		5 ⁶		NE	NE	NE	NE	NE	NE	NE	NE

Notes:

¹Polycyclic aromatic hydrocarbons (PAHs) analyzed using EPA Method 8270D by TestAmerica Laboratories, Inc., in Spokane, Washington.

²Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation WAC 173-340-708. One half the reporting limit was used to calculate the TEQ.

³Reported value is the method detection limit, as the reporting limit exceeded the MTCA Method A level when used in the TEQ calculation.

 $^{4}\mbox{The TEQ}$ reported was calculated using half the method detection limits.

⁵Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels.

⁶Total value for naphthalene, 1-methyl naphthalene and 2-methyl naphthalene.

 μ g/L = micrograms per liter; NE = Not Established.

Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

D P N 1. 2. to 0 a

- Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet Notes:
- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended
- to assist in showing features discussed in an attached document.
- GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Product piping location estimated from "Results of Underground Piping
- and Dispenser Island Sampling at Tiger Oil Corporation Facility,
- 5511 Summitview in Yakima, Washington". Figure 2 Wayne Perry, Inc.
- December 14, 2005.
 - 2005.

Site Plan and Sample Locations

Tiger Oil Summitview Yakima, Washington

GEOENGINEERS

Figure 2

APPENDIX A Field Methods and Boring Logs

APPENDIX A FIELD METHODS AND BORING LOGS

General Soil Sampling Procedures

Samples were obtained using disposable nitrile gloves which were discarded after each use. Samples were placed in 4- or 9-ounce laboratory-supplied sample containers. Sample containers were filled to minimize headspace and labeled with a unique identification. Confirmation samples analyzed for VOCs were obtained using EPA Method 5035 sampling procedures. Samples were temporarily stored in an iced cooler before transfer to TestAmerica's Spokane Valley, Washington laboratory for analysis. Chain-of-custody protocols were followed.

Field Screening of Soil Samples

A GeoEngineers representative performed field screening of soil samples obtained during drilling activities. Field screening results are used as a general guideline to delineate depths with possible petroleum-related contamination. The screening methods used include: (1) visual screening; (2) water sheen screening; and (3) headspace vapor screening using a MiniRae PID calibrated to isobutylene.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Water sheen screening is a more sensitive method that has been effective in evaluating whether contaminant concentrations are less than regulatory cleanup guidelines.

Water sheen screening involves placing soil in water and observing the water surface for signs of sheen. Sheen screening might detect both volatile and nonvolatile petroleum hydrocarbons. Sheen classifications are as follows:

No Sheen	No visible sheen on water surface.
Slight Sheen	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil might produce a slight sheen.
Moderate Sheen	Light to heavy sheen; might have some color/iridescence; spread is irregular to flowing, might be rapid; few remaining areas of no sheen on water surface.
Heavy Sheen	Heavy sheen with color/iridescence; spread is rapid; entire water surface might be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag, and the bag was shaken to expose the soil to the air trapped in the bag. The probe of the PID was then inserted into the bag to measure VOCs in the air within the bag. In this application, the PID measured concentration of organic vapors ionizable by a 10.6 electron volt (ev) lamp in the range between 1.0 and 2,000 pp), with a resolution of +/-2 ppm.

Field screening results are site-specific. The effectiveness of field screening results will vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence

or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of petroleum hydrocarbons.

Monitoring Well Construction, Development and Surveying

The groundwater monitoring wells were constructed in general accordance with Chapter 173-160, Section 400 of the Washington Administrative Code (WAC), titled Washington State Resource Protection Well Construction Standards. Monitoring well records were submitted in accordance with Washington State monitoring well construction standards. Monitoring well installations were observed and documented by a GeoEngineers field representative.

The groundwater monitoring wells were installed using sonic drilling equipment and were constructed of 2-inch-diameter, Schedule 40 PVC casing and 0.01-inch slot width well screens. Well screen depths were based on groundwater conditions observed in the field such that the top of the shallow water table intercepted the well screen.

Each well was constructed with a bentonite seal and a flush-mount surface monument. A lockable cap was installed in the top of the PVC well casing. A concrete surface seal was placed around the monument at the ground surface to divert surface water away from the well location. Each well was developed using surging and pumping; wells were surged and then pumped until the development water was clear. This process was repeated until at least approximately five well volumes were removed from the well.

The monitoring well was developed to remove water introduced into the well during drilling (if any), stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. The depth to water in the monitoring well was measured prior to development. The total depth of the well was measured and recorded. The groundwater monitoring wells were developed by pumping, surging, bailing, or a combination of these methods after construction. Development of the well continued until the water was as free of sediment as practicable, with respect to the composition of the subsurface materials within the screened interval. The removal rate and amount of groundwater removed was recorded during the well development procedures. Development purge water was collected and stored on site.

The locations of the groundwater monitoring wells were established in the field using a hand-held iPad with GPS software, and subsequently surveyed by a licensed surveyor.

Depth to Groundwater

Depth to groundwater measurements from the new wells were collected and recorded in the field notebook after the water level stabilized after well development. Depth to groundwater relative to the marked north side of the monitoring well casing rims was measured to the nearest 0.01 foot using an electronic water level indicator and recorded in the field notebook. Groundwater elevation was calculated by subtracting the depth-to-water measurement from the surveyed casing rim elevation. The electronic water level indicator was decontaminated with Liquinox[®] solution wash and a distilled water rinse prior to use in each well.

Groundwater Sampling

Following depth to groundwater measurements, groundwater samples were collected from the installed groundwater monitoring wells consistent with the EPA's low-flow groundwater sampling procedures (EPA, 1996 and Puls and Barcelona, 1996). Dedicated polyethylene tubing and a portable peristaltic pump

were used for groundwater purging and sampling. During purging activities, water quality parameters, including pH, temperature, conductivity, dissolved oxygen, and turbidity were measured using a multiparameter meter equipped with a flow-through cell. Groundwater samples were collected after (1) water quality parameters stabilized; or (2) a maximum purge time of 30 minutes was achieved. During purging and sampling, drawdown was not allowed to exceed 0.3 feet and the purge rate did not exceed 400 milliliters per minute. Water quality parameter stabilization criteria included the following:

- Turbidity: ±10 percent for values greater than 5 nephelometric turbidity units (ntu);
- Conductivity: ±3 percent;
- pH: ±0.1 unit;
- Temperature: ±3 percent; and
- Dissolved oxygen: ± 10 percent.

Field water quality measurements and depth-to-water measurements were recorded on a Well Purging-Field Water Quality Measurement Form. The groundwater samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. Chain-of-custody procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the QAPP.

Location Control

The locations of the borings and groundwater monitoring wells were established in the field using a handheld iPad with GPS software. The horizontal accuracy of the hand-held unit is within about 10 feet. Upon completion, horizontal and vertical locations of the groundwater monitoring wells were survey by a licensed professional surveyor and referenced to NAD83 and NAVD88 respectively. The horizontal coordinates of the groundwater monitoring wells and the elevation of the benchmark established at the site were determined using a Topcon GR-3 GPS receiver with a nominal accuracy of 10 mm + 1 ppm horizontal and 15 mm + 1 ppm vertical. The elevation of the monitoring wells are relative to the benchmark established at the site and were individually determined using a Leica DNA03 digital level with a vertical accuracy of +/-0.01 feet.

Decontamination Procedures

The objective of the decontamination procedure was to minimize the potential for cross contamination between exploration locations and between individual samples within a specific exploration. A designated decontamination area was established for decontamination of drilling equipment and reusable sampling equipment. Drilling equipment was cleaned using pressure washing equipment.

Sampling or measurement equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement:

- Brush equipment with a wire brush, if necessary, to remove large particulate matter.
- Rinse with potable tap water.
- Wash with non-phosphate detergent solution (LiquiNox[®] and potable tap water).
- Rinse with potable tap water.

Rinse with distilled water.

Handling of Investigation-Derived Waste

IDW (drill cuttings and development and purge water), was placed in U.S. Department of Transportation (DOT) approved 55-gallon drums. The drums were labeled with the exploration number, general contents, and date. IDW generated on site was placed in drums and is pending pickup for disposal at an appropriate facility.

Disposable items, such as sample tubing, direct-push sampler acrylic sleeves, gloves and paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

Laboratory Analytical Plan

Method Reporting Limit (MRL) goals were based on Ecology MTCA soil or groundwater cleanup criteria. The following methods were used for the soil and groundwater samples:

Soil

- GRPH (NWTPH-Gx);
- DRPH (NWTPH-Dx);
- TPH (NWTPH-HCID), direct push soil borings only;
- BTEX by (EPA 8260C);
- PAHs (EPA 8270D);
- EDB (EPA 8011);
- EDC (EPA 8260C);
- MTBE (EPA Method 8260C); and
- Total Lead (EPA 6010C).

Groundwater

- GRPH (NWTPH-GX);
- DRPH (NWTPH-DX);
- VOCs (EPA 8260c);
- PAHs (EPA 8270D)
- TOC (SM5310B);
- Nitrate and Sulfate by (EPA 300); and
- Ferrous Iron (Field Test, Hach 26672-88).

N		IL CLASSIF				
	IAJOR DIVIS	IONS	SYME GRAPH	BOLS	TYPICAL DESCRIPTIONS	SYME GRAPH
	GRAVEL	CLEAN GRAVELS	000	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
30123	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	SAND	CLEAN SANDS	· · · · · · · · · · · · · · · · · · ·	SW	WELL-GRADED SANDS, GRAVELLY SANDS	
200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	_
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS			h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
IORE THAN 50% ASSING NO. 200 SIEVE	eu Te			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
н	IGHLY ORGANIC	SOILS	<u></u>	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
	Image: State Image: State	-inch I.D. split Indard Penetra elby tube ton ect-Push lk or grab	barrel tion Test	(SPT)		AL CCP CS DS HAC DC PI PP SA TC
Blow of blo dista	count is reco ows required nce noted).	orded for drive I to advance sa See exploratio	ampler 12 on log for	inches hamme	e number (or r weight	VS
Blow of blo dista and o A "P drill n NOTE: Th	veount is recu ows required ince noted). drop. " indicates sa rig. ne reader mus	orded for drive I to advance sa See exploratio ampler pushed st refer to the di	ampler 12 on log for d using th scussion i	n the reg	e number (or r weight it of the port text and the logs of ex	VS NS SS MS HS NT

AL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL					
GRAPH	LETTER	DESCRIPTIONS					
	AC	Asphalt Concrete					
	сс	Cement Concrete					
	CR	Crushed Rock/ Quarry Spalls					
	TS	Topsoil/ Forest Duff/Sod					

undwater Contact

- sured groundwater level in oration, well, or piezometer
- sured free product in well or ometer

phic Log Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

erial Description Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

- ent fines
- rberg limits
- mical analysis
- pratory compaction test
- solidation test
- ct shear
- rometer analysis
- sture content
- sture content and dry density
- anic content
- neability or hydraulic conductivity ticity index
- et penetrometer
- s per million
- e analysis
- cial compression onfined compression
- shear

en Classification

- isible Sheen
- nt Sheen
- erate Sheen /y Sheen
 - ested

er understanding of subsurface explorations were made; they are

Project Location:

Project Number:

Yakima, Washington

0504-101-00

GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL 0504101\GINT\050410100.GPJ DBTemplate/LibTemplate Pat Date:

STANDARD

Figure A-2 Sheet 1 of 1

0504-101-00

Project Number:

STANDAR

Figure A-3 Sheet 1 of 1

Project Number:

0504-101-00

STANDARD

Figure A-4 Sheet 1 of 1

0504-101-00

Project Number:

ookane: Date:1/26/15 Path:P:00504101/GINT/050410100.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_ST

Figure A-5 Sheet 1 of 1

0504-101-00

Project Number:

Figure A-6 Sheet 1 of 1

Drilleo	d 4/1	<u>Start End</u> /14/2014 4/14/2014 Total 25								Logged By JML Checked By JER Driller Cascade						Drilling Method Geoprobe	
Surfac Vertica	e Elev al Datu	atioi Im	n (ft)		Unde	etermine	ed		ŀ	Hammer Data			D) rilling quipr	nent	Geoprobe 6600 T	ruck Mount
Eastin	g (X)								ŝ	System			G	Bround	dwatei	Depth to	
Notes	ng (r) ::									Datum				ate M	easure	d <u>Water (ft)</u>	Elevation (ft)
\geq																$ \longrightarrow$	
et)		┢	Ê	FIEL			Т										
on (fee	(feet)		ered (ir	foot	ed Sam	e Nam	evel	c Log	ication	DE	1ATER SCRIP	IAL TION			ace pm)	REMAR	KS
Elevati	Jepth (nterva	Secove	3lows/1	Collecte	<u>Sample</u> Testing	Vater I	Graphi	Group Classif					sheen	leadsp: /apor (p		
	0-		50	ш				ں م	AC	Approximately 2 ir	iches asph	nalt concrete		0)			
	-								L_ <u>GP</u> ML	Gray sandy grave	(medium	dense, dry) (fill)	_/ / _				
	-									dense, moist)	an a doo g		_				
	-									-			-				
	5 —		55							Brown silt with tra	ce fine sar	d and gravel		NS	<1		
	-									_ (medium dens	e, moist)		-				
	-									-			-				
	-												_				
	10 —		51						— <u>—</u> —	Brown sandy silt w	ith trace o			NS	<1		
	-		01						IVIL	dense, moist)	an nace g	iavei (medidini	-				
	-									-			-				
	-									-			_				
	-																
	-		53						ML	Brown sandy silt w dense, moist t	vith trace g o wet)	ravel (medium	_	NS	1		
	-									-			_				
	-				5	<u>VDP-6:18'</u> CA		1		Brown clayey silt (very dense	e, moist)		NS	1		
	-							4	CI	- Brown clay mottler	h with iron	staining (very dense	-				
	20 —		60							moist)			o,				
	-												_				
	-									-			_				
	-									_			-				
	25 —							VZ.						NS	<1	No groundwater observe	ed during drilling
No	te: See	e Fig	gure /	A-1 for	explar	nation of	sym	bols.									
										Log of Bo	oring	SVDP-6					
			_							Project:	T	iger Oil - Sum	mitv	iew			
C	GeoEngineers 🕖								Project Locati	on: Y	akima, Washii	ngto	n			Figure A-7	

0504-101-00

Project Number:

Spokane: Date: 128/15 Path: P:0/0504101/GINT/050410100.CPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-7 Sheet 1 of 1

Drille	ed 7/28	<u>Star</u> 3/20 ⁻	14	<u>En</u> 7/31/	<u>nd</u> /2014	Total Depth	(ft)	7	0		Logged By AJF Checked By JRS	Driller Cascade Dril	illing			Drilling Method Son	ic
Hami Data	mer								E	Drill Equ	ling 20 lipment	0C Spider		DOE We	ell I.D.: E	BIE 510	/2014 to a depth of 40 (ft)
Surfa Verti	ace Elev cal Dati	/atio	n (ft)		12 N/	221.23 VD88			T E	Гор Ξlev	op of Casing 1220.95			Ground	water	Depth to	2014 to a depth of 40 (it).
Easti	ng (X)				161	9556.5			F	-lori	izontal	WA South Zone		Date Me 7/31/20	asured 014	<u>Water (f</u> 30.7	<u>, Elevation (ft)</u> 1190.3
Note	es:				402	2004.0				Jan		WA South Zone					
\geq						ТА											
et)			Ê	FIEL	-D DA 음	ω											ELL LUG
ion (fee	(feet)		ered (ir	/foot	ed Sam	e Nam	Level	ic Log	fication		MAT DESC	ERIAL RIPTION			pace (ppm)		Steel surface monument
Eleva	Depth	Interva	Recov	Blows	Collect	Samp	Water	Graph	Group Classi					Sheer	Heads Vapor		
- 220	0							० ० निकेन	AC GP		Approximately 4 inche pavement	s asphalt concrete				1.0'	Concrete surface seal
	-	-							SM		Gray angular coarse g Brown silt with little fin	ravel (fill) e sand	/	NS	1.5		
-	-									-	-			-			
-	-										_			-			*** *** ***
- 215	-	-									-			NS -	1.7		
-	-	-			SVI	MW-1 (7-8)				-	-			NS	3.1		
-	-								SP	_	Brown silty fine sand	ounded gravel with si	ilt	NS	2.3		
_	- 10 —							000	GF	-			-	NS	2.3		
	-								SP	_	Brown fine to medium	sand with little silt ar	nd	NS	1.5	88	
-	-										_ gravel			-			10/0 2020 2020
-	-								SM		Brown silty fine sand Increasing moisture				2.1	28 88 88	
	15 —									-	_				5.1		Bentonite chips 2-inch Schedule
-,20 ⁵	-										-			- NS	<1		casing
- -	-				5	<u>SVWM-1</u> (17-18) CA					-						
-	-	-								-	-			-	3.3		
-	20 —								МН		Increasing gravel Light brown silt with lit	tle fine sand		-			
_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-										-			NS	2.6		
_	-	-									-			NS	<1		
-	-	-								-	-			-		88 88 88 88	
- 50	25 —										_						
	-	-								-	_ Increasing density, ha	rd clay layers less that	an 1	NS -	<1	8000 8000 8000	
_	-	-								-	-			-		28.0'-	
-	-										- Increasing sand and tr	ace gravel		NS	<1		10/20 sand
N	30 – ote: Se	- e Fig	ure	A-1 fo	r expla	nation of	sym	nbols		L		- 0	-	_	•	1	1999 - 1999 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1
							-										
									L	_0	og of Monitorin	g Well SVM	W-1				
(G=/	٦I				EDG	-		7		Project: Project Location:	Tiger Oil - Su Yakima Was	ummit shinat	view			
hodo	GEOENGINEERS										Project Number:	0504-101-00)				Figure A-8 Sheet 1 of 3

[FIEI	_D DATA								WELL	LOG
Elevation (feet) Depth (feet)	Interval Recovered (in) Blows/foot	Collected Sample Sample Name Water Level	Graphic Log	Group Classification	MATE DESCF	ERIAL RIPTION	Sheen	Headspace Vapor (ppm)			
 _ 70 —	-			-	Turns moist	-			70 0'-		-Bentonite chips
									10.0		
Note: Se	e Figure A-1 fo	or explanation of sy	mbols.								
$\overline{}$			Log	of M	onitoring Well	SVMW-1 (contin	ued)			
6	-				Project:	Tiger Oil - Summitvi	ew				
GE	OENG	INEERS			Project Location: Project Number:	Yakima, Washingto 0504-101-00	n				Figure A-8 Sheet 3 of 3

Drille	ed 7/3	<u>Start</u> 1/2014	<u>Er</u> 7/31	<u>nd</u> /2014	Total Depth	(ft)	27	7.8		Logged By AJF Checked By JRS Driller Cascade Drilling			Drilling Method Sonic
Hamr Data	ner								Drill Equ	ng 200C Spider	DOE W	ell I.D.: E	BIE 511 installed on 7/31/2014 to a denth of 26 (ft)
Surfa Vertic	ce Elev al Dat	vation (ft) um)	12 NA	15.91 VD88				Top of Casing 1215.59 Elevation (ft)			dwater	
Eastin North	ng (X) ing (Y)			1619 46	9606.4				Hor Dat	zontal m NAD83/91 WA South Zone	Date Me 7/31/2	easured 014	Water (ft) Elevation (ft) 19.0 1196.6
Note	s:												
\geq			FIEL	D DA	TA								WELL LOG
feet)		(ii)		ample	me	_	g		ы	MATERIAI		- F	
ation (th (feet	val overed	/s/foot	cted S	ple Na	er Leve	ohic Lo	đ	sificati	DESCRIPTION	ue	dspace or (ppn	Steel surface monument
Elev	o Depi	Inter Rec	Blov	Colle	Sam	Wat	Grap	D C	Clas		Shee	Hear	
_^21 ⁵	-	-						MI	L	Light brown silt with fine sand (dry)	_		1.0' Concrete surface seal
-	-	-		SVN	/W-2 (2-3)						⁻ NS	3.3	
	-										_		
-	5 —	-								-	NS	1.9	Bentonite chips
_^2.	-	-								Becomes moist	_		40 PVC well casing
	-			<u>SVN</u>	<u>/W-2 (7-8)</u> CA)				With trace fine gravel	NS	19.7	
-	-	-								Becomes stiff	-		9.0'-
- 1205	10 —	-							 With trace cobbles and fine gravel 			13.8	11.0
-	-	-										7.8	
-	-	-								With trace gravel	-		
	-			S (SVMW-2 (14-15)					_ Becomes more moist	_		
-1200	-	-						SF	Ρ	Brown gravelly fine to coarse sand with small cobbles (wet)	- NS	17.5	
	-	-						GF	P	Brown-gray sandy gravel (wet)	NS	1.9	10/20 sand
	-					Ţ	。。 (Mł	H	Light brown silt with fine sand and orange			2-inch Schedule 40 PVC screen,
	20 —	-								mottling -	- _{NS}	2.4	0.010-inch slot width
\$28.GDI/	-	-									-		
	-	-								Visible layering	NS	3.6	
	-	-									_		
	25 —	-								_ Becomes more dense	NS	4.9	
	-									With trace fine gravel		38	26.8'
100.67.1				1									27.8' 27.8'
N I/05041(
101101 NG	ote: Se	e Figure	A-1 fo	r explar	nation of	syn	nbols						
										a of Monitoring Wall SVMW	2		
61/20/19										Project: Tiger Oil - Sum	e nitview		

Figure A-9 Sheet 1 of 1

JEFRS8GD Spokane: Date

GEOENGINEERS

· Oil - Sur ige Project Location: Yakima, Washington Project Number: 0504-101-00

Project Number:

0504-101-00

FIGURE A-10 Sheet 1 of 1

APPENDIX B Laboratory Reports

APPENDIX B LABORATORY REPORTS

Samples

Chain-of-custody procedures were followed during the transport of the field samples to the accredited analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results and quality control records are included in this appendix.

The laboratory maintains an internal quality assurance/quality control (QA/QC) program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report.

CHEMICAL ANALYTICAL LABORATORY REPORT AND DATA VALIDATION

General

This report documents the results of a United States EPA-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the 2014 sampling events, and the associated laboratory and field QC samples. The samples were obtained from the Tiger Oil, Summitview site located at 5511 Summitview Road in Yakima, Washington.

Objective and Quality Control Elements

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The QA/QC procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with Quality Assurance Project Plan (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation

GEOENGINEERS

- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates
- Miscellaneous

Validated Sample Delivery Groups

This data validation included review of the sample delivery groups (SDGs) listed below in Table B-1.

TABLE B-1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
SXD0112	041414:SVDP-1:13.5, 041414:SVDP-2:19, 041414:SVDP-2:21, 041414:SVDP-3:7, 041414:SVDP-5:19, 041414:SVDP-6:18, 041414:SVDP-1:GW, 041414:SVDP-2:GW
SXH0013	SVMW-1(17-18), SVMW-2(7-8), SVMW-3(17-18), Duplicate
SXI0130	SVMW-1-091814, SVMW-2-091814, SVMW-Dup-091814, SVMW-3-091814

Chemical Analysis Performed

TestAmerica, located in Spokane, Washington, performed laboratory analysis on the soil and groundwater samples using one or more of the following methods:

- Hydrocarbon Identification (NWTPH-HCID) by Method NWTPH-HCID;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Petroleum Hydrocarbons with Silica Gel (SG) Cleanup (NWTPH-Dx/SG) by Method NWTPH-Dx/SG;
- GRPH (NWTPH-Gx) by Method NWTPH-Gx;
- BTEX, MTBE and EDC by Method SW8260C;
- VOCs by Method SW8260C;
- PAHs by Method SW8270D-SIM;
- Total Metals by Method EPA6010C;
- Anions by Method EPA300.0; and
- TOC by Method SM5310C.

Data Validation Summary

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory appears to have followed adequate corrective action processes; however, the laboratory analytical report does not contain a case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical report. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exception noted below.

SDG SXD0112: The sample cooler temperature recorded at the laboratory was 12.7 degrees Celsius. The samples were put on ice when they were collected (April 14, 2014) and ice was added every day until they were received by the laboratory (April 17, 2014). The out-of-compliance temperature was very likely isolated to the day the samples were received at the laboratory. For this reason, this temperature should not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits, with the following exception:

SDG SXD0112: (NWTPH-HCID) The percent recovery for surrogate 4-bromofluorobenzene recovered outside the control limits in Samples 041414:SVDP-1:13.5, 041414:SVDP-2:19, and 041414:SVDP-2:GW. The positive results for gasoline-range hydrocarbons were qualified as estimated (J) in these samples.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in any of the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the

associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if any element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits, with the following exception:

SDG SXH0013: (PAHs) The laboratory performed an MS/MSD sample set on Sample Duplicate. The percent recoveries for naphthalene were less than the control limits in the MS/MSD sample set extracted on August 7, 2014. The positive results for naphthalene for qualified as estimated (J) in Sample SVMW-3(17-18) and Duplicate.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/ laboratory control sample duplicate (LCSD) control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit 20 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exceptions:

SDG SXD0112: (NWTPH-HCID) A laboratory duplicate analysis was performed on Samples 041414:SVDP-3:7, 041414:SVDP-5:19, and 041414:SVDP-6:18. The RPD values for gasoline-, diesel-, and

heavy oil-range hydrocarbons were greater than the control limit. There were no positive results for these target analytes in the associated field samples; therefore, no action was required for these outliers.

SDG SXH0013: (NWTPH-Dx) A laboratory duplicate analysis was performed on Sample SVMW-1(17-18). The RPD values for diesel- and heavy oil-range hydrocarbons were greater than the control limit. The positive results for these target analytes were qualified as estimated (J) in this sample.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 20 percent.

SDG SXH0013: One field duplicate sample pair, SVMW-3(17-18) and Duplicate, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair.

SDG SXI0130: One field duplicate sample pair, SVMW-2-091814 and SVMW-Dup-091814, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair, with the exception of TOC. The positive results for TOC were qualified as estimated (J) in these samples.

Miscellaneous

SDG SXH0199: (NWTPH-Dx and NWTPH-Dx/SG) For Sample SVMW-3-091814, the laboratory flagged the diesel-range hydrocarbons results with "Q5," indicating that the diesel-range hydrocarbons results were being influenced by the relative concentration of gasoline-range hydrocarbons in the sample. For this reason, the positive results for diesel-range hydrocarbons were qualified as estimated (J) in this sample, in order to signify a potential high bias.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

All data are acceptable for the intended use, with the following qualifications listed below in Table B-2.

TABLE B-2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier
041414:SVDP-1:13.5	GRPH	J
041414:SVDP-2:19	GRPH	J
041414:SVDP-2:GW	GRPH	J
SVMW-1(17-18)	DRPH	J
	ORPH	J
SVMW-3(17-18)	Naphthalene	J

Sample ID	Analyte	Qualifier
Duplicate	Naphthalene	J
SVMW-2-091814	TOC	J
SVMW-Dup-091814	TOC	J
SVMW-3-091814	DRPH	J

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXI0130

Client Project/Site: 0504-101-00 Client Project Description: Tiger Oil - Summit View Revision: 1

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: JR Sugalski

Candre Arrington

Authorized for release by: 1/26/2015 2:19:27 PM

Randee Arrington, Project Manager (509)924-9200 Randee.Arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	16
Chronicle	24
Certification Summary	26
Method Summary	27
Chain of Custody	28

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

					3
Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
SXI0130-01	SVMW-2-091814	Water	09/18/14 14:38	09/19/14 09:50	
SXI0130-02	SVMW-3-091814	Water	09/18/14 13:56	09/19/14 09:50	
SXI0130-03	SVMW-1-091814	Water	09/18/14 15:03	09/19/14 09:50	5
SXI0130-04	SVMW-Dup-091814	Water	09/18/14 08:00	09/19/14 09:50	0
					8
					9

Qualifiers

Semivolatil	les	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Fuels		
Qualifier	Qualifier Description	
С	Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.	
Q5	Results in the diesel organics range are primarily due to overlap from a gasoline range product.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: SVMW-2-091814

Date Collected: 09/18/14 14:38 Date Received: 09/19/14 09:50

TestAmerica	.loh	١D·	SXI01:	30
i estAmenca	200	ID.	0/101	50

Lab Sample ID: SXI0130-01

Matrix: Water

Method: EPA 8260C - Volatile C Analyte	Drganic Compou Result	nds by EPA Qualifier	Method 8260C RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Dichlorodifluoromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Chloromethane	ND		3.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Vinyl chloride	ND		0.200	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Bromomethane	ND		5.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Chloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Trichlorofluoromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1.1-Dichloroethene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 13:57	1.00	
Dichlorofluoromethane	ND		0.200	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Carbon disulfide	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Methylene chloride	ND		10.0	ug/L		09/23/14 07:49	09/24/14 13:57	1 00	
Acetone	ND		25.0	ug/l		09/23/14 07:49	09/24/14 13:57	1 00	
trans-1 2-Dichloroethene	ND		1 00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Methyl tert-butyl ether	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1 1 2-Trichlorotrifluoroethane			1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1.1-Dichloroethane			1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
nia 1.2 Dishlorosthono			1.00	ug/L		00/22/14 07:40	00/24/14 13:57	1.00	
	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
2,2-Dichiolopropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13.57	1.00	
olitical	ND		1.00	ug/L		09/23/14 07.49	09/24/14 13.57	1.00	
	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1,1,1-I richloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
2-Butanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Hexane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1,1-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Benzene	ND		0.200	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
tert-Butanol	ND		5.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1,2-Dichloroethane (EDC)	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Trichloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Dibromomethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1,2-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Bromodichloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
cis-1,3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Toluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
4-Methyl-2-pentanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
trans-1,3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Tetrachloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1,1,2-Trichloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Dibromochloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1,3-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
1,2-Dibromoethane	ND		1.00	- ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
2-Hexanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Ethylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1.00	
Chlorobenzene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 13:57	1.00	
1,1,1,2-Tetrachloroethane	ND		1.00	ua/L		09/23/14 07:49	09/24/14 13:57	1.00	
m.p-Xvlene	ND		2.00	ua/l		09/23/14 07:49	09/24/14 13:57	1.00	
o-Xvlene	ND		1 00	ug/L		09/23/14 07:49	09/24/14 13:57	1 00	
Styrene			1.00	ug/L		09/23/14 07:49	09/24/14 13:57	1 00	
Bromoform			1.00	ug/L		09/23/14 07:40	09/24/14 13:57	1 00	
Isonronylbenzene	םא חא		1.00	ug/L		09/23/14 07:40	09/24/14 13:57	1.00	
130propyinelizerie	ND		1.00	uy/L		00/20/14 01.49	JJ/27/14 1J.J/	1.00	

Client Sample ID: SVMW-2-091814 Date Collected: 09/18/14 14:38 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-01 Matrix: Water

IIA. Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Propylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Bromobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,3,5-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
2-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2,3-Trichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
4-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
tert-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		71.2 - 143	09/23/14 07:49	09/24/14 13:57	1.00
1,2-dichloroethane-d4	94.9		70 - 140	09/23/14 07:49	09/24/14 13:57	1.00
Toluene-d8	102		74.1 - 135	09/23/14 07:49	09/24/14 13:57	1.00
4-bromofluorobenzene	103		68.7 - 141	09/23/14 07:49	09/24/14 13:57	1.00

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	[D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L			09/23/14 07:49	09/24/14 13:57	1.00
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	103		68.7 - 141					09/23/14 07:49	09/24/14 13:57	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.0501	J	0.0856	0.0190	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
2-Methylnaphthalene	ND		0.0856	0.0200	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
1-Methylnaphthalene	ND		0.0856	0.0171	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Acenaphthylene	ND		0.0856	0.0124	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Acenaphthene	ND		0.0856	0.0152	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Fluorene	ND		0.0856	0.0143	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Phenanthrene	ND		0.0856	0.0343	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Anthracene	ND		0.0856	0.0124	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Fluoranthene	ND		0.0856	0.0305	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Pyrene	ND		0.0856	0.00856	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Benzo (a) anthracene	ND		0.0856	0.00952	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Chrysene	ND		0.0856	0.0105	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Benzo (b) fluoranthene	ND		0.0856	0.0105	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Benzo (k) fluoranthene	ND		0.0856	0.0143	ug/L		09/23/14 08:20	09/24/14 21:39	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Result Qualifier

Qualifier

ND

ND

ND

ND

79.4

75.8

90.4

%Recovery

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Analyte

Surrogate

2-FBP

Nitrobenzene-d5

p-Terphenyl-d14

Benzo (a) pyrene

Indeno (1,2,3-cd) pyrene

Dibenzo (a,h) anthracene

Benzo (ghi) perylene

Client Sample ID: SVMW-2-091814 Date Collected: 09/18/14 14:38 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-01 Matrix: Water

Analyzed

09/24/14 21:39

09/24/14 21:39

09/24/14 21:39

09/24/14 21:39

Analyzed

09/24/14 21:39

09/24/14 21:39

09/24/14 21:39

Lab Sample ID: SXI0130-02

Matrix: Water

Prepared

09/23/14 08:20

09/23/14 08:20

09/23/14 08:20

09/23/14 08:20

Prepared

09/23/14 08:20

09/23/14 08:20

09/23/14 08.20

D

Water

Dil Fac

1.00	
1.00	
1.00	
1.00	
Dil Fac	
1.00	8
1.00	
1.00	

10

-	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.239		mg/L		09/24/14 08:30	09/24/14 14:30	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.399		mg/L		09/24/14 08:30	09/24/14 14:30	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91.1		50 - 150				09/24/14 08:30	09/24/14 14:30	1.00
n-Triacontane-d62	101		50 - 150				09/24/14 08:30	09/24/14 14:30	1.00
		0 0							
Method: EPA 300.0 - Anions by	EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Nitrate-Nitrogen	Result	Qualifier	RL	MDL	Unit mg/L	<u>D</u>	Prepared 09/19/14 11:00	Analyzed	Dil Fac 1.00
Analyte Nitrate-Nitrogen	EPA Method 30 Result 6.16 32.0	Qualifier	RL 0.200 0.500	MDL	Unit mg/L mg/L	<u>D</u>	Prepared 09/19/14 11:00 09/19/14 11:00	Analyzed 09/19/14 13:51 09/19/14 13:51	Dil Fac 1.00 1.00
Analyte Nitrate-Nitrogen Sulfate Method: SM 5310C - TOC	EPA Method 30 Result 6.16 32.0	Qualifier	RL 0.200 0.500	MDL	Unit mg/L mg/L	<u>D</u>	Prepared 09/19/14 11:00 09/19/14 11:00	Analyzed 09/19/14 13:51 09/19/14 13:51	Dil Fac 1.00 1.00
Analyte Nitrate-Nitrogen Sulfate Method: SM 5310C - TOC Analyte	Result 6.16 32.0	0.0 Qualifier Qualifier	RL 0.200 0.500 RL	MDL	Unit mg/L mg/L Unit	<u>D</u> 	Prepared 09/19/14 11:00 09/19/14 11:00 Prepared	Analyzed 09/19/14 13:51 09/19/14 13:51 Analyzed	Dil Fac 1.00 1.00 Dil Fac

Client Sample ID: SVMW-3-091814

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C MDL Unit Result Qualifier Dil Fac Analyte RL D Prepared Analyzed Dichlorodifluoromethane ND 1.00 09/23/14 07:49 09/24/14 14:20 50.0 ug/L Chloromethane ND 3.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 Vinyl chloride ND 0.200 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 ug/L Bromomethane ND 5.00 09/23/14 07:49 09/24/14 14:20 50.0 Chloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 ug/L Trichlorofluoromethane ND 1.00 09/23/14 07:49 09/24/14 14:20 50.0 ND 1,1-Dichloroethene 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 0.200 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 Dichlorofluoromethane 0.270 09/23/14 07:49 09/24/14 14:20 Carbon disulfide ND 1.00 ug/L 50.0 Methylene chloride ND 10.0 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 25.0 09/23/14 07:49 09/24/14 14:20 50.0 Acetone 246 ug/L trans-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 ND 1 00 09/24/14 14:20 Methyl tert-butyl ether ug/L 09/23/14 07:49 50.0 1,1,2-Trichlorotrifluoroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 1.1-Dichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 cis-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 2,2-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0

TestAmerica Spokane

RL

0.0856

0.0856

0.0856

0.0856

32.7 - 135

44.3 - 120

59.5 - 154

MDL Unit

0.0124 ug/L

0.0200 ug/L

ug/L

ug/L

0.0162

0.0209

Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

Client Sample ID: SVMW-3-091814 Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-02 Matrix: Water

. water

5

Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Bromochloromethane	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
Chloroform	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
Carbon tetrachloride	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
1.1.1-Trichloroethane	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
2-Butanone	55.1	10.0	uq/L		09/23/14 07:49	09/24/14 14:20	50.0
Hexane	80.0	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
1.1-Dichloropropene	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
Benzene	27.6	0.200	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
tert-Butanol	ND	5.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1.2-Dichloroethane (EDC)	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
Trichloroethene	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
Dibromomethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1.2-Dichloropropane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Bromodichloromethane	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
cis-1.3-Dichloropropene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Toluene	422	50.0	ug/l		09/23/14 07:49	09/24/14 21:51	50.0
4-Methyl-2-pentanone	ND	10.0	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
trans-1 3-Dichloropropene	ND	1 00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Tetrachloroethene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1 1 2-Trichloroethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Dibromochloromethane	ND	1 00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1 3-Dichloropropane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1 2-Dibromoethane	ND	1 00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
2-Hexanone	ND	10.0	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Ethylbenzene	436	50.0	ug/L		09/23/14 07:49	09/24/14 21:51	50.0
Chlorobenzene	ND	1 00	ug/l		09/23/14 07:49	09/24/14 14:20	50.0
1.1.1.2-Tetrachloroethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
m.p-Xylene	2000	100	ug/L		09/23/14 07:49	09/24/14 21:51	50.0
o-Xvlene	794	50.0	ua/L		09/23/14 07:49	09/24/14 21:51	50.0
Styrene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Bromoform	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Isopropylbenzene	33.6	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
n-Propylbenzene	82.0	1.00	ug/l		09/23/14 07:49	09/24/14 14:20	50.0
1.1.2.2-Tetrachloroethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Bromobenzene	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
1.3.5-Trimethylbenzene	140	50.0	ua/L		09/23/14 07:49	09/24/14 21:51	50.0
2-Chlorotoluene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1.2.3-Trichloropropane	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
4-Chlorotoluene	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
tert-Butvlbenzene	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
1 2 4-Trimethylbenzene	033	50.0	ua/L		09/23/14 07:49	09/24/14 21:51	50.0
sec-Butylbenzene	545	50.0	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
p-lsopropyltoluene	11 2	1 00	ua/l		09/23/14 07:49	09/24/14 14:20	50.0
1,3-Dichlorobenzene	ND	1.00	ua/L		09/23/14 07:49	09/24/14 14:20	50.0
1.4-Dichlorobenzene	ND	1 00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
n-Butylbenzene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1.2-Dichlorobenzene	ND	1.00	ug/L ug/l		09/23/14 07:49	09/24/14 14:20	50.0
1.2-Dibromo-3-chloropropane	ND	5.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Hexachlorobutadiene		2.00	ug/L		09/23/14 07:49	09/24/14 14:20	50.0

Client Sample ID: SVMW-3-091814 Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

TestAmerica Job ID: SXI0130

Lab Sample ID: SXI0130-02 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Naphthalene	236		100		ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.1		71.2 - 143				09/23/14 07:49	09/24/14 14:20	50.0
1,2-dichloroethane-d4	95.5		70 - 140				09/23/14 07:49	09/24/14 14:20	50.0
Toluono de	101		74.1 - 135				09/23/14 07:49	09/24/14 14:20	50.0
TOILETIE-UD									

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	12700		5000		ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene			68.7 - 141				09/23/14 07:49	09/24/14 14:20	50.0

