BEE-JAY SCALES SITE PHASE I REMEDIAL INVESTIGATION REPORT

Sunnyside, Washington October 2003 Phase I Remedial Investigation Report Bee-Jay Scales Site Sunnyside, Washington

Prepared by:

SECOR International Incorporated 2321 Club Meridian Dr., Suite E Okemos, MI 48864

October 2003

TABLE OF CONTENTS

1.0	INTRODUCTION1
1.1	PURPOSE1
1.2	REPORT ORGANIZATION1
1.3	SITE BACKGROUND1
1.	3.1 Site Description
1.	3.2 Site History
1.	3.3 Previous Investigations
2.0	SUMMARY OF PHASE I RI ACTIVITIES1
2.1	
2.	1.1 Soil Boring Installation and Sampling Procedures1
2.	1.2 Summary of Sampling Plan1
2.2	PHASE I GRÓUNDWATER INVESTIGATION1
2.	2.1 Monitoring Well Installation1
2.	2.2 Groundwater Sampling Procedures1
2.3	QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES
2.4	DEVIATIONS FROM APPROVED RI/FS WORK PLAN1
3.0	ENVIRONMENTAL SETTING1
3.1	TOPOGRAPHY1
3.2	CLIMATE1
3.3	REGIONAL GEOLOGY1
3.4	REGIONAL HYDROGEOLOGY1
3.5	REGIONAL SOIL BACKGROUND CHARACTERISTICS1
3.6	SITE GEOLOGY1
3.7	SITE HYDROGEOLOGY1
4.0	DATA PRESENTATION AND SCREENING1
4.1	SCREENING AGAINST METHOD A CLEANUP LEVELS AND NATURAL BACKGROUND
SOIL	_ METALS CONCENTRATIONS1
	1.1 Soil1
	1.2 Groundwater
4.2	
	2.1 Soil1
	2.2 Groundwater
4.3	
	3.1 Mobility of Inorganic Compounds in Fertilizer1
	3.2 Nitrogen in Soils
	3.3 Iron and Sulfate in Soils1
	3.4 Arsenic in Soils
	3.5 1,2-Dichloropropane in Soils
4.4	RECOMMENDATIONS FOR PHASE II1
5.0	RE-EVALUATION OF CLEANUP ALTERNATIVES AND TREATABILITY
5.1	RE-EVALUATION OF CLEANUP ACTION ALTERNATIVES
-	1.1 Soil Treatment Alternatives
	1.2 Groundwater Treatment Alternatives
	1.3 Presumptive Remedy Approach
5.2	BENCH-SCALE TREATMENT STUDY
5.3	FULL-SCALE PILOT STUDY
6.0	SUMMARY AND CONCLUSIONS
7.0	REFERENCES1

TABLES

- Table 2-1Constituents Detected in Soil
- Table 2-2
 Constituents Detected in Groundwater
- Table 3-1 Well Inventory Wells Reported Within a One-Mile Radius
- Table 3-2Moisture Content Summary
- Table 3-3
 Water Content, Porosity, and Void Ratio Summary
- Table 3-4
 Grain Size Distribution Summary
- Table 4-1
 Soil Screen Against MTCA Method A Cleanup Levels and Natural Background Concentrations
- Table 4-2
 Groundwater Screen Against MTCA Method A Cleanup Levels
- Table 4-3
 Maximum Detected Soil Concentrations Against MTCA Method C Cleanup Levels
- Table 4-4
 Maximum Detected Groundwater Concentrations Against MTCA Method C Cleanup Levels
- Table 4-5Nitrogen Detected in Soil Boring Samples
- Table 4-6
 Iron and Sulfate Concentrations in Soil

FIGURES

- Figure 1-1 Site Location Map
- Figure 1-2 General Site Layout
- Figure 2-1 Site Layout Soil Boring/Monitoring Well Locations
- Figure 3-1 Regional Geological Model
- Figure 3-2 Regional Geological Cross-Section
- Figure 3-3 Well Inventory Domestic and Municipal Well Locations Within a One-Mile Radius
- Figure 3-4 Local Geological Model
- Figure 3-5 Local Geological Cross-Section
- Figure 3-6 Groundwater Elevation Map
- Figure 4-1 Concentrations of Select Potential IHSs in Groundwater
- Figure 4-2 Nitrogen Concentration in Soil 0.5' Depth
- Figure 4-3 Nitrogen Concentration in Soil 4.5' Depth
- Figure 4-4 Nitrogen Concentration in Soil 7.5' and 9.0' Depth
- Figure 4-5 Ammonia Concentration in Soil 0.5' Depth
- Figure 4-6 Ammonia Concentration in Soil 4.5' Depth
- Figure 4-7 Ammonia Concentration in Soil 7.5' and 9.0' Depth
- Figure 4-8 Nitrate Concentration in Soil 0.5' Depth
- Figure 4-9 Nitrate Concentration in Soil 4.5' Depth
- Figure 4-10 Nitrate Concentration in Soil 7.5' and 9.0' Depth
- Figure 4-11 Sulfate Concentration in Soil 0.5' Depth
- Figure 4-12 Sulfate Concentration in Soil 4.5' Depth
- Figure 4-13 Proposed Phase II Sampling Locations
- Figure 5-1 Full-Scale Pilot Zone Treatment Area
- Figure 5-2 In-situ Biological Treatment Enhancements Full-Scale Pilot Layout

APPENDICES

- Appendix A Summary of Ownership
- Appendix B Boring Logs
- Appendix C Chains of Custody
- Appendix D Groundwater Sampling Logs
- Appendix E Geotechnical Laboratory Data Sheets
- Appendix F Slug Test Results
- Appendix G Summary of Input Parameters and Workbook Calculations of Method C CULs

1.0 INTRODUCTION

This document summarizes the Phase I Remedial Investigation (RI) completed by SECOR International Incorporated (SECOR) on behalf of the Chevron Environmental Management Company (ChevronTexaco) and BP America, Incorporated (BP) at the Bee-Jay Scales Site in Sunnyside, Washington (the Site). This project is being implemented in accordance with the Washington State Department of Ecology (Ecology) Washington Model Toxics Control Act (MTCA) and Agreed Order No. DE 02TCPCR-3932.

1.1 PURPOSE

The purpose of this report is to summarize the sampling activities conducted as part of the Phase I investigation and present the data generated to focus the Phase II RI data collection and treatability study activities.

1.2 REPORT ORGANIZATION

The remaining sections of this report are organized as follows:

- The remaining portions of Section 1 include a summary of the Site description and historical operations, as well as a summary of previous investigations;
- A summary of the Phase I RI activities, including soil boring and monitoring well installation and sampling, quality control procedures, and deviations from the approved RI/FS Work Plan is presented in Section 2;
- Section 3 presents the environmental setting at and surrounding the Site, including descriptions of topography, climate, geology, and hydrogeology;
- An analytical data summary, including comparisons of analytical data to appropriate MTCA cleanup criteria, and a discussion of the soil leaching to groundwater pathway are included in Section 4;
- Section 5 includes a re-evaluation of the cleanup action alternatives, and a discussion of the proposed treatability study components;
- Summary and conclusions are presented in Section 6.

1.3 SITE BACKGROUND

Information regarding historical operations and previous investigations at the Site has been adapted from the *Remedial Investigation/Feasibility Study Work Plan, Bee-Jay Scales Site, Sunnyside, WA* (CH2M Hill, February 2003). The RI/FS Work Plan was approved by Ecology in March 2003.

1.3.1 Site Description

The Site is located in the city of Sunnyside, within Yakima County, and is composed of two property parcels: Parcel No. 22102522014 and Parcel No. 22102522015 as recorded by the Yakima County Department of Assessment. Parcel No. 22102522014 is located at 116 North 1st Street, and is owned by Bee-Jay Scales, Inc. Parcel No. 22102522015 is located at 301 Warehouse Avenue, and is owned by Hickenbottom & Sons, Inc. Hickenbottom & Sons also owns additional, contiguous property on which their business is located. The Site location is shown on Figure 1-1, and the Site layout, including building locations, is shown on Figure 1-2.

1.3.2 Site History

A summary of ownership at the Site was prepared by ChevronTexaco and is included in Appendix A. The Site and adjacent properties have been the location of agricultural warehouses, lumber yards, coal storage, and railroad transportation activities since approximately 1906.

Portions of the Site were owned by the Northern Pacific Railroad Company from 1906 until 1989 when purchased by the Glacier Park Company (GPC). An agricultural distribution facility operated at the Site from the 1960s through at least 1986. This facility consisted of buildings and above ground storage tanks (ASTs), and was operated by at least two separate companies: Laneger Agricultural Services and Valley Agricultural Inc. Documentation also indicates that during 1970s American Oil Company, now known as Amoco, leased portions of this property from Northern Pacific Railroad. The ASTs have since been removed from the Site. A lagoon was constructed by Valley Agricultural Inc. in the early 1980s to collect water from the washdown of farm chemical applicator vehicles.

The western portion of Lot 10 was purchased by the Chevron Chemical Company in 1981 and sold to Bee-Jay Scales, Inc. in 1987. Bee-Jay Scales, Inc. purchased additional portions of Lots 10 and 11 in 1995 and 1996. Hickenbottom & Sons leased a portion of the Site from the Northern Pacific Railroad Company beginning in 1961 and purchased portions of Lots 10 and 11 in 1992. The Hickenbottom property was previously used as pastureland and since 1961 has been used for food packing, storage, and a transportation business.

Three businesses currently operate at the Bee-Jay Scales portion of the property: Sandy Farms, a local trucking company; Sanleco, Inc., an interstate trucking company with an on-site tractor-trailer repair garage; and Bee-Jay Scales, a commercial scale operation.

Hickenbottom & Sons, Inc. is a food-processing and distribution company. Most of Hickenbottom & Sons' current operation consists of a refrigeration warehouse. The Hickenbottom property that makes up a portion of the Site is currently leased to the Johnson Fruit Company and is used to store produce bins, pallets, tractor-trailer rigs, and other miscellaneous equipment. The remainder of the Hickenbottom & Sons property is used for tractor-trailer and produce storage, as well as transportation.

1.3.3 **Previous Investigations**

The following environmental investigations have been conducted previously at the Site:

- Phase I and II environmental site assessments (ESAs) conducted by Hart Crowser;
- Phase II ESA conducted by White Shield, Inc. for Hickenbottom & Sons;
- Leaking underground storage tank (LUST) assessment and clean-up conducted by PLSA Engineering & Surveying (PLSA) for Hickenbottom & Sons; and
- Environmental media sampling conducted by Ecology in 1997.

Summaries of these previous investigations are provided below.

Preliminary Environmental Site Assessment (Hart Crowser, March 1990)

A limited Phase I ESA of the GPC Property Sequence No. 3833 was performed in 1990. The Phase I ESA included a site history profile, a regulatory agency list review, and a site reconnaissance. The Phase I ESA did not identify records of spills or releases. Based on visual observations and historical activities identified, the areas of potential concern include the following:

- The lagoon on the portion of the Site operated by Sandy Farms was suspected of leakage. Leakage of agricultural chemicals was suspected before lining of the lagoon and possibly through the liner at the time of the assessment.
- Soils around the washdown area north of the lagoon were suspected to be contaminated. The area was used to wash agricultural chemical applicator vehicles.
- Four ASTs located west of the lagoon that historically contained chemical fertilizers were identified.
- An underground storage tank (UST), UST-1, was identified in the Sandy Farm yard. UST-1 was formerly used to store leaded gasoline.
- Exterior drum storage areas, one of which was unpaved, were observed during the reconnaissance in or adjacent to Sandy Farms and Hickenbottom & Sons. Some of the drums were observed to be corroded. Storage of batteries in an exterior area in the northeast corner of the parcel was also observed.
- The concrete floor of Building 2 (as shown on Figure 1-2), occupied by Sandy Farms, was observed to be pitted. The report presumed that the pitting resulted from spills of agricultural chemicals previously stored in the building. A release of agricultural chemicals through the deteriorated flooring may have resulted in contamination of soil and groundwater.
- Green to yellow soil staining was observed in an area approximately 1,500 square feet in size located in the center of the Sandy Farms yard. This staining was suspected by one of the Sandy Farms representatives to be a result of "dinitro or other herbicides." It was not clear if this staining was the result of possible application of herbicides or of a possible release of herbicides.
- In addition, UST-2 and UST-3 were identified near Building 4 (as shown on Figure 1-2) on the Hickenbottom & Sons property located adjacent to the Site. UST-2 is a 12,000gallon tank formerly used to store diesel fuel, and UST-3 is a 1,000-gallon tank formerly used to store leaded gasoline.

Subsurface Exploration and Testing GPC Property (Hart Crowser, July 1990)

A Phase II ESA was conducted by Hart Crowser for GPC to collect soil and groundwater samples from areas of potential concern identified in the Phase I report. The Phase II report, *Subsurface Exploration and Testing Glacier Park Company Property* (Hart Crowser, July 1990), summarizes the findings. The purpose of the Phase II work was to accomplish two goals: (1) assess whether the historical activities identified in the Phase I report resulted in significant subsurface contamination, and (2) estimate potential clean-up costs based on the scope of work. Areas on the Site that were addressed in this report include the following:

- Drum storage west of Building 1 (as shown on Figure 1-2);
- Agricultural chemical truck washdown area and lagoon;
- Three liquid fertilizer ASTs; and
- Areas of green and yellow soil staining.

UST-1, UST-2, and UST-3, located on the Hickenbottom & Sons property immediately adjacent to the Site, were also addressed. Exploration work included excavating test pits, performing handauger borings, drilling soil borings, and installing four monitoring wells. Groundwater was encountered at a depth of approximately ten feet below ground surface (bgs) with apparent flow direction toward the south. Hart Crowser reported that the groundwater was encountered within a relatively low permeability silt horizon that may be in hydraulic contact with underlying waterproducing horizons used for local domestic water supplies. The report recommended additional data collection to better define aquifer characteristics beneath the Site.

White Shield Phase II Environmental Site Assessment

A Phase II ESA of a portion of the Site was performed by White Shield (September 1991) for Hickenbottom & Sons. The investigation was initiated after the Hart Crowser (July 1990) report indicated pesticides, herbicides, and fertilizer residues existed on the Hickenbottom & Sons lease area near the washdown area and in the lagoon on the adjacent Sandy Farms lease area. The study area was limited to the lease area between the Sandy Farms lagoon and the Hickenbottom & Sons coll storage building and loading dock. Soil and groundwater samples were collected from soil borings at nine locations within the study area. Following this investigation, a portion of the property was replated and ownership transferred to Hickenbottom & Sons.

Leaking Underground Storage Tank Environmental Site Assessment and Intermediate Clean-Up A LUST assessment and intermediate clean-up was performed at the Hickenbottom & Sons lease site by PLSA (February 1992). A 12,000-gallon steel UST that formerly contained diesel fuel and a 1,000-gallon steel UST that formerly contained gasoline were removed from the Hickenbottom & Sons property. Both tanks were reported by PLSA to be located in a common tank basin north of the site building and truck scales. This area is adjacent to and west of the Site.

During the removal of the USTs, petroleum contamination was observed in the surrounding soils. Water was observed by PLSA to be seeping into the bottom of the excavation at an approximate depth of 13 feet bgs. PLSA stated that "free groundwater" was not encountered. PSLA staff monitored the removal of the USTs and the petroleum-contaminated soils. Approximately 2,500 cubic yards of petroleum-contaminated soils were excavated and placed on site for remediation by land farming. A letter from PLSA to Mr. Jerry Hickenbottom, dated April 16, 1992, states that samples collected from the landfarmed soils in April 1992 did not have concentrations of gasoline or diesel fuel above the method detection limits (MDLs). According to Ecology records, this Site has not received a letter of no further action (NFA) from Ecology.

Ecology Sampling

In 1997, Ecology conducted limited sampling and analysis of groundwater, soils, and lagoon sediment at the Site. Groundwater was sampled from two of the monitoring wells installed during the Hart Crowser Phase II ESA: MW-3 and MW-4 (See Figure 2-1). An additional water sample, identified as UNK, is included in the general chemistry sample results. The location of the sample and source of the water could not be determined from available records. The precise locations of the soil sample (AST 1) and the location of the lagoon sediment sample (LAG 01) are also not identified, but they are assumed to have been collected from surface soils in the vicinity of the former ASTs and within the lagoon containment.

2.0 SUMMARY OF PHASE I RI ACTIVITIES

The Phase I RI activities at the Site included a soil investigation, groundwater investigation, and a well inventory. The soil and groundwater investigation activities are described below, and the well inventory is discussed in Section 3.6. A discussion of the results of the soil and groundwater investigation is presented in Section 4.

2.1 PHASE I SOIL INVESTIGATION

SECOR completed the Phase I soil investigation in July 2003. Soil samples were collected from borings installed in each of the six identified areas at the Site. Boring locations can be found on Figure 2-1.

2.1.1 Soil Boring Installation and Sampling Procedures

Soil borings were installed by hand auger to a depth of 4.5 feet bgs, and then advanced to the water table with a truck-mounted drilling rig using a 4-inch inside diameter (ID) hollow-stem auger (HSA). All drilling and sampling equipment was decontaminated both before and after drilling. At boring completion, boreholes not converted to monitoring wells were decommissioned by sealing the borehole with hydrated bentonite chips and gravel or concrete, consistent with Washington Administrative Code (WAC) 173-160.

In five of the six identified areas, discrete soil samples were collected from the boring wall during hand clearing at the depth interval of 0.5 feet bgs to 1.5 feet bgs, and by split spoon sampler at depth intervals of 4.5 feet bgs to 6.0 feet bgs and 9.5 feet bgs to 11.0 feet bgs, and were submitted for laboratory analysis. When a shallow water table was encountered, discrete samples from the interval above groundwater were collected at a depth of 7.5 feet bgs and submitted for analysis. In Area 5, only surface soil samples were collected from the boring wall during hand clearing at depths between 0.5 feet and 1.5 feet bgs, as required by the RI/FS Work Plan, and submitted for laboratory analysis.

A portion of soil was retained from each split spoon for visual inspection, lithologic description, and field-screening for the presence of hydrocarbons. Visual inspection consisted of screening the sample for visual indications of hydrocarbons and testing for sheen by water immersion. Soil lithology was described using the United Soil Classification System (USCS). Lithologic descriptions included soil type(s), color, grain size/texture, degree of consolidation, and moisture content. Field-screening was completed by monitoring headspace vapor concentrations using a photoionization detector (PID). Observations were recorded on boring logs, which are included in Appendix B. When odor or high PID readings were observed, a discrete soil sample was collected from that interval and submitted for laboratory analysis.

2.1.2 Summary of Sampling Plan

Groups of chemical parameters for the soil sampling plan at the Site were defined by the RI/FS Work Plan as follows:

- Conventional A parameters: ammonia, nitrite, nitrate, phosphate, sulfate, chloride, pH, and moisture content;
- Conventional B parameters: total organic carbon (TOC), grain size distribution, and void ratio/porosity;
- Conventional C parameters: agronomic analyses including extractable cations; sodium bicarbonate; cation exchange capacity (CEC); diethylenetriaminepentaacetic acid (DTPA)-available iron, manganese, zinc, and copper; electrical conductivity in saturated

paste (ECe); calcium, magnesium, sodium, and chloride in saturation extract; and void ratio.

The number of borings in each area and the corresponding chemical analyses are identified below:

Area 1 - Liquid Fertilizer Plant and Truck Wash Area

Eight soil borings were installed in Area 1. Soil samples from all eight borings were analyzed for Conventional A parameters, Conventional C parameters, pesticides, herbicides, and metals. Samples from three of the borings were also analyzed for Conventional B parameters, and samples from two of the borings were analyzed for volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs).

Area 2 - Dry Fertilizer

Seven soil borings were installed in Area 2. Soil samples from all seven borings were analyzed for Conventional A parameters, pesticides, herbicides, and metals. Samples from two of the borings were also analyzed for Conventional B parameters.

Area 3 - Drum Storage Area

Two soil borings were installed in Area 3, and samples from both borings were analyzed for Conventional A parameters, total petroleum hydrocarbon (TPH)-Gx, TPH-Dx, VOCs, SVOCs, pesticides and metals. Soil samples from one of the borings were also analyzed for Conventional B parameters.

Area 4 - Suspected Historical Washdown Area

Six soil borings were installed in Area 4, and samples from these borings were analyzed for Conventional A parameters, TPH-Gx, TPH-Dx, pesticides, herbicides, and metals. Soil samples from two of the borings were also analyzed for Conventional B parameters, VOCs, and SVOCs.

Area 5 - North Area

Five shallow soil borings were installed in Area 5. Soil samples from all five borings were analyzed for Conventional A parameters, TPH-Hydrocarbon Identification (HCID), pesticides, herbicides, and metals, and samples from two of the five borings were analyzed for Conventional B parameters.

Area 6 - Hickenbottom Area

A total of seven soil borings were installed in Area 6, two of which were shallow. Soil samples from all seven borings were analyzed for Conventional A parameters, TPH-HCID, pesticides, and herbicides. Samples from one boring were also analyzed for Conventional B parameters and VOCs, and samples from the two shallow borings were also analyzed for metals.

Soil analyses were conducted by Merit Laboratories, Inc. for all constituents except Conventional C parameters. Analysis for Conventional C parameters was provided by A&L Great Lakes Laboratories.

Chains of Custody for the Phase I RI soil samples are presented in Appendix C. Samples analyzed for conventional parameters also received geotechnical testing for moisture content, grain size distribution, and/or void ratio/porosity. Geotechnical testing results are discussed in Section 3.6 and Section 3.7. The detected soil concentrations are presented in Table 2-1, and results are discussed in Section 4.

2.2 PHASE I GROUNDWATER INVESTIGATION

SECOR completed the Phase I groundwater investigation, including the first quarter of groundwater monitoring, in July 2003.

2.2.1 Monitoring Well Installation

Three, two-inch diameter shallow wells were installed at the Site during Phase I activities. Two of the wells (MW-5 and MW-6) were installed in Area 2, and one well (MW-7) was installed in Area 5. These wells supplement existing groundwater quality information provided by three existing wells MW-1, MW-3, and MW-4. The fourth previously installed monitoring well (MW-2) could not be located during the Phase I RI (See Section 2.4). Monitoring well locations are shown on Figure 2-1.

The borings for each of the monitoring wells were advanced to approximately 30 feet bgs. During well installation, soil samples were collected from the boreholes in the same manner as described in Section 2.1. Well installations were completed with a 10-foot screen installed at a depth interval of 6 feet to 16 feet bgs. Details of well construction are provided on the boring logs included in Appendix B.

Once the wells were completed, each was developed by surging and bailing to remove finegrained sediment from the formation and filter packs, and increase the hydraulic efficiency of the wells. The wells were surged with a surge block through the full extent of the screened interval while simultaneously being purged. Development was considered complete when each respective well produced water that was relatively free of sediment. At a minimum, three well volumes of groundwater were removed from each well during development. All development equipment was decontaminated to minimize cross-contamination between well locations. Decontamination water was contained in 55-gallon Department of Transportation (DOT)approved drums and labeled. Seven drums of water and a soil bin containing approximately ten cubic yards of soil were generated during the Phase I investigation, and will be removed from the property by a ChevronTexaco-approved waste hauler, in accordance with state and federal regulations.

A slug test was performed at each new monitoring well to determine the horizontal hydraulic conductivity of the shallow aquifer. Slug test results are discussed in Section 3.7. In addition, each monitoring well was surveyed to establish its horizontal location and to define the top of casing elevation.

2.2.2 Groundwater Sampling Procedures

During the first quarter of groundwater sampling, samples were collected from each of the six located monitoring wells. The groundwater samples were collected using minimal drawdown procedures using a combination of dedicated and non-dedicated equipment. Relevant information was recorded on the groundwater sampling logs, which are included in Appendix D. The groundwater sampling procedures included the following five activities, and were consistent with the activities specified in the RI/FS Work Plan:

- Static water level measurement;
- Field instrument calibration;
- Calculation of the volume to be evacuated;
- Well evacuation and measurement of field water quality parameters; and
- Sample collection.

Decontamination procedures were followed to prevent cross contamination between monitoring wells during water level measurement. The well sounder was decontaminated following each measurements by spray-washing the probe and cable with Liquinox, wiping down the probe and cable, followed by a final rinse with deionized water. Dedicated tubing was used at each monitoring well to prevent cross-contamination during groundwater sampling.

Groups of chemical parameters for the groundwater sampling plan were defined by the RI/FS Work Plan as follows:

- Conventional A parameters: ammonia, nitrite, nitrate, phosphate, sulfate, chloride, and pH; and
- Conventional B parameters: TOC, total suspended solids (TSS), total dissolved solids (TDS), hardness, and alkalinity.

Groundwater samples were analyzed for Conventional A parameters, Conventional B parameters, TPH-HCID, VOCs, SVOCs, pesticides, herbicides and metals. Groundwater analysis was performed by Merit Laboratories. Chains of Custody for the first quarter groundwater samples are included in Appendix C. The detected groundwater concentrations are presented in Table 2-2, and results are discussed in Section 4.

2.3 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

To ensure accuracy in sampling results, the following quality assurance/quality control (QA/QC) samples were collected during the Phase I sampling activities: duplicates, colocates, and trip blanks. Duplicate samples were collected at a frequency of approximately ten percent to evaluate the laboratory's performance by comparing the analytical results of two samples collected at the same location. Two colocated soil borings (located in Areas 4 and 5) were designated to check variability over a short lateral distance. During the groundwater sampling, two trip blanks were submitted for VOC analysis to evaluate cross-contamination of VOCs in the samples. Equipment blanks were not collected during soil and groundwater sampling, trip blanks were not submitted during soil sampling, and duplicates were not collected during groundwater sampling. Duplicate samples will be collected during future groundwater monitoring events. A review of the analytical results shows that duplicate and colocate results were consistent, and results do not indicate that contamination from equipment or cross-contamination of VOCs was an issue.

2.4 DEVIATIONS FROM APPROVED RI/FS WORK PLAN

In general, implementation of the work plan closely followed the scope of work outlined in the RI/FS Work Plan. The following are notable deviations:

- The inspection and sampling of existing monitoring well MW-2 were not completed because this well could not be located;
- The angle-drilled boring suggested for the area north of the lagoon in Area 1 was not advanced due to concerns regarding potential impact to the lagoon liner;
- The location of A6-SB-001 was moved 20 feet to the east to avoid a hornet's nest; and
- Blow counts for soil intervals less than 4.5' in depth were not recorded, as each borehole was hand cleared to 4.5' in depth.
- Samples collected from the shallow soil interval were collected from the boring wall during hand clearing, not by split spoon sampler.

None of these deviations will have a material effect on the integrity of the RI/FS process, nor the quality of other data and results.

3.0 ENVIRONMENTAL SETTING

The Site is located within Yakima County, an important agricultural region of Washington. Major agricultural products that come from the greater Sunnyside area include wine grapes, apples, pears, asparagus, mint, hops, corn, and wheat. Cattle and dairy ranching are also represented within the region. Land use in the immediate vicinity of the Site, within the city of Sunnyside, is primarily industrial and commercial, and these activities support the region's larger agricultural interests. Typical service industries include food processing, agricultural product storage and transfer, pipe manufacturing, warehousing, tank-cleaning services, trucking, and storage. Much of the information regarding the environmental setting, presented below, is adapted from the RI/FS Work Plan.

3.1 TOPOGRAPHY

The Site is located within the Yakima River Valley, at about 750 feet elevation National Geodetic Vertical Datum (NGVD). About 1.5 miles southwest of the Site is Snipes Mountain (elevation of about 1,300 feet NGVD). Rattlesnake Ridge is located approximately 5 miles north of the Site, and the Yakima River is located approximately 4.5 miles southwest of the Site. A series of irrigation canals divert surface water from the Yakima River to serve agricultural and municipal water needs.

3.2 CLIMATE

Climate information for the Site is taken from the Western Regional Climate Center (WRCC) data for Sunnyside, Washington. Climate data have been collected at the Sunnyside station since 1948, up to the present. The annual mean temperature for the Sunnyside area is 52.4 degrees Fahrenheit. Temperatures in the area range from an average winter temperature of 34.3 degrees Fahrenheit to an average summer temperature of 70.3 degrees Fahrenheit. Annual rainfall averages 6.86 inches per year, and snowfall in Sunnyside averages approximately 10.3 inches per year.

The Site is relatively flat, with no significant topographic features that would alter air flow patterns. An air quality monitoring station, maintained by the Yakima Regional Clean Air Authority, is located approximately 0.75-miles southeast of the Site. The primary source of air pollution in Yakima County is motor vehicles. Air quality is poorest during the winter when weather patterns create an inversion layer that traps air. Wood smoke, car exhaust, road dust, and other emissions can collect in this trapped layer until weather conditions change (Yakima County, 1998).

3.3 REGIONAL GEOLOGY

The Site is located in the Columbia Basin (an intermontane basin) located between the Cascade and Rocky Mountains. The Site is within the Yakima Fold Belt, a structural subprovince characterized by dominantly east-west trending anticlinal ridges and synclinal valleys (Reidel *et al*, 1994). Harrison Hill and Snipes Mountain (located just west of Sunnyside) are anticlinal ridges with the latter measuring approximately eight miles in length and one mile in width. Cenozoic age volcanic rocks from the Columbia River Basalt Group (CRBG) and sediments fill the basin. Underlying the CRBG are Tertiary and Quaternary fluvial and glaciofluvial deposits on top of Tertiary age continental sedimentary rocks. The geological details of the region are depicted in Figures 3-1 and 3-2.

The Yakima Fold Belt is underlain by up to 7,000 feet of continental and volcaniclastic sediments, deposited in a basin separated from the adjacent crystalline basement by a suture zone. The CRBG erupted, filling the Yakima Fold Belt basin with up to 4,000 feet of tholeiitic flood basalt. The Ellensburg Formation (a series of epiclastic and volcaniclastic sedimentary rocks) is interlayered with and overlies the CRBG.

Once the CRBG eruptions ceased, folding continued in the Yakima Fold Belt and the Columbia River system controlled rock formation until the Pleistocene, resulting in deposition of the Ellensburg Formation. Sand and gravel were deposited in fluvial channels and alluvial fans. Finer-grained sediments were deposited in broad floodplain-overbank areas within the Columbia River system. The locations of Yakima Fold Belt anticlines controlled the river flow and morphology.

The advance and retreat of continental glacier systems dominated Pleistocene geology in northern North America. Glaciers affected the Columbia Basin predominantly by the damming and flooding of the Columbia River system. Fine-grained flood sediments were deposited in the valleys near Sunnyside. Depositions of loess (fine-grained flood sediments reworked and redeposited by wind) also are common on the slopes and upland areas in the Site vicinity (Busacca and McDonald, 1994; Schuster *et al*, 1997).

Surficial geology at the city of Sunnyside (including the Site) is Quaternary alluvium (Campbell, 1979). The Ellensburg Formation is exposed about 2.5 miles north of Sunnyside and extends west along the flanks of Rattlesnake Ridge (Kinnison and Sceva, 1963).

Soils in the vicinity of the Site were classified by a soil survey conducted for Yakima County as Cleman very fine sandy loam on zero to two- percent slopes (USDA, 1985, sheet 73). The 1985 survey description indicated that Cleman soils included areas of Esquatzel soils. Cleman is a well-drained soil formed in alluvium. Native vegetation on the soil is mainly grasses, forbs, and shrubs. The surface layer is brown very fine sandy loam about ten inches thick. Physical characteristics of the soil include moderate permeability, slow runoff, rare flooding, slight erosion hazard, but high soil blowing hazard. Cutbanks in the soil are not stable and are subject to caving.

3.4 REGIONAL HYDROGEOLOGY

Information in this section is summarized from Molenaar (1985) unless otherwise noted. Groundwater in the region around the Site generally occurs in each of the three major geologic units: unconsolidated Quaternary alluvium, partially consolidated Ellensburg Formation, and the CRBG. The Ellensburg Formation and the basalt aquifer are more productive than the alluvium aquifer. The regional geologic structures (anticlines, synclines, faults, and sedimentary contacts) control the direction and rate of groundwater flow. In general, groundwater flows from the margins of the valleys (structural basins) toward the center and then down the valley axis toward the Yakima River.

The Quaternary alluvium is composed of unconsolidated sand, gravel, and cobbles with minor silt and clay deposited by streams and rivers along their channels and in their flood plains. The thickness of this unit ranges from a few feet to approximately 150 feet. Groundwater occurs under unconfined conditions and generally is at or near the level of water in nearby surface water bodies.

The Ellensburg Formation is composed of partly consolidated sand and gravel, sandstone and siltstone, and minor conglomerate and claystone. The Ellensburg Formation occurs at depths of 100 feet or more in the centers of the valleys and gradually rises to the surface near the ridges. The thickness of the Ellensburg Formation is greatest in the valley middles, up to 1,000 feet. Water-bearing units in the Ellensburg Formation may be as shallow as 50 feet bgs. The shallower units generally occur on the margins of valleys and are unconfined. Deeper zones that are generally beneath the central portions of valleys may be confined.

Sedimentary Ellensburg Formation rocks interlayered with volcanic rocks of the CRBG compose the basalt aquifer, a deep, regional, and highly productive aquifer system. Groundwater occurs in fractures within the rock, rubble zones at the top and base of individual lava flows, pore spaces within the volcanic rock (vesicles and scoria), and in Ellensburg sand and gravel layers between lava flow units. Water-bearing zones may be large or small, ranging from a few feet to more than 50 feet thick with great variations in lateral continuity. Groundwater in the basalt aquifer is generally either confined or may be under artesian pressure because of the morphology of the structural basins formed in the basalts.

Sunnyside is located near the axis of the Wapato syncline, a regional structure that controls groundwater flow. Groundwater in the immediate Sunnyside area is present in the Prosser subbasin of the Lower Yakima Basin (Kennison and Sceva, 1963). Regional groundwater generally flows south-southwest off Rattlesnake Ridge toward the axis of the synclinal valley (Molenaar, 1985) and then continues to flow south-southeast toward the Yakima River (Kennison and Sceva, 1963). Water levels in local wells show seasonal fluctuations related to precipitation, with the levels highest in the late winter and spring and declining summer through fall. Water wells in the Rattlesnake Slope subarea (a groundwater basin extending from the crest of the Rattlesnake Hills to the Yakima River between Union Gap and Prosser) are used primarily for household water supply. Approximately one-third are used for irrigation.

A review of reported domestic and municipal water supply wells within a 1.0-mile radius of the Site was completed as part of the Phase I RI. The search revealed three community wells and eight domestic well sites located within a 1.0-mile radius. A physical inspection of these sites was completed to evaluate the presence and use of all of the reported wells. Figure 3-3 shows the well locations with respect to the Site, and Table 3-1 provides a summary of the well inventory.

Two wells (city of Sunnyside municipal wells #8 and #5) were reported as situated within a 0.25mile radius of the Site. Well #8 is screened between 305 feet and 375 feet bgs. Well #5 is screened between 388 feet and 450 feet bgs. One other municipal well (well #4A) was located at a distance between 0.25-mile and 0.5-mile from the Site. This well was drilled in 1998 after two municipal wells (well #3 and well #4) were abandoned due to aquifer contamination in 1998. Well #4A is screened between 1359 feet and 1676 feet bgs.

All domestic wells reported were located at a distance greater than 0.25-mile from the Site. Only one of the well records for the domestic wells provided a screened interval: well 23J3 situated between 0.75-mile and 1.0-mile from the Site is screened between 225 and 245 feet bgs.

3.5 REGIONAL SOIL BACKGROUND CHARACTERISTICS

Information regarding background concentrations at the Site was gathered from *Natural Background Soil Metals Concentrations in Washington State* (Publication #94-115, October 1994). The purpose of this publication was to define a range of values that represent the natural concentration of metals in surficial soils throughout Washington. For the Site, the Yakima Basin background concentrations are the most representative, and both the Yakima Basin and State Wide background concentrations are summarized in the table below.

	AI	As	Be	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn
Yakima Basin Background Concentration (mg/kg)	33,400	5	2	1	38	27	51,500	11	1,100	0.05	46	79
State Wide Background Concentration (mg/kg)	37,200	7	2	1	42	36	42,100	17	1,100	0.07	38	86

3.6 SITE GEOLOGY

Three geologic units have been identified at the Site based on subsurface information derived from well-drilling logs. They are, from youngest to oldest, Quaternary Alluvium, the Ellensberg Formation, and CRBG. The geological details of the Site are depicted in Figures 3-4 and 3-5.

The Quaternary Alluvium consists of sandy silt and extends to a depth of at least 24.5 feet below the Site (Hart Crowser, 1990). Bentley *et al* (1993) further divide the alluvium and indicate that the Site is underlain by silt, sand, and gravel deposited by tributaries of the Yakima River and that materials are dominantly of basaltic composition. The Ellensberg Formation, interbedded with silt, sand, gravel, and clay, underlies the alluvium and extends to a depth of approximately 450 feet bgs, based on logs for nearby city of Sunnyside water wells. The Ellensberg Formation is underlain by CRBG rocks to an unknown depth.

The near-surface lithology beneath the Site appears to consist of sandy silt with gravel to a depth of approximately 30 feet, followed by trace clay or clayey silt to the maximum explored depth of 31.5 feet (based on boring logs for monitoring wells and soil borings advanced at the Site during the Phase I RI).

Geotechnical analyses were required by the RI/FS Work Plan to determine soil properties that have an effect on both soil strength and groundwater behavior at the Site. Merit Laboratories provided moisture content determination. SECOR geotechnical laboratory technicians performed void ratio/porosity, grain size distribution, and permeability testing. Laboratory data sheets are provided in Appendix E, and results are summarized below. Permeability results are discussed in Section 3.7.

Moisture Content

As part of the geotechnical analyses required by the RI/FS, the analysis to estimate the moisture content was required for all samples receiving Conventional A analysis, and was performed on a total of 99 samples collected at the Site. The average moisture content of the soil at the Site was estimated as 19.2%. A summary of the moisture content data is provided in Table 3-2.

Porosity/Void Ratio

Analyses to estimate the porosity were performed on 44 samples collected at the Site. Porosity was estimated using a known volume of soil and an assumed specific gravity based on the soil description. Typical specific gravities range from 2.65 for sands to 2.70 for clays. From the porosity estimate, the void ratio was calculated using the following relation (Holtz and Kovacs, 1981):

$$e = \frac{n}{1 - n}$$

Where: e = void ratio; n = porosity.

The porosity/void ratio analysis was required for all samples that received Conventional B or Conventional C analysis. Due to sampling procedures, samples collected from the shallow interval were collected as disturbed samples (using hand auger techniques) and remolded for the porosity testing. Due to low sample recovery during field activities, samples A1-SB-006-7.5' and A3-SB-002-7.5' were also collected as disturbed samples. All other samples from the intermediate interval and the interval above groundwater were collected as undisturbed samples.

The average water content of the void ratio samples was calculated as 22.1%; the estimate for the average Site porosity is 44.4%; and the estimated void ratio for Site soils is 0.80. Typical ranges for a well-graded, clean, fine to coarse sand are 17% to 49% for porosity and 0.20 to 0.95

for void ratio (Holtz and Kovacs, 1981). The Site average falls within these ranges. The calculated water content, porosity estimate, and void ratio estimate for each sample and an average for each of the six areas are summarized in Table 3-3.

Sieve Analysis

The RI/FS also required the grain size distribution be determined for 29 samples collected at the Site. The sieve analyses were performed according to ASTM D 422, and were required for all samples that received Conventional B analysis. The following sieve sizes were used during the analysis: #4 (retains gravel), #10 (retains coarse sand), #40 (retains medium sand), #70, #100, and #200 (retains fine sand).

The average grain size distribution for soils across the Site is as follows: 0.7% gravel, 1.3% coarse sand, 4.0% medium sand, 58.2% fine sand, and 35.8% silt-clay. Most samples were categorized as well-graded, and there was a range of grain size distributions found at the Site, with a majority visually classified as sandy clay, silty clay, or sandy silt. The grain size distribution for each sample and the average for each of the six areas are summarized in Table 3-4.

3.7 SITE HYDROGEOLOGY

Site groundwater was investigated by a previous property owner, GPC, in 1990 (Hart Crowser, 1990). Four monitoring wells were installed, three on the Bee-Jay Scales portion of the Site and one on the Hickenbottom & Sons property. Well logs for the monitoring wells indicate that lightbrown silt and sandy silt are present from the surface to a depth of at least 24.5 feet bgs. Groundwater was encountered in the borings at depths between 9 and 13 feet bgs. Eight test pits also were completed at the time the monitoring wells were installed. Groundwater was encountered in the base of the test pits at depths ranging from 9.5 to 11 feet bgs. Groundwater elevations ranged from 740.52 to 741.87 feet NGVD. During a previous investigation at the Site, hydraulic conductivity was estimated by conducting a bail-down test in one well. The shallowest aquifer beneath the Site was found to have relatively low permeability, approximately 10⁻⁴ centimeters per second (cm/s), and a flow rate of approximately 1 foot per year (ft/yr).

Groundwater at the Site was measured at depths ranging from approximately 7.4 to 11.9 feet bgs during the first quarter of groundwater monitoring. A groundwater elevation map for this event is presented in Figure 3-6. Based on this monitoring event, groundwater flow direction appears to be south-easterly. The estimated average hydraulic conductivity of the water-bearing zone based on results of slug testing on all six monitoring wells during the first quarter monitoring is 5.23E-04 feet per second (ft/s) (1.59E-02 cm/s), and the estimated hydraulic conductivity ranges from 8.44E-06 ft/s to 2.67E-03 ft/s (2.57E-04 cm/s to 8.12E-02 cm/s). The slug test results are included in Appendix F.

As part of the geotechnical analyses required by the RI/FS, the vertical permeability was calculated for one sample collected at the Site to determine the properties of the aquitard. This sample was collected from MW-7 in Area 5 at a depth of 31.5 feet, the depth at which the confining layer was encountered. The permeability was tested according to ASTM D 5084.

The estimated average permeability of the confining layer was determined by geotechnical testing to be 5.1E-06 cm/s, which is within the typical range for a mixture of silt and clay (Holtz and Kovacs, 1981). The laboratory data sheet for permeability testing is included in Appendix E.

4.0 DATA PRESENTATION AND SCREENING

Phase I RI soil and groundwater results were initially screened against Ecology's MTCA Method A Cleanup Levels (CULs) and natural background soil metals concentrations, as discussed in Section 4.1. Section 4.2 presents a comparison of indicator hazardous substances (IHSs) against MTCA Method C CULs, and Section 4.3 presents a leaching discussion. Recommendations for Phase II work are provided in Section 4.4 based on these screening results.

4.1 SCREENING AGAINST METHOD A CLEANUP LEVELS AND NATURAL BACKGROUND SOIL METALS CONCENTRATIONS

Soil analytical results were screened against MTCA Method A CULs. Constituents detected in soil were considered IHSs if the concentration exceeded Method A CULs or if no Method A CUL was available. Analytical results for metals were compared against the natural background metal concentrations for the Yakima Basin (See Section 3.5). Metals detected below natural background were eliminated as potential IHSs. Metals were further evaluated if there was not a Method A CUL available and the concentration exceeded the natural background concentrations.

Groundwater analytical results were screened against Ecology's MTCA Method A CULs documented in the Cleanup Levels and Risk Calculations (CLARC) version 3.1. Constituents detected in groundwater were considered potential IHSs if the concentration exceeded Method A CULs or if no Method A CULs were available.

4.1.1 Soil

Table 4-1 shows all detected soil analytical results screened against Method A CULs and natural background. 4,4'-DDT, arsenic, beryllium, ethylbenzene, iron, lead, manganese, mercury, naphthalene, and TPH-Dx were eliminated as potential IHSs because they did not exceed Method A CULs. All other constituents were retained as potential IHSs for one of the following reasons:

- Detected concentrations exceeded Method A CULs;
- Detected metals concentrations were above natural background; or
- Detected constituents do not have Method A CULs or natural background concentrations available.

Potential soil IHSs include: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2-methylnaphthalene, 4,4'-DDE, ammonia-N (as nitrogen), antimony, cadmium, chloride, chromium (total), copper, dinoseb, nickel, nitrate-N, nitrite-N, TPH-Gx, p,m-xylene, phosphate, silver, sulfate, thallium, and zinc.

4.1.2 Groundwater

Table 4-2 shows all detected groundwater analytical results screened against Method A CULs. Lead was detected in one sample, but at a concentration below the Method A CUL. Therefore, lead was eliminated as a potential IHS. All other constituents were retained as potential IHSs, since the concentration exceeded Method A CULs or no Method A CULs were available.

Groundwater IHSs include: 1,2-dichloropropane, 2,4-dichlorophenol, ammonia-N, arsenic, chloride, chlorobenzene, copper, iron, manganese, nickel, o-xylene, p,m-xylene, phosphate, sulfate, total nitrates and nitrites, and zinc.

4.2 SCREENING AGAINST METHOD C CLEANUP LEVELS

Constituents designated as IHSs based on comparison to Method A CULs and/or natural background concentrations were compared to the MTCA Method C CULs, as required by Ecology's MTCA program.

4.2.1 Soil

Table 4-3 shows the comparison of maximum concentrations of potential IHSs in soil against Method C CULs. Method C CULs for 4,4'-DDE, antimony, cadmium, copper, dinoseb, nickel, nitrate-N, nitrite-N, p,m-xylene, silver, thallium, and zinc are presented in CLARC, version 3.1. Standard Method C CULs were developed for 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, total chromium, and TPH mixtures using the "Workbook for Calculating Cleanup Levels for Individual Hazardous Substances." A summary of the input parameters and workbook calculations are found in Appendix G. The only IHS with a maximum concentration exceeding Method C CULs (from both CLARC and calculated) was TPH-Gx.

Toxicity values were not available for 2-methylnaphthalene, ammonia (as nitrogen), chloride, phosphate, and sulfate. Chloride, phosphate, and sulfate are not recognized as hazardous substances by U.S. Environmental Protection Agency (USEPA), as they are not in Table 302.4 – List of Hazardous Substances and Reportable Quantities (40 CFR, Section 302.4). These constituents were analyzed for remedial design purposes rather than for evaluation of risk to human health. Therefore Method C CULs were not developed.

Assuming nitrification converts ammonia as nitrogen into nitrate as nitrogen, the maximum concentration of ammonia-N was compared against the Method C CUL for nitrate-N. The maximum ammonia-N concentration (5,550 mg/kg) meets the nitrate-N Method C CUL of 350,000 mg/kg.

The maximum concentration of 2-methylnaphthalene was compared against the Method C CUL for naphthalene (70,000 mg/kg), and does not exceed.

4.2.2 Groundwater

Table 4-4 shows the comparison of maximum concentrations of IHSs in groundwater against Method C CULs. 1,2-Dichloropropane, arsenic, and total nitrates and nitrites exceeded Method C CULs. A review of the arsenic data shows detections in five monitoring wells (MW-1, MW-3, MW-4, MW-6, and MW-7) were at concentrations exceeding the Method C CUL of 0.000583 mg/L. Total nitrates and nitrites were detected in all six monitoring wells at concentrations exceeding the Method C CUL of 3.5 mg/L. 1,2-dichloropropane was only detected in MW-4.

Groundwater IHSs for which no toxicity values were available include chloride, iron, ammonia-N, phosphate, and sulfate. However, Washington State Board of Health Secondary Maximum Contaminant Levels (MCLs) exist for chloride, iron, and sulfate. It should be noted that secondary MCLs are based on cosmetic and aesthetic criteria for drinking water rather than on human health. The secondary MCLs are: 250 mg/L for chloride; 0.3 mg/L for iron; and 250 mg/L for sulfate. Maximum concentrations of iron from MW-5 (0.91 mg/L) and sulfate from MW-5 (624 mg/L) exceed the secondary MCLs. The maximum concentration of chloride meets the secondary MCL. These constituents were analyzed for remedial design purposes rather than for evaluation of risk to human health.

Ammonia-N detected in groundwater can be compared to the Method C CUL for nitrate-N (converted to concentration as nitrogen) since it is assumed nitrification is occurring at the Site, as further discussed in Section 4.3. Monitoring wells in which ammonia-N was detected are MW-3, MW-4, and MW-5. All concentrations of ammonia-N detected in groundwater are greater than the nitrate-N Method C CUL of 3.5 mg/L.

As stated in Section 4.2.1, phosphate is not considered a hazardous substance by USEPA and was analyzed for remedial design purposes rather than for evaluation of risk to human health. Therefore a Method C CUL was not developed.

Concentrations of select potential groundwater IHSs, including 1,2-dichloropropane, ammonia, arsenic, chloride, iron, phosphate, sulfate, and total nitrate + nitrite, are provided in Figure 4-1.

4.3 SOIL LEACHING TO GROUNDWATER

IHSs present in the soil have the potential to leach to the groundwater in excess of the applicable groundwater cleanup levels. Accordingly, this pathway must be evaluated to ensure that any remedial programs designed for soils will provide for long-term protection of the groundwater (source control). This section evaluates soil data generated during the field investigation and compares the data with the IHSs identified in the groundwater, as listed in Section 4.1.2. By completing this comparison, it is possible to identify potential soil sources that can be contributing to identified groundwater impacts.

4.3.1 Mobility of Inorganic Compounds in Fertilizer

The Site has a history of fertilizer distribution operations being conducted between 1960 and 1986. During this time period, both liquid and dry fertilizers were managed throughout the Site. As a result, there is a potential that both liquid and dry fertilizers could have been released to surface soils.

Liquid fertilizers are primarily composed of ammonium salts or liquid ammonia. Once released to the soil or groundwater, ammonia is rapidly converted to the ammonium ion by contact with water, where it may be immobilized in the soil column by cation exchange effects. Bacteria living within the root structure of surface vegetation convert the ammonium cation to nitrate through a process called nitrification. Nitrate is the form of nitrogen used by plants to produce proteins, which contribute to plant growth. Ammonium ions can be released from the soil column if the concentration of ammonium ions exceeds the cation exchange capacity of the soil. Since ammonium ions are very soluble, any ammonium ions released to the groundwater will be readily dissolved (Foth and Turk, 1972).

Ammonium ions present in the groundwater can also be converted to nitrates by nitrifying bacteria when provided with a sufficient supply of oxygen and alkalinity. Nitrates are also extremely soluble in the groundwater and have a greater human health risk when drinking water with high levels of nitrates is consumed by human receptors.

Dry fertilizers can be composed of ammonium salts or nitrate compounds. The mobility of ammonium salts once released to the environment through dry fertilizers is similar to the mobility described above for liquid fertilizers. Nitrates present in dry fertilizers do not follow the same transport mechanisms. Nitrates are extremely soluble in water and are not readily adsorbed to soils. As a result, nitrates that are applied to soils at concentrations in excess of the agronomic requirement of plants will readily leach to the groundwater. Bacteria can convert nitrates to nitrogen gas under anaerobic environmental conditions using a process known as denitrification. Denitrification is a natural process that occurs in anaerobic marsh sediments. Typically, groundwater aquifers do not provide the optimum conditions for denitrification to occur. As a result, nitrates are not readily degraded in groundwater aquifers.

4.3.2 Nitrogen in Soils

Table 4-5 sums the ammonia, nitrate, and nitrite concentrations as nitrogen at each of the soil boring locations where soil samples were collected during the Phase I investigation. Figures 4-2 through 4-10 provide summaries of these data and show concentration isopleths for total nitrogen, ammonia as nitrogen, and nitrate as nitrogen. Figures 4-2 through 4-4 provide

concentration isopleths for total nitrogen at depths of 0.5 feet bgs, 4.5 feet bgs, and 7.5 to 9.0 feet bgs. Figures 4-5 through 4-7 present concentration isopleths for ammonia as nitrogen at the same depths as described above. Finally, Figures 4-8 through 4-10 provide concentration isopleths for nitrate as nitrogen at the same depths.

A review of the data presented in these figures identifies five to seven potential shallow soil source areas where high nitrogen levels are present. For purposes of this preliminary evaluation, a source area is identified as an area where the total nitrogen concentration in soil exceeds 500 mg/kg. Based on a review of the ammonia and nitrate isopleths, the number of potential source areas decreases with depth. Accordingly, the soil data appear to depict an above ground source (fertilizer stored on the ground surface in dry or liquid form) that has leached nitrogen compounds to the soil.

The major source area appears to be directly east of the Dry Fertilizer Manufacturing Building in Area 2. In addition, two sources appear to be located adjacent to the lagoon, one to the east and one to the northwest. Ammonia and nitrate appear to contribute to the nitrogen sources in each of these areas.

Generally, the ammonia concentrations do not appear to change significantly with depth. This provides an indication of the soil's ability to retard the migration of ammonia into groundwater. Nitrate, however, decreases with depth, which provides evidence of the soil's inability to restrict the mobility of nitrates to the groundwater. As a result, soluble nitrates released from the surface soil at levels above the agronomic rates of the vegetation will leach to the groundwater.

The Phase I RI did not require the collection of subsurface soil samples in Area 5. Since the Phase I RI data identified relatively high nitrogen concentrations in surface soils, it would be appropriate to collect additional subsurface soil samples to determine the vertical extent of the nitrogen sources in this area.

In addition, the high soil nitrogen concentrations adjacent to the lagoon could indicate that this is also a potential source of nitrogen. Accordingly, samples of the lagoon contents will need to be obtained during the Phase II investigation to obtain a better understanding of the nitrogen concentrations present in this area.

4.3.3 Iron and Sulfate in Soils

Section 4.2.2 of the Phase I RI Report indicated that iron and sulfates were detected in the groundwater at MW-4 and MW-5 at concentrations in excess of the secondary MCLs. As a result, the soil data were reviewed to determine potential source areas that could result in elevated iron and sulfate concentrations in the groundwater. Table 4-6 provides a summary of the iron and sulfate data in Site soils. Figure 4-11 depicts concentration isopleths for sulfate at a depth of 0.5 feet bgs, and Figure 4-12 depicts concentration isopleths for sulfate are consistent with source areas identified for nitrogen compounds. This suggests that sulfate is a component of the fertilizer blends that were released at the surface. Figure 4-12 illustrates the sulfate concentrations decrease significantly with depth, which is a further indication of a surface release of fertilizer. A review of the iron data indicates a Site-wide presence of iron in the surface soil at concentrations below the natural background concentration of 51,500 mg/kg (See Section 3.5), and these concentrations in soil may be contributing to the presence of iron in groundwater.

4.3.4 Arsenic in Soils

Arsenic is naturally occurring in the environment in background soils. The natural background concentration for arsenic in soil in the Yakima Basin is 5 mg/kg. A review of the arsenic data for the Site indicates that soil arsenic concentrations are less than, or just above, the background

level, ranging from 0.65 to 5.69 mg/kg. The arsenic concentrations are below the MTCA Method A CUL, which is 20 mg/kg.

Arsenic was also detected in five monitoring wells (MW-1, MW-3, MW-4, MW-6, and MW-7) at concentrations exceeding the Method C CUL of 0.000583 mg/L. The highest arsenic concentrations in groundwater were observed at monitoring wells MW-3 (0.102 mg/l) and MW-6 (0.025 mg/l). MW-6 is located adjacent to the Burlington-Northern Railroad right-of-way. Arsenic is typically used as a wood preservative, and therefore its presence at higher levels adjacent to a railroad may be due to the presence of wooden railroad ties. A review of arsenic concentrations in soil in the area surrounding MW-3 does not indicate higher arsenic concentrations when compared to the rest of the Site. Therefore, the potential exists for arsenic to be extracted from saturated soils as a result of geo-chemical changes in the groundwater. A reducing environment in the groundwater could mobilize arsenic. Reducing conditions could exist if denitrification is occurring near MW-3. Therefore, the Phase II investigation will need to obtain data to evaluate the reducing conditions of the groundwater. Typically, this is accomplished by collecting groundwater samples and evaluating the oxidation-reduction potential (ORP) of the groundwater.

4.3.5 1,2-Dichloropropane in Soils

The organic compound 1,2-dichloropropane was detected at MW-4 at a concentration of 0.105 mg/l in the groundwater. Site soil data was reviewed and indicated that 1,2-dichloropropane was not detected in any of the soil samples. The detection limit for 1,2-dichloropropane in soils was as low as 0.001 mg/kg. Based upon this review it does not appear the Site soils are a source of the 1,2-dichloropropane detected at MW-4.

4.4 RECOMMENDATIONS FOR PHASE II

A comparison of the soil and groundwater data to MCTA C CULs as presented in Section 4.2 indicates the following:

- A TPH-Gx value exceeding Method C CULs was observed at a depth of 7.5 feet bgs at A3-SB-002;
- Nitrogen and sulfate compounds are present throughout the unsaturated zone soil samples at high concentrations in potential surface source areas;
- Potential soil source areas occur in Area 5. Only surface soils were collected in this area during the Phase I RI. Therefore, the vertical extent of the nitrogen and sulfate impacts has not been delineated;
- Nitrogen, iron, and sulfate exceeded MCTA C CULs and secondary MCLs in groundwater samples collected downgradient of potential source areas;
- Nitrogen, iron, and sulfate concentrations appear to exceed the MTCA C CULs and secondary MCLs at the southern property boundary of the Site;
- Arsenic concentrations in groundwater exceeded MTCA C CULs, although no background concentrations for arsenic are established for local groundwater; and
- The soil leaching to groundwater pathway has been evaluated using a weight of evidence approach. The first line of evidence is comparison of the groundwater data to MTCA C CULs and secondary MCLs, since the soil release occurred years ago. Any impacts from soil leaching to the groundwater should have been observed by now. Soil samples will be selected during Phase II activities for synthetic precipitate leaching procedure (SPLP) analysis to further demonstrate that the soil leaching to groundwater pathway is protective of human health.

The Phase II RI recommendation developed as a response to these findings is presented in the remaining portions of this section. During the Phase II RI, additional soil and groundwater data will be collected to fill in data gaps identified during the Phase I RI. Groundwater sampling will include vertical profile sampling and installation and sampling of new monitoring wells. Additional

soil samples will be collected to provide horizontal and vertical delineation to augment the Phase I RI data. In addition, soil samples will be collected during Phase II for SPLP analysis to more accurately evaluate the soil leaching to groundwater pathway. Water and sediment sampling will be conducted to delineate the lagoon contents. The proposed Phase II sampling activities would consist of the following elements:

Groundwater Sampling

- Installation of a permanent monitoring well 100 to 200 feet downgradient of the southern property boundary where nitrogen concentrations are highest. This well will be a shallow monitoring well constructed with a ten-foot screened interval;
- Completion of 20 vertical profile borings within the identified nitrogen plume. The vertical
 profile borings will extend from the water table to the aquitard located approximately 31
 feet bgs. These borings will be located near the highest nitrogen concentrations identified
 in the Phase I soil samples. Groundwater samples will be collected at 10 feet bgs and 20
 feet bgs at each boring location. Groundwater samples will be analyzed for arsenic,
 alkalinity, chloride, dissolved oxygen (DO), nitrogen compounds, phosphate, sulfate, iron,
 pH, and ORP. A Geoprobe will be used to advance the vertical profile borings;
- Arsenic concentrations identified at MW-1, MW-6, and MW-7 are believed to be representative of background conditions and background compound concentrations will be established by calculating the 95% upper confidence limit (UCL) of the data; and
- Installation of a permanent monitoring well in the middle of the nitrogen plume. This well will also be a shallow well with a ten-foot screened interval.

Soil Sampling

- Four soil borings will be advanced ten feet north, south, east, and west of Phase I boring A3-SB-002. The purpose of these borings is to delineate the TPH-Gx concentrations identified during the Phase I RI. Soil samples will be collected at 0.5 feet bgs, 4.5 feet bgs, and 7.5 feet bgs to be consistent with the Phase I RI. Samples will be analyzed for TPH-Gx;
- Ten additional soil borings will be conducted in Area 5 to define the vertical extent of nitrogen, phosphate, iron, and sulfate. Soil samples will be collected at 4.5 feet bgs and 9.0 feet bgs; and
- Ten soil samples will be selected for SPLP analysis. The soil samples will be biased towards samples with the highest nitrogen concentrations.

Sediment and Water Sampling

• One sample of the lagoon water and one sample of the lagoon sediment will be collected to obtain a better understanding of the nitrogen concentrations present in the area.

Proposed Phase II sampling locations can be found on Figure 4-13. The sampling and analytical methods described in the approved Phase I RI will be utilized for the Phase II RI.

5.0 RE-EVALUATION OF CLEANUP ALTERNATIVES AND TREATABILITY

Section 3 of the RI/FS Work Plan provided a preliminary screening of remedial alternatives based upon a review of historical data. The preliminary screening of alternatives was prepared to ensure soil and groundwater data collected as part of the RI work would support the development of remedial alternatives for evaluation during the feasibility study process.

The following sections re-evaluate the feasibility of remedial action alternatives based upon the soil and groundwater data collected during the Phase I RI. Accordingly, this review is intended to focus the Phase II RI data collection and treatability studies to ensure the necessary data is obtained to facilitate completion of the feasibility study (FS) and implementation of an approved remedy.

5.1 RE-EVALUATION OF CLEANUP ACTION ALTERNATIVES

Nutrients have been identified as the primary constituents of concern in the soil and groundwater present at the Site. Although other compounds exist in soil and groundwater at levels that may represent a risk to human health and the environment, the small size of these source areas would suggest that the areas can be eliminated based upon completion of a human health risk assessment or the areas can be addressed by limited excavation and off-site disposal. Therefore, the focus of the FS process will be to evaluate the best approach to remediate nutrients that are present in the soil and groundwater at the Site.

The RI/FS Work Plan identified the following alternatives that could be used to address impacted soil and groundwater at the Site:

Soil

- In-situ Treatment Phytoremediation and enhanced bioremediation;
- Ex-situ Biological Treatment Composting; and
- Ex-situ Containment Landfill disposal.

<u>Groundwater</u>

- In-situ Biological Treatment Natural Attenuation, Enhanced Biodegradation, Phytoremediation, and Agricultural Application; and
- Ex-situ Treatment Reverse Osmosis, Ion Exchange, and Carbon Filtration.

Each of these potential remedial alternatives will be evaluated based upon the results of the Phase I RI, and may be refined based on the results of the Phase II RI.

5.1.1 Soil Treatment Alternatives

Ex-situ treatment alternatives include composting and landfill disposal. The landfill disposal option does not involve treatment prior to off-site disposal. As a result, landfill disposal transfers the nutrient containing soil to another location where the potential exists for groundwater to be impacted in the future. Since nutrients readily leach to groundwater, landfill disposal is a more viable option for a site with soils impacted by heavy metals or polynuclear aromatic hydrocarbons (PAHs) that are not readily leached to groundwater.

Ex-situ composting is a form of biological treatment. Generally, composting is used to degrade organic matter, and nutrients are added to facilitate the biological activity within the compost pile. A source of organic material such as grass clippings or leaves is not readily available at the Site. Therefore, these materials would have to be imported from an off-site location, which could potentially introduce other constituents of concern to the Site. As a result, composting does not appear to be a viable option to treat nutrient-impacted soils.

Phytoremediation is a form of in-situ biological treatment. Phytoremediation could be effective in this application during the active growing season. The downside of phytoremediation is that its effectiveness is limited by the nutrient requirements of the plants utilized. As a result, the time frame for cleanup to occur may be longer when compared with other in-situ technologies. Phytoremediation may be best used to provide hydraulic control of a nutrient plume (i.e., a barrier wall of hybrid poplar trees) and can be used in conjunction with other in-situ biological treatment programs such as enhanced bioremediation.

Enhanced bioremediation of soils is the most favorable option to remove nutrients from soils. The biological process for ammonia and nitrate treatment includes both aerobic and anaerobic treatment processes. Typically, aerobic and anaerobic treatment in soils and groundwater are limited by a sufficient carbon source. Carbon is provided in the form of alkalinity in the nitrification stage and in the form of organic carbon in the denitrification stage. Therefore, in-situ biological enhancements, which add a carbon source, can be very effective in the treatment of ammonia and nitrates.

This first step in the biological enhancement program is to convert ammonia to nitrate in an aerobic process. Microorganisms, nutrients, alkalinity, and oxygen are required to enhance the biological treatment process. The Site has sufficient nutrients to support the microorganisms. Usually soils have sufficient microorganisms and alkalinity to drive the process once the bacteria are properly acclimated. Therefore, the limiting factors for nitrification will be a sufficient supply of oxygen. Oxygen can be supplied through air injection or the addition of an oxygen-releasing compound such as calcium peroxide, which releases both oxygen and alkalinity to the subsurface. Under the optimum environmental conditions, conversion of ammonia to nitrate can be accomplished in a period of days once the microorganisms have acclimated, although contact limitations in the soil will reduce the kinetics by one to two orders of magnitude. The acclimation period may take a number of weeks.

Once all of the ammonia is converted to nitrate, the denitrification process can be initiated. Under anaerobic conditions, nitrate is converted to nitrogen gas, which volatilizes into the atmosphere. Anaerobic conditions are established by the addition of a carbon source in the form of a simple sugar (glucose or sucrose), which supports the growth of microorganisms. These microorganisms deplete the available oxygen and turn the system anaerobic. The denitrification process is also a rapid process once the system is acclimated. Denitrification should also occur in a period of days once optimum environmental conditions are achieved, but contact limitations in the soils will reduce the kinetics.

5.1.2 Groundwater Treatment Alternatives

Ex-situ treatment options consist of extracting impacted groundwater by pumping and treating in an above ground system. The technologies considered for above ground treatment systems included reverse osmosis, ion exchange, and carbon filtration. Carbon filtration cannot be used to effectively treat groundwater for removal of nitrates and ammonia. Ion exchange and reverse osmosis can be used to treat impacted groundwater, but each of these treatment processes will generate a residual material which would require disposal. As a result, ex-situ treatment systems are not the preferred alternative for removing ammonia and nitrates from the groundwater.

Ex-situ biological systems can be used effectively to treat ammonia and nitrate present in the groundwater. An ex-situ biological treatment approach is not recommended because the same technology can be used in-situ to remediate the Site in a shorter time frame. Agricultural application, although a potential beneficial reuse opportunity, could lead to the introduction of nitrates to a property where groundwater has not previously been impacted if it is not properly managed.

In-situ biological treatment systems can effectively treat ammonia and nitrate present in the groundwater in a shorter time frame when compared with other alternatives. In-situ biological

treatment will likely consist of a combination of enhanced biodegradation, phytoremediation, and natural attenuation. Enhanced biodegradation would be used to control and eliminate the source. Phytoremediation can be used to contain the plume primarily through hydraulic control. Finally, natural attenuation processes need to be considered when developing a long-term monitoring program designed to demonstrate the nutrient plume is stable and shrinking.

5.1.3 Presumptive Remedy Approach

The use of presumptive remedies can reduce the time frame for remedy development and implementation by streamlining the FS process. In-situ enhanced biological treatment of impacted soil and groundwater is the preferred approach for dealing with the nutrient impacts at the Site. This is due to the fact that the subsurface geology has sufficient porosity and permeability to facilitate injection of supplemental carbon sources and air into the subsurface. In addition, the insitu biological treatment approaches can be implemented and completed in a shorter time frame when compared with ex-situ treatment technologies. As a result, it is recommended that the FS follow a presumptive remedy approach that focuses on developing the best methodology for insitu enhanced biological treatment of nutrient-impacted soil and groundwater. The use of a presumptive remedy approach will allow emphasis to be placed on optimizing the biological treatment streatment studies and full-scale pilot studies. The remaining portions of Section 5 discuss the proposed bench-scale treatment program and full-scale pilot studies. In addition, a comprehensive work plan will be prepared to address the proposed bench-scale treatment study and full-scale pilot study.

5.2 BENCH-SCALE TREATMENT STUDY

The bench-scale treatment study will be designed to achieve the following data quality objectives:

- Determine if nitrifying and denitrifying bacteria can be cultured from Site soils by providing the optimum environmental conditions;
- Determine the acclimation period necessary to cultivate a population of nitrifying and denitrifying bacteria;
- Determine if the acclimation period can be shortened by the introduction of nitrifying and denitrifying bacteria purchased from microbiological supply firms;
- Determine the optimum carbon source, air requirements, and reaction kinetics for the enhanced nitrification biological treatment system;
- Determine the optimum carbon source and reaction kinetics for the denitrification process;
- Determine the acclimation period after conversion from a nitrification process to a denitrification process;
- Determine if soil washing can effectively leach nitrates from the soil to the groundwater;
- Determine process set points such as ORP and DO readings that can be utilized in the field to regulate the in-situ treatment process; and
- Determine the proper carbon dosing requirements to maximize denitrification while minimizing the potential for arsenic mobility.

The bench-scale study will be conducted using soil and groundwater samples collected from the Site. In addition, multiple carbon sources and multiple bacteria supplements will be evaluated in the bench-scale study to determine cost-effective approaches for the biological treatment enhancements.

The results of the bench-scale study will be summarized in a technical report. This report will contain recommendations for proceeding with a full-scale pilot study to demonstrate that the bench-scale technologies can be implemented in the field. The following section provides an overview of the proposed pilot study program.

5.3 FULL-SCALE PILOT STUDY

The bench-scale study will define the operating parameters for in-situ biological enhancements designed to facilitate treatment of ammonia and nitrates. Enhanced biological treatment of ammonia and nitrates requires a two-step process. The first step is the nitrification process, which converts ammonia to nitrates in an aerobic environment. The second step is the denitrification process where nitrates are converted to nitrogen gas in an anaerobic process. Data from the bench-scale studies will be utilized to define the operating parameters for both the nitrification and denitrification processes that will be employed in the full-scale pilot to ensure that optimal conditions are maintained in the subsurface environment to facilitate ammonia and nitrate removal.

The full-scale pilot will be conducted using a zone treatment approach. The treatment zone, consisting of an 80-foot by 80-foot area, will be established to the west of the lagoon in Area 1, as shown on Figure 5-1.

Initially, subsurface soils will be treated to a depth of nine feet bgs. A sodium percarbonate solution will be mixed into the soils with bacteria using excavators or a trenching device to initiate the nitrification process. Once the ammonia has been converted to nitrates, a simple sugar will be added and the soils will be remixed to create anaerobic conditions in the subsurface or nitrates will be leached to the groundwater by soil washing techniques.

The groundwater treatment activities will commence once the soil treatment has been completed. Injection points will be installed on a 20-foot grid pattern as shown on Figure 5-2. The injection points will consist of one-inch diameter stainless well points that will be installed to a depth of approximately 30 feet bgs, or just above the identified clay aquitard. A geoprobe will be used to install the injection points.

The purpose of the injection points will be to add microorganisms and alkalinity to the groundwater. Once the chemical additions have been completed, the injection points will then be used for air sparging. Air sparging will facilitate mixing the injected chemicals with the groundwater to create homogeneous environmental conditions necessary to promote nitrification.

Three piezometers will be installed in the treatment zone to monitor environmental conditions during the full-scale field pilots. The piezometers will be installed at 5-foot, 10-foot, and 15-foot distances away from the injection wells, as shown on Figure 5-2. Groundwater samples will be collected from the piezometers and analyzed in the field for qualitative parameters such as DO, ORP, alkalinity, and pH. The data from the piezometers will be used to modify injection methodologies, if necessary.

Once the nitrification process is completed, based upon a review of groundwater ammonia data, the full-scale pilot will proceed to the denitrification stage. A simple sugar and microorganisms will be added to the injection points to create an anaerobic environment in the groundwater. Air sparging will be conducted for a short period of time using nitrogen gas to mix the chemicals with the groundwater and deoxygenate the water. Once mixing has been completed, the air sparging operation will be discontinued and the groundwater will be allowed to go anaerobic. The denitrification step will be allowed to reach completion in order for the nitrates to be converted to nitrogen gas.

The results from the full-scale pilot will be used to finalize the conceptual design requirements for the in-situ biological enhancements that will be incorporated into the presumptive remedy discussion in the FS report.

6.0 SUMMARY AND CONCLUSIONS

The following findings and/or conclusions can be drawn from the Phase I RI results discussed in the preceding sections of this report:

- Potential IHSs detected in soil that exceeded Method A CULs and/or natural background concentrations, or do not have Method A CULs and/or background concentrations, include: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2-methylnaphthalene, 4,4'-DDE, ammonia-N (as nitrogen), antimony, cadmium, chloride, chromium (total), copper, dinoseb, nickel, nitrate-N, nitrite-N, TPH-Gx, p,m-xylene, phosphate, silver, sulfate, thallium, and zinc;
- The potential IHSs detected in groundwater above Method A CULs, or that do not have Method A CULs, include: 1,2-dichloropropane, 2,4-dichlorophenol, ammonia-N, arsenic, chloride, chlorobenzene, copper, iron, manganese, nickel, o-xylene, p,m-xylene, phosphate, sulfate, total nitrates and nitrites, and zinc;
- A TPH-Gx value exceeding Method C CULs was observed at a depth of 7.5 feet bgs at A3-SB-002;
- Nitrogen and sulfate compounds are present throughout the unsaturated zone soil samples at high concentrations in potential surface source areas;
- Potential soil source areas occur in Area 5. Only surface soils were collected in this area during the Phase I RI. Therefore, the vertical extent of the nitrogen and sulfate impacts has not been delineated;
- Nitrogen, iron, and sulfate exceeded MCTA C CULs and secondary MCLs in groundwater samples collected downgradient of potential source areas;
- Nitrogen, iron, and sulfate concentrations appear to exceed the MTCA C CULs and secondary MCLs at the southern property boundary of the Site;
- Arsenic concentrations in groundwater exceeded MTCA C CULs, although no background concentrations for arsenic have been established for local groundwater;
- The soil analytical results do not indicate a source of the 1,2-dichloropropane detected in groundwater; and
- The soil leaching to groundwater pathway has been evaluated using a weight of evidence approach. The first line of evidence is comparison of the groundwater data to MTCA C CULs and secondary MCLs, since the soil release occurred years ago. Any impacts from soil leaching to the groundwater should have been observed by now. Soil samples will be selected during Phase II activities for SPLP analysis to further demonstrate that the soil leaching to groundwater pathway is protective of human health.

Based on the findings of the Phase I RI, additional soil and groundwater data will be collected to fill in identified data gaps. Groundwater sampling will include vertical profile sampling and installation and sampling of new monitoring wells. Additional soil samples will be collected to provide horizontal and vertical delineation to augment the Phase I RI data. In addition, soil samples will be collected during Phase II for SPLP analysis to more accurately evaluate the soil leaching to groundwater pathway. Water and sediment sampling will be conducted to delineate the lagoon contents. Recommendations for the Phase II activities are as follows:

Groundwater Sampling

- Installation of a permanent monitoring well 100 to 200 feet downgradient of the southern property boundary where nitrogen concentrations are highest;
- Completion of 20 vertical profile borings within the identified nitrogen plume;
- Establish background concentrations of arsenic by calculating the 95% upper confidence limit (UCL) of the data from MW-1, MW-6, and MW-7; and
- Installation of a permanent monitoring well in the middle of the nitrogen plume.

Soil Sampling

- Four soil borings will be advanced ten feet north, south, east and west of Phase I boring A3-SB-002;
- Ten additional soil borings will be conducted in Area 5 to define the vertical extent of nitrogen, phosphate, iron, and sulfate; and
- Ten soil samples will be selected for SPLP analysis.

Sediment and Water Sampling

• One sample of the lagoon water and one sample of the lagoon sediment will be collected to obtain a better understanding of the nitrogen concentrations present in the area.

It is recommended that the FS follow a presumptive remedy approach that focuses on developing the best methodology for in-situ enhanced biological treatment of nutrient-impacted soil and groundwater. The use of a presumptive remedy approach will allow emphasis to be placed on optimizing the biological treatment enhancements through bench-scale treatment studies and fullscale pilot studies. A comprehensive work plan will be prepared to address the proposed benchscale treatment study and full-scale pilot study.

7.0 REFERENCES

Bentley RD, Campbell NP, Powell JE. Geologic Maps of Part of the Yakima Fold Belt, Northeastern Yakima County, Washington. Washington Division of Geology and Earth Resources Open File Report 93-3. 1993.

Busacca AJ, McDonald EV. Regional sedimentation of Late Quaternary loess on the Columbia Plateau: Sediment source areas and loess distribution patterns. In: *Regional Geology of Washington State*, Washington Division of Geology and Earth Resources Bulletin 80, Lasmanis R, Cheney ES, convenors. 1994.

Campbell NP. Surficial Geologic Map of the Yakima Quad, Washington. Washington Division of Geology and Earth Resources. Olympia, WA. Open file report 79-15. 1979.

CH2M Hill. *Remedial Investigation/Feasibility Study Work Plan, Bee-Jay Scales Site, Sunnyside, WA*. February 2003.

Foth, HD, Turk, LM. Fundamentals of Soil Science. John Wiley & Sons, Inc. 1972

Hart Crowser. *Preliminary Environmental Assessment*. Glacier Park Company Property, Property Sequence No. 3833, Sunnyside, Washington. March 1990a.

Hart Crowser. Subsurface *Exploration and Testing Report.* Glacier Park Company Property, Property Sequence Nos. 145-2 and 3833, Sunnyside, Washington. July 1990b.

Holtz, RD, Kovacs, WD. An Introduction to Geotechnical Engineering. Prentice-Hall, Inc. 1981.

Kinnison HB, Sceva JE. *Effects of Hydraulic and Geologic Factors on Streamflow of the Yakima River Basin, Washington.* Geological Survey water-supply paper 1595. Washington, D.C. 1963

Molenaar. *Water in the Lower Yakima River Basin, Washington.* Washington State Department of Ecology Water Supply Bulletin No. 53, prepared in cooperation with the United States Geological Service. 1985.

PLSA Engineering & Surveying. Letter to Mr. Jerry Hickenbottom, Hickenbottom & Sons, Inc. April 16, 1992.

PLSA Engineering & Surveying. *Site Assessment and Intermediate Clean-Up*. Engineering Report on Leaking Underground Storage Tank Cleanup for Hickenbottom & Sons, Inc., Sunnyside, Washington, February 1992.

Reidel SP, Campbell NP, Fecht KR, Lindsey KA. Late Cenozoic structure and stratigraphy of south-central Washington. In: *Regional Geology of Washington State*, Washington Division of Geology and Earth Resources Bulletin 80, Lasmanis R, Cheney ES, convenors. 1994.

Schuster JE, Gulick CW, Reidel SP, Fecth KR, Zurenko S. Geologic Map of Washington – Southeast Quadrant. Washington Division of Geology and Earth Resources, Geologic Map GM-45. 1997.

United States Department of Agriculture, Soil Conservation Service. Soil Survey for Yakima County, Washington, Sheet 73. 1985.

Washington State Department of Ecology. Clean-Up Levels and Risk Calculations under the Model Toxics Control Act Cleanup Regulation (CLARC) Version 3.1. November 2001.

Washington State Department of Ecology. *Natural Background Soil Metals Concentrations in Washington State*. October 1994.

White Shield, Inc. *Phase II Environmental Assessment of a Portion of Property Leased by Hickenbottom & Sons, Inc. in Sunnyside, Washington.* September 1991.

