Phase II Site Assessment Report

Tiger Oil - North 1st Street 1808 North 1st Street Yakima, Washington

for

Washington State Department of Ecology

February 11, 2015

Phase II Site Assessment Report

Tiger Oil – North 1st Street 1808 North 1st Street Yakima, Washington

for Washington State Department of Ecology

February 11, 2015

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Phase II Site Assessment Report

Tiger Oil – North 1st Street 1808 North 1st Street Yakima, Washington

File No. 0504-101-00

February 11, 2015

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program – Central Region Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Attention: Mary Monahan

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

JR Sugalski, PE Environmental Engineer

Bruce D. Williams Principal

JRS:BDW:tjh:tlm

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION AND BACKGROUND	1
3.0 SCOPE OF SERVICES	2
4.0 FIELD ACTIVITIES	3
 4.1. Direct-push Soil Borings 4.2. Monitoring Well Installation 4.3. Subsurface Conditions 4.4. Groundwater Monitoring 4.4.1. Monitoring Well Headspace Vapor Monitoring 4.4.2. Groundwater Elevation Monitoring 4.4.3. Groundwater Sampling 	4 6 6 6
5.0 CHEMICAL ANALYTICAL RESULTS	
 5.1. Soil Chemical Analytical Results	7 8 8 8
6.0 SUMMARY, INTERPRETATIONS AND RECOMMENDATIONS	9
 6.1. Soil Assessment 6.2. Groundwater Assessment 6.3. Chemical Analytical Results and Interpretations	9 . 10 . 10 . 10 . 11
7.0 REFERENCES	.12

LIST OF TABLES

- Table 1. Summary of Groundwater Field Parameters
- Table 2. Summary of Groundwater Level Measurements
- Table 3. Summary of Chemical Analytical Results Soil
- Table 4. Summary of Chemical Analytical Results Groundwater
- Table 5. Summary of Chemical Analytical Results Groundwater PAHs

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan and Sample Locations
- Figure 3. Groundwater Elevation and Interpreted Flow Direction, September 18, 2014
- Figure 4. Subsurface Cross Section A-A' and PID Readings
- Figure 5. Subsurface Cross Section B-B' and PID Readings

APPENDICES

Appendix A. Field Methods and Boring Logs

Figure A-1. Key to Exploration Logs

Figures A-2 through A-14. Logs of Explorations

Appendix B. Laboratory Reports

Appendix C. Well Survey Report

Appendix D. Report Limitations and Guidelines for Use

ACRONYMS AND ABBREVIATIONS

- bgs below ground surface
- BTEX benzene, toluene, ethylbenzene and xylene
- Cascade Drilling Cascade Drilling, L. P.
- COC chain-of-custody
- DO dissolved oxygen
- DOT U.S. Department of Transportation
- DRPH diesel-range petroleum hydrocarbons
- Ecology Washington State Department of Ecology
- EDB ethylene dibromide
- EDC 1,2-dichloroethane
- EPA United States Environmental Protection Agency
- ESA environmental site assessment
- ev electron volt
- GeoEngineers GeoEngineers, Inc.
- GPS global positioning system
- GRPH gasoline-range petroleum hydrocarbons
- HCID hydrogen identification
- IDW investigation-derived waste
- LCS laboratory control sample
- LCSD laboratory control sample duplicate
- MRL Method Reporting Limit
- MS matrix spike
- MSD matrix spike duplicate
- MTBE methyl tertiary butyl ether

ACRONYMS AND ABBREVIATIONS (CONT.)

- MTCA Model Toxics Control Act NAD83 – North American Datum of 1983 NAVD88 - North American Vertical Datum of 1988 ntu - nephelometric turbidity units ORPH - oil-range petroleum hydrocarbons PAH – polycyclic aromatic hydrocarbons PID – photoionization detector PLS - PLS, Inc. ppm - parts per million PVC – polyvinyl chloride QAPP – Quality Assurance Project Plan QA/QC – Quality Assurance/Quality Control QC – Quality Control RPD - relative percent difference SAP – Sampling and Analysis Plan SDG - sample delivery group TestAmerica - TestAmerica Laboratories, Inc.
- TOC total organic carbon
- TPH total petroleum hydrocarbons
- UST underground storage tank
- VOCs volatile organic compounds
- WAC Washington Administrative Code

1.0 INTRODUCTION

This report describes soil and groundwater assessment activities conducted at the Tiger Oil – North 1st Street site at 1808 North 1st Street in Yakima, Washington (herein designated "site"). The site is located as shown in the attached Vicinity Map, Figure 1.

Activities conducted as part of the assessment included:

- Advancing eight direct-push borings and collecting soil and grab groundwater samples in April 2014.
- Installing five groundwater monitoring wells and collecting soil samples in August 2014.
- Conducting the first quarterly groundwater monitoring event in September 2014.

This report includes a brief description of the site, a summary of our scope of services, a description of field activities, a summary of chemical and analytical results, and our interpretations and recommendations. Assessment activities were conducted in general accordance with the approved work plan (GeoEngineers, Inc. [GeoEngineers], 2014a) and supplemental monitoring well installation memo (GeoEngineers, 2014b). The work was conducted under State of Washington Department of Ecology (Ecology) Contract No. C1100145, GeoEngineers Proposal No. 0504-101-00, dated March 6, 2014, and Work Assignment No. C11145RR.

2.0 SITE DESCRIPTION AND BACKGROUND

The site is located at 1808 North 1st Street in Yakima, Washington, as shown in Site Plan and Sample Locations, Figure 2. The site is bordered by arterial roadway North 1st Street to the east and the Sun Country Inn to the south and west of the site. A paved entrance to the All Star Motel and Ron Nehls Auto Sales is located to the north.

The site operated as a retail gasoline station and convenience store until closure in 2001. The site contains two buildings and three historical fuel dispenser islands formerly under a central canopy. Buildings at the site include the larger former convenience store in the southwest corner of the site and a smaller kiosk near the center of the site. The site is generally paved, except where four former underground storage tanks (USTs) were removed (Figure 2).

In 1982, a release of approximately 12,000 to 22,000 gallons of leaded and unleaded gasoline from delivery lines occurred between the tanks and dispensers (Wagner et al., 1991). The release reportedly contaminated drinking water wells to the east and residential units in the area were eventually connected to a public water supply source.

Remediation activities included installation of 34 groundwater monitoring wells and two recovery wells. Removal efforts indicate that approximately 40 gallons of free product were recovered between 1982 and 1983. Recovery efforts were ceased in 1983 because of the cost of spill response efforts and low product recovery volume. Groundwater monitoring conducted in 1984, 1985 and 1989 indicated concentrations of gasoline, benzene, toluene and xylenes greater than Model Toxics Control Act (MTCA) Method A cleanup levels in groundwater samples collected from wells directly east of the site (Wagner et al., 1991). A 1991 United States Geological Survey report on the changes in the concentration and areal extent of groundwater

contamination (Wagner et al., 1991) at the site indicated that concentrations of petroleum contaminants had been reduced from when monitoring had begun in 1984.

In 2005, four USTs were decommissioned at the site and the subsurface fuel lines were drained and capped with quick setting cement. The tanks removed from the site included:

- 20,000-gallon steel unleaded gasoline tank
- 10,000-gallon steel unleaded gasoline tank
- 8,000-gallon steel unleaded gasoline tank
- 6,000-gallon diesel tank

Upon removal, the tanks were examined by Tetra Tech FW, Inc., Tri-Valley Construction and Ecology. The tanks had minor surface rust and were reported to be in good condition with no visual evidence of leaks or holes. However, some visual evidence of staining near the fill pipe and turbine unit, and in the surrounding soil was observed near the 20,000-gallon UST (Tetra Tech, 2005). Evidence of fill piping or turbine unit spillage was not observed on the other three tanks.

Soil samples collected from the tank removal excavation in 2005 indicated the presence of gasoline contamination at depths of 8 and 13 feet in 2 of the 10 samples collected (McCreedy, 2005). Gasoline found in samples was weathered, as indicated by the absence of benzene. Fuel dispensers and product delivery lines were not assessed as part of the 2005 work and the location of the underground delivery lines is not known.

3.0 SCOPE OF SERVICES

GeoEngineers prepared a Sampling and Analysis Plan (SAP), dated April 15, 2014, to guide assessment activities. A follow up memo describing installation activities for five groundwater monitoring wells was provided on July 21, 2014. Site assessment activities included:

- Advancing eight direct-push borings (N1DP-1 through N1DP-8);
- Observing and documenting subsurface soil conditions for each boring;
- Conducting field screening activities and collecting soil and groundwater samples from the borings;
- Submitting selected soil and groundwater samples from the soil borings for laboratory chemical analysis;
- Installing five groundwater monitoring wells at the site (N1MW-1 through N1MW-5);
- Observing and documenting subsurface soil conditions for each monitoring well;
- Conducting field screening activities and collecting soil samples during the monitoring well installation;
- Submitting selected soil samples from the well installation for laboratory chemical analysis;
- Developing the new groundwater monitoring wells using surge and purge techniques;
- Surveying the new groundwater monitoring wells for horizontal and vertical references;
- Conducting the first quarterly groundwater sample from the new wells; and

Preparing investigative-derived waste (IDW) for disposal.

4.0 FIELD ACTIVITIES

For both drilling program events, locations were marked in the field and a one-call utility locate was requested before equipment was mobilized to the site. A private utility locator (Utilities Plus, LLC) was also contracted to locate site utilities near proposed drilling locations before drilling activities commenced. Soil borings, well construction and well development activities were conducted by Cascade Drilling, L.P. (Cascade Drilling). Locations of the borings and groundwater monitoring wells were established in the field using a hand-held iPad with global positioning system (GPS) software before drilling commenced. The horizontal accuracy of the hand-held unit is within about 10 feet.

Direct-push soil borings were advanced on April 16, 2014 and groundwater monitoring well installation activities were conducted between August 6 and August 7, 2014. GeoEngineers observed and documented soil boring and well installation activities for compliance with the previously prepared guidance documentation (GeoEngineers, 2014a and 2014b). GeoEngineers collected soil samples from the direct-push and well borings as they were advanced. Groundwater samples were also collected from temporary wells installed in each soil borings where groundwater was encountered.

Soil borings and new well locations are shown on Figure 2. Selected samples were submitted to TestAmerica Laboratories, Inc. (TestAmerica) and analyzed in general accordance with the project documents.

Groundwater monitoring wells were developed by Cascade Drilling and then surveyed by a licensed professional surveyor, PLS, Inc. (PLS), on August 27, 2014. GeoEngineers conducted subsequent groundwater sampling of the new groundwater monitoring wells on September 18, 2014. IDW was contained in 55-gallon drums, labeled and stored on the subject property pending profiling and disposal. Between generation and pickup for disposal, one 15-gallon drum of IDW water and one 15-gallon drum of soil had been removed from the site. The drums were not recovered and their whereabouts are unknown. The missing 15-gallon drums were stored with other IDW drums on-site in a discrete unsecured area.

Detailed descriptions of the soil borings, well installations and groundwater sampling events are provided below.

4.1. Direct-push Soil Borings

Eight direct-push borings (N1DP-1 through N1DP-8) were advanced at the site on April 16, 2014 using a truck-mounted Geoprobe 6600 operated by Cascade Drilling. Approximate locations are provided on Figure 2. In general, GeoEngineers followed the process below during the drilling program:

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities;
- Subcontracted Utilities Plus, LLC to locate potential utilities near each explorations before drilling;
- Subcontracted Cascade Drilling to drill the direct-push soil borings at the site;
- Observed and documented subsurface soil conditions for each boring;

- Collected continuous soil samples during direct-push drilling. Select sub-samples were field-screened using visual observations, water sheen, and headspace vapor measurements with a photoionization detector (PID) to assess possible presence of petroleum-related contaminants;
- Collected grab water samples from temporary wells installed in the borings where groundwater was encountered;
- Backfilled exploratory boreholes with bentonite and repaired the surface with cold patch asphalt as needed; and
- Submitted six soil samples and eight groundwater samples to TestAmerica of Spokane, Washington for chemical analysis.

Soil borings were advanced to refusal, which generally resulted in depths of approximately 15 to 20 feet below ground surface (bgs). Refusal occurred when the limits of the drilling equipment were reached and the push probe could not advance deeper into the subsurface. Observed subsurface conditions at the site during the groundwater well installations ("Section 4.2") indicate that gravels and cobbles were present near the boring termination depths. Groundwater was encountered in all eight borings at depths ranging from 12 to $16\frac{1}{2}$ feet bgs.

Soil samples from N1DP-1, N1DP-2, N1DP-3 (two samples), N1DP-4, and N1DP-8 were submitted to TestAmerica for analysis. Duplicate samples were not collected because of minimal soil volume to collect all laboratory analysis. Field screening did not indicate the presence of petroleum hydrocarbons from N1DP-5, N1DP-6 or N1DP-7 and therefore soil samples were not analyzed from this location to reduce analytical costs in concurrence with Ecology. Logs of direct-push borings are provided in Appendix A.

Groundwater samples were collected from temporary wells in each boring and submitted to TestAmerica for analysis. Groundwater was sampled by installing a temporary well screen which ranged in length from 3 to 10 feet at the bottom of the boring (15 to 20 fee bgs) and lowering polyethylene tubing into the temporary well. Depth to groundwater was measured and then the well was then purged using a peristaltic pump for approximately 3 to 6 minutes. Water was routed through a water quality meter and flow through cell during well purging, then the flow-through cell was disconnected, and a sample of the water was collected for chemical analysis when there was a visual reduction in water turbidity or the water quality meter indicated reductions in turbidity.

Soil and groundwater samples were placed into coolers containing ice and then delivered to TestAmerica under chain of custody for chemical analysis. Soil cuttings from the investigation were drummed, labeled and stored on the subject property pending profiling and disposal.

4.2. Monitoring Well Installation

Five groundwater monitoring wells (N1MW-1, N1MW-2, N1MW-3, N1MW-4 and N1MW-5) were installed at the site on August 6, 2014 and August 7, 2014 using a 200C Spider sonic drill rig operated by Cascade Drilling. Wells were installed by advancing a 5-inch core barrel inside a 6-inch casing. Approximate well locations are provided on Figure 2. In general, GeoEngineers followed the process below:

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities;
- Subcontracted Utilities Plus, LLC to locate potential utilities near each explorations before drilling;

- Subcontracted Cascade Drilling to drill and construct the groundwater monitoring wells;
- Observed and documented subsurface soil conditions for each monitoring well;
- Collected continuous soil samples during drilling. Select sub-samples were field-screened using visual observations, water sheen, and headspace vapor measurements with a PID to assess possible presence of petroleum-related contaminants;
- Developed the groundwater monitoring wells using surging and pumping techniques;
- Submitted six soil samples (one from each well location and one duplicate) to TestAmerica for chemical analysis; and
- Contracted with PLS to complete a horizontal and vertical survey of the wells.

N1MW-1 was advanced to a depth of 20 feet bgs. Water was observed at approximately 14 feet during drilling. The hole was backfilled with sand from 20 to $19\frac{1}{2}$ feet bgs. The well was installed using 2-inch-diameter, schedule 40 polyvinyl chloride (PVC) pipe and screened from $9\frac{1}{2}$ to $19\frac{1}{2}$ feet bgs.

N1MW-2 was advanced to a depth of 20 feet bgs. Water was observed at approximately 13 feet during drilling. The well was installed using 2-inch-diameter, schedule 40 PVC pipe and screened from 10 to 20 feet bgs.

N1MW-3 was advanced to a depth of 20 feet bgs. Water was observed at approximately $13\frac{1}{2}$ feet during drilling. The well was installed using 2-inch-diameter, schedule 40 PVC pipe and screened 10 to 20 feet bgs.

N1MW-4 was advanced to a depth of 20 feet bgs. Water was observed at approximately 11 feet during drilling. The hole was backfilled with bentonite from 20 to 17 feet bgs. The well was installed using 2-inchdiameter, schedule 40 PVC pipe and screened from 7 to 17 feet bgs.

N1MW-5 was advanced to a depth of 20 feet bgs. Water was observed at approximately 12 feet during drilling. The hole was backfilled with sand from 20 to 19 feet bgs. The well was installed using 2-inchdiameter, schedule 40 PVC pipe and screened from 9 to 19 feet bgs.

Wells were packed with silica-sand up to 2 feet above the screen, sealed with bentonite chips to 1 foot bgs and then capped with a cement well monument. Wells were developed by Cascade Drilling between August 14 and 15, 2014 using surge and purge methods. Soil cuttings and development water from the investigation were drummed, labeled and stored on the subject property pending profiling and disposal. Detailed well installation logs are provided in Appendix A.

Discrete soil samples were collected for each monitoring well. Soil samples were field-screened to evaluate for petroleum hydrocarbons, using a PID and sheen pan. One soil sample from each well location was selected for chemical analysis, based on the results of the field screening. If no obvious signs of contamination were present, the sample collected just above the observed water level was submitted for analysis. Soil samples were placed into coolers containing ice and then delivered to TestAmerica under chain of custody for chemical analysis.

The five new groundwater monitoring wells installed at the site were surveyed on August 27, 2014 by PLS. The north edge of the top of the PVC casing, and north side of the top of the well monument were surveyed

for horizontal and vertical coordinates relative to North American Datum of 1983 (NAD83) Washington South Zone and North American Vertical Datum of 1988 (NAVD88), respectively. PLS also marked the north side of each well casing for future depth to groundwater measurements. Well survey information is provided in Appendix C.

4.3. Subsurface Conditions

In general, surficial material consists of asphalt concrete pavement with localized areas of gravel base layers. Subsurface conditions observed below surficial materials generally consisted of brown silt and fine sand to depths of about 5 to 8 feet. Rounded gravel with varying amounts of silt and sand was observed below the silts and fine sands to depths of about 15 to 20 feet, which was the extent of the borings.

4.4. Groundwater Monitoring

In accordance with the SAP, groundwater monitoring wells will be sampled quarterly for 1 year. The first groundwater sampling event was conducted on September 18, 2014 after the wells had been surveyed and to allow for potential well settlement. The following sections provide a detailed description of the field activities conducted as part of the groundwater monitoring event.

4.4.1. Monitoring Well Headspace Vapor Monitoring

Monitoring well headspace vapors were measured using a PID. Headspace measurements were collected by inserting the PID probe into the well casing immediately after removing the well cap and recording the maximum observed concentration. Headspace vapors were measured at a concentration of 1.5 parts per million (ppm) in N1MW-1. Headspace vapor concentrations were less than 1.0 ppm for the remaining wells as shown in Summary of Groundwater Field Parameters, Table 1.

4.4.2. Groundwater Elevation Monitoring

Static depth to groundwater was measured in groundwater monitoring wells N1MW-1 through N1MW-5 using an electronic water level indicator. Depth to groundwater ranged from 11.10 feet (MW-4) to 13.78 feet (MW-1) below the top of well casing as shown in Summary of Groundwater Level Measurements, Table 2. Groundwater elevations ranged from about 1,070.50 feet in N1MW-2 to 1,071.07 feet in N1MW-1 relative to the NAVD88.

Based on groundwater elevations measured on September 18, 2014, groundwater flow in the shallow unconfined aquifer beneath the property generally was toward the east as shown on Groundwater Elevation and Interpreted Flow Direction, September 18, 2014, Figure 3. Estimated hydraulic gradient of the project area was about 0.004 feet per foot (about 21 feet per mile).

4.4.3. Groundwater Sampling

Groundwater monitoring wells were purged and sampled using dedicated tubing, a peristaltic pump and standard low-flow sampling methodology (Environmental Protection Agency [EPA], 1996). Groundwater quality parameters were usually measured at 3-minute intervals during well purging and samples were generally collected when water quality parameter stabilized in conformance with the criteria presented in Appendix A or 30 minutes of purging had elapsed. Groundwater field parameters recorded at the conclusion of well purging are provided in Table 1.

Laboratory prepared sample containers were filled, placed into a cooler on ice and submitted to the analytical laboratory for chemical analysis. One sample from each well was measured for soluble ferrous iron (Fe²⁺) in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method. A duplicate sample was collected from N1MW-1 and submitted for chemical analysis to the analytical laboratory. Chemical analytical results are discussed in "Section 5.2.2." Groundwater field parameters are provided in Table 1. Purge water generated during groundwater sampling was drummed, labeled and stored on the subject property pending profiling and disposal.

5.0 CHEMICAL ANALYTICAL RESULTS

5.1. Soil Chemical Analytical Results

5.1.1. Direct-push Borings

Soil samples from the direct-push borings advanced on April 16, 2014 were received by TestAmerica for chemical analysis on April 17, 2014. In general, samples submitted from analysis were collected at depths ranging from about 12 to 16 feet bgs, near the groundwater contact. Soil samples were kept in iced coolers between sampling and delivery to the analytical laboratory. One soil sample from N1DP-1, N1DP-2, N1DP-3, N1DP-4 and N1DP-8 and a second sample from N1DP-3 (collected ½ foot below the primary sample) was submitted for laboratory chemical analysis. Field screening from N1DP-5, N1DP-6 and N1DP-7 did not indicate the presence of petroleum and therefore a soil sample was not submitted for chemical analysis to reduce analytical costs in concurrence with Ecology. Soil samples from the direct-push soil borings were submitted for the following chemical analyses:

- Gasoline-range petroleum hydrocarbons (GRPH) (NWTPH-Gx);
- Diesel-range petroleum hydrocarbons (DRPH) (NWTPH-Dx);
- Total petroleum hydrocarbons (TPH) (NWTPH-HCID), direct-push soil borings only;
- Benzene, toluene, ethylbenzene and total xylenes (BTEX) (EPA 8260C);
- Naphthalenes (EPA 8270D);
- Ethylene Dibromide (EDB) (EPA 8011);
- 1,2-dichloroethane (EDC) (EPA 8260C);
- Methyl tertiary-butyl ether (MTBE) (EPA Method 8260C); and
- Total Lead (EPA 6010C).

Soil analytical results are summarized and compared to MTCA Method A cleanup levels in Summary of Chemical Analytical Results - Soil, Table 3. Chemical analytical results for the submitted soil samples are generally summarized by the following:

- N1DP-1, N1DP-3 and N1DP-8 exceeded MTCA Method A cleanup levels for GRPH, benzene, ethylbenzene, xylenes and naphthalenes. N1DP-8 also exceeded cleanup levels for toluene.
- N1DP-2 and N1DP-4 exceeded MTCA Method A cleanup levels for GRPH.

Additional samples and chemical constituents analyzed were either not detected or detected at concentrations less than MTCA Method A cleanup levels. Laboratory analytical reports are included in Appendix B.

5.1.2. Monitoring Well Installation

Five soil samples and one duplicate (one sample from each well installation) collected from the unsaturated zone were received by TestAmerica on August 12, 2014. Soil samples from the test pit explorations were submitted or the following chemical analyses:

- GRPH (NWTPH-Gx);
- DRPH (NWTPH-Dx);
- TPH (NWTPH-HCID), direct-push soil borings only;
- BTEX (EPA 8260C);
- Naphthalenes (EPA 8270D);
- EDB (EPA 8011);
- EDC (EPA 8260C);
- MTBE (EPA Method 8260C); and
- Total Lead (EPA 6010C).

Soil samples from N1MW-3 and N1MW-5 were collected on August 6, 2014, Soil samples from N1MW-1, N1MW-2 and N1MW-4 were collected on August 7, 2014. A duplicate sample from N1MW-1 was collected on August 7, 2014. Soil samples were kept in ice filled coolers between sampling and delivery to the analytical laboratory.

Chemical constituents analyzed from soil samples collected from each of the five groundwater monitoring wells, and the duplicate sample, were either not detected or detected at concentrations less than MTCA Method A cleanup levels. Soil analytical results are summarized and compared to MTCA Method A cleanup levels in Table 3. Laboratory analytical reports are included in Appendix B.

5.2. Groundwater Chemical Analytical Results

5.2.1. Direct-Push Borings

Groundwater was encountered and sampled from N1DP-1 through N1DP-8 on April 16, 2014. Groundwater samples were analyzed for GRPH, DRPH and heavy oil-range petroleum hydrocarbons (ORPH) using the qualitative NWTPH-HCID method. The NWTPH-HCID analytical results indicated that GRPH, DRPH or ORPH might be present at the following locations:

- N1DP-1 (GRPH, DRPH)
- N1DP-2 (ORPH)
- N1DP-3 (GRPH, DRPH, ORPH)
- N1DP-4 (DRPH)

- N1DP-5 (ORPH)
- N1DP-8 (GRPH, DRPH, ORPH)

The types of petroleum hydrocarbons detected for each sample location are provided in parenthesis above. Analytical methods using NWTPH-HCID analysis are generally considered qualitative and therefore the results should not be used to consider cleanup actions. The NWTPH-HCID analyses were used as screening tools to guide monitoring well placement as a result of the direct-push borings.

5.2.2. Quarterly Groundwater Monitoring

Groundwater samples were collected from N1MW-1 through N1MW-5 on September 18, 2014 and received by TestAmerica for chemical analysis on September 19, 2014. Groundwater samples were kept in iced coolers between sampling and delivery to the analytical laboratory. Groundwater samples were submitted for the following chemical analyses:

- GRPH (NWTPH-GX);
- DRPH (NWTPH-DX with and without silica gel);
- Volatile organic compounds (VOCs) (EPA 8260C);
- Polycyclic Aromatic Hydrocarbons (PAHs) (EPA 8270D);
- Total Organic Carbon (TOC) (SM5310B); and
- Nitrate and Sulfate (EPA 300).

Chemical analytical results are summarized and compared to MTCA Method A cleanup levels in Summary of Chemical Analytical Results - Groundwater, Table 4. PAH analytical results are summarized and compared to MTCA Method A cleanup levels in Summary of Chemical Analytical Results – Groundwater PAHs, Table 5. Groundwater samples and chemical constituents analyzed for each of the five groundwater monitoring wells and duplicate were either not detected or detected at concentrations less than MTCA Method A cleanup levels. Laboratory analytical reports are included in Appendix B.

6.0 SUMMARY, INTERPRETATIONS AND RECOMMENDATIONS

6.1. Soil Assessment

Observed subsurface conditions indicate the site is generally underlain by brown silt and fine sand to depths of about 5 to 8 feet. Below the silt and fine sand, rounded gravel with varying amounts of silt and sand is present to depths of about 15 to 20 feet, which was the extent of the borings.

6.2. Groundwater Assessment

Depth to groundwater was measured at the five groundwater monitoring wells in September 2014. Depth to groundwater ranged from about 11 to almost 14 feet bgs. Based on groundwater elevations measured on September 18, 2014, groundwater flow in the shallow unconfined aquifer beneath the property generally was toward the east (Figure 3). Estimated hydraulic gradient of the project area was about 0.004 feet per foot (about 21 feet per mile).

6.3. Chemical Analytical Results and Interpretations

6.3.**1. Soi**l

Quantitative soil analytical results using NWTPH-Gx, EPA 8260c and EPA 8270D indicate the presence of GRPH, BTEX and naphthalenes contamination exceeding MTCA Method A cleanup levels near N1DP-8. GRPH, benzene, ethylbenzene, xylenes and naphthalenes contamination exceeded MTCA Method A cleanup levels near N1DP-1 and N1DP-3. N1DP-2 and N1DP-4 had concentrations of GRPH that exceeded MTCA Method A cleanup levels. In general, soil contamination exceeding MTCA Method A cleanup levels was found in and around the former tank pit and fuel dispenser islands. GRPH exceeding MTCA Method A was also found near the former convenience store and vent pipes. Analytical and field screening results generally indicate that petroleum contamination has not migrated to the north or south of the property as indicated by soil from borings N1DP-5, N1MW-3 and N1MW-5.

Soil explorations indicate that contamination might have migrated towards North 1st Street; however the closest exploration (N1DP-8) is located approximately 25 feet from the sidewalk parallel to North 1st Street. Chemical analysis of soil from N1MW-2, and field screening of soil from N1DP-6 and N1DP-7 indicate that contaminants of concern in soil are less than MTCA Method A cleanup levels on the east side of North 1st Street (Figure 2). Underground utilities installed below and adjacent to North 1st Street might have impacted contaminant migration to the east, dependent of installed depths.

Soil contamination depths appear to begin at approximately 12 to 15 feet bgs. Field screening indicated the presence of contamination might extend to at least 6 to 8 feet below the water surface of the unconfined aquifer. Elevated PID readings were observed at the bottom of N1MW-1. Subsurface cross sections and field PID readings are provided in Subsurface Cross Section A-A' and PID Readings, Figure 4 and Subsurface Cross Section B-B' and PID Readings, Figure 5.

6.3.2. Groundwater

Groundwater laboratory analytical results indicate contaminants of concern were less than MTCA Method A cleanup levels in N1MW-1 through N1MW-5. GRPH was detected in N1MW-1 at a concentration less than the MTCA Method A cleanup level. GRPH and DRPH was also detected in N1MW-2 at concentrations less than the MTCA Method A cleanup levels. DRPH was detected in N1MW-5 at a concentration less than the MTCA Method A cleanup levels.

Historical groundwater monitoring at the site (Wagner et al., 1991) indicated that the hydrocarbon groundwater plume had migrated across North 1st Street. Analysis of groundwater samples collected from the site and across North 1st indicated that contaminant concentrations had decreased from the 1986 to 1989 monitoring events. Groundwater samples collected during the 2014 events from N1MW-2, N1DP-6 and N1DP-7 indicate petroleum hydrocarbons might not be present (N1DP-6 and N1DP-7) or are present at concentrations less than MTCA Method A cleanup levels (N1MW-2).

Low dissolved oxygen (DO) concentrations observed in N1MW-2 and N1MW-5 indicate that biodegradation of the contaminant plume might be occurring. This is further indicated by the non-detectable concentration of nitrate/nitrogen level in N1MW-2. The absence of nitrate/nitrogen and low DO concentrations in N1MW-2 indicate that anaerobic biodegradation is occurring in the area. Overall groundwater samples collected from site monitoring wells indicates that biodegradation might be occurring near N1MW-1, N1MW-2 and N1MW-5. Biodegradation near these three locations might be occurring as aerobic (N1MW-1 and N1MW-5)

or slightly anaerobic (N1MW-2). Lower concentrations of hydrocarbons generally allow for aerobic biodegradation. Aerobic biodegradation helps support the conclusion that petroleum hydrocarbon might have been biodegredated to concentrations which meet current MTCA Method A cleanup levels.

Hydrocarbon identification (HCID) analysis indicated that GRPH, DRPH or ORPH might be present near N1DP-1 through N1DP-5 and N1DP-8. Analytical methods using HCID analysis are generally not as accurate as other analytical methods and therefore the results should not be used to dictate cleanup actions. In addition, groundwater samples collected form the direct-push borings were generally turbid and analytical results might not be representative of actual groundwater conditions. The HCID analyses was used as a screening tool to guide monitoring well placement as a result of the direct-push borings.

It should also be noted that N1MW-2 through N1MW-5 are located outside of the radius of the direct-push borings that showed elevated hydrocarbons in soil and groundwater. If groundwater contamination is present on site greater than MTCA Method A cleanup levels, it is most likely within the perimeter formed by N1MW-3, N1MW-4, N1MW-5 and North 1st Street. Groundwater collected from N1MW-1 and N1MW-2 contained detectable concentrations of GRPH less than MTCA Method A cleanup levels. Results of the soil analysis and groundwater collected from the direct-push borings indicate that contamination is most likely to the north and east of the fuel dispenser islands.

6.4. Summary and Recommendations

In general, results of this assessment did not identify the presence of widespread contamination that exceeds MTCA Method A cleanup levels. Areas of contamination which exceed MTCA Method A appear to be limited to the site although the extents on contamination extending east of N1DP-3 and N1DP-8 towards North 1st are generally unknown. Contamination appears to be limited vertically to the zone of groundwater fluctuation, as vadose-zone contamination generally was not observed.

Natural attenuation of petroleum contamination to the east of North 1st Street documented during historical groundwater monitoring events (Wagner et al., 1991) might have been reduced to concentrations less than MTCA Method A cleanup levels. This is indicated by groundwater samples collected from N1MW-2 and N1DP-6. Biodegradation appears to be occurring near N1MW-2 as indicated by low nitrate/nitrogen and D0 concentrations.

Soil contamination greater than MTCA Method A cleanup levels was generally observed to the north and east of the former fuel dispenser islands as well as well as near and east of the former tanks pit. Further investigation is needed to delineate the extent of contamination at this site. We recommend the following activities to address data gaps at the site:

- Further investigation in the northwest and northeast part of the site in order to delineate the extent of contamination. This could be accomplished using direct-push soil borings;
- Further investigation downgradient of the site, optimally utilizing a line of soil borings located east of the site and west of North 1st Street;
- Installation of two more groundwater monitoring wells to the east of the site to evaluate elevated hydrocarbons in the groundwater samples collected from the direct-push borings;
- Continued groundwater monitoring of site wells for three more quarters; and
- Possible remedial actions based on the results of continued monitoring.

GEOENGINEERS

7.0 REFERENCES

- GeoEngineers, Inc., 2014a. "Sampling and Analysis Plan Soil and Groundwater Assessment." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, April 15, 2014.
- GeoEngineers, Inc., 2014b. "Tiger Oil Work Plan Amendment Monitoring Wells." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, July 21, 2014.
- McCreedy, Re: Tiger Oil Corporation (Tiger) 1808 North First Street (North First) and 1606 East Nob Hill Blvd. (East Nob), Yakima, Washington. Letter to Alex Smith, Assistant Attorney General, Ecology Division and Thomas L. Mackie, Hydrogeologist Site Manager, Toxics Cleanup Program, Department of Ecology. April 9, 2005.
- Puls, R.W. and Barcelona, M.J., Low-flow (minimal drawdown) ground-water sampling procedures: EPA Ground Water Issue, April 1996, p.1-9.
- Tetra Tech, "UST Decommissioning and Site Assessment at Tiger Oil Corporation Facility, 1808 First Avenue, Yakima, Washington," March 17, 2005.
- U.S. Environmental Protection Agency, Region 1, Low stress (low-flow) purging and sampling procedure for the collection of ground water samples from monitoring wells. EPA SOP No. GW 0001, Revision No. 2, July 30, 1996.
- U.S. Environmental Protection Agency. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.
- Wagner, Richard J., Ebbert, J.C., "Changes Between 1984 and 1989 in the Concentration and Aerial Extent of Ground-Water Contamination from a Gasoline and Diesel Fuel Leak at a Site in Yakima, Washington," United States Geological Survey (USGS), Preliminary Draft April 10, 1991.
- Washington State Department of Ecology, 2007. Model Toxics Control Act (MTCA) Cleanup Regulations, Washington Administrative Code, Chapter 173-340. November 2007.

Table 1

Summary of Groundwater Field Parameters¹ Tiger Oil North 1st Street

Yakima, Washington

				Specific	Dissolved				Soluble	Monitoring Well
Well	Date		Temperature	Conductivity	Oxygen	ORP - Field ²	ORP - Normalized ³	Turbidity	Ferrous Iron	Headspace ⁴
Number	Collected	рН	(°C)	(mS/cm)	(mg/L)	(mV)	(mV)	(NTU)	(mg/L)	(ppm)
N1MW-1	09/18/14	6.57	17.03	0.25	2.46	54	256	16.31	1.25	1.5
N1MW-2	09/18/14	6.69	17.46	0.27	0.05	-143	59	1.03	0.0	0.0
N1MW-3	09/18/14	6.75	16.25	0.26	5.69	-148	55	0.07	0	0.3
N1MW-4	09/18/14	6.68	16.77	0.24	5.82	90	292	4.48	0	0.1
N1MW-5	09/18/14	6.49	18.25	0.25	0.98	-25	176	0.12	1.5	0.1

Notes:

¹Reported water quality parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling.

²Field ORP values are relative to the reference electrode associated with the multi-parameter meter.

³Normalized ORP values have been normalized, using algorithms provided by the instrument manufacturer, to the standard hydrogen electrode (SHE).

⁴Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.

ORP = Oxidation reduction potential; °C = degrees Celsius; mS/cm = millisiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; NT = not tested

Table 2Summary of Groundwater Level MeasurmentsTiger Oil North 1st StreetYakima, Washington

			Top of			Depth to	Groundwater	Change in
Well	Grid Northing ¹	Grid Easting ¹	Casing Elevation ²	Screen Elevation ²	Date	Groundwater ³	Elevation ²	Groundwater
Number	(feet)	(feet)	(feet)	(feet)	Measured	(feet)	(feet)	Elevation ⁴ (feet)
N1MW-1	470569.0	1637341.4	1,084.85	1075.35 to 1065.35	09/18/14	13.78	1,071.07	NA
N1MW-2	470616.9	1637480.0	1,083.81	1073.81 to 1063.81	09/18/14	13.31	1,070.50	NA
N1MW-3	470475.5	1637358.7	1,084.61	1074.61 to 1064.61	09/18/14	13.75	1,070.86	NA
N1MW-4	470595.3	1637199.9	1,082.13	1075.13 to 1065.13	09/18/14	11.10	1,071.03	NA
N1MW-5	470681.7	1637363.0	1,083.43	1074.43 to 1064.43	09/18/14	12.48	1,070.95	NA

Notes:

¹Grid northing and easting are referenced to NAD83, Washington State Plane Coordinate System, South Zone.

 $^{2}\mbox{Elevations}$ are referenced to the North American Vertical Datum of 1988 (NAVD88).

³Depth to water measurements obtained from the north side of the top of PVC well casing.

⁴Represents change in groundwater elevation from previous monitoring event, as measured in monitoring wells.

ppm = parts per million; NA = Not Applicable; NM = Not Measured

Table 3

Summary of Chemical Analytical Results - Soil¹

Tiger Oil North 1st

Yakima, Washington

Boring		N1DP-1	N1DP-2	N1DP-3	N1DP-3	N1DP-4	N1DP-8	N1MW-1	DUPLICATE 3 (N1MW-1)	N1MW-2	N1MW-3	N1MW-4	N1MW-5
Sample Depth (feet)	Regulatory	12	14.5	14.5	15	16	16.5	14-15	14-15	14-15	12-13	10-11	11-12
Date Sampled	Levels ²	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	08/07/14	08/07/14	08/07/14	08/06/14	08/07/14	08/06/14
Method EPA 8260C - NWTPH-Gx and Vola	tile Organic Comp	ounds (mg/kg)											
Gasoline-range hydrocarbons	30/100 ³	6,200	613	4,170	904	415	29,400	<5.56	<6.51	<4.94	<5.90	5.35	<6.19
Benzene	0.03	0.220	0.0140	0.166	0.0392	0.0111	3.19	<0.0167	<0.0195	<0.0148	<0.0177	<0.0153	<0.0186
Ethylbenzene	6	67.6	0.693	59.1	14.4	0.592	386	<0.111	<0.130	<0.0988	<0.118	<0.102	<0.124
Toluene	7	<1.05	<0.0936	3.94	2.28	<0.0886	378	<0.111	<0.130	<0.0988	<0.118	<0.102	<0.124
o-Xylene	NE	84.8	<0.187	99.5	21.8	<0.177	678	<0.222	<0.260	<0.198	<0.236	<0.205	<0.248
m,p-Xylene	NE	299	1.02	256	59.0	0.728	1,990	<0.445	<0.520	<0.395	<0.472	<0.409	<0.495
Xylenes (total)	9 ⁴	384	1.02	356	80.8	0.742	2,660	<0.667	<0.781	<0.593	<0.708	<0.614	<0.743
Methyl t-butyl ether (MTBE)	0.1	<0.0630	<0.00561	<0.0475	<0.00673	<0.00532	<0.555	<0.0334	<0.0390	<0.0296	<0.0354	<0.0307	<0.0371
1,2-Dichloroethane (EDC)	NE	<1.05	<0.936	<0.791	<0.112	<0.0886	<9.25	<0.111	<0.130	<0.0988	<0.118	<0.102	<0.124
Method EPA 8011 - EDB (µg/kg)			•								•		
1,2-Dibromoethane	5	<1.04	<0.936	<0.992	<0.998	<0.931	<0.976	<1.03	<1.06	<1.05	<1.05	<1.09	<1.13
Method EPA 8270D - Naphthalene by GC/	MS with Selected	Ion Monitoring (I	ng/kg)						•		•		
Naphthalene	NE	9.18	<0.0193	17.6	10.1	<0.409	30.3	<0.0208	<0.0216	<0.0203	<0.0220	<0.0214	<0.0222
2-Methylnaphthalene	NE	18.6	0.466	24.6	14.6	1.61	46.1	<0.0208	<0.0216	<0.0203	<0.0220	<0.0214	<0.0222
1-Methylnaphthalene	NE	8.97	0.242	11.7	6.89	0.710	20.9	<0.0208	<0.0216	<0.0203	<0.0220	<0.0214	<0.0222
Naphthalene (Total)	5 ⁵	36.75	<0.7273	53.9	31.59	<2.729	97.3	<0.0624	<0.0648	<0.0609	<0.066	<0.0642	<0.0666
Method NWTPH-Dx - Semivolatile Petrole	um Products (mg/	kg)									•		
Diesel-range hydrocarbons	2,000	728	<19.7	544	365	107	748	<10.5	<9.33	<10.1	17.0	<9.85	18.6
Heavy oil-range hydrocarbons	2,000	<58.3	<49.3	<52.0	255	277	<47.9	<26.2	<23.3	<25.3	81.1	<24.6	126
Method NWTPH-HCID - Hydrocarbon Ident	Nethod NWTPH-HCID - Hydrocarbon Identification (mg/kg)												
Gasoline-range hydrocarbons	NE ⁶	460	<36	1,600	920	<40	5,400	NA	NA	NA	NA	NA	NA
Diesel-range hydrocarbons	NE ⁶	750	<89	810	430	<100	2,300	NA	NA	NA	NA	NA	NA
Heavy oil-range hydrocarbons	NE ⁶	<94	<89	<100	600	270	<100	NA	NA	NA	NA	NA	NA
Method EPA 6010C - Metals Content (mg	/kg)												
Lead	250	4.25	4.14	5.15	4.12	3.51	4.92	5.31	3.55	5.86	4.80	4.55	3.22

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

³Gasoline-range petroleum hydrocarbon cleanup levels in soil are 30 mg/kg when benzene is detected and 100 mg/kg when benzene is not detected.