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	178		4.27	0.949	ug/L		09/23/14 08:20	09/25/14 11:46	50.0
2-Methylnaphthalene	48.4		4.27	0.997	ug/L		09/23/14 08:20	09/25/14 11:46	50.0
1-Methylnaphthalene	29.3		4.27	0.854	ug/L		09/23/14 08:20	09/25/14 11:46	50.0
Acenaphthylene	0.0411	J	0.0854	0.0123	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Acenaphthene	0.0730	J	0.0854	0.0152	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Fluorene	0.0657	J	0.0854	0.0142	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Phenanthrene	0.0749	J	0.0854	0.0342	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Anthracene	ND		0.0854	0.0123	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Fluoranthene	ND		0.0854	0.0304	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Pyrene	ND		0.0854	0.00854	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (a) anthracene	ND		0.0854	0.00949	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Chrysene	ND		0.0854	0.0104	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (b) fluoranthene	ND		0.0854	0.0104	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (k) fluoranthene	ND		0.0854	0.0142	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (a) pyrene	ND		0.0854	0.0161	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0854	0.0209	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Dibenzo (a,h) anthracene	ND		0.0854	0.0123	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (ghi) perylene	ND		0.0854	0.0199	ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	76.3		32.7 - 135				09/23/14 08:20	09/24/14 22:04	1.00
2-FBP	71.5		44.3 - 120				09/23/14 08:20	09/24/14 22:04	1.00
p-Terphenyl-d14	94.3		59.5 - 154				09/23/14 08:20	09/24/14 22:04	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	0.968	Q5	0.231		mg/L		09/24/14 08:30	10/03/14 12:57	1.00
Heavy Oil Range Hydrocarbons	ND		0.385		mg/L		09/24/14 08:30	10/03/14 12:57	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate o-Terphenyl	%Recovery 77.0	Qualifier	Limits				Prepared 09/24/14 08:30	Analyzed	Dil Fac 1.00

Client Sample ID: SVMW-3-091814

Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	0.815	Q5	0.231		mg/L		09/24/14 08:30	09/24/14 14:54	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.385		mg/L		09/24/14 08:30	09/24/14 14:54	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80.6		50 - 150				09/24/14 08:30	09/24/14 14:54	1.00
n-Triacontane-d62	102		50 - 150				09/24/14 08:30	09/24/14 14:54	1.00
- Method: EPA 300.0 - Anions by	EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	2.45		0.200		mg/L		09/19/14 11:00	09/19/14 14:05	1.00
Sulfate	15.4		0.500		mg/L		09/19/14 11:00	09/19/14 14:05	1.00
_ Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organia Carbon			1.00				00/25/14 12:00	00/05/44 40:00	

Client Sample ID: SVMW-1-091814

Date Collected: 09/18/14 15:03 Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C Analyte Result Qualifier Analyzed RL MDL Unit D Prepared Dil Fac Dichlorodifluoromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22.14 1.00 Chloromethane ND 3.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Vinyl chloride ND 0.200 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Bromomethane ND 5.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND ug/L 1.00 Chloroethane 1.00 09/23/14 07:49 09/24/14 22.14 Trichlorofluoromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 1,1-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 22.14 1.00 Dichlorofluoromethane ND 0.200 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Carbon disulfide ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Methylene chloride ND 10.0 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Acetone ND 25.0 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 trans-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Methyl tert-butyl ether ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 09/23/14 07:49 1,1,2-Trichlorotrifluoroethane ND 1 00 ug/L 09/24/14 22.14 1 00 1,1-Dichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 cis-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 2,2-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Bromochloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22.14 1 00 Chloroform ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 09/24/14 22:14 1.00 Carbon tetrachloride 1.00 ug/L 09/23/14 07:49 1,1,1-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 10.0 09/24/14 22:14 2-Butanone ug/L 09/23/14 07:49 1 00 Hexane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 1,1-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Benzene ND 0.200 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 tert-Butanol ND 5.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 1,2-Dichloroethane (EDC) 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 1.00 09/23/14 07:49 09/24/14 22:14 Trichloroethene ug/L 1.00

TestAmerica Spokane

Lab Sample ID: SXI0130-02 Matrix: Water

4 5 6

8

Lab Sample ID: SXI0130-03

Client Sample ID: SVMW-1-091814 Date Collected: 09/18/14 15:03 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-03 Matrix: Water

5

Method: EPA 8260C - Volatile	Organic Compou	nds by EP	A Method 82600	C (Continued)				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,2-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Bromodichloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
cis-1,3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Toluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
4-Methyl-2-pentanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
trans-1,3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Tetrachloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,1,2-Trichloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Dibromochloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,3-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,2-Dibromoethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
2-Hexanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Ethylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Chlorobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,1,1,2-Tetrachloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
m,p-Xylene	ND		2.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
o-Xvlene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
Styrene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
Bromoform	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
Isopropylbenzene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
n-Propylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1 1 2 2-Tetrachloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1 00
Bromobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1.3.5-Trimethylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
2-Chlorotoluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1 2 3-Trichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
4-Chlorotoluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
tert-Butylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1 2 4-Trimethylbenzene			1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
sec_Butylbenzene			1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
n-lsopropyltoluene			1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1 3-Dichlorobenzene			1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1.4 Dichlorobenzene			1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
n-Butylbenzene			1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
			1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1.2 Dibromo 2 obloropropono	ND		5.00	ug/L		09/23/14 07:49	09/24/14 22.14	1.00
			3.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
			2.00	ug/L		09/23/14 07:49	09/24/14 22.14	1.00
1,2,4-Thermological	ND		1.00	ug/L		09/23/14 07.49	09/24/14 22.14	1.00
			2.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,2,3-11101000012010	ND		1.00	ug/L		09/23/14 07.49	09/24/14 22.14	1.00
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.5		71.2 - 143			09/23/14 07:49	09/24/14 22:14	1.00
1,2-dichloroethane-d4	96.5		70 - 140			09/23/14 07:49	09/24/14 22:14	1.00
Toluene-d8	98.7		74.1 - 135			09/23/14 07:49	09/24/14 22:14	1.00
4-bromofluorobenzene	101		68.7 - 141			09/23/14 07:49	09/24/14 22:14	1.00

Client Sample ID: SVMW-1-091814 Date Collected: 09/18/14 15:03

Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-03 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	101		68.7 - 141				09/23/14 07:49	09/24/14 22:14	1.00
_ Method: EPA 8270D - Polynuci	ear Aromatic Co	mpounds	hy GC/MS with	Selected	Ion Monit	toring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.234	0.0520	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
2-Methylnaphthalene	ND		0.234	0.0546	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
1-Methylnaphthalene	ND		0.234	0.0468	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Acenaphthylene	ND		0.234	0.0338	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Acenaphthene	ND		0.234	0.0416	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Fluorene	ND		0.234	0.0390	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Phenanthrene	ND		0.234	0.0936	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Anthracene	ND		0.234	0.0338	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Fluoranthene	ND		0.234	0.0832	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Pyrene	ND		0.234	0.0234	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (a) anthracene	ND		0.234	0.0260	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Chrysene	ND		0.234	0.0286	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (b) fluoranthene	ND		0.234	0.0286	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (k) fluoranthene	ND		0.234	0.0390	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (a) pyrene	ND		0.234	0.0442	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Indeno (1,2,3-cd) pyrene	ND		0.234	0.0572	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Dibenzo (a,h) anthracene	ND		0.234	0.0338	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (ghi) perylene	ND		0.234	0.0546	ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5			32.7 - 135				09/23/14 08:20	09/24/14 22:29	1.00
2-FBP	88.7		44.3 - 120				09/23/14 08:20	09/24/14 22:29	1.00
p-Terphenyl-d14	92.5		59.5 - 154				09/23/14 08:20	09/24/14 22:29	1.00
- Method: EPA 300.0 - Anions by	EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	3.43		0.200		mg/L		09/19/14 11:00	09/19/14 14:20	1.00
Sulfate	28.6		0.500		mg/L		09/19/14 11:00	09/19/14 14:20	1.00

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile Organic Compounds by	EPA Method 8260C
---	------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00

TestAmerica Spokane

Matrix: Water

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-04 Matrix: Water

5

Methylene chindic ND 100 upt. 0022141 07.49 0242/141505 1.00 Natsone ND 2.50 upt. 0922141 07.49 0924/141505 1.00 Mathyle their ND 1.00 upt. 0922141 07.49 0924/141505 1.00 Anthyle their ND 1.00 upt. 0922141 07.49 0922/141505 1.00 1.1-Dichtorosthane ND 1.00 upt. 0922/141505 1.00 2.2-Dichtorosthane ND 1.00 upt. 0922/141505 1.00 1.1-Dichtorosthane ND 1.00 upt. 0922/141505 1.00 1.1-Dichtorosthane ND	Analyte	Result	Qualifier	RL	MDL Unit	D Prepa	ared	Analyzed	Dil Fac
Acutone ND 260 upl. 0082414 0749 002414 1605 1.00 Methy tert bulyi ether ND 1.00 upl. 0882314 0734 082341 1505 1.00 Methy tert bulyi ether ND 1.00 upl. 082341 1505 1.00 L1_2.2 Trichhorothlinocothane ND 1.00 upl. 082341 0734 082341 1505 1.00 L1_2.2 Trichhorothlinocothane ND 1.00 upl. 082341 0734 082441 1505 1.00 Las T-2.2 Dichhorothene ND 1.00 upl. 082341 0734 082441 1505 1.00 Demochoronthane ND 1.00 upl. 082341 0734 082441 1505 1.00 L1.1.Trichhorothane ND 1.00 upl. 082341 0734 082441 1505 1.00 L1.1.Trichhorothane ND 1.00 upl. 082341 0734 082441 1505 1.00 L1.1.Trichhorothane ND 1.00 upl. 082341 0734 082441 1505 1.00 L1.Dichorothane ND </td <td>Methylene chloride</td> <td>ND</td> <td></td> <td>10.0</td> <td>ug/L</td> <td>09/23/14</td> <td>4 07:49</td> <td>09/24/14 15:05</td> <td>1.00</td>	Methylene chloride	ND		10.0	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Inser ND 100 upt 002414 0740 002414 1505 1.00 1,12-Trinshoroshnae ND 100 upt 002314 0740 002414 1505 1.00 1,1-Deinkoroshnae ND 100 upt 002314 0740 002414 1505 1.00 2,2-Deinkoroshnae ND 100 upt 002314 0740 002414 1505 1.00 2,2-Deinkoroshnae ND 100 upt 002314 0740 002414 1505 1.00 2,2-Deinkoroshnae ND 1.00 upt 002314 0740 002414 1505 1.00 Chookorkor ND 1.00 upt 002314 0740 002414 1505 1.00 1,1-Inchroschnae ND 1.00 upt 002314 0740 002414 1505 1.00 1,1-Deinkoroshnae ND 1.00 upt 002314 0740 002414 1505 1.00 1,1-Deinkoroshnae ND 1.00 upt 002314 0740 002414 1505 1.00 1,1-Deinkoroshnae ND 1.00 <td< td=""><td>Acetone</td><td>ND</td><td></td><td>25.0</td><td>ug/L</td><td>09/23/14</td><td>4 07:49</td><td>09/24/14 15:05</td><td>1.00</td></td<>	Acetone	ND		25.0	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Methy tarbuly eher ND 100 ugl. 002/31/07/40 002/	trans-1,2-Dichloroethene	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
1,1,2.Tichicolationationa (ND 100 ug/L 0922/14 0749 0922/14 15.05 1.50 1,1-Dichicorethane ND 100 ug/L 0922/14 0749 0922/14 15.05 1.50 2,2-Dichicorethane ND 1.00 ug/L 0922/14 0749 0922/14 15.05 1.50 2,2-Dichicorethane ND 1.00 ug/L 0922/14 0749 0922/14 15.05 1.50 Dichorothan ND 1.00 ug/L 0922/14 0749 0922/14 15.05 1.50 Chronothan ND 1.00 ug/L 0922/14 0749 0922/14 15.05 1.50 2,2-Dichorothane ND 1.00 ug/L 0922/14 0749 0922/14 15.05 1.50 2,2-Dichorothane ND 1.00 ug/L 0922/14 0749 092/14 15.05 1.50 1,1-Dichorothane ND 1.00 ug/L 092/14 15.05 1.50 1.50 1,2-Dichorothane ND 1.00 ug/L 092/14 15.05 1.50 1.50 1,2-Dichorothane ND 1.00 ug/L 092/14 15.05 1.50 1.50 1,2-Dicho	Methyl tert-butyl ether	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
I.1-Dichloroethane ND 100 upL 002/314 07:40 092/414 1505 1.00 2.2.Dichloropropane ND 1.00 upL 092/314 07:40 092/41 41505 1.00 2.2.Dichloropropane ND 1.00 upL 092/314 07:40 092/41 41505 1.00 Carbon Harachine ND 1.00 upL 092/314 07:40 092/41 41505 1.00 Carbon Harachine ND 1.00 upL 092/314 07:40 092/41 41505 1.00 2.4uanone ND 1.00 upL 092/314 07:40 092/41 41505 1.00 1.1-Dichloropropane ND 1.00 upL 092/314 07:40 092/41 41505 1.00 1.1-Dichloropropane ND 1.00 upL 092/314 07:40 092/41 41505 1.00 1.2-Dichloropropane ND 1.00 upL 092/314 07:40 092/41 41505 1.00 1.2-Dichloropropane ND 1.00 upL 092/314 07:40 092/41 41505 1.00 1.2-Dichloropropane </td <td>1,1,2-Trichlorotrifluoroethane</td> <td>ND</td> <td></td> <td>1.00</td> <td>ug/L</td> <td>09/23/14</td> <td>4 07:49</td> <td>09/24/14 15:05</td> <td>1.00</td>	1,1,2-Trichlorotrifluoroethane	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
ob.1 100 upl. 092.214 07:49 092.414 15:05 100 2.2-Dickloropropane ND 1.00 upl. 092.314 07:49 092.414 15:05 1.00 Chioropropane ND 1.00 upl. 092.314 07:49 092.414 15:05 1.00 Chiorotetranetanoloxie ND 1.00 upl. 092.314 07:49 092.414 15:05 1.00 1.1.1-Frichorostetnane ND 1.00 upl. 092.314 07:49 092.414 15:05 1.00 Hexane ND 1.00 upl. 092.314 07:49 092.414 15:05 1.00 Hexane ND 1.00 upl. 092.314 07:49 092.414 15:05 1.00 1.1-Dichlorostenae ND 2.00 upl. 092.314 07:49 092.414 15:05 1.00 1.2-Dichlorostenae ND 1.00 upl. 092.314 07:49 092.414 15:05 1.00 1.2-Dichlorostenae ND 1.00 upl. 092.314 07:49 092.414 15:05 1.00 1.2-Dichlorostenae ND	1,1-Dichloroethane	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
2.2.Dictoropropane ND 1.00 ugl. 092214 07:49 0922414 15:05 1.00 Bromochicoromethane ND 1.00 ugl. 092214 07:49 092414 15:05 1.00 Carton tetrachioride ND 1.00 ugl. 092214 07:49 092414 15:05 1.00 1.1.Trichiorocethane ND 1.00 ugl. 092214 07:49 092414 15:05 1.00 2-Butanon ND 1.00 ugl. 092214 07:49 092414 15:05 1.00 2-Butanon ND 1.00 ugl. 0922314 07:49 092414 15:05 1.00 1.1-Dichioropropene ND 1.00 ugl. 0922314 07:49 092414 15:05 1.00 1.2-Dichioropropene ND 1.00 ugl. 0922314 07:49 092414 15:05 1.00 1.2-Dichioropropene ND 1.00 ugl. 0922314 07:49 092414 15:05 1.00 1.2-Dichioropropene ND 1.00 ugl. 0922314 07:49 092414 15:05 1.00 1.2-Dichioroprop	cis-1,2-Dichloroethene	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Bromeditionenthane ND 1.00 ugl. 0922114 0748 0922414 1505 1.00 Chloroform ND 1.00 ugl. 092314 0748 092414 1505 1.00 1,1,1-Trabforenthane ND 1.00 ugl. 092314 0748 092414 1505 1.00 2Bulanon ND 1.00 ugl. 092314 0748 092414 1505 1.00 Hexane ND 1.00 ugl. 092314 0748 092414 1505 1.00 Hexane ND 2.00 ugl. 092314 0748 092414 1505 1.00 L1-Dichloroptopene ND 2.00 ugl. 092314 0748 092414 1505 1.00 L2-Dichloroptopane ND 1.00 ugl. 092314 0748 092414 1505 1.00 L2-Dichloroptopane ND 1.00 ugl. 092314 0748 092414 1505 1.00 L2-Dichloroptopane ND 1.00 ugl. 092314 0748 092414 1505 1.00 L2-Dichloroptopane ND 1.00	2,2-Dichloropropane	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Chlorodom ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Carbon tetrachioride ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 2.Butanone ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 2.Butanone ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 1.1-Dichloropropene ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Benzene ND 0.200 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Lta-Dichlorophrane (EDC) ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Dichlorophrane (EDC) ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Dichlorophrane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 L2-Dichlorophrane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 L2-Dichlorop	Bromochloromethane	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Carbon tetrachloride ND 1.00 ugL 0.02/3/14 07.49 09/24/14 15.05 1.00 1.1,1-Trichloroethane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Hexane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Hexane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Benzene ND 0.200 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Lobidiorophane (EDC) ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Dibromonethane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Dibromonethane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Dibromonethane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Lobidiorophopane ND 1.00 ugL 09/23/14 07.49 09/24/14 15.05 1.00 Lobidionorinformethane<	Chloroform	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
1,1-Trichloroethane ND 1.00 ugL 09/23/14 07:49 09/24/14 15.05 1.00 28utanone ND 1.00 ugL 09/23/14 07:49 09/24/14 15.05 1.00 1.1-Dichloroptopene ND 1.00 ugL 09/23/14 07:49 09/24/14 15.05 1.00 Benzane ND 0.200 ugL 09/23/14 07:49 09/24/14 15.05 1.00 Benzane ND 0.200 ugL 09/23/14 07:49 09/24/14 15.05 1.00 1.2-Dichloroethane (EDC) ND 1.00 ugL 09/23/14 07:49 09/24/14 15.05 1.00 Dibromorethane ND 1.00 ugL 09/23/14 07:49 09/24/14 15.05 1.00 1.2-Dichloropropane ND 1.00 ugL 09/23/14 07:49 09/24/14 15.05 1.00 1.2-Dichloropropene ND 1.00 ugL 09/23/14 07:49 09/24/14 15.05 1.00 1.2-Dichloropropene ND 1.00 ugL 09/23/14 07:49 09/24/14 15.05 1.00 1.2-D	Carbon tetrachloride	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
2-Butanone ND 10.0 ug/L 098/23/14/749 092/24/14/505 1.00 Hexane ND 1.00 ug/L 092/21/14/749 092/21/14/505 1.00 Benzene ND 0.200 ug/L 092/21/14/749 092/21/14/15.05 1.00 Lobichorophane ND 5.00 ug/L 092/21/14/749	1,1,1-Trichloroethane	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Hexane ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00 1.1-Dichloropropene ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00 tert-Blancene ND 5.00 ug/L 0923/14 0749 0924/14 15.05 1.00 1.2-Dichloroethane (EDC) ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00 1.2-Dichloroethane (EDC) ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00 Dibromomethane ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00 Bromodichloromethane ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00 Cicl-13-Dichloropropene ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00 Tarta-Iso-Dichloropropene ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00 1.1.2-Trichloroethane ND 1.00 ug/L 0923/14 0749 0924/14 15.05 1.00	2-Butanone	ND		10.0	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
1.10/bichicropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Benzene ND 0.200 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Ler-Bulanol ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.2-Dichloroethane (EDC) ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Dibromonethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 12-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 12-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 13-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1-3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1-13-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00	Hexane	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Benzene ND 0.200 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 tert-Buland ND 5.00 ug/L 00/23/14 07.49 09/24/14 15:05 1.00 1.20ichloroethane (EDC) ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 Dbromomethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 Dbromomethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 1.20ichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 1.20ichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 1.20ichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 trans-1.3-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 1.12-Trichloroethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 <tr< td=""><td>1,1-Dichloropropene</td><td>ND</td><td></td><td>1.00</td><td>ug/L</td><td>09/23/14</td><td>4 07:49</td><td>09/24/14 15:05</td><td>1.00</td></tr<>	1,1-Dichloropropene	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
tert-Butanol ND 5.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Dichlorentane (EDC) ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Dibromomethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Dibromomethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 cis-1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Toluene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 thans-1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 thans-1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Dichromothane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 <	Benzene	ND		0.200	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
1.2-Dichloroethane (EDC) ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 L>Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Cis-13-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Cis-13-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Methyl-2-pentianone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 10-trans-horotethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 11.2-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.2-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00<	tert-Butanol	ND		5.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Tichloroethene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Dibromoethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1.2-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 cis-1.3-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Tolucene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Valence ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Valence ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Valence ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Valence ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1.2-Tichromoethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1.2-Trichrohorethane	1.2-Dichloroethane (EDC)	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Dibromomethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Bromodichloromethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 cs1-3.Dichloropropene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 4.Methyl-2.pentanone ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1.12-Tichloropropene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1.12-Tichloropthane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1.12-Tichloropthane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1.3-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1.2-Dichromothane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 </td <td>Trichloroethene</td> <td>ND</td> <td></td> <td>1.00</td> <td>ua/L</td> <td>09/23/14</td> <td>4 07:49</td> <td>09/24/14 15:05</td> <td>1.00</td>	Trichloroethene	ND		1.00	ua/L	09/23/14	4 07:49	09/24/14 15:05	1.00
1.2-Dichloropropane ND 1.00 ug'L 09/23/14 07:49 09/24/14 15:05 1.00 Bromodichloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 cis-1,3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Methyl-2-pentanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 11.3-Tichloropthene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 11.2-Tichloropthane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 11.2-Tichloropthane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.2-Tichloropthane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.2-Tichloropthane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.2-Dibromothane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.0	Dibromomethane	ND		1.00	ug/L	09/23/14	1 07:49	09/24/14 15:05	1.00
Bromodichloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 cis-13.Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Toluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 V-Methyl-2-pentanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 t/-Methyl-2-pentanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 trans-1.3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.12-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.2-Dichoropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.2-Dichoropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1.2-Dichoropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00<	1.2-Dichloropropane	ND		1.00	ua/L	09/23/14	1 07:49	09/24/14 15:05	1.00
cis-1,3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 Toluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 4-Methyl-2-pentanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 trans-1.3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 trans-1.3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 1.1.2-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 1.3-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 1.2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 1.2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.00 1.2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15.05 1.0	Bromodichloromethane	ND		1.00	ua/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Toluene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 4-Methyl-2-pentanone ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 trans-1,3-Dichloropropene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Tetrachloroethene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 Dibromochloromethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Tichloroethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Dibromoethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Dibromoethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Dibromoethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00 1,2-Dibromoethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15.05 1.00	cis-1.3-Dichloropropene	ND		1.00	ua/L	09/23/14	4 07:49	09/24/14 15:05	1.00
4-Methyl-2-pentanone ND 10.0 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 trans-1,3-Dichloropropene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 Tetrachloroethene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 1,1,2-Trichloroethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 Dibromochloromethane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00 cthylsenzene ND 1.00 ug/L 09/23/14 07.49 09/24/14 15:05 1.00	Toluene	ND		1.00	ug/L	09/23/14	1 07:49	09/24/14 15:05	1.00
trans-1,3-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Dibromochloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 np-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 <t< td=""><td>4-Methyl-2-pentanone</td><td>ND</td><td></td><td>10.0</td><td>ua/L</td><td>09/23/14</td><td>4 07:49</td><td>09/24/14 15:05</td><td>1.00</td></t<>	4-Methyl-2-pentanone	ND		10.0	ua/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Tetrachloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Dibromochloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 np-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 ox	trans-1.3-Dichloropropene	ND		1.00	ug/L	09/23/14	1 07:49	09/24/14 15:05	1.00
1,1,2-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Dibromochloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 or,Yelne ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Iso	Tetrachloroethene	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Dibromochloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Ethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 n.p-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 or-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 or-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 or-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene	1,1,2-Trichloroethane	ND		1.00	uq/L	09/23/14	4 07:49	09/24/14 15:05	1.00
1,3-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Ethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 n.p-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene	Dibromochloromethane	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
1.2-Dibromoethane ND 1.00 ug/L 09/23/14 07:49 09/23/14 07:49 09/24/14 15:05 1.00 2-Hexanone ND 10.0 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Ethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 np-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 styrene<	1,3-Dichloropropane	ND		1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Z-Hexanone ND 10.0 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Ethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 m.p-Xylene ND 2.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane	1.2-Dibromoethane	ND		1.00	ua/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Ethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Chlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 m,p-Xylene ND 2.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromoform ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenze	2-Hexanone	ND		10.0	ug/L	09/23/14	1 07:49	09/24/14 15:05	1.00
Chlorobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 m,p-Xylene ND 2.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromoform ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,	Ethylbenzene	ND		1.00	ua/L	09/23/14	1 07:49	09/24/14 15:05	1.00
1,1,1,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 m,p-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 o-Xylene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromoform ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 <td< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>1.00</td><td>ua/L</td><td>09/23/14</td><td>4 07:49</td><td>09/24/14 15:05</td><td>1.00</td></td<>	Chlorobenzene	ND		1.00	ua/L	09/23/14	4 07:49	09/24/14 15:05	1.00
m,p-XyleneND2.00ug/L09/23/14 07:4909/24/14 15:051.00o-XyleneND1.00ug/L09/23/14 07:4909/24/14 15:051.00StyreneND1.00ug/L09/23/14 07:4909/24/14 15:051.00BromoformND1.00ug/L09/23/14 07:4909/24/14 15:051.00IsopropylbenzeneND1.00ug/L09/23/14 07:4909/24/14 15:051.00IsopropylbenzeneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,1,2,2-TetrachloroethaneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,3,5-TrimethylbenzeneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,3,5-TrimethylbenzeneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,2,3-TrichloroptopaneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,2,3-TrichloroptopaneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,2,3-TrichloroptopaneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,2,4-TimethylbenzeneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,2,3-TrichloropropaneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,2,4-TimethylbenzeneND1.00ug/L09/23/14 07:4909/24/14 15:051.001,2,4-TimethylbenzeneND1.00u	1.1.1.2-Tetrachloroethane	ND		1.00	ua/L	09/23/14	4 07:49	09/24/14 15:05	1.00
ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromoform ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 n-Propylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 n-Propylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane <td>m.p-Xvlene</td> <td>ND</td> <td></td> <td>2.00</td> <td>ug/L</td> <td>09/23/14</td> <td>4 07:49</td> <td>09/24/14 15:05</td> <td>1.00</td>	m.p-Xvlene	ND		2.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Styrene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromoform ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 n-Propylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 0	o-Xvlene	ND		1.00	ua/L	09/23/14	4 07:49	09/24/14 15:05	1.00
Bromoform ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 n-Propylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 n-Propylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49	Styrene	ND		1 00	ug/l	09/23/14	4 07.49	09/24/14 15:05	1 00
Isopropylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 n-Propylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 J,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1 2.4-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 <td>Bromoform</td> <td>ND</td> <td></td> <td>1 00</td> <td>ug/L</td> <td>09/23/14</td> <td>4 07:49</td> <td>09/24/14 15:05</td> <td>1.00</td>	Bromoform	ND		1 00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
n-Propylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,1,2,2-Tetrachloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 Bromobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 12.4-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 12.4-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:4	Isopronylbenzene	ND		1.00	ug/L	09/23/14	1 07:49	09/24/14 15:05	1 00
Integrised bits ND Integrised bits Op/23/14 07:49 Op/23/14 07:49 Op/24/14 15:05 Integrised bits 1,1,2,2-Tetrachloroethane ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00 Bromobenzene ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00 2-Chlorotoluene ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00 tert-Butylbenzene ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00 12.4-Trimethylbenzene ND 1.00 ug/L Op/23/14 07:49 Op/24/14 15:05 1.00	n-Pronylbenzene	ND		1.00	ug/L	09/23/14	1 07:49	09/24/14 15:05	1.00
Bromobenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 tert-Butylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1 2 4-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00	1 1 2 2-Tetrachloroethane	ND		1.00	ug/L	09/23/14	4 07·49	09/24/14 15:05	1.00
1.00 ug/L 00/23/14 07:49 09/24/14 15:05 1.00 1,3,5-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 tert-Butylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 12.4-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00	Bromobenzene	ND		1.00	ug/L	09/23/14	4 07.49	09/24/14 15:05	1 00
2-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1,2,3-Trichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 4-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 tert-Butylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1 2 4-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00	1.3.5-Trimethylbenzene			1 00	ug/L	09/23/12	1 07:49	09/24/14 15:05	1 00
Instruction	2-Chlorotoluene			1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
A-Chlorotoluene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 tert-Butylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1 2 4-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00	1 2 3-Trichloropropane			1.00	ug/L	09/23/14	4 07:49	09/24/14 15:05	1.00
tert-Butylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00 1 2 4-Trimethylbenzene ND 1.00 ug/L 09/23/14 07:49 09/24/14 15:05 1.00	4-Chlorotoluene			1.00	ug/L	09/23/12	4 07:49	09/24/14 15:05	1.00
12 4.Trimethylhenzene ND 1.00 ug/L 00/23/14/07:40 00/24/14/15:05 1.00	tert-Butylbenzene			1.00	ug/L	00/23/1	1 07·40	09/24/14 15:05	1.00
	1 2 4-Trimethylbenzene			1.00	ug, E	09/23/14	4 07:49	09/24/14 15:05	1.00

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-04 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		71.2 - 143				09/23/14 07:49	09/24/14 15:05	1.00
1,2-dichloroethane-d4	89.4		70 - 140				09/23/14 07:49	09/24/14 15:05	1.00
Toluene-d8	104		74.1 - 135				09/23/14 07:49	09/24/14 15:05	1.00
4-bromofluorobenzene	104		68.7 - 141				09/23/14 07:49	09/24/14 15:05	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	104		68.7 - 141				09/23/14 07:49	09/24/14 15:05	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.0762	J	0.0863	0.0192	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
2-Methylnaphthalene	ND		0.0863	0.0201	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
1-Methylnaphthalene	0.0508	J	0.0863	0.0173	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Acenaphthylene	ND		0.0863	0.0125	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Acenaphthene	ND		0.0863	0.0153	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Fluorene	ND		0.0863	0.0144	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Phenanthrene	ND		0.0863	0.0345	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Anthracene	ND		0.0863	0.0125	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Fluoranthene	ND		0.0863	0.0307	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Pyrene	ND		0.0863	0.00863	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (a) anthracene	ND		0.0863	0.00958	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Chrysene	ND		0.0863	0.0105	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (b) fluoranthene	ND		0.0863	0.0105	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (k) fluoranthene	ND		0.0863	0.0144	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (a) pyrene	ND		0.0863	0.0163	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0863	0.0211	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Dibenzo (a,h) anthracene	ND		0.0863	0.0125	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (ghi) perylene	ND		0.0863	0.0201	ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	96.5		32.7 - 135				09/23/14 08:20	09/24/14 23:32	1.00
2-FBP	90.8		44.3 - 120				09/23/14 08:20	09/24/14 23:32	1.00
p-Terphenyl-d14	96.2		59.5 - 154				09/23/14 08:20	09/24/14 23:32	1.00

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00

Date Received: 09/19/14 09:50

Method: NWTPH-Dx - Semivolatil	e Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.243		mg/L		09/24/14 08:30	09/24/14 15:18	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.404		mg/L		09/24/14 08:30	09/24/14 15:18	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95.0		50 - 150				09/24/14 08:30	09/24/14 15:18	1.00
n-Triacontane-d62	105		50 - 150				09/24/14 08:30	09/24/14 15:18	1.00
Method: EPA 300.0 - Anions by E Analyte	PA Method 30 Result	0.0 Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	6.18		0.200		mg/L		09/19/14 11:00	09/19/14 14:34	1.00
Sulfate	32.0		0.500		mg/L		09/19/14 11:00	09/19/14 14:34	1.00
Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2.34		1.00		mg/L		09/25/14 12:00	09/25/14 12:00	1

TestAmerica Job ID: SXI0130

Lab Sample ID: SXI0130-04 Matrix: Water

5

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14I0134_P

6

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID:	1410134-BLK1
Matrix: Water	

Analysis Batch: 14I0134								Prep Batch: 14I0134_P	
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Methyl tert-butyl ether	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloroform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Carbon tetrachloride	ND		1.00		ua/L		09/23/14 07:49	09/24/14 09:49	1.00
1.1.1-Trichloroethane	ND		1.00		ua/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Butanone	ND		10.0		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
Hexane	ND		1 00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
1.1-Dichloropropene	ND		1.00		ua/L		09/23/14 07:49	09/24/14 09:49	1.00
Benzene	ND		0 200		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
tert-Butanol	ND		5.00		ua/l		09/23/14 07:49	09/24/14 09:49	1.00
1 2-Dichloroethane (EDC)	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Trichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dibromomethane			1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1 2-Dichloropropane			1.00		ug/L		00/23/14 07:49	09/24/14 09:49	1.00
Rromodichloromothane			1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
			1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
			1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1 Method 2 pentanena			1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
			10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
			1.00		ug/L		09/23/14 07.49	09/24/14 09:49	1.00
1, 1, 2- i richioroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3-Dicnioropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dibromoethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Hexanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Ethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
m,p-Xylene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
o-Xylene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Styrene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromoform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BLK1							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Typ	e: Total
Analysis Batch: 14I0134								Prep Batch: 14	10134_P
-	Blank	Blank						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
n-Propylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3,5-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,3-Trichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
4-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
tert-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	100		74.0 4.40				00/00/// 07 /0	00/01/11/00 10	1 00

Surrogate	%Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac
Dibromofluoromethane	100		71.2 - 143	09/23/1	4 07:49	09/24/14 09:49	1.00
1,2-dichloroethane-d4	91.0		70 - 140	09/23/1	4 07:49	09/24/14 09:49	1.00
Toluene-d8	105		74.1 - 135	09/23/1	4 07:49	09/24/14 09:49	1.00
4-bromofluorobenzene	103		68.7 - 141	09/23/1	4 07:49	09/24/14 09:49	1.00

Lab Sample ID: 14I0134-BS1 Matrix: Water Analysis Batch: 14I0134

Analysis Batch: 14I0134							Prep Batch: 14I0134_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	10.0	11.0		ug/L		110	60 - 140
Chloromethane	10.0	10.2		ug/L		102	60 - 140
Vinyl chloride	10.0	10.4		ug/L		104	60 - 140
Bromomethane	10.0	10.9		ug/L		109	60 - 140
Chloroethane	10.0	10.2		ug/L		102	60 - 140
Trichlorofluoromethane	10.0	9.91		ug/L		99.1	60 - 140
1,1-Dichloroethene	10.0	9.47		ug/L		94.7	78.1 - 155
Dichlorofluoromethane	10.0	9.75		ug/L		97.5	60 - 140
Carbon disulfide	10.0	9.27		ug/L		92.7	60 - 140
Methylene chloride	10.0	11.2		ug/L		112	60 - 140
Acetone	50.0	57.8		ug/L		116	60 - 140
trans-1,2-Dichloroethene	10.0	9.25		ug/L		92.5	60 - 140
Methyl tert-butyl ether	10.0	9.70		ug/L		97.0	80.1 - 128
1,1,2-Trichlorotrifluoroethane	10.0	10.1		ug/L		101	60 - 140
1,1-Dichloroethane	10.0	10.1		ug/L		101	60 - 140

TestAmerica Spokane

Client Sample ID: Lab Control Sample

Prep Type: Total

6

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BS1 Matrix: Water					Client Samp	le ID: Lab Con Prep	trol Sample Type: Total
Analysis Batch: 14I0134						Prep Batch	: 14I0134_P
	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
cis-1,2-Dichloroethene	10.0	10.1		ug/L	101	60 - 140	
2,2-Dichloropropane	10.0	9.88		ug/L	98.8	60 - 140	
Bromochloromethane	10.0	10.2		ug/L	102	60 - 140	
Chloroform	10.0	9.55		ug/L	95.5	60 - 140	
Carbon tetrachloride	10.0	9.96		ug/L	99.6	60 - 140	
1,1,1-Trichloroethane	10.0	9.54		ug/L	95.4	60 - 140	
2-Butanone	50.0	50.3		ug/L	101	60 - 140	
Hexane	10.0	9.04		ug/L	90.4	60 - 140	
1,1-Dichloropropene	10.0	9.95		ug/L	99.5	60 - 140	
Benzene	10.0	9.38		ug/L	93.8	80 - 122	
tert-Butanol	100	79.8		ug/L	79.8	60 - 140	
1,2-Dichloroethane (EDC)	10.0	10.1		ug/L	101	63.9 - 144	
Trichloroethene	10.0	10.1		ug/L	101	74.8 - 123	
Dibromomethane	10.0	9.80		ug/L	98.0	60 - 140	
1,2-Dichloropropane	10.0	10.2		ug/L	102	60 - 140	
Bromodichloromethane	10.0	8.94		ug/L	89.4	60 - 140	
cis-1,3-Dichloropropene	10.0	9.51		ug/L	95.1	60 - 140	
Toluene	10.0	9.53		ug/L	95.3	80 - 123	
4-Methyl-2-pentanone	50.0	47.0		ug/L	94.0	60 - 140	
trans-1,3-Dichloropropene	10.0	9.55		ug/L	95.5	60 ₋ 140	
Tetrachloroethene	10.0	10.4		ug/L	104	60 - 140	
1,1,2-Trichloroethane	10.0	9.96		ug/L	99.6	60 ₋ 140	
Dibromochloromethane	10.0	9.62		ug/L	96.2	60 ₋ 140	
1.3-Dichloropropane	10.0	9.82		ua/L	98.2	60 ₋ 140	
1.2-Dibromoethane	10.0	10.2		ua/L	102	70 ₋ 130	
2-Hexanone	50.0	49.8		ua/L	99.6	60 - 140	
Ethylbenzene	10.0	9.43		ua/L	94.3	80 - 120	
Chlorobenzene	10.0	9.63		ua/L	96.3	79.2 - 125	
1.1.1.2-Tetrachloroethane	10.0	9.52		ua/L	95.2	60 - 140	
m.p-Xvlene	10.0	9.50		ua/L	95.0	80 - 120	
o-Xvlene	10.0	9 48		ug/l	94.8	80 - 120	
Styrene	10.0	9.95		ua/L	99.5	60 - 140	
Bromoform	10.0	9.38		ua/L	93.8	60 - 140	
Isopropylbenzene	10.0	9 16		ug/l	91.6	60 - 140	
n-Propylbenzene	10.0	9.27		ug/L	92.7	60 - 140	
1 1 2 2-Tetrachloroethane	10.0	9.86		ug/l	98.6	60 - 140	
Bromobenzene	10.0	10.3		ug/L	103	60 140	
1 3 5-Trimethylbenzene	10.0	9 33		ug/L	93.3	60 140	
2-Chlorotoluene	10.0	0.00		ug/L	96.9	60 140	
123-Trichloronronane	10.0	11.0			110	60 140	
4-Chlorotoluene	10.0	0.61		ug/L	06 1	60 140	
+ Childrone	10.0	9.01 0.95		ug/L	90.1 00 E	60 140	
12/1-Trimethylbenzene	10.0	9.00 0 EF		ug/L	90.J	60 140	
	10.0	9.55		ug/L	95.5	00 - 140 60 - 140	
	10.0	9.38		ug/L	93.8	00 - 140 60 - 140	
	10.0	9.19		ug/L	91.9	00 - 140	
	10.0	9.61		ug/L	96.1	60 - 140	
	10.0	9.55		ug/L	95.5	00 - 140	
n-Butyidenzene	10.0	8.92		ug/L	89.2	60 <u>-</u> 140	

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BS1 Matrix: Water Analysis Batch: 14I0134							Client	t Sampl	e ID: Lab Control Sample Prep Type: Total Prep Batch: 14/0134 P
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichlorobenzene			10.0	9.72		ug/L		97.2	60 - 140
1,2-Dibromo-3-chloropropane			10.0	9.98		ug/L		99.8	60 - 140
Hexachlorobutadiene			10.0	9.82		ug/L		98.2	60 - 140
1,2,4-Trichlorobenzene			10.0	9.68		ug/L		96.8	60 - 140
Naphthalene			10.0	9.65		ug/L		96.5	62.8 - 132
1,2,3-Trichlorobenzene			10.0	9.98		ug/L		99.8	60 - 140
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Dibromofluoromethane	98.9		71.2 - 143						
1,2-dichloroethane-d4	95.4		70 - 140						
Toluene-d8	101		74.1 - 135						
4-bromofluorobenzene	101		68.7 - 141						