TABLES

		Analytical Results			
Sample ID	Analyte	Date	(mg/kg)	MDL (mg/kg)	
A1-SB-001-0.5'	Ammonia-N	7/7/2003	5	1	
	Arsenic	7/7/2003	1.57	0.1	
	Cadmium	7/7/2003	0.41	0.05	
	Chromium	7/7/2003	7.91	0.5	
	Copper	7/7/2003	13.2	0.5	
	Iron	7/7/2003	8750	1	
	Lead	7/7/2003	6.13	0.5	
	Manganese	7/7/2003	392	0.5	
	Nickel	7/7/2003	8.95	0.5	
	Nitrate-N	7/7/2003	68	10	
	Phosphate	7/7/2003	5690	10	
	Zinc	7/7/2003	189	0.5	
1-SB-001-4.5'	Ammonia-N	7/7/2003	3	1	
	Nitrate-N	7/7/2003	55	10	
	Phosphate	7/7/2003	4630	10	
I-SB-001-9.0'	Ammonia-N	7/7/2003	683	1	
	Nitrate-N	7/7/2003	29	10	
	Phosphate	7/7/2003	2870	10	
1-SB-002-0.5'	Ammonia-N	7/7/2003	400	1	
	Arsenic	7/7/2003	1.02	0.1	
	Cadmium	7/7/2003	0.21	0.05	
	Chromium	7/7/2003	10.7	0.5	
	Copper	7/7/2003	32.4	0.5	
	Iron	7/7/2003	6860	1	
	Lead	7/7/2003	6.87	0.5	
	Manganese	7/7/2003	485	0.5	
	Nickel	7/7/2003	9.77	0.5	
	Nitrate-N	7/7/2003	63	10	
	Phosphate	7/7/2003	4620	10	
	Zinc	7/7/2003	153	0.5	
1-SB-002-4.5'	Ammonia-N	7/7/2003	968	1	
	Nitrate-N	7/7/2003	321	10	
	Phosphate	7/7/2003	4340	10	
1-SB-002-9.0'	Ammonia-N	7/7/2003	100	1	
	Nitrate-N	7/7/2003	162	10	
	Phosphate	7/7/2003	3620	10	
1-SB-003-0.5'	Ammonia-N	7/7/2003	631	1	
	Arsenic	7/7/2003	1.65	0.1	
	Cadmium	7/7/2003	0.2	0.05	

Table 2-1Constituents Detected in Soil

		Analytical Results			
Sample ID	Analyte	Date	(mg/kg)	MDL (mg/kg)	
A1-SB-003-0.5'	Chromium	7/7/2003	2.68	0.5	
	Copper	7/7/2003	11.7	0.5	
	Iron	7/7/2003	7170	1	
	Lead	7/7/2003	7.1	0.5	
	Manganese	7/7/2003	420	0.5	
	Nickel	7/7/2003	7.43	0.5	
	Nitrate-N	7/7/2003	80	10	
	Phosphate	7/7/2003	4100	10	
	Zinc	7/7/2003	17.7	0.5	
1-SB-003-4.5'	Ammonia-N	7/7/2003	583	1	
	Nitrate-N	7/7/2003	87	10	
	Phosphate	7/7/2003	4910	10	
1-SB-003-9.0'	Nitrate-N	7/7/2003	47	10	
	Phosphate	7/7/2003	2250	10	
1-SB-004-0.5'	Ammonia-N	7/7/2003	404	1	
	Arsenic	7/7/2003	2.11	0.1	
	Cadmium	7/7/2003	0.06	0.05	
	Chromium	7/7/2003	3.4	0.5	
	Copper	7/7/2003	9.66	0.5	
	Iron	7/7/2003	6330	1	
	Lead	7/7/2003	4.76	0.5	
	Manganese	7/7/2003	315	0.5	
	Nickel	7/7/2003	8.29	0.5	
	Nitrate-N	7/7/2003	310	10	
	Phosphate	7/7/2003	2590	10	
	Zinc	7/7/2003	14	0.5	
1-SB-004-4.5'	Ammonia-N	7/7/2003	426	1	
	Nitrate-N	7/7/2003	351	10	
	Phosphate	7/7/2003	5030	10	
	Sulfate	7/7/2003	225	100	
1-SB-004-9.0'	Ammonia-N	7/7/2003	57	1	
	Nitrate-N	7/7/2003	59	10	
	Phosphate	7/7/2003	2410	10	
1-SB-005-0.5'	Arsenic	7/10/2003	2.65	0.1	
	Cadmium	7/10/2003	0.24	0.05	
	Chromium	7/10/2003	6.07	0.5	
	Copper	7/10/2003	8.07	0.5	
	Iron	7/10/2003	5580	1	
	Lead	7/10/2003	11.5	0.5	
	Manganese	7/10/2003	343	0.5	
	Nickel	7/10/2003	6.42	0.5	
	Nitrate-N	7/10/2003	161	10	
	Phosphate	7/10/2003	6390	10	

		Analytical Results			
Sample ID	Analyte	Date	(mg/kg)	MDL (mg/kg)	
A1-SB-005-0.5'	Zinc	7/10/2003	30.3	0.5	
A1-SB-005-4.5'	Ammonia-N	7/10/2003	735	5	
	Nitrate-N	7/10/2003	983	10	
	Nitrite-N	7/10/2003	17	10	
	Phosphate	7/10/2003	2670	10	
	Sulfate	7/10/2003	199	100	
A1-SB-005-7.5'	Ammonia-N	7/10/2003	1630	10	
	Nitrate-N	7/10/2003	255	10	
	Phosphate	7/10/2003	8180	10	
A1-SB-006-0.5'	Ammonia-N	7/10/2003	1110	10	
	Arsenic	7/10/2003	1.39	0.1	
	Beryllium	7/10/2003	0.61	0.5	
	Cadmium	7/10/2003	7.83	0.05	
	Chromium	7/10/2003	58.3	0.5	
	Copper	7/10/2003	20.5	0.5	
	Iron	7/10/2003	9310	1	
	Lead	7/10/2003	8.97	0.5	
	Manganese	7/10/2003	343	0.5	
	Nickel	7/10/2003	15.2	0.5	
	Nitrate-N	7/10/2003	127	10	
	Phosphate	7/10/2003	30200	100	
	Zinc	7/10/2003	1030	0.5	
\1-SB-006-0.5'-1	Ammonia-N	7/10/2003	1030	10	
	Arsenic	7/10/2003	1.29	0.1	
	Beryllium	7/10/2003	0.57	0.5	
	Cadmium	7/10/2003	8.52	0.05	
	Chromium	7/10/2003	48.3	0.5	
	Copper	7/10/2003	19.8	0.5	
	Iron	7/10/2003	8770	1	
	Lead	7/10/2003	10.9	0.5	
	Manganese	7/10/2003	274	0.5	
	Mercury	7/10/2003	0.12	0.1	
	Nickel	7/10/2003	13.7	0.5	
	Nitrate-N	7/10/2003	127	10	
	Phosphate	7/10/2003	29300	100	
	Zinc	7/10/2003	1000	0.5	
1-SB-006-4.5'	Ammonia-N	7/10/2003	1520	10	
	Nitrate-N	7/10/2003	672	10	
	Phosphate	7/10/2003	6300	10	
A1-SB-006-7.5'	Ammonia-N	7/10/2003	1460	10	
	Nitrate-N	7/10/2003	130	10	
	Phosphate	7/10/2003	5010	10	
A1-SB-007-0.5'	Arsenic	7/10/2003	5.69	0.1	

		Analytical Results			
Sample ID	Analyte	Date	(mg/kg)	MDL (mg/kg)	
A1-SB-007-0.5'	Cadmium	7/10/2003	0.12	0.05	
	Chromium	7/10/2003	2.8	0.5	
	Copper	7/10/2003	8.4	0.5	
	Iron	7/10/2003	5630	1	
	Lead	7/10/2003	11.3	0.5	
	Manganese	7/10/2003	354	0.5	
	Nickel	7/10/2003	6.54	0.5	
	Nitrate-N	7/10/2003	172	10	
	Phosphate	7/10/2003	3320	10	
	Zinc	7/10/2003	30.6	0.5	
1-SB-007-4.5'	Ammonia-N	7/10/2003	281	5	
	Nitrate-N	7/10/2003	405	10	
	Phosphate	7/10/2003	2440	10	
	Sulfate	7/10/2003	116	100	
1-SB-007-7.5'	Ammonia-N	7/10/2003	1200	10	
	Nitrate-N	7/10/2003	86	10	
	Phosphate	7/10/2003	3040	10	
1-SB-008-0.5'	Ammonia-N	7/10/2003	207	5	
	Arsenic	7/10/2003	1.62	0.1	
	Cadmium	7/10/2003	0.14	0.05	
	Chromium	7/10/2003	3.28	0.5	
	Copper	7/10/2003	10.1	0.5	
	Iron	7/10/2003	6230	1	
	Lead	7/10/2003	6.65	0.5	
	Manganese	7/10/2003	567	0.5	
	Nickel	7/10/2003	7.61	0.5	
	Nitrate-N	7/10/2003	148	10	
	Phosphate	7/10/2003	4880	10	
	Zinc	7/10/2003	24.8	0.5	
I-SB-008-4.5'	Nitrate-N	7/10/2003	486	10	
	Phosphate	7/10/2003	2820	10	
	Sulfate	7/10/2003	114	100	
1-SB-008-7.5'	Ammonia-N	7/10/2003	337	5	
	Nitrate-N	7/10/2003	318	10	
	Phosphate	7/10/2003	2950	10	
	Sulfate	7/10/2003	138	100	
2-SB-001-0.5'	Ammonia-N	7/8/2003	283	1	
	Arsenic	7/8/2003	1.3	0.1	
	Cadmium	7/8/2003	0.08	0.05	
	Chromium	7/8/2003	3.37	0.5	
	Copper	7/8/2003	12.7	0.5	
	Iron	7/8/2003	6870	1	
	Lead	7/8/2003	7.24	0.5	

			Analytical Results	
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)
A2-SB-001-0.5'	Manganese	7/8/2003	568	0.5
	Nickel	7/8/2003	9.48	0.5
	Nitrate-N	7/8/2003	294	10
	Phosphate	7/8/2003	2690	10
	Sulfate	7/8/2003	934	100
	Zinc	7/8/2003	17.8	0.5
A2-SB-001-4.5'	Nitrate-N	7/8/2003	83	10
	Phosphate	7/8/2003	2790	10
	Sulfate	7/8/2003	224	100
A2-SB-001-9.0'	Phosphate	7/8/2003	1910	10
A2-SB-002-0.5'	Ammonia-N	7/8/2003	273	1
	Arsenic	7/8/2003	1.17	0.1
	Chromium	7/8/2003	2.01	0.5
	Copper	7/8/2003	5.87	0.5
	Iron	7/8/2003	6220	1
	Lead	7/8/2003	3.82	0.5
	Manganese	7/8/2003	153	0.5
	Nickel	7/8/2003	4.93	0.5
	Nitrate-N	7/8/2003	214	10
	Phosphate	7/8/2003	2450	10
	Sulfate	7/8/2003	1640	100
	Zinc	7/8/2003	12.6	0.5
2-SB-002-4.5'	Nitrate-N	7/8/2003	47	10
	Phosphate	7/8/2003	2470	10
	Sulfate	7/8/2003	150	100
2-SB-002-9.0'	Nitrate-N	7/8/2003	12	10
	Phosphate	7/8/2003	2360	10
2-SB-002-9.0'-1	Nitrate-N	7/8/2003	11	10
	Phosphate	7/8/2003	2400	10
2-SB-003-0.5'	Ammonia-N	7/7/2003	117	1
	Arsenic	7/7/2003	1.69	0.1
	Cadmium	7/7/2003	0.06	0.05
	Chromium	7/7/2003	3.25	0.5
	Copper	7/7/2003	9	0.5
	Iron	7/7/2003	6000	1
	Lead	7/7/2003	4.26	0.5
	Manganese	7/7/2003	318	0.5
	Nickel	7/7/2003	7.66	0.5
	Nitrate-N	7/7/2003	137	10
	Phosphate	7/7/2003	2480	10
	Sulfate	7/7/2003	186	100
	Zinc	7/7/2003	12.9	0.5
A2-SB-003-4.5'	Ammonia-N	7/7/2003	7	1

			Analytical Results	
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)
A2-SB-003-4.5'	Nitrate-N	7/7/2003	59	10
	Phosphate	7/7/2003	1810	10
A2-SB-003-9.0'	Ammonia-N	7/7/2003	31	1
	Nitrate-N	7/7/2003	13	10
	Phosphate	7/7/2003	1870	10
2-SB-004-0.5'	Ammonia-N	7/7/2003	5550	10
	Arsenic	7/7/2003	2	0.1
	Cadmium	7/7/2003	0.92	0.05
	Chloride	7/7/2003	534	100
	Chromium	7/7/2003	3.82	0.5
	Copper	7/7/2003	17.4	0.5
	Iron	7/7/2003	7870	1
	Lead	7/7/2003	11.7	0.5
	Manganese	7/7/2003	465	0.5
	Nickel	7/7/2003	8.83	0.5
	Nitrate-N	7/7/2003	1530	10
	Nitrite-N	7/7/2003	27	10
	Phosphate	7/7/2003	5480	10
	Sulfate	7/7/2003	2900	100
	Zinc	7/7/2003	38.8	0.5
2-SB-004-4.5'	Ammonia-N	7/7/2003	920	1
	Nitrate-N	7/7/2003	217	10
	Phosphate	7/7/2003	2480	10
	Sulfate	7/7/2003	159	100
2-SB-004-9.0'	Ammonia-N	7/7/2003	372	1
	Nitrate-N	7/7/2003	139	10
	Phosphate	7/7/2003	2750	10
	Sulfate	7/7/2003	214	100
2-SB-005-0.5'	Ammonia-N	7/11/2003	100	5
	Arsenic	7/11/2003	1.64	0.1
	Cadmium	7/11/2003	0.24	0.05
	Chromium	7/11/2003	3.98	0.5
	Copper	7/11/2003	7.18	0.5
	Iron	7/11/2003	6520	1
	Lead	7/11/2003	7.32	0.5
	Manganese	7/11/2003	257	0.5
	Nickel	7/11/2003	5.45	0.5
	Nitrate-N	7/11/2003	65	10
	Phosphate	7/11/2003	11200	100
	Sulfate	7/11/2003	148	100
	Zinc	7/11/2003	21.7	0.5
A2-SB-005-4.5'	Nitrate-N	7/11/2003	71	10
	Phosphate	7/11/2003	3040	10

			Analytical Results	
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)
A2-SB-005-4.5'	Sulfate	7/11/2003	162	100
A2SB-MW5-0.5'	Ammonia-N	7/10/2003	370	5
	Arsenic	7/10/2003	1.39	0.1
	Cadmium	7/10/2003	0.12	0.05
	Chromium	7/10/2003	1.62	0.5
	Copper	7/10/2003	6.18	0.5
	Iron	7/10/2003	4450	1
	Lead	7/10/2003	15.8	0.5
	Manganese	7/10/2003	176	0.5
	Nickel	7/10/2003	4.27	0.5
	Nitrate-N	7/10/2003	202	10
	Phosphate	7/10/2003	6420	10
	Sulfate	7/10/2003	2990	100
	Zinc	7/10/2003	25.8	0.5
A2SB-MW5-4.5'	Ammonia-N	7/10/2003	214	5
	Nitrate-N	7/10/2003	1130	10
	Phosphate	7/10/2003	2790	10
	Sulfate	7/10/2003	442	100
A2SB-MW5-7.5'	Ammonia-N	7/10/2003	218	5
	Nitrate-N	7/10/2003	126	10
	Phosphate	7/10/2003	2350	10
	Sulfate	7/10/2003	207	100
A2-SB-MW6-0.5'	Arsenic	7/10/2003	1.39	0.1
	Cadmium	7/10/2003	0.15	0.05
	Chromium	7/10/2003	2.7	0.5
	Copper	7/10/2003	10.9	0.5
	Iron	7/10/2003	6690	1
	Lead	7/10/2003	9.25	0.5
	Manganese	7/10/2003	520	0.5
	Nickel	7/10/2003	8.16	0.5
	Nitrate-N	7/10/2003	150	10
	Phosphate	7/10/2003	3130	10
	Sulfate	7/10/2003	2530	100
	Zinc	7/10/2003	48.8	0.5
A2-SB-MW6-0.5'-1	Ammonia-N	7/10/2003	6	5
	Arsenic	7/10/2003	1.77	0.1
	Cadmium	7/10/2003	0.09	0.05
	Chromium	7/10/2003	2.83	0.5
	Copper	7/10/2003	11.9	0.5
	Iron	7/10/2003	6550	1
	Lead	7/10/2003	12.7	0.5
	Manganese	7/10/2003	311	0.5
	Nickel	7/10/2003	6.19	0.5

			Analytical Results	
Sample ID	Analyte	Date	(mg/kg)	MDL (mg/kg)
A2-SB-MW6-0.5'-1	Nitrate-N	7/10/2003	121	10
	Phosphate	7/10/2003	3440	10
	Sulfate	7/10/2003	729	100
	Zinc	7/10/2003	22.1	0.5
2-SB-MW6-4.5'	Nitrate-N	7/10/2003	44	10
	Phosphate	7/10/2003	2750	10
	Sulfate	7/10/2003	107	100
2-SB-MW6-7.5'	Phosphate	7/10/2003	2440	10
\3-SB-001-0.5'	Ammonia-N	7/8/2003	5	1
	Arsenic	7/8/2003	0.84	0.1
	Cadmium	7/8/2003	0.12	0.05
	Chromium	7/8/2003	2.66	0.5
	Copper	7/8/2003	11	0.5
	Iron	7/8/2003	5520	1
	Lead	7/8/2003	6.19	0.5
	Manganese	7/8/2003	489	0.5
	Nickel	7/8/2003	9.04	0.5
	Nitrate-N	7/8/2003	13	10
	Phosphate	7/8/2003	2680	10
	Zinc	7/8/2003	14.7	0.5
3-SB-001-4.5'	Ammonia-N	7/8/2003	61	1
	Arsenic	7/8/2003	2.66	0.1
	Cadmium	7/8/2003	0.08	0.05
	Chromium	7/8/2003	2.54	0.5
	Copper	7/8/2003	11	0.5
	Iron	7/8/2003	7670	1
	Lead	7/8/2003	6.34	0.5
	Manganese	7/8/2003	447	0.5
	Nickel	7/8/2003	6.43	0.5
	Nitrate-N	7/8/2003	66	10
	Phosphate	7/8/2003	2830	10
	Sulfate	7/8/2003	165	100
	Zinc	7/8/2003	15.7	0.5
\3-SB-001-9.0'	1,2,4-Trimethylbenzene	7/8/2003	0.03	0.01
	Arsenic	7/8/2003	2.78	0.1
	Cadmium	7/8/2003	0.06	0.05
	Chromium	7/8/2003	2.87	0.5
	Copper	7/8/2003	13.1	0.5
	Ethylbenzene	7/8/2003	0.01	0.01
	Iron	7/8/2003	9140	1
	Lead	7/8/2003	4.24	0.5
	Manganese	7/8/2003	266	0.5
	Naphthalene	7/8/2003	0.03	0.01

			Analytical Results	
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)
A3-SB-001-9.0'	Nickel	7/8/2003	11.1	0.5
	p,m-Xylene	7/8/2003	0.03	0.01
	Phosphate	7/8/2003	2930	10
	Zinc	7/8/2003	18.1	0.5
43-SB-002-0.5'	Arsenic	7/8/2003	1.27	0.1
	Cadmium	7/8/2003	0.07	0.05
	Chromium	7/8/2003	1.89	0.5
	Copper	7/8/2003	7.12	0.5
	Iron	7/8/2003	5760	1
	Lead	7/8/2003	4.34	0.5
	Manganese	7/8/2003	426	0.5
	Nickel	7/8/2003	5.85	0.5
	Phosphate	7/8/2003	2570	10
	Zinc	7/8/2003	12.6	0.5
A3-SB-002-4.5'	Arsenic	7/8/2003	2.21	0.1
	Cadmium	7/8/2003	0.06	0.05
	Chromium	7/8/2003	3.19	0.5
	Copper	7/8/2003	10.8	0.5
	Iron	7/8/2003	8100	1
	Lead	7/8/2003	6.37	0.5
	Manganese	7/8/2003	324	0.5
	Nickel	7/8/2003	7.48	0.5
	Nitrate-N	7/8/2003	13	10
	Phosphate	7/8/2003	2580	10
	Zinc	7/8/2003	17	0.5
\3-SB-002-7.5'	1,2,4-Trimethylbenzene	7/8/2003	8	2
	1,3,5-Trimethylbenzene	7/8/2003	4	2
	2-Methylnaphthalene	7/8/2003	1.1	0.4
	Arsenic	7/8/2003	4.16	0.1
	Cadmium	7/8/2003	0.06	0.05
	Chromium	7/8/2003	2.14	0.5
	Copper	7/8/2003	10.1	0.5
	Iron	7/8/2003	8540	1
	Lead	7/8/2003	5.59	0.5
	Manganese	7/8/2003	235	0.5
	Naphthalene	7/8/2003	3	2
	Naphthalene	7/8/2003	1	0.4
	Nickel	7/8/2003	6.84	0.5
	NWTPH-Gx	7/8/2003	400	100
	p,m-Xylene	7/8/2003	6	2
	p,m-Xylene	7/8/2003	6	2
	Phosphate	7/8/2003	2830	10
	Zinc	7/8/2003	17.1	0.5

			Analytical Results	
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)
\4-SB-001-0.5'	Arsenic	7/8/2003	0.78	0.1
	Cadmium	7/8/2003	0.05	0.05
	Chromium	7/8/2003	1.91	0.5
	Copper	7/8/2003	5.29	0.5
	Iron	7/8/2003	5570	1
	Lead	7/8/2003	3.77	0.5
	Manganese	7/8/2003	327	0.5
	Nickel	7/8/2003	6.19	0.5
	Nitrate-N	7/8/2003	43	10
	Phosphate	7/8/2003	2330	10
	Sulfate	7/8/2003	126	100
	Zinc	7/8/2003	11.4	0.5
4-SB-001-4.5'	Ammonia-N	7/8/2003	3	1
	Nitrate-N	7/8/2003	38	10
	Phosphate	7/8/2003	2430	10
	Sulfate	7/8/2003	109	100
4-SB-001-9.0'	Phosphate	7/8/2003	2220	10
4-SB-002-0.5'	Ammonia-N	7/8/2003	680	1
	Arsenic	7/8/2003	0.68	0.1
	Chromium	7/8/2003	1.27	0.5
	Copper	7/8/2003	4.12	0.5
	Iron	7/8/2003	4760	1
	Lead	7/8/2003	3.28	0.5
	Manganese	7/8/2003	256	0.5
	Nickel	7/8/2003	4.17	0.5
	Nitrate-N	7/8/2003	124	10
	Phosphate	7/8/2003	2710	10
	Sulfate	7/8/2003	172	100
	Zinc	7/8/2003	9.4	0.5
4-SB-002-0.5'-1	Ammonia-N	7/8/2003	624	1
	Arsenic	7/8/2003	0.77	0.1
	Chromium	7/8/2003	1.39	0.5
	Copper	7/8/2003	4.18	0.5
	Iron	7/8/2003	4720	1
	Lead	7/8/2003	3.3	0.5
	Manganese	7/8/2003	214	0.5
	Nickel	7/8/2003	4.11	0.5
	Nitrate-N	7/8/2003	139	10
	Phosphate	7/8/2003	2500	10
	Sulfate	7/8/2003	187	100
	Zinc	7/8/2003	9.38	0.5
4-SB-002-4.5'	Nitrate-N	7/8/2003	28	10
	Phosphate	7/8/2003	2250	10

			Analytical Results	
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)
A4-SB-002-4.5'	Sulfate	7/8/2003	117	100
A4-SB-002-9.0'	Phosphate	7/8/2003	2310	10
A4-SB-003-0.5'	Arsenic	7/8/2003	0.73	0.1
	Cadmium	7/8/2003	0.05	0.05
	Chromium	7/8/2003	2.2	0.5
	Copper	7/8/2003	6.32	0.5
	Iron	7/8/2003	5210	1
	Lead	7/8/2003	4.48	0.5
	Manganese	7/8/2003	366	0.5
	Nickel	7/8/2003	5.39	0.5
	Nitrate-N	7/8/2003	12	10
	Phosphate	7/8/2003	2570	10
	Zinc	7/8/2003	11.5	0.5
A4-SB-003-0.5'-1	Arsenic	7/8/2003	0.65	0.1
	Cadmium	7/8/2003	0.06	0.05
	Chromium	7/8/2003	1.85	0.5
	Copper	7/8/2003	4.88	0.5
	Iron	7/8/2003	4640	1
	Lead	7/8/2003	3.74	0.5
	Manganese	7/8/2003	366	0.5
	Nickel	7/8/2003	4.97	0.5
	Nitrate-N	7/8/2003	12	10
	Phosphate	7/8/2003	2460	10
	Zinc	7/8/2003	9.99	0.5
44-SB-003-4.5'	Nitrate-N	7/8/2003	14	10
	Phosphate	7/8/2003	2710	10
	Sulfate	7/8/2003	128	100
A4-SB-003-6.0'	NWTPH-Dx Diesel Range	7/8/2003	70	20
A4-SB-003-9.0'	1,2,4-Trimethylbenzene	7/8/2003	0.02	0.01
	1,3,5-Trimethylbenzene	7/8/2003	0.02	0.01
	Phosphate	7/8/2003	2480	10
A4-SB-004-0.5'	Arsenic	7/9/2003	1.04	0.1
	Chromium	7/9/2003	2.04	0.5
	Copper	7/9/2003	7.95	0.5
	Iron	7/9/2003	5290	1
	Lead	7/9/2003	4.28	0.5
	Manganese	7/9/2003	229	0.5
	Nickel	7/9/2003	5.77	0.5
	Nitrate-N	7/9/2003	104	10
	Phosphate	7/9/2003	2470	10
	Sulfate	7/9/2003	153	100
	Zinc	7/9/2003	11.7	0.5
A4-SB-004-4.5'	Nitrate-N	7/9/2003	33	10

		Analytical Results				
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)		
\4-SB-004-4.5'	Phosphate	7/9/2003	2600	10		
\4-SB-004-9.0'	Nitrate-N	7/9/2003	62	10		
	Phosphate	7/9/2003	2070	10		
	Sulfate	7/9/2003	149	100		
4-SB-005-0.5'	Ammonia-N	7/8/2003	304	1		
	Arsenic	7/8/2003	0.86	0.1		
	Cadmium	7/8/2003	0.06	0.05		
	Chromium	7/8/2003	2.21	0.5		
	Copper	7/8/2003	5.99	0.5		
	Iron	7/8/2003	5000	1		
	Lead	7/8/2003	4.58	0.5		
	Manganese	7/8/2003	323	0.5		
	Nickel	7/8/2003	5.46	0.5		
	Nitrate-N	7/8/2003	104	10		
	Phosphate	7/8/2003	2910	10		
	Sulfate	7/8/2003	125	100		
	Zinc	7/8/2003	12.4	0.5		
4-SB-005-0.5'-1	Ammonia-N	7/8/2003	328	1		
	Arsenic	7/8/2003	1.27	0.1		
	Cadmium	7/8/2003	0.06	0.05		
	Chromium	7/8/2003	2.97	0.5		
	Copper	7/8/2003	10.2	0.5		
	Iron	7/8/2003	6460	1		
	Lead	7/8/2003	5.55	0.5		
	Manganese	7/8/2003	452	0.5		
	Nickel	7/8/2003	7.77	0.5		
	Nitrate-N	7/8/2003	104	10		
	Phosphate	7/8/2003	2810	10		
	Sulfate	7/8/2003	145	100		
	Zinc	7/8/2003	14.2	0.5		
4-SB-005-4.5'	Ammonia-N	7/8/2003	4	1		
	Nitrate-N	7/8/2003	188	10		
	Phosphate	7/8/2003	2600	10		
	Sulfate	7/8/2003	174	100		
4-SB-005-9.0'	Nitrate-N	7/8/2003	20	10		
	Phosphate	7/8/2003	2070	10		
4-SB-006-0.5'	Ammonia-N	7/8/2003	326	1		
	Arsenic	7/8/2003	0.72	0.1		
	Chromium	7/8/2003	2.02	0.5		
	Copper	7/8/2003	4.23	0.5		
	Iron	7/8/2003	4230	1		
	Lead	7/8/2003	5.55	0.5		
	Manganese	7/8/2003	250	0.5		

		Analytical Results				
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)		
A4-SB-006-0.5'	Nickel	7/8/2003	4.34	0.5		
	Nitrate-N	7/8/2003	203	10		
	Phosphate	7/8/2003	2430	10		
	Sulfate	7/8/2003	286	100		
	Zinc	7/8/2003	12.4	0.5		
\5-SS-001-0.5'	Ammonia-N	7/8/2003	417	1		
	Arsenic	7/8/2003	1.63	0.1		
	Cadmium	7/8/2003	0.08	0.05		
	Chromium	7/8/2003	2.57	0.5		
	Copper	7/8/2003	8.78	0.5		
	Iron	7/8/2003	6100	1		
	Lead	7/8/2003	3.9	0.5		
	Manganese	7/8/2003	427	0.5		
	Nickel	7/8/2003	9.79	0.5		
	Nitrate-N	7/8/2003	271	10		
	Phosphate	7/8/2003	2250	10		
	Sulfate	7/8/2003	3550	100		
	Zinc	7/8/2003	12.6	0.5		
5-SS-002-0.5'	Ammonia-N	7/8/2003	4	1		
	Arsenic	7/8/2003	1.49	0.1		
	Cadmium	7/8/2003	0.07	0.05		
	Chromium	7/8/2003	3.1	0.5		
	Copper	7/8/2003	9.77	0.5		
	Iron	7/8/2003	7040	1		
	Lead	7/8/2003	4.42	0.5		
	Manganese	7/8/2003	428	0.5		
	Nickel	7/8/2003	10.6	0.5		
	Nitrate-N	7/8/2003	74	10		
	Phosphate	7/8/2003	2430	10		
	Sulfate	7/8/2003	120	100		
	Zinc	7/8/2003	14.1	0.5		
.5-SS-003-0.5'	Ammonia-N	7/8/2003	4	1		
	Arsenic	7/8/2003	1.93	0.1		
	Chromium	7/8/2003	2.43	0.5		
	Copper	7/8/2003	7.42	0.5		
	Iron	7/8/2003	5130	1		
	Lead	7/8/2003	4.21	0.5		
	Manganese	7/8/2003	360	0.5		
	Nickel	7/8/2003	7.44	0.5		
	Nitrate-N	7/8/2003	566	10		
	Phosphate	7/8/2003	1970	10		
	Sulfate	7/8/2003	288	100		
	Zinc	7/8/2003	10.9	0.5		

			Analytical Results	
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)
\5-SS-004-0.5'	Ammonia-N	7/8/2003	86	1
	Arsenic	7/8/2003	1.76	0.1
	Cadmium	7/8/2003	0.06	0.05
	Chromium	7/8/2003	2.87	0.5
	Copper	7/8/2003	10.1	0.5
	Iron	7/8/2003	7110	1
	Lead	7/8/2003	5.26	0.5
	Manganese	7/8/2003	389	0.5
	Nickel	7/8/2003	8.22	0.5
	Nitrate-N	7/8/2003	234	10
	Phosphate	7/8/2003	2710	10
	Sulfate	7/8/2003	4640	100
	Zinc	7/8/2003	14	0.5
5-SS-005-0.5'	Arsenic	7/8/2003	2.35	0.1
	Cadmium	7/8/2003	0.06	0.05
	Chromium	7/8/2003	2.53	0.5
	Copper	7/8/2003	9.49	0.5
	Iron	7/8/2003	5200	1
	Lead	7/8/2003	4.76	0.5
	Manganese	7/8/2003	457	0.5
	Nickel	7/8/2003	9.37	0.5
	Nitrate-N	7/8/2003	561	10
	Phosphate	7/8/2003	2100	10
	Sulfate	7/8/2003	288	100
	Zinc	7/8/2003	11.6	0.5
-SB-001-0.5'	Nitrate-N	7/9/2003	30	10
	Phosphate	7/9/2003	2150	10
	Sulfate	7/9/2003	103	100
-SB-001-4.5'	Nitrate-N	7/9/2003	114	10
	Phosphate	7/9/2003	1940	10
	Sulfate	7/9/2003	314	100
-SB-001-7.5'	Ammonia-N	7/9/2003	15	1
	Nitrate-N	7/9/2003	54	10
	Phosphate	7/9/2003	2100	10
	Sulfate	7/9/2003	105	100
6-SB-002-0.5'	4,4'-DDE	7/9/2003	6	0.02
	4,4'-DDT	7/9/2003	0.02	0.02
	Antimony	7/9/2003	0.53	0.5
	Arsenic	7/9/2003	3.61	0.1
	Cadmium	7/9/2003	18.4	0.05
	Chromium	7/9/2003	64.8	0.5
	Copper	7/9/2003	70.3	0.5
	Iron	7/9/2003	9040	1

			Analytical Results	
Sample ID	Analyte	Date	(mg/kg)	MDL (mg/kg)
A6-SB-002-0.5'	Lead	7/9/2003	342	0.5
	Manganese	7/9/2003	586	0.5
	Mercury	7/9/2003	0.48	0.1
	Nickel	7/9/2003	88.2	0.5
	Silver	7/9/2003	0.92	0.2
	Thallium	7/9/2003	0.44	0.2
	Zinc	7/9/2003	2520	0.5
6-SB-002b-0.5'	Ammonia-N	7/9/2003	2710	10
	Chloride	7/9/2003	733	100
	Nitrate-N	7/9/2003	591	10
	Nitrite-N	7/9/2003	16	10
	Phosphate	7/9/2003	14400	100
	Sulfate	7/9/2003	8400	100
6-SB-002b-0.5'-1	Ammonia-N	7/9/2003	1890	10
	Chloride	7/9/2003	435	100
	Nitrate-N	7/9/2003	396	10
	Phosphate	7/9/2003	11500	100
	Sulfate	7/9/2003	3760	100
S-SB-002b-4.5	Ammonia-N	7/9/2003	972	1
	Chloride	7/9/2003	258	100
	Nitrate-N	7/9/2003	734	10
	Phosphate	7/9/2003	5920	10
	Sulfate	7/9/2003	2220	100
S-SB-002b-9.0'	Ammonia-N	7/9/2003	338	5
	Nitrate-N	7/9/2003	33	10
	Phosphate	7/9/2003	3070	10
	Sulfate	7/9/2003	147	100
6-SB-003-0.5'	Ammonia-N	7/9/2003	684	5
	Nitrate-N	7/9/2003	53	10
	Phosphate	7/9/2003	19600	100
6-SB-003-0.5'-1	Ammonia-N	7/9/2003	162	5
	Nitrate-N	7/9/2003	43	10
	Phosphate	7/9/2003	14100	100
6-SB-003-4.5'	Nitrate-N	7/9/2003	42	10
	Phosphate	7/9/2003	2200	10
6-SB-003-7.5'	Ammonia-N	7/9/2003	117	5
	Nitrate-N	7/9/2003	34	10
	Phosphate	7/9/2003	2400	10
S-SB-004-0.5'	Nitrate-N	7/9/2003	28	10
	Phosphate	7/9/2003	2370	10
	Sulfate	7/9/2003	141	100
6-SB-004-0.5'-1	Nitrate-N	7/9/2003	23	10
	Phosphate	7/9/2003	2640	10

			Analytical Results	
Sample ID	Analyte	Date	(<i>mg/kg</i>)	MDL (mg/kg)
A6-SB-004-0.5'-1	Sulfate	7/9/2003	120	100
A6-SB-004-4.5'	Ammonia-N	7/9/2003	120	5
	Dinoseb	7/9/2003	0.055	0.014
	Nitrate-N	7/9/2003	686	10
	Phosphate	7/9/2003	2060	10
	Sulfate	7/9/2003	137	100
6-SB-004-6.0'	Ammonia-N	7/9/2003	589	5
	Nitrate-N	7/9/2003	95	10
	Phosphate	7/9/2003	1840	10
6-SB-005-0.5'	Ammonia-N	7/9/2003	10	5
	Phosphate	7/9/2003	2940	10
	Sulfate	7/9/2003	162	100
6-SB-005-4.5'	Ammonia-N	7/9/2003	5	5
	Dinoseb	7/9/2003	0.027	0.015
	Nitrate-N	7/9/2003	96	10
	Phosphate	7/9/2003	2160	10
	Sulfate	7/9/2003	332	100
6-SB-005-7.5'	Phosphate	7/9/2003	1690	10
	Sulfate	7/9/2003	172	100
6-SS-001-0.5'	Arsenic	7/9/2003	1.19	0.1
	Cadmium	7/9/2003	0.05	0.05
	Chromium	7/9/2003	2.54	0.5
	Copper	7/9/2003	8.57	0.5
	Iron	7/9/2003	6210	1
	Lead	7/9/2003	4.43	0.5
	Manganese	7/9/2003	395	0.5
	Nickel	7/9/2003	7.48	0.5
	Nitrate-N	7/9/2003	22	10
	Phosphate	7/9/2003	2340	10
	Zinc	7/9/2003	13.4	0.5
6-SS-002-0.5'	Arsenic	7/9/2003	0.99	0.1
	Cadmium	7/9/2003	0.05	0.05
	Chromium	7/9/2003	2.66	0.5
	Copper	7/9/2003	8.97	0.5
	Iron	7/9/2003	7270	1
	Lead	7/9/2003	5.16	0.5
	Manganese	7/9/2003	414	0.5
	Nickel	7/9/2003	7.42	0.5
	Nitrate-N	7/9/2003	32	10
	Phosphate	7/9/2003	2480	10
	Sulfate	7/9/2003	171	100
	Zinc	7/9/2003	14.1	0.5

		Analytical Results				
Sample ID	Analyte	Date	(<i>mg/L</i>)	MDL (mg/L)		
MW01-072903-0	Arsenic	7/29/2003	0.011	0.001		
	Chloride	7/29/2003	8	1		
	Iron	7/29/2003	0.05	0.02		
	Manganese	7/29/2003	0.059	0.005		
	Phosphate	7/29/2003	0.3	0.1		
	Sulfate	7/29/2003	32	1		
	Total Nitrates + Nitrites	7/29/2003	4	0.1		
MW03-072903-0	Ammonia-N	7/29/2003	180	10		
	Arsenic	7/29/2003	0.102	0.001		
	Chloride	7/29/2003	13	1		
	Chlorobenzene	7/29/2003	0.078	0.001		
	Copper	7/29/2003	0.007	0.005		
	Manganese	7/29/2003	0.022	0.005		
	o-Xylene	7/29/2003	0.001	0.001		
	p,m-Xylene	7/29/2003	0.001	0.001		
	Phosphate	7/29/2003	85	1		
	Sulfate	7/29/2003	38	1		
	Total Nitrates + Nitrites	7/29/2003	55.1	0.1		
	Zinc	7/29/2003	0.01	0.005		
MW04-073003-0	1,2-Dichloropropane	7/30/2003	0.105	0.001		
	2,4-Dichlorophenol	7/30/2003	0.03	0.01		
	Ammonia-N	7/30/2003	850	10		
	Arsenic	7/30/2003	0.007	0.001		
	Chloride	7/30/2003	112	1		
	Chlorobenzene	7/30/2003	0.003	0.001		
	Copper	7/30/2003	0.009	0.005		
	Iron	7/30/2003	0.73	0.02		
	Lead	7/30/2003	0.001	0.001		
	Manganese	7/30/2003	0.364	0.005		
	Nickel	7/30/2003	0.021	0.005		
	Phosphate	7/30/2003	0.5	0.1		
	Sulfate	7/30/2003	307	1		
	Total Nitrates + Nitrites	7/30/2003	986	0.1		
	Zinc	7/30/2003	0.006	0.005		
/W05-073003-0	Ammonia-N	7/30/2003	320	10		
	Arsenic	7/30/2003	0.005	0.001		
	Chloride	7/30/2003	193	1		
	Copper	7/30/2003	0.005	0.005		
	Iron	7/30/2003	0.91	0.02		

Table 2-2Constituents Detected in Groundwater

Sample ID	Analyte	Date	Analytical Results (mg/L)	MDL (mg/L)
- MW05-073003-0	Manganese	7/30/2003	1.62	0.005
	Nickel	7/30/2003	0.013	0.005
	Sulfate	7/30/2003	624	1
	Total Nitrates + Nitrites	7/30/2003	593	0.1
MW06-073003-0	Arsenic	7/30/2003	0.025	0.001
	Chloride	7/30/2003	11	1
	Iron	7/30/2003	0.11	0.02
	Manganese	7/30/2003	0.057	0.005
	Phosphate	7/30/2003	0.4	0.1
	Sulfate	7/30/2003	55	1
	Total Nitrates + Nitrites	7/30/2003	8.2	0.1
MW07-072903-0	Arsenic	7/29/2003	0.011	0.001
	Chloride	7/29/2003	10	1
	Iron	7/29/2003	0.11	0.02
	Manganese	7/29/2003	0.006	0.005
	Phosphate	7/29/2003	0.3	0.1
	Sulfate	7/29/2003	47	1
	Total Nitrates + Nitrites	7/29/2003	3.6	0.1

Table 3-1: Well Inventory - Wells Reported Within a One-Mile Radius Bee-Jay Scales Site Sunnyside, WA

Well Inventory Designator	Distance from Site	Sunnyside Address	Attributes	Well Use	Screened Interval
	0 - 0.25 mi			Community	
8	downgradient	340 Homer Street	Drilled 1994, 500 ft deep, screened	Water	305 '- 375'
5	0 - 0.25 mi	1st and Zillah Ave	Drilled 1953-54, 453 ft deep	Community Water	388' - 450'
4A	0.25 - 0.5 mi	7th and East Custer Ave	Drilled 1998, 1700 ft deep	Community Water	1359' - 1376'
24R2	0.25 - 0.50 mi	2930 Outlook Road	Modular home front facing road on wide strip of property	Domestic	not available
24R1	0.50 - 0.75 mi	700 West Edison Street	Home on right side end of private road	Domestic	not available
24E1	0.75 - 1.00 mi	East Woodin Rd and Scoon Rd	Hilltop Church of God - Well is visible	Domestic	not available
24K2	0.75 - 1.00 mi	900 Rouse Road	New property when drilled	Domestic	not available
24K1	0.75 - 1.00 mi	1901 Rouse Rd	Small plot, Trailer, homeowner	Domestic	not available
23H1	0.75 - 1.00 mi	806 Dayton Dr	0.5 duplex, small plot, brick unit	Domestic	not available
23J3	0.75 - 1.00 mi	350 W Wooden Rd	House on South side of Wooden	No Information	225' - 245'
23K1	0.75 - 1.00 mi	931 Woodin Rd	Small plot, Trailer, homeowner	Domestic	not available
23P1	>1.00 mi	3405 Outlook Rd- now Rougk road?	New multi site trailer homes Rougk road address Rougk original owner on well property	Unconfirmed	not available
24L1	>1.00 mi	650 Woodin Rd	Split property for family members	Domestic	not available
24Q1		1129 Beckner Alley	Not Found: Ray Rivas 741 Snipes Pump Rd	N/A	not available
23G1		Wooden Rd	Mark Drollenger- original owner	No Information	not available
23G2		No Information	R.H. Ray- original owner	No Information	not available
23J1		No Information	L.W. Healy- original owner	No Information	not available
23H2		No Information	Bob Stroh- original owner	No Information	not available
23J2		Wooden and Vel Belle	No such intersection	No Information	not available

Table 3-2: Moisture Content Summary Bee-Jay Scales Site Sunnyside, WA

A1-SB-001-0.5' 19.3 A1-SB-001-4.5' 24.5 A1-SB-002-0.5' 21.3 A1-SB-002-4.5' 30.0 A1-SB-002-9.0' 29.9 A1-SB-003-0.5' 21.1 A1-SB-003-0.5' 21.1 A1-SB-003-0.5' 21.1 A1-SB-003-0.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-003-9.0' 24.0 A1-SB-004-0.5' 19.4 A1-SB-004-0.5' 19.4 A1-SB-004-0.5' 19.2 A1-SB-005-0.5' 19.2 A1-SB-005-0.5' 19.2 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 19.3 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 19.3 A1-SB-006-0.5' 19.3 A1-SB-008-7.5' 25.0 A1-SB-008-7.5' 24.1 A1-SB-008-7.5' 25.0 A1-SB-008-7.5'	Sample ID	Moisture Content (%)
A1-SB-001-9.0' 21.3 A1-SB-002-0.5' 21.8 A1-SB-002-4.5' 30.0 A1-SB-003-4.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-004-0.5' 19.4 A1-SB-004-0.5' 19.4 A1-SB-004-0.5' 19.4 A1-SB-004-0.5' 19.2 A1-SB-004-0.5' 21.6 A1-SB-005-1.5' 21.6 A1-SB-005-1.5' 21.6 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-1.5' 24.0 A1-SB-007-1.5' 24.0 A1-SB-007-5.5' 25.0 A1-SB-008-7.5' 25.0 A1-SB-008-7.5' 24.0 A1-SB-008-7.5' 24.9 A1-SB-008-7.5' 24.9 A1-SB-008-7.5' 20.7 A2-SB-001-4.5' 24.4 A2-SB-001-5.5'	A1-SB-001-0.5'	19.3
A1-SB-002-0.5' 21.8 A1-SB-002-9.0' 29.9 A1-SB-003-0.5' 21.1 A1-SB-003-9.0' 29.9 A1-SB-003-9.0' 22.9 A1-SB-003-9.0' 24.0 A1-SB-004-0.5' 19.4 A1-SB-004-0.5' 19.4 A1-SB-004-9.0' 25.7 A1-SB-005-0.5' 19.2 A1-SB-005-1.5' 21.6 A1-SB-005-1.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-7.5' 24.0 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 10.6 A2-SB-001-0.5'		24.5
A1-SB-002-4.5' 30.0 A1-SB-002-9.0' 29.9 A1-SB-003-4.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-003-4.5' 22.9 A1-SB-004-0.5' 19.4 A1-SB-004-4.5' 26.5 A1-SB-004-9.0' 25.7 A1-SB-005-0.5' 19.2 A1-SB-005-0.5' 19.2 A1-SB-005-0.5' 21.0 A1-SB-005-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.0 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 24.0 A1-SB-007-0.5' 24.1 A1-SB-007-0.5' 24.1 A1-SB-007-0.5' 24.1 A1-SB-008-0.5' 20.7 A1-SB-008-0.5' 20.7 A2-SB-001-0.5' 20.7 A2-SB-001-0.5' 10.6 A2-SB-001-0.5' 10.6 A2-SB-002-0.5'	A1-SB-001-9.0'	21.3
A1-SB-002-9.0' 29.9 A1-SB-003-0.5' 21.1 A1-SB-003-0.5' 21.1 A1-SB-003-9.0' 24.0 A1-SB-004-0.5' 19.4 A1-SB-004-9.0' 25.7 A1-SB-004-9.0' 25.7 A1-SB-005-0.5' 19.2 A1-SB-005-4.5' 21.6 A1-SB-005-6.5' 21.6 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 25.0 A1-SB-006-7.5' 25.0 A1-SB-006-7.5' 25.0 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 25.0 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-008-0.5' 19.3 A1-SB-008-7.5' 26.4 A1-SB-008-7.5' 20.7 A2-SB-001-9.0'	A1-SB-002-0.5'	21.8
A1-SB-003-0.5' 21.1 A1-SB-003-9.0' 22.9 A1-SB-003-9.0' 24.0 A1-SB-004-0.5' 19.4 A1-SB-004-9.0' 25.7 A1-SB-004-9.0' 25.7 A1-SB-005-0.5' 19.2 A1-SB-005-0.5' 21.6 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 19.3 A1-SB-006-5.5' 24.0 A1-SB-007-0.5' 24.1 A1-SB-007-1.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-1.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-9.0' 21.1 A2-SB-002-9.0'-1 16 A2-SB-002-9.	A1-SB-002-4.5'	30.0
A1-SB-003-4.5' 22.9 A1-SB-003-9.0' 24.0 A1-SB-004-0.5' 19.4 A1-SB-004-4.5' 26.5 A1-SB-004-9.0' 25.7 A1-SB-005-0.5' 19.2 A1-SB-005-0.5' 21.6 A1-SB-005-7.5' 24.0 A1-SB-006-0.5'-1 21.1 A1-SB-006-0.5'-1 21.7 A1-SB-006-0.5'-1 21.7 A1-SB-006-0.5'-1 21.7 A1-SB-006-0.5'-1 21.7 A1-SB-006-0.5'-1 21.7 A1-SB-006-0.5'-1 21.7 A1-SB-006-7.5' 24.0 A1-SB-007-0.5' 19.3 A1-SB-007-7.5' 24.1 A1-SB-007-7.5' 24.1 A1-SB-008-7.5' 20.7 A1-SB-008-7.5' 20.7 A1-SB-008-7.5' 20.7 A1-SB-008-7.5' 20.7 A1-SB-008-7.5' 21.1 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 19.1 A2-SB-002-9.0'-1 18.1 <t< td=""><td>A1-SB-002-9.0'</td><td>29.9</td></t<>	A1-SB-002-9.0'	29.9
A1-SB-003-9.0' 24.0 A1-SB-004-0.5' 19.4 A1-SB-004-4.5' 26.5 A1-SB-005-0.5' 19.2 A1-SB-005-4.5' 21.6 A1-SB-005-7.5' 24.0 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 10.6 A2-SB-001-0.5' 10.6 A2-SB-002-0.5' 10.6 A2-SB-002-0.5' 10.6 A2-SB-002-0.5' 13.5 A2-SB-003-0.5'	A1-SB-003-0.5'	21.1
A1-SB-004-0.5' 19.4 A1-SB-004-9.0' 25.7 A1-SB-005-0.5' 19.2 A1-SB-005-7.5' 21.6 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-006-7.5' 24.0 A1-SB-007-0.5' 19.3 A1-SB-007-7.5' 24.9 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 10.6 A2-SB-001-0.5' 10.6 A2-SB-001-0.5' 19.2 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 13.5 A2-SB-003-0.5'	A1-SB-003-4.5'	22.9
A1-SB-004-4.5' 26.5 A1-SB-005-0.5' 19.2 A1-SB-005-0.5' 19.2 A1-SB-005-7.5' 24.0 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.7 A1-SB-006-1.5' 24.0 A1-SB-006-1.5' 24.0 A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-4.5' 24.9 A1-SB-007-5' 24.1 A1-SB-007-5' 24.1 A1-SB-007-6.5' 19.3 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-9.0' 21.1 A2-SB-001-9.0' 21.1 A2-SB-001-9.0' 21.1 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' <td>A1-SB-003-9.0'</td> <td>24.0</td>	A1-SB-003-9.0'	24.0
A1-SB-004-9.0' 25.7 A1-SB-005-0.5' 19.2 A1-SB-005-4.5' 21.6 A1-SB-005-7.5' 24.0 A1-SB-006-0.5' 21.1 A1-SB-006-0.5' 21.7 A1-SB-006-0.5' 21.7 A1-SB-006-0.5' 24.0 A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-7.5' 24.9 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-9.0' 21.1 A2-SB-001-9.0' 21.1 A2-SB-002-9.0' 21.6 A2-SB-003-9.0' 23.9 A2-SB-004-0.5'	A1-SB-004-0.5'	19.4
A1-SB-005-0.5' 19.2 A1-SB-005-4.5' 21.6 A1-SB-006-0.5' 21.1 A1-SB-006-0.5'-1 21.7 A1-SB-006-4.5' 24.0 A1-SB-006-7.5' 25.0 A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-7.5' 24.9 A1-SB-008-0.5' 19.3 A1-SB-008-7.5' 24.1 A1-SB-008-7.5' 24.1 A1-SB-008-7.5' 24.1 A1-SB-008-7.5' 24.1 A1-SB-008-7.5' 24.1 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 10.6 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 13.5 A2-SB-004-0.5' 20.2 A2-SB-004-0.5' 20.2 A2-SB-004-9.0' 20.2 A2-SB-004-9.	A1-SB-004-4.5'	
A1-SB-005-4.5' 21.6 A1-SB-006-0.5' 24.0 A1-SB-006-0.5' 21.1 A1-SB-006-0.5'-1 21.7 A1-SB-006-4.5' 24.0 A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-7.5' 24.9 A1-SB-007-7.5' 24.1 A1-SB-007-7.5' 24.1 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 10.6 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 19.1 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-004-0.5' 25.1 A2-SB-005-0.	A1-SB-004-9.0'	25.7
A1-SB-005-7.5' 24.0 A1-SB-006-0.5' 21.1 A1-SB-006-0.5'-1 21.7 A1-SB-006-0.5'-1 21.7 A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-7.5' 24.9 A1-SB-007-7.5' 24.1 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-9.0' 21.1 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 13.5 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-005-	A1-SB-005-0.5'	19.2
A1-SB-006-0.5' 21.1 A1-SB-006-0.5'-1 21.7 A1-SB-006-4.5' 24.0 A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-4.5' 24.9 A1-SB-007-7.5' 24.1 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-4.5' 26.4 A1-SB-008-4.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 18.3 A2-SB-001-9.0' 21.1 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 13.5 A2-SB-003-9.0' 23.9 A2-SB-003-9.0' 23.9 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 25.1 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-005-0.	A1-SB-005-4.5'	21.6
A1-SB-006-0.5'-1 21.7 A1-SB-006-4.5' 24.0 A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-7.5' 24.9 A1-SB-007-7.5' 24.9 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-4.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-9.0' 21.1 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-003-0.5' 13.5 A2-SB-003-4.5' 21.2 A2-SB-003-4.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-003-9.0' 20.2 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 25.1 A2-SB-MW5-0.5' 25.2 A2-SB-MW5-	A1-SB-005-7.5'	24.0
A1-SB-006-4.5' 24.0 A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-7.5' 24.9 A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-7.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 10.6 A2-SB-001-4.5' 24.4 A2-SB-001-9.0' 21.1 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 25.1 A2-SB-005-0.5'		
A1-SB-006-7.5' 25.0 A1-SB-007-0.5' 19.3 A1-SB-007-4.5' 24.9 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-0.5' 18.3 A2-SB-001-4.5' 24.4 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.2 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 13.5 A2-SB-003-9.0' 23.9 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-005-0.5' 27.7 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.		
A1-SB-007-0.5' 19.3 A1-SB-007-4.5' 24.9 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-4.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-4.5' 24.4 A2-SB-001-0.5' 18.3 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-002-9.0'-1 18.1 A2-SB-003-9.0' 21.2 A2-SB-003-9.0' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-4.5' 19.1 A2-SB-004-4.5' 19.1 A2-SB-004-4.5' 20.2 A2-SB-004-4.5' 25.1 A2-SB-005-0.5' 17.4 A2-SB-005-0.5' 17.4 A2-SB-005-0.5' 17.4 A2-SB-005-0.5' 25.1 A2-SB-MW5-7.5' 25.2 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-	A1-SB-006-4.5'	24.0
A1-SB-007-4.5' 24.9 A1-SB-008-0.5' 19.3 A1-SB-008-0.5' 19.3 A1-SB-008-4.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-4.5' 24.4 A2-SB-001-4.5' 24.4 A2-SB-001-9.0' 21.1 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-9.0' 21.2 A2-SB-003-9.0' 23.9 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-005-0.5' 27.7 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-		
A1-SB-007-7.5' 24.1 A1-SB-008-0.5' 19.3 A1-SB-008-4.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-4.5' 24.4 A2-SB-001-4.5' 24.4 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-9.0' 21.2 A2-SB-003-9.0' 23.9 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-005-4.5' 25.1 A2-SB-MW5-7.5' 25.2 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-		
A1-SB-008-0.5' 19.3 A1-SB-008-4.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-4.5' 24.4 A2-SB-001-4.5' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-4.5' 19.2 A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-0.5' 13.5 A2-SB-003-4.5' 21.2 A2-SB-003-4.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-005-4.5' 25.1 A2-SB-005-4.5' 25.2 A2-SB-MW5-0.5' 27.7 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-		
A1-SB-008-4.5' 26.4 A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-4.5' 24.4 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-MW5-0.5' 25.1 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 20.6 A2-SB-MW6-0.5'-1 27.7 A2-SB-MW6-7.5' 20.6		
A1-SB-008-7.5' 20.7 AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-4.5' 24.4 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-0.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-005-0.5' 21.4 A2-SB-MW5-0.5' 25.1 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 20.6 A2		
AREA 1 AVERAGE 23.1 A2-SB-001-0.5' 18.3 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-002-9.0'-1 18.1 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-7.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-001-0.5' 18.3 A2-SB-001-4.5' 24.4 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-004-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-MW5-0.5' 25.1 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5' 27.7 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-001-4.5' 24.4 A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-9.0' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-MW5-0.5' 21.4 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 20.6 A2-SB-MW6-0.5'-1 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-001-9.0' 21.1 A2-SB-002-0.5' 10.6 A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.4 A2-SB-MW5-0.5' 21.4 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 27.7 A2-SB-MW6-7.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-002-0.5' 10.6 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-0.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-004-0.5' 11.3 A2-SB-004-0.5' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-MW5-0.5' 25.1 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-002-4.5' 19.2 A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-4.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-004-0.5' 20.2 A2-SB-004-0.5' 11.3 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 17.4 A2-SB-MW5-0.5' 21.4 A2-SB-MW5-0.5' 21.4 A2-SB-MW6-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-002-9.0' 21.6 A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-4.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2-SB-MW5-0.5' 21.4 A2-SB-MW5-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5' 20.2 A2-SB-MW6-7.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-002-9.0'-1 18.1 A2-SB-003-0.5' 13.5 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-0.5' 20.2 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2-SB-MW5-0.5' 21.4 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-7.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-003-0.5' 13.5 A2-SB-003-4.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-4.5' 19.1 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2-SB-MW5-4.5' 21.4 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-003-4.5' 21.2 A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-4.5' 19.1 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2-SB-MW5-4.5' 21.4 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-003-9.0' 23.9 A2-SB-004-0.5' 26.8 A2-SB-004-4.5' 19.1 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2-SB-MW5-4.5' 21.4 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-0.5'-2 25.2 A2-SB-MW6-0.5'-1 27.7 A2-SB-MW6-0.5'-1 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-004-0.5' 26.8 A2-SB-004-4.5' 19.1 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2-SB-MW5-4.5' 21.4 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-0.5' 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-004-4.5' 19.1 A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2-SB-MW5-4.5' 21.4 A2-SB-MW5-7.5' 25.2 A2-SB-MW6-0.5' 17.8 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-7.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-004-9.0' 20.2 A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2-SB-MW5-0.5' 17.4 A2SB-MW5-4.5' 21.4 A2SB-MW5-7.5' 25.2 A2-SB-MW6-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-1.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-005-0.5' 11.3 A2-SB-005-4.5' 25.1 A2SB-MW5-0.5' 17.4 A2SB-MW5-4.5' 21.4 A2SB-MW5-7.5' 25.2 A2-SB-MW6-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		-
A2-SB-005-4.5' 25.1 A2SB-MW5-0.5' 17.4 A2SB-MW5-4.5' 21.4 A2SB-MW5-7.5' 25.2 A2-SB-MW6-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2SB-MW5-0.5' 17.4 A2SB-MW5-4.5' 21.4 A2SB-MW5-7.5' 25.2 A2-SB-MW6-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2SB-MW5-4.5' 21.4 A2SB-MW5-7.5' 25.2 A2-SB-MW6-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2SB-MW5-7.5' 25.2 A2-SB-MW6-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-MW6-0.5' 27.7 A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-MW6-0.5'-1 17.8 A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-MW6-4.5' 20.6 A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
A2-SB-MW6-7.5' 22.2 AREA 2 AVERAGE 20.3		
AREA 2 AVERAGE 20.3		
A3-SB-001-4.5' 25.9		
A3-SB-001-9.0' 24.5		
A3-SB-002-0.5' 24.4		24.4
A3-SB-002-4.5' 20.4	A3-SB-002-4.5'	20.4

Table 3-2: Moisture Content Summary Bee-Jay Scales Site Sunnyside, WA

Sample ID	Moisture Content (%)
A3-SB-002-7.5'	22.6
AREA 3 AVERAGE	22.5
A4-SB-001-0.5'	8.3
A4-SB-001-4.5'	18.9
A4-SB-001-9.0'	24.3
A4-SB-002-0.5'	6.4
A4-SB-002-0.5'-1	7.1
A4-SB-002-4.5'	23.4
A4-SB-002-9.0'	21.8
A4-SB-003-0.5'	11.7
A4-SB-003-0.5'-1	9.3
A4-SB-003-4.5'	22.0
A4-SB-003-6.0'	20.1
A4-SB-003-9.0'	19.3
A4-SB-004-0.5'	13.2
A4-SB-004-4.5'	27.2
A4-SB-004-9.0'	21.3
A4-SB-005-0.5'	10.6
A4-SB-005-0.5'-1	13.6
A4-SB-005-4.5'	24.1
A4-SB-005-9.0'	24.1
A4-SB-006-0.5'	7.5
AREA 4 AVERAGE	16.7
A5-SS-001-0.5'	10.5
A5-SS-002-0.5'	10.3
A5-SS-003-0.5'	12.5
A5-SS-004-0.5'	13.4
A5-SS-005-0.5'	17.1
AREA 5 AVERAGE A6-SB-001-0.5'	12.8 7.5
A6-SB-001-4.5'	20.6
A6-SB-001-7.5'	23.4
A6-SB-002-0.5'	14.9
A6-SB-002b-0.5'	14.5
A6-SB-002b-0.5'-1	10.8
A6-SB-002b-4.5'	19.4
A6-SB-002b-9.0'	21.4
A6-SB-003-0.5'	15.1
A6-SB-003-0.5'-1	9.7
A6-SB-003-4.5'	22.7
A6-SB-003-7.5'	23.8
A6-SB-004-0.5'	14.3
A6-SB-004-0.5'-1	14.7
A6-SB-004-4.5'	15.3
A6-SB-004-6.0'	20.5
A6-SB-005-0.5'	9.7
A6-SB-005-4.5'	17.2
A6-SB-005-7.5'	25.4
A6-SS-001-0.5'	12.7
A6-SS-002-0.5'	10.1
AREA 6 AVERAGE	16.2
SITE AVERAGE	19.2

Table 3-3: Water Content, Porosity and Void Ratio Summary Bee-Jay Scales Site Sunnyside, WA

Sample ID	Condition	Water Content (%)	Porosity Estimate (%)	Void Ratio Estimate
A1-SB-001-0.5'	Disturbed	24.2	43.6	0.77
A1-SB-001-4.5'	Undisturbed	23.4	45.3	0.83
A1-SB-001-9.0'	Undisturbed	17.6	44.0	0.78
A1-SB-002-0.5'	Disturbed	28.8	46.2	0.86
A1-SB-002-4.5'	Undisturbed	22.2	43.0	0.75
A1-SB-002-9.0'	Undisturbed	27.4	47.8	0.92
A1-SB-003-0.5'	Disturbed	21.8	41.0	0.69
A1-SB-003-4.5'	Undisturbed	19.6	44.3	0.79
A1-SB-003-9.0'	Undisturbed	19.4	44.3	0.80
A1-SB-004-0.5'	Disturbed	23.0	43.1	0.76
A1-SB-004-4.5'	Undisturbed	27.0	48.7	0.95
A1-SB-004-9.0'	Undisturbed	25.3	50.6	1.03
A1-SB-005-0.5'	Disturbed	17.1	34.1	0.52
A1-SB-005-4.5'	Undisturbed	29.6	49.1	0.96
A1-SB-005-7.5'	Undisturbed	24.8	44.1	0.79
A1-SB-006-0.5'	Disturbed	26.6	43.6	0.77
A1-SB-006-0.5'-1	Disturbed	26.8	44.9	0.82
A1-SB-006-4.5'	Undisturbed	29.4	49.6	0.98
A1-SB-006-7.5'	Disturbed	23.6	39.5	0.65
A1-SB-007-0.5'	Disturbed	25.7	42.6	0.74
A1-SB-007-4.5'	Undisturbed	34.1	51.3	1.05
A1-SB-007-7.5'	Undisturbed	26.3	48.8	0.95
A1-SB-008-0.5'	Disturbed	15.5	45.5	0.83
A1-SB-008-4.5'	Undisturbed	29.2	47.2	0.89
A1-SB-008-7.5'	Undisturbed	20.8	38.6	0.63
AREA 1 A	VERAGE	24.4	44.8	0.82
A2-SB-001-0.5'	Disturbed	19.2	38.7	0.63
A2-SB-001-4.5'	Undisturbed	18.1	43.0	0.75
A2-SB-001-9.0'	Undisturbed	23.9	46.5	0.87
A2-SB-002-0.5'	Disturbed	9.7	43.7	0.77
A2-SB-002-4.5'	Undisturbed	21.6	41.9	0.72
A2-SB-002-9.0'	Undisturbed	23.7	45.7	0.84
AREA 2 A	VERAGE	19.4	43.3	0.76
A3-SB-002-0.5'	Disturbed	26.3	44.1	0.79
A3-SB-002-4.5'	Undisturbed	27.3	49.1	0.97
A3-SB-002-7.5'	Disturbed	25.2	44.1	0.79
AREA 3 A	VERAGE	26.3	45.8	0.85
A4-SB-001-0.5'	Disturbed	8.8	41.8	0.72
A4-SB-001-9.0'	Undisturbed	24.2	46.3	0.86
A4-SB-003-0.5'	Disturbed	9.2	39.5	0.65
A4-SB-003-0.5'-1	Disturbed	10.7	38.3	0.62
A4-SB-003-4.5'	Undisturbed	29.6	47.1	0.89
A4-SB-003-9.0'	Undisturbed	20.7	44.9	0.81
	VERAGE	17.2	43.0	0.76
A5-SS-001-0.5'	Disturbed	10.4	43.0	0.75
A5-SS-004-0.5'	Disturbed	13.3	41.7	0.71
AREA 5 A	VERAGE	11.9	42.4	0.73
A6-SB-001-4.5'	Undisturbed	18.3	48.5	0.94
A6-SB-001-7.5'	Undisturbed	22.2	43.3	0.77
	VERAGE	20.3	45.9	0.86
SITE AV	'ERAGE	22.1	44.4	0.80

Table 3-4: Grain Size Distribution Summary Bee-Jay Scales Site Sunnyside, WA

Sample ID	Condition	Gravel (%)	Coarse Sand (%)	Medium Sand (%)	Fine Sand (%)	Silt-Clay (%)
A1-SB-003-0.5'	Disturbed	0.0	0.7	6.9	51.6	40.8
A1-SB-003-4.5'	Undisturbed	0.4	0.3	1.7	71.5	26.1
A1-SB-003-9.0'	Undisturbed	0.9	8.1	7.8	71.3	11.9
A1-SB-004-0.5'	Disturbed	0.7	0.8	3.8	85.6	9.1
A1-SB-004-4.5'	Undisturbed	0.2	1.1	6.1	45.7	46.9
A1-SB-004-9.0'	Undisturbed	0.0	0.3	1.2	70.1	28.4
A1-SB-006-0.5'	Disturbed	5.3	3.1	6.2	68.5	16.9
A1-SB-006-0.5'-1	Disturbed	2.0	2.6	8.6	68.4	18.4
A1-SB-006-4.5'	Undisturbed	0.1	2.9	8.6	62.2	26.2
A1-SB-006-7.5'	Disturbed	0.3	0.8	1.6	54.2	43.1
AREA 1	AVERAGE	1.0	2.1	5.3	64.9	26.8
A2-SB-001-0.5'	Disturbed	4.0	2.0	11.5	80.6	1.9
A2-SB-001-4.5'	Undisturbed	0.6	0.9	6.1	69.0	23.4
A2-SB-001-9.0'	Undisturbed	1.4	1.7	2.8	43.1	51.0
A2-SB-002-0.5'	Disturbed	0.0	0.6	0.9	48.0	50.5
A2-SB-002-4.5'	Undisturbed	0.1	1.4	6.1	52.8	39.6
A2-SB-002-9.0'	Undisturbed	0.3	1.0	1.0	17.0	80.7
AREA 2 A	AVERAGE	1.1	1.3	4.7	51.8	41.2
A3-SB-002-0.5'	Disturbed	0.0	0.1	0.6	71.8	27.5
A3-SB-002-4.5'	Undisturbed	0.0	0.2	0.7	23.8	75.3
A3-SB-002-7.5'	Disturbed	0.0	0.3	0.8	46.4	52.5
AREA 3 A	AVERAGE	0.0	0.2	0.7	47.3	51.8
A4-SB-001-0.5'	Disturbed	0.0	0.1	0.8	64.1	35.0
A4-SB-001-9.0'	Undisturbed	0.5	2.3	2.5	43.7	51.0
A4-SB-003-0.5'	Disturbed	0.0	0.3	1.7	77.6	20.4
A4-SB-003-0.5'-1	Disturbed	0.4	0.2	2.5	77.7	19.2
A4-SB-003-4.5'	Undisturbed	0.1	1.1	12.8	42.6	43.4
A4-SB-003-9.0'	Undisturbed	0.2	0.6	1.5	62.9	34.8
AREA 4 A	AVERAGE	0.2	0.8	3.6	61.4	34.0
A5-SS-001-0.5'	Disturbed	0.0	0.4	2.8	56.4	40.4
A5-SS-004-0.5'	Disturbed	0.3	0.6	2.6	72.2	24.3
AREA 5 A	VERAGE	0.2	0.5	2.7	64.3	32.4
A6-SB-001-4.5'	Undisturbed	1.2	2.2	5.7	62.2	28.7
A6-SB-001-7.5'	Undisturbed	0.0	0.9	1.4	27.6	70.1
AREA 6 A	AVERAGE	0.6	1.6	3.6	44.9	49.4
SITE AV	/ERAGE	0.7	1.3	4.0	58.2	35.8

Table 4-1Soil Screen Against MTCA Method A Cleanup Levels* andNatural Background Concentrations**

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A1-SB-001-0.5'	Ammonia-N	7/7/2003	5	1	0		Yes
	Arsenic	7/7/2003	1.57	0.1	20	5	No
	Cadmium	7/7/2003	0.41	0.05	0	1	No
	Chromium	7/7/2003	7.91	0.5	0	38	No
	Copper	7/7/2003	13.2	0.5	0	27	No
	Iron	7/7/2003	8750	1	0	51500	No
	Lead	7/7/2003	6.13	0.5	1000	11	No
	Manganese	7/7/2003	392	0.5	0	1100	No
	Nickel	7/7/2003	8.95	0.5	0	46	No
	Nitrate-N	7/7/2003	68	10	0		Yes
	Phosphate	7/7/2003	5690	10	0		Yes
	Zinc	7/7/2003	189	0.5	0	79	Yes
A1-SB-001-4.5'	Ammonia-N	7/7/2003	3	1	0		Yes
	Nitrate-N	7/7/2003	55	10	0		Yes
	Phosphate	7/7/2003	4630	10	0		Yes
A1-SB-001-9.0'	Ammonia-N	7/7/2003	683	1	0		Yes
	Nitrate-N	7/7/2003	29	10	0		Yes
	Phosphate	7/7/2003	2870	10	0		Yes
A1-SB-002-0.5'	Ammonia-N	7/7/2003	400	1	0		Yes
	Arsenic	7/7/2003	1.02	0.1	20	5	No
	Cadmium	7/7/2003	0.21	0.05	0	1	No
	Chromium	7/7/2003	10.7	0.5	0	38	No
	Copper	7/7/2003	32.4	0.5	0	27	Yes
	Iron	7/7/2003	6860	1	0	51500	No
	Lead	7/7/2003	6.87	0.5	1000	11	No
	Manganese	7/7/2003	485	0.5	0	1100	No
	Nickel	7/7/2003	9.77	0.5	0	46	No
	Nitrate-N	7/7/2003	63	10	0		Yes
	Phosphate	7/7/2003	4620	10	0		Yes
	Zinc	7/7/2003	153	0.5	0	79	Yes
A1-SB-002-4.5'	Ammonia-N	7/7/2003	968	1	0		Yes
	Nitrate-N	7/7/2003	321	10	0		Yes
	Phosphate	7/7/2003	4340	10	0		Yes
A1-SB-002-9.0'	Ammonia-N	7/7/2003	100	1	0		Yes
	Nitrate-N	7/7/2003	162	10	0		Yes
	Phosphate	7/7/2003	3620	10	0		Yes

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A1-SB-003-0.5'	Ammonia-N	7/7/2003	631	1	0		Yes
	Arsenic	7/7/2003	1.65	0.1	20	5	No
	Cadmium	7/7/2003	0.2	0.05	0	1	No
	Chromium	7/7/2003	2.68	0.5	0	38	No
	Copper	7/7/2003	11.7	0.5	0	27	No
	Iron	7/7/2003	7170	1	0	51500	No
	Lead	7/7/2003	7.1	0.5	1000	11	No
	Manganese	7/7/2003	420	0.5	0	1100	No
	Nickel	7/7/2003	7.43	0.5	0	46	No
	Nitrate-N	7/7/2003	80	10	0		Yes
	Phosphate	7/7/2003	4100	10	0		Yes
	Zinc	7/7/2003	17.7	0.5	0	79	No
A1-SB-003-4.5'	Ammonia-N	7/7/2003	583	1	0		Yes
	Nitrate-N	7/7/2003	87	10	0		Yes
	Phosphate	7/7/2003	4910	10	0		Yes
\1-SB-003-9.0'	Nitrate-N	7/7/2003	47	10	0		Yes
	Phosphate	7/7/2003	2250	10	0		Yes
1-SB-004-0.5	Ammonia-N	7/7/2003	404	1	0		Yes
	Arsenic	7/7/2003	2.11	0.1	20	5	No
	Cadmium	7/7/2003	0.06	0.05	0	1	No
	Chromium	7/7/2003	3.4	0.5	0	38	No
	Copper	7/7/2003	9.66	0.5	0	27	No
	Iron	7/7/2003	6330	1	0	51500	No
	Lead	7/7/2003	4.76	0.5	1000	11	No
	Manganese	7/7/2003	315	0.5	0	1100	No
	Nickel	7/7/2003	8.29	0.5	0	46	No
	Nitrate-N	7/7/2003	310	10	0		Yes
	Phosphate	7/7/2003	2590	10	0		Yes
	Zinc	7/7/2003	14	0.5	0	79	No
A1-SB-004-4.5'	Ammonia-N	7/7/2003	426	1	0		Yes
	Nitrate-N	7/7/2003	351	10	0		Yes
	Phosphate	7/7/2003	5030	10	0		Yes
	Sulfate	7/7/2003	225	100	0		Yes
\1-SB-004-9.0'	Ammonia-N	7/7/2003	57	1	0		Yes
	Nitrate-N	7/7/2003	59	10	0		Yes
	Phosphate	7/7/2003	2410	10	0		Yes
A1-SB-005-0.5'	Arsenic	7/10/2003	2.65	0.1	20	5	No
	Cadmium	7/10/2003	0.24	0.05	0	1	No
	Chromium	7/10/2003	6.07	0.5	0	38	No
	Copper	7/10/2003	8.07	0.5	0	27	No
	Iron	7/10/2003	5580	1	0	51500	No

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A1-SB-005-0.5'	Lead	7/10/2003	11.5	0.5	1000	11	No
	Manganese	7/10/2003	343	0.5	0	1100	No
	Nickel	7/10/2003	6.42	0.5	0	46	No
	Nitrate-N	7/10/2003	161	10	0		Yes
	Phosphate	7/10/2003	6390	10	0		Yes
	Zinc	7/10/2003	30.3	0.5	0	79	No
A1-SB-005-4.5'	Ammonia-N	7/10/2003	735	5	0		Yes
	Nitrate-N	7/10/2003	983	10	0		Yes
	Nitrite-N	7/10/2003	17	10	0		Yes
	Phosphate	7/10/2003	2670	10	0		Yes
	Sulfate	7/10/2003	199	100	0		Yes
\1-SB-005-7.5'	Ammonia-N	7/10/2003	1630	10	0		Yes
	Nitrate-N	7/10/2003	255	10	0		Yes
	Phosphate	7/10/2003	8180	10	0		Yes
A1-SB-006-0.5'	Ammonia-N	7/10/2003	1110	10	0		Yes
	Arsenic	7/10/2003	1.39	0.1	20	5	No
	Beryllium	7/10/2003	0.61	0.5	0	2	No
	Cadmium	7/10/2003	7.83	0.05	0	1	Yes
	Chromium	7/10/2003	58.3	0.5	0	38	Yes
	Copper	7/10/2003	20.5	0.5	0	27	No
	Iron	7/10/2003	9310	1	0	51500	No
	Lead	7/10/2003	8.97	0.5	1000	11	No
	Manganese	7/10/2003	343	0.5	0	1100	No
	Nickel	7/10/2003	15.2	0.5	0	46	No
	Nitrate-N	7/10/2003	127	10	0		Yes
	Phosphate	7/10/2003	30200	100	0		Yes
	Zinc	7/10/2003	1030	0.5	0	79	Yes
\1-SB-006-0.5'-1	Ammonia-N	7/10/2003	1030	10	0		Yes
	Arsenic	7/10/2003	1.29	0.1	20	5	No
	Beryllium	7/10/2003	0.57	0.5	0	2	No
	Cadmium	7/10/2003	8.52	0.05	0	1	Yes
	Chromium	7/10/2003	48.3	0.5	0	38	Yes
	Copper	7/10/2003	19.8	0.5	0	27	No
	Iron	7/10/2003	8770	1	0	51500	No
	Lead	7/10/2003	10.9	0.5	1000	11	No
	Manganese	7/10/2003	274	0.5	0	1100	No
	Mercury	7/10/2003	0.12	0.1	2	0.05	No
	Nickel	7/10/2003	13.7	0.5	0	46	No
	Nitrate-N	7/10/2003	127	10	0		Yes
	Phosphate	7/10/2003	29300	100	0		Yes
	Zinc	7/10/2003	1000	0.5	0	79	Yes

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A1-SB-006-4.5'	Ammonia-N	7/10/2003	1520	10	0		Yes
	Nitrate-N	7/10/2003	672	10	0		Yes
	Phosphate	7/10/2003	6300	10	0		Yes
A1-SB-006-7.5'	Ammonia-N	7/10/2003	1460	10	0		Yes
	Nitrate-N	7/10/2003	130	10	0		Yes
	Phosphate	7/10/2003	5010	10	0		Yes
A1-SB-007-0.5'	Arsenic	7/10/2003	5.69	0.1	20	5	No
	Cadmium	7/10/2003	0.12	0.05	0	1	No
	Chromium	7/10/2003	2.8	0.5	0	38	No
	Copper	7/10/2003	8.4	0.5	0	27	No
	Iron	7/10/2003	5630	1	0	51500	No
	Lead	7/10/2003	11.3	0.5	1000	11	No
	Manganese	7/10/2003	354	0.5	0	1100	No
	Nickel	7/10/2003	6.54	0.5	0	46	No
	Nitrate-N	7/10/2003	172	10	0		Yes
	Phosphate	7/10/2003	3320	10	0		Yes
	Zinc	7/10/2003	30.6	0.5	0	79	No
\1-SB-007-4.5'	Ammonia-N	7/10/2003	281	5	0		Yes
	Nitrate-N	7/10/2003	405	10	0		Yes
	Phosphate	7/10/2003	2440	10	0		Yes
	Sulfate	7/10/2003	116	100	0		Yes
A1-SB-007-7.5'	Ammonia-N	7/10/2003	1200	10	0		Yes
	Nitrate-N	7/10/2003	86	10	0		Yes
	Phosphate	7/10/2003	3040	10	0		Yes
A1-SB-008-0.5'	Ammonia-N	7/10/2003	207	5	0		Yes
	Arsenic	7/10/2003	1.62	0.1	20	5	No
	Cadmium	7/10/2003	0.14	0.05	0	1	No
	Chromium	7/10/2003	3.28	0.5	0	38	No
	Copper	7/10/2003	10.1	0.5	0	27	No
	Iron	7/10/2003	6230	1	0	51500	No
	Lead	7/10/2003	6.65	0.5	1000	11	No
	Manganese	7/10/2003	567	0.5	0	1100	No
	Nickel	7/10/2003	7.61	0.5	0	46	No
	Nitrate-N	7/10/2003	148	10	0		Yes
	Phosphate	7/10/2003	4880	10	0		Yes
	Zinc	7/10/2003	24.8	0.5	0	79	No
A1-SB-008-4.5'	Nitrate-N	7/10/2003	486	10	0		Yes
	Phosphate	7/10/2003	2820	10	0		Yes
	Sulfate	7/10/2003	114	100	0		Yes
A1-SB-008-7.5'	Ammonia-N	7/10/2003	337	5	0		Yes
	Nitrate-N	7/10/2003	318	10	0		Yes

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A1-SB-008-7.5'	Phosphate	7/10/2003	2950	10	0		Yes
	Sulfate	7/10/2003	138	100	0		Yes
A2-SB-001-0.5'	Ammonia-N	7/8/2003	283	1	0		Yes
	Arsenic	7/8/2003	1.3	0.1	20	5	No
	Cadmium	7/8/2003	0.08	0.05	0	1	No
	Chromium	7/8/2003	3.37	0.5	0	38	No
	Copper	7/8/2003	12.7	0.5	0	27	No
	Iron	7/8/2003	6870	1	0	51500	No
	Lead	7/8/2003	7.24	0.5	1000	11	No
	Manganese	7/8/2003	568	0.5	0	1100	No
	Nickel	7/8/2003	9.48	0.5	0	46	No
	Nitrate-N	7/8/2003	294	10	0		Yes
	Phosphate	7/8/2003	2690	10	0		Yes
	Sulfate	7/8/2003	934	100	0		Yes
	Zinc	7/8/2003	17.8	0.5	0	79	No
2-SB-001-4.5'	Nitrate-N	7/8/2003	83	10	0		Yes
	Phosphate	7/8/2003	2790	10	0		Yes
	Sulfate	7/8/2003	224	100	0		Yes
2-SB-001-9.0'	Phosphate	7/8/2003	1910	10	0		Yes
2-SB-002-0.5'	Ammonia-N	7/8/2003	273	1	0		Yes
	Arsenic	7/8/2003	1.17	0.1	20	5	No
	Chromium	7/8/2003	2.01	0.5	0	38	No
	Copper	7/8/2003	5.87	0.5	0	27	No
	Iron	7/8/2003	6220	1	0	51500	No
	Lead	7/8/2003	3.82	0.5	1000	11	No
	Manganese	7/8/2003	153	0.5	0	1100	No
	Nickel	7/8/2003	4.93	0.5	0	46	No
	Nitrate-N	7/8/2003	214	10	0		Yes
	Phosphate	7/8/2003	2450	10	0		Yes
	Sulfate	7/8/2003	1640	100	0		Yes
	Zinc	7/8/2003	12.6	0.5	0	79	No
2-SB-002-4.5'	Nitrate-N	7/8/2003	47	10	0		Yes
	Phosphate	7/8/2003	2470	10	0		Yes
	Sulfate	7/8/2003	150	100	0		Yes
2-SB-002-9.0'	Nitrate-N	7/8/2003	12	10	0		Yes
	Phosphate	7/8/2003	2360	10	0		Yes
2-SB-002-9.0'-1	Nitrate-N	7/8/2003	11	10	0		Yes
	Phosphate	7/8/2003	2400	10	0		Yes
2-SB-003-0.5'	Ammonia-N	7/7/2003	117	1	0		Yes
	Arsenic	7/7/2003	1.69	0.1	20	5	No
	Cadmium	7/7/2003	0.06	0.05	0	1	No