⁴Cleanup level for total xylenes.

⁵Cleanup level refers to sum of naphthalenes.

⁶The NWTPH-HCID analytical method is generally considered a qualatative analytical method and therefore generally not used to establish complaince with cleanup levels

Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

mg/kg = milligrams per kilogram; EPA = Washington State Environmental Protection Agency; NE = not established NA = Not Analyzed

GEOENGINEERS

Table 4

Summary of Chemical Analytical Results - Groundwater^{1,2}

Tiger Oil North 1st Yakima, Washington

Boring or Well ID	Pogulatory	Method B	N1DP-1	N1DP-2	N1DP-3	N1DP-4	N1DP-5	N1DP-6	N1DP-7	N1DP-8	N1MW-1	Duplicate (N1MW-1)	N1MW-2	N1MW-3	N1MW-4	N1MW-5
Date Sampled		Cleanup Levels ⁴	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14
Method NWTPH-HCID - Hydrocarbon Identification	_		4.000	.000	44.000	-010	.000	1010	-010	5.400	NT	NT	NT	NT	NT	NT
Gasoline-range hydrocarbons	NE ⁵		1,000	<620	11,000	<610	<620	<610	<610	5,100	NT	NT	NT	NT	NT	NT
Diesel-range hydrocarbons	NE ⁵		1,000	<620	5,400	790	<620	<610	<610	2,100	NT	NT	NT	NT	NT	NT
Heavy oil-range hydrocarbons	NE ⁵		<620	670	7,200	<610	1,700	<610	<610	1,000	NT	NT	NT	NT	NT	NT
Conventionals (mg/L)	6				NT	NT	NT									
Nitrate-Nitrogen	10 ⁶		NT	0.840	0.740	<0.200	1.24	0.950	0.490							
Sulfate	250 ⁷		NT	9.69	9.92	5.25	10.1	8.49	9.68							
Total Organic Carbon	NE		NT	1.55	1.30	1.66	1.22	1.19	1.36							
Method NWTPH-Gx - Gasoline Range (µg/L)	000/1000				NT	NT	NT	NT								ļ
Gasoline-range hydrocarbons	800/1,000		NT	256	239	506	<100	<100	<100							
Method NWTPH-Dx - Diesel Range (µg/L)																
Diesel-range hydrocarbons	500		NT	<234	<233	459	<231	<232	238							
Diesel-range hydrocarbons w/silica gel	500		NT	<229	NT	NT	<230									
Heavy Oil-Range Hydrocarbons	500		NT	<389	<389	<382	<386	<386	<384							
Heavy Oil-Range Hydrocarbons w/silica gel	500		NT	<382	NT	NT	<384									
Method EPA 8260C - VOCs (µg/L)	n		1				1	1								
1,1,1,2-Tetrachloroethane		1.68			NT	NT	NT	NT	NT	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
1,1,1-Trichloroethane	200	0.219	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,1,2,2-Tetrachloroethane		0.219	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)		240,000	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,1,2-Trichloroethane		0.768	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,1-Dichloroethane		7.68	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,1-Dichloroethene		0.481	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,1-Dichloropropene		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,2,3-Trichlorobenzene		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,2,3-Trichloropropane		0.00146	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,2,4-Trichlorobenzene		1.51	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,2,4-Trimethylbenzene		NE	NT	4.12	4.07	1.08	<1.00	<1.00	<1.00							
1,2-Dibromo-3-Chloropropane		0.0547	NT	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00							
1,2-dibromoethane (EDB)	0.01		NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,2-Dichlorobenzene (o-Dichlorobenzene)		7.2	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,2-Dichloroethane (EDC)	5		NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,2-Dichloropropane		1.22	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,3,5-Trimethylbenzene		80	NT	1.21	1.08	<1.00	<1.00	<1.00	<1.00							
1,3-Dichlorobenzene (m-Dichlorobenzene)		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,3-Dichloropropane		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
1,4-Dichlorobenzene (p-Dichlorobenzene)		8.1	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
2,2-Dichloropropane		0.438	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
2-Butanone (MEK)		4,800	NT	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0							
2-Butanone, 4-(Acetyloxy)-		4,800	NT	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0							
2-Chlorotoluene		160	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
2-Hexanone		NE	NT	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0							
2-Propanol, 2-methyl-		NE	NT	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00							
4-Chlorotoluene		160	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Acetone		7,200	NT	26.2	<25.0	<25.0	<25.0	<25.0	<25.0							
Benzene	5		NT	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200							
Bromobenzene		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							

GEOENGINEERS

Boring or Well ID	Regulatory	Method B	N1DP-1	N1DP-2	N1DP-3	N1DP-4	N1DP-5	N1DP-6	N1DP-7	N1DP-8	N1MW-1	Duplicate (N1MW-1)	N1MW-2	N1MW-3	N1MW-4	N1MW-5
Date Sampled	Levels ³	Cleanup Levels ⁴	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	04/16/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14	09/18/14
Bromochloromethane		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Bromodichloromethane		0.706	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Bromoform (Tribromomethane)		5.54	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Bromomethane		11.2	NT	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00							
Carbon Disulfide		800	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Carbon Tetrachloride		0.625	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Chlorobenzene		160	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Chloroethane		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Chloroform		1.41	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Chloromethane		NE	NT	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00							
cis-1,2-Dichloroethene		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Cis-1,3-Dichloropropene		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Dibromochloromethane		0.521	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Dibromomethane		80	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Dichlorodifluoromethane (CFC-12)		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Ethylbenzene	700		NT	<1.00	<1.00	5.17	<1.00	<1.00	<1.00							
HCFC-21		NE	NT	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200							
Hexachlorobutadiene		0.561	NT	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00							
Hexane		480	NT	5.01	4.97	<1.00	<1.00	<1.00	<1.00							
Isopropylbenzene (Cumene)		800	NT	<1.00	<1.00	5.69	<1.00	<1.00	<1.00							
Methyl t-butyl ether (MTBE)	20		NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Methylene Chloride	5		NT	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0							
Naphthalene	160		NT	<2.00	<2.00	3.15	<2.00	<2.00	<2.00							
n-Butylbenzene		NE	NT	<1.00	<1.00	4.92	<1.00	<1.00	<1.00							
n-Propylbenzene		800	NT	<1.00	<1.00	15.2	<1.00	<1.00	1.22							
p-lsopropyltoluene		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Sec-Butylbenzene		NE	NT	<1.00	<1.00	2.80	<1.00	<1.00	<1.00							
Styrene		1,600	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Tert-Butylbenzene		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Tetrachloroethene	5		NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Toluene	1,000		NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Trans-1,2-Dichloroethene		0.481	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Trans-1,3-Dichloropropene		0.438	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Trichloroethene	5		NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Trichlorofluoromethane (CFC-11)		NE	NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							
Vinyl Chloride	0.2		NT	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200							
Xylene, m-,p-	4.0008		NT	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00							
Xylene, o-	1,000 ⁸		NT	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00							

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

²Analytes presented either have applicable cleanup levels or were detected at concentrations greater than reporting limits. Additonal analyte results are provided in the analytical reports.

³Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

⁴Groundwater Method B cancer cleanup level, CLARC Data Tables, May 2014

⁵The NWTPH-HCID analytical method is generally considered a qualatative analytical method and therefore generally not used to establish complaince with cleanup levels

⁶Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

⁷Secondary maximum contaminant level recommeded by the Environmental Protection Agency.

⁸Cleanup level for total xylenes.

Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

 μ g/L = micrograms per liter; NT = not tested; NE = not established

Table 5

Summary of Chemical Analytical Results - Groundwater PAHs¹ Tiger Oil North 1st Yakima, Washington

Carcinogenic PAHs Dibenzo(a,h)anthracene 2-Methylnaphthalene Benzo(b)fluoranthene Benzo(k)fluoranthene **1-MethyInaphthalene** -cd)pyrer Benzo(a)anthracene Naphthalene (Total) Acenaphthylene Benzo(a)pyrene Acenaphthene က် Naphthalene сРАН ТЕQ² ideno(1,2, Chrysene TEF² 0.1 0.1 0.1 0.01 0.1 0.1 1.0 Date Collected Sample ID µg/L µg∕L µg∕L µg∕L µg∕L µg/L µg∕L µg/L µg∕L µg∕L µg∕L µg∕L µg/L µg∕L N1DP-1 04/16/14 NT N1DP-2 04/16/14 NT ---N1DP-3 04/16/14 NT ---N1DP-4 04/16/14 NT ---N1DP-5 04/16/14 NT N1DP-6 04/16/14 NT NT NT NT NT NT NT ---NT NT NT NT NT NT N1DP-7 04/16/14 NT ---N1DP-8 04/16/14 NT NT NT NT NT NT NT ---NT NT NT NT NT NT N1MW-1 09/18/14 <0.0858 <0.0858 <0.0858 <0.0858 < 0.0858 <0.0858 <0.0858 0.06 0.242 0.487 0.400 1.129 <0.0858 <0.0858 <0 0.331 <0.0893 09/18/14 < 0.0893 < 0.0893 < 0.0893 < 0.0893 < 0.0893 < 0.0893 < 0.0893 0.07 0.629 0.503 1.463 <0.0893 Duplicate (N1MW-1) <0 N1MW-2 09/18/14 < 0.0847 < 0.0847 <0.0847 < 0.0847 < 0.0847 < 0.0847 < 0.0847 0.06 3.24 < 0.0847 10.1 <13.4 <0.0847 < 0.0847 <0 N1MW-3 09/18/14 <0.0850 <0.0850 <0.0850 <0.0850 <0.0850 <0.0850 0.06 <0.0850 <0.0850 <0.0850 <0.2550 <0.0850 <0.0850 <0.0850 <0 N1MW-4 09/18/14 < 0.0854 < 0.0854 < 0.0854 <0.0854 < 0.0854 < 0.0854 < 0.0854 < 0.0854 0.06 < 0.0854 < 0.0854 <0.2562 <0.0854 < 0.0854 <0 N1MW-5 09/18/14 <0.0847 < 0.0847 <0.0847 < 0.0847 <0.0847 <0.0847 <0.0847 0.06 0.550 < 0.0847 0.410 <1.045 < 0.0847 < 0.0847 <0 MTCA Method A Unrestricted Land Use CUL³ NE 0.1 NE NE NE NE 0.1^{4} NE NE NE 160⁵ NE NE NE

Notes:

¹Polycyclic aromatic hydrocarbons (PAHs) analyzed using EPA Method 8270D by TestAmerica Laboratories, Inc., in Spokane, Washington.

²Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation WAC 173-340-708. One half the reporting limit was used to calculate the TEQ.

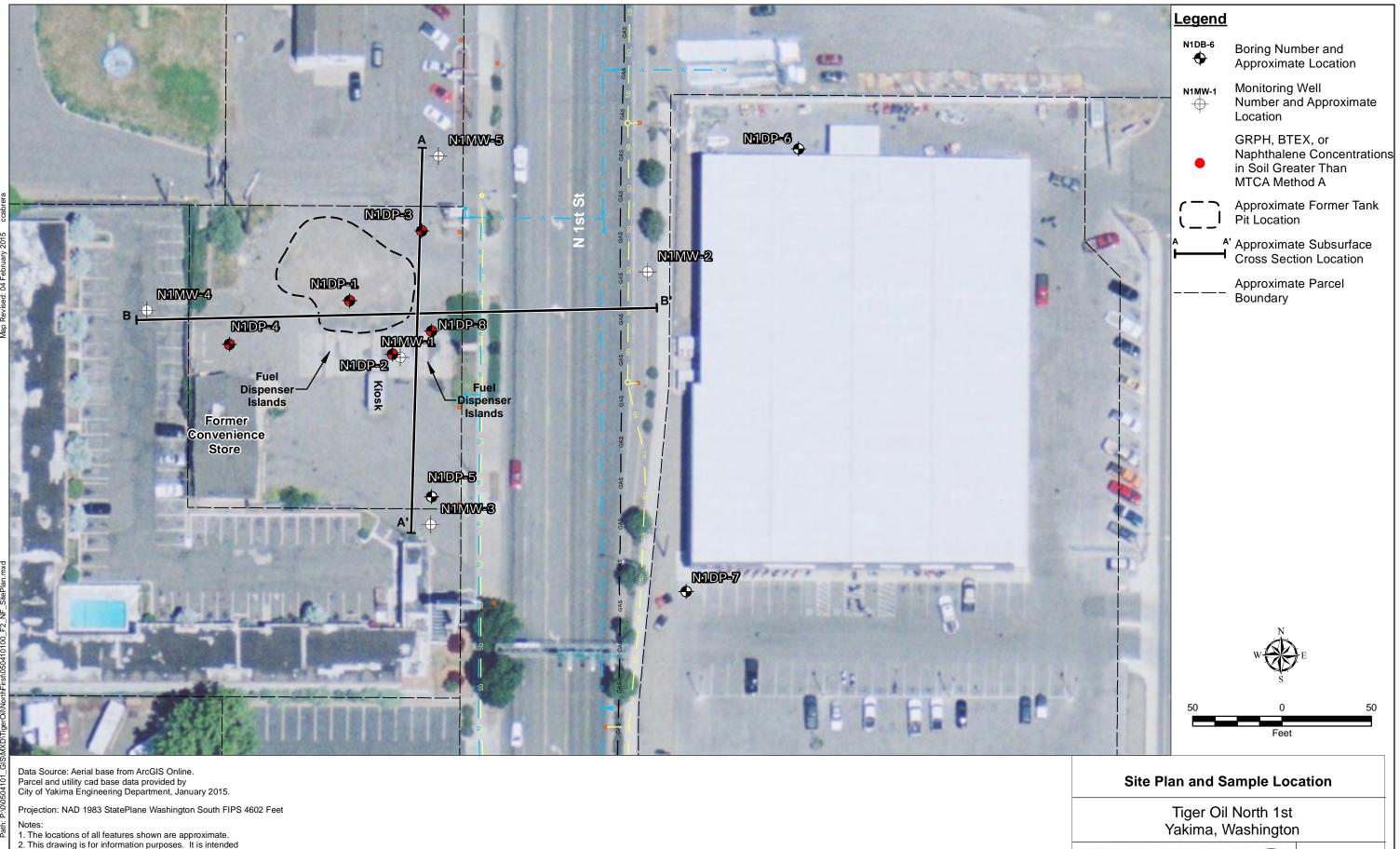
³Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels.

⁴MTCA Method A cleanup level for benzo(a)pyrene

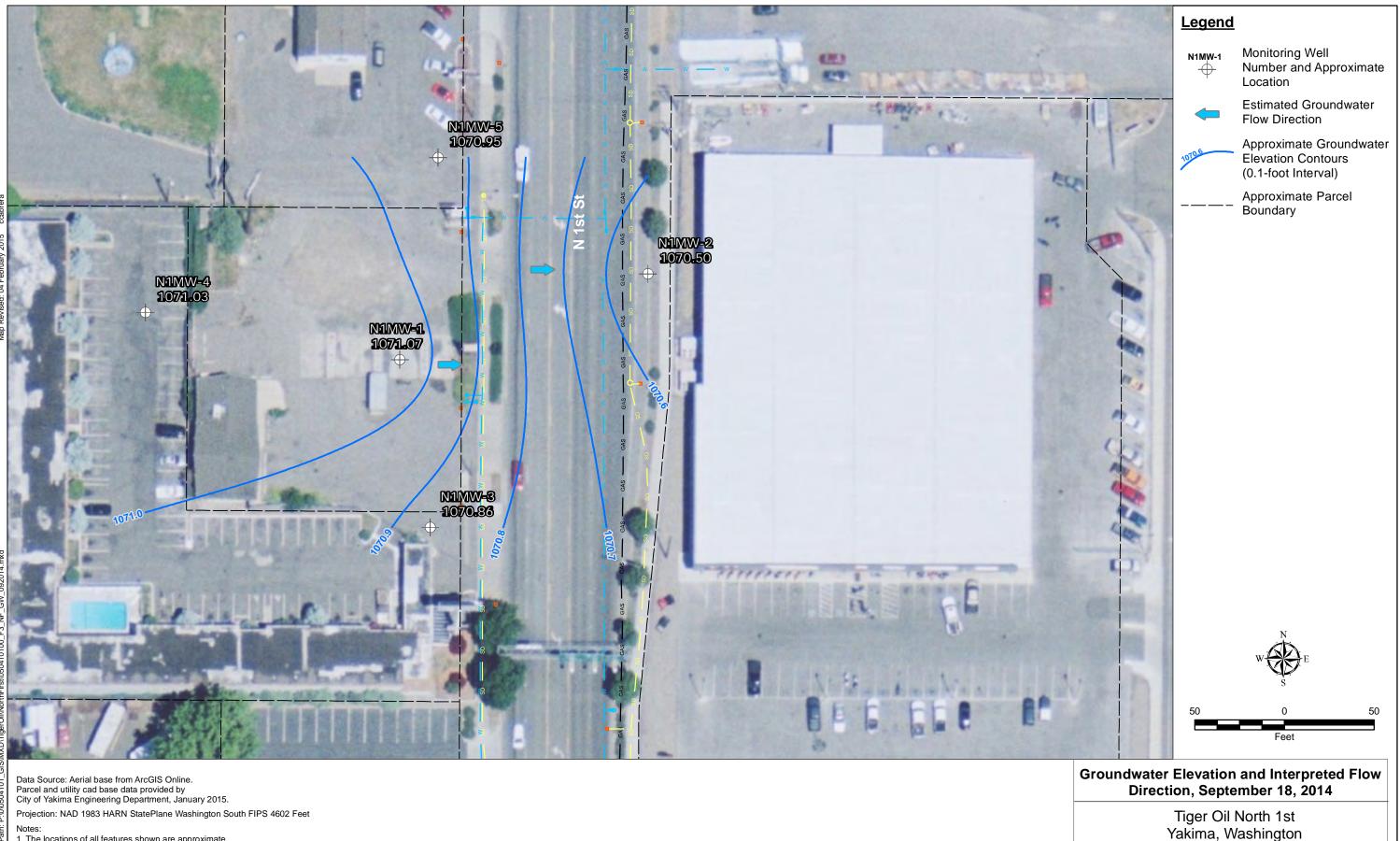
⁵Cleanup level for total naphthalenes

 μ g/L = micrograms per liter; NE = Not Established.

Bold indicates analyte concentration exceeds laboratory reporting limit.

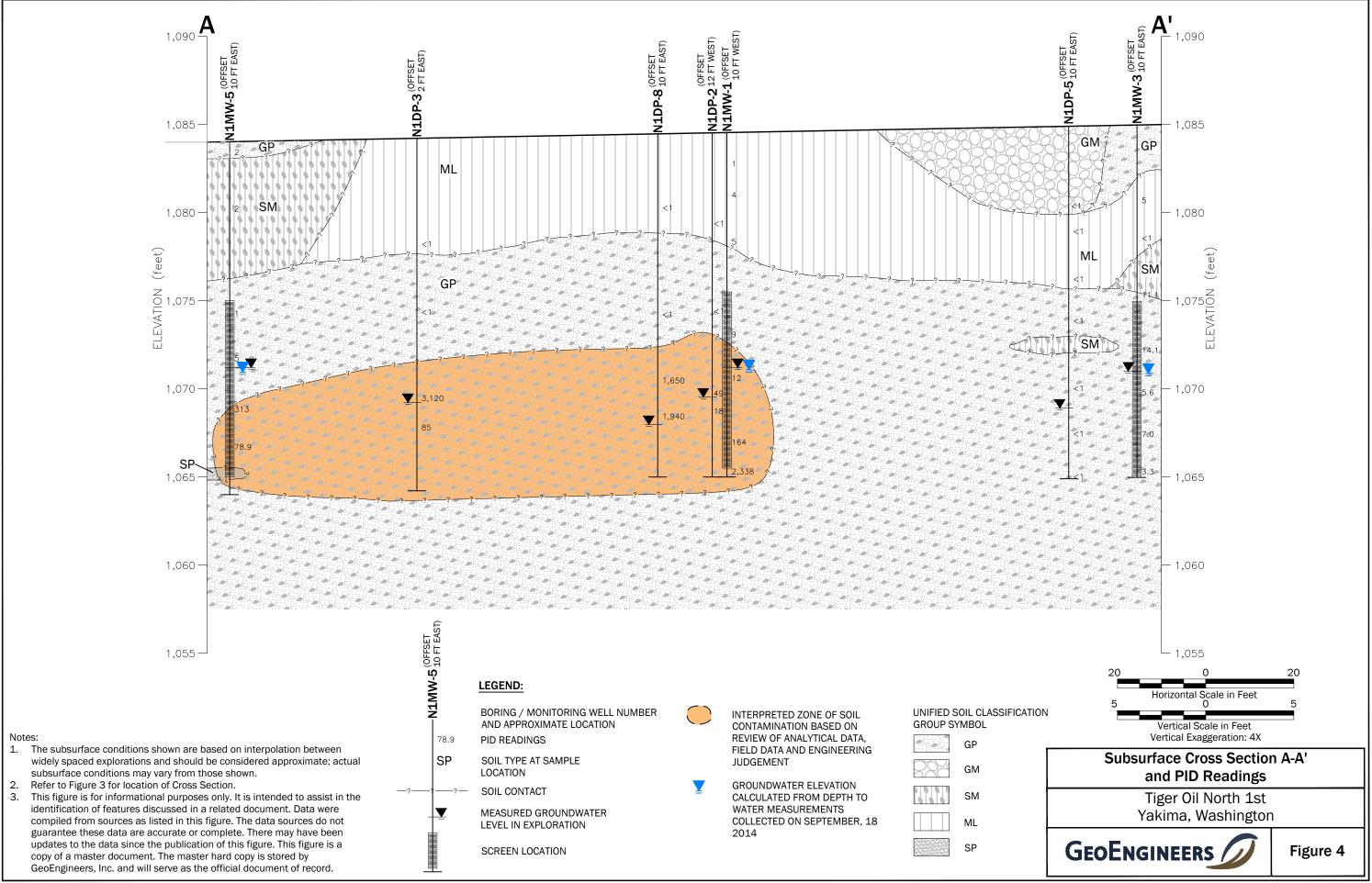

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

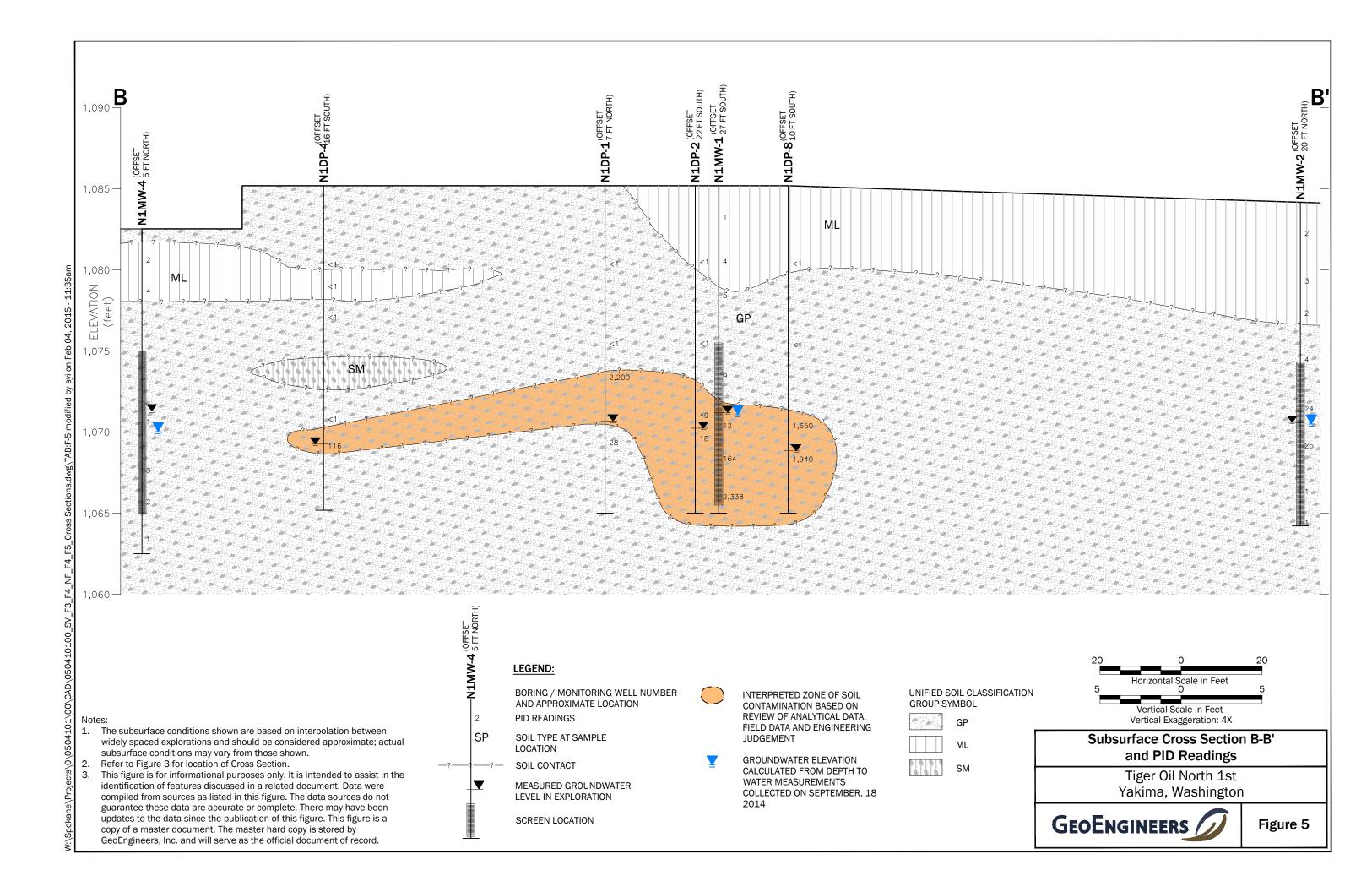
Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(ghi)perylene
µg/L	µg∕L	µg∕L	µg∕L	µg∕L	µg/L
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
0.0858	<0.0858	<0.0858	<0.0858	<0.0858	<0.0858
0.0893	<0.0893	<0.0893	<0.0893	<0.0893	<0.0893
0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847
0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850
0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854
0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847
NE	NE	NE	NE	NE	NE



- to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc.
- and will serve as the official record of this communication.

GEOENGINEERS


Figure 2



- Notes:
- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended
- to assist in showing features discussed in an attached document.
- GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

GEOENGINEERS

Figure 3

APPENDIX A Field Methods and Boring Logs

APPENDIX A FIELD METHODS AND BORING LOGS

General Soil Sampling Procedures

Samples were obtained using disposable nitrile gloves which were discarded after each use. Samples were placed in 4- or 9-ounce laboratory-supplied sample containers. Sample containers were filled to minimize headspace and labeled with a unique identification. Confirmation samples analyzed for VOCs were obtained using EPA Method 5035 sampling procedures. Samples were temporarily stored in an iced cooler before transfer to TestAmerica's Spokane Valley, Washington laboratory for analysis. Chain-of-custody (COC) protocols were followed.

Field Screening of Soil Samples

A GeoEngineers representative performed field screening of soil samples obtained during drilling activities. Field screening results are used as a general guideline to delineate depths with possible petroleum-related contamination. The screening methods used include: (1) visual screening; (2) water sheen screening; and (3) headspace vapor screening using a MiniRae PID calibrated to isobutylene.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Water sheen screening is a more sensitive method that has been effective in evaluating whether contaminant concentrations are less than regulatory cleanup guidelines.

Water sheen screening involves placing soil in water and observing the water surface for signs of sheen. Sheen screening might detect both volatile and nonvolatile petroleum hydrocarbons. Sheen classifications are as follows:

No Sheen (NS)	No visible sheen on water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil might produce a slight sheen.
Moderate Sheen (MS)	Light to heavy sheen; might have some color/iridescence; spread is irregular to flowing, might be rapid; few remaining areas of no sheen on water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface might be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag, and the bag was shaken to expose the soil to the air trapped in the bag. The probe of the PID was then inserted into the bag to measure VOCs in the air within the bag. In this application, the PID measured concentration of organic vapors ionizable by a 10.6 electron volt (ev) lamp in the range between 1.0 and 2,000 ppm, with a resolution of +/-2 ppm.

Field screening results are site-specific. The effectiveness of field screening results will vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence

or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of petroleum hydrocarbons.

Monitoring Well Construction, Development and Surveying

The groundwater monitoring wells were constructed in general accordance with Chapter 173-160, Section 400 of the Washington Administrative Code (WAC), titled Washington State Resource Protection Well Construction Standards. Monitoring well records were submitted in accordance with Washington State monitoring well construction standards. Monitoring well installations were observed and documented by a GeoEngineers' field representative.

The groundwater monitoring wells were installed using sonic drilling equipment and were constructed of 2-inch-diameter, Schedule 40 PVC casing and 0.01-inch slot width well screens. Well screen depths were based on groundwater conditions observed in the field such that the top of the shallow water table intercepted the well screen.

Each well was constructed with a bentonite seal and a flush-mount surface monument. A lockable cap was installed in the top of the PVC well casing. A concrete surface seal was placed around the monument at the ground surface to divert surface water away from the well location. Each well was developed using surging and pumping; wells were surged and then pumped until the development water was clear. This process was repeated until at least approximately five well volumes were removed from the well.

The monitoring well was developed to remove water introduced into the well during drilling (if any), stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. The depth to water in the monitoring well was measured prior to development. The total depth of the well was measured and recorded. The groundwater monitoring wells were developed by pumping, surging, bailing, or a combination of these methods after construction. Development of the well continued until the water was as free of sediment as practicable, with respect to the composition of the subsurface materials within the screened interval. The removal rate and amount of groundwater removed was recorded during the well development procedures. Development purge water was collected and stored on site.

The locations of the groundwater monitoring wells were established in the field using a hand-held iPad with GPS software, and subsequently surveyed by a licensed surveyor.

Depth to Groundwater

Depth to groundwater measurements from the new wells were collected and recorded in the field notebook after the water level stabilized after well development. Depth to groundwater relative to the marked north side of the monitoring well casing rims was measured to the nearest 0.01 foot using an electronic water level indicator and recorded in the field notebook. Groundwater elevation was calculated by subtracting the depth-to-water measurement from the surveyed casing rim elevation. The electronic water level indicator was decontaminated with LiquiNox[®] solution wash and a distilled water rinse prior to use in each well.

Groundwater Sampling

Following depth to groundwater measurements, groundwater samples were collected from the installed groundwater monitoring wells consistent with the EPA's low-flow groundwater sampling procedures (EPA, 1996 and Puls and Barcelona, 1996). Dedicated polyethylene tubing and a portable peristaltic pump were

used for groundwater purging and sampling. During purging activities, water quality parameters, including pH, temperature, conductivity, DO and turbidity were measured using a multi-parameter meter equipped with a flow-through cell. Groundwater samples were collected after: (1) water quality parameters stabilized; or (2) a maximum purge time of 30 minutes was achieved. During purging and sampling, drawdown was not allowed to exceed 0.3 feet and the purge rate did not exceed 400 milliliters per minute. Water quality parameter stabilization criteria included the following:

- Turbidity: ±10 percent for values greater than 5 nephelometric turbidity units (ntu);
- Conductivity: ±3 percent;
- pH: ±0.1 unit;
- Temperature: ±3 percent; and
- DO: ± 10 percent.

Field water quality measurements and depth-to-water measurements were recorded on a Well Purging-Field Water Quality Measurement Form. The groundwater samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. COC procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the Quality Assurance Project Plan (QAPP).

Location Control

The locations of the borings and groundwater monitoring wells were established in the field using a handheld iPad with GPS software. The horizontal accuracy of the hand-held unit is within about 10 feet. Upon completion, horizontal and vertical locations of the groundwater monitoring wells were surveyed by a licensed professional surveyor and referenced to NAD83 and NAVD88, respectively.

Decontamination Procedures

The objective of the decontamination procedure was to minimize the potential for cross contamination between exploration locations and between individual samples within a specific exploration. A designated decontamination area was established for decontamination of drilling equipment and reusable sampling equipment. Drilling equipment was cleaned using pressure washing equipment.

Sampling or measurement equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement:

- Brush equipment with a wire brush, if necessary, to remove large particulate matter.
- Rinse with potable tap water.
- Wash with non-phosphate detergent solution (LiquiNox[®] and potable tap water).
- Rinse with potable tap water.
- Rinse with distilled water.

Handling of Investigation-Derived Waste

IDW (drill cuttings and development and purge water), was placed in U.S. Department of Transportation (DOT) approved 55-gallon drums. The drums were labeled with the exploration number, general contents, and date. IDW generated on site was placed in drums and is pending pickup for disposal at an appropriate facility.

Disposable items, such as sample tubing, direct-push sampler acrylic sleeves, gloves and paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

Laboratory Analytical Plan

Method Reporting Limit (MRL) goals were based on Ecology MTCA soil or groundwater cleanup criteria. The following methods were used for the soil and groundwater samples:

Soil

- GRPH (NWTPH-Gx);
- DRPH (NWTPH-Dx);
- TPH (NWTPH-HCID), direct-push soil borings only;
- BTEX (EPA 8260C);
- Naphthalene (EPA 8270D);
- EDB (EPA 8011);
- EDC (EPA 8260C);
- MTBE (EPA Method 8260C); and
- Total Lead (EPA 6010C).

Groundwater

- GRPH (NWTPH-GX);
- DRPH (NWTPH-DX);
- VOCs (EPA 8260c);
- PAHs (EPA 8270D);
- TOC (SM5310B);
- Nitrate and Sulfate (EPA 300); and
- Ferrous Iron (Field Test, Hach 26672-88).

			C/W	BOLS	TYPICAL	SY	MBOL
Μ	AJOR DIVIS	IONS	GRAPH		DESCRIPTIONS	GRAP	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		,
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		-
MORE THAN 50% RETAINED ON NO.	SAND			SW	WELL-GRADED SANDS, GRAVELLY SANDS		Gr
200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	Ţ	Me exp
	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	Ţ	Me pie
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES		Gr
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY INORGANIC CLAYS OF LOW TO		Dis geo
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		Ap cha
SOILS			h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Ma
MORE THAN 50% PASSING NO. 200 SIEVE	011 70			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		Di: ge
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		Ap ch
			hinhi hinhi	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
	GHLY ORGANIC	SOILS	<u></u>	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		La
	2.4 Sta She Pis	mpler Symb -inch I.D. split Indard Penetra elby tube ton ect-Push lk or grab	barrel		<u>15</u>	%F AL CC DS HAC DS HAC PI PP PPM STX	Pe Att Ch Lai Co Dir Hy Mo Or Pe Pia Po Pa Sie Tri
	count is reco	orded for drive	ampler [•] 12	2 inches	(or	UC VS	Un Va Sh
of blo dista and o	drop. '' indicates sa	See exploratio	C C		-	NS SS MS HS	No Slig Mo He

AL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

undwater Contact

- sured groundwater level in oration, well, or piezometer
- sured free product in well or ometer

phic Log Contact

nct contact between soil strata or ogic units

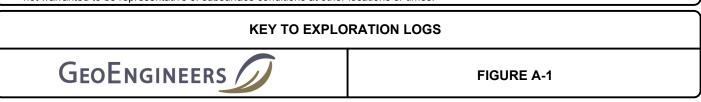
roximate location of soil strata ge within a geologic soil unit

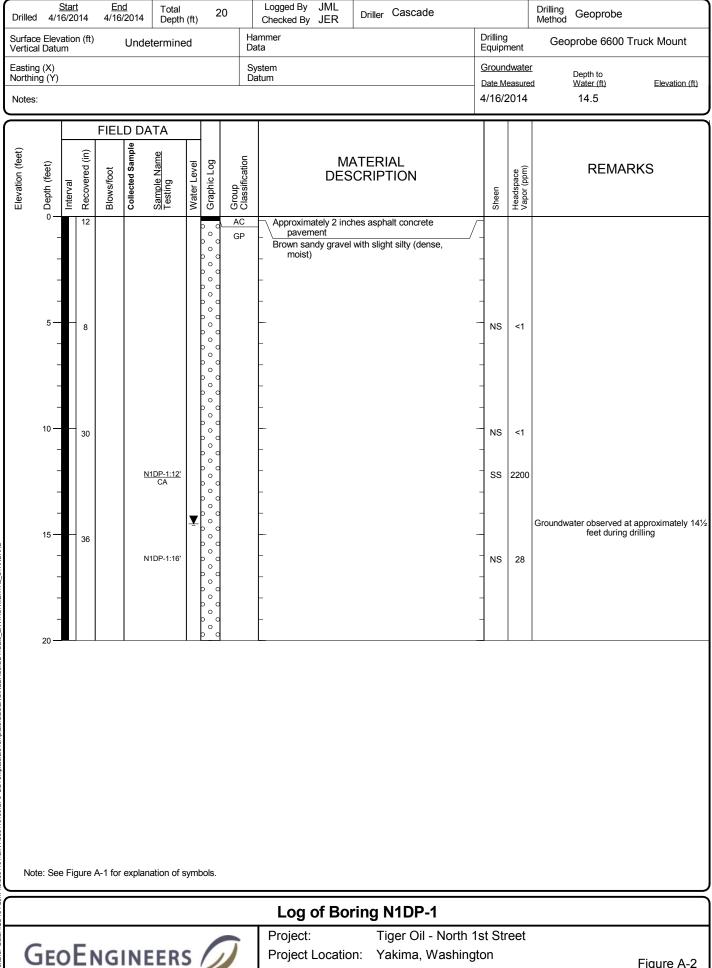
erial Description Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

Laboratory /	/ Fiel	d Tests
--------------	--------	---------

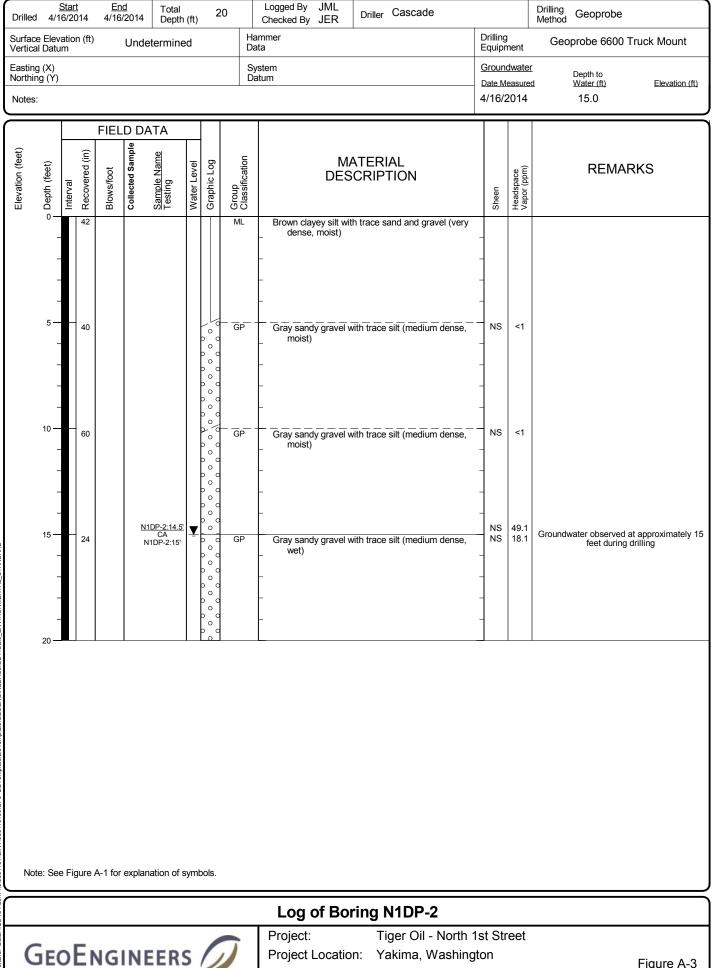

ent fines


- rberg limits
- mical analysis
- pratory compaction test
- solidation test
- ct shear
- rometer analysis
- sture content
- sture content and dry density
- anic content neability or hydraulic conductivity
- ticity index
- et penetrometer
- s per million
- e analysis
- cial compression
- onfined compression
- shear

en Classification

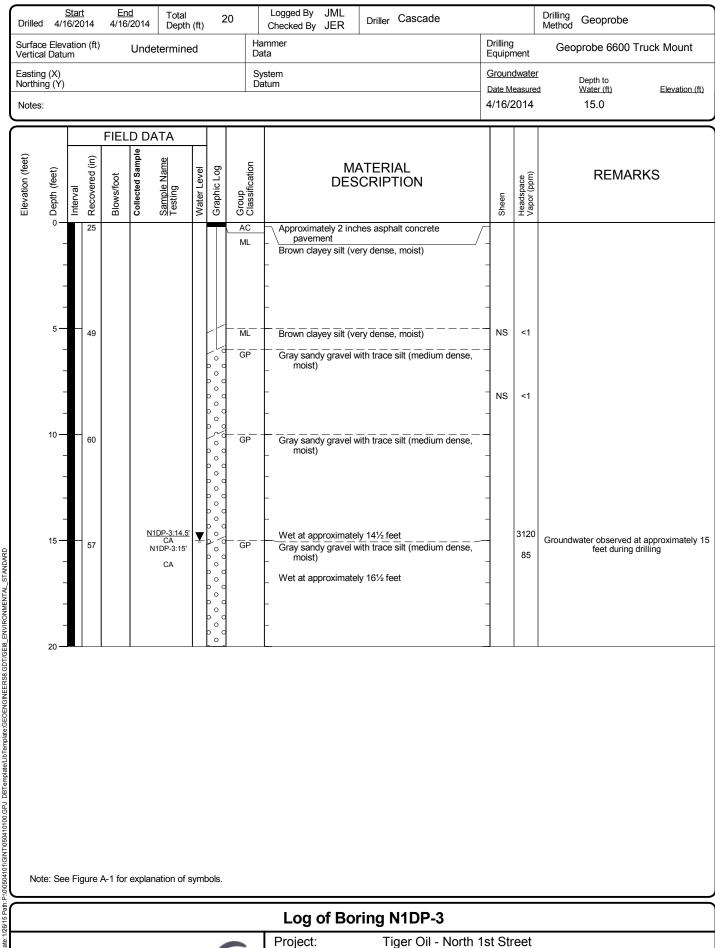
- isible Sheen
- nt Sheen
- erate Sheen /y Sheen
 - ested

er understanding of subsurface explorations were made; they are



0504-101-00

kane: Date:1/26/15 Path:P:/0/0504101/GINT/050410100.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARE