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 14I0134-BLK1 Matrix: Water												Client Sa	ample ID: M Prer	ethoo Type	l Blank e: Total
Analysis Batch: 14I0134													Prep Batc	h: 141	0134 P
	Bla	nk	Blank												
Analyte	Res	ult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyze	d	Dil Fac
Gasoline Range Hydrocarbons	I	ND			100			ug/L			09/2	3/14 07:49	09/24/14 09	9:49	1.00
	Bla	nk	Blank												
Surrogate	%Recove	ery	Qualifier	Lim	its						P	repared	Analyze	d	Dil Fac
4-bromofluorobenzene	1	03		68.7 -	141						09/2	3/14 07:49	09/24/14 0	9:49	1.00
Lab Sample ID: 14I0134-BS2										С	lient	Sample	ID: Lab Co	ntrol S	Sample
Matrix: Water													Prep	о Туре	: Total
Analysis Batch: 14I0134				Spike		LCS	LCS						Prep Batcl %Rec.	h: 141	0134_P
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Gasoline Range Hydrocarbons				1000		875			ug/L			87.5	80 - 120		
	LCS L	.cs													
Surrogate	%Recovery 0	Qual	ifier	Limits											
4-bromofluorobenzene	97.3			68.7 - 141	-										

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 14l0135-BLK1 Matrix: Water Analysis Batch: 14l0135	Blank	Blank					Client Sa	mple ID: Metho Prep Typ Prep Batch: 14	d Blank e: Total I0135_P
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.100	0.0200	ug/L		09/23/14 08:20	09/24/14 18:22	1.00
2-Methylnaphthalene	ND		0.100	0.0210	ug/L		09/23/14 08:20	09/24/14 18:22	1.00
1-Methylnaphthalene	ND		0.100	0.0180	ug/L		09/23/14 08:20	09/24/14 18:22	1.00
Acenaphthylene	ND		0.100	0.0130	ug/L		09/23/14 08:20	09/24/14 18:22	1.00
Acenaphthene	ND		0.100	0.0160	ug/L		09/23/14 08:20	09/24/14 18:22	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Analysis Batch: 1410135 Blank Blank Blank Dill Fac Analysis Result Qualifier RL MDL Unit D Prepared Analyzed Dill Fac Fluorene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Phenanthrene ND 0.100 0.0360 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Anthracene ND 0.100 0.03020 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Fluoranthene ND 0.100 0.03020 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.00900 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.00900 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) anthracene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Fluorene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Phenanthrene ND 0.100 0.0360 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Anthracene ND 0.100 0.0330 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Fluoranthene ND 0.100 0.0320 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.0320 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.0000 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) anthracene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Analyze Result dualmer RL MDL Unit D Prepared Analyzed Dil Pac Fluorene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Phenanthrene ND 0.100 0.0360 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Anthracene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Fluoranthene ND 0.100 0.0320 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.00900 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) anthracene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Chrysene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Filtorene ND 0.100 0.0100 0.0100 0.0100 0.9/23/14 08:20 09/24/14 18:22 1.00 Phenanthrene ND 0.100 0.0360 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Anthracene ND 0.100 0.0360 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Fluoranthene ND 0.100 0.0320 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.0320 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) anthracene ND 0.100 0.0090 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Chrysene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0100 0.0120 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.0120 09
Phenanthrene ND 0.100 0.0360 ug/L 09/23/14 08/20 09/24/14 18:22 1.00 Anthracene ND 0.100 0.0130 ug/L 09/23/14 08/20 09/24/14 18:22 1.00 Fluoranthene ND 0.100 0.0320 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.00900 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) anthracene ND 0.100 0.00900 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Chrysene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0100 0.012 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) pyrene ND 0.100 0.0170 <td< td=""></td<>
Anthracene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Fluoranthene ND 0.100 0.0320 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.00900 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) anthracene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Chrysene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.0220 ug/L
Filtoranthene ND 0.100 0.0320 Ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Pyrene ND 0.100 0.00900 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) anthracene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Chrysene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Dibenzo (a,h) anthracene ND 0.100 0.0220
Pyrene ND 0.100 0.00900 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) anthracene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Chrysene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) pyrene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Dibenzo (a,h) anthracene ND 0.100 0.0220 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (ghi) perylene ND 0.100 0.0220 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Benzo (a) anthracene ND 0.100 0.0100 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Chrysene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) pyrene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Dibenzo (a,h) anthracene ND 0.100 0.0220 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (ghi) perylene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Chrysene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (b) fluoranthene ND 0.100 0.010 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Dibenzo (a,h) anthracene ND 0.100 0.0220 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (ghi) perylene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Benzo (b) fluoranthene ND 0.100 0.0110 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (k) fluoranthene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.0220 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Dibenzo (a,h) anthracene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (ghi) perylene ND 0.100 0.0210 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Benzo (k) fluoranthene ND 0.100 0.0150 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (a) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.0220 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Dibenzo (a,h) anthracene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (ghi) perylene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Benzo (a) pyrene ND 0.100 0.0170 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Indeno (1,2,3-cd) pyrene ND 0.100 0.020 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Dibenzo (a,h) anthracene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (ghi) perylene ND 0.100 0.0210 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Indeno (1,2,3-cd) pyrene ND 0.100 0.0220 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Dibenzo (a,h) anthracene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (ghi) perylene ND 0.100 0.0210 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Dibenzo (a,h) anthracene ND 0.100 0.0130 ug/L 09/23/14 08:20 09/24/14 18:22 1.00 Benzo (ghi) perylene ND 0.100 0.0210 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Benzo (ghi) perylene ND 0.100 0.0210 ug/L 09/23/14 08:20 09/24/14 18:22 1.00
Blank Blank
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac
Nitrobenzene-d5 102 32.7 - 135 09/23/14 08:20 09/24/14 18:22 1.00
2-FBP 97.3 44.3 - 120 09/23/14 08:20 09/24/14 18:22 1.00
p-Terphenyl-d14 94.5 59.5 - 154 09/23/14 08:20 09/24/14 18:22 1.00
- Lab Sample ID: 14I0135-BS1 Client Sample ID: Lab Control Sample
Matrix: Water Prep Type: Total
Analysis Batch: 14I0135 Prep Batch: 14I0135 P
Spike LCS LCS %Rec.
Analyte Added Result Qualifier Unit D %Rec Limits
Naphthalene 1.60 1.38 ug/L 86.2 27.8 - 143
Fluorene 1.60 1.49 ug/L 92.9 59.2 - 120
Chrysene 1.60 1.36 ug/L 85.0 69.1 - 122
Indeno (1,2,3-cd) pyrene 1.60 1.46 ug/L 91.1 56.1 - 135
LUS LUS Surragata V Papavary Qualifier Limita
Surroyate 70Recovery Qualifier Limits Nitrobanzana dE 95.9 22.7 125
Initializational 00.0 32.7 - 130 0 EDD 94.4 44.2 400
2-rDr 01.1 44.3 - 120

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Lab Sample ID: 14I0145-BLK2 Matrix: Water Analysis Batch: 14I0145	Blank	Blank					Client Sa	mple ID: Metho Prep Typ Prep Batch: 14	d Blank e: Total l0145_P
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.240		mg/L		09/24/14 08:30	10/03/14 12:10	1.00
Heavy Oil Range Hydrocarbons	ND		0.400		mg/L		09/24/14 08:30	10/03/14 12:10	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96.5		50 - 150				09/24/14 08:30	10/03/14 12:10	1.00

o-Terphenyl

n-Triacontane-d62

2 3 4 5 6 7

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

(Continued)										
Lab Sample ID: 14I0145-BLK2								Client Sa	ample ID: Metho	d Blank
Matrix: Water									Prep Typ	be: Total
Analysis Batch: 14I0145									Prep Batch: 14	10145_P
	Blanl	k Blank								
Surrogate	%Recovery	/ Qualifier	Limits				Р	repared	Analyzed	Dil Fac
n-Triacontane-d62	103	3	50 - 150				09/2	4/14 08:30	10/03/14 12:10	1.00
Lab Sample ID: 14I0145-BS2							Client	Sample	ID: Lab Control	Sample
Matrix: Water									Prep Typ	be: Total
Analysis Batch: 14I0145									Prep Batch: 14	I0145_P
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons			3.20	2.61		mg/L		81.6	50 _ 150	
	LCS LC	s								
Surrogate	%Recovery Qu	alifier	Limits							
o-Terphenyl	93.2		50 - 150							
n-Triacontane-d62	102		50 - 150							

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

97.6

109

Lab Sample ID: 14I0145-BLK1											Client Sa	ample ID: N Pro	Metho	d Blank
Analysis Batch: 14I0145												Prep Bato	:h: 14	0145 P
·	в	lank	Blank											
Analyte	Re	sult	Qualifier	RL		MDL	Unit		D	Р	repared	Analyze	ed	Dil Fac
Diesel Range Hydrocarbons		ND		0.240			mg/L		_	09/2	4/14 08:30	09/24/14 1	3:22	1.00
Heavy Oil Range Hydrocarbons		ND	С	0.400			mg/L			09/2	4/14 08:30	09/24/14 1	3:22	1.00
	В	lank	Blank											
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyz	ed	Dil Fac
o-Terphenyl		95.8		50 - 150						09/2	4/14 08:30	09/24/14	13:22	1.00
n-Triacontane-d62		107		50 - 150						09/2	24/14 08:30	09/24/14 1	13:22	1.00
Lab Sample ID: 14I0145-BS1									С	lient	Sample	ID: Lab Co	ontrol	Sample
Matrix: Water												Pre	р Тур	e: Total
Analysis Batch: 14I0145				Spiko	109	1.09						Prep Bato	:h: 14l	0145_P
Amaluta				Spike	Decult	203	lifian	11		-	% Dee	%Rec.		
					Result	Qua	Inter	Unit			%Rec	Limits		
Diesel Range Hydrocarbons				3.20	2.50			mg/L			78.0	50 - 150		
	LCS	LCS												
Surrogate	%Recoverv	Qua	lifier	Limits										

50 - 150 50 - 150

Total Organic Carbon

Method: EPA 300.0 - Anions by EPA Method 300.0

Lab Sample ID: 14I0126-BLK1												Client Sa	ample ID:	Method	Blank
Matrix: Water													Pi	rep Туре	: Total
Analysis Batch: 14I0126													Prep Ba	tch: 1410	126 P
-	B	Blank I	Blank												
Analyte	R	esult (Qualifier		RL		MDL	Unit		D	P	repared	Analy	/zed	Dil Fac
Nitrate-Nitrogen		ND			0.200			mg/L			09/1	9/14 10:47	09/19/14	4 15:03	1.00
Sulfate		ND			0.500			mg/L			09/1	9/14 10:47	09/19/14	4 15:03	1.00
Lab Sample ID: 14I0126-BS1										С	lient	Sample	ID: Lab C	Control S	ample
Matrix: Water													P	rep Type	: Total
Analysis Batch: 14I0126													Prep Ba	tch: 1410	126_P
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Nitrate-Nitrogen				5.00		5.02			mg/L			100	90 _ 110		
Sulfate				12.5		12.4			mg/L			99.0	90 - 110		
												O !!			•
Lab Sample ID: 14I0126-MS1												Client	Sample II	D: Matrix	Spike
Matrix: Water													PI	гер Туре	: Total
Analysis Batch: 14I0126	0	0		0	M - 4-1				_				Prep Ba	tch: 1410	0126_P
Amelute	Sample	Samp	le	Бріке Аddad	watr	іх эріке	Matr	іх эрік ібіол	e Unit		~		%Rec.		
Nitrato Nitragon	0.740	Quain	ier	Added		Result	Qua	mer							
Sulfate	0.740			12.5		0.09			mg/L			107	00 - 120 90 - 120		
	9.92			12.5		23.4			iiig/L			100	00 - 120		
Lab Sample ID: 14I0126-MSD1										Clie	nt Sa	ample ID:	Matrix S	spike Du	plicate
Matrix: Water										••			P	ren Tyne	: Total
Analysis Batch: 14I0126													Pren Ba	tch: 1410	126 P
	Sample	Samp	le	Spike	itrix Sp	ike Dup	Matr	ix Spik	e Dur				%Rec.		RPD
Analyte	Result	Qualif	ier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Nitrate-Nitrogen	0.740			5.00		6.12			mg/L			108	80 - 120	0.360	12.1
Sulfate	9.92			12.5		23.5			mg/L			108	80 - 120	0.282	10
Lab Sample ID: 14I0126-DUP1												Clie	nt Sampl	e ID: Du	plicate
Matrix: Water													P	rep Type	: Total
Analysis Batch: 14I0126													Prep Ba	tch: 1410	126_P
	Sample	Samp	le		D	uplicate	Dupl	icate							RPD
Analyte	Result	Qualif	ier			Result	Qual	ifier	Unit		D			RPD	Limit
Nitrate-Nitrogen	0.740					0.750			mg/L					1.34	13.1
Sulfate	9.92					9.87			mg/L					0.505	15.7
Method: SM 5310C - TOC															
Method: SM 5310C - TOC												Client S	ample ID	: Method	Blank
Method: SM 5310C - TOC – Lab Sample ID: 193629-1 Matrix: Water												Client Sa	ample ID: Pi	: Method	Blank : Total
Method: SM 5310C - TOC Lab Sample ID: 193629-1 Matrix: Water Analysis Batch: 193629												Client Sa	ample ID: Pi Prep Ba	: Method rep Type atch: 193	Blank : Total 8629 P
Method: SM 5310C - TOC Lab Sample ID: 193629-1 Matrix: Water Analysis Batch: 193629		3lank I	Blank									Client Sa	ample ID: Pi Prep Ba	: Method rep Type atch: 193	Blank : Total 8629_P

09/25/14 12:00

1.00

mg/L

09/25/14 12:00

ND

1

Lab Sample ID: 193629-4

Analysis Batch: 193629

Matrix: Water

Method: SM 5310C - TOC (Continued)

Prep Type: Total

Prep Batch: 193629_P

Client Sample ID: Lab Control Sample

- 6 up 7 tal P P 8 PD <u>mit 20</u> 10

	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Organic Carbon	10.0	9.803		mg/L		98	90 - 110		
Lab Sample ID: 193629-5				Clie	nt Sam	ple ID: I	Lab Contro	I Sampl	e Dup
Matrix: Water							Pre	p Type:	Total
Analysis Batch: 193629							Prep Bat	ch: 193	629_P
-	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon	10.0	9.874		mg/L		99	90 - 110	1	20

Lab Sample ID: 620471D Matrix: Water Analysis Batch: 193629 Sam	ole Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Duş	Client Sa	ample IE	D: Matrix Sp Pre Prep Bat %Rec.	oike Dup ep Type tch: 193	olicate Total 629_P RPD
Analyte Re:	ult Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon 4	39	20.0	21.62		mg/L		86	75 ₋ 122	1	20
Lab Sample ID: 620471S							Client	Sample ID	: Matrix	Spike
Matrix: Water								Pre	ep Type	Total
Analysis Batch: 193629								Prep Ba	tch: 193	629_P
Sam	ole Sample	Spike	Matrix Spike	Matrix Spil	ke			%Rec.		
Analyte Re:	ult Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Organic Carbon 4	39	20.0	21.94		mg/L		88	75 - 122		

Lab Sample ID: SXI0130-01 Matrix: Water

Date Collected: 09/18/14 14:38 Date Received: 09/19/14 09:50

Client Sample ID: SVMW-2-091814

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 13:57	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 13:57	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.952	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 21:39	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.997	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 14:30	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 11:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 13:51	CBW	TAL SPK
Total	Analysis	SM 5310C		1	193629	09/25/14 12:00	JKF	TAL NSH
Total	Prep	NA			193629_P	09/25/14 12:00		TAL NSH

Client Sample ID: SVMW-3-091814 Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		50.0	1410134	09/24/14 14:20	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		50.0	1410134	09/24/14 21:51	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		50.0	1410134	09/24/14 14:20	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.949	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 22:04	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.949	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		50.0	1410135	09/25/14 11:46	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.962	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 14:54	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.962	14I0145_P	09/24/14 08:30	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	10/03/14 12:57	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 11:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 14:05	CBW	TAL SPK

Client Sample ID: SVMW-1-091814 Date Collected: 09/18/14 15:03 Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 22:14	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK

Lab Sample ID: SXI0130-02

Matrix: Water

Lab Sample ID: SXI0130-03

Matrix: Water

Client Sample ID: SVMW-1-091814

Lab Sample ID: SXI0130-03 Matrix: Water

Date Collected: 09/18/14 15:03 Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 22:14	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		2.60	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 22:29	ZZZ	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 11:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 14:20	CBW	TAL SPK

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 15:05	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 15:05	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.958	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 23:32	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		1.01	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 15:18	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 11:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 14:34	CBW	TAL SPK

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Lab Sample ID: SXI0130-04

Matrix: Water

8
9

TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	A2LA		NA: NELAP & A2LA	12-31-15
A2LA	ISO/IEC 17025		0453.07	12-31-15
Alaska (UST)	State Program	10	UST-087	10-31-15
Arizona	State Program	9	AZ0473	05-05-15
Arkansas DEQ	State Program	6	88-0737	04-25-15
California	NELAP	9	1168CA	10-31-14
Connecticut	State Program	1	PH-0220	12-31-15
Florida	NELAP	4	E87358	06-30-15
Illinois	NELAP	5	200010	12-09-15
lowa	State Program	7	131	04-01-16
Kansas	NELAP	7	E-10229	03-31-15
Kentucky (UST)	State Program	4	19	06-30-15
Kentucky (WW)	State Program	4	90038	12-31-15
Louisiana	NELAP	6	30613	06-30-15
Maryland	State Program	3	316	03-31-15
Massachusetts	State Program	1	M-TN032	06-30-15
Minnesota	NELAP	5	047-999-345	12-31-15
Mississippi	State Program	4	N/A	06-30-15
Montana (UST)	State Program	8	NA	02-24-20
Nevada	State Program	9	TN00032	07-31-15
New Hampshire	NELAP	1	2963	10-09-15
New Jersey	NELAP	2	TN965	06-30-15
New York	NELAP	2	11342	03-31-15
North Carolina (WW/SW)	State Program	4	387	12-31-15
North Dakota	State Program	8	R-146	06-30-15
Ohio VAP	State Program	5	CL0033	10-16-15
Oklahoma	State Program	6	9412	08-31-15
Oregon	NELAP	10	TN200001	04-29-15
Pennsylvania	NELAP	3	68-00585	06-30-15
Rhode Island	State Program	1	LAO00268	12-30-14
South Carolina	State Program	4	84009 (001)	02-28-15
South Carolina (DW)	State Program	4	84009 (002)	02-23-17
Tennessee	State Program	4	2008	02-23-17
Texas	NELAP	6	T104704077	08-31-15
USDA	Federal		S-48469	10-30-16
Utah	NELAP	8	TN00032	07-31-15
Virginia	NELAP	3	460152	06-14-15
Washington	State Program	10	C789	07-19-15
West Virginia DEP	State Program	3	219	02-28-15
Wisconsin	State Program	5	998020430	08-31-15
Wyoming (UST)	A2LA	8	453.07	12-31-15

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

TestAmerica Job ID: SXI0130

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup		TAL SPK
EPA 300.0	Anions by EPA Method 300.0		TAL SPK
SM 5310C	TOC		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 X 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

					C	HAIN	OF	CUST	ODY	REP	ORT					Work O	rder #:	XID120	
alent Groengineers				INVOIC	E TO:									TURNAROUND REQUEST					
PEPOPTTO JTZ SUCALSE	<u></u>															in Business Days *			
ADDRESS: 523 E See	and Ave										·						Organic &	Inorganic Analyses	
Goo Kare w	A 99101	.														STD.	Petroleum	Hydrocarbon Analyses	
PHONE: 509 - 363-3125	FAX: 509-30	63-3126				P.O. NU	MBER:		CCEDVAT	TVE						X		$\overline{3}$	<u>م</u>
PROJECT NAME: Three Jige	c 0(1 - Sau	ent Vjest			T ·			110	SERVAL					<u> </u>		STD			<u> </u>
PROJECT NUMBER: 050-1- 6	01-00							REQUE	I STED AN	IALYSES		<u> </u>	I	ـــلـــ . 		0	THER	Specify:	
SAMPLED BY: しいア			-Hc		PH-		J	ake	re F						-	* Turnaround I	Requests les	s than standard may incu	r Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAM DATE	PLING /TIME	NUN CAX	Včcs	TWV DX	1g	HYZ	した	Sulfa						Í	MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
1 SUMW - 2-091814	9/18/14	1438	×	¥	7.	×	*	×	r					ě.		زرز	7		
, SUMW - 3-091814	9/18/14	1356	¥	¥	r	7	×	x	7							ω	7		
SUMW-1-091814	9/18/14	1503	×				X									ω	3		
4 SVMW - DUP- 091814	9/19/14	6800	F	¥	¥	4	¥	¥	x		-					υ	T		
5												<u> </u>							
6								 			=		 						
7						_													
8																		<u> </u>	
2																			
X		<u> </u>	1																
	<u> </u>					DATE	9/19	1/14		RECEIVE	DBY:	$\frac{1}{1}$	1					DATE:	1-19-14
PRINT NAME:		FIRM:	-			TIME	09	ŚĠ		PRINT NA	ме: (Й	七方	optilos	<i>т</i> и		FIRM:	TA	TIME:	150'
RELEASED BY:						DATE	:	2		RECEIVE	D BY:		7				•	DATE:	
PRINT NAME:		FIRM:				TIME				PRINT NA	ME:					FIRM		TIME:	
ADDITIONAL REMARKS:																		30 par	JE OF

Page 28 of 29

1/26/2015

TestAmerica Spokane Sample Receipt Form

Work Order #SXID 30 clien 2005	Engineers			Project: Tiger Oil Summet	
Date/Time Received:9-19-14	By				
Samples Delivered By: 🔀 Shipping Service 🔤 Courier	Client Other	r:			
ر List Air Bill Number(s) or Attach a photocopy of the Air Bill:	,				
Receipt Phase	Yes	No	NA	Comments	
Were samples received in a cooler:	V	-			
Custody Seals are present and intact:			X		
Are CoC documents present:	χ				
Necessary signatures:	X				
Thermai Preservation Type: Blue Ice Gel Ice	Real Ice Dry Ice	None	Other		
Temperature: 3.8 °C Thermometer (Circle one S	Serial #122208348 K	eyring IR	Serial # 11	1874910 IR Gun 2)(acceptance criteria 0-6	
Temperature out of range: Not enough ice Ice mei	ited w/in 4hrs of	collection	DNA [_Other:	
Log-in Phase Date/Time: 9/19/4/ 10/202 By: (1)	Yes	No	NA	Comments	
Are sample labels affixed and completed for each containe	er X			na in an ann an Anna ann an Anna ann an Anna A	
Samples containers were received intact:	X				
Do sample IDs match the CoC	X	1Agba	ગ્રાન		~
Appropriate sample containers were received for tests requ	uested	X		MUSSING NUTPH-DX (01) 5X40130-01 4-04	ringes t
Are sample volumes adequate for tests requested	X			FA	
Appropriate preservatives were used for the tests requeste	ed X				
pH of inorganic samples checked and is within method spe	ecification X				
Are VOC samples free of bubbles >6mm (1/4" diameter)	<u> </u>				
Are dissolved parameters field filtered			X		
Do any samples need to be filtered or preserved by the lab	<u>, </u>		X		
Does this project require quick turnaround analysis		X	Ľ		
Are there any short hold time tests (see chart below)	<u> </u>			Nitrate	
Are any samples within 2 days of or past expiration		\searrow			
Was the CoC scanned	Z	as a	polu		
Were there Non-conformance issues at login	X	~	ſ	See commonts ab	we
If yes, was a CAR generated #			7		

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

•

Form No. SP-FORM-SPL-002 12 December 2012

.

1

2

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXI0130

Client Project/Site: 0504-101-00 Client Project Description: Tiger Oil - Summit View Revision: 1

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: JR Sugalski

Cardie Arrington

Authorized for release by: 10/14/2014 9:19:42 AM

Randee Arrington, Project Manager (509)924-9200 Randee.Arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	16
Chronicle	24
Certification Summary	26
Method Summary	27
Chain of Custody	28

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

		••	0-11		3
		Matrix			
SXI0130-02	SVMW-2-091814	Water	09/18/14 13:56	09/19/14 09:50	
SXI0130-03	SVMW-1-091814	Water	09/18/14 15:03	09/19/14 09:50	
SXI0130-04	SVMW-Dup-091814	Water	09/18/14 08:00	09/19/14 09:50	5
					8
					9

Qualifiers

Fuels

Fuels		Δ
Qualifier	Qualifier Description	- T
С	Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.	5
Q5	Results in the diesel organics range are primarily due to overlap from a gasoline range product.	J

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	Įξ
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Client Sample ID: SVMW-2-091814

Date Collected: 09/18/14 14:38 Date Received: 09/19/14 09:50

TestAmerica	loh	ın	SXID	130
restAmenca	200	ID.	3710	130

Lab Sample ID: SXI0130-01

Matrix: Water

Method: EPA 8260C - Volatile C Analyte	Drganic Compour Result	nds by EPA Qualifier	Method 8260C RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Acetone	ND		25.0		ua/L		09/23/14 07:49	09/24/14 13:57	1.00
trans-1.2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Methyl tert-butyl ether	ND		1.00		ua/L		09/23/14 07:49	09/24/14 13:57	1.00
1.1.2-Trichlorotrifluoroethane	ND		1.00		ua/L		09/23/14 07:49	09/24/14 13:57	1.00
1.1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
cis-1.2-Dichloroethene	ND		1.00		ua/L		09/23/14 07:49	09/24/14 13:57	1.00
2.2-Dichloropropane	ND		1.00		ua/L		09/23/14 07:49	09/24/14 13:57	1.00
Bromochloromethane	ND		1.00		ua/L		09/23/14 07:49	09/24/14 13:57	1.00
Chloroform	ND		1 00		ug/l		09/23/14 07:49	09/24/14 13:57	1 00
Carbon tetrachloride	ND		1 00		ua/l		09/23/14 07:49	09/24/14 13:57	1 00
1 1 1-Trichloroethane	ND		1 00		ug/l		09/23/14 07:49	09/24/14 13:57	1 00
2-Butanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Hexane	ND		1 00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1 1-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Benzene	ND		0 200		ug/l		09/23/14 07:49	09/24/14 13:57	1 00
tert-Butanol	ND		5.00		ug/l		09/23/14 07:49	09/24/14 13:57	1 00
1 2-Dichloroethane (EDC)	ND		1 00		ua/l		09/23/14 07:49	09/24/14 13:57	1 00
	ND		1 00		ug/l		09/23/14 07:49	09/24/14 13:57	1 00
Dibromomethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1 2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Bromodichloromethane	ND		1.00				09/23/14 07:49	09/24/14 13:57	1.00
cis-1 3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
4-Methyl-2-pentanone	ND		10.0				09/23/14 07:49	09/24/14 13:57	1.00
trans_1_3_Dichloropropene	ND		1 00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Tetrachloroethene			1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1 1 2-Trichloroethane			1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
			1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
			1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1.2 Dibromosthane			1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
			1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Ethylhonzono			10.0		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
			1.00		ug/L		00/23/14 07:49	00/24/14 13:37	1.00
			1.00		ug/L		09/23/14 07:49	09/24/14 13.3/	1.00
	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:5/	1.00
	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Bromotorm	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Isopropylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00

Client Sample ID: SVMW-2-091814 Date Collected: 09/18/14 14:38 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-01 Matrix: Water

..... water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Propylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Bromobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,3,5-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
2-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2,3-Trichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
4-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
tert-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		71.2 - 143				09/23/14 07:49	09/24/14 13:57	1.00

/artecovery	Quanner	Linits	riepare	a Analyzeu	Dirrac
100		71.2 - 143	09/23/14 0	7:49 09/24/14 13:57	1.00
94.9		70 - 140	09/23/14 0	7:49 09/24/14 13:57	1.00
102		74.1 - 135	09/23/14 0	7:49 09/24/14 13:57	1.00
103		68.7 - 141	09/23/14 0	7:49 09/24/14 13:57	1.00
	100 94.9 102 103	100 94.9 102 103	Interview dames Links 100 71.2 - 143 94.9 70 - 140 102 74.1 - 135 103 68.7 - 141	Image: Solution of the second secon	Interview Interview <thinterview< th=""> Interview <thinterview< th=""> Interview <th< td=""></th<></thinterview<></thinterview<>

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 13:57	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	103		68.7 - 141				09/23/14 07:49	09/24/14 13:57	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result C	Qualifier RI	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0.0856	;	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
2-Methylnaphthalene	ND	0.0856	5	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
1-Methylnaphthalene	ND	0.0856	6	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Acenaphthylene	ND	0.0856	5	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Acenaphthene	ND	0.0856	6	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Fluorene	ND	0.0856	6	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Phenanthrene	ND	0.0856	5	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Anthracene	ND	0.0856	5	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Fluoranthene	ND	0.0856	5	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Pyrene	ND	0.0856	5	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Benzo (a) anthracene	ND	0.0856	5	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Chrysene	ND	0.0856	5	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Benzo (b) fluoranthene	ND	0.0856	6	ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Benzo (k) fluoranthene	ND	0.0856	i	ug/L		09/23/14 08:20	09/24/14 21:39	1.00

Client Sample ID: SVMW-2-091814 Date Collected: 09/18/14 14:38 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-01 Matrix: Water

09/25/14 12:00

09/25/14 12:00

Lab Sample ID: SXI0130-02

1

Matrix: Water

5

Method: EPA 8270D - Polynuclear Are	omatic Co	mpounds	by GC/MS with S	Selected	Ion Monit	toring (Continued)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo (a) pyrene	ND		0.0856		ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0856		ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Dibenzo (a,h) anthracene	ND		0.0856		ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Benzo (ghi) perylene	ND		0.0856		ug/L		09/23/14 08:20	09/24/14 21:39	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	79.4		32.7 - 135				09/23/14 08:20	09/24/14 21:39	1.00
2-FBP	75.8		44.3 - 120				09/23/14 08:20	09/24/14 21:39	1.00
p-Terphenyl-d14	90.4		59.5 - 154				09/23/14 08:20	09/24/14 21:39	1.00
Method: NWTPH-Dx - Semivolatile Pe	troleum P	roducts by	/ NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.239		mg/L		09/24/14 08:30	09/24/14 14:30	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.399		mg/L		09/24/14 08:30	09/24/14 14:30	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91.1		50 - 150				09/24/14 08:30	09/24/14 14:30	1.00
n-Triacontane-d62	101		50 - 150				09/24/14 08:30	09/24/14 14:30	1.00
Method: EPA 300.0 - Anions by EPA I	Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	6.16		0.200		mg/L		09/19/14 11:00	09/19/14 13:51	1.00
Sulfate	32.0		0.500		mg/L		09/19/14 11:00	09/19/14 13:51	1.00
Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analy 4.39 1.00 **Total Organic Carbon** mg/L

Client Sample ID: SVMW-3-091814

Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C Result Qualifier MDL Unit D Dil Fac Analyte RL Prepared Analyzed Dichlorodifluoromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 Chloromethane ND 3.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 Vinyl chloride ND 0.200 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 ug/L Bromomethane ND 5.00 09/23/14 07:49 09/24/14 14:20 50.0 Chloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 Trichlorofluoromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 1,1-Dichloroethene ND 09/24/14 14:20 1.00 ug/L 09/23/14 07:49 50.0 0.200 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 Dichlorofluoromethane 0.270 Carbon disulfide ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 Methylene chloride ND 10.0 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 25.0 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 Acetone 246 trans-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 ND 1.00 09/24/14 14:20 50.0 Methyl tert-butyl ether ug/L 09/23/14 07:49 1,1,2-Trichlorotrifluoroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 ND 1.1-Dichloroethane 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 cis-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0 2,2-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 14:20 50.0

TestAmerica Spokane

Page 7 of 29

RL

1.00

1.00

1 00

MDL Unit

ug/L

ug/L

ua/I

D

Prepared

09/23/14 07:49

09/23/14 07:49

00/23/14 07.40

Analyte

Chloroform

Benzene tert-Butanol

Toluene

Trichloroethene Dibromomethane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene

Bromochloromethane

Carbon tetrachloride

1,1,1-Trichloroethane 2-Butanone Hexane

1,1-Dichloropropene

1,2-Dichloroethane (EDC)

4-Methyl-2-pentanone trans-1,3-Dichloropropene Tetrachloroethene 1,1,2-Trichloroethane Dibromochloromethane 1,3-Dichloropropane 1,2-Dibromoethane 2-Hexanone Ethylbenzene Chlorobenzene

1,1,1,2-Tetrachloroethane

m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene n-Propylbenzene 1,1,2,2-Tetrachloroethane

Bromobenzene

1,3,5-Trimethylbenzene 2-Chlorotoluene 1,2,3-Trichloropropane 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene

p-lsopropyltoluene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

1,2-Dibromo-3-chloropropane

n-Butylbenzene

Client Sample ID: SVMW-3-091814 Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

ND

ND

Result Qualifier

Lab Sample ID: SXI0130-02 Matrix: Water

Analyzed

09/24/14 14:20

09/24/14 14:20

00/24/14 14.20

Water 4

50.0

50.0

50 0

	8

ND	1.00	ug/L	09/23/14 07.49	09/24/14 14.20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
55.1	10.0	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
80.0	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
27.6	0.200	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	5.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
422	50.0	ug/L	09/23/14 07:49	09/24/14 21:51	50.0
ND	10.0	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	10.0	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
436	50.0	ug/L	09/23/14 07:49	09/24/14 21:51	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
2000	100	ug/L	09/23/14 07:49	09/24/14 21:51	50.0
794	50.0	ug/L	09/23/14 07:49	09/24/14 21:51	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
33.6	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
82.0	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
140	50.0	ug/L	09/23/14 07:49	09/24/14 21:51	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
ND	1.00	ug/L	09/23/14 07:49	09/24/14 14:20	50.0
660	50.0	ug/L	09/23/14 07:49	09/24/14 21:51	50.0
545	50.0	ua/l	09/23/14 07:49	09/24/14 14:20	50.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

TestAmerica Spokane

09/24/14 14:20

09/24/14 14:20

09/24/14 14:20

09/24/14 14:20

09/24/14 14:20

09/24/14 14:20

09/24/14 14:20

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

1.00

1.00

1.00

1.00

1.00

5.00

2.00

11.2

ND

ND

ND

ND

ND

ND

50.0

50.0

50.0

50.0

50.0

50.0

50.0

Client Sample ID: SVMW-3-091814 Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

TestAmerica Job ID: SXI0130

Lab Sample ID: SXI0130-02 Matrix: Water

viatrix. vvater

5

Method: EPA 8260C - Volati	le Organic Compou	nds by EP	A Method 82600	Contin	ued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Naphthalene	236		100		ug/L		09/23/14 07:49	09/24/14 14:20	50.0
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Surrogata	% Pacavary	Qualifier	Limito				Proparad	Analyzad	Dil Eac
Surroyate	/%Recovery	Quanner	Linits				Frepareu	Analyzeu	DirFac
Dibromofluoromethane	<u>%Recovery</u> 99.1	Guainter	71.2 - 143				09/23/14 07:49	09/24/14 14:20	50.0
Dibromofluoromethane 1,2-dichloroethane-d4	<u>%Recovery</u> 99.1 95.5	Quanner	71.2 - 143 70 - 140				09/23/14 07:49 09/23/14 07:49	09/24/14 14:20 09/24/14 14:20	50.0 50.0
Dibromofluoromethane 1,2-dichloroethane-d4 Toluene-d8	99.1 95.5 101	Quaimer	71.2 - 143 70 - 140 74.1 - 135				09/23/14 07:49 09/23/14 07:49 09/23/14 07:49	09/24/14 14:20 09/24/14 14:20 09/24/14 14:20	50.0 50.0 50.0

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	12700		5000		ug/L		09/23/14 07:49	09/24/14 14:20	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	102		68.7 - 141				09/23/14 07:49	09/24/14 14:20	50.0

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	178		4.27		ug/L		09/23/14 08:20	09/25/14 11:46	50.0
2-Methylnaphthalene	48.4		4.27		ug/L		09/23/14 08:20	09/25/14 11:46	50.0
1-Methylnaphthalene	29.3		4.27		ug/L		09/23/14 08:20	09/25/14 11:46	50.0
Acenaphthylene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Acenaphthene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Fluorene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Phenanthrene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Anthracene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Fluoranthene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Pyrene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (a) anthracene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Chrysene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (b) fluoranthene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (k) fluoranthene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (a) pyrene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Dibenzo (a,h) anthracene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Benzo (ghi) perylene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 22:04	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	76.3		32.7 - 135				09/23/14 08:20	09/24/14 22:04	1.00
2-FBP	71.5		44.3 - 120				09/23/14 08:20	09/24/14 22:04	1.00
p-Terphenyl-d14	94.3		59.5 - 154				09/23/14 08:20	09/24/14 22:04	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	0.968	Q5	0.231		mg/L		09/24/14 08:30	10/03/14 12:57	1.00
Heavy Oil Range Hydrocarbons	ND		0.385		mg/L		09/24/14 08:30	10/03/14 12:57	1.00
Surrogate	% Pasavary	Qualifian	1				D	A	
ourrogate	%Recovery	Quaimer	Limits				Prepared	Analyzea	Dii Fac
o-Terphenyl	77.0	Quaimer	50 - 150				09/24/14 08:30	10/03/14 12:57	1.00

Client Sample ID: SVMW-3-091814 Date Collected: 09/18/14 13:56

Date Received: 09/19/14 09:50

Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	0.815	Q5	0.231		mg/L		09/24/14 08:30	09/24/14 14:54	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.385		mg/L		09/24/14 08:30	09/24/14 14:54	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80.6		50 - 150				09/24/14 08:30	09/24/14 14:54	1.00
n-Triacontane-d62	102		50 - 150				09/24/14 08:30	09/24/14 14:54	1.00
- Method: EPA 300.0 - Anions by	EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	2.45		0.200		mg/L		09/19/14 11:00	09/19/14 14:05	1.00
Sulfate	15.4		0.500		mg/L		09/19/14 11:00	09/19/14 14:05	1.00
_ Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organia Carbon			1.00				00/25/14 12:00	00/05/44 40:00	

Client Sample ID: SVMW-1-091814

Date Collected: 09/18/14 15:03 Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C Analyte Result Qualifier Analyzed RL MDL Unit D Prepared Dil Fac Dichlorodifluoromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Chloromethane ND 3.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Vinyl chloride ND 0.200 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Bromomethane ND 5.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 1.00 Chloroethane 1.00 ug/L 09/23/14 07:49 09/24/14 22.14 Trichlorofluoromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 1,1-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 22.14 1.00 Dichlorofluoromethane ND 0.200 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Carbon disulfide ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Methylene chloride ND 10.0 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Acetone ND 25.0 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 trans-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Methyl tert-butyl ether ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 09/23/14 07:49 1,1,2-Trichlorotrifluoroethane ND 1 00 ug/L 09/24/14 22.14 1 00 1,1-Dichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 cis-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 2,2-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Bromochloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22.14 1 00 Chloroform ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 09/24/14 22:14 1.00 Carbon tetrachloride 1.00 ug/L 09/23/14 07:49 1,1,1-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 10.0 09/24/14 22:14 2-Butanone ug/L 09/23/14 07:49 1 00 Hexane ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 1,1-Dichloropropene ND 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 Benzene ND 0.200 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 tert-Butanol ND 5.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 1,2-Dichloroethane (EDC) 1.00 ug/L 09/23/14 07:49 09/24/14 22:14 1.00 ND 1.00 09/23/14 07:49 09/24/14 22:14 Trichloroethene ug/L 1.00

TestAmerica Spokane

TestAmerica Job ID: SXI0130

Lab Sample ID: SXI0130-03

Matrix: Water

Client Sample ID: SVMW-1-091814 Date Collected: 09/18/14 15:03 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-03 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,2-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Bromodichloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
cis-1,3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Toluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
4-Methyl-2-pentanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
trans-1,3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Tetrachloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,1,2-Trichloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Dibromochloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,3-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,2-Dibromoethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
2-Hexanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Ethylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Chlorobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,1,1,2-Tetrachloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
m,p-Xylene	ND		2.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
o-Xylene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Styrene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Bromoform	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Isopropylbenzene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
n-Propylbenzene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
1.1.2.2-Tetrachloroethane	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
Bromobenzene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
1.3.5-Trimethylbenzene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
2-Chlorotoluene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
1.2.3-Trichloropropane	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
4-Chlorotoluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
tert-Butvlbenzene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
1.2.4-Trimethylbenzene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 22:14	1.00
sec-Butylbenzene	ND		1 00	ug/l		09/23/14 07:49	09/24/14 22.14	1 00
p-Isopropyltoluene	ND		1 00	ug/l		09/23/14 07:49	09/24/14 22:14	1.00
1 3-Dichlorobenzene	ND		1 00	ug/l		09/23/14 07:49	09/24/14 22.14	1 00
1.4-Dichlorobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
n-Butylbenzene	ND		1 00	ug/l		09/23/14 07:49	09/24/14 22:14	1.00
1 2-Dichlorobenzene	ND		1 00	ug/l		09/23/14 07:49	09/24/14 22.14	1 00
1 2-Dibromo-3-chloropropane	ND		5.00	ug/l		09/23/14 07:49	09/24/14 22:14	1.00
	ND		2.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1 2 4-Trichlorobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Nanhthalene	ND		2.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
1,2,3-Trichlorobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane			71.2 - 143			09/23/14 07:49	09/24/14 22:14	1.00
1,2-dichloroethane-d4	96.5		70 - 140			09/23/14 07:49	09/24/14 22:14	1.00
Toluene-d8	98.7		74.1 - 135			09/23/14 07:49	09/24/14 22:14	1.00
4-bromofluorobenzene	101		68 7 141			09/23/14 07:49	09/24/14 22.14	1 00