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A2-SB-003-0.5'	Chromium	7/7/2003	3.25	0.5	0	38	No
	Copper	7/7/2003	9	0.5	0	27	No
	Iron	7/7/2003	6000	1	0	51500	No
	Lead	7/7/2003	4.26	0.5	1000	11	No
	Manganese	7/7/2003	318	0.5	0	1100	No
	Nickel	7/7/2003	7.66	0.5	0	46	No
	Nitrate-N	7/7/2003	137	10	0		Yes
	Phosphate	7/7/2003	2480	10	0		Yes
	Sulfate	7/7/2003	186	100	0		Yes
	Zinc	7/7/2003	12.9	0.5	0	79	No
2-SB-003-4.5	Ammonia-N	7/7/2003	7	1	0		Yes
	Nitrate-N	7/7/2003	59	10	0		Yes
	Phosphate	7/7/2003	1810	10	0		Yes
A2-SB-003-9.0'	Ammonia-N	7/7/2003	31	1	0		Yes
	Nitrate-N	7/7/2003	13	10	0		Yes
	Phosphate	7/7/2003	1870	10	0		Yes
2-SB-004-0.5'	Ammonia-N	7/7/2003	5550	10	0		Yes
	Arsenic	7/7/2003	2	0.1	20	5	No
	Cadmium	7/7/2003	0.92	0.05	0	1	No
	Chloride	7/7/2003	534	100	0		Yes
	Chromium	7/7/2003	3.82	0.5	0	38	No
	Copper	7/7/2003	17.4	0.5	0	27	No
	Iron	7/7/2003	7870	1	0	51500	No
	Lead	7/7/2003	11.7	0.5	1000	11	No
	Manganese	7/7/2003	465	0.5	0	1100	No
	Nickel	7/7/2003	8.83	0.5	0	46	No
	Nitrate-N	7/7/2003	1530	10	0		Yes
	Nitrite-N	7/7/2003	27	10	0		Yes
	Phosphate	7/7/2003	5480	10	0		Yes
	Sulfate	7/7/2003	2900	100	0		Yes
	Zinc	7/7/2003	38.8	0.5	0	79	No
2-SB-004-4.5	Ammonia-N	7/7/2003	920	1	0	-	Yes
	Nitrate-N	7/7/2003	217	10	0		Yes
	Phosphate	7/7/2003	2480	10	0		Yes
	Sulfate	7/7/2003	159	100	0		Yes
2-SB-004-9.0'	Ammonia-N	7/7/2003	372	1	0		Yes
	Nitrate-N	7/7/2003	139	10	0		Yes
	Phosphate	7/7/2003	2750	10	0		Yes
	Sulfate	7/7/2003	214	100	0		Yes
2-SB-005-0.5'	Ammonia-N	7/11/2003	100	5	0		Yes
	Arsenic	7/11/2003	1.64	0.1	20	5	No

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A2-SB-005-0.5'	Cadmium	7/11/2003	0.24	0.05	0	1	No
	Chromium	7/11/2003	3.98	0.5	0	38	No
	Copper	7/11/2003	7.18	0.5	0	27	No
	Iron	7/11/2003	6520	1	0	51500	No
	Lead	7/11/2003	7.32	0.5	1000	11	No
	Manganese	7/11/2003	257	0.5	0	1100	No
	Nickel	7/11/2003	5.45	0.5	0	46	No
	Nitrate-N	7/11/2003	65	10	0		Yes
	Phosphate	7/11/2003	11200	100	0		Yes
	Sulfate	7/11/2003	148	100	0		Yes
	Zinc	7/11/2003	21.7	0.5	0	79	No
2-SB-005-4.5'	Nitrate-N	7/11/2003	71	10	0		Yes
	Phosphate	7/11/2003	3040	10	0		Yes
	Sulfate	7/11/2003	162	100	0		Yes
A2SB-MW5-0.5'	Ammonia-N	7/10/2003	370	5	0		Yes
	Arsenic	7/10/2003	1.39	0.1	20	5	No
	Cadmium	7/10/2003	0.12	0.05	0	1	No
	Chromium	7/10/2003	1.62	0.5	0	38	No
	Copper	7/10/2003	6.18	0.5	0	27	No
	Iron	7/10/2003	4450	1	0	51500	No
	Lead	7/10/2003	15.8	0.5	1000	11	No
	Manganese	7/10/2003	176	0.5	0	1100	No
	Nickel	7/10/2003	4.27	0.5	0	46	No
	Nitrate-N	7/10/2003	202	10	0		Yes
	Phosphate	7/10/2003	6420	10	0		Yes
	Sulfate	7/10/2003	2990	100	0		Yes
	Zinc	7/10/2003	25.8	0.5	0	79	No
2SB-MW5-4.5	Ammonia-N	7/10/2003	214	5	0		Yes
	Nitrate-N	7/10/2003	1130	10	0		Yes
	Phosphate	7/10/2003	2790	10	0		Yes
	Sulfate	7/10/2003	442	100	0		Yes
2SB-MW5-7.5	Ammonia-N	7/10/2003	218	5	0		Yes
	Nitrate-N	7/10/2003	126	10	0		Yes
	Phosphate	7/10/2003	2350	10	0		Yes
	Sulfate	7/10/2003	207	100	0		Yes
2-SB-MW6-0.5'	Arsenic	7/10/2003	1.39	0.1	20	5	No
	Cadmium	7/10/2003	0.15	0.05	0	1	No
	Chromium	7/10/2003	2.7	0.5	0	38	No
	Copper	7/10/2003	10.9	0.5	0	27	No
	Iron	7/10/2003	6690	1	0	51500	No
	Lead	7/10/2003	9.25	0.5	1000	11	No

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A2-SB-MW6-0.5'	Manganese	7/10/2003	520	0.5	0	1100	No
	Nickel	7/10/2003	8.16	0.5	0	46	No
	Nitrate-N	7/10/2003	150	10	0		Yes
	Phosphate	7/10/2003	3130	10	0		Yes
	Sulfate	7/10/2003	2530	100	0		Yes
	Zinc	7/10/2003	48.8	0.5	0	79	No
A2-SB-MW6-0.5'-1	Ammonia-N	7/10/2003	6	5	0		Yes
	Arsenic	7/10/2003	1.77	0.1	20	5	No
	Cadmium	7/10/2003	0.09	0.05	0	1	No
	Chromium	7/10/2003	2.83	0.5	0	38	No
	Copper	7/10/2003	11.9	0.5	0	27	No
	Iron	7/10/2003	6550	1	0	51500	No
	Lead	7/10/2003	12.7	0.5	1000	11	No
	Manganese	7/10/2003	311	0.5	0	1100	No
	Nickel	7/10/2003	6.19	0.5	0	46	No
	Nitrate-N	7/10/2003	121	10	0		Yes
	Phosphate	7/10/2003	3440	10	0		Yes
	Sulfate	7/10/2003	729	100	0		Yes
	Zinc	7/10/2003	22.1	0.5	0	79	No
2-SB-MW6-4.5	Nitrate-N	7/10/2003	44	10	0		Yes
	Phosphate	7/10/2003	2750	10	0		Yes
	Sulfate	7/10/2003	107	100	0		Yes
A2-SB-MW6-7.5'	Phosphate	7/10/2003	2440	10	0		Yes
A3-SB-001-0.5'	Ammonia-N	7/8/2003	5	1	0		Yes
	Arsenic	7/8/2003	0.84	0.1	20	5	No
	Cadmium	7/8/2003	0.12	0.05	0	1	No
	Chromium	7/8/2003	2.66	0.5	0	38	No
	Copper	7/8/2003	11	0.5	0	27	No
	Iron	7/8/2003	5520	1	0	51500	No
	Lead	7/8/2003	6.19	0.5	1000	11	No
	Manganese	7/8/2003	489	0.5	0	1100	No
	Nickel	7/8/2003	9.04	0.5	0	46	No
	Nitrate-N	7/8/2003	13	10	0		Yes
	Phosphate	7/8/2003	2680	10	0		Yes
	Zinc	7/8/2003	14.7	0.5	0	79	No
A3-SB-001-4.5'	Ammonia-N	7/8/2003	61	1	0		Yes
	Arsenic	7/8/2003	2.66	0.1	20	5	No
	Cadmium	7/8/2003	0.08	0.05	0	1	No
	Chromium	7/8/2003	2.54	0.5	0	38	No
	Copper	7/8/2003	11	0.5	0	27	No
	Iron	7/8/2003	7670	1	0	51500	No

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A3-SB-001-4.5'	Lead	7/8/2003	6.34	0.5	1000	11	No
	Manganese	7/8/2003	447	0.5	0	1100	No
	Nickel	7/8/2003	6.43	0.5	0	46	No
	Nitrate-N	7/8/2003	66	10	0		Yes
	Phosphate	7/8/2003	2830	10	0		Yes
	Sulfate	7/8/2003	165	100	0		Yes
	Zinc	7/8/2003	15.7	0.5	0	79	No
A3-SB-001-9.0'	1,2,4-Trimethylbenzene	7/8/2003	0.03	0.01	0		Yes
	Arsenic	7/8/2003	2.78	0.1	20	5	No
	Cadmium	7/8/2003	0.06	0.05	0	1	No
	Chromium	7/8/2003	2.87	0.5	0	38	No
	Copper	7/8/2003	13.1	0.5	0	27	No
	Ethylbenzene	7/8/2003	0.01	0.01	6		No
	Iron	7/8/2003	9140	1	0	51500	No
	Lead	7/8/2003	4.24	0.5	1000	11	No
	Manganese	7/8/2003	266	0.5	0	1100	No
	Naphthalene	7/8/2003	0.03	0.01	5		No
	Nickel	7/8/2003	11.1	0.5	0	46	No
	p,m-Xylene	7/8/2003	0.03	0.01	0		Yes
	Phosphate	7/8/2003	2930	10	0		Yes
	Zinc	7/8/2003	18.1	0.5	0	79	No
A3-SB-002-0.5'	Arsenic	7/8/2003	1.27	0.1	20	5	No
	Cadmium	7/8/2003	0.07	0.05	0	1	No
	Chromium	7/8/2003	1.89	0.5	0	38	No
	Copper	7/8/2003	7.12	0.5	0	27	No
	Iron	7/8/2003	5760	1	0	51500	No
	Lead	7/8/2003	4.34	0.5	1000	11	No
	Manganese	7/8/2003	426	0.5	0	1100	No
	Nickel	7/8/2003	5.85	0.5	0	46	No
	Phosphate	7/8/2003	2570	10	0		Yes
	Zinc	7/8/2003	12.6	0.5	0	79	No
A3-SB-002-4.5'	Arsenic	7/8/2003	2.21	0.1	20	5	No
	Cadmium	7/8/2003	0.06	0.05	0	1	No
	Chromium	7/8/2003	3.19	0.5	0	38	No
	Copper	7/8/2003	10.8	0.5	0	27	No
	Iron	7/8/2003	8100	1	0	51500	No
	Lead	7/8/2003	6.37	0.5	1000	11	No
	Manganese	7/8/2003	324	0.5	0	1100	No
	Nickel	7/8/2003	7.48	0.5	0	46	No
	Nitrate-N	7/8/2003	13	10	0		Yes
	Phosphate	7/8/2003	2580	10	0		Yes

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A3-SB-002-4.5'	Zinc	7/8/2003	17	0.5	0	79	No
A3-SB-002-7.5'	1,2,4-Trimethylbenzene	7/8/2003	8	2	0		Yes
	1,3,5-Trimethylbenzene	7/8/2003	4	2	0		Yes
	2-Methylnaphthalene	7/8/2003	1.1	0.4	0		Yes
	Arsenic	7/8/2003	4.16	0.1	20	5	No
	Cadmium	7/8/2003	0.06	0.05	0	1	No
	Chromium	7/8/2003	2.14	0.5	0	38	No
	Copper	7/8/2003	10.1	0.5	0	27	No
	Iron	7/8/2003	8540	1	0	51500	No
	Lead	7/8/2003	5.59	0.5	1000	11	No
	Manganese	7/8/2003	235	0.5	0	1100	No
	Naphthalene	7/8/2003	3	2	5		No
	Naphthalene	7/8/2003	1	0.4	5		No
	Nickel	7/8/2003	6.84	0.5	0	46	No
	NWTPH-Gx	7/8/2003	400	100	100		Yes
	p,m-Xylene	7/8/2003	6	2	0		Yes
	p,m-Xylene	7/8/2003	6	2	0		Yes
	Phosphate	7/8/2003	2830	10	0		Yes
	Zinc	7/8/2003	17.1	0.5	0	79	No
4-SB-001-0.5'	Arsenic	7/8/2003	0.78	0.1	20	5	No
	Cadmium	7/8/2003	0.05	0.05	0	1	No
	Chromium	7/8/2003	1.91	0.5	0	38	No
	Copper	7/8/2003	5.29	0.5	0	27	No
	Iron	7/8/2003	5570	1	0	51500	No
	Lead	7/8/2003	3.77	0.5	1000	11	No
	Manganese	7/8/2003	327	0.5	0	1100	No
	Nickel	7/8/2003	6.19	0.5	0	46	No
	Nitrate-N	7/8/2003	43	10	0		Yes
	Phosphate	7/8/2003	2330	10	0		Yes
	Sulfate	7/8/2003	126	100	0		Yes
	Zinc	7/8/2003	11.4	0.5	0	79	No
4-SB-001-4.5'	Ammonia-N	7/8/2003	3	1	0		Yes
	Nitrate-N	7/8/2003	38	10	0		Yes
	Phosphate	7/8/2003	2430	10	0		Yes
	Sulfate	7/8/2003	109	100	0		Yes
4-SB-001-9.0'	Phosphate	7/8/2003	2220	10	0		Yes
4-SB-002-0.5'	Ammonia-N	7/8/2003	680	1	0		Yes
	Arsenic	7/8/2003	0.68	0.1	20	5	No
	Chromium	7/8/2003	1.27	0.5	0	38	No
	Copper	7/8/2003	4.12	0.5	0	27	No
	Iron	7/8/2003	4760	1	0	51500	No

Page 10 of 17

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A4-SB-002-0.5'	Lead	7/8/2003	3.28	0.5	1000	11	No
	Manganese	7/8/2003	256	0.5	0	1100	No
	Nickel	7/8/2003	4.17	0.5	0	46	No
	Nitrate-N	7/8/2003	124	10	0		Yes
	Phosphate	7/8/2003	2710	10	0		Yes
	Sulfate	7/8/2003	172	100	0		Yes
	Zinc	7/8/2003	9.4	0.5	0	79	No
A4-SB-002-0.5'-1	Ammonia-N	7/8/2003	624	1	0		Yes
	Arsenic	7/8/2003	0.77	0.1	20	5	No
	Chromium	7/8/2003	1.39	0.5	0	38	No
	Copper	7/8/2003	4.18	0.5	0	27	No
	Iron	7/8/2003	4720	1	0	51500	No
	Lead	7/8/2003	3.3	0.5	1000	11	No
	Manganese	7/8/2003	214	0.5	0	1100	No
	Nickel	7/8/2003	4.11	0.5	0	46	No
	Nitrate-N	7/8/2003	139	10	0		Yes
	Phosphate	7/8/2003	2500	10	0		Yes
	Sulfate	7/8/2003	187	100	0		Yes
	Zinc	7/8/2003	9.38	0.5	0	79	No
A4-SB-002-4.5'	Nitrate-N	7/8/2003	28	10	0		Yes
	Phosphate	7/8/2003	2250	10	0		Yes
	Sulfate	7/8/2003	117	100	0		Yes
A4-SB-002-9.0'	Phosphate	7/8/2003	2310	10	0		Yes
A4-SB-003-0.5'	Arsenic	7/8/2003	0.73	0.1	20	5	No
	Cadmium	7/8/2003	0.05	0.05	0	1	No
	Chromium	7/8/2003	2.2	0.5	0	38	No
	Copper	7/8/2003	6.32	0.5	0	27	No
	Iron	7/8/2003	5210	1	0	51500	No
	Lead	7/8/2003	4.48	0.5	1000	11	No
	Manganese	7/8/2003	366	0.5	0	1100	No
	Nickel	7/8/2003	5.39	0.5	0	46	No
	Nitrate-N	7/8/2003	12	10	0		Yes
	Phosphate	7/8/2003	2570	10	0		Yes
	Zinc	7/8/2003	11.5	0.5	0	79	No
A4-SB-003-0.5'-1	Arsenic	7/8/2003	0.65	0.1	20	5	No
	Cadmium	7/8/2003	0.06	0.05	0	1	No
	Chromium	7/8/2003	1.85	0.5	0	38	No
	Copper	7/8/2003	4.88	0.5	0	27	No
	Iron	7/8/2003	4640	1	0	51500	No
	Lead	7/8/2003	3.74	0.5	1000	11	No
	Manganese	7/8/2003	366	0.5	0	1100	No

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A4-SB-003-0.5'-1	Nickel	7/8/2003	4.97	0.5	0	46	No
	Nitrate-N	7/8/2003	12	10	0		Yes
	Phosphate	7/8/2003	2460	10	0		Yes
	Zinc	7/8/2003	9.99	0.5	0	79	No
A4-SB-003-4.5'	Nitrate-N	7/8/2003	14	10	0		Yes
	Phosphate	7/8/2003	2710	10	0		Yes
	Sulfate	7/8/2003	128	100	0		Yes
\4-SB-003-6.0'	NWTPH-Dx Diesel Range	7/8/2003	70	20	2000		No
4-SB-003-9.0'	1,2,4-Trimethylbenzene	7/8/2003	0.02	0.01	0		Yes
	1,3,5-Trimethylbenzene	7/8/2003	0.02	0.01	0		Yes
	Phosphate	7/8/2003	2480	10	0		Yes
\4-SB-004-0.5'	Arsenic	7/9/2003	1.04	0.1	20	5	No
	Chromium	7/9/2003	2.04	0.5	0	38	No
	Copper	7/9/2003	7.95	0.5	0	27	No
	Iron	7/9/2003	5290	1	0	51500	No
	Lead	7/9/2003	4.28	0.5	1000	11	No
	Manganese	7/9/2003	229	0.5	0	1100	No
	Nickel	7/9/2003	5.77	0.5	0	46	No
	Nitrate-N	7/9/2003	104	10	0		Yes
	Phosphate	7/9/2003	2470	10	0		Yes
	Sulfate	7/9/2003	153	100	0		Yes
	Zinc	7/9/2003	11.7	0.5	0	79	No
\4-SB-004-4.5'	Nitrate-N	7/9/2003	33	10	0		Yes
	Phosphate	7/9/2003	2600	10	0		Yes
A4-SB-004-9.0'	Nitrate-N	7/9/2003	62	10	0		Yes
	Phosphate	7/9/2003	2070	10	0		Yes
	Sulfate	7/9/2003	149	100	0		Yes
\4-SB-005-0.5'	Ammonia-N	7/8/2003	304	1	0		Yes
	Arsenic	7/8/2003	0.86	0.1	20	5	No
	Cadmium	7/8/2003	0.06	0.05	0	1	No
	Chromium	7/8/2003	2.21	0.5	0	38	No
	Copper	7/8/2003	5.99	0.5	0	27	No
	Iron	7/8/2003	5000	1	0	51500	No
	Lead	7/8/2003	4.58	0.5	1000	11	No
	Manganese	7/8/2003	323	0.5	0	1100	No
	Nickel	7/8/2003	5.46	0.5	0	46	No
	Nitrate-N	7/8/2003	104	10	0		Yes
	Phosphate	7/8/2003	2910	10	0		Yes
	Sulfate	7/8/2003	125	100	0		Yes
	Zinc	7/8/2003	12.4	0.5	0	79	No
A4-SB-005-0.5'-1	Ammonia-N	7/8/2003	328	1	0		Yes

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A4-SB-005-0.5'-1	Arsenic	7/8/2003	1.27	0.1	20	5	No
	Cadmium	7/8/2003	0.06	0.05	0	1	No
	Chromium	7/8/2003	2.97	0.5	0	38	No
	Copper	7/8/2003	10.2	0.5	0	27	No
	Iron	7/8/2003	6460	1	0	51500	No
	Lead	7/8/2003	5.55	0.5	1000	11	No
	Manganese	7/8/2003	452	0.5	0	1100	No
	Nickel	7/8/2003	7.77	0.5	0	46	No
	Nitrate-N	7/8/2003	104	10	0		Yes
	Phosphate	7/8/2003	2810	10	0		Yes
	Sulfate	7/8/2003	145	100	0		Yes
	Zinc	7/8/2003	14.2	0.5	0	79	No
4-SB-005-4.5'	Ammonia-N	7/8/2003	4	1	0		Yes
	Nitrate-N	7/8/2003	188	10	0		Yes
	Phosphate	7/8/2003	2600	10	0		Yes
	Sulfate	7/8/2003	174	100	0		Yes
4-SB-005-9.0'	Nitrate-N	7/8/2003	20	10	0		Yes
	Phosphate	7/8/2003	2070	10	0		Yes
4-SB-006-0.5'	Ammonia-N	7/8/2003	326	1	0		Yes
	Arsenic	7/8/2003	0.72	0.1	20	5	No
	Chromium	7/8/2003	2.02	0.5	0	38	No
	Copper	7/8/2003	4.23	0.5	0	27	No
	Iron	7/8/2003	4230	1	0	51500	No
	Lead	7/8/2003	5.55	0.5	1000	11	No
	Manganese	7/8/2003	250	0.5	0	1100	No
	Nickel	7/8/2003	4.34	0.5	0	46	No
	Nitrate-N	7/8/2003	203	10	0		Yes
	Phosphate	7/8/2003	2430	10	0		Yes
	Sulfate	7/8/2003	286	100	0		Yes
	Zinc	7/8/2003	12.4	0.5	0	79	No
5-SS-001-0.5'	Ammonia-N	7/8/2003	417	1	0		Yes
	Arsenic	7/8/2003	1.63	0.1	20	5	No
	Cadmium	7/8/2003	0.08	0.05	0	1	No
	Chromium	7/8/2003	2.57	0.5	0	38	No
	Copper	7/8/2003	8.78	0.5	0	27	No
	Iron	7/8/2003	6100	1	0	51500	No
	Lead	7/8/2003	3.9	0.5	1000	11	No
	Manganese	7/8/2003	427	0.5	0	1100	No
	Nickel	7/8/2003	9.79	0.5	0	46	No
	Nitrate-N	7/8/2003	271	10	0		Yes
	Phosphate	7/8/2003	2250	10	0		Yes

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A5-SS-001-0.5'	Sulfate	7/8/2003	3550	100	0		Yes
	Zinc	7/8/2003	12.6	0.5	0	79	No
A5-SS-002-0.5'	Ammonia-N	7/8/2003	4	1	0		Yes
	Arsenic	7/8/2003	1.49	0.1	20	5	No
	Cadmium	7/8/2003	0.07	0.05	0	1	No
	Chromium	7/8/2003	3.1	0.5	0	38	No
	Copper	7/8/2003	9.77	0.5	0	27	No
	Iron	7/8/2003	7040	1	0	51500	No
	Lead	7/8/2003	4.42	0.5	1000	11	No
	Manganese	7/8/2003	428	0.5	0	1100	No
	Nickel	7/8/2003	10.6	0.5	0	46	No
	Nitrate-N	7/8/2003	74	10	0		Yes
	Phosphate	7/8/2003	2430	10	0		Yes
	Sulfate	7/8/2003	120	100	0		Yes
	Zinc	7/8/2003	14.1	0.5	0	79	No
\$-SS-003-0.5	Ammonia-N	7/8/2003	4	1	0		Yes
	Arsenic	7/8/2003	1.93	0.1	20	5	No
	Chromium	7/8/2003	2.43	0.5	0	38	No
	Copper	7/8/2003	7.42	0.5	0	27	No
	Iron	7/8/2003	5130	1	0	51500	No
	Lead	7/8/2003	4.21	0.5	1000	11	No
	Manganese	7/8/2003	360	0.5	0	1100	No
	Nickel	7/8/2003	7.44	0.5	0	46	No
	Nitrate-N	7/8/2003	566	10	0		Yes
	Phosphate	7/8/2003	1970	10	0		Yes
	Sulfate	7/8/2003	288	100	0		Yes
	Zinc	7/8/2003	10.9	0.5	0	79	No
\5-SS-004-0.5'	Ammonia-N	7/8/2003	86	1	0		Yes
	Arsenic	7/8/2003	1.76	0.1	20	5	No
	Cadmium	7/8/2003	0.06	0.05	0	1	No
	Chromium	7/8/2003	2.87	0.5	0	38	No
	Copper	7/8/2003	10.1	0.5	0	27	No
	Iron	7/8/2003	7110	1	0	51500	No
	Lead	7/8/2003	5.26	0.5	1000	11	No
	Manganese	7/8/2003	389	0.5	0	1100	No
	Nickel	7/8/2003	8.22	0.5	0	46	No
	Nitrate-N	7/8/2003	234	10	0		Yes
	Phosphate	7/8/2003	2710	10	0		Yes
	Sulfate	7/8/2003	4640	100	0		Yes
	Zinc	7/8/2003	14	0.5	0	79	No
\5-SS-005-0.5'	Arsenic	7/8/2003	2.35	0.1	20	5	No

Page 14 of 17

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A5-SS-005-0.5'	Cadmium	7/8/2003	0.06	0.05	0	1	No
	Chromium	7/8/2003	2.53	0.5	0	38	No
	Copper	7/8/2003	9.49	0.5	0	27	No
	Iron	7/8/2003	5200	1	0	51500	No
	Lead	7/8/2003	4.76	0.5	1000	11	No
	Manganese	7/8/2003	457	0.5	0	1100	No
	Nickel	7/8/2003	9.37	0.5	0	46	No
	Nitrate-N	7/8/2003	561	10	0		Yes
	Phosphate	7/8/2003	2100	10	0		Yes
	Sulfate	7/8/2003	288	100	0		Yes
	Zinc	7/8/2003	11.6	0.5	0	79	No
A6-SB-001-0.5'	Nitrate-N	7/9/2003	30	10	0		Yes
	Phosphate	7/9/2003	2150	10	0		Yes
	Sulfate	7/9/2003	103	100	0		Yes
A6-SB-001-4.5'	Nitrate-N	7/9/2003	114	10	0		Yes
	Phosphate	7/9/2003	1940	10	0		Yes
	Sulfate	7/9/2003	314	100	0		Yes
A6-SB-001-7.5'	Ammonia-N	7/9/2003	15	1	0		Yes
	Nitrate-N	7/9/2003	54	10	0		Yes
	Phosphate	7/9/2003	2100	10	0		Yes
	Sulfate	7/9/2003	105	100	0		Yes
A6-SB-002-0.5'	4,4'-DDE	7/9/2003	6	0.02	0		Yes
	4,4'-DDT	7/9/2003	0.02	0.02	4		No
	Antimony	7/9/2003	0.53	0.5	0		Yes
	Arsenic	7/9/2003	3.61	0.1	20	5	No
	Cadmium	7/9/2003	18.4	0.05	0	1	Yes
	Chromium	7/9/2003	64.8	0.5	0	38	Yes
	Copper	7/9/2003	70.3	0.5	0	27	Yes
	Iron	7/9/2003	9040	1	0	51500	No
	Lead	7/9/2003	342	0.5	1000	11	No
	Manganese	7/9/2003	586	0.5	0	1100	No
	Mercury	7/9/2003	0.48	0.1	2	0.05	No
	Nickel	7/9/2003	88.2	0.5	0	46	Yes
	Silver	7/9/2003	0.92	0.2	0		Yes
	Thallium	7/9/2003	0.44	0.2	0		Yes
	Zinc	7/9/2003	2520	0.5	0	79	Yes
A6-SB-002b-0.5'	Ammonia-N	7/9/2003	2710	10	0		Yes
	Chloride	7/9/2003	733	100	0		Yes
	Nitrate-N	7/9/2003	591	10	0		Yes
	Nitrite-N	7/9/2003	16	10	0		Yes
	Phosphate	7/9/2003	14400	100	0		Yes

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A6-SB-002b-0.5'	Sulfate	7/9/2003	8400	100	0		Yes
A6-SB-002b-0.5'-1	Ammonia-N	7/9/2003	1890	10	0		Yes
	Chloride	7/9/2003	435	100	0		Yes
	Nitrate-N	7/9/2003	396	10	0		Yes
	Phosphate	7/9/2003	11500	100	0		Yes
	Sulfate	7/9/2003	3760	100	0		Yes
\6-SB-002b-4.5'	Ammonia-N	7/9/2003	972	1	0		Yes
	Chloride	7/9/2003	258	100	0		Yes
	Nitrate-N	7/9/2003	734	10	0		Yes
	Phosphate	7/9/2003	5920	10	0		Yes
	Sulfate	7/9/2003	2220	100	0		Yes
A6-SB-002b-9.0'	Ammonia-N	7/9/2003	338	5	0		Yes
	Nitrate-N	7/9/2003	33	10	0		Yes
	Phosphate	7/9/2003	3070	10	0		Yes
	Sulfate	7/9/2003	147	100	0		Yes
A6-SB-003-0.5'	Ammonia-N	7/9/2003	684	5	0		Yes
	Nitrate-N	7/9/2003	53	10	0		Yes
	Phosphate	7/9/2003	19600	100	0		Yes
A6-SB-003-0.5'-1	Ammonia-N	7/9/2003	162	5	0		Yes
	Nitrate-N	7/9/2003	43	10	0		Yes
	Phosphate	7/9/2003	14100	100	0		Yes
A6-SB-003-4.5'	Nitrate-N	7/9/2003	42	10	0		Yes
	Phosphate	7/9/2003	2200	10	0		Yes
A6-SB-003-7.5'	Ammonia-N	7/9/2003	117	5	0		Yes
	Nitrate-N	7/9/2003	34	10	0		Yes
	Phosphate	7/9/2003	2400	10	0		Yes
A6-SB-004-0.5'	Nitrate-N	7/9/2003	28	10	0		Yes
	Phosphate	7/9/2003	2370	10	0		Yes
	Sulfate	7/9/2003	141	100	0		Yes
A6-SB-004-0.5'-1	Nitrate-N	7/9/2003	23	10	0		Yes
	Phosphate	7/9/2003	2640	10	0		Yes
	Sulfate	7/9/2003	120	100	0		Yes
A6-SB-004-4.5'	Ammonia-N	7/9/2003	120	5	0		Yes
	Dinoseb	7/9/2003	0.055	0.014	0		Yes
	Nitrate-N	7/9/2003	686	10	0		Yes
	Phosphate	7/9/2003	2060	10	0		Yes
	Sulfate	7/9/2003	137	100	0		Yes
A6-SB-004-6.0'	Ammonia-N	7/9/2003	589	5	0		Yes
	Nitrate-N	7/9/2003	95	10	0		Yes
	Phosphate	7/9/2003	1840	10	0		Yes
A6-SB-005-0.5'	Ammonia-N	7/9/2003	10	5	0		Yes

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	MTCA Method A CUL (mg/kg)	Natural Background (mg/kg)	Further Evaluation Necessary?
A6-SB-005-0.5'	Phosphate	7/9/2003	2940	10	0		Yes
	Sulfate	7/9/2003	162	100	0		Yes
A6-SB-005-4.5'	Ammonia-N	7/9/2003	5	5	0		Yes
	Dinoseb	7/9/2003	0.027	0.015	0		Yes
	Nitrate-N	7/9/2003	96	10	0		Yes
	Phosphate	7/9/2003	2160	10	0		Yes
	Sulfate	7/9/2003	332	100	0		Yes
A6-SB-005-7.5'	Phosphate	7/9/2003	1690	10	0		Yes
	Sulfate	7/9/2003	172	100	0		Yes
A6-SS-001-0.5'	Arsenic	7/9/2003	1.19	0.1	20	5	No
	Cadmium	7/9/2003	0.05	0.05	0	1	No
	Chromium	7/9/2003	2.54	0.5	0	38	No
	Copper	7/9/2003	8.57	0.5	0	27	No
	Iron	7/9/2003	6210	1	0	51500	No
	Lead	7/9/2003	4.43	0.5	1000	11	No
	Manganese	7/9/2003	395	0.5	0	1100	No
	Nickel	7/9/2003	7.48	0.5	0	46	No
	Nitrate-N	7/9/2003	22	10	0		Yes
	Phosphate	7/9/2003	2340	10	0		Yes
	Zinc	7/9/2003	13.4	0.5	0	79	No
A6-SS-002-0.5'	Arsenic	7/9/2003	0.99	0.1	20	5	No
	Cadmium	7/9/2003	0.05	0.05	0	1	No
	Chromium	7/9/2003	2.66	0.5	0	38	No
	Copper	7/9/2003	8.97	0.5	0	27	No
	Iron	7/9/2003	7270	1	0	51500	No
	Lead	7/9/2003	5.16	0.5	1000	11	No
	Manganese	7/9/2003	414	0.5	0	1100	No
	Nickel	7/9/2003	7.42	0.5	0	46	No
	Nitrate-N	7/9/2003	32	10	0		Yes
	Phosphate	7/9/2003	2480	10	0		Yes
	Sulfate	7/9/2003	171	100	0		Yes
	Zinc	7/9/2003	14.1	0.5	0	79	No

Notes:

*MTCA Method A Cleanup Levels from Cleanup and Risk Calculation (CLARC) Workbook version 3.1.

**Natural background concentrations documented in "Natural Background Soil Metals Concentrations in Washington State" (October 1994) for Yakima Basin.

Table 4-2Groundwater Screen Against MTCA Method A Cleanup Levels*

Sample ID	Analyte	Date	Analytical Results (mg/L)	MDL (mg/L)	MTCA Method A CUL (mg/L)	Further Evaluation Necessary?
MW01-072903-0	Arsenic	7/29/2003	0.011	0.001	0.005	Yes
	Chloride	7/29/2003	8	1	0	Yes
	Iron	7/29/2003	0.05	0.02	0	Yes
	Manganese	7/29/2003	0.059	0.005	0	Yes
	Phosphate	7/29/2003	0.3	0.1	0	Yes
	Sulfate	7/29/2003	32	1	0	Yes
	Total Nitrates + Nitrites	7/29/2003	4	0.1	0	Yes
/W03-072903-0	Ammonia-N	7/29/2003	180	10	0	Yes
	Arsenic	7/29/2003	0.102	0.001	0.005	Yes
	Chloride	7/29/2003	13	1	0	Yes
	Chlorobenzene	7/29/2003	0.078	0.001	0	Yes
	Copper	7/29/2003	0.007	0.005	0	Yes
	Manganese	7/29/2003	0.022	0.005	0	Yes
	o-Xylene	7/29/2003	0.001	0.001	0	Yes
	p,m-Xylene	7/29/2003	0.001	0.001	0	Yes
	Phosphate	7/29/2003	85	1	0	Yes
	Sulfate	7/29/2003	38	1	0	Yes
	Total Nitrates + Nitrites	7/29/2003	55.1	0.1	0	Yes
	Zinc	7/29/2003	0.01	0.005	0	Yes
MW04-073003-0	1,2-Dichloropropane	7/30/2003	0.105	0.001	0	Yes
	2,4-Dichlorophenol	7/30/2003	0.03	0.01	0	Yes
	Ammonia-N	7/30/2003	850	10	0	Yes
	Arsenic	7/30/2003	0.007	0.001	0.005	Yes
	Chloride	7/30/2003	112	1	0	Yes
	Chlorobenzene	7/30/2003	0.003	0.001	0	Yes
	Copper	7/30/2003	0.009	0.005	0	Yes
	Iron	7/30/2003	0.73	0.02	0	Yes
	Lead	7/30/2003	0.001	0.001	0.015	No
	Manganese	7/30/2003	0.364	0.005	0	Yes
	Nickel	7/30/2003	0.021	0.005	0	Yes
	Phosphate	7/30/2003	0.5	0.1	0	Yes
	Sulfate	7/30/2003	307	1	0	Yes
	Total Nitrates + Nitrites	7/30/2003	986	0.1	0	Yes
	Zinc	7/30/2003	0.006	0.005	0	Yes
/W05-073003-0	Ammonia-N	7/30/2003	320	10	0	Yes
	Arsenic	7/30/2003	0.005	0.001	0.005	No
	Chloride	7/30/2003	193	1	0	Yes

Sample ID	Analyte	Date	Analytical Results (mg/L)	MDL (mg/L)	MTCA Method A CUL (mg/L)	Further Evaluation Necessary?
MW05-073003-0	Copper	7/30/2003	0.005	0.005	0	Yes
	Iron	7/30/2003	0.91	0.02	0	Yes
	Manganese	7/30/2003	1.62	0.005	0	Yes
	Nickel	7/30/2003	0.013	0.005	0	Yes
	Sulfate	7/30/2003	624	1	0	Yes
	Total Nitrates + Nitrites	7/30/2003	593	0.1	0	Yes
MW06-073003-0	Arsenic	7/30/2003	0.025	0.001	0.005	Yes
	Chloride	7/30/2003	11	1	0	Yes
	Iron	7/30/2003	0.11	0.02	0	Yes
	Manganese	7/30/2003	0.057	0.005	0	Yes
	Phosphate	7/30/2003	0.4	0.1	0	Yes
	Sulfate	7/30/2003	55	1	0	Yes
	Total Nitrates + Nitrites	7/30/2003	8.2	0.1	0	Yes
MW07-072903-0	Arsenic	7/29/2003	0.011	0.001	0.005	Yes
	Chloride	7/29/2003	10	1	0	Yes
	Iron	7/29/2003	0.11	0.02	0	Yes
	Manganese	7/29/2003	0.006	0.005	0	Yes
	Phosphate	7/29/2003	0.3	0.1	0	Yes
	Sulfate	7/29/2003	47	1	0	Yes
	Total Nitrates + Nitrites	7/29/2003	3.6	0.1	0	Yes

Notes:

*MTCA Method A Cleanup Levels from Cleanup and Risk Calculation (CLARC) Workbook version 3.1.

Table 4-3

Maximum Detected Soil Concentrations Against MTCA Method C Cleanup Levels*

Analyte	Analytical Result (mg/kg)	MTCA Method C CUL (mg/kg)	Exceed MTCA Method C CUL?	Comment
1,2,4-Trimethylbenzene	8	175000	No	Standard Method C CUL was calculated.
1,3,5-Trimethylbenzene	4	175000	No	Standard Method C CUL was calculated.
2-Methylnaphthalene	1.1	70000	No	Method C CUL for naphthalene is used for comparison.
4,4'-DDE	6	386	No	
Ammonia-N	5550	350000	No	Method C CUL for nitrate-N is used for comparison.
Antimony	0.53	1400	No	
Cadmium	18.4	1750	No	
Chloride	733	0	NA	
Chromium	64.8	10500	No	Standard Method C CUL was calculated using hexavalent chromium values.
Copper	70.3	130000	No	
Dinoseb	0.055	3500	No	
Nickel	88.2	70000	No	
Nitrate-N	1530	350000	No	
Nitrite-N	27	350000	No	
NWTPH-Gx	400	121	Yes	Standard Method C CUL was calculated.
p,m-Xylene	6	7000000	No	
Phosphate	30200	0	NA	
Silver	0.92	17500	No	
Sulfate	8400	0	NA	

Monday, September 29, 2003

Analyte	Analytical Result (mg/kg)		Exceed MTCA Method C CUL?	Comment
Thallium	0.44	245	No	
Zinc	2520	1050000	No	

Notes:

* MTCA Method C Cleanup Levels from Cleanup and Risk Calculation (CLARC) Workbook version 3.1. NA - MTCA Method C Cleanup Levels are not applicable.

nalyte	Analytical Result (mg/L)	MTCA Method C CUL (mg/L)	Exceed MTCA Method C CUL?	Comment
2-Dichloropropane	0.105	0.00643	Yes	
1-Dichlorophenol	0.03	0.105	No	
nmonia-N	850	3.5	Yes	Method C CUL for nitrate-N is used for comparison
senic	0.102	0.000583	Yes	
loride	193	250	No	Washington State Board of Health secondary MCL.
lorobenzene	0.078	0.35	No	
ppper	0.009	1.3	No	
n	0.91	0.3	Yes	Washington State Board of Health secondary MCL.
anganese	1.62	4.9	No	
ckel	0.021	0.7	No	
Kylene	0.001	35	No	
m-Xylene	0.001	35	No	
osphate	85	0	NA	
lfate	624	250	Yes	Washington State Board of Health secondary MCL.
tal Nitrates + Nitrites	986	3.5	Yes	
C	0.01	10.5	No	

Table 4-4

Maximum Detected Crown dwater Concentrations Against MTCA Method C Cleanup I wals*

Notes:

*MTCA Method C Cleanup Levels from Cleanup and Risk Calculation (CLARC) Workbook version 3.1. NA - MTCA Method C Cleanup Levels are not applicable.

Nitrogen Detected in Soil Boring SamplesSample IDAnalyteResults (mg/kg)MDLQualified						
_	Апшун	nesuus (mg/kg)	MUL	Qualifier		
A1-SB-001-0.5'	Ammonia-N	5	1			
	Nitrate-N	68	10			
	Nitrite-N	0	10	U		
	Sum of Nitrogen	73				
1-SB-001-4.5'	Ammonia-N	3	1			
	Nitrate-N	55	10			
	Nitrite-N	0	10	U		
	Sum of Nitrogen	58				
1-SB-001-9.0'	Ammonia-N	683	1			
	Nitrate-N	29	10			
	Nitrite-N	0	10	U		
	Sum of Nitrogen	712				
A1-SB-002-0.5'	Ammonia-N	400	1			
	Nitrate-N	63	10			
	Nitrite-N	0	10	U		
	Sum of Nitrogen	463				
A1-SB-002-4.5'	Ammonia-N	968	1			
	Nitrate-N	321	10			
	Nitrite-N	0	10	U		
	Sum of Nitrogen	1289				
1-SB-002-9.0'	Ammonia-N	100	1			
	Nitrate-N	162	10			
	Nitrite-N	0	10	U		
	Sum of Nitrogen	262				
1-SB-003-0.5	Ammonia-N	631	1			
	Nitrate-N	80	10			
	Nitrite-N	0	10	U		
	Sum of Nitrogen	711				
1-SB-003-4.5'	Ammonia-N	583	1			
	Nitrate-N	87	10			
	Nitrite-N	0	10	U		
	Sum of Nitrogen	670				
\1-SB-003-9.0'	Ammonia-N	0	6	U		
	Nitrate-N	47	10	-		
	Nitrite-N	0	10	U		

Table 4-5

Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
	Sum of Nitrogen	47		
A1-SB-004-0.5'	Ammonia-N	404	1	
	Nitrate-N	310	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	714		
A1-SB-004-4.5'	Ammonia-N	426	1	
	Nitrate-N	351	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	777		
A1-SB-004-9.0'	Ammonia-N	57	1	
	Nitrate-N	59	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	116		
A1-SB-005-0.5'	Ammonia-N	0	5	U
	Nitrate-N	161	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	161		
A1-SB-005-4.5'	Ammonia-N	735	5	
	Nitrate-N	983	10	
	Nitrite-N	17	10	
	Sum of Nitrogen	1735		
A1-SB-005-7.5'	Ammonia-N	1630	10	
	Nitrate-N	255	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	1885		
A1-SB-006-0.5'	Ammonia-N	1110	10	
	Nitrate-N	127	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	1237		
A1-SB-006-0.5'-1	Ammonia-N	1030	10	
	Nitrate-N	127	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	1157		
A1-SB-006-4.5'	Ammonia-N	1520	10	
	Nitrate-N	672	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	2192		
	Ammonia-N	1460	10	
A1-SB-006-7.5'	Ammonia-N	1400	10	

Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
A1-SB-006-7.5'	Nitrate-N	130	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	1590		
A1-SB-007-0.5'	Ammonia-N	0	4	U
	Nitrate-N	172	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	172		
A1-SB-007-4.5'	Ammonia-N	281	5	
	Nitrate-N	405	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	686		
A1-SB-007-7.5'	Ammonia-N	1200	10	
	Nitrate-N	86	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	1286		
A1-SB-008-0.5'	Ammonia-N	207	5	
	Nitrate-N	148	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	355		
A1-SB-008-4.5'	Ammonia-N	0	4	U
	Nitrate-N	486	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	486		
A1-SB-008-7.5'	Ammonia-N	337	5	
	Nitrate-N	318	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	655		
A2-SB-001-0.5'	Ammonia-N	283	1	
	Nitrate-N	294	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	577		
A2-SB-001-4.5'	Ammonia-N	0	5	U
	Nitrate-N	83	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	83		
A2-SB-001-9.0'	Ammonia-N	0	5	U
	Nitrate-N	0	10	U
	Nitrite-N	0	10	U

Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
	Sum of Nitrogen	0		
A2-SB-002-0.5'	Ammonia-N	273	1	
	Nitrate-N	214	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	487		
A2-SB-002-4.5'	Ammonia-N	0	4	U
	Nitrate-N	47	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	47		
A2-SB-002-9.0'	Ammonia-N	0	4	U
	Nitrate-N	12	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	12		
A2-SB-002-9.0'-1	Ammonia-N	0	4	U
	Nitrate-N	11	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	11		
A2-SB-003-0.5'	Ammonia-N	117	1	
	Nitrate-N	137	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	254		
A2-SB-003-4.5'	Ammonia-N	7	1	
	Nitrate-N	59	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	66		
A2-SB-003-9.0'	Ammonia-N	31	1	
	Nitrate-N	13	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	44		
A2-SB-004-0.5'	Ammonia-N	5550	10	
	Nitrate-N	1530	10	
	Nitrite-N	27	10	
	Sum of Nitrogen	7107		
A2-SB-004-4.5'	Ammonia-N	920	1	
	Nitrate-N	217	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	1137		
A2-SB-004-9.0'	Ammonia-N	372	1	
	tomhor 24 2003	Table 4-5		Page 4 of 11

A2-SB-005-0.5'	Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrite-N Nitrite-N Nitrate-N Nitrate-N Nitrate-N Nitrate-N Nitrate-N	139 0 511 100 65 0 165 0 71 0 71 0 71 370 202	10 10 5 10 10 7 10 10 10	U U U U
A2-SB-005-0.5'	Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrate-N Nitrate-N	511 100 65 0 165 0 71 0 71 0 71 370	5 10 10 7 10 10	U U
A2-SB-005-0.5'	Ammonia-N Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrate-N	100 65 0 165 0 71 0 71 370	10 10 7 10 10	U
A2-SB-005-4.5'	Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrate-N	65 0 165 0 71 0 71 370	10 10 7 10 10	U
A2-SB-005-4.5'	Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrate-N Nitrate-N Nitrite-N	0 165 0 71 0 71 370	10 7 10 10	U
A2-SB-005-4.5'	Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N	165 0 71 0 71 370	7 10 10	U
A2-SB-005-4.5'	Ammonia-N Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N	0 71 0 71 370	10 10	
 A2SB-MW5-0.5'	Nitrate-N Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N	71 0 71 370	10 10	
A2SB-MW5-0.5'	Nitrite-N Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N	0 71 370	10	U
42SB-MW5-0.5'	Sum of Nitrogen Ammonia-N Nitrate-N Nitrite-N	71 370		U
\2SB-MW5-0.5' /	Ammonia-N Nitrate-N Nitrite-N	370	5	
I	Nitrate-N Nitrite-N		5	
I	Nitrite-N	202	-	
			10	
	~ ~ ~ ~	0	10	U
	Sum of Nitrogen	572		
A2SB-MW5-4.5'	Ammonia-N	214	5	
I	Nitrate-N	1130	10	
I	Nitrite-N	0	10	U
ļ	Sum of Nitrogen	1344		
2SB-MW5-7.5	Ammonia-N	218	5	
I	Nitrate-N	126	10	
I	Nitrite-N	0	10	U
ļ	Sum of Nitrogen	344		
A2-SB-MW6-0.5'	Ammonia-N	0	13	U
J	Nitrate-N	150	10	
I	Nitrite-N	0	10	U
:	Sum of Nitrogen	150		
A2-SB-MW6-0.5'-1		6	5	
I	Nitrate-N	121	10	
I	Nitrite-N	0	10	U
:	Sum of Nitrogen	127		
A2-SB-MW6-4.5'	Ammonia-N	0	6	U
ļ	Nitrate-N	44	10	
I	Nitrite-N	0	10	U
:	Sum of Nitrogen	44		
A2-SB-MW6-7.5'	Ammonia-N	0	6	U
ļ	Nitrate-N	0	10	U
ļ	Nitrite-N	0	10	U

Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
	Sum of Nitrogen	0		
A3-SB-001-0.5'	Ammonia-N	5	1	
	Nitrate-N	13	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	18		
A3-SB-001-4.5'	Ammonia-N	61	1	
	Nitrate-N	66	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	127		
A3-SB-001-9.0'	Ammonia-N	0	7	U
	Nitrate-N	0	10	U
	Nitrite-N	0	10	U
	Sum of Nitrogen	0		
A3-SB-002-0.5'	Ammonia-N	0	5	U
	Nitrate-N	0	10	U
	Nitrite-N	0	10	U
	Sum of Nitrogen	0		
A3-SB-002-4.5'	Ammonia-N	0	3	U
	Nitrate-N	13	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	13		
A3-SB-002-7.5'	Ammonia-N	0	5	U
	Nitrate-N	0	10	U
	Nitrite-N	0	10	U
	Sum of Nitrogen	0		
\4-SB-001-0.5'	Ammonia-N	0	4	U
	Nitrate-N	43	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	43		
A4-SB-001-4.5'	Ammonia-N	3	1	
	Nitrate-N	38	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	41		
4-SB-001-9.0'	Ammonia-N	0	5	U
	Nitrate-N	0	10	U
	Nitrite-N	0	10	U
	Sum of Nitrogen	0		
A4-SB-002-0.5'	Ammonia-N	680	1	

Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
A4-SB-002-0.5'	Nitrate-N	124	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	804		
A4-SB-002-0.5'-1	Ammonia-N	624	1	
	Nitrate-N	139	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	763		
A4-SB-002-4.5'	Ammonia-N	0	6	U
	Nitrate-N	28	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	28		
A4-SB-002-9.0'	Ammonia-N	0	4	U
	Nitrate-N	0	10	U
	Nitrite-N	0	10	U
	Sum of Nitrogen	0		
A4-SB-003-0.5'	Ammonia-N	0	5	U
	Nitrate-N	12	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	12		
A4-SB-003-0.5'-1	Ammonia-N	0	5	U
	Nitrate-N	12	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	12		
A4-SB-003-4.5'	Ammonia-N	0	4	U
	Nitrate-N	14	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	14		
\4-SB-003-9.0'	Ammonia-N	0	4	U
	Nitrate-N	0	10	U
	Nitrite-N	0	10	U
	Sum of Nitrogen	0		
4-SB-004-0.5'	Ammonia-N	0	4	U
	Nitrate-N	104	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	104		
44-SB-004-4.5'	Ammonia-N	0	6	U
	Nitrate-N	33	10	
	Nitrite-N	0	10	U

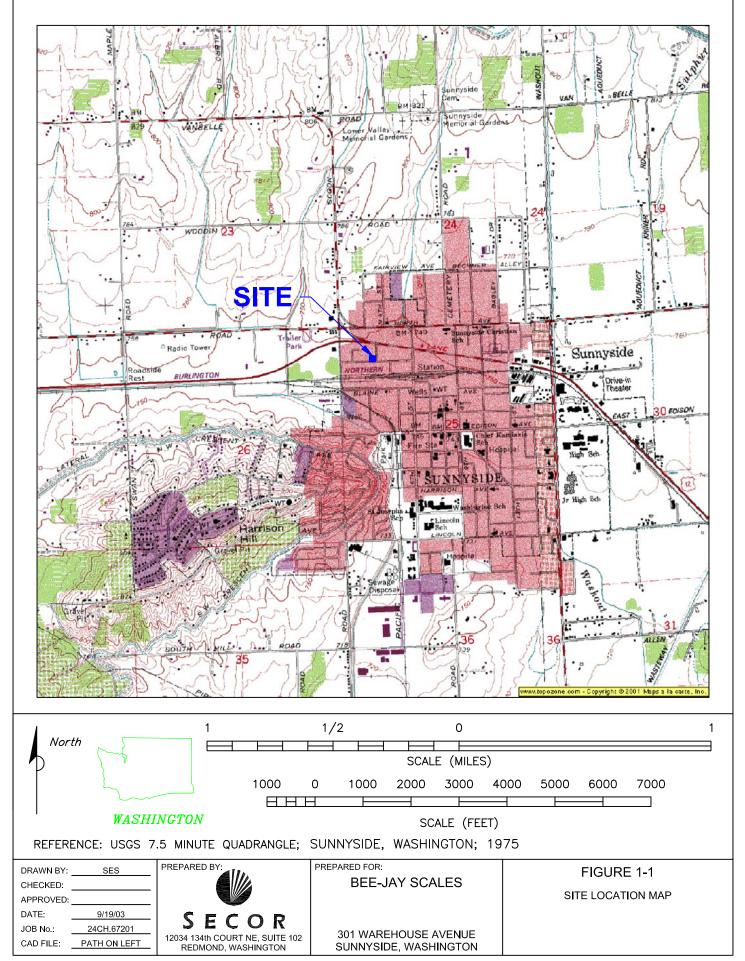
Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
	Sum of Nitrogen	33		
A4-SB-004-9.0'	Ammonia-N	0	5	U
	Nitrate-N	62	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	62		
A4-SB-005-0.5'	Ammonia-N	304	1	
	Nitrate-N	104	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	408		
44-SB-005-0.5'-1	Ammonia-N	328	1	
	Nitrate-N	104	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	432		
A4-SB-005-4.5'	Ammonia-N	4	1	
	Nitrate-N	188	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	192		
A4-SB-005-9.0'	Ammonia-N	0	5	U
	Nitrate-N	20	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	20		
A4-SB-006-0.5'	Ammonia-N	326	1	
	Nitrate-N	203	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	529		
45-SS-001-0.5'	Ammonia-N	417	1	
	Nitrate-N	271	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	688		
A5-SS-002-0.5'	Ammonia-N	4	1	
	Nitrate-N	74	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	78		
A5-SS-003-0.5'	Ammonia-N	4	1	
	Nitrate-N	566	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	570		
A5-SS-004-0.5'	Ammonia-N	86	1	
		<i>T 1 1 4 5</i>		

Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
A5-SS-004-0.5'	Nitrate-N	234	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	320		
A5-SS-005-0.5'	Ammonia-N	0	4	U
	Nitrate-N	561	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	561		
\6-SB-001-0.5'	Ammonia-N	0	4	U
	Nitrate-N	30	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	30		
A6-SB-001-4.5'	Ammonia-N	0	5	U
	Nitrate-N	114	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	114		
A6-SB-001-7.5'	Ammonia-N	15	1	
	Nitrate-N	54	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	69		
A6-SB-002b-0.5'	Ammonia-N	2710	10	
	Nitrate-N	591	10	
	Nitrite-N	16	10	
	Sum of Nitrogen	3317		
A6-SB-002b-0.5'-1	Ammonia-N	1890	10	
	Nitrate-N	396	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	2286		
A6-SB-002b-4.5'	Ammonia-N	972	1	
	Nitrate-N	734	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	1706		
A6-SB-002b-9.0'	Ammonia-N	338	5	
	Nitrate-N	33	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	371		
A6-SB-003-0.5'	Ammonia-N	684	5	
	Nitrate-N	53	10	

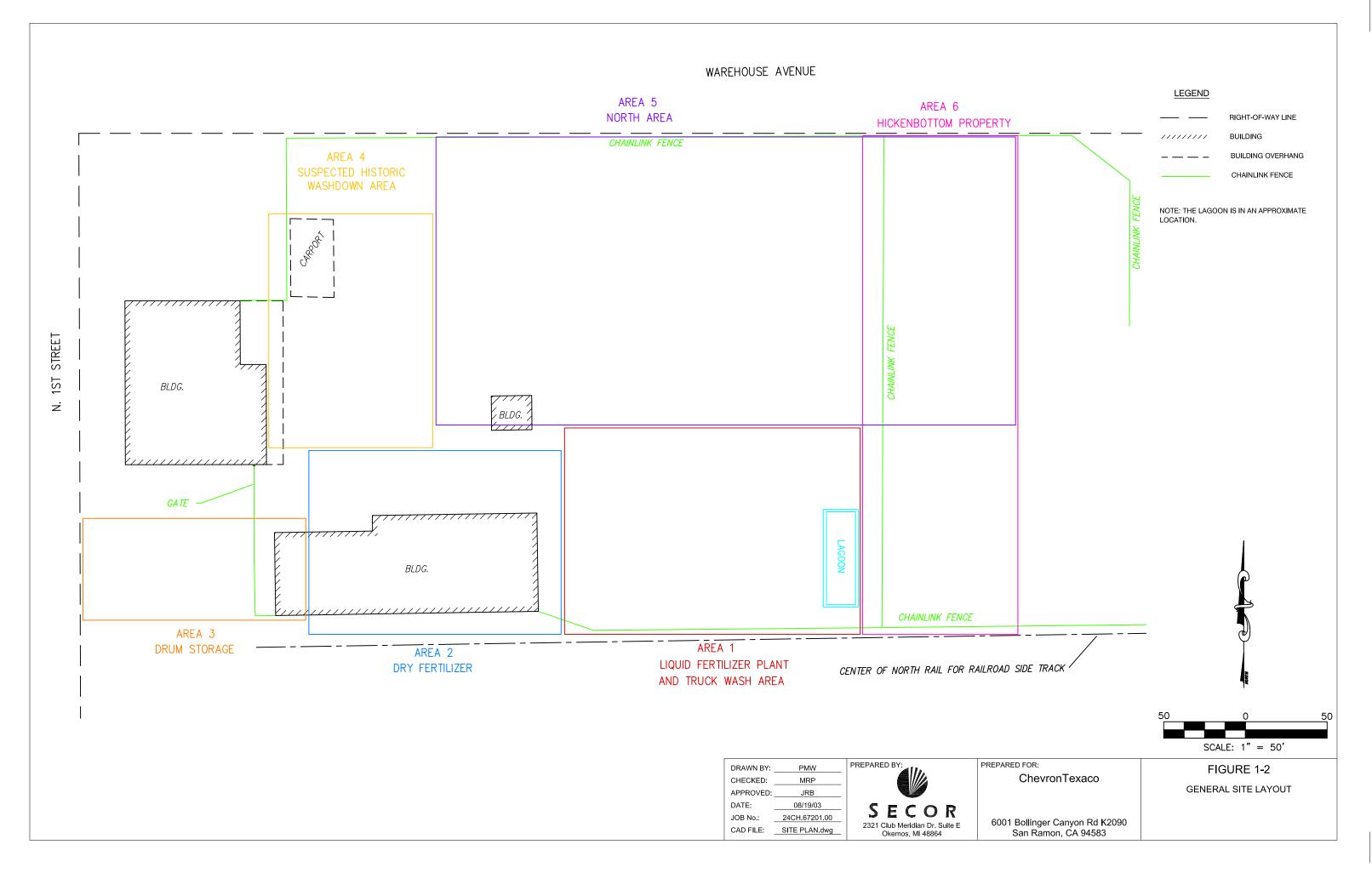
Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
	Sum of Nitrogen	737		
A6-SB-003-0.5'-1	Ammonia-N	162	5	
	Nitrate-N	43	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	205		
A6-SB-003-4.5'	Ammonia-N	0	6	U
	Nitrate-N	42	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	42		
A6-SB-003-7.5'	Ammonia-N	117	5	
	Nitrate-N	34	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	151		
\6-SB-004-0.5'	Ammonia-N	0	5	U
	Nitrate-N	28	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	28		
A6-SB-004-0.5'-1	Ammonia-N	0	6	U
	Nitrate-N	23	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	23		
A6-SB-004-4.5'	Ammonia-N	120	5	
	Nitrate-N	686	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	806		
46-SB-004-6.0'	Ammonia-N	589	5	
	Nitrate-N	95	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	684		
A6-SB-005-0.5'	Ammonia-N	10	5	
	Nitrate-N	0	10	U
	Nitrite-N	0	10	U
	Sum of Nitrogen	10		
A6-SB-005-4.5'	Ammonia-N	5	5	
	Nitrate-N	96	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	101		
A6-SB-005-7.5'	Ammonia-N	0	5	U

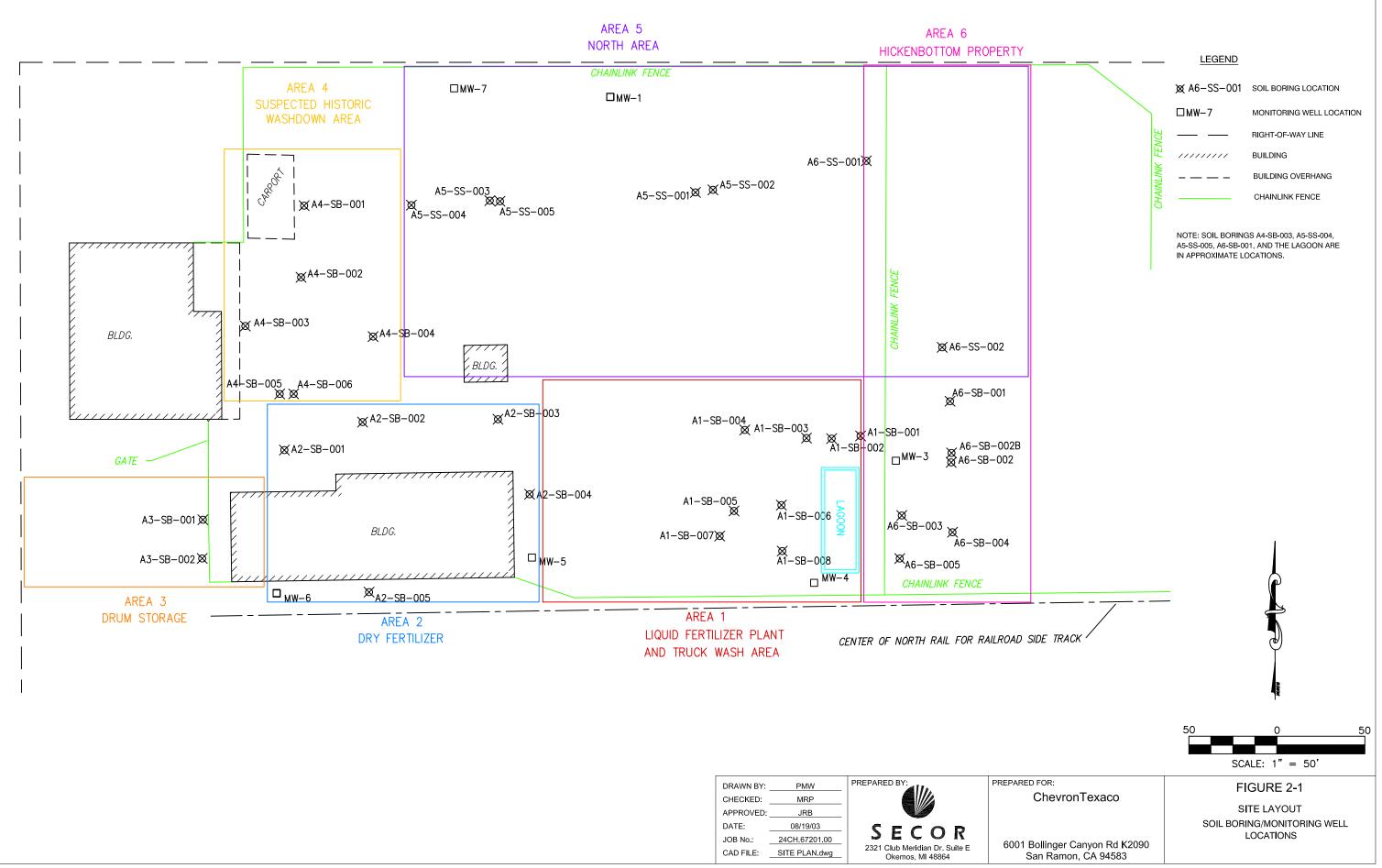
Sample ID	Analyte	Results (mg/kg)	MDL	Qualifier
A6-SB-005-7.5'	Nitrate-N	0	10	U
	Nitrite-N	0	10	U
	Sum of Nitrogen	0		
A6-SS-001-0.5'	Ammonia-N	0	5	U
	Nitrate-N	22	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	22		
A6-SS-002-0.5'	Ammonia-N	0	5	U
	Nitrate-N	32	10	
	Nitrite-N	0	10	U
	Sum of Nitrogen	32		
Grand Total		49248		

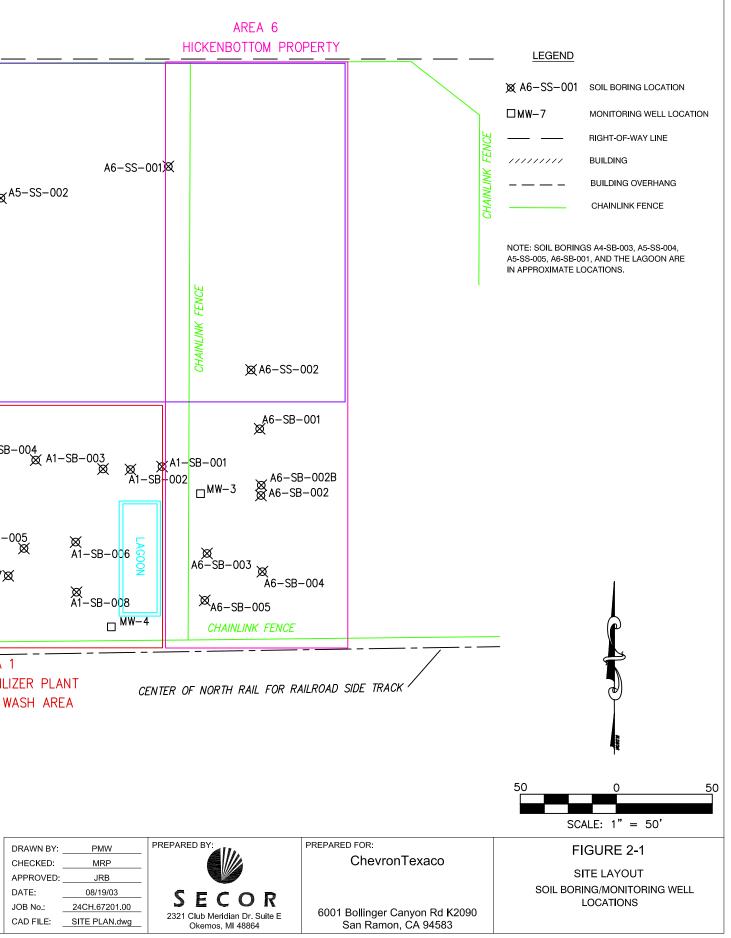
Sample ID	Analyte	Date	Results (mg/kg)	(mg/kg)	Qualifier
1-SB-001-0.5'	Iron	7/7/2003	8750	1	
	Sulfate	7/7/2003	0	100	U
1-SB-001-4.5'	Sulfate	7/7/2003	0	100	U
1-SB-001-9.0'	Sulfate	7/7/2003	0	100	U
1-SB-002-0.5'	Iron	7/7/2003	6860	1	
	Sulfate	7/7/2003	0	100	U
1-SB-002-4.5'	Sulfate	7/7/2003	0	100	U
1-SB-002-9.0'	Sulfate	7/7/2003	0	100	U
1-SB-003-0.5'	Iron	7/7/2003	7170	1	
	Sulfate	7/7/2003	0	100	U
1-SB-003-4.5'	Sulfate	7/7/2003	0	100	U
1-SB-003-9.0'	Sulfate	7/7/2003	0	100	U
1-SB-004-0.5'	Iron	7/7/2003	6330	1	
	Sulfate	7/7/2003	0	100	U
1-SB-004-4.5'	Sulfate	7/7/2003	225	100	
1-SB-004-9.0'	Sulfate	7/7/2003	0	100	U
1-SB-005-0.5'	Iron	7/10/2003	5580	1	
	Sulfate	7/10/2003	0	100	U
1-SB-005-4.5'	Sulfate	7/10/2003	199	100	
1-SB-005-7.5'	Sulfate	7/10/2003	0	100	U
1-SB-006-0.5'	Iron	7/10/2003	9310	1	
	Sulfate	7/10/2003	0	100	U
1-SB-006-0.5'-1	Iron	7/10/2003	8770	1	
	Sulfate	7/10/2003	0	100	U
1-SB-006-4.5'	Sulfate	7/10/2003	0	100	U
1-SB-006-7.5'	Sulfate	7/10/2003	0	100	U
1-SB-007-0.5'	Iron	7/10/2003	5630	1	_
	Sulfate	7/10/2003	0	100	U
1-SB-007-4.5'	Sulfate	7/10/2003	116	100	-
1-SB-007-7.5	Sulfate	7/10/2003	0	100	U
1-SB-008-0.5'	Iron	7/10/2003	6230	1	-
	Sulfate	7/10/2003	0	100	U
1-SB-008-4.5'	Sulfate	7/10/2003	114	100	C
1-SB-008-7.5'	Sulfate	7/10/2003	138	100	
2-SB-001-0.5'	Iron	7/8/2003	6870	1	
2 22 33 0.0	Sulfate	7/8/2003	934	100	
2-SB-001-4.5'	Sulfate	7/8/2003	224	100	
2-SB-001-9.0'	Sulfate	7/8/2003	0	100	U
2-SB-001-9.0	Iron	7/8/2003	6220	1	0
2-00-002-0.0	Sulfate	7/8/2003	1640	100	

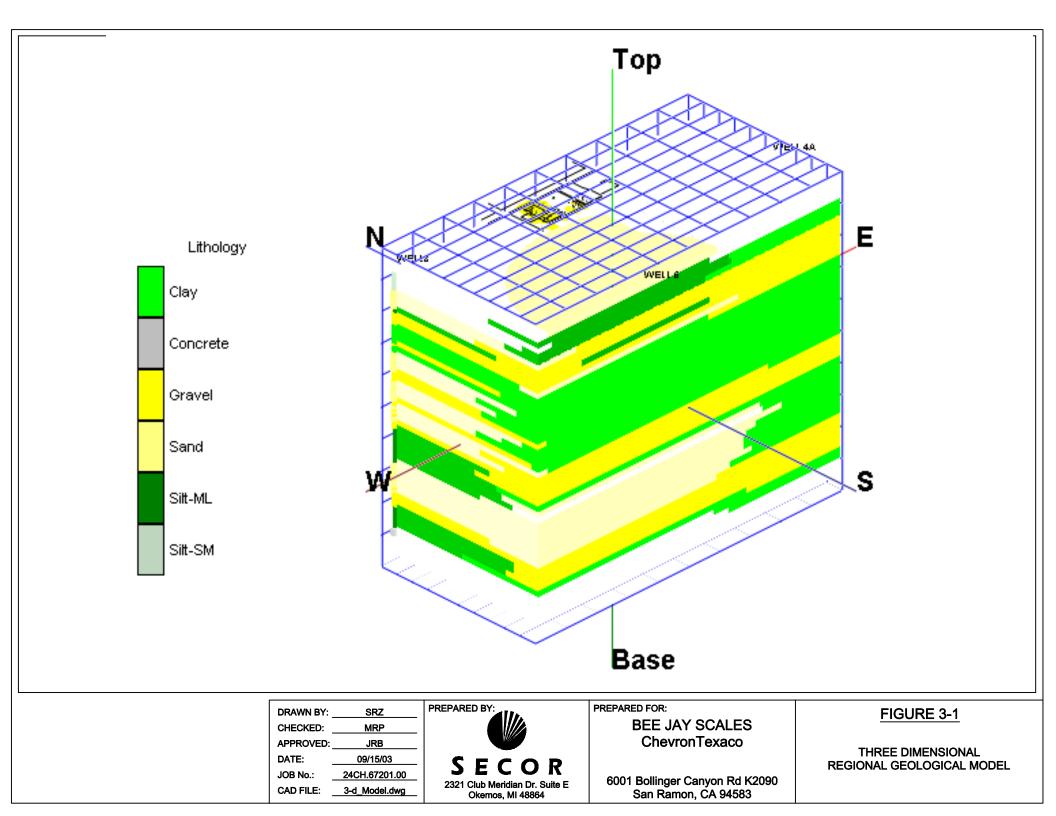

Table 4-6Iron and Sulfate Concentrations in Soil

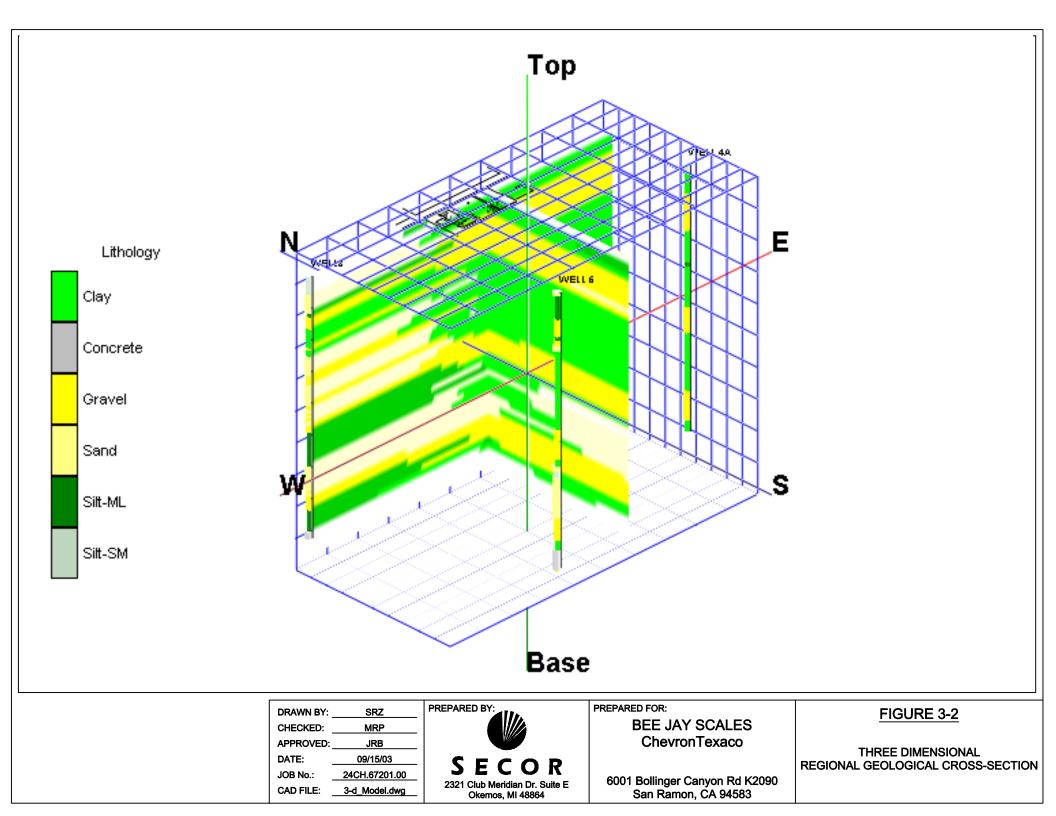
Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	Qualifier
2-SB-002-4.5'	Sulfate	7/8/2003	150	100	2
2-SB-002-9.0'	Sulfate	7/8/2003	0	100	U
2-SB-002-9.0'-1	Sulfate	7/8/2003	0	100	U
2-SB-003-0.5'	Iron	7/7/2003	6000	1	_
	Sulfate	7/7/2003	186	100	
2-SB-003-4.5'	Sulfate	7/7/2003	0	100	U
2-SB-003-9.0'	Sulfate	7/7/2003	0	100	U
2-SB-004-0.5'	Iron	7/7/2003	7870	1	
	Sulfate	7/7/2003	2900	100	
2-SB-004-4.5'	Sulfate	7/7/2003	159	100	
2-SB-004-9.0'	Sulfate	7/7/2003	214	100	
2-SB-005-0.5'	Iron	7/11/2003	6520	1	
	Sulfate	7/11/2003	148	100	
2-SB-005-4.5'	Sulfate	7/11/2003	162	100	
2SB-MW5-0.5'	Iron	7/10/2003	4450	1	
	Sulfate	7/10/2003	2990	100	
2SB-MW5-4.5'	Sulfate	7/10/2003	442	100	
2SB-MW5-7.5'	Sulfate	7/10/2003	207	100	
2-SB-MW6-0.5'	Iron	7/10/2003	6690	1	
2 00 1110 0.5	Sulfate	7/10/2003	2530	100	
2-SB-MW6-0.5'-1	Iron	7/10/2003	6550	1	
	Sulfate	7/10/2003	729	100	
2-SB-MW6-4.5'	Sulfate	7/10/2003	107	100	
2-SB-MW6-7.5'	Sulfate	7/10/2003	0	100	U
3-SB-001-0.5'	Iron	7/8/2003	5520	1	0
5-50-001-0.5	Sulfate	7/8/2003	0	100	U
3-SB-001-4.5'	Iron	7/8/2003	7670	1	0
3-30-001-4.5	Sulfate	7/8/2003	165	100	
3-SB-001-9.0'	Iron	7/8/2003	9140		
3-30-001-9.0	Sulfate			1	U
		7/8/2003	0	100	0
3-SB-002-0.5'	Iron	7/8/2003	5760	1	
	Sulfate	7/8/2003	0	100	U
3-SB-002-4.5'	Iron	7/8/2003	8100	1	
	Sulfate	7/8/2003	0	100	U
3-SB-002-7.5'	Iron	7/8/2003	8540	1	
	Sulfate	7/8/2003	0	100	U
4-SB-001-0.5'	Iron	7/8/2003	5570	1	
	Sulfate	7/8/2003	126	100	
4-SB-001-4.5'	Sulfate	7/8/2003	109	100	
4-SB-001-9.0'	Sulfate	7/8/2003	0	100	U
4-SB-002-0.5'	Iron	7/8/2003	4760	1	
	Sulfate	7/8/2003	172	100	
4-SB-002-0.5'-1	Iron	7/8/2003	4720	1	

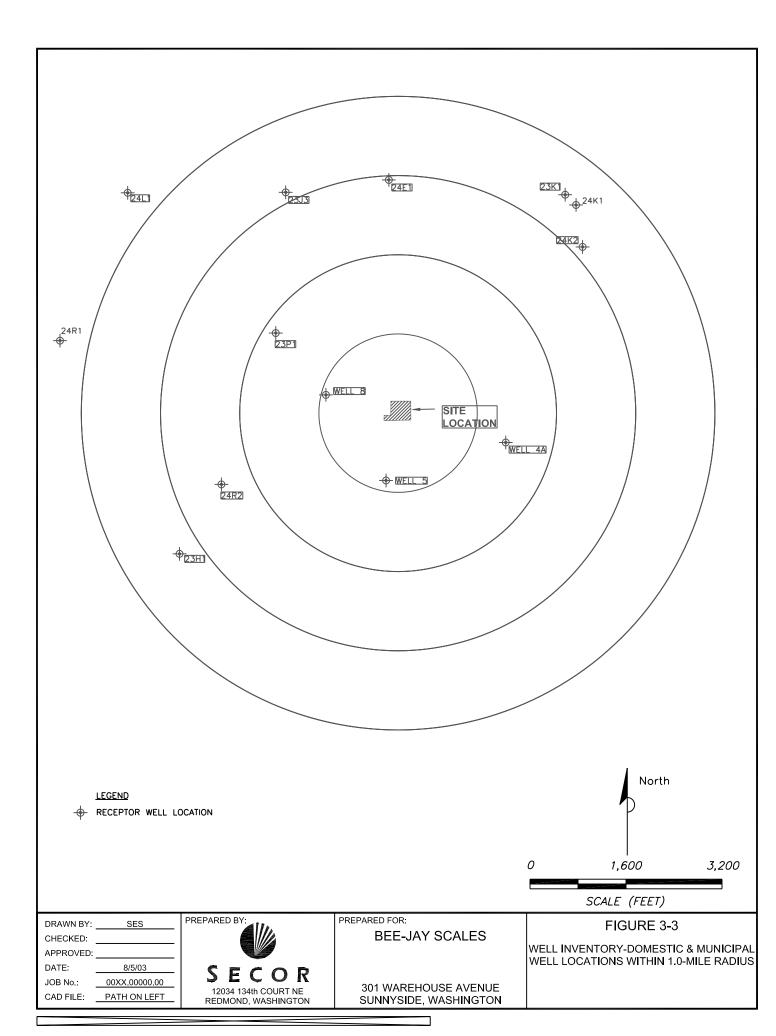

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	Qualifier
\4-SB-002-0.5'-1	Sulfate	7/8/2003	187	100	Z
\4-SB-002-4.5'	Sulfate	7/8/2003	117	100	
\4-SB-002-9.0'	Sulfate	7/8/2003	0	100	U
4-SB-003-0.5'	Iron	7/8/2003	5210	1	C
	Sulfate	7/8/2003	0	100	U
4-SB-003-0.5'-1	Iron	7/8/2003	4640	1	-
	Sulfate	7/8/2003	0	100	U
4-SB-003-4.5'	Sulfate	7/8/2003	128	100	_
4-SB-003-9.0'	Sulfate	7/8/2003	0	100	U
4-SB-004-0.5'	Iron	7/9/2003	5290	1	
	Sulfate	7/9/2003	153	100	
4-SB-004-4.5'	Sulfate	7/9/2003	0	100	U
4-SB-004-9.0'	Sulfate	7/9/2003	149	100	
4-SB-005-0.5'	Iron	7/8/2003	5000	1	
	Sulfate	7/8/2003	125	100	
4-SB-005-0.5'-1	Iron	7/8/2003	6460	1	
	Sulfate	7/8/2003	145	100	
4-SB-005-4.5'	Sulfate	7/8/2003	174	100	
4-SB-005-9.0'	Sulfate	7/8/2003	0	100	U
4-SB-006-0.5'	Iron	7/8/2003	4230	1	
	Sulfate	7/8/2003	286	100	
.5-SS-001-0.5'	Iron	7/8/2003	6100	1	
	Sulfate	7/8/2003	3550	100	
5-SS-002-0.5'	Iron	7/8/2003	7040	1	
	Sulfate	7/8/2003	120	100	
.5-SS-003-0.5'	Iron	7/8/2003	5130	1	
	Sulfate	7/8/2003	288	100	
5-SS-004-0.5'	Iron	7/8/2003	7110	1	
	Sulfate	7/8/2003	4640	100	
.5-SS-005-0.5'	Iron	7/8/2003	5200	1	
	Sulfate	7/8/2003	288	100	
.6-SB-001-0.5'	Sulfate	7/9/2003	103	100	
6-SB-001-4.5'	Sulfate	7/9/2003	314	100	
6-SB-001-7.5'	Sulfate	7/9/2003	105	100	
6-SB-002-0.5'	Iron	7/9/2003	9040	1	
6-SB-002b-0.5'	Sulfate	7/9/2003	8400	100	
6-SB-002b-0.5'-1	Sulfate	7/9/2003	3760	100	
6-SB-002b-4.5'	Sulfate	7/9/2003	2220	100	
.6-SB-002b-9.0'	Sulfate	7/9/2003	147	100	
6-SB-003-0.5'	Sulfate	7/9/2003	0	100	U
6-SB-003-0.5'-1	Sulfate	7/9/2003	0	100	U
6-SB-003-4.5'	Sulfate	7/9/2003	0	100	U
6-SB-003-7.5'	Sulfate	7/9/2003	0	100	U