Figure A-2 Sheet 1 of 1

0504-101-00

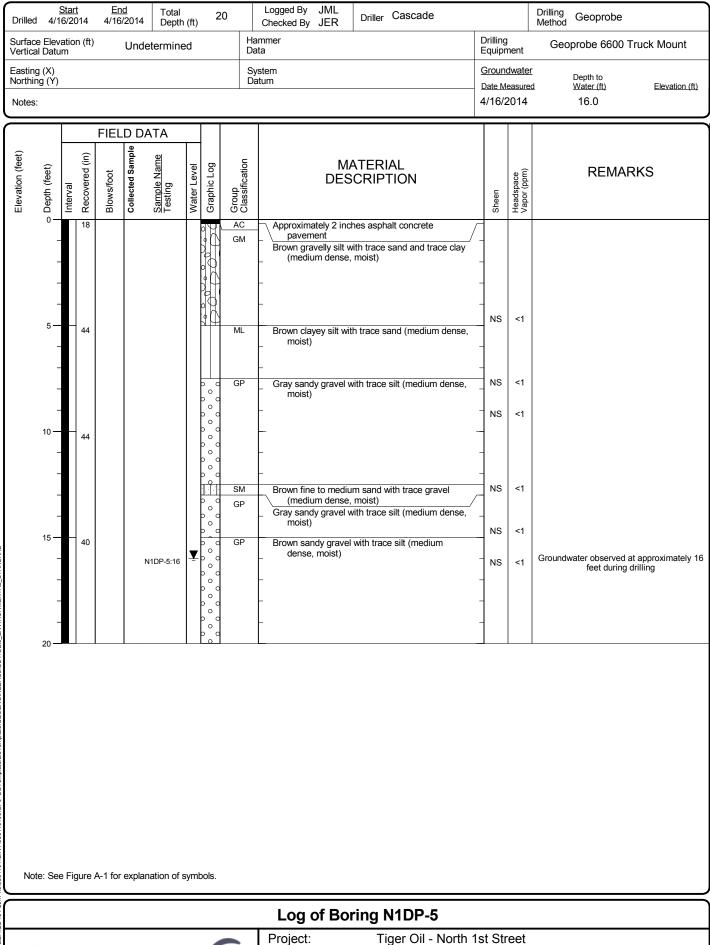
me: Date:1/26/15 Path:P:\0/0504101/GINT/050410100.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL

Figure A-3 Sheet 1 of 1

Project Number:

Yakima, Washington

0504-101-00


Date:

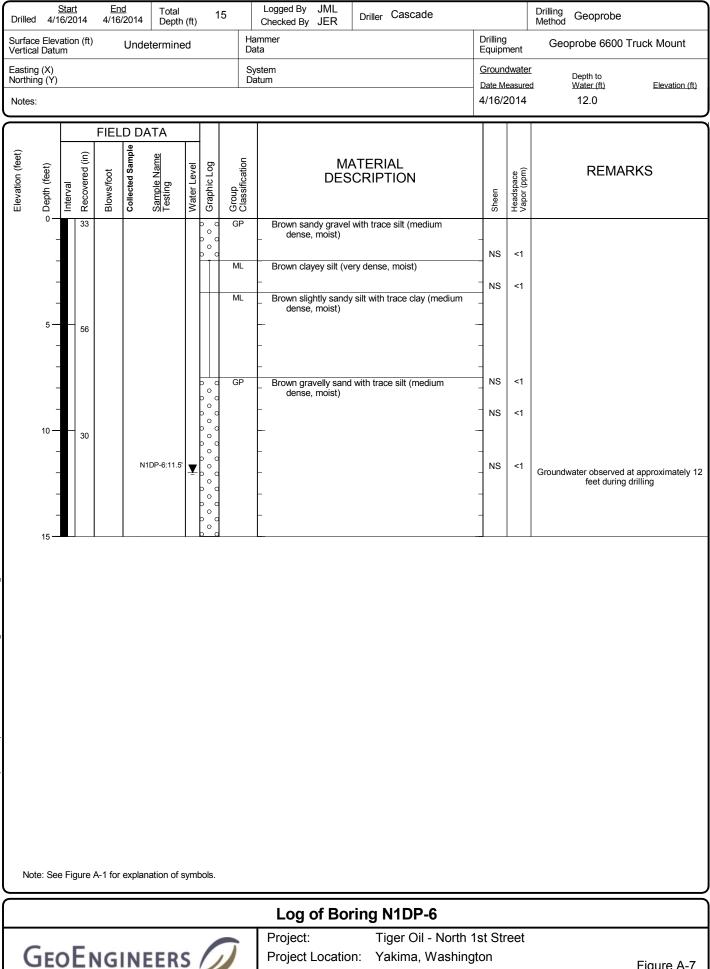
Pat

GEOENGINEERS

Figure A-4 Sheet 1 of 1

Drilleo		<u>Star</u> 6/20		<u>Er</u> 4/16	<u>nd</u> 5/2014	Total Depth	ı (ft)	2	0	Logged By JML Checked By JER Driller Cascade				Drilling Method Geoprobe
Surfac Vertic	ce Elev al Datu	vatio Im	n (ft)		Unc	letermine	ed			Hammer Data	Di Ed	rilling quipn	nent	Geoprobe 6600 Truck Mount
Eastin Northi Notes	ng (Ý)									System Datum	<u>D</u> i		dwater easurer 2014	Depth to
Elevation (feet)	⇔ Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	ATA Sample Name Testing	Water Level	Graphic Log	A Group Classification	MATERIAL DESCRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
		-	49 34 30			<u>N1DP-4:16'</u> CA	¥		GP ML GP GP GP	Pavement Brown sandy gravel with trace silt and clay (medium dense, moist) Brown slightly sandy silt with trace gravel (medium dense, moist) Gray sandy gravel with trace silt (medium dense, moist) Brown slightly gravelly sand with trace silt (loose, moist)		NS NS NS	<1 <1 <1 115.6	Groundwater observed at approximately 16 feet during drilling
	tte: Se	e Fig	gure /	A-1 foi	r expla	anation of s	syml	pols.		Log of Boring N1DP-4 Project: Tiger Oil - North	1et	Str	eet	
0	ĴΕ	ol	En	١G	IN	EER	S		J	Project: Tiger Oil - North Project Location: Yakima, Washin Project Number: 0504-101-00			eet	Figure A-5 Sheet 1 of 1

Project Number:

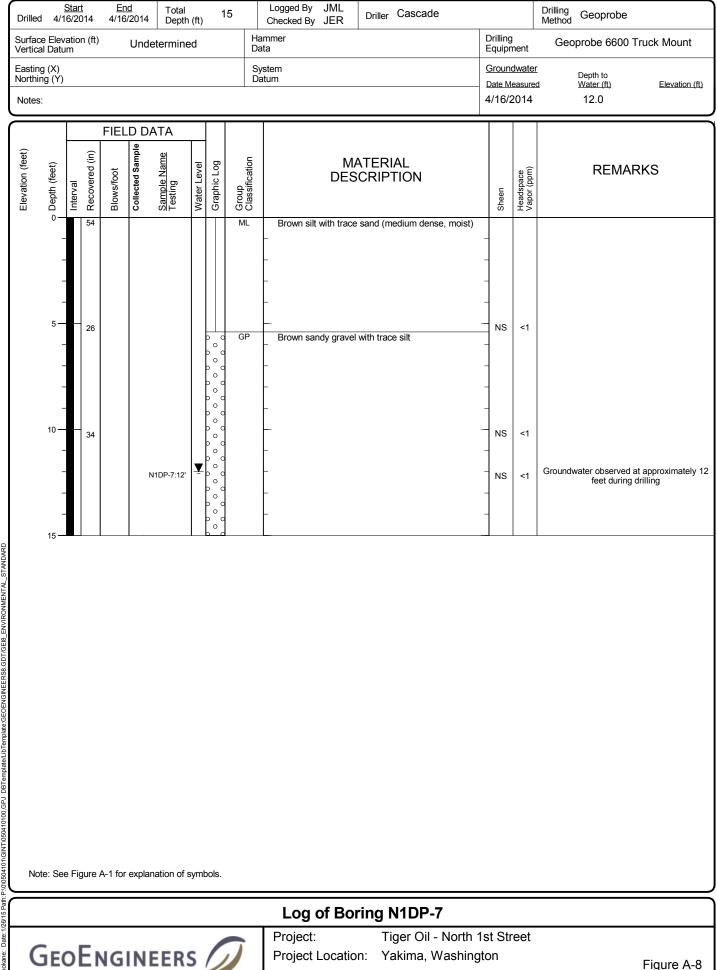

Yakima, Washington

0504-101-00

ENVIRONMENTAL SEOENGINEERS8.GDT/GEI8 0504101/GINT\050410100.GPJ Pat kane: Date:

GEOENGINEERS

Figure A-6 Sheet 1 of 1

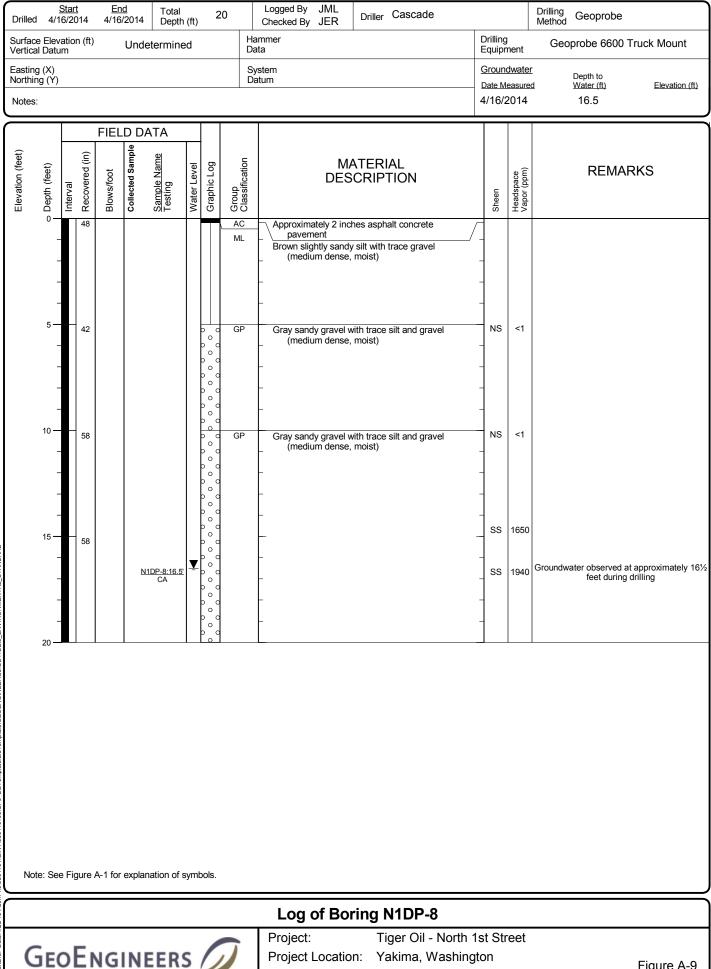

Project Number:

Yakima, Washington

0504-101-00

STANDARD GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_ 0504101/GINT\050410100.GPJ DBTemplate/LibTerr Pat kane: Date:

Figure A-7 Sheet 1 of 1

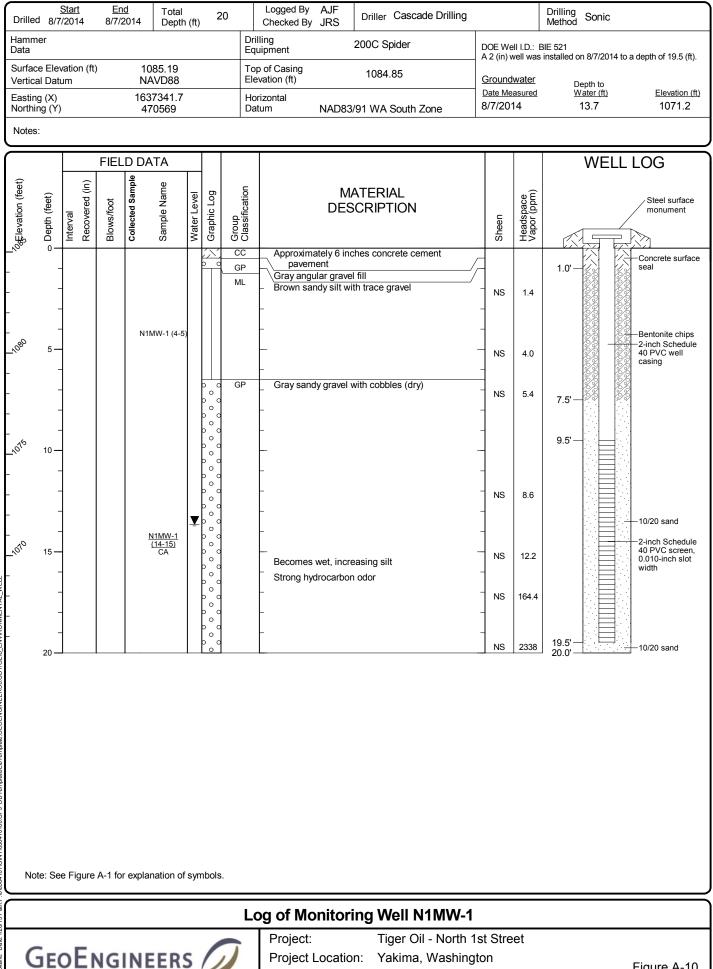

Project Number:

Yakima, Washington

0504-101-00

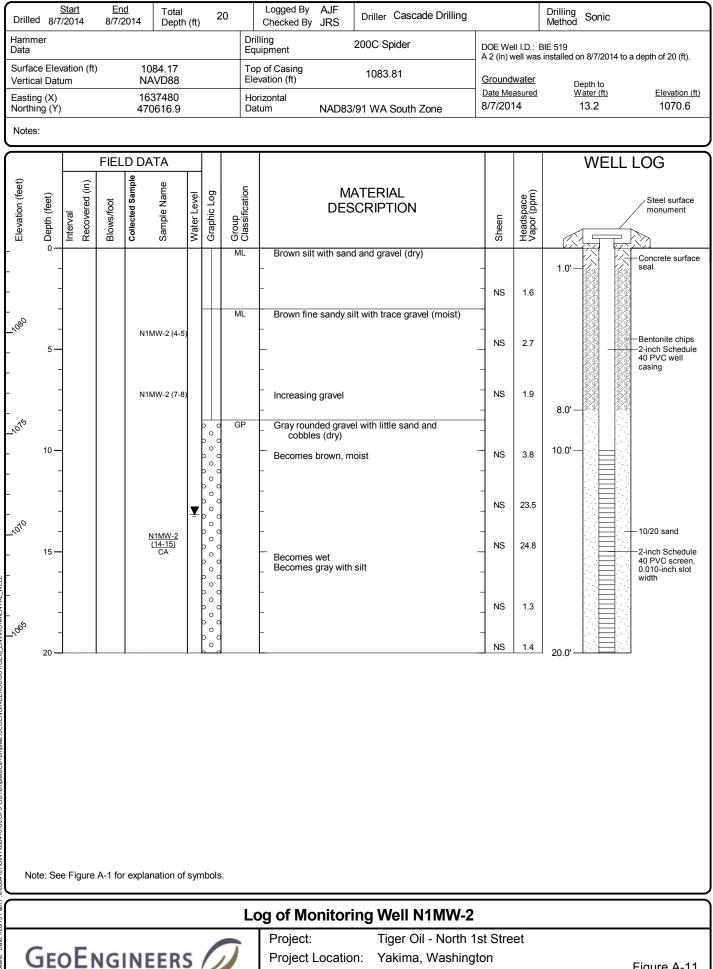
GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_ 0504101/GINT\050410100.GPJ DBTemplate/LibTerr Pat kane: Date:

Figure A-8 Sheet 1 of 1



0504-101-00

Project Number:


Figure A-9 Sheet 1 of 1

ENVIRONMENTAL SEOENGINEERS8.GDT/GEI8 BB 0504101/GINT\050410100.GPJ Pat kane: Date:

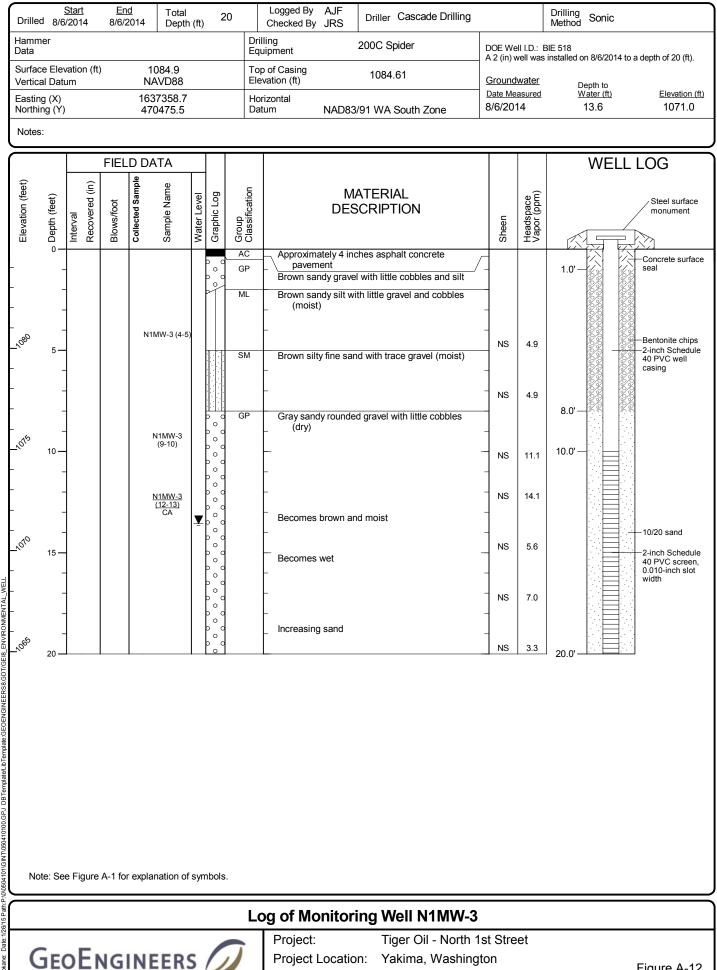

0504-101-00

Figure A-10 Sheet 1 of 1

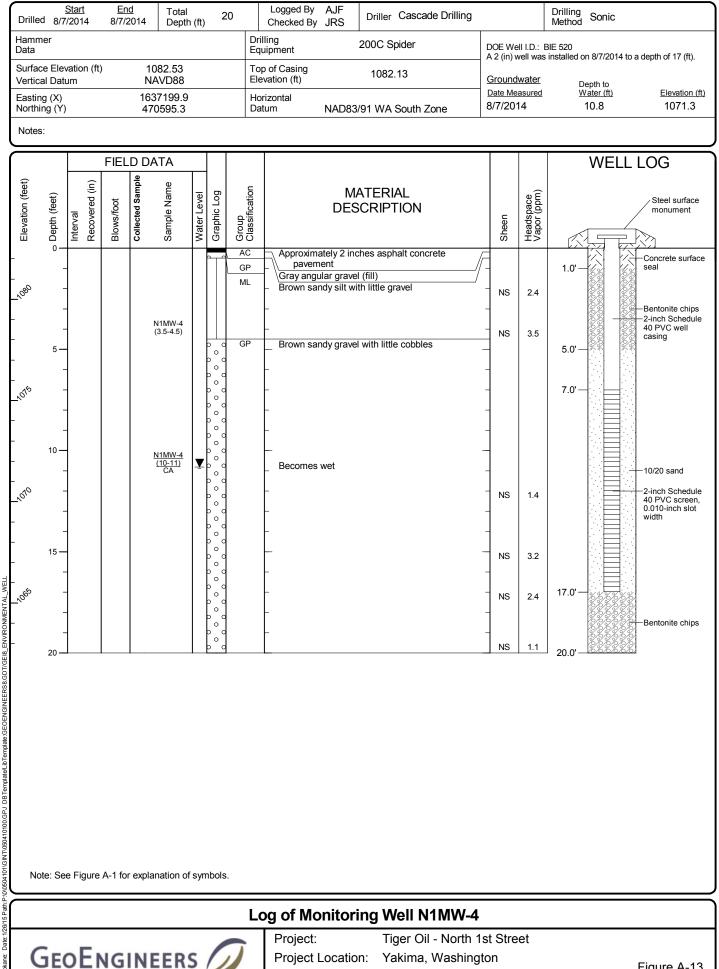
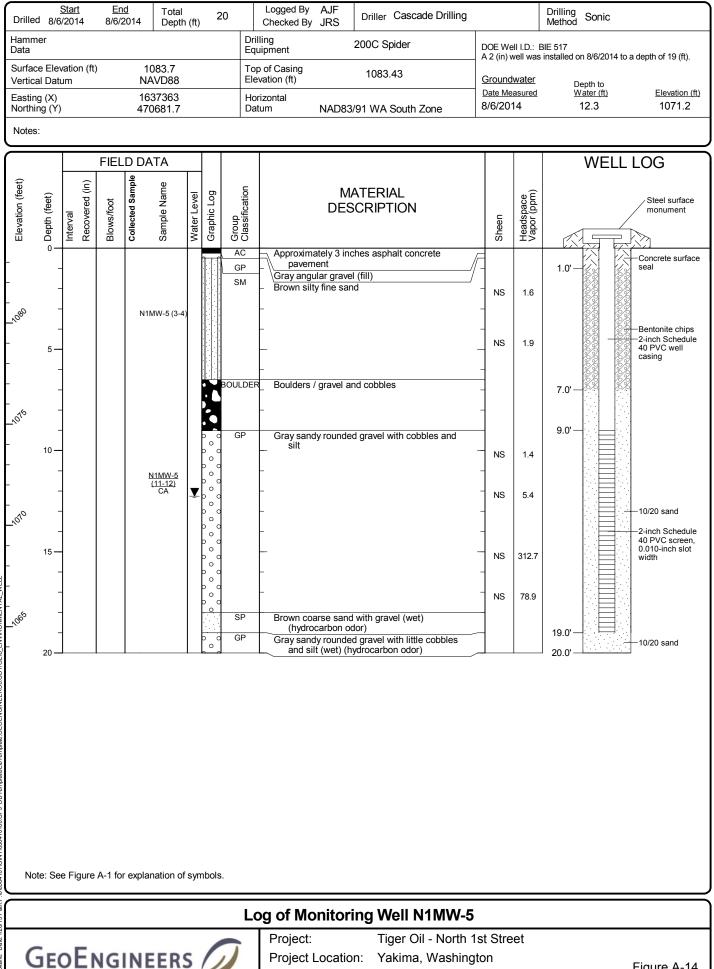

0504-101-00

Figure A-11 Sheet 1 of 1

0504-101-00


Figure A-12 Sheet 1 of 1

ENVIRONMENTAL DB Template/I N050410100.GPJ okane: Date:

Project Number: 0504-101-00

Figure A-13 Sheet 1 of 1

0504-101-00

Figure A-14 Sheet 1 of 1

APPENDIX B Laboratory Reports

APPENDIX B LABORATORY REPORTS

Samples

COC procedures were followed during the transport of the field samples to the accredited analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results and quality control records are included in this appendix.

The laboratory maintains an internal quality assurance/quality control (QA/QC) program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report.

CHEMICAL ANALYTICAL LABORATORY REPORT AND DATA VALIDATION

General

This report documents the results of an EPA-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the 2014 sampling events, and the associated laboratory and field QC samples. The samples were obtained from the Tiger Oil, North 1st Street site located at 1808 North 1st Street in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers conducted the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits less than applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The QA/QC procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data package completeness
- Chain-of-custody documentation
- Holding times and sample preservation

- Surrogate recoveries
- Method blanks
- Matrix spikes/matrix spike duplicates
- Laboratory control samples/laboratory control sample duplicates
- Laboratory and field duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table B-1.

TABLE B-1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
SXD0109	041614:N1DP-1:12, 041614:N1DP-2:14.5, 041614:N1DP-3:14.5, 041614:N1DP-3:15, 041614:N1DP-4:16, 041614:N1DP-8:16.5, 041614:N1DP-1:GW, 041614:N1DP-2:GW, 041614:N1DP-3:GW, 041614:N1DP-4:GW, 041614:N1DP-5:GW, 041614:N1DP-6:GW, 041614:N1DP-7:GW, 041614:N1DP-8:GW
SXH0070	N1MW-1 (14-15'), N1MW-2 (14-15'), N1MW-3 (12-13'), N1MW-4 (10-11'), N1MW-5 (11-12), Duplicate 3
SXI0128	MW-1-091814, MW-2-091814, MW-3-091814, MW-4-091814, MW-5-091814, MW-Dup- 091814

CHEMICAL ANALYSIS PERFORMED

TestAmerica, located in Spokane, Washington, performed laboratory analysis on the soil and groundwater samples using one or more of the following methods:

- HCID (NWTPH-HCID) using Method NWTPH-HCID;
- Petroleum Hydrocarbons (NWTPH-Dx) using Method NWTPH-Dx;
- Petroleum Hydrocarbons with Silica Gel (SG) Cleanup (NWTPH-Dx/SG) using Method NWTPH-Dx/SG;
- GRPH (NWTPH-Gx) using Method NWTPH-Gx;
- BTEX, MTBE and EDC using Method SW8260C;
- VOCs using Method SW8260C;
- Naphthalene and PAHs using Method SW8270D-SIM;
- Total Metals using Method EPA6010C;
- Anions using Method EPA300.0; and
- TOC using Method SM5310C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory appears to have followed adequate corrective action processes; however, the laboratory analytical report does not contain a case narrative.

Chain-of-Custody Documentation

COC forms were provided with the laboratory analytical report. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exception noted below.

SDG SXD0109: The sample cooler temperature recorded at the laboratory was 12.7 degrees Celsius. The samples were put on ice when they were collected (April 16, 2014) and ice was added the day they were received by the laboratory (April 17, 2014). It was determined through professional judgment that since the samples were received by the laboratory within 24 hours after the samples were collected, this temperature should not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG SXD0109: (NWTPH-HCID) The percent recoveries for surrogates 4-bromofluorobenzene and 2-fluorobiphenyl recovered outside the control limits in Samples 041614:N1DP-1:GW, 041614:N1DP-2:GW, 041614:N1DP-4:GW, 041614:N1DP-6:GW, and 041614:N1DP-7:GW. The positive results and reporting limits for gasoline-, diesel-, and heavy oil-range hydrocarbons were qualified as estimated (J/UJ) in these samples.

The percent recovery for surrogate 4-bromofluorobenzene recovered outside the control limits in Samples 041614:N1DP-3:GW, 041614:N1DP-5:GW, and 041614:N1DP-8:16.5. The positive results and reporting limits for gasoline-range hydrocarbons were qualified as estimated (J/UJ) in these samples.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were greater than the reporting limits in any of the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if any element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/laboratory control sample duplicate (LCSD) control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the

laboratory documents. For inorganic analyses, the RPD control limit 20 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exception:

SDG SXD0109: (NWTPH-HCID) Two laboratory duplicate analyses were performed with RPD values that exceeded the control limit. The samples were not associated with the samples in this SDG. For this reason, no action was required for these outliers.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 20 percent.

SDG SXH0070: One field duplicate sample pair, N1MW-1 (14-15') and Duplicate 3, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair.

SDG SXI0128: One field duplicate sample pair, MW-1-091814 and MW-Dup-091814, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair, with the exception of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene. The positive results for 1-methylnaphthalene, 2-methylnaphthalene were qualified as estimated (J) in these samples.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

All data are acceptable for the intended use, with the following qualifications listed below in Table B-2.

TABLE B-2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier
041614:N1DP-1:GW	GRPH DRPH ORPH	n) 1 1
041614:N1DP-2:GW	GRPH DRPH ORPH	ר רח רח
041614:N1DP-3:GW	GRPH	J

Sample ID	Analyte	Qualifier
041614:N1DP-4:GW	GRPH DRPH ORPH	רח ר רח
041614:N1DP-5:GW	GRPH	UJ
041614:N1DP-6:GW	GRPH DRPH ORPH	רח רח רח
041614:N1DP-7:GW	GRPH DRPH ORPH	רח רח רח
041614:N1DP-8:16.5	GRPH	J
MW-1-091814	1-methylnaphthalene 2-methylnaphthalene Naphthalene	ר ר ר
MW-Dup-091814	1-methylnaphthalene 2-methylnaphthalene Naphthalene	ר ר ר

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

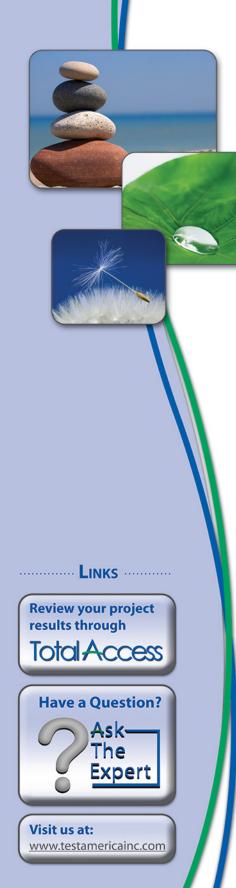
TestAmerica Job ID: SXD0109

Client Project/Site: 0504-101-00 Client Project Description: Tiger Oil- North 1st

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: JR Sugalski


Canque Arrington

Authorized for release by: 4/30/2014 2:58:38 PM

Randee Arrington, Project Manager (509)924-9200 Randee.Arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	16
Chronicle	22
Certification Summary	
Method Summary	
Chain of Custody	28

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

TestAmerica Job ID: SXD0109

.ab Sample ID	Client Sample ID	Matrix	Collected	Received
SXD0109-02	041614:N1DP-1:GW	Water	04/16/14 09:55	04/17/14 13:0
SXD0109-03	041614:N1DP-1:12	Soil	04/16/14 09:25	04/17/14 13:0
SXD0109-04	041614:N1DP-2:14.5	Soil	04/16/14 10:25	04/17/14 13:0
SXD0109-05	041614:N1DP-2:GW	Water	04/16/14 10:55	04/17/14 13:0
SXD0109-06	041614:N1DP-3:14.5	Soil	04/16/14 12:55	04/17/14 13:0
XD0109-07	041614:N1DP-3:15	Soil	04/16/14 13:10	04/17/14 13:0
XD0109-08	041614:N1DP-3:GW	Water	04/16/14 13:35	04/17/14 13:0
XD0109-09	041614:N1DP-4:16	Soil	04/16/14 14:15	04/17/14 13:0
XD0109-10	041614:N1DP-4:GW	Water	04/16/14 14:30	04/17/14 13:0
XD0109-12	041614:N1DP-5:GW	Water	04/16/14 15:20	04/17/14 13:0
XD0109-14	041614:N1DP-6:GW	Water	04/16/14 08:55	04/17/14 13:0
XD0109-16	041614:N1DP-7:GW	Water	04/16/14 07:55	04/17/14 13:0
XD0109-17	041614:N1DP-8:16.5	Soil	04/16/14 16:05	04/17/14 13:0
XD0109-18	041614:N1DP-8:GW	Water	04/16/14 16:30	04/17/14 13:0

TestAmerica Spokane

Qualifiers

Fuels		Λ
Qualifier	Qualifier Description	-
Z6	Surrogate recovery was below acceptance limits.	5
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.	5
Z3	The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.	
S6	Sediment present.	
Z	Due to sample matrix effects, the surrogate recovery was below the acceptance limits.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	<u>c</u>
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Date Collected: 04/16/14 09:55

Date Received: 04/17/14 13:00

Gasoline Range Hydrocarbons

Diesel Range Hydrocarbons

Heavy Oil Range Hydrocarbons

Analyte

Client Sample ID: 041614:N1DP-1:GW

Method: NWTPH-HCID - Hydrocarbon

Matrix: Water

Dil Fac

1.0

1.0

1.0

1.0

1.0

1.0

Dil Fac

Lab Sample ID: SXD0109-02

Analyzed

04/18/14 15:17

04/18/14 15:17

Analyzed

04/18/14 15:17

04/18/14 15:17

04/18/14 15:17

04/18/14 08:26 04/18/14 15:17

D

Prepared

04/18/14 08:26

04/18/14 08:26

Prepared

04/18/14 08:26

04/18/14 08:26

04/18/14 08:26

	ł))
	ć)	
4			
			5

Lab Sample ID: SXD0109-03

Date Collected: 04/16/14 09:25 Date Received: 04/17/14 13:00								Mat Percent Soli	rix: Soil ds: 93.9
_									
Method: EPA 8260C - Volatile (Inds by EP Qualifier	A Method 8260C RL		Unit	D	Prepared	Analyzad	Dil Fac
Analyte Methyl tert-butyl ether	<u></u>	Quaimer	0.0630	WDL	mg/kg dry	- -	04/18/14 07:55	Analyzed	10.0
			0.0525			æ	04/18/14 07:55	04/18/14 10:42	10.0
Benzene Toluene	0.220 ND		1.05		mg/kg dry mg/kg dry	æ	04/18/14 07:55	04/18/14 10:42	10.0
1,2-Dichloroethane (EDC)	ND		1.05		mg/kg dry	**	04/18/14 07:55	04/18/14 10:42	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	96.2		42.4 - 163				04/18/14 07:55	04/18/14 10:42	10.0
1,2-dichloroethane-d4	99.6		50 - 150				04/18/14 07:55	04/18/14 10:42	10.0
Toluene-d8	93.3		45.8 - 155				04/18/14 07:55	04/18/14 10:42	10.0
4-bromofluorobenzene	112		41.5 - 162				04/18/14 07:55	04/18/14 10:42	10.0
Method: EPA 8260C - Volatile (Analyte	-	Inds by EP Qualifier	A Method 8260C RL		Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	67.6	Quaimer	- <u>- 10.5</u>		mg/kg dry	- -	04/18/14 07:55	04/18/14 18:10	100
			42.0		mg/kg dry	æ	04/18/14 07:55	04/18/14 18:10	100
m,p-Xylene	299					æ			
o-Xylene	84.8		21.0		mg/kg dry		04/18/14 07:55	04/18/14 18:10	100
Xylenes (total)	384		63.0		mg/kg dry	246	04/18/14 07:55	04/18/14 18:10	
									100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	100 Dil Fac
Surrogate Dibromofluoromethane	% Recovery 95.7	Qualifier	Limits 42.4 - 163				Prepared	Analyzed 04/18/14 18:10	
		Qualifier					<u> </u>		Dil Fac
Dibromofluoromethane	95.7		42.4 - 163				04/18/14 07:55	04/18/14 18:10	Dil Fac
Dibromofluoromethane 1,2-dichloroethane-d4			42.4 - 163 50 - 150				04/18/14 07:55 04/18/14 07:55	04/18/14 18:10 04/18/14 18:10	Dil Fac 100 100
Dibromofluoromethane 1,2-dichloroethane-d4 Toluene-d8 4-bromofluorobenzene	95.7 109 93.2 99.2		42.4 - 163 50 - 150 45.8 - 155 41.5 - 162				04/18/14 07:55 04/18/14 07:55 04/18/14 07:55	04/18/14 18:10 04/18/14 18:10 04/18/14 18:10	Dil Fac 100 100 100
Dibromofluoromethane 1,2-dichloroethane-d4 Toluene-d8 4-bromofluorobenzene Method: NWTPH-Gx - Gasoline	95.7 109 93.2 99.2 99.2		42.4 - 163 50 - 150 45.8 - 155 41.5 - 162	MDL	Unit	D	04/18/14 07:55 04/18/14 07:55 04/18/14 07:55 04/18/14 07:55	04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 04/18/14 18:10	Dil Fac 100 100 100
Dibromofluoromethane 1,2-dichloroethane-d4 Toluene-d8 4-bromofluorobenzene	95.7 109 93.2 99.2 99.2	by NWTPH	42.4 - 163 50 - 150 45.8 - 155 41.5 - 162	MDL	Unit mg/kg dry	D	04/18/14 07:55 04/18/14 07:55 04/18/14 07:55	04/18/14 18:10 04/18/14 18:10 04/18/14 18:10	Dil Fac 100 100 100 100
Dibromofluoromethane 1,2-dichloroethane-d4 Toluene-d8 4-bromofluorobenzene Method: NWTPH-Gx - Gasoline Analyte	95.7 109 93.2 99.2 • Hydrocarbons I Result	by NWTPH Qualifier	42.4 - 163 50 - 150 45.8 - 155 41.5 - 162 -Gx RL	MDL			04/18/14 07:55 04/18/14 07:55 04/18/14 07:55 04/18/14 07:55 Prepared	04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 04/18/14 18:10	Dil Fac 100 100 100 100 Dil Fac
Dibromofluoromethane 1,2-dichloroethane-d4 Toluene-d8 4-bromofluorobenzene Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	95.7 109 93.2 99.2 • Hydrocarbons I Result 6200	by NWTPH Qualifier	42.4 - 163 50 - 150 45.8 - 155 41.5 - 162 -Gx RL 525	MDL			04/18/14 07:55 04/18/14 07:55 04/18/14 07:55 04/18/14 07:55 Prepared 04/18/14 07:55	04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 04/18/14 18:10	Dil Fac 100 100 100 100 100 Dil Fac
Dibromofluoromethane 1,2-dichloroethane-d4 Toluene-d8 4-bromofluorobenzene Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate	95.7 109 93.2 99.2 • Hydrocarbons I Result 6200 %Recovery	by NWTPH Qualifier	42.4 - 163 50 - 150 45.8 - 155 41.5 - 162 -Gx RL 525 Limits	MDL			04/18/14 07:55 04/18/14 07:55 04/18/14 07:55 04/18/14 07:55 04/18/14 07:55 Prepared Prepared	04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 04/18/14 18:10 Analyzed Analyzed	Dil Fac 100 100 100 100 100 Dil Fac Dil Fac

Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.04		ug/kg dry	<u></u>	04/21/14 15:28	04/22/14 11:43	1.00

TestAmerica Spokane

Identification by NWTPH-HCID										
Result	Qualifier	RL	MDL	Unit						
1.0	S6	0.62		mg/l						
1.0	S6	0.62		mg/l						
ND	S6	0.62		mg/l						

Surrogate	%Recovery	Qualifier	Limits
4-BFB (FID)	30.2	S6 Z6	50 - 150
2-FBP	45.2	S6 Z6	50 - 150
p-Terphenyl-d14	71.1	S6	50 - 150

Client Sample ID: 041614:N1DP-1:12

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0630	mg/kg dry	¢	04/18/14 07:55	04/18/14 10:42	10.0
Benzene	0.220		0.0525	mg/kg dry	☆	04/18/14 07:55	04/18/14 10:42	10.0
Toluene	ND		1.05	mg/kg dry	¢	04/18/14 07:55	04/18/14 10:42	10.0
1,2-Dichloroethane (EDC)	ND		1.05	mg/kg dry	¢	04/18/14 07:55	04/18/14 10:42	10.0

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane	96.2		42.4 - 163	-	04/18/14 07:55	04/18/14 10:42	10.0
1,2-dichloroethane-d4	99.6		50 - 150		04/18/14 07:55	04/18/14 10:42	10.0
Toluene-d8	93.3		45.8 - 155		04/18/14 07:55	04/18/14 10:42	10.0
4-bromofluorobenzene	112		41.5 - 162		04/18/14 07:55	04/18/14 10:42	10.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	67.6		10.5		mg/kg dry	\	04/18/14 07:55	04/18/14 18:10	100
m,p-Xylene	299		42.0		mg/kg dry	¢	04/18/14 07:55	04/18/14 18:10	100
o-Xylene	84.8		21.0		mg/kg dry	¢	04/18/14 07:55	04/18/14 18:10	100
Xylenes (total)	384		63.0		mg/kg dry	¢.	04/18/14 07:55	04/18/14 18:10	100

Toluene-d8	93.2	45.8 - 155	04/18/14 07:55
4-bromofluorobenzene	99.2	41.5 - 162	04/18/14 07:55

RL

0.516

0.516

0.516

RL

23.3

Limits

36.3 - 152

MDL Unit

MDL Unit

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

Date Received: 04/17/14 13:00

Analyte

Naphthalene

Surrogate

Analyte

Nitrobenzene-d5

2-Methylnaphthalene

1-Methylnaphthalene

Diesel Range Hydrocarbons

Client Sample ID: 041614:N1DP-1:12 Date Collected: 04/16/14 09:25

Lab Sample ID: SXD0109-03

Analyzed

04/24/14 15:27

04/24/14 15:27

04/24/14 15:27

Analyzed

04/24/14 15:27

Analyzed

04/22/14 18:15

Prepared

04/24/14 13:00

04/24/14 13:00

04/24/14 13:00

Prepared

04/24/14 13:00

Prepared

04/22/14 09:22

D ₽

₽

☆

D

Matrix: Soil

Dil Fac

20.0

20.0

20.0

Dil Fac

20.0

Percent Solids: 93.9

5
8
0

	O
Dil Fac	9
1.00	
1.00	

Heavy Oil Range Hydrocarbons	ND		58.3	mg/kg dry	¢	04/22/14 09:22	04/22/14 18:15	1.00			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
o-Terphenyl	106		50 - 150			04/22/14 09:22	04/22/14 18:15	1.00			
n-Triacontane-d62	99.9		50 - 150			04/22/14 09:22	04/22/14 18:15	1.00			
Method: NWTPH-HCID - Hydrod	Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID										