Client Sample ID: SVMW-1-091814 Date Collected: 09/18/14 15:03

Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-03 Matrix: Water

wantk. Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 22:14	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-bromofluorobenzene			68.7 - 141				09/23/14 07:49	09/24/14 22:14	1.00
Method: EPA 8270D - Polynuc	lear Aromatic Co	mpounds	by GC/MS with S	Selected	Ion Monif	oring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
2-Methylnaphthalene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
1-Methylnaphthalene	ND		0.234		uq/L		09/23/14 08:20	09/24/14 22:29	1.00
Acenaphthylene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Acenaphthene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Fluorene	ND		0.234		uq/L		09/23/14 08:20	09/24/14 22:29	1.00
Phenanthrene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Anthracene	ND		0.234		uq/L		09/23/14 08:20	09/24/14 22:29	1.00
Fluoranthene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Pyrene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (a) anthracene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Chrysene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (b) fluoranthene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (k) fluoranthene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (a) pyrene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Indeno (1,2,3-cd) pyrene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Dibenzo (a,h) anthracene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Benzo (ghi) perylene	ND		0.234		ug/L		09/23/14 08:20	09/24/14 22:29	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5			32.7 - 135				09/23/14 08:20	09/24/14 22:29	1.00
2-FBP	88.7		44.3 - 120				09/23/14 08:20	09/24/14 22:29	1.00
p-Terphenyl-d14	92.5		59.5 - 154				09/23/14 08:20	09/24/14 22:29	1.00
Method: EPA 300.0 - Anions b	v EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate-Nitrogen	3.43		0.200		mg/L		09/19/14 11:00	09/19/14 14:20	1.00
Sulfate	28.6		0.500		mg/L		09/19/14 11:00	09/19/14 14:20	1.00

Date Collected: 09/18/14 08:00

Date Received: 09/19/14 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00

TestAmerica Spokane

Matrix: Water

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-04 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methylene chloride	ND		10.0	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Acetone	ND		25.0	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
trans-1,2-Dichloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Methyl tert-butyl ether	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,1-Dichloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
cis-1,2-Dichloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
2,2-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Bromochloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Chloroform	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Carbon tetrachloride	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,1,1-Trichloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
2-Butanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Hexane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,1-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Benzene	ND		0.200	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
tert-Butanol	ND		5.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2-Dichloroethane (EDC)	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Trichloroethene	ND		1.00	ua/L		09/23/14 07:49	09/24/14 15:05	1.00
Dibromomethane	ND		1.00	ua/L		09/23/14 07:49	09/24/14 15:05	1.00
1 2-Dichloropropane	ND		1 00	ug/l		09/23/14 07:49	09/24/14 15:05	1 00
Bromodichloromethane	ND		1 00	ug/L		09/23/14 07:49	09/24/14 15:05	1 00
cis-1 3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Toluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
4-Methyl-2-pentanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 15:05	1 00
trans-1 3-Dichloropropene	ND		1 00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Tetrachloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1 1 2-Trichloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Dibromochloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1 3-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1.2-Dibromoethane			1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
2-Hevanone			1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Ethylhenzene			1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Chlorobenzene			1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
			1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
			2.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
			2.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Streng			1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Styrene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Bromotorm	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Isopropyibenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
n-Propyidenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
	ND		1.00	ug/∟		09/23/14 07:49	09/24/14 15:05	1.00
Bromobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,3,5- I rimethylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
2-Chlorotoluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2,3-Trichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
4-Chlorotoluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
tert-Butylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2,4-Trimethylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 15:05	1.00

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0130-04 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		71.2 - 143				09/23/14 07:49	09/24/14 15:05	1.00
1,2-dichloroethane-d4	89.4		70 - 140				09/23/14 07:49	09/24/14 15:05	1.00
Toluene-d8	104		74.1 - 135				09/23/14 07:49	09/24/14 15:05	1.00
4-bromofluorobenzene	104		68.7 - 141				09/23/14 07:49	09/24/14 15:05	1.00

Method: NWTPH-Gx	- Gasoline H	ydrocarbons b	y NWTPH-Gx
------------------	--------------	---------------	------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 15:05	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	104		68.7 _ 141				09/23/14 07:49	09/24/14 15:05	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
2-Methylnaphthalene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
1-Methylnaphthalene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Acenaphthylene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Acenaphthene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Fluorene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Phenanthrene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Anthracene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Fluoranthene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Pyrene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (a) anthracene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Chrysene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (b) fluoranthene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (k) fluoranthene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (a) pyrene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Dibenzo (a,h) anthracene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Benzo (ghi) perylene	ND		0.0863		ug/L		09/23/14 08:20	09/24/14 23:32	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	96.5		32.7 - 135				09/23/14 08:20	09/24/14 23:32	1.00
2-FBP	90.8		44.3 - 120				09/23/14 08:20	09/24/14 23:32	1.00
p-Terphenyl-d14	96.2		59.5 - 154				09/23/14 08:20	09/24/14 23:32	1.00

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00

Date Received: 09/19/14 09:50

Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.243		mg/L		09/24/14 08:30	09/24/14 15:18	1.00
Heavy Oil Range Hydrocarbons	ND	С	0.404		mg/L		09/24/14 08:30	09/24/14 15:18	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95.0		50 - 150				09/24/14 08:30	09/24/14 15:18	1.00
n-Triacontane-d62	105		50 - 150				09/24/14 08:30	09/24/14 15:18	1.00
Method: EPA 300.0 - Anions by Analyte	EPA Method 30 Result	0.0 Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	6.18		0.200		mg/L		09/19/14 11:00	09/19/14 14:34	1.00
Sulfate	32.0		0.500		mg/L		09/19/14 11:00	09/19/14 14:34	1.00
Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2.34		1.00		mg/L		09/25/14 12:00	09/25/14 12:00	1

TestAmerica Job ID: SXI0130

Lab Sample ID: SXI0130-04 Matrix: Water

5

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14I0134_P

6

-	
Lab Sample ID: 14I0134-BLK1	

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Analysis Batch: 14I0134								Prep Batch: 14	10134_P
Analyte	Blank Result	Blank Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Methyl tert-butyl ether	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromochloromethane	ND		1.00		ua/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloroform	ND		1.00		ua/L		09/23/14 07:49	09/24/14 09:49	1.00
Carbon tetrachloride	ND		1 00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
1 1 1-Trichloroethane	ND		1.00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
2-Butanone	ND		10.0		ug/l		09/23/14 07:49	09/24/14 09:49	1 00
Hexane	ND		1 00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
1 1-Dichloropropene	ND		1.00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
Benzene	ND		0 200		ug/l		09/23/14 07:49	09/24/14 09:49	1 00
tert-Butanol	ND		5.00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
1 2-Dichloroethane (EDC)	ND		1 00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
Trichloroethene	ND		1 00		ug/l		09/23/14 07:49	09/24/14 09:49	1 00
Dibromomethane	ND		1 00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
1 2-Dichloropropane	ND		1.00		ug/l		09/23/14 07:49	09/24/14 09:49	1.00
Bromodichloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
cis-1 3-Dichloropropene	ND		1.00		ug/l		09/23/14 07:49	09/24/14 09:49	1.00
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
4-Methyl-2-pentanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
trans-1.3-Dichloropropene	ND		1 00		ug/l		09/23/14 07:49	09/24/14 09:49	1.00
Tetrachloroethene	ND		1 00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
1 1 2-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dibromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1.3-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1 2-Dibromoethane	ND		1.00		ug/l		09/23/14 07:49	09/24/14 09:49	1 00
2-Hexanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Ethylbenzene			1 00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1.1.1.2-Tetrachloroethane	חוא		1 00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
m p-Xvlene			2 00		ua/l		09/23/14 07:49	09/24/14 09:49	1 00
o-Xylene			1 00		ua/l		09/23/14 07:49	09/24/14 09:49	1.00
Styrene			1.00		ug/L		09/23/14 07:49	09/24/14 00.49	1.00
Bromoform			1.00		ug/L		09/23/14 07:49	09/24/14 00.49	1.00
Diomoloffi	ND		1.00		ugit		00/20/14 07.49	03127114 03.49	1.00

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BLK1						Client Sample ID: Method Blank				
Matrix: Water								Prep Typ	e: Total	
Analysis Batch: 14I0134								Prep Batch: 14	I0134_P	
	Blank	Blank								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Isopropylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
n-Propylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
Bromobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,3,5-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
2-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,2,3-Trichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
4-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
tert-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,2,4-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00	
	Blank	Blank								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
	100		74 0 440				00/00/44 07 40	00/04/44 00 40	1 00	

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100	71.2 - 143	09/23/14 07:49	09/24/14 09:49	1.00
1,2-dichloroethane-d4	91.0	70 - 140	09/23/14 07:49	09/24/14 09:49	1.00
Toluene-d8	105	74.1 - 135	09/23/14 07:49	09/24/14 09:49	1.00
4-bromofluorobenzene	103	68.7 - 141	09/23/14 07:49	09/24/14 09:49	1.00

Lab Sample ID: 14I0134-BS1 Matrix: Water Analysis Batch: 14I0134

Analysis Batch: 14I0134							Prep Batch: 14I0134_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	10.0	11.0		ug/L		110	60 - 140
Chloromethane	10.0	10.2		ug/L		102	60 - 140
Vinyl chloride	10.0	10.4		ug/L		104	60 - 140
Bromomethane	10.0	10.9		ug/L		109	60 - 140
Chloroethane	10.0	10.2		ug/L		102	60 - 140
Trichlorofluoromethane	10.0	9.91		ug/L		99.1	60 - 140
1,1-Dichloroethene	10.0	9.47		ug/L		94.7	78.1 - 155
Dichlorofluoromethane	10.0	9.75		ug/L		97.5	60 - 140
Carbon disulfide	10.0	9.27		ug/L		92.7	60 - 140
Methylene chloride	10.0	11.2		ug/L		112	60 - 140
Acetone	50.0	57.8		ug/L		116	60 - 140
trans-1,2-Dichloroethene	10.0	9.25		ug/L		92.5	60 - 140
Methyl tert-butyl ether	10.0	9.70		ug/L		97.0	80.1 - 128
1,1,2-Trichlorotrifluoroethane	10.0	10.1		ug/L		101	60 - 140
1,1-Dichloroethane	10.0	10.1		ug/L		101	60 - 140

TestAmerica Spokane

Client Sample ID: Lab Control Sample

Prep Type: Total

6

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BS1 Matrix: Water					Client S	Sample	e ID: Lab Control Sample Prep Type: Total
Analysis Batch: 14I0134							Prep Batch: 14I0134_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,2-Dichloroethene	10.0	10.1		ug/L		101	60 - 140
2,2-Dichloropropane	10.0	9.88		ug/L		98.8	60 - 140
Bromochloromethane	10.0	10.2		ug/L		102	60 - 140
Chloroform	10.0	9.55		ug/L		95.5	60 - 140
Carbon tetrachloride	10.0	9.96		ug/L		99.6	60 ₋ 140
1,1,1-Trichloroethane	10.0	9.54		ug/L		95.4	60 - 140
2-Butanone	50.0	50.3		ug/L		101	60 - 140
Hexane	10.0	9.04		ug/L		90.4	60 - 140
1,1-Dichloropropene	10.0	9.95		ug/L		99.5	60 - 140
Benzene	10.0	9.38		ug/L		93.8	80 - 122
tert-Butanol	100	79.8		ug/L		79.8	60 - 140
1,2-Dichloroethane (EDC)	10.0	10.1		ug/L		101	63.9 - 144
Trichloroethene	10.0	10.1		ug/L		101	74.8 - 123
Dibromomethane	10.0	9.80		ug/L		98.0	60 - 140
1,2-Dichloropropane	10.0	10.2		ug/L		102	60 - 140
Bromodichloromethane	10.0	8.94		ug/L		89.4	60 - 140
cis-1,3-Dichloropropene	10.0	9.51		ug/L		95.1	60 - 140
Toluene	10.0	9.53		ug/L		95.3	80 - 123
4-Methyl-2-pentanone	50.0	47.0		ug/L		94.0	60 - 140
trans-1,3-Dichloropropene	10.0	9.55		ug/L		95.5	60 - 140
Tetrachloroethene	10.0	10.4		ug/L		104	60 - 140
1,1,2-Trichloroethane	10.0	9.96		ug/L		99.6	60 - 140
Dibromochloromethane	10.0	9.62		uq/L		96.2	60 - 140
1.3-Dichloropropane	10.0	9.82		ua/L		98.2	60 - 140
1.2-Dibromoethane	10.0	10.2		ua/L		102	70 - 130
2-Hexanone	50.0	49.8		ua/L		99.6	60 - 140
Ethylbenzene	10.0	9.43		ua/L		94.3	80 - 120
Chlorobenzene	10.0	9.63		ua/L		96.3	79.2 - 125
1.1.1.2-Tetrachloroethane	10.0	9.52		ua/L		95.2	60 - 140
m p-Xvlene	10.0	9.50		ua/l		95.0	80 - 120
o-Xvlene	10.0	9 48		ua/l		94.8	80 - 120
Styrene	10.0	9.95		ug/L		99.5	60 140
Bromoform	10.0	9.38		ug/L		93.8	60 140
Isonronylhenzene	10.0	9.00		ug/L		91.6	60 140
n-Propylbenzene	10.0	9.77		ug/L		92.7	60 140
1 1 2 2-Tetrachloroethane	10.0	9.86		ug/L		98.6	60 140
Bromohenzene	10.0	10.3		ug/L		103	60 140
1 3 5-Trimethylbenzene	10.0	9 33		ug/L		93.3	60 140
2 Chlorotoluono	10.0	0.00		ug/L		06.0	60 140
123 Trichloropapa	10.0	11.0		ug/L		110	60 140
	10.0	0.64		ug/L		06 1	60 140
+	10.0	9.01		ug/L		90. I	60 140
	10.0	9.65		ug/L		90.3 05 5	00 - 140 60 140
	10.0	9.55		ug/L		90.5 02.0	00 - 140
	10.0	9.38		ug/L		93.8	00 - 140
	10.0	9.19		ug/L		91.9	00 - 140
	10.0	9.61		ug/L		96.1	00 - 140
	10.0	9.55		ug/L		95.5	00 - 140
n-Butyidenzene	10.0	8.92		ug/L		89.2	00 - 140

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BS1 Matrix: Water Analysis Batch: 14I0134							Client	t Sampl	e ID: Lab Control Sample Prep Type: Total Prep Batch: 14/0134 P
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichlorobenzene			10.0	9.72		ug/L		97.2	60 - 140
1,2-Dibromo-3-chloropropane			10.0	9.98		ug/L		99.8	60 - 140
Hexachlorobutadiene			10.0	9.82		ug/L		98.2	60 - 140
1,2,4-Trichlorobenzene			10.0	9.68		ug/L		96.8	60 - 140
Naphthalene			10.0	9.65		ug/L		96.5	62.8 - 132
1,2,3-Trichlorobenzene			10.0	9.98		ug/L		99.8	60 - 140
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Dibromofluoromethane	98.9		71.2 - 143						
1,2-dichloroethane-d4	95.4		70 - 140						
Toluene-d8	101		74.1 - 135						
4-bromofluorobenzene	101		68.7 - 141						

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 14I0134-BLK1 Matrix: Water Analysis Batch: 14I0134												Client Sa	ample ID: Mo Prep Prep Batch	ethod Bl Type: T : 14I013	ank otal 4_P
	Bla	ank	Blank												
Analyte	Res	sult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzec	Di	l Fac
Gasoline Range Hydrocarbons		ND			100			ug/L			09/2	3/14 07:49	09/24/14 09	:49	1.00
	Bla	ank	Blank												
Surrogate	%Recov	rery	Qualifier	Lim	its						P	repared	Analyzed	I Di	l Fac
4-bromofluorobenzene		103		68.7 -	141						09/2	3/14 07:49	09/24/14 09	:49	1.00
Lab Sample ID: 14I0134-BS2										c	lient	Sample	ID: Lab Con	trol San	nple
Matrix: Water													Prep	Type: T	otal
Analysis Batch: 14I0134				Spike		LCS	LCS						Prep Batch %Rec.	: 141013	4_P
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Gasoline Range Hydrocarbons				1000		875			ug/L			87.5	80 - 120		
	LCS	LCS													
Surrogate	%Recovery	Qua	lifier	Limits											
4-bromofluorobenzene	97.3			68.7 - 141	-										

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 14I0135-BLK1 Matrix: Water Analysis Batch: 14I0135	Blank	Blank					Client Sa	mple ID: Metho Prep Typ Prep Batch: 14	d Blank e: Total l0135_P
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00
2-Methylnaphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00
1-Methylnaphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00
Acenaphthylene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00
Acenaphthene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00

TestAmerica Spokane

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 14I0135-BLK1 Matrix: Water Analysis Batch: 14I0135								C	lient (Sample ID: Metl Prep T Prep Batch:	nod Blank ype: Total 1410135 P
	Blank	Blank									
Analyte	Result	Qualifier	RL		MDL Un	it	D	Pre	pared	Analyzed	Dil Fac
Fluorene	ND		0.100		ug	/L	0	9/23/	14 08:2	0 09/24/14 18:22	1.00
Phenanthrene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Anthracene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Fluoranthene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Pyrene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Benzo (a) anthracene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Chrysene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Benzo (b) fluoranthene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Benzo (k) fluoranthene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Benzo (a) pyrene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Indeno (1,2,3-cd) pyrene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Dibenzo (a,h) anthracene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
Benzo (ghi) perylene	ND		0.100		ug	/L	09	9/23/	14 08:2	0 09/24/14 18:22	1.00
	Blank	Blank									
Surrogate	%Recovery	Qualifier	Limits					Pre	pared	Analyzed	Dil Fac
Nitrobenzene-d5	102		32.7 - 135				0	9/23/	'14 08:2	0 09/24/14 18:22	1.00
2-FBP	97.3		44.3 - 120				09	9/23/	/14 08:2	0 09/24/14 18:22	1.00
p-Terphenyl-d14	94.5		59.5 - 154				09	9/23/	'14 08:2	0 09/24/14 18:22	1.00
Lab Sample ID: 14I0135-BS1							Clie	ent S	Sample	e ID: Lab Contr	ol Sample
Matrix: Water									. ·	Prep T	, pe: Total
Analysis Batch: 14I0135										Prep Batch:	4 0135 P
-			Spike	LCS	LCS					%Rec.	_
Analyte			Added	Result	Qualifie	r Unit	[D	%Rec	Limits	
Naphthalene			1.60	1.38		ug/L			86.2	27.8 - 143	
Fluorene			1.60	1.49		ug/L			92.9	59.2 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	85.8		32.7 - 135
2-FBP	81.1		44.3 - 120
p-Terphenyl-d14	69.0		59.5 - 154

Chrysene

Indeno (1,2,3-cd) pyrene

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Lab Sample ID: 14I0145-BLK2 Matrix: Water Analysis Batch: 14I0145	Blank	Plank					Client Sa	mple ID: Metho Prep Typ Prep Batch: 14	d Blank e: Total l0145_P
Analyta	Biarik	Dialik	ы	МП	Unit	П	Propared	Applyzod	Dil Eac
Analyte	Kesuit	Quaimer	NL		Unit			Analyzeu	Dirrac
Diesel Range Hydrocarbons	ND		0.240		mg/L		09/24/14 08:30	10/03/14 12:10	1.00
Heavy Oil Range Hydrocarbons	ND		0.400		mg/L		09/24/14 08:30	10/03/14 12:10	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96.5		50 - 150				09/24/14 08:30	10/03/14 12:10	1.00

1.60

1.60

1.36

1.46

ug/L

ug/L

TestAmerica Spokane

85.0 69.1 - 122

91.1 56.1 - 135

o-Terphenyl

n-Triacontane-d62

2 3 4 5 6 7

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

(Continued)										
Lab Sample ID: 14I0145-BLK2								Client Sa	ample ID: Metho	d Blank
Matrix: Water									Prep Ty	be: Total
Analysis Batch: 14I0145									Prep Batch: 14	10145_P
	Blank	Blank								
Surrogate	%Recovery	/ Qualifier	Limits				Р	repared	Analyzed	Dil Fac
n-Triacontane-d62	103	3	50 - 150				09/2	24/14 08:30	10/03/14 12:10	1.00
Lab Sample ID: 14I0145-BS2							Client	Sample	ID: Lab Control	Sample
Matrix: Water									Prep Ty	be: Total
Analysis Batch: 14I0145									Prep Batch: 14	10145_P
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons			3.20	2.61		mg/L		81.6	50 - 150	
	LCS LC	s								
Surrogate	%Recovery Qu	alifier	Limits							
o-Terphenyl	93.2		50 - 150							
n-Triacontane-d62	102		50 - 150							

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

97.6

109

Lab Sample ID: 14I0145-BLK1 Matrix: Water											Client Sa	ample ID: Me Prep ⁻	thod Blank Гуре: Total
Analysis Batch: 14I0145												Prep Batch:	14I0145_P
	В	lank	Blank										
Analyte	Re	sult	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Diesel Range Hydrocarbons		ND		0.240			mg/L		_	09/2	4/14 08:30	09/24/14 13:2	.2 1.00
Heavy Oil Range Hydrocarbons		ND	С	0.400			mg/L			09/2	4/14 08:30	09/24/14 13:2	1.00
	В	lank	Blank										
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyzed	Dil Fac
o-Terphenyl		95.8		50 - 150						09/2	4/14 08:30	09/24/14 13:2	
n-Triacontane-d62		107		50 - 150						09/2	4/14 08:30	09/24/14 13:2	.20 1.00
Lab Sample ID: 14I0145-BS1									с	lient	Sample	ID: Lab Cont	rol Sample
Matrix: Water												Prep ⁻	Type: Total
Analysis Batch: 14I0145												Prep Batch:	14I0145 P
				Spike	LCS	LCS						%Rec.	
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Diesel Range Hydrocarbons				3.20	2.50			mg/L		·	78.0	50 - 150	
	LCS	LCS											
Surrogate	%Recovery	Qua	lifier	Limits									

50 - 150 50 - 150

Total Organic Carbon

Method: EPA 300.0 - Anions by EPA Method 300.0

Lab Sample ID: 14I0126-BLK1										Client Sa	ample ID:	Method	Blank
Matrix: Water											Pre	eqvT qe	: Total
Analysis Batch: 14I0126											Prep Bat	ch: 1410	126 P
	E	Blank Bla	nk										
Analyte	R	esult Qua	lifier	RL	MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
Nitrate-Nitrogen		ND		0.200		mg/L			09/1	9/14 10:47	09/19/14	15:03	1.00
Sulfate		ND		0.500		mg/L			09/1	9/14 10:47	09/19/14	15:03	1.00
_													
Lab Sample ID: 14I0126-BS1								С	lient	Sample	ID: Lab C	ontrol S	ample
Matrix: Water											Pre	эр Туре	: Total
Analysis Batch: 14I0126											Prep Bat	ch: 1410	126_P
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Resul	t Qua	lifier	Unit		D	%Rec	Limits		
Nitrate-Nitrogen			5.00	5.02	2		mg/L			100	90 _ 110		
Sulfate			12.5	12.4	ł		mg/L			99.0	90 _ 110		
_													
Lab Sample ID: 14I0126-MS1										Client	Sample ID	: Matrix	Spike
Matrix: Water											Pre	эр Туре	: Total
Analysis Batch: 14I0126											Prep Bat	ch: 1410	126_P
	Sample	Sample	Spike	Matrix Spike	e Mati	rix Spik	e		_		%Rec.		
	Result	Qualifier	Added	Resul	t Qua	lifier	Unit		D	%Rec	Limits		
Nitrate-Nitrogen	0.740		5.00	6.09)		mg/L			107	80 - 120		
Sulfate	9.92		12.5	23.4	ł		mg/L			108	80 - 120		
- Lab Sample ID: 1410126 MSD1								Clio	nt Sa		Matrix S	aiko Duu	olicato
Lab Sample ID. 1410120-WSD1 Matrix: Water								Cile	in 36	inple iD.	. Wati K Sj	JIKE Du	· Total
Matrix. Water											Dron Dot	sh i Nhe	. I Ulai
												ahi 1410	426 D
Analysis Batch: 1410126	Sampla	Sampla	Snika	striv Spiko Dus	Mat	iv Cnik						ch: 1410	126_P
Analysis Batch: 1410120	Sample	Sample	Spike	trix Spike Dup	Mati	rix Spik lifior	e Duț Unit		п	% Boc	%Rec.	ch: 1410	126_P RPD
Analyte	Sample Result	Sample Qualifier	Spike Added	Itrix Spike Dup Resul	Mati t Qua	rix Spik lifier	e Dur Unit		<u>D</u>	%Rec	%Rec. Limits	ch: 1410 	RPD Limit
Analyte	Sample Result	Sample Qualifier	Spike 	Itrix Spike Dup Resul	Mati	rix Spik lifier	e Duţ Unit mg/L		<u>D</u>	%Rec	Kec. Limits 80 - 120 80 - 120	ch: 1410 <u>RPD</u> 0.360 0.282	126_P RPD Limit 12.1
Analyte Nitrate-Nitrogen Sulfate	Sample Result 0.740 9.92	Sample Qualifier	Spike Added 5.00 12.5	Itrix Spike Dup Resul 6.12 23.5	Matı Qua	rix Spik lifier	e Dur Unit mg/L mg/L		<u>D</u>	%Rec 108 108	Kec. Limits 80 - 120 80 - 120	ch: 1410 	126_P RPD Limit 12.1 10
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1	Sample Result 0.740 9.92	Sample Qualifier	Spike Added 5.00 12.5	Itrix Spike Dup Resul 6.12 23.5	Mati Qua	rix Spik lifier	e Duţ Unit mg/L mg/L		<u>D</u>	%Rec 108 108 Clie	Bit Bit %Rec. Limits 80 - 120 80 - 120 80 - 120 80 - 120	Ch: 1410 RPD 0.360 0.282 ID: Duty	126_P RPD Limit 12.1 10
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water	Sample Result 0.740 9.92	Sample Qualifier	Spike Added 5.00 12.5	ıtrix Spike Duş Resul 6.12 23.5	Mati Qua	rix Spik lifier	e Duţ Unit mg/L mg/L		<u>D</u>	%Rec 108 108 Clie	Bit Bit %Rec. Limits 80 - 120 80 - 120 nt Sample Press	RPD 0.360 0.282 ID: Dup Dyne	126_P RPD Limit 12.1 10
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126	Sample Result 0.740 9.92	Sample Qualifier	Spike 	ıtrix Spike Duş Resul 6.12 23.5	Matu t Qua	rix Spik lifier	e Duţ Unit mg/L mg/L		<u>D</u>	%Rec 108 108 Clie	Bit Bit <th>RPD 0.360 0.282 ID: Dup P Type Ch: 1400</th> <th>126_P RPD Limit 12.1 10 plicate : Total 126_P</th>	RPD 0.360 0.282 ID: Dup P Type Ch: 1400	126_P RPD Limit 12.1 10 plicate : Total 126_P
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126	Sample Result 0.740 9.92 Sample	Sample Qualifier Sample	Spike 	Itrix Spike Dup Resul 6.12 23.5	o Matu	rix Spik lifier	e Duţ Unit mg/L mg/L		<u>D</u>	%Rec 108 108 Clie	NRec. Limits 80 - 120 80 - 120 nt Sample Prep Bat	RPD 0.360 0.282 ID: Dup P Type ch: 1410	126_P RPD Limit 12.1 10 plicate : Total 126_P RPD
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126 Analyte	Sample Result 0.740 9.92 Sample Result	Sample Qualifier Sample Qualifier	Spike Added 5.00 12.5	Itrix Spike Dup Resul 6.12 23.5 Duplicate Resul	e Dup	rix Spik lifier licate lifier	e Duţ Unit mg/L mg/L		_ <u>D</u>		Nec. Limits 80 - 120 80 - 120 nt Sample Prep Bat	ch: 1410 <u>RPD</u> 0.360 0.282 ID: Du PD Type ch: 1410 RPD	Limit 126_P RPD Limit 12.1 10 Plicate : Total 126_P RPD Limit
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126 Analyte Nitrate-Nitrogen	Sample Result 0.740 9.92 Sample Result 0.740	Sample Qualifier Sample Qualifier	Spike Added 5.00 12.5	Itrix Spike Dup Resul 6.12 23.5 Duplicate Resul	Dup	rix Spik lifier licate lifier	e Duţ Unit mg/L mg/L				NRec. Limits 80 - 120 80 - 120 nt Sample Prep Bat	RPD 0.360 0.282 ID: Dup e) ID: Dup ch: 1410 RPD 1.34	126_P RPD Limit 12.1 10 plicate : Total 126_P RPD Limit 13.1
Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126 Analyte Nitrate-Nitrogen Sulfate	Sample Result 0.740 9.92 Sample Result 0.740 9.92	Sample Qualifier Sample Qualifier	Spike Added 5.00 12.5	trix Spike Dup Resul 6.12 23.5 Duplicate Resul 0.756 9.8	 Mature Qua Dup Qua 	rix Spik lifier licate lifier	e Duş Unit mg/L mg/L Unit mg/L mg/L			%Rec 108 108 Clie	vRec. Limits 80 - 120 80 - 120 nt Sample Prep Bat	RPD 0.360 0.282 ID: Dup ap Type ch: 1410 RPD 1.34 0.505	126_P RPD Limit 12.1 10 plicate : Total 126_P RPD Limit 13.1 15.7
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126 Analyte Nitrate-Nitrogen Sulfate	Sample Result 0.740 9.92 Sample Result 0.740 9.92	Sample Qualifier Sample Qualifier	Spike 	trix Spike Dup Resul 6.12 23.5 Duplicate Resul 0.750 9.87	Dup	rix Spik lifier licate lifier	e Duţ Unit mg/L mg/L Unit mg/L mg/L		D D	%Rec 108 108 Clie	NRec. Limits 80 - 120 80 - 120 nt Sample Prep Bat	RPD 0.360 0.282 0.282 0 ID: Dup 0.282 0 ID: Cup 0.282 0 ID: Cup 0.134 0.505 0.505	126_P RPD Limit 12.1 10 plicate : Total 126_P RPD Limit 13.1 15.7
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126 Analyte Nitrate-Nitrogen Sulfate	Sample Result 0.740 9.92 Sample Result 0.740	Sample Qualifier Sample Qualifier	Spike 	Itrix Spike Dup Resul 6.12 23.5 Duplicate Resul 0.750 9.87	e Dup	rix Spik lifier licate lifier	e Duţ Unit mg/L mg/L Unit mg/L mg/L		D D D	%Rec 108 108 Clie	NRec. Limits 80 - 120 80 - 120 nt Sample Prep Bat	RPD 0.360 0.282 0.282 0 ID: Dup 0.282 0 ID: Cup 0.282 0 ID: Cup 0.134 0.505 0.505	126_P RPD Limit 12.1 10 plicate : Total 126_P RPD Limit 13.1 15.7
Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126 Analyte Nitrate-Nitrogen Sulfate Method: SM 5310C - TOC Lab Sample ID: 193629-1	Sample Result 0.740 9.92 Sample Result 0.740 9.92	Sample Qualifier Sample Qualifier	Spike Added 5.00 12.5	Itrix Spike Dup Resul 6.12 23.5 Duplicate Resul 0.750 9.87	Dup	ix Spik lifier licate lifier	e Du; Unit mg/L mg/L mg/L mg/L		D D	%Rec 108 108 Clie	MRec. Limits 80 - 120 80 - 120 nt Sample Prep Bat	RPD 0.360 0.282 ID: Dup p Type ch: 1410 RPD 1.34 0.505	126_P RPD Limit 12.1 10 Dicate : Total 126_P RPD Limit 13.1 15.7 Blank
Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126 Analyte Nitrate-Nitrogen Sulfate Method: SM 5310C - TOC Lab Sample ID: 193629-1 Matrix: Water	Sample Result 0.740 9.92 Sample Result 0.740 9.92	Sample Qualifier Sample Qualifier	Spike 	Itrix Spike Dup Resul 6.12 23.8 Duplicate Resul 0.750 9.87	Matu t Qua 5 5 5 0 0	rix Spik lifier licate lifier	e Du; Unit mg/L mg/L mg/L mg/L		D D	%Rec 108 108 Clie	Arec. Limits 80 - 120 80 - 120 nt Sample Prep Bat	RPD 0.360 0.282 ID: Dup ap Type ch: 1410 RPD 1.34 0.505	Limit 126_P RPD Limit 12.1 10 plicate : Total 126_P RPD Limit 13.1 15.7 Blank : Total
Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analysis Batch: 14I0126 Analyte Nitrate-Nitrogen Sulfate Method: SM 5310C - TOC Lab Sample ID: 193629-1 Matrix: Water Analysis Batch: 193629	Sample Result 0.740 9.92 Sample Result 0.740 9.92	Sample Qualifier Sample Qualifier	Spike Added 5.00 12.5	Itrix Spike Dup Resul 6.12 23.5 Duplicate Resul 0.750 9.87	Matu t Qua 5 5 7	rix Spik lifier licate lifier	e Du; Unit mg/L mg/L mg/L mg/L		D D	%Rec 108 108 Clie	Arep Bat %Rec. Limits 80 - 120 80 - 120 nt Sample Prep Bat Ample ID: Prep Bat	RPD 0.360 0.282 ID: Dup ap Type ch: 1410 RPD 1.34 0.505	Limit 126_P RPD Limit 12.1 10 plicate : Total 126_P RPD Limit 13.1 15.7 Blank : Total
Analyte Analyte Nitrate-Nitrogen Sulfate Lab Sample ID: 14I0126-DUP1 Matrix: Water Analyte Nitrate-Nitrogen Sulfate Matrix: Water Analyte Nitrate-Nitrogen Sulfate Method: SM 5310C - TOC Lab Sample ID: 193629-1 Matrix: Water Analysis Batch: 193629	Sample Result 0.740 9.92 Sample Result 0.740 9.92	Sample Qualifier Sample Qualifier	Spike 	Itrix Spike Dup Resul 6.12 23.5 Duplicate Resul 0.756 9.83	Dup	rix Spik lifier licate lifier	e Du; Unit mg/L mg/L mg/L mg/L		D D	%Rec 108 108 Clie	Arep Bat %Rec. Limits 80 - 120 80 - 120 nt Sample Prep Bat ample ID: Prep Bat	RPD 0.360 0.282 0 ID: Dup ep Type ch: 1410 RPD 1.34 0.505	Limit 126_P RPD Limit 12.1 10 plicate : Total 126_P RPD Limit 13.1 15.7 Blank : Total 629_P

09/25/14 12:00

1.00

mg/L

09/25/14 12:00

ND

1

LCS LCS

9.803

21.94

Result Qualifier

Spike

Added

10.0

Lab Sample ID: 193629-4

Analysis Batch: 193629

Lab Sample ID: 193629-5

Matrix: Water

Total Organic Carbon

Total Organic Carbon

Analyte

Method: SM 5310C - TOC (Continued)

Prep Type: Total Prep Batch: 193629_P

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

D

%Rec

98

88

75 - 122

Unit

mg/L

mg/L

6

Client Sample ID: Lab Control Sample Dup

Matrix: Water									Pre	p Type:	Total
Analysis Batch: 193629									Prep Bat	ch: 193	629_P
			Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon			10.0	9.874		mg/L		99	90 - 110	1	20
Lab Sample ID: 620471D							Client S	ample IC): Matrix Sp	oike Dup	olicate
Matrix: Water									Pre	p Type:	Total
Analysis Batch: 193629									Prep Bat	ch: 193	629_P
-	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	e Duț			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon	4.39		20.0	21.62		mg/L		86	75 - 122	1	20
Lab Sample ID: 620471S								Client	Sample ID	: Matrix	Spike
Matrix: Water									Pre	p Type:	Total
Analysis Batch: 193629									Prep Bat	ch: 193	629_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spik	е			%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		

20.0

4.39
Lab Sample ID: SXI0130-01 Matrix: Water

Date Collected: 09/18/14 14:38 Date Received: 09/19/14 09:50

Client Sample ID: SVMW-2-091814

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 13:57	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 13:57	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.952	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 21:39	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.997	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 14:30	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 11:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 13:51	CBW	TAL SPK
Total	Analysis	SM 5310C		1	193629	09/25/14 12:00	JKF	TAL NSH
Total	Prep	NA			193629_P	09/25/14 12:00		TAL NSH

Client Sample ID: SVMW-3-091814 Date Collected: 09/18/14 13:56 Date Received: 09/19/14 09:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		50.0	1410134	09/24/14 14:20	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		50.0	1410134	09/24/14 21:51	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		50.0	1410134	09/24/14 14:20	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.949	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 22:04	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.949	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		50.0	1410135	09/25/14 11:46	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.962	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 14:54	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.962	14I0145_P	09/24/14 08:30	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	10/03/14 12:57	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 11:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 14:05	CBW	TAL SPK

Client Sample ID: SVMW-1-091814 Date Collected: 09/18/14 15:03 Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 22:14	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK

Lab Sample ID: SXI0130-02

Matrix: Water

TestAmerica Spokane

Lab Sample ID: SXI0130-03

Matrix: Water

Client Sample ID: SVMW-1-091814

Lab Sample ID: SXI0130-03 Matrix: Water

Date Collected: 09/18/14 15:03 Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 22:14	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		2.60	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 22:29	ZZZ	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 11:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 14:20	CBW	TAL SPK

Client Sample ID: SVMW-Dup-091814 Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 15:05	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 15:05	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.958	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 23:32	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		1.01	14I0145_P	09/24/14 08:30	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410145	09/24/14 15:18	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 11:00	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 14:34	CBW	TAL SPK

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Lab Sample ID: SXI0130-04 Matrix: Water

9

8
9

Laboratory:	TestAmerica Spok	ane
-------------	------------------	-----

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	A2LA		NA: NELAP & A2LA	12-31-15
A2LA	ISO/IEC 17025		0453.07	12-31-15
Alaska (UST)	State Program	10	UST-087	10-31-15
Arizona	State Program	9	AZ0473	05-05-15
Arkansas DEQ	State Program	6	88-0737	04-25-15
California	NELAP	9	1168CA	10-31-14
Connecticut	State Program	1	PH-0220	12-31-15
Florida	NELAP	4	E87358	06-30-15
Illinois	NELAP	5	200010	12-09-14
lowa	State Program	7	131	04-01-16
Kansas	NELAP	7	E-10229	10-31-14
Kentucky (UST)	State Program	4	19	06-30-15
Kentucky (WW)	State Program	4	90038	12-31-14
Louisiana	NELAP	6	30613	06-30-15
Maryland	State Program	3	316	03-31-15
Massachusetts	State Program	1	M-TN032	06-30-15
Minnesota	NELAP	5	047-999-345	12-31-14
Mississippi	State Program	4	N/A	06-30-15
Montana (UST)	State Program	8	NA	02-24-20
Nevada	State Program	9	TN00032	07-31-15
New Hampshire	NELAP	1	2963	10-09-15
New Jersev	NELAP	2	TN965	06-30-15
New York	NELAP	2	11342	03-31-15
North Carolina (WW/SW)	State Program	4	387	12-31-14
North Dakota	State Program	8	R-146	06-30-14
Ohio VAP	State Program	5	CL0033	10-16-15
Oklahoma	State Program	6	9412	08-31-15
Oregon	NELAP	10	TN200001	04-29-15
Pennsylvania	NELAP	3	68-00585	06-30-15
Rhode Island	State Program	1	LAO00268	12-30-14
South Carolina	State Program	4	84009 (001)	02-28-15
South Carolina (DW)	State Program	4	84009 (002)	02-23-17
Tennessee	State Program	4	2008	02-23-17
Texas	NELAP	6	T104704077	08-31-15
USDA	Federal		S-48469	10-30-16
Utah	NELAP	8	TN00032	07-31-15
Virginia	NELAP	- 3	460152	06-14-15
Washington	State Program	10	C789	07-19-15
West Virginia DEP	State Program	3	219	02-28-15
Wisconsin	State i regiani	~		
	State Program	5	998020430	08-31-15

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

TestAmerica Job ID: SXI0130

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup		TAL SPK
EPA 300.0	Anions by EPA Method 300.0		TAL SPK
SM 5310C	TOC		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

253-922-2310 FAX 922-5047 X 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

					C	HAIN	OF	CUST	ODY	REP	ORT	.			Work O	rder #	XID120	
CLIENT: GroPAGIARE	~					INVOIC	E TO:									TURNAI	ROUND REQUEST	ſ
PEROPT TO JT Sucalst	ci .															in	Business Days *	
ADDRESS: MAZ SE SEC	and Ave															Organic &	Inorganic Analyses	
6,00 Kare w	A 99202														🕅 🔽 🔽	5	4 3 2 1	<1
PHONE: 509 - 363-3125	FAX: 509-3	63-3126				P.O. NUI	MBER:								STD.	Petroleum	Hydrocarbon Analyses	_
PROJECT NAME: Three Tige	r oil - Sum	ليت 1 1 1 1 1 1 1						PR	ESERVAI	IVE				· · · · · · · · · · · · · · · · · · ·		14	3 2 1 <	1
DECTENTINGED A CH-1	ni - an														SIL). 		
PROJECT NUMBER. (7) * 7 *								REQUE	STED AN	ALYSES	-			· · · ·	0	THER	Specify:	
SAMPLED BY: しいア			Ŧ		PH-		J. J.	-Ar	بعر ا						* Turnaround .	Requests les.	s than standard may incur i	Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAM DATE	PLING E/TIME	ていい	Vacs	トシク	4	HAG	した	Sulfa						MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
1 SUMW - 2-091814	9/18/14	1438	×	×	¥.	×	¥	×.	r						<u>ن</u>	T		
2 SUMW - 3-091814	9/18/14	1356	x	*	r	r	×	r	7						<u></u> <u> </u>	7		
3 SUMW-1-091814	9/18/14	1503	×				X								ω	3		
4 SVMW - DUP- 091814	9/19/14	0800	F	4	¥	*	*	¥	*		 		-		w	T		
5										<u> </u>			<u> </u>					
6				5					<u> </u>	-								
7	•) 		-						<u> </u>					18 in 19 in 19	
8										-								
9											<u> </u>							
10													1				7	
RELEASED BY: Z			~			DATE	: 7/19	119		RECEIVE	5D 8Y:	al A	Jacklas	ส่ง		TA	DATE: 7	1177
PRINT NAME: JUSTU TZICL		FIRM:	7 <i>20</i> _			TIME	: 09	<u>sc</u>		PRINT N	AME: U	<u>n l</u>	Naputa	<u> </u>	FIRM	- <u> </u> /	DATE:	\mathcal{D}
RELEASED BY:						DATE	:			PRINT	AME				FIRM	:	TIME:	
PRINT NAME:		FIRM:				TIME				FRININ							TEMP:	
ADDITIONAL REMARKS:																	38 PAGE	
																	TAL-1	1000 (0612)

10/14/2014

TestAmerica Spokane Sample Receipt Form

Work Order #:SXID 30 clier	Geotraine	ers			Project: Tiger Oil Summet	
Date/Time Received: 9-19-14		By.CS			······································	
Samples Delivered By: XShipping Service	Courier Client	Other	r:			
List Air Bill Number(s) or Attach a photocopy of th	he Air Bill:					
Receipt Phase		Yes	No	NA	Comments	
Were samples received in a cooler:		X				
Custody Seals are present and intact:				X		
Are CoC documents present:		χ				
Necessary signatures:		X				
Thermal Preservation Type: Blue Ice Ge	l ice 🔽 Real ice	Dry Ice	None	Other:_		
Temperature: <u> </u>	rcle one Serial #12	2208348 K	eyring IR	Serial # 1 1	1874910 IR Gun 2)(acceptance criteria 0-6	
Temperature out of range: Not enough ice	_ice meited∖	w/in 4hrs of	collection]Other:	
Log-in Phase Date/Time: <u>1914</u> <u>1026</u> By:	<u>(1)</u>	Yes	No	NA	Comments	
Are sample labels affixed and completed for each	n container	Х				
Samples containers were received intact:		X				
Do sample IDs match the CoC		X	Map	ગ્રાખ્ય		mine C
Appropriate sample containers were received for	tests requested	×	X		MISSING NUTPH-DX CON 3X40130-01 4-04	WINTER 2 10
Are sample volumes adequate for tests requeste	d	×			<u>ř</u> A	
Appropriate preservatives were used for the tests	requested	X			· · · · · · · · · · · · · · · · · · ·	
pH of inorganic samples checked and is within m	ethod specification	X				
Are VOC samples free of bubbles >6mm (1/4" dia	ameter)	X				
Are dissolved parameters field filtered				<u>X</u>		
Do any samples need to be filtered or preserved	by the lab			X		
Does this project require quick turnaround analys	is		<u>Х</u>			
Are there any short hold time tests (see chart below	ow)	<u> X</u>			Nitrate	
Are any samples within 2 days of or past expiration	n .		\searrow			
Was the CoC scanned		$\overline{2}$	pas al	oolu		
Were there Non-conformance issues at login		X	~		See commonts ab	ave
If yes, was a CAR generated #	a			$ \mathcal{T} $		

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

•

Form No. SP-FORM-SPL-002 12 December 2012

.