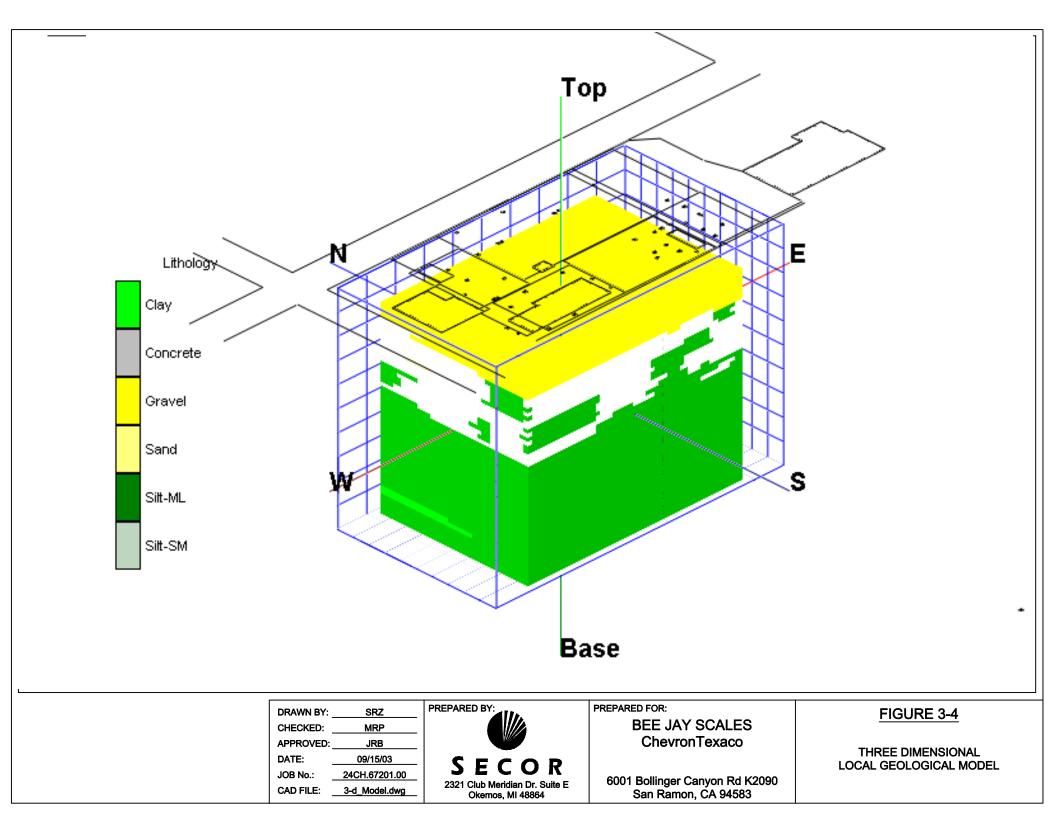

Sample ID	Analyte	Date	Analytical Results (mg/kg)	MDL (mg/kg)	Qualifier
A6-SB-004-0.5'	Sulfate	7/9/2003	141	100	
A6-SB-004-0.5'-1	Sulfate	7/9/2003	120	100	
A6-SB-004-4.5'	Sulfate	7/9/2003	137	100	
A6-SB-004-6.0'	Sulfate	7/9/2003	0	100	U
A6-SB-005-0.5'	Sulfate	7/9/2003	162	100	
A6-SB-005-4.5'	Sulfate	7/9/2003	332	100	
A6-SB-005-7.5'	Sulfate	7/9/2003	172	100	
A6-SS-001-0.5'	Iron	7/9/2003	6210	1	
	Sulfate	7/9/2003	0	100	U
A6-SS-002-0.5'	Iron	7/9/2003	7270	1	
	Sulfate	7/9/2003	171	100	

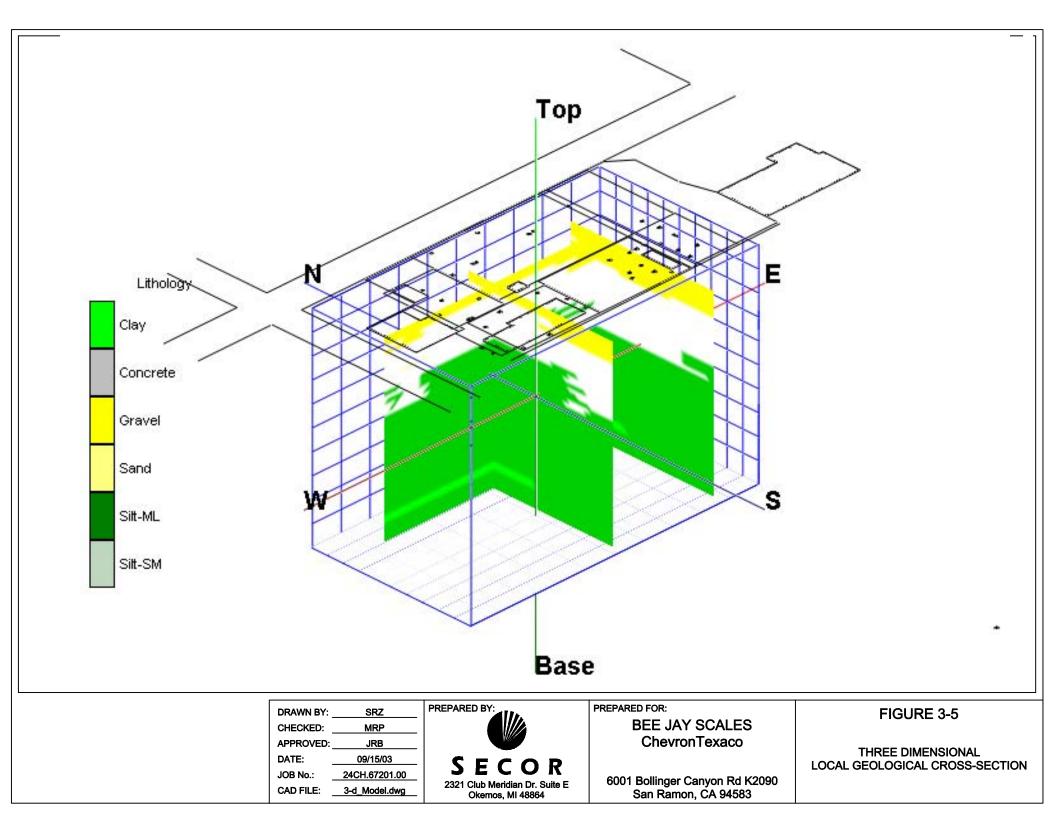

FIGURES

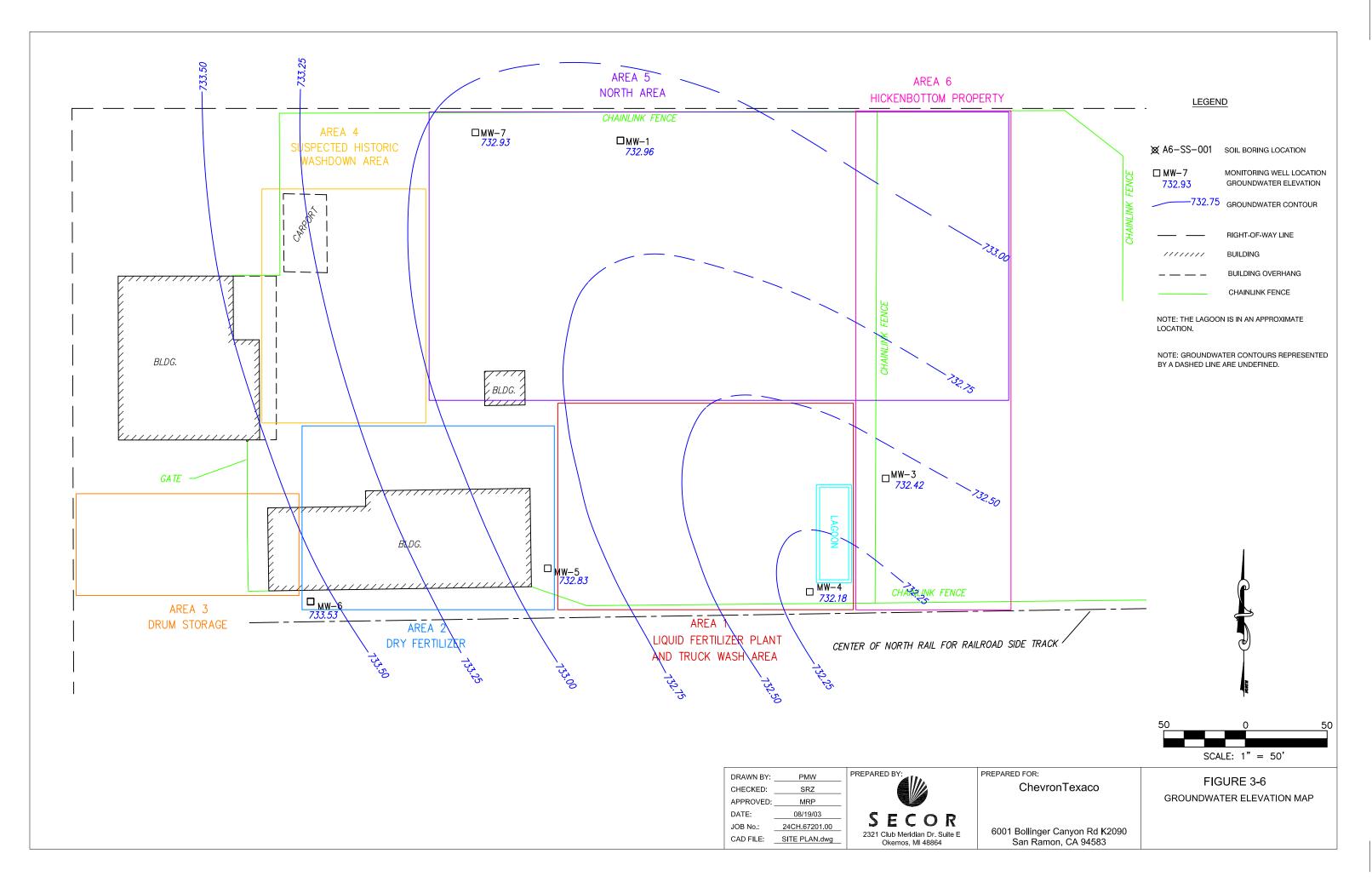


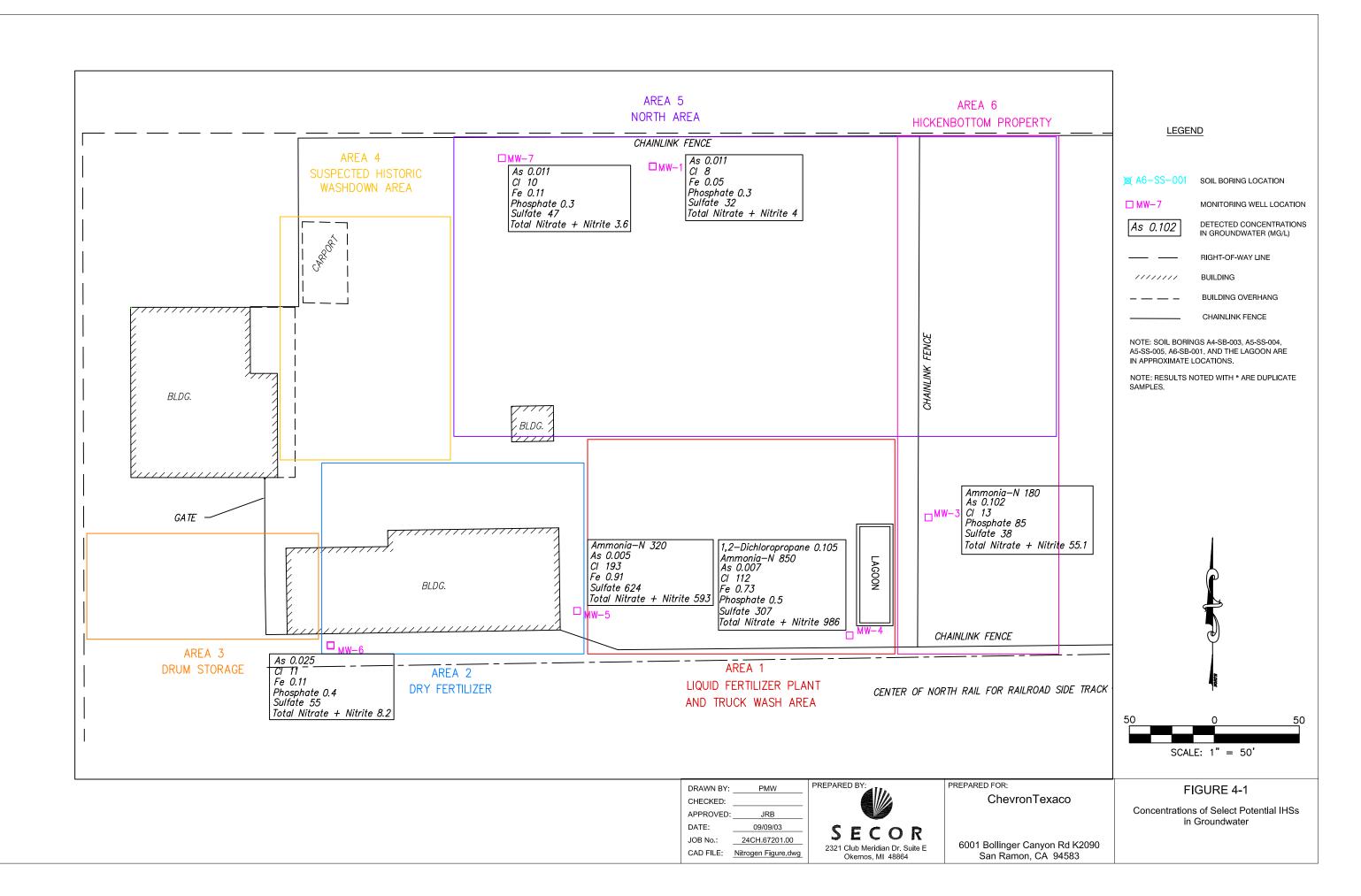

 $20030922.10174435 \ \ R:\CAD\Cad_Files\Projects\CHEVRON\sunnyside\SUNNYSIDE(M).dwg$

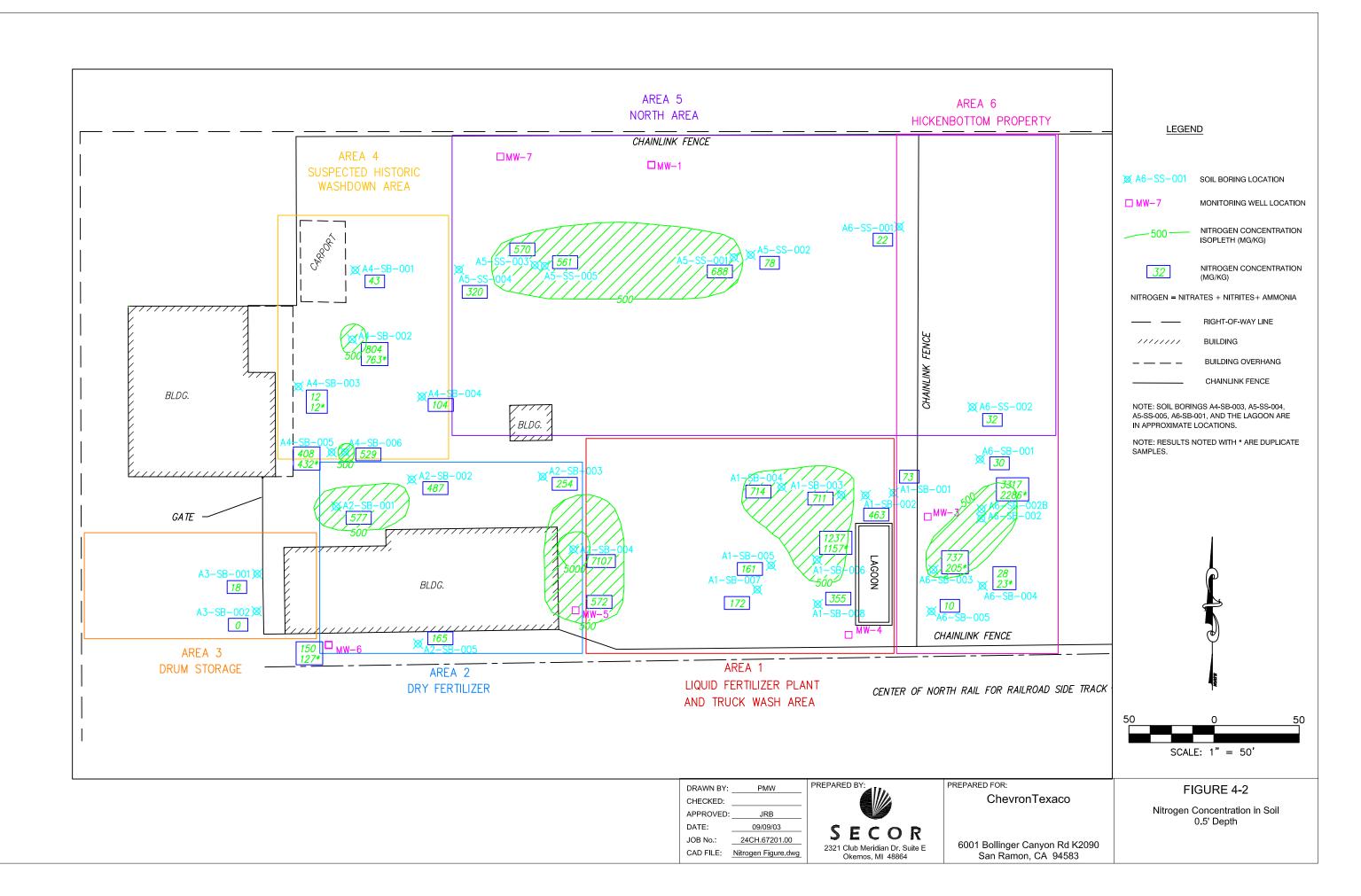


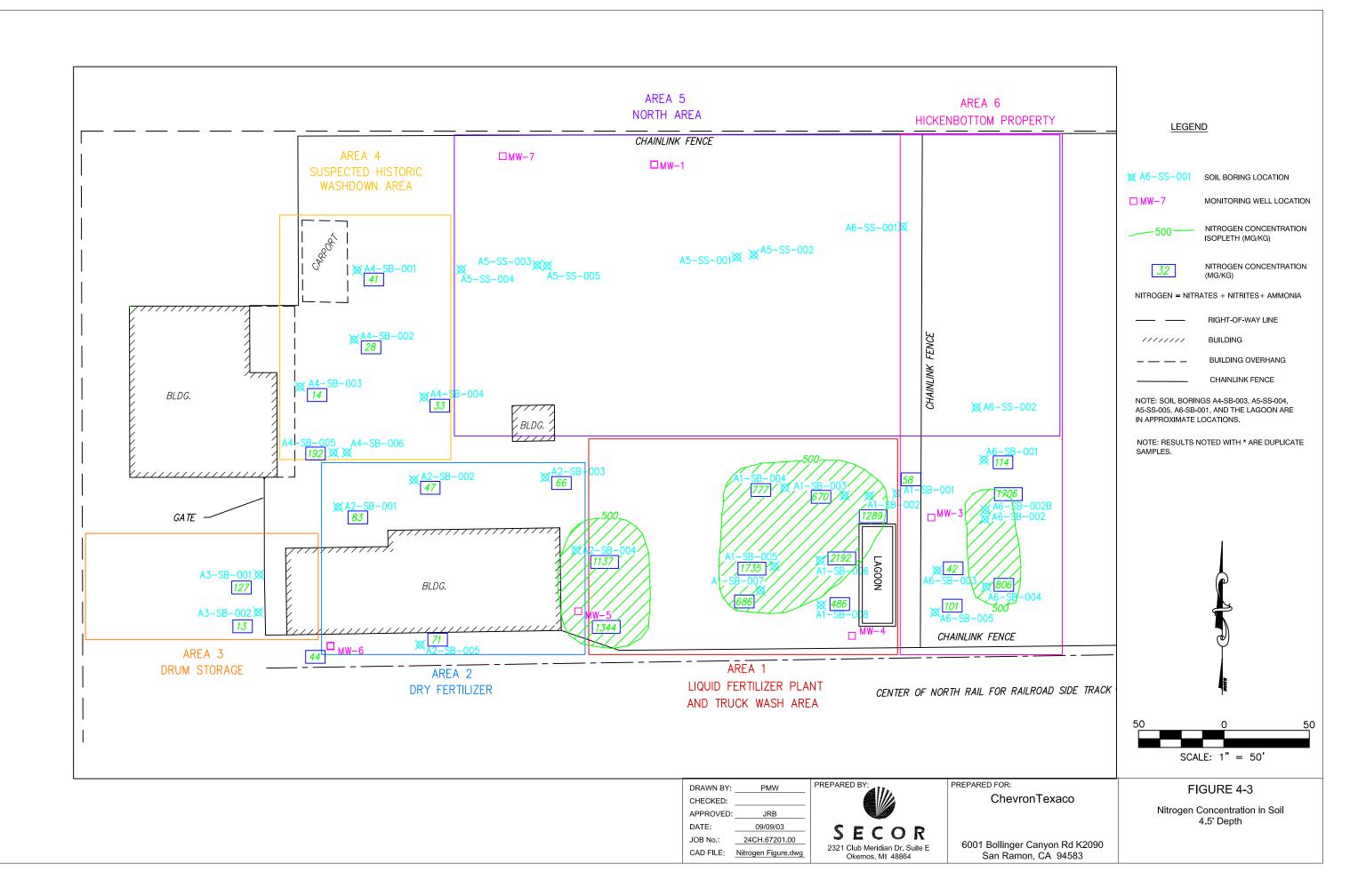


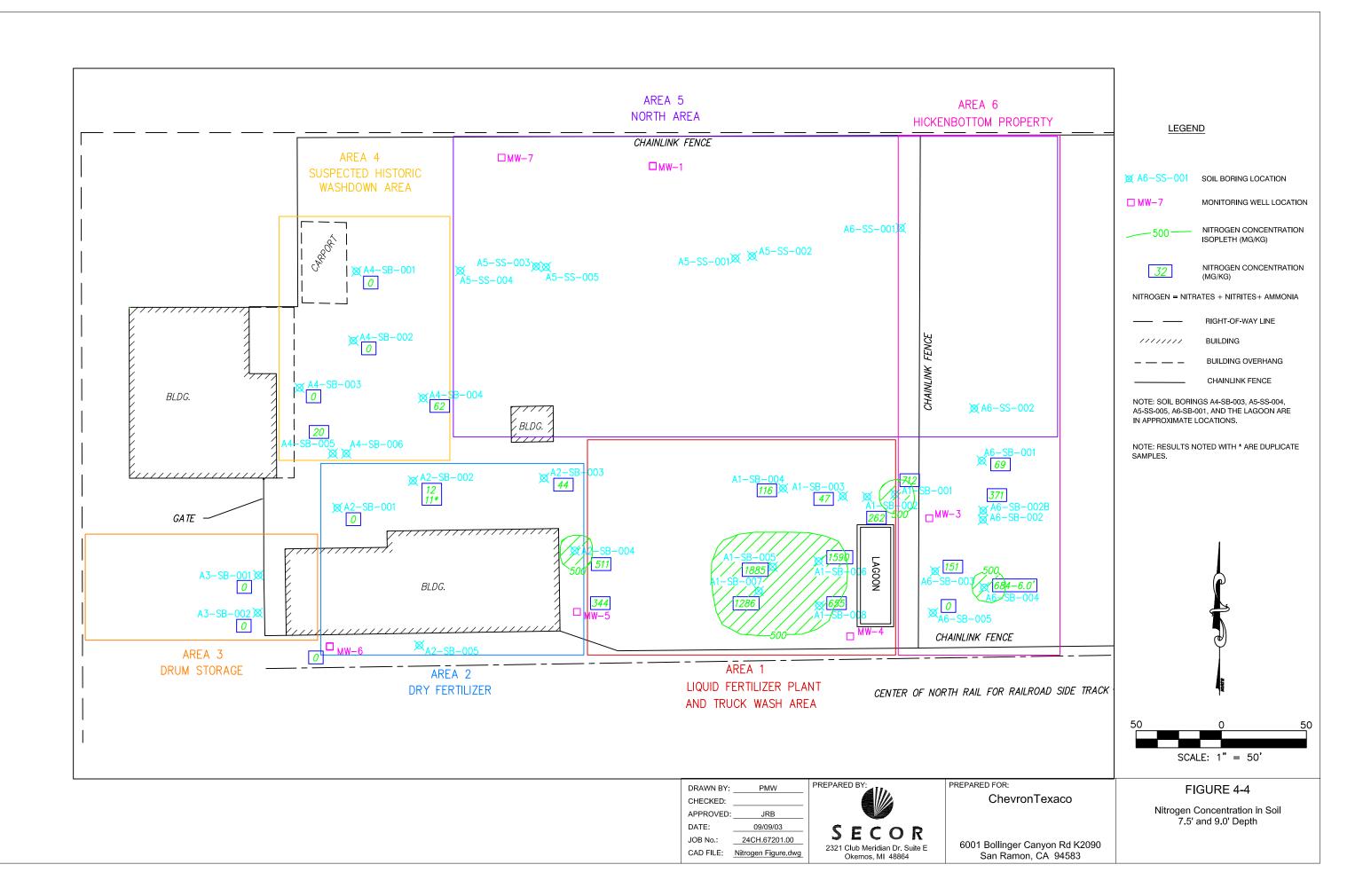


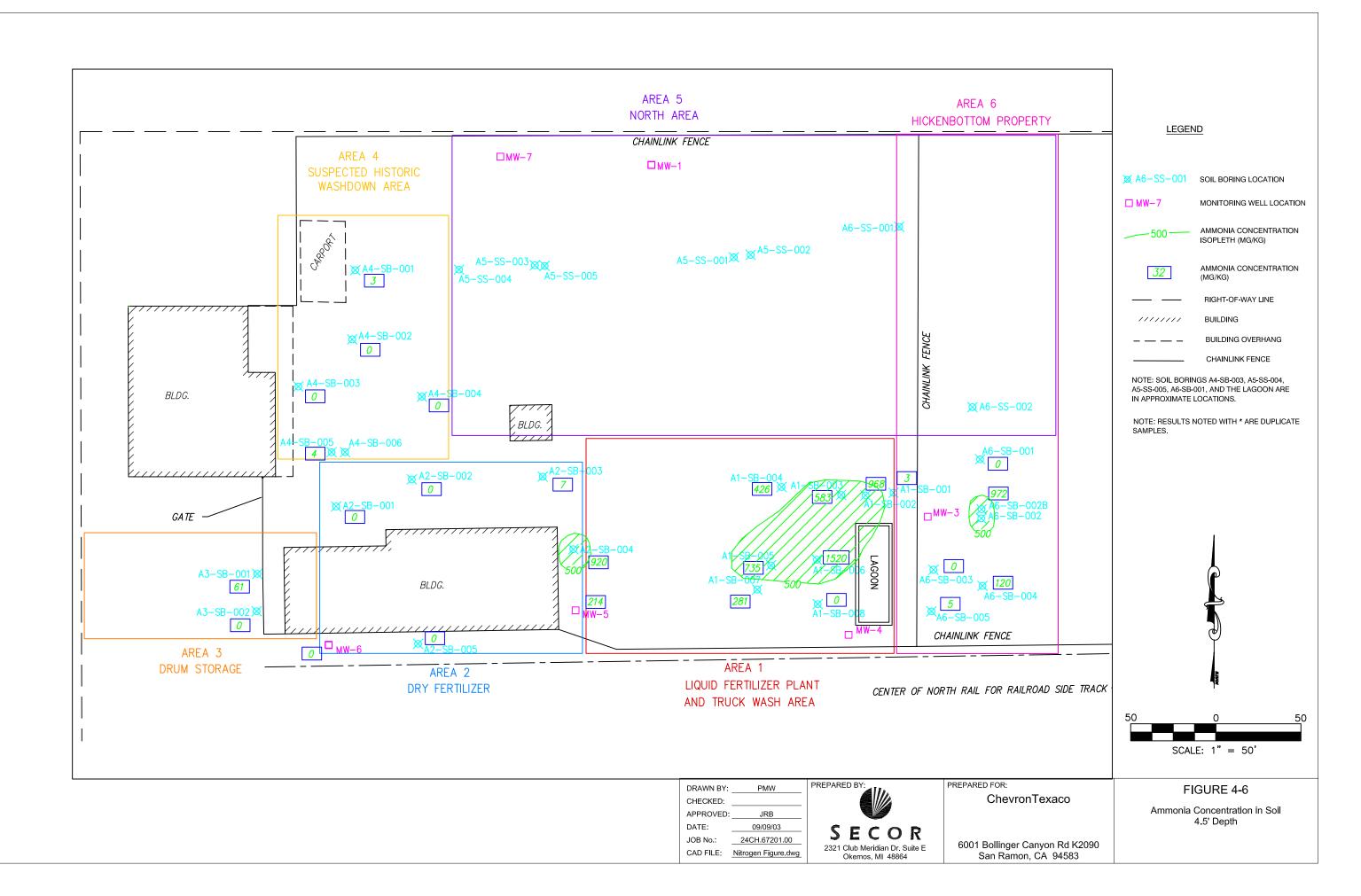


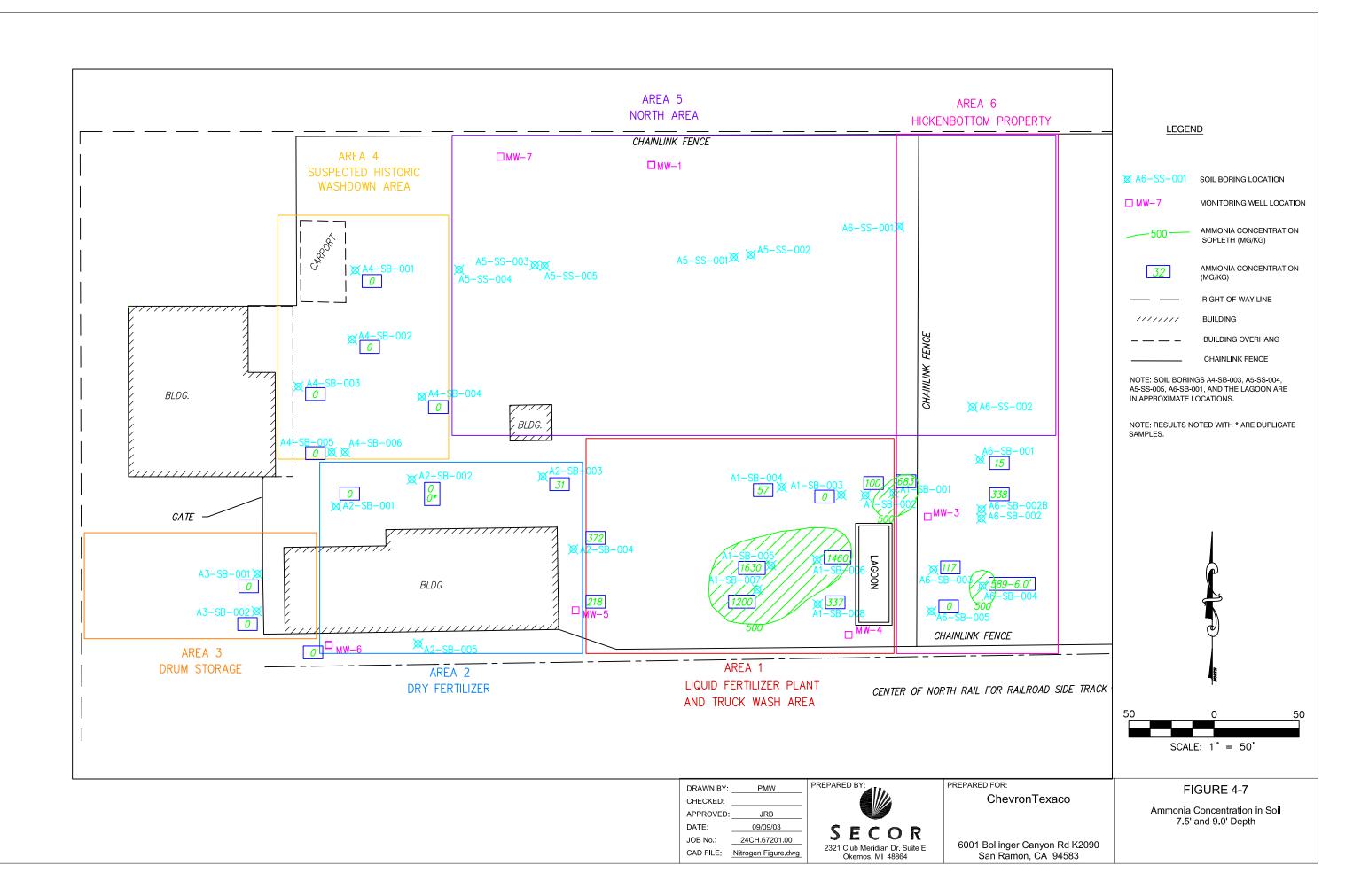


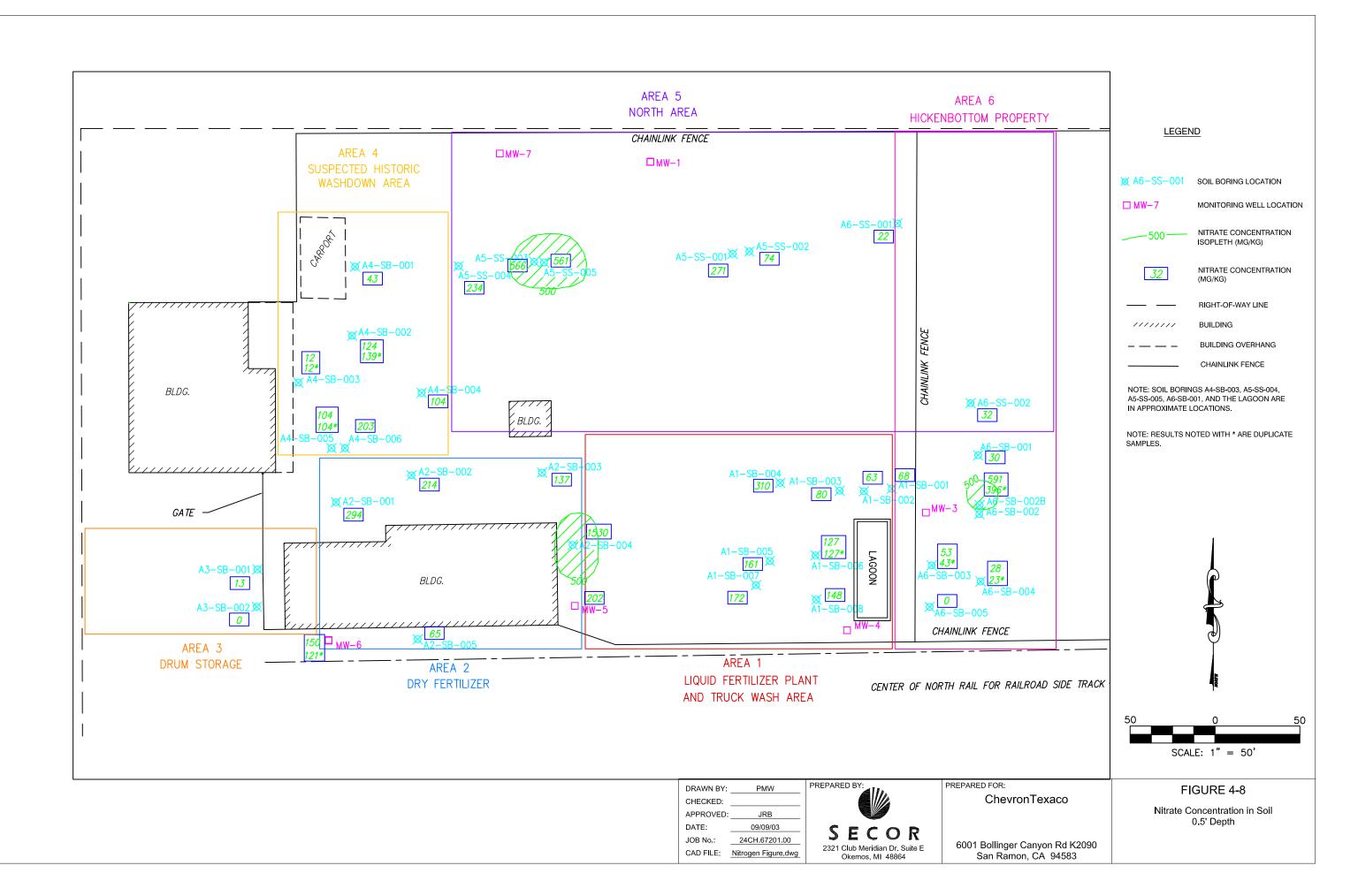


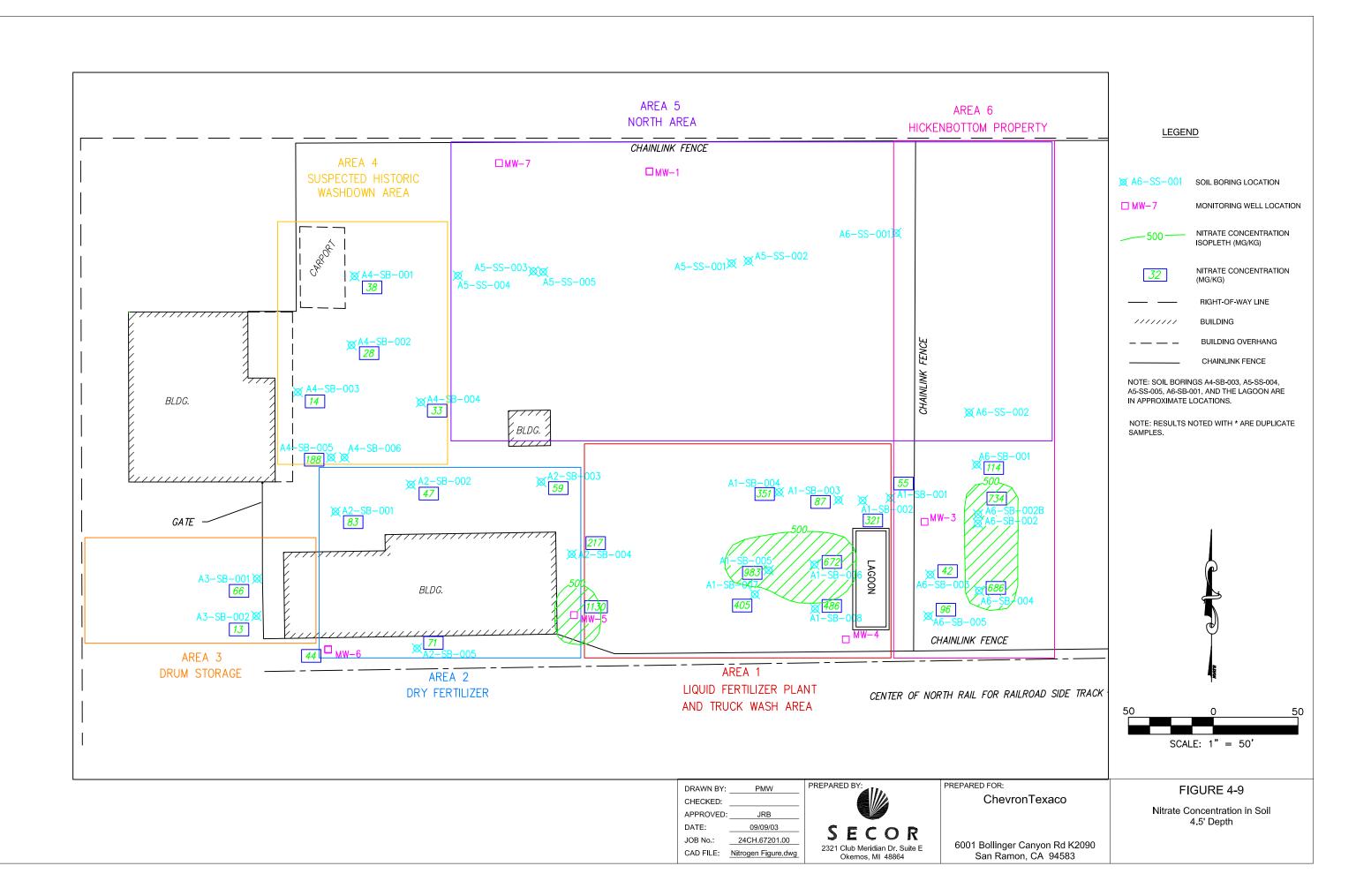


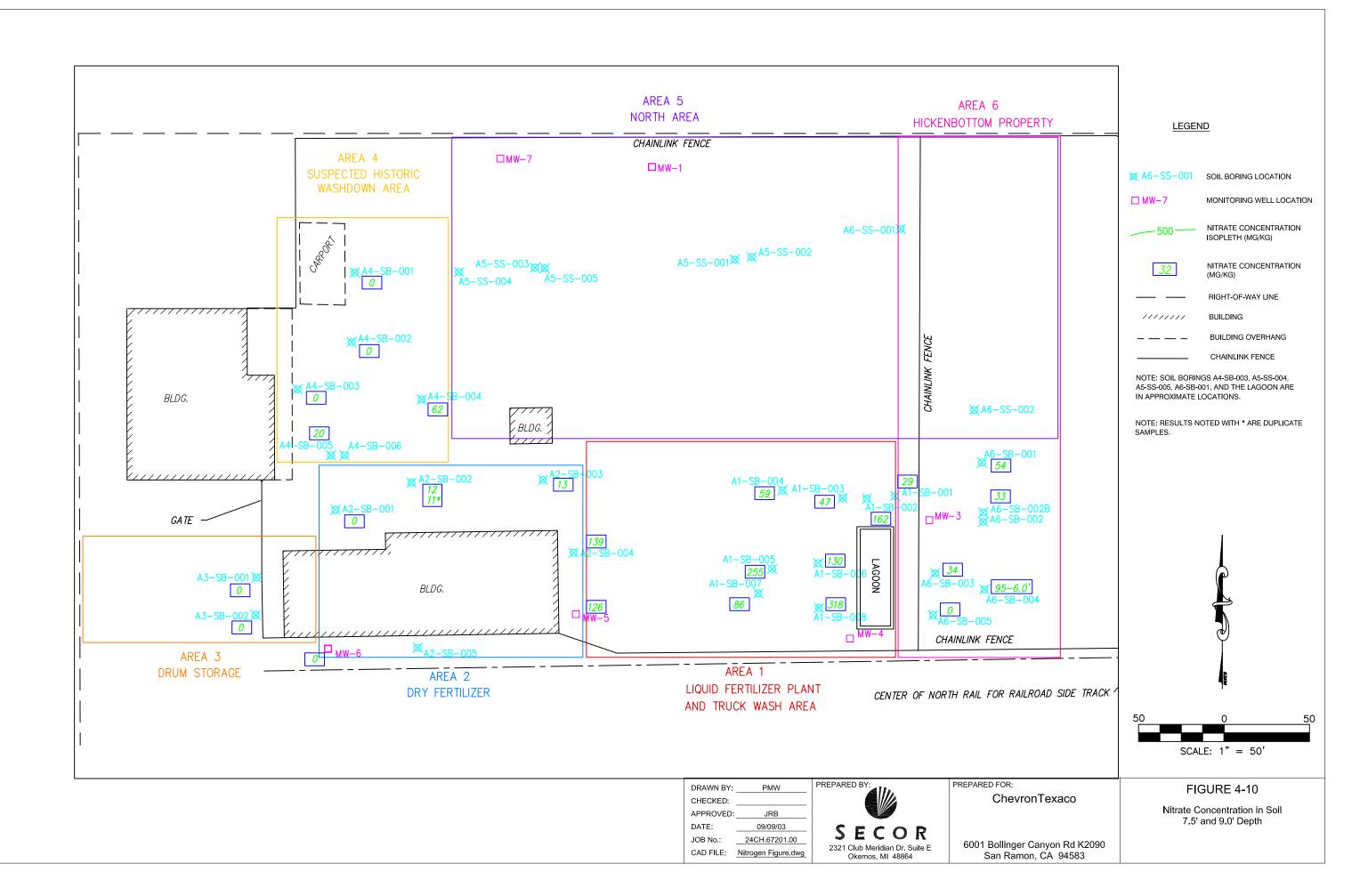


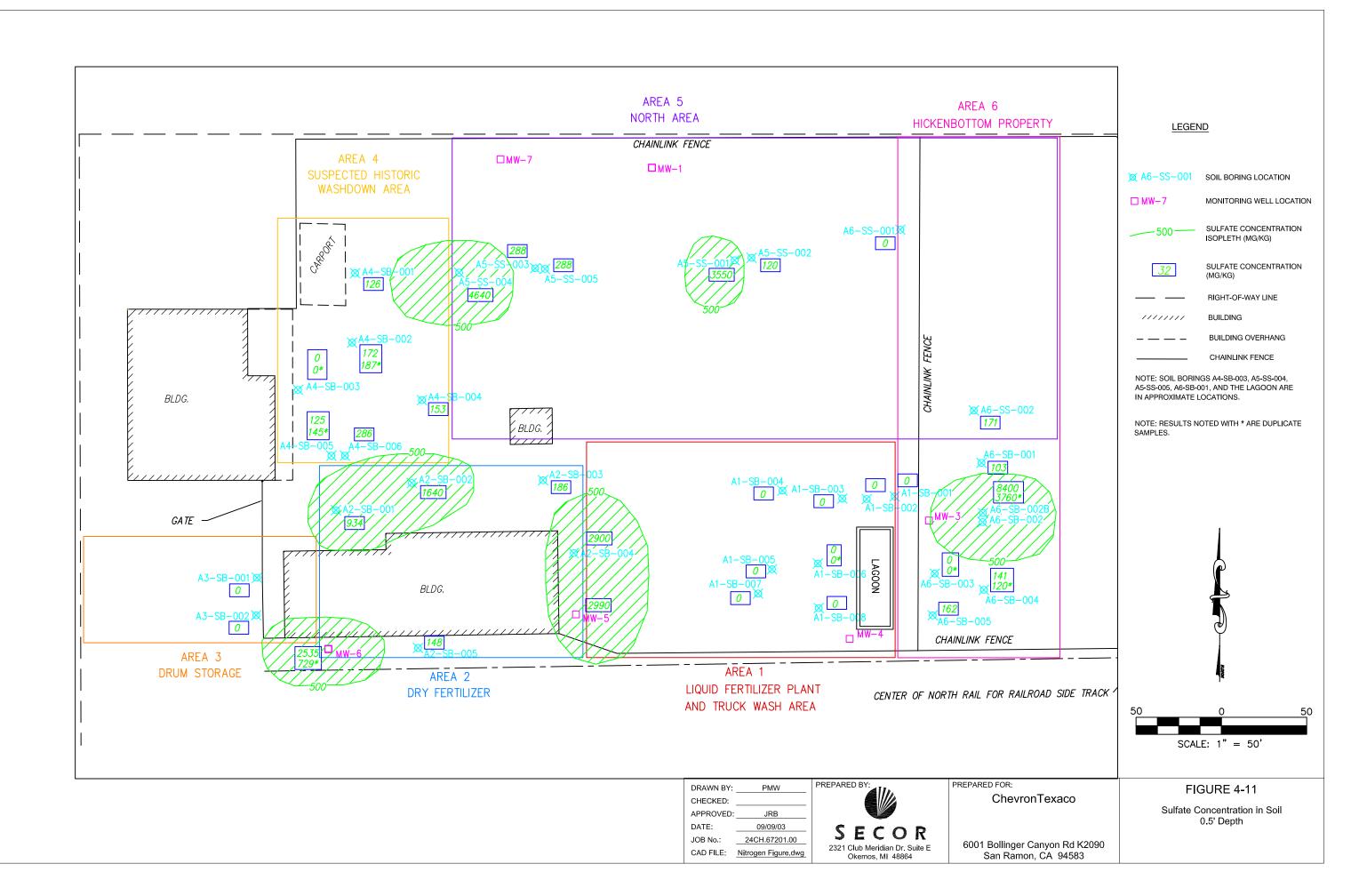


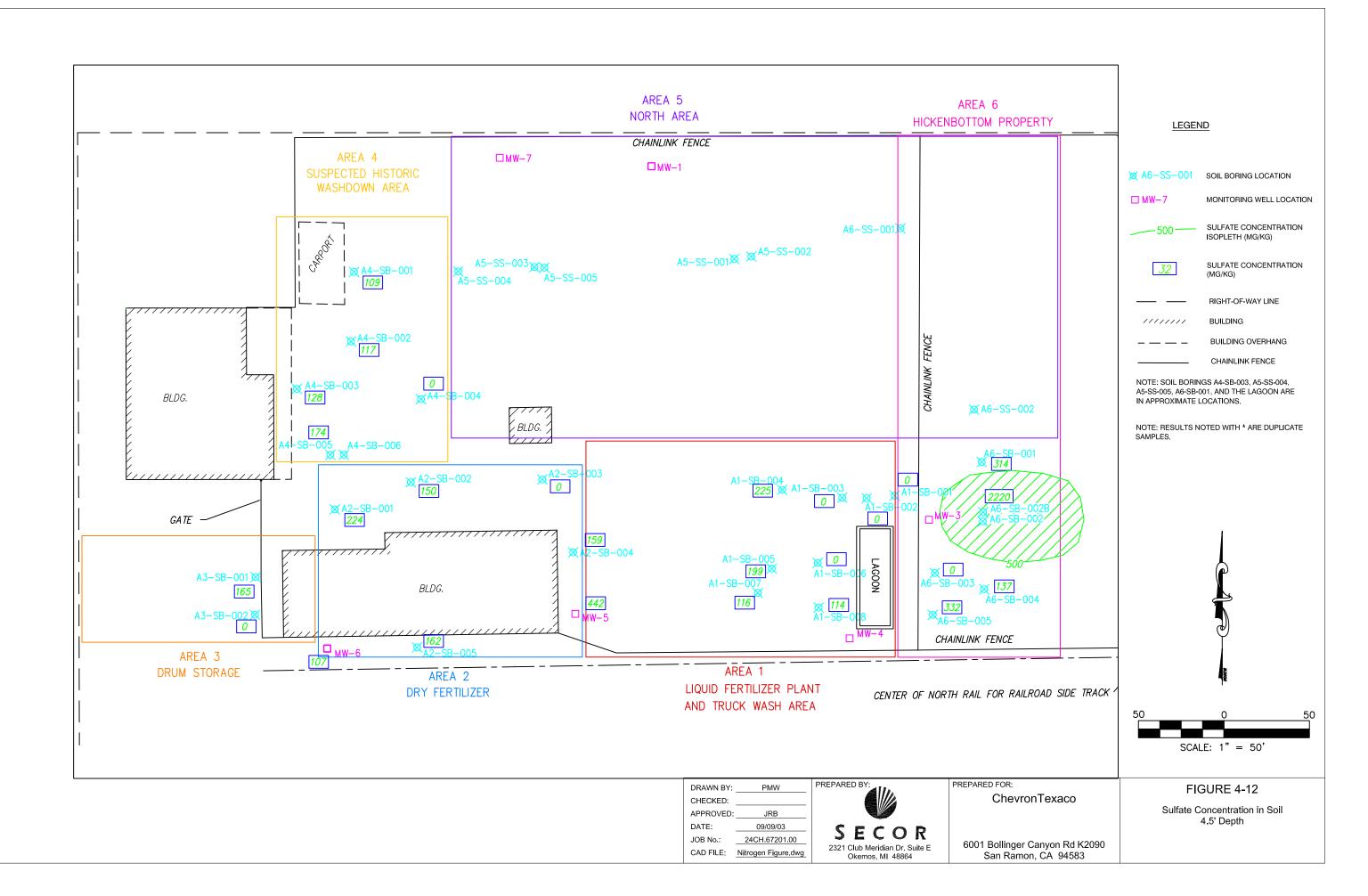


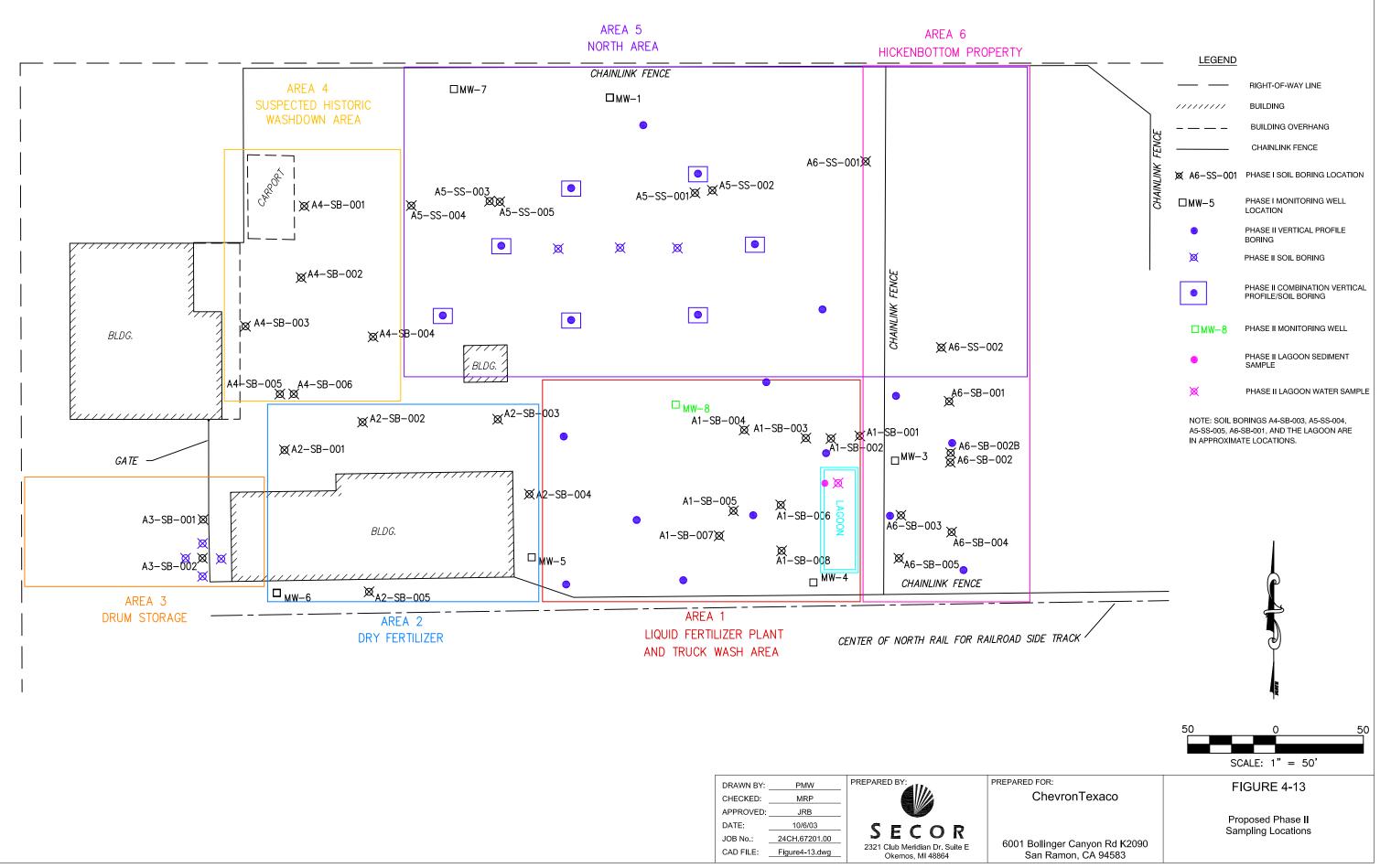


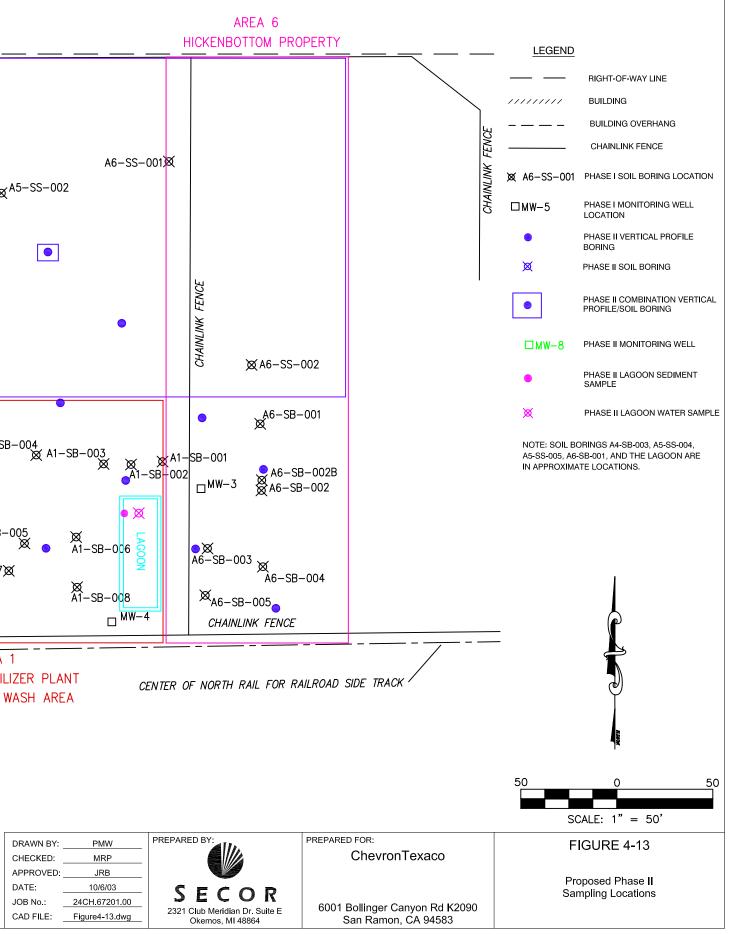


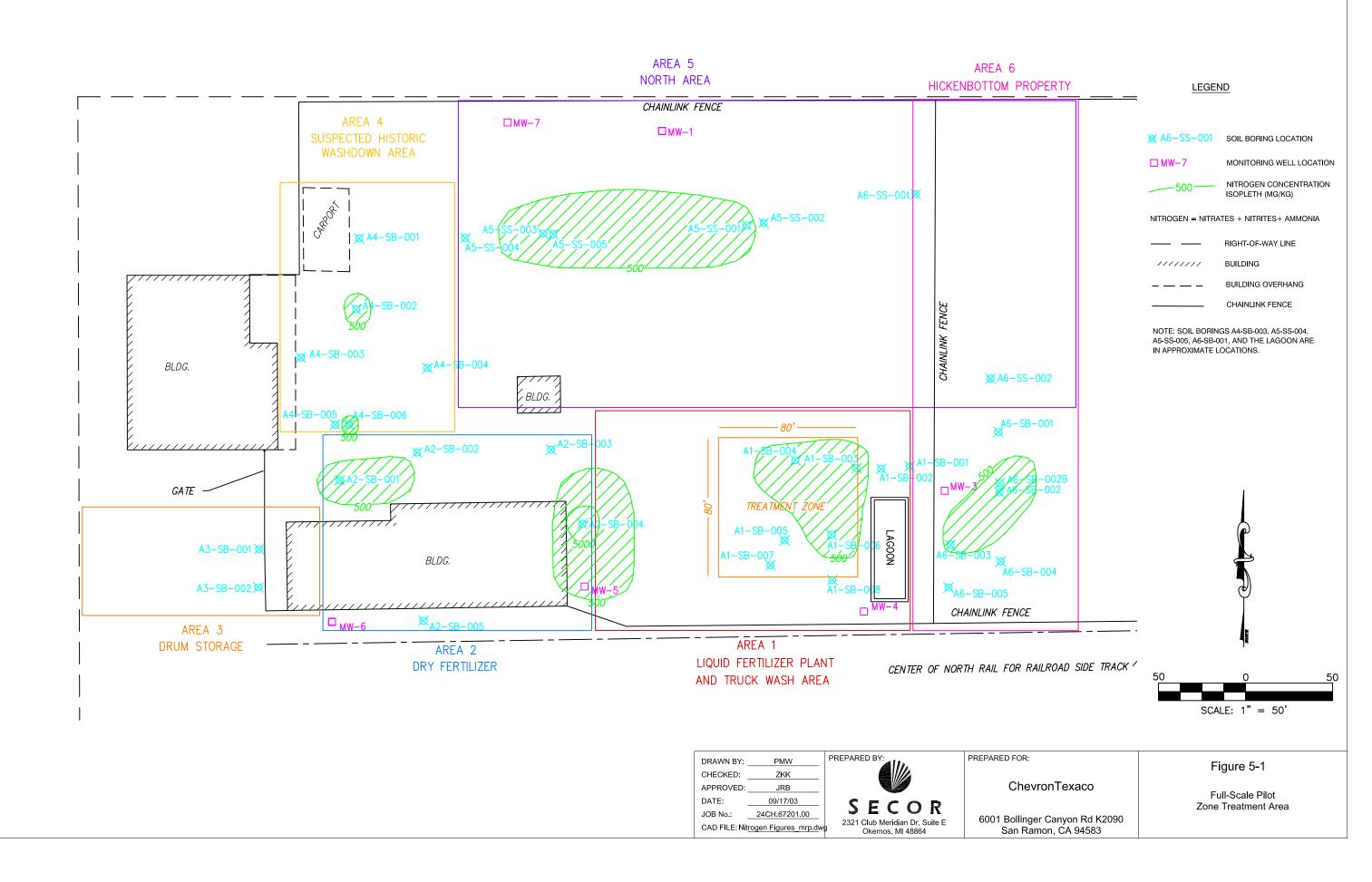


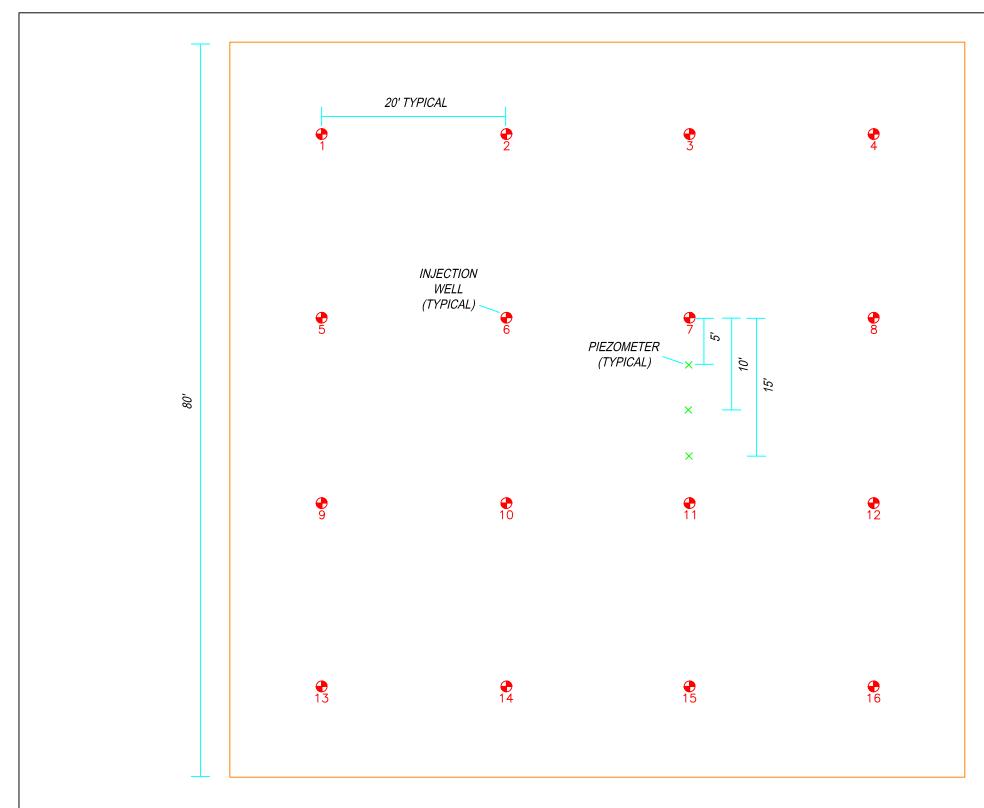


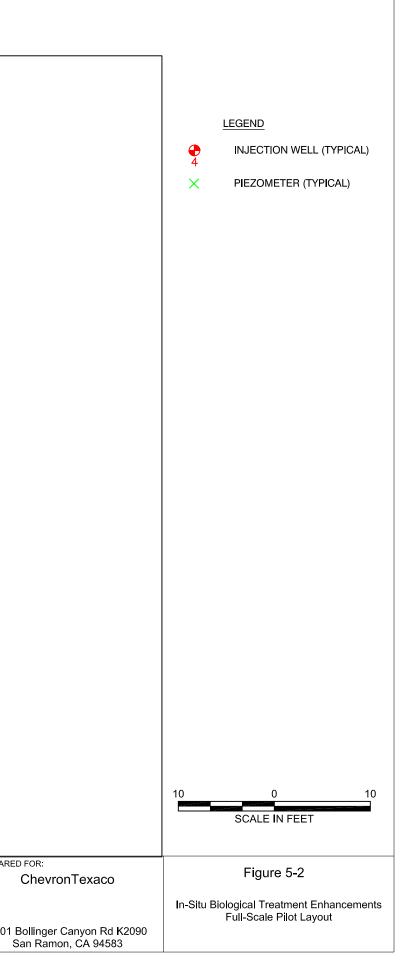












	DRAWN BY:	ZKK	PREPARED BY:	PREPAREI
	CHECKED:	MRP		
	APPROVED	JRB		
	DATE:	09/17/03	SECOR	
	JOB No.:	24CH.67201.00		6001
	CAD FILE:	Nitrogen Figures.dwg	2321 Club Meridian Dr. Suite E Okemos, MI 48864	5001

APPENDIX A

- ,

)

SUMMARY OF OWNERSHIP

according to the official plat thereof recorded in Volume "A" of Plats, page 74, records of Yakima County, Washington, lying northerly of the Northern Pacific Right of Way. GEORGE E. SHAW'S ACRE TRACTS ADDITION TO SUNNYSIDE, Washington, Legal description of property: The western portion of Lots 10 and 11, "Block B" of

. .

ł

ł I

Date of			Type of recording	Notes
Recordation	Grantor	Grantee	instrument	
3/24/1902	George E. Shaw & Frances A. Shaw	S. J. Harrison	Deed	Lot 10-11 & 12 Blk "B"
8/2/1902	S. J. Harrison & Loretta R. Harrison	Naaman Woodin	Deed	Lot 10-11 & 12 Blk "B"
7/24/1903	Naaman Woodin & Lottie W. Woodin	Thomas C. Williams	Q. C. Deed	Lot 10-11 & 12 Bik "B"
5/4/1905	T. C. Williams and Margaret C. Williams	N. P. Ry.Co.	Lease ???	Lot 10-11 & 12 Blk "B"
6/18/1906	Stephen J. Harrison & Loretta R. Harrison	Thomas C. Williams	Q.C.D.	Lot 10-11 & 12 Blk "B"
8/10/1906	Thomas C. Williams & Margaret C.	N. P. Ry Co.	Contract for Deed for	Lot 10 Bik "B" 250ft
	Williams		R. of W.	width being 150 on N.
				side & 100 ft on S. side
				of center line of said RR
				as surveyed and staked
				out on the ground desc
				as follows
9061/1/2006	Thomas C. Williams & Margaret C.	N. P. Ry Co.	Warranty Deed	Lot 10 Blk "B" 250ft
	Williams			width being 150 on N.
				side & 100 ft on S. side
_				of center line of said RR
				as surveyed and staked
				out on the ground desc
				as follows
1/20/1925	L. C. Luce Sheriff of Yakina County	The Oregon Mortgage Company Limited	Sheriff's Deed	Lots 10, 11 and 12 in
	Washington		•••••	Blk "B" of George E.
				Shaw's Acre Tracts
				except right of way of
				the N. P. Riway Co.
1/31/1936	Oregon Mortgage Company	F. W. Grending & Ethel W. Grending	Deed	Lot 10 Blk "B" lying
				North of Northern
				Pacific R/W
1/31/1036	F. W. Grending & Ethel W. Grending	Home Owners' Loan Corporation	Mortgage	
	Grending	Randolph		Unrecorded lease may
				have been executed
6/16/1943	F. W. Grending & Ethel W. Grending	L. D. Blair	Land Contract	

This preliminary title report is not an abstract of title or a title policy, nor is it a written representation as to the condition of title and may not list all liens, defects, and er hrances affecting title to the land. It is offered solely as a summary to assist in un⁴ "anding the chain of title at the parcel described above.

according to the official plat thereof recorded in Volume "A" of Plats, page 74, records of Yakima County, Washington, lying northerly of the Northern Pacific Right of Way. GEORGE E. SHAW'S ACRE TRACTS ADDITION TO SUNNYSIDE, Washington, --dal description of property: The western portion of Lots 10 and 11, "Block B" of

	age	Deed Mortgage Deed	Deed Mortgage	Deed Deed	Deed Mortgage	Decd ational Bank of Spokane Mortgage	Deed ational Bank of Spokane Mortgage acific Railway Company Deed	Deed Mortgage	L. D. Blair The Old National Bank of Spokane Mortgage Northare Davific Pailurat Commany	L. D. Blair	Deed	F. W. Grending & Ethel W. Grending L. D. Blair	L. D. Blair
	338e	Mortgage Deed	Mortgage Deed	Mortgage	Mortgage	Mortgage	Mortgage Deed	Mortgage Deed	Mortgage				
ortgage sed	Mortgage										_		
sed	Deed									The Old National Bank of Spokane	The Old National Bank of Spokane	The Old National Bank of Spokane	1 D Blair The Old National Bank of Spokane
	****								*	Northern Pacific Railway Company	Northern Pacific Railway Company	Northern Pacific Railway Company	6 L. D. Blair Northern Pacific Railway Company
described by deed	des	des	des	des	des	des	des	des	des	des	des	des	des
recorded 9/7/1906	reco	Ieco	reco	reco	reco				IECO				
						Controller of	Controller of	Controller of	Confidencial of Confidencial of	Confidencial of Confidencial of	Confidencial of Confidencial of	Confidencial of Confidencial of	Cohiefaction of
instaction of ortgage	Satisfaction of Mortgage	Satisfaction of Mortgage	Satisfaction of Mortgage	Satisfaction of Mortgage	Satisfaction of Mortgage				L. D. Blair	L. D. Blair		L. D. Blair	L. D. Blair
		Deed	Deed	Deed	Deed	Deed	Deed	Deed	Deed	Vernon Mitchell & Gladvs P. Mitchell Deed	Vernon Mitchell & Gladvs P. Mitchell Deed	Vernon Mitchell & Gladvs P. Mitchell Deed	I D Rlair Deed Vernon Mitchell & Gladvs P. Mitchell Deed
													L. D. Blair
Northerly of NP r/w	Not	Nor	Nor	Nor	Not	Nor	Nor	Not	Not	Not	Nor	Not	Nor
		Term Lease	Term Lease	Term Lease	Term Lease	Term Lease	Term Lease	Term Lease	Elmar A Hickankottom and Rohart R Term Lease	Elmar A Hickankottom and Rohart R Term Lease	Elmar A Hickankottom and Rohart R Term Lease	Elmar A Hickankottom and Rohart R Term Lease	Martin Daries Dailana, Commun. Elmar A Hickenbottom and Robert R Term Lease
									Hickenbottom DBA as Elmer Hickenbottom	Hickenbottom DBA as Elmer Hickenbottom	Hickenbottom DBA as Elmer Hickenbottom	Hickenbottom DBA as Elmer Hickenbottom	Northern Pacific Railway Company Etmer A. Hickenbouom and Kobert K. Lettu Lease Hickenbottom DBA as Elmer Hickenbottom
11 Bik "B" lying													
northerly of the above	northe	northe											
described premises,	describ	describ	describ	describ	describ	describ	describ	describ	describ	describ	describ	describ	describ
easterly of a northerly	easterly	casterly	easterly	easterly	easterly	easterly	easterly	easterly	easterly	easterly	casterly	easterly	easterly
production of the	product	product	product	product	product	product	broduct	broduct	broduct	broduct	broduct	broduct	
westerly line of Lot 13	westerl	wester	westerl	westerl	westerl	wester	wester	westerl	wester				
and southerly of	and sc	and sc	and sc	and sc	and sc								
Warehouse Ave.												West	West
Warehouse					1				and	west	west	west	west
		-							21				
			-	-									
						-	_	_	_				
itisfaction of ortgage eed srm Lease		ottom	ottom	ottom	ottom	otton	otton	R. ell abottom	L. D. Blair L. D. Blair Vernon Mitchell & Gladys P. Mitchell Elmer A. Hickenbottom and Robert R. Hickenbottom DBA as Elmer Hickenbottom and Son	I Bank of Spokane L. D. Blair L. D. Blair Vernon Mitchell & Gladys P. Mitchell Vernon Mitchell & Gladys P. Mitchell Hickenbotton and Robert R. Hickenbottom DBA as Elmer Hickenbottom and Son	I Bank of Spokane L. D. Blair L. D. Blair Vernon Mitchell & Gladys P. Mitchell Vernon Mitchell & Bladys P. Mitchell I Vernon Mitchell & Gladys P. Mitchell and Son and Son	I Bank of Spokane L. D. Blair L. D. Blair Vernon Mitchell & Gladys P. Mitchell Vernon Mitchell & Bladys P. Mitchell Hickenbottom and Robert R. Hickenbottom DBA as Elmer Hickenbottom and Son	L. D. Blair Northern Pacific Kaitway Company Old National Bank of Spokane L. D. Blair L. D. Blair Vernon Mitchell & Gladys P. Mitchell L. D. Blair Vernon Mitchell & Gladys P. Mitchell I. D. Blair Vernon Mitchell & Gladys P. Mitchell Morthern Pacific Railway Company Elmer A. Hickenbottom and Robert R. Morthern Pacific Railway Company Biner A. Hickenbottom and Robert R.
	E	hell t R. cenbottom	P. Mitchell d Robert R. ner Hickenbottom	Gladys P. Mitchell tom and Robert R. as Elmer Hickenbottom	ell & Gladys P. Mitchell cenbottom and Robert R.	lair Mitchell & Gladys P. Mitchell A. Hickenbottom and Robert R. Dottom DBA as Elmer Hickenbottom	. D. Blair ernon Mitchell & Gladys P. Mitchell Inner A. Hickenbottom and Robert R. ickenbottom DBA as Elmer Hickenbottom id Son	L. D. Blair Vernon Mitchell & Gladys P. Mitchell Elmer A. Hickenbottom and Robert R. Hickenbottom DBA as Elmer Hickenbottom and Son					Old National Bank of Spokane L. D. Blair Northern Pacific Railway Company
							of Spokane ilway Company	of Sp		0. Blair National I O. Blair thern Paci	L. D. Blair Old National I L. D. Blair Northern Paci	L. D. Blair Old National I L. D. Blair Northern Paci	
							sank of Spokane Ic Railway Company	sank of Spo ic Railway	aank ic Ra	then Bla	L. D. Blair L. D. Blair L. D. Blair L. D. Blair Northern Pa	L. D. Bla L. D. Bla L. D. Bla L. D. Bla Northern	
ıl Bank of Spokane cific Railway Company	ul Bank of Spokane cific Railway Company	ıl Bank of Spokane cific Railway Company	ıl Bank of Spokane cific Railway Company	ıl Bank of Spokane cific Railway Company	ıl Bank of Spokane cific Railway Company	ıl Bank of Spokane cific Railway Company	ur ir Pacific Railway Company	ur onal Bank of Sp ir Pacific Railway	ur onal Bank Pacific Ra				

This preliminary title report is not an abstract of title or a title policy., nor is it a written representation as to the condition of title and may not list all liens, defects, and error brances affecting title to the land. It is offered solely as a summary to assist in und the chain of title at the parcel described above.

Page 2

according to the official plat thereof recorded in Volume "A" of Plats, page 74, records of Yakima County, Washington, lying northerly of the Northern Pacific Right of Way. GEORGE E. SHAW'S ACRE TRACTS ADDITION TO SUNNYSIDE, Washington, f Lots 10 and 11, "Block B" of gal description of property: The western portic

Date of Recordation	Grantor	Grantee	Type of recording instrument	Notes
				and southerly of Warehouse Ave.
9/28/1976	Gladys P. Mitchell	Donald W. Langenegger	Warranty Deed	West 125 ft portion of Lot 10 Blk "B" lying Northerly of NP r/w
1/25/1977	Nancy L. Langenegger	Donald W. Langenegger	Quit claim Deed	West 125 ft portion of Lot 10 Blk "B" lying Northerly of NP r/w
7/13/1981	Donald L. Langenegger	Chevron Chemical Company	Warranty Deed	West 125 ft of Lot 10 Blk "B" lying Northerly of NP r/w
£861/EZ/6	Chevron Chemical Company	Bee-Jay Scales, Inc.	Statutory Warranty Deed	West 125 ft of Lot 10 Blk "B" lying northerly of NP r/w except minerals, geothermal, and drilling rights below 500 ft below surface
6/15/89	Burlington Northern Railroad Company (formerly named Burlington Northern Inc.)	Glacier Park Company	Quit claim Deed	All portion Lot 10 & 11, Bik "B" except West 125 ft width of Lot 11
10/12/1989	Burlington Northern Railroad Company (formerly named Burlington Northern Inc.)	Glacier Park Company	Correction Quit claim Deed	All portion Lot 10 & 11 Blk "B" except West 125 ft width of Lots 10 & 11
4/20/90	Burlington Northern Railroad Company (formerly named Burlington Northern Inc.)	Glacier Park Company	Correction Quit Claim Deed	All portions of Lot 10 and 11 Blk "B" except West 125 ft width Jying Northerly of line drawn parallel with and distant 150 ft northerly

This preliminary title report is not an abstract of title or a title policy,, nor is it a written representation as to the condition of title and may not list all liens, defects, and even whences affecting title to the land. It is offered solely as a summary to assist in undexending the chain of title at the parcel described above.