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	460		38		mg/kg dry	\$	04/18/14 15:46	04/18/14 22:54	1.0
Diesel Range Hydrocarbons	750		94		mg/kg dry	¢	04/18/14 15:46	04/18/14 22:54	1.0
Heavy Oil Range Hydrocarbons	ND		94		mg/kg dry	¢	04/18/14 15:46	04/18/14 22:54	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)			50 - 150				04/18/14 15:46	04/18/14 22:54	1.0
2-FBP	110		50 - 150				04/18/14 15:46	04/18/14 22:54	1.0
p-Terphenyl-d14	60.3		50 - 150				04/18/14 15:46	04/18/14 22:54	1.0

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Result Qualifier

9.18

18.6

8.97

92.0

728

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

%Recovery Qualifier

Result Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.25		1.33		mg/kg dry	— 🌣	04/28/14 13:31	04/29/14 17:35	1.00

Client Sample ID: 041614:N1DP-2:14.5
Date Collected: 04/16/14 10:25

Date Received: 04/17/14 13:00

Lab Sample ID: SXD0109-04 Matrix: Soil Percent Solids: 96.2

Organic Compou	nds by EP	A Method 8260C	;					
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.00561		mg/kg dry	<u></u>	04/18/14 07:55	04/18/14 11:04	1.00
0.0140		0.00468		mg/kg dry	₽	04/18/14 07:55	04/18/14 11:04	1.00
ND		0.0936		mg/kg dry	₽	04/18/14 07:55	04/18/14 11:04	1.00
0.693		0.0936		mg/kg dry	¢	04/18/14 07:55	04/18/14 11:04	1.00
1.02		0.374		mg/kg dry	₽	04/18/14 07:55	04/18/14 11:04	1.00
ND		0.187		mg/kg dry	₽	04/18/14 07:55	04/18/14 11:04	1.00
ND		0.0936		mg/kg dry	¢	04/18/14 07:55	04/18/14 11:04	1.00
1.02		0.561		mg/kg dry	¢	04/18/14 07:55	04/18/14 11:04	1.00
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
94.3		42.4 - 163				04/18/14 07:55	04/18/14 11:04	1.00
90.0		50 _ 150				04/18/14 07:55	04/18/14 11:04	1.00
95.3		45.8 - 155				04/18/14 07:55	04/18/14 11:04	1.00
116		41.5 - 162				04/18/14 07:55	04/18/14 11:04	1.00
	Result ND 0.0140 ND 0.693 1.02 ND 1.02 %Recovery 94.3 90.0 95.3	Result Qualifier ND 0.0140 ND 0.693 1.02 ND ND 0.102 ND 0.0140 ND 0.693 1.02 ND 90.0 95.3	Result Qualifier RL ND 0.00561 0.0140 0.00468 ND 0.0936 0.693 0.0936 1.02 0.374 ND 0.187 ND 0.0936 1.02 0.561 %Recovery Qualifier Limits 94.3 42.4 - 163 90.0 50 - 150 95.3 45.8 - 155	ND 0.00561 0.0140 0.00468 ND 0.0936 0.693 0.0936 1.02 0.374 ND 0.187 ND 0.0936 1.02 0.361 %Recovery Qualifier Limits 94.3 42.4 - 163 90.0 50 - 150 95.3 45.8 - 155	Result Qualifier RL MDL Unit ND 0.00561 mg/kg dry mg/kg dry 0.0140 0.00468 mg/kg dry ND 0.0936 mg/kg dry 0.693 0.0936 mg/kg dry 1.02 0.374 mg/kg dry ND 0.187 mg/kg dry ND 0.0936 mg/kg dry ND 0.187 mg/kg dry ND 0.0936 mg/kg dry ND 0.187 mg/kg dry ND 0.0936 mg/kg dry 0.0936 mg/kg dry mg/kg dry ND 0.0936 mg/kg dry 0.0936 mg/kg dry mg/kg dry 0.0936 mg/kg dry mg/kg dry 94.3 42.4 - 163 90.0 95.3 45.8 - 155 5	Result Qualifier RL MDL Unit D ND 0.00561 mg/kg dry 3 0.0140 0.00468 mg/kg dry 3 ND 0.0936 mg/kg dry 3 0.693 0.0936 mg/kg dry 3 1.02 0.374 mg/kg dry 3 ND 0.187 mg/kg dry 3 ND 0.0936 mg/kg dry 3 ND 0.187 mg/kg dry 3 ND 0.0936 mg/kg dry 3 1.02 0.561 mg/kg dry 3 94.3 42.4 - 163 90.0 50 - 150 95.3 45.8 - 155 5 5	Result Qualifier RL MDL Unit D Prepared ND 0.00561 mg/kg dry 0/4/18/14 07:55 0/4/18/14 07:55 0/4/18/14 07:55 0.0140 0.00468 mg/kg dry 0/4/18/14 07:55 0/4/18/14 07:55 ND 0.0936 mg/kg dry 0/4/18/14 07:55 0/4/18/14 07:55 0.693 0.0936 mg/kg dry 0/4/18/14 07:55 1.02 0.374 mg/kg dry 0/4/18/14 07:55 ND 0.187 mg/kg dry 0/4/18/14 07:55 ND 0.187 mg/kg dry 0/4/18/14 07:55 ND 0.0936 mg/kg dry 0/4/18/14 07:55 ND 0.0936 mg/kg dry 0/4/18/14 07:55 ND 0.0936 mg/kg dry 0/4/18/14 07:55 1.02 0.561 mg/kg dry 0/4/18/14 07:55 90.0 50.150 0/4/18/14 07:55 95.3 45.8 - 155 0/4/18/14 07:55	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.00561 mg/kg dry 3 04/18/14 07:55 04/18/14 11:04 0.0140 0.00468 mg/kg dry 3 04/18/14 07:55 04/18/14 11:04 ND 0.0936 mg/kg dry 3 04/18/14 07:55 04/18/14 11:04 0.693 0.0936 mg/kg dry 3 04/18/14 07:55 04/18/14 11:04 1.02 0.374 mg/kg dry 3 04/18/14 07:55 04/18/14 11:04 ND 0.187 mg/kg dry 3 04/18/14 07:55 04/18/14 11:04 ND 0.0936 mg/kg dry 3 04/18/14 07:55 04/18/14 11:04 ND 0.187 mg/kg dry 3 04/18/14 11:04 04/18/14 07:55 04/18/14 11:04 ND 0.0936 mg/kg dry 3 04/18/14 11:04 04/18/14 07:55 04/18/14 11:04 ND 0.0936 mg/kg dry 3 04/18/14 11:04 04/18/14 07:55 04/18/14 11:04 <t< td=""></t<>

TestAmerica Spokane

RL

RL

46.8

Limits

42.4 - 163

45.8 - 155

41.5 - 162

MDL Unit

mg/kg dry

D

₽

Prepared

04/18/14 07:55

Prepared

04/18/14 07:55

04/18/14 07:55

04/18/14 07:55

Prepared

Client Sample ID: 041614:N1DP-2:14.5 Date Collected: 04/16/14 10:25

Method: EPA 8011 - EDB by EPA Method 8011

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Date Received: 04/17/14 13:00

Gasoline Range Hydrocarbons

Analyte

Surrogate

Toluene-d8

Dibromofluoromethane

4-bromofluorobenzene

Lab Sample ID: SXD0109-04

Analyzed

04/18/14 18:33

Analyzed

04/18/14 18:33

04/18/14 18:33

04/18/14 18:33

Analyzed

Matrix: Soil

Dil Fac

Dil Fac

10.0

10.0

10.0

10.0

Dil Fac 1.00

Dil Fac 1.00 1.00 1.00

Dil Fac

Percent Solids: 96.2

8		
		8
	Ì	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
1,2-Dibromoethane	ND		0.936		ug/kg dry	¢	04/21/14 15:28	04/22/14 12:19
Method: EPA 8270D - Polynuclear		mpounds by Qualifier	y GC/MS with S RL	elected		ing D	Prepared	Analvzed
Naphthalene	ND		0.0193		mg/kg dry	- -	04/24/14 13:00	04/24/14 15:48
2-Methylnaphthalene	0.466		0.0193		mg/kg dry	¢	04/24/14 13:00	04/24/14 15:48
1-Methylnaphthalene	0.242		0.0193		mg/kg dry	₽	04/24/14 13:00	04/24/14 15:48

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Nitrobenzene-d5	92.0		36.3 - 152	04/24/14 13:00	04/24/14 15:48	1.00
2							

Method: NWTPH-Dx - Semivolati	le Petroleum P	roducts by	NWTPH-DX						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		19.7		mg/kg dry	\$	04/22/14 09:22	04/22/14 18:38	1.00
Heavy Oil Range Hydrocarbons	ND		49.3		mg/kg dry	¢	04/22/14 09:22	04/22/14 18:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98.0		50 - 150				04/22/14 09:22	04/22/14 18:38	1.00
n-Triacontane-d62	109		50 - 150				04/22/14 09:22	04/22/14 18:38	1.00

Method: NWTPH-HCID - H	ydrocarbon Identification by NWTPH	HCID		
Analyte	Result Qualifier	RL	MDL Unit	D

Result Qualifier

Qualifier

613

95.5

95.8

105

%Recovery

Gasoline Range Hydrocarbons	ND	36	mg/kg dry	\$	04/18/14 15:46	04/18/14 23:20	1.0
Diesel Range Hydrocarbons	ND	89	mg/kg dry	¢	04/18/14 15:46	04/18/14 23:20	1.0
Heavy Oil Range Hydrocarbons	ND	89	mg/kg dry	¢	04/18/14 15:46	04/18/14 23:20	1.0
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate 4-BFB (FID)	93.6 Qualifier	Limits 50 - 150			Prepared	Analyzed	Dil Fac

Method: EPA 6010C - Metals Conte	ent by EPA 60	10/7000 Se	ries Methods	s, Prep by E	PA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.14		1.27		mg/kg dry	¢	04/28/14 13:31	04/29/14 17:52	1.00

Client Sample ID: 041614:N1DP-2:GW	Lab Sample ID: SXD0109-05
Date Collected: 04/16/14 10:55	Matrix: Water
Date Received: 04/17/14 13:00	

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Hydrocarbons	ND	S6	0.62		mg/l		04/18/14 08:26	04/18/14 15:43	1.0	
Diesel Range Hydrocarbons	ND	S6	0.62		mg/l		04/18/14 08:26	04/18/14 15:43	1.0	

TestAmerica Spokane

Client Sample ID: 041614:N1DP-2:GW Date Collected: 04/16/14 10:55

Date Received: 04/17/14 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heavy Oil Range Hydrocarbons	0.67	S6	0.62		mg/l		04/18/14 08:26	04/18/14 15:43	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)		S6 Z6	50 - 150				04/18/14 08:26	04/18/14 15:43	1.0
2-FBP	28.4	S6 Z6	50 - 150				04/18/14 08:26	04/18/14 15:43	1.0
p-Terphenyl-d14	86.2	S6	50 - 150				04/18/14 08:26	04/18/14 15:43	1.0

Client Sample ID: 041614:N1DP-3:14.5

Date Collected: 04/16/14 12:55

Date Received: 04/17/14 13:00

4-bromofluorobenzene

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C										
	Analyte	Result	Qualifier	rl Mdi	L Unit	D	Prepared	Analyzed	Dil Fac	
	Methyl tert-butyl ether	ND	0.04	75	mg/kg dry	\$	04/18/14 07:55	04/18/14 11:27	10.0	
	Benzene	0.166	0.03	96	mg/kg dry	¢	04/18/14 07:55	04/18/14 11:27	10.0	
	Toluene	3.94	0.7	91	mg/kg dry	¢	04/18/14 07:55	04/18/14 11:27	10.0	
	1,2-Dichloroethane (EDC)	ND	0.7	91	mg/kg dry	¢	04/18/14 07:55	04/18/14 11:27	10.0	

Surrogate	%Recovery	Qualifier	Limits	Prepar	ed	Analyzed	Dil Fac
Dibromofluoromethane	93.3		42.4 - 163	04/18/14 (07:55	04/18/14 11:27	10.0
1,2-dichloroethane-d4	92.7		50 - 150	04/18/14 (07:55	04/18/14 11:27	10.0
Toluene-d8	97.6		45.8 - 155	04/18/14 (07:55	04/18/14 11:27	10.0
4-bromofluorobenzene	114		41.5 - 162	04/18/14 (07:55	04/18/14 11:27	10.0

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C - RE1

102

	no organno oompoe								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	59.1		7.91		mg/kg dry	¢	04/18/14 07:55	04/18/14 18:55	100
m,p-Xylene	256		31.7		mg/kg dry	¢	04/18/14 07:55	04/18/14 18:55	100
o-Xylene	99.5		15.8		mg/kg dry	¢	04/18/14 07:55	04/18/14 18:55	100
Xylenes (total)	356		47.5		mg/kg dry	₿	04/18/14 07:55	04/18/14 18:55	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		42.4 - 163				04/18/14 07:55	04/18/14 18:55	100
1,2-dichloroethane-d4	100		50 - 150				04/18/14 07:55	04/18/14 18:55	100
Toluene-d8	99.4		45.8 - 155				04/18/14 07:55	04/18/14 18:55	100

41.5 - 162

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	4170		396		mg/kg dry	<u>Å</u>	04/18/14 07:55	04/18/14 18:55	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		42.4 _ 163				04/18/14 07:55	04/18/14 18:55	100
Toluene-d8	99.4		45.8 - 155				04/18/14 07:55	04/18/14 18:55	100
4-bromofluorobenzene	102		41.5 - 162				04/18/14 07:55	04/18/14 18:55	100
Method: EPA 8011 - EDB by El	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.992		ug/kg dry	¢	04/21/14 15:28	04/22/14 12:31	1.00

100

5

TestAmerica Job ID: SXD0109

Matrix: Water

Matrix: Soil

Percent Solids: 93.8

Lab Sample ID: SXD0109-05

Lab Sample ID: SXD0109-06

04/18/14 07:55 04/18/14 18:55

Client Sample ID: 041614:N1DP-3:14.5 Date Collected: 04/16/14 12:55 Date Received: 04/17/14 13:00

Lab Sample ID: SXD0109-06

5

Matrix: Soil

Percent Solids: 93.8

8
0

Method: EPA 8270D - Polynucl			•						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	17.6		0.466		mg/kg dry	<u>Å</u>	04/24/14 13:00	04/24/14 16:10	20.0
2-Methylnaphthalene	24.6		0.466		mg/kg dry	¢	04/24/14 13:00	04/24/14 16:10	20.0
1-Methylnaphthalene	11.7		0.466		mg/kg dry	¢	04/24/14 13:00	04/24/14 16:10	20.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	104		36.3 - 152				04/24/14 13:00	04/24/14 16:10	20.0
Method: NWTPH-Dx - Semivola	itile Petroleum P	Products by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	544		20.8		mg/kg dry	¢	04/22/14 09:22	04/22/14 18:38	1.00
Heavy Oil Range Hydrocarbons	ND		52.0		mg/kg dry	₽	04/22/14 09:22	04/22/14 18:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	92.7		50 - 150				04/22/14 09:22	04/22/14 18:38	1.00
n-Triacontane-d62	99.7		50 - 150				04/22/14 09:22	04/22/14 18:38	1.00
Method: NWTPH-HCID - Hydro	carbon Identifica	ation by NW	TPH-HCID						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	1600		41		mg/kg dry	₽	04/18/14 15:46	04/18/14 23:20	1.0
Diesel Range Hydrocarbons	810		100		mg/kg dry	¢	04/18/14 15:46	04/18/14 23:20	1.0
Heavy Oil Range Hydrocarbons	ND		100		mg/kg dry	¢	04/18/14 15:46	04/18/14 23:20	1.(
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-BFB (FID)	148		50 - 150				04/18/14 15:46	04/18/14 23:20	1.
2-FBP	101		50 - 150				04/18/14 15:46	04/18/14 23:20	1.0
p-Terphenyl-d14	96.8		50 - 150				04/18/14 15:46	04/18/14 23:20	1.
Method: EPA 6010C - Metals C	ontent by EPA 6	010/7000 Se	eries Methods, I	Prep by I	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.15		1.21		mg/kg dry	<u></u>	04/28/14 13:31	04/29/14 17:55	1.00
Client Sample ID: 041614:N	I1DP-3:15						Lab Sam	ple ID: SXD0	109-07
Date Collected: 04/16/14 13:10									rix: Soi
Date Received: 04/17/14 13:00								Percent Soli	ds: 90.8
- Method: EPA 8260C - Volatile C	Organic Compou	inds by EPA	A Method 8260C	;					
Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.00673		mg/kg dry	<u></u>	04/18/14 07:55	04/18/14 11:49	1.00
Benzene	0.0392		0.00561		mg/kg dry	₽	04/18/14 07:55	04/18/14 11:49	1.00
Toluene	2.28		0.112		mg/kg dry	¢	04/18/14 07:55	04/18/14 11:49	1.0
1,2-Dichloroethane (EDC)	ND		0.112		mg/kg dry	¢.	04/18/14 07:55	04/18/14 11:49	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	86.5		42.4 - 163				04/18/14 07:55	04/18/14 11:49	1.0

Method: EPA 8260C - Volatile (Organic Compounds by	EPA Method 8260C - R	E1		
4-bromofluorobenzene	114	41.5 - 162	04/18/14 07:55	04/18/14 11:49	1.00
Toluene-d8	97.8	45.8 - 155	04/18/14 07:55	04/18/14 11:49	1.00
1,2-dichloroethane-d4	89.9	50 - 150	04/18/14 07:55	04/18/14 11:49	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	14.4		2.24		mg/kg dry	¢	04/18/14 07:55	04/18/14 19:18	20.0
m,p-Xylene	59.0		8.97		mg/kg dry	₽	04/18/14 07:55	04/18/14 19:18	20.0

TestAmerica Spokane

RL

4.48

13.5

Limits

42.4 - 163

50 - 150

45.8 - 155

41.5 - 162

MDL Unit

mg/kg dry

mg/kg dry

D

₽

φ

Prepared

04/18/14 07:55

04/18/14 07:55

Prepared

04/18/14 07:55

04/18/14 07:55

04/18/14 07:55

04/18/14 07:55

Client Sample ID: 041614:N1DP-3:15 Date Collected: 04/16/14 13:10

Date Received: 04/17/14 13:00

Analyte

o-Xylene

Surrogate

Toluene-d8

Xylenes (total)

Dibromofluoromethane

1,2-dichloroethane-d4

4-bromofluorobenzene

Analyzed

04/18/14 19:18

04/18/14 19:18

Analyzed

04/18/14 19:18

04/18/14 19:18

04/18/14 19:18

04/18/14 19:18

Lab Sample ID: SXD0109-07

3 4

Matrix: Soil

Dil Fac

20.0

20.0

20.0

20.0

20.0

20.0

Dil Fac

Percent Solids: 90.8

5 6 7

7 8 0

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	904		112		mg/kg dry	¢	04/18/14 07:55	04/18/14 19:18	20.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	97.1		42.4 - 163				04/18/14 07:55	04/18/14 19:18	20.0
Toluene-d8	101		45.8 - 155				04/18/14 07:55	04/18/14 19:18	20.0
4-bromofluorobenzene	97.2		41.5 - 162				04/18/14 07:55	04/18/14 19:18	20.0

Method: EPA 8011 - EDB by EPA Method 8011

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	0.998	ug/kg dry	₽	04/21/14 15:28	04/22/14 12:43	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C - RE1 (Continued)

21.8

80.8

97.1

102

101

97.2

%Recovery Qualifier

Result Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	10.1		0.458		mg/kg dry	×	04/24/14 13:00	04/24/14 16:31	20.0
2-Methylnaphthalene	14.6		0.458		mg/kg dry	☆	04/24/14 13:00	04/24/14 16:31	20.0
1-Methylnaphthalene	6.89		0.458		mg/kg dry	¢	04/24/14 13:00	04/24/14 16:31	20.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	88.0		36.3 - 152				04/24/14 13:00	04/24/14 16:31	20.0

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	365		21.9		mg/kg dry	\	04/22/14 09:22	04/24/14 17:24	1.00
Heavy Oil Range Hydrocarbons	255		54.8		mg/kg dry	¢	04/22/14 09:22	04/24/14 17:24	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate o-Terphenyl	<u>%Recovery</u> 84.0	Qualifier	Limits				Prepared	Analyzed 04/24/14 17:24	Dil Fac 1.00

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	920		37		mg/kg dry	\$	04/18/14 15:46	04/18/14 23:45	1.0
Diesel Range Hydrocarbons	430		91		mg/kg dry	₽	04/18/14 15:46	04/18/14 23:45	1.0
Heavy Oil Range Hydrocarbons	600		91		mg/kg dry	¢	04/18/14 15:46	04/18/14 23:45	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	134		50 - 150				04/18/14 15:46	04/18/14 23:45	1.0
2-FBP	94.0		50 - 150				04/18/14 15:46	04/18/14 23:45	1.0
p-Terphenyl-d14	91.0		50 - 150				04/18/14 15:46	04/18/14 23:45	1.0

TestAmerica Spokane

Client Sample ID: 041614:N1DP-3:15

Date Collected: 04/16/14 13:10 Date Received: 04/17/14 13:00

Date Received: 04/17/14 13:00								Percent Soli	ds: 90.8
	ent by EPA 60)10/7000 Se	ries Method	s, Prep by I	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.12		2.73		mg/kg dry	\	04/28/14 13:31	04/30/14 10:47	2.00

Client Sample ID: 041614:N1DP-3:GW

Date Collected: 04/16/14 13:35

Date Received: 04/17/14 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	11	S6	0.62		mg/l		04/18/14 08:26	04/18/14 15:43	1.0
Diesel Range Hydrocarbons	5.4	S6	0.62		mg/l		04/18/14 08:26	04/18/14 15:43	1.0
Heavy Oil Range Hydrocarbons	7.2	S6	0.62		mg/l		04/18/14 08:26	04/18/14 15:43	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	46.8	S6 Z6	50 _ 150				04/18/14 08:26	04/18/14 15:43	1.0
2-FBP	51.0	S6	50 _ 150				04/18/14 08:26	04/18/14 15:43	1.0
p-Terphenyl-d14	96.9	S6	50 - 150				04/18/14 08:26	04/18/14 15:43	1.0

Client Sample ID: 041614:N1DP-4:16 Date Collected: 04/16/14 14:15 Date Received: 04/17/14 13:00

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac Ť Methyl tert-butyl ether ND 0.00532 04/18/14 07:55 04/18/14 12:11 mg/kg dry 1.00 ₽ 04/18/14 12:11 Benzene 0.0111 0.00443 mg/kg dry 04/18/14 07:55 1.00 Toluene ND 0.0886 mg/kg dry ₽ 04/18/14 07:55 04/18/14 12:11 1.00 ¢ 0.0886 04/18/14 07:55 04/18/14 12:11 Ethylbenzene 0.592 mg/kg dry 1.00 m,p-Xylene 0.728 0.355 mg/kg dry Å 04/18/14 07:55 04/18/14 12:11 1.00 o-Xylene ND 0.177 ₽ 04/18/14 07:55 04/18/14 12:11 1.00 mg/kg dry ö 1,2-Dichloroethane (EDC) ND 0.0886 mg/kg dry 04/18/14 07:55 04/18/14 12:11 1.00 ₽ 04/18/14 07:55 04/18/14 12:11 0.532 mg/kg dry 1.00 **Xylenes (total)** 0.742 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane 42.4 - 163 04/18/14 07:55 04/18/14 12:11 94.7 1.00 1,2-dichloroethane-d4 88.8 50 - 150 04/18/14 07:55 04/18/14 12:11 1.00 Toluene-d8 98.8 45.8 - 155 04/18/14 07:55 04/18/14 12.11 1 00 4-bromofluorobenzene 122 41.5 - 162 04/18/14 07:55 04/18/14 12:11 1.00

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	415		4.43	,	mg/kg dry	¢	04/18/14 07:55	04/18/14 12:11	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	94.7		42.4 - 163				04/18/14 07:55	04/18/14 12:11	1.00
Toluene-d8	98.8		45.8 - 155				04/18/14 07:55	04/18/14 12:11	1.00
4-bromofluorobenzene	122		41.5 - 162				04/18/14 07:55	04/18/14 12:11	1.00
_ Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.931		ug/kg dry	¤ ₽	04/21/14 15:28	04/22/14 12:55	1.00

TestAmerica Spokane

Lab Sample ID: SXD0109-07

Lab Sample ID: SXD0109-08

Lab Sample ID: SXD0109-09

Matrix: Soil

Matrix: Water

Matrix: Soil

Percent Solids: 93.6

Date Collected: 04/16/14 14:15

Date Received: 04/17/14 13:00

Client Sample ID: 041614:N1DP-4:16

TestAmerica Job ID: SXD0109

Lab Sample ID: SXD0109-09

Matrix: Soil

Percent Solids: 93.6

	5
	8
	9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		0.409		mg/kg dry	¢	04/24/14 13:00	04/24/14 16:52	20.
2-Methylnaphthalene	1.61		0.409		mg/kg dry	¢	04/24/14 13:00	04/24/14 16:52	20.
1-Methylnaphthalene	0.710		0.409		mg/kg dry	₽	04/24/14 13:00	04/24/14 16:52	20.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	72.0		36.3 - 152				04/24/14 13:00	04/24/14 16:52	20.
Method: NWTPH-Dx - Semivolat	ile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	107		20.5		mg/kg dry	¢	04/22/14 09:22	04/25/14 11:02	1.0
Heavy Oil Range Hydrocarbons	277		51.4		mg/kg dry	¢	04/22/14 09:22	04/25/14 11:02	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
p-Terphenyl			50 _ 150				04/22/14 09:22	04/25/14 11:02	1.0
n-Triacontane-d62	98.7		50 - 150				04/22/14 09:22	04/25/14 11:02	1.0
Method: NWTPH-HCID - Hydroc Analyte		tion by NV Qualifier	VTPH-HCID RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		40		mg/kg dry	¢	04/18/14 15:46	04/18/14 23:45	1.
Diesel Range Hydrocarbons	ND		100		mg/kg dry	¢	04/18/14 15:46	04/18/14 23:45	1.
Heavy Oil Range Hydrocarbons	270		100		mg/kg dry	☆	04/18/14 15:46	04/18/14 23:45	1.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-BFB (FID)			50 _ 150				04/18/14 15:46	04/18/14 23:45	1.
2-FBP	102		50 - 150				04/18/14 15:46	04/18/14 23:45	1.
p-Terphenyl-d14	100		50 - 150				04/18/14 15:46	04/18/14 23:45	1.
Method: EPA 6010C - Metals Co	ntent by EPA 6	010/7000 S	eries Methods, I	Prep by I	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	3.51		1.38		mg/kg dry	Å	04/28/14 13:31	04/29/14 18:12	1.0
lient Sample ID: 041614:N	1DP-4:GW						Lab Sam	ple ID: SXD0	109-1(

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		0.61		mg/l		04/18/14 08:26	04/18/14 16:09	1.0
Diesel Range Hydrocarbons	0.79		0.61		mg/l		04/18/14 08:26	04/18/14 16:09	1.0
Heavy Oil Range Hydrocarbons	ND		0.61		mg/l		04/18/14 08:26	04/18/14 16:09	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	39.5	Z6	50 - 150				04/18/14 08:26	04/18/14 16:09	1.0
2-FBP	45.0	Z6	50 - 150				04/18/14 08:26	04/18/14 16:09	1.0
p-Terphenyl-d14	87.4		50 - 150				04/18/14 08:26	04/18/14 16:09	1.0

Client Sample ID: 041614:N1DP-5:GW Date Collected: 04/16/14 15:20

Date Received: 04/17/14 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND	S6	0.62		mg/l		04/18/14 08:26	04/18/14 16:09	1.0
Diesel Range Hydrocarbons	ND	S6	0.62		mg/l		04/18/14 08:26	04/18/14 16:09	1.0
Heavy Oil Range Hydrocarbons	1.7	S6	0.62		mg/l		04/18/14 08:26	04/18/14 16:09	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	0.570	S6 Z6	50 - 150				04/18/14 08:26	04/18/14 16:09	1.0
2-FBP	57.0	S6	50 - 150				04/18/14 08:26	04/18/14 16:09	1.0
p-Terphenyl-d14	89.6	S6	50 - 150				04/18/14 08:26	04/18/14 16:09	1.0

Client Sample ID: 041614:N1DP-6:GW

Date Collected: 04/16/14 08:55

Date Received: 04/17/14 13:00

Method: NWTPH-HCID - Hydro	carbon Identifica	ation by NW	TPH-HCID						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		0.61		mg/l		04/18/14 08:26	04/18/14 16:35	1.0
Diesel Range Hydrocarbons	ND		0.61		mg/l		04/18/14 08:26	04/18/14 16:35	1.0
Heavy Oil Range Hydrocarbons	ND		0.61		mg/l		04/18/14 08:26	04/18/14 16:35	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)		Z6	50 - 150				04/18/14 08:26	04/18/14 16:35	1.0
2-FBP	6.22	Z6	50 _ 150				04/18/14 08:26	04/18/14 16:35	1.0
p-Terphenyl-d14	93.9		50 - 150				04/18/14 08:26	04/18/14 16:35	1.0

Client Sample ID: 041614:N1DP-7:GW

Date Collected: 04/16/14 07:55

Date Received: 04/17/14 13:00

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		0.61		mg/l		04/18/14 08:26	04/18/14 16:35	1.0
Diesel Range Hydrocarbons	ND		0.61		mg/l		04/18/14 08:26	04/18/14 16:35	1.0
Heavy Oil Range Hydrocarbons	ND		0.61		mg/l		04/18/14 08:26	04/18/14 16:35	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	13.7	Z6	50 - 150				04/18/14 08:26	04/18/14 16:35	1.0
2-FBP	23.8	Z6	50 _ 150				04/18/14 08:26	04/18/14 16:35	1.0
p-Terphenyl-d14	82.7		50 - 150				04/18/14 08:26	04/18/14 16:35	1.0

Client Sample ID: 041614:N1DP-8:16.5 Date Collected: 04/16/14 16:05 Date Received: 04/17/14 13:00

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C							
Analyte	Result Qualifi	ier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.555	mg/kg dry	<u></u>	04/18/14 07:55	04/18/14 12:33	100
Benzene	3.19	0.462	mg/kg dry	₽	04/18/14 07:55	04/18/14 12:33	100
Toluene	378	9.25	mg/kg dry	₽	04/18/14 07:55	04/18/14 12:33	100
Ethylbenzene	386	9.25	mg/kg dry	¢	04/18/14 07:55	04/18/14 12:33	100
1,2-Dichloroethane (EDC)	ND	9.25	mg/kg dry	☆	04/18/14 07:55	04/18/14 12:33	100

TestAmerica Spokane

Lab Sample ID: SXD0109-12 Matrix: Water

5

Lab Sample ID: SXD0109-14 Matrix: Water

Lab Sample ID: SXD0109-16

Matrix: Water

Matrix: Soil

Percent Solids: 93.2

Lab Sample ID: SXD0109-17

CI Da Da

5

Client Sample ID: 041614:N1	DP-8:16.5						Lab Sam	ple ID: SXD0	109-17
Date Collected: 04/16/14 16:05									rix: Soil
Date Received: 04/17/14 13:00								Percent Soli	ds: 93.2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	90.2	Guunner	42.4 - 163				04/18/14 07:55	04/18/14 12:33	100
1.2-dichloroethane-d4	94.9		50 - 150				04/18/14 07:55	04/18/14 12:33	100
Toluene-d8	96.5		45.8 - 155				04/18/14 07:55	04/18/14 12:33	100
4-bromofluorobenzene	107		41.5 <u>-</u> 162				04/18/14 07:55	04/18/14 12:33	100
_ Method: EPA 8260C - Volatile Org	nanic Compou	nds by FP	A Method 82600	- RF1					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	1990		370		mg/kg dry	— —	04/18/14 07:55	04/18/14 19:40	1000
o-Xylene	678		185		mg/kg dry	¢	04/18/14 07:55	04/18/14 19:40	1000
Xylenes (total)	2660		555		mg/kg dry	₽	04/18/14 07:55	04/18/14 19:40	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	97.5		42.4 - 163				04/18/14 07:55	04/18/14 19:40	1000
1,2-dichloroethane-d4	104		50 - 150				04/18/14 07:55	04/18/14 19:40	1000
Toluene-d8	99.2		45.8 - 155				04/18/14 07:55	04/18/14 19:40	1000
4-bromofluorobenzene	101		41.5 - 162				04/18/14 07:55	04/18/14 19:40	1000
- Methods NW/TDU Cyc. Coopline U			C **						
Method: NWTPH-Gx - Gasoline H Analyte	-	Qualifier	-GX RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons			462		mg/kg dry	— ¤	04/18/14 07:55	04/18/14 12:33	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	90.2		42.4 - 163				04/18/14 07:55	04/18/14 12:33	100
Toluene-d8	96.5		45.8 - 155				04/18/14 07:55	04/18/14 12:33	100
4-bromofluorobenzene	107		41.5 - 162				04/18/14 07:55	04/18/14 12:33	100
_ Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.976		ug/kg dry	<u></u>	04/21/14 15:28	04/22/14 13:08	1.00
_ Method: EPA 8270D - Polynuclea	r Aromatic Co	mpounds	bv GC/MS with S	Selected	Ion Monito	rina			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	30.3		1.28		mg/kg dry	— —	04/24/14 13:00	04/24/14 17:14	50.0
2-Methylnaphthalene	46.1		1.28		mg/kg dry	¢	04/24/14 13:00	04/24/14 17:14	50.0
1-Methylnaphthalene	20.9		1.28		mg/kg dry	☆	04/24/14 13:00	04/24/14 17:14	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	140		36.3 - 152				04/24/14 13:00	04/24/14 17:14	50.0
Method: NWTPH-Dx - Semivolatil	e Petroleum P	roducts by	/ NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	748		19.2		mg/kg dry	<u></u>	04/22/14 09:22	04/22/14 19:23	1.00
Heavy Oil Range Hydrocarbons	ND		47.9		mg/kg dry	¢	04/22/14 09:22	04/22/14 19:23	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150				04/22/14 09:22	04/22/14 19:23	1.00
n-Triacontane-d62	109		50 - 150				04/22/14 09:22	04/22/14 19:23	1.00
_ Method: NWTPH-HCID - Hydroca	rbon Identifica	ation by NV	VTPH-HCID						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	5400		41		mg/kg dry	\\\\	04/18/14 15:46	04/19/14 00:11	1.0
Diesel Range Hydrocarbons	2300		100		mg/kg dry	¢	04/18/14 15:46	04/19/14 00:11	1.0

Client Sample ID: 041614:N1DP-8:16.5 Date Collected: 04/16/14 16:05

Date Received: 04/17/14 13:00

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heavy Oil Range Hydrocarbons	ND		100		mg/kg dry	<u></u>	04/18/14 15:46	04/19/14 00:11	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	401	Z	50 - 150				04/18/14 15:46	04/19/14 00:11	1.0
2-FBP	92.5		50 - 150				04/18/14 15:46	04/19/14 00:11	1.0
p-Terphenyl-d14	96.6		50 - 150				04/18/14 15:46	04/19/14 00:11	1.0
_ Method: EPA 6010C - Metals C	ontent by EPA 6	010/7000 Se	eries Methods, I	Prep by	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.92		1.23		mg/kg dry	¢	04/28/14 13:31	04/29/14 18:15	1.00

Client Sample ID: 041614:N1DP-8:GW

Date Collected: 04/16/14 16:30

Date Received: 04/17/14 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	5.1		0.62		mg/l		04/18/14 08:26	04/18/14 17:00	1.0
Diesel Range Hydrocarbons	2.1		0.62		mg/l		04/18/14 08:26	04/18/14 17:00	1.0
Heavy Oil Range Hydrocarbons	1.0		0.62		mg/l		04/18/14 08:26	04/18/14 17:00	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	72.9		50 - 150				04/18/14 08:26	04/18/14 17:00	1.0
2-FBP	60.6		50 - 150				04/18/14 08:26	04/18/14 17:00	1.0
p-Terphenyl-d14	75.1		50 - 150				04/18/14 08:26	04/18/14 17:00	1.0

Lab Sample ID: SXD0109-18

TestAmerica Job ID: SXD0109

Matrix: Water

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

101

99.9

Client Sample ID: Method Blank
Prep Type: Total
Prep Batch: 14D0092 P

04/18/14 09:36

04/18/14 09:36

Client Sample ID: Lab Control Sample

04/18/14 07:55

04/18/14 07:55

6

1.00

1.00

Prep Type: Total

Matrix: Soil	
Analysis Batch:	14D0092

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.00600		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
Benzene	ND		0.00500		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
Toluene	ND		0.100		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
Ethylbenzene	ND		0.100		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
m,p-Xylene	ND		0.400		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
o-Xylene	ND		0.200		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
1,2-Dichloroethane (EDC)	ND		0.100		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
Xylenes (total)	ND		0.600		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	96.1		42.4 - 163				04/18/14 07:55	04/18/14 09:36	1.00
1,2-dichloroethane-d4	98.3		50 - 150				04/18/14 07:55	04/18/14 09:36	1.00

45.8 - 155

41.5 - 162

Lab Sample ID: 14D0092-BS1 Matrix: Soil

Analysis Batch: 14D0092

Toluene-d8

4-bromofluorobenzene

Analysis Batch: 14D0092			Spike	105	LCS				Prep Batch: 14D0092_P %Rec.
Analyte			Added		Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether			0.500	0.477		mg/kg wet		95.4	79 - 127
Benzene			0.500	0.466		mg/kg wet		93.2	75.9 - 123
Toluene			0.500	0.415		mg/kg wet		83.0	77.3 - 126
Ethylbenzene			0.500	0.434		mg/kg wet		86.9	80 - 120
m,p-Xylene			0.500	0.432		mg/kg wet		86.4	80 - 120
o-Xylene			0.500	0.434		mg/kg wet		86.9	80 - 120
Naphthalene			0.500	0.506		mg/kg wet		101	58.8 - 130
1,2-Dichloroethane (EDC)			0.500	0.521		mg/kg wet		104	60 - 140
1,2-Dibromoethane			0.500	0.478		mg/kg wet		95.7	60 - 140
Xylenes (total)			1.00	0.866		mg/kg wet		86.6	80 - 120
Hexane			0.500	0.496		mg/kg wet		99.3	50 ₋ 150
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						

Sunogale	/mecovery	Quanner	Linits
Dibromofluoromethane	98.5		42.4 - 163
1,2-dichloroethane-d4	101		50 - 150
Toluene-d8	95.7		45.8 _ 155
4-bromofluorobenzene	97.0		41.5 - 162

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 14D0092-BLK1 Matrix: Soil Analysis Batch: 14D0092									mple ID: Metho Prep Typ Prep Batch: 14D	e: Total
		Blank	Blank							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline Range Hydrocarbons	ND		5.00		mg/kg wet		04/18/14 07:55	04/18/14 09:36	1.00

2 3 4 5 6

Lab Sample ID: 14D0092-BLK1 Matrix: Soil								Client	Sample ID: Metho Prep Tyj	od Blank be: Total
Analysis Batch: 14D0092									Prep Batch: 14	D0092_P
	Bla	ank Blank	T							
Surrogate	%Recov	ery Quali	fier Limits				F	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	9	6.1	42.4 - 163	-			04/1	18/14 07:5	04/18/14 09:36	1.00
Toluene-d8		101	45.8 - 155				04/1	8/14 07:5	5 04/18/14 09:36	1.00
4-bromofluorobenzene	9	9.9	41.5 - 162				04/1	18/14 07:5	5 04/18/14 09:36	1.00
Lab Sample ID: 14D0092-BS2 Matrix: Soil Analysis Batch: 14D0092			Spike	LCS	LCS		Client	t Sampl	e ID: Lab Control Prep Tyj Prep Batch: 14 %Rec.	be: Total
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Hydrocarbons			50.0	52.2		mg/kg wet		104	74.4 - 124	
	LCS I	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	93.2		42.4 _ 163							
Toluene-d8	98.3		45.8 - 155							
4-bromofluorobenzene	99.7		41.5 - 162							

Method: EPA 8011 - EDB by	/ EPA Me	tho	d 8011											
Lab Sample ID: 14D0100-BLK1												Client S	ample ID: Meth	od Blank
Matrix: Soil														pe: Total
Analysis Batch: 14D0100													Prep Batch: 14	•
	E	Blank	Blank											_
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
1,2-Dibromoethane		ND			1.00			ug/kg	wet	_	04/2	1/14 15:28	04/22/14 11:19	1.00
Lab Sample ID: 14D0100-BS1										С	lient	Sample	ID: Lab Contro	ol Sample
Matrix: Soil													Prep Ty	/pe: Total
Analysis Batch: 14D0100													Prep Batch: 14	4D0100_P
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
1,2-Dibromoethane				5.00		5.53			ug/kg we	et		111	60 - 140	
Lab Sample ID: 14D0100-BS2										С	lient	Sample	ID: Lab Contro	ol Sample
Matrix: Soil													Prep Ty	/pe: Total
Analysis Batch: 14D0100													Prep Batch: 14	4D0100_P
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
1,2-Dibromoethane				5.00		5.95			ug/kg we	et	_	119	60 - 140	
Lab Sample ID: 14D0100-MS1											Clie	nt Samp	le ID: 041614:N	11DP-1:12
Matrix: Soil													Prep Ty	/pe: Total
Analysis Batch: 14D0100	Comple	6 a.m.	-	Cuilto	Mate	iv Caika	Matu	in Call	-				Prep Batch: 14 %Rec.	4D0100_P
Analyta	Sample Result			Spike Added	widtr	ix Spike Result					•	%Rec	%rec. Limits	
Analyte 1.2-Dibromoethane	ND	Qual		6.13		5.79	Qua	mer	Unit	,	D 	94.4	60 - 140	
	ND			0.13		5.79			ug/kg dry	<i>y</i>	244	94.4	00 - 140	

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 14D0100-MSD ⁻ Matrix: Soil Analysis Batch: 14D0100	1						Clie	nt Samp	ole ID: 0416 Pr Prep Bato	ep Type:	Total
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	ND		4.89	4.93		ug/kg dry	\ ↓	101	60 - 140	16.0	20