÷

1

2

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXH0013

Client Project/Site: 0504-101-00 Client Project Description: Tiger Oil - Summit View

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: JR Sugalski

tandre trington

Authorized for release by: 8/19/2014 9:44:39 AM

Randee Arrington, Project Manager (509)924-9200 Randee.Arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	9
Chronicle	15
Certification Summary	17
Method Summary	18
Chain of Custody	19

Sample Summary

Matrix

Soil

Soil

Soil

Soil

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

Client Sample ID

SVMW-1(17-18)

SVMW-3(17-18)

SVMW-2(7-8)

Duplicate

Lab Sample ID

SXH0013-02

SXH0013-05

SXH0013-09

SXH0013-10

TestAmerica Job ID: SXH0013

Received

08/05/14 10:25

08/05/14 10:25

08/05/14 10:25

08/05/14 10:25

Collected

07/28/14 13:25

07/31/14 12:45

08/01/14 08:40

08/01/14 07:00

3
5
8
9

Qualifiers

Semivolatiles	5	Л
Qualifier	Qualifier Description	4
MHA	Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).	5
Fuels		
Qualifier	Qualifier Description	
R2	The RPD exceeded the acceptance limit.	7
Glossary		8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	- 9

Appreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: SVMW-1(17-18)

Date Collected: 07/28/14 13:25 Date Received: 08/05/14 10:25

o-Terphenyl

n-Triacontane-d62

Lab Sample ID: SXH0013-02 Matrix: Soil

Percent Solids: 81.7

5

Method: EPA 8260C - Volatile Or Analyte	rganic Compou Result	Inds by EP. Qualifier	A Method 82600	MDI	Unit	п	Prenared	Analyzed	Dil Fac
Methyl tert-butyl ether			0.0348		ma/ka dry	— <u>-</u>	08/06/14 07:41	08/06/14 12:13	1.00
Benzene			0.0040		ma/ka dry	æ	08/06/14 07:41	08/06/14 12:13	1.00
Toluene			0.116		ma/ka dry	ä	08/06/14 07:41	08/06/14 12:13	1.00
Ethylhenzene	ND		0.116		ma/ka dry	ä	08/06/14 07:41	08/06/14 12:13	1.00
m n-Yylene			0.110		ma/ka dry	ä	08/06/14 07:41	08/06/14 12:13	1.00
	ND		0.404		mg/kg dry	÷	08/06/14 07:41	08/06/14 12:13	1.00
1.2 Disblorosthans (EDC)			0.232		mg/kg dn/	⁻	08/06/14 07:41	08/06/14 12:13	1.00
Yvlenes (total)			0.110		mg/kg dny	ň	08/06/14 07:41	08/06/14 12:13	1.00
Xylenes (total)	ND		0.090		під/кд агу	*	06/06/14 07.41	08/08/14 12.13	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	101		80 - 120				08/06/14 07:41	08/06/14 12:13	1.00
1,2-dichloroethane-d4	103		74.7 - 120				08/06/14 07:41	08/06/14 12:13	1.00
Toluene-d8	101		78.5 - 125				08/06/14 07:41	08/06/14 12:13	1.00
4-bromofluorobenzene	98.9		69.8 - 140				08/06/14 07:41	08/06/14 12:13	1.00
- Mothod: NW/TBH-Gx - Gasolino h			GY						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.80		mg/kg dry	<u></u>	08/06/14 07:41	08/06/14 12:13	1.00
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fa
4-bromofluorobenzene	90.7		41.5 - 162				08/06/14 07:41	08/06/14 12:13	1.00
Method: EPA 8011 - EDB by EPA	A Method 8011	Qualifian	ы	MDI	11		Drevered	Analyzed	
1 2-Dibromoethane		Quaimer	- <u>RL</u> 1.05 —			— _	08/07/14 13:48	08/11/14 15:47	1.00
	ND		1.05		ug/kg ury	.,.	00/07/14 13.40	00/11/14 13.47	1.00
Method: EPA 8270D - Polynuclea	ar Aromatic Co	mpounds l	by GC/MS with S	Selected	Ion Monito	ring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0215		mg/kg dry	¢	08/07/14 08:32	08/07/14 19:44	1.00
2-Methylnaphthalene	ND		0.0215		mg/kg dry	₽	08/07/14 08:32	08/07/14 19:44	1.00
1-Methylnaphthalene	ND		0.0215		mg/kg dry	¢	08/07/14 08:32	08/07/14 19:44	1.00
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	91.4		36.3 - 152				08/07/14 08:32	08/07/14 19:44	1.00
2-FBP	79.6		30.2 - 135				08/07/14 08:32	08/07/14 19:44	1.00
p-Terphenyl-d14	80.8		65.1 - 134				08/07/14 08:32	08/07/14 19:44	1.00
- - -									
Method: NWTPH-Dx - Semivolati	ile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	11.7		9.88		mg/kg dry	\\\\\	08/06/14 08:12	08/08/14 12:01	1.00
Heavy Oil Range Hydrocarbons	34.2		24.7		mg/kg dry	¢	08/06/14 08:12	08/08/14 12:01	1.00
Surrogata	% Basayany	Qualifiar	Limito				Proparad	Analyzad	

_ Method: EPA 6010C - Metals Cont	ent by EPA 6	010/7000 Se	eries Method	s, Prep by I	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.62		1.51		mg/kg dry	\$	08/08/14 11:53	08/12/14 11:45	1.00

50 - 150

50 - 150

94.1

82.7

08/06/14 08:12 08/08/14 12:01

08/08/14 12:01

08/06/14 08:12

1.00

1.00

Client Sample ID: SVMW-2(7-8)

Date Collected: 07/31/14 12:45 Date Received: 08/05/14 10:25

Lab Sample ID: SXH0013-05 Matrix: Soil

Percent Solids: 90

5

Methyl tert-butyl ether	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
meany tert-buly ether	ND		0.0376		mg/kg dry	— —	08/06/14 07:41	08/06/14 12:35	1.00
Benzene	ND		0.0188		mg/kg dry	₽	08/06/14 07:41	08/06/14 12:35	1.00
Toluene	ND		0.125		mg/kg dry	¢	08/06/14 07:41	08/06/14 12:35	1.00
Ethylbenzene	ND		0.125		mg/kg dry	¢	08/06/14 07:41	08/06/14 12:35	1.00
m,p-Xylene	ND		0.502		mg/kg dry	₽	08/06/14 07:41	08/06/14 12:35	1.00
o-Xylene	ND		0.251		mg/kg dry	₽	08/06/14 07:41	08/06/14 12:35	1.00
1,2-Dichloroethane (EDC)	ND		0.125		mg/kg dry	¢.	08/06/14 07:41	08/06/14 12:35	1.00
Xylenes (total)	ND		0.753		mg/kg dry	¢	08/06/14 07:41	08/06/14 12:35	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.3		80 - 120				08/06/14 07:41	08/06/14 12:35	1.00
1,2-dichloroethane-d4	104		74.7 - 120				08/06/14 07:41	08/06/14 12:35	1.00
Toluene-d8	103		78.5 - 125				08/06/14 07:41	08/06/14 12:35	1.00
4-bromofluorobenzene	96.4		69.8 - 140				08/06/14 07:41	08/06/14 12:35	1.00
Method: NWTPH-Gx - Gasoline H	vdrocarbone		-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		6.27		ma/ka drv	— —	08/06/14 07:41	08/06/14 12:35	1.00
					5 5 7				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Analyte 1,2-Dibromoethane	Result ND	Qualifier	RL	MDL	Unit ug/kg dry	— <mark>D</mark>	Prepared 08/07/14 13:48	Analyzed 08/11/14 14:50	Dil Fac 1.00
	ND		0.950		ug/kg ary	~~~	08/07/14 13:48	08/11/14 14:50	1.00
Method: EPA 8270D - Polynuclea									
	r Aromatic Co	mpounds	by GC/MS with S	elected	Ion Monito	ring			
Analyte	Result	mpounds Qualifier	by GC/MS with S	elected MDL	Ion Monito Unit	ring D	Prepared	Analyzed	Dil Fac
Analyte Naphthalene	r Aromatic Co Result ND	Qualifier	by GC/MS with S 	elected MDL	Ion Monito Unit mg/kg dry	ring — D — 🙀	Prepared 08/07/14 08:32	Analyzed 08/07/14 20:07	Dil Fac
Analyte Naphthalene 2-Methylnaphthalene	Aromatic Co Result ND ND	mpounds Qualifier	by GC/MS with S 	elected MDL	Ion Monito Unit mg/kg dry mg/kg dry	ring — D ¤	Prepared 08/07/14 08:32 08/07/14 08:32	Analyzed 08/07/14 20:07 08/07/14 20:07	Dil Fac 1.00 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	Result ND ND ND	mpounds Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208	elected MDL	Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry	ring — D ¤ ¤	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07	Dil Fac 1.00 1.00 1.00
Analyte Naphthalene 2-Methylnaphthalene Surrogate	Result ND ND %Recovery	Qualifier Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 Limits	Gelected MDL	Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry	ring D æ	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 Analyzed	Dil Fac 1.00 1.00 1.00 Dil Fac
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5	- Kromatic Co Result ND ND ND ND - %Recovery 92.0	Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208	Gelected MDL	Unit mg/kg dry mg/kg dry mg/kg dry	ring — D ~ ~ ~ ~	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 Analyzed 08/07/14 20:07	Dil Fac 1.00 1.00 1.00 Dil Fac 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP	- Result ND ND %Recovery 92.0 85.2	ualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 0.0208 - Limits 36.3 - 152 30.2 - 135	elected MDL	Unit mg/kg dry mg/kg dry mg/kg dry	ring D x x	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32 08/07/14 08:32	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 Analyzed 08/07/14 20:07 08/07/14 20:07	Dil Fac 1.00 1.00 1.00 Dil Fac 1.00 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14	Aromatic Co Result ND ND ND ND ND ND ND S.2 88.8	Qualifier	by GC/MS with S RL 0.0208 0.0218 0	elected MDL	Unit mg/kg dry mg/kg dry mg/kg dry	ring D ×	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07	Dil Fac 1.00 1.00 1.00 Dil Fac 1.00 1.00 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil	 Aromatic Co Result ND Sc.2 88.8 e Petroleum P 	Qualifier Qualifier Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 0.0208 0.0208 - Limits 36.3 - 152 30.2 - 135 65.1 - 134 / NWTPH-Dx	Belected MDL	Unit mg/kg dry mg/kg dry mg/kg dry	ring D ×	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil Analyte	 Aromatic Co Result ND S5.2 88.8 e Petroleum P Result 	Qualifier Qualifier Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 0.0208 - Limits 36.3 - 152 30.2 - 135 65.1 - 134 / NWTPH-Dx RL	MDL MDL	Unit mg/kg dry mg/kg dry mg/kg dry	ring D X X X X D	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 1.00 Dil Fac
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons	Aromatic Co Result ND ND ND ND 0 %Recovery 92.0 85.2 88.8 e Petroleum P Result ND	Qualifier Qualifier Qualifier	by GC/MS with S RL 0.0208 0	MDL MDL	Unit mg/kg dry mg/kg dry mg/kg dry Mg/kg dry	ring	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 1.00 Dil Fac Dil Fac
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	Aromatic Co Result ND ND ND ND 85.2 88.8 Petroleum P Result ND ND ND	Qualifier Qualifier Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 0.0208 <i>Limits</i> 36.3 - 152 30.2 - 135 65.1 - 134 / NWTPH-Dx RL 10.9 27.3	MDL MDL	Unit mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry mg/kg dry	ring ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/06/14 08:12 08/06/14 08:12	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 <i>Analyzed</i> 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/08/14 12:26 08/08/14 12:26	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 Dil Fac 1.00 1.00 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	r Aromatic Co Result ND ND ND ND ND 85.2 88.8 e Petroleum P Result ND ND	Qualifier Qualifier Products by Qualifier Qualifier	by GC/MS with S RL 0.0208 0.02.135 0.5.1 - 134 10.9 27.3 Limits	MDL	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring _ D ☆ ☆ ☆ ☆ ☆	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/06/14 08:12 08/06/14 08:12 Prepared	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 <i>Analyzed</i> 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/08/14 12:26 08/08/14 12:26 Analyzed	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 Dil Fac Dil Fac Dil Fac
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl	Aromatic Co Result ND ND ND ND ND 92.0 85.2 88.8 e Petroleum P Result ND ND -	Qualifier Qualifier Qualifier Qualifier Qualifier Qualifier Qualifier	by GC/MS with S RL 0.0208 0.02.135 0.5.1 - 134 10.9 27.3 Limits 50 - 150 150 150 150 150 150 150 150	MDL	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry mg/kg dry	ring □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 <i>Prepared</i> 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/06/14 08:12 08/06/14 08:12 <i>Prepared</i> 08/06/14 08:12	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 <i>Analyzed</i> 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/08/14 12:26 Analyzed 08/08/14 12:26	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62	Aromatic Co Result ND ND ND ND 92.0 85.2 88.8 e Petroleum P Result ND ND - %Recovery 100 83.8	Qualifier Qualifier Qualifier Qualifier Qualifier Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 0.0208 0.0208 <i>Limits</i> 36.3 - 152 30.2 - 135 65.1 - 134 (NWTPH-DX RL 10.9 27.3 <i>Limits</i> 50 - 150 50 - 150	MDL	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry mg/kg dry	ring D x x x x x x x x x x x x	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/06/14 08:12 08/06/14 08:12 08/06/14 08:12 08/06/14 08:12	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 <i>Analyzed</i> 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/08/14 12:26 08/08/14 12:26 08/08/14 12:26 08/08/14 12:26	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 6010C - Metals Con	r Aromatic Co Result ND ND ND ND ND S5.2 88.8 e Petroleum P Result ND ND ND S5.2 88.8 e Petroleum P Result ND ND S5.2 88.8 tent by EPA 6	Qualifier Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 0.0208 0.0208 - Limits 36.3 - 152 30.2 - 135 65.1 - 134 / NWTPH-Dx RL 10.9 27.3 - Limits 50 - 150 50 - 150 Series Methods. I	MDL MDL	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry mg/kg dry	ring □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/06/14 08:12 08/06/14 08:12 08/06/14 08:12 08/06/14 08:12	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 <i>Analyzed</i> 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/08/14 12:26 08/08/14 12:26 08/08/14 12:26	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 Dil Fac 1.00 1.00 Dil Fac 1.00
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 6010C - Metals Con Analyte	r Aromatic Co Result ND ND ND ND */Recovery 92.0 85.2 88.8 e Petroleum P Result ND ND ND 100 83.8 tent by EPA 6 Result	Qualifier	by GC/MS with S RL 0.0208 0.0208 0.0208 0.0208 0.0208 - Limits 36.3 - 152 30.2 - 135 65.1 - 134 / NWTPH-Dx RL 10.9 27.3 - Limits 50 - 150 50 - 150 Series Methods, I RL	MDL MDL	Unit Unit mg/kg dry mg/kg dry mg/kg dry Unit EPA 3050B Unit	ring D X X X D D D	Prepared 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/07/14 08:32 08/06/14 08:12 08/06/14 08:12 08/06/14 08:12 08/06/14 08:12 08/06/14 08:12 08/06/14 08:12	Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 Analyzed 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/07/14 20:07 08/08/14 12:26 08/08/14 12:26 08/08/14 12:26 08/08/14 12:26	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00 1.00 Dil Fac 1.00 Dil Fac 1.00 Dil Fac

Client Sample ID: SVMW-3(17-18) Date Collected: 08/01/14 08:40 Date Received: 08/05/14 10:25

Lab Sample ID: SXH0013-09 Matrix: Soil

Percent Solids: 80.4

5

	rganic Compou	nds by EP	A Method 8260C	;					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0364		mg/kg dry	— <u> </u>	08/06/14 07:41	08/06/14 12:58	1.00
Benzene	0.135		0.0182		mg/kg dry	¢	08/06/14 07:41	08/06/14 12:58	1.00
Toluene	4.65		0.121		mg/kg dry	¢	08/06/14 07:41	08/06/14 12:58	1.00
Ethylbenzene	12.0		1.21		mg/kg dry	¢.	08/06/14 07:41	08/06/14 13:21	10.0
m,p-Xylene	56.2		4.86		mg/kg dry	₽	08/06/14 07:41	08/06/14 13:21	10.0
o-Xylene	18.7		2.43		mg/kg dry	₽	08/06/14 07:41	08/06/14 13:21	10.0
1,2-Dichloroethane (EDC)	ND		0.121		mg/kg dry	¢	08/06/14 07:41	08/06/14 12:58	1.00
Xylenes (total)	74.9		7.28		mg/kg dry	₽	08/06/14 07:41	08/06/14 13:21	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	90.5		80 - 120				08/06/14 07:41	08/06/14 12:58	1.00
1,2-dichloroethane-d4	108		74.7 - 120				08/06/14 07:41	08/06/14 12:58	1.00
Toluene-d8	97.6		78.5 - 125				08/06/14 07:41	08/06/14 12:58	1.00
4-bromofluorobenzene	107		69.8 - 140				08/06/14 07:41	08/06/14 12:58	1.00
- Method: NWTPH-Gx - Gasoline I	Hydrocarbons	ov NWTPH	-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	1070		60.7		mg/kg dry	\$	08/06/14 07:41	08/06/14 13:21	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	92.9		41.5 - 162				08/06/14 07:41	08/06/14 12:58	1.00
Analyte	Result	Qualifier		MDL	Unit	— D	Prepared	Analyzed	Dil Fac
	ND		1.17		ug/kg ury	Ť	06/07/14 13.46	00/11/14 10.02	1.00
- Method: EPA 8270D - Polynucle	ar Aromatic Co	mnounds	by GC/MS with S	betted	Ion Monito	rina			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.68		0.0216		ma/ka drv		08/07/14 08:32	08/07/14 20:29	1.00
2-Methylnanhthalene	2 20		0.0216		ma/ka dry	₽	08/07/14 08:32	08/07/14 20:29	1.00
1-Methylnaphthalene	1 14		0.0216		ma/ka dry	æ	08/07/14 08:32	08/07/14 20:29	1.00
-metrymaphtnaiene			0.0210		ing/kg ury		00/01/11/00:02	00/01/11/20:20	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	95.2		36.3 - 152				08/07/14 08:32	08/07/14 20:29	1.00
2-FBP	73.2		30.2 - 135				08/07/14 08:32	08/07/14 20:29	1.00
p-Terphenyl-d14	86.8		65.1 - 134				08/07/14 08:32	08/07/14 20:29	1.00
_ Method: NWTPH-Dx - Semivolat	ile Petroleum P	roducts by	/ NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	51.6		10.4		mg/kg dry	<u> </u>	08/06/14 08:12	08/08/14 12:50	1.00
Heavy Oil Range Hydrocarbons	ND		25.9		mg/kg dry	₽	08/06/14 08:12	08/08/14 12:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97.5		50 - 150				08/06/14 08:12	08/08/14 12:50	1.00
n-Triacontane-d62	80.1		50 - 150				08/06/14 08:12	08/08/14 12:50	1.00
- Method: EPA 6010C - Metale Co	ntent by EDA 6	010/7000 9	arias Mathada	Pron by					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.25		1.54		ma/ka drv	— —	08/08/14 11:53	08/12/14 11:53	1.00

Client Sample ID: Duplicate Date Collected: 08/01/14 07:00

Date Received: 08/05/14 10:25

... ...

Lead

Lab Sample ID: SXH0013-10 Matrix: Soil

Percent Solids: 81.1

5

Method: EPA 8260C - Volatile Or	ganic Compou	inds by EP	A Method 82600	;		_			
Analyte	Result	Qualifier		MDL	Unit	— <u>–</u>	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0364		mg/kg dry	بد بر	08/06/14 07:41	08/06/14 13:44	1.00
Benzene	0.137		0.0182		mg/kg dry	14r 24	08/06/14 07:41	08/06/14 13:44	1.00
Toluene	4.60		0.121		mg/kg dry	ېد محمد د د	08/06/14 07:41	08/06/14 13:44	1.00
Ethylbenzene	13.6		2.43		mg/kg dry	: Д-	08/06/14 07:41	08/06/14 14:53	20.0
m,p-Xylene	63.2		9.72		mg/kg dry		08/06/14 07:41	08/06/14 14:53	20.0
o-Xylene	20.6		4.86		mg/kg dry	₽	08/06/14 07:41	08/06/14 14:53	20.0
1,2-Dichloroethane (EDC)	ND		0.121		mg/kg dry	Ċ.	08/06/14 07:41	08/06/14 13:44	1.00
Xylenes (total)	83.8		14.6		mg/kg dry	¢	08/06/14 07:41	08/06/14 14:53	20.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	89.1		80 - 120				08/06/14 07:41	08/06/14 13:44	1.00
1,2-dichloroethane-d4	105		74.7 - 120				08/06/14 07:41	08/06/14 13:44	1.00
Toluene-d8	100		78.5 - 125				08/06/14 07:41	08/06/14 13:44	1.00
4-bromofluorobenzene	108		69.8 - 140				08/06/14 07:41	08/06/14 13:44	1.00
- Method: NWTPH-Gx - Gasoline I	- 	by NWTPH	-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	1160		60.7		mg/kg dry	<u>Å</u>	08/06/14 07:41	08/06/14 14:07	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	91.7		41.5 162				08/06/14 07:41	08/06/14 14:07	10.0
1,2-Dibromoethane	ND		1.15		ug/kg dry	<u></u>	08/07/14 13:48	08/11/14 15:04	1.00
_			-						
Method: EPA 82/0D - Polynuclea Analyte	ar Aromatic Co Result	Qualifier	By GC/MS with a	Selected MDL	Unit	ring D	Prepared	Analyzed	Dil Fac
Naphthalene	1.58		0.0226		mg/kg dry	— <u></u>	08/07/14 08:32	08/07/14 20:52	1.00
2-Methylnaphthalene	2.02		0.0226		mg/kg dry	¢	08/07/14 08:32	08/07/14 20:52	1.00
1-Methylnaphthalene	1.18		0.0226		mg/kg dry	₽	08/07/14 08:32	08/07/14 20:52	1.00
Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzed	Dil Fac
Nitrobenzene-d5	103		36.3 - 152				08/07/14 08:32	08/07/14 20:52	1.00
2-FBP	81.0		30.2 135				08/07/14 08:32	08/07/14 20:52	1 00
p-Terphenyl-d14	84.2		65.1 - 134				08/07/14 08:32	08/07/14 20:52	1.00
- - Method: NWTPH_Dy - Somivolati	ile Petroloum P	Producte by							
Analyte	Result	Qualifier	RI	мп	Unit	п	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons					ma/ka drv	— -	08/06/14 08:12	08/08/14 13.14	1 00
Heavy Oil Range Hydrocarbons	ND		30.5		mg/kg dry	¢	08/06/14 08:12	08/08/14 13:14	1.00
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
o-Terphenyl	100		50 - 150				08/06/14 08:12	08/08/14 13:14	1.00
n-Triacontane-d62	82.1		50 - 150				08/06/14 08:12	08/08/14 13:14	1.00
- Method: EPA 6010C - Metals Co	ntent by FPA 6	010/7000 \$	eries Methods	Prep by	FPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Load	5 24		1 47		ma/ka dry	 ¤	08/08/14 11 53	08/12/14 11:57	1 00

5.24

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

98.1

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14H0013_P

08/06/14 09:33

Client Sample ID: Lab Control Sample

1.00

Prep Type: Total

08/06/14 07:41

5

6

Matrix: Soil Analysis Batch: 14H0013

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0300		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00
Benzene	ND		0.0150		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00
Toluene	ND		0.100		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00
Ethylbenzene	ND		0.100		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00
m,p-Xylene	ND		0.400		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00
o-Xylene	ND		0.200		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00
1,2-Dichloroethane (EDC)	ND		0.100		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00
Xylenes (total)	ND		0.600		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		80 - 120				08/06/14 07:41	08/06/14 09:33	1.00
1,2-dichloroethane-d4	104		74.7 _ 120				08/06/14 07:41	08/06/14 09:33	1.00
Toluene-d8	100		78.5 - 125				08/06/14 07:41	08/06/14 09:33	1.00

69.8 - 140

Lab Sample ID: 14H0013-BS1 Matrix: Soil

Analysis Batch: 14H0013

4-bromofluorobenzene

Analysis Batch: 14H0013									Prep Batch: 14H0013_P
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether			0.500	0.557		mg/kg wet		111	60 - 140
Benzene			0.500	0.492		mg/kg wet		98.3	75.8 - 123
Toluene			0.500	0.487		mg/kg wet		97.4	76.6 - 125
Ethylbenzene			0.500	0.483		mg/kg wet		96.6	77.3 - 121
m,p-Xylene			0.500	0.480		mg/kg wet		95.9	77.7 - 124
o-Xylene			0.500	0.519		mg/kg wet		104	76.7 _ 129
Naphthalene			0.500	0.495		mg/kg wet		99.0	55.1 ₋ 142
1,2-Dichloroethane (EDC)			0.500	0.528		mg/kg wet		106	71.1 - 142
1,2-Dibromoethane			0.500	0.564		mg/kg wet		113	77.1 - 129
Xylenes (total)			1.00	0.998		mg/kg wet		99.8	76.5 - 124
Hexane			0.500	0.516		mg/kg wet		103	77 _ 130
	LCS	LCS							
Surrogate	%Recovery	Qualifier	l imits						

Surrogate	%Recovery Q	ualifier Limits
Dibromofluoromethane	101	80 - 120
1,2-dichloroethane-d4	108	74.7 - 120
Toluene-d8	99.7	78.5 - 125
4-bromofluorobenzene	95.1	69.8 - 140

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

_ Lab Sample ID: 14H0013-BLK1							Client Sa	mple ID: Metho	d Blank
Matrix: Soil								Prep Typ	e: Total
Analysis Batch: 14H0013							F	Prep Batch: 14H	10013_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.00		mg/kg wet		08/06/14 07:41	08/06/14 09:33	1.00

Lab Sample ID: 14H0013-BLK1

Client Sa	mple ID: Metho Prep Typ	d Blank e: Total	
P	Prep Batch: 14H	10013_P	5
repared	Analyzed	Dil Fac	6
6/11 07.11	08/06/11 00.22	1 00	

Method: NWTPH-Gx - 0	asoline Hydroca	hons hy NWTI	PH-Gx (Continued)
	Justinine right oou	NOTIO NY TUTTI	

Matrix: Soil									Prep Ty	vpe: Total
Analysis Batch: 14H0013									Prep Batch: 14	H0013_P
	Bla	nk Blank								
Surrogate	%Recove	ry Qualifier	Limits				P	repared	Analyzed	Dil Fac
4-bromofluorobenzene	89	.9	41.5 - 162	-			08/0	6/14 07:41	1 08/06/14 09:33	1.00
Lab Sample ID: 14H0013-BS2 Matrix: Soil							Client	t Sample	e ID: Lab Contro Prep Ty	ol Sample vpe: Total
Analysis Batch: 14H0013									Prep Batch: 14	H0013_P
Analyte Gasoline Range Hydrocarbons			Spike <u>Added</u> 50.0	LCS Result 46.1	LCS Qualifier	Unit mg/kg wet	<u>D</u>	%Rec 92.3	%Rec. Limits 74.4 - 124	
	LCS L	cs								
Surrogate	%Recovery Q	ualifier	Limits							
4-bromofluorobenzene	90.9		41.5 - 162							

Method: EPA 8011 - EDB by EPA Method 8011

												Client S	omple ID: Me	thed Blenk
Lab Sample ID. 140023-BLK1 Matrix: Soil												Chefit 5	ample ID: Me Pron	Type: Total
Analysis Batch: 1/H0023													Pron Batch:	1/H0023 P
Analysis Batch. 14110025	E	Blank	Blank										Frep Datch.	14110023_F
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
1,2-Dibromoethane		ND			1.00			ug/kg	wet		08/0	7/14 13:48	08/11/14 14:	50 1.00
Lab Sample ID: 14H0023-BS1										CI	lient	Sample	ID: Lab Con	trol Sample
Matrix: Soil													Prep	Type: Total
Analysis Batch: 14H0023													Prep Batch:	14H0023 P
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
1,2-Dibromoethane				5.00		3.95			ug/kg wet	t	_	79.0	60 - 140	
1,2-Dibromo-3-chloropropane				5.00		6.54			ug/kg wet	t		131	60 - 140	
Lab Sample ID: 14H0023-BS2										CI	lient	Sample	ID: Lab Con	trol Sample
Matrix: Soil													Prep	Type: Total
Analysis Batch: 14H0023													Prep Batch:	14H0023_P
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
1,2-Dibromoethane				5.00		5.31			ug/kg wet	t	_	106	60 - 140	
1,2-Dibromo-3-chloropropane				5.00		5.95			ug/kg wet	t		119	60 - 140	
Lab Sample ID: 14H0023-MS1											С	lient Sa	mple ID: SVN	IW-3(17-18)
Matrix: Soil													Prep	Type: Total
Analysis Batch: 14H0023													Prep Batch:	14H0023 P
	Sample	Samp	ole	Spike	Matri	ix Spike	Matr	ix Spik	(e				%Rec.	_
Analyte	Result	Quali	ifier	Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
1,2-Dibromoethane	ND			6.00		5.12			ug/kg dry	,	☆	85.4	60 - 140	
1 2-Dibromo-3-chloropropane	ND			6.00		5.18			ua/ka drv	,	₽	86.3	60 - 140	

5

6

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 14H0023-MSD1 Matrix: Soil							C	Client Sa	mple ID: S Pro	VMW-3(ep Type:	17-18) : Total
Analysis Batch: 14H0023									Ргер Вато	n: 14HU	023_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	ND		5.97	5.30		ug/kg dry	<u>×</u>	88.8	60 - 140	3.47	20
1,2-Dibromo-3-chloropropane	ND		5.97	5.20		ug/kg dry	☆	87.0	60 - 140	0.446	20

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

– Lab Sample ID: 14H0019-BLK1 Matrix: Soil							Client Sa	mple ID: Metho Prep Typ	d Blank
Analysis Batch: 14H0019							F	Prep Batch: 14	10019 P
	Blank	Blank							_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0100		mg/kg wet		08/07/14 08:32	08/07/14 17:06	1.00
2-Methylnaphthalene	ND		0.0100		mg/kg wet		08/07/14 08:32	08/07/14 17:06	1.00
1-Methylnaphthalene	ND		0.0100		mg/kg wet		08/07/14 08:32	08/07/14 17:06	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	95.8		36.3 - 152				08/07/14 08:32	08/07/14 17:06	1.00
2-FBP	82.6		30.2 - 135				08/07/14 08:32	08/07/14 17:06	1.00
p-Terphenyl-d14	96.2		65.1 - 134				08/07/14 08:32	08/07/14 17:06	1.00

Lab Sample ID: 14H0019-BS1

Matrix: Soil

Analysis Batch: 14H0019

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	0.133	0.103		mg/kg wet		77.5	62.7 _ 120	
Fluorene	0.133	0.107		mg/kg wet		80.0	67.9 _ 124	
Chrysene	0.133	0.105		mg/kg wet		79.0	68.2 - 132	
Indeno (1,2,3-cd) pyrene	0.133	0.103		mg/kg wet		77.5	52.6 - 149	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	59.8		36.3 - 152
2-FBP	73.8		30.2 - 135
p-Terphenyl-d14	83.6		65.1 - 134

Lab Sample ID: 14H0019-BS2

Matrix: Soil

Analysis Batch: 14H0019							Prep Batc	h: 14H0019_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	0.133	0.103		mg/kg wet		77.5	62.7 _ 120	
Fluorene	0.133	0.121		mg/kg wet		90.5	67.9 - 124	
Chrysene	0.133	0.105		mg/kg wet		78.5	68.2 - 132	
Indeno (1,2,3-cd) pyrene	0.133	0.106		mg/kg wet		79.5	52.6 - 149	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	74.6		36.3 - 152
2-FBP	72.0		30.2 - 135

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Type: Total

Prep Batch: 14H0019_P

TestAmerica	Spokane
-------------	---------

p-Terphenyl-d14

2 3 4 5 6 7 8 9

Method: EPA 8270D - Poly (Continued)	nuclear Ar	omatic Co	mpound	s by GC/M	S with S	elected I	on N	lonito	ring	
Lab Sample ID: 14H0019-BS2						(Client	t Sampl	e ID: Lab Co	ontrol Sample
Matrix: Soil									Pre	p Type: Total
Analysis Batch: 14H0019									Prep Batcl	n: 14H0019_P
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
p-Terphenyl-d14	81.2		65.1 - 134	-						
_										
Lab Sample ID: 14H0019-BS3							Client	t Sampl	e ID: Lab Co	ntrol Sample
Matrix: Soil									Pre	p Type: Total
Analysis Batch: 14H0019									Prep Batcl	n: 14H0019_P
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	_ D	%Rec	Limits	
Naphthalene			0.133	0.0933		mg/kg wet		70.0	62.7 - 120	
Fluorene			0.133	0.107		mg/kg wet		80.5	67.9 - 124	
Chrysene			0.133	0.101		mg/kg wet		75.5	68.2 - 132	
Indeno (1,2,3-cd) pyrene			0.133	0.103		mg/kg wet		77.5	52.6 - 149	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Nitrobenzene-d5	70.8		36.3 - 152	-						
2-FBP	69.0		30.2 - 135							
p-Terphenyl-d14	77.0		65.1 - 134							
Lab Sample ID: 14H0019-BS4							Client	t Sampl	e ID: Lab Co	ontrol Sample
Matrix: Soil									Pre	p Type: Total
Analysis Batch: 14H0019			Creika	1.05	1.00				Prep Batcl	n: 14H0019_P
Analyte			Spike Added	Result	Qualifier	Unit	п	%Pac	/intec.	
Naphthalene			0 133	0 109	Quaimer	ma/ka wet		81.5	62 7 120	
Fluorene			0.133	0.109		ma/ka wet		98.0	67.9 124	
Chrysene			0.133	0.101		ma/ka wet		84.0	68 2 132	
Indeno (1.2.3-cd) pyrene			0.133	0.112		ma/ka wet		83.0	52.6 149	
			0.100	0.111		ing ng wor		00.0	02.0 - 110	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits	-						
Nitrobenzene-d5	84.2		36.3 - 152							
2-FBP	84.2		30.2 - 135							
p-Terphenyl-d14	84.6		65.1 - 134							
Lab Sample ID: 14H0019-MS1								CI	ient Sample	ID: Duplicate
Matrix: Soil									Pre	p Type: Total
Analysis Batch: 14H0019	Sample	Sample	Spike	Matrix Spike	Matrix Spike	9			Prep Batcl %Rec.	n: 14H0019_P
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	1.58		0.271	1.36	MHA	mg/ka drv	- -	-81.4	30 - 120	
Fluorene	0.0120		0.271	0.270		mg/kg drv	¢	95.1	30 - 140	
Chrysene	ND		0.271	0.220		mg/kg dry	₽	81.0	30 - 133	
Indeno (1,2,3-cd) pyrene	ND		0.271	0.250		mg/kg dry	¢	92.0	30 - 140	
	Matrix Spike	Matrix Spike								
Surrogate	%Recovery	Qualifier	Limits							
Nitrobenzene-d5	98.8		36.3 - 152	-						
2-FBP	84.6		30.2 - 135							