Page 3

according to the official plat thereof recorded in Volume "A" of Plats, page 74, records of Yakima County, Washington, lying northerly of the Northern Pacific Right of Way. Legal description of property: The western portion of Lots 10 and 11, "Block B" of GEORGE E. SHAW'S ACRE TRACTS ADDITTION TO SUNNYSIDE, Washington,

 All portion of Lot 10 and 11 Bik "B" lying westerly of a line drawn parallel with and distant 634 ft Easterly of West line except West 125 ft width lying Northerly of line drawn parallel with and distant 150 ft northerly	All portion of Lot 10 and 11 Blk "B" except West 125 ft width lying Northerly of a line drawn parallel with and distance 150 ft northerly	All portion of Lot 10 and 11 Blk "B" except all portion of Lots 10 & 11 lying Westerly of line drawn parallel with and distant 634 ft Easterly of West line	All portion of Lot 10 and 11 Blk "B" except West 125 ft width lying Northerly of line drawn parallel with and distant 150 ft northerly
Quit Claim Deed	Special Warranty Deed	Quit Claim Deed	Real Estate Contract
 Gordon Laird	Trillium Corporation	Hickenbottom & Sons, Inc.	Bee-Jay Scales Inc.
Glacier Park Company	Glacier Park Company	Trillium Corporation	Gordon Laird
10/4/1991	1661/01/01	2661/12/1	8/2/1995

This preliminary title report is not an abstract of title or a title policy., nor is it a written representation as to the condition of title and may not list all liens, defects, and er rances affecting title to the land. It is offered solely as a summary to assist in und values the chain of title at the parcel described above.

•

Page 4

:

according to the official plat thereof recorded in Volume "A" of Plats, page 74, records of Yakima County, Washington, lying northerly of the Northern Pacific Right of Way. GEORGE E. SHAW'S ACRE TRACTS ADDITION TO SUNNYSIDE, Washington, Legal description of property: The western portion of Lots 10 and 11, "Block B" of

	-			
2/20/1996	Gordon Laird	Bee-Jay Scales, Inc.	Statutory Warranty	All portion of Lot 10 and
1 4 1 1		•	Deed	11 Blk "B" except West
				125 ft width lying
				Northerly of line drawn
				narallel with and
				distant 150 ft northerly
				and evcent West 490 ft
2001/046	Dae Tou Contae Tuo	Hinbanhottom & Cone Inc	Statutory Warranty	All portions of Lot 10
			Deed	and 11 Blk "B" except
				West 125 ft width lying
				Northerly of line drawn
				parallel with and
				distant 150 ft northerly
				and except West 490 ft
Title currently	Bee-Jay Scales. Inc. as to Parcel A and			Parcel A: West 125 ft of
vested as	Gordon Laird on date of acquiring title			Lot 10 Blk "B" lying
	as to Parcel B			northerly of Northern
				Pacific r/w
				Parcel B: West 490 ft of
				portion of Lots 10 & 11
				except west 125 ft
				width of Lots 10 & 11
		-		lying northerly of a line
				drawn parallel with
				and distant 150 ft
				northerly

This preliminary title report is not an abstract of title or a title policy., nor is it a written representation as to the condition of title and may not list all liens, defects, and c hances affecting title to the land. It is offered solely as a summary to assist in un' anding the chain of title at the parcel described above.

Page 5

APPENDIX B

. - .

)

BORING LOGS

.

a Norse	<u>Internatio</u>	mal I	ncorp	orat	<u>ed</u>	A1-5B-001				PAG	E 1	OF
	FACILITY LOCATION	<u></u>	Be Si	e - Lan	Jay	JOE JOE INISH 7/7/03 1020	3 # <u>24CH.</u> SURFAC CASING	E ELE	VATION	/	NELLA	17-5B-0
į	START LOGGED SUBCON COMMEN	BY TRACT	D.E	lwon	d Cat	FINISH 7/7/03 1020 WA MONITORING DEVICE <u>OVM 580</u> PMENT <u>HSA</u>						
	PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, Example: Clayey SILT, brown; moderately plasti to fine sand; odor; firm and dry in		Unified Soil Classification	Depth Below Surface, feet	Well Co Sch	onstru iemat	uctio tic
مر		////			0	Lowerdt surface - cookie cut > 4					K/	
-100-85-14		X	····	· · · ·	-	0-4 bys hand cleared fexcewated post-hole digger amples collected	y G	:М 				
AI-	·····				- 2	bouchole ridewall STLT and grants			 - -	· · · · · · · · · · · · ·	×	•
			·····	 	- - - -				E	· · · · · · · · · · · · · · · · · · ·		
ر ک				••••	- <u> </u>				 - -			
AT-53-001-4.5	<u>s s </u> L	X	•••••		-	rondy SILT, plue brown (2.54 sund is very the grained, rott	4/₽) (/1505e	<u>M</u>	- - - - - -			
RI-5		/•`\ ///;	NS	2.6	- 6	dry, no odur present	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 - - - -	· · · · · · · · · · · · · · · · · · ·		• • • • •
	<u>4 5 4</u>		<u>.</u> N2.	 6,0	- 1 	da~p			- - - 			
	9/15/15				- 8	······································			- - 			
Al-SB-001-9.0		$\langle \mathcal{A}_{\mathcal{A}} \rangle$	<u>NS</u>	2,6		moist	· · · · · · · · · · · · · · · · · · ·		 - - -			
A1-58-1	17/20/22	\bigwedge	<u>۶</u> ۸	2.6	- <i> </i> 0 - -	w			- 			
	10/21/27		NS.	••••			· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · · · · · · · · · · · · · ·		
		4	И.,	2,6	- 12	Boring terminated at feet, sampler advanced Groundwater encountered at approximately fe	to feet. et during drilling	. <u> </u>		L	IYI_	J
1	Desci Prose	iplion 3	omple	sgic	¥ \$0 NS	Sheen Delected Love Love Love Love Love Love Love Love	adational nloct nlact caled proximalely	Concrete		10/20 Colorado Silica Sand		PVC PVC
		aborato		(NT 2.5Y 4/	Not Tested	nloct			. 1		

	FACILITY		<u>rpora</u>	Jay -	M-SB-002 Feules JOB # 24cH.	67201	· 06	PAGE OF BORING/WELL <u>A1-S</u> B
)	LOCATION START LOGGED SUBCONT COMMENT	 ВҮ RACTOR	innys 3 / D=C	100 035		ACE E	LEVATION P ELEVAT	1 <u></u>
	PENETRATION RESULTS	Depth II. feet	<i>6u</i>	Below e, feet	Lithologic Description	Unified Soil Crassification	Below Ceet	Well Construction
	BLOWS 6"/6"/6"	Sample De Interval, fi PID	Readin Sheen	Depth B Surface,	(Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brawn; moderately plastic; coarse to to fine sand; odor; firm and dry in places Concret Aurface - cookie cut ~ 41° Thick	Unifier	Depth Be Surface,	Schematic
2 - 7 - 7 NO		///// \				GM		
41-50-005-00	•••••			- 	0-4' bps hand clowed / excavited with post hole ligger - sample collected from borchole ridewalls, STLT rul grants			
	· · · · · · · · · · · · · · ·	///, o. ///,	0 0.0	- 2			···· [-····	
	•••••		· · · · · ·	 - 	• • • • • • • • • • • • • • • • • • • •		·	
y.C ^				- 4				
41-58-00-1		X N	0.0 5	- - - -	sardy SILT, dive brown (2.54 4/3) sund is very fine grained, soft /loose, dry to damp, no odor present, trace	5M	···	
). ¥	· · · · · · · · · · · · · · · · · · ·	////	· · · · · ·	- 6	small subargular to subranded grouts		· · · · · · · · · · · · · · · · · ·	
	6h/7	/// N:	<u>. 13</u>	- 				
بالمنتر	6/5/9	/// //, N:	2.6	 	same as above - no grands		· · · · · · · · · · · · · · · · · ·	
		///,		-	······			
AI-58-602-9.0	9/10/16	X	5 2,6	- 	moist			
۲	· · · · · · · · · · · · · · · · · · ·	// N3	· · · · ·	-	net		- · · · · · · · · · · · · · · · · ·	
	9/17/25		0.0	- - 12			<u> </u>	
		Score / 24			Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drilli	ing. 		10/20 2° PKC
	Descrip Descrip Proser No Re Sompt	covery s Submitte boratory	e	SD NS NT	Groundwater Level at Time of Dritting Static Groundwater Level Sheen Detected No Sheen Detected Not Tested	Conc.		2" PVC Colorado Silico Sand 2" PVC 2" PVC

		<u>Internatio</u>	nal	Incorp	orat	ed		A1-5B-00	3				PAG	E 1	OF 1
		FACILITY LOCATION START	/	5tu 17/03	<u>Ве</u> лгу 	<u>e - Jay</u> situ 30		17/03 1220	7	SURFA CASIN	NCE EL	EVATION		WELLA	H-5B-01
 /		LOGGED SUBCONT COMMENT	rac		bec AND		MONITOR IPMENT 15	RING DEVICE_	OVM SBC) g					
		PENETRATION RESULTS BLOWS	Sample Depth Interval. feet	1 2	heen	Depth Below Surface, feet	(Typical name, co	hologic Des plor, description, s	hape, density, m		Unified Soil Classification	Depth Below Surface, feet	Well C Scl	ònstri hemai	
,	`ک	6"/6"/6"	2 So	~ 	S 	0 25		SILT, brown; mod le sand; odor; firm W/Fack - co	n and dry in pla e.t.c. c.ct. ~			2.0	·····		
	50-003-01	••••••••••••••••••••••••••••••••••••••	///:			- 	n-y'har	hand clewrul w	1 int lak		GA .	· · · · · · · · · · · · · · · · · · ·			÷
ShII	-93-	•••••	іХ. .Х.	 	· · · · · ·		digger su	mples collected	from bout				· · · · · · · · · · · · · · · · · · ·		
	7	•••••	$\langle \rangle \rangle$.			sideway,	SFLT. coul. g	groals				••••••	. 🕅	
		• • • • • • • • • • • • •					••••••			• • • • • • • • • •				. 🕅	
			///			- -						·	• • • • • • • •	· 🕅 · ·	
				0.0	 NC	E	•••••••••••••••••••••••••••••••••••••••								
`		·····		0.0		 		<u>.</u>	······································				·····	X.	
0<	5-4-500-92-14	6/10/10	\. <i>7</i> .			- 		dire brown (574	· · · · · · · · · · · · · · · · · · ·		. 🕅	
	\$- -		Å	· <i>···</i>	••••			p no odor		····		· · · - · · · · ·	· · · · · · · · · · · · · ·		
)	<			2.6	NS	- 6								X	-
		6.7/10					a 7' byr = c) /	,	-		. 8	
			'//·/ ///	2.6	••••		Sort is the	grained, Mois	f	 		· · · - · · · · · · · · · · · · · · ·			· · · · ·
						- 9 -	sardy SILT	ac above		••••••				X	
١	0		///	2:6	 NS				· · • · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· • • • • • • • •	· · · • · · · · ·			
، م	41-50-62-9.0		$\langle \cdot \rangle$			- i 	moist			• • • • • • • • • •	· · · · ·	···		K	<u> </u>
(a2)	- 	<u>''</u> \$ 5	X.			- 10						-		X	
	•				••••	-	· · · · · · · · · · · · · · · · · · ·					· · · [- · · · · - · · [- · · · ·			
		7/10/15		0.0	NS	-	nut					· · ·] - · · · ·		. 🕅	
			///	· · · · ·		- 12			· · · · · · · · · · · · · · · · · · ·	•••••		*	·····		1
							Boring terminated Groundwater encou	at feet, samp intered at approxi	oler advanced to mately feet) <u> </u>	ng.	•			
		Descr	ription	n/Lithok Sample	ngic	V V	Groundwater Lev Time of Drilling Static Groundwa		Grada	tional	Conc	rece is set	10/20 Colorado Silica Sand	2*	PVC
		Prese	ecover	-		SD NS	Sheen Delected No Sheen Delected	,	Conta		L Sonta	onile .		2*	PVC
,			aboral	bmitted lory	(NT	Not Tested 2) Munsell (1990)		/ Appro.	ximately Ct	88			E ♥	
	Ľ						B. O. B. e	12' 695					DWG:		
							sumpler adva	12' bys red to (2' by terel C 11.	js .						
							GW encom	tend e 11.	so' bys						

. /		LOGGED BY	50 7/7/02 215	<u>مم</u> ک	1240		FACE	ELEV	ATION LEVAT		/WEL	L <u>4(-</u> :	58-001
	`	PENETRATION RESULTS BLOWS 6"/6"/6"	PID PID Reading	Sheen		Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; firm and dry in places	Unified Soil	Classification	Depth Below Surface, feet	Well Sc	Cons cherr		
4421	41-58-004-0.5			· · · · · · · · · · · · · · · · · · ·	0	dir + surface D- 4.5 bgs hand cleared up post-hole digger, sample collected from borehole side well.	G/1	· · · · · ·					· · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·	••••		<u>stit</u> and grands		· · · · ·		· · · · · · · · · ·			
	AT-50-004-4.5	7 7 7	· · · · · · · · · · · · · · · · · · ·	····· · · · ·	- 4	SAND and STLT, othe bronn (254 4/3) stand is very find grained, medium stiff) loose, damp, no alor present	5M	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · ·	
,		7 9 5	Ø.Ø.	 		SILT, dire brons, trace resp. fire graved. and moist	 ML	·····		· · · · · · · · · · · · · · · · · · ·		••••••••••••••••••••••••••••••••••••••	
	AI-5B-607-9.0	.41414 	2 <u>6</u> 	μ <u>ς</u>	- 8	574. Moist		· · · · · ·				······	
ς γ 	AI-SB	3 4 5 7 14 20		US US	- /0	57AA A		<u> </u>	7	· · · · · · · · · · ·		· · · · ·	· · · · · · · · · ·
		ZZI Field Scree Description	n/Litholo	ngic		Boring terminated at feet, sampler advanced to feet Groundwater encountered at approximately feet during dr Groundwater Level at Time of Drilling Gradational	lling.	oncrete		10/20 Colorado		2" PV	
		Preserved Preserved No Recove Somple Su for Labora Analysis	Sample TY bmitted		¥ SD NS NT	Static Groundwater Level Contact Sheen Detected Contact No Sheen Detected Approximately Not Tested	•	anlonite		Silica Sand		2" PV	ĸ

	Internation FACILITY	ļ	See-	Jan	1 50	Al-SB-01	JOB # 24CH	. 672	01.0	0	BORING	IGE /WEL)F / - <u>SB -905</u>
	LOCATION	7/10/	Synn 03	-	•	FINISH 71 103	SURF	IG TO	OP E	TEVA	TION			
7	SUBCON COMMEN	BT TRAC TS_[<u>D. E</u> TOR 7 '8" x	war AND 2,5	<u>מ (</u> EQL בסו	Ferty MONITORING DEVIC IPMENT <u>Cascade HSA</u> it spoon sumpler lined w/	stainless steel sleeves	<u>, 10</u>	ηρ 10 [4	. ham	mer ; ;	ylene 20 ° d	<u>Ca</u> l	Liant
	PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Intervol, feet	PID Reading	Sheen	Depth Below Surface, feet	Lithologic D (Typical name, color, description, Example: Clayey SILT, brown; r to fine sand; odor;	shape, density, moisture)	Unified Soil	Classification	Depth Below Surface, feet	Well Si	Cons cherr		
کر ا					_0	usphaltic/concrete/dir	, gravel surface		-		ГГ		 	
8-005-0	•••••	X	·····	•••		8-45 tas hard clean SILT and grovels (0-2 (0.54 4/3) gravels are	bys) olive brown	GM						•••••
1-5	•••••					subrounded, dry, no obs	revent			- - -				
	· · · · · · · · · · · · · · · · · · ·			• • • • • • • •	 	sundy SILT, while bro . Nice to firs gravined ., da	an., sad. U. very	514		 - 			•••	
				· · · ·	- - 						· · · · · · · · ·			
ر 10- ۲۰۶۶	2 5 10		.0:0.	 NS:	- 					 				
500-9J-H	····	X		· · · ·	6				2	- - -		X		
	<u>8 9 10</u>		N .0	NS	- 	SILT of trace sund u damp to hoist	es tic grannel	ML		- - - -			•••	
8-005-7.5		X			- 9	molif				- - -		X		
4(-23-002	5 7 8		0-0	іх: 	- 	sandy SILT, wet c	~ 9 Lic							
	.6.17,1.0		0-0	NŞ	- 	······································	······································	514		<u>7</u> 				•••••
	•••••	· · · · ·	••••• • • • • • • •		- 	······	• • • • • • • • • • • • • • • • • • • •			 			· · ·	
	• • • • • • • • • • • • • • • • • • •		· · · · · ·			· · · · · · · · · · · · · · · · · · ·								·····
			- /1 /14			Boring terminated atfeet, so Groundwater encountered at appr	mpler advanced to feet. oximately feet during dril	ling.	•	[[]	10/20		2" F	
	Desc Pres No I	riplion erved : Recover	γ bmitled	-	↓ ↓ \$0 NS	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested	Cradational Contact Located Approximately		oncrele onlonite		Colorado Silica San		2" f	
1	Anot	/sis		(2.5Y. 4	12) Munsell (1990) Soll Color Chan B.O.B. C. 10,5° 69.5 Sampler advanced to 1			in.	easure	owc: d btw	۔		. =
						Groundwater encountere					9-12'			

		Internatio					A1-5B-006				GE	1 OF
	•••	FACILITY LOCATION START	v 7/10/	<u>See-</u> Syni 103		<u>1 Sce</u> de 1 30		ACE ELE	VATION		/WEL	L <u>A1-5B-606</u>
, , ,		LOGGED SUBCON	BY TRAC	D. E.	<u>lwar</u> AND	d Cal EQU	Terty MONITORING DEVICE OVM SEOB of 11.8 e IPMENT <u>Cascade HSA</u> It spoon sampler lined of stainless steel sleeves	V lamp,	100 pp	n isolat	ylene U"d	Calibrant
		PENETRATION	Depth	<u></u>	<u> </u>	Below , feet		م م	ર્કુ કર			
		RESULTS BLOWS 6"/6"/6"	Sample De Interval, 1	PID Reading	Sheen	105	Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; film, and dry in places	Unified Soit Classification	Depth Below Surface, feet	Well (Sc	Cons che <mark>r</mark> r	truction atic
	-0، <i>ک</i> ر		1111			0	usphaltic/ concrete / dirt, grave Justice			F		·····
Shgo	-900-8-	•••••	\bigvee	•••••	•••	, - 	0-4.5 bys hard cleared STLT and growels (0-2 bys), plive brown		·	· · · · · · · · · · · · · · · · · · ·	. 🕅	•••
	Al- 5	•••••		• • • • • •	• • • • • • •		Q.5 y 413) gravels are medium to large, subrounded, dry, no edor present	GM 	• •			•••
		••••••		••••	•••••		sundy SILT, alive brown, sand is very the	54				•••
		•••••		•••••	••• • • • •		to fine grained, dry., no odor present	····	· - · · · · ·	••••••		••••••••
		•••••		••••		¥		••••••	- - -	••••••		•••••
	-006-4.5	4/7/8		0:0	NS.		•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · ·		· · · · · · · · · ·		••••
ַ גו	0-85-W		X			 	becomes damp a ~ 5 byr			· · · · · · · · ·		•••••••••
		.3/6/7		0.0	NS		•••••••••••••••••••••••••••••••••••••••		- - - -			
	, , ,			· · ·		· · · · · · ·			- -	,		••••
٥٤٥٩	A1-512-006-7.5	5/6/7		0.0	NS	<u> </u>	becomes moist a = 8 bas		-			
	¥	·····	(][a []]]						E			
				0.0	NS -	_10	wet		E			
		•••••	•••••				: 	· · · · · · · · · · · · · · · ·	E			
		•••••		· · · · · .			·····					
,					F	_12	Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drilli	h		L		
				/Litholog Sampla	gic	 ▼ ▼	Groundwater Level at Time of Drilling Gradational Static Groundwater Level	Concrete	- 1975 C	10/20 Colorado Silica Sand		2" PVC
		Somol	icovery le Subr	nitled		SD NS	Sheen Delected Contact Decided Approximately		<u>C. 4. 4</u>	HUCU SANA		2" PVC
	ſ	for La Anots	iborala	Ŋ 	(2	NT .5Y 4/:	Not Testod 2) Munsell (1990) Soll Color Charts Conloct			DWG:	W	
							B.O.B. C. 10.5 bys Sampler advanced to 10.5 bys	hea	surpd	DWC:	TN	7
		,		·			Groundwater encountered $e = 9^{-5}$ bys	~ U	- ~	9.61		-

	FACILITY LOCATION START LOGGED	7/10/1	23	08	41	FINISH 7/40/03 CAS	FACE ING 1	ELEV TOP E	ATION ELEVA	1 TION			
/	SUBCON COMMEN	TRACT TS[OR / ?"x	AND 2.5	EQU " 59	Terty MONITORING DEVICE OVM SEOB of 11.8 IIPMENT <u>Cascade HSA</u> lit spoon sumpler lined of stainless steel sleepe	5 ; 1	140 [h	. ham	mer	30 4 i	<u>drup</u>	(h Gra
	PENETRATION RESULTS BLOWS 6"/6"/6"	1 8.01	PID Reading	Sheen .	Depth Below Surface, feet	to the solid, oper, this one of at proces	laifed Call	Classification	Depth Below Surface, feet	Well	Con Schei		
5'ro-200-95-14 2060	· · · · · · · · · · · · · · · · · · ·			· · · · ·		usphaltic concrete dirt grave surface 0-4.5 bys hard cleared SILT and grands (0-2' bys) , olive brow (2-54 4/2), gravels and min to large, subrounded, dry, no oder present	G/	1		· · · · · · · · · · · · · · · · · · ·		 	
	•••••			· · · · ·		sardy SILT drive brown rand is very time to the grained dry as old	5/	i 		· · · · · · · · · · ·		<	
, Sh-1	3)5)-7			×5.	<u> </u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
אן -28-1א	6/4/8		· · · · ·	· · · · · · · · · · · · · · · · · · ·	6	SILT, ohie known a little very fine grained sand, damp. moist	ML	· · · · · · ·	- - - - - - - - - - - - -	· · · · · · · · · · ·			
242-12-12 1-28-02-12			-			trace clay present, moist	••••	· · · · · · ·		· · · · · · · · · ·			· · · · ·
A1-	4/9/10		~···	NG -		ret	· · · · · · · · · · · · · · · · · · ·		<u>Z</u>	· · · · · · · · · · · · · · · · · · ·			· · · · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · ·	·····	· · · · · · · ·			• • • • • • • • • • •		•	-
	ZZZJ Field	Screen	Uthoko	nic	12	Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during dr		· ·					
	No Re Sompl	covery Submi boratory	nple itled		↓ \$0 NS NT .5Y 4/3	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Delected No Sheen Delected Not Tested 2) Munsell (1990) Soll Color Charts Contact Located Approximately Contact Located Approximately Contact Located Contact Located Contact Located Contact Located Contact Located Contact Located Contact Located Contact		ioncrete ionlonite		10/20 Colorado Silica San		2" 2"	

	ſ	FACILITY		Bee-	Ja	1 Scg		CH.(672	01.0	0	BORIN	'G/¥	VEL		2F -SD-0
		LOCATION START		Synn	9 <i>51</i> 07		<u>YA</u> SUF	RFAC	Œ	ELEV	ATION	/				<u> </u>
							FRATY MONITORING DEVICE OVM SEDB & 11.8	5/190 7 a \/	la d)~ <u>C</u>	LEVA) Ionina	IUN	<u>ا. ج.</u>			
1		SUBCON	IKAC	IOR .	ANU	EQU	IPMENT CASCADE ITS A									i ura
		COMMEN	TS	'8"x	2.5	", <i>sp</i> i	it spoon sumpler lined w/ stainless steel sleev	<u>es</u> ;	<u></u>	10 16	. ham	mer;	30	4 d	<u>rep</u>	
	ſ	PENETRATION RESULTS	leet h			Below . feet	Lithologic Description		oil .	tion	feet	Well	C		+	
	╞	 	2 2	PID Reading	G	Depth Bi Surface,	(Typical name, color, description, shape, density, moisture)		ed S	sifica	Sce, Be		Sch			
ł		BLOWS 6"/6"/6"	Sample Interval,	0.55	Sheen	Dep	Example: Clayey SILT, brown; moderately plastic; coarse (to fine sand; oplor; <u>firm and d</u> ry in places	lo	Unif	Classification	Depth Below Surface, feet					
,	5		~~~			0	usphaltic/ concrete / Rirt, grave surface									
,	200	• • • • • • • • • • • •				- 	0-4.5 bys hard cleared				-					
	2	,	\backslash			- 	STLT and grands (0-2' bys), alive brow	n. (<u>GM</u>		-			\otimes]	
6	ភ្ន	• • • • • • • • • • • •	ŀÅ.				(2.54 4/3) grands are med to lurge	.,			-			X		
	F	• • • • • • • • • • • •				- 	mbrounded day no oder present.			F	-		. `	K		
	ŀ						· · · · · · · · · · · · · · · · · · ·		•••••		-			$\left \right\rangle$		
		•••••	////	• • • • •		-	sardy SILT dive brow, rund is key.		<u>5</u> M		-		. '	\bigotimes		• • • •
		• • • • • • • • • • • •		• • • • •			Any to the grand . My ro. dor.	••••					· · . '	\mathbf{N}		• • • •
		• • • • • • • • • • • •					present	•••	• • • •				· ! · ·	\otimes	• •	••••
		•••••	11/	• • • • •			•••••••••••••••••••••••••••••••••••••••	•••	••••				••••••	X		• • • •
}	ŀ	••••••••	11	••••		Ţ			·····					\mathbf{X}		[
-	5.H-300-		11/1	••••			•••••••••••••••••••••••••••••••••••••••	•••			 -		· <i>†</i> · ·	\otimes		••••
s é		2/3/5	777	0.0	NE.	- • • •	SILT of a little very fire grained surd	···	Nj_	• • • •			•••••	$\langle \mathbf{\hat{v}} \rangle$	•••	••••
) ;	2	••••••••••••••••••••••••••••••••••••••	V				damp	••••	(~.	••••			•••••	\mathbb{N}		••••
7	4-2B	• • • • • • • • • • • •	$\langle \rangle \langle \rangle$			- 6	·····	•••	• • • •			•••••	• • • •	X		••••
		! !	[[]],			-			•••••		-		1	X		
	.	449	////	0-D	NS		Moist		••••• ••••		-		1	X		• • • •
	.					-					-			X		
<u>``</u>	<u>با</u>	· · · · · · · · · · · · · · · · · · ·	$\langle \prime \rangle$			-	· · · · · · · · · · · · · · · · · · ·				-			$ \mathbf{X} $		
i E	5.2-200-91-14		Д.			<u> </u>	surdy SILT and is five yound, mast				-			Ň	/	••••
E		6/1/11	7/11	0.0	NS.	-	• • • • • • • • • • • • • • • • • • • •	S	M		- - • • • •			X		• • • •
2	₹.	• • • • • • • • ,,	<i>,,,,,</i> ,				· · · · · · · · · · · · · · · · · · ·				-			K		· • • • •
	.	7/9/12	////							لا	Z			Х		· • • •
	ŀ		ŀ///	Ø. Q	Ņ.			•••	• • • •		- 		·	X	•••	••••
	-		////			<u> 0</u>			••••••				·	X		•••••
	ŀ			•••••			•	•••	••••		<u> </u>		· [· · ·		•••	••••
	ŀ			••••			•••••••••••••••••••••••••••••••••••••••	• • •					• • • •	• •		••••
				• • • • •		•••••	•••••••	••••					•••••		•••	••••
				• • • •		12	•••••••••••••••••••••••••••••••••••••••			••••			·† · ·			••••
							Boring terminated at feet, sampler advanced to fee Groundwater encountered at approximately feet during c		 I.	·				لل	I	
	┝	EZZI Field	Screen	1/Lilhok	ogic	 ¥	Groundwater Level at	ر برا برا	-7		<u>इ.</u>	10/20	 ۲		2° F	 vc
		Desci Prese	•	Sample Somple		Ŷ	Time of Drilling Gradational Static Groundwater Level Contact	م م	j	ncrele		Colorado Silica So				
Ν		No R	ecover	Y		SO	Sheen Delected Contact	82	- 	nionite	******		٦.	≣	2" F	чC
			de Sub aborat			NS NT	No Sheen Detected Approximately Not Tested	×	8				Į			
	L	Anoly			(;		2) Munsell (1990) Soll Color Charls Contact					•	ų	•		
				•			B.O.B. C 10.5- by					DWC:				

		Internation FACILITY	<u></u>			e-Ja	A2-SD-001 15 Scales JOB # 2404	+.107	201. 0	0		AGE	OF
	÷	LOCATION START LOGGED E	7/8 37 RACTO	×103	un E	2700	i WASURF.	ACE	ELEV	ATION	·		<u></u>
	1	PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SiLT, brown; moderately plastic; coarse to to fine sand; odor; firm and dry in places	Unified Soil	Classification	Depth Below Surface, feet		Const chem	ruction atic
0716	5 - 100-15-24					0	9-9-5 bys hand cleared SILT and GRAVES	GM 	·····		· · · · · · · · · ·		
	×			· · · · · · · · · · · ·	· · · ·	- 2		รท	· · · · · ·				· · · · · · · · · · · · · · · · · · ·
0726	42-51-001-4.5	3]3]6			NS NS	<u>y</u>	SAND and SILT durt ofice from (2.54 3/3) surd is very fine to fire grained, cott / loose, damp hs dor present		· · · · · · · · · · · · · · · · · · ·			Contraction of the second s	
		3h 9 		5.0 N		8			· · · · · ·	-			· · · · · · · · · · · · · · · · · · ·
0727	0.9-900-82-24	5 5 5	/// /.		vs vs	10	SILT, dort olie brown, damp to moist	 ML	·····				
·		5 4 5		ا ه. (V	12	Boring terminated at feet, sampler advanced to feet.		· · · · · · · · · · · · · · · · · · ·	Z		X	
		VIII Field S Descrip Prosen No Rec Somple for Lot Anolyse	ilion Si red Soi covery Subm corolog	omple mple sitted		V V SO NS NT 2.5Y 4/	Groundwater encountered at approximately feet during drill Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested 2) Munsell (1990) Soil Color Charts Contact	a	mcrele	(* , *)	10/20 Colorado Silica Sar	a 🗌	•* РИС •* РИС

Sumpler advanced to 12' bys GW encontered @ ~ 11' bys

FACILITY		B	<u>ee -</u>	Jay	A2-5B-602 Scules	JOB #	2404	7	201.	<u>())</u>		PAG			OF 2-5B
LOCATION START		8/03	<u>un</u>	- <u>m</u> rill >25	, MA	······································	SURFACI	Εļ	ELE	ATIO	V				
LOGGED		_	TG-	223	FINISH MONITORING DEVIC		CASING	К	P	LLEVA	TION_				
SUBCON COMMEN	TRACT			EQU											
						······································	·····								<u> </u>
PENETRATION RESULTS	e Depth ol, feet	D	5	Below ce, feet	Lithologic De (Typical name, color, description,			Unified Soil	fication	Below ie, feet	Well	 Ci Sch			ictic
BLOWS 6"/6"/6"	Sample Interval,	PID Reoding	Sheen		Example: Clayey SILT, brown; m to fine sand; odor; f	ioderately plastic; coa irm and dry in places	rse to	Unifie	Classi	Depth B Surface,			ier	nat	IC
	47.	· · · ·		0.	Dul 4 gravel surt	24.e	•••••		•••••				1.	1	1
••••••	X	• • • • • • • • • • •	· · · ·		0-45 bys hand down digger, sample coll	ed/w posthal	•	· · ·	• • • • •	- · · · · - - -		•••••			
•••••	$\left(\begin{array}{c} \\ \\ \end{array} \right)$	•••••	••••	-	Child and Contraction Contraction				· · · · ·	È		•••••		 	
• • • • • • • • • • • •		Ø.ŋ	<i>lr.</i> s	- 2					······	[
				-						- - -	.				
•••••				- 4					••••	Ę					
•••••		20	μs.	-		, (a la la)	•••••		 	<u> </u>	 	·†····	 		†
555		• • • • • • • • • •	••••	- · · · · - · · · ·	Sandy Spit olivebau sand is hire , und shi	Hloore, dur	ωρ	• •	• • • • •	 - 	· · · · · · ·		 	 	
•••••		 	[µ <u>s</u> _	Ę	no hydrocarto odos.				· · · · ·	- - -		•••••	 		
•••••••				· · · · · · ·					 	- - 			 		
2/2/2		-	••••		damp ho most	· · · · · · · · · · · · · · · · · · ·	•••••	¥	85	- 					
	$\langle \cdot $	05	LS	8						-					
4718					SAA Maist				• • • •	 - 					
aluta				10	······		· · · · · · · · · · · · · · · ·		• • • •	 - 		•••••	• • • •		
	Λ	0 -0	4rs F		······	·····	۲	7	••••	 - 		•	. 		
		,			wet		· · · · <i>· ·</i> · · · ·			[[
12 [(5] 19		0.01	<u>s</u>	12		· · · · · · · · · · · · · · · · · · ·				- 			.:		
-	Y				Boring terminated at feet, san Groundwater encountered at approx	•			•						
VZZ Field Descri Preser	plion S	•	l pic	Ţ ▼	Groundwater Level at Time of Drilling Static Groundwater Level	Gradationa Contact	1	Con	crele		10/20 Colorado Silica Sa	Ind		2"	эvс
No Re	vea so covery e Subri			SD NS	Sheen Delected No Sheen Delected	Conlact Localed Approxima	ست رواید (1997)	Bon	lonile	المتغنية				2"	чC

SEa/

loro

	<u>Internatio</u>	mal	Incorp	orat	<u>ed</u>	AZ-5B-003				PAGE 1	OF
N.	FACILITY LOCATION START LOGGED	ע שי שי	<u>. 57</u> 7/03 b	1415 EC	,	<u>Sceles</u> JOB # 24CH WA	ACE	ELEVAT	TION		2-53-
Ĵ.	SUBCONT COMMENT	TRAC	TOR A	AND	EQU	PMENT HSA					
	PENETRATION RESULTS BLOWS	Sample Depth Interval, feet	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, moisture)	Unified Soil	Classification	Surface, feet	Well Constru Schema	
` <i>د</i>	6"/6"/6"		2	Ś	De De	Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; firm and dry in places <u>CONCrete or clair</u> M. dirt and grand	5	ŭ Č	5.8		
500-200	• • • • • • • • • • •				- -	Concrete ~ 4" thick 0-4 hourd cleared	GМ		•••••		·
2-58-003		X			-	SILT and grads	.				
42 42		\overline{W}		• • •	 - 2						
		¥///		 	- - -	· · · · · · · · · · · · · · · · · · ·	574	E	· · · ·		
		¥//,			 						
1.5			0.0	L/S_	- 4			-			
A2-50-603-4.5		(7)	 .	 		SAND and SILT dive brown (2.54 4/3)	· · · · · ·		••••		
-85-	6/7/8	X			- 	SAND and SILT dive bran (2.54 4/3). sund is five gracined medium stiff / louse, moist, no oder present		[.			
Å2			2	US	- 6						
	.5 5 5				-	SILT, d'in brown (2.54 4/2), moist trave time gravid sand	ML	- - -	••••		
		///· ///									
	.5/6/6	V///	00	us	- 9	SAA, moist (sardy salt?)					
A2-58-003-9.0		////			- 			Ę	 		
28-00	8/12/15	N.	 U.S	 V3	- /0	PAA wolst (andy STUT ?)		<u>-</u>			
5		\square			_/ - 	P.[7]., h10[3]			7		
	17/20/15		2.4	μs	-	SILT, almost no surd	·····				· · · ·
			· · · ·		- - I2	· · · · · · · · · · · · · · · · · · ·			····	X	• • • • • •
						Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during dri	lling.				
	Desc Press	riplion erved	-	ogic	∇ ▼ S0	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected Contact	- C	Concrete		Colorado Silica Sand	PVC
	Som	Labora	Ibmitted		NS NT	Sheen Detected Contact No Sheen Detected Approximately Not Tested (2) Munsell (1990) Soll Color Charts Contact	*	lenlonile		2	
						B. D. B. Q 12' bys sumpler advand to 12' bys ON countries 0. 211' bys				DWG:	

		Internation	val Incorr	orat	<u>led</u>	A	2-5B-	004					PA	GE	0	r l
	1	FACILITY LOCATION START LOGGED L		121 13 157	ny súli 1520	Scales FINISH MONI	7/7/3 TORING DEN			ACE	ELEV	ATION		/WEL	LA2-	<u>\$8-004</u>
		SUBCONTI COMMENT		AND	- EQU	IPMENT	1 <u>5</u> 4									
		PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet PID Reading	Sheen	Depth Below Surface, feet	(Typical name Example: Cl		tion, shape,	otion density, moisture) y plastic; coarse to dry in places	Unified Soil	Classification	Depth Below Surface, feet	Well So	Cons cherr		
الحكر	12-58 -004 -0.5		//// //		 	dirt and 0-4.5 be	grand sur	face	port-hole	GM			· · · · · · · · ·		· · · ·	
-	15-24	· · · · · · · · · · · · · · · · · · ·	2.6	i ک ا			rangle ce ridenall onl grad		1200m		· · · · ·					· · · · · · · ·
	۱.	······································	// ····	 	- - - - - - - -		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	SM	· · · · · · · · · · · · · · · · · · ·	-			••••	· · · · · · ·
1602	42-58-664-4.5	6/5/10			-	sardy 51 sard is	LT, oliŭ firi graviu	brown (2 1., medru present	.sy. 9/3) m.stite/loose.,					$\langle \chi \rangle $, ,	
	A2	9/12/15	2.6. 	<u></u>	- 6		. moist	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·	 				••••	
	- 20		11	ж у 	- <i>Q</i>	· · · · · · · · · · · · · · · · · · ·		·····			(A	\sum			· · · ·	· · · · · · ·
1614	A2-58-004-9.0	5/9/12	0,0	44	- 10		moist	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	^					••••	· · · · · · · ·
		511112	0.0	 	12	vef	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · ·	XXXX	•••• ••••	· · · · · · · · · · · · · · · · · · ·
		Field S	comen // illock			Groundwater er	acountered at a		vanced to feet. feet during drill	ing.	•	5.23	10/20	· · · ·	2" PV	
		Descrip Preserv No Rec Somple	overy Submitted poratory	-	V SO NS NT 2.5Y 4/	Sheen Delec No Sheen D Not Tesled 2) Munsell (195	ling Idwaler Level Ided Idelectéd ID) Soli Color C		Contact Contact Localed Approximately Conlact		ncreie nionite		Color o do Silica Sano	<i>-</i>	2" PM	
					_	B. D. B sumple	·C 12' by	1 to 1	2' 635				DWG:			
						GW (c 10.5'	695								

		Internati	onal	Incor	ora	<u>ted</u>	12-58-MW-5 (AREA 2)				P	AGE	1 0)F
		FACILITI LOCATIO START	N 7/7	03	1451	de,	WA FINISH 7/ /03	CASI	ACE VG T	ELEV OP F	ATION 1 FVAT				
	/	LOGGED SUBCON COMMEN	BY TRAC	D. E. TOR 18" x	dwa, AND 2,5	ed Cal EQU	<u>Ferty</u> MONITORING DEVICE OVA INPMENT <u>Cascade HSA</u> lit spoon sumpler lined w/ stainle	1 580B J 11.8 e	V la	mp,	100 pp	n isobu	tylene 30 ° c	- Cal Irop	ibrant_
		L		1	<u> </u>	1									
		PENETRATION RESULTS BLOWS 6"/6"/6"	Somple Depi Interval, fee	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Descrip (Typical name, color, description, shape, Example: Clayey SILT, brown; moderate to fine sand; oplor, firm and	density. moisture)	Inified Soil	Classification	Depth Below Surface, feel	Well S	Cons	noti	ction Îvsh
	יא קיי		0-		,	0	to line sond; odor; linn and Usphaltic/ concrete/ dirt, gra	dy in places			2 3		2	<u>/1</u>	MUM
She She		•••••			 	- 	STLT and proved (0-2' 555) live brown	GM		-	• • • • • • • •			• • • • • • •
- 4 -	ۍ <i>ح</i> و		ŀÅ.			<u>-</u>	(3-54.4/2), grands or mo	k. to loge,			-	••••••	χ	X	
	A.	•••••		· · · · · ·	· · ·	- 2	· · · · · · · · · · · · · · · · · · ·		5M		-		¥	\bigotimes	
		•••••				E	study still, olin bron,				- , -		¥	M	•••••
						<u> </u>						• • • • • • • •	<u>×</u>	К	
	1	•••••			• • • •	<u> </u>				• • • • •		•••••		6	
	4.5			<u>.</u> 200	 Us	 	·····				-		(;; · · ·	i. Č	
00	-mus-4.	5/10/10	<u>////</u>	· · · · · ·	••••		SAND and sett oligibr	run (2.54 4/2)					e ,	1 I.	
•) ኖ	•••••	X			-	SAND and set ohis br sund is fine grained a	lanp,			-				
	4			_DD.	<i>PS</i>	-	no odv present	·····			- 			-7	10/0
		slyly		•••••		-	SAA of said grading fine My fire grained trace	r. to			- · · · · · ·			·	
	- S - L -	· · · · · · · · · · · · · · · · · · ·		-90	2		My Tim yrained trace	day., molt					Ē	í.	io sto
1206	1-Sm1-85-7+	448	Х			- 8							17		
5	1.53	719(4	111	- () . ().	 N 5	-	becomes wet c = 8.5 by	۰۰۰۰۰. ۲			- 7		, F		
	×					-				لا∷ ∶ .					
		. 6. 9. 1. 2				/0	Surdy SILT, plice brown s Very fine to five grained	nd 15			- - · · · · -		1	7;	
		 • • • • • • • • • • • •	77/7	_9.D	24	-	······································		مسبعها				ī.F.		
		Jahr		•••••		-	SILT face us this grad	nel sand	ML		-		上		
				٥٥	Ŋ	-	en e			· · · · ·	- · · · · ·		ت از ر ارز		
			111			_/2	Boring terminated at feet, sampler ad	vanced to feet.	I]	· · ·	-	1	<u> -</u>		
							Groundwater encountered at approximately		ng.	•					
		CZZ Field Desci Press	nplion .	•	gic	⊽ ¥	Groundwater Level at Time of Drilling Static Groundwater Level	Gradational Contact		ncrele	1.5.5.1 0	0/20 Solorado ilica San	a 🗍	2" P	¢ .
			lecovery He Subi			SD NS	Sheen Delected No Sheen Delected	Contact Localed Approximately	 8 •	ntonite				2° P\	c
			aborala		(2	NT 2.5Y 4/	Nol Tesled 2) Munsell (1990) Soll Color Charts	- Contact	8			•			
							B.O.B. C 30' bys			<u>,</u>		DWG:			
							Sampler advanced to 31.5 L Groundwater encountered a	• .		see	pg.	20	f 2)	

FACILITI LOCATIO START		ee -	Ju	z S	SURF	ACE	ELEV	ATION		WEL	<u></u>	N-5
LOGGED SUBCON COMMEN	TRAC	DE TOR A		EQU	MONITORING DEVICE			LEVAI	IUN	••••••••••••••••••••••••••••••••••••••		
PENETRATION RESULTS BLOWS	Sample Depth Interval, feet	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, moisture)	fied Soil	Classification	Depth Below Surface, feet	Well	Cons chen		
6"/6"/6"	Sam Inte	Re F	5	Sur Dei	Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; firm and dry in places	Š	ë 	Dei Sur		<u> </u>		
8/14/20					SAT, otre brow, a little ray	ML					5	V.10
10/17/22		20	МĊ		fine grained Sund						KI.	/10
	<u> ////</u>	<u>a.</u> 2	<u>יי</u> ן גען	- <u>15</u>	charge boring log scale to 5 internals			 - 			- 4	· · · · · ·
•••••		•••••	· · · ·	-	$\frac{1}{2}$	 	· · · · ·		•••••		1. 1. 1. 1.	· · · · ·
	 	22	···· ···· 470		SILT, dire brown	ML		 - 		\overline{X}		• • • • • •
10/14/15			<u>איר.</u> 	-	······································						X	burk
•••••		•••••	••••		•••••••••••••••••••••••••••••••••••••••							· · · · · ·
14/18/18		10	در	-25	ЯЦ			- - -	-	$\langle X \rangle$	X	
·····		·····	• • •		2+4		••••	 - 	· · · · · · · ·		X	· · · · · ·
			····		•••••••••••••••••••••••••••••••••••••••	· · · · · ·		 - 		XX		· · · · · ·
14/7		<i></i> 0	<u>, , ,</u>		glayer JIUT, light brownish grey						X	•••••
•••••		•••••			(2-54.62)		· • • • •	 - 	 			· · · · · ·
	• • •	••••		35			• • • • •	-		••••	. .	
•••••	 	· · · · · ·		- - -	B.O.B. C 3D bys rumpler advanced to 315 mgs	 	· · · · ·	- - , .	· · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·	 	·····		- 	Givenionational C = 9.20'59.	 				· · · · · ·	. 	•••••
				<u> Yo</u>	Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drill	ing.	<u> </u>		1	I	⊥ ↓.	
Desi	niption	n/Litholo Sample	gic	 ▼ ▼	Groundwater Level at Time of Drilling Static Groundwater Level	6	mcrele	1.5	10/20 Colorada Silica San	d 🗌	2" PV	ĸ
No Som	erved S Recover, ple Sub	y mitled		SD NS NT	Sheen Detected Contact No Sheen Detected Approximately Not Tested	ــــ ﷺ ھ	mionite				2" PV	C
for Ana	Loboral vsis	ory	C		2) Munsell (1990) Soll Color Charts Conlact	<u></u>			-	Ţ		

	Internatio	onal	Incorp	ora	led	1.							internet and a second
		,				AL-SB-M						IGE	OF2
	FACILITY LOCATION	v¢	See-	<u>Ja</u>	y Sci	<u>4/es</u>	JOB # <u>240</u>				BORING	/WEL	1 Muc
	START	7/10/	03	•		FINISH 7/ 103	CAS	RFACE SING TI		า คาง			·····
, i	LOGGED	BY	D. Eo	lwar	rd Cal	Ferty MONITORING DEVICI	EOVM SEOB & 11.8	eV lai	тр 	100 00	m isolut	ulonp,	Calibrat
									-			•	
i		<u>,</u>	<u> </u>		<u></u>	lit spoon sampler lined w/	SIGIALESS STEEL STEEM	es /	10 14	<u>. ham</u>	mer	10" d	rop
	PENETRATION	is to		T	1			1	0	. 7			
	RESULTS	e Depth ol. feet	0 Uiju	5	Below e, feet	Lithologic De		1 Soil	Classification	Below , feet			truction
	BLOWS 6"/6"/6"	Somple interval,	PID Reading	Sheen	Depth E Surface,	(Typical name, color, description, Example: Clayey SILT, brown; m to <u>fine_sand;</u> opor, fi	shape, density, moisture) Ioderately plastic; coarse t	o hified	lisso	Depth B Surface,	5	cherry	2 Plush
	07070	5 =			0	to fine rand: odor; fi usphaltic / (concrete) / dirt		`	0	03		$\frac{2}{2}$	ANT IN
		111			- -	O- Shand cleared	+.9/#(CI?!!!			۰۰۰۰۰۳ <u>م</u> جبد ج	T	17	Zmor
		Λ			E	SILV underoval In-1	I dive have	GM			•••••		车。 注意
· :		X.	· · <i>· ·</i> · ·		-	SILTendgravel (0-2 (4.5t 4/3) grando va	I den us de					X	V
		K.,	• • • • • •		- 					-		XII	X/
								s:M	A .	-		QI (Ŵ
· · ·	·····					Suly SFCT. Olivel	now surdis		A.S.S.S.S.	-		\mathbf{Y}	XI
				••• •	-	Very fine,	••••••••••••••••••			-		X.	X
					;	••••••			· · · · ·	⊢ 		<u> </u>	X
				• • •						-		~	
¥6.		11			ĩ -					-		* 	
	3/4/4~	111	-0,)	ĸ		SIH AUA G	. I Dava A	••••••••		 _		e	•
		111				sith SAND Fine so no odo	more Dury					~	
	· · · · · · · · · · · · · · · · · · ·	XI			-	· · · · · · · · · · · · · · · · · · ·		••••••	••••		н И		
i de la companya de l	ula	4	a	ng.t	_6					-	CS5	2	
		//.		ļ		"Hit wil clan deey wow	st.		«···	-	لە	·Ε	•
and the second		<i>[[.</i>]		···‡		·····		ML			٤.		and a special and
	Shir -		()	ii		••••••	····· · · · · · · · · · · · · · · · ·	بة بلغ بلغ	; ;	- 	3		
	A	\ ./		<u> </u>	· · · · ·		· · · · · · · · · · · · · · · · · · ·		4 .1			(·
13 17		X		·····þ		4			4,775		- <u>5</u>	<u>استا</u> ر،	····
-	6/8/9-	• \		::- -		·····	· · · · · · · · · · · · · · · · · · ·				or te	1-1	,
	915L		-0.5	vef		SAA loss & stretures	· · · · · · · · · · · · · · · · · · ·		•••••		-		e 12.
\hat{O}		4		Ē			· · · · · · [*] · · · · · · · · · · · · · · · · · · ·		ا بروسه ا ا ارتصب	51	ဗ		
Ø		1.6.7		E	10	······					; -4 5 2.	. []	••••••••
ß	7/7/6	7	ا هب	<u>"</u> 5:E		· · · · · · · · · · · · · · · · · · ·				-	·	1-	<i>y</i> .
S		4.		ļ		Fine wet us du	n, sandisvety	SM					
Vy		/		· · · <u>F</u>		fine, wet, us odus			م مربز مدار می	Bantar 1		1 -	4:
`	••••••			Ē		· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •					'/ ~	
(a)	71440-		ובס-	M.F.	_12	Boring terminated at the					L		
						Boring terminated at feet, sam Groundwater encountered at approx	pler advanced toleet imately feet during dr	illing.			4. <u>5</u>		
	EZZ Field : Descrip	plion S		nic	₹ ¥	Groundwater Level at Time of Drilling Static Groundwater Level	Gradational Contact	Con	cro/c	873 (107/20 Solorodo Silica Sand	1 1	PVC
		covery	1.00		\$D	Sheen Delected	Contact			1			PVC S
	* Sompl	e Subra borator	vitled V		NS NT	No Sheen Delected Not Tested	Localed Approximately	Ber Ber	lonite				
Âţ.	Anotys		·	(2		2) Hunsell (1990) Soll Color Charts		لممم			•	W	
						B.O.B. C.	· LE STAR	ing a start	· · ·		DWC:		•
						Sampler advanced to		14 A.	ю."		N. C.		
			•			Groundwater encountered	e-9.0		ç	1.			

START LOGGED	BY	P	<u>-</u> J	Ġ	FINISH MONITORING DEVICE	JOB # SURFA CASING	<u>с</u> т	OP .	ELEVA	TION		
COMMEN	ITS				IIPMENT					·······		
PENETRATION RESULTS	Vaj		T	t i				5	1 2			
BLOWS 6"/6"/6"	Sample De, Interval, fi	PID Reading	Sheen		Lithologic Description (Typical name, color, description, shape, der Example: Clayey SILT, brown; moderately p to fine sand; odor; firm and dr	nsity, moisture)	Unified So	Classification	Depth Below Surface, feet	Well S	Con Schei	
••••••••••••••••••••••••••••••••••••••	\mathbf{Z}			_12_	STLP Law & D. Suntisu						r. -	7
quilla]//			E	SILT. Irace scal, Sundive Wet, ho do	·····	ML		<u> </u>	· · · · · · · · · ·	F	
914114			.	-	·····	•••••••••••••••••••••••••••••••••••••••	••••	••••			F	
•••••	1				\$2cT alux boung met,		• • • •	••••			-	- - -
				-	(-10, 20,		•••••	₽.	···*		
	K., .			- 			••••		-	· · · · · · · · ·	11 - N	ſ
•••••				-	•••••••••••••••••••••••••••••••••••••••		••••		-			ť
-10/10/10-			·• .	20		•••••••••••••••••••••••••••••••••••••••			[1997 1997 1992	\mathcal{M}	X
	. /.			-	······				-		XÌÌ	﴾
•••••	1.			-	•••••••••••••••••••••••••••••••••••••••				E		XX	\mathbb{N}
•••••			••••		·····						XX	办
7/tol(1-	·			25	· • • • • • • • • • • • • • • • • • • •			• • • •	- -		XX.	A
11010-								••••••		f	XX	K
	/		•••		· · · · · · · · · · · · · · · · · · ·			• • • •	<u>.</u>	·····}	\mathbb{N}	\mathbf{k}
•••••			••••		· · · · · · · · · · · · · · · · · · ·			• • • •			\mathcal{X}	Ð
4617	4			33	*	•••••	••••	• • • •	-		· Y	$ \mathbf{k} $
		••••			layon, SFOF, Locut brownish of Muthony (257,6/2)	n						.
••••••	••••	••••	[Muthen (2.57.6(2)	·····		• • • •	-			
•••••			··· 		•••••••••••••••••••••••••••••••••••••••							
			F		·····	*					• • • •	
•••••			Ę		Dob 5300							
•••••••			· · · [-		sauply 315'50	•••••••••••••••••••••••••••••••••••••••			-			
		· · · · · · ·			• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	••••	••••			•• ••	1
			 -						-			
					Boring terminated at feet, sampler advanc Groundwater encountered at approximately	ed to feet. feet during drilling.		-				
ZZZ Field : Descri	Screen/L plion Sa		ic	V V	Groundwater Level at Time of Drilling Static Groundwater Level	Gradational	Con	arele		0/20 olorado ilica Sand	$\overline{\square}$	2".
	covery			S 0	Sheen Detected	Contact	ן 1	ولاهما	التينينا			2
Samph for Lo Analysi	e Submit bonatory le	tted	(2.	NS NT 5Y 4/2	Not Tested	Contact	- oon	onite		<u>.</u>		

		Internat	ional	Incor	pora	<u>ted</u>	A3-5B-001				• •		
		FACILITI	Y	Bee-	Ja	y Sc ide	ales IOB # 24CH	.672			BORIN		OF LA3-50-001
	J	START LOGGED SUBCON	BY	D.E. TOR	dwa, ANT	rd Ca	FINISH7/ /03 CASIN FF2/ty MONITORING DEVICE OVM SEUB # 11.8 ev IIPMENT Cascado HSA	IG T V la	ОР Е <u>тр</u>	ELEVA 100 pp	TION_ In isob	ctylene-	Calibrant
					*/)	<u>5</u> p	lit spoon sumpler lined w/ stainless steel sleeves	; [40]4	<u>. ham</u>	mer ;	<u>30 " di</u>	rep
	ا، حر	PENETRATIO RESULTS BLOWS 6"/6"/6"	nple Def erral, te	PID Reading	Sheen	Depth Below Surface, feet	(Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; opor; firm and dry in places	Unified Soil	Classification	Depth Below Surface, feet		Const Schem	truction atic
	0-100					-	(usphaltic) concrete / dirt, gravel surface		Ţ		·····	 	
0922	43-59-001-012		X		••••	 - - 	hand cleaned to 4.0° bys STU and grads	GМ	 	- · · · · · · · · · · · · · · · · · · ·	• • • • • • • •		•••••••••••••••••••••••••••••••••••••••
		••••••				 2		 .		- 	• • • • • • • •		
		••••		•••••	•••		· · · · · · · · · · · · · · · · · · ·		• • • • •				• • • • • • • • • • • • •
	、	•••••		•••••	••••	 		 	· · · · ·	- 	• • • • • • • •		•••••••••
2	sh-lao.	4/3/2		.0.0.	 N ^{.r.}		STILT, olive brown (2.5 y y/3) soft. Very maist, to odor proved	ML	 	-	•••••		· · · · · · · · · · · · · · · · · · ·
5	₩.SJ.	•••••	X		••••		no odor present		····	-		X	••••••••
5860	6.0	·46.14		85.3	ŇS		sundy stht, dk. ohin bomm (2.5y 3/3) shall is fin to med grained. He	<u>5</u> M	· · · · ·		·····	X	· · · · · · · · · · · · · · · · · · ·
6437	7.5 ~	3/2/3			· · · ·	8	show present , rome mottled	· · · · ·	• • • • • • •	- - - -	·····		
Ø		••••••	111	5:5	NS -		.HC odor	· · · · ·	· · · · ·				
530	A3-58-04-90	<u> </u>	X	44.0	N.		·····	. : 	· · · · · · · · · · · · · · · · · · ·	- 			• • • • • • • • • • •
Ŭ	×	····t~l····					······	······	7	7			
		6810				·· · · · · · · · · · · · · · · · · · ·	mottled appearance	•••	 				• • • • • • • • • • • • •
			<u> </u>			_12	Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drilling	<u> </u> g.		·	Į		
		Prose			jic	V V So	Groundwater Level at Time of Driffing Static Groundwater Level Shana Delastic	Cor	ncrele	1474 0	0/20 olorado ilica Sanc	4	* PVC
	·	Somp	ecovery He Subri aborator Hs	villed Y	(2	NS NT	Sheen Delected No Sheen Delected Not Tested 2) Munsell (1990) Soll Color Charts Contact	Ben	lonie			2	· PVC
	·						B.O.B. C. 12 bys Sampler advanced to 12 bys				DWG;		
							Groundwater encountered @ 11' bas						

		Internatio	nal I	псотр	orat	<u>ed</u>	A3-5B-002					PA	GE	OF)
	-	FACILITY LOCATION	/	, <u>Su</u>	<u>^^y</u>	rilo	Scalej MA	_JOB # 24CH SURFA	ACE I	ELEV	ATION	·	WELL!	13-58-002
	/	START LOGGED SUBCONT COMMENT	RACT	10 10 TOR A	z	EQUI	FINISH MONITORING DEVICE IPMENTHSA	CASIN M 580 D				ION		
		PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Descrip (Typical name, color, description, shape, Example: Clayey SILT, brown; moderatel to fine sand; odor; firm and	density, moisture)	Unified Soit	Classification	Depth Below Surface, feet		Constr chema	uction tic
orro	۲-002-0.5		$\overline{\mathbf{V}}$		•••••	O	asphaltic mirtan hand claured to 4.0° Lgs SFLT and grands Co-2°		GЛ					
õ	200-85-EV	· · · · · · · · · · · · · · · · · · ·	/·\	•••••	••••				 ML					
	1		· • • • •	•••••	 26	- - - - - - - -					- - - - - - -			
6286	2.4-200-82-EA	<u>3/3/2</u>		<u> </u>	 √.	-	SILT, olive brown (2.57 4) very moist, no odar prex	b), 50P4, ~1		····· ·····				· · · · · · · · · · · ·
01-13	17-90-00- A3-	5/5/6		<u>N5</u>	 6 3	6 6 	sandy SILT dark olivi brown sand is the bound grained	(7.5¥3[2) , HC	SM	·····	-			
	- 1.5	9/8/8	([[] X][[]		 700	- - - -	· · · · · · · · · · · · · · · · · · ·	surt has		· · · · ·	-		X	
5430	43-50-005-9.0	8/9/10	X	<u>.</u> NS	 11.0		5AA / HC alor prount g-oded firer to very time hoot debis present			· · · · · · · · · ·		· · · · · · · · · · · ·		*****
		. 7/8/9	····· 	N۶	 	• • • • • • • • • • • • • • • • • • •	۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	7	2		XXXXX	· · · · · · · · · · · · · · · · · · ·
		······		· · · · ·		<u>-12</u>	Boring terminated at feet, sampler a Groundwater encountered at approximately	dvanced to feet. y feet during drit	ling.				M	1
		Desc Desc Press No K	ription erved S Recover, ple Sub Laborat	y britted	-	¥ \$0 NS NT (2.5Y 4)	Groundwater Level at Time of Driking Slatic Groundwater Level / Sheen Delected No Sheen Detected Not Tested (2) Munsell (1990) Soll Color Charls	Contact Contact Contact Located Approximately Contact		oncrete entonite		10/20 Colorado Silica Sano		• PVC • PVC
-							B.D.B. C 12 - bys sumpler advanced to	12^{-by} $\approx 11^{-by}$	<u> </u>			DWC:		

		<u>Internati</u>	onal	Incor	pora	<u>ted</u>	A4-5B-001			• • • •	PA	AGE	OF1				
		FACILITY Bee-Jay Scales JOB # 24CH.67201.00															
		LOCATIO START	<i>ATION</i>	/													
				<u>/03</u> D. F.	dwa	rd Cat	FINISH7/ 103 CASIN		OP E	LEVA	TION						
)		SUBCON	TRAC	TOR	AND	EQU	Ferty MONITORING DEVICE OVM SEDB & 11.8 ev IPMENT <u>Cascade HSA</u>	<u>v 14</u>	-sp	ioo pp	in Isomit	ylene-	Calibrant				
		COMMEN	IIS	18" x	2,5	<u> </u>	it spoon sumpler lined w/ stainless steel sleeves	; 1	40 14	. ham	mer	104 d	rop				
		PENETRATION	vis -	,	T								······································				
	44-20-00-6-02 44-20-001-4'5 44-20-00-012	PENETRATION TO THE RESULTS		54		Below e, feet	Lithologic Description	Unified Soil Classification		Below , feet	Well Construction Schematic						
		BLOWS 6"/6"/6"	Sample Intervol.	PID Reoding	Sheen	Depth B Surface,	(Typical name, color, description, shape, density, moisture)		nified								
			- <u>S</u>				to the sond; opor; thin and ary in places	Depth Bi Surface,									
			111]			usphaltic Concrete Act, gravel Artage hard cleared to 4.0' bys	······		 -	Γ						
てりり			$\overline{\mathbf{N}}$	1		E	STLT and grade Cost 255			 -	••••••	· X	•••				
			X.			E		GM		F		\mathbb{R}	• • • • • • • • • •				
				 	1	 				E		\mathbb{N}	* * * * * * * * * * *				
					. 					-							
			¥///			-		514		- 							
		• • • • • • • • • • •	\$///			<u>[</u>	•••••••••••••••••••••••••••••••••••••••			-		. X					
		••••		•••••		 -	•••••••••••••••••••••••••••••••••••••••			[]	••••••		•••				
		* * * * * * * * * * *			• • •	 - 4	Shal Stit plie know (2 (4 4b)	• • • •	• • • • •		• • • • • • •	·· 🏹 ··					
		• • • • • • • • • • • • •	///			-	sandy STLT die brown (2.54 4/2) send is my fire gravid dog. 10					\mathbb{X}					
~		· · · · · · · · · · · · · · · · · · ·	111	0.00	AIC	E	octor present	••••			•••••	Ň	· · · · · · · · · · · · · · · · · · ·				
3			K. /			- - · · · · ·				-							
)		•••••	.X. .			-		<u>SW</u>				. X					
						6	med grained SAND					<u> </u> Q					
		2/2/2		0,0	NS	I	•••••••	ŚЙ		-			· · · · · · · · · · · · · · · · · · ·				
			1///		117.		surly STLT as above damp			,	· • • • • • • • • • • • • • • • • • • •	X	••••				
			1	• • • • • •	•••			• • • • •	· · · ·				,				
			///	0.0	N	- 9		• • • • •	1		•••••		••••••••				
		5/6/7 /	///			-				-		X					
		•••••	. "	f		<u>-</u>	moist			-							
[633		- dalu	\mathbb{N}	Q.0			•••••••••••••••••••••••••••••••••••••••	:		-							
2	2	51911	Ι.Υ.		N.		••••			-		X					
	5					- 10											
							• • • • • • • • • • • • • • • • • • • •	••••									
		9/12/14		0.0	Nr		• • • • • • • • • • • • • • • • • • • •		1.2	<u> </u>		·· 🕄	•••				
	- 1	· · · · · · · · · · · · · · · · · · ·	////				net					Š	. * • . • • • • • • • • • •				
						- 12				-		X					
							Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drillin	ng.	•								
	Ī	ZZZ Field Descr	Screen	/Lithok Somple	ogic	Ţ	Groundwater Level at Gradational	.]	mcrele		10/20		2" PVC				
		Preserved Somple					Static Groundwater Level	-			Colorado Silica Sand						
			ecovery			SD NS	Sheen Delected Contact No Sheen Delected Approximately	8	nlonite				2" PVC				
		Somple Submitted NT for Laboratory NT Anolysis (2.57					Not Tested	X									
	L		<u></u>				B.O.B. C. 17. bys				DWG:	—	-				
							Sampler advanced to 12 bys										
							Groundwater encountered of 11 C be										

		Internatio	mal I	Incorp	oral	ed	A4-50-002			•••		AGE		or			
		FACILITY Bee-Jay Scales JOB # 24CH.6720									BORING/WELLAM-5B-002						
		LOCATION Junnyside, WASURFACE ELE										VATION					
	÷			100 ppin isolatylene calibrant													
	~	COMMENTS 18" x 2.5" split spoon sumpler lined w/ stainlerr steel sleeves; 140 14. hammer; 30" drop															
	٥٦	PENETRATION RESULTS	et a														
bshi	- 04	BLOWS 6"/6"/6"			Sheen	Depth Below Surface, feet	Depth Bel Surface, fi	Depth Be. Surface, f	Depth Bei Surface, 1	Depth Bei Surface, 1	Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; optor; firm and do to places	Unified Soil	Classificati	Depth Below Surface, feet	Well Construction Schematic		
	ŝ		111			0	usphaltic/ concrete/ art, grand suctance					·					
	-769 -85-	••••	<i>"///</i>			<u>-</u>	hand clend to 4.0° by		••••		,	··· >	.				
З,	ŝ	•••••	. . 	"[. <i>.</i> .	· · · · ·	0-2' bys SILT on grads	GM			•••••	K		• • • • • • • •			
	Ś	••••	///	• • • • •		· · · · -	·····*					\square	1	•••			
	*	••••	111		• • •	- 2		[••••		• • • • • • •	Ň	X	• • • • • • • • •			
						Ε		54		-			1	***********			
L121						E				E			/	••••••			
		•••••				<u> </u>		ļ	· · · ·	-		K					
	ν	•••••		• • • • • •		F	•••••••••••••••••••••••••••••••••••••••						1	• • • • • • •			
	5%		////			<u> </u>	and the line of			<u> </u>			·//····	·			
		· · · · · · · · · · · · · · · · · · ·	0.				stundy SILT , olice brown, soud is my fine grained, dy, no oder				•••••	··· X	?	•••••			
	44-51-02-	88		0.0	ŇŚ	-	nesht	••••	••••	 -	•••••		, · ·				
	1-5				•••	-	Jr. 63.64 1		• • • •			X	1.1	• • • • • • • •			
	Ac	····	\mathbb{Z}			_6_				-		K					
		·····		6.0		-	· · · · · · · · · · · · · · · · · · ·			-			1				
		2/3/4	///		N	· - · · · ·				- 			۰. ا	•••••			
		• • • • • • • • • • • • • •	///		• • •	- 	mast		· · · ·				<i>[</i>]				
		-1.1-	1.1				•••••••••••••••••••••••••••••••••••••••]				
	`e		///	O. <u>.</u> O	<u>, v</u>				•••••			····>	4				
	44-59-001-9-04	• • • • • • • • • • • •	11/	• • • • •		- • • • •	• • • • • • • • • • • • • • • • • • • •	•••••			•••••	\mathbb{N}	1	•••••			
[25]	ଛି		\mathbf{N}	1		-											
٢	2	4/8/10	X o.	6.0	Ń		· · · · · · · · · · · · · · · · · · ·			-		. K					
	5-17					<u> </u>				-			<u> </u>				
	4	•••••	7.1.	•••••		-				- - · · · ·			<u>}</u>	· · · · · · · · ·			
		slate	//	0.0	NS			 		5			(
			///	•••••	• •					.			<u>}</u>	• • • · • • •			
		•••••	[/]		•••	- 12	.NH		• • • •				<u> </u>	•••••			
							Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drilli	ng.	•			L	<u>ə</u> t				
		Field Screen/Litholo Description Sample			sgic	 ▼	Groundwater Level at Gradational		ncrele		10/20 Colorado		2" P	rc			
		Preserved Somple				¥ 50	Static Groundwater Level	í. m		التشا	Silica San		 2" P	1 10			
		Somple Submitted				NS NT	No Sheen Delected Localed Approximately Not Tested	Be	nlonite				[
	l	~*************************************				2.01 9/	2) Hunsell (1990) Soll Color Charles Conlact				DWG:			⁻			
							B.O.B. C 12 545 Sampler advanced to 12 hgs										
							Groundwater encountered a. SIID	has									

	International]	Incorporated		N			
	FACILITY E	Bee-Jay Sc	AY-51		2404.67201.0	00 BOR	PAGE OF
	LOCATION START 7/8/	See-Jay Sc Synnyside 03 1327		1440	SURFACE ELEN CASING TOP E	/ATION	
1	LOGGED BY	D. Edward Co	fferty MONITORING DEVI	ICE OVM SEOB	11.8 eV lamp	100 ppm is	iobitylene calibras
	COMMENTS	10R AND EQ 18" x 2.5" 5	UIPMENT <u>Cascade HS</u> , plit spoon sympler lined w	A 1 stainless steel s	leeves : 140 14	. hammer	· 30" drop
	PENETRATION S T						
	PENETRATION to the test in tes	PID Reading Sheen Depth Below	Lithologic		Unified Soil	Depth Below Surface, feet	ell Constructio Schematic
Ň	Sample Sample Intervol, 9/ 9/ 9			moderately plastic; coc; ; firm and dry in place	Cost in the second	Dept Surfo	
1340 14-5B-603-01-5	777		hand cleaned to y by	Et, good such	X		
1340 1-5B-66			0-2' bys SELT we			E	
14-5					GM	F	
					••••••		
						-	
、		·····		•••••••••••••••••••••••••••••••••••••••	54	E	
۲.5		·····			••••••	F	
£09-		····	standy stlt olivi	, brown (2.54 4	<u>,)</u>		
101.		2.6 NS	sand is very this dry, no odor pr	Grained	ØQ£	[
F)F	21415 X	·····			~ ·····		
(0/1			· · · · · · · · · · · · · · · · · · ·	·	·····		
ĩ	.5147	692 55-	becomes slightly sa	-ther 6-7.5	bes	- · · · · · · · · · · · · · · · · · · ·	
S		••••••••••••••••••••••••••••••••••••••	become rlights 5	Hii 75-80	195		
1405	888 X	-11-NS-9		•••••••••••••••••••••••••••••••••••••••			
`0			moist	·····	·····		
8	14/8/12	0.0 10-					
fan - qu					•••••••••••••••••••••••••••••••••••••••		
1405-003-07.	7/1		moist	·····		.	
	2/12/10 ///			• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
	······ [/]/		wet		••••••	►	
			Boring terminated at feet, a Groundwater encountered at app				
ŀ	EZZ Field Screen Description	/Lithologic Somple	Groundwater Level at Time of Drilling	Gradalian		10/2 Color	0 2* PVC
	Preserved So	omple 🗶	iume of Uniting Static Groundwater Level Sheen Delected	, Contact		Colon Silica	Sand
1. A.	No Recovery Somple Subr for Laborato	NS mitted NT	No Sheen Delected Not Tested	Contoct Localed Approxim	stely Bontonile		
Į	Analysis	(2.5Y 4	/2) Munsell (1990) Soll Color Ch	orts Conloct			₩C:
			B.O.B. C 12 bes Sampler advanced to 1	7 465		-	

Groundwater encountered a. ~ 11 bus

The standy Still ohie brown Stand U ray the graind Stand U ray the brown, that Stand Sould Sould moist Stand Sould Sould moist	SURFACE ELEVAT CASING TOP ELL M SEOB of 11.8 eV lamp Ic less steel sleeres - 140 14. 1 ription e, density, moisture)	EVATION Dppm_isoluctylene_calilmat
COMMENTS 18 x 2.5 split spoon sumpler lined w/ star RESULTS RESU	ription e, density, moisture)	nammer; 30" drop
BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' BLOWS 6'/6'/6' Capacity 6'/6'/6' Capacity 10/10/10 10/10/10 10/10/105 10/10 10/10/105 10/10 10/10/105 10/10 10/10/105 10/10 10	e, density, moisture)	
Sin and character fatt, g hard character fatt, g hard character fatt, g still and character fatt, g still and grands still and grand still and grand st	nd dry in places	Well Construction Schematic
2 3.7. 10 3.7. 10 4.7. 10 5.7. 10		
2 3.7. 10 3.7. 10 4.7. 10 5.7. 10	GM	
$\frac{10}{10 12 15} = \frac{10}{10} $		
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	SM	
$\frac{10}{10 12 15} = \frac{10}{10} $	(2.54 4/3)	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
5 12/18 0.0 NS 8 8/4/8 0.0 NS 9 5-10 10/12/15 //	e ug firi	
$3 = \frac{8 4 8}{5+1}$	ML	
E		
E		
wet		
Boring terminated at feet, sampler Groundwater encountered at approximat		
ZZZ Field Screen/Lithologic Image: Construction Sample Groundwater Level at Time of Drilling Image: Construction Sample Image: Static Groundwater Level Image: No Recovery SD Sheen Detected	Contact Concrete	Colorado Silico Sand
Sample Submitted NS No Sheen Delected Sample Submitted NT Not Tested for Laboratory NT Not Tested Analysis (2.5Y 4/2) Munsell (1990) Soll Color Charls		

	International]	ncorport	<u>uted</u>	AY-5B-005				PAGE	- 1	ог
	FACILITY LOCATION START	See-Jo Synnys	ay Sca Tde, V	SURF.	ACE I	ELEV	U ATION LEVAT		ELIAL	1-59-00
1	LOGGED BY SUBCONTRAC	TOR AN	D EQU	Ferty MONITORING DEVICE OVM SEOB of 11.8 e IPMENT <u>Cascade HSA</u> it spoon sumpler lined of stainless steel sleeves	V lan	<u>"β</u>	100 ppi	n isobutylf		
	L				γ					
ک	PENETRATION RESULTS BLOWS 6"/6"/6"	PID Reading Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; <u>firm, and, dry in places</u>	Unified Soil	Classification	Depth Below Surface, feet	Well Co Sch	emat emat	
0 - <u>5</u> 0				usphaltic / concrete Kalict, gravel suchace hand cland to 4.5 but				·····		 [
44-58-	······································	·····		6-2° bys STLT and grads	6-11	••••	-	••••••	X.	
			- 2	· · · · · · · · · · · · · · · · · · ·		• • • • 				· · · · · · · · · · · · · · · · · · ·
			• • • •	•••••••••••••••••••••••••••••••••••••••	sМ	· • • • •	-			
` 5		•••••		surly still phire brown (2.54 4/3) surlis vez fine growned dry, no obor present		 	- - -	· · · · · · · · · · · · · · · · · · ·	X	
2.4-200-02-45	5 8 10		· - · · · · · · · · · · · · · · · · · ·	dy, no obor present	<i></i> 	• • • • •				
A4-5B	X	·····		STLT okin bron trace rey fine		/	-		\sum	
	.4/s/s	0.0 NS	F	grained rond damp	ML	••••	- 	· · · · · · · · · · · · · · · ·		
	1		- - - 9	·····		 .,		••••••		
0.6-5	4 sh. ///	0.0 N	· 	moist increased cont	M	 			X	
1301 A4-59 - 005-9.0	41517	0.0 1/3	, - - - - 10	······································	<i>.</i>	 	- - - - · · · ·			
AU				······		 			X	
		010 NS		wet		<u> </u>	Ζ.		X	
	·····		- 12	Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drill	ing.	•	- •-!	L	<u> </u>	1
	PZZ Field Screen, Description S Description S Preserved Sc No Recovery No Recovery	mple	↓ ↓ \$0 ₩\$	Croundwater Level of Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected		ncrete	1473	10/20 Colorado Silica Sand	2"	
L	Somple Subr for Laborato Analysis	a	NT	Not Tested Not Tested 2) Munsell (1990) Soll Color Charts Contact B.O.B.C.J2 bys	××1				E) •	

Sampler advanced to 12 - 695 Groundwater encountered 0. = 11.5 - 695

,

		Incorp	UTUS	eu	A4-58-	006				P	AGE	1	OF
FACILITY		<u>See-</u> Synn	Ja	y Sca		JOB # 24C	H.672	01.0	0	BORING	5/W	ELL.	
LOCATION	V	Synn	45Ĭ	de, 1		SURI	FACE	ELEV	<i>ATIO</i> N	/ <u></u>			
START		03	,	100	FINISH [03		ING TO						
LOGGED	BY	D. Ed	lwar	y (at	<u>ferty</u> MONITORING DEVIC IPMENT <u>Cascade HSA</u>	EOVM SEOB 4 11.8	<u>eV lan</u>	нр	<u>100 pp</u>	In isobu	tyle	re (Alilran
SUBCON	TC	TOR A	AND	EQU	IPMENT <u>Cascade Its A</u>				···/			<u> </u>	
COMMEN	15	<u>8 x</u>	2,3	501	it spoon sumpler lined w/	stainless steel sleeve	5,1	10 14	. ham	mer ;	<u> 30 "</u>	dre	P
ENETRATION RESULTS	Depth			Depth Below Surface, feet	Lithologic D	apartation	15	, vo	Below , feet	Wall	0		uctio
		PID Reading	5	8 8	(Typical name, color, description,		SP	Classification	e Be			ema	
BLOWS	Sample Interval,	D S	Sheen	ept.	Example: Clayey SILT, brown: n		- jje	isso	Depth Br Surfoce,		10116		
6"/6"/6"	<u>s 5</u>	<u>×</u>	ļ",	l				0	0 X				_
•••••	777			0	usphaltic/ concrete/	gravel surfyce					r i		
• • • • • • • • • •	<i>[]]]</i>			F					- 				
	<u> \ </u>]		L					<u> </u>				1
	IX.			-					-				
	Vì			-		· · · · · · · · · · · · · · · · · · ·							
	V ////			2	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	•••	[····	F	•••••	[···	•• •	• • • • • •
•••••	¥////			 -	colocate shi	ANT	•••		L		† ·		
•••••	V//,		· · ·	<u>-</u>		N.U	••••	 	<u> </u>	• • • • • • • •	<u></u> }∙∙	·· ·	• •••••
•••••	{///			<u> -</u>		0 6	• • • • • • •		F-		<u></u> ∤		
••••••	¥///			F	soit Samph	C OTILY		ļ	F	· • • • • • • •			
	¥//,			<u> </u>	l ••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·			Ļ,		[]		.
	111			- 4	a. [.4	_ 1.1			-				
	V///			E	see A4-5B-1	105 lith			-				1
	114			- 1				····	F			•• •	• • • • •
	K44	••••		-	• • • • • • • • • • • • • • • • • • • •		•• ••••				[···]	•• •	• • • • •
•••••	V		•••	· · · -	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	•••••••	· · · ·	 -		· · ·	•• •	• {• • • •
•••••	ŀ∕\·	•••••	•••	L	••••••••••••	• • • • • • • • • • • • • • • • • • • •	••• ••••••	· · · ·			$ \cdot \cdot $	· . ·	• • • • •
	<u>۲</u> }			6		· · · · · · · · · · · · · · · · · · ·					 .		
• • • • • • • • • •			•••	. {			• • • • • •		-				. .
• • • • • • • • •									L				
• • • • • • • • •				-					<u>-</u>				
				-					\mathbf{F}				
				- 9									1
				-		•••••••••••••••••••••••••••••••••••••••			-		† ·		
•••••••	••••		•••		•••••••••••	• • • • • • • • • • • • • • • • • • • •	•••		<u> -</u>		· · ·	••••	• • • • • •
•••••			• • •		• • • • • • • • • • • • • • • • • • • •		•••••••••		<u>-</u> ,		$\left \cdot \cdot \right $	•• •	• •••••
• • • • • • • • • •					••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••••		 - · · · ·		· · ·	· · ·	• • • • • •
• • • • • • • • • •	••••							••••	F				.
				/0	·····	·			 				
		····		!	· · · · · · · · · · · · · · · · · · ·				<u>L</u>				.
				<u>-</u>]	· · · · · · · · · · · · · · · · · · ·				Ł				
				-	·····				F				
				-	····				-		[``		· · · · ·
				- 12	• • • • • • • • • • • • • • • • • • • •		•••		F		``	•••	• • • • •
			•••••		Boring terminated at feet, sa	moler advanced to fast		l	 •		LL	i	ł
		Į			Groundwater encountered at appre								
			l					. •					
ZZI Field Desci	Screen ription	n/Litholo Sompla	ogic	\mathfrak{V}	Groundwater Level at Time of Drilling	Gradational	[.] a	ncrele	<u>[.</u>	10/20 Colorado	Γ	2'	PVC
		Somple		¥	Static Groundwater Level	Contact				Silica Sa	nd [
No R	ecover	y		SO	Sheen Delected	Contact . Localed	8223	ale - 4			Ē] 2'	PVC
		mitted		NS NT	No Sheen Delected Not Tested	Locatea Approximately	×**	nlonite			111111		
 for L Analys 	aboral sis	og	(Not Tested 2) Munsell (1990) Soil Color Char	ls Conlact	لتكما						
											-	r	

. j

)

م . بېيدان^{ي د} انستېمم

14 ma

Groundwater encountered &, NIA

		Internatio	nal I	Incorp	orat	ed	A6-5B-001				PA	GE	1	of /
		FACILITY LOCATION START		ee Sh Tata	<u>م ک</u> 17	ales	JOB # 24cH SURF. CASIN	ACE	ELEV	ATION		/WE	<u></u>	6-58-00(
)		LOGGED SUBCONT COMMENT	RAC	P	56	EQU	MONITORING DEVICE OUL SLOP 11.401							
		PENETRATION RESULTS	pth eet		1	Below , feet		Į,	ion	Below s. feet	Wall		otr	uction
		BLOWS 6"/6"/6"	Sample De Interval, f	PID Reading	Sheen	Depth Be. Surface, I	Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; firm and dry in places	Unified S	Classification	Depth Be Surface,		chei		
ı	5		1111			- 0	asphalti sustau			-		-	-	7
212	-100-85-76	••••	/		· · · · · ·		Hand deeved to 4,5 bas sitt w/	•	· · · · · ·	- · · · · - - · · · ·	• • • • • • • •		· · · .	
	96-S	•••••	Å	 	 		brace small gravel & 1.3' bys SELT, alive brunn, phase fine sand		· · · · · · ·	 - 	· · · · · · · · ·	· · · .	. .	
		•••••				- 2				- -				
		•••••	<i> .</i> ,	• • • • •		- 				- 				
		•••••]//			- 4				- -	•••••			
1	ر. در ک	7/617_	77	.0.3.	เร	-	Sal SCI do have [954 4/2] [10			- - -				
12.14	46-58-001-4	•••••	Y		 		Sand, SFCI, blice Drown, (9.57 413), fine ground st sand, nedran shift, Loise, Damp, no lindro carbon odan			- · · · · · - - · · · ·			· · · . · ·	
).	76-5		/ \	0 :J·	lus.	- 6	. Oamp, no ULON Carson DOAN			-		••••••	- · ·	
		31(d/6	· · · · ·	· ,	••••		medium shift / dans Monst						. .	· · · · · · · · · · · ·
	25	·····		•••••		- 	······			- - -			· · ·	
	ð	5/7/a	Y	O~D	<u>1-5</u>	- } -	<u></u>							
1228	201		<i>.</i>	• • • • •		- 				-		•••		
		611015			ks	- - 10	Vary mossil	L	9.8	- -			.	
		7/4111					het	À		- - 				
ŀ		· · · · · · · · · · · · · · · · · · ·	••••	•••••	•••			· · · · · ·	· · · · · ·		· · · · · · · · ·			
ŝ,		(#°			IJ,	- 12			·····				· · ·]
	3	,					Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during dril	lling.	•					
	-	Descr	ription	n/Lithok Sampla Sample	ogic	₹ T	Groundwater Level at Time of Drilling Gradational Static Groundwater Level Contact	c c	oncrele		10/20 Colorado Siliça San	d [PVC
		No R	ecover Na Sut	y milled		SD NS NT	Sheen Detected Contact No Sheen Detected Approximately Not Tested	B a	ontonite				2	PVC
	Į	for L Analys	aborati sis	ory 			(2) Munsell (1990) Soll Color Charls Contact				DWC:			

. .