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Matrix: Soil										cheft S	ample ID: N Pret	o Type	
Analysis Batch: 14D0130											Prep Batch		
Analysis Batch. 1400100	E	Blank	Blank								Trop Baten	. 1400	
Analyte			Qualifier		RL	MDL	Unit			Prepared	Analyze	d	Dil Fa
Naphthalene		ND			0.0100		mg/kg	wet		24/14 13:00			1.0
2-Methylnaphthalene		ND			0.0100		mg/kg		04/	24/14 13:00	04/24/14 14	1:44	1.0
1-Methylnaphthalene		ND		(0.0100		mg/kg	wet	04/	24/14 13:00	04/24/14 14	1:44	1.00
	-	Dank	Blank										
Surrogate			Qualifier	Lin	nite					Prepared	Analyze	d	Dil Fac
Nitrobenzene-d5		85.2	Quanter	36.3						24/14 13:00			1.00
Lab Sample ID: 14D0130-BS1									Clien	t Sample	ID: Lab Co	ntrol S	ample
Matrix: Soil											Pre	о Туре	: Tota
Analysis Batch: 14D0130											Prep Batch	: 14D0	130_F
				Spike	LCS	LCS					%Rec.		
Analyte				Added	Result	Qua	lifier	Unit	D	%Rec	Limits		
Naphthalene				0.133	0.115			mg/kg wet		86.0	62.7 - 120		
	LCS	LCS											
Surrogate	%Recovery	Qual	lifier	Limits									
Nitrobenzene-d5	77.4			36.3 - 152	-								
Lab Cameria ID: 44D0400 M04													
Lab Sample ID: 14D0130-MS1 Matrix: Soil										Client	Comple ID:	Matula	Omiles
										Client	Sample ID:		-
										Client	Prep	o Type	: Tota
	Sample	Sam	ple	Spike	Matrix Spike	Matr	ix Spike	1		Client	Prep Prep Batch	o Type	: Tota
Analysis Batch: 14D0130	Sample Result			Spike Added	Matrix Spike Result		•		D		Prep Batch %Rec.	o Type	: Tota
Analysis Batch: 14D0130 Analyte	Sample Result ND			Spike Added 0.176	Matrix Spike Result		•	unit mg/kg dry	<u>D</u>	Client %Rec 86.0	Prep Prep Batch	o Type	: Tota
Analysis Batch: 14D0130 Analyte	Result ND	Qual	ifier	Added	Result		•	Unit		%Rec	Prep Prep Batch %Rec. Limits	o Type	: Tota
Analysis Batch: 14D0130 Analyte Naphthalene	Result ND Matrix Spike	Qual Matr	ifier ix Spike	Added 0.176	Result		•	Unit		%Rec	Prep Prep Batch %Rec. Limits	o Type	: Tota
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate	Result ND Matrix Spike %Recovery	Qual Matr	ifier ix Spike	Added 0.176 Limits	Result		•	Unit		%Rec	Prep Prep Batch %Rec. Limits	o Type	: Tota
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate	Result ND Matrix Spike	Qual Matr	ifier ix Spike	Added 0.176	Result		•	Unit		%Rec	Prep Prep Batch %Rec. Limits	o Type	: Tota
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate Nitrobenzene-d5	Result ND Matrix Spike %Recovery	Qual Matr	ifier ix Spike	Added 0.176 Limits	Result		•	Unit mg/kg dry	<u>*</u>	%Rec 86.0	Prep Batch %Rec. Limits 30 - 120	o Type : 14D0	: Tota 130_F
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate Nitrobenzene-d5 Lab Sample ID: 14D0130-MSD1	Result ND Matrix Spike %Recovery	Qual Matr	ifier ix Spike	Added 0.176 Limits	Result		•	Unit mg/kg dry	<u>*</u>	%Rec 86.0	Prep Batch %Rec. Limits 30 - 120	ke Du	: Tota 130_F
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate Nitrobenzene-d5 Lab Sample ID: 14D0130-MSD1 Matrix: Soil	Result ND Matrix Spike %Recovery	Qual Matr	ifier ix Spike	Added 0.176 Limits	Result		•	Unit mg/kg dry	<u>*</u>	%Rec 86.0	Prep Batch %Rec. Limits 30 - 120 P: Matrix Spi Prep	ke Du	: Tota 130_F
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate Nitrobenzene-d5 Lab Sample ID: 14D0130-MSD1 Matrix: Soil	Result ND Matrix Spike %Recovery	Qual Matr Qual	ifier	Added 0.176 <i>Limits</i> 36.3 - 152	Result	Qua	lifier	Unit mg/kg dry CI	<u>*</u>	%Rec 86.0	Prep Batch %Rec. Limits 30 - 120	ke Du	: Tota 130_F
Matrix: Soli Analysis Batch: 14D0130 Analyte Naphthalene Surrogate Nitrobenzene-d5 Lab Sample ID: 14D0130-MSD1 Matrix: Soil Analysis Batch: 14D0130 Analyte	Result ND Matrix Spike %Recovery 76.4	Qual Matr Qual	ifier ix Spike lifier	Added 0.176 <i>Limits</i> 36.3 - 152	Result	Qua	ifier ix Spike	Unit mg/kg dry CI	<u>*</u>	%Rec 86.0	Prep Batch %Rec. Limits 30 - 120 P: Matrix Spi Prep Batch	ke Du	: Tota 130_F plicate : Tota 130_F
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate Nitrobenzene-d5 Lab Sample ID: 14D0130-MSD1 Matrix: Soil Analysis Batch: 14D0130	Result ND Matrix Spike %Recovery 76.4 Sample	Qual Matr Qual	ifier ix Spike lifier	Added 0.176 <i>Limits</i> 36.3 - 152 Spike	Result 0.151	Qua Matr Qua	ifier ix Spike	Unit mg/kg dry Cl	ient S		Prep Batch %Rec. Limits 30 - 120 : Matrix Spi Prep Batch %Rec.	ke Du 7 Type 14D0 ke Du 7 Type 14D0	: Tota 130_F plicate : Tota 130_F RPI Limi
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate Nitrobenzene-d5 Lab Sample ID: 14D0130-MSD1 Matrix: Soil Analysis Batch: 14D0130 Analyte Naphthalene	Result ND Matrix Spike %Recovery 76.4 Sample Result	Qual Matr Qual Sam Qual	ifier ix Spike lifier	Added 0.176 <i>Limits</i> 36.3 - 152 Spike Added 0.179		Qua Matr Qua	ifier ix Spike	Unit mg/kg dry Cl Duț Unit	ient S	%Rec 86.0	Prep Batch %Rec. Limits 30 - 120 : Matrix Spi Prep Batch %Rec. Limits	ke Du Type Type 14D0	: Tota 130_F plicate : Tota 130_F RPD
Analysis Batch: 14D0130 Analyte Naphthalene Surrogate Nitrobenzene-d5 Lab Sample ID: 14D0130-MSD1 Matrix: Soil Analysis Batch: 14D0130 Analyte Naphthalene	Result ND Matrix Spike %Recovery 76.4 Sample Result ND	Qual Matr Qual Sam Qual Matr	ifier ix Spike lifier ple ifier	Added 0.176 <i>Limits</i> 36.3 - 152 Spike Added 0.179		Qua Matr Qua	ifier ix Spike	Unit mg/kg dry Cl Duț Unit	ient S	%Rec 86.0	Prep Batch %Rec. Limits 30 - 120 : Matrix Spi Prep Batch %Rec. Limits	ke Du Type Type 14D0	: Tota 130_F plicate : Tota 130_F RPC Limi

RL

20.0

50.0

Limits

50 - 150

50 - 150

MDL Unit

mg/kg wet

mg/kg wet

D

Prepared

04/22/14 09:22

04/22/14 09:22

Prepared

04/22/14 09:22

04/22/14 09:22

Lab Sample ID: 14D0111-BLK1

Analysis Batch: 14D0111

Diesel Range Hydrocarbons

Heavy Oil Range Hydrocarbons

Lab Sample ID: 14D0111-BS1

Matrix: Soil

Analyte

Surrogate

o-Terphenyl

n-Triacontane-d62

Matrix: Soil

Client Sample ID: Method Blank

6

Analyzed Dil Fac 04/22/14 13:19 1.00 04/22/14 13:19 1.00 **Client Sample ID: Lab Control Sample**

Dil Fac

1.00

1.00

Prep Type: Total

Prep Batch: 14D0111_P

Analyzed

04/22/14 13:19

04/22/14 13:19

Prep Type: Total Batch: 14D0111 P

Client Sample ID: Duplicate

Client Sample ID: Duplicate

Prep Type: Total

RPD

Prep Type: Total Prep Batch: 14D0111_P

RPD

RPD

Limit

40

40

Analysis Batch: 14D0111							Prep Batch	n: 14D0111_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons	66.7	65.6		mg/kg wet		98.3	73 - 133	
LCS L	cs							

	LUS	LUS	63			
Surrogate	%Recovery	Qualifier	Limits			
o-Terphenyl	105		50 - 150			
n-Triacontane-d62	87.2		50 - 150			

Lab Sample ID: 14D0111-DUP1				
Matrix: Soil				
Analysis Batch: 14D0111				
	Sample	Sample	Duplicate	Duplicate

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Blank Blank Result Qualifier

Blank Blank %Recovery Qualifier

ND

ND

105

110

	•	•	•	•				
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Diesel Range Hydrocarbons	4360		 6070		mg/kg dry	<u></u>	 32.9	40
Heavy Oil Range Hydrocarbons	8680		12000		mg/kg dry	¢	32.1	40
	Duplicato	Dunlicato						

	Duplicate	Duplicate	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	135		50 _ 150
n-Triacontane-d62	245	Z3	50 - 150

Lab Sample ID: 14D0111-DUP2 Matrix: Soil

Prep Batch: 14D0111_P Analysis Batch: 14D0111 Sample Sample Duplicate Duplicate Analyte Result Qualifier Result Qualifier Unit D ₽ Diesel Range Hydrocarbons ND ND mg/kg dry ND Ö Heavy Oil Range Hydrocarbons ND mg/kg dry Duplicate Duplicate

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	102		50 - 150
n-Triacontane-d62	97.9		50 _ 150

RL

0.63

0.63

0.63

Limits

50 - 150

50 - 150

50 - 150

MDL Unit

mg/l

mg/l

mg/l

D

Prepared

04/18/14 08:26

04/18/14 08:26

04/18/14 08:26

Prepared

04/18/14 08:26

04/18/14 08:26

04/18/14 08:26

Lab Sample ID: 14D0093-BLK1

Analysis Batch: 14D0093

Gasoline Range Hydrocarbons

Heavy Oil Range Hydrocarbons

Lab Sample ID: 14D0099-BLK1

Analysis Batch: 14D0099

Diesel Range Hydrocarbons

Matrix: Water

Analyte

Surrogate

2-FBP

4-BFB (FID)

p-Terphenyl-d14

Matrix: Soil

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID

Blank Blank

ND

ND

ND

Blank Blank

%Recovery Qualifier

33.2 Z6

40.8 Z6

87.2

Result Qualifier

Client Sample ID: Method Blank

Analyzed

04/18/14 15:17

04/18/14 15:17

04/18/14 15:17

Analyzed

04/18/14 15:17

04/18/14 15:17

04/18/14 15:17

Prep Type: Total

Dil Fac

1.00

1.00

1.00

Dil Fac

1.00

1.00

1.00

Prep Batch: 14D0093_P

2 3 4 5

5
6
8
a

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14D0099_P

Client Sample ID: Duplicate

Client Sample ID: Duplicate

Prep Type: Total

Prep Type: Total Prep Batch: 14D0099_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		40		mg/kg wet		04/18/14 15:46	04/18/14 22:54	1.00
Diesel Range Hydrocarbons	ND		100		mg/kg wet		04/18/14 15:46	04/18/14 22:54	1.00
Heavy Oil Range Hydrocarbons	ND		100		mg/kg wet		04/18/14 15:46	04/18/14 22:54	1.00
	Blank	Blank							

	Brann	Brann				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-BFB (FID)	96.0		50 - 150	04/18/14 15:46	04/18/14 22:54	1.00
2-FBP	95.1		50 - 150	04/18/14 15:46	04/18/14 22:54	1.00
p-Terphenyl-d14	92.2		50 - 150	04/18/14 15:46	04/18/14 22:54	1.00

Lab Sample ID: 14D0099-DUP1 Matrix: Soil Analysis Batch: 14D0099

	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Gasoline Range Hydrocarbons	2.17		8.80	R4	mg/kg dry	₽	 121	25
Diesel Range Hydrocarbons	6.38		12.9	R4	mg/kg dry	₽	67.9	25
Heavy Oil Range Hydrocarbons	22.9		95.5	R4	mg/kg dry	¢	123	25

	Duplicate	Duplicate	
Surrogate	%Recovery	Qualifier	Limits
4-BFB (FID)	98.3		50 - 150
2-FBP	103		50 - 150
p-Terphenyl-d14	99.0		50 _ 150

Lab Sample ID: 14D0099-DUP2 Matrix: Soil Analysis Batch: 14D0099

Analysis Batch: 14D0099								Prep Bate	ch: 14D0	099_P
	Sample	Sample	Duplic	ite D	Duplicate					RPD
Analyte	Result	Qualifier	Res	ult C	Qualifier	Unit	D		RPD	Limit
Gasoline Range Hydrocarbons	0.00		7	93 R	٦4	mg/kg dry	\$		200	25
Diesel Range Hydrocarbons	6.37		5	28 R	R4	mg/kg dry	₽		18.7	25
Heavy Oil Range Hydrocarbons	0.112		2	05 R	R4	mg/kg dry	¢		179	25

Limits

50 _ 150

50 ₋ 150 50 ₋ 150

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B

Method: NWTPH-HCID - Hydrocarbon Identification by NWTPH-HCID (Continued)

Duplicate Duplicate

%Recovery Qualifier

103

102

91.9

Lab Sample ID: 14D0099-DUP2

Lab Sample ID: 14D0146-BLK1

Analysis Batch: 14D0099

Matrix: Soil

Surrogate

2-FBP

4-BFB (FID)

p-Terphenyl-d14

Client Sample ID: Duplicate

Prep Batch: 14D0099_P

Prep Type: Total

2 3 4 5 6

	6
3050B	8
Client Sample ID: Method Blank	9
Dren Type, Total	

Matrix: Soil														pe: Total
Analysis Batch: 14D0146													Prep Batch: 14	D0146_P
	E	Blank	Blank											
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pre	pared	Analyzed	Dil Fac
Lead		ND			1.25			mg/kg	wet	C)4/28/	14 13:31	1 04/29/14 17:32	1.00
Lab Sample ID: 14D0146-BS1										Clie	ent S	Sample	e ID: Lab Contro	I Sample
Matrix: Soil													Prep Ty	pe: Total
Analysis Batch: 14D0146													Prep Batch: 14	D0146_P
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Lead				50.0		49.1			mg/kg we	et		98.2	80 - 120	
Lab Sample ID: 14D0146-MS1										с	lien	t Samp	ole ID: 041614:N	1DP-1:12
Matrix: Soil													Prep Ty	pe: Total
Analysis Batch: 14D0146													Prep Batch: 14	D0146 P
	Sample	Sam	ple	Spike	Matri	x Spike	Matr	ix Spik	e				%Rec.	- T
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Lead	4.25			54.3		54.2			mg/kg dry	y	¢	91.9	75 - 125	
										~				
Lab Sample ID: 14D0146-MSD1										C	nen	samp	ole ID: 041614:N	
Matrix: Soil													Prep Ty	pe: Total

Matrix: Soil									Pr	ep Type:	Total
Analysis Batch: 14D0146									Prep Bato	h: 14D0	146_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	4.25		54.9	54.7		mg/kg dry	₽	91.9	75 _ 125	0.947	20

Lab Sample ID: 14D0146-DUP Matrix: Soil Analysis Batch: 14D0146	1					Clie	nt Sam	ple ID: 0416 Pro Prep Bato	ep Type:	Total
	Sample	Sample	Duplicate	Duplicate						RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D			RPD	Limit
Lead	4.25		 4.47		mg/kg dry	\			5.18	20

Date Collected: 04/16/14 09:55

Date Received: 04/17/14 13:00

2 3 4 5 6 7

Lab TAL SPK TAL SPK

Lab Sample ID: SXD0109-02

Percent Solids: 93.9

	Matrix:	Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		0.98	14D0093_P	04/18/14 08:26	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0093	04/18/14 15:17	MRS	TAL SPK

Client Sample ID: 041614:N1DP-1:12 Date Collected: 04/16/14 09:25 Date Received: 04/17/14 13:00

Client Sample ID: 041614:N1DP-1:GW

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.924	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		10.0	14D0092	04/18/14 10:42	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.924	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	100	14D0092	04/18/14 18:10	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.924	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		100	14D0092	04/18/14 18:10	CBW	TAL SPK
Total	Prep	EPA 3580		0.975	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 11:43	MS	TAL SPK
Total	Prep	EPA 3550B		2.42	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		20.0	14D0130	04/24/14 15:27	MRS	TAL SPK
Total	Prep	EPA 3550B		1.09	14D0111_P	04/22/14 09:22	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14D0111	04/22/14 18:15	MRS	TAL SPK
Total	Prep	EPA 3580		0.88	14D0099_P	04/18/14 15:46	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0099	04/18/14 22:54	MRS	TAL SPK
Total	Prep	EPA 3050B		1.00	14D0146_P	04/28/14 13:31	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 17:35	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14D0116_P	04/21/14 16:32	MS	TAL SPK
Total	Analysis	TA SOP		1.00	14D0116	04/22/14 12:10	MS	TAL SPK

Client Sample ID: 041614:N1DP-2:14.5 Date Collected: 04/16/14 10:25 Date Received: 04/17/14 13:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.862	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14D0092	04/18/14 11:04	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.862	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		10.0	14D0092	04/18/14 18:33	CBW	TAL SPK
Total	Prep	EPA 3580		0.900	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 12:19	MS	TAL SPK
Total	Prep	EPA 3550B		1.86	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14D0130	04/24/14 15:48	MRS	TAL SPK
Total	Prep	EPA 3550B		0.949	14D0111_P	04/22/14 09:22	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14D0111	04/22/14 18:38	MRS	TAL SPK
Total	Prep	EPA 3580		0.85	14D0099_P	04/18/14 15:46	MS	TAL SPK

FAL SPK FAL SPK

Lab Sample ID: SXD0109-04 Matrix: Soil

Percent Solids: 96.2

Client Sample ID: 041614:N1DP-2:14.5

Date Collected: 04/16/14 10:25 Date Received: 04/17/14 13:00

Date Received	te Received: 04/17/14 13:00									
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total	Analysis	NWTPH-HCID		1.0	14D0099	04/18/14 23:20	MRS	TAL SPK		
Total	Prep	EPA 3050B		0.980	14D0146_P	04/28/14 13:31	JSP	TAL SPK		
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 17:52	ICP	TAL SPK		

Client Sample ID: 041614:N1DP-2:GW Date Collected: 04/16/14 10:55 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		0.98	14D0093_P	04/18/14 08:26	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0093	04/18/14 15:43	MRS	TAL SPK

Client Sample ID: 041614:N1DP-3:14.5 Date Collected: 04/16/14 12:55 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.680	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		10.0	14D0092	04/18/14 11:27	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.680	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	100	14D0092	04/18/14 18:55	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.680	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		100	14D0092	04/18/14 18:55	CBW	TAL SPK
Total	Prep	EPA 3580		0.930	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 12:31	MS	TAL SPK
Total	Prep	EPA 3550B		2.18	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		20.0	14D0130	04/24/14 16:10	MRS	TAL SPK
Total	Prep	EPA 3050B		0.909	14D0146_P	04/28/14 13:31	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 17:55	ICP	TAL SPK

Client Sample ID: 041614:N1DP-3:15 Date Collected: 04/16/14 13:10 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.926	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14D0092	04/18/14 11:49	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.926	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	20.0	14D0092	04/18/14 19:18	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.926	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		20.0	14D0092	04/18/14 19:18	CBW	TAL SPK
Total	Prep	EPA 3580		0.906	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 12:43	MS	TAL SPK

Matrix: Soil

TestAmerica Job ID: SXD0109

Lab Sample ID: SXD0109-04

Lab Sample ID: SXD0109-05

Matrix: Water

5

7

Lab Sample ID: SXD0109-06 Matrix: Soil

Percent Solids: 93.8

Lab Sample ID: SXD0109-07 Matrix: Soil

Percent Solids: 90.8

TestAmerica Job ID: SXD0109

5 7

Lab Sample ID: SXD0109-07

Matrix: Soil

Percent Solids: 90.8

Date Collected: 04/16/14 13:10 Date Received: 04/17/14 13:00

Client Sample ID: 041614:N1DP-3:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3550B		2.08	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		20.0	14D0130	04/24/14 16:31	MRS	TAL SPK
Total	Prep	EPA 3550B		0.995	14D0111_P	04/22/14 09:22	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14D0111	04/24/14 17:24	MRS	TAL SPK
Total	Prep	EPA 3580		0.83	14D0099_P	04/18/14 15:46	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0099	04/18/14 23:45	MRS	TAL SPK
Total	Prep	EPA 3050B		0.990	14D0146_P	04/28/14 13:31	JSP	TAL SPK
Total	Analysis	EPA 6010C		2.00	14D0146	04/30/14 10:47	ICP	TAL SPK

Client Sample ID: 041614:N1DP-4:16 Date Collected: 04/16/14 14:15 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.766	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14D0092	04/18/14 12:11	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.766	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14D0092	04/18/14 12:11	CBW	TAL SPK
Total	Prep	EPA 3580		0.872	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 12:55	MS	TAL SPK
Total	Prep	EPA 3550B		1.92	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		20.0	14D0130	04/24/14 16:52	MRS	TAL SPK
Total	Prep	EPA 3550B		0.962	14D0111_P	04/22/14 09:22	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14D0111	04/25/14 11:02	MRS	TAL SPK
Total	Prep	EPA 3050B		1.03	14D0146_P	04/28/14 13:31	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 18:12	ICP	TAL SPK

Client Sample ID: 041614:N1DP-4:GW Date Collected: 04/16/14 14:30 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		0.97	14D0093_P	04/18/14 08:26	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0093	04/18/14 16:09	MRS	TAL SPK

Client Sample ID: 041614:N1DP-6:GW Date Collected: 04/16/14 08:55 Date Received: 04/17/14 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		0.97	14D0093_P	04/18/14 08:26	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0093	04/18/14 16:35	MRS	TAL SPK

TestAmerica Spokane

Lab Sample ID: SXD0109-09 Matrix: Soil

Percent Solids: 93.6

Lab Sample ID: SXD0109-10

Lab Sample ID: SXD0109-14

Matrix: Water

Matrix: Water

Client Sample ID: 041614:N1DP-8:16.5

Date Collected: 04/16/14 16:05 Date Received: 04/17/14 13:00

Lab Sample ID: SXD0109-17

Matrix: Soil Percent Solids: 93.2

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.794	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C		100	14D0092	04/18/14 12:33	CBW	TAL SPK
Total	Prep	GC/MS Volatiles	RE1	0.794	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	EPA 8260C	RE1	1000	14D0092	04/18/14 19:40	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.794	14D0092_P	04/18/14 07:55	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		100	14D0092	04/18/14 12:33	CBW	TAL SPK
Total	Prep	EPA 3580		0.910	14D0100_P	04/21/14 15:28	MS	TAL SPK
Total	Analysis	EPA 8011		1.00	14D0100	04/22/14 13:08	MS	TAL SPK
Total	Prep	EPA 3550B		2.38	14D0130_P	04/24/14 13:00	MS	TAL SPK
Total	Analysis	EPA 8270D		50.0	14D0130	04/24/14 17:14	MRS	TAL SPK
Total	Prep	EPA 3550B		0.893	14D0111_P	04/22/14 09:22	MS	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14D0111	04/22/14 19:23	MRS	TAL SPK
Total	Prep	EPA 3580		0.95	14D0099_P	04/18/14 15:46	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0099	04/19/14 00:11	MRS	TAL SPK
Total	Prep	EPA 3050B		0.917	14D0146_P	04/28/14 13:31	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14D0146	04/29/14 18:15	ICP	TAL SPK

Client Sample ID: 041614:N1DP-8:GW Date Collected: 04/16/14 16:30 Date Received: 04/17/14 13:00

Lab	Sample	ID:	SX	D0 [,]	109·	-18

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		0.98	14D0093_P	04/18/14 08:26	MS	TAL SPK
Total	Analysis	NWTPH-HCID		1.0	14D0093	04/18/14 17:00	MRS	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

lethod	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
WTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
IWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
WTPH-HCID	Hydrocarbon Identification by NWTPH-HCID		TAL SPK
EPA 6010C	Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B		TAL SPK
A SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

<u>TestAmerica</u>

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 253-922-2310
 FAX 922-5047

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

CLEENT SAMPLAG DENTIFICATIONSAMPLING DATE TIME \mathbb{Z} <	THE LEADER IN EN	VIRONMEN	ITAL TESTIN	١G														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						C	HAIN	OF C	CUST	'ODY	REP	ORT			Work O	der #1	SXD0109_	
Spellow, UM 17202 PRIVE TAXE: T_{DV} O/1 - N/2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f REQUESTED ANALYSES CLENT SAMPLE DY: JA2/K /3 f DESTINATION SAMPLED DY: JA2/K /3 f DESTINATION SAMPLED DY: JA2/K /3 f DESTINATION DESTINATION DATE/TIME DESTINATION DESTINATION <t< td=""><td>CLIENT: (200 Ensher XS</td><td></td><td></td><td></td><td></td><td></td><td>INVOIC</td><td>E TO:</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td> 1 1</td><td>ſURNAJ</td><td>ROUND REQUES</td><td>C</td></t<>	CLIENT: (200 Ensher XS						INVOIC	E TO:				-			 1 1	ſURNAJ	ROUND REQUES	C
Spellow, UM 17202 PRIVE TAXE: T_{DV} O/1 - N/2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f REQUESTED ANALYSES CLENT SAMPLE DY: JA2/K /3 f DESTINATION SAMPLED DY: JA2/K /3 f DESTINATION SAMPLED DY: JA2/K /3 f DESTINATION DESTINATION DATE/TIME DESTINATION DESTINATION <t< td=""><td>PEROPET TO: ÌSMAAIshi' & ges</td><td>sengneers, co</td><td>ليدر</td><td></td><td></td><td></td><td></td><td>n ç</td><td></td><td></td><td>Sach</td><td>h ali</td><td></td><td></td><td></td><td>în</td><td>Business Days *</td><td></td></t<>	PEROPET TO: ÌSMAAIshi' & ges	sengneers, co	ل يدر					n ç			Sach	h ali				în	Business Days *	
Spellow, UM 17202 PRIVE TAXE: T_{DV} O/1 - N/2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f PROJECT NUMBER: 05:04 - 1/0/ - 00 SAMPLE DY: JA2/K /3 f REQUESTED ANALYSES CLENT SAMPLE DY: JA2/K /3 f DESTINATION SAMPLED DY: JA2/K /3 f DESTINATION SAMPLED DY: JA2/K /3 f DESTINATION DESTINATION DATE/TIME DESTINATION DESTINATION <t< td=""><td>ADDRESS: 573 East See</td><td>ord Are</td><td></td><td></td><td></td><td></td><td></td><td>72021</td><td>ginee</td><td>2</td><td>por</td><td>×0</td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>	ADDRESS: 573 East See	ord Are						72021	ginee	2	por	×0					-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Spokne, UA 19	202							4		-20					Etroleum	4 3 2 1 Hydrocarbon Analyses	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PHONE: 509 - 363 - 3125	FAX:	e_ 3	<u> </u>		-	P.O. NUI	MBER:				-			 			1
REQUESTED ANALYSESREQUESTED ANALYSESCLEENT SAMPLESAMPLENO DATE/TIMECLEENT SAMPLE IDENTIFICATIONSAMPLINO DATE/TIMEThe SAMPLENO DATE/TIMEThe SAMPLENO SAMPLENO DATE/TIMEThe SAMPLENO 			137							55 <u>15</u> (7741	.,				STD			-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PROJECT NUMBER: 0507 -1	101-00			l				REQUES	STED AN	ALYSES			, I;	 0	THER	Specify:	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLED BY: JML				[+								* Turnaround I	Requests les	s than standard may incur	Rush Charges.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CLIENT SAMPLE	SAM DATI	IPLING E/TIME	KTUUN XY	R	203	NWTP	SULD	EDC	981M	Wydhak	NWIPH HELLIN						TA WO ID
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1041614:N1DP-1:16	4/16/2014	0935													3	Hold	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B DHIGH MDP-1:GW		0955								:	X			 			<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3041619;N2DP-1:12	(0925	X	×	X	X	X	X	X	· ×	$\left \gamma \right $						
OYIGIN: MIDP-3;HIS IQSS × <th< td=""><td></td><td></td><td></td><td>×</td><td>×</td><td>Y</td><td>X</td><td>X</td><td>Y</td><td>X</td><td>X</td><td>X</td><td></td><td></td><td>1</td><td>3</td><td></td><td></td></th<>				×	×	Y	X	X	Y	X	X	X			1	3		
OHIGH HADD STAD OUSS I I I OHIGH HADD STAD I310 X X X X X OHIGH HADD STAD I310 X X X X X OHIGH HADD STAD I335 I X X X OHIGH HADD STAD I335 I X X X OHIGH HADD STAD I X X X OHIGH HADD STAD I X X X	041614:NIDP-2:GN		1055		L							<u> </u>			 1			
041614:N2DP-4:16 1415 × × × × × × × × × × × × × × × × × × ×	041614: NIDP-3: 45		1255	×	×	\mathbf{x}	X	X	<u>γ</u>	X	X	$\left \right\rangle$			 ·			-
041614:N2DP-4:16 1415 × × × × × × × × × × × × × × ×	041614:N1DP-3:15		13/0	Ý	X	$\boldsymbol{\chi}$	X	X	×	X	ì	X			 +	3		<u> </u>
	041614,N1DP-3:GU		/335									X			 <u> </u>			
	041614:N2DP-4:16		1915	X	×	X	X	X	X	X	X	×			 S	3		
10/169,1011-164	10041614: N1DP-4:66	V	1430							ļ					$ \omega $			
PRINT NAME: 1/036 Ler, FIRM: GRO TIME: 1300 PRINT NAME: W DIADUUT FIRM: 11 INVE: 1000	· · · · · / /	-	FIRM:	1.00			-	-		7	PRINT N		t Star	litor	 FIRM	TA	TIME:	3:05
RELEASED BY: DATE: DATE: DATE: DATE: DATE: DATE:	RELEASED BY:												7		FIRM			
PRINT NAME: FIRM: IIME: TEMP: 127 / 7	ADDITIONAL REMARKS:		FIRM:			<u> </u>	TIME	: 		· ·	I PRINT N				 	-	TEMP:	17
δ				- 							i.	<u> </u>			 			<u>e / of C</u> 1000 (0612

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

 253-922-2310
 FAX 922-5047

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

					С	HAIN	OF	CUST	rody	(REJ	PORT				Work O	rder #	SXD0109	
CLIENT: GEOENJAMES						INVOIO	E TO:			1							ROUND REQUEST	ſ
REPORT TO: JSUJA Shi Qye ADDRESS: 503 EAST Spokan Jh PHONE: 509 - 363 - 3125 PROJECT NAME: 7.50	oenymens, com						ieo Er			S 1.	_					'n	a Business Days *	
ADDRESS: Jag East	Second Are					l G	ICD G#	izine		Jouna	~L						z Inorganic Analyses	
Spokan ih	JA 99202														10 7 STD.		4 3 2 1 Hydrocarbon Analyses	<1
PHONE: 507 - 263 - 2125	FAX:	11	1			P.O. NU	MBER:		>5 <i>64</i> - ESERVA		0			· · · · ·	 			ิล
1.50	Oil - North	/57-		<u> </u>		1				·						ļĽ	3 2 1 <	1
PROJECT NUMBER: 0504 -	00-101			<u> </u>	J			REQUE	STED AI	NALYSE:	S .					THER	Specify:	
SAMPLED BY: JM2			I			H	~		1		24				* Turnaround	Requests le	ss than standard may incur I	Rush Charges
CLIENT SAMPLE IDENTIFICATION	SAMP DATE/	LING TIME	NW TPH VX	94	ROII EDB	muny XT/	2769 0969	どりく	MTBE	Nep tha long	NUTPH				MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
1041614:N1DP-5:16 2041614:N1DP-5:GL 3041614:N1DP-5:GL	4/16/2014	1500													S	3	Hold	
3 2041614:NIDP-5:GN		1520									X				$ \omega $	1		
3041614 :NIDP-6:11.5		6840								1					S	3	Hold	
.041614: MIDP-6:GL		0855									X				$ \omega $			_
041614:N1DP-7:12		0710								ļ					S	3	Hold	
.641614:NIDP-7:Gh		0755								<u> </u>	X				$ \omega $			
-041614:N1DP-8:16:	5	1605	×	×	X	X	\mathbf{x}	$\boldsymbol{\lambda}$	\times	X	$ $ \times				S	3		
:041614:NJDP-8:GL	V V	1630								-	×				$ \omega $	l		
041614:N1DP-2:15		1040								1					2	3	1-16 ld	
10							<u> </u>	1.000										<u> </u>
RELEASED BY: JEAN Z	с	firm: G	ev			DATE: TIME:	-	17-1 で)	4	PRINT	(MAV	Sta	Illon		FIRM:	TA_	date[]_ time:[3	1714 D
RELEASED BY:						DATE TIME:				RECEIV					FIRM:		DATE: TIME:	
PRINT NAME: ADDITIONAL REMARKS:		FIRM:				TIME				PRINT	varil:				FLKM:		TEMP: 12.7 PAGE	2_2
				-														.000 (0612
																		,

TestAmerica Spokane Sample Receipt Form

	Receip			A a
Work Order #SXID/09 Cilent 19050914	urs			Project: 1 10/1 (IL
Date/Time Received:44714 13,00	By			·
Samples Delivered By: Shipping Service Courier	: Öther	:		
List Air Bill Number(s) or Attach a photocopy of the Air Bill:				
Receipt Phase	Yes	No	NA	Comments
Were samples received in a cooler:	γ			
Custody Seals are present and intact:			~	
Are CoC documents present:	\geq	>		
Necessary signatures:	2			
Thermal Preservation Type: Blue Ice Gel Ice Spara Ice	Dry Ice	None	Other:_	
Temperature: 12. C Thermometer (Circle one Serial #12	2208348 K	eyring IR	Serial # 11	1874910 IR Gun 2)(acceptance criteria 0-6
	w/in 4hrs of			Other:
Log-in Phase Date/Time: リーブルト ルーの By: (人)	Yes	No	NA	Comments
Are sample labels affixed and completed for each container				
Samples containers were received intact:	\geq			
Do sample IDs match the CoC	\geq			
Appropriate sample containers were received for tests requested	\geq			
Are sample volumes adequate for tests requested	Ś			
Appropriate preservatives were used for the tests requested	\leq			
pH of Inorganic samples checked and is within method specification	\geq			
Are VOC samples free of bubbles >6mm (1/4" diameter)	7			
Are dissolved parameters field filtered			\geq	
Do any samples need to be filtered or preserved by the lab			>	
Does this project require quick turnaround analysis			`>	
Are there any short hold time tests (see chart below)			\sim	
Are any samples within 2 days of or past expiration		\geq		
Was the CoC scanned				
Were there Non-conformance issues at login	(\geq		z
If yes, was a CAR generated #		ſ	\checkmark	

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXH0070

Client Project/Site: 0504-101-00 Client Project Description: Tiger Oil- North 1st

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: JR Sugalski

tandre trington

Authorized for release by: 8/26/2014 4:21:50 PM

Randee Arrington, Project Manager (509)924-9200 Randee.Arrington@testamericainc.com

Review your project results through TOTOLACCESS Have a Question?