TestAmerica Spokane

80.8

p-Terphenyl-d14

5

6

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

_ Lab Sample ID: 14H0019-M Matrix: Soil	SD1							Cli	ent Sample Pre	ID: Dup p Type:	olicate Total
Analysis Batch: 14H0019									Prep Batc	h: 14H0	019_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	1.58		0.289	1.38	MHA	mg/kg dry	\$	-67.4	30 - 120	1.87	35
Fluorene	0.0120		0.289	0.261		mg/kg dry	¢	85.8	30 - 140	3.56	35
Chrysene	ND		0.289	0.210		mg/kg dry	¢	72.5	30 - 133	4.61	35
Indeno (1,2,3-cd) pyrene	ND		0.289	0.221		mg/kg dry	¢	76.5	30 - 140	12.0	35
	Matrix Spike Dup	Matrix Spike	e Dup								
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5	85.2		36.3 - 152	_							
2-FBP	70.8		30.2 - 135								

65.1 - 134

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

72.8

Lab Sample ID: 14H0015-BLK1												Client Sa	ample ID: N	lethod	Blank
Matrix: Soil													Pre	o Type	: Total
Analysis Batch: 14H0015													Prep Batch	: 14H0	015_P
	E	Blank	Blank												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyze	d	Dil Fac
Diesel Range Hydrocarbons		ND			10.0			mg/kg	wet	0	0/8	6/14 08:12	08/08/14 1	0:36	1.00
Heavy Oil Range Hydrocarbons		ND			25.0			mg/kg	wet	0	0/8	6/14 08:12	08/08/14 1	0:36	1.00
	E	Blank	Blank												
Surrogate	%Reco	overy	Qualifier	Lim	nits						Р	repared	Analyze	d	Dil Fac
o-Terphenyl		95.9		50 -	150					6)8/0	6/14 08:12	08/08/14 1	0:36	1.00
n-Triacontane-d62 		80.0		50 -	150					C)8/0	6/14 08:12	08/08/14 1	0:36	1.00
Lab Sample ID: 14H0015-BS1										Clie	ənt	Sample	ID: Lab Co	ntrol S	ample
Matrix: Soil													Pre	о Туре	: Total
Analysis Batch: 14H0015													Prep Batch	: 14H0	015_P
-				Spike		LCS	LCS						%Rec.		_
Analyte				Added		Result	Qual	lifier	Unit		D	%Rec	Limits		
Diesel Range Hydrocarbons				66.7		64.2			mg/kg we	et	_	96.3	50 - 150		
	LCS	LCS	;												
Surrogate	%Recovery	Qua	lifier	Limits											
o-Terphenyl	103			50 - 150	_										
n-Triacontane-d62	83.1			50 - 150											
Lab Sample ID: 14H0015-DUP1											C	lient Sar	mple ID: SV	/MW-1((17-18)
Matrix: Soil													Pre	о Туре	: Total
Analysis Batch: 14H0015													Prep Batch	: 14H0	015_P
-	Sample	Sam	ple		Du	plicate	Dupl	licate							RPD
Analyte	Result	Qua	lifier			Result	Qual	lifier	Unit		D			RPD	Limit
Diesel Range Hydrocarbons	11.7					29.2	R2		mg/kg dr	у	₽			85.5	40
Heavy Oil Range Hydrocarbons	34.2					124	R2		mg/kg dr	у	¢			113	40
	Duplicate	Dup	licate												
Surrogate	%Recovery	Qua	lifier	Limits											
o-Terphenyl	99.1			50 - 150	-										

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx (Continued)

Lab Sample ID: 14H0015-DUP1

Client Sample ID: SVMW-1(17-18)

5 6 7 8 9

Analysis Batch: 14H0015 Duplicate Duplicate Duplicate Duplicate Limits m-Triacontane-d62 %Recovery Qualifier Limits 50 - 150 Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B Client 3 Lab Sample ID: 14H0029-BLK1 Client 3 Matrix: Soil Result Qualifier RL MDL Unit D Prepared Lead ND 1.25 mg/kg wet D Prepared Lab Sample ID: 14H0029-BS1 Client Sample Client Sample Client Sample Matrix: Soil Analysis Batch: 14H0029 Spike LCS LCS LCS Analyse Result Added Result Qualifier Matrix: Soil Matrix: Soil Analyse Result Qualifier Added Result Qualifier Matrix: Spike Lead 3:15 Sample Spike Matrix Spike Matrix Spike Matrix Spike Lead 3:15 Sample Spike Matrix Spike Unit D %Rec Lead 3:15 Sample S	Prep Type	: Total
Duplicate Duplicate Duplicate Surrogate %Recovery Qualiffer Limits n-Triacontane-d62 85.4 50.150 Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B Client 5 Lab Sample ID: 14H0029-BLK1 Katrix: Soil Client 5 Analyte Result Qualifier RL MDL Unit D Prepared Lead ND 125 mg/kg wet D Prepared Lead ND 125 mg/kg wet D Prepared Lead ND 125 Gualifier Unit D %Rec Lab Sample ID: 14H0029-BS1 Katrix: Soil Client Sample Client Sample D %Rec Lead 50.0 51.5 Unit D %Rec Lead Sample Sample Spike LCS LCS LCS Lead 3.15 51.7 54.7 Unit D %Rec Lead 3.15 51.7 54.7 Matrix Spike 99.6 99.6 Lab Sample ID: 14H0029-MSD1 Katrix:	Prep Batch: 14H0)015_P
Surrogate %Recovery Qualifier Limits n-Triacontane-d62 85.4 50.150 Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B Lab Sample ID: 14H0029-BLK1 Client 1 Matrix: Soil Analyte Result Qualifier RL MDL Unit D Prepared Lead ND 125 MDL Unit D %Rec Lab Sample ID: 14H0029-BS1 Client Sample Client Sample Client Sample 103 Analyte Analyte Added Result Qualifier Unit D %Rec Lead 124 H0029-MS1 Sample Sample Spike Matrix Spike Matrix Spike Client Sample Lead 3.15 51.7 51.7 Spike Matrix Spike Matrix Spike Matrix Spike Matrix Spike		
n-Triacontane-d62 85.4 50.150 Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B Lab Sample ID: 14H0029-BLK1 Matrix: Soil Analyte Client : Analyte Result Qualifier RL MDL Unit D Prepared Lead ND 1.25 MDL Unit D Prepared Lab Sample ID: 14H0029-BS1 Client Sample Client Sample Client Sample Matrix: Soil Analyte Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-BS1 Client Sample Spike LCS LCS Client Sample Analyte Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MS1 Client Client Client Matrix: Soil Analyte Sample Spike Matrix Spike Matrix Spike Lab Sample ID: 14H0029-MSD1 Client Sample Spike Matrix Spike Matrix Spike Lab Sample ID: 14H0029-MSD1 Client Sample Spike Matrix Spike Dup Matrix Spike Dup Lab Sample ID: 14H0029-MSD1 Sample Spike Ketrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier D		
Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B Lab Sample ID: 14H0029-BLK1 Matrix: Soil Analyte Result Qualifier Lead ND Lead ND Lead ND Lead ND Lead ND Analyte Result Qualifier Lead ND Analyte Client Sample ID: 14H0029-BS1 Matrix: Soil Client Sample Analyte Added Lead 50.0 Analyte Added Lead 51.5 Matrix: Soil Client Sample Lab Sample ID: 14H0029-MS1 Client Matrix: Soil Client Analyte Result Lead 3.15 Sample Spike Matrix: Soil Matrix Spike Analyte Result Lead 3.15 Sample Spike Matrix: Spike Matrix Spike Analyte Result Qualifier Lead 3.15 51.7		
Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B Lab Sample ID: 14H0029-BLK1 Matrix: Soil Analysis Batch: 14H0029 Analyte Result Qualifier RL ND MDL Unit D Prepared 08/08/14 11:5 Lab Sample ID: 14H0029-BS1 Matrix: Soil Analysis Batch: 14H0029 ND 1.25 MDL Unit D Prepared 08/08/14 11:5 Lab Sample ID: 14H0029-BS1 Matrix: Soil Analyte Spike LCS LCS LCS LCS Lab Sample ID: 14H0029-MS1 Lead Sample Spike LCS LCS LCS LCS Analyte Result Qualifier Unit D %Rec Analyte Result Qualifier Unit D %Rec Analyte Result Qualifier Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample Sample Spike trix Spike Dup Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup Analyte Result Qualiffer Added Re		
Lab Sample ID: 14H0029-BLK1 Matrix: Soil Client : Analyte Result Qualifier RL MDL Unit D Prepared Lab Sample ID: 14H0029-BS1 ND 1.25 MDL Unit D Prepared Lab Sample ID: 14H0029-BS1 ND 1.25 MDL Unit D Prepared Lab Sample ID: 14H0029-BS1 Client Sample Spike LCS LCS Client Sample Matrix: Soil Analyte Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MS1 Sample Spike Matrix Spike Matrix Spike Client Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample Spike Matrix Spike 99.6 Lab Sample ID: 14H0029-MSD1 Client Sample Spike trix Spike Dup Matrix		
Lab Sample ID: 14H0029-BLK1 Client : Matrix: Soil Analysis Batch: 14H0029 Analyte Result Qualifier RL MDL Unit D Prepared Lead ND 1.25 mg/kg wet D OB/08/14 11:5 Lab Sample ID: 14H0029-BS1 Client Sample Client Sample Client Sample Matrix: Soil Analyte Added Result Qualifier Unit D 9%Rec Lead Solid 50.0 51.5 Qualifier Unit D 9%Rec Lead Sample Sample Sample Spike Matrix Spike Matrix Spike Matrix Spike Client Sample Analyte Result Qualifier Added Result Qualifier Qualifier Unit D %Rec Lab Sample ID: 14H0029-MS1 Client Sample Spike Matrix Spike Matrix Spike Unit D %Rec Lead 3.15 51.7 51.7 54.7 Qualifier mg/kg dry 2% %Rec Lab Sample ID: 14H0029-MSD1 Client Sample III Client Sample III Matrix Spike Dup Matrix Spike Dup Matr		
Matrix: Soil Analysis Batch: 14H0029 Blank Blank Blank Blank MDL Unit D Prepared Lead ND 1.25 mg/kg wet D Prepared Lab Sample ID: 14H0029-BS1 Client Sample Client Sample Matrix: Soil Analyte Added Result Qualifier Unit D %Rec Analyte Added Spike LCS LCS LCS LCS LCS LCS Lab D %Rec 103 Lab Sample ID: 14H0029-MS1 Client Client Client Client 103 Client 2 %Rec 103 Client 2 %Rec 103 Client 2 %Rec 103 2 3	ample ID: Method	Blank
Analysis Batch: 14H0029 Blank Blank Qualifier RL MDL Unit D Prepared Lead ND 1.25 mg/kg wet 0 08/08/14 11:5 Lab Sample ID: 14H0029-BS1 Client Sample Client Sample Matrix: Soil Analysis Batch: 14H0029 Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Lead 50.0 51.5 Client Sample D %Rec Lab Sample ID: 14H0029-MS1 Client Client Client Matrix: Soil Analysis Batch: 14H0029 Client Client Analyte Result Qualifier Matrix Spike Matrix Spike Lead 3.15 51.7 54.7 Qualifier D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample Spike trix Spike Dup Matrix Spike Dup Signed Dip 99.6 Lab Sample ID: 14H0029-MSD1 Client Sample Sample Spike trix Spike Dup Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup 99.6 Lab S	Prep Type	: Total
Blank Blank Result Qualifier RL MDL Unit D Prepared Lead ND 1.25 mg/kg wet 08/08/14 11:5 Lab Sample ID: 14H0029-BS1 Client Sample Matrix: Soil Analysis Batch: 14H0029 Analyte Added Result Qualifier Unit D %Rec Lead 50.0 51.5 mg/kg wet D %Rec 103 Lab Sample ID: 14H0029-MS1 Client Client Client Client Matrix: Soil Analysis Batch: 14H0029 Sample Spike Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 51.7 51.7 54.7 Unit D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample Spike trix Spike Matrix Spike Matrix Spike Duj Matrix Spike Duj %Rec Lab Sample ID: 14H0029 Sample Sample Spike trix Spike Duj Matrix Spike Duj Matrix Spike Duj Matrix Spike Duj <td>Prep Batch: 14H0</td> <td>)029_P</td>	Prep Batch: 14H0)029_P
Analyte Result Qualifier RL MDL Unit D Prepared Lead ND 1.25 mg/kg wet 08/08/14 11:5 Lab Sample ID: 14H0029-BS1 Client Sampl Matrix: Soil Analyte Ecs LCS LCS Analyte Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MS1 Analyte Analyte Client D %Rec Lab Sample ID: 14H0029-MS1 Sample Spike Matrix Spike Matrix Spike Client Matrix: Soil Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MSD1 Sample Spike Matrix Spike Matrix Spike Matrix Spike D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample II Sample Spike trix Spike Dup Matrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029 Sample		
Lead ND 1.25 mg/kg wet 09/09/14 11:5 Lab Sample ID: 14H0029-BS1 Client Sampl Matrix: Soil Client Sampl Analyte Analyte Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MS1 Sample Spike LCS LCS Client D %Rec Lab Sample ID: 14H0029-MS1 Sample Spike Matrix Spike Matrix Spike Client Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MS1 Sample Spike Matrix Spike Matrix Spike Matrix Spike Lab Sample ID: 14H0029-MSD1 Client Sample Spike Itrix Spike Dup Matrix Spike Dup D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample Spike Itrix Spike Dup Matrix Spike Dup Client Sample II Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029 Sample Spike Itrix Spike Dup Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup Lead 3.15 Spise Spise Result Qualifier	Analyzed	Dil Fac
Lab Sample ID: 14H0029-BS1 Client Sample Matrix: Soil Analysis Batch: 14H0029 Analyte Spike LCS LCS Lead Solo 51.5 Qualifier Unit D %Rec Lab Sample ID: 14H0029-MS1 Sample Spike Matrix Spike Matrix Spike Client Matrix: Soil Analyte Result Qualifier Matrix Spike Matrix Spike Lead 3.15 Qualifier Added Result Qualifier Unit D %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 Qualifier Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample II Client Sample II Matrix: Soil Client Sample II Analysis Batch: 14H0029 Sample Sample Spike trix Spike Dup Matrix Spike Dup Matrix Spike Dup Analysis Batch: 14H0029 Sample Sample Spike trix Spike Dup Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup <td>08/11/14 18:43</td> <td>1.00</td>	08/11/14 18:43	1.00
Matrix: Soil Analysis Batch: 14H0029 Spike LCS LCS LCS Analyte Added Result Qualifier Unit D %Rec Lead 50.0 51.5 mg/kg wet D %Rec Lab Sample ID: 14H0029-MS1 Client Client Matrix: Soil Analysis Batch: 14H0029 Sample Spike Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 51.7 54.7 Client Sample II Spike Matrix Spike Dup Matrix Spike Dup	ID: Lab Control S	ample
Analysis Batch: 14H0029 Spike LCS LCS LCS Analyte Added Result Qualifier Unit D %Rec Lead 50.0 51.5 mg/kg wet D %Rec 103 Lab Sample ID: 14H0029-MS1 Client Client Client Client Matrix: Soil Analysis Batch: 14H0029 Sample Spike Matrix Spike Matrix Spike Lead 3.15 Client Added Result Qualifier Unit D %Rec Lead 3.15 Sample Spike Matrix Spike Matrix Spike Matrix Spike Matrix Spike D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample ID: Sample Sample Spike trix Spike Dup Matrix Spike Dup Client Sample ID: Matrix: Soil Analysis Batch: 14H0029 Sample Spike trix Spike Dup Matrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 55.5 60.0	Prep Type	: Total
AnalyteAddedResultQualifierUnitD%RecLead50.051.5QualifierUnitD%RecLab Sample ID: 14H0029-MS1 Matrix: Soil Analysis Batch: 14H0029SampleSampleSpikeMatrix SpikeMatrix SpikeAnalyteResultQualifierAddedResultQualifierUnitD%RecLab Sample ID: 14H0029-MS1 LeadSample SampleSpikeMatrix SpikeMatrix SpikeMatrix SpikeAnalyteResultQualifierAddedResultQualifierUnitD%RecLab Sample ID: 14H0029-MSD1 Matrix: Soil Analysis Batch: 14H0029SampleSpiketrix Spike DupMatrix Spike DupClient Sample IDMatrix: Soil Analysis Batch: 14H0029SampleSampleSpiketrix Spike DupMatrix Spike DupMatrix Spike DupLab Sample ID: 14H0029ResultQualifierAddedResultQualifierUnitD%RecLad3.1555.560.0mg/kg dryID102IDLab Sample ID: 14H0029. DUP1IDIDIDIDID	Prep Batch: 14H0	029_P
AnalyteAddedResultQualifierUnitD%RecLead50.051.591.591.6103Lab Sample ID: 14H0029-MS1 Matrix: Soil Analysis Batch: 14H0029SampleSampleSpikeMatrix SpikeMatrix SpikeAnalyteResultQualifierAddedResultQualifierUnitD%RecLab Sample ID: 14H0029-MSD1 Matrix: Soil Analysis Batch: 14H0029ResultQualifierAddedResultQualifierUnitD%RecMatrix: Soil Analysis Batch: 14H00293.1551.754.7Client Sample II99.6Lab Sample ID: 14H0029-MSD1 Matrix: Soil Analysis Batch: 14H0029SampleSpike trix Spike Dup 55.5Matrix Spike Du; mg/kg dryXAnalyteResult QualifierQualifierAddedResult 60.0QualifierUnit mg/kg dryD%RecLab Sample ID: 14H0029SampleSpike trix Spike Dup 55.5Matrix Spike Du; 60.0Matrix Spike Du; mg/kg dryX102	%Rec.	
Lead 50.0 51.5 mg/kg wet 103 Lab Sample ID: 14H0029-MS1 Cliem Matrix: Soil Analysis Batch: 14H0029 Sample Spike Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier Matrix Spike Matrix Spike Lab Sample ID: 14H0029-MSD1 Result Qualifier Added Result Qualifier Unit D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample ID: Client Sample ID: Client Sample ID: Client Sample ID: Matrix: Soil Analysis Batch: 14H0029 Sample Sample Spike itrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 55.5 60.0 mg/kg dry 3/3 3/3 102	Limits	
Lab Sample ID: 14H0029-MS1 Matrix: Soil Analysis Batch: 14H0029 Client Sample Sample Sample Sample Sample Analyte Result Lead 3.15 Sample Spike Matrix Spike Matrix Spike Lab Sample ID: 14H0029-MSD1 Client Sample ID: 14H0029-MSD1 Matrix: Soil Analysis Batch: 14H0029 Sample Sample Spike Analyte Result Qualifier Added Analyte Result Matrix: Soil Analyte Sample Sample Spike Lead 3.15 Matrix Spike Dup Matrix Spike Dup Matrix Spike Qualifier Unit Matrix Spike Unit Matrix Spike Unit Matrix Spike Dup Matrix Spike Dup	80 - 120	
Matrix: Soil Sample Sample Spike Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 51.7 54.7 mg/kg dry Img/kg dry	Sample ID: Matrix	Sniko
Analysis Batch: 14H0029 Sample Sample Spike Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 51.7 54.7 Image: Client Sample III D %Rec Lab Sample ID: 14H0029-MSD1 Client Sample III: 14H0029-MSD1 Matrix: Soil Analysis Batch: 14H0029 Sample Spike trix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 55.5 60.0 Matrix Spike Dup Matrix Spike Dup Matrix Spike dry Z %Rec Lead 3.15 55.5 60.0 Image: Client Sample dry Z %Rec Lead 3.15 55.5 60.0 Image: Client Sample dry Z %Rec Lead 3.15 55.5 60.0 Image: Client Sample dry Z %Rec Lead 3.15 55.5 60.0 Image: Client Sample dry Z %Rec	Pren Type	· Total
Sample Sample Spike Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 51.7 54.7 mg/kg dry Image: Spike Matrix Spike Lab Sample ID: 14H0029-MSD1 Client Sample Client Sample III Matrix: Soil Analysis Batch: 14H0029 Sample Spike trix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 55.5 60.0 Itrix Spike Dup Matrix Spike Dup Itrix Spike Dup Matrix Spike Dup Itrix Spike Dup Matrix Spike Dup Itrix Spike Dup It	Prep Batch: 14H0)029 P
Analyte LeadResult 3.15QualifierAdded 51.7Result 54.7Qualifier mg/kg dryUnit mg/kg dryD %%Rec 99.6Lab Sample ID: 14H0029-MSD1 Matrix: Soil Analysis Batch: 14H0029Sample Result QualifierSpike AddedItrix Spike Dup Result 60.0Matrix Spike Dup 	%Rec.	
Lead 3.15 51.7 54.7 mg/kg dry 39.6 Lab Sample ID: 14H0029-MSD1 Client Sample II Matrix: Soil Analysis Batch: 14H0029 Analyte Result Qualifier Added Result Qualifier Unit D % Rec Lab Sample ID: 14H0029 3.15 55.5 60.0 mg/kg dry 3 102	Limits	
Lab Sample ID: 14H0029-MSD1 Client Sample II Matrix: Soil Analysis Batch: 14H0029 Analyte Sample Spike Itrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 55.5 60.0 mg/kg dry Img/kg dry Img/k	75 - 125	
Lab Sample ID: 14H0029-MSD1 Client Sample II Matrix: Soil Analysis Batch: 14H0029 Analysis Batch: 14H0029 Sample Sample Sample Lead Result Qualifier 3.15 55.5 60.0 mg/kg dry Lab Sample ID: 14H0029 DUP1		
Matrix: Soil Sample Sample Spike Itrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D % Rec Lead 3.15 55.5 60.0 mg/kg dry 0 102	: Matrix Spike Du	plicate
Analysis Batch: 14H0029 Sample Sample Spike Itrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D % Rec Lead 3.15 55.5 60.0 mg/kg dry 3 102	Prep Type	: Total
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Lead 3.15 55.5 60.0 mg/kg dry 0 102	Prep Batch: 14H0	1029_P
Analyte Result Qualmer Added Result Qualmer Onit D % Rec Lead 3.15 55.5 60.0 mg/kg dry # 102	%Rec.	RPD
Lead 5.15 55.5 66.6 highly *** 162	75 125 0 25	20
Lab Sample ID: 14H0020 DUP1	75 - 125 9.25	20
	ent Sample ID: Du	plicate
Matrix: Soil	Prep Type	: Total
Analysis Batch: 14H0029	Prep Batch: 14H0)029_P
Sample Sample Duplicate Duplicate		RPD
Analyte Result Qualifier Result Qualifier D	RPD	Limit
Lead 3.15 3.53 mg/kg dry *	11.3	20

Dilution

Factor

0.765

1.00

0.765

1.00

0.861

1.00

1.75

1.00

0.807

1.00

0.990

1.00

Run

Client Sample ID: SVMW-1(17-18)

Batch

Туре

Prep

Prep

Prep

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Batch

Method

GC/MS Volatiles

GC/MS Volatiles

EPA 8260C

NWTPH-Gx

EPA 3580

EPA 8011

EPA 3550B

EPA 8270D

EPA 3550B

NWTPH-Dx

EPA 3050B

EPA 6010C

Date Collected: 07/28/14 13:25 Date Received: 08/05/14 10:25

Prep Type

Total

Lab Sample ID: SXH0013-02

Matrix: So

Matrix: Soil

Percent Solids: 90

2	
il 7	
	5
	7
	8
	9

	Percent Solids: 81.7
Lab	
TAL SPK	-
TAL SPK	

Lab Sample ID: SXH0013-05

Lab Sample ID: SXH0013-09

Matrix: Soil

Percent Solids: 80.4

Client Sample ID: SVMW-2(7-8) Date Collected: 07/31/14 12:45 Date Received: 08/05/14 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.03	14H0013_P	08/06/14 07:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0013	08/06/14 12:35	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.03	14H0013_P	08/06/14 07:41	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0013	08/06/14 12:35	CBW	TAL SPK
Total	Prep	EPA 3580		0.855	14H0023_P	08/07/14 13:48	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0023	08/11/14 14:50	NMI	TAL SPK
Total	Prep	EPA 3550B		1.87	14H0019_P	08/07/14 08:32	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0019	08/07/14 20:07	NMI	TAL SPK
Total	Prep	EPA 3550B		0.983	14H0015_P	08/06/14 08:12	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0015	08/08/14 12:26	NMI	TAL SPK
Total	Prep	EPA 3050B		0.847	14H0029_P	08/08/14 11:53	MS	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0029	08/12/14 11:49	ICP	TAL SPK

Client Sample ID: SVMW-3(17-18)

Date Collected: 08/01/14 08:40 Date Received: 08/05/14 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.780	14H0013_P	08/06/14 07:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0013	08/06/14 12:58	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.780	14H0013_P	08/06/14 07:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		10.0	14H0013	08/06/14 13:21	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.780	14H0013_P	08/06/14 07:41	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0013	08/06/14 12:58	CBW	TAL SPK
Fotal	Prep	GC/MS Volatiles		0.780	14H0013_P	08/06/14 07:41	CBW	TAL SPK

TestAmerica Spokane

Batch

Number

14H0013

14H0013

14H0023

14H0019

14H0015

14H0029

14H0013 P

14H0013 P

14H0023 P

14H0019_P

14H0015_P

14H0029 P

Prepared

or Analyzed

08/06/14 07:41

08/06/14 12:13

08/06/14 07:41

08/06/14 12:13

08/07/14 13:48

08/11/14 15:47

08/07/14 08:32

08/07/14 19:44

08/06/14 08:12

08/08/14 12:01

08/08/14 11:53

08/12/14 11:45

Analyst

CBW

CBW

CBW

CBW

MS

NMI

MS

NMI

MS

NMI

MS

ICP

TAL SPK

TAL SPK

Client Sample ID: SVMW-3(17-18)

Date Collected: 08/01/14 08:40 D

ł

Lab Sample ID: SXH0013-09

Matrix: Soil Percent Solids: 80.4

|--|

Matrix: Soil

Percent Solids: 81.1

ate	Received:	08/05/14 10:2	25
		Batch	Batch

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	NWTPH-Gx		10.0	14H0013	08/06/14 13:21	CBW	TAL SPK
Total	Prep	EPA 3580		0.940	14H0023_P	08/07/14 13:48	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0023	08/11/14 16:02	NMI	TAL SPK
Total	Prep	EPA 3550B		1.74	14H0019_P	08/07/14 08:32	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0019	08/07/14 20:29	NMI	TAL SPK
Total	Prep	EPA 3550B		0.833	14H0015_P	08/06/14 08:12	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0015	08/08/14 12:50	NMI	TAL SPK
Total	Prep	EPA 3050B		0.990	14H0029_P	08/08/14 11:53	MS	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0029	08/12/14 11:53	ICP	TAL SPK

Client Sample ID: Duplicate

Date Collected: 08/01/14 07:00 Date Received: 08/05/14 10:25

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.796	14H0013_P	08/06/14 07:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0013	08/06/14 13:44	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.796	14H0013_P	08/06/14 07:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		20.0	14H0013	08/06/14 14:53	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.796	14H0013_P	08/06/14 07:41	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		10.0	14H0013	08/06/14 14:07	CBW	TAL SPK
Total	Prep	EPA 3580		0.929	14H0023_P	08/07/14 13:48	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0023	08/11/14 15:04	NMI	TAL SPK
Total	Prep	EPA 3550B		1.83	14H0019_P	08/07/14 08:32	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0019	08/07/14 20:52	NMI	TAL SPK
Total	Prep	EPA 3550B		0.989	14H0015_P	08/06/14 08:12	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0015	08/08/14 13:14	NMI	TAL SPK
Total	Prep	EPA 3050B		0.952	14H0029_P	08/08/14 11:53	MS	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0029	08/12/14 11:57	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14H0039_P	08/06/14 10:06	NI	TAL SPK
Total	Analysis	TA SOP		1.00	14H0039	08/12/14 09:04	NI	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
EPA 6010C	Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B		TAL SPK
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

 253-922-2310
 FAX 922-5047

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

					C	HAI	N OF	CUST	[OD]	REF	OR	ſ			V	Vork O	rder #:	SXH 0013_	
CLIENT:						INVOI	CE TO:									1	TURNA	ROUND REQUES	Г
REPORT TO: JR SUGALSH ADDRESS: 523 E. SELON	c) 10 Aute., SPO	mawe, wa	9920	r												10 7	in Organic &	a Basiness Days * t Inorganic Analyses 4 3 2	1 <1
PHONE: 509 363 3125	FAX:					P.O. NU	MBER:								(570.	Petroleum	Hydrocarbon Analyses	
PROJECT NAME: TIGER OIL	- SUMMITV	1Ew	L	1	.	1	<u></u>	PR	ESERVA	TVE	1	1	1	, , , , , , , , , , , , , , , , , , , ,		- 5 ST	ļ		:1
PROJECT NUMBER: USO4-6	lo1-06							PEOUE	STED AT		<u> </u>						THEP	9	
SAMPLED BY: AACON FR	EDERNY		ž	20	1			KEQUE			,				*	Turnaround	Requests le:	specify: ss than standard may incur	Rush Charges
CLIENT SAMPLE IDENTIFICATION	SAN DAI	MPLING TE/TIME	Nurtel-	NWTPH-	8270 Mapur	E05	e e e	BIEN	5260 EDC	8260 MT81						MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
, SVMW-1 (7-8)	7/28/14	1305										,				5	2	HOLD	
2 SV MW-1 (17-18)	7/28/14	1325	X	×	x	×	X	$ _{\chi}$	X	X						5	Z		
, SV MW-1 (37-38')	7/28/14	1505														S	Z	Hoco	
4 SVMW-2 (2-3')	7/31/14	1240													Ē	S	2	Houp	
, SVMW-2(7-8'))7/31/14	1245	×	×	x	X	X	X	X	x						5	2-		
, SVMW-2(14-15')	731/14	1315														5	2	How	
, 50MW-3(4-5'	8/1/14	0400			T											S	2	How	
\$ SVMW-3 (14-15)	8/1/14	0825														S	3	Hold	
· SUMW-3 (17-18)	8/1/14	67840	x	x	X	x	x	×	X	X						5	3		
10 THINK DUPLICATE	3/20/14	0700	X	x	ĸ	×	ĸ	x	r	K						5	3		
RELEASED BY: HOFF	ESELIN	firm: G	EI			DATE	= 16/4/ = 1/00	114 V		RECEIVI PRINT N	ED BY: AME:	Cat	Bla	alilon		FIRM	Tist	DATE: G	3-4-14 10:25
RELEASED BY:	/					DATE	i:			RECEIV	ED BY:		,			LIDA		DATE:	
PRINT NAME: ADDITIONAL REMARKS:		FIRM:	_			TIME	<u> </u>			FRINT	ANE:					LIKW	•	TEMP:	
															,	_		4.7 PAGE	e of
																		TAL-	1000 (0612

9/2014

ŝ

~

TestAmerica Spokane Sample Receipt Form

Work Order #:)X+10013 Client	eoEnanneers	•		Project: Tigur Oil
Date/Time Received: 85-14 10:25	Ву)		/
Samples Delivered By: Shipping Service Cour	rier Client Oth	er:		
List Air Bill Number(s) or Attach a photocopy of the Air	r Bill:		1	
Receipt Phase	Yes	No	NA	Comments
Were samples received in a cooler:	<u>حر</u>	,		
Custody Seals are present and intact:			-6	·····
Are CoC documents present:	<u>ح</u>			
Necessary signatures:	<u>حر</u>			
Thermal Preservation Type: Blue Ice Gel Ice	Real Ice Dry Ic	e 🔲 None	Other:_	
	ne Serial #122208348	Keyring IR	Serial # 11	1874910 IR Gun 2)(acceptance criteria 0-6
Temperature out of range: Not enough ice ilce	melted w/in 4hrs	of collection		Other:
Log-in Phase Date/Time: のち州 10:40 By: 〇	Yes	No	NA	Comments
Are sample labels affixed and completed for each cont	tainer <u>></u>			
Samples containers were received intact:	<u>ح ح</u>			
Do sample IDs match the CoC	≻			
Appropriate sample containers were received for tests	requested >			
Are sample volumes adequate for tests requested	<u>></u>			
Appropriate preservatives were used for the tests requ	iested Z			
pH of inorganic samples checked and is within method	specification >			
Are VOC samples free of bubbles >6mm (1/4" diameter	ər)			
Are dissolved parameters field filtered			\geq	-
Do any samples need to be filtered or preserved by the	e lab		<u>≻</u>	
Does this project require quick turnaround analysis			>	
Are there any short hold time tests (see chart below)				
Are any samples within 2 days of or past expiration				
Was the CoC scanned				
Were there Non-conformance issues at login		<u>` ح</u>	5	
If yes, was a CAR generated #			C_{i}	

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXD0112

Client Project/Site: 0504-101-00 Client Project Description: Tiger Oil - Summit View

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: JR Sugalski

Candre Arrington

Authorized for release by: 4/30/2014 3:03:22 PM

Randee Arrington, Project Manager (509)924-9200 Randee.Arrington@testamericainc.com

LINKS Review your project results through TOTOLACCESS Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents 2	2
Sample Summary	3
Definitions	4
Client Sample Results 5	5
QC Sample Results	14
Chronicle	21
Certification Summary	24
Method Summary 2	25
Chain of Custody	26

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-00 TestAmerica Job ID: SXD0112

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SXD0112-03	041414:SVDP-1:13.5	Soil	04/14/14 08:50	04/17/14 13:00
SXD0112-06	041414:SVDP-1:GW	Water	04/14/14 09:45	04/17/14 13:00
SXD0112-10	041414:SVDP-2:19	Soil	04/14/14 10:35	04/17/14 13:00
SXD0112-11	041414:SVDP-2:21	Soil	04/14/14 10:45	04/17/14 13:00
SXD0112-12	041414:SVDP-2:GW	Water	04/14/14 11:00	04/17/14 13:00
SXD0112-14	041414:SVDP-3:7	Soil	04/14/14 11:30	04/17/14 13:00
SXD0112-19	041414:SVDP-5:19	Soil	04/14/14 14:30	04/17/14 13:00
SXD0112-20	041414:SVDP-6:18	Soil	04/14/14 15:20	04/17/14 13:00

Qualifiers

Fuels		Δ
Qualifier	Qualifier Description	-
Z6	Surrogate recovery was below acceptance limits.	 5
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.	J
Z	Due to sample matrix effects, the surrogate recovery was below the acceptance limits.	
Metals		
Qualifier	Qualifier Description	
RL3	Reporting limit raised due to high concentrations of non-target analytes.	
		 8
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report	 9

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

RL

0.0575

0.0479

0.958

Limits

42.4 - 163

50 - 150

45.8 - 155

41.5 - 162

MDL Unit

mg/kg dry

mg/kg dry

mg/kg dry

D

₽

₽

₽

Prepared

04/18/14 07:55

04/18/14 07:55

04/18/14 07:55

Prepared

04/18/14 07:55

04/18/14 07:55

04/18/14 07:55

04/18/14 07:55

Client Sample ID: 041414:SVDP-1:13.5

Date Collected: 04/14/14 08:50 Date Received: 04/17/14 13:00

Analyte

Benzene

Surrogate

Toluene-d8

Methyl tert-butyl ether

1,2-Dichloroethane (EDC)

Dibromofluoromethane

1,2-dichloroethane-d4

4-bromofluorobenzene

TestAmerica	Job	ID:	SXD0	112

Analyzed

04/18/14 15:55

04/18/14 15:55

04/18/14 15:55

Analyzed

04/18/14 15:55

04/18/14 15:55

04/18/14 15:55

04/18/14 15:55

Matrix: Soil

Dil Fac

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Dil Fac

Percent Solids: 96.1

Lab Sample ID: SXD0112-03

2 3 4 5 6

8

9

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C - RE1

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Result Qualifier

Qualifier

ND

ND

97.0

108

93.2

115

0.652

%Recovery

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	98.0		9.58		mg/kg dry	¢	04/18/14 07:55	04/21/14 10:36	100
Ethylbenzene	86.1		9.58		mg/kg dry	¢	04/18/14 07:55	04/21/14 10:36	100
m,p-Xylene	388		38.3		mg/kg dry	₽	04/18/14 07:55	04/21/14 10:36	100
o-Xylene	152		19.2		mg/kg dry	¢	04/18/14 07:55	04/21/14 10:36	100
Xylenes (total)	540		57.5		mg/kg dry	☆	04/18/14 07:55	04/21/14 10:36	100
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dii Fac
Dibromofluoromethane	95.9		42.4 - 163	04/18/14 07:55	04/21/14 10:36	100
1,2-dichloroethane-d4	97.9		50 - 150	04/18/14 07:55	04/21/14 10:36	100
Toluene-d8	102		45.8 - 155	04/18/14 07:55	04/21/14 10:36	100
4-bromofluorobenzene	95.2		41.5 _ 162	04/18/14 07:55	04/21/14 10:36	100

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	5610		479		mg/kg dry	¢	04/18/14 07:55	04/21/14 10:36	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	95.9		42.4 _ 163				04/18/14 07:55	04/21/14 10:36	100
Toluene-d8	102		45.8 - 155				04/18/14 07:55	04/21/14 10:36	100
4-bromofluorobenzene	95.2		41.5 - 162				04/18/14 07:55	04/21/14 10:36	100

Method: EPA 8011 - EDB by EPA Method 8011										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,2-Dibromoethane	ND		0.850		ug/kg dry	<u></u>	04/21/14 15:28	04/22/14 14:44	1.00	

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Quanner				ricparca	Analyzeu	Dirrac
Naphthalene	17.8		1.06	mg/kg dry	\$	04/24/14 13:00	04/25/14 13:14	50.0
2-Methylnaphthalene	18.9		1.06	mg/kg dry	☆	04/24/14 13:00	04/25/14 13:14	50.0
1-Methylnaphthalene	8.11		1.06	mg/kg dry	¢	04/24/14 13:00	04/25/14 13:14	50.0
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	110		36.3 - 152			04/24/14 13:00	04/25/14 13:14	50.0
Method: NWTPH-Dx - Semivolation	ile Petroleum F	roducts by	/ NWTPH-Dx					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	640		26.2	mg/kg dry	\$	04/22/14 15:35	04/23/14 10:15	1.00
Heavy Oil Range Hydrocarbons	ND		65.5	mg/kg dry	¢	04/22/14 15:35	04/23/14 10:15	1.00