)	FACILITY LOCATION START LOGGED SUBCONT COMMENT	9 7 [9[0 BY RACTOR	EC	ide 1 920	W/tSURF	ACE E	ELEVA	TION		/WELL	H6-5B-
	PENETRATION RESULTS BLOWS 6"/6"/6"		Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; firm and dry in places	Unified Soit	Classification	Depth Below Surface, feet		Constr cherna	
0650	A6-58 - 6026-61.5	//// \		O	asphaltic surface hurd cleaned to 4.5 bys 0-2 bas SILT and grands alive bronn (2.54 4/3) grands are redinin to large subrounded dig	<u>G</u> М 			· · · · · · · · · · · · · · · · · · ·	XX	
	· · · · · · · · · · · · · · · · · · ·				no od or present	9 4					
lhbo	51-78-15- 10/14/15	0.0	NS -	<u>y</u>	sandy SILT, ohim brown (2.54 4/3) sand is very fine grained, stiff (ned, dense, maist, no unlaw present.			· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
ethdo	40-20-20-20-20-20-20-20-20-20-20-20-20-20	0.0	NS -	<u>ما</u>		ML		· · · · · · ·			
,	shyliy	0.0	NS -	<u>۶</u>	silt of trace very three grained						
0 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	12/14/16 12/14/16	0.0	NS -	10		· · · · · ·				XXX	
	(777) Field	Screen/Litho	kogic	(▼	Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drill Groundwater Level at Time of Drilling Gradational Contact	بب	hcrele		10/20 Colorado		PVC
	Samol	covery s Submitted boratory		¥ SD NS NT 5Y 4/2	Static Groundwater Level / Contact Sheen Detected / Contact No Sheen Detected / Located Not Tested Nunsell (1990) Soll Color Charts Contact	E Bon	nlonite	<u>1</u>	Silica San		PVC

;	LOCATION START LOGGED SUBCON COMMEN	BY IRAC	1 <u>9/03</u> b	e		WA FINISH7/9/03CASIN MONITORING DEVICEOVM_S80B IPMENTHSA						
1	PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet	PID Reoding	Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; firm and dry in places	Unified Soil	Classification	Depth Below Surface, feet		Cons chem	tructio natic
A6-58-03-0.5		ini X	,	· · · ·	-	dirt surface hand cleand to 4.5 bys STLT of a four small grands 0-2' bys	GM				××××	
	· · · · · · · · · · · · · · · · · · ·			· · · · ·	- 2	SILT dire bran, have my fire grained surd	ML	· · · · · ·	- - - - - - - - - - - - - - - - - - -			· · · · · · · · · · · · · · · · · · ·
46-58-003-4.5			6-0	 NS		.sardy.stLT.	5M	······				· · · · · · · · · · · · · · · · · · ·
	<u>4 r </u> x		6.8	 	-	SILT, trave ruy fire graining sand	ML		-	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
46-51-EN2-7.5	e/e/8		<u>0.0</u>	 <u>VS</u> 	- 10	· · · · · · · · · · · · · · · · · · ·		<u> </u>				
		<u>///</u> 	· · · · · · · · · · · · · · · · · · ·	•••				· · · · ·		· · · · · · · ·	· · · · · · ·	· · · · · · ·
	Prese	ription erved S lecover	n/Lithok Sample Sample Y Samitted	>gic	_12_ ↓ \$0 NS NT	Boring terminated at feet, sampler advanced to feet. Groundwater encountered at approximately feet during drill Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected No Sheen Detected Not Tested	C	1 oncrete ontonite		10/20 Colorado Silica Sal		2" PVC 2" PVC

	Internation	nal Incon	-		A6-5B-064 Scales JOB # -	2104 /7	701 00		PA		OF /
/	FACILITY LOCATION START LOGGED SUBCONT COMMENT	<u>7/9/(</u> BY RACTOR	Suri 3 DEC	<u>msili</u> 0700	FINISHS FINISHA9/03 MONITORING DEVICE OVM STOP	SURFACE CASING	ELEN	/ATION			
	BLOWS 6"/6"/6"	Somple Depth Interval, feet PID Peoding	Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, moistu Example: Clayey SILT, brown; moderately plastic; coar to fine sand; odor; firm and dry in places	ure) se to	Uninea Join Classification	Depth Below Surface, feet		Constr hema	ruction tic
10 - 10 - 10 - 01 - 01 - 01 - 01 - 01 -	· · · · · · · · · · · · · · · · · · ·			-	asphaltic surface hand cleared to 4.5 bys 0-2 bys SILT and large gravels olive brown (2.54 4/3), gravels are subra	GA					
•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		sandy SILT olive from (2.59.412), sand is fine grained, damp, no oder present						
9, AL-SI-04-4.5		0.c		-	medium stiff /loose, darp		· · · · · · · · · · · · · · · · · · ·			XXXXXXX	· · · · · · · · · · · · · · · · · · ·
0815 Ab-513-604-61.0	1 1/	V 0.0	NS NS	- - - - - - - - -	stift/medium dense dang becomes very moist	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		······································
	5/7/14		 	- /s	SAA, key moist	·····					· · · · · · · · · · · · · · · · · · ·
	7/11/16		· · · · ·	 <u>-</u> 12	SILT olive brow (2.59.4/2), very moist, stiff Boring terminated at _ feet, sampler advanced to _ Groundwater encountered at approximately _ feet during						· · · · · · · · · · · · · · · · · · ·
–	Descrip Descrip Proser No Re Somph	covery Submitted	le T	¥ \$0 NS NT (2.5Y 4/	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Delected Not Tested (1990) Soli Color Charts Contact	″ [.] [XXX	Concrete Bontonite		10/20 Colorado Silica Sand		' PVC ' PVC
			-	В.С su ~ Г с іл	D.B. Q (2' bys pler advanced to 12' 595 I encountered to a B' Las (?)			OWC:		

No R		n v			Localed	r Y YI /	Bontonite					
VZZ Field Desc Press	ription crved	Sampl a Sample	ogic	¥ S0	Groundwater, Level at Time of Drilling Static Groundwater Level Sheen Delected Contact			· · · ·	10/20 Colorado Silica Sar		2" i	
							•					
- · · · · · · · · · · · · · · · · · · ·				- 12				-				
••••••••••••				- 	· · · · · · · · · · · · · · · · · · ·			<u> </u>			1	
· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · 	 				- · · · · ·	· · · · · · · · ·	· · · [· ·		
••••••				- /0	·····			- -				
لىسىيە، • • • • • • • • •		····		 	·····		<u> </u>	<u> </u>	· · · · · · · ·		†	
<u></u>	/.		₩ ···	[moist		.	[1	
••••••	ĮΥ.				······	•••••						.
	<u>(///</u>	þ		F 9	·····			È -]	
4/5/5	[///,	0.0	NS	L	mourt	•••• ••••	*****		· · · · · · · · ·	K		
•••••	¥/]	 		- 		•••••••••••••••••••••••••••••••••••••••		È			 	
·····	/ \		· · ·	- 6	odor present		·····				۹ إ	
sisis	X	0-0	NS.	₽ -	Sund U very fige to fine graved,	· <u>.</u>	.	- -		X		
	Λ	f			sundy SILT die brown (2-54 4/3)	571		 	· · · · · · · · · ·		}	• • • • • • • •
	\ ///	.		<u>- </u>				- -			¥	
••••	///		· · · ·		•••••••••••••••••••••••••••••••••••••••			 	· · · · · · · · · ·		*	····
	¥//;			_	• • • • • • • • • • • • • • • • • • • •		•••••	-	• • • • • • •	K	}	
••••	¥///			. 	3 5 L 0101 (1.1.3 4 (1.4.)	· · · · · · · · · · · · · · · · · · ·	·	 		K	4	
•••••	$\langle \rangle \rangle$.	<u>,</u>	STIT of the Land 12 GU 4/2)		.	- -	••••••	K	 	
••••••••••••	ΪX.		· · · ·	E	are shall	····	<u>†</u>	¥	· · · · · · · · ·		₹	
••••	<u> </u>	- 	. [.]	. †		Gr	<u>.</u>		• • • • • • •			•
6 /6 /6"	S S	E CK	<u>~</u>	0	dirt surface		, <u> </u>	Se 6				
BLOWS	mple L	PID	heen	epth B irface,	(Typical name, color, description, shape, density, moisture)	10	tassifico	lepth B irface,				
PENETRATION	123	3		feet	Lithologic Description		tion	feet	Well	Con	-tri	
LOGGED			ý	R.	MONITORING DEVICE OV M STOB							
LOCATIO		<u> </u>	inni	sult	vut , ,SUI	RFACE	ELEV	<i>ATIO</i> N	/			
	LOCATION START LOGGED SUBCON COMMEN PENETRATION RESULTS BLOWS 6"/6"/6" 5/5/5 5/5/5	LOGGED BY SUBCONTRAC COMMENTS PENETRATION RESULTS BLOWS 6"/6"/6" 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	LOCATION	LOCATION	LOCATION	LOCATION SURANY LIDES FINISH 7/9/03 CA LOGGED BY UEC MONITORING DEVICE OULA STOLE SUBCONTRACTOR AND EQUIPMENT HIT HIT COMMENTS PENETRATION State State Typical name, close description, shape, density, moleture, plastic, coarse BLOWS State State State Complex Complex Correct description, shape, density, moleture, plastic, coarse BLOWS State State State Complex Correct, State Correct Ministatic, coarse BLOWS State State State Correct, State Correct, State Correct Ministatic, coarse BLOWS State State State Correct, State Correct, State Correct Ministatic, coarse Correct State Correct Correct Correct Correct State Correct Corect Correct Correct	LOCATION SURFACE SURFACE START T/E/0.3 FINISH T/E/0.3 CASING T LOGGED BY UES MONITORING DEVICE_OV/M SDB SUBCONTRACTOR AND EQUIPMENT HSB SUBCONTRACTOR AND EQUIPMENT HSB (pical name, color, description, stope, density, moisture) 3 RESULTS Start Start (pical name, color, description, stope, density, moisture) 3 BLONS Start O dirt, striftice 0 dirt, striftice 3 BLONS Start O dirt, striftice 0 0 dirt, striftice 3 BLONS Start O dirt, striftice 0 0 dirt, striftice 3 BLONS Start O dirt, striftice 0 0 dirt, striftice 3 BLONS Start O dirt, striftice 0 0 dirt, striftice 3 BLONS Start O Striftice dirt, striftice 3 3 BLONS Start Start Striftice dirt, striftice 4 4 4 4 <td>LOCATION SUARycold With </td> <td>LOCATION SUBANGOLL, WAT </td> <td>LOCATION SURFACE ELEVATION</td> <td>LOCATION SURFACE ELEVATION START TIP(3) COSING TOP ELEVATION LOGGED BY VEX MONITORING DEVICE OLA SD B SUBCONTRACTOR AND EDUPMENT K14 COMMENTS Signification Signification PENETRITON Signification Signification RESULTS Signification Signification PENETRITON Signification Signification Signification RESULTS Signification Complete Complete Line Complete Compl</td> <td>LOCATION SURFACE ELEVATION START TIP(3) CASING TOP ELEVATION LOGGED BY WEL MONITORING DEVICE O/A SPD B SUBCONTRACTOR AND EQUIPMENT HSH TOP ELEVATION State of the second second</td>	LOCATION SUARycold With	LOCATION SUBANGOLL, WAT	LOCATION SURFACE ELEVATION	LOCATION SURFACE ELEVATION START TIP(3) COSING TOP ELEVATION LOGGED BY VEX MONITORING DEVICE OLA SD B SUBCONTRACTOR AND EDUPMENT K14 COMMENTS Signification Signification PENETRITON Signification Signification RESULTS Signification Signification PENETRITON Signification Signification Signification RESULTS Signification Complete Complete Line Complete Compl	LOCATION SURFACE ELEVATION START TIP(3) CASING TOP ELEVATION LOGGED BY WEL MONITORING DEVICE O/A SPD B SUBCONTRACTOR AND EQUIPMENT HSH TOP ELEVATION State of the second

OW carentine a = 9 n' bes

	LOCATION		03 (0630'	NA. FINISH7[4]63	CASIN		EVATION		<u></u>
)	LOGGED B SUBCONTR COMMENTS	ACTO	ber R ANI		MONITORING DEVICE_NA	• • • • • • • • • • • • • • • • • • • •				
	PENETRATION RESULTS BLOWS 6"/6"/6"	Interval, feet PID	Reading	Depth Below Surface, feet	Lithologic Descriptio (Typical name, color, description, shape, der Example: Clayey SILT, brown; moderately p to fine sand; odor; firm and dry	usity, moisture)	Unified Soil Classification	Depth Below Surface, feet		nstruction matic W flws
			A		dirt lorand mitace 0-4.5 bys hand clewed SILT and grand (0-2' blive brown (2544/2), so Very fire & fire grained, dry	Lg 5.)	GA 			MOT
	14/16/20		· · · · · · · · · · · · · · · · · · ·	-	present		<i>я</i> л			
	6/8/12 77 44		· · · · · · · · · · · · · · · · · · ·	- <u>10</u>	54.T. y. trace surd		м <u>г</u>			
	7/11/21 #		· · · · · · · · · · · · · · · · · · ·	- <i>IS</i>	5 AA					
		4	•••••••	- 20	57.A		20			
	1920/24		· · · · · · · · · · · · · · · · · · ·	- 25	playing still up take clai	2			X	
	(777) Field So		hologic	30	Boring terminated at feet, sampler advan Groundwater encountered at approximately	feet during drillin			10/20	2° P/C
	Field Sci Description Preserver No Reco Somple : for Labo Analysis	1 Samp. very Submitte	le rd	↓ \$0 NS NT (2.5Y 4/2	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested I) Munsell (1990) Soll Color Charts	Gradational Contact Localed Approximately Contact	Concr		Colorado Silica Sand	

RIN ALLE & A IN' bur

	ACILITY DCATIO TART DGGED UBCON DMMEN DETRATION ESULTS BLOWS 76 76	N 7/1 BY TRAC ITS	SC UO3 TOR	AND	Jaz ysidi EQU				2L ATION LEVAT		G/W	ELL,	<u>MW-7</u>
	OMMEN	ITS	CTOR /	AND	EQU	IPMENT HSH							·····
PEA R 6	IETRATION ESULTS BLOWS 1/6"/6"	= Depth of. feet											
R 6	ESULTS BLOWS 767/67	d Dep		1	1 1		T	c	<u>+</u>				
		Sampli Interv	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Description (Typical name, color, description, shape, density, moisture) Example: Clayey SILT, brown; moderately plastic; coarse to to fine sand; odor; firm and dry in places	Unified Soil	Classification	Depth Below Surface, feet		Coi Sche		ruction itic
	····	7777			30						·		
9/1	sf17		 	••••	È F	clayey still (begin c = 30 bys) most only color clanges to light brownish gray.	ML		-				A
	(ł			color charged to light howmish gray.				· · · · · · · · ·	\bigotimes	XK	
		fert.	[- 35	(2.54 6/2) @ sare of interval			-			\mathbb{N}	×
		TH.			<u>رد</u> -	(31.5 ⁻ bgs)	5M		-	••••••			—
(9)		X			-	sudy ster out have to dire				· · · · · · · · ·			
	·····				-	surdy stir other but to dire. brown (7.54 4/2), surd is fit grand, a fear medium			-				
•					- 40	fit grand, a flar hedium			- - · · · · ·		. .]		•
	. <u></u>	滋			-	g thing , the			-	•••••			
NE	VL		s		-				-				
					- 								
	\sim		·····	••••	- 45					•••••		•••••••••••••••••••••••••••••••••••••••	•
2	Y z	×	·····	 	- 	borchale hat advanced bust 31.5 by			-				
					- 	due to clayer STLT			-				
					- 50				-		 .		
· · · · ·	••••••					lithology - possible contining.					[···]	•••	
	· · · · · · · · · ·					1							
	••••								-		.		
			••••••		55				-		 -		
	•••••				•	· · · · · · · · · · · · · · · · · · ·			-				·
						• • • • • • • • • • • • • • • • • • • •			-				
••••			· · · · · ·	· · · •			<u>.</u> :	· · · · ·	n				
	••••••			F	60	Boring terminated at feet, sampler advanced to feet.	.I	ـــــــــــــــــــــــــــــــــــــ		••••	I	1_	_1
						Groundwater encountered at approximately feet during dril	ling.						
ØZ	Z Field Desc	Screen ription	1/Litholog Somple	gic	Ţ	Groundwater Level at Time of Drilling Gradational Contact	0	mcrele		10/20 Colorado	Ţ	2	PVC
		erved S lecovery	•		¥ so	Static Grounawater Lavel				Silico Sai		ן 12	" PVC
	Some	de Sub oborata	mitted		NS NT	Sheen Delected Contact No Sheen Detected Approximately Not Tested 2) Munsell (1990) Soil Color Charts Contact	₩ ⁶	ntonite					

. ,

.

APPENDIX C

1

CHAINS OF CUSTODY

Merit 2680 East Lansing Dr., East Lansing, MI 48823 Phone (517) 332-0167 Fax (517) 332-6333	C.O.C. PAGE # /
REPORT TO Laboratories, Inc. CHAIN OF CU	
CONTACT NAME MARISON PATIENS	VANE & SY A
4	COMPANY
The Meridian	ADDRESS
20 V DS	GIY ZIP CODE
199 FAXED - 749 - 6863 POI	PHONE NO. FAX NO.
6)	SAMPLE TYPE
PROJECT NO. MAME BEE-Jay 24 CH. 67201.00	
	DE ALE PUSAANALYSES DUE DATE
MERIT SAMPLE TAG # OF VEAR VEAR IDENTIFICATION-DESCRIPTION BOTLES	ADDRESS OF ADDRESS OF ADDRESS ADDRE
0	x XXX
1 0456 A1-58-001-4.5	XX XX XX Follow - y evaluation offer
	XX X indicated or alizes are
shay 1	XXX X compet
102	
06 1110 A1-50-002-9.0	X
074 1145 A1-58-603-0.5	XXXXX X
08 1158 11-58-003-4.5	
09 1205 41-53-003-7.0	
1) 1248 A1-56-004-0.5	X X X
1 1 1338 11-58-604-4.5	XX
12 1343 11-58-664-9.0	
19 V 1452 A2-58-003-4.5 242	>
RELEVOURSHED BY A MAN HAN XSAUPLER DATE () 03 TWE	RELINOUISHED BY: DATE TIME
Y: DATE	RECEIVED AT MERIT BY: 111 X BALENCE DATE OF 30 INVED 930
BY: DATE	SEAL MTACT INTRALS NOTES: T YES NO 0
RECEIVED BY: SIGNATURE	SEAL NO. SEAL INTACT INITIALS YES OD NO DI INITIALS

)		COC 8495# 2 0F 3	~	 • •
Ŷ	Merit	2680 East Lansing Dr., Phone (517) 332-0167		East Lansing, MI 48823 Fax (517) 332-6333				016165
REPORT TO	Laboratorics, Inc.	CHAI	CHAIN OF CUS	CUSTODY RECORD			INVOIC	DICE TO
CONTACT NAME Marica Poli	Po Horas			CONTACT NAME			Same	
	International Inc.			COMPANY				
1 -	Hordian Dr. Suite	IJ		ADDRESS				
		STATE	ZP 899544	CITY			STATE ZP CODE	DΕ
PHONE NO. 249-9499	FAX NOT - 349 - 6963			PHONE NO.	FAX NO.		P.O. NO.	
E-WAIL ADDRESS IN JURTPOSSO SCOT. COM		QUOTE NO.		PRESERVATIVE CODE			KPE	A= NONE
PROJECT NOJNAME Bro - Tal -	24c4.67201.00							0= HS0
SAMPLEH(S) - PLEASE PRINT NAME	0. Eduted (GRA		BOTTLE CLEAR	\backslash	ြ အ	DUE DATE	
MERIT SAMPLE COLLECTION VEAR: LAB NO. DATE 1 TIME	N SAMPLE TAG IDENTIFICATION-DESCRIPTION	TAG ESCRIPTION	# OF BOTILES		A Start A Contraction of the second s		APPROVED BY:	
1	9 A2-58-003-9.0		2, yee.				please had for	rossitle
	1-		3 yor.		×	follow-	2 Evalying	uter
	12-58-	, s	2,402		×	<i>Chalicuted</i>	anolyter	he
>	45-28-004-	9.0 [~]	2, 40r.		×	Completed	eted	
1/2/03 01/0	12-58-001.	ه.5	3,402	XXX	×××			
20 0129	12-58 - 001 -	4.5'	2; Ya.		××			
210 110	- 100-85-24 L	9.0	2,40		××			
	A2-58-002-	<u>. 2 - 2</u>	3 42.	XXX	X	میں اور		
Mo1 62	4 A2-58-002-	4.5	2, 402.		××			
24 1050	0 12-58-002-	9.0	2,402.		XX			
		, G.S.	3,402.	XXXX	XXX			
36 0229	9 13-58-002-	4.5~	<u>7, %.</u>	×	× ×			
	3 43-58- 602 -	6.0	R, 402.					
38/ 4 0838	A3 - 5B-	۲.5 -	2,400.	X X X I I X	XXXX	Vary and a		
RELINCUISHED BY, QUANTURE	A SAMPLER	20/5/2mg	TIME	RELINCUISHED BY: SIGNATURE		9		TIME
		DATE	TIME	RECEIVED AT MERIT BY: SIGNATURE	Δm		-2-8-La	1950
RELINQUISHED BY: SIGNATURE			TIME	SEAL NO.	SEAL INTACT YES II NO (]	NOTES:	TEMP. ON ARRIVAL	
RECEIVED BY: SIGNATURE		DATE	TIME	SEAL NO.	SEAL INTACT YES [] NO []	INITIALS		
					THE REPORT OF THE PARTY OF THE			

۰.

		ł	C.O.C. PAGE # OF	·
	Ment Phone (517) 332-0167 Fax (517) 332-6333	g Ur., East La 0167 Fax (1517) 332-6333	016167
REPORT TO			CORD	INVOICE TO
CONTACT NAME Marisa Po Hercon			CONTACT NAME	
	12.		COMPANY	
		والدار الالالالالالالالالالالالالالالالالالا	RESS.	
<u> </u>		Were 4		ZiP CODE
	FAX NGT7 - 349-684 3 P.O. NO.		PHONE NO. PHONE NO.	
mpa Hersone	r . Com			
PROJECT NO. NAMA BPP. Jay 21	24cH.67201.00			
SAMPLER(S) · PLEASE PRINT NAME	D. Eduard Cafety		CON ANALYSES	
MERIT SAMPLE COLLECTION	SAMPLE TAG	# OF	A SA	********
1	IDENTIFICATION-DESCRIPTION	RUNIES	and the start of the life / the	
1612	44-58-061-0.5	3, 4 ₀₂ .	X X X X X XXX	
1 627	44-58-001-4.5			
1633	44-58-601-9.0			
/ bshi	44-58-00 2-0.5		X X X X X X X X X X X X X X X X X X X	
he bshi by	1-3.0-200-85-44			
6 1517	44-58-002-4.5°			
44 E23 44	44-58-002-9.0			
0461	A4-58-002 - 0.5		X X X X X X X X X X X X X X X X X X X	
9761	44-58-603-055-1		X X X X X X X X X X X X X X X X X X X	
, joyi	A4-58-003-4.5			
Cohl	A4-58-003-6.0			
, lyos	44-58-003-7.5			
goh!	A4-58- 603-7.0		X X X X X X X X X X X X X X X X X X X	
hy shal V H	<i>۱- 5</i> β- ۵۵5-۵،5´	>		
RELINQUISED BY CALLED TO T	DATE PATE DATE /4/03 TIME		RELINQUISHED BY:	TIME
RECEIVED BY: SIGNATURE	DATE	ш	TBY: /// V DYE	2 Ch 20.
RELINQUISHED &Y: SKANATURE	DATE	ų		(Alt
RECEIVED BY: SIGNATURE	DATE	Ш	SEAL NO. SEAL INTACT INITIALS VESICIAN NO CI INITIALS	

		1)		55	COC. PAGE# 2-	ھ س	į
-		Y	Merit	2680 East La	2680 East Lansing Dr., East Lansing, MI 48623 Phone (517) 332-0167	. Lansing, x (517) 3;	MI 48823 12-6333				016168
REPORT	10	/		Н	CHAIN OF CU	STOD	CUSTODY RECORD	-		INVOICE	OICE TO
CONTACT NAME	Marista	a Puttown	, clex			CONTAC	CONTACT NAME			A SAME	
COMPANY	SPTOR		hil Ic			COMPANY	4				
ADDRESS 2321		The A	in Dr.	sute E		ADDRESS	22				
O OILA	1 3			STATE	ZP CODE	CITY				154	ZIP CODE
PHONE NO - 349 - 9499	949-		FAX NO 349 - 6863	P.O. NO		PHONE NO	NO.	FAX NO	NO.	P.O. NO.	
E-MAIL ADDRESS	R & Kiral	9		QUOTE NO.		Par	PRESERVATIVE CODE	EALA	\$ 	AMPLE TYPE	
PROJECT NO.MAME	Bec	- Jay				REFR	REFRIGERATE (Y/N)			WW OIL SOIL	C = HNO, C = H,S0, D = NaOH
SAMPLER(S) - PLEASE PRINT NAME	PRINT NA	1 1	<i>b</i> .	Edwad alterty		BOTTLE	LE CURAND	\mathbf{N}	RUGH ANALYSE		E=HCL F =
	SAMPLE COLLECTION YEAR: DATE TIME	NLLECTION TIME	SAME	SAMPLE TAG IDENTIFICATION-DESCRIPTION	# OF BOTTLES			200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	AN BOSH-PICK-UP C AI	APPROVED BY:	
2	78/03	Sh2)	- 28 - 00 - 0. 2 -	0.5-1	3,402	<u> </u>	X XXX	XX			
7		ES31	R4-58-005-4.5	۲.5'			X X X	X			
*		1301	A4-58-005-9.6	9.6			XXX	XX			
ß		1315	44-53-006.	006-0.5	*		X XX X	XX			
14 7	19/03	2121	A6 - 58 - 001 -	۰ ۵، ک		X	XXX	×			
20		1218	140 - 28 - 241	۰ ۲:۶۰			X X X	X X		والمحافظ	
12		1228	A6-58-001	- 7.5'			XXX X	× ×			
સ		0160	A6-58-002-0.5	- 0,5 '			XX				
23		0630	No - 58-0026-	- 0,5			XXX	×			
र		0630	A6 - 56 - 0026	1-50-			× × ×	×			
35.		1hbo	A6-58-0025	- 4.5			X X X X	×			
3%		5443	A6 - SB- 0026-	- 6.0							
22		09560	A6-53-0025	- 7.0			XXX	×			
	>	1116	AC - 53 - 003.	- 0.5 -	>		XXX	×		یوند - میروند به میروند به میروند و می	
HE INQUISHED BY	(A)	et for	ASAMPLER	Len DATE / 2/07	TIME	RELINC	RELINOUISHED BY: SIGNATURE			DATE	TIMAE
RECEIVED BY: SIGNATURE		2		DATE	TRME	RECEIV	RECEIVED AT MERIT BY; SIGNATURE			and the second	722
RELINQUISHED BY: SIGNATURE				DATE	TIME	SEAL NO.	Ċ		INITIALS	NOTES: TEMP. ON ARRIVAL	
RECEIVED BY: SIGNATURE				DATE	TIME	SEAL NO.	Ö	SEAL INTACT YES D NO D	INITIALS		
a state of the sta				PLEASE NOTE: SIGNING ACKNOWLEDGES ACCEPTANCE OF TERMS & CONDITIONS ON REVERSE SIDE	CKNOWLEDGES AC	CEPTANCE O	F TERMS & CONDITI	ONS ON REVERSE SID	1		

·····

ł

		iont I amainan De Hand	Landing M (1923	c.o.c. PAGE # <u>3</u> OF <u>3</u>	Ē
Ŷ		Phone (517) 332-0167 Fax (517) 332-6333	x (517) 332-6333	016169	
REPORT TO		CHAIN OF CU	CUSTODY RECORD	INVOICE	CE TO
CONTACT NAME ALL I'SU PAHLYTEN	je j		CONTACT NAME	AS SAME	
COMPANY SECON LA	Interational Inc.		COMPANY		
167	Q		ADDRESS		
ORY OREMOS		h) 386 az Ihus	CITY	STATE ZIP CODE	
66	FAX NOT - 349 - 6863 PO. NO.		PHONE NO.	FAX NO.	
13	PLOT - Com	0.	PRESERVATIVE CODE A.	SAMPLE TYI	A = NONE
PROJECT NO.NAME Bee Jay					B = HNO ₃ C = H ₂ SO
1 1	1). Edward Carterty	\$		RUSH ANALYSES DUE	E HOL
SOLLEC	SAMPLE T IDENTIFICATION-DE	N BOTTLES		ALE APPROVED BY:	
704 719/03 11/16	Mo	3,46.			
	M-58-23-45		XXX		
34 0142	N-38-				
ShLO 69			X XXX		
34 0872]		X XXX		
5120 252	A6-				·
000/ 100	We - 58 - 005 - 015				
57 1040	. 91¥				
Sho) The	<u> </u>				
34 0830	1 46-55-001-0.5'		X XXXX		
40 1 1030	46-55-002-0.5	>	XXXX		
RELINQUISHED BY. O THURK	XSAMPLER DATE ///	/03 TIME	FRELINQUISHED BY: SIGNATURE	DATE TIME	
RECEIVED BY: SIGNATURE	DATE	TIME		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27
RELINQUISHED BY: SIGNATURE	DATE	TIME		NO II INITIALS NOTES: TEMP. ON ARRIVAL	
RECEIVED BY: SIGNATURE	DATE	TIME	SEAL NO. SEAL INTACT YESCO N	INTRALS	

PLEASE NOTE: SIGNING ACKNOWLEDGES ACCEPTANCE OF TEAMS & CONDITIONS ON REVERSE SIDE

	x		Merit	2680 East Lansing Dr., East Lansing, MI 48623 Phone (517) 332-0167	, East Le	ansing, MI 48823 517) 332-6333	0.0.0	C.O.C. PAGE # OF	Ч	016170
REPORT	T TO		Laboratories, Inc.	CHAIN OF	: cus	CUSTODY RECORD			INVOICE	ICE TO
CONTACT NAME	Marica	P. Herson	×			CONTACT NAME			Kame	
COMPANY	SECOL		buil Tac.			COMPANY		·		
ADDRESS 7	2321 0	Club Me	1 2	and a second		ADDRESS				
	9			1460 TKs	9	CITY			STATE ZIP CODE	
PHONE ND- 3	6646 - 64C		FAX 42-7- 349- 4863	1		PHONE NO.	FAX NO.		P.O. NO	
E-MAIL ADDRESS	mpetter	ine r		QUOTE NO.		PRESERVATIVE CODE.	AN THE		E TYPE	A= NONE
PROJECT NO INAME		Bee-Jay	24cH.67201.00					PRODUCT SLUDGE		D=NaOH
SAMPLER(S) - PLEASE PRINT NAME	ASE PRINT NA	4ME	D. Edward (いんみ		BOTTLE	A ANA	D SASTANA PARTY	DUE DATE	E # HQL
MERIT LAB NO.	SAMPLE CO YEAR: DATE	SAMPLE COLLECTION YEAR: DATE TIME	SAMPLE TAG IDENTIFICATION-DESCRIPTION		# OF BOTTLES		A CONTRACTOR	AP AN ALBH PLCK-UP AP	APPROVED BY:	
13619.01	7/4/03	1435	44-58-004-0.5		3, 42		XXX			
10	7/9/03	lys)	2.4 -400 -85-44	3	3. Yor.	XX	X			
£	7/1-3	1456	44-58-004-9.0V		7, Yee.					
<u>64</u>	Tholog	0728	A1-56-005-05	۶`		XXX	×			
ŝ		VELO	A1-58-005-4.5			XX				
D.G.		0737	A1-58-005-75	۶`		XX XX Y	×			
59		ofys	A1-58-006-0.	٥.٢		XXXXXX	N X X	N. TIPA		
80		Shyo	A1-50-006-0.	0.5-1		XX X X	\times			
Z		0651	A1-58-006-4	4.5'		XX	XX	The second se	والمحافظ	-
C		0658	A1-58-606-7.5	، د			- X X	Nell H		
-		0907	A1-58-007-0	٥. ٢ -		× Š	X			
Ч		0616	A1-53-607-4	4,5"		XX	X	Andread and a second		
5		092	41-58-007-7	ن کر پر			X			
2	≽	8080		0.5		XXX	X			
RELINQUISHED BY	196	a.l.a	PSAMPLER DA	DATE		RELINQUISHED BY: SIGNATURE			DATE	141
RECEIVED BY: SIGNATURE				DATE TIME		RECEIVED AT MERIT BY: SIGNATURE			DATE //-03 0	S/50
RELINOURSHED BY: SIGNATURE	ÿ		Ŏ	DATE TIME		SEAL NO.		INITALS NOTES	TEMP. ON ARRIVAL	
RECEIVED BY: SIGNATURE				DATE		SEAL NO.		INITIALS		
				The second secon						

ļ

PLEASE NOTE: SIGNING ACKNOWLEDGES ACCEPTANCE OF TERMS & CONDITIONS ON REVERSE SIDE

REPORT MALLIN Prime (a) 73 000 for The (b) 75 0000	1	Marit	2680 East 1 ansion	Dr Rod Lice) () () () () () () () () () () () () ()	3	C.O.C. PAGE # 2_ 0F	Ч	·
III TO CHANNOF CLISTODY RECORD III VOLUE IIII VOLUE III VOLUE III VOLUE <th>¥ </th> <th></th> <th>Phone (517) 332-0</th> <th>167 Fax (</th> <th>aisaiy, wa 40023 517) 332-6333</th> <th></th> <th></th> <th>016</th> <th>171</th>	¥ 		Phone (517) 332-0	167 Fax (aisaiy, wa 40023 517) 332-6333			016	171
Herits Iteria Anteria	10	/	CHAIN	OF CUS	TODY RECORD	_		INVO	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	(j.)			CONTACT NAME			- CONTE	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1				COMPANY				
Chener Tenter Tenter<	1.6	i D.	IJ		ADDRESS				
The - page NMST - 34 (M2) Politice Parameter			STATE	OF PPLY	GITY				
Profilement Janetaria		1377-349-6863		•	PHONE NO.	FAX	VO.	P.O. NO.	
Ben-JJ, Intermixed Jet 4, 17.24.00 Restatement (1.10, 1.1	6	ar. con	GUOTE NO.		PRESERVATIVE COD	11179	SAM	PLE TYPE	A = NONE
Alternation 0. Educad Carter, and contention Description And version Description Descriprescription <thdescription< th=""></thdescription<>	MENTING NAME Bac - Jay	24cH. (7201.00			REFRIGERATE			뿟	B=HNO, C=H ₂ So, C=N ₂ OH
Server contention SAMPLE Trac APPENDE Trac APPENDE Trac APPENDE Trac ONTE The DEMITFICATION OPECIATETION and and and and ONTE The DEMITFICATION OPECIATETION and and <t< td=""><td></td><td>D. Eduard</td><td>Cafe</td><td></td><td>BOTTLE CONSE</td><td></td><td>RUSHANALYSES</td><td></td><td>E HOL</td></t<>		D. Eduard	Cafe		BOTTLE CONSE		RUSHANALYSES		E HOL
Thebs affe A1-58-087-V.S' 3 4n XX XX X 0320 A1-58-087-V.S' 3 4n XX X X 1195 A2-58-MUS-0.5 3 4n XX X X 1195 A2-58-MUS-0.5 3 4n XXX X X 1196 A2-58-MUS-0.5 3 4n XXX X X 1260 A2-58-MUS-0.5 2 4n X X 1200 A2-58-MUS-0.5 2 4n X X 1200 A2-58-MUS-7.5 2 4n X X 1201 A1-56 10 10 10 1200 A2-58-MUS-7.5 2 4n 10 10 1201 A1-56 10 10 10 1201 A1-56 10 10 10 120	SAMPLE COLLE YEAR. DATE	SAMPLE SAMPLE	TAG ESCRIPTION	# OF BOTHES	TYPE ALL AND	76 × 74			
0310 AI-38-608-7.5 3 Ver 3 Ver A2-58-MW5-0.5 3 Ver 3 Ver A2 XX X X 11/5 A2-58-MW5-0.5 3 Ver A2 3 Ver A2 3 Ver A2 X X X 11/5 A2-58-MW5-0.5 3 Ver A2 3 Ver A2 X X X 1206 A2-58-MW5-7.5 2 Ver A2 2 Ver A2 X X X 1206 A2-58-MW5-7.5 2 Ver A2 2 Ver A2 X X X 1206 A2-58-MW5-7.5 2 Ver A2 2 Ver A2 X X X X 1206 A2-58-MW5-7.5 2 Ver A2 2 Ver A2 2 Ver A2 X X X 1206 A2-58-MW5-7.5 2 Ver A2 2 Ver A2 2 Ver A2 X X X 1206 A2-58-MW5-7.5 2 Ver A2 2 Ver A2 2 Ver A2 X X X 1206 A2-58-MW5-7 2 Ver A2 2 Ver A2 2 Ver A2 X X X 1207 A2	Tholes Oftle	41-58-008-4	, <u>,</u> , ,	3 4.22					
IV5 A2 - 5B- MUS - 0:5 ⁻ 3 Vm XX XX 1200 A2 - 5B- MUS - 4:5 ⁻ 2, Vm 2, Vm Nob A2 - 5B- MUS - 4:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob A2 - 5B- MUS - 7:5 ⁻ 2, Vm X Nob Mode Mode Mode Nob Mode Mode Mode Nob Mode Mode Mode	0320	A1-58-608-14	<u>, S'</u>	3 Yet.	XX	X			
1260 A2 -53 - MuyS - Y, S' 2, Yas X Izolo A2 -53 - MuyS - 7, S' 2, Yas X Izolo A2 -53 - MuyS - 7, S' 2, Yas X Izolo A2 -53 - MuyS - 7, S' 2, Yas X Izolo A2 -53 - MuyS - 7, S' 2, Yas X Izolo A2 -53 - MuyS - 7, S' 2, Yas X Izolo A2 -53 - MuyS - 7, S' 2, Yas X Izolo A X X Izolo A X X Izolo A X X Izolo A X X Izolo X X X		42-5B-MWS-	0.5	3,400		×			
W 1206 A2-58-Aug 7,5 2,424 N Mail Mai	1260	MMS	5.2	2, 44		×			
Mathematical Mathematical<	902/ A 120P	SMW	7.5	2, 4.2.		X			
Mathematical Date Date Date Mathematical Date Date Date Date Mathematical Date The Scientific Date Date Mathematical Date The Scientific Scientific Date Date Mathematical Date The Scientific Scientific Date Date Mathematical Date The Scientific Scientific Date Date Date Date Date Scientific Date Date Scientific						_			
Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical									
Mathematical Date Hell Hell Date Mathematical Date The Searance Date Date Mathematical Date The Searance Searance Date Date Date The Searance Searance Searance Date Date The Searance Searance Searance Date Date The Searance Searance Searance Searance Searance Date Date The Searance Searance Searance Date Date Date The Searance Searance Searance Searance Searance Searance									
Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathem									
Alternative Date The Relationships Date Alternative Date The Relationships Date Date The Scalartise Scalartise Notes: Tabe. CN ARRIVAL Date The Scalartise Scalartise Notes: Tabe. CN ARRIVAL									
Addition Addition Addition Addition Addition Addition Addition Addition Addition									
Relative for the large of t									
Addition Addition Addition Addition Addition Addition Addition Time Fill Method Fill Method Addition Addition Signature Signature Date Addition Addition Signature Signature Date Addition Time Received at Method Signature Date Addition Time Seal NO. Seal NO. NOTES: Teap. ON Addition Date Time Seal NO. Seal NO. NOTES: Teap. ON Addition									
Market Standling Date Time BIGNATURE PECIVED AT MERIT BY: Date Time SEAL NO: NITIALS	PELINUISHED BY Q Q, IM								
DATE TIME HELEVED A MEHIL BY:	DBY:				SIGNATURE	₩№			1
DATE TIME SEAL INTÁCT INITIALS NOTES: DATE TIME SEAL NO. SEAL INTÁCT INITIALS NOTES:	94ED PV.				Heceived an Mehit By: Signature			Co-11-L	915
DATE TIME SEAL NO. SEAL INC. YEST NO.	18%								
							STRITIALS		

į

AGE NOTF: SIGNING ACKNOWLEDGES ACCEPTANCE OF TERMS & CONDITIONS ON REVERSE SIDE

-		INVOICE TO	KSAME			STATE ZIP CODE	P.O. NO.	SAMPLE TYPE		DUE DATE	APPROVED BY:											DATE	PARENS OF MADDIC	NOTES: TEMP. ON ARRIVAL	
)	Lansing Dr., East Lansing, Mil 48823 7) 332-0167 Fax (517) 332-6333	CUSTODY RECORD	CONTACT NAME	COMPANY	ADDRESS	GITY	PHONE O	PRESERVATIVE CODE		AS A AS	AT A A A A A A A A A A A A A A A A A A		X XXX		X		X						RECEIVED AT MERIT BY: SIGNATURE	SEAL INTACT YES D NO D	SEAL NO. SEAL WITACT FINITIALS
	t Lansing Dr., East Lé 17) 332-0167 Fax (CHAIN OF CUS				1146 az					# OF BOTTLES	3,400	2,401	2,402	Z, 402	3, 402.	3. Yet.					TIME	THME	TIME	TiME
	2680 East Lar Phone (517) S	E			te E	TW	P.O. NO.	QUOTE NO.	0.00	Eduard Cafferty	TAG	0.5	0.5-1	٧, ٣	. 2.2	٥.5	4.5'					DATE //1/03	DATE	DATE	DATE
	Merit	Idouatorics, IIA.		hovel Inc.	£ .		EAX NO. 7 - 349 - 6263	ar.com	24cH. 67201.	D. Eduars	SAMPLE TAG IDENTIFICATION-DESCRIPTION	A2-58- AW/6-0.5	AL-SB- MW6-0.5	12-58- MW6-4.5	A2-53- MW6-	A2-58-005-	-500 - 85 - W				الالعلم الجريدية الإلا المستعمل والإستارية الالالية المحادثة ألا المؤاسفين – الأوادي	E SAMPLER			
		TO	ica Patter con		3	 		6	Sec - Jay		SAMPLE COLLECTION YEAR: DATE TIME	1605	¥ 507/	MAS A	1 1623 1	7/4/03 0230 F	1 0280 EchnyL					and the	D		
		REPORT T	CONTACT NAME A LI FCA	COMPANY SE	ADDRESS 2321		PHONE NO- 349 - 9494	E-MAIL ADDRESS	PROJECT NO /NAME	BAMPLER(S) - PLEASE PRINT NAME	LAB NO. D	-1/2 10 Ehore !	A.	ES ES	04	05 Th	1/2 A/0					RELINQUISHED.BC	RECEIVED BY: SIGNATURE	HELINQUISHED BY: SIGNATURE	RECEIVED BY: SIGNATURE

. .

PLEASE NOTE: SIGNING ACKNOWLEDGES ACCEPTANCE OF TERMS & CONDITIONS ON REVENSE SIDE

NC. Juy 67201.00 F03192-0150	Requested Analyses	F03192-0151	F03192-0152	F03192-0153	F03192-0154	F03192-0155	(51-349.9499) iul C Arraneters (MM
HES, I Bee- Buck.	Sample Preservation ^{ceal} harm http://www.area.htm. ^{ceal} harm http://	028622 028622 028623	028625 028626 028627	028629	028632	028635	7/10/02 Special Instructions:
lever a. s	Type Sample	x 200/ X 20/1 X 20/1		V 1349 X 1343 X	7/10/03 07296 × 6734 × 6737 ×	V 0658 X	(Signature) (Signature) (Printed Name) Date: (Printed Name) Time: (Printed Name) Time: (Printed Name) Date: (Printed Name) Time:
Report To: 2221 Club Meridian Pr. 52	Sample Container Container Identification Number Class Plaste A -SB-00 a.5 Aget. bug	AI-58-002 4.5 4	41-58-003 4.5-	41-58-004 4.5-14		AI-58-006 4.5- V	Sampled by: 0620 Relinquished by: 0720 Acceived by: 0100000000000000000000000000000000000

Ø 002

A & L GREAT LAKES LABORATORIES, INC. CHAIN OF CUSTODY DOCUMENTATION	Project Reference: Bee-Jay 24164. 67231.00	Shipper/Waybill Number:	Type Sample Sample Preservation Requested Analyses	X 028637 1 Coversond		× 028640	028642						tructions:	Date: 7/19/07 Call M. Patherin (517-347-7474) Time: RE: Conceptional Galacianeters	Date: 7-11-03 Time: 8: 50 art
A & L GREAT LAKES LABOR CHAIN OF CUSTODY DOCU	rruh Project Refer The .	The nos MI	Cod From M.S.C.	0907 X 090							÷.		(Signature) (Primed Name)	<u>(\$\</u>	(Signature) Date:
· · · · · · · · · · · · · · · · · · ·	Report TO: ath: Maring Mutherion SECOR TAErnitinal The	2321 Clis Plentuis hr. suit E	tainer /pe	O.S , Mar My	<u></u>		W28-008 4.5- 1	2.5.2					Sampled by: RES D. Eduard CHELD.	Relinquished by: APE /	Received by: Culio Bruggar

C.O.C. PAGE # _ OF 018876	INVOICE TO	LI SAME			STATE ZP CODE	FAX NO. PO. NO.				APPROVED BY:									A DATE TIME	1 Parts and a part	NO INTELS NOTES TEMP ON ARPHIVAL	NO INTALS 3/4/4/2/3 70	SIDE
2680 East Lansing Dr., East Lansing, MI 48823 Phone (517) 332-0167 Fax (517) 332-6333	CHAIN OF CUSTODY RECORD	CONTACT NAME	COMPANY	D T ADDRESS	Rewell and	PHONE NO.	PRESERVATIVE CODE	A REFRIGERATE		# OF BUTTLES	XXXXXX F W	K X X X X X X	X X X X X X	KKKKKKKK K					ABLINOUISHED BY:		SEAL INTACT	Lo	
Merit Phone (517) 332-016 Laboratories, Inc.		CONTRATT MARTISA PAHERSON		Oubmaninan 1	an OKomos	100 210 9499 12 PJ 34 6813 10 10	5	PROJECT NO. AND Ree) and Scale	Austia	MERIT SAMPLE COLLECTION SAMPLE TAG LAB NO. PATE TAME IDENTIFICATION-DESCRIPTION	12	al 729-03 1630 mwo1-072903-0	0, 7-29-03 1750 mw03-072903-0	11 1-20-03 1000 m WOH-073003-0		R rolers	\$		RELINGUISHED BY: MACUALO WALLED WAMPLER DATE 7-30-03 TIME 2		BY:	RECEIVED BY: SKONATURE	

ł.

Merit	2680 East Lan Phone (517) 3	ısing Dr., East I 32-0167 Fax	2680 East Lansing Dr., East Lansing, MI 48823 C.O.C. PAGE # _ OF _ OF _ OF _ O18878	178
REPORT TO	CH	NIN OF CUS	CHAIN OF CUSTODY RECORD	E TO
CONTROT NAME MARTSA, PORTESON			CONTACT NAME	
COMPANY SCENT			COMPANY	
ADDRESS 2321 CLUB MONIDIAN DI	r. Swite E	· · · · · · · · · · · · · · · · · · ·	ADDRESS	
	NI STATE	29004		
ELG- gyddyn No. 517	349 6862 NO.		PHONE NO. PAX NO. PLONE NO.	
	GUOTE NO.	and a statistical sector of the sector of th	SAMPLE TYPE	A = NONE
PROJECT NO NUMBE 24CH. 67201. OD BCC Jaw Scales				D= NaOH
SAMPLER(S) · PLEASE PRINT NAME Michael Michaen				E HCL
MERIT SAMPLE COLLECTION SAMPLE TAG YEAR. YEAR. IDENTIFICATION-DESCRIPTION DATE TIME	E TAG 4-DESCRIPTION	# OF BOTTLES		
138740672003-1550 MW105-073003-0	3-0	12	X X X X X X	
1615	3-0	5	X X X K K	
	والمنافع المراجع والمنافع والمنافع والمنافع والمنافع والمنافع والمنافع			
	n)) may mini baran manana kana kana kana kana kana kana			
		4 Mar 100		
RELINQUISHED BY: MACULO MANAL R	DATE COJSCOS	TIME	RELINQUISHED BY: DATE TIME SIGNATURE	
	DATE	TIME	RECEIVED AT MERIT BY: MUN BIGANATURE	Q
RELINCUISHED BY: Skanature		TIME	SEAL INTACT	.
RECEIVED BY: Skonature	DATE	TIME	SEAL NO. SEAL WITCT INITIALS HAR	<u></u>
	PLEASE NOTE: SIGNING AC	KNOWI EDGES ACCE	NG ACKNOW FDAFS ACCEPTANCE OF TERMS & CONDITIONS ON REVERSE SIDE	

Į.

APPENDIX D

•

GROUNDWATER SAMPLING LOGS

SECOR 001

2007

÷

Measuring Point Purge Method:	t Description	$\frac{1}{2}$	<u>2 of</u>	P)			npled:	
Well Volume Calculation	Total Depth (ft)	Depti Water			Water Column (ft)			ing Dia zie)	meter (in)	Casing Volum (gal)
(Fill in before purging)	24.2	12.0				(2)	4		6	
Time		/ -	154		1655	0.16	0.6	4	1.44	
Volume Purged	(gal)~K	15	13%	>	1555	1610	1615			
Purge Rate (gpr	n) < 1	gpm								
-Temperature (*	$\frac{1}{C}$	yrm		-						
pH			17.	-	6.5	16.5	16.3			
Specific Conduct	tivity (uncorr	ected)	7.7	4	8,02	7.89	8,01			
(µmnos)			539	.8	539.1	541.7	540,3			
Turbidity/Color		·		4 cher					·	
Odor/Sheen			non		y cuer		·			· ·
Depth to Water	During Purg	e (ft)			· · · ·					
Number of Casir Removed					00	·				ļ
Dewatered?	C	RP	120		87	107	84			
Comments:	<u> </u>							<u>-</u>		
					·					
SAMPLE DATA:										
Percent Recovery Sampling Fourier	/:				D	epth to W	ater at Sa	moling	(ft):	
a second and a second for	icin:			•- <u></u>				5	()	
Comments:		· · · · ·								
	of Con		·							
No. Conta	iners T	vpe		iva			Analysis Request			9638888284979797
							(Method)			
				,			<u></u>			
PIDCE WATER								+		
PURGE WATER Total Discharge (1	DISPOSAL	NOTÉS	• • • •							<u> </u>
Cour Discharge (gar):	I	Disposa	1 M	ethod:	SYLINA	Dru	n Dee	ignation(s)/\	

.

08/19/03	TUE	08:40	FAX	4253721650
----------	-----	-------	-----	------------

SECOR 001 LANCING

Water Level Mea Time Start Purge	"_ ITOS		Time T-	1		ter Level:_			·
Measuring Point	Description	: top	of pvc	ia rurge:_	1445	Ti	me Sar	npled:	
Purge Method:	paristali	ic pun	<u>np</u>		Purge Dep	oth:			
Well Volume Calculation (Fill in before	Depth (ft)	Dept Water	h to	Water Column (ft)	Multipli		ing Dia cle)	ameter (in)	Casing Volume (gal)
purging)	20.3	8.5		11.8	(2)			6	
Time	100		l		0.16	0.0	54	1.44	
Volume Purged (eal) ~5	a	1720	1730	1739	1745			[
Purge Rate (gpm)		0.00		┥────					
Temperature (°C)		71.1						
pH	·		21.6	19.2	19,1	18,9			
Specific Conductiv	nty (uncorr	ected)	8.46	8.35	8.35	8.37	_		
(µmhos) Turbidity/Color			1368		1443	ł			
Odor/Sheen			<u> </u>	ostly	clear				
Depth to Water D	Juring Purg	- (ft)		none					
Number of Casing Removed	Volumes'		69	đ	94				
Dewatered?		RP		86	17	99			.
Comments:		<u> </u>							
				· · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
SAMPLE DATA:		,							<u> </u>
Percent Recovery:_ Sampling Equipme	· · · ·			D	epth to W	ater at Sa	าเกโกส	(ft):	
Comments:	nt:				-		mpung	(11)	
Sample No. o	Coni	iner	Preserva	820000000 (concerne		•			
No. Contain	ers Ty	pe	Freserva	COMPLEX STATE OF STATES AND	Field	Analysis		Commen	LS.
<u> </u>				1.0	tration	Request (Method)			200202224253264 9 4 2006.
					<u></u>	<u>(aastaca)</u>			
					╾┶╾╼╌┨╼				·
		<u> </u>					┼──		
LIP CP WATER									
URGE WATER DI	SPOSAL N	OTES:		l			<u> </u>		
otal Discharge (gal omments:):	Di	isposal M	ethod:		Drur			
LL HEAD CONDU	TIONO							(nation(s)/Vo	lume:
ell Security Devices ide of Well Head a	TTONS CE	IECKL	IST (Circ	le YES or	NO ICN				_

۰.

·

FRMMUNPROSPLERM

Ĵ •

U8/19/03 TUE 08:40 FAX 4253721650	TUE 08:40 FAX 4253721650
-----------------------------------	--------------------------

Broiget Marca				SECOR					ی ate_0300
Project Name: Field Personnel:	see Jun Sci	uls.	Project	No.: 240	H.672	<u>91 w</u>	ell No.:	mway	
Water Level Me			<u> </u>	{	Static Wate	er Level:_			
Time Start Puro		Aethod:	2000						
Time Start Purg Measuring Point	t Description	• 1	Time Er	nd Purge:	1010	Ti	ne Sam	pled:	
Purge Method:	Der isteilt	- <u></u>			_				
	Total		<u></u>		Purge Dep	th:		····	
Mr. u vr .	Depth	Dept	h to	Water Column) (Istant				Casing
Well Volume Calculation	(ft)	Water		(ft)		er for Cas (Cir	ing Dia	meter (in)	Volume
(Fill in before	172		DAIS		2		<u> </u>		(gal)
purging)	18.7	9.7	t	9	0.16	4		6	4.85
Time	910		940	1000		0.0	×4	1.44	1.0.3
Volume Purged	(gal) 4,80	5	190	950	1000	1005			
Purge Rate (gpr	n)' < 1								
Temperature (*	C)		17.5	100		ļ			
pH			7.22		17.1	17.1			
Specific Conduct	tivity (uncorre	ected)	7.60	- 7.22	7.21	7.22			
(minos))	9090	9221	9408	9383			
Turbidity/Color			Mellon	Vellow		1.203			
Odor/Sheen				Aone			·	·	· · · · · · · · · · · · · · · · · · ·
Depth to Water	During Purg	e (ft)							- <u></u>
Number of Casir Removed		·			·	· · ·			
Dewatered?	0	RP	182	163	141	135			
	······	· ·	· · · · ·	·	·				
Comments:		·	· · ·						┸━╍╧╾╼╍╼┲┦
SAMPLE DATA:		,,							· · · · · · · · · · · · · · · · · · ·
Percent Recovery	/:			ŗ	enth to M	latar at C-			······································
Sampling Equipm	nent:	•				aler at Sa	mpling	(ft):	
Comments:									
						•			
Sample No. No. Conta	ol Con	lainer	Preserv	auve		Analysis		Comme	nlc
	iners Ty	/pe		Fi	ltration	Request			
						(Method)			
									1
						<u> </u>			
PURGE WATER	DISPOSAL	NOTES							
Total Discharge (gal):	I	Disposal i	Method		n	-		
							m Desi	gnation(s)/V	olume:
VELL HEAD CON Vell Security Devic	DITIONS C	HECKI	LIST (Ci	rcle YES o	r NO if	NO. add	0011110-	ite)	
Vell Security Devic nside of Well Head	es UK (Bolla	ards, Cl	hristy Lid	l, Casing L	id and Lo	ck)?:	YES	NO	
Vell Casing?: YE	S NO	Casing	Dry?:	YES NO				-	
omments:									

۰.

.

FRMIGUPROSLERM

Water Level Me Time Start Purg	e: 12.10	Method:		nder	Static Wat				
Measuring Point	Description	: Top	- D	nd Purge:	12.55	Ti	ne San	npled:	
Purge Method:	Der Istal	hre v	00. (V				- <u></u>		
	Total		<u></u>	Water	Purge Dep	th:			
Well Volume Calculation	Depth (ft)	Dept Water	r (ft)	Column (ft)	Multipli	er for Cas (Cir	ing Dia cle)	meter (in)	Casing Volume (gal)
(Fill in before	17.4	9.1	40	() a	2	4		6	(gai)
purging)	1100	1.1		8.3	0.16	0.6		1.44	
Time			1240	12805	126250	1255	I		
Volume Purged	(gal) U.1	5				1035			
Purge Rate (gpm							·		
Temperature (*C	<i>;</i>)		18,5	18.7	18.3	18.1			
pH		•	6.85		7.03				
Specific Conduct (µmhos)	ivity (uncorr	rected)				1.05			
Turbidity/Color			5970	6079	6291	6355			
Odor/Sheen				nostly	clean				
Depth to Water	During During	- 15:2		none					
Number of Casin	g Volumes	e (n)		·	· · · · · · · · · · · · · · · · · · ·				
Removed		RP	148	142					
Dewatered?		<u> </u>	- 10	190	141	140			
Comments:	·	· ·			J	<u> </u>			
SAMPLE DATA:		_					<u> </u>		
Percent Recovery	· ·				· · · · · · · · · · · · · · · · · · ·				
Percent Recovery Sampling Equipm	ent:			·I	Depth to W	ater at Sa	mpling	(ft):	
Sampling Equipm Comments:		<u> </u>				·	····		
Comments:					·				
Sample No.	of Con	lainer	Preser	vative	Field	Apaliete			
	ners Ty	/pe			iltration	Request		Commer	าไร
						(Method)			
PURGE WATER I	DISPOSAL	NOTES							
Total Discharge (g	al):	r T	lienocal	Martin					
Total Discharge (g Comments:	/ 	~	napusai	Method:		Drui	n Desi	gnation(s)/Vo	olume:
'ELL HEAD CON	DITIONSC	LICOVI	TOT IC			NO, add co k)?:			

9/03 TUE 08:38 F	AX 42537216	50			SECOR 0	01	·· -			
Project Name: Field Personne Water Level M	Bee Jay	<u>Scali</u>	SProie	ect]	No.				D	ate <u>07300</u>
Field Personne	1: mm		<i>y=:0</i> ,0		NU.;		······································	Vell N	o: MUDO	0
		lethod	: 61	1.11	1.00	Static Wa	iter Level			
and a cost of the			CCCCCCCCCCCCC	-						
Measuring Poir	t Description:	scription: Top of PUC Time Sampled:								
Purge Method:	peristathe	. 03	mo	11/		_				
	Total				357	Purge De	pth:			
Well Volume	Depth	Dept	h to		Water Column	14.10-1				Casing
Calculation	(ft)	Water	r (ft)		(ft)	Multip	her for Ca	sing D	iameter (in)	Volume
(Fill in before	175	_	05			10		rcle)		(gal)
purging)	170	8.2	2	0	1.3	$\left \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $		4	6	
Time						0.16		.64	1.44	
Volume Purged	(gal) 4.6	6	133	$\underline{\varphi}$	1335	1340	1345		1	[
Purge Rate (gpr	n) < 1	<u> </u>	<u> </u>		<u> </u>					
Temperature (*	$\frac{1}{1}$	<u> </u>	100		<u> </u>			<u> </u>		
PH			18,6	-	18.0	17.9	177.9			·
Specific Conduct	tivity (8,0	4	8.09	8.16	8.10	1		
(µmhos)	any (uncorrec	rted)	770	72	7071		1	 		
Turbidity/Color	bidity/Color					721.5	711.9	1		
Odor/Sheen			<u>``</u>	n	esty	clea	1	1.		
Depth to Water	During Burne	(())		4	one.					
Number of Casin	Volumes	(III)								
Removed	ORP	. I	98							
Dewatered?				_	101	101	99			
Comments:				<u> </u>						
			_		· · ·		· · · · · · · · · · · · · · · · · · ·			
SAMPLE DATA:										
Percent Recovery					, D	enth to W				
Sampling Equipm	ent:					-pui to w	ater at Sa	mpling	g (ft):	
Comments:										
Sample										
Sample No. No. Contai	ol Contaj ners Type	ner	Presei	vat	ive T	iield	Analysis			
	incrs 19pa					ration	Request		Commen	۵.
				<u>uu</u>			(Method)			
						· ·				
	1							1		
					.			+		
			_			_ 1				1
PURGE WATER F										
PURGE WATER I	DISPOSAL NO	TES:								
Commenter	al):	_ Di	sposal	Me	ethod:		Drue			
Comments:	al):	_ Di	sposal	Me	ethod:		Dru	n Desi	gnation(s)/Vol	ume:
Comments: VELL HEAD CONI	al):	Di	sposal IST (C	ircl	e YES or	NO if N	Drug	n Desi	gnation(s)/Vo	ume:
Comments: VELL HEAD CONI Vell Security Device nside of Well Head	al): DITIONS CHE is OK (Bollard	Di	sposal IST (C	ircl	e YES or	NO if N and Loci	Drug NO, add co k)?:	n Desi Ommer /ES	gnation(s)/Vol nts) NO	ume:
PURGE WATER I Total Discharge (gr Comments:	al): DITIONS CHE s OK (Bollard and Outer Ca	Di CCKLI s, Chr sing E	sposal ST (C isty Li Dry?:	ircl d, (YE	e YES or Casing Lid S NO	NO if N and Loci	NO, add co k)?:	n Desi ommer /ES	gnation(s)/Vol nts) NO	ume:

۰.

L9/03 TUE 08:41					SECOR 0	_				ANSING	(
Project Name:_ Field Personnel	Beejays	cales	Dro:		T. O (),		_			D	ate 7/29/0
Field Personnel	: Mike M	174	Proje		10: 240	11.6720	21	Well]	No.: <u>/</u>	NWO7	
Water Level M	easurement)	Aethode	e		``	static Wate	er Leve	əl:			
A IIIIC STATT Pure		10110	·	-		<u></u>		-			
				End (a Purge:	1425		Time	Samp	led:	
Purge Method:	peristal h		- <u>10p</u>								
	Total		The second	1		urge Dep	th:				
Well Volume	Depth	Dept	h to		Water Column	Multinit		- ·			Casing
Calculation	(ft)	Water	: (ft)		(ít)	wrotcibile		Casing Circle)	Diam	eter (in)	Volume
(Fill in before	1. J. 11	1345			120 4	2	<u> </u>	4			(gal)
purging)	17.4.5	11 -12		5	510	0.16				6	2.75
Time			11	a	Lavie			0.64		1.44	
Volume Purged	(gal) 2.15/	234	2:16	<u>len</u>	2:15	2:20	ļ				
Purge Rate (gpr	n) <			-							
- Temperature (*	C)		19.	2	19-1		ļ				
- pH	· · ·	·	7.8		-165	21	[
Specific Conduc	tivity (uncorre	ected)	1. 6	1	7,85	7.95					
(minos)		<u>j</u> ,	498	.7	511.8	5071	1				
Turbidity/Color	N I			1.0	thy elec	<u>JUI, 1</u>					
Odor/Sheen					one	~			•		
Depth to Water	During Purge	e (ft)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	sruc .					ļ	
Number of Casin	ig Volumes					÷	<u>-</u>				
Removed		ORP	88		98	93					
Dewatered?											
Comments:		·									l
SAMPLE DATA:								· · · · · · · · · · · · · · · · · · ·		•. • •	
Percent Recovery	<u>n</u>								_		
Sampling Equipm	ient:	•			De	epth to W	ater at	Sampl	ing (fi	t):	
Comments:	· ·			·	·	<u>,</u>					
				·			·	· · ·			
Sample No.	of Cont	ainer	Pres	егуа	five last	Tield					
No. Conta	iners Ty	pe -			Fil		Analy Requ	SIS -		Comme	
						101 C 102 C	(Meth				
				<u> </u>				<u></u>	<u>1996-1997</u>		
0											
PURCEWATTER	DISPOSAL	VOTES:	• • •			╺╼╍╼┶╼┶┖╼				······	
PURGE WATER	15		isnos:	al M	ethod:		Г)rum D	esian		olume:
Total Discharge (gal):	2	P +++							a 1 10 10 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	
Iotal Discharge (Comments: WELL HEAD CON	DITIONS	IROW	Then a								olume:
Iotal Discharge (Comments: WELL HEAD CON Well Security Devic	DITIONS CI	HECKI	IST (Circ	le YES or						
Total Discharge (DITIONS CI es OK (Bolla	HECKI	IST (Circ	le YES or						

••

*X441.04730\$2LFR	м
-------------------	---

APPENDIX E

1

)

GEOTECHNICAL LABORATORY DATA SHEETS

		Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Dkemos, MI 48864			
DENSITY AND WATE Laboratory Data and Re	R CONTENT (ASTM D 2216) esults	, EM 1110-2)			Client/Project: Job No.: Task: Sample ID:	Bee-Jay Scales Site 24CH.67201.00 .0003 A1-SB-001-0,5'
					Tested By: Date:	MRP/MN 8/6/2003
Density and Water Conter Sample Description: . - -	-				ample Condition:	Disturbed
TRIAL 1						
	Specific Gravity of Sol	ids = 2.68				
X Caliper Method:	Diameter (cm)	3.54	Water Content (%)	24.2	1	
	Length (cm)	7.54	Porosity Estimate (%)	43.6	-	
			Void Ratio Estimate	0.77]	
[Tare Mass (g)	8.31		(g/cm ³)	(lb/ft ³)	
	Wet+Tare (g)	147.45	Natural Density	1.88	117	
	Dry+Tare (g)	120.38				

Porosity_A1SB00105.xls

)

		Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Dkemos, MI 48864			
DENSITY AND W	ATER CONTENT (ASTM D 2216, EI	M 1110-2)			Client/Project: Job No.: Task:	Bee-Jay Scales Site 24CH.67201.00 .0003
Laboratory Data a	nd Results				Sample ID:	A1-SB-001-4.5
					Tested By:	MRP/ZKK
					Date:	7/29/2003
Density and Water C Sample Descrip	Content Analyses tion: Brown sandy clay			S	ample Condition:	Undisturbed
TRIAL 1						
	Specific Gravity of Solids	= 2.68			_	
TRIAL 1			Water Content (%)		1	
	Specific Gravity of Solids Diameter (cm) Length (cm)	= 2.68 6.16 15.20	Water Content (%) Porosity Estimate (%)	23.4]	
TRIAL 1	Diameter (cm)	6.16				
TRIAL 1	Diameter (cm) Length (cm)	6.16 15.20	Porosity Estimate (%)	45.3 0.83]	
TRIAL 1	Diameter (cm) Length (cm) Tare Mass (g)	6.16 15.20 8.13	Porosity Estimate (%) Void Ratio Estimate	45.3 0.83 (g/cm ³)	(b/ft ³)	
TRIAL 1	Diameter (cm) Length (cm)	6.16 15.20	Porosity Estimate (%)	45.3 0.83	(b/ft ³) 113 92	

.

		Geo 2321	SECOR ational Incorporated technical Laboratory Club Meridian Drive Suite E kemos, MI 48864			
DENSITY AND WATER (Laboratory Data and Resu	CONTENT (ASTM D 2216, EM lts	1110-2)			Client/Project: Job No.: Task: Sample ID: Tested By: Date:	Bee-Jay Scales Site 24CH.67201.00 .0003 A1-SB-001-9.0' MRP/MN 7/31/2003
Density and Water Content A	nalyses					
Sample Description:	3rown, sandy clay			s	ample Condition:	Undisturbeð
TRIAL 1						
I KIAL I		2 10				
	Specific Gravity of Solids	= 2.68				
	Specific Gravity of Solids Diameter (cm)	6.15	Water Content (%)	17.6	1	
X Caliper Method:			Water Content (%) Porosity Estimate (%)	17.6]	
	Diameter (cm)	6.15]	
	Diameter (cm)	6.15	Porosity Estimate (%)	44.0 0.78) (b/(r ³)	
	Diameter (cm) Length (cm)	6.15 15.17	Porosity Estimate (%)	44.0	(b)/ft ²) 110	

			SECOR			
			national Incorporated			
			eotechnical Laboratory			
		232	1 Club Meridian Drive			
			Suite E			
<u> </u>			Okemos, MI 48864			· · · · · · · · · · · · · · · · · · ·
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WAT	ER CONTENT (ASTM D 2216,	EM 1110-2)			Task:	.0003
Laboratory Data and	Results				Sample ID:	A1-SB-002-0.5
					Tested By:	MRP/MN
					Date:	8/6/2003
Sample Description	Brown, silty clay			s	ample Condition:	Disturbed
Sample Description TRIAL 1	: Brown, silty clay		- 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	s	ample Condition:	Disturbed
	: Brown, silty clay	ids = 2.69		s	ample Condition:	Disturbed
		ids = 2.69	Water Content (%)	S	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Soli		Water Content (%) Porosity Estimate (%)	=	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Soli Diameter (cm)	3.54		28.8	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Soli Diameter (cm) Length (cm)	3.54	Porosity Estimate (%)	28.8 46.2 0.86]	Disturbed
TRIAL 1	Specific Gravity of Soli Diameter (cm)	3.54	Porosity Estimate (%)	28.8 46.2	ample Condition:	Disturbed

· · ·)

			SECOR			
			national Incorporated			
			eotechnical Laboratory			
		232	21 Club Meridian Drive Suite E			
			Okemos, MI 48864			
	-		· · · · · · · · · · · · · · · · · · ·			
	•				Client/Project:	Bee-Jay Scales Sit
	CONFERNME (A STEAD D 2016	EM 1110 0			Job No.:	24CH.67201.00
	CONTENT (ASTM D 2216,	, EM 1110-2)			Task:	.0003
Laboratory Data and Res	ults				Sample ID:	A1-SB-002-4.5'
					Tested By:	MRP/MN
					Date:	7/31/2003
Density and Water Content	Analyses					
Sample Description: B	own sandy clay				ample Condition:	Undisturbed
	onn, onney only			°	ample Condition:	
—		· · ·				
-	<u> </u>			_		
TRIAL 1				_		
	Specific Gravity of Soli	ids = 2.68		_		
	Specific Gravity of Soli Diameter (cm)	ids = 2.68	Water Content (%)	22.2	1	
			Water Content (%) Porosity Estimate (%)	<u> </u>]	
	Diameter (cm)	6.15				
	Diameter (cm) Length (cm)	6.15 15.17	Porosity Estimate (%)	43.0 0.75]	
TRIAL 1	Diameter (cm) Length (cm) Tare Mass (g)	6.15 15.17 8.27	Porosity Estimate (%) Void Ratio Estimate	43.0 0.75 (g/cm ³)	(lb/ft ³)	
	Diameter (cm) Length (cm)	6.15 15.17	Porosity Estimate (%)	43.0 0.75	(b/ft ³) 117 95	

5

Ì

		Ge 232	SECOR national Incorporated otechnical Laboratory 11 Club Meridian Drive Suite E Okemos, MI 48864			
DENSITY AND WATEI Laboratory Data and Re	R CONTENT (ASTM D 2216 esults	, EM 1110-2)			Client/Project: Job No.: Task: Sample ID: Tested By:	Bee-Jay Scales Site 24CH.67201.00 .0003 A1-SB-002-9.0' MRP/ZKK
					Date:	7/29/2003
Density and Water Conten	nt Analyses					
Sample Description: H	Brown clayey sand			s	ample Condition:	Undisturbed
Sample Description: H		lide = 2.66		s	Sample Condition:	Undisturbed
TRIAL 1	Specific Gravity of Sol		Water Content (%)		Sample Condition:	Undisturbed
	Specific Gravity of So Diameter (cm)	lids = 2.66 6.16 15.20	Water Content (%) Porosity Estimate (%)	27.4	Sample Condition:	Undisturbed
TRIAL 1	Specific Gravity of Sol	6.16	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	27.4	Sample Condition:	Undisturbed
TRIAL 1	Specific Gravity of So Diameter (cm)	6.16	Porosity Estimate (%)	27.4 47.8 0.92]	Undisturbed
TRIAL 1	Specific Gravity of So Diameter (cm) Length (cm)	6.16 15.20	Porosity Estimate (%)	27.4	Sample Condition:	Undisturbed

		G 232	SECOR rnational Incorporated eotechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
	DENSITY AND WATER CONTENT (ASTM D 2216, EM 1110-2)					.0003
Laboratory Data and Re	esults				Sample ID:	A1-SB-003-0.5
					Tested By:	MRP/MN
					Date:	8/6/2003
Density and Water Conten	n Analyses					
Sample Description: I	Brown, sandy clay			S:	ample Condition:	Disturbed
Sample Description: <u> </u> - TRIAL 1	Brown, sandy clay			S.	ample Condition:	Disturbed
_	Brown, sandy clay Specific Gravity of Sol	lids = 2.68		S: 	ample Condition:	Disturbed
_		lids = 2.68	Water Content (%)		ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol		Water Content (%) Porosity Estimate (%)	_	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm)	3.54		21.8	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm) Length (cm)	3.54 7.54	Porosity Estimate (%)	21.8 41.0 0.69]	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm)	3.54	Porosity Estimate (%)	21.8 41.0	ample Condition:	Disturbed

		Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Dkemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WATE	R CONTENT (ASTM D 2216,	EM 1110-2)			Task:	.0003
Laboratory Data and Re	sults				Sample ID:	A1-SB-003-4.5'
					Tested By:	MRP/MN
					Date:	7/31/2003
Density and Water Conter				a		Undisturbed
Sample Description: I					ample Condition:	
TRIAL 1		ids =) 68			ample Condition:	
TRIAL 1	Specific Gravity of Soli		Water Content (%)	_	ampie Condition:	
	Specific Gravity of Soli Diameter (cm)	6.15	Water Content (%)	19.6	ample Condition:	
TRIAL 1	Specific Gravity of Soli		Porosity Estimate (%)	19.6 44.3	ample Condition:	
TRIAL 1	Specific Gravity of Soli Diameter (cm)	6.15		19.6	ample Condition:	
TRIAL 1	Specific Gravity of Soli Diameter (cm)	6.15	Porosity Estimate (%)	19.6 44.3	(b/ft ³)	
TRIAL 1	Specific Gravity of Soli Diameter (cm) Length (cm)	6.15 15.17	Porosity Estimate (%)	19.6 44.3 0.79		

	Geo 2321	SECOR ational Incorporated technical Laboratory Club Meridian Drive Suite E kemos, MI 48864			
				Client/Project:	Bee-Jay Scales Site
DENSITY AND WATE	ER CONTENT (ASTM D 2216, EM 1110-2)			Job No.:	24CH.67201.00
	· · · · ·			Task:	.0003
Laboratory Data and R	cesuits			Sample ID:	A1-SB-003-9.0'
				Tested By:	MRP/MN
				Date:	7/31/2003
Density and Water Conte	ent Analyses				
Sample Description:	Brown, sandy clay		S	ample Condition:	Undisturbed
Sample Description:			S	ample Condition:	Undisturbed
TRIAL 1	Brown, sandy clay Specific Gravity of Solids = 2.68		S	ample Condition:	Undisturbed
		Water Content (%)	Sa	ample Condition:	Undisturbed
TRIAL 1	Specific Gravity of Solids = 2.68			ample Condition:	Undisturbed
TRIAL 1	Specific Gravity of Solids = 2.68 Diameter (cm) 6.15	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	19.4	ample Condition:	Undisturbed
TRIAL 1	Specific Gravity of Solids =2.68Diameter (cm)6.15Length (cm)15.17	Porosity Estimate (%)	19.4 44.3 0.80		Undisturbed
TRIAL 1	Specific Gravity of Solids = 2.68 Diameter (cm) 6.15	Porosity Estimate (%)	<u> </u>	mple Condition:	Undisturbeá

		Ge 232	SECOR national Incorporated otechnical Laboratory 11 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
DENSITY AND WATED	CONTENT (ASTM D 2216	EM 1110 2)			Job No.:	24CH.67201.00
		, Elvi 1110-2)			Task:	.0003
Laboratory Data and Res	50115				Sample ID: Tested By:	A1-SB-004-0.5' MRP/MN
					Date:	8/6/2003
Sample Description: B	rown silty clay			s	ample Condition:	Disturbed
Sample Description: B	rown silty clay			s	ample Condition:	Disturbed
	rown silty clay Specific Gravity of Sol	ids = 2.69		s	ample Condition:	Disturbed
TRIAL 1		ids = 2.69	Water Content (%)	S	ample Condition:	Distorbed
	Specific Gravity of Sol		Water Content (%) Porosity Estimate (%)		ample Condition:	Distorbed
TRIAL 1	Specific Gravity of Sol Diameter (cm)	3,54		23.0	ample Condition:	Distorbed
TRIAL 1	Specific Gravity of Sol Diameter (cm)	3,54	Porosity Estimate (%)	23.0 43.1	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm) Length (cm)	3.54 7.09	Porosity Estimate (%)	23.0 43.1 0.76]	Disturbed

		SECOR International Incorporated Geotechnical Laboratory 2321 Club Meridian Drive Suite E Okemos, MI 48864			
			1	Client/Project:	Bee-Jay Scales Site
				Job No.:	24CH.67201.00
DENSITY AND WAT	TER CONTENT (ASTM D 2216, EM 1110-	-2)		Task:	.0003
Laboratory Data and	Results			Sample ID:	A1-SB-004-4.5'
				Tested By:	MRP/MN
				Date:	7/31/2003
Density and Water Con	tent Analyses 1: Dark brown sandy clay			I. C litt	Undisturbed
Sample Description				ample Condition:	
Sample Description		2.69	S:	ampie Condition:	
TRIAL 1	Specific Gravity of Solids =	2.68		1	
	Specific Gravity of Solids = Diameter (cm) 6.15	Water Content (%)	27.0	ampie Condition:	
TRIAL 1	Specific Gravity of Solids =	Water Content (%) 7 Porosity Estimate (%)	27.0	ampie Condition:	
TRIAL 1	Specific Gravity of Solids = Diameter (cm) 6.15	Water Content (%)	27.0	ampie Condition:	
TRIAL 1	Specific Gravity of Solids = Diameter (cm) 6.15	Water Content (%) 7 Porosity Estimate (%) Void Ratio Estimate	27.0	(Ib/ft ³)	
TRIAL 1	Specific Gravity of Solids = Diameter (cm) 6.15 Length (cm) 15.17	Water Content (%) 7 Porosity Estimate (%) Void Ratio Estimate 3	27.0 48.7 0.95		

			SEC International I Geotechnical 2321 Club Me Suite Okemos, M	ncorporated Laboratory ridian Drive E			
i	DENSITY AND WATE Laboratory Data and R	R CONTENT (ASTM D 2216, EM 11 esults	10-2)			Client/Project: Job No.: Task: Sample ID: Tested By: Date:	Bee-Jay Scales Site 24CH.67201.00 .0003 A1-SB-004-9.0" MRP/MN 7/31/2003
	Density and Water Conte	nt Analyses					
	Sample Description:	Dark brown clayey sand			- S:	ample Condition:	Undisturbed
	TRIAL 1	Specific Gravity of Solids =	2.66		•		
	X Caliper Method:			r Content (%) sity Estimate (%)	25.3		
				Ratio Estimate	1.03	1	
			8.18 19.90 Natu	ral Density	(g/cm ³) 1.65	(lb/ft ³) 103	

		G 232	SECOR national Incorporated cotechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
DENSITY AND WATER	R CONTENT (ASTM D 2216, E	W 1110 2)			Job No.:	24CH.67201.00
		avi 1110-2)			Task:	.0003
Laboratory Data and Re	50115				Sample ID:	A1-SB-005-0.5'
					Tested By: Date:	MRP/MN 8/6/2003
TRIAL 1	Brown, sandy clay with some gravel				ample Condition:	
IRIAL I	Specific Gravity of Solids	= 2.68				
X Caliper Method:	Diameter (cm)	3.54	Water Content (%)	17.1	1	
	Length (cm)	7.54	Porosity Estimate (%)	34.1	1	
			Void Ratio Estimate	0.52]	
Г	Tare Mass (g)	8.25		(g/cm^3)	(lb/ft ³)	
E	Tare Mass (g) Wet+Tare (g)	8.25 161.85	Natural Density	(g/cm ³) 2.07	(lb/ft ³) 129	

		Ge 232	SECOR national Incorporated otechnical Laboratory 11 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
	R CONTENT (ASTM D 2216)	, EM 1110-2)			Task:	.0003
Laboratory Data and Re	esults				Sample ID:	A1-SB-005-4.5'
					Tested By:	MRP/ZKK
					Date:	7/29/2003
Density and Water Conter	it Analyses					
Density and Water Conter Sample Description: 1 - - - TRIAL 1				S.	ample Condition:	Undisturbed
Sample Description:		lids = 2.68		s. 	ample Condition:	Undisturbed
Sample Description:	Brown, sandy clay	lids = 2.68	Water Content (%)	S	ample Condition:	Undisturbed
Sample Description: 1	Brown, sandy clay Specific Gravity of Sol		Water Content (%) Porosity Estimate (%)	_	ample Condition:	Undisturbed
Sample Description: 1	Brown, sandy clay Specific Gravity of Sol Diameter (cm)	6.16		29.6	ample Condition:	Undistorbed
Sample Description: 1	Brown, sandy clay Specific Gravity of Sol Diameter (cm)	6.16	Porosity Estimate (%)	29.6 49.1 0.96		Undisturbed
Sample Description: 1	Brown, sandy clay Specific Gravity of Sol Diameter (cm) Length (cm)	6.16 15.20	Porosity Estimate (%)	 	ample Condition:	Undisturbed

.)

		Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Okemos, MI 48864			· · · · ·
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WATE	R CONTENT (ASTM D 2216, 1	EM 1110-2)			Task:	.0003
Laboratory Data and Re	esults				Sample ID:	A1-SB-005-7.5'
					Tested By:	MRP/ZKK
					Date:	7/29/2003
Sample Description:	Brown clayey sand			S;	ample Condition:	Undisturbed
TRIAL 1						
TRIAL 1	Specific Gravity of Solid	ds = 2.66				
TRIAL 1	Specific Gravity of Solid Diameter (cm)	ds = 2.66	Water Content (%)	24.8	I	
			Water Content (%) Porosity Estimate (%)	24.8 44.1		
	Diameter (cm)	6.16			}	
	Diameter (cm)	6.16	Porosity Estimate (%)	44.1		
	Diameter (cm)	6.16	Porosity Estimate (%)	44.1	(Ib/R ³)	
	Diameter (cm) Length (cm)	6.16 15.20	Porosity Estimate (%)	44.1 0.79	(15/ft ³) 116	

•

		Ge 232	SECOR mational Incorporated extechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
DENSITY AND WAT Laboratory Data and	TER CONTENT (ASTM D 2216, F Results	EM 1110-2)			Client/Project: Job No.: Task: Sample ID: Tested By: Date:	Bee-Jay Scales Site 24CH.67201.00 .0003 A1-SB-006-0.5' MRP/MN 8/6/2003
Density and Water Cor Sample Description	ntent Analyses n: Brown, sandy clay			S:	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Solids Diameter (cm)	3.54	Water Content (%)	26.6]	
	Length (cm)	7.54	Porosity Estimate (%) Void Ratio Estimate	43.6 0.77		
	Tare Mass (g) Wet+Tare (g) Dry+Tare (g)	8.32 150.31 120.49	Natural Density Dry Density	(g/cm ³) 1.91 1.51	(lb/ft ³) 119 94	

)

	Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Dkemos, MI 48864			
				Client/Project:	Bee-Jay Scales Site
				Job No.:	24CH.67201.00
	FER CONTENT (ASTM D 2216, EM 1110-2)			Task:	.0003
Laboratory Data and	Results			Sample ID:	A1-SB-006-0.5'-1
				Tested By:	MRP/MN
				Date:	8/6/2003
<u>Density and Water Cor</u> Sample Descriptio	n: Brown, sandy clay		s	ample Condition:	Disturbed
TRIAL 1					
	Specific Gravity of Solids = 2.68				
X Caliper Method:	Specific Gravity of Solids = 2.68 Diameter (cm) 3.54	Water Content (%)	26.8	1	
		Water Content (%) Porosity Estimate (%)	<u>26.8</u> 44.9]	
	Diameter (cm) 3.54				
	Diameter (cm) 3.54 Length (cm) 7.54	Porosity Estimate (%)	44.9 0.82]	
	Diameter (cm) 3.54 Length (cm) 7.54 Tare Mass (g) 8.23	Porosity Estimate (%) Void Ratio Estimate	44.9 0.82 (g/cm ³)	(b/R ³)	
	Diameter (cm) 3.54 Length (cm) 7.54	Porosity Estimate (%)	44.9 0.82	(b/ft ³) 117 92	

		Ge 232	SECOR mational Incorporated otechnical Laboratory 11 Club Meridian Drive Suite E Okemos, MI 48864	_		
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WAT	ER CONTENT (ASTM D 2216,	EM 1110-2)			Task:	.0003
Laboratory Data and H	Results				Sample ID:	A1-SB-006-4.5'
					Tested By:	MRP/MN
					Date:	7/31/2003
Density and Water Cont	ent Analyses					
Sample Description:	Brown, silty clay			s	ample Condition:	Undisturbed
-				s	ample Condition:	Undisturbed
Sample Description: TRIAL 1	Specific Gravity of Soli			_	ample Condition:	Undisturbed
Sample Description:	Specific Gravity of Soli Diameter (cm)	6.15	Water Content (%)	29.4	ample Condition:	Undisturbed
Sample Description: TRIAL 1	Specific Gravity of Soli		Porosity Estimate (%)	29.4	ample Condition:	Undisturbed
Sample Description: TRIAL 1	Specific Gravity of Soli Diameter (cm)	6.15		29.4	ample Condition:	Undisturbed
Sample Description: TRIAL 1	Specific Gravity of Soli Diameter (cm)	6.15	Porosity Estimate (%)	29.4 49.6 0.98		Undisturbed
Sample Description: TRIAL 1	Specific Gravity of Soli Diameter (cm) Length (cm)	6.15 15.17	Porosity Estimate (%)	29.4	ample Condition:	Undisturbed

.

		Ge 232	SECOR mational Incorporated extechnical Laboratory 11 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
	R CONTENT (ASTM D 2216	, EM 1110-2)			Task:	.0003
Laboratory Data and Re	esults				Sample ID:	A1-SB-006-7.5'
					Tested By:	MRP/ZKK
					Date:	8/6/2003
Density and Water Conten						
Density and Water Conter Sample Description: I TRIAL 1	Brown, clayey sand			S	ample Condition:	Disturbed
Sample Description: I	Brown, clayey sand Specific Gravity of So			=	ample Condition:	Disturbed
Sample Description: I	Brown, clayey sand Specific Gravity of So Diameter (cm)	3.54	Water Content (%)	23.6	ample Condition:	Disturbed
Sample Description: I	Brown, clayey sand Specific Gravity of So		Water Content (%) Porosity Estimate (%)	23.6 39.5	ample Condition:	Disturbed
Sample Description: I	Brown, clayey sand Specific Gravity of So Diameter (cm)	3.54	Water Content (%)	23.6	ample Condition:	Disturbed
Sample Description: I	Brown, clayey sand Specific Gravity of So Diameter (cm)	3.54	Water Content (%) Porosity Estimate (%)	23.6 39.5 0.65		Disturbed
Sample Description: I	Brown, clayey sand Specific Gravity of So Diameter (cm) Length (cm)	3.54 5.68	Water Content (%) Porosity Estimate (%)	23.6 39.5	ample Condition:	Disturbed

,

1

		Gi 232	SECOR mational Incorporated eotechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
DENSITY AND WATEF	R CONTENT (ASTM D 2216,)	EM 1110-2)			Client/Project: Job No.: Task:	Bee-Jay Scales Site 24CH.67201.00 .0003
Laboratory Data and Re	sults				Sample ID:	A1-SB-007-0.5'
					Tested By:	MRP/ZKK
					Date:	8/6/2003
Density and Water Conten						
Sample Description: E	Brown sandy clay with some dark	staining		s	ample Condition:	Disturbed
Sample Description: <u>B</u> 	Brown sandy clay with some dark	staining		s	ample Condition:	Disturbed
-	Brown sandy clay with some dark			s	ample Condition:	Disturbed
-			Water Content (%)	S	ample Condition:	Disturbed
	Specific Gravity of Solid	ls = 2.68	Water Content (%) Porosity Estimate (%)		ample Condition:	Disturbed
	Specific Gravity of Solid Diameter (cm)	ls = 2.68		25.7	ample Condition:	Disturbed
	Specific Gravity of Solid Diameter (cm) Length (cm)	ls = 2.68 3.54 7.05	Porosity Estimate (%)	25.7 42.6 0.74]	Disturbed
	Specific Gravity of Solid Diameter (cm)	ls = 2.68	Porosity Estimate (%)	25.7	ample Condition:	Disturbed

			SECOR			
			national Incorporated			
			otechnical Laboratory			
		232	1 Club Meridian Drive Suite E			
		G	Okemos, MI 48864			
· · · ·	· · · · · · · · · · · · · · · · · · ·					
					Client/Project:	Bee-Jay Scales Sit
					Job No.:	24CH.67201.00
DENSITY AND WAT	ER CONTENT (ASTM D 2216,	EM 1110-2)			Task:	.0003
Laboratory Data and I	Results				Sample ID:	A1-SB-007-4.5'
					Tested By:	MRP/ZKK
					Date:	7/29/2003
Sample Description:	Brown clay			Sa	ample Condition:	Undisturbed
				_		
TRIAL 1				_		
TRIAL 1	Specific Gravity of Soli	ids = 2.70		_		
	Specific Gravity of Soli Diameter (cm)	ds = 2.70	Water Content (%)	34.1	I	
TRIAL 1	Diameter (cm)			<u> </u>		
		6.16	Water Content (%) Porosity Estimate (%) Void Ratio Estimate			
	Diameter (cm)	6.16	Porosity Estimate (%)	51.3		
	Diameter (cm)	6.16	Porosity Estimate (%)	51.3 1.05	(b /ft ³)	
	Diameter (cm) Length (cm)	6.16 15.20	Porosity Estimate (%)	51.3	(b/ft ²) 110	

			SECOR			
		Inter	national Incorporated			
			otechnical Laboratory			
		232	1 Club Meridian Drive			
			Suite E			
			Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
	R CONTENT (ASTM D 2216	, EM 1110-2)			Task:	.0003
Laboratory Data and Re	esults				Sample ID:	A1-SB-007-7.5'
					Tested By:	MRP/ZKK
					Date:	7/29/2003
Density and Water Conten	nt Analyses					
Sample Description: E	Brown clay		·	s	ample Condition:	Undisturbed
· · · -	·····			_		
TRIAL 1			·	_		
_	Specific Gravity of So	lids = 2.70	·····	_		
_	Specific Gravity of So Diameter (cm)	lids = 2.70 6.16	Water Content (%)		1	
TRIAL 1			Water Content (%) Porosity Estimate (%)	<u> </u>]	
TRIAL 1	Diameter (cm)	6.16]	
TRIAL 1	Diameter (cm)	6.16	Porosity Estimate (%)	48.8 0.95	(ħ/ᠻ ³)	
TRIAL 1	Diameter (cm) Length (cm)	6.16 15.20	Porosity Estimate (%)	48.8	(b/ft ³) 109	

		Geo 2321	SECOR ational Incorporated technical Laboratory Club Meridian Drive Suite E Jokemos, MI 48864			
					Client/Project: Job No.;	Bee-Jay Scales Site
DENSITY AND WATI	R CONTENT (ASTM D 2216, EM	1110-2)			Job No.: Task:	24CH.67201.00 .0003
Laboratory Data and F					Sample ID:	A1-SB-008-0.5'
····· ································					Tested By:	MRP/ZKK
					Date:	8/6/2003
Density and Water Conte	ent Analyses					
Sample Description:	Brown sand			s	ample Condition:	Disturbed
TRIAL 1		0.65		_		
X Caliper Method:	Specific Gravity of Solids = Diameter (cm) Length (cm)	2.65 3.54 7.54	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	15.5 45.5 0.83]	
	Diameter (cm) Length (cm)	3.54 7.54	Porosity Estimate (%)	45.5 0.83]	
	Diameter (cm)	3.54	Porosity Estimate (%)	45.5	(b/ft ²) 104	

		Ge 232	SECOR mational Incorporated extechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
DENSITY AND WATE Laboratory Data and R	R CONTENT (ASTM D 2216, esults	EM 1110-2)			Client/Project: Job No.: Task: Sample ID: Tested By: Date:	Bee-Jay Scales Site 24CH.67201.00 .0003 A1-SB-008-4.5' MRP/ZKK 7/29/2003
Density and Water Conte Sample Description:	-			S	ample Condition:	Undisturbed
TRIAL 1	Specific Gravity of Sol	ids = 2.70				
X Caliper Method:	Diameter (cm) Length (cm)	6.16 15.20	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	29.2 47.2 0.89]	
	Tare Mass (g) Wet+Tare (g) Dry+Tare (g)	8.02 842.70 654.30	Natural Density Dry Density	(g/cm ³) 1.84 1.43	(lb/ft ³) 115 89	

		G6 232	SECOR national Incorporated sotechnical Laboratory 11 Club Meridian Drive Suite E Okemos, MI 48864			
	······································					
					Client/Project:	Bee-Jay Scales Site
DENSITY AND WATE	R CONTENT (ASTM D 2216,	EM 1110 2)			Job No.:	24CH.67201.00
		, EWI 1110-2)			Task:	.0003
Laboratory Data and Re	esuits				Sample ID:	A1-SB-008-7.5'
					Tested By:	MRP/ZKK
					Date:	7/29/2003
Sample Descriptions	Brown clayey sand				Sample Condition:	Undisturbed
Sample Description:			·····			
TRIAL 1			····		Sample Continuon.	
	Specific Gravity of Sol	ids = 2.66				
		ids = 2.66	Water Content (%)		7	
TRIAL 1	Specific Gravity of Sol		Water Content (%) Porosity Estimate (%)			CARGAC
TRIAL 1	Specific Gravity of Sol Diameter (cm)	6.16	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	20.8		
TRIAL 1	Specific Gravity of Sol Diameter (cm)	6.16	Porosity Estimate (%)	20.8 38.6 0.63]	
TRIAL 1	Specific Gravity of Sol Diameter (cm) Length (cm)	6.16 15.20	Porosity Estimate (%)	 		

		Ge 232	SECOR national Incorporated cotechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
	R CONTENT (ASTM D 2216	, EM 1110-2)			Task:	.0003
Laboratory Data and Re	sults				Sample ID:	A2-SB-001-0.5'
					Tested By: Date:	MRP/MN 8/6/2003
					Date,	01012005
-	ight brown, sandy silt			s	ample Condition:	Disturbed
Sample Description: 1	ight brown, sandy silt Specific Gravity of Sol	lids = 2.67		s	ample Condition:	Disturbed
-		lids = 2.67	Water Content (%)	S	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol		Water Content (%) Porosity Estimate (%)	_	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm)	3.54		19.2	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm) Length (cm)	3.54	Porosity Estimate (%)	19.2 38.7 0.63		Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm)	3.54 7.54	Porosity Estimate (%)	<u> </u>	ample Condition:	Disturbed

.

.

Ì

			SECOR			
		Inter	national Incorporated			
		Ge	otechnical Laboratory			
		232	1 Club Meridian Drive			
			Suite E			
			Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WATEF	R CONTENT (ASTM D 2216,	EM 1110-2)			Task:	.0003
Laboratory Data and Re	sults				Sample ID:	A2-SB-001-4.5'
-					Tested By:	MRP/MN
					Date:	7/31/2003
Density and Water Conten	•					Undisturbed
Sample Description:	Dark brown, silty clay			8	ample Condition:	Undisturbed
Sample Description: [ids = 2.69		S	ample Condition:	Unaisturbea
TRIAL 1	Specific Gravity of Soli		Water Content (%)		ample Condition:	Unaistarbea
	Specific Gravity of Soli Diameter (cm)	6.15	Water Content (%) Porosity Estimate (%)	18.1	ample Condition:	Unaisturbea
TRIAL 1	Specific Gravity of Soli		Water Content (%) Porosity Estimate (%) Void Ratio Estimate		ample Condition:	Unaistarbea
TRIAL 1	Specific Gravity of Soli Diameter (cm)	6.15	Porosity Estimate (%)	18.1 43.0	ample Condition:	Unaistarbea
TRIAL 1	Specific Gravity of Soli Diameter (cm) Length (cm)	6.15	Porosity Estimate (%)	18.1 43.0 0.75]	Unaisturbea
TRIAL 1	Specific Gravity of Soli Diameter (cm)	6.15 15.17	Porosity Estimate (%)	18.1 43.0	(lb/ft ³)	Unaistarbed

 $\sum_{i=1}^{n}$

	Internati Geotec 2321 Cl	SECOR ional Incorporated chnical Laboratory lub Meridian Drive Suite E mos, MI 48864			
				Client/Project:	Bee-Jay Scales Site
				Job No.:	24CH.67201.00
DENSITY AND WATE	R CONTENT (ASTM D 2216, EM 1110-2)			Task:	.0003
Laboratory Data and Re	sults			Sample ID:	A2-SB-001-9.0'
				Tested By:	MRP/MN
			,	Date:	7/31/2003
Sample Description:]	rown, silty clay		s	ample Condition:	Undistarbed
TRIAL 1					
TRIAL 1	Specific Gravity of Solids = 2.69				
	Specific Gravity of Solids = 2.69 Diameter (cm) 6.15	Water Content (%)	23.9	1	
TRIAL 1 X Caliper Method:		Water Content (%) Porosity Estimate (%)	23.9	1	
	Diameter (cm) 6.15]	
	Diameter (cm) 6.15	Porosity Estimate (%)	46.5 0.87]] [] [] [] [] [] [] [] [] [] [] [] [] [] [
	Diameter (cm) 6.15 Length (cm) 15.17	Porosity Estimate (%)	46.5	(lb/ft ³) 111	

		Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Dkemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WATEF	R CONTENT (ASTM D 2216, E	M 1110-2)			Task:	.0003
Laboratory Data and Re	sults				Sample ID:	A2-SB-002-0.5'
					Tested By:	MRP/MN
					Date:	8/6/2003
Samula Data-i-ti	Rown sandy silt			6	ample Condition:	Disturbed
Sample Description: E		·····				
Sample Description: E					mpe conumon.	
-	Specific Gravity of Solids	= 2.67			mpre conunion.	
-		= 2.67	Water Content (%)	9.7	 	
TRIAL 1	Specific Gravity of Solids		Porosity Estimate (%)		imple condition.	
TRIAL 1	Specific Gravity of Solids Diameter (cm)	3.54		9.7		
TRIAL 1	Specific Gravity of Solids Diameter (cm) Length (cm)	3.54	Porosity Estimate (%)	9.7 43.7 0.77		
TRIAL 1	Specific Gravity of Solids Diameter (cm) Length (cm) Tare Mass (g)	3.54 7.54 8.21	Porosity Estimate (%) Void Ratio Estimate	9.7 43.7 0.77	(b/ft ³)	
TRIAL 1	Specific Gravity of Solids Diameter (cm) Length (cm)	3.54	Porosity Estimate (%)	9.7 43.7 0.77		

Length (cm) 11.53 Porosity Estimate (%)			
Sample Description: Brown, sandy silt TRIAL 1 Specific Gravity of Solids = 2.67 X Caliper Method: Diameter (cm) 6.15 Water Content (%) Length (cm) 11.53 Porosity Estimate (%)		Client/Project: Job No.: Task: Sample ID: Tested By: Date:	Bee-Jay Scales Site 24CH.67201.00 .0003 A2-SB-002-4.5' MRP/MN 7/31/2003
Specific Gravity of Solids = 2.67 X Caliper Method: Diameter (cm) 6.15 Length (cm) 11.53 Porosity Estimate (%)	S	Sample Condition:	Undisturbed
Length (cm) 11.53 Porosity Estimate (%)			
	21.6 41.9	7	
	0.72]	
	(g/cm ³)	(lb/ft ³)	
	1.89	<u>118</u> 97	

}

		Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
		771 / 1 / 10 / 0			Job No.:	24CH.67201.00
	R CONTENT (ASTM D 2216)	, EM 1110-2)			Task:	.0003
Laboratory Data and Re	sults				Sample ID:	A2-SB-002-9.01
					Tested By: Date:	MRP/MN 7/31/2003
Sample Description: F	Stown, salluy Shi	<u> </u>		_	Sample Condition:	Undisturbed
TRIAL 1						
	Specific Gravity of Sol	ids = 2.67				
X Caliper Method:	Diameter (cm)	6,15	Water Content (%)	23.7	٦	
	Length (cm)	15.17	Porosity Estimate (%)	45.7		
-			Void Ratio Estimate	0.84]	
Г	Tare Mass (g)	8.03		(g/cm ³)	(lb/ft ³)	
ł	Wet+Tare (g)	816.60	Natural Density	1.79	112	
h	Dry+Tare (g)	661.50	Dry Density	1.45	91	

1

	G	SECOR rnational Incorporated eotechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
				Client/Project:	Bee-Jay Scales Site
				Job No.:	24CH.67201.00
DENSITY AND WATE	R CONTENT (ASTM D 2216, EM 1110-2)			Task:	.0003
Laboratory Data and R	esults			Sample ID:	A3-SB-002-0.5'
				Tested By:	MRP/MN
				Date:	8/6/2003
Density and Water Conte	nt Analyses				
Sample Description:	Brown, sandy clay		s	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Solids = 2.68				
	Specific Gravity of Solids = 2.68 Diameter (cm) 3.54	Water Content (%)	26.3	1	
TRIAL 1		Water Content (%) Porosity Estimate (%)	26.3 44.1]	
	Diameter (cm) 3.54]	
	Diameter (cm) 3.54	Porosity Estimate (%)	44.1 0.79	(b/ft ³)	
	Diameter (cm) 3.54 Length (cm) 7.54	Porosity Estimate (%)	44.1	(lb/ft ³) 118	

<u> </u>			SECOR			
		Inter	national Incorporated			
			eotechnical Laboratory			
		232	1 Club Meridian Drive			
			Suite E Okemos, MI 48864			
			Okemos, Wil 48804			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WATE	R CONTENT (ASTM D 2216)	, EM 1110-2)			Task:	.0003
Laboratory Data and Re	esults				Sample ID:	A3-SB-002-4.5
					Tested By:	MRP
					Date:	8/4/2003
Density and Water Conter	nt Analyses					
Sample Description: 1	Brown, sandy clay			s	ample Condition:	Undisturbed
TRIAL 1						
	Specific Gravity of Sol	lids = 2.68				
X Caliper Method:	Diameter (cm)	6.15	Water Content (%)	27.3]	
	Length (and)	15.17	Porosity Estimate (%)	49.1		
	Length (cm)					
[Lengin (cm)		Void Ratio Estimate	0.97]	
[Length (cm) Tare Mass (g)	8.32	Void Ratio Estimate		(15/ft ³)	
[2 · · ·		Void Ratio Estimate Natural Density	0.97 (g/cm ³) 1.74	(lb/ft ³) 108	

ł

`))

SECOR International Incorporated Geotechnical Laboratory 2321 Club Meridian Drive Suite E

Okemos, MI 48864

	Client/Project:	Bee-Jay Scales Site
	Job No.:	24CH.67201.00
DENSITY AND WATER CONTENT (ASTM D 2216, EM 1110-2)	Task:	.0003
Laboratory Data and Results	Sample ID:	A3-SB-002-7.5
	Tested By:	MRP/MN
	Date:	8/6/2003

Density and Water Content Analyses

Sample Description: Brown, sandy silt with metal shavings and strong odor

TRIAL 1

Specific Gravity of Solids = 2.67

X Caliper Method:

Ĵ

Diameter (cm)	3.54
Length (cm)	7.54

Tare Mass (g)	8.07
Wet+Tare (g)	146.73
Dry+Tare (g)	118.79

Water Content (%)	25.2
Porosity Estimate (%)	44.1
Void Ratio Estimate	0.79

	(g/cm ³)	(lb/ft ³)
Natural Density	1.87	117
Dry Density	1.49	93

Disturbed

Sample Condition:

.

		Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Dkemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WAT	ER CONTENT (ASTM D 2216,	EM 1110-2)			Task:	.0003
Laboratory Data and I	Results				Sample ID:	A4-SB-001-0.5'
					Tested By:	MRP/MN
					Date:	8/6/2003
Density and Water Cont Sample Description	tent Analyses Brown, silty sand		<u> </u>	s	Sample Condition:	Disturbed
TRIAL 1	Specific Gravity of Soli	ds = 2.66				
_	Specific Gravity of Sol		Water Content (%)	8.8	1	
TRIAL 1	Diameter (cm)	ids = 2.66	Water Content (%) Porosity Estimate (%)	8.8]	
_	-	3.54	Water Content (%) Porosity Estimate (%) Void Ratio Estimate]	
_	Diameter (cm)	3.54	Porosity Estimate (%)	41.8 0.72]] [] []	
_	Diameter (cm) Length (cm)	3.54 6.88	Porosity Estimate (%)	41.8	(<u>lb/ft³)</u> 105	

<u>)</u> Х.

DENSITY AND WATER CONTENT (ASTM D 22 Laboratory Data and Results	216, EM 1110-2)			Client/Project: Job No.: Task:	Bee-Jay Scales Site 24CH.67201.00 .0003
				Sample ID: Tested By: Date:	A4-SB-001-9.0' MRP 8/4/2003
Density and Water Content Analyses Sample Description: Brown, silty clay			a a a a a a a a a a a a a a a a a a a	ample Condition:	Undisturbed
TRIAL 1		· · · · · · · · · · · · · · · · · · ·			
Specific Gravity of	Solids = 2.69				
X Caliper Method: Diameter (cm) Length (cm)	6.15 15.17	Water Content (%) Porosity Estimate (%)	24.2 46.3		
		Void Ratio Estimate	0.86	J	
Tare Mass (g)	8.30		(g/cm ³)	(lb/ft ³)	
Wet+Tare (g) Dry+Tare (g)	815.90 658.60	Natural Density Dry Density	1.79	<u>112</u> 90	

-)

	I	SECOR International Incorporated Geotechnical Laboratory 2321 Club Meridian Drive Suite E Okemos, MI 48864			
			Ę	Client/Project:	Bee-Jay Scales Site
DENCIPY AND WAT	ED CONFERIE (ASTM D 2216 EM 1110 2	2	-	Job No.:	24CH.67201.00
	ER CONTENT (ASTM D 2216, EM 1110-2	J.		Task:	.0003
Laboratory Data and I	Aesuits		ŀ	Sample ID:	A4-SB-003-0.5' MRP/MN
			-	Tested By: Date:	8/6/2003
Sample Description	Brown, silty sand		Sai	mple Condition:	Disturbed
TOTAL 1					
TRIAL 1	Specific Gravity of Solids = 2	.66			
	Specific Gravity of Solids = 2 Diameter (cm) 3.54	2.66 Water Content (%)	9.2		
TRIAL 1 X Caliper Method:		Water Content (%)	9.2		
	Diameter (cm) 3.54	Water Content (%)			
	Diameter (cm) 3.54	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	39.5 0.65	(Ib/ft ³)	
	Diameter (cm) 3.54 Length (cm) 5.25	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	39.5	(lb/ft ³) 109	

 $\frac{1}{2}$

		Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Dkemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
	R CONTENT (ASTM D 2216,	, EM 1110-2)			Task:	.0003
Laboratory Data and Re	esults				Sample ID:	A4-SB-003-0.5'-1
					Tested By: Date:	MRP/MN 8/6/2003
Density and Water Conten	nt Analyses					
Sample Description:	Brown, silty sand			s	ample Condition:	Disturbed
- TRIAL 1			<u></u>	_		
		A				
	Specific Gravity of Sol			10.7	•	
X Caliper Method:	Diameter (cm)	3.54	Water Content (%)	10.7]	
			Water Content (%) Porosity Estimate (%) Void Ratio Estimate	10.7 38.3 0.62		
	Diameter (cm)	3.54	Porosity Estimate (%)	38.3]	
	Diameter (cm)	3.54	Porosity Estimate (%)	38.3	(īb/ft ³)	
	Diameter (cm) Length (cm)	3.54 6.12	Porosity Estimate (%)	38.3 0.62	(lb/ft ³) 113 102	

)

,

		Ge 232	SECOR mational Incorporated eotechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
				!	Job No.:	24CH.67201.00
	CONTENT (ASTM D 2216,	, EM 1110-2)			Task:	.0003
Laboratory Data and Res	ults				Sample ID:	A4-SB-003-4.5'
					Tested By:	MRP/MN
					Date:	8/5/2003
Density and Water Content Sample Description: Br				S	ample Condition:	Undisturbed
TRIAL 1	Specific Gravity of Sol	lids = 2,69		_		
					•	
X Caliper Method:	Diameter (cm)	6.15	Water Content (%)	29.6		
	Length (cm)	15.17	Porosity Estimate (%)	47.1		
			Void Ratio Estimate	0.89	1	
L_					1	
	Tour More (n)		1	· · · · · · ·	l ar wah	
F	Tare Mass (g) Wet+Tare (g)	8.33 839.10	Natural Density	(g/cm ³) 1.84	(lb/ft ³) 115	

		· · · · · · · · · · · · · · · · · · ·	SECOR			
		Inter	national Incorporated			
			otechnical Laboratory			
		232	1 Club Meridian Drive			
			Suite E			
			Okemos, MI 48864			
				i	Client/Project:	Bee-Jay Scales Site
					Job No.:	24CH.67201.00
DENSITY AND WATE	R CONTENT (ASTM D 2216, EN	4 1110-2)			Task:	.0003
Laboratory Data and R	esults				Sample ID:	A4-SB-003-9.0'
-					Tested By:	MRP/MN
					Date:	8/5/2003
Density and Water Conte Sample Description:				S:	ample Condition:	Undisturbed
TRIAL 1		<u> </u>		-		
	Specific Gravity of Solids	= 2.66				
X Caliper Method:	Diameter (cm)	6.15	Water Content (%)	20.7		
	Length (cm)	15.17	Porosity Estimate (%)	44.9		
			Void Ratio Estimate	0.81	1	
	Tare Mass (g)	8.35		(g/cm ³)	(lb/ft ³)	
	Wet+Tare (g)	805.20	Natural Density	(g/cm) 1.77	(ID/IT) 110	
	i ner i tate (g)	005.20	ratura Doubley	. I ^^//	110	
	Dry+Tare (g)	668.70	Dry Density	1.47	91	

•)

		G 232	SECOR mational Incorporated eotechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864	··		
DENSITY AND WATER Laboratory Data and Re	R CONTENT (ASTM D 2216, I sults		Client/Project: Job No.: Task: Sample ID: Tested By: Date:	Bee-Jay Scales Site 24CH.67201.00 .0003 A5-SS-001-0.5' MRP/MN 8/6/2003		
Density and Water Conten Sample Description: E				S2 	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Solid	s = 2.67				
X Caliper Method:	Diameter (cm) Length (cm)	3.54	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	10.4 43.0 0.75	r	
	Tare Mass (g) Wet+Tare (g) Dry+Tare (g)	8.07 124.89 113.91	Natural Density Dry Density	(g/cm ³) 1.68 1.52	(lb/ft ³) 105 95	

.)

		G 23	SECOR mational Incorporated eotechnical Laboratory 21 Club Meridian Drive Suite E Okemos, MI 48864			
					Client/Project:	Bee-Jay Scales Site
DENCIPSZ AND SIZATE		EN 1110 O			Job No.:	24CH.67201.00
	R CONTENT (ASTM D 2216	, EM 1110-2)			Task:	.0003
Laboratory Data and Re	esuits				Sample ID:	A5-SS-004-0.5'
					Tested By: Date:	MRP/MN 8/6/2003
Samala Deservations 1	Opening conductive states at the second	_		-		Disturbed
-	Brown, sandy silt with slight odo	(s	ample Condition:	Disturbed
Sample Description:] - - TRIAL 1	Brown, sandy silt with slight odo	(s	ample Condition:	Disturbed
-	Brown, sandy silt with slight odor			s	ample Condition:	Disturbed
-			Water Content (%)		iample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol	lids = 2.67	Water Content (%) Porosity Estimate (%)	=	iample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm)	tids = 2.67		13.3	ample Condition:	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm) Length (cm)	lids = 2.67	Porosity Estimate (%)	13,3 41.7 0.71]	Disturbed
TRIAL 1	Specific Gravity of Sol Diameter (cm)	tids = 2.67	Porosity Estimate (%)	13.3 41.7	ample Condition:	Disturbed

)

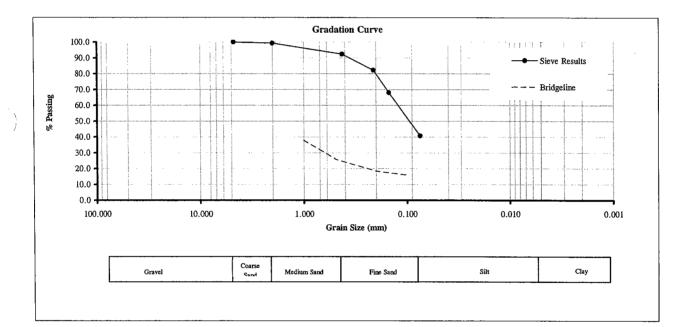
		otechnical Laboratory 1 Club Meridian Drive Suite E Okemos, MI 48864			· · · · · · · · · · · · · · · · · · ·
				Client/Project:	Bee-Jay Scales Site
				Job No.;	24CH.67201.00
	M 1110-2)			Task:	.0003
lts				Sample ID:	A6-SB-001-4.5'
				Tested By:	MRP/MN
				Date:	8/5/2003
•			s	ample Condition:	Undisturbed
Specific Gravity of Solids	= 2.66				
Diameter (cm)	6.15	Water Content (%)	18.3	1	
Length (cm)	15.17	Porosity Estimate (%)	48.5	1	
		Void Ratio Estimate	0.94]	
	0.20				
		Notural Dangity			
2	lits Analyses own, silty sand Specific Gravity of Solids Diameter (cm)	CONTENT (ASTM D 2216, EM 1110-2) dits Analyses own, silty sand Specific Gravity of Solids = 2.66 Diameter (cm) 6.15 Length (cm) 15.17 Tare Mass (g) 8.30 Wet+Tare (g) 737.10	Analyses bwn, silty sand Specific Gravity of Solids = 2.66 Diameter (cm) 6.15 Length (cm) 15.17 Yold Ratio Estimate (%) Yold Ratio Estimate Tare Mass (g) 8.30 Wet+Tare (g) 737.10 Natural Density	CONTENT (ASTM D 2216, EM 1110-2) dnalyses Analyses own, silty sand S Specific Gravity of Solids = 2.66 Diameter (cm) 6.15 Length (cm) 15.17 Water Content (%) 18.3 Porosity Estimate (%) 48.5 Vold Ratio Estimate 0.94 Tare Mass (g) 8.30 Wet+Tare (g) 737.10	CONTENT (ASTM D 2216, EM 1110-2) Client/Project: Job No.: Task: Jab Sample ID: Tested By: Date: Analyses Date: Specific Gravity of Solids = 2.66 Diameter (cm) 6.15 Length (cm) 15.17 Water Content (%) 18.3 Porosity Estimate (%) 48.5 Vold Ratio Estimate 0.94 Tare Mass (g) 8.30 Wet+Tare (g) 737.10

Ì

_			Ge 232	SECOR national Incorporated otechnical Laboratory 1 Club Meridian Drive Suite E Dkemos, MI 48864			
						Client/Project: Job No.:	Bee-Jay Scales Site 24CH.67201.00
7	DENSITY AND WAT	ER CONTENT (ASTM D 2216,	EM 1110-2)			JOB No.:	.0003
	Laboratory Data and I					Sample ID:	A6-SB-001-7.5'
	Eastratory Data and					Tested By:	MRP/MN
						Date:	8/5/2003
	Consult Description	Deserve alleger			-		Undistanted
		Brown, clayey silt			S:	ample Condition:	Undisturbed
	Sample Description		i t = 2.68		S.	ample Condition:	Undisturbed
Г	TRIAL 1	Specific Gravity of Solid		Water Content (%)	-	ample Condition:	Undisturbed
[Specific Gravity of Solie Diameter (cm)	ds = 2.68 6.15 15.17	Water Content (%) Porosity Estimate (%)	22.2	ample Condition:	Undisturbed
Γ	TRIAL 1	Specific Gravity of Solid	6.15	Water Content (%) Porosity Estimate (%) Void Ratio Estimate	-	ample Condition:	Undisturbed
[TRIAL 1	Specific Gravity of Solid Diameter (cm) Length (cm)	6.15 15.17	Porosity Estimate (%)	22.2 43.4 0.77]	Undisturbed
[TRIAL 1	Specific Gravity of Solie Diameter (cm)	6.15	Porosity Estimate (%)	22.2	ample Condition:	Undisturbed

)

3

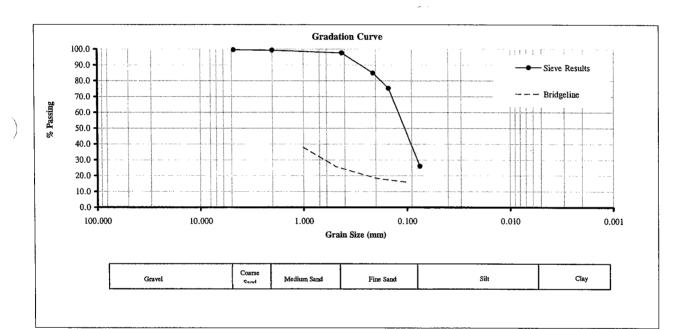

- 1

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Siev

•						
	Mass	of soil used $(g) =$	117.86			
	Error due to lo	st material (%) =	0.66			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.0	465.1	0.0	0.0	100.0
10	2.000	483.4	484.2	0.8	0.9	99.3
40	0.425	382.2	390.4	8.2	9.0	92.4
70	0.212	320.9	333.0	12.1	21.2	82.2
100	0.150	335.2	352.0	16.7	37.9	68.1
200	0.075	335.1	367.5	32.4	70.3	40.8
pan		376.3	424.7	48.4	118.6	0.0


Son oran she she had a she was a second a second seco							
Soil Fraction	Size Range	% of Total					
Gravel	75mm to 4.75mm	0.0					
Coarse Sand	4.75mm to 2.00mm	0.7					
Medium Sand	2.00mm to .425mm	6.9					
Fine Sand	.425mm to .075 mm	51.6					
Silt-Clay	Material smaller than .075mm	40.8					

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

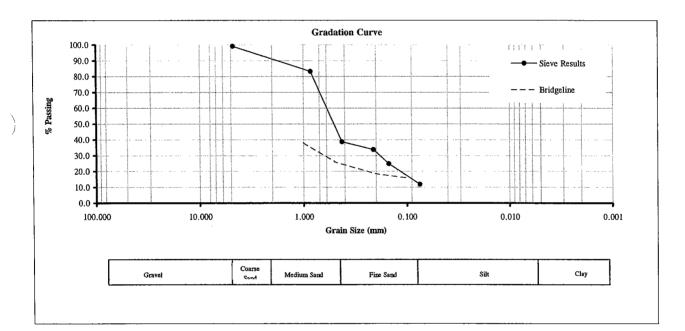
		of soil used $(g) =$ st material $(\%) =$	0.12			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.2	467.2	2.0	2.0	99.6
10	2.000	483.5	484.8	1.3	3.3	99.3
40	0.425	382.3	391.0	8.7	12.1	97.6
70	0.212	321.0	384.5	63.6	75.6	84.9
100	0.150	335.3	383.8	48.5	124.1	75.2
200	0.075	335.2	581.7	246.5	370.6	26.1
pan		376.5	507.1	130.6	501.3	0.0
-						

Soil Grain Size Distribution By Sieve Analysis

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.4
Coarse Sand	4.75mm to 2.00mm	0.3
Medium Sand	2.00mm to .425mm	1.7
Fine Sand	.425mm to .075 mm	71.5
Silt-Clay	Material smaller than .075mm	26.1

8/4/2003

Date:

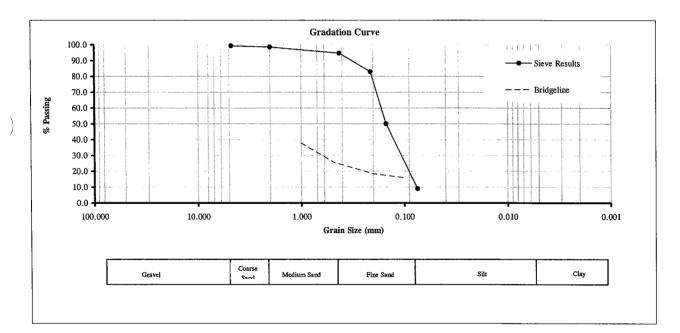

GRAIN SIZE ANALYSIS (ASTM D 422)

Client/Project:	Bee-Jay Scales Site	
Job No.:	24CH.67201.00	
Task:	0003	
Sample ID:	A1-SB-003-9.0'	
Tested By:	MRP/ZKK	-
Date:	8/1/2003	_

LABORATORY DATA

Sieve Analysis

	Mass	of soil used $(g) =$	500.43			
	Error due to lo	st material (%) =	0.77			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.2	469.9	4.7	4.7	99.1
20	0.850	412.4	491.0	78.6	83.3	83.2
40	0.425	382.3	603.6	221.3	304.6	38.7
70	0.212	321.0	345.2	24.2	328.8	33.8
100	0.150	335.3	379.7	44.4	373.2	24.8
200	0.075	335.2	399.5	64.3	437.5	11.9
pan		376.5	435.6	59.1	496.6	0.0
			1		1 1	


Soil Fraction	Size Range	% of Total				
Gravel	75mm to 4.75mm	0.9				
Coarse Sand	4.75mm to 2.00mm	8.1				
Medium Sand	2.00mm to .425mm	7.8				
Fine Sand	.425mm to .075 mm	71.3				
Silt-Clay	Material smaller than .075mm	11.9				

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

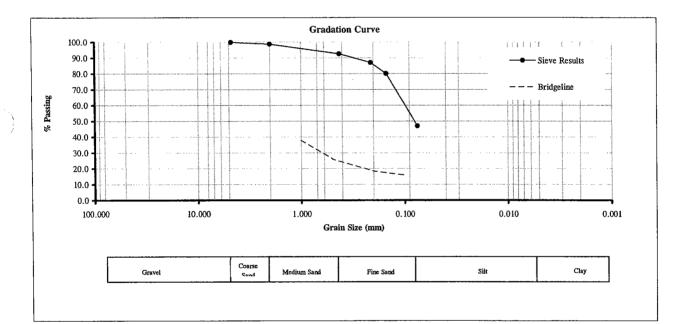
Sieve Analysis

	Mass	of soil used (g) =	107.22			
	Error due to lo	st material (%) =	1.15			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	465.8	0.8	0.8	99.3
10	2.000	483.4	484.2	0.8	1.6	98.5
40	0.425	382.3	386.4	4.1	5.7	94.7
70	0.212	320.9	333.7	12.8	18.5	82.9
100	0.150	335.3	370.9	35.6	54.2	50.1
200	0.075	335.1	379.5	44.4	98.6	9.1
pan		376.3	386.2	9.9	108.5	0.0

Soil Grain Size Distribution By Sieve Analysis

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.7
Coarse Sand	4.75mm to 2.00mm	0.8
Medium Sand	2.00mm to .425mm	3.8
Fine Sand	.425mm to .075 mm	85.6
Silt-Clay	Material smaller than .075mm	9.1

Client/Project: Bee-Jay Scales Site Job No.: 24CH.67201.00 Task: 0003 Sample ID: A1-SB-004-0.5' Tested By: MRP/ZKK/MN Date: 8/7/2003

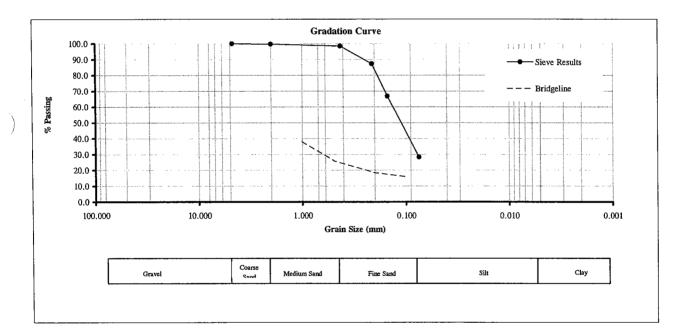

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A1-SB-004-4.5'
Tested By:	MRP
Date:	8/4/2003

	Mass of	of soil used (g) =	500.33			
	Error due to lo	st material (%) =	0.10			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.2	466.1	0.9	0.9	99.8
10	2.000	483.3	488.8	5.5	6.5	98.7
40	0.425	382.3	413.1	30.8	37.3	92.6
70	0.212	321.0	348.7	27.7	65.0	87.0
100	0.150	335.3	370.0	34.8	99.7	80.1
200	0.075	335.2	501.2	166.0	265.7	46.9
pan		376.6	611.7	235.1	500.9	0.0
-						


Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.2
Coarse Sand	4.75mm to 2.00mm	1.1
Medium Sand	2.00mm to .425mm	6.1
Fine Sand	.425mm to .075 mm	45.7
Silt-Clay	Material smaller than .075mm	46.9

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

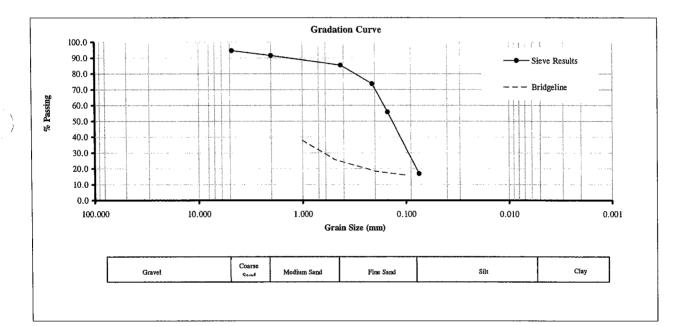
Sieve Analysis

	Mass	of soil used (g) =	500.43			
	Error due to lo	st material (%) =	0.14			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.2	465.4	0.2	0.2	100.0
10	2.000	483.6	485.0	1.4	1.6	99.7
40	0.425	382.4	388.3	6.0	7.5	98.5
70	0.212	321.1	377.2	56.1	63.7	87.3
100	0.150	335.3	437.6	102.3	166.0	66.9
200	0.075	335.2	528.2	193.0	359.0	28.4
pan		376.5	518.7	142.2	501.1	0.0
pan		376.5	518.7	142.2	501.1	

Soil Grain Size Distribution By Sieve Analysis

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.0
Coarse Sand	4.75mm to 2.00mm	0.3
Medium Sand	2.00mm to .425mm	1.2
Fine Sand	.425mm to .075 mm	70.1
Silt-Clay	Material smaller than .075mm	28.4

Client/Project: **Bee-Jay Scales Site** 24CH.67201.00 Job No.: Task: 0003 Sample ID: A1-SB-004-9.0' Tested By: MRP Date: 8/4/2003


GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A1-SB-006-0.5'
Tested By:	MRP/ZKK/MN
Date:	8/7/2003

	Mass	of soil used $(g) =$	112.24			
	Error due to lo	st material (%) =	0.95			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.0	471.0	6.0	6.0	94.7
10	2.000	483.4	486.9	3.5	9.6	91.6
40	0.425	382.3	389.2	6.9	16.5	85.4
70	0.212	320.9	334.3	13.4	29.9	73.6
100	0.150	335.2	355.4	20.2	50.1	55.8
200	0.075	335.1	379.2	44.1	94.1	16.9
pan		376.3	395.5	19.2	113.3	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	5.3
Coarse Sand	4.75mm to 2.00mm	3.1
Medium Sand	2.00mm to .425mm	6.2
Fine Sand	.425mm to .075 mm	68.5
Silt-Clay	Material smaller than .075mm	16.9

Client/Project:

Job No.

Sample ID:

Tested By:

Task:

Date:

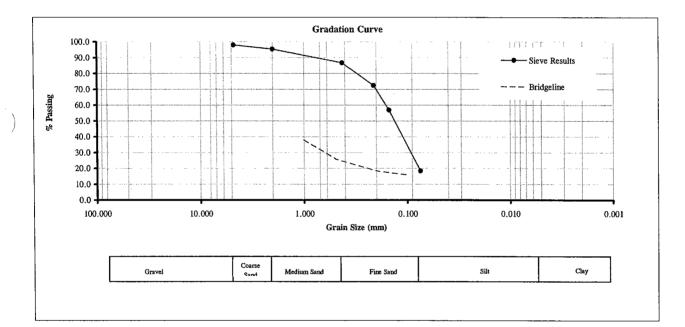
Bee-Jay Scales Site

24CH.67201.00

0003

A1-SB-006-0.5'-1

MRP/ZKK/MN


8/7/2003

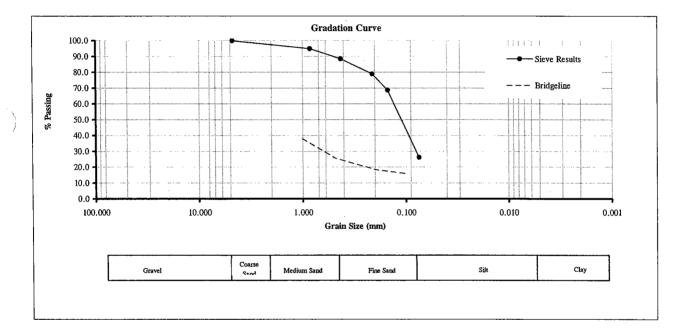
GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

	Mass	of soil used (g) =	109.84			
	Error due to lo	st material (%) =	0.32			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	467.3	2.2	2.2	98.0
10	2.000	483.4	486.2	2.9	5.1	95.4
40	0.425	382.3	391.8	9.5	14.6	86.8
70	0.212	321.0	336.7	15.8	30.3	72.5
100	0.150	335.3	352.4	17.2	47.5	56.9
200	0.075	335.1	377.5	42.4	89.9	18.4
pan		376.4	396.7	20.3	110.2	0.0
	1				1 1	

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	2.0
Coarse Sand	4.75mm to 2.00mm	2.6
Medium Sand	2.00mm to .425mm	8.6
Fine Sand	.425mm to .075 mm	68.4
Silt-Clay	Material smaller than .075mm	18.4


GRAIN SIZE ANALYSIS (ASTM D 422)

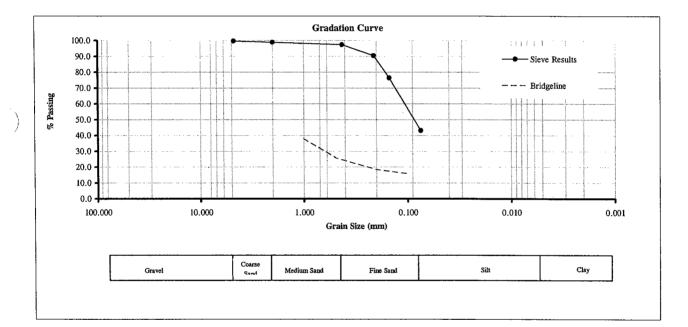
LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A1-SB-006-4.5'
Tested By:	MRP/ZKK
Date:	8/1/2003

	Mass	of soil used (g) =	500.37			
	Error due to lo	st material (%) =	0.10			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	465.4	0.3	0.3	99.9
20	0.850	412.4	437.6	25.2	25.5	94.9
40	0.425	382.3	414.8	32.5	58.0	88.4
70	0.212	321.0	368.6	47.6	105.6	78.9
100	0.150	335.2	386.6	51.4	156.9	68.7
200	0.075	335.2	548.0	212.9	369.8	26.2
pan		376.6	507.6	131.1	500.9	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.1
Coarse Sand	4.75mm to 2.00mm	2.9
Medium Sand	2.00mm to .425mm	8.6
Fine Sand	.425mm to .075 mm	62,2
Silt-Clay	Material smaller than .075mm	26.2

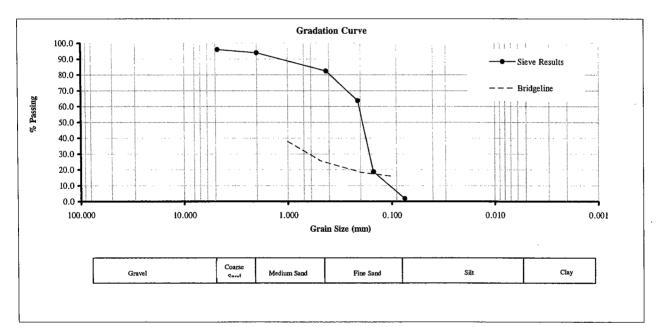

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A1-SB-006-7.51
Tested By:	MRP/ZKK/MN
Date:	8/7/2003

	Mass	of soil used (g) =	90.01			
	Error due to lo	st material (%) =	0.20			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	465.4	0.3	0.3	99.7
10	2.000	483.5	484.2	0.7	1.0	98.9
40	0.425	382.3	383.7	1.4	2.4	97.3
70	0.212	320.9	327.1	6.2	8.6	90.5
100	0.150	335.3	348.1	12.8	21.3	76.3
200	0.075	335.2	365.1	30.0	51.3	43.1
pan		376.4	415.2	38.9	90.2	0.0


Soil Fraction Size Range		% of Total
Gravel	75mm to 4.75mm	0.3
Coarse Sand	4.75mm to 2.00mm	0.8
Medium Sand	2.00mm to .425mm	1.6
Fine Sand	.425mm to .075 mm	54.2
Silt-Clay	Material smaller than .075mm	43.1

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

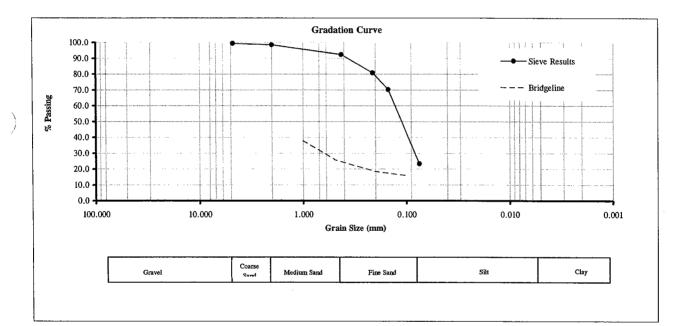
Sieve Analysis

	Mass	of soil used (g) =	121.6			
	Error due to lo	ost material (%) =	0.89			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.0	470.0	4.9	4.9	96.0
10	2.000	483.4	485.8	2.4	7.4	94.0
40	0.425	382.3	396.4	14.2	21.5	82.5
70	0.212	320.9	344.1	23.2	44.7	63.6
100	0.150	335.2	390.3	55.1	99.8	18.7
200	0.075	335.1	355.8	20.6	120.4	1.9
pan		376.3	378.6	2.3	122.7	0.0

Soil Grain Size Distribution By Sieve Analysis

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	4.0
Coarse Sand	4.75mm to 2.00mm	2.0
Medium Sand	2.00mm to .425mm	11.5
Fine Sand	.425mm to .075 mm	80.6
Silt-Clay	Material smaller than .075mm	1.9

)

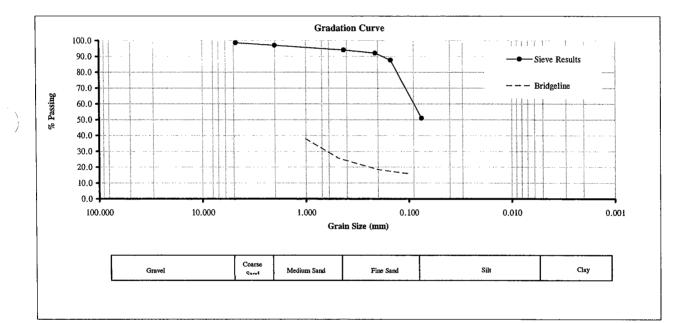

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site		
Job No.:	24CH.67201.00		
Task:	0003		
Sample ID:	A2-SB-001-4.5'		
Tested By:	MRP		
Date:	8/4/2003		

	Mass	of soil used (g) =	500.64			
	Error due to lo	st material (%) =	0.17			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	468.3	3.2	3.2	99.4
10	2.000	483.5	488.0	4.5	7.7	98.5
40	0.425	382.3	412.7	30.5	38.1	92.4
70	0.212	320.9	379.3	58.3	96.4	80.8
100	0.150	335.3	388.1	52.8	149.3	70.2
200	0.075	335.2	570.2	235.0	384.3	23.4
pan		376.5	493.7	117.2	501.5	0.0


Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.6
Coarse Sand	4.75mm to 2.00mm	0.9
Medium Sand	2.00mm to .425mm	6.1
Fine Sand	.425mm to .075 mm	69.0
Silt-Clay	Material smaller than .075mm	23.4

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

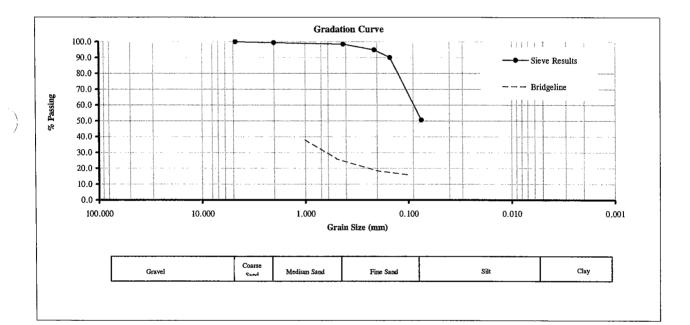
<u>Sieve</u>

<u>e Analysis</u>		6 11 1 ()					
Mass of soil used (g) = 500.47							
Error due to lost material $(\%) = 0.08$							
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing	
4	4.750	465.1	472.2	7.1	7.1	98.6	
10	2.000	483.5	491.7	8.2	15.3	96.9	
40	0.425	382.3	396.6	14.3	29.6	94.1	
70	0.212	321.0	331.0	10.0	39.6	92.1	
100	0.150	335.3	357.5	22.2	61.8	87.7	
200	0.075	335.2	518.9	183.7	245.5	51.0	
pan		376.5	631.9	255.4	500.9	0.0	

Soil Grain Size Distribution By Sieve Analysis

bon oram blie bit	Son Gram She Distribution by Store imarysis					
Soil Fraction	Size Range	% of Total				
Gravel	75mm to 4.75mm	1.4				
Coarse Sand	4.75mm to 2.00mm	1.7				
Medium Sand	2.00mm to .425mm	2.8				
Fine Sand	.425mm to .075 mm	43.1				
Silt-Clay	Material smaller than .075mm	51.0				

3 of 3

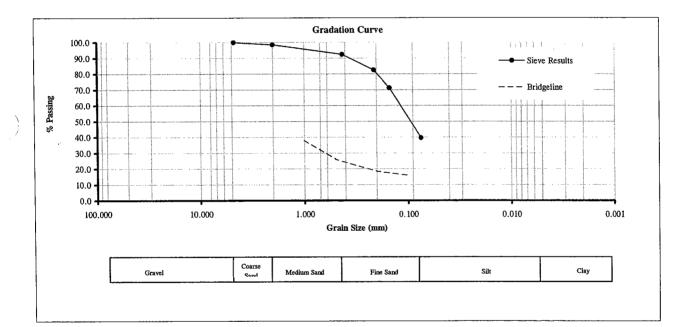

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A2-SB-002-0.5'
Tested By:	MRP/ZKK/MN
Date:	8/7/2003

	Mass	of soil used $(g) =$	111.81			
	Error due to lo	st material (%) =	0.27			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.0	465.1	0.0	0.0	100.0
10	2.000	483.4	484.1	0.7	0.7	99.4
40	0.425	382.3	383.2	0.9	1.7	98.5
70	0.212	321.0	325.1	4.1	5.8	94.9
100	0.150	335.2	340.7	5.4	11.2	90.0
200	0.075	335.2	379.4	44.3	55.5	50.5
pan		376.4	433.1	56.7	112.1	0.0


Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.0
Coarse Sand	4.75mm to 2.00mm	0.6
Medium Sand	2.00mm to .425mm	0.9
Fine Sand	.425mm to .075 mm	48,0
Silt-Clay	Material smaller than .075mm	50.5

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

		of soil used $(g) =$	500.7			
	Error due to lo	st material (%) =	0.18		· · · · · · · · · · · · · · · · · · ·	
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	465.8	0.7	0.7	99.9
10	2.000	483.5	490.1	6.7	7.4	98.5
40	0.425	382.3	413.2	30.9	38.2	92.4
70	0.212	321.0	370.7	49.7	87.9	82.5
100	0.150	335.3	392.2	56.9	144.8	71.1
200	0.075	335.2	493.5	158.3	303.1	39.6
pan		376.5	575.0	198.5	501.6	0.0

Soil Grain Size Distribution By Sieve Analysis

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.1
Coarse Sand	4.75mm to 2.00mm	1.4
Medium Sand	2.00mm to .425mm	6.1
Fine Sand	.425mm to .075 mm	52.8
Silt-Clay	Material smaller than .075mm	39.6

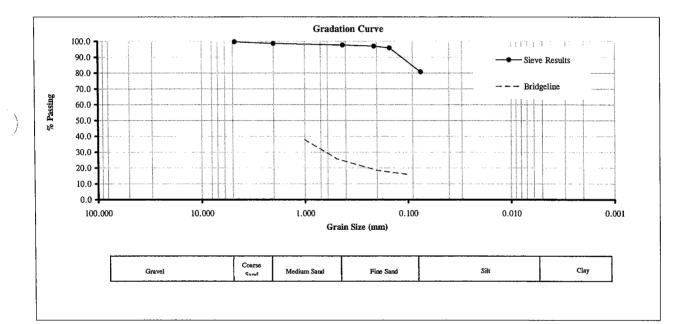
Client/Project: Bee-Jay Scales Site Job No.: 24CH.67201.00 Task: 0003 Sample ID: A2-SB-002-4.5' Tested By: MRP Date: 8/4/2003

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

1

Sieve Analysis


0003	Task:
A2-SB-002-9.0	Sample ID:
MRP	Tested By:
8/4/2003	Date:

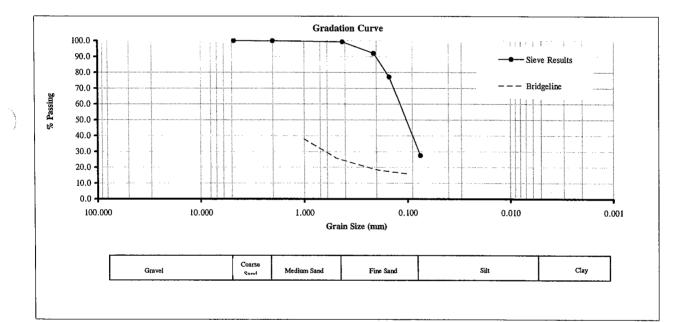
Client/Project: Job No.:

Bee-Jay Scales Site 24CH.67201.00

	Error due to lo	st material (%) =	0.05			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.2	466.6	1.4	1.4	99.7
10	2.000	483.5	488.5	5.0	6.5	98.7
40	0.425	382.4	387.4	5.1	11.6	97.7
70	0.212	321.0	324.5	3.4	15.0	97.0
100	0.150	335.4	340.8	5.4	20.5	95.9
200	0.075	335.2	411.4	76.1	96.6	80.7
pan		376.5	780.1	403.6	500.2	0.0

Mass of soil used (g) =

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.3
Coarse Sand	4.75mm to 2.00mm	1.0
Medium Sand	2.00mm to .425mm	1.0
Fine Sand	.425mm to .075 mm	17.0
Silt-Clay	Material smaller than .075mm	80.7


GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

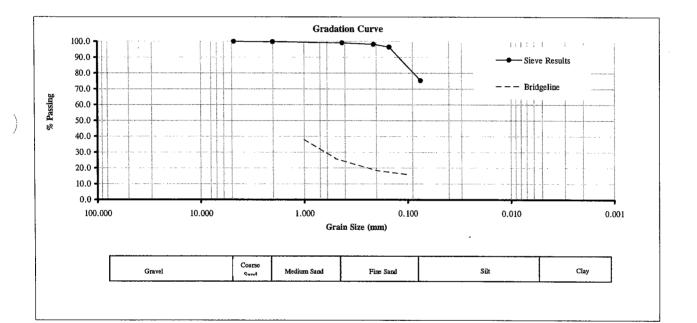
Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A3-SB-002-0.5'
Tested By:	MRP/ZKK/MN
Date:	8/7/2003

	Mass	of soil used (g) =	111.16			
	Error due to lo	st material (%) =	0.22			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	465.1	0.0	0.0	100.0
10	2.000	483.4	483.5	0.1	0.1	99.9
40	0.425	382.3	382.9	0.6	0.7	99.3
70	0.212	320.9	329.1	8.1	8.9	92.0
100	0.150	335.2	351.9	16.6	25.5	77.1
200	0.075	335.2	390.5	55.3	80.8	27.5
pan		376.4	407.0	30.6	111.4	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.0
Coarse Sand	4.75mm to 2.00mm	0.1
Medium Sand	2.00mm to .425mm	0.6
Fine Sand	.425mm to .075 mm	71.8
Silt-Clay	Material smaller than .075mm	27.5

GRAIN SIZE ANALYSIS (ASTM D 422)


LABORATORY DATA

i

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A3-SB-002-4.5'
Tested By:	MRP/MN
Date:	8/5/2003

		of soil used $(g) =$ st material $(\%) =$	500.89 0.14			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass _(grams)	Percent Passing
4	4.750	465.1	465.3	0.2	0.2	100.0
10	2.000	483.3	484.2	0.9	1.0	99.8
40	0.425	382.3	385.5	3.3	4.3	99.1
70	0.212	320.9	325.7	4.8	9.1	98.2
100	0.150	335.2	343.7	8.4	17.5	96.5
200	0.075	335.2	441.8	106.6	124.1	75.3
pan		376.4	753.9	377.5	501.6	0.0
-						

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.0
Coarse Sand	4.75mm to 2.00mm	0,2
Medium Sand	2.00mm to .425mm	0.7
Fine Sand	.425mm to .075 mm	23.8
Silt-Clay	Material smaller than .075mm	75.3

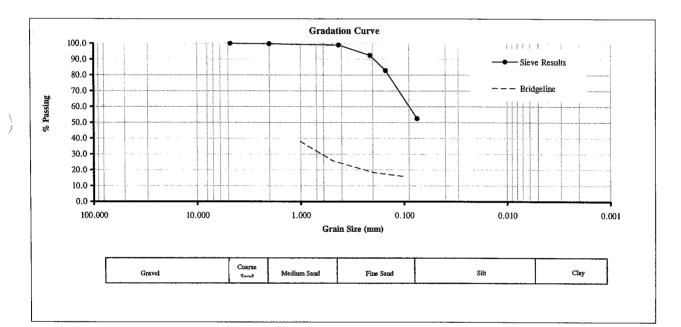
SECOR

International Incorporated Geotechnical Laboratory

2321 Club Meridian Drive

Suite E

Okemos, MI 48864


GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

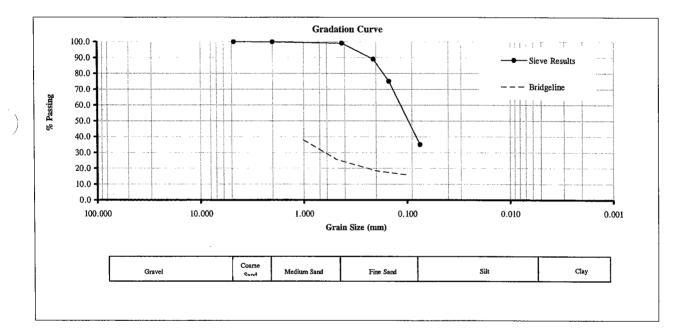
Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A3-SB-002-7.51
Tested By:	MRP/ZKK/MN
Date:	8/7/2003

		of soil used (g) = st material (%) =				
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.0	465.0	0.0	0.0	100.0
10	2.000	483.4	483.7	0.3	0.3	99.7
40	0.425	382.3	383.2	0.9	1.2	98.9
70	0.212	320.9	328.2	7.3	8.5	92.3
100	0.150	335.2	345.8	10.6	19.1	82.8
200	0.075	335.1	368.8	33.7	52.9	52.5
pan		376.3	434.7	58.4	111.3	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.0
Coarse Sand	4.75mm to 2.00mm	0.3
Medium Sand	2.00mm to .425mm	0.8
Fine Sand	.425mm to .075 mm	46.4
Silt-Clay	Material smaller than .075mm	52.5

GRAIN SIZE ANALYSIS (ASTM D 422)


LABORATORY DATA

1

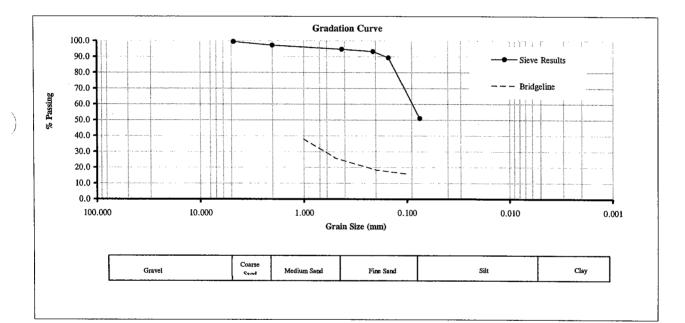
Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A4-SB-001-0.5
Tested By:	MRP/ZKK/MN
Date:	8/7/2003

		of soil used $(g) =$ st material $(\%) =$	104.75 0.14			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.0	465.0	0.0	0.0	100.0
10	2.000	483.4	483.4	0.0	0.1	99.9
40	0.425	382.3	383.2	0.9	1.0	99.1
70	0.212	321.0	331.4	10.5	11.4	89.1
100	0.150	335.2	349.9	14.6	26.1	75.1
200	0.075	335.2	377.0	41.9	67.9	35.0
pan		376.4	413.0	36.7	104.6	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.0
Coarse Sand	4.75mm to 2.00mm	0.1
Medium Sand	2.00mm to .425mm	0.8
Fine Sand	.425mm to .075 mm	64.1
Silt-Clay	Material smaller than .075mm	35.0

GRAIN SIZE ANALYSIS (ASTM D 422)


LABORATORY DATA

1

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A4-SB-001-9.01
Tested By:	MRP/MN
Date:	8/5/2003

	Error due to lo	st material (%) =	0.10			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.2	467.8	2.6	2.6	99.5
10	2.000	483.5	494.9	11.5	14.0	97.2
40	0.425	382.3	395.1	12.8	26.8	94.7
70	0.212	321.0	328.1	7.1	33.9	93.2
100	0.150	335.2	354.8	19.6	53.4	89.3
200	0.075	335.2	527.4	192.3	245.7	51.0
pan		376.5	632.2	255.7	501.3	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.5
Coarse Sand	4.75mm to 2.00mm	2.3
Medium Sand	2.00mm to .425mm	2.5
Fine Sand	.425mm to .075 mm	43.7
Silt-Clay	Material smaller than .075mm	51.0

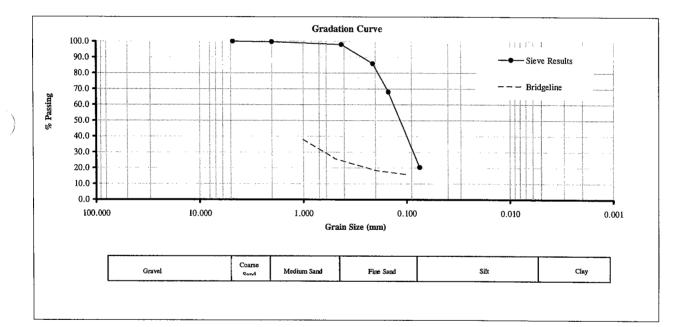
SECOR

International Incorporated Geotechnical Laboratory 2321 Club Meridian Drive

Suite E

Okemos, MI 48864

GRAIN SIZE ANALYSIS (ASTM D 422)


LABORATORY DATA

1

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A4-SB-003-0.5'
Tested By:	MRP/ZKK/MN
Date:	8/7/2003

	Mass	of soil used (g) =	83.19			
	Error due to lo	st material (%) =	0.52			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.0	465.1	0.0	0.0	100.0
10	2.000	483.4	483.6	0.3	0.3	99.7
40	0.425	382.3	383.7	1.4	1.7	98.0
70	0.212	320.9	331.1	10.1	11.8	85.9
100	0.150	335.3	350.2	14.9	26.7	68.1
200	0.075	335.1	375.0	39.9	66.6	20.4
pan		376.4	393.4	17.1	83.6	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.0
Coarse Sand	4.75mm to 2.00mm	. 0.3
Medium Sand	2.00mm to .425mm	1.7
Fine Sand	.425mm to .075 mm	77.6
Silt-Clay	Material smaller than .075mm	20.4

SECOR

International Incorporated Geotechnical Laboratory

2321 Club Meridian Drive

Suite E

Okemos, MI 48864

Bce-Jay Scales Site 24CH.67201.00

0003

A4-SB-003-0.5'-1

MRP/ZKK/MN

8/7/2003

Client/Project: Job No.:

Task:

Date:

Sample ID:

Tested By:

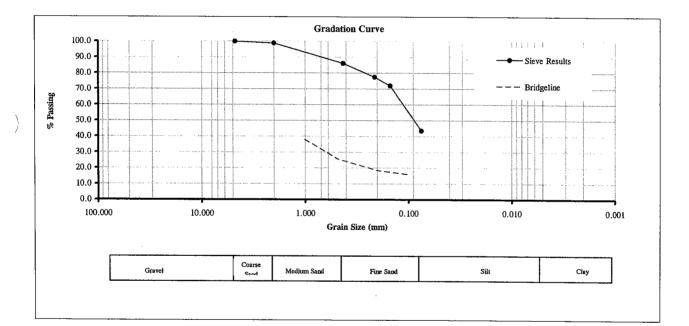
GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

	Mass	of soil used (g) $=$	99.02			
	Error due to lo	st material (%) =	0.41			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.0	465.4	0.4	0.4	99.6
10	2.000	483.4	483.6	0.2	0.6	99.4
40	0.425	382.3	384.8	2.5	3.1	96.9
70	0.212	320.9	334.3	13.4	16.5	83.4
100	0.150	335.2	353.8	18.6	35.1	64.7
200	0.075	335.2	380.4	45.2	80.3	19.2
pan		376.4	395.5	19.1	99.4	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.4
Coarse Sand	4.75mm to 2.00mm	0.2
Medium Sand	2.00mm to .425mm	2.5
Fine Sand	.425mm to .075 mm	77.7
Silt-Clay	Material smaller than .075mm	19.2


GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A4-SB-003-4.5'
Tested By:	MRP
Date:	8/6/2003

	Mass	of soil used $(g) =$	500.53			
	Error due to lo	st material (%) =	0.04			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.2	465.4	0.3	0.3	99.9
10	2.000	483.6	489.5	5.9	6.2	98.8
40	0.425	382.3	446.2	63.8	70.0	86.0
70	0.212	321.0	364.0	43.0	113.0	77.4
100	0.150	335.3	362.8	27.5	140.5	71.9
200	0.075	335.2	478.0	142.8	283.3	43.4
pan		376.5	593.5	217.0	500.3	0.0

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.1
Coarse Sand	4.75mm to 2.00mm	1.1
Medium Sand	2.00mm to .425mm	12.8
Fine Sand	.425mm to .075 mm	42,6
Silt-Clay	Material smaller than .075mm	43.4

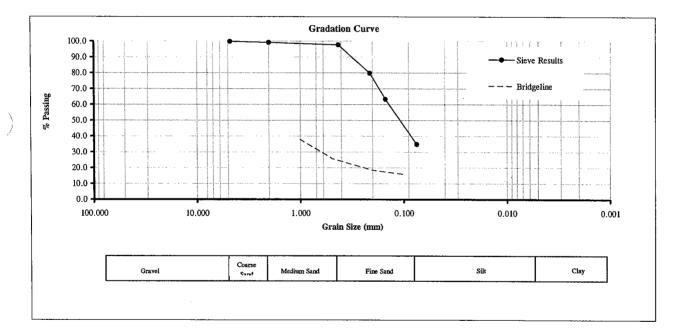
SECOR

International Incorporated Geotechnical Laboratory

2321 Club Meridian Drive

Suite E

Okemos, MI 48864


GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A4-SB-003-9.0'
Tested By:	MRP/MN
Date	8/6/2003

	Mass	of soil used (g) =	500.49			
	Error due to lo	st material (%) =	0.09			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	466.2	1.0	1.0	99.8
10	2.000	483.5	486.3	2.9	3.9	99.2
40	0.425	382.3	389.7	7.4	11.3	97.7
70	0.212	320.9	410.8	89.8	101.2	79.8
100	0.150	335.3	418.0	82.7	183.8	63.3
200	0.075	335.2	478.1	143.0	326.8	34.8
pan		376.5	550.6	174.2	500.9	0.0

Soil Fraction Size Range		% of Total
Gravel	75mm to 4.75mm	0.2
Coarse Sand	4.75mm to 2.00mm	0.6
Medium Sand	2.00mm to .425mm	1.5
Fine Sand	.425mm to .075 mm	62.9
Silt-Clay	Material smaller than .075mm	34.8

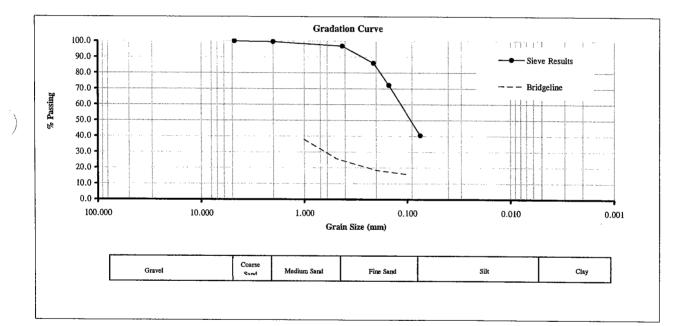
SECOR

International Incorporated Geotechnical Laboratory

2321 Club Meridian Drive Suite E

Okemos, MI 48864

GRAIN SIZE ANALYSIS (ASTM D 422)


LABORATORY DATA

1

Sieve Analysis

Client/Project:	Bee-Jay Scales Site		
Job No.:	24CH.67201.00		
Task:	0003		
Sample ID:	A5-SS-001-0.51		
Tested By:	MRP/ZKK/MN		
Date:	8/7/2003		

	Mass	of soil used $(g) =$	105.85			
	Error due to lo	st material (%) =	0.65			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum, Mass (grams)	Percent Passing
4	4.750	465.0	465.0	0.0	0.0	100.0
10	2.000	483.4	483.8	0.4	0.4	99.6
40	0.425	382.3	385.2	2.9	3.4	96.8
70	0.212	320.9	332.4	11.4	14.8	86.1
100	0.150	335.2	350.1	14.9	29.7	72.1
200	0.075	335.1	368.9	33.8	63.5	40.4
pan		376.3	419.4	43.0	106.5	0.0

Soil Fraction	Size Range	% of Total	
Gravel	75mm to 4.75mm	0.0	
Coarse Sand	4.75mm to 2.00mm	0.4	
Medium Sand	2.00mm to .425mm	2.8	
Fine Sand	.425mm to .075 mm	56.4	
Silt-Clay	Material smaller than .075mm	40.4	

Client/Project:

Job No.:

Sample ID:

Tested By:

Task:

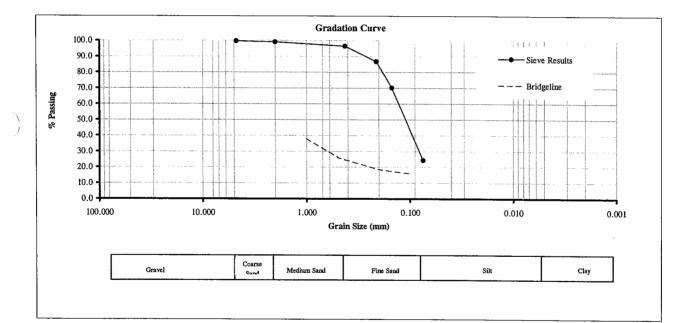
Date:

Bee-Jay Scales Site

24CH.67201.00

0003

A5-SS-004-0.5' MRP/ZKK/MN


8/7/2003

GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

	Mass	of soil used (g) =	98.89				
Error due to lost material (%) = 0.35							
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing	
4	4.750	465.1	465.3	0.3	0.3	99.7	
10	2.000	483.4	484.0	0.6	0.9	99.1	
40	0.425	382.3	384.9	2.6	3.5	96.5	
70	0.212	321.0	330.6	9.6	13.1	86.8	
100	0.150	335.3	351.8	16.4	29.6	70.2	
200	0.075	335.1	380.7	45.6	75.1	24,3	
pan		376.4	400.5	24.1	99.2	0.0	

Soil Fraction	Size Range	% of Total	
Gravel	75mm to 4.75mm	0.3	
Coarse Sand	4.75mm to 2.00mm	0.6	
Medium Sand	2.00mm to .425mm	2.6	
Fine Sand	.425mm to .075 mm	72.2	
Silt-Clay	Material smaller than .075mm	24.3	

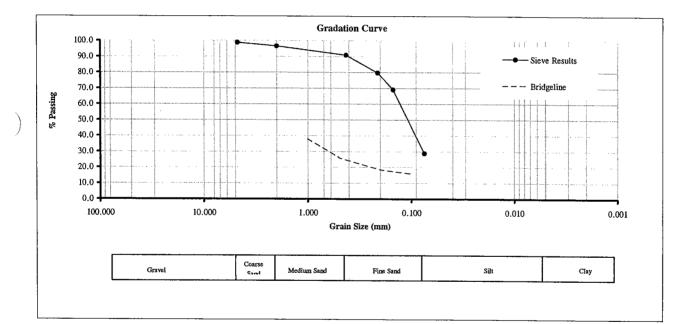
SECOR

International Incorporated

Geotechnical Laboratory 2321 Club Meridian Drive

Suite E

Okemos, MI 48864


GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A6-SB-001-4.5'
Tested By:	MRP/MN
Date:	8/6/2003

	Mass	of soil used (g) =	500.05			
	Error due to lo	st material (%) =	0.13			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.2	471.0	5.8	5.8	98.8
10	2.000	483.5	494.8	11.3	17.1	96.6
40	0.425	382.3	410.9	28.6	45.8	90.9
70	0.212	321.0	376.7	55.8	101.5	79. 7
100	0.150	335.3	388.5	53.2	154.8	69.1
200	0.075	335.2	537.3	202.1	356.9	28.7
pan		376.5	520.3	143.8	500.7	0.0

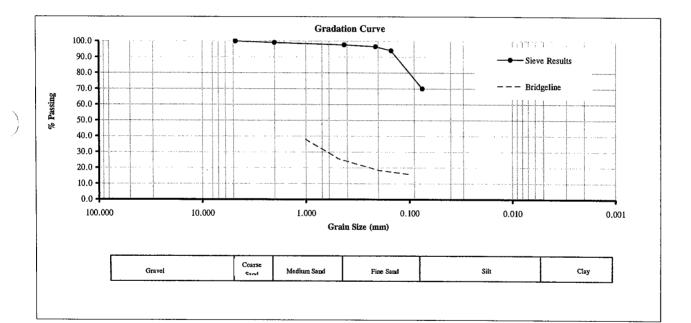
Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	1.2
Coarse Sand	4.75mm to 2.00mm	2.2
Medium Sand	2.00mm to .425mm	5.7
Fine Sand	.425mm to .075 mm	62.2
Silt-Clay	Material smaller than .075mm	28.7

SECOR

International Incorporated Geotechnical Laboratory 2321 Club Meridian Drive

Suite E

Okemos, MI 48864


GRAIN SIZE ANALYSIS (ASTM D 422)

LABORATORY DATA

Sieve Analysis

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	0003
Sample ID:	A6-SB-001-7.5'
Tested By:	MRP/MN
Date:	8/6/2003

	Mass	of soil used (g) =	500.34			
	Error due to lo	st material (%) =	0.10			
Sieve Number	Opening Size (mm)	Sieve Mass (grams)	Total Mass (grams)	Soil Mass (grams)	Cum. Mass (grams)	Percent Passing
4	4.750	465.1	465.2	0.1	0.1	100.0
10	2.000	483.6	487.8	4.3	4.3	99.1
40	0.425	382.3	389.6	7.3	11.6	97.7
70	0.212	321.1	326.5	5.4	17.0	96.6
100	0.150	335.3	348.5	13.2	30.2	94.0
200	0.075	335.2	454.6	119.4	149.6	70.1
pan		376.4	726.7	350.3	499.9	0.0

Soil Grain Size Distribution By Sieve Analysis

Soil Fraction	Size Range	% of Total
Gravel	75mm to 4.75mm	0.0
Coarse Sand	4.75mm to 2.00mm	0.9
Medium Sand	2.00mm to .425mm	1.4
Fine Sand	.425mm to .075 mm	27.6
Silt-Clay	Material smaller than .075mm	70.1

HYDRAULIC CONDUCTIVITY ANALYSIS

ASTM D 5084 (Method C)

÷

Ŀ

Client/Project:	Bee-Jay Scales Site
Job No.:	24CH.67201.00
Task:	.0003
Sample ID:	MW-7-31.5'
Tested By:	ZKK
Date:	8/6/2003
Sample Condition: (Undisturbed or Remoided)	Undisturbed

Sample Description:

Brown clayey sand.