..... Links

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results 5	5
QC Sample Results	11
Chronicle	17
Certification Summary 2	
Method Summary	
Chain of Custody	22

Sample Summary

Matrix

Soil

Soil

Soil

Soil

Soil

Soil

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

Client Sample ID

N1MW-1 (14-15')

N1MW-2 (14-15')

N1MW-3 (12-13')

N1MW-4 (10-11')

N1MW-5 (11-12)

Duplicate 3

Lab Sample ID

SXH0070-02

SXH0070-05

SXH0070-08

SXH0070-10

SXH0070-12

SXH0070-13

TestAmerica Job ID: SXH0070

Received

08/12/14 10:35

08/12/14 10:35

08/12/14 10:35

08/12/14 10:35

08/12/14 10:35

08/12/14 10:35

Collected

08/07/14 18:10

08/07/14 09:30

08/06/14 15:15

08/07/14 14:25

08/06/14 12:10

08/07/14 08:00

3
5
8
9

Glossary

Clobbally		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	4
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	J
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	8
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	9
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

RL

0.0334

0.0167

0.111

0.111

MDL Unit

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

D

₽

₽

¢

₽

Prepared

08/13/14 07:57

08/13/14 07:57

08/13/14 07:57

08/13/14 07:57

Client Sample ID: N1MW-1 (14-15')

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Result Qualifier

ND

ND

ND

ND

Date Collected: 08/07/14 18:10 Date Received: 08/12/14 10:35

Analyte

Benzene

Toluene

Ethylbenzene

Methyl tert-butyl ether

Lab Sample ID: SXH0070-02

Analyzed

08/13/14 20:29

08/13/14 20:29

08/13/14 20:29

08/13/14 20:29

5

Matrix: Soil

Dil Fac

1.00

1.00

1.00

1.00

Percent Solids: 92.2

m,p-Xylene	ND		0.445		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:29	1.00
o-Xylene	ND		0.222		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:29	1.00
1,2-Dichloroethane (EDC)	ND		0.111		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:29	1.00
Xylenes (total)	ND		0.667		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:29	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	96.9		80 - 120				08/13/14 07:57	08/13/14 20:29	1.00
1,2-dichloroethane-d4	88.9		74.7 - 120				08/13/14 07:57	08/13/14 20:29	1.00
	107		78.5 - 125				08/13/14 07:57	08/13/14 20:29	1.00
Toluene-d8	101								
Toluene-d8 4-bromofluorobenzene Method: NWTPH-Gx - Gasoline	106	y NWTPH	69.8 - 140 - Gx				08/13/14 07:57	08/13/14 20:29	1.0
4-bromofluorobenzene	106 e Hydrocarbons t	oy NWTPH Qualifier		MDL	Unit	D	08/13/14 07:57 Prepared	08/13/14 20:29 Analyzed	
4-bromofluorobenzene Method: NWTPH-Gx - Gasoline	106 e Hydrocarbons t	-	-Gx		Unit mg/kg dry	— <mark>D</mark>			Dil Fac
4-bromofluorobenzene Method: NWTPH-Gx - Gasoline Analyte	106 e Hydrocarbons k Result	Qualifier	-Gx				Prepared	Analyzed	Dil Fa
4-bromofluorobenzene Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	106 e Hydrocarbons k Result ND	Qualifier	-Gx 				Prepared 08/13/14 07:57	Analyzed 08/13/14 20:29	Dil Fac 1.00 Dil Fac
4-bromofluorobenzene Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-bromofluorobenzene	106 e Hydrocarbons t Result ND %Recovery 106	Qualifier	-Gx 				Prepared 08/13/14 07:57 Prepared	Analyzed 08/13/14 20:29 Analyzed	Dil Fac 1.00 Dil Fac
4-bromofluorobenzene Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-bromofluorobenzene Method: EPA 8011 - EDB by E	106 e Hydrocarbons t Result ND %Recovery 106 EPA Method 8011	Qualifier Qualifier	-Gx - <u>RL</u> - <u>5.56</u> - <u>Limits</u> - 41.5 - 162		mg/kg dry	— <u>*</u>	Prepared 08/13/14 07:57 Prepared 08/13/14 07:57	Analyzed 08/13/14 20:29 Analyzed 08/13/14 20:29	Dil Fac 1.00 Dil Fac 1.00
4-bromofluorobenzene Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-bromofluorobenzene	106 e Hydrocarbons t Result ND %Recovery 106 EPA Method 8011	Qualifier	-Gx 	MDL	-		Prepared 08/13/14 07:57 Prepared	Analyzed 08/13/14 20:29 Analyzed	1.00 Dil Fac 1.00 Dil Fac 1.00 Dil Fac

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0208		mg/kg dry	\$	08/14/14 09:40	08/15/14 13:49	1.00
2-Methylnaphthalene	ND		0.0208		mg/kg dry	₽	08/14/14 09:40	08/15/14 13:49	1.00
1-Methylnaphthalene	ND		0.0208		mg/kg dry	☆	08/14/14 09:40	08/15/14 13:49	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
								•	
Nitrobenzene-d5	95.4		36.3 - 152				08/14/14 09:40	08/15/14 13:49	1.00
Nitrobenzene-d5 2-FBP	95.4 90.4		36.3 - 152 30.2 - 135				08/14/14 09:40 08/14/14 09:40	08/15/14 13:49 08/15/14 13:49	1.00 1.00

Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		10.5		mg/kg dry	¤	08/12/14 11:50	08/12/14 20:02	1.00
Heavy Oil Range Hydrocarbons	ND		26.2		mg/kg dry	¢	08/12/14 11:50	08/12/14 20:02	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	104		50 - 150				08/12/14 11:50	08/12/14 20:02	1.00
n-Triacontane-d62	99.0		50 - 150				08/12/14 11:50	08/12/14 20:02	1.00
— —									

Method: EPA 6010C - Metals Conte	ent by EPA 60)10/7000 Se	ries Methods,	Prep by E	EPA 3050B				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.31		1.34		mg/kg dry	\$	08/18/14 09:11	08/26/14 09:45	1.00

Client Sample ID: N1MW-2 (14-15') Date Collected: 08/07/14 09:30 Date Received: 08/12/14 10:35

Lab Sample ID: SXH0070-05 Matrix: Soil

Percent Solids: 93.3

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0296		mg/kg dry	\\\\\	08/13/14 07:57	08/13/14 20:52	1.00
Benzene	ND		0.0148		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:52	1.00
Toluene	ND		0.0988		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:52	1.00
Ethylbenzene	ND		0.0988		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:52	1.00
n,p-Xylene	ND		0.395		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:52	1.00
p-Xylene	ND		0.198		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:52	1.00
1,2-Dichloroethane (EDC)	ND		0.0988		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:52	1.00
Kylenes (total)	ND		0.593		mg/kg dry	¢	08/13/14 07:57	08/13/14 20:52	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	96.3		80 - 120				08/13/14 07:57	08/13/14 20:52	1.00
,2-dichloroethane-d4	86.9		74.7 - 120				08/13/14 07:57	08/13/14 20:52	1.00
Foluene-d8	104		78.5 - 125				08/13/14 07:57	08/13/14 20:52	1.00
4-bromofluorobenzene	103		69.8 - 140				08/13/14 07:57	08/13/14 20:52	1.00
Method: NWTPH-Gx - Gasoline	Hydrocarbons I	oy NWTPH	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		4.94		mg/kg dry	÷.	08/13/14 07:57	08/13/14 20:52	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-bromofluorobenzene			41.5 - 162				08/13/14 07:57	08/13/14 20:52	1.00
-		0.115	5.			_	. .		
Analyte		Qualifier	RL	MDL		— D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier		MDL	Unit ug/kg dry				
Analyte 1,2-Dibromoethane	Result		1.05		ug/kg dry	<u></u>			
Analyte I,2-Dibromoethane Method: EPA 8270D - Polynucle	ear Aromatic Co		1.05		ug/kg dry Ion Monito	ring D			1.00
Analyte I,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte	ear Aromatic Co	mpounds l	1.05 by GC/MS with S	elected	ug/kg dry Ion Monito	ring	08/14/14 14:56	08/14/14 19:31	1.00 Dil Fac
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene	ear Aromatic Co Result	mpounds l	1.05 by GC/MS with S RL	elected	ug/kg dry Ion Monito Unit	ring D	08/14/14 14:56 Prepared	08/14/14 19:31	
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Japhthalene 2-Methylnaphthalene	ear Aromatic Co Result ND ND ND ND	mpounds l	1.05 by GC/MS with S RL 0.0203	elected	ug/kg dry Ion Monitor Unit mg/kg dry	ring – D – x	08/14/14 14:56 Prepared 08/14/14 09:40	08/14/14 19:31 Analyzed 08/15/14 14:12	1.00 Dil Fac 1.00 1.00
Analyte ,2-Dibromoethane Alethod: EPA 8270D - Polynucle Analyte laphthalene -Methylnaphthalene -Methylnaphthalene	ear Aromatic Co Result Result ND ND	mpounds I Qualifier	1.05 by GC/MS with S RL 0.0203 0.0203	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — A A A	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40	08/14/14 19:31 Analyzed 08/15/14 14:12 08/15/14 14:12	1.00 Dil Fac 1.00 1.00 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Japhthalene P-Methylnaphthalene -Methylnaphthalene Surrogate	ear Aromatic Co Result ND Result ND ND ND	mpounds I Qualifier	1.05 by GC/MS with S RL 0.0203 0.0203 0.0203 0.0203	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — A A A	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	Analyzed 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12	1.00 Dil Fac 1.00 1.00 Dil Fac
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene I-Methylnaphthalene Surrogate Witrobenzene-d5	Result ND Aar Aromatic Co Result ND ND ND ND ND	mpounds I Qualifier	1.05 by GC/MS with S RL 0.0203 0.0203 0.0203 0.0203 Limits	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — A A A	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 Prepared	08/14/14 19:31 Analyzed 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 Analyzed	1.00 Dil Fac 1.00 1.00 1.00 Dil Fac
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP	ear Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	mpounds I Qualifier	1.05 by GC/MS with S RL 0.0203 0.0203 0.0203 0.0203 0.0203 1.05	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — A A A	Prepared 08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	Analyzed 08/15/14 19:31 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP 2-FBP 2-Terphenyl-d14	ear Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	mpounds I Qualifier Qualifier	1.05 by GC/MS with S RL 0.0203 0.0203 0.0203 0.0203 0.0203 1.05 0.0203 0.020	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — A A A	Prepared 08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	Analyzed 08/14/14 19:31 Analyzed 08/15/14 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Vaphthalene 2-Methylnaphthalene I-Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP D-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte	Result ND Par Aromatic Co Result ND ND ND %Recovery 90.8 96.8 133 tile Petroleum P Result Result	mpounds I Qualifier Qualifier	1.05 by GC/MS with S RL 0.0203 0.0203 0.0203 0.0203 <u>Limits</u> 36.3 - 152 30.2 - 135 65.1 - 134 NWTPH-Dx RL	elected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X	Prepared 08/14/14 14:56 Prepared 08/14/14 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	08/14/14 19:31 Analyzed 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12	1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fac
Analyte I,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene I-Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP D-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte	Result ND Par Aromatic Co Result ND ND ND ND %Recovery 90.8 96.8 133 tile Petroleum P	mpounds I Qualifier Qualifier	1.05 by GC/MS with S RL 0.0203 0.0213 0.0	elected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry	ring D x x x	Prepared 08/14/14 14:56 Prepared 08/14/14 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	Analyzed 08/14/14 19:31 Analyzed 08/15/14 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12	1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte laphthalene -Methylnaphthalene -Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP -Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons	Result ND Par Aromatic Co Result ND ND ND %Recovery 90.8 96.8 133 tile Petroleum P Result Result	mpounds I Qualifier Qualifier	1.05 by GC/MS with S RL 0.0203 0.0203 0.0203 0.0203 <u>Limits</u> 36.3 - 152 30.2 - 135 65.1 - 134 NWTPH-Dx RL	elected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X	Prepared 08/14/14 14:56 Prepared 08/14/14 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	08/14/14 19:31 Analyzed 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12	1.00 Dil Fau 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte laphthalene -Methylnaphthalene -Methylnaphthalene Surrogate Witrobenzene-d5 2-FBP b-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	Result ND Par Aromatic Co Result ND Sille Petroleum P Result ND	mpounds I Qualifier Qualifier	1.05 by GC/MS with S RL 0.0203 0.0	elected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry	ring D A A A A A A A A A A A A A A A A A A	Prepared 08/14/14 14:56 Prepared 08/14/14 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 11:50	08/14/14 19:31 Analyzed 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/12/14 20:26 08/12/14 20:26 Analyzed	1.00 Dil Fau 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fau 1.00 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Vaphthalene 2-Methylnaphthalene -Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP D-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	Result ND Par Aromatic Co Result ND ND ND ND 90.8 96.8 133 tile Petroleum P Result ND ND	mpounds I Qualifier Qualifier	1.05 by GC/MS with S RL 0.0203 0.0	elected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry	ring D A A A A A A A A A A A A A A A A A A	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/12/14 11:50 08/12/14 11:50	Analyzed 08/14/14 19:31 Analyzed 08/15/14 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/12/14 20:26	1.00 Dil Fau 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fau 1.00 Dil Fau
Analyte I,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Vaphthalene 2-Methylnaphthalene I-Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate p-Terphenyl	Result ND Par Aromatic Co Result ND Sille Petroleum P Result ND	mpounds I Qualifier Qualifier	1.05 by GC/MS with S RL 0.0203 0.02.135 65.1 - 134 NWTPH-Dx RL 10.1 25.3 Limits	elected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry	ring D A A A A A A A A A A A A A A A A A A	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/12/14 11:50 08/12/14 11:50 Prepared Prepared	08/14/14 19:31 Analyzed 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/12/14 20:26 08/12/14 20:26 Analyzed	1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fac
Method: EPA 8011 - EDB by EP Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 2-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP po-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate po-Terphenyl n-Triacontane-d62 Method: EPA 6010C - Metals Co	Result ND Arr Aromatic Co Result ND ND ND %Recovery 90.8 96.8 133 tile Petroleum P Result ND ND ND ND 2 94.6	mpounds I Qualifier Qualifier roducts by Qualifier	1.05 by GC/MS with S RL 0.0203 0.0	MDL MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	ring D A A A A A A A A A A A A A A A A A A	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/12/14 11:50 08/12/14 11:50 Prepared 08/12/14 11:50	08/14/14 19:31 Analyzed 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/15/14 14:12 08/12/14 20:26 Analyzed 08/12/14 20:26	1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fac 1.00 Dil Fac 1.00 Dil Fac 1.00

Client Sample ID: N1MW-3 (12-13') Date Collected: 08/06/14 15:15 Date Received: 08/12/14 10:35

Lab Sample ID: SXH0070-08 Matrix: Soil

Percent Solids: 88.3

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.0354		mg/kg dry	\ ↓	08/13/14 07:57	08/13/14 21:14	1.00
Benzene	ND		0.0177		mg/kg dry	₽	08/13/14 07:57	08/13/14 21:14	1.00
Foluene	ND		0.118		mg/kg dry	₽	08/13/14 07:57	08/13/14 21:14	1.0
Ethylbenzene	ND		0.118		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:14	1.00
n,p-Xylene	ND		0.472		mg/kg dry	₽	08/13/14 07:57	08/13/14 21:14	1.00
o-Xylene	ND		0.236		mg/kg dry	₽	08/13/14 07:57	08/13/14 21:14	1.00
1,2-Dichloroethane (EDC)	ND		0.118		mg/kg dry	\$	08/13/14 07:57	08/13/14 21:14	1.0
Kylenes (total)	ND		0.708		mg/kg dry	₽	08/13/14 07:57	08/13/14 21:14	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	97.7		80 - 120				08/13/14 07:57	08/13/14 21:14	1.0
1,2-dichloroethane-d4	90.7		74.7 _ 120				08/13/14 07:57	08/13/14 21:14	1.0
Toluene-d8	106		78.5 - 125				08/13/14 07:57	08/13/14 21:14	1.0
4-bromofluorobenzene	105		69.8 - 140				08/13/14 07:57	08/13/14 21:14	1.0
Method: NWTPH-Gx - Gasolin	e Hydrocarbons I	оу <mark>NWTPH</mark>	-Gx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		5.90		mg/kg dry	<u></u>	08/13/14 07:57	08/13/14 21:14	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-bromofluorobenzene	105		41.5 - 162				08/13/14 07:57	08/13/14 21:14	1.0
Method: EPA 8011 - EDB by E	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.05		ug/kg dry	¢	08/14/14 14:56	08/14/14 19:46	1.00
Method: EPA 8270D - Polynuc			-	Selected	Ion Monito	ring			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		0.0220		mg/kg dry		08/14/14 09:40	08/15/14 14:35	1.0
2-Methylnaphthalene	ND		0.0220		mg/kg dry	₽	08/14/14 09:40	08/15/14 14:35	1.0
I-Methylnaphthalene	ND		0.0220		mg/kg dry	¢	08/14/14 09:40	08/15/14 14:35	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
litrobenzene-d5	89.6		36.3 - 152				08/14/14 09:40	08/15/14 14:35	1.0
2-FBP	84.6		30.2 - 135				08/14/14 09:40	08/15/14 14:35	1.0
p-Terphenyl-d14	108		65.1 - 134				08/14/14 09:40	08/15/14 14:35	1.0
Method: NWTPH-Dx - Semivol	atile Petroleum P	roducts by	/ NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	17.0		9.85		mg/kg dry	- \X	08/12/14 11:50	08/12/14 20:49	1.00
Heavy Oil Range Hydrocarbons	81.1		24.6		mg/kg dry	¢	08/12/14 11:50	08/12/14 20:49	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
p-Terphenyl	103		50 - 150				08/12/14 11:50	08/12/14 20:49	1.0
n-Triacontane-d62	106		50 - 150				08/12/14 11:50	08/12/14 20:49	1.0
Method: EPA 6010C - Metals C Analyte		010/7000 S Qualifier	eries Methods, RL		EPA 3050B Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: N1MW-4 (10-11') Date Collected: 08/07/14 14:25

Date Received: 08/12/14 10:35

Lead

Lab Sample ID: SXH0070-10 Matrix: Soil

Percent Solids: 91.6

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0307		mg/kg dry	\\\\	08/13/14 07:57	08/13/14 21:36	1.00
Benzene	ND		0.0153		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:36	1.00
Toluene	ND		0.102		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:36	1.00
Ethylbenzene	ND		0.102		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:36	1.00
m,p-Xylene	ND		0.409		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:36	1.00
o-Xylene	ND		0.205		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:36	1.00
1,2-Dichloroethane (EDC)	ND		0.102		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:36	1.00
Xylenes (total)	ND		0.614		mg/kg dry	₽	08/13/14 07:57	08/13/14 21:36	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	99.2		80 - 120				08/13/14 07:57	08/13/14 21:36	1.00
1,2-dichloroethane-d4	92.3		74.7 _ 120				08/13/14 07:57	08/13/14 21:36	1.00
Toluene-d8	101		78.5 - 125				08/13/14 07:57	08/13/14 21:36	1.00
4-bromofluorobenzene	103		69.8 - 140				08/13/14 07:57	08/13/14 21:36	1.00
Method: NWTPH-Gx - Gasoline		-							
Analyte		Qualifier	RL	MDL	Unit	— D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	5.35		5.12		mg/kg dry	<u></u>	08/13/14 07:57	08/13/14 21:36	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-bromofluorobenzene	103		41.5 - 162				08/13/14 07:57	08/13/14 21:36	1.00
Method: EPA 8011 - EDB by El		0.115	-			_	. .		
Analyte		Qualifier		MDL	Unit	- D #	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.09		ug/kg dry	*	08/14/14 14:56	08/14/14 20:00	1.00
Method: EPA 8270D - Polynucle Analyte		mpounds Qualifier	by GC/MS with S _{RL}		Ion Monito Unit	ring D	Prepared	Analyzed	Dil Fac
Naphthalene		Quanner	0.0214		mg/kg dry		08/14/14 09:40	08/15/14 14:57	1.00
2-Methylnaphthalene	ND		0.0214		mg/kg dry	¢	08/14/14 09:40	08/15/14 14:57	1.00
1-Methylnaphthalene	ND		0.0214		mg/kg dry	æ	08/14/14 09:40	08/15/14 14:57	1.00
r-weuryinaphulaiene	ND		0.0214		mg/kg ury	Ť	00/14/14 09.40	00/13/14 14:57	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	87.0		36.3 - 152				08/14/14 09:40	08/15/14 14:57	1.00
2-FBP	99.0		30.2 - 135				08/14/14 09:40	08/15/14 14:57	1.00
p-Terphenyl-d14	109		65.1 - 134				08/14/14 09:40	08/15/14 14:57	1.0
Method: NWTPH-Dx - Semivola		-				_			
Analyte		Qualifier		MDL	Unit		Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	ND		9.85		mg/kg dry	*	08/12/14 11:50	08/12/14 21:12	1.00
Heavy Oil Range Hydrocarbons	ND		24.6		mg/kg dry	¢	08/12/14 11:50	08/12/14 21:12	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
p-Terphenyl	109		50 - 150				08/12/14 11:50	08/12/14 21:12	1.0
n-Triacontane-d62	105		50 - 150				08/12/14 11:50	08/12/14 21:12	1.00
Method: EPA 6010C - Metals Co	ontent by EPA 6	010/7000 S	eries Methods, I	Prep by I	EPA 3050B				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa

× 08/18/14 09:11 08/26/14 10:13

Page 8 of 24

1.42

mg/kg dry

4.55

1.00

Client Sample ID: N1MW-5 (11-12) Date Collected: 08/06/14 12:10 Date Received: 08/12/14 10:35

Lab Sample ID: SXH0070-12 Matrix: Soil

Percent Solids: 85.3

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0371		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:59	1.00
Benzene	ND		0.0186		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:59	1.00
Toluene	ND		0.124		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:59	1.00
Ethylbenzene	ND		0.124		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:59	1.00
n,p-Xylene	ND		0.495		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:59	1.00
o-Xylene	ND		0.248		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:59	1.00
1,2-Dichloroethane (EDC)	ND		0.124		mg/kg dry	¢	08/13/14 07:57	08/13/14 21:59	1.00
Kylenes (total)	ND		0.743		mg/kg dry	₽	08/13/14 07:57	08/13/14 21:59	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98.7		80 - 120				08/13/14 07:57	08/13/14 21:59	1.00
1,2-dichloroethane-d4	97.1		74.7 - 120				08/13/14 07:57	08/13/14 21:59	1.00
Toluene-d8	101		78.5 - 125				08/13/14 07:57	08/13/14 21:59	1.00
4-bromofluorobenzene	99.6		69.8 - 140				08/13/14 07:57	08/13/14 21:59	1.00
Method: NWTPH-Gx - Gasoline I	Hydrocarbons I	by NWTPH	-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		6.19		mg/kg dry	<u></u>	08/13/14 07:57	08/13/14 21:59	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-bromofluorobenzene	99.6		41.5 - 162				08/13/14 07:57	08/13/14 21:59	1.0
· · · · · · · · · · · · · · · · · · ·		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte		Qualifier	RL	MDL	Unit ug/kg dry	— D	Prepared	Analyzed 08/14/14 20:14	
Analyte 1,2-Dibromoethane	ResultND		1.13		ug/kg dry	<u></u>	·		
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle	result ND		1.13		ug/kg dry Ion Monito	<u></u>	·		1.00
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte	result ND	mpounds	1.13	elected	ug/kg dry Ion Monito Unit	ring	08/14/14 14:56	08/14/14 20:14	1.00 Dil Fac
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene	ar Aromatic Co Result	mpounds	1.13 by GC/MS with S RL	elected	ug/kg dry Ion Monitor Unit mg/kg dry	ring D	08/14/14 14:56 Prepared	08/14/14 20:14 Analyzed	1.00 Dil Fac 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Japhthalene 2-Methylnaphthalene	ar Aromatic Co Result ND Result ND	mpounds	1.13 by GC/MS with S RL 0.0222	elected	ug/kg dry Ion Monito Unit	ring — D — x	08/14/14 14:56 Prepared 08/14/14 09:40	08/14/14 20:14 Analyzed 08/15/14 15:20	1.00 Dil Fac 1.00 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Vaphthalene 2-Methylnaphthalene -Methylnaphthalene	ar Aromatic Co Result ND Result ND ND	mpounds Qualifier	1.13 by GC/MS with S RL 0.0222 0.0222	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — x	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40	08/14/14 20:14 Analyzed 08/15/14 15:20 08/15/14 15:20	1.00 Dil Fac 1.00 1.00 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Japhthalene P-Methylnaphthalene -Methylnaphthalene Surrogate	ar Aromatic Co Result ND Result ND ND ND	mpounds Qualifier	1.13 by GC/MS with S RL 0.0222 0.0222 0.0222 0.0222	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — x	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	08/14/14 20:14 Analyzed 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20	1.00 Dil Fac 1.00 1.00 Dil Fac
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene I-Methylnaphthalene Surrogate Witrobenzene-d5	ar Aromatic Co Result ND Result ND ND ND ND	mpounds Qualifier	1.13 by GC/MS with S RL 0.0222 0.0222 0.0222 0.0222 Limits	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — x	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 Prepared	08/14/14 20:14 Analyzed 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 Analyzed	Dil Fac 1.00 1.00 1.00 1.00 1.00 Dil Fac 01 Fac 1.00
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP	ar Aromatic Co ar Aromatic Co Result ND ND ND ND ND ND Solution	mpounds Qualifier	1.13 by GC/MS with S RL 0.0222 0.0222 0.0222 0.0222 0.0222 0.0222 0.0222 0.0222	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — x	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 Prepared 08/14/14 09:40	Analyzed 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14	ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	mpounds Qualifier Qualifier	1.13 by GC/MS with S RL 0.0222 0.022 0.0222 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.02 0.15 0.15 0.15 0.15 0.13 0.15 0.13	elected	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — x	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	Analyzed 08/14/14 20:14 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP D-Terphenyl-d14 Method: NWTPH-Dx - Semivolat	Aresult ND Ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	mpounds Qualifier Qualifier	1.13 by GC/MS with S RL 0.0222 0.022 0.0222 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.02 0.15 0.15 0.15 0.15 0.13 0.15 0.13	Selected MDL	ug/kg dry Ion Monitor Unit mg/kg dry mg/kg dry	ring — D — x	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	Analyzed 08/14/14 20:14 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20	Dil Fac 1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fac
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte	Aresult ND Ar Aromatic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	mpounds Qualifier Qualifier	1.13 by GC/MS with S RL 0.0222 0.022	Selected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry	ring D X X X	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	Analyzed 08/14/14 20:14 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20	1.00 Dil Fac 1.00 1.00 1.00 <i>Dil Fac</i> 1.00 1.00
Analyte ,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Vaphthalene 2-Methylnaphthalene I-Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP 5-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons	Result ND Ar Aromatic Co Result ND 16 NE	mpounds Qualifier Qualifier	1.13 by GC/MS with S RL 0.0222 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.02	Selected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry	ring D X X X X X	Prepared 08/14/14 14:56 Prepared 08/14/14 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40	08/14/14 20:14 Analyzed 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20	1.00 Dil Fau 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fau Dil Fau 1.00
Analyte I,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Vaphthalene 2-Methylnaphthalene I-Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP b-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	Result ar Aromatic Co Result ND ND </td <td>mpounds Qualifier Qualifier</td> <td>1.13 by GC/MS with S RL 0.0222 0.022 0.025 0.02</td> <td>Selected MDL</td> <td>ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry</td> <td>ring D × × ×</td> <td>Prepared 08/14/14 14:56 Prepared 08/14/14 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 11:50</td> <td>Analyzed 08/14/14 20:14 08/15/14 15:20</td> <td>1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fac</td>	mpounds Qualifier Qualifier	1.13 by GC/MS with S RL 0.0222 0.022 0.025 0.02	Selected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry	ring D × × ×	Prepared 08/14/14 14:56 Prepared 08/14/14 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 11:50	Analyzed 08/14/14 20:14 08/15/14 15:20	1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fac
Analyte I,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Vaphthalene 2-Methylnaphthalene I-Methylnaphthalene Surrogate Vitrobenzene-d5 2-FBP 5-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	Result ar Aromatic Co Result ND Station ND Result 18.6 126	mpounds Qualifier Qualifier	1.13 by GC/MS with S RL 0.0222 0.0223 0.0224 0.0254 0.02554	Selected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry	ring D × × ×	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/12/14 11:50 08/12/14 11:50	08/14/14 20:14 Analyzed 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/12/14 21:35	1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fac 1.00 Dil Fac
Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP p-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate p-Terphenyl	Result ND ar Aromatic Co ND ND ND ND ND ND ND ND ND ND ND ND ND	mpounds Qualifier Qualifier	1.13 by GC/MS with S RL 0.0222 0.022 0.02	Selected MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry Unit mg/kg dry	ring D × × ×	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/12/14 11:50 08/12/14 11:50 Prepared	08/14/14 20:14 Analyzed 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/12/14 21:35 08/12/14 21:35 Analyzed	1.00 Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fac 1.00 1.00 1.00
Method: EPA 8011 - EDB by EP Analyte 1,2-Dibromoethane Method: EPA 8270D - Polynucle Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 2-Methylnaphthalene Surrogate Nitrobenzene-d5 2-FBP po-Terphenyl-d14 Method: NWTPH-Dx - Semivolat Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate po-Terphenyl n-Triacontane-d62 Method: EPA 6010C - Metals Co	Result ar Aromatic Co Result ND %Recovery 18.6 126 %Recovery 107 106	mpounds Qualifier Qualifier roducts by Qualifier Qualifier	1.13 by GC/MS with S RL 0.0222 0.0222 0.0222 0.0222 0.0222 0.0222 Limits 36.3 - 152 30.2 - 135 65.1 - 134 NWTPH-Dx RL 9.54 23.8 Limits 50 - 150 50 - 150	MDL MDL	ug/kg dry Ion Monito Unit mg/kg dry mg/kg dry mg/kg dry Mg/kg dry mg/kg dry	ring D X X X X X X X	08/14/14 14:56 Prepared 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/14/14 09:40 08/12/14 11:50 08/12/14 11:50 Prepared 08/12/14 11:50	08/14/14 20:14 Analyzed 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/15/14 15:20 08/12/14 21:35 08/12/14 21:35 Analyzed 08/12/14 21:35	1.00 Dil Fau 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Dil Fau 1.00 Dil Fau 1.00 1.0

TestAmerica Job ID: SXH0070

Client Sample ID: Duplicate 3 Date Collected: 08/07/14 08:00 Date Received: 08/12/14 10:35

Lab Sample ID: S>	(H0070-13
	Matrix: Soil

Percent Solids: 92.4

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.0390		mg/kg dry	\ ↓	08/13/14 07:57	08/13/14 22:21	1.0
Benzene	ND		0.0195		mg/kg dry	₽	08/13/14 07:57	08/13/14 22:21	1.0
Toluene	ND		0.130		mg/kg dry	¢	08/13/14 07:57	08/13/14 22:21	1.0
Ethylbenzene	ND		0.130		mg/kg dry	¢	08/13/14 07:57	08/13/14 22:21	1.0
n,p-Xylene	ND		0.520		mg/kg dry	¢	08/13/14 07:57	08/13/14 22:21	1.0
o-Xylene	ND		0.260		mg/kg dry	¢	08/13/14 07:57	08/13/14 22:21	1.0
1,2-Dichloroethane (EDC)	ND		0.130		mg/kg dry	¢	08/13/14 07:57	08/13/14 22:21	1.0
Kylenes (total)	ND		0.781		mg/kg dry	¢	08/13/14 07:57	08/13/14 22:21	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	98.5		80 - 120				08/13/14 07:57	08/13/14 22:21	1.0
1,2-dichloroethane-d4	96.8		74.7 - 120				08/13/14 07:57	08/13/14 22:21	1.0
Toluene-d8	102		78.5 - 125				08/13/14 07:57	08/13/14 22:21	1.0
4-bromofluorobenzene	99.7		69.8 - 140				08/13/14 07:57	08/13/14 22:21	1.0
Method: NWTPH-Gx - Gasolin	· · · · · · · · · · · · · · · · · · ·	-				_			
Analyte		Qualifier	RL	MDL	Unit	- D #	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		6.51		mg/kg dry	745	08/13/14 07:57	08/13/14 22:21	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-bromofluorobenzene	99.7		41.5 - 162				08/13/14 07:57	08/13/14 22:21	1.0
Method: EPA 8011 - EDB by E									
Analyte		Qualifier		MDL	Unit	- D #	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.06		ug/kg dry	245	08/14/14 14:56	08/14/14 20:29	1.0
Method: EPA 8270D - Polynuc Analyte		mpounds Qualifier	by GC/MS with S _{RL}		Ion Monito Unit	ring D	Prepared	Analyzed	Dil Fa
Vaphthalene	ND	Quanner			mg/kg dry	- b	08/14/14 09:40	08/15/14 15:42	1.0
2-Methylnaphthalene	ND		0.0216		mg/kg dry	₽	08/14/14 09:40	08/15/14 15:42	1.0
1-Methylnaphthalene	ND		0.0216		mg/kg dry	æ	08/14/14 09:40	08/15/14 15:42	1.0
r-weurymaphunalene	ND		0.0210		ing/kg ury	T	00/14/14 09.40	00/13/14 13:42	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	85.4		36.3 - 152				08/14/14 09:40	08/15/14 15:42	1.0
2-FBP	94.2		30.2 - 135				08/14/14 09:40	08/15/14 15:42	1.0
p-Terphenyl-d14	111		65.1 - 134				08/14/14 09:40	08/15/14 15:42	1.0
Method: NWTPH-Dx - Semivol						_			
Analyte		Qualifier		MDL	Unit	— D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	ND		9.33		mg/kg dry	<u>\$</u>	08/12/14 11:50	08/12/14 21:58	1.0
Heavy Oil Range Hydrocarbons	ND		23.3		mg/kg dry	₽	08/12/14 11:50	08/12/14 21:58	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
p-Terphenyl	107		50 - 150				08/12/14 11:50	08/12/14 21:58	1.0
n-Triacontane-d62	109		50 - 150				08/12/14 11:50	08/12/14 21:58	1.0
Method: EPA 6010C - Metals C	Content by EPA 6	010/7000 S	eries Methods.	Prep by	EPA 3050B				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	3.55	1.29	mg/kg dry	\$	08/18/14 09:11	08/26/14 10:32	1.00

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID: 14H0050-BLK1

Client Sample ID: Method Blank Prep Type: Total 50_P

Client Sample ID: Lab Control Sample

Prep Type: Total

Matrix: Soil Analysis Batch: 14H0050							F	· Prep Typ Prep Batch: 14H	
	Blank	Blank							_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.0300		mg/kg wet		08/13/14 07:57	08/13/14 15:38	1.00
Benzene	ND		0.0150		mg/kg wet		08/13/14 07:57	08/13/14 15:38	1.00
Toluene	ND		0.100		mg/kg wet		08/13/14 07:57	08/13/14 15:38	1.00
Ethylbenzene	ND		0.100		mg/kg wet		08/13/14 07:57	08/13/14 15:38	1.00
m,p-Xylene	ND		0.400		mg/kg wet		08/13/14 07:57	08/13/14 15:38	1.00
o-Xylene	ND		0.200		mg/kg wet		08/13/14 07:57	08/13/14 15:38	1.00
1,2-Dichloroethane (EDC)	ND		0.100		mg/kg wet		08/13/14 07:57	08/13/14 15:38	1.00
Xylenes (total)	ND		0.600		mg/kg wet		08/13/14 07:57	08/13/14 15:38	1.00

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		80 - 120	08/13/14 07:57	08/13/14 15:38	1.00
1,2-dichloroethane-d4	94.8		74.7 _ 120	08/13/14 07:57	08/13/14 15:38	1.00
Toluene-d8	103		78.5 - 125	08/13/14 07:57	08/13/14 15:38	1.00
4-bromofluorobenzene	100		69.8 - 140	08/13/14 07:57	08/13/14 15:38	1.00
a,a,a - Trifluorotoluene	105		50 - 150	08/13/14 07:57	08/13/14 15:38	1.00

Lab Sample ID: 14H0050-BS1

Matrix: Soil Analysis Batch: 14H0050

Analysis Batch: 14H0050								h: 14H0050_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	0.500	0.538		mg/kg wet		108	60 - 140	
Benzene	0.500	0.526		mg/kg wet		105	75.8 - 123	
Toluene	0.500	0.562		mg/kg wet		112	76.6 - 125	
Ethylbenzene	0.500	0.545		mg/kg wet		109	77.3 - 121	
m,p-Xylene	0.500	0.548		mg/kg wet		110	77.7 _ 124	
o-Xylene	0.500	0.560		mg/kg wet		112	76.7 - 129	
Naphthalene	0.500	0.511		mg/kg wet		102	55.1 - 142	
1,2-Dichloroethane (EDC)	0.500	0.560		mg/kg wet		112	71.1 - 142	
1,2-Dibromoethane	0.500	0.600		mg/kg wet		120	77.1 - 129	
Xylenes (total)	1.00	1.11		mg/kg wet		111	76.5 _ 124	
Hexane	0.500	0.544		mg/kg wet		109	77 _ 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	99.1		80 - 120
1,2-dichloroethane-d4	100		74.7 _ 120
Toluene-d8	103		78.5 - 125
4-bromofluorobenzene	101		69.8 - 140
a,a,a - Trifluorotoluene	106		60 - 120

Lab Sample ID: 14H0050-BSD1 Matrix: Soil Analysis Batch: 14H0050

Client Sample ID: Lab Control Sample Dup **Prep Type: Total** Prep Batch: 14H0050 P

	Spike	LCS Dup	LCS Dup				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Methyl tert-butyl ether	0.500	0.440		mg/kg wet	_	88.1	60 - 140	19.8	25	
Benzene	0.500	0.434		mg/kg wet		86.9	75.8 - 123	19.0	25	

TestAmerica Spokane

6

Toluene-d8

4-bromofluorobenzene

a,a,a - Trifluorotoluene

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14H0050-BSI Matrix: Soil	01					Client	San	iple ID:	Lab Contro	ol Sampl	
Analysis Batch: 14H0050			Spike	LCS Dup	LCS Dup				Prep Batc %Rec.		
Analyte			Added	-	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.500	0.456		mg/kg wet		91.3	76.6 - 125	20.6	25
Ethylbenzene			0.500	0.446		mg/kg wet		89.1	77.3 - 121	20.1	25
m,p-Xylene			0.500	0.444		mg/kg wet		88.9	77.7 - 124	20.8	25
o-Xylene			0.500	0.458		mg/kg wet		91.7	76.7 - 129	19.9	25
Naphthalene			0.500	0.421		mg/kg wet		84.2	55.1 - 142	19.3	25
1,2-Dichloroethane (EDC)			0.500	0.470		mg/kg wet		94.0	71.1 - 142	17.4	25
1,2-Dibromoethane			0.500	0.482		mg/kg wet		96.3	77.1 ₋ 129	22.0	25
Xylenes (total)			1.00	0.903		mg/kg wet		90.3	76.5 _ 124	20.3	25
Hexane			0.500	0.445		mg/kg wet		89.0	77 - 130	20.1	25
	LCS Dup	LCS Dup									
Surrogate	%Recovery	Qualifier	Limits								
Dibromofluoromethane	100		80 - 120								
1,2-dichloroethane-d4	99.7		74.7 - 120								

78.5 - 125

69.8 - 140

60 - 120

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx	

103

99.3

99.1

Lab Sample ID: 14H0050-BLK1												Client S	ample ID:	Method	Blank
Matrix: Soil														ер Туре	
Analysis Batch: 14H0050													Prep Bato		
	В	lank	Blank												_
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Pr	epared	Analy	zed	Dil Fac
Gasoline Range Hydrocarbons		ND			5.00			mg/kg	g wet		08/13	8/14 07:57	08/13/14	15:38	1.00
	B	lank	Blank												
Surrogate	%Reco	very	Qualifier	Limi	ts						Pr	epared	Analy	zed	Dil Fac
4-bromofluorobenzene		100		41.5 - 1	162					-	08/13	3/14 07:57	7 08/13/14	15:38	1.00
Lab Sample ID: 14H0050-BS2										С	lient	Sample	ID: Lab C	ontrol S	ample
Matrix: Soil														ер Туре	
Analysis Batch: 14H0050													Prep Bato	h: 14H0	050_P
-				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Gasoline Range Hydrocarbons				50.0		49.9			mg/kg we	et		99.9	74.4 - 124		
	LCS	LCS													
Surrogate	%Recovery	Qual	ifier	Limits											
4-bromofluorobenzene	99.4			41.5 - 162											
Lab Sample ID: 14H0050-BSD2									Clie	ent :	Sam	ple ID:	Lab Contro	ol Samp	le Dup
Matrix: Soil												-		ep Type	
Analysis Batch: 14H0050													Prep Bato		
				Spike	L	.CS Dup	LCS	Dup					%Rec.		RPD
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Hydrocarbons				50.0		49.6			mg/kg we	et		99.2	74.4 - 124	0.647	20

1,2-Dibromo-3-chloropropane

ND

2 3 4 5 6 7

Lab Sample ID: 14H0050-BSD2									Clie	ent Sar	nple ID: I	Lab Control S		
Matrix: Soil														: Tota
Analysis Batch: 14H0050												Prep Batch:	14HU	U50_P
	LCS Dup		-											
Surrogate	%Recovery	Qualif	ier	Limits	_									
4-bromofluorobenzene	102			41.5 - 162										
lethod: EPA 8011 - EDB by	EPA Me	thod	8011											
Lab Sample ID: 14H0073-BLK1											Client S	ample ID: Me	thod	Blank
Matrix: Soil												Prep	Type:	Tota
Analysis Batch: 14H0073	в	lank E	Blank									Prep Batch:	14H0	073_F
Analyte			Qualifier		RL		MDL	Unit		DF	Prepared	Analyzed		Dil Fac
1,2-Dibromoethane		ND	-		1.00			ug/kg	wet		14/14 14:56		20	1.00
Lab Sample ID: 14H0073-BS1										Clien	t Sample	ID: Lab Cont	trol Sa	ample
Matrix: Soil												Prep	Type:	Tota
Analysis Batch: 14H0073				Spike		LCS	LCS					Prep Batch: %Rec.	14H0	073_F
Analyte				Added		Result		ifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane				5.00		4.60			ug/kg we	t –	92.0	60 - 140		
1,2-Dibromo-3-chloropropane				5.00		4.68			ug/kg we	t	93.7	60 - 140		
Lab Sample ID: 14H0073-BS2										Clien	t Sample	ID: Lab Con	trol Sa	ample
Matrix: Soil												Prep		
Analysis Batch: 14H0073				Spike		LCS	LCS					Prep Batch: %Rec.	14H0	073_F
Analyte				Added		Result	Qual	ifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane				5.00		4.46			ug/kg we	t –	89.2	60 - 140		-
1,2-Dibromo-3-chloropropane				5.00		5.16			ug/kg we	t	103	60 - 140		
Lab Sample ID: 14H0073-MS1 Matrix: Soil											Client	Sample ID: N Prep		
Analysis Batch: 14H0073												Prep Batch:		
	Sample	Sampl	е	Spike	Matr	ix Spike	Matr	ix Spike	•			%Rec.		
Analyte	Result	Qualifi	ier	Added		Result	Qual	ifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane	ND			4.90		5.01			ug/kg dry	<u>ф</u>	102	60 _ 140		
1,2-Dibromo-3-chloropropane	ND			4.90		4.84			ug/kg dry	¢	98.8	60 - 140		
Lab Sample ID: 14H0073-MSD1									c	lient S	ample ID	: Matrix Spik		
Matrix: Soil												Prep		
Analysis Batch: 14H0073	Sample	Sampl	e	Spike	itrix Sn	oike Dup	Matr	ix Spike	• Dur			Prep Batch: %Rec.	14H0	073_P RPD
	Sample													
Analyte	Result			Added		Result		-	Unit	D	%Rec	Limits	RPD	Limi

5.17

5.64

ug/kg dry

₽

109

60 - 140

15.3

20

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 14H0068-BLK1 Matrix: Soil Analysis Batch: 14H0068								mple ID: Metho Prep Typ Prep Batch: 14H	e: Total
		Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0100		mg/kg wet		08/14/14 09:40	08/14/14 14:31	1.00
2-Methylnaphthalene	ND		0.0100		mg/kg wet		08/14/14 09:40	08/14/14 14:31	1.00
1-Methylnaphthalene	ND		0.0100		mg/kg wet		08/14/14 09:40	08/14/14 14:31	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	83.6		36.3 - 152				08/14/14 09:40	08/14/14 14:31	1.00
2-FBP	92.6		30.2 - 135				08/14/14 09:40	08/14/14 14:31	1.00
p-Terphenyl-d14	111		65.1 - 134				08/14/14 09:40	08/14/14 14:31	1.00

Lab Sample ID: 14H0068-BS1

Matrix: Soil

Client Sample ID: Lab Control Sample Prep Type: Total

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total

Analysis Batch: 14H0068							Prep Batc	h: 14H0068_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	0.133	0.109		mg/kg wet		82.0	62.7 _ 120	
Fluorene	0.133	0.110		mg/kg wet		82.5	67.9 - 124	
Chrysene	0.133	0.121		mg/kg wet		91.0	68.2 - 132	
Indeno (1,2,3-cd) pyrene	0.133	0.0993		mg/kg wet		74.5	52.6 _ 149	

	LCS LCS	
Surrogate	%Recovery Qualifi	er Limits
Nitrobenzene-d5	87.2	36.3 - 152
2-FBP	88.4	30.2 - 135
p-Terphenyl-d14	112	65.1 - 134

Lab Sample ID: 14H0068-MS1 Matrix: Soil

Analysis Batch: 14H0068

Analysis Batch: 14H0068									Prep Bate	ch: 14H0068_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	(e			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	ND		0.264	0.212		mg/kg dry	\$	80.5	30 - 120	
Fluorene	ND		0.264	0.229		mg/kg dry	☆	87.0	30 - 140	
Chrysene	ND		0.264	0.236		mg/kg dry	¢	89.5	30 - 133	
Indeno (1,2,3-cd) pyrene	ND		0.264	0.212		mg/kg dry	☆	80.5	30 _ 140	

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	85.0		36.3 - 152
2-FBP	85.0		30.2 - 135
p-Terphenyl-d14	104		65.1 - 134

Lab Sample ID: 14H0068-MSD1 Matrix: Soil

Analysis Batch: 14H0068

Analysis Batch: 14H0068									Prep Bate	ch: 14H0	068_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		0.270	0.213		mg/kg dry	¢	79.0	30 - 120	0.538	35
Fluorene	ND		0.270	0.216		mg/kg dry	☆	80.0	30 - 140	5.97	35
Chrysene	ND		0.270	0.242		mg/kg dry	₽	89.5	30 - 133	2.42	35

TestAmerica Spokane

Prep Type: Total

5 6

5 6 7

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 14H0068-M	SD1					Clie	ent Sa	ample IC): Matrix Sp	oike Dup	olicate
Matrix: Soil									Pre	p Type:	Total
Analysis Batch: 14H0068									Prep Batc	h: 14H0	068_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Indeno (1,2,3-cd) pyrene	ND		0.270	0.188		mg/kg dry	<u></u>	69.5	30 - 140	12.3	35
	Matrix Spike Dup	Matrix Spike	e Dup								
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5	79.6		36.3 - 152	_							
2-FBP	80.0		30.2 - 135								
p-Terphenyl-d14	100		65.1 - 134								