Analyzod

Dil Eac

4-bromofluorobenzene

Client Sample ID: 041414:S	VDP-1:13.5						Lab Sam	ple ID: SXD0	112-03
Date Collected: 04/14/14 08:50								Mat	rix: Soil
Date Received: 04/17/14 13:00								Percent Soli	ds: 96.1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150				04/22/14 15:35	04/23/14 10:15	1.00
n-Triacontane-d62	95.7		50 - 150				04/22/14 15:35	04/23/14 10:15	1.00
Methods NWTDH HCID Hudros	orbon Idontifior	tion by NW							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	2800		37		mg/kg dry	- \	04/18/14 15:46	04/19/14 01:28	1.0
Diesel Range Hydrocarbons	920		93		mg/kg dry	¢	04/18/14 15:46	04/19/14 01:28	1.0
Heavy Oil Range Hydrocarbons	ND		93		mg/kg dry	₽	04/18/14 15:46	04/19/14 01:28	1.0
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fa
4-BFB (FID)		Z	50 - 150				04/18/14 15:46	04/19/14 01:28	1.0
2-FBP	97.3	-	50 - 150				04/18/14 15:46	04/19/14 01:28	1 (
n-Ternhenvl-d14	97.4		50 - 150				04/18/14 15:46	04/19/14 01:28	1.0
	01.4		00 - 700				04710714 10.40	04/13/14 01.20	1.0
Method: EPA 6010C - Metals Co	ontent by EPA 6	010/7000 S	Series Methods, F	Prep by I	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fac
Lead	ND	RL3	2.86		mg/kg dry	¢	04/28/14 13:31	04/29/14 18:39	2.00
Client Sample ID: 041414:S	VDP-1:GW						Lab Sam	ple ID: SXD0	112-06
Date Collected: 04/14/14 09:45								Matrix	c: Water
Date Received: 04/17/14 13:00									
Γ									
Method: NWTPH-HCID - Hydroc	carbon Identifica	ation by NV	NTPH-HCID	МП	Unit	п	Propared	Analyzod	Dil Eac
		Quaimer					04/19/14 09:26	04/10/14 10:17	
Gasoline Range Hydrocarbons	3.7		0.62		mg/l		04/16/14 06.20	04/10/14 10.17	1.0
Diesei Range Hydrocarbons	0.95		0.02		mg/l		04/18/14 08:20	04/18/14 18.17	1.0
neavy Oil Range Hydrocarbons	ND		0.62		mg/i		04/16/14 06.20	04/16/14 16.17	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	58.9		50 - 150				04/18/14 08:26	04/18/14 18:17	1.0
2-FBP	61.1		50 - 150				04/18/14 08:26	04/18/14 18:17	1.0
p-Terphenyl-d14	88.8		50 - 150				04/18/14 08:26	04/18/14 18:17	1.0
Client Sample ID: 041414:S	VDP-2:19						Lab Sam	ple ID: SXD0	112-10
Date Collected: 04/14/14 10:35								Mat	riv: Soil
Date Received: 04/17/14 13:00								Percent Soli	ds: 79.8
Method: EPA 8260C - Volatile C	Organic Compou	inds by EP	A Method 8260C	;					
Analyte	Result	Qualifier		MDL	Unit	— <u>D</u>	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0694		mg/kg dry	14r 24	04/18/14 07:55	04/18/14 16:17	10.0
Benzene	1.24		0.0579		mg/kg dry	ф.	04/18/14 07:55	04/18/14 16:17	10.0
Ethylbenzene	51.4		1.16		mg/kg dry	ېر. - ۲۰۰۰ - ۱۰	04/18/14 07:55	04/18/14 16:17	10.0
1,2-Dichloroethane (EDC)	ND		1.16		mg/kg dry	¢	04/18/14 07:55	04/18/14 16:17	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	88.5		42.4 - 163				04/18/14 07:55	04/18/14 16:17	10.0
1,2-dichloroethane-d4	98.6		50 - 150				04/18/14 07:55	04/18/14 16:17	10.0
Toluene-d8	94.1		45.8 - 155				04/18/14 07:55	04/18/14 16:17	10.0
4-bromofluorobenzene	107		41 5 - 162				04/18/14 07:55	04/18/14 16.17	10 0

TestAmerica Spokane

Page 6 of 28

Client Sample ID: 041414:SVDP-2:19 Date Collected: 04/14/14 10:35

Date Received: 04/17/14 13:00

Lab Sample ID: SXD0112-10 Matrix: Soil

Percent Solids: 79.8

5

_ Method: EPA 8260C - Volatile C	Organic Compou	inds by EP	A Method 82600	C - RE1					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	81.2		11.6		mg/kg dry	- ×	04/18/14 07:55	04/21/14 10:59	100
m,p-Xylene	215		46.3		mg/kg dry	¢	04/18/14 07:55	04/21/14 10:59	100
o-Xylene	82.9		23.1		mg/kg dry	₽	04/18/14 07:55	04/21/14 10:59	100
Xylenes (total)	298		69.4		mg/kg dry	¢	04/18/14 07:55	04/21/14 10:59	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	96.5		42.4 - 163				04/18/14 07:55	04/21/14 10:59	100
1,2-dichloroethane-d4	98.3		50 - 150				04/18/14 07:55	04/21/14 10:59	100
Toluene-d8	97.6		45.8 - 155				04/18/14 07:55	04/21/14 10:59	100
4-bromofluorobenzene	97.2		41.5 - 162				04/18/14 07:55	04/21/14 10:59	100
Method: NWTPH-Gx - Gasoline	Hydrocarbons	by NWTPH	-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	4770		57.9		mg/kg dry	\	04/18/14 07:55	04/18/14 16:17	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	88.5		42.4 - 163				04/18/14 07:55	04/18/14 16:17	10.0
Toluene-d8	94.1		45.8 - 155				04/18/14 07:55	04/18/14 16:17	10.0
4-bromofluorobenzene	107		41.5 - 162				04/18/14 07:55	04/18/14 16:17	10.0
_ Method: EPA 8011 - EDB_bv El	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.04		ug/kg dry	<u></u>	04/21/14 15:28	04/22/14 14:56	1.00
Method: EPA 8270D - Polynuci	ear Aromatic Co	mpounds I	by GC/MS with s	selected	Ion Monito	ring	Descented	A	
Analyte	Result	Qualifier	RL	MDL		- -	Prepared		
	9.46		1.07		mg/kg dry	ň	04/24/14 13:00	04/25/14 13:30	50.0
	11.2		1.07		mg/kg dry	ň	04/24/14 13:00	04/25/14 13.30	50.0
1-Methylnaphthalene	5.01		1.07		mg/kg ary	**	04/24/14 13:00	04/25/14 13:36	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	70.0		36.3 - 152				04/24/14 13:00	04/25/14 13:36	50.0
Method: NWTPH-Dx - Semivola	tile Petroleum F	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	344		37.5		mg/kg dry	¢	04/22/14 15:35	04/23/14 10:38	1.00
Heavy Oil Range Hydrocarbons	ND		93.8		mg/kg dry	\$	04/22/14 15:35	04/23/14 10:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	82.5		50 - 150				04/22/14 15:35	04/23/14 10:38	1.00
n-Triacontane-d62 	86.3		50 - 150				04/22/14 15:35	04/23/14 10:38	1.00
Method: NWTPH-HCID - Hydrod	carbon Identifica	ation by NV	VTPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	1500		43		mg/kg dry	¢	04/18/14 15:46	04/19/14 01:53	1.0
Diesel Range Hydrocarbons	470		110		mg/kg dry	¢	04/18/14 15:46	04/19/14 01:53	1.0
Heavy Oil Range Hydrocarbons	ND		110		mg/kg dry	¢	04/18/14 15:46	04/19/14 01:53	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	155	Ζ	50 - 150				04/18/14 15:46	04/19/14 01:53	1.0
2-FBP	97.7		50 - 150				04/18/14 15:46	04/19/14 01:53	1.0
n Tornhonyl d11	02.3		50 150				04/18/14 15:46	04/10/14 01.53	10

Client Sample ID: 041414:SVDP-2:19

Date Collected: 04/14/14 10:35 Date Received: 04/17/14 13:00

Method: EPA 6010C - Metals Cont	ent by EPA 60)10/7000 S	eries Methods	, Prep by I	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.23		1.42		mg/kg dry	<u></u>	04/28/14 13:31	04/29/14 18:43	1.00

Client Sample ID: 041414:SVDP-2:21

Date Collected: 04/14/14 10:45

Date Received: 04/17/14 13:00

4-bromofluorobenzene

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0554		mg/kg dry	¢	04/18/14 07:55	04/18/14 16:40	10.0
Benzene	0.263		0.0462		mg/kg dry	☆	04/18/14 07:55	04/18/14 16:40	10.0
Toluene	10.9		0.924		mg/kg dry	¢	04/18/14 07:55	04/18/14 16:40	10.0
Ethylbenzene	9.47		0.924		mg/kg dry	¢	04/18/14 07:55	04/18/14 16:40	10.0
m,p-Xylene	34.3		3.70		mg/kg dry	¢	04/18/14 07:55	04/18/14 16:40	10.0
o-Xylene	13.9		1.85		mg/kg dry	¢	04/18/14 07:55	04/18/14 16:40	10.0
1,2-Dichloroethane (EDC)	ND		0.924		mg/kg dry	¢	04/18/14 07:55	04/18/14 16:40	10.0
Xylenes (total)	48.2		5.54		mg/kg dry	₽	04/18/14 07:55	04/18/14 16:40	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	89.9		42.4 - 163				04/18/14 07:55	04/18/14 16:40	10.0
1,2-dichloroethane-d4	96.7		50 - 150				04/18/14 07:55	04/18/14 16:40	10.0
Toluene-d8	99.5		45.8 - 155				04/18/14 07:55	04/18/14 16:40	10.0

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	1220		46.2		mg/kg dry	¢	04/18/14 07:55	04/18/14 16:40	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	89.9		42.4 _ 163				04/18/14 07:55	04/18/14 16:40	10.0
Toluene-d8	99.5		45.8 - 155				04/18/14 07:55	04/18/14 16:40	10.0
4-bromofluorobenzene	102		41.5 - 162				04/18/14 07:55	04/18/14 16:40	10.0
Method: EPA 8011 - EDB by EF	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.999		ug/kg dry	\$	04/21/14 15:28	04/22/14 15:21	1.00

41.5 - 162

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

102

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.296		0.0169	mg/kg dry	¢	04/24/14 13:00	04/28/14 16:42	1.00
2-Methylnaphthalene	0.456		0.0169	mg/kg dry	¢	04/24/14 13:00	04/28/14 16:42	1.00
1-Methylnaphthalene	0.199		0.0169	mg/kg dry	₽	04/24/14 13:00	04/28/14 16:42	1.00
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	68.6		36.3 - 152			04/24/14 13:00	04/28/14 16:42	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	51.0		27.9		mg/kg dry	\$	04/22/14 15:35	04/23/14 11:00	1.00
Heavy Oil Range Hydrocarbons	ND		69.7		mg/kg dry	¢	04/22/14 15:35	04/23/14 11:00	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97.4		50 - 150				04/22/14 15:35	04/23/14 11:00	1.00

TestAmerica Spokane

Matrix: Soil

Percent Solids: 87.1

TestAmerica Job ID: SXD0112

Lab Sample ID: SXD0112-11

04/18/14 16:40

04/18/14 07:55

10.0

Client Sample ID: 041414:SVDP-2:21 Date Collected: 04/14/14 10:45

Date Received: 04/17/14 13:00

Lab Sample ID: SXD0112-11 Matrix: Soil

Analyzed

Prepared

Percent Solids: 87.1

5

Dil Fac	
1.0	
1.0	
1.0	
Dil Fac	
1.0	

Dil Fac

Method: NWTPH-Dx - Semivolatile Pe	etroleum P	roducts by NV	VTPH-Dx (Continued)
Surrogate	%Recovery	Qualifier	Limits

n-Thacontane-062	108		50 - 150				04/22/14 15:35	04/23/14 11:00	1.00
Method: NWTPH-HCID - Hydrod	arbon Identifica	ation by NW	TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	53		45		mg/kg dry	¢	04/18/14 15:46	04/19/14 01:53	1.0
Diesel Range Hydrocarbons	ND		110		mg/kg dry	¢	04/18/14 15:46	04/19/14 01:53	1.0
Heavy Oil Range Hydrocarbons	ND		110		mg/kg dry	₽	04/18/14 15:46	04/19/14 01:53	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	103		50 - 150				04/18/14 15:46	04/19/14 01:53	1.0
2-FBP	99.2		50 - 150				04/18/14 15:46	04/19/14 01:53	1.0
p-Terphenyl-d14	85.0		50 - 150				04/18/14 15:46	04/19/14 01:53	1.0
Method: EPA 6010C - Metals Co	ontent by EPA 6	010/7000 S	eries Methods.	Prep bv	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	3.39		1.54		mg/kg dry	\$	04/28/14 13:31	04/29/14 18:57	1.00
F									
Method: NWTPH-HCID - Hydroc	carbon Identifica	ation by NW	TPH-HCID	MDI	Unit	n	Bronorod	Applyzed	Dil Ess
Method: NWTPH-HCID - Hydroc Analyte	carbon Identifica Result	Qualifier	TPH-HCID RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons	carbon Identifica	Qualifier	TPH-HCID RL 0.62 0.62	MDL	Unit mg/l	<u>D</u>	Prepared 04/18/14 08:26 04/18/14 08:26	Analyzed 04/18/14 18:17 04/18/14 18:17	Dil Fac
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	carbon Identifica Result 41 16 0.94	Qualifier	TPH-HCID RL 0.62 0.62 0.62	MDL	Unit mg/l mg/l mg/l	D	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17	Dil Fac 1.0 1.0 1.0
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	carbon Identifica Result 41 16 0.94 %Recovery	Qualifier	RL 0.62 0	MDL	Unit mg/l mg/l mg/l	D	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 Prepared	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 Analyzed	Dil Fac 1.0 1.0 1.0 Dil Fac
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 4-BFB (FID)	carbon Identifica Result 41 16 0.94 %Recovery	Qualifier Qualifier Qualifier Z	TPH-HCID RL 0.62 0.62 0.62 0.62 0.62 0.62 0.62	MDL	Unit mg/l mg/l mg/l	D	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 Prepared 04/18/14 08:26	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 Analyzed 04/18/14 18:17	Dil Fac 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 4-BFB (FID) 2-FBP	carbon Identifica Result 41 16 0.94 %Recovery 73.9	Qualifier Qualifier Qualifier Z	Limits 50 - 150	MDL	Unit mg/l mg/l mg/l	<u>D</u>	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 Prepared 04/18/14 08:26 04/18/14 08:26	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17	Dil Fac 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14	Carbon Identifica Result 41 16 0.94 <i>%Recovery</i> 73.9 89.9	Qualifier Qualifier Qualifier Z	Limits 50 - 150 50 - 150	MDL	Unit mg/l mg/l	D	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 Prepared 04/18/14 08:26 04/18/14 08:26	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17	Dil Fac 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Client Sample ID: 041414:S	Carbon Identifica Result 41 16 0.94 %Recovery 73.9 89.9 VDP-3:7	Qualifier	Limits 50 - 150 50 - 150 50 - 150	MDL	Unit mg/l mg/l	<u>D</u>	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17	Dil Fac 1.0 1.0 Dil Fac 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Client Sample ID: 041414:S Date Collected: 04/14/14 11:30	Carbon Identifica Result 41 16 0.94 %Recovery 73.9 89.9 VDP-3:7	Qualifier Qualifier Qualifier Z	Limits 50 - 150 50 - 150 50 - 150	MDL	Unit mg/l mg/l	<u>D</u>	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 Utab Sam	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 ple ID: SXD0 Mat	Dil Fac 1.0 1.0 1.0 Dil Fac 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Method: NWTPH-HCID - Hydroc Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Client Sample ID: 041414:S Date Collected: 04/14/14 11:30 Date Received: 04/17/14 13:00	Carbon Identifica Result 41 16 0.94 %Recovery 73.9 89.9 VDP-3:7	Qualifier Qualifier Z	Limits 50 - 150 50 - 150 50 - 150	MDL	Unit mg/l mg/l	<u> </u>	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 ple ID: SXD0 Mat Percent Soli	Dil Fac 1.0 1.0 Dil Fac 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Method: NWTPH-HCID - Hydrod Analyte Gasoline Range Hydrocarbons Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 4-BFB (FID) 2-FBP p-Terphenyl-d14 Client Sample ID: 041414:S Date Collected: 04/14/14 11:30 Date Received: 04/17/14 13:00 Method: EPA 8260C - Volatile C	Carbon Identifica Result 41 16 0.94 %Recovery 73.9 89.9 VDP-3:7	Qualifier Qualifier Z	TPH-HCID RL 0.62 0.62 0.62 Limits 50 - 150 50 - 150 50 - 150 50 - 150	MDL	Unit mg/l mg/l	D	Prepared 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 04/18/14 08:26 Lab Sam	Analyzed 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 04/18/14 18:17 ple ID: SXD0 Mat Percent Soli	Dil Fac 1.0 1.0 Dil Fac 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Analyte	Result	Quaimer	RL	NDL	Unit	U	Frepareu	Analyzeu	DIFAC
Methyl tert-butyl ether	ND		0.00699		mg/kg dry	\$	04/18/14 07:55	04/18/14 17:02	1.00
Benzene	ND		0.00583		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:02	1.00
Toluene	ND		0.117		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:02	1.00
Ethylbenzene	ND		0.117		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:02	1.00
m,p-Xylene	ND		0.466		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:02	1.00
o-Xylene	ND		0.233		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:02	1.00
1,2-Dichloroethane (EDC)	ND		0.117		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:02	1.00
Xylenes (total)	ND		0.699		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:02	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	95.5		42.4 - 163				04/18/14 07:55	04/18/14 17:02	1.00
1,2-dichloroethane-d4	98.7		50 - 150				04/18/14 07:55	04/18/14 17:02	1.00
Toluene-d8	97.7		45.8 - 155				04/18/14 07:55	04/18/14 17:02	1.00

Limits

41.5 - 162

Limits

42.4 - 163

45.8 - 155

41.5 - 162

RL

5.83

MDL Unit

mg/kg dry

Date Collected: 04/14/14 11:30

Date Received: 04/17/14 13:00

Surrogate

Analyte

Surrogate

Toluene-d8

4-bromofluorobenzene

Dibromofluoromethane

4-bromofluorobenzene

Gasoline Range Hydrocarbons

Client Sample ID: 041414:SVDP-3:7

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

%Recovery Qualifier

Result Qualifier

100

ND

%Recovery Qualifier

95.5

97.7

100

TestAmerica Job ID: SXD0112

Matrix: Soil

Dil Fac

Percent Solids: 84.6

Lab Sample ID: SXD0112-14

Analyzed

04/18/14 17:02

Analyzed

04/18/14 17:02

Analyzed

04/18/14 17:02

04/18/14 17:02

04/18/14 17:02

Prepared

04/18/14 07:55

Prepared

04/18/14 07:55

Prepared

04/18/14 07:55

04/18/14 07:55

04/18/14 07:55

D

☆

5

1.00 Dil Fac 1.00 Dil Fac 1.00 1.00 1.00

Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.13		ug/kg dry	<u></u>	04/21/14 15:28	04/22/14 15:33	1.00

Method: EPA 8270D - Polynucle	ar Aromatic Co	mpounds l	by GC/MS with S	Selected	Ion Monito	ring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0117		mg/kg dry	\$	04/24/14 13:00	04/28/14 17:03	1.00
2-Methylnaphthalene	ND		0.0117		mg/kg dry	¢	04/24/14 13:00	04/28/14 17:03	1.00
1-Methylnaphthalene	ND		0.0117		mg/kg dry	¢	04/24/14 13:00	04/28/14 17:03	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72.2		36.3 - 152				04/24/14 13:00	04/28/14 17:03	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		22.2		mg/kg dry	₽	04/22/14 15:35	04/23/14 16:02	1.00
Heavy Oil Range Hydrocarbons	59.6		55.5		mg/kg dry	¢	04/22/14 15:35	04/23/14 16:02	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98.5		50 - 150				04/22/14 15:35	04/23/14 16:02	1.00
n-Triacontane-d62	104		50 - 150				04/22/14 15:35	04/23/14 16:02	1.00

Method: NWTPH-HCID - Hydrocart	on Identifica	ition by NV	VIPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		43		mg/kg dry	¢	04/18/14 15:46	04/19/14 02:19	1.0
Diesel Range Hydrocarbons	ND		110		mg/kg dry	☆	04/18/14 15:46	04/19/14 02:19	1.0
Heavy Oil Range Hydrocarbons	ND		110		mg/kg dry	¢	04/18/14 15:46	04/19/14 02:19	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	95.8		50 - 150				04/18/14 15:46	04/19/14 02:19	1.0
2-FBP	99.1		50 - 150				04/18/14 15:46	04/19/14 02:19	1.0
p-Terphenyl-d14	94.5		50 - 150				04/18/14 15:46	04/19/14 02:19	1.0
Method: EPA 6010C - Metals Conte	ent by EPA 6	010/7000 S	eries Methods, P	rep by E	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.21		1.51		mg/kg dry	¢	04/28/14 13:31	04/29/14 19:00	1.00
Heavy Oil Range Hydrocarbons

Client Sample ID: 041414:SVDP-5:19 Date Collected: 04/14/14 14:30 Date Received: 04/17/14 13:00

Lab Sample ID: SXD0112-19 Matrix: Soil

Percent Solids: 82

5

Method: EPA 8260C - Volatile Organ	nic Compou	nds by EP	A Method 8260C	;					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.00691		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:25	1.00
Benzene	ND		0.00576		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:25	1.00
Toluene	ND		0.115		mg/kg dry	₽	04/18/14 07:55	04/18/14 17:25	1.00
Ethylbenzene	ND		0.115		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:25	1.00
m,p-Xylene	ND		0.461		mg/kg dry	₽	04/18/14 07:55	04/18/14 17:25	1.00
o-Xylene	ND		0.230		mg/kg dry	₽	04/18/14 07:55	04/18/14 17:25	1.00
1,2-Dichloroethane (EDC)	ND		0.115		mg/kg dry	¢.	04/18/14 07:55	04/18/14 17:25	1.00
Xylenes (total)	ND		0.691		mg/kg dry	¢	04/18/14 07:55	04/18/14 17:25	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	95.7		42.4 - 163				04/18/14 07:55	04/18/14 17:25	1.00
1,2-dichloroethane-d4	102		50 _ 150				04/18/14 07:55	04/18/14 17:25	1.00
Toluene-d8	97.2		45.8 - 155				04/18/14 07:55	04/18/14 17:25	1.00
4-bromofluorobenzene	100		41.5 - 162				04/18/14 07:55	04/18/14 17:25	1.00
Method: NWTPH-Gx - Gasoline Hvd	rocarbons t	oy NWTPH-	-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.76		mg/kg dry	<u></u>	04/18/14 07:55	04/18/14 17:25	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	95.7		42.4 - 163				04/18/14 07:55	04/18/14 17:25	1.00
Toluene-d8	97.2		45.8 - 155				04/18/14 07:55	04/18/14 17:25	1.00
4-bromofluorobenzene	100		41.5 - 162				04/18/14 07:55	04/18/14 17:25	1.00
_ Method: EPA 8011 - EDB_bv EPA M	lethod 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.08		ug/kg dry	<u></u>	04/21/14 15:28	04/22/14 15:45	1.00
– Method: EPA 8270D - Polynuclear A	Aromatic Co	mpounds I	by GC/MS with S	Selected	Ion Monito	ring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0120		mg/kg dry	¢	04/24/14 13:00	04/25/14 14:40	1.00
2-Methylnaphthalene	ND		0.0120		mg/kg dry	₽	04/24/14 13:00	04/25/14 14:40	1.00
1-Methylnaphthalene	ND		0.0120		mg/kg dry	¢	04/24/14 13:00	04/25/14 14:40	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72.0		36.3 - 152				04/24/14 13:00	04/25/14 14:40	1.00
– Method: NWTPH-Dx - Semivolatile F	Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		24.3		mg/kg dry	<u> </u>	04/22/14 15:35	04/23/14 11:23	1.00
Heavy Oil Range Hydrocarbons	ND		60.7		mg/kg dry	¢	04/22/14 15:35	04/23/14 11:23	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95.9		50 - 150				04/22/14 15:35	04/23/14 11:23	1.00
n-Triacontane-d62	105		50 - 150				04/22/14 15:35	04/23/14 11:23	1.00
Method: NWTPH-HCID - Hydrocarbo	on Identifica	tion by NV	VTPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		47		mg/kg dry	<u> </u>	04/18/14 15:46	04/19/14 02:44	1.0
Diesel Range Hydrocarbons	ND		120		mg/kg dry	₽	04/18/14 15:46	04/19/14 02:44	1.0

04/19/14 02:44

04/18/14 15:46

mg/kg dry

120

ND

1.0

	AD0112		TestAfr							Project/Site: 0504-101-00
5	112-19	ple ID: SXD0 ⁻	Lab Sam						'DP-5:19	Client Sample ID: 041414:SV
	rix: Soil	Mat	-							Date Collected: 04/14/14 14:30
2	lids: 82	Percent So								Date Received: 04/17/14 13:00
	Dil Eac	Analyzod	Prepared				l imite	Qualifier	%Recovery	Surrogate
5	1.0	04/19/14 02·44	04/18/14 15:46				50 150			4-BEB (EID)
, -	1.0	04/19/14 02:44	04/18/14 15:46				50 150		91.8	2-EBP
, ,	1.0	04/19/14 02:44	04/18/14 15:46				50 - 150		88.0	p-Terphenyl-d14
	7.0	0 // 10/ 11/ 02:11	0 1/ 10/ 1/ 10:10				00 - 700		00.0	
					PA 3050B	rep by E	eries Methods, Pi)10/7000 Se	ntent by EPA 60	Method: EPA 6010C - Metals Con
2	Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
)	1.00	04/29/14 19:04	04/28/14 13:31	\$	mg/kg dry		1.52		4.79	Lead
	112-20	ple ID: SXD0	Lab Sam						DP-6:18	Client Sample ID: 041414:SV
	rix: Soil	Mat								Date Collected: 04/14/14 15:20
5	ds: 75.5	Percent Solie								Date Received: 04/17/14 13:00
							Mathed 92000			Mathadi EDA 82600 Valatila Ori
:	Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	ganic Compou Result	Analyte
)	1.00	04/18/14 17:47	04/18/14 07:55		ma/ka drv		0.00809		ND	Methyl tert-butyl ether
)	1.00	04/18/14 17:47	04/18/14 07:55	₽	ma/ka drv		0.00674		ND	Benzene
)	1.00	04/18/14 17:47	04/18/14 07:55	¢	mg/kg dry		0 135		ND	Toluene
,)	1.00	04/18/14 17:47	04/18/14 07:55	÷ ¢	mg/kg dry		0.135		ND	Ethylbenzene
, N	1.00	04/18/14 17:47	04/18/14 07:55	æ	mg/kg dry		0.539			
, N	1.00	04/18/14 17:47	04/18/14 07:55	æ	mg/kg dry		0.339			
, N	1.00	04/18/14 17:47	04/18/14 07:55		mg/kg dry		0.135			1 2-Dichloroethane (EDC)
, N	1.00	04/18/14 17:47	04/18/14 07:55	æ	mg/kg dry		0.155			
,	1.00	04/10/14 17.47	04/10/14 07.33	.,.	nig/kg uiy		0.009		ND	
2	Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
)	1.00	04/18/14 17:47	04/18/14 07:55				42.4 - 163		101	Dibromofluoromethane
)	1.00	04/18/14 17:47	04/18/14 07:55				50 - 150		105	1,2-dichloroethane-d4
)	1.00	04/18/14 17:47	04/18/14 07:55				45.8 - 155		98.8	Toluene-d8
)	1.00	04/18/14 17:47	04/18/14 07:55				41.5 - 162		98.1	4-bromofluorobenzene
							Gx	y NWTPH-O	lydrocarbons b	Method: NWTPH-Gx - Gasoline H
:	Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
)	1.00	04/18/14 17:47	04/18/14 07:55	¢	mg/kg dry		6.74		ND	Gasoline Range Hydrocarbons
5	Dil Fac	Analyzed	Prepared				Limits	Qualifier	%Recovery	Surrogate
5	1.00	04/18/14 17:47	04/18/14 07:55				42.4 - 163			Dibromofluoromethane
)	1.00	04/18/14 17:47	04/18/14 07:55				45.8 - 155		98.8	Toluene-d8
)	1.00	04/18/14 17:47	04/18/14 07:55				41.5 - 162		98.1	4-bromofluorobenzene
									Mothod 9011	Method: EDA 9011 EDD by EDA
;	Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
D	1.00	04/22/14 15:57	04/21/14 15:28	<u></u>	ug/kg dry		1.11		ND	1,2-Dibromoethane
					an Mantes t	الارتقاع ما			n Anomatic O	Methods EDA 0070D Delever 1
	Dil Fac	Analyzed	Prenared	ng ח	ION MONITORI Unit	eiected וחא	BY GC/MS with Se	mpounds by Qualifier	ar Aromatic Col	Method: EPA 8270D - Polynuclea
-]	1 00	04/25/14 15:01	04/24/14 13:00	- <u>-</u>	ma/ka day		0.0130	quainter		Nanhthalene
, N	1.00	04/25/14 15:01	04/24/14 13:00	.r Ø	ma/ka day		0.0130		םאי סוא	2-Methylnanhthalene
, N	1.00	04/25/14 13.01	04/24/14 13.00	ά.	mg/kg day		0.0130			
,	1.00	04/20/14 10.01	07/24/14 13.00		ing/kg ury		0.0130		ND	тивитушарниласте
	B 7 F	Ameliand	_ .							•
2	Dii Fac	Analyzea	Prepared				Limits	Qualifier	%Recovery	Surrogate

Client Sample ID: 041414:SVDP-6:18 Date Collected: 04/14/14 15:20

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

4.87

Date Received: 04/17/14 13:00

Lead

TestAmerica	Job	ID:	SXD0112
-------------	-----	-----	---------

Lab Sample ID: SXD0112-20

× 04/28/14 13:31 04/29/14 19:07

Matrix: Soil

Percent Solids: 75.5

6 7 8

1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		24.1		mg/kg dry	\	04/22/14 15:35	04/23/14 11:23	1.00
Heavy Oil Range Hydrocarbons	ND		60.3		mg/kg dry	₽	04/22/14 15:35	04/23/14 11:23	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97.8		50 - 150				04/22/14 15:35	04/23/14 11:23	1.00
n-Triacontane-d62	98.6		50 - 150				04/22/14 15:35	04/23/14 11:23	1.00
Method: NWTPH-HCID - Hydro	carbon Identifica	ation by NW	TPH-HCID		11-14	-	Durant	Awaharad	D.1 E
Analyte	Result	Qualifier	RL	MDL	Unit	_ <u>D</u>	Prepared	Analyzed	DII Fac
Gasoline Range Hydrocarbons	ND		47		mg/kg dry	₽	04/21/14 10:00	04/21/14 15:03	1.0
Diesel Range Hydrocarbons	ND		120		mg/kg dry	☆	04/21/14 10:00	04/21/14 15:03	1.0
Heavy Oil Range Hydrocarbons	ND		120		mg/kg dry	¢	04/21/14 10:00	04/21/14 15:03	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	88.9		50 - 150				04/21/14 10:00	04/21/14 15:03	1.0
2-FBP	91.4		50 - 150				04/21/14 10:00	04/21/14 15:03	1.0
p-Terphenyl-d14	96.4		50 - 150				04/21/14 10:00	04/21/14 15:03	1.0
_ Method: EPA 6010C - Metals C	ontent by EPA 6	010/7000 S	eries Methods. I	Prep bv	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.59

mg/kg dry

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

|--|

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14D0092_P

Matrix: Soil Analysis Batch: 14D0092

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.00600		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
Benzene	ND		0.00500		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
Toluene	ND		0.100		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
Ethylbenzene	ND		0.100		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
m,p-Xylene	ND		0.400		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
o-Xylene	ND		0.200		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
1,2-Dichloroethane (EDC)	ND		0.100		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
Xylenes (total)	ND		0.600		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	96.1		42.4 - 163				04/18/14 07:55	04/18/14 09:36	1.00
1,2-dichloroethane-d4	98.3		50 _ 150				04/18/14 07:55	04/18/14 09:36	1.00
Toluene-d8	101		45.8 - 155				04/18/14 07:55	04/18/14 09:36	1.00
4-bromofluorobenzene	99.9		41.5 - 162				04/18/14 07:55	04/18/14 09:36	1.00

Lab Sample ID: 14D0092-BS1 Matrix: Soil

Analysis Batch: 14D0092

Analysis Batch: 14D0092									Prep Batch: 14D0092_P
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether			0.500	0.477		mg/kg wet		95.4	79 - 127
Benzene			0.500	0.466		mg/kg wet		93.2	75.9 - 123
Toluene			0.500	0.415		mg/kg wet		83.0	77.3 - 126
Ethylbenzene			0.500	0.434		mg/kg wet		86.9	80 - 120
m,p-Xylene			0.500	0.432		mg/kg wet		86.4	80 - 120
o-Xylene			0.500	0.434		mg/kg wet		86.9	80 - 120
Naphthalene			0.500	0.506		mg/kg wet		101	58.8 - 130
1,2-Dichloroethane (EDC)			0.500	0.521		mg/kg wet		104	60 - 140
1,2-Dibromoethane			0.500	0.478		mg/kg wet		95.7	60 - 140
Xylenes (total)			1.00	0.866		mg/kg wet		86.6	80 - 120
Hexane			0.500	0.496		mg/kg wet		99.3	50 - 150
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						

ounoguto	/meeerly	quanner	Linnto
Dibromofluoromethane	98.5		42.4 - 163
1,2-dichloroethane-d4	101		50 - 150
Toluene-d8	95.7		45.8 - 155
4-bromofluorobenzene	97.0		41.5 - 162

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 14D0092-BLK1							Client Sa	mple ID: Metho	d Blank
Matrix: Soil								Prep Typ	e: Total
Analysis Batch: 14D0092							F	Prep Batch: 14D	0092_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.00		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00

Client Sample ID: Lab Control Sample Prep Type: Total

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx (Co	continued)
--	------------

Lab Sample ID: 14D0092-BLK1									Client	Sample ID: Meth	od Blank
Matrix: Soil										Prep Ty	pe: Total
Analysis Batch: 14D0092										Prep Batch: 14	D0092_P
	BI	lank	Blank								
Surrogate	%Recov	very	Qualifier	Limits				P	repared	Analyzed	Dil Fac
Dibromofluoromethane		96.1		42.4 - 163	-			04/1	8/14 07:5	55 04/18/14 09:36	1.00
Toluene-d8		101		45.8 - 155				04/1	8/14 07:5	55 04/18/14 09:36	1.00
4-bromofluorobenzene	9	99.9		41.5 - 162				04/1	8/14 07:5	55 04/18/14 09:36	1.00
Lab Sample ID: 14D0092-BS2 Matrix: Soil Analysis Batch: 14D0092				Spike	LCS	LCS	llait	Client	Sampl	e ID: Lab Contro Prep Ty Prep Batch: 14 %Rec.	l Sample pe: Total D0092_P
Gasoline Range Hydrocarbons				50 0	52.2	Quaimer	ma/ka wet		104	74.4 124	
	LCS	LCS		00.0	02.2		inging wet		10-1	,	
Surrogate	%Recovery	Qual	lifier	Limits							
Dibromofluoromethane	93.2		4	2.4 - 163							
Toluene-d8	98.3		4	5.8 - 155							
4-bromofluorobenzene	99.7		4	1.5 - 162							

|--|

 Lab Sample ID: 14D0100-BLK1											Client	Sample ID: Met	hod Blank
Matrix: Soil											onom	Prep 1	vpe: Total
Analysis Batch: 14D0100												Prep Batch: 1	4D0100 P
· · · · · · · · · · · · · · · · · · ·	E	Blank	Blank										
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane		ND			1.00			ug/kg	wet	0	4/21/14 15:2	8 04/22/14 11:1	9 1.00
Lab Sample ID: 14D0100-BS1										Clie	ent Sampl	e ID: Lab Conti	ol Sample
Matrix: Soil												Prep T	ype: Total
Analysis Batch: 14D0100												Prep Batch: 1	4D0100_P
				Spike		LCS	LCS					%Rec.	
Analyte				Added		Result	Qual	ifier	Unit		D %Rec	Limits	
1,2-Dibromoethane				5.00		5.53			ug/kg wet		111	60 - 140	
Lab Sample ID: 14D0100-BS2										Clie	ent Sampl	e ID: Lab Conti	ol Sample
Matrix: Soil												Prep T	ype: Total
Analysis Batch: 14D0100												Prep Batch: 1	4D0100_P
-				Spike		LCS	LCS					%Rec.	
Analyte				Added		Result	Qual	ifier	Unit		D %Rec	Limits	
1,2-Dibromoethane				5.00		5.95			ug/kg wet		119	60 - 140	
											Olion		
Lab Sample ID: 14D0100-MS1											Clien	t Sample ID: Ma	atrix Spike
Lab Sample ID: 14D0100-MS1 Matrix: Soil											Clien	t Sample ID: Ma Prep T	atrix Spike ype: Total
Lab Sample ID: 14D0100-MS1 Matrix: Soil Analysis Batch: 14D0100											Clien	t Sample ID: Ma Prep T Prep Batch: 1	atrix Spike ype: Total 4D0100_P
Lab Sample ID: 14D0100-MS1 Matrix: Soil Analysis Batch: 14D0100	Sample	Sam	ple	Spike	Matr	ix Spike	Matr	ix Spik	e		Clien	Prep T Prep T Prep Batch: 1 %Rec.	atrix Spike ype: Total 4D0100_P
Lab Sample ID: 14D0100-MS1 Matrix: Soil Analysis Batch: 14D0100 Analyte	Sample Result	Sam Qual	ple ifier	Spike Added	Matr	ix Spike Result	Matr Qual	ix Spik ifier	e Unit		D %Rec	t Sample ID: Ma Prep T Prep Batch: 1 %Rec. Limits	atrix Spike 'ype: Total 4D0100_P

6

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 14D0100-MSD1 Matrix: Soil	l					(Client Sa	ample II	D: Matrix S Pre	pike Dup ep Type:	licate Total
Analysis Batch: 14D0100									Prep Bato	h: 14D0	100_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	ND		4.89	4.93		ug/kg dr	ry 🔅	101	60 - 140	16.0	20