Initial Sample Data:

Sample Length (cm)	7.26
Diameter (cm)	3.47
Mass of Sample (cm)	119.80
Area _{sample} (cm ²)	9.48

Initial Water Content:

Tare (g)	8.34
Tare + Sample _{wet} (g)	48.07
Tare + Sample _{dry} (g)	44.1
۵%	11.1

Initial Sample Density:

	g/cm ³	lb/ft ³
Wet Density	1.72	107.6
Dry Density	1.55	96.9

Testing Conditions:

Cell Pressure (psi)	26.3
Total Backpressure (psi)	0.0
Max. Effective Stress (psi)	26.3
Min. Effective Stress (psi)	26.3
Applied Gradient	0.0
Permeant Liquid	H ₂ O

Results:

Hydraulic	Conductivity (cm/	sec) 5.1E-06

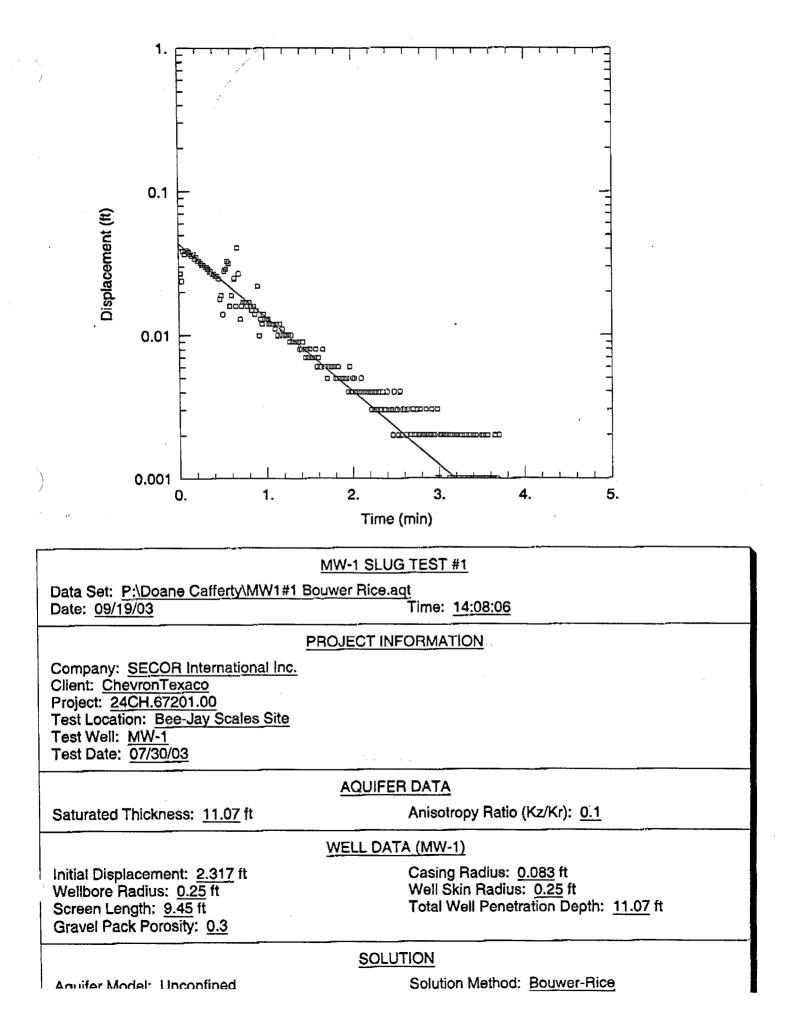
Comments

Final Sample Data:

Sample Length (cm)	7.19
Diameter (cm)	3.48
Mass of Sample (g)	125.31
Area _{sample} (cm ²)	9.50

Final Water Content Data:

Tare (g)	8.04
Tare + Sample _{wet} (g)	133.35
Tare + Sample _{dry} (g)	102.32
۵%	32.9


Final Sample Density:

	g/cm ³	lb/ft ³
Wet Density	1.84	114.5
Dry Density	1.38	86.2

APPENDIX F

/

SLUG TEST RESULTS

MW-1 slug test #1

Title: MW-1 slug test #1 Date: 09/19/03 Time: 14:13:42

PROJECT INFORMATION

Company: SECOR International Inc. Client: ChevronTexaco Project: 24CH.67201.00 Location: Bee-Jay Scales Site Test Date: 07/30/03 Test Well: MW-1

AQUIFER DATA

Saturated Thickness: 11.07 ft Anisotropy Ratio (Kz/Kr): 0.1

SLUG TEST WELL DATA

Initial Displacement: 2.317 ft Casing Radius: 0.083 ft Wellbore Radius: 0.25 ft Well Skin Radius: 0.25 ft Screen Length: 9.45 ft Total Well Penetration Depth: 11.07 ft Gravel Pack Porosity: 0.3

No. of observations: 221

Observation Data				
t (ft)	<u>Displacemen</u>	<u>Time (min)</u>	Displacement (ft)	Time (min)
	0.005	1.883	0.027	0.0167
	0.005	1.9	0.024	0.0333
	0.005	1.917	0.039	0.05
	0.005	1.933	0.037	0.0667
	0.004	1.95	0.039	0.0833
	0.006	1.967	0.039	0.1
	0.004	1.983	0.038	0.1167
	0.005	2.	0.037	0.1333
	0.005	2.017	0.036	0.15
	0.004	2.033	0.037	0.1667
	0.004	2.05	0.034	0.1833
	0.004	2.067	0.035	0.2
	0.004	2.083	0.033	0.2167
	0.005	2.1	0.033	0.2333
	0.004	2.117	0.032	0.25
	0.004	2.133	0.031	0.2667
	0.004	2.15	0.031	0.2833
	0.004	2.167	0.03	0.3
	0.004	2.183	0.03	0.3167
	0.004	2.2	0.029	0.3333
	0.003	2.217	0.028	0.35
	0.004	2.233	0.028	
	0.003	2.25	0.027	0,3833
	0.004 0.006 0.005 0.005 0.004 0	1.95 1.967 1.983 2. 2.017 2.033 2.05 2.067 2.083 2.1 2.117 2.133 2.15 2.167 2.183 2.2 2.217 2.233	0.039 0.039 0.038 0.037 0.036 0.037 0.034 0.035 0.033 0.033 0.033 0.031 0.031 0.031 0.031 0.03 0.03	0.0833 0.1 0.1167 0.1333 0.15 0.1667 0.1833 0.2 0.2167 0.2333 0.25 0.2667 0.2833 0.3 0.3167 0.3333 0.35 0.3667

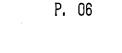
		·····		
•.	<u>Tim</u> e (min)	Displacement (ft)	Time (min)	Displacement (ft)
j	0.4	0.027	2.267	0.004
,	0.4167	0.026	2.283	0.003
	0.4333	0.026	2.3	0.004
	0.45	0.025	2.317	0.003
	0.4667	0.018	2.333	0.003
	0.4833	0.019	2.35	0.004
	0.5	0.014	2.367	0.003
	0.5167	0.028	2.383	0.003
	0.5333	0.029	2.4	0.004
	0.55	0.033	2.417	0.003
•	0.5667	0.032	2.433	0.003
		0.016	2.45	0.003
	0.5833			
	0.6	0.019	2.467	0.002
	0.6333	0.025	2.483	0.004
	0.65	0.016	2.5	0.003
	0.6667	0.041	2.517	0.003
	0.6833	0.027	2.533	0.002
	0.7	0.013	2.55	0.004
	0.7167	0.016	2.567	0.002
	0.7333	0.017	2.583	0.003
	0.75	0.017	2.6	0.003
		0.017	2.617	0.002
	0.7667			
•	0.7833	0.016	2.633	0.003
	0.8	0.017	2.65	0.003
	0.8167	0.016	2.667	0.002
)	0.8333	0.015	2.683	0.002
)	0.85	0.016	2.7	0.003
	0.8667	0.014	2.717	0.002
	0.8833	0.015	2.733	0.002
	0.9	0.022	2.75	0.003
	0.9167	0.01	2.767	0.002
	0.9333	0.013	2.783	0.003
	0.95	0.012	2.8	0.002
				0.002
	0.9667	0.014	2.817	
	0.9833	0.013	2.833	0.002
	1.	0.013	2.85	0.003
	1.017	0.013	2.867	0.002
	1.033	0.012	2,883	0.002
	1.05	0.012	2.9	0.002
	1.067	0.012	2.917	0.003
	1.083	0.012	2.933	0.002
	1.1	0.011	2.95	0.002
	1.117	0.012	2.967	0.001
		0.01	2.983	0.003
	1.133			
	1.15	0.012	3.	0.001
	1.167	0.01	3.017	0.002
	1.183	0.011	3.033	0.002
	1.2	0.01	3.05	0.002
	1.217	0.01	3.067	0.002
	1.233	0.01	3.083	0.002
	1.25	0.01	3.1	0.002
	1.267	0.009	3.117	0.001
`	1.283	0.01	3.133	0.002
	1.3	0.009	3.15	0.002
	1.317	0.009	3.167	0.001

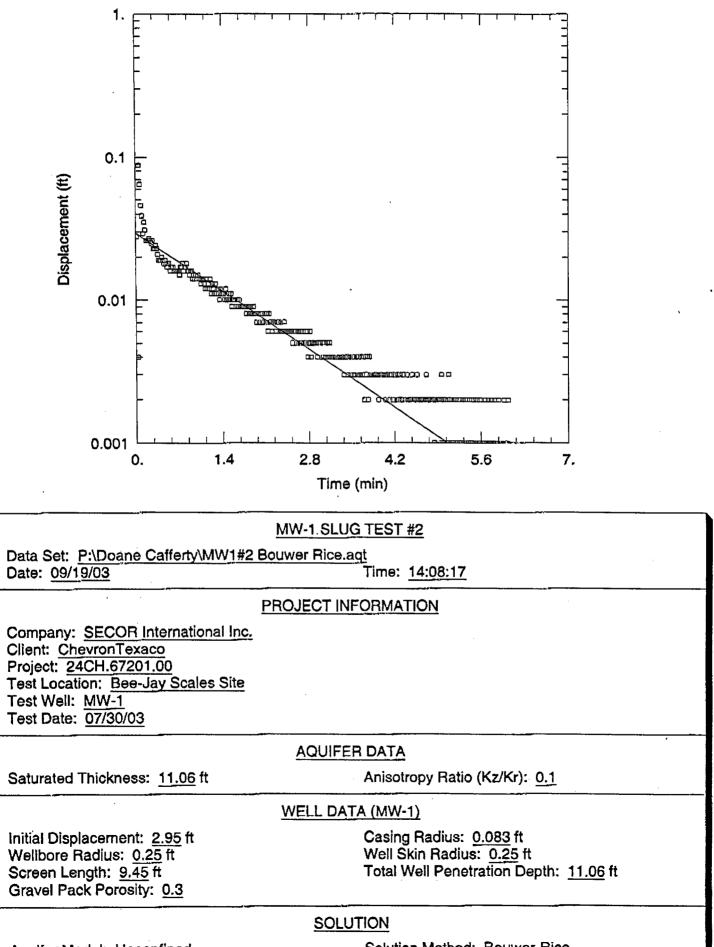
.

AQTESOLV for Windows

MW-1 slug test #1

	<u>Time (min)</u>	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
/	1.333	0.009	3.183	0.002
	1.35	0.009	3.2	0.002
	1.367	0.009	3.217	0.002
	1.383	0.008	3.233	0.001
	1.4	0.008	3.25	0.002
	1.417	0.009	3.267	0.002
	1.433	0.008	3.283	0.001
	1.45	0.007	3.3	0.002
	1.467	0.008	3.317	0.002
	1.483	0.007	3.333	0.001
	1.5	0.008	3.35	0.001
	1.517	0.007	3.367	0.002
	1.533	0.007	3.383	0.001
	1.55	0.007	3.4	0.002
	1.567	0.008	3.417	0.001
	1.583	0.006	3.433	0.002
	1.6	. 0.007	3.45	0.001
	1.617	0.006	3.467	0.001
	1.633	0.006	3.483	0.001
	1.65	0.008	3.5	0.002
	1.667	0.006	3.517	0.002
	1.683	0.006	3.533	0.001
	1.7	0.005	3.55	0.001
	1.717	0.006	3.567	0.002
	1.733	0.006	3.583	0.001
)	1.75	0.006	3.6	0.001
1	1.767	0.006	3.617	0.001
	1.783	0.006	3.633	0.001
	1.8	0.005	3.65	0.002
	1.817	0.005	3.667	0.001
	1.833	0.006	3.683	0.001
	1.85	0.005	3.7	0.002
	1.867	0.005		


SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.001638	ft/min
уO	0.04358	ft

Aguiter Model: Unconfined

Solution Method: Bouwer-Rice

.

AQTESOLV for Windows

Data Set: P:\Doane Cafferty\MW1#2 Bouwer Rice.aqt /Title: MW-1 slug test #2 Date: 09/19/03 Time: 14:14:00

PROJECT INFORMATION

Company: SECOR International Inc. Client: ChevronTexaco Project: 24CH.67201.00 Location: Bee-Jay Scales Site Test Date: 07/30/03 Test Well: MW-1

AQUIFER DATA

Saturated Thickness: 11.06 ft Anisotropy Ratio (Kz/Kr): 0.1

SLUG TEST WELL DATA

Initial Displacement: 2.95 ft Casing Radius: 0.083 ft Wellbore Radius: 0.25 ft Well Skin Radius: 0.25 ft Screen Length: 9.45 ft Total Well Penetration Depth: 11.06 ft Gravel Pack Porosity: 0.3

No. of observations: 362

Observation Data				
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
0.0167	0.028	3.033	0.004	
0.0333	0.004	3.05	0.005	
0.05	0.088	3.067	0.004	
0.0667	0.065	3.083	0.004	
0.0833	0.046	3.1	0.005	
0.1	0.039	3.117	0.004	
0.1167	0.029	3.133	0.005	
0.1333	0.035	3.15	0.004	
0.15	0.031	3.167	0.004	
0.1667	0.026	3.183	0.004	
0.1833	0.026	3.2	0.004	
0.2	0.026	3.217	0.004	
0.2167	0.027	3.233	0.004	
0.2333	0.026	3.25	0.004	
0.25	0.025	3.267	0.004	
0.2667	0.026	3.283	0.004	
0.2833	0.023	3.3	0.004	
0.3	0.023	3,317	0.004	
0.3167	0.024	3.333	0.004	
0.3333	0.023	3.35	0.004	
0.35	,0.021	3.367	0.003	
0.3667	0.019	3.383	0.004	
0.3833	0.019	3.4	0.004	

į

			· · · · · · · · · · · · · · · · · · ·
<u>Time (min)</u>	Displacement (ft)	Time (min)	Displacement (ft)
0.4	0.019	3.417	0.004
0.4167	0.02	3.433	0.003
0.4333	0.019	3.45	0.004
0.45	0.018	3.467	0.004
0.4667	0.019	3.483	0.003
0.4833	0.018	3.5	0.004
0.5	0.017	3.517	0.004
0.5167	0.018	3.533	0.003
0.5333	0.018	3.55	0.003
0.55	0.016	3.567	0.004
0.5667	0.017	3.583	0.003
0.5833	0.017	3.6	0.004
0.6	0.017	3.617	0.003
0.6167	0.016	3.633	0.003
0.6333	0.016	3.65	0.004
0.65	0.016	3.667	0.003
0.6667	0.016	3.683	0.004
0.6833	0.016	3.7	0.002
		3.717	0.002
0.7	0.015		
0.7167	0.017	3.733	0.003
0.7333	0.017	3.75	0.004
0.75	0.018	3.767	0.002
0.7667	0.016	3.783	0.004
0.7833	0.017	3.8	0.003
0.8	0.017	3.817	0.003
0.8167	0.018	3.833	0.003
0.8333	0.016	3.85	0.003
0.85	0.016	3.867	0.003
0.8667	0.015	3.883	0.003
0.8833	0.016	3.9	0.003
0.9	0.016	3.917	0.003
0.9167	0.014	3.933	0.002
0.9333	0.015	3.95	0.003
0.95	0.014	3.967	0.003
0.9667	0.015	3.983	0.003
	0.015	4.	0.003
0.9833			0.003
1.	0.015	4.017	
1.017	0.014	4.033	0.003
1.033	0.014	4.05	0.002
1.05	0.013	4.067	0.003
1.067	0.014	4.083	0.003
1.083	0.014	4.1	0.002
1.1	0.013	4.117	0.003
1.117	0.012	4.133	0.003
1.133	0.014	4.15	0.003
1.15	0.012	4.167	0.002
1.167	0.013	4,183	0.002
1.183	0.012	4.2	0.003
1.2	0.014	4.217	0.003
1.217	0.011	4.233	0.002
1.233	0.013	4.25	0.003
1.25	0.013	4.267	0.002
			0.002
1.267	0.011	4.283	
1.283	0.013	4.3	0.002
1.3	0.011	4.317	0.002

	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
2	1.317	0.012	4.333	0.003
	1.333	0.012	4.35	0.003
	1.35	0.01	4.367	0.002
		0.012	4.383	0.002
	1.367			
	1.383	0.011	4.4	0.003
	1.4	0.011	4.417	0.002
	1.417	0.011	4.433	0.002
	1.433	0.01	4.45	0.002
	1.45	0.012	4.467	0.002
	1.467	0.01	4.483	0.003
	1.483	0.01	4.5	0.002
	1.5	0.011	4.517	0.002
	1.517	0.01	4.533	0.002
	1.533	0.011	4.55	0.002
		0.009	4.567	0.002
	1.55		4.583	0.002
	1.567	0.01	• •	
	1.583	0.01	4.6	0.002
	1.6	0.01	4.617	0.002
	1.617	0.009	4.633	0.002
	1.633	0.01	4.65	0.002
	1.65	0.009	4.667	0.002
	1.667	0.01	4.683	0,002
	1.683	0.009	4.7	0.002
	1.7	0.009	4.717	0.003
	1.717	0.009	4.733	0.002
1	1.733	0.009	4.75	0.002
)	1.75	0.009	4,767	0.002
	1.767	0.009	4.783	0.002
	1.783	0.008	4.8	0.002
		0.009	4.817	0.002
	1.8	0.009	4.833	0.002
	1.817			0.002
	1.833	0.008	4.85	0.002
	1.85	0.009	4.867	
	1.867	0.008	4.883	0.002
	1.883	0.008	4.9	0.002
	1.9	0.009	4.917	0.002
	1.917	0.008	4.933	0.002
	1.933	0.008	4,95	0.001
	1.95	0.007	4.967	0.003
	1.967	0.008	4.983	0.001
	1.983	0.008	5.	0.002
	2.	0.007	5.017	0.002
	2.017	0.008	5.033	0.002
	2.033	0.008	5.05	0.001
	2.05	0.007	5.067	0.001
	2.067	0.007	5.083	0.003
	2.087	0.008	5.1	0.002
			5.117	0.001
	2.1	0.007		0.002
	2.117	0.008	5.133	
	2.133	0.006	5.15	0.001
	2.15	0.008	5.167	0.002
	2.167	0.007	5.183	0.002
	2.183	0.007	5.2	0.002
	2.2	0.006	5.217	0.001
	2.217	0.007	5.233	0.002

į

)

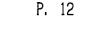
MW-1 slug test #2

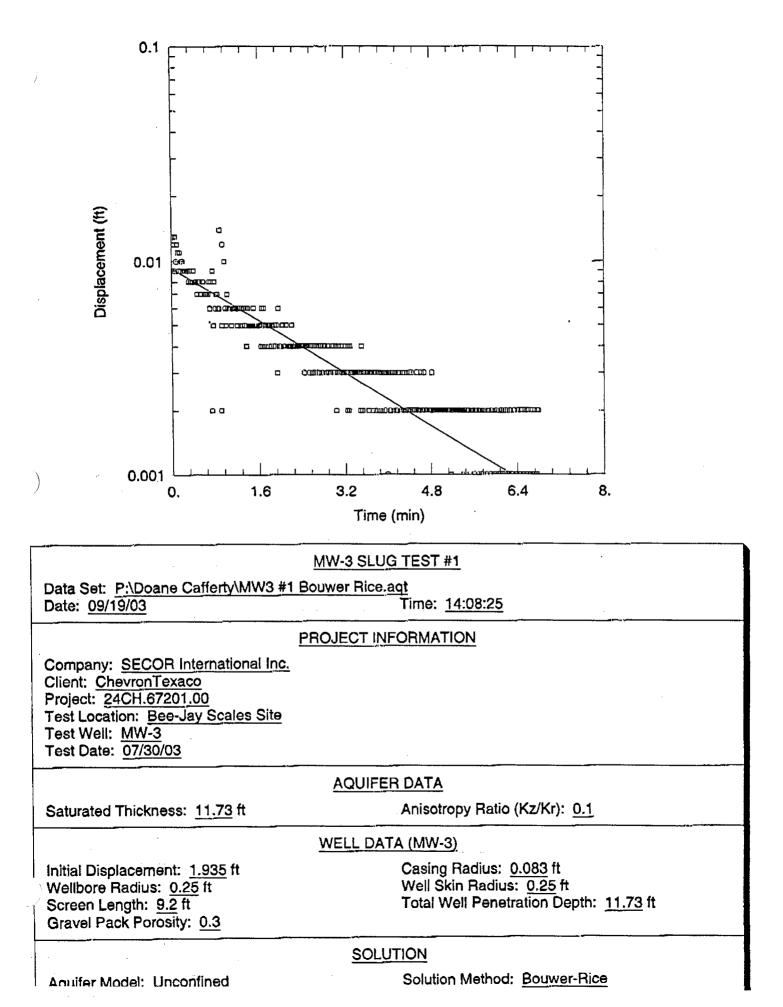
				the second s
	<u>Time (min)</u>	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
(2.233	0.007	5.25	0.001
	2.25	0.007	5.267	0.002
	2.267	0.006	5.283	0.001
			5.3	0.002
	2.283	0.007		
	2.3	0.007	5.317	0.002
	2.317	0.007	5.333	0.001
	2.333	0.006	5.35	0.002
	2.35	0.006	5.367	0.001
				0.002
	2.367	0.006	5.383	
	2.383	0.006	5.4	0.001
	2.4	0.007	5.417	0.002
	2.417	0.006	5.433	0.001
	2.433	0.006	5.45	0.002
		0.006	5.467	0.001
	2.45			
	2.467	0.006	5.483	0.002
	2.483	Q.006	5.5	0.001
	2.5	0.006	5.517	0.001
	2.517	0.006	5.533	0.002
	2.533	0.005	5.55	0.001
	2.55	0.006	5.567	0.001
		0.006	5.583	0.002
	2.567			
	2.583	0.006	5.6	0.002
	2.6	0.005	5.617	0.001
	2. 617	0.006	5.633	0.001
	2.633	0.005	5.65	0.001
	2.65	0.005	5.667	0.002
)	2.667	0.006	5.683	0.001
/				0.001
	2.683	0.005	5.7	
	2.7	0.006	5.717	0.002
	2.717	0.005	5.733	0.001
	2.733	0.005	5.75	0.001
	2.75	0.005	5.767	0.002
	2.767	0.006	5.783	0.001
	2.783	0.004	5.8	0.001
			5.817	0.002
	2.8	0.005		
	2.817	0.006	5.833	0.001
	2.833	0.004	5.85	0.001
	2.85	0.005	5.867	0.001
	2.867	0.005	5.883	0.002
	2.883	0.005	5.9	0.001
	2.9	0.005	5.917	0.001
	2.917	0.005	5.933	0.001
	2.933	0.004	5.95	0.001
	2.95	0.005	5.967	0.002
	2.967	0.005	5.983	0.001
	2.983	0.005	6.	0.001
	3,	0.004	6.017	0.001
			6.033	0.002
	3.017	0.005	0.000	0.002

,

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice


VISUAL ESTIMATION RESULTS


MW-1 slug test #2

_stimated Parameters

Parameter	Estimate	
— К	0.0009215	ft/min
y0	0.02929	ft

 $\frac{1}{I}$

)ata Set: P:\Doane Cafferty\MW3 #1 Bouwer Rice.aqt /itle: MW-3 slug test #1 Date: 09/19/03 Time: 14:14:12

PROJECT INFORMATION

Company: SECOR International Inc. Client: ChevronTexaco Project: 24CH.67201.00 Location: Bee-Jay Scales Site Test Date: 07/30/03 Test Well: MW-3

AQUIFER DATA

Saturated Thickness: 11.73 ft Anisotropy Ratio (Kz/Kr): 0.1

SLUG TEST WELL DATA

Initial Displacement: 1.935 ft Casing Radius: 0.083 ft Wellbore Radius: 0.25 ft Well Skin Radius: 0.25 ft Screen Length: 9.2 ft Total Well Penetration Depth: 11.73 ft Gravel Pack Porosity: 0.3

No. of observations: 406

Observation Data				
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
0.0167	0.013	3.417	0.003	
0.0333	0.012	3.433	0.003	
0.05	0.009	3.45	0.003	
0.0667	0.013	3.467	0.003	
0.0833	0.01	3.483	0.002	
0.1	0.012	3.5	0.004	
0.1167	0.011	3.517	0.002	
0.1333	0.009	3.533	0.003	
0.15	0.011	3.55	0.003	
0.1667	0.009	3.567	0.003	
0.1833	0.01	3.583	0.003	
0.2	0.01	3.6	0.003	
0.2167	0.009	3.617	0.003	
0.2333	0.009	3.633	0.002	
0.25	0.009	3.65	0.003	
0.2667	0.009	3.667	0.003	
0.2833	0.009	3.683	0.003	
0.3	0.009	3.7	0.003	
0.3167	0.008	3.717	0.002	
0.3333	0.009	3.733	0.003	
0.35	0.008	3.75	0.003	
0.3667	0.008	3.767	0.003	
0.3833	0.008	3.783	0.002	

	Time (min)	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
`.·				Displacement (ft)
/	0.4	0.009	3.8	0.003
	0.4167	0.008	3.817	0.003
	0.4333	0.008	3.833	0.002
	0,45	0.008	3.85	0.003
	0.4667	0.007	3.867	0.003
	0.4833	0.008	3.883	0.002
	0.5	0.008	3.9	0.003
	0.5167	0.008	3.917	0.003
· .	0.5333	0.007	3.933	0.002
	0.55	0.007	3.95	0.003
	0.5667	0.008	3.967	0.003
	0.5833	0.008	3.983	0.001
	0.6	0.007		
			4.	0.003
	0.6167	0.007	4.017	0.003
	0.6333	0.007	4.033	0.002
	0.65	0.007	4.05	0.002
	0.6667	0.007	4.067	0.003
	0.6833	0.008	4.083	0.003
	0.7	0.006	4.1	0.002
	0.7167	0.008	4.117	0.003
	0.7333	0.002	4.133	0.003
	0.75	0.009	4.15	0.002
	0.7667	0.005	4.167	0.002
	0.7833	0.008	4.183	0.003
	0.8	0.006	4,2	0.003
	0.8167	0.007	4.217	0.002
	0.8333	0.007	4.233	0.002
/	0.85	0.006	4.25	0.002
	0.8667	0.006		
	0.8833		4.267	0.003
		0.014	4.283	0.002
	0.9	0.002	4.3	0.003
	0.9167	0.005	4.317	0.002
	0.9333	0.012	4.333	0.002
	0.9667	0.01	4.35	0.003
	0.9833	0.006	4.367	0.002
	1.	0.005	4.383	0.002
	1.017	0.007	4.4	0.003
	1.033	0.006	4.417	0.002
	1.05	0.006	4.433	0.003
	1.067	0.006	4.45	0.002
	1.083	0.006	4.467	0.002
	1.1	0.005	4.483	0.002
	1.117	0.006	4.5	0.002
	1.133	0.006	4.517	0.002
	1.15	0.006	4.533	0.003
	1.167	0.006	4.55	0.002
	1.183	0.006	4.567	0.002
	1.2	0.005	4.583	0.002
	1.217	0.006	4.6	0.002
	1.233	0.006	4.617	0.003
	1.25	0.006	4.633	0.002
	1.267	0.005	4.65	0.002
	1.283	0.006	4.667	0.003
•	1.3	0.005	4.683	0.002
	1.317	0.006	4.7	0.002
		-		

		Displacement (#)	Time (min)	Displacement (ft)
J	<u>Time (min)</u>	Displacement (ft)	<u>Time (min)</u>	
,	1.333	0.005	4.717	0.002
	1.35	0.006	4.733	0.002
	1.367	0.004	4.75	0.002
	1.383	0.006	4.767	0.002
	1.4	0.006	4.783	0.002
	1.417	0.005	4.8	0.002
	1.433	0.005	4.817	0.003
	1.45	0.005	4.833	0.002
	1.467	0.005	4.85	0.002
	1.483	0.005	4.867	0.002
	1.5	0.006	4.883	0.002
	1.517	0.005	4.9	0.002
			4.917	0.002
	1.533	0.005		
	1.55	0.005	4.933	0.002
	1.567	0.005	4.95	0.002
	1.583	0.005	4.967	0.002
	1.6	0.005	4.983	0.002
	1.617	0.005	5.	0.002
	1.633	0.004	5.017	0.002
				0.002
	1.65	0.006	5.033	
	, 1.667	0.004	5.05	0.002
	1.683	0.006	5.067	0.002
	1.7	0.004	5.083	0.002
	1.717	0.005	5.1	0.002
	1.733	0.005	5.117	0.002
	1.75	0.004	5.133	0.002
Ì			5.155	
/	1.767	0.005	5.15	0.002
	1.783	0.005	5.167	0.001
	1.8	0.005	5.183	0.002
	1.817	0.004	5.2	0.002
	1.833	0.005	5.217	0.002
	1.85	0.005	5.233	0.002
	1.867	0.004	5.25	0.002
			5.267	0.002
	1.883	0.005		
	1.9	0.004	5.283	0.002
	1.917	0.005	5.3	0.002
	1.933	0.003	5.317	0.002
	1.95	0.006	5.333	0.002
	1.967	0.004	5.35	0.002
	1.983	0.004	5.367	0.002
	2.	0.004	5.383	0.002
	2.017	0.005	5.4	0.001
	2.033	0.005	5.417	0.002
	2.05	0.004	5.433	0.002
	2.067	0.004	5.45	0.001
	2.083	0.004	5.467	0.002
	2.1	0.005	5.483	0.002
	2.117	0.004	5.5	0.002
	2.133	0.004	5.517	0.001
	2.15	0.004	5.533	0.002
	2.167	0.004	5.55	0.002
	2.183	0.004	5.567	0.002
	2.2	0.005	5.583	0.002
	2.217	0.004	5.6	0.001
	2.233	0.004	5.617	0.002

MW-3 slug test #1

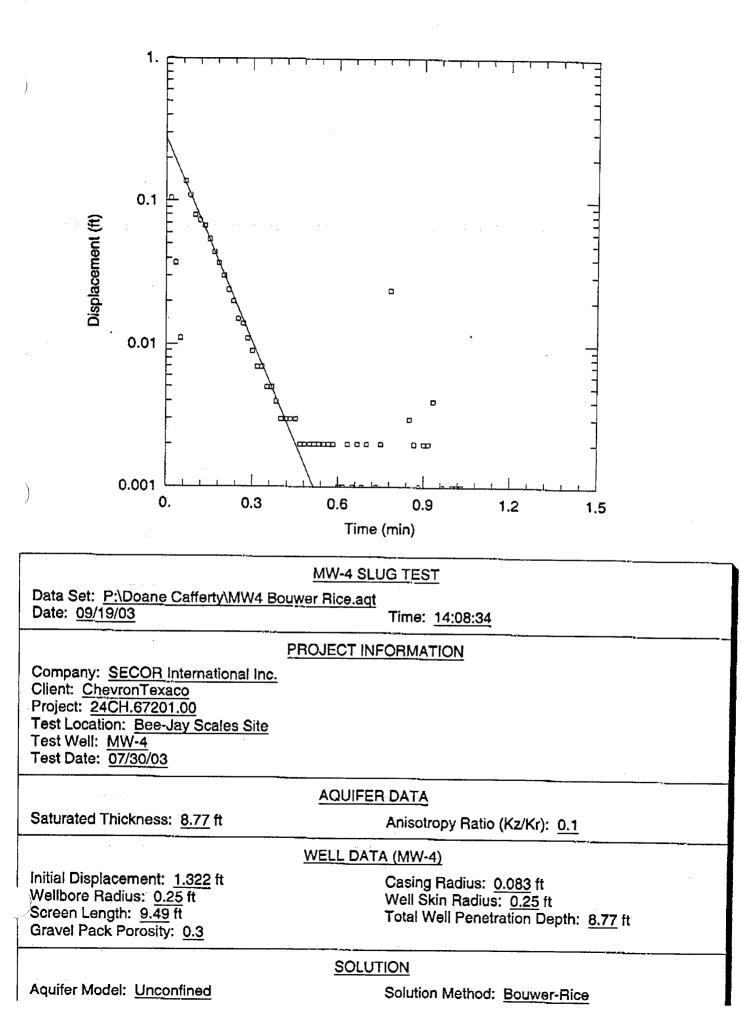
	/			Division and the
	Time (min)	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
1	2.25	0.004	5.633	0.002
	2.267	0.004	5.65	0.002
	2.283	0.004	5.667	0.001
	2.3	0.004	5.683	0.002
	2.317	0.004	5.7	0.002
			5.717	0.002
	2.333	0.004		
	2.35	0.004	5.733	0.001
	2.367	0.004	5.75	0.002
	2.383	0.004	5.767	0.001
	2.4	0.004	5.783	0.002
	2.417	0.004	5.8	0.002
	2.433	0.003	5.817	0.002
			5.833	0.001
	2.45	0.004		
	2.467	0.004	5.85	0.002
	2.483	0.004	5.867	0.002
	2.5	0.004	5.883	0.001
			5.9	
	2.517	0.004		0.001
	2.533	0.003	5.917	0.002
	2.55	0.004	5.933	0.002
	2.567	0.004	5.95	0.002
	2.583	0.003	5.967	0.001
	2.6	0.004	5.983	0.002
	2.617	0.004	6.	0.001
		0.003	6.017	0.002
	2.633			
	2.65	0.004	6.033	0.002
)	2.667	0.004	6.05	0.001
	2.683	0.003	6.067	0.002
			6.083	0.001
	2.7	0.004		
	2.717	0.003	6.1	0.002
	2.733	0.004	6.117	0.002
	2.75	0.004	6.133	0.001
				0.002
	2.767	0.003	6.15	
	2.783	0.003	6.167	0.001
	2.8	0.004	6.183	0.002
	2.817	0.004	6.2	0.001
			6.217	0.002
	2.833	0.003		
	2.85	0.003	6.233	0.001
	2.867	0.004	6.25	0.002
	2.883	0.003	6.267	0.002
	2.9	0.004	6.283	0.001
	2.917	0.003	6.3	0.001
	2.933	0.003	6.317	0.001
			6.333	0.002
	2.95	0.004		
	2.967	0.004	6.35	0.002
	2.983	0.003	6.367	0.001
	3.	0.003	6.383	0.001
•	3.017	0.004	6.4	0.002
	3.033	0.002	6.417	0.002
	3.05	0.003	6.433	0.001
	3.067	0.004	6.45	0.001
	3.083	0.003	6.467	0.002
	3.1	0.003	6.483	0.002
	3.117	0.004	6.5	0.001
		0.003	6.517	0.001
	3.133			
	3.15	0.003	6.533	0.002

.

MW-3 slug test #1

			Displacement (ft)	
Time (min)	<u>Displacement (ft)</u>	<u>Time (min)</u>	<u>Displacement (ft)</u>	
3.167	0.003	6.55	0.001	
3.183	0.003	6.567	0.001	
3.2	0.004	6.583	0.002	
3.217	0.003	6.6	0.002	
3.233	0.002	6.617	0.001	
3,25	0.004	6.633	0.001	
3.267	0.002	6.65	0.002	
3.283	0.004	6.667	0.001	
3.3	0.003	6.683	0.001	
3.317	0.003	6.7	0.001	
3.333	0.003	6.717	0.002	
3.35	0.003	6.733	0.001	
3.367	0.003	6.75	0.001	
	0.003	6.767	0.002	
3.383	0.003	6.783	0.002	
3.4	0.003	0.705	0.002	_

.


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Ŋ	Parameter	Estimate	
1	<u>к</u>	0.0005064	ft/min
	y0	0.009261	ft

Data Set: P:\Doane Cafferty\MW4 Bouwer Rice.aqt Title: MW-4 slug test Date: 09/19/03 Time: 14:14:27

PROJECT INFORMATION

Company: SECOR International Inc. Client: ChevronTexaco Project: 24CH.67201.00 Location: Bee-Jay Scales Site Test Date: 07/30/03 Test Well: MW-4

AQUIFER DATA

Saturated Thickness: 8.77 ft Anisotropy Ratio (Kz/Kr): 0.1

SLUG TEST WELL DATA

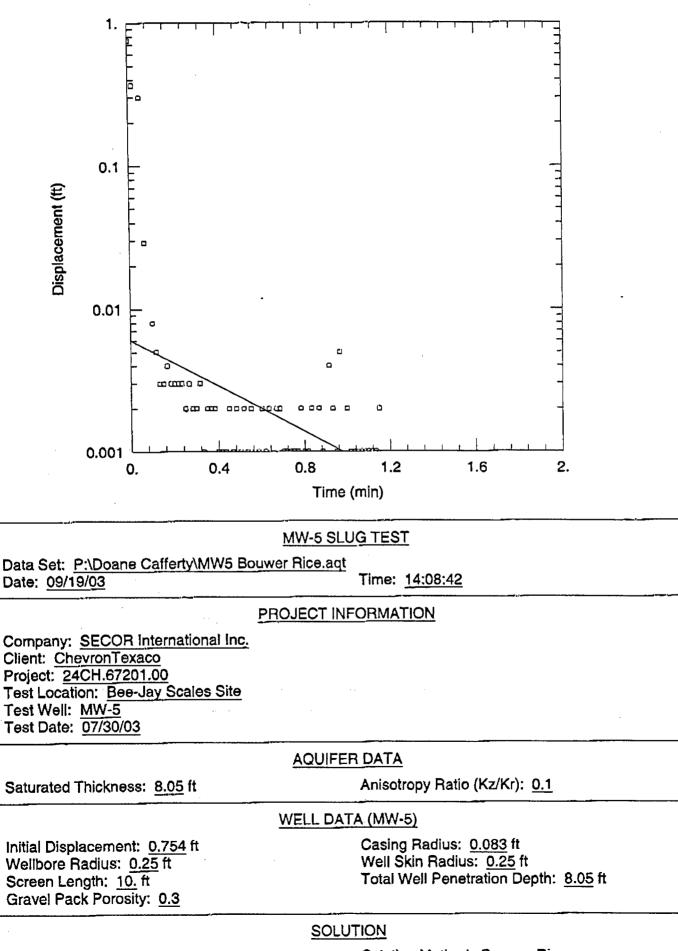
Initial Displacement: 1.322 ft Casing Radius: 0.083 ft Wellbore Radius: 0.25 ft Well Skin Radius: 0.25 ft Screen Length: 9.49 ft Total Well Penetration Depth: 8.77 ft Gravel Pack Porosity: 0.3

No. of observations: 55

Observation Data			
Time (min)	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
0.0167	0.104	0.4833	0.002
0.0333	0.037	0.5	0.002
0.05	0.011	0.5167	0.002
0.0667	0.137	0.5333	0.002
0.0833	0.109	0.55	0.002
0.1	0.079	0.5667	0.002
0.1167	0.073	0.5833	0.002
0.1333	0.067	0.6	0.001
0.15	0.054	0.6167	0.001
0.1667	0.044	0.6333	0.002
0.1833	0.037	0.65	0.001
0.2	0.03	0.6667	0.002
0.2167	0.024	0.6833	0.001
0.2333	0.02	0.7	0.002
0.25	0.015	0.7333	0.001
0.2667	0.014	0.75	0.002
0.2833	0.011	0.7833	0.024
0,3	0.009	0.85	0.003
0.3167	0.007	0.8667	0.002
0.3333	0.007	0.8833	0.001
0.35	0.005	0.9	0.002
0.3667	0.005	0.9167	0.002
0.3833	0.004	0.9333	0.004

MW-4 slug test

0.003 0.9867 0.001 0.003 1. 0.001 0.003 1.017 0.001 0.003 1.033 0.001	0.4 0.003 0.4167 0.003 0.4333 0.003 0.45 0.003
---	--


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter K y0	Estimate 0.03693 0.2771	ft/min ft	
yu	0.07		

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

)ata Set: P:\Doane Cafferty\MW5 Bouwer Rice.aqt /itle: MW-5 slug test Date: 09/19/03 Time: 14:14:39

PROJECT INFORMATION

Company: SECOR International Inc. Client: ChevronTexaco Project: 24CH.67201.00 Location: Bee-Jay Scales Site Test Date: 07/30/03 Test Well: MW-5

AQUIFER DATA

Saturated Thickness: 8.05 ft Anisotropy Ratio (Kz/Kr): 0.1

SLUG TEST WELL DATA

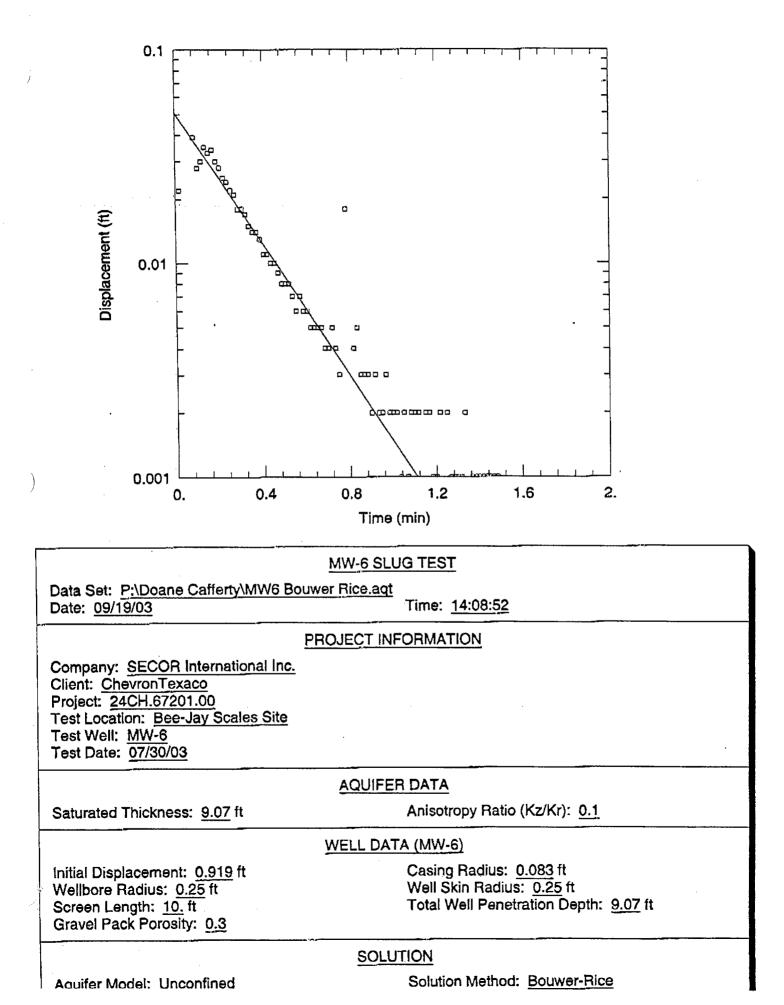
Initial Displacement: 0.754 ft Casing Radius: 0.083 ft Wellbore Radius: 0.25 ft Well Skin Radius: 0.25 ft Screen Length: 10. ft Total Well Penetration Depth: 8.05 ft Gravel Pack Porosity: 0.3

No. of observations: 63

Observation Data				
Time (min)	Displacement (ft)	<u> </u>	Displacement (ft)	
0.0167	0.367	0.5833	0.001	
0.05	0.301	0.6	0.002	
0.0667	0.029	0.6167	0.001	
0.1	0.008	0.6333	0.002	
0.1167	0.005	0.6667	0.002	
0.1333	0.003	0.6833	0.002	
0.15	0.003	0.7	0.001	
0.1667	0.004	0.7167	0.001	
0.1833	0.003	0.7333	0.001	
0.2	0.003	0.75	0.001	
0.2167	0.003	0.7667	0.001	
0.2333	0.003	0.7833	0.002	
0.25	0.002	0.8	0.001	
0.2667	0.003	0.8167	0.001	
0.2833	0.002	0.8333	0.002	
0.3	0.002	0.8667	0.002	
0.3167	0.003	0.8833	0.001	
0.3333	0.001	0.9167	0.004	
0.35	0.002	0.9333	0.002	
0.3667	0.002	0.95	0.001	
0.3833	0.002	0.9667	0.005	
0.4	0.001	. 1.	0.002	
0.4167	0.001	1.017	0.001	

MW-5 slug test

Time (1 0.433 0.44 0.46 0.48 0.48 0.51 0.53 0.51 0.53 0.55	33 0.001 5 0.002 67 0.001 33 0.002 5 0.001 67 0.001 67 0.002 5 0.001 67 0.002 5 0.001 5 0.001	(ft) <u>Time (min)</u> 1.033 1.05 1.067 1.083 1.1 1.117 1.133 1.15	<u>Displacement (ft)</u> 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
--	---	--	--


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
<u>к</u>	0.005795	ft/min
у0	0.006042	ft

MW-6 slug test

.

AQTESOLV for Windows

Ita Set: P:\Doane Cafferty\MW6 Bouwer Rice.aqt Itle: MW-6 slug test Date: 09/19/03 Time: 14:14:51

PROJECT INFORMATION

Company: SECOR International Inc. Client: ChevronTexaco Project: 24CH.67201.00 Location: Bee-Jay Scales Site Test Date: 07/30/03 Test Well: MW-6

AQUIFER DATA

Saturated Thickness: 9.07 ft Anisotropy Ratio (Kz/Kr): 0.1

SLUG TEST WELL DATA

Initial Displacement: 0.919 ft Casing Radius: 0.083 ft Wellbore Radius: 0.25 ft Well Skin Radius: 0.25 ft Screen Length: 10. ft Jotal Well Penetration Depth: 9.07 ft Gravel Pack Porosity: 0.3

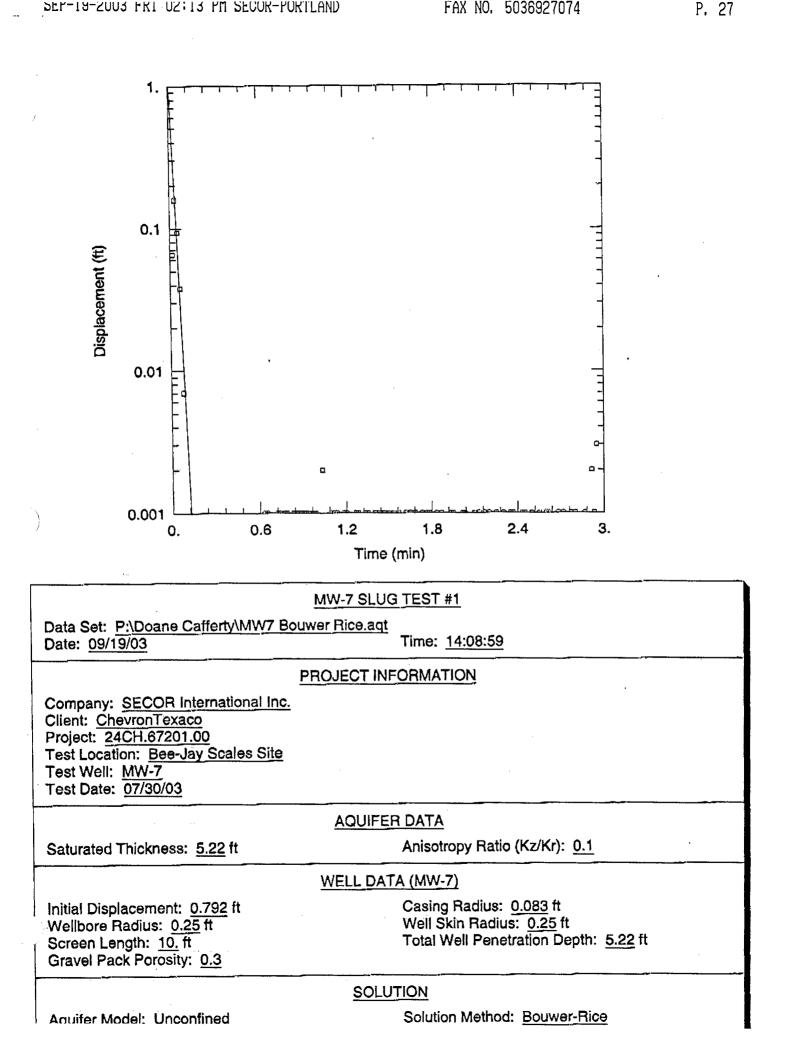
No. of observations: 81

Observation_Data			
Time (mi <u>n)</u>	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
0.0167	0.022	0.75	0.003
0.0833	0.039	0.7833	0.018
0.1	0.028	0.8167	0.004
0.1167	0.03	0.8333	0.005
0.1333	0.035	0.85	0.003
0.15	0.033	0.8667	0.003
0.1667	0.034	0.8833	0.003
0.1833	0.03	0.9	0.002
0.2	0.028	0.9167	0.003
0.2167	0.025	0.9333	0.002
0.2333	0.024	0.95	0.002
0.25	0.022	0.9667	0.003
0.2667	0.021	0.9833	0.002
0.2833	0.018	1.	0.002
0.3	0.018	1.017	0.002
0.3167	0.017	1.033	0.001
0.3333	0.015	1.05	0.002
0.35	0.014	1.067	0.001
0.3667	0.014	1.083	0.002
0.3833	0.013	1.1	0.002
0.4	0.011	1.117	0.002
0.4167	0.011	1.15	0.002
0.4333	0.01	1.167	0.002

1

Time (min)	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
0.45	0.01	1.183	0.001
0.4667	0.009	1.2	0.001
0.4833	0.008	1.217	0.002
0.5	0.008	1.25	0.002
0.5167	0.008	1.267	0.001
0,5333	0.007	1.283	0.001
0.55	0.006	1.3	0.001
0.5667	0.007	1.317	0.001
0.5833	0.006	1.333	0.002
0.6	0.006	1.367	0.001
0.6167	0.005	1.383	0,001
0.6333	0.005	1.4	0.001
0.65	0.005	1.417	0.001
0.6667	0.005	1.433	0.001
0.6833	0.004	1.45	0.001
0.7	0.004	1.467	0.001
0.7167	0.005	1.483	0.001
0.7333	0.004		

SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
<u>к</u>	0,01148	ft/min
у0	0.05076	ft

.

Data Set: P:\Doane Cafferty\MW7 Bouwer Rice.aqt Title: MW-7 slug test #1 Date: 09/19/03 Time: 14:15:02

PROJECT INFORMATION

Company: SECOR International Inc. Client: ChevronTexaco Project: 24CH.67201.00 Location: Bee-Jay Scales Site Test Date: 07/30/03 Test Well: MW-7

AQUIFER DATA

Saturated Thickness: 5.22 ft Anisotropy Ratio (Kz/Kr): 0.1

SLUG TEST WELL DATA

Initial Displacement: 0.792 ft Casing Radius: 0.083 ft Wellbore Radius: 0.25 ft Well Skin Radius: 0.25 ft Screen Length: 10. ft Total Well Penetration Depth: 5.22 ft Gravel Pack Porosity: 0.3

No. of observations: 69

Observation Data						
Time (min)	Displacement (ft)	Time (m <u>in)</u>	<u>Displacement (ft)</u>			
0.0167	0.065	1.617	0.001			
0.0333	0.158	1.65	0,001			
0.05	0.093	1.683	0.001			
0.0667	0.038	1.733	0.001			
0.0833	0.007	1.767	0.001			
0.6333	0.001	1.783	0.001			
0.65	0.001	1.833	0.001			
0.7167	0.001	1.867	0.001			
0.7333	0.001	1.933	0.001			
0.7667	0.001	1.95	0.001			
0.7833	0.001	2.017	0.001			
0.8333	0.001	2.033	0.001			
0.85	0.001	2.1	0.001			
0.8833	0.001	2.133	0.001			
0.9	0.001	2.167	0.001			
0.9167	0.001	2.2	0.001			
0.9333	0.001	2.25	0.001			
0.9667	0.001	2.3	0.001			
0.9833	0.001	2.35	0.001			
1.033	0.002	2.367	0.001			
1.083	0.001	2.433	0.001			
1.117	0.001	2.45	0.001			
1.133	0.001	2.5	0.001			

MW-7 slug test #1

.

MW-7 slug test #1

.

SOLUTION

Ì

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	Ū.1599	ft/min
yO	1.276	ft

ì

APPENDIX G

•

)

SUMMARY OF INPUT PARAMETERS AND WORKBOOK CALCULATIONS OF METHOD C CULs

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	<u>9/9/2003</u>
Site Name:	Bee-Jay Scales Site
Evaluator:	Brian Deeken

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
I. General information	-		
Name of Chemical:		1,2,4-Trimetl	ylbenzene
Measured Soil Concentration, if any:	C_s	8	mg/kg
Natural Background Concentration for Soil:	NB_{s}		mg/kg
Practical Quantitation Limit for Soil:	PQL _s	0.01	mg/kg
To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:			
2. Toxicological Properties of the Chemical: Chemical-Specific	_		_
Oral Reference Dose:	RfD _o	0.05	mg/kg-day
Oral Carcinogenic Potency Factor:	CPF _o		kg-day/mg
Inhalation Reference Dose:	RfD_i		mg/kg-day
Inhalation Carcinogenic Potency Factor:	CPF_i		kg-day/mg
3. Exposure Parameters	_		_
Inhalation Correction Factor (default = "2" for volatiles; "1" for all others): for target ground water cleanup level	INH	2	unitless
Inhalation Absorption Fraction (default = "1"): for target air cleanup level	ABS_i	1	unitless
Gastrointestinal Absorption Fraction (default = "1"): for ingestion & dermal exposure pathways	AB1	1	unitless
Adherence Factor (default = "0.2"): for dermal exposure pathway	AF		mg/cm ² -day
Dermal Absorption Fraction (chemical-specific or defaults): for dermal exposure pathway	ABS_d		unitless
Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults): for dermal exposure pathway	GI [unitless
I. Physical and Chemical Properties of the Chemical: Chemical-Specific			
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	3.720E+03	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	2.337E-01	Junitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H		atm.m ³ /mol
*Converted unitless form of H_{cc} @13°C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless
Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	5.700E+01	mg/l

5. Target Ground Water Cleanup Level

124tmb.XLS

je 1

Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:*Results from the Ground Water Cleanup Level Worksheet are notautomatically transferred into this worksheet.	<i>C</i> _w	8.750E+02	ug/l
6. Site-Specific Hydrogeological Characteristics			-
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	Θ_w	0.3	unitless
Volumetric Air Content (default = "0.13"):	Θ_{α}	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	ρ_{b}	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.001	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil laver) Mechanisms			
* Vapor Attenuation Factor is the ratio of vapor-phase contaminant concentration within the soil at the source to the air			
concentration at the exposure point (e.g., within the building)			-
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS

Chemical of Concern: 1,2,4-Trimethylbenzene

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here: -To calculate a soil concentration based on Method C vapor pathway, check here:

Basis for Soil Concentration	Conc	Units
Most stringent soil concentration based on Soil Direct		· · ·
Contact & Ground Water Protection:	6.895E+01	mg/kg
Natural Background concentration for Soil:	N/A	mg/kg
Practical Quantitation Limit for Soil:	0.01	mg/kg
Soil Cleanup Level (not considering vapor pathway):	6.895E+01	mg/kg
Warning! Soil Cleanup Level above may not be pr pathway - evaluate vapor pathwa	-	or exposure
Soil concentration based on Vapor Pathway (informational purposes only):	0.000E+00	mg/kg
Soil Saturation Limit, C _{sat} :	2.246E+02	mg/kg
Retardation Factor, R:	14.0	unitless

2. Summary of Calculation for each Exposure Pathway

C_{sat} corresponds to the total soil chemical concentration saturated in soil.

R is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone.

neck he

V

.ge 2

	Summary by Exposure Pathway						
(Viii		Unrestricted Land Use Industri		Unrestricted Land Use		<u>od C</u> Land Use ISK =1.0E-5	
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion & Dermal	
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	2.000E-03 N/A	N/A N/A	4.571E-05 N/A	N/A N/A	
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	4.000E+03 N/A	N/A N/A	1.750E+05 N/A	N/A N/A	
			<u>Meth</u> @ HQ=1.0; R		<u>Meth</u> @ HQ=1.0; R		
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	1.015E+02				
Potable	Condition	HQ? @ Exposure Point	2.538E-01		1.160E-01		
Ground Water	Target Ground Wate	RISK? @ Exposure Point er CUL? ug/l mg/kg	N	N/A 8.7501 6.8951		/A	
			Method B Method C @ HQ=1.0; RISK =1.0E-6 @ HQ=1.0; RISK =1				
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point	#DIV/0!				
Air Quality	Condition	HQ? @ Exposure Point			N/A		
(for informational		RISK? @ Exposure Point		/A		/A	
purpose only)	Target Air CUL? ug/m ³	@ HQ=1.0 @ RISK=1.0E-6 or 1.0E-5		/A /A		/A /A	
	Target Soil	@ HQ=1.0	N	/A	N	/A	
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5	N	/A	N	/A	

NOTES: "CUL" = Cleanup Level; "Conc" = concentration; "HQ" = hazard quotient; "RISK" = carcinogenic risk.

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490)

environment are specified in the IVI CA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

CAUTION: The requirements and procedures for establishing air cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-750). The use of this Workbook may not be sufficient to establish air cleanup levels under the regulation. Specifically, the air cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- · Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

<u>Date:</u> <u>9/9/2003</u>

Site Name: Bee-Jay Scales Site

Evaluator:

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
Name of Chemical:		1,3,5-Trime	thylbenzene
Measured Soil Concentration, if any:	C_s		mg/kg
Natural Background Concentration for Soil:	NB_{s}		mg/kg
Practical Quantitation Limit for Soil:	PQL_s		mg/kg
To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:			
2. Toxicological Properties of the Chemical: Chemical-Specific	_		_
Oral Reference Dose:	RfD _o	0.05	mg/kg-day
Oral Carcinogenic Potency Factor:	CPF o		kg-day/mg
Inhalation Reference Dose:	RfD_i		mg/kg-day
Inhalation Carcinogenic Potency Factor:	CPF_i		kg-day/mg
<u>3. Exposure Parameters</u>	-		-
Inhalation Correction Factor (default = "2" for volatiles; "1" for all others): for target ground water cleanup level	INH	2	unitless
Inhalation Absorption Fraction (default = "1"): for target air cleanup level	ABS_i	1	unitless
Gastrointestinal Absorption Fraction (default = "1"): for ingestion & dermal exposure pathways	AB1	1	unitless
Adherence Factor (default = "0.2"): for dermal exposure pathway	AF		mg/cm ² -day
Dermal Absorption Fraction (chemical-specific or defaults): for dermal exposure pathway	ABS_d		unitless
Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults): for dermal exposure pathway	GI		unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	_		_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	8.190E+02	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	3.161E-01	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:			atm.m ³ /mol
*Converted unitless form of H_{cc} @13°C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H _{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	4.820E+01	mg/l
5. Target Ground Water Cleanup Level			
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation: *Results from the Ground Water Cleanup Level Worksheet are not automatically transferred into this worksheet.	<i>C</i> _w	8.750E+02	ug/l
6. Site-Specific Hydrogeological Characteristics		·	-1
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	Θ_w	0.3	unitless
Volumetric Air Content (default = "0.13"):	Θ_{α}	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.001	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			
* Vapor Attenuation Factor is the ratio of vapor-phase contaminant concentration within the soil at the source to the			
air concentration at the exposure point (e.g., within the building)		p=	-
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS

Chemical of Concern: 1,3,5-Trimethylbenzene

1. Summary of Results

 \checkmark To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here: -To calculate a soil concentration based on Method C vapor pathway, check here: $\overline{}$

Basis for Soil Concentration	Conc	Units	
Most stringent soil concentration based on Soil Direct			
Contact & Ground Water Protection:	1.831E+01	mg/kg	
Natural Background concentration for Soil:	N/A	mg/kg	
Practical Quantitation Limit for Soil:	N/A	mg/kg	
Soil Cleanup Level (not considering vapor pathway):	1.831E+01	mg/kg	
Warning! Soil Cleanup Level above may not be pr pathway - evaluate vapor pathwa	-	or exposure	
Soil concentration based on Vapor Pathway (informational purposes only):	0.000E+00	mg/kg	<i>C</i> _{sat} corresponds to the total soil chemical concensaturated in soil.
			R is the ratio of the ground water flow velocity to the term of the ground water flow velocity to the term of the ground water flow velocity to the term of the ground water flow velocity to the term of the ground water flow velocity to the term of the ground water flow velocity to the term of the ground water flow velocity to the term of the ground water flow velocity to the term of te

entration

the ιy Э

Soil Saturation Limit, C _{sat} :	5.044E+01	mg/kg
Retardation Factor, R:	3.9	unitless

R is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

	Summar	y by Exposure Path	way				
			Unrestricte	<u>aod B</u> ed Land Use RISK =1.0E-6	<u>Meth</u> Industrial @ HQ=1.0; R		
Soil Direct			Ingestion only Dermal		Ingestion only	Ingestion & Dermal	
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	4.000E+03 N/A	N/A N/A	1.750E+05 N/A	N/A N/A	
			<u>Meth</u> @ HQ=1.0; R		<u>Meth</u> @ HQ=1.0; R	<u>od C</u> ISK =1.0E-5	
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/A				
Potable	Condition	HQ? @ Exposure Point		/A	N/A		
Ground Water		RISK? @ Exposure Point	N	/A 8 750	N/A 0E+02		
	Target Ground Wate Target Soil CUL?	mg/kg	1.831E+01				
			<u>Meth</u> @ HQ=1.0; R		<u>Meth</u> @ HQ=1.0; R	<u>od C</u> ISK =1.0E-5	
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point	N/A				
Air Quality	Condition	HQ? @ Exposure Point		/A	N/A		
(for informational		RISK? @ Exposure Point		/A	N/A		
purpose only)	Target Air	@ HQ=1.0		/A	N/A		
	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5		/A	N/A		
	Target Soil	@ HQ=1.0		/A		/A	
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5	N	/A	N N	/A	

Je 3

NOTES: "CUL" = Cleanup Level; "Conc" = concentration; "HQ" = hazard quotient; "RISK" = carcinogenic risk.

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

CAUTION: The requirements and procedures for establishing air cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-750). The use of this Workbook may not be sufficient to establish air cleanup levels under the regulation. Specifically, the air cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:9/9/2003Site Name:Bee-Jay Scales Site

Evaluator:

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
Name of Chemical:		Chromium	
Measured Soil Concentration, if any:	C_s	64.8	mg/kg
Natural Background Concentration for Soil:			mg/kg
Practical Quantitation Limit for Soil:	PQL_s	0.5	mg/kg
To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:			
2. Toxicological Properties of the Chemical: Chemical-Specific			_
Oral Reference Dose:	RfD _o	0.003	mg/kg-day
Oral Carcinogenic Potency Factor:	CPF _o		kg-day/mg
Inhalation Reference Dose:	RfD_i		mg/kg-day
Inhalation Carcinogenic Potency Factor:	CPF_i		kg-day/mg
3. Exposure Parameters	_		-
Inhalation Correction Factor (default = "2" for volatiles; "1" for all others): for target ground water cleanup level	INH	1	unitless
Inhalation Absorption Fraction (default = "1"): for target air cleanup level	ABS_i	1	unitless
Gastrointestinal Absorption Fraction (default = "1"): for ingestion & dermal exposure pathways	AB1	1	unitless
Adherence Factor (default = "0.2"): for dermal exposure pathway	AF		mg/cm ² -day
Dermal Absorption Fraction (chemical-specific or defaults): for dermal exposure pathway	ABS_d		unitless
Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults): for dermal exposure pathway	GI		unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	_		_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	1.900E+01	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	0.000E+00	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H		atm.m ³ /mol
*Converted unitless form of H_{cc} @13 ° C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H _{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	0.000E+00	mg/l
5. Target Ground Water Cleanup Level			
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:	C		1
*Results from the Ground Water Cleanup Level Worksheet are	C _w	1.050E+02	ug/l
not automatically transferred into this worksheet.		1.0501+02	_
6. Site-Specific Hydrogeological Characteristics		······	-
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	Θ_{α}	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.001	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			
* Vapor Attenuation Factor is the ratio of vapor-phase contaminant concentration within the soil at the source to the			
air concentration at the exposure point (e.g., within the building)		·	-
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS

Chemical of Concern:

Chromium

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:	\checkmark
— To calculate a soil concentration based on Method C vapor pathway, check here:	

Conc	Units	
		Warning: Soil Cleanup Level is higher than Soil Saturation
4.599E-01	mg/kg	Limit!
N/A	mg/kg	
0.5	mg/kg	
5.000E-01	mg/kg	
rotective of vap	or exposure	
0.000E+00	mg/kg	 <i>C</i>_{sat} corresponds to the total soil chemical concentration saturated in soil. <i>R</i> is the ratio of the ground water flow velocity to the
	4.599E-01 N/A 0.5 5.000E-01 rotective of vap	4.599E-01mg/kgN/Amg/kg0.5mg/kg5.000E-01mg/kgcotective of vapor exposurety further.

Soil Saturation Limit, C _{sat} :	0.000E+00	mg/kg
Retardation Factor, R :	1.1	unitless

R is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

	Potable Under the Current Condition Conc? ug/l HQ? @ Exposure Point 3.082E+02 1.409E+02										
			Unrestricte	d Land Use	Industrial	Land Use					
Soil Direct			Ingestion only	÷	Ingestion only	÷					
Contact											
	-										
<u></u>	CCD: mg/ng		Meth	od B	Meth	od C					
Protection of	Under the Current			1.479	E+04						
Potable	Condition										
Ground Water		· · · · · · · · · · · · · · · · · · ·	N			/A					
	*										
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point	#DIV/0!								
Air Quality	Condition	HQ? @ Exposure Point	N	/A	N/A						
(for informational		RISK? @ Exposure Point	N/A		N/A						
purpose only)	Target Air	@ HQ=1.0		/A	N/A						
	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5	N/A		N/A						
	Target Soil	@ HQ=1.0		/A		/A					
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5	N.	/A	N/A						

NOTES: "CUL" = Cleanup Level; "Conc" = concentration; "HQ" = hazard quotient; "RISK" = carcinogenic risk.

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

CAUTION: The requirements and procedures for establishing air cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-750). The use of this Workbook may not be sufficient to establish air cleanup levels under the regulation. Specifically, the air cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- \cdot Total site risk (see WAC 173-340-750(5)(a)).

	Washington State Department of Ecology,
Risk	Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Status of Current Soil

	~	
Dete: 00/17/03	Refer to WAC 173-340-720, 740,745, 747, 750	Soil Cleanup Levels: Worksheet for Data Entry

1. Enter Soil Concentration Measured
Sample Name:
Site Name: <u>Bee-Jay Scales Site</u>
Date: 09/17/03

Fraction Organic Carbon: default is 0.001 Dilution Factor: default is 20	2. Enter Site-Specific Hydrogeological Data Total soil porosity: default is 0.43 0.45 Volumetric water content: default is 0.3 0.3 Volumetric air content: default is 0.13 0.15 Soil bulk density measured: default is 1.5 1.5	Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Sum	Benzene Toluene Ethylbenzene Total Naphthalenes n-Hexane MTBE Ethylene Dibromide (EDB) 1,2 Dichloroethane (EDC)	AL_EC >12-16 AL_EC >1-34 AL_EC >21-34 AR_EC >10-12 AR_EC >10-12 AR_EC >12-16 AR_EC >16-21 AR_EC >21-34	Chemical of Concern or Equivalent Carbon Group <u>Petroleum EC Fraction</u> AL_EC >5-6 AL_EC >6-8 AL_EC >8-10 AL_EC >10-12
0.001 20	e <u>ical Data</u> 0.45 0.15 1.5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 10.46	0.005 0.005 0.005 0.005		Measured Soil Conc dry basis mg/kg
Unitless Unitless	Unitless Unitless Unitless kg/l	1.91% 1.91% 1.91% 1.91% 1.91% 1.91% 1.91%	0.05% 0.10% 57.65% 28.68% 0.00% 0.05% 0.05%	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Composition 96 0.00% 0.00% 0.00% 0.00%
sites, refer to WAC 173-340-820, 830 and 840, and 1 able 830-1. 5. For detail information on site-specific hydrogeological conditions, refer to WAC 173-340-747	substances are not suspected or being present at the site based on site history and other knowledge, enter "0" for that hazardous substances or petroleum fraction for further calculation. Refer to WAC173-340-740(7) for detail. 4. For detail analytical testing requirements for petroleum contaminated		 Nore: All data must be numeric values. Use of alphabetical characters (i.e., "ND", "NA", "<", ">", or "=") will cause an error. Try to avoid double counting: The Petroleum Equivalent Carbon (EC) fractions include many individual substances that must be analyzed separately. When entering the concentration of petroleum EC fraction of into the data entry cell, make sure you subtract the concentration of individual substances from the appropriate EC fraction. (See User's Guide) 		Exposure Pathway Pass or Fail? HI RISK Soil Direct Contact Unrestricted Land use Industrial Land use Image: Contact Industrial Land use <t< td=""></t<>

 \smile

REMARK: Enter site-specific information here......

Worksheet for Calculating Soil Cleanup Level for Soil Direct Contact Pathway: Method C-Industrial Land Use (Refer to MTCA WAC 173-340-745)

Date: 17-Sep-03 Site Name: Bee-Jay Scales Site Sample Name: 00-Jan-00

															adjusted condition at a	a specified TF	ΥH .
			Exposure P	arameter	rs	Toxicity	Parameters	Cur	rent Conditi	on		Adjusted C	ondition		concentration. b. Check columns at left	for Pass/Fail	detail
Chemical of Concern or EC Group	Measured Soil Conc dry basis	AB1	AF	ABS _d	GI	RfD。	CPF₀	НQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass or Fail?	Current	Condition	
	mg/kg	unitless	mg/cm ² -day	unitless	unitless	mg/kg-day	kg-day/mg	unitless	unitless		mg/kg	unitless	unitless		TPH, mg/kg=		
troleum EC Fraction																1.876E-04	
AL_EC >5-6	0	1	0.2	0.03	0.8	5.7					0.00E+00				Cancer RISK=		
AL_EC >6-8	0	1	0.2	0.03	0.8	5.7					0.00E+00				Pass or Fail?	Pass	
AL_EC >8-10	0	1	0.2	0.03	0.8	0.03					0.00E+00						
AL_EC >10-12	0	1	0.2	0.03	0.8	0.03					0.00E+00						
AL_EC >12-16	0	1	0.2	0.1	0.5	0.03					0.00E+00						
AL_EC >16-21	0	1	0.2	0.1	0.5	2					0.00E+00						
AL_EC >21-34	0	1	0.2	0.1	0.5	2					0.00E+00						
AR_EC >8-10	0	1	0.2	0.03	0.8	0.05					0.00E+00						
AR_EC >10-12	0	1	0.2	0.03	0.8	0.05					0.00E+00				Adjusted	Condition	
AR EC >12-16	0	1	0.2	0.1	0.5	0.05					0.00E+00	1			TPH, mg/kg=	120.628	
AR_EC >16-21	0	1	0.2	0.1	0.5	0.03					0.00E+00				HI=	2.163E-03	
AR_EC >21-34	0	1	0.2	0.1	0.5	0.03					0.00E+00				Cancer RISK=	1.000E-05	
Benzene	0.005	1	0.2	0.0005	0.95	0.003	0.055	8.38E-07	3.69E-11	1	5.77E-02	9.66E-06	4.25E-10		Pass or Fail?	Pass	
Toluene	0.005	1	0.2	0.03	1	0.2		1.63E-08			5.77E-02	1.87E-07					
Ethylbenzene	0.01	1	0.2	0.03	0.92	0.1		6.63E-08			1.15E-01	7.65E-07					
Total Xylenes	6.03	1	0.2	0.03	0.9	2		2.01E-06			6.95E+01	2.32E-05			Exposure Param	ieters	
Total Naphthalenes	3	1	0.2	0.13	0.89	0.02		1.85E-04			3.46E+01	2.13E-03			for Non-carcinogens		Units
n-Hexane	0	1	0.2	0.03	0.8	0.06					0.00E+00	0.00E+00			Average Body Weight, ABW	70	kg
MTBE	0.005										5.77E-02				Averaging Time, AT	20	уг
Ethylene Dibromide (EDB)	0	1	0.2	0.03	0.8	0.000057	85		0.00E+00		0.00E+00		0.00E+00		Exposure Frequency, EF	0.7	unitle
1,2 Dichloroethane (EDC)	0.005	1	0.2	0.03	0.8	0.03	0.091	1.15E-07	8.34E-11		5.77E-02	1.32E-06	9.62E-10		Exposure Duration, ED	20	year
Benzo(a)anthracene	0.2		0.2	0.13	0.89		0.73		4.79E-08		2.31E+00		5.52E-07		Soil Ingestion Rate, SIR	50	mg/da
Benzo(b)fluoranthene	0.2		0.2	0.13	0.89		0.73		4.79E-08		2.31E+00		5.52E-07		Dermal Surface Area, SA	2500	cm ²
Benzo(k)fluoranthene	0.2		0.2	0.13	0.89		0.73		4.79E-08		2.31E+00		5.52E-07		for Carcinogens		
Benzo(a)pyrene	0.2	1	0.2	0.13	0.89		7.3		4.79E-07		2.31E+00		5.52E-06		Parameters for Carcinogens		unit
Chrysene	0.2		0.2	0.13	0.89		0.073		4.79E-09		2.31E+00		5.52E-08		Averaging time, AT_C	75	yr
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	0.2 0.2	1	0.2 0.2	0.13 0.13	0.89 0.89		2.92 0.73		1.92E-07 4.79E-08		2.31E+00 2.31E+00		2.21E-06 5.52E-07				
Sum	10.46	.	0.2	0.10	0.07	I	0.75	1 995 04	8.67E-07		1.21E+00	2 165 02	1.00E-05				

a. "TPH Test" button below is for testing