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Lab Sample ID: 14H0043-BLK1												Client S	ample ID: Met		
Matrix: Soil													Prep 1		
Analysis Batch: 14H0043													Prep Batch: 1	4H0	043_P
	E	Blank	Blank												
Analyte	R		Qualifier		RL		MDL	Unit		D	P	repared	Analyzed		Dil Fac
Diesel Range Hydrocarbons		ND			10.0			mg/kg	g wet		08/1	2/14 09:24	08/12/14 15:4	6	1.00
Heavy Oil Range Hydrocarbons		ND			25.0			mg/kg	g wet		08/1	2/14 09:24	08/12/14 15:4	6	1.00
	E	Blank	Blank												
Surrogate	%Reco	overy	Qualifier	Limit	ts						P	repared	Analyzed		Dil Fac
o-Terphenyl		94.4		50 - 1	50						08/1	2/14 09:24	08/12/14 15:4	6	1.00
n-Triacontane-d62		85.3		50 - 1	50						08/1	2/14 09:24	08/12/14 15:4	6	1.00
Lab Sample ID: 14H0043-BS1										C	liont	Sample	ID: Lab Cont	rol Sa	amnlo
Matrix: Soil										Ŭ	nem	Jampie	Prep 1		
Analysis Batch: 14H0043													Prep Batch: 1		
Analysis Datch. 1410045				Spike		LCS	LCS						%Rec.	-	
Analyte				Added		Result		ifier	Unit		D	%Rec	Limits		
Diesel Range Hydrocarbons				66.7		54.1		-	mg/kg we	t		81.1	50 - 150		
									5 5 -						
	LCS														
Surrogate	%Recovery	Qua	lifier	Limits											
o-Terphenyl	90.9			50 - 150											
n-Triacontane-d62	80.8			50 - 150											
Lab Sample ID: 14H0043-DUP2											CI	ient San	ple ID: N1MV	/-1 (1	4-15')
Matrix: Soil													Prep 1	ype:	Total
Analysis Batch: 14H0043													Prep Batch: 1		
	Sample	Sam	ple		Du	uplicate	Dupl	icate							RPD
Analyte	Result	Qua	lifier			Result	Qual	ifier	Unit		D		I	RPD	Limit
Diesel Range Hydrocarbons	5.10					4.27			mg/kg dry	/	\\\			17.5	40
Heavy Oil Range Hydrocarbons	4.53					4.04			mg/kg dry	/	₽			11.4	40
	Duplicate	Dup	licate												
Surrogate	%Recovery	Qua	lifier	Limits											
o-Terphenyl	98.7			50 - 150											
n-Triacontane-d62	96.9			50 - 150											

Lead

Method: EPA 6010C - Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B

5.31

Lab Sample ID: 14H0088-BLK1									Client S	Sample ID:		
Matrix: Soil											эр Туре	
Analysis Batch: 14H0088										Prep Batc	h: 14H0	088_P
		Blank Blank										
Analyte	R	esult Qualifier		RL	MDL	Unit		D F	repared	Analyz		Dil Fac
Lead		ND		1.25		mg/kg	wet	08/	18/14 09:1	1 08/26/14	09:43	1.00
Lab Sample ID: 14H0088-BS1								Clien	t Sample	e ID: Lab Co	ontrol S	ample
Matrix: Soil										Pre	эр Туре	: Total
Analysis Batch: 14H0088										Prep Batc	h: 14H0	088 P
			Spike	LCS	LCS					%Rec.		
Analyte			Added	Result	Quali	fier	Unit	D	%Rec	Limits		
Lead			50.0	50.5			mg/kg we	t	101	80 - 120		
Lab Sample ID: 14H0088-MS1								с	lient Sar	mple ID: N1	MW-1 (*	14-15')
Matrix: Soil										-	ep Type	
Analysis Batch: 14H0088	0	0	0	Materia Onilas	Madai	0	_			Prep Batc %Rec.		
A.v h.d	Sample	Sample Qualifier	Spike Added	Matrix Spike	Quali	-			%Rec	%rec. Limits		
Analyte	5.31	Quaimer	54.2	49.8		ner	Unit	, D	82.0	75 - 125		
Lead	5.31		54.2	49.8			mg/kg dry	/ 4	82.0	75 - 125		
Lab Sample ID: 14H0088-MSD1								С	lient Sar	mple ID: N1	MW-1 (14-15')
Matrix: Soil										Pre	эр Туре	: Total
Analysis Batch: 14H0088										Prep Batc	h: 14H0	088_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matri	x Spik	e Duț			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Quali	fier	Unit	D	%Rec	Limits	RPD	Limit
Lead	5.31		53.7	51.6			mg/kg dry	, 	86.2	75 - 125	3.59	20
Lab Sample ID: 14H0088-DUP1								с	lient Saı	mple ID: N1	MW-1 (14-15')
Matrix: Soil										Pre	эр Туре	: Total
Analysis Batch: 14H0088										Prep Batc	h: 14H0	088_P
-	Sample	Sample		Duplicate	Dupli	cate						RPD
Analyte	Result	Qualifier		Result	Quali	fier	Unit	D			RPD	Limit

4.84

9.09

20

☆

mg/kg dry

Lab Sample ID: SXH0070-02 Matrix: Soil

Percent Solids: 92.2

Date Collected: 08/07/14 18:10 Date Received: 08/12/14 10:35

Client Sample ID: N1MW-1 (14-15')

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.947	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0050	08/13/14 20:29	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.947	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0050	08/13/14 20:29	CBW	TAL SPK
Total	Prep	EPA 3580		0.954	14H0073_P	08/14/14 14:56	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0073	08/14/14 19:17	NMI	TAL SPK
Total	Prep	EPA 3550B		1.92	14H0068_P	08/14/14 09:40	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0068	08/15/14 13:49	NMI	TAL SPK
Total	Prep	EPA 3550B		0.967	14H0043_P	08/12/14 11:50	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0043	08/12/14 20:02	NMI	TAL SPK
Total	Prep	EPA 3050B		0.990	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/26/14 09:45	ICP	TAL SPK

Client Sample ID: N1MW-2 (14-15') Date Collected: 08/07/14 09:30 Date Received: 08/12/14 10:35

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.855	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0050	08/13/14 20:52	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.855	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0050	08/13/14 20:52	CBW	TAL SPK
Total	Prep	EPA 3580		0.978	14H0073_P	08/14/14 14:56	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0073	08/14/14 19:31	NMI	TAL SPK
Total	Prep	EPA 3550B		1.90	14H0068_P	08/14/14 09:40	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0068	08/15/14 14:12	NMI	TAL SPK
Total	Prep	EPA 3550B		0.943	14H0043_P	08/12/14 11:50	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0043	08/12/14 20:26	NMI	TAL SPK
Total	Prep	EPA 3050B		0.885	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/26/14 10:05	ICP	TAL SPK

Client Sample ID: N1MW-3 (12-13')

Date Collected: 08/06/14 15:15 Date Received: 08/12/14 10:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.924	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0050	08/13/14 21:14	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.924	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0050	08/13/14 21:14	CBW	TAL SPK
Total	Prep	EPA 3580		0.923	14H0073_P	08/14/14 14:56	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0073	08/14/14 19:46	NMI	TAL SPK
Total	Prep	EPA 3550B		1.95	14H0068_P	08/14/14 09:40	MS	TAL SPK

Lab Sample ID: SXH0070-05

Matrix: Soil Percent Solids: 93.3

Lab Sample ID: SXH0070-08 Matrix: Soil

Percent Solids: 88.3

Batch

Number

14H0068

14H0043

14H0088

14H0043_P

14H0088_P

Prepared

or Analyzed

08/15/14 14:35

08/12/14 11:50

08/12/14 20:49

08/18/14 09:11

08/26/14 10:09

Analyst

NMI

NI

NMI

JSP

ICP

Lab

TAL SPK

TAL SPK

TAL SPK

TAL SPK

TAL SPK

Dilution

Factor

1.00

0.870

1.00

0.962

1.00

Run

Client Sample ID: N1MW-3 (12-13')

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Date Collected: 08/06/14 15:15 Date Received: 08/12/14 10:35

Prep Type

Total

Total

Total

Total

Total

Lab Sample ID: SXH0070-08

Lab Sample ID: SXH0070-10

Lab Sample ID: SXH0070-12

Matrix: Soil

Percent Solids: 85.3

Matrix: Soil

Matrix: Soil

Percent Solids: 91.6

Percent Solids: 88.3

7

Client Sample ID: N1MW-4 (10-11') Date Collected: 08/07/14 14:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.853	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0050	08/13/14 21:36	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.853	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0050	08/13/14 21:36	CBW	TAL SPK
Total	Prep	EPA 3580		0.996	14H0073_P	08/14/14 14:56	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0073	08/14/14 20:00	NMI	TAL SPK
Total	Prep	EPA 3550B		1.96	14H0068_P	08/14/14 09:40	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0068	08/15/14 14:57	NMI	TAL SPK
Total	Prep	EPA 3550B		0.902	14H0043_P	08/12/14 11:50	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0043	08/12/14 21:12	NMI	TAL SPK
Total	Prep	EPA 3050B		1.04	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/26/14 10:13	ICP	TAL SPK

Client Sample ID: N1MW-5 (11-12) Date Collected: 08/06/14 12:10 Date Received: 08/12/14 10:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.909	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0050	08/13/14 21:59	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		0.909	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0050	08/13/14 21:59	CBW	TAL SPK
Total	Prep	EPA 3580		0.966	14H0073_P	08/14/14 14:56	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0073	08/14/14 20:14	NMI	TAL SPK
Total	Prep	EPA 3550B		1.90	14H0068_P	08/14/14 09:40	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0068	08/15/14 15:20	NMI	TAL SPK
Total	Prep	EPA 3550B		0.813	14H0043_P	08/12/14 11:50	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0043	08/12/14 21:35	NMI	TAL SPK
Total	Prep	EPA 3050B		0.870	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		2.00	14H0088	08/26/14 12:02	ICP	TAL SPK

TestAmerica Spokane

Date Received: 08/12/14 10:35

Batch

Method

EPA 8270D

EPA 3550B

NWTPH-Dx

EPA 3050B

EPA 6010C

Client Sample ID: Duplicate 3

Date Collected: 08/07/14 08:00 Date Received: 08/12/14 10:35

Lab Sample I	D: SXH0070-13
--------------	---------------

Matrix: Soil Percent Solids: 92.4

5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.13	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14H0050	08/13/14 22:21	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.13	14H0050_P	08/13/14 07:57	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14H0050	08/13/14 22:21	CBW	TAL SPK
Total	Prep	EPA 3580		0.978	14H0073_P	08/14/14 14:56	NI	TAL SPK
Total	Analysis	EPA 8011		1.00	14H0073	08/14/14 20:29	NMI	TAL SPK
Total	Prep	EPA 3550B		1.99	14H0068_P	08/14/14 09:40	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14H0068	08/15/14 15:42	NMI	TAL SPK
Total	Prep	EPA 3550B		0.862	14H0043_P	08/12/14 11:50	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14H0043	08/12/14 21:58	NMI	TAL SPK
Total	Prep	EPA 3050B		0.952	14H0088_P	08/18/14 09:11	JSP	TAL SPK
Total	Analysis	EPA 6010C		1.00	14H0088	08/26/14 10:32	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14H0058_P	08/12/14 15:30	NI	TAL SPK
Total	Analysis	TA SOP		1.00	14H0058	08/13/14 13:55	NI	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

-2 3 4 5 6 7 8 9 10

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
EPA 6010C	Metals Content by EPA 6010/7000 Series Methods, Prep by EPA 3050B		TAL SPK
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

0

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

						С	HAIN	OF	CUST	ODY	REP	ORT	٦			Woi	k O	rder #	5XH0070	
	CLIENT: GEOENGINEELS	\$					INVOIO	Έ ΤΟ:										TURNA	ROUND REQUES	r
	ADDRESS: 523 E. SECOND AJE, SPONANE, WA 99202											10	in Business Days * Organic & Inorganic Analyses							
	PHONE: 509 363 3125 PROJECT NAME: TIGER OIL	FAX:		-			P.O. NU	MBER:						· ·		577	<u> </u>	Petroleum	Hydrocarbon Analyses	
	PROJECT NAME: TIGER OIL	NORTH (54	ST		· · ·	- <u>r····=</u>		r ·	PR	ESERVAI	IVE						5		3 2 1 <	<u>1</u>
	PROJECT NUMBER: 0504-10	01-00										1					311	··		
	SAMPLED BY: AARON F	REDERICY		ă	× پ	4					IALYSES		1			* Turn			Specify: ss than standard may incur i	Rush Charges.
	CLIENT SAMPLE IDENTIFICATION		PLING /TIME	NWTON-Dx	NutrHeck	NAPHTIAN LEWES \$2:70	201 201 201	Pb (ab 10	BTEN	E OC Brev	WI-BE. 8260						TRIX 5, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
Page	NIMW-1(4-5')	87114	1630															2	Hous	
e 22	2NIMW-1(14-15)	8/7/14	1810	X	\times	X	X	\mathbf{x}	X	X	x						>	3		
22 of 24	3 13 Myal-Hand												-				~ >	2		
4	NIMW-2 4-5	5/2/14	0840													S	•	2	HOLD	
	NIMW-2(7-8)	8/7/14	0900													5	5	2	HOLD	
	NIMW-2 (14-15)	8/7/14	0930	X	X	X	x	x	\mathbf{x}	X	X	ļ				5	\$	3		
	, NIMW-3 (4-5)	8/6/14	1445													5	S	2	HOLD	
	NIMW-3 (9-10)	8/6/14	1455													1	5	2	HOLD	
	. NIMU-3 (12-13)	8/6/14	1513	X	x	×	\mathbf{x}	x	x	x	x					:	5	3		
	10 NIMWY (3.5-4.5)	08/7/14	1130					 	ļ								5	2	HOLD	
	RELEASED B	nevering	FIRM: GE	OENG	WEEN	.	TIME				RECF: 1 PRINT N	AME:	Cot	Stapl	ilor		FIRM	Tel	HUNCATIME 1	12.1
	RELEASED BY:	•	FIRM:				DATE TIME				RECEIVE PRINT N		-	•			FIRM		DATE: TIME:	
8/2	PRINT NAME: ADDITIONAL REMARKS:		FIRM.	<u> </u>							1								5.4 PAGE	E OF
8/26/20	1																		;;	1000 (0612)

8/26/2014

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

	C	HAIN OF CUS	TODY REPORT		Work Order #:	:9XH0070		
CLIENT: GEOENGINEERS		INVOICE TO:			TURNA	ROUND REQUEST		
REPORT TO: JA SULLALSHI ADDRESS: 523 E SELONA AVE., SPONANE, WA	* Ener				Organic &	n Business Days * & Inorganic Analyses		
PHONE: 509 363 3125 FAX:		P.O. NUMBER:			(STD. Petroleum	n Hydrocarbon Analyses		
PROJECT NAME: THER OL - NOATH 15+ ST	P	RESERVATIVE			3 2 1 <1			
PROJECT NUMBER: 0504-101-00	· · ·	REQU	ESTED ANALYSES		OTHER Specify:			
SAMPLED BY: AARONTATOERicy	1 + 300				* Turnaround Requests le:	ess than standard may incur Rush Charges.		
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME	AND	2011 2011 2011 2011 2011	SZER FEDC MATBIE NATBIE SZER		MATRIX # OF (W, S, O) CONT.	LOCATION/ TA COMMENTS WO ID		
NIMW-4 (10-11) 8/7/14 1425	X X X	× x x	××		53			
						-		
3 2 NIMW-4 (5 Z	HOLD		
NIMW-S(11-12) 8/6/14 1210	XXX	XXX	XX		5 3			
s NIMW-S								
6 DUPLIGATE 3 8/7/14 0800	XXX	XXX	XX		5 3			
7								
.8								
9								
10		DATE: 8/11/14	RECEIVED BY:			DATE: 617-19		
PRINT NAME: AARONN FREDERICY FIRM.	ECENCIINEERS	TIME: / 300	PRINT NAME:	Staphilon	FORM: TESH	DATE: 672-19 MUNICA TIME: 10:335 DATE:		
RELEASED BY: FIRM:		DATE: TIME:	RECEIVED BY: PRINT NAME:		FIRM:	DATE:		
ADDITIONAL DUBLADYC.	····					5.4 PAGE OF		
ADDITIONAL KEMAKAS:						TAL-1000 (0612)		

TestAmerica Spokane Sample Receipt Form

Work Order #:SX(30()7() Clie	ent Geo Emine	15			Project: Tiger	· Dil
Date/Time Received: 81214 10:38	<u>5</u>	By:			,	
Samples Delivered By: Khipping Service	Courier Client	Other	·			
List Air Bill Number(s) or Attach a photocopy of	the Air Bill:					www.englocanona.com.org.com.com.com.gazano.com.com
Receipt Phase		Yes	No	NA		Comments
Were samples received in a cooler:		<u>ک</u>				
Custody Seals are present and intact:				5		
Are CoC documents present:		\geq				
Necessary signatures:		\succ				
Thermal Preservation Type: Blue Ice G	el ice 🔽 Real ice	Dry ice	None	Other:		
Temperature: <u>5.4</u> °C Thermometer (C	Fircle one Serial #122	2208348 K	eyring IR	Serial # 11	1874910 IR Gun	2)(acceptance criteria 0-6
Temperature out of range: Not enough ice		//in 4hrs of	collection]Other:	
Log-in Phase Date/Time: 8 244 112 By:	()	Yes	No	ŇĂ		Comments
Are sample labels affixed and completed for each	ch container	X				
Samples containers were received intact:		<u>×</u>				
Do sample IDs match the CoC		<u> </u>				
Appropriate sample containers were received fo	or tests requested	\succ				
Are sample volumes adequate for tests requeste	ed	<u>></u>				
Appropriate preservatives were used for the test	ts requested	<u>حر</u>				
pH of inorganic samples checked and is within n	method specification	-7_				
Are VOC samples free of bubbles >6mm (1/4" d	liameter)	n.		ト		
Are dissolved parameters field filtered				<u></u>		
Do any samples need to be filtered or preserved	l by the lab			>		
Does this project require quick turnaround analy	rsis	·····				
Are there any short hold time tests (see chart be	elow)		\geq			
Are any samples within 2 days of or past expirati	ion	~~				·
Was the CoC scanned		(····	
Were there Non-conformance issues at login			7	, , , , , , , , , , , , , , , , , , , ,		
If yes, was a CAR generated #				φ		

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

-

4

5

Ô

8

9

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXI0128

Client Project/Site: 0504-101-00 Client Project Description: Tiger Oil- North 1st

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: JR Sugalski

tandre trington

Authorized for release by: 10/8/2014 10:33:47 AM Randee Arrington, Project Manager (509)924-9200

Randee.Arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	
QC Sample Results	21
Chronicle	29
Certification Summary	
Method Summary	
Chain of Custody	34

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-00 TestAmerica Job ID: SXI0128

					3
Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
SXI0128-01	MW-1-091814	Water	09/18/14 12:04	09/19/14 09:50	
SXI0128-02	MW-2-091814	Water	09/18/14 08:36	09/19/14 09:50	
SXI0128-03	MW-3-091814	Water	09/18/14 09:27	09/19/14 09:50	5
SXI0128-04	MW-4-091814	Water	09/18/14 10:19	09/19/14 09:50	5
SXI0128-05	MW-5-091814	Water	09/18/14 11:11	09/19/14 09:50	
SXI0128-06	MW-Dup-091814	Water	09/18/14 08:00	09/19/14 09:50	

Glossary

<u></u>		_
Abbreviation	These commonly used abbreviations may or may not be present in this report.	4
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	_
%R	Percent Recovery	5
CFL	Contains Free Liquid	J
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	8
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	9
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

RL

1.00

3.00

MDL Unit

ug/L

ug/L

D

Prepared

09/23/14 07:49

09/23/14 07:49

Client Sample ID: MW-1-091814

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Result Qualifier

ND

ND

Date Collected: 09/18/14 12:04 Date Received: 09/19/14 09:50

Dichlorodifluoromethane

Analyte

Chloromethane

o-Xylene Styrene

Bromoform

Isopropylbenzene

Lab Sample ID: SXI0128-01 Matrix: Water

Analyzed

09/24/14 11:42

09/24/14 11:42

Dil Fac	5
1.00	
1.00	
1.00	
1.00	
1.00	_
1.00	8
1.00	_
1.00	9
1.00	

		0.00	~g, _	00/20/110/110		
Vinyl chloride	ND	0.200	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Bromomethane	ND	5.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Chloroethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Trichlorofluoromethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,1-Dichloroethene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Dichlorofluoromethane	ND	0.200	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Carbon disulfide	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Methylene chloride	ND	10.0	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Acetone	26.2	25.0	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
trans-1,2-Dichloroethene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Methyl tert-butyl ether	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,1,2-Trichlorotrifluoroethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,1-Dichloroethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
cis-1,2-Dichloroethene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
2,2-Dichloropropane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Bromochloromethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Chloroform	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Carbon tetrachloride	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,1,1-Trichloroethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
2-Butanone	ND	10.0	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Hexane	5.01	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,1-Dichloropropene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Benzene	ND	0.200	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
tert-Butanol	ND	5.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,2-Dichloroethane (EDC)	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Trichloroethene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Dibromomethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,2-Dichloropropane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Bromodichloromethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
cis-1,3-Dichloropropene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Toluene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
4-Methyl-2-pentanone	ND	10.0	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
trans-1,3-Dichloropropene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Tetrachloroethene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,1,2-Trichloroethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Dibromochloromethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,3-Dichloropropane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,2-Dibromoethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
2-Hexanone	ND	10.0	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Ethylbenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
Chlorobenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
m,p-Xylene	ND	2.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00
o-Xylene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00

TestAmerica Spokane

09/24/14 11:42

09/24/14 11:42

09/24/14 11:42

1.00

1.00

1.00

ug/L

ug/L

ug/L

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

ND

ND

ND

1.00

1.00

1.00

RL

1.00

Analyte

n-Propylbenzene

Bromobenzene

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene 2-Chlorotoluene 1,2,3-Trichloropropane 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane Hexachlorobutadiene 1,2,4-Trichlorobenzene Naphthalene 1,2,3-Trichlorobenzene

Client Sample ID: MW-1-091814 Date Collected: 09/18/14 12:04 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0128-01 Matrix: Water

Analyzed

09/24/14 11:42

Dil Fac

1.00

%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		2.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		2.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		5.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
4.12		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	3
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	0
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	0
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	8
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
1.21		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	
ND		1.00	ug/L	09/23/14 07:49	09/24/14 11:42	1.00	

MDL Unit

ug/L

D

Prepared

09/23/14 07:49

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
Dibromofluoromethane	101		71.2 - 143	09/23/14 0)7:49	09/24/14 11:42	1.00
1,2-dichloroethane-d4	94.9		70 _ 140	09/23/14 0)7:49	09/24/14 11:42	1.00
Toluene-d8	101		74.1 - 135	09/23/14 0)7:49	09/24/14 11:42	1.00
4-bromofluorobenzene	102		68.7 - 141	09/23/14 0	07:49	09/24/14 11:42	1.00

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	256		100		ug/L		09/23/14 07:49	09/24/14 11:42	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	102		68.7 - 141				09/23/14 07:49	09/24/14 11:42	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

ND

Result Qualifier

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.242	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
2-Methylnaphthalene	0.487	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
1-Methylnaphthalene	0.400	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Acenaphthylene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Acenaphthene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Fluorene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Phenanthrene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Anthracene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Fluoranthene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Pyrene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Benzo (a) anthracene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Chrysene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Benzo (b) fluoranthene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Benzo (k) fluoranthene	ND	0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00

TestAmerica Spokane

Page 6 of 35

TestAmerica Job ID: SXI0128

5

Client Sample ID: MW-1-091814 Date Collected: 09/18/14 12:04 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0128-01 Matrix: Water

Lab Sample ID: SXI0128-02

Matrix: Water

Method: EPA 8270D - Polynuclear Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzo (a) pyrene	ND		0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Dibenzo (a,h) anthracene	ND		0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Benzo (ghi) perylene	ND		0.0858		ug/L		09/23/14 08:20	09/24/14 19:12	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	89.2		32.7 - 135				09/23/14 08:20	09/24/14 19:12	1.00
2-FBP	82.6		44.3 - 120				09/23/14 08:20	09/24/14 19:12	1.00
p-Terphenyl-d14	88.6		59.5 - 154				09/23/14 08:20	09/24/14 19:12	1.00
_ Method: NWTPH-Dx - Semivolatile	Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.234		mg/L		09/22/14 09:13	09/23/14 11:21	1.00
Heavy Oil Range Hydrocarbons	ND		0.389		mg/L		09/22/14 09:13	09/23/14 11:21	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	108		50 - 150				09/22/14 09:13	09/23/14 11:21	1.00
n-Triacontane-d62	124		50 - 150				09/22/14 09:13	09/23/14 11:21	1.00
- Method: EPA 300.0 - Anions by EP	A Method 30	0.0							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.840		0.200		mg/L		09/19/14 10:47	09/19/14 11:13	1.00
Sulfate	9.69		0.500		mg/L		09/19/14 10:47	09/19/14 11:13	1.00
Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.55		1.00		mg/L		09/25/14 12:00	09/25/14 12:00	

Client Sample ID: MW-2-091814

Date Collected: 09/18/14 08:36

Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile C	Organic Compounds by EPA	Method 8260C	;					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Chloromethane	ND	3.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Vinyl chloride	ND	0.200		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Bromomethane	ND	5.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Chloroethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Trichlorofluoromethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
1,1-Dichloroethene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Dichlorofluoromethane	ND	0.200		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Carbon disulfide	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Methylene chloride	ND	10.0		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Acetone	ND	25.0		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
trans-1,2-Dichloroethene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Methyl tert-butyl ether	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
1,1,2-Trichlorotrifluoroethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
1,1-Dichloroethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
cis-1,2-Dichloroethene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
2,2-Dichloropropane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00

1,2-Dibromo-3-chloropropane

Hexachlorobutadiene

Client Sample ID: MW-2-091814 Date Collected: 09/18/14 08:36 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0128-02 Matrix: Water

nalyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
romochloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
nloroform	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
rbon tetrachloride	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
1,1-Trichloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Butanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
exane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
1-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
enzene	ND		0.200	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
t-Butanol	ND		5.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
2-Dichloroethane (EDC)	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
ichloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
bromomethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
2-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
omodichloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
s-1,3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
luene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Methyl-2-pentanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
ns-1,3-Dichloropropene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
trachloroethene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
,2-Trichloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
promochloromethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
3-Dichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
2-Dibromoethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Hexanone	ND		10.0	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
hylbenzene	5.17		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
lorobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
1,1,2-Tetrachloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
p-Xylene	ND		2.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Xylene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
yrene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
	ND		1.00					1.00
omoform				ug/L		09/23/14 07:49	09/24/14 12:04	1.00
opropylbenzene	5.69		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	
Propylbenzene	15.2		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
I,2,2-Tetrachloroethane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
3,5-Trimethylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Chlorotoluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
2,3-Trichloropropane	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Chlorotoluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
t-Butylbenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
2,4-Trimethylbenzene	1.08		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
c-Butylbenzene	2.80		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
sopropyltoluene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
3-Dichlorobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
1-Dichlorobenzene	ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Butylbenzene	4.92 ND		1.00	ug/L		09/23/14 07:49	09/24/14 12:04	1.00 1.00

TestAmerica Spokane

09/24/14 12:04

09/24/14 12:04

5.00

2.00

ug/L

ug/L

09/23/14 07:49

09/23/14 07:49

ND

ND

1.00

1.00

Client Sample ID: MW-2-091814 Date Collected: 09/18/14 08:36 Date Received: 09/19/14 09:50

TestAmerica Job ID: SXI0128

Lab Sample ID: SXI0128-02 Matrix: Water

5

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Naphthalene	3.15		2	2.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
1,2,3-Trichlorobenzene	ND		1	1.00		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Surrogate	%Recovery	Qualifier	Limits	5				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		71.2 - 14	43				09/23/14 07:49	09/24/14 12:04	1.00
1,2-dichloroethane-d4	95.9		70 - 14	40				09/23/14 07:49	09/24/14 12:04	1.00
Toluene-d8	94.5		74.1 - 13	35				09/23/14 07:49	09/24/14 12:04	1.00
	100		68.7 - 14					09/23/14 07.49	09/24/14 12:04	1.00

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	506		100		ug/L		09/23/14 07:49	09/24/14 12:04	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	100		68.7 - 141				09/23/14 07:49	09/24/14 12:04	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	3.24		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
2-Methylnaphthalene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
1-Methylnaphthalene	10.1		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Acenaphthylene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Acenaphthene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Fluorene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Phenanthrene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Anthracene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Fluoranthene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Pyrene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Benzo (a) anthracene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Chrysene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Benzo (b) fluoranthene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Benzo (k) fluoranthene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Benzo (a) pyrene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Dibenzo (a,h) anthracene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Benzo (ghi) perylene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 19:36	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	81.2		32.7 - 135				09/23/14 08:20	09/24/14 19:36	1.00
2-FBP	73.7		44.3 - 120				09/23/14 08:20	09/24/14 19:36	1.00
p-Terphenyl-d14	81.3		59.5 - 154				09/23/14 08:20	09/24/14 19:36	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.229		mg/L		09/22/14 09:13	10/03/14 12:57	1.00
Heavy Oil Range Hydrocarbons	ND		0.382		mg/L		09/22/14 09:13	10/03/14 12:57	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate o-Terphenyl	%Recovery 93.4	Qualifier	Limits				Prepared	Analyzed	Dil Fac 1.00

Client Sample ID: MW-2-091814

Date Collected: 09/18/14 08:36 Date Received: 09/19/14 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	0.459		0.229		mg/L		09/22/14 09:13	09/22/14 15:37	1.00
Heavy Oil Range Hydrocarbons	ND		0.382		mg/L		09/22/14 09:13	09/22/14 15:37	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 - 150				09/22/14 09:13	09/22/14 15:37	1.00
n-Triacontane-d62	118		50 - 150				09/22/14 09:13	09/22/14 15:37	1.00
			00 - 700				00,22,77,00,70		
Method: EPA 300.0 - Anions by	y EPA Method 30		RL	MDL	Unit	D	Prepared		Dil Fac
Method: EPA 300.0 - Anions by Analyte	y EPA Method 30	0.0		MDL		D		Analyzed	
Method: EPA 300.0 - Anions by	y EPA Method 30 Result	0.0	RL	MDL	Unit mg/L mg/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anions by Analyte Nitrate-Nitrogen	y EPA Method 30 Result	0.0	RL 0.200	MDL	mg/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anions by Analyte Nitrate-Nitrogen Sulfate	y EPA Method 30 Result ND 5.25	0.0	RL 0.200		mg/L	D	Prepared	Analyzed	Dil Fac

Client Sample ID: MW-3-091814

Date Collected: 09/18/14 09:27

Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Chloromethane	ND		3.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Vinyl chloride	ND		0.200		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Bromomethane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
trans-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Methyl tert-butyl ether	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
1,1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
cis-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
2,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Bromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Chloroform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Carbon tetrachloride	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
1,1,1-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
2-Butanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Hexane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
1,1-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Benzene	ND		0.200		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
tert-Butanol	ND		5.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
1,2-Dichloroethane (EDC)	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	
Trichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00	

Lab Sample ID: SXI0128-02 Matrix: Water

TestAmerica Job ID: SXI0128

5

Lab Sample ID: SXI0128-03

Client Sample ID: MW-3-091814 Date Collected: 09/18/14 09:27 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0128-03 Matrix: Water

A. Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Bromodichloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
cis-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
4-Methyl-2-pentanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
trans-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Tetrachloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Dibromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,3-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,2-Dibromoethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
2-Hexanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Ethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Chlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
m,p-Xylene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
o-Xylene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Styrene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Bromoform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Isopropylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
n-Propylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Bromobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,3,5-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
2-Chlorotoluene	ND		1.00		-		09/23/14 07:49	09/24/14 12:27	1.00
	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,2,3-Trichloropropane					ug/L				
4-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
tert-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
sec-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
p-Isopropyltoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	101		71.2 - 143				09/23/14 07:49	09/24/14 12:27	1.00
1,2-dichloroethane-d4	93.9		70 - 140				09/23/14 07:49	09/24/14 12:27	1.00
Toluene-d8	103		74.1 - 135				09/23/14 07:49	09/24/14 12:27	1.00
4-bromofluorobenzene	102		68.7 - 141				09/23/14 07:49	09/24/14 12:27	1.00

Client Sample ID: MW-3-091814 Date Collected: 09/18/14 09:27

Date Received: 09/19/14 09:50

Benzo (ghi) perylene

Lab Sample ID: SXI0128-03 Matrix: Water

watrix. water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 12:27	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	102		68.7 - 141				09/23/14 07:49	09/24/14 12:27	1.00
Method: EPA 8270D - Polynuo	clear Aromatic Co	mpounds	by GC/MS with S	Selected	lon Moni	toring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
2-Methylnaphthalene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
1-Methylnaphthalene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Acenaphthylene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Acenaphthene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Fluorene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Phenanthrene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Anthracene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Fluoranthene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Pyrene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Benzo (a) anthracene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Chrysene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Benzo (b) fluoranthene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Benzo (k) fluoranthene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Benzo (a) pyrene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00
Dibenzo (a,h) anthracene	ND		0.0850		ug/L		09/23/14 08:20	09/24/14 20:01	1.00

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	90.6	32.7 - 135	09/23/14 08:20	09/24/14 20:01	1.00
2-FBP	87.2	44.3 - 120	09/23/14 08:20	09/24/14 20:01	1.00
p-Terphenyl-d14	88.3	59.5 - 154	09/23/14 08:20	09/24/14 20:01	1.00

0.0850

ug/L

09/23/14 08:20

09/24/14 20:01

1.00

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.231		mg/L		09/22/14 09:13	09/23/14 11:44	1.00
Heavy Oil Range Hydrocarbons	ND		0.386		mg/L		09/22/14 09:13	09/23/14 11:44	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl			50 - 150				09/22/14 09:13	09/23/14 11:44	1.00
T	107		50 450				00/00/44 00:40	00/02/44444	1.00
n-Triacontane-d62	127 v EPA Method 30	0.0	50 - 150				09/22/14 09:13	09/23/14 11:44	1.00
	y EPA Method 30	0.0 Qualifier	50 - 750 RL	MDL	Unit	D	Prepared	Analyzed	
Method: EPA 300.0 - Anions by	y EPA Method 30			MDL	Unit mg/L	D			1.00 Dil Fac
Method: EPA 300.0 - Anions by Analyte	y EPA Method 30 Result		RL	MDL		D	Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anions by Analyte Nitrate-Nitrogen	y EPA Method 30 		RL 0.200	MDL	mg/L	D	Prepared 09/19/14 10:47	Analyzed	Dil Fac
Method: EPA 300.0 - Anions by Analyte Nitrate-Nitrogen Sulfate	y EPA Method 30 Result 1.24 10.1		RL 0.200	MDL	mg/L mg/L	<u>D</u> 	Prepared 09/19/14 10:47	Analyzed	Dil Fac

RL

1.00

3.00

0.200

Analyte

Dichlorodifluoromethane

Bromoform

Isopropylbenzene

o-Xylene

Styrene

Chloromethane

Vinyl chloride

Client Sample ID: MW-4-091814 Date Collected: 09/18/14 10:19 Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

Lab Sample ID: SXI0128-04 Matrix: Water

Analyzed

09/24/14 12:50

09/24/14 12:50

09/24/14 12:50

Dil Fac

1.00

1.00

1.00

5
8

Bromomethane	ND	5.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Chloroethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Trichlorofluoromethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,1-Dichloroethene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Dichlorofluoromethane	ND	0.200	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Carbon disulfide	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Methylene chloride	ND	10.0	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Acetone	ND	25.0	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
trans-1,2-Dichloroethene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Methyl tert-butyl ether	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,1,2-Trichlorotrifluoroethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,1-Dichloroethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
cis-1,2-Dichloroethene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
2,2-Dichloropropane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Bromochloromethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Chloroform	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Carbon tetrachloride	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,1,1-Trichloroethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
2-Butanone	ND	10.0	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Hexane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,1-Dichloropropene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Benzene	ND	0.200	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
tert-Butanol	ND	5.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,2-Dichloroethane (EDC)	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Trichloroethene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Dibromomethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,2-Dichloropropane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Bromodichloromethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
cis-1,3-Dichloropropene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Toluene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
4-Methyl-2-pentanone	ND	10.0	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
trans-1,3-Dichloropropene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Tetrachloroethene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,1,2-Trichloroethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Dibromochloromethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,3-Dichloropropane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,2-Dibromoethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
2-Hexanone	ND	10.0	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Ethylbenzene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
Chlorobenzene	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00
m,p-Xylene	ND	2.00	ug/L	09/23/14 07:49 09/24/14 12:50 1.00

MDL Unit

ug/L

ug/L

ug/L

D

Prepared

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

TestAmerica Spokane

09/24/14 12:50

09/24/14 12:50

09/24/14 12:50

09/24/14 12:50

1.00

1.00

1.00

1.00

ug/L

ug/L

ug/L

ug/L

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

09/23/14 07:49

1.00

1.00

1.00

1.00

RL

MDL Unit

D

Prepared

Analyte

Client Sample ID: MW-4-091814 Date Collected: 09/18/14 10:19 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0128-04 Matrix: Water

Analyzed

5

	1.00	14 12:50
7	1.00	1/14 12:50
	1.00	1/14 12:50
8	1.00	1/14 12:50
	1.00	1/14 12:50
0	1.00	1/14 12:50
3	1.00	1/14 12:50
10	1.00	1/14 12:50
IU	1.00	1/14 12:50
	1.00	4/14 12:50
	1.00	1/14 12:50
	1 00	1/14 10.50

Dil Fac

· ····· · ·····························					· · · · · , - · · ·	
n-Propylbenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
Bromobenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,3,5-Trimethylbenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
2-Chlorotoluene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,2,3-Trichloropropane	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
4-Chlorotoluene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
tert-Butylbenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,2,4-Trimethylbenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
sec-Butylbenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
p-Isopropyltoluene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,3-Dichlorobenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,4-Dichlorobenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
n-Butylbenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,2-Dichlorobenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,2-Dibromo-3-chloropropane	ND	5.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
Hexachlorobutadiene	ND	2.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,2,4-Trichlorobenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
Naphthalene	ND	2.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
1,2,3-Trichlorobenzene	ND	1.00	ug/L	09/23/14 07:49	09/24/14 12:50	1.00
Surrogate	"Recovery Qualifier	Limite		Propared	Analyzod	Dil Eac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98.6		71.2 - 143	09/23/14 07:49	09/24/14 12:50	1.00
1,2-dichloroethane-d4	94.7		70 - 140	09/23/14 07:49	09/24/14 12:50	1.00
Toluene-d8	102		74.1 - 135	09/23/14 07:49	09/24/14 12:50	1.00
4-bromofluorobenzene	102		68.7 - 141	09/23/14 07:49	09/24/14 12:50	1.00

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 12:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	102		68.7 - 141				09/23/14 07:49	09/24/14 12:50	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Result Qualifier

Analyte	Result Qualit	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
2-Methylnaphthalene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
1-Methylnaphthalene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Acenaphthylene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Acenaphthene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Fluorene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Phenanthrene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Anthracene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Fluoranthene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Pyrene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Benzo (a) anthracene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Chrysene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Benzo (b) fluoranthene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Benzo (k) fluoranthene	ND	0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00

Client Sample ID: MW-4-091814 Date Collected: 09/18/14 10:19 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0128-04 Matrix: Water

Lab Sample ID: SXI0128-05

Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo (a) pyrene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Dibenzo (a,h) anthracene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Benzo (ghi) perylene	ND		0.0854		ug/L		09/23/14 08:20	09/24/14 20:26	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	94.7		32.7 - 135				09/23/14 08:20	09/24/14 20:26	1.00
2-FBP	88.0		44.3 - 120				09/23/14 08:20	09/24/14 20:26	1.00
p-Terphenyl-d14	96.9		59.5 - 154				09/23/14 08:20	09/24/14 20:26	1.00
- Method: NWTPH-Dx - Semivolatile	Petroleum P	Products by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.232		mg/L		09/22/14 09:13	09/22/14 16:01	1.00
Heavy Oil Range Hydrocarbons	ND		0.386		mg/L		09/22/14 09:13	09/22/14 16:01	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	99.0		50 - 150				09/22/14 09:13	09/22/14 16:01	1.00
n-Triacontane-d62	116		50 - 150				09/22/14 09:13	09/22/14 16:01	1.00
- Method: EPA 300.0 - Anions by E	PA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.950		0.200		mg/L		09/19/14 10:47	09/19/14 11:57	1.00
Sulfate	8.49		0.500		mg/L		09/19/14 10:47	09/19/14 11:57	1.00
Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.19		1.00		mg/L		09/25/14 12:00	09/25/14 12:00	

Client Sample ID: MW-5-091814

Date Collected: 09/18/14 11:11

Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile C	Organic Compounds by EPA	Method 8260C					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Chloromethane	ND	3.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Vinyl chloride	ND	0.200	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Bromomethane	ND	5.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Chloroethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Trichlorofluoromethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,1-Dichloroethene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Dichlorofluoromethane	ND	0.200	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Carbon disulfide	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Methylene chloride	ND	10.0	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Acetone	ND	25.0	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
trans-1,2-Dichloroethene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Methyl tert-butyl ether	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,1,2-Trichlorotrifluoroethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,1-Dichloroethane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
cis-1,2-Dichloroethene	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00
2,2-Dichloropropane	ND	1.00	ug/L		09/23/14 07:49	09/24/14 13:12	1.00

Client Sample ID: MW-5-091814 Date Collected: 09/18/14 11:11 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0128-05 Matrix: Water

5

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromochloromethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Chloroform	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Carbon tetrachloride	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,1,1-Trichloroethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
2-Butanone	ND	10.0		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Hexane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,1-Dichloropropene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Benzene	ND	0.200		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
tert-Butanol	ND	5.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,2-Dichloroethane (EDC)	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Trichloroethene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Dibromomethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,2-Dichloropropane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Bromodichloromethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
cis-1,3-Dichloropropene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Toluene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
4-Methyl-2-pentanone	ND	10.0		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
trans-1,3-Dichloropropene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Tetrachloroethene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,1,2-Trichloroethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Dibromochloromethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,3-Dichloropropane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,2-Dibromoethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
2-Hexanone	ND	10.0		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Ethylbenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Chlorobenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,1,1,2-Tetrachloroethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
m,p-Xylene	ND	2.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
o-Xylene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Styrene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Bromoform	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Isopropylbenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
n-Propylbenzene	1.22	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,1,2,2-Tetrachloroethane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Bromobenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,3,5-Trimethylbenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
2-Chlorotoluene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,2,3-Trichloropropane	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
4-Chlorotoluene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
tert-Butylbenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,2,4-Trimethylbenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
sec-Butylbenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
p-lsopropyltoluene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,3-Dichlorobenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,4-Dichlorobenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
n-Butylbenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,2-Dichlorobenzene	ND	1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,2-Dibromo-3-chloropropane	ND	5.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Hexachlorobutadiene	ND	2.00		ug/L ug/L		09/23/14 07:49	09/24/14 13:12 09/24/14 13:12	1.00