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte Result Quilifer RL MDL Unit p Prepared Analyzed Dil Fac Naphthalene ND 0.0100 mg/kg wet 04/24/14 13:00 04/24/14 14:44 1.00 2.Methylnaphthalene ND 0.0100 mg/kg wet 04/24/14 13:00 04/24/14 14:44 1.00 Surrogate WRecovery Quiliffer Limits Prepared Analyzed Dil Fac Nutrobenzene-d5 85.2 36.3 : 152 04/24/14 13:00 04/24/14 14:44 1.00 Lab Sample ID: 14D0130-BS1 Size 04/24/14 13:00 04/24/14 14:44 1.00 Matrix: Soil Client Sample ID: 14D0130-BS1 Client Sample ID: 14D0130_P Wree. Wree. Maphthalene 0.133 0.115 mg/kg wet 0 %Rec. Wree. Lab Sample ID: 14D0130-MS1 LCS LCS Wree. Wree. Wree. Wree. Wree. Marky Solid 77.4 36.3 : 152 Client Sample ID: Matrix Spike Wree. Wree. Wree. Wre	Lab Sample ID: 14D0130-BLK1 Matrix: Soil Analysis Batch: 14D0130	_										Client S	ample ID: I Pre Prep Batcl	Method p Type h: 14D0	Blank : Total 130_P	
Arlanyte Result Outer filter Into Current D Preparet Arlanyzea Differ 2-Methylinaphthalene ND 0.0100 mg/kg wet 04/24/14 13:00	Analista	E	siank	Blank		ы			11		_	Dueneusd	Analum			
Naphinalantia ND 0.0100 mg/kg wet 04/24/14 13:00 0	Analyte	ĸ		Qualifier				MDL		[Prepared	Analyz	ea		
Zimetryinsplantation ND 0.0100 mg/ng/weit 0.0124/14/14/300 0.0424/14/14/300 0.0120/14/11/31/30 0.0120/14/11/31/31 0.0000 0.0120/14/11/31/31 0.0000/14						0.0100			mg/kg	wet	04	/24/14 13.00	04/24/14	14.44 14.44	1.00	
Blank Blank Blank Blank Blank Blank Surrogate %Recovery Qualifier Limits Nitrobezene-d5 85.2 36.3.152 04/24/14 13:00 04/24/14 13:00 04/24/14 14:44 1.00 Lab Sample ID: 14D0130-BS1 Client Sample ID: Lab Control Sample Prep Type: Total Prep Type: Total Analyte 04/24/14 13:00 %Recovery 04/24/14 13:00 %Recovery Analyte 0.133 0.115 mg/kg wet 86.0 62.7.120 Analyte %Recovery Qualifier Limits %Recovery %Recovery Matrix Spike Surrogate %Recovery Qualifier Limits Matrix Spike %Recovery Naphthalene 0.174 36.3.152 Client Sample ID: Matrix Spike %Recovery Analyte Result Qualifier Limits Prep Batch: 14D0130_Prep Batch:	1 Methylnaphthalene					0.0100			mg/kg	wot	04	1/24/14 13:00	04/24/14	14.44	1.00	
Blank Surrogate %Recovery Bis2 Limits 36.3.152 Prepared 04/24/14 13.00 Difac Difac Difac Difac Difac Lab Sample ID: 14D0130-BS1 Matrix: Soil Analysis Batch: 14D0130 Client Sample ID: Lab Control Sample Prep Type: Total Prep Batch: 14D0130_P Difac Difac <th colspa<="" td=""><td></td><td></td><td>ND</td><td></td><td></td><td>0.0100</td><td></td><td></td><td>шу/ку</td><td>wei</td><td>0-</td><td>/24/14 13.00</td><td>04/24/14</td><td>4.44</td><td>1.00</td></th>	<td></td> <td></td> <td>ND</td> <td></td> <td></td> <td>0.0100</td> <td></td> <td></td> <td>шу/ку</td> <td>wei</td> <td>0-</td> <td>/24/14 13.00</td> <td>04/24/14</td> <td>4.44</td> <td>1.00</td>			ND			0.0100			шу/ку	wei	0-	/24/14 13.00	04/24/14	4.44	1.00
Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 85.2 36.3.152 04/24/14 13.00 04/24/14 13.00 04/24/14 14.44 1.00 Lab Sample ID: 14D0130-BS1 Matrix: Soil Prep Batch: 14D0130 Prep Batch: 14D0130_P Prep Batch: 14D0130_P Analyte Added Result Qualifier Unit D %Rec. Wrec. Naphthalene 0.133 0.115 mg/kg wet D %Rec. Limits Surrogate %Recovery Qualifier Limits 36.3.152 Surrogate %Rec. Limits Nitrobenzene-d5 77.4 36.3.152 0.113 0.115 mg/kg wet D %Rec. Lab Sample ID: 14D0130-MS1 Limits 36.3.152 Client Sample ID: Matrix Spike Prep Type: Total Analyte Result Qualifier Limits 36.3.152 %Rec. No Lab Sample ID: 14D0130-MS1 Sample Spike Matrix Spike Matrix Spike No 0.176 0.151 mg/kg dry 0 %Rec. Naphthalene ND 0.176 0.151 mg/kg dry 0 86.0 30.120 Matrix Spike Matrix Spike Matrix Spike No 36.3.152		E	Blank	Blank												
Nitrobenzene-d5 85.2 36.3.152 04/24/14 13:00 04/24/14 13:00 04/24/14 14:44 1.00 Lab Sample ID: 14D0130-BS1 Matrix: Soil Prep Type: Total Analysis Batch: 14D0130 Spike LCS LCS LCS VRec. Analyte Added Result Qualifier Unit D %Rec. WRec. Surrogate %Recovery Qualifier Limits 36.3 - 152 Client Sample ID: Matrix Spike Prep Batch: 14D0130_P Atrix: Soil 77.4 36.3 - 152 Client Sample ID: Matrix Spike Prep Type: Total Analyte Result Qualifier Limits 36.3 - 152 Client Sample ID: Matrix Spike Prep Batch: 14D0130_P Matrix: Soil 77.4 36.3 - 152 Client Sample ID: Matrix Spike Prep Batch: 14D0130_P Analyte Result Qualifier Limits 0.176 0.151 mg/kg dry 0 %Rec WRec. Matrix Spike Matrix Spike Matrix Spike Limits 30.120 Sold 30.120 Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup 86.0 30.120	Surrogate	%Reco	overy	Qualifier	Lin	nits						Prepared	Analyz	ed	Dil Fac	
Lab Sample ID: 14D0130-BS1 Matrix: Soil Analysis Batch: 14D0130 Nephthalene CS LCS Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 77.4 36.3 - 152 Lab Sample ID: 14D0130-MS1 Matrix: Soil Analysis Batch: 14D0130 Sample Sample Sample Spike Matrix Spike Dup Matrix Spike D	Nitrobenzene-d5		85.2		36.3	- 152					04	4/24/14 13:00	04/24/14	14:44	1.00	
Analyte Added Result Qualifier Unit D %rec Limits Naphthalene 0.133 0.115 mg/kg wet 86.0 62.7.120 Surrogate %Recovery Qualifier Limits 36.3.152 Nitrobenzene-d5 77.4 36.3.152 Client Sample ID: Matrix Spike Prep Type: Total Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Naphthalene ND Sample Spike Matrix Spike Matrix Spike Matrix Spike Prep Type: Total Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Surrogate %Recovery Qualifier Limits 36.3.152 30.120 30.120 Imits Matrix Spike Matrix Spike Matrix Spike Matrix Spike Prep Type: Total Prep Type: Total Nitrobenzene-d5 76.4 36.3.152 14D0130.HD0130 Prep Type: Total Analyte Result Qualiffer Limits Prep Type: Tot	Lab Sample ID: 14D0130-BS1 Matrix: Soil Analysis Batch: 14D0130				Spike		LCS	LCS	11 4 1	11-24	Clie	nt Sample	ID: Lab Co Pre Prep Batcl %Rec.	ontrol S p Type n: 14D0	ample : Total 130_P	
LCS LCS LCS LCS LCS LCS LCS LCS LCS Limits Migrid weit 60.0 62.7 - 120 Surrogate %Recovery Qualifier Limits 36.3 - 152 Client Sample ID: 14D0130-MS1 Client Sample ID: Matrix Spike Lab Sample ID: 14D0130-MS1 Sample Sample Spike Matrix Spike Prep Type: Total Analyte Result Qualifier Added Result Qualifier Unit D %Rec. WRec. Matrix Spike Matrix Spike Matrix Spike Matrix Spike Sample					Added		Result	Qua	Inter	Unit						
Lab Sample ID: 14D0130-MS1 Matrix: Soil Client Sample ID: Matrix Spike Prep Type: Total Analyte Result Qualifier Added Matrix Spike Matrix Spike Spike It in its Matrix Spike Spike It is Spike It is Spike Dup Matrix Spike Dup	Surrogate Nitrobenzene-d5	LCS %Recovery 77.4	LCS Qua	lifier	Limits 36.3 - 152	_	0.110			ing/kg wet		00.0	02.7 - 120			
Analysis Batch: 14D0130 Prep Batch: 14D0130_P Sample Sample Spike Matrix Spike Matrix Spike Matrix Spike Matrix Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits ND ND Matrix Spike Matrix Spike Implementation Matrimplemenatimplementation Matrix Spike Im	Lab Sample ID: 14D0130-MS1 Matrix: Soil											Client	Sample ID: Pre	Matrix p Type	Spike : Total	
Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Naphthalene ND 0.176 0.151 mg/kg dry Imit D %Rec. Limits Naphthalene ND 0.176 0.151 mg/kg dry Imit D %Rec. Limits Surrogate %Recovery Qualifier Limits Juints Juint Juints Juints	Analysis Batch: 14D0130	<u> </u>	•										Prep Batcl	h: 14D0	130_P	
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Naphthalene ND 0.176 0.151 mg/kg dry is 86.0 30 - 120 Matrix Spike Matrix Spike Matrix Spike Limits mg/kg dry is 86.0 30 - 120 Matrix Spike Matrix Spike Qualifier Limits Site Site Limits Site Site Description Result Prep Type: Total Natrix Soil Sample Sample Spike itrix Spike Dup Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Limits Naphthalene ND 0.179 0.158 mg/kg dry is 88.5 30 - 120 4.64 35 Matrix Spike Dup is is Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup is	Australia	Sample	Sam	pie	Spike	Mati	TIX Spike	Matr	их эріке	9	-	0/ D	%Rec.			
Maphilialene Mb 0.176 0.151 Iniging dry # 80.0 30.120 Matrix Spike Matrix Spike Matrix Spike Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 76.4 Limits Itab Sample ID: 14D0130-MSD1 Client Sample ID: Matrix Spike Duplicate Matrix: Soil Prep Type: Total Analysis Batch: 14D0130 Sample Spike itrix Spike Dup Analyte Result Qualifier Added Np 0.179 0.158 Qualifier Unit D Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup Outling Outling	Analyte	Result	Qua	imer	Added		C 151	Qua	Inter				20 120			
Matrix Spike Matrix Spike Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 76.4 36.3 - 152 Lab Sample ID: 14D0130-MSD1 Client Sample ID: Matrix Spike Duplicate Matrix: Soil Prep Type: Total Analysis Batch: 14D0130 Sample Spike ttrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Naphthalene ND 0.179 0.158 mg/kg dry 30 - 120 4.64 35	Naphinalene	ND			0.170		0.151			nig/kg ury	1	00.0	30 - 120			
Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 76.4 36.3 - 152 Lab Sample ID: 14D0130-MSD1 Client Sample ID: Matrix Spike Duplicate Matrix: Soil Prep Type: Total Analysis Batch: 14D0130 Sample Spike itrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Naphthalene ND 0.179 0.158 mg/kg dry 30 - 120 4.64 35	-	Matrix Spike	Mati	ix Spike												
Nitrobenzene-ds 76.4 36.3 - 152 Lab Sample ID: 14D0130-MSD1 Client Sample ID: Matrix Spike Duplicate Matrix: Soil Prep Type: Total Analysis Batch: 14D0130 Prep Batch: 14D0130_P Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup Client Sample Sample Sample Analyte Result Qualifier Unit D %Rec. RPD Matrix Spike Dup Matrix Spike Dup Outring Outring Outring	Surrogate	%Recovery	Qua	lifier	Limits	_										
Lab Sample ID: 14D0130-MSD1 Client Sample ID: Matrix Spike Duplicate Matrix: Soil Prep Type: Total Analysis Batch: 14D0130 Prep Batch: 14D0130_P Sample Sample Sample Spike Matrix Spike Dup Matrix Spike Dup	Nitrobenzene-d5	76.4			36.3 - 152											
Sample Sample Spike Itrix Spike Dup Matrix Spike Du; %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Naphthalene ND 0.179 0.158 mg/kg dry % 88.5 30 - 120 4.64 35	Lab Sample ID: 14D0130-MSD1 Matrix: Soil Analysis Batch: 14D0130	I								CI	lient	Sample ID	: Matrix Sp Pre Prep Batcl	ike Duj p Type n: 14D0	olicate : Total	
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Naphthalene ND 0.179 0.158 mg/kg dry 5 30 - 120 4.64 35 Matrix Spike Dup Matrix Spike Dup Limit Limit Limit		Sample	Sam	ple	Spike	Itrix Sp	oike Dup	Matr	ix Spike	e Dur			%Rec.		RPD	
Naphthalene ND 0.179 0.158 mg/kg dry 88.5 30 - 120 4.64 35 Matrix Spike Dup Matrix Spike Dup Oursenants Vicenants Oursenants	Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit	0	%Rec	Limits	RPD	Limit	
Matrix Spike Dup Matrix Spike Dup	Naphthalene	ND			0.179		0.158			mg/kg dry	ξ	88.5	30 - 120	4.64	35	
	Ма	trix Spike Dup	Mati	ix Snike D	un											
Surrogate %Recovery Qualitier Limits	Surrogate	%Recoverv	Qua	lifier	Limits											
Nitrobenzene-d5 78.2 36.3 - 152	Nitrobenzene-d5	78.2			36.3 - 152	_										

TestAmerica Spokane

6

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Lab Sample ID: 14D0115-BLK1 Matrix: Soil											Client \$	Sample ID: Me Prep	thod Type:	Blank Total
Analysis Batch: 14D0115	-	look	Plank									Prep Batch:	14D0	115_P
Analyte	E D		Ouglifier		DI	мы	Unit		п	D	ronarod	Analyzed		Dil Eac
Diesel Range Hydrocarbons			Quaimer		20.0		ma/kc	1 wet	_	04/2	2/14 15·3	5 04/23/14 09·F	2	1 00
Heavy Oil Range Hydrocarbons		ND			50.0		ma/ka	n wet		04/2	2/14 15:3	5 04/23/14 09:5	2	1.00
Theory of Hange Hydrocarbone		110			00.0		mg/ng	,		0 1/2	2,111 10.0	0 0 1/20/11 00:0	-	1.00
	E	Blank	Blank											
Surrogate	%Reco	overy	Qualifier	Limi	ts					P	repared	Analyzed		Dil Fac
o-Terphenyl		101		50 - 1	150					04/2	2/14 15:3	5 04/23/14 09:5	52	1.00
n-Triacontane-d62		95.9		50 - 1	150					04/2	2/14 15:3	5 04/23/14 09:5	52	1.00
Lab Sample ID: 14D0115-BS1									С	lient	Sample	e ID: Lab Cont	rol Sa	ample
Matrix: Soil												Prep 7	Г <mark>уре</mark> :	Total
Analysis Batch: 14D0115												Prep Batch:	14D0 ⁻	115_P
				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Diesel Range Hydrocarbons				66.7	59.4			mg/kg we	et		89.1	73 - 133		
	LCS	LCS												
Surrogate	%Recoverv	Qua	lifier	Limits										
o-Terphenyl	100			50 - 150										
n-Triacontane-d62	107			50 _ 150										
—														
Lab Sample ID: 14D0115-DUP1									С	lient	Sample	e ID: 041414:S	VDP-	1:13.5
Matrix: Soil												Prep 1	Г <mark>уре</mark> :	Total
Analysis Batch: 14D0115												Prep Batch:	14D0 ⁻	115_P
	Sample	Sam	ple		Duplicate	Dup	licate							RPD
Analyte	Result	Qua	lifier		Result	Qua	lifier	Unit		D			RPD	Limit
Diesel Range Hydrocarbons	640				493			mg/kg dry	/	\$			25.9	40
Heavy Oil Range Hydrocarbons	ND				ND			mg/kg dry	/	¢				40
	Duplicate	Dun	licate											
Surrogate	%Recoverv	Qua	lifier	Limits										
o-Terphenvl	99.6			50 - 150										
n-Triacontane-d62	107			50 - 150										
Lab Sample ID: 14D0115-DUP2											Cli	ent Sample ID	: Dup	olicate
Matrix: Soil												Prep 1	Гуре:	Total
Analysis Batch: 14D0115												Prep Batch:	14D0 ⁻	115_P
-	Sample	Sam	ple		Duplicate	Dup	licate							RPD
Analyte	Result	Qua	lifier		Result	Qua	lifier	Unit		D			RPD	Limit
Diesel Range Hydrocarbons	10.7				13.6			mg/kg dry	/	\\\			23.6	40
Heavy Oil Range Hydrocarbons	32.9				36.1			mg/kg dry	/	₽			9.26	40
	Durliasta	D	liaata											
Surrogata	V Decements	Dup O	lifior	1 im:+-										
	%recovery	Qua	inner	50 150										
n-Triacontane-d62	101			50 - 150										
11 111001110110-002	111			50 - 150										

RL

0.63

0.63

0.63

Limits

50 - 150

50 - 150

50 - 150

MDL Unit

mg/l

mg/l

mg/l

D

Prepared

04/18/14 08:26

04/18/14 08:26

04/18/14 08:26

04/18/14 08:26

04/18/14 15:46

Lab Sample ID: 14D0093-BLK1

Analysis Batch: 14D0093

Gasoline Range Hydrocarbons

Heavy Oil Range Hydrocarbons

Lab Sample ID: 14D0099-BLK1

Analysis Batch: 14D0099

Diesel Range Hydrocarbons

Matrix: Water

Analyte

Surrogate

2-FBP

4-BFB (FID)

p-Terphenyl-d14

Matrix: Soil

p-Terphenyl-d14

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

Blank Blank Result Qualifier

ND

ND

ND

Blank Blank

%Recovery Qualifier

33.2 Z6

40.8 Z6

Blank Blank

92.2

87.2

Client Sample ID: Method Blank

Analyzed

04/18/14 15:17

04/18/14 15:17

04/18/14 15:17

04/18/14 15:17

Prep Type: Total

Dil Fac

1.00

1.00

1.00

1.00

1.00

Prep Type: Total Prep Batch: 14D0099_P

Prep Batch: 14D0093_P

2 3 4 5

04/18/14 08:26 04/18/14 15:17 1.00 Prepared Analyzed Dil Fac 04/18/14 04/18/14 15:17 1.00

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14D0099_P

04/18/14 22:54

Client Sample ID: 041414:SVDP-3:7

Client Sample ID: 041414:SVDP-5:19

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		40		mg/kg wet		04/18/14 15:46	04/18/14 22:54	1.00
Diesel Range Hydrocarbons	ND		100		mg/kg wet		04/18/14 15:46	04/18/14 22:54	1.00
Heavy Oil Range Hydrocarbons	ND		100		mg/kg wet		04/18/14 15:46	04/18/14 22:54	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	96.0		50 _ 150				04/18/14 15:46	04/18/14 22:54	1.00
2-FBP	95.1		50 - 150				04/18/14 15:46	04/18/14 22:54	1.00

50 - 150

Lab Sample ID: 14D0099-DUP1 Matrix: Soil Analysis Batch: 14D0099

-	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Gasoline Range Hydrocarbons	2.17		 8.80	R4	mg/kg dry	¢	 121	25
Diesel Range Hydrocarbons	6.38		12.9	R4	mg/kg dry	¢	67.9	25
Heavy Oil Range Hydrocarbons	22.9		95.5	R4	mg/kg dry	Ċ.	123	25

	Duplicate	Duplicate	
Surrogate	%Recovery	Qualifier	Limits
4-BFB (FID)	98.3		50 - 150
2-FBP	103		50 - 150
p-Terphenyl-d14	99.0		50 - 150

Lab Sample ID: 14D0099-DUP2 Matrix: Soil

Analysis Batch: 14D0099							Prep Batch: 14D0	099_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Gasoline Range Hydrocarbons	0.00		7.93	R4	mg/kg dry	<u></u>	200	25
Diesel Range Hydrocarbons	6.37		5.28	R4	mg/kg dry	¢	18.7	25
Heavy Oil Range Hydrocarbons	0.112		2.05	R4	mg/kg dry	¢	179	25

TestAmerica Spokane

Prep Type: Total

Lab Sample ID: 14D0099-DUP2

Client Sample ID: 041414:SVDP-5:19

2 3 4 5

5
6

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID (Continued)

Analysis Batch: 14D0099										F	Prep Batch: 14D	0099 F
	Duplicato	Dun	liaata									_
Surrogato	%Pecovery	Oual	lifior	l imite								
	103	Qual		50 150								
2-FRP	100			50 150								
p-Terphenyl-d14	91.9			50 ₋ 150								
Lab Sample ID: 14D0104-BLK1										Client Sa	mple ID: Method	l Blani
Matrix: Soil											Prep Type	e: Tota
Analysis Batch: 14D0104										F	Prep Batch: 14D	0104 F
	E	Blank	Blank									
Analyte	R	esult	Qualifier		RL	MDL	Unit	I	2	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons		ND			40		mg/kg	g wet	04/	/21/14 10:00	04/21/14 12:44	1.00
Diesel Range Hydrocarbons		ND			100		mg/kg	g wet	04/	/21/14 10:00	04/21/14 12:44	1.00
Heavy Oil Range Hydrocarbons		ND			100		mg/kg	g wet	04/	/21/14 10:00	04/21/14 12:44	1.00
	E	Blank	Blank									
Surrogate	%Reco	overy	Qualifier	Limits	5					Prepared	Analyzed	Dil Fa
4-BFB (FID)		94.0		50 - 1	50				04/	/21/14 10:00	04/21/14 12:44	1.00
2-FBP		93.3		50 - 1	50				04,	/21/14 10:00	04/21/14 12:44	1.00
p-Terphenyl-d14 _		93.2		50 - 1	50				04,	/21/14 10:00	04/21/14 12:44	1.00
Lab Sample ID: 14D0104-DUP1									Clie	ent Sample	ID: 041414:SVD	P-6:1 8
Matrix: Soil											Prep Type	e: Tota
Analysis Batch: 14D0104										F	Prep Batch: 14D	0104_F
	Sample	Sam	ple		Duplicate	Dup	licate					RPE
Analyte	Result	Qual	lifier		Result	Qua	lifier	Unit	<u>D</u>	·		Limi
Gasoline Range Hydrocarbons	10.1				4.04	R4		mg/kg dry	ۍ بې		85.6	2
Diesel Range Hydrocarbons	15.2				9.42	R4		mg/kg dry	ф.		46.8	2
Heavy Oil Range Hydrocarbons	2.52				0.0600	R4		mg/kg dry	- <u></u>		191	2
	Duplicate	Dup	licate									
Surrogate	%Recovery	Qua	lifier	Limits								
4-BFB (FID)	101			50 - 150								
2-FBP	100			50 - 150								
p-Terphenyl-d14	97.5			50 - 150								

Lab Sample ID: 14D0146-BLK1 Matrix: Soil Analysis Batch: 14D0146	Plank	Blank								Client S	ample ID: Metho Prep Ty Prep Batch: 14	od Blank be: Total D0146_P
Analyte	Result	Qualifier		RL		MDL	Unit	ſ) Р	repared	Analyzed	Dil Fac
Lead	ND			1.25			mg/kg	wet	04/2	8/14 13:31	04/29/14 17:32	1.00
Lab Sample ID: 14D0146-BS1									Client	Sample	ID: Lab Control	Sample
Matrix: Soil											Prep Ty	be: Total
Analysis Batch: 14D0146											Prep Batch: 14	D0146_P
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qual	lifier	Unit	D	%Rec	Limits	
Lead			50.0		49.1			mg/kg wet		98.2	80 - 120	

TestAmerica Spokane

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B (Continued)

Lab Sample ID: 14D0146-MS1 Matrix: Soil Analysis Batch: 14D0146								Client	Sample ID Pro Prep Bato	: Matrix ep Type :h: 14D0	Spike : Total 146_P
Analyta	Sample	Sample	Spike	Matrix Spike	Matrix Spik	(e		% Bee	%Rec.		
	Kesuit	Quaimer	Added		Quaimer		- ~		ZE 105		
Leau	4.25		54.5	04.2		my/ky ury	Ŧ	91.9	10 - 120		
Lab Sample ID: 14D0146-MSD1						Clie	nt Sa	ample IC	D: Matrix S	pike Dur	olicate
Matrix: Soil									Pr	ep Type	: Total
Analysis Batch: 14D0146									Prep Bato	h: 14D0	146_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	4.25		54.9	54.7		mg/kg dry	\\\\	91.9	75 ₋ 125	0.947	20
Lab Sample ID: 14D0146-DUP1								Cli	ent Sample	D: Dup	olicate
Matrix: Soil									Pro	ер Туре	: Total
Analysis Batch: 14D0146									Prep Bato	h: 14D0	146 P
	Sample	Sample		Duplicate	Duplicate						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Lead	4.25			4.47		mg/kg dry	☆			5.18	20

TestAmerica Job ID: SXD0112

2 3 4 5 6 7 8 8 9

Lab Sample ID: SXD0112-03 Matrix: Soil

Percent Solids: 96.1

Date Collected: 04/14/14 08:50 Date Received: 04/17/14 13:00

Client Sample ID: 041414:SVDP-1:13.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.882	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		10.0	14D0092	04/18/14 15:55	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.882	14D0092_P	04/18/14 07:55	CBW	TAL SPK
otal	Analysis	EPA 8260C	RE1	100	14D0092	04/21/14 10:36	CBW	TAL SPK
Гotal	Prep	GC/MS Volatiles		0.882	14D0092_P	04/18/14 07:55	CBW	TAL SPK
otal	Analysis	NWTPH-Gx		100	14D0092	04/21/14 10:36	CBW	TAL SPK
Fotal	Prep	EPA 3580		0.817	14D0100_P	04/21/14 15:28	MS	TAL SPK
otal	Analysis	EPA 8011		1.00	14D0100	04/22/14 14:44	MS	TAL SPK
otal	Prep	EPA 3550B		2.03	14D0130_P	04/24/14 13:00	MS	TAL SPK
otal	Analysis	EPA 8270D		50.0	14D0130	04/25/14 13:14	MRS	TAL SPK
otal	Prep	EPA 3550B		1.26	14D0115_P	04/22/14 15:35	MS	TAL SPK
otal	Analysis	NWTPH-Dx		1.00	14D0115	04/23/14 10:15	MRS	TAL SPK
otal	Prep	EPA 3580		0.90	14D0099_P	04/18/14 15:46	MS	TAL SPK
otal	Analysis	NWTPH-HCID		1.0	14D0099	04/19/14 01:28	MRS	TAL SPK
īotal	Prep	EPA 3050B		1.10	14D0146_P	04/28/14 13:31	JSP	TAL SPK
otal	Analysis	EPA 6010C		2.00	14D0146	04/29/14 18:39	ICP	TAL SPK
rotal	Prep	Wet Chem		1.00	14D0116_P	04/21/14 16:32	MS	TAL SPK
Total	Analysis	TA SOP		1.00	14D0116	04/22/14 12:10	MS	TAL SPK

Client Sample ID: 041414:SVDP-1:GW Date Collected: 04/14/14 09:45 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		0.99	14D0093_P	04/18/14 08:26	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0093	04/18/14 18:17	MRS	TAL SPK

Client Sample ID: 041414:SVDP-2:19 Date Collected: 04/14/14 10:35 Date Received: 04/17/14 13:00

	Batch	Batch	Batch		Batch	Prepared		
Prep Type	Туре	Method	lethod Run		Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.722	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		10.0	14D0092	04/18/14 16:17	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.722	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	100	14D0092	04/21/14 10:59	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.722	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		10.0	14D0092	04/18/14 16:17	CBW	TAL SPK
Total	Prep	EPA 3580		0.829	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 14:56	MS	TAL SPK
Total	Prep	EPA 3550B		2.66	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		50.0	14D0130	04/25/14 13:36	MRS	TAL SPK
Total	Prep	EPA 3550B		1.50	14D0115_P	04/22/14 15:35	MS	TAL SPK

Lab Sample ID: SXD0112-06

Matrix: Water

Lab Sample ID: SXD0112-10 Matrix: Soil

Percent Solids: 79.8

Dilution

Factor

1.00

0.86

Client Sample ID: 041414:SVDP-2:19

Batch

Туре

Prep

Analysis

Batch

Method

NWTPH-Dx

EPA 3580

Date Collected: 04/14/14 10:35 Date Received: 04/17/14 13:00

Prep Type

Total

Total

Total

Total

Total

Lab Sample ID: SXD0112-10

Matrix: Soil

Percent Solids: 79.8

7

Client Sample ID: 041414:SVDP-2:21 Date Collected: 04/14/14 10:45 Date Received: 04/17/14 13:00

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.676	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		10.0	14D0092	04/18/14 16:40	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.676	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		10.0	14D0092	04/18/14 16:40	CBW	TAL SPK
Total	Prep	EPA 3580		0.870	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 15:21	MS	TAL SPK
Total	Prep	EPA 3550B		1.48	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14D0130	04/28/14 16:42	MRS	TAL SPK
Total	Prep	EPA 3550B		1.21	14D0115_P	04/22/14 15:35	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14D0115	04/23/14 11:00	MRS	TAL SPK
Total	Prep	EPA 3050B		1.08	14D0146_P	04/28/14 13:31	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 18:57	ICP	TAL SPK

Client Sample ID: 041414:SVDP-3:7 Date Collected: 04/14/14 11:30 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.832	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14D0092	04/18/14 17:02	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.832	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14D0092	04/18/14 17:02	CBW	TAL SPK
Total	Prep	EPA 3580		0.952	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 15:33	MS	TAL SPK
Total	Prep	EPA 3550B		0.994	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14D0130	04/28/14 17:03	MRS	TAL SPK
Total	Prep	EPA 3550B		0.939	14D0115_P	04/22/14 15:35	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14D0115	04/23/14 16:02	MRS	TAL SPK
Total	Prep	EPA 3580		0.90	14D0099_P	04/18/14 15:46	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0099	04/19/14 02:19	MRS	TAL SPK
Total	Prep	EPA 3050B		1.02	14D0146_P	04/28/14 13:31	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 19:00	ICP	TAL SPK

TestAmerica Spokane

Batch

Number

14D0115

14D0099_P

Prepared

or Analyzed

04/23/14 10:38

04/18/14 15:46

04/19/14 01:53

04/28/14 13:31

04/29/14 18:43

Analyst

MRS

MS

MRS

JSP

ICP

Lab

TAL SPK

TAL SPK

TAL SPK

TAL SPK

TAL SPK

Analysis NWTPH-HCID 1.0 14D0099 Prep EPA 3050B 0.909 14D0146_P EPA 6010C 1.00 14D0146 Analysis

Run

Lab Sample ID: SXD0112-11 Matrix: Soil

Lab Sample ID: SXD0112-14

Matrix: Soil

Percent Solids: 84.6

Percent Solids: 87.1

Client Sample ID: 041414:SVDP-5:19

Date Collected: 04/14/14 14:30 Date Received: 04/17/14 13:00

Lab Sample ID: SXD0112-19

Lab Sample ID: SXD0112-20

Matrix: Soil

Percent Solids: 75.5

Matrix: Soil Percent Solids: 82

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.765	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14D0092	04/18/14 17:25	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.765	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14D0092	04/18/14 17:25	CBW	TAL SPK
Total	Prep	EPA 3580		0.885	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 15:45	MS	TAL SPK
Total	Prep	EPA 3550B		0.987	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14D0130	04/25/14 14:40	MRS	TAL SPK
Total	Prep	EPA 3550B		0.996	14D0115_P	04/22/14 15:35	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14D0115	04/23/14 11:23	MRS	TAL SPK
Total	Prep	EPA 3580		0.97	14D0099_P	04/18/14 15:46	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0099	04/19/14 02:44	MRS	TAL SPK
Total	Prep	EPA 3050B		1.00	14D0146_P	04/28/14 13:31	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 19:04	ICP	TAL SPK

Client Sample ID: 041414:SVDP-6:18 Date Collected: 04/14/14 15:20 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total	Prep	GC/MS Volatiles		0.773	14D0092_P	04/18/14 07:55	CBW	TAL SPK	
Total	Analysis	EPA 8260C		1.00	14D0092	04/18/14 17:47	CBW	TAL SPK	
Total	Prep	GC/MS Volatiles		0.773	14D0092_P	04/18/14 07:55	CBW	TAL SPK	
Total	Analysis	NWTPH-Gx		1.00	14D0092	04/18/14 17:47	CBW	TAL SPK	
Total	Prep	EPA 3580		0.840	14D0100_P	04/21/14 15:28	MS	TAL SPK	
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 15:57	MS	TAL SPK	
Total	Prep	EPA 3550B		0.984	14D0130_P	04/24/14 13:00	MS	TAL SPK	
Total	Analysis	EPA 8270D		1.00	14D0130	04/25/14 15:01	MRS	TAL SPK	
Total	Prep	EPA 3580		0.89	14D0104_P	04/21/14 10:00	MS	TAL SPK	
Total	Analysis	NWTPH-HCID		1.0	14D0104	04/21/14 15:03	MRS	TAL SPK	
Total	Prep	EPA 3050B		0.962	14D0146_P	04/28/14 13:31	JSP	TAL SPK	
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 19:07	ICP	TAL SPK	

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Spokane

TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH-HCID	Hydrocarbon Identification by NWTPH-HCID		TAL SPK
EPA 6010C	Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B		TAL SPK
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

5755 8th Street East, Tacoma, WA 98424-1317 253-11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 509-503-2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-

10

922-2310 924 - 9200	FAX 922-5047	
-906-9200 -563-9200	FAX 906-9210 FAX 563-9210	

THE LEADER IN ENVIRONMENTAL TESTING

CHAIN O	F CUSTODY	REPORT
---------	-----------	--------

					C	HAIN	I OF C	CUST	ODY	REP	ORT					Work O	rder #:	sxmila	
CLIENT: 120 Smarth						INVOIO	CE TO:										FURNAL	ROUND REQUES	Г
REPORT TO: jsugalshic ADDRESS: 323 East	second An	s, com N				Geologuers Spokane								10 7	in Organic &	Business Days * Inorganic Analyses 4 3 2	1 <1		
>ponane, WII PHONE ENA-363-3125	FAX: 509	-367-3126				P.O. NU	MBER:	0504	-101	- 00						STD. Petroleum Hydrocarbon Analyses			
PROJECT NAME: Tiger	2:1 - Sw	nmitriew						PR	ESERVAI	TVE						5		3 2 1 4	:1
PROJECT NUMBER: 5 050	54 - 101 -	DD															- FUFD	0 7	
TAL				1	<u>.</u> .	1	REQUE	STED AN					Τ	1	* Turnaround 1	Requests les	Specify: s than standard may incur	Rush Charges.	
CLIENT SAMPLE	SA DA	MPLING ATE/TIME		A A	EDB	Hall-n/	Cabo Brex	EDC	MBE	Unphtrete	<u>HOTD</u>					MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
1771494:SUDP-1:3	4-14-2014	1 0830	<u> </u>	<u>e/1</u> , .												S	2		
2041414:5UDP-1:8	(0840														S	3	·	
3041414:SVDP-1: 13,5		0250	X	X	X	X	X	\times	7	X	\times					S	3		
.0414A:SUDP-1:17		0905		ļ		Ĺ	<u> </u>					-		<u> </u>		2	3		
so#1414:SVDP-1: ZD		0920				ļ								<u> </u>		5	3		
.041414:SVDP-1:GW		0945		 							X			 		ΙW_			
,041414:SVDP-a: 3		1005														S	2		
.041414: SVDP-2:7		1015					-							ļ		5	ß		
,041414: SVDP-2:12	(1025														S	a		
041414:SVDP-2:19	V	1035	X	X	X	$\boldsymbol{\lambda}$	\times	४	X	X	×				<u> </u>	5	3		
RELEASED BY:		FIRM: C	VP.D			DATE	:: 47-7 :: 13k	7-14 512	1	RECEIV	ED BY	, H	altor	TOH ?	staple	M - FIRM	TA	DATE _Z TIME:	13:00
RELEASED BY:							E:			RECEIV	ED BY:	<u> </u>	T					DATE:	
PRINT NAME:		FIRM:				TIM	B:			PRINT	NAME:					FIRM	k:	TEMP:	
ADDITIONAL REMARKS:								, a <u>-</u>	<u> </u>									12.7 PAC	<u># 1 of 2</u>
		•																TAL	-1000 (0612

5755 8th Street East, Tacoma, WA 98424-1317 253-922-2310 FAX 922-5047 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

THE LEADER IN ENVIRONMENTAL TESTING

			CHAIN OF CUSTODY REPORT								Work Order #SXOON2							
CLIENT MEDSon HOL						INVOICE TO:								TURNAROUND REQUEST				
is use laking also engines : com						1 August Sudian								in Business Days *				
ADDRESS:					Geo Logiars upwore								Organic & Inorganic Analyses					
523 2 Supral 2017																		
PHONE 509-3123-3105 FAX: 509-763-3126				P.O. NUMBER: 0504-101-00									SID. Petrolenm Hydrocarbon Analyses					
PROJECT NAME: The OIL - Some bread			PRESERVATIVE											3 2 1	<1			
PROFESSION ACTIVE ACTIVE ACTIVE ACTIVE]						
PROJECT NUMBER: 050-7-707-00			ļ	REQUESTED ANALYSES									* Turnaround Requests less than standard may incur Rush Charges.					
SAMPLED BY: J/ML						₽¥ A	5		QI	te lor	\$A				* Turnurounu I			
CLIENT SAMPLE	SAN DAT	IPLING F/TIME	ALM A	qd		14 X	R B B B B	D(N N	14dy	57 57				(W, S, O)	# OF CONT.	COMMENTS	wond
	(1. (1)).		<u> 2</u> .		ا ته مر	~	~		$\left \begin{array}{c} \\ \\ \\ \end{array} \right $						C	2		
104/4/4:SVDP-2121	9-19-01	9 1095	X	X	X	\times	<u> </u>	\land	1							,		
041414:SVDP-2:GW	/	1100									X				W			
.041414: SIDP-7:2		1120													S	2	- ···	
041414:SVDP-3:7		1130	×	X	×	X	X	X	×	X	X				5	Q		
141414:SIMP-3:12		1135													2	2		
10 211/1 SI/DD 2119		1141)			<u> </u>										S	2		
607/9/-J. J. J	↓	1110				+		<u> </u>							15	0		
,04/4/4:SVDP-3:23		//35		<u> </u>		<u> </u>				<u> </u>						1×		
D41414:SUDP-4:19		1340	×	X	X	1	ঠ	\rightarrow	\times	X	<u>+</u> -				S	3		
041414: SVDP-5:19		1430	X	8	X	X	X	X	х	X	X				5	3		
0414/4:SVDP-6:18	$\uparrow \forall$	1520	X	X	X	$\mid \times$	X	X	X	X	X		,		5	3		
RELEASED BY: Charlow	<u></u>				<u> </u>	DATI	4-1	7-14		RECEIV	ED BY:	14	111-		_		DATE	H 14
PRINT NAME: Trash Lee	Trosh Lee FIRM: GEO			TIME: 1300				PRINT NAME: (U, J) AQUION			- FIRME OST A MULICIG DATE:							
RELEASED BY:						DAT	3:			RECE	VED BY: NAME-		,		FIRM	1:	TIME:	
PRINT NAME:		FIRM				TIM	<u>.</u>			FRUM	171910						TEMP	
ADDITIONAL REMARKS:																	Id. / PA	GE C OF C
ĩ <u></u>															-		TAL	1000 (0612)

÷

TestAn Sample	nerica S e Receir	pokane pt Form	9 1					
Work Order #3XD0112 Client (186FARAin	urs.	·		Project: Timer Mil				
Date/Time Received: 4-17-14	By:	By S						
Samples Delivered By: Shipping Service Courier	nt _]Othe	er:						
List Air Bill Number(s) or Attach a photocopy of the Air Bill:								
Receipt Phase	Yes	No	NA	Commente				
Were samples received in a cooler:	7			Contraction of the second s				
Custody Seals are present and intact:			6					
Are CoC documents present:	\geq							
Necessary signatures:	4							
Thermal Preservation Type: Blue Ice Gel Ice	Dry Ice	None	Other:					
Temperature: 12.7 °C Thermometer (Circle one Serial #1:	22208348 k	eyring IR	Serial # 11	11874910 IR Gun 2)(acceptance criteria 0-6				
Temperature out of range: Not enough ice Ice melted	w/in 4hrs o	f collection	<u> </u>	_Other:				
Date/Time: 4-17-14 15:30 By: ()	Yes	No	NA	Comments				
Are sample labels affixed and completed for each container								
Samples containers were received intact:				······································				
Do sample IDs match the CoC	\succ							
Appropriate sample containers were received for tests requested	<u></u>							
Are sample volumes adequate for tests requested	7		ļ					
Appropriate preservatives were used for the tests requested								
pH of inorganic samples checked and is within method specification			 	· · · · · · · · · · · · · · · · · · ·				
Are VOC samples free of bubbles >6mm (1/4" diameter)			<u> </u>					
Are dissolved parameters field filtered			\geq					
Do any samples need to be filtered or preserved by the lab	ļ							
Does this project require quick turnaround analysis								
Are there any short hold time tests (see chart below)		\geq	ļ					
Are any samples within 2 days of or past expiration		\geq						
Nas the CoC scanned		(1		······································				
Vere there Non-conformance issues at login		———						
yes, was a CAR generated #			7					

	5
	8
	9
•	

 24 hours or less
 48 hours
 7 days

 Coliform Bacteria
 BOD, Color, MBAS
 TDS, TSS, VDS, FDS

 Chromium +6
 Nitrate/Nitrite
 Sulfide

 Orthophosphate
 Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

APPENDIX C Well Survey Report

ΜΟΝΙΤΟ	TIGER OIL DRING WELL ELEVATIO YAKIMA, WA	SURVEY DATE 8/27/2014	PLS JOB NO. 14079							
FEATURE	NORTH EDGE OF PVC ELEVATION	NORTH RIM OF OUTER CASE ELEVATION	NORTHING	EASTING						
	4 000 07		400054.5							
SVMW-1	1,220.95	1,221.23	462054.5	1619556.5						
SVMW-2	1,215.59	1,215.91	461870.0	1619606.4						
SVMW-3	1,218.38	1,218.67	461949.3	1619606.4						
BENCHMARK ELEVATION = 1219.58'	SW CORNER OF TRAFF CONCRETE PAD AT THE SUMMITVIEW AVE. AND OF CONCRETE WALK	461957.6	1619548.4							
<u>/ERTICAL DATUM:</u> NAVD 88 - REFERENCED FROM WSDOT MONUMENT DESIGNATION GP39012-9, WITH A PUBLISHED ELEVATION OF 1,130.33 FEET.										
HORIZONTAL DATUM:	NAD 83/91 WASHINGTON SOUTH ZONE - BASED ON GPS MEASUREMENTS USING THE WASHINGTON STATE REFERENCE NETWORK.									

The horizontal coordinates of the groundwater monitoring wells and the elevation of the benchmark established at the site were determined using a Topcon GR-3 GPS receiver with a nominal accuracy of 10mm + 1ppm horizontal and 15mm + 1ppm vertical. The elevation of the monitoring wells are relative to the benchmark established at the site and were individually determined using a Leica DNA03 digital level with a vertical accuracy of +/- 0.01 feet.

APPENDIX D Report Limitations and Guidelines for Use

APPENDIX D REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this assessment of the Tiger Oil – Summitview site in Yakima, Washington in general accordance with the Work Plan dated April 15, 2014. This report has been prepared for the exclusive use of the Washington Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an Environmental Site Assessment (ESA) study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. No one except the Washington Department of Ecology should rely on this environmental report without first conferring with GeoEngineers. Use of this report is not recommended for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Tiger Oil – Summitview site in Yakima, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made to the project or property after the date of this report, we recommend that GeoEngineers be given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. We are unable to assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location or its reuse on-site in instances that we did not know or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ,

sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. Without this understanding, there may be expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

www.geoengineers.com