Client Sample ID: MW-5-091814 Date Collected: 09/18/14 11:11

Date Received: 09/19/14 09:50

TestAmerica Job ID: SXI0128

Lab Sample ID: SXI0128-05 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		71.2 - 143				09/23/14 07:49	09/24/14 13:12	1.00
1,2-dichloroethane-d4	95.9		70 - 140				09/23/14 07:49	09/24/14 13:12	1.00
Toluene-d8	101		74.1 - 135				09/23/14 07:49	09/24/14 13:12	1.00
4-bromofluorobenzene	104		68.7 - 141				09/23/14 07:49	09/24/14 13:12	1.00

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		09/23/14 07:49	09/24/14 13:12	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	104		68.7 - 141				09/23/14 07:49	09/24/14 13:12	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.550		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
2-Methylnaphthalene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
1-Methylnaphthalene	0.410		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Acenaphthylene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Acenaphthene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Fluorene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Phenanthrene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Anthracene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Fluoranthene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Pyrene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Benzo (a) anthracene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Chrysene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Benzo (b) fluoranthene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Benzo (k) fluoranthene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Benzo (a) pyrene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Dibenzo (a,h) anthracene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Benzo (ghi) perylene	ND		0.0847		ug/L		09/23/14 08:20	09/24/14 20:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	91.1		32.7 - 135				09/23/14 08:20	09/24/14 20:50	1.00
2-FBP	82.2		44.3 - 120				09/23/14 08:20	09/24/14 20:50	1.00
p-Terphenyl-d14	88.5		59.5 - 154				09/23/14 08:20	09/24/14 20:50	1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.230		mg/L		09/22/14 09:13	10/03/14 13:21	1.00
Heavy Oil Range Hydrocarbons	ND		0.384		mg/L		09/22/14 09:13	10/03/14 13:21	1.00
0	~ 5								D# 5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84.4	Qualifier	<i>Limits</i> 50 - 150				09/22/14 09:13	Analyzed 10/03/14 13:21	1.00

Client Sample ID: MW-5-091814

Date Collected: 09/18/14 11:11 Date Received: 09/19/14 09:50

	ile Petroleum P	. ou a o to by							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	0.238		0.230		mg/L		09/22/14 09:13	09/23/14 12:07	1.00
Heavy Oil Range Hydrocarbons	ND		0.384		mg/L		09/22/14 09:13	09/23/14 12:07	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	110		50 - 150				09/22/14 09:13	09/23/14 12:07	1.00
n-Triacontane-d62	126		50 - 150				09/22/14 09:13	09/23/14 12:07	1.00
-			00-100				03/22/14 03.13	00/20/14 12:07	1.00
Method: EPA 300.0 - Anions by Analyte		0.0 Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
•				MDL	Unit mg/L	D			
Analyte	Result		RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte Nitrate-Nitrogen	Result 0.490		RL 0.200	MDL	mg/L	<u>D</u>	Prepared 09/19/14 10:47	Analyzed	Dil Fac
Analyte Nitrate-Nitrogen Sulfate	Result 0.490 9.68		RL 0.200	MDL	mg/L mg/L	<u>D</u> 	Prepared 09/19/14 10:47	Analyzed	Dil Fac

Client Sample ID: MW-Dup-091814

Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac Dichlorodifluoromethane ND 1.00 09/24/14 13:35 ug/L 09/23/14 07:49 1.00 Chloromethane ND 3.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Vinyl chloride ND 0.200 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Bromomethane ND 5.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 ND Chloroethane 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Trichlorofluoromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 1,1-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Dichlorofluoromethane ND 0.200 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Carbon disulfide ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Methylene chloride ND 10.0 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Acetone ND 25.0 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 trans-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Methyl tert-butyl ether ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 09/23/14 07:49 1,1,2-Trichlorotrifluoroethane ND 1 00 ug/L 09/24/14 13:35 1 00 1,1-Dichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 cis-1,2-Dichloroethene ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 2,2-Dichloropropane ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Bromochloromethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1 00 Chloroform ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 ND 09/24/14 13:35 1.00 Carbon tetrachloride 1.00 ug/L 09/23/14 07:49 1,1,1-Trichloroethane ND 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 ND 09/24/14 13:35 2-Butanone 10.0 ug/L 09/23/14 07:49 1 00 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 Hexane 4.97 ug/L 1,1-Dichloropropene ND 1.00 09/23/14 07:49 09/24/14 13:35 1.00 Benzene ND 0.200 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 tert-Butanol ND 5.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 ND 1,2-Dichloroethane (EDC) 1.00 ug/L 09/23/14 07:49 09/24/14 13:35 1.00 ND 1.00 09/23/14 07:49 09/24/14 13:35 Trichloroethene ug/L 1.00

TestAmerica Spokane

10/8/2014

Matrix: Water

Lab Sample ID: SXI0128-05

Lab Sample ID: SXI0128-06

Matrix: Water

Client Sample ID: MW-Dup-091814 Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

Lab Sample ID: SXI0128-06 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Bromodichloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
cis-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
4-Methyl-2-pentanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
trans-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Tetrachloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Dibromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,3-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,2-Dibromoethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
2-Hexanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Ethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Chlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
m,p-Xylene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
o-Xylene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Styrene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Bromoform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Isopropylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
n-Propylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Bromobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,3,5-Trimethylbenzene	1.08		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
2-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,2,3-Trichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
4-Chlorotoluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
tert-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,2,4-Trimethylbenzene	4.07		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
sec-Butylbenzene	4.07 ND		1.00		-		09/23/14 07:49	09/24/14 13:35	1.00
-	ND		1.00		ug/L				1.00
p-Isopropyltoluene					ug/L		09/23/14 07:49	09/24/14 13:35	
1,3-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
n-Butylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Hexachlorobutadiene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Naphthalene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane		7	71.2 - 143				09/23/14 07:49	09/24/14 13:35	1.00
1,2-dichloroethane-d4	95.7		70 - 140				09/23/14 07:49	09/24/14 13:35	1.00
Toluene-d8	99.8	7	74.1 - 135				09/23/14 07:49	09/24/14 13:35	1.00
4-bromofluorobenzene	102	é	68.7 - 141				09/23/14 07:49	09/24/14 13:35	1.00

Client Sample ID: MW-Dup-091814 Date Collected: 09/18/14 08:00

Date Received: 09/19/14 09:50

p-Terphenyl-d14

Total Organic Carbon

Lab Sample ID: SXI0128-06 Matrix: Water

matrix. Water

5

Analyte	Hydrocarbons I Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	239		100		ug/L		09/23/14 07:49	09/24/14 13:35	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	102		68.7 - 141				09/23/14 07:49	09/24/14 13:35	1.00
- Method: EPA 8270D - Polynucle	ar Aromatic Co	mpounds I	oy GC/MS with S	Selected	lon Moni	toring			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.331		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
2-Methylnaphthalene	0.629		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
1-Methylnaphthalene	0.503		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Acenaphthylene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Acenaphthene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Fluorene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Phenanthrene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Anthracene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Fluoranthene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Pyrene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Benzo (a) anthracene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Chrysene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Benzo (b) fluoranthene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Benzo (k) fluoranthene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Benzo (a) pyrene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Dibenzo (a,h) anthracene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Benzo (ghi) perylene	ND		0.0893		ug/L		09/23/14 08:20	09/24/14 21:15	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	105		32.7 - 135				09/23/14 08:20	09/24/14 21:15	1.00
2-FBP	98.6		44.3 - 120				09/23/14 08:20	09/24/14 21:15	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.233		mg/L		09/22/14 09:13	09/22/14 16:26	1.00
Heavy Oil Range Hydrocarbons	ND		0.389		mg/L		09/22/14 09:13	09/22/14 16:26	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95.8		50 - 150				09/22/14 09:13	09/22/14 16:26	1.00
n-Triacontane-d62	111		50 - 150				09/22/14 09:13	09/22/14 16:26	1.00
Method: EPA 300.0 - Anions by	/ EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.740		0.200		mg/L		09/19/14 10:47	09/19/14 12:25	1.00
Sulfate	9.92		0.500		mg/L		09/19/14 10:47	09/19/14 12:25	1.00
Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

59.5 - 154

97.3

1.30

09/25/14 12:00 09/25/14 12:00

09/23/14 08:20

09/24/14 21:15

1.00

1

1.00

mg/L

Lab Sample ID: 14I0134-BLK1

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14I0134_P

6

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Analysis Batch: 14I0134	Blank	Blank						Prep Batch: 14	10134_P
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloromethane	ND		3.00		ug/L ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Vinyl chloride	ND		0.200				09/23/14 07:49	09/24/14 09:49	1.00
	ND		5.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromomethane					ug/L				
Chloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Trichlorofluoromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dichlorofluoromethane	ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Carbon disulfide	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Methylene chloride	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Acetone	ND		25.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Methyl tert-butyl ether	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chloroform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Carbon tetrachloride	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,1-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Butanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Hexane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Benzene	ND		0.200		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
tert-Butanol	ND		5.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dichloroethane (EDC)	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Trichloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dibromomethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromodichloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
cis-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Toluene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
4-Methyl-2-pentanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
trans-1,3-Dichloropropene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Tetrachloroethene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Dibromochloromethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3-Dichloropropane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dibromoethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Hexanone	ND		10.0		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Ethylbenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Chlorobenzene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
m,p-Xylene	ND		2.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
o-Xylene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Styrene	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromoform	ND		1.00		ug/L		09/23/14 07:49	09/24/14 09:49	1.00
I					-				

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BLK1							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Typ	e: Total
Analysis Batch: 14I0134								Prep Batch: 14	
-	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
n-Propylbenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,1,2,2-Tetrachloroethane	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
Bromobenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3,5-Trimethylbenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
2-Chlorotoluene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,3-Trichloropropane	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
4-Chlorotoluene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
tert-Butylbenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,4-Trimethylbenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
sec-Butylbenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
p-Isopropyltoluene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,3-Dichlorobenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,4-Dichlorobenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
n-Butylbenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dichlorobenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2-Dibromo-3-chloropropane	ND		5.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
Hexachlorobutadiene	ND		2.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,4-Trichlorobenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
Naphthalene	ND		2.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
1,2,3-Trichlorobenzene	ND		1.00	u	g/L		09/23/14 07:49	09/24/14 09:49	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100	-	712-143				09/23/14 07:49	09/24/14 09:49	1 00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		71.2 - 143	09/23/14 07:49	09/24/14 09:49	1.00
1,2-dichloroethane-d4	91.0		70 - 140	09/23/14 07:49	09/24/14 09:49	1.00
Toluene-d8	105		74.1 - 135	09/23/14 07:49	09/24/14 09:49	1.00
4-bromofluorobenzene	103		68.7 - 141	09/23/14 07:49	09/24/14 09:49	1.00

Lab Sample ID: 14I0134-BS1 Matrix: Water Analysis Batch: 14I0134

Analysis Batch: 14I0134	Spike	1.00	LCS				Prep Batch: 14I0134_P %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane		11.0	Quanner			110	60 - 140
				ug/L			
Chloromethane	10.0	10.2		ug/L		102	60 - 140
Vinyl chloride	10.0	10.4		ug/L		104	60 - 140
Bromomethane	10.0	10.9		ug/L		109	60 - 140
Chloroethane	10.0	10.2		ug/L		102	60 - 140
Trichlorofluoromethane	10.0	9.91		ug/L		99.1	60 - 140
1,1-Dichloroethene	10.0	9.47		ug/L		94.7	78.1 - 155
Dichlorofluoromethane	10.0	9.75		ug/L		97.5	60 - 140
Carbon disulfide	10.0	9.27		ug/L		92.7	60 - 140
Methylene chloride	10.0	11.2		ug/L		112	60 - 140
Acetone	50.0	57.8		ug/L		116	60 - 140
trans-1,2-Dichloroethene	10.0	9.25		ug/L		92.5	60 - 140
Methyl tert-butyl ether	10.0	9.70		ug/L		97.0	80.1 - 128
1,1,2-Trichlorotrifluoroethane	10.0	10.1		ug/L		101	60 - 140
1,1-Dichloroethane	10.0	10.1		ug/L		101	60 - 140

TestAmerica Spokane

Client Sample ID: Lab Control Sample

Prep Type: Total

5

6

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BS1 Matrix: Water					Client Sample ID: Lab Control Samp Prep Type: To				
Analysis Batch: 14I0134							Prep Batch: 14I0134_F		
	Spike	LCS			_	~ -	%Rec.		
Analyte	Added		Qualifier	Unit	D	%Rec	Limits		
cis-1,2-Dichloroethene	10.0	10.1		ug/L		101	60 ₋ 140		
2,2-Dichloropropane	10.0	9.88		ug/L		98.8	60 <u>-</u> 140		
Bromochloromethane	10.0	10.2		ug/L		102	60 - 140		
Chloroform	10.0	9.55		ug/L		95.5	60 - 140		
Carbon tetrachloride	10.0	9.96		ug/L		99.6	60 - 140		
1,1,1-Trichloroethane	10.0	9.54		ug/L		95.4	60 - 140		
2-Butanone	50.0	50.3		ug/L		101	60 - 140		
Hexane	10.0	9.04		ug/L		90.4	60 - 140		
1,1-Dichloropropene	10.0	9.95		ug/L		99.5	60 - 140		
Benzene	10.0	9.38		ug/L		93.8	80 - 122		
ert-Butanol	100	79.8		ug/L		79.8	60 - 140		
1,2-Dichloroethane (EDC)	10.0	10.1		ug/L		101	63.9 - 144		
Trichloroethene	10.0	10.1		ug/L		101	74.8 - 123		
Dibromomethane	10.0	9.80		ug/L		98.0	60 - 140		
1,2-Dichloropropane	10.0	10.2		ug/L		102	60 - 140		
Bromodichloromethane	10.0	8.94		ug/L		89.4	60 - 140		
cis-1,3-Dichloropropene	10.0	9.51		ug/L		95.1	60 - 140		
Toluene	10.0	9.53		ug/L		95.3	80 - 123		
1-Methyl-2-pentanone	50.0	47.0		ug/L		94.0	60 - 140		
rans-1,3-Dichloropropene	10.0	9.55		ug/L		95.5	60 - 140		
Fetrachloroethene	10.0	10.4		ug/L		104	60 - 140		
1,1,2-Trichloroethane	10.0	9.96		ug/L		99.6	60 - 140		
Dibromochloromethane	10.0	9.62		ug/L		96.2	60 - 140		
1,3-Dichloropropane	10.0	9.82		ug/L		98.2	60 - 140		
1,2-Dibromoethane	10.0	10.2		ug/L		102	70 - 130		
2-Hexanone	50.0	49.8		ug/L		99.6	60 - 140		
Ethylbenzene	10.0	9.43		ug/L		94.3	80 - 120		
Chlorobenzene	10.0	9.63		ug/L		96.3	79.2 - 125		
				-					
1,1,1,2-Tetrachloroethane	10.0	9.52		ug/L		95.2	60 - 140		
n,p-Xylene	10.0	9.50		ug/L		95.0	80 - 120		
p-Xylene	10.0	9.48		ug/L		94.8	80 - 120		
Styrene	10.0	9.95		ug/L		99.5	60 - 140		
Bromoform	10.0	9.38		ug/L		93.8	60 - 140		
sopropylbenzene	10.0	9.16		ug/L		91.6	60 - 140		
n-Propylbenzene	10.0	9.27		ug/L		92.7	60 - 140		
I,1,2,2-Tetrachloroethane	10.0	9.86		ug/L		98.6	60 - 140		
Bromobenzene	10.0	10.3		ug/L		103	60 - 140		
I,3,5-Trimethylbenzene	10.0	9.33		ug/L		93.3	60 - 140		
2-Chlorotoluene	10.0	9.69		ug/L		96.9	60 - 140		
,2,3-Trichloropropane	10.0	11.0		ug/L		110	60 - 140		
I-Chlorotoluene	10.0	9.61		ug/L		96.1	60 - 140		
ert-Butylbenzene	10.0	9.85		ug/L		98.5	60 - 140		
,2,4-Trimethylbenzene	10.0	9.55		ug/L		95.5	60 - 140		
sec-Butylbenzene	10.0	9.38		ug/L		93.8	60 - 140		
lsopropyltoluene	10.0	9.19		ug/L		91.9	60 - 140		
,3-Dichlorobenzene	10.0	9.61		ug/L		96.1	60 - 140		
,4-Dichlorobenzene	10.0	9.55		ug/L		95.5	60 - 140		
n-Butylbenzene	10.0	8.92		ug/L		89.2	60 ₋ 140		

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14I0134-BS1							Client	Sampl	e ID: Lab Control Sample
Matrix: Water									Prep Type: Total
Analysis Batch: 14I0134									Prep Batch: 14I0134_P
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichlorobenzene			10.0	9.72		ug/L		97.2	60 - 140
1,2-Dibromo-3-chloropropane			10.0	9.98		ug/L		99.8	60 - 140
Hexachlorobutadiene			10.0	9.82		ug/L		98.2	60 - 140
1,2,4-Trichlorobenzene			10.0	9.68		ug/L		96.8	60 - 140
Naphthalene			10.0	9.65		ug/L		96.5	62.8 - 132
1,2,3-Trichlorobenzene			10.0	9.98		ug/L		99.8	60 - 140
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Dibromofluoromethane	98.9		71.2 - 143						
1,2-dichloroethane-d4	95.4		70 - 140						
Toluene-d8	101		74.1 - 135						
4-bromofluorobenzene	101		68.7 - 141						

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 14I0134-BLK1 Matrix: Water Analysis Batch: 14I0134										Client Sa	ample ID: Meth Prep Ty Prep Batch: 1	/pe: Total
Analysis Batch. 1410104	Blank	Blank									Thep Bateri.	10134_1
Analyte	Resul	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	NE	<u> </u>	100			ug/L			09/2	3/14 07:49	09/24/14 09:49	1.00
	Blank	Blank										
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed	Dil Fac
4-bromofluorobenzene	103	3	68.7 - 141						09/2	3/14 07:49	09/24/14 09:49	1.00
Lab Sample ID: 14I0134-BS2								С	lient	Sample	ID: Lab Contro	ol Sample
Matrix: Water												/pe: Total
Analysis Batch: 14I0134			Spike	LCS	LCS						Prep Batch: 1 %Rec.	
Analyte			Added	Result			Unit		D	%Rec	Limits	
Gasoline Range Hydrocarbons			1000	875		-	ug/L			87.5	80 - 120	
	LCS LC	s										
Surrogate	%Recovery Qu	alifier	Limits									
4-bromofluorobenzene	97.3		68.7 - 141									

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 14I0135-BLK1 Matrix: Water Analysis Batch: 14I0135	Blank	Blank						mple ID: Metho Prep Typ Prep Batch: 14	e: Total
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00
2-Methylnaphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00
1-Methylnaphthalene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00
Acenaphthylene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00
Acenaphthene	ND		0.100		ug/L		09/23/14 08:20	09/24/14 18:22	1.00

TestAmerica Spokane

5 6

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 14I0135-BLK1							Client	Sample ID: Metho	
Matrix: Water								Prep Typ	
Analysis Batch: 14I0135	Blank	Blank						Prep Batch: 14	10135_P
Analyte		Qualifier	RL		MDL Unit		D Prepared	Analyzed	Dil Fac
Fluorene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Phenanthrene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Anthracene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Fluoranthene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Pyrene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Benzo (a) anthracene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Chrysene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Benzo (b) fluoranthene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Benzo (k) fluoranthene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Benzo (a) pyrene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Indeno (1,2,3-cd) pyrene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Dibenzo (a,h) anthracene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
Benzo (ghi) perylene	ND		0.100		ug/L		09/23/14 08:2	0 09/24/14 18:22	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	102		32.7 - 135				09/23/14 08:2	0 09/24/14 18:22	1.00
2-FBP	97.3		44.3 - 120				09/23/14 08:2	0 09/24/14 18:22	1.00
p-Terphenyl-d14	94.5		59.5 - 154				09/23/14 08:2	0 09/24/14 18:22	1.00
Lab Sample ID: 14I0135-BS1							Client Sample	e ID: Lab Control	Sample
Matrix: Water								Prep Typ	
Analysis Batch: 14I0135								Prep Batch: 14	
· · · · · · · · · · · · · · · · · · ·			Spike	LCS	LCS			%Rec.	
Analyte			Added	Result	Qualifier	Unit	D %Rec	Limits	
Naphthalene			1.60	1.38		ug/L	86.2	27.8 - 143	
Fluorene			1.60	1.49		ug/L	92.9	59.2 - 120	
						-			

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	85.8		32.7 - 135
2-FBP	81.1		44.3 - 120
p-Terphenyl-d14	69.0		59.5 - 154

Chrysene

Indeno (1,2,3-cd) pyrene

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Lab Sample ID: 14I0130-BLK2 Matrix: Water Analysis Batch: 14I0130								mple ID: Metho Prep Typ Prep Batch: 14	e: Total
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.240		mg/L		09/22/14 09:13	10/03/14 14:31	1.00
Heavy Oil Range Hydrocarbons	ND		0.400		mg/L		09/22/14 09:13	10/03/14 14:31	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93.0		50 - 150				09/22/14 09:13	10/03/14 14:31	1.00

1.60

1.60

1.36

1.46

ug/L

ug/L

85.0 69.1 - 122

91.1 56.1 - 135

o-Terphenyl

n-Triacontane-d62

2 3 4 5 6 7 8

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Lab Sample ID: 14I0130-BLK2									Client Sa	mple ID: Metho	d Blank
Matrix: Water										Prep Typ	be: Total
Analysis Batch: 14I0130										Prep Batch: 14	
	В	Blank	Blank								
Surrogate	%Reco	very	Qualifier	Limits				F	Prepared	Analyzed	Dil Fac
n-Triacontane-d62		96.2		50 - 150				09/2	2/14 09:13	10/03/14 14:31	1.00
Lab Sample ID: 14I0130-BS2								Client	t Sample	ID: Lab Control	Sample
Matrix: Water										Prep Typ	be: Total
Analysis Batch: 14I0130										Prep Batch: 14	I0130_P
				Spike	LCS	LCS				%Rec.	
Analyte				Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons				3.20	2.56		mg/L		80.1	50 _ 150	
	LCS	LCS									
Surrogate	%Recovery	Qual	lifier	Limits							
o-Terphenyl	95.8			50 - 150							
n-Triacontane-d62	98.5			50 - 150							

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

96.2

111

Lab Sample ID: 14I0130-BLK1 Matrix: Water											Client Sa	ample ID: Metho Prep Typ	
Analysis Batch: 14I0130												Prep Batch: 14	10130_P
	BI	lank	Blank										
Analyte	Re	sult	Qualifier	R	-	MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Diesel Range Hydrocarbons		ND		0.24	0		mg/L			09/2	2/14 09:13	09/23/14 10:39	1.00
Heavy Oil Range Hydrocarbons		ND		0.40)		mg/L			09/2	2/14 09:13	09/23/14 10:39	1.00
	B	lank	Blank										
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyzed	Dil Fac
o-Terphenyl		120		50 - 150	-					09/2	2/14 09:13	09/23/14 10:39	1.00
n-Triacontane-d62		128		50 - 150						09/2	2/14 09:13	09/23/14 10:39	1.00
Lab Sample ID: 14I0130-BS1									С	lient	Sample	ID: Lab Control	Sample
Matrix: Water												Prep Typ	
Analysis Batch: 14I0130												Prep Batch: 14	
				Spike	LCS	LCS						%Rec.	_
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Diesel Range Hydrocarbons				3.20	2.74			mg/L		-	85.7	50 - 150	
	LCS	LCS											
Surrogate	%Recovery	Qua	lifier	Limits									

50 - 150 50 - 150

Method: EPA 300.0 - Anions by EPA Method 300.0

Lab Sample ID: 14I0126-BLK1 Matrix: Water									Client Sa	ample ID: Pr	Method ep Type	
Analysis Batch: 14I0126										Prep Bat		
Analyto		Blank Blank esult Qualifier		RL	MDL I	Init		DF	Prepared	Analy	rod .	Dil Fa
Analyte Nitrate-Nitrogen		ND Quaimer		0.200					19/14 10:47	Analy: 09/19/14		1.00
Sulfate		ND		0.200		mg/L mg/L			19/14 10:47 19/14 10:47	09/19/14		1.00
-				0.000								
Lab Sample ID: 14I0126-BS1								Clien	t Sample			
Matrix: Water											ер Туре	
Analysis Batch: 14I0126			Spike	LCS	LCS					Prep Bat %Rec.	ch: 1410)126_I
Analyte			Added		Qualif	ier l	Jnit	D	%Rec	Limits		
Nitrate-Nitrogen			5.00	5.02		 r	ng/L		100	90 - 110		
Sulfate			12.5	12.4		r	ng/L		99.0	90 - 110		
Lab Sample ID: 14I0126-MS1								С	lient Sam	nle ID: M	W-Dup-	09181
Matrix: Water										-	ер Туре	
Analysis Batch: 14I0126										Prep Bat		
	Sample	Sample	Spike	Matrix Spike	Matrix	Spike				%Rec.		
Analyte	Result	Qualifier	Added	-	Qualif	-	Jnit	D	%Rec	Limits		
Nitrate-Nitrogen	0.740		5.00	6.09	,	r	ng/L		107	80 - 120		
Sulfate	9.92		12.5	23.4		r	ng/L		108	80 - 120		
Lab Sample ID: 14I0126-MSD1								с	lient Sam	ple ID: M	W-Dup-	091814
Matrix: Water										-	ер Туре	
Analysis Batch: 14I0126										Prep Bat		
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix	Spike l	Dup			%Rec.		RPI
Analyte	Result	Qualifier	Added	Result	Qualif	ier l	Jnit	D	%Rec	Limits	RPD	Limi
Nitrate-Nitrogen	0.740		5.00	6.12		r	ng/L		108	80 - 120	0.360	12.1
Sulfate	9.92		12.5	23.5	i	r	ng/L		108	80 - 120	0.282	10
Lab Sample ID: 14I0126-DUP1								С	lient Sam	ple ID: M	W-Dup-	09181 [,]
Matrix: Water										Pr	ер Туре	: Tota
Analysis Batch: 14I0126										Prep Bat		
-	Sample	Sample		Duplicate	Duplic	cate						RPI
Analyte	Result	Qualifier		Result	Qualif	ier l	Jnit	D			RPD	Limi
Nitrate-Nitrogen	0.740			0.750		r	ng/L				1.34	13.
Sulfate	9.92			9.87		r	ng/L				0.505	15.7
lethod: SM 5310C - TOC												
Lab Sample ID: 193629-1									Client Se	ample ID:	Method	l Blan
Matrix: Water									Short Oc		ep Type	
Analysis Batch: 193629										Prep Ba		
Analysis Buton. 199029	E	Blank Blank								тер Ба		
Analyte		esult Qualifier		RL	MDL (Unit		DF	Prepared	Analy	zed	Dil Fac
Total Organic Carbon		ND		1.00		mg/L			25/14 12:00	09/25/14		

TestAmerica Spokane

LCS LCS

LCS Dup LCS Dup

Result Qualifier

9.803

Result Qualifier

Spike

Added

Spike

Added

10.0

Lab Sample ID: 193629-4

Analysis Batch: 193629

Lab Sample ID: 193629-5

Analysis Batch: 193629

Matrix: Water

Total Organic Carbon

Matrix: Water

Analyte

Analyte

Method: SM 5310C - TOC (Continued)

Prep Type: Total Prep Batch: 193629_P

Prep Type: Total

Client Sample ID: Lab Control Sample

%Rec.

Limits

Client Sample ID: Lab Control Sample Dup

90 - 110

D

D

%Rec

98

Unit

mg/L

Unit

6

	Prep Batch: 193629_P					
	%Rec.		RPD	ŝ		
%Rec	Limits	RPD	Limit			
99	90 - 110	1	20			

Total Organic Carbon			10.0	9.874		mg/L		99	90 - 110	1	20
Lab Sample ID: 193629-11 Matrix: Water								Client	Sample ID	: Matrix ep Type	
Analysis Batch: 193629	. .								Prep Ba		
	Sample	Sample	Spike	Matrix Spike	Matrix Spike	9			%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Organic Carbon			20.0	21.94		mg/L		88	75 - 122		
Lab Sample ID: 193629-12							Client Sa	ample IC	D: Matrix S	pike Duj	olicate
Matrix: Water									Pro	ер Туре	: Total
Analysis Batch: 193629									Prep Ba	tch: 193	629_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spike	e Duț			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon			20.0	21.62		mg/L		86	75 - 122	1	20

Lab Sample ID: SXI0128-01

Matrix: Water

Client Sample ID: MW-1-091814
Date Collected: 09/18/14 12:04
Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 11:42	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 11:42	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.953	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 19:12	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.973	14I0130_P	09/22/14 09:13	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410130	09/23/14 11:21	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 10:47	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 11:13	CBW	TAL SPK
Total	Analysis	SM 5310C		1	193629	09/25/14 12:00	JKF	TAL NSH
Total	Prep	NA			193629_P	09/25/14 12:00		TAL NSH

Client Sample ID: MW-2-091814 Date Collected: 09/18/14 08:36 Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 12:04	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 12:04	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.941	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 19:36	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.956	14I0130_P	09/22/14 09:13	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410130	09/22/14 15:37	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.956	14I0130_P	09/22/14 09:13	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410130	10/03/14 12:57	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 10:47	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 11:28	CBW	TAL SPK

Client Sample ID: MW-3-091814

Date Collected: 09/18/14 09:27 Date Received: 09/19/14 09:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 12:27	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 12:27	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.944	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 20:01	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.964	14I0130_P	09/22/14 09:13	NI	TAL SPK

Lab Sample ID: SXI0128-02

Matrix: Water

Lab Sample ID: SXI0128-03

Matrix: Water

Batch

Number

1410130

1410126

14I0126_P

Prepared

or Analyzed

09/23/14 11:44

09/19/14 10:47

09/19/14 11:42

Analyst

NMI

CBW

CBW

Lab

TAL SPK

TAL SPK

TAL SPK

Dilution

Factor

1.00

1.00

1.00

Run

Date Collected: 09/18/14 09:27

Date Received: 09/19/14 09:50

Prep Type

Total

Total

Total

Client Sample ID: MW-3-091814

Batch

Туре

Prep

Analysis

Analysis

Batch

Method

NWTPH-Dx

Wet Chem

EPA 300.0

Lab Sample ID: SXI0128-03

2 3 4 5 6 7

4 8 er

9

Lab Sample ID: SXI0128-04

Matrix: Water

Matrix: Water

Client Sample ID: MW-4-0918	4
Date Collected: 09/18/14 10:19	
Date Received: 09/19/14 09:50	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 12:50	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 12:50	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.949	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 20:26	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.965	14I0130_P	09/22/14 09:13	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410130	09/22/14 16:01	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 10:47	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 11:57	CBW	TAL SPK

Client Sample ID: MW-5-091814

Date Collected: 09/18/14 11:11 Date Received: 09/19/14 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 13:12	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 13:12	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.942	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 20:50	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.959	14I0130_P	09/22/14 09:13	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410130	09/23/14 12:07	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.959	14I0130_P	09/22/14 09:13	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410130	10/03/14 13:21	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 10:47	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 12:11	CBW	TAL SPK

AL SPK

Lab Sample ID: SXI0128-05

Matrix: Water

Client Sample ID: MW-Dup-091814

Date Collected: 09/18/14 08:00 Date Received: 09/19/14 09:50

Lab Sample	ID: SXI0128-06

Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total	Analysis	EPA 8260C		1.00	1410134	09/24/14 13:35	CBW	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14I0134_P	09/23/14 07:49	CBW	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	1410134	09/24/14 13:35	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.993	14I0135_P	09/23/14 08:20	IAB	TAL SPK
Total	Analysis	EPA 8270D		1.00	1410135	09/24/14 21:15	ZZZ	TAL SPK
Total	Prep	EPA 3510/600 Series		0.972	14I0130_P	09/22/14 09:13	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	1410130	09/22/14 16:26	NMI	TAL SPK
Total	Prep	Wet Chem		1.00	14I0126_P	09/19/14 10:47	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	1410126	09/19/14 12:25	CBW	TAL SPK

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

8
9

Laborator	/: TestAmerica Sp	ookane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	A2LA		NA: NELAP & A2LA	12-31-15
A2LA	ISO/IEC 17025		0453.07	12-31-15
Alaska (UST)	State Program	10	UST-087	10-31-14
Arizona	State Program	9	AZ0473	05-05-15
Arkansas DEQ	State Program	6	88-0737	04-25-15
California	NELAP	9	1168CA	10-31-14
Connecticut	State Program	1	PH-0220	12-31-15
Florida	NELAP	4	E87358	06-30-15
Illinois	NELAP	5	200010	12-09-14
lowa	State Program	7	131	04-01-16
Kansas	NELAP	7	E-10229	10-31-14
Kentucky (UST)	State Program	4	19	06-30-15
Kentucky (WW)	State Program	4	90038	12-31-14
Louisiana	NELAP	6	30613	06-30-15
Maryland	State Program	3	316	03-31-15
Massachusetts	State Program	1	M-TN032	06-30-15
Minnesota	NELAP	5	047-999-345	12-31-14
Mississippi	State Program	4	N/A	06-30-15
Montana (UST)	State Program	8	NA	02-24-20
Nevada	State Program	9	TN00032	07-31-15
New Hampshire	NELAP	1	2963	10-09-15
New Jersey	NELAP	2	TN965	06-30-15
New York	NELAP	2	11342	03-31-15
North Carolina (WW/SW)	State Program	4	387	12-31-14
North Dakota	State Program	8	R-146	06-30-14
Ohio VAP	State Program	5	CL0033	10-16-15
Oklahoma	State Program	6	9412	08-31-15
Oregon	NELAP	10	TN200001	04-29-15
Pennsylvania	NELAP	3	68-00585	06-30-15
Rhode Island	State Program	1	LAO00268	12-30-14
South Carolina	State Program	4	84009 (001)	02-28-15
South Carolina (DW)	State Program	4	84009 (002)	02-23-17
Tennessee	State Program	4	2008	02-23-17
Texas	NELAP	6	T104704077	08-31-15
USDA	Federal		S-48469	10-30-16
Utah	NELAP	8	TN00032	07-31-15
Virginia	NELAP	3	460152	06-14-15
Washington	State Program	10	C789	07-19-15
West Virginia DEP	State Program	3	219	02-28-15
Wisconsin	State Program	5	998020430	08-31-15
Wyoming (UST)	A2LA	8	453.07	12-31-15

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

TestAmerica Job ID: SXI0128

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
WTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
WTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
WTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup		TAL SPK
EPA 300.0	Anions by EPA Method 300.0		TAL SPK
SM 5310C	TOC		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

 253-922-2310
 FAX 922-5047

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

•					C	HAIN	NOF	CUST	ODY	Y REP(DRT			Work ()rder	#:SX	<u> 10 29</u>	
CLIENT: Greo Enginee	ecs					INVOIO	CE TO:								TURN	AROU	IND REQUES	r
REPORT TO: JTZ Suga ADDRESS: 523 E Sa Graitane L PHONE: 509-363-3125 PROJECT NAME: Twoce To	lski conol Aut	-														c & Inorg	anic Analyses	1 <1
PHONE: 509-363-3125	FAX: 509-	363-3126	<u>,</u>			P.O. NU	MBER:								Petrole	um Hydr 7 🗖	ocarbon Analyses	
PROJECT NAME: Three To	1920 011 - A	v1st						PR.	ESERVA							3	2 1 <	
PROJECT NUMBER: 0504-	- 101-00		<u> </u>					REOTIE	STED AI	NALYSES					THER	Specif	fv-	
SAMPLED BY: Jun P			+.		4			ī									- standard may incur	Rush Charges
CLIENT SAMPLE IDENTIFICATION		PLING E/TIME	-HULLIN	νος	-HUTUN	100	SHHYZ	Nitrate	Sulfate					MATRIX (W, S, O)			LOCATION/	TA WO ID
MW-1-091814	9/18/14	1204	X	X	×	×	X	×	X					υ	7			
2 MW-Z-091814	9/18/14	0836																
3 MW-3-091814	9/18/14	0927						·										
* MW-4-091814	9/18/14	1619				 	_									_		
5 MW-5-091814	9/18/14	<u>u()</u>																
6 MW-DUP-091814	9/18/14	0800	<u>V</u>	V V	V V		\vee	V	V						V			
7					<u> </u>													
8			 	ŀ	<u> </u>													_
9														 				
10								·										
RELEASED BY: 272							9/19	· •		RECEIVED	- A.L	(t	dilor	130	n:TA		DATE 9.	1914 9'50
PRINT NAME: JUSST TH	<u>ce</u>	firm: G	20			TIME	<u> </u>	50		RECEIVED	www	Da	WWOT~		4. IJ (DATE:	1.00
PRINT NAME:		FIRM:				TIME	i:			PRINT NAM	Æ:			FIRI	vi:		TIME:	
ADDITIONAL REMARKS:																	39 PAGE	e l of
/20112								-									TAL-	1000 (0612

1.1.1.1

TestAmerica Spokane Sample Receipt Form

Work Order #: XIO 128 Client: GROEMIN	us			Project: Three Tiger Oil 184					
	By (S								
Samples Delivered By: Shipping Service Courier Client Other									
List Air Bill Number(s) or Attach a photocopy of the Air Bill:									
Receipt Phase	Yes	No	NA	Comments					
Were samples received in a cooler:	َ ۲								
Custody Seals are present and intact:									
Are CoC documents present:									
Necessary signatures:	\succ								
Thermal Preservation Type: Blue Ice Gel Ice	Dry Ice	None	Other:_						
Temperature: 38 °C Thermometer (Circle one Serial #12	2208348 Ke	eyring IR	Serial # 11	1874910 IR Gun 2)(acceptance criteria 0-6					
	v/in 4hrs of	collection	<u>NA</u>]Other:					
Log-in Phase Date/Time: U/1/1/ /// By: CA	Yes	No	NA	Comments					
Are sample labels affixed and completed for each container	7								
Samples containers were received intact:	$\overline{>}$								
Do sample IDs match the CoC	\geq								
Appropriate sample containers were received for tests requested	>								
Are sample volumes adequate for tests requested	\geq								
Appropriate preservatives were used for the tests requested	Z								
pH of inorganic samples checked and is within method specification	7								
Are VOC samples free of bubbles >6mm (1/4" diameter)	2								
Are dissolved parameters field filtered	•		>						
Do any samples need to be filtered or preserved by the lab			\succ						
Does this project require quick turnaround analysis		<u>ک</u>		NI - I					
Are there any short hold time tests (see chart below)	\geq			Nitrate					
Are any samples within 2 days of or past expiration	\geq		······						
Was the CoC scanned	$\overline{\boldsymbol{\lambda}}$								
Were there Non-conformance issues at login		Z							
If yes, was a CAR generated #		-	1						

24 hours or less	48 hours	7 days				
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS				
Chromium +6	Nitrate/Nitrite	Sulfide				
	Orthophosphate	Aqueous Organic Prep				

н 1 .

Form No. SP-FORM-SPL-002 12 December 2012

APPENDIX C Well Survey Report

ΜΟΝΙΤΟ	TIGER OIL DRING WELL ELEVATIO YAKIMA, WA	SURVEY DATE 8/27/2014	PLS JOB NO. 14079					
FEATURE	NORTH EDGE OF PVC ELEVATION	NORTH RIM OF OUTER CASE ELEVATION	NORTHING	EASTING				
N1MW-1	1,084.85	1,085.19	470569.0	1637341.7				
N1MW-2	1,083.81	1,084.17	470616.9	1637480.0				
N1MW-3	1,084.61	1,084.90	470475.5	1637358.7				
N1MW-4	1,082.13	1,082.53	470595.3	1637199.9				
N1MW-5	1,083.43	1,083.70	470681.7	1637363.0				
BENCHMARK ELEVATION = 1087.09'	SOUTH FLANGE BOLT C WEST SIDE OF N. FIRST SOUTHERLY DRIVEWAY	470543.9	1637377.7					
VERTICAL DATUM: NAVD 88 - REFERENCED FROM WSDOT MONUMENT DESIGNATION GP39012-9, WITH A PUBLISHED ELEVATION OF 1130.33 FEET.								
HORIZONTAL DATUM:	UM: NAD 83/91 WASHINGTON SOUTH ZONE - BASED ON GPS MEASUREMENTS USING THE WASHINGTON STATE REFERENCE NETWORK.							

The horizontal coordinates of the groundwater monitoring wells and the elevation of the benchmark established at the site were determined using a Topcon GR-3 GPS receiver with a nominal accuracy of 10mm + 1ppm horizontal and 15mm + 1ppm vertical. The elevation of the monitoring wells are relative to the benchmark established at the site and were individually determined using a Leica DNA03 digital level with a vertical accuracy of +/- 0.01 feet.

APPENDIX D Report Limitations and Guidelines for Use

APPENDIX D REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this assessment of the Tiger Oil – North 1st Street site in Yakima, Washington in general accordance with the Work Plan dated April 15, 2014. This report has been prepared for the exclusive use of the Washington Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment (ESA) study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. No one except the Washington Department of Ecology should rely on this environmental report without first conferring with GeoEngineers. Use of this report is not recommended for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Tiger Oil – North 1st Street site in Yakima, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made to the project or property after the date of this report, we recommend that GeoEngineers be given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. We are unable to assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location or its reuse on-site in instances that we did not know or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ,

sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. Without this understanding, there may be expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

www.geoengineers.com