November 4, 2009 Project 001.0173.00010

Mr. Tom Middleton Washington Department of Ecology P.O. Box 47775 Olympia, Washington 98504-7775

Re: Deep Groundwater Remediation System Installation and Performance Report, Former Arco Service Station #0855, Longview, Washington

Dear Mr. Middleton:

On behalf of Wakefield Family LLC (Wakefield), SLR International Corp. (SLR) has prepared this report to present the initial results of the secondary phase of the remedial action at the above-referenced site. The report describes the installation of a deep groundwater recovery/treatment system, presents the results of the system operations through September 2009, and presents the results of a groundwater sampling event that was conducted in September 2009. The former Arco Service Station #0855 property (the "property") is located at 4603 Ocean Beach Highway, near the western end of Longview, Washington (see Figure 1).

BACKGROUND

On June 26, 2007, Wakefield (the property owner) entered into the Washington Department of Ecology's (Ecology's) Voluntary Cleanup Program (VCP) to obtain Ecology's opinions regarding the results of the previous investigation activities at the site and the recommended remedial alternative. The recommended remedial alternative was presented in a Feasibility Study Report (SLR, 2007), and consisted of soil excavation, shallow groundwater and free product extraction, and natural attenuation of the remaining contamination with a contingency to potentially implement deeper groundwater extraction. On October 11, 2007, Ecology notified Wakefield that they agreed that the recommended alternative was the most feasible option for addressing the contamination at the site (Ecology, 2007).

During September, November, and December 2007, and March 2008, the primary phase of the site remedial action, consistent with the recommended remedial alternative, was completed. The objectives of the work were: 1) to remediate the soil that contained petroleum hydrocarbon concentrations greater than Model Toxics Control Act (MTCA)

22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
22122 20th Avenue SE, Suite H-150, Bothell, WA 98021
2012 20th Avenue SE, Suite H-150, Bothell, WA 98021
2012 20th Avenue SE, Suite H-150, Bothell, BitMINGHAM, GLASGOW, NOTTINGHAM, OXFORD
2012 2012 20th Avenue SE, Suite H-150, Bothell, Su

Method A cleanup levels¹, 2) to remove the source of the impacted shallow groundwater, 3) to remove the primary source of the impacted deep groundwater, and 4) to extract the accessible impacted shallow groundwater. The remedial action consisted of demolishing all of the property structures, excavating the petroleum hydrocarbon-impacted soil that occurred at depths above 15 feet below ground surface (bgs), extracting hydrocarbonimpacted shallow groundwater from the open excavation, installing replacement shallow and deep groundwater monitoring wells within the areas of excavation, and conducting two groundwater sampling events.

Based on the analytical results from the final excavation floor and sidewall confirmation samples, the excavation activities effectively removed all of the soil that contained petroleum hydrocarbon concentrations greater than the MTCA Method A cleanup levels, except at three locations (SLR, 2008). The final floor samples from sample grid cells A3, B3, and C2, at 15 feet bgs, contained benzene, ethylbenzene, total xylenes, and/or gasoline-range organics (GRO) concentrations that exceeded the Method A cleanup levels. The excavation was not extended below 15 feet bgs at those three locations to ensure that a semi-confining unit (clayey silt) was not breached. The results of the two subsequent groundwater sampling events indicated that the shallow groundwater extraction activities removed the impacted groundwater within the excavation area and the soil excavation. The groundwater sampling results also showed that the excavation and shallow groundwater extraction activities had limited short-term affects on the petroleum hydrocarbon concentrations in the deeper semi-confined groundwater zone (SLR, 2008).

SECONDARY PHASE OF SITE REMEDIAL ACTION

The secondary phase of the site remedial action consists of long-term groundwater monitoring to assess the natural attenuation of the remaining petroleum hydrocarbon concentrations in the shallow and deep groundwater zones. Since the primary phase of the remedial action had limited short-term affects on the deep groundwater concentrations, the secondary phase of the remedial action also included the installation and operation of a deep groundwater recovery/treatment system. The purpose of the system is to reduce the petroleum hydrocarbon concentrations in the deep groundwater zone to levels that will naturally attenuate to below the MTCA Method A cleanup levels within a reasonable period of time.

¹ Chapter 173-340 WAC, Model Toxics Control Act Cleanup Regulation, Method A Cleanup Levels. Amended February 12, 2001.

T:\1 PROJECTS\001.0173.00010 Longview GW Remedial Action\System Installation and Performance Report.doc

Installation of Deep Groundwater Recovery/Treatment System

Installation of Recovery Well

To extract petroleum hydrocarbon-impacted deep groundwater, a groundwater recovery well (designated RW-1) was installed on October 30, 2008. The well is located at the area of the highest petroleum hydrocarbon concentrations in the deep groundwater zone, near the western end of the former gasoline dispenser island (see Figure 2). The drilling and well installation activities were conducted by Cascade Drilling, Inc. (Cascade) of Woodinville, Washington, under the direction of an SLR geologist. The soil boring was drilled by using hollow-stem auger methods. During drilling, soil samples were collected on a continuous basis by using a split-spoon sampler, at depths between approximately 15 and 25.5 feet bgs. The purpose of the soil sampling was to identify the depth of the bottom of the semi-confining unit (clayey silt), the depth of the bottom of the underlying silty sand, and the top of the fine- to coarse-grained sand unit that occurs below the silty sand. The fine- to coarse-grained sand is the primary water producing unit of the upper part of the deep groundwater zone. The soil boring extended to a depth of approximately 35 feet bgs, approximately 11.5 feet below the top of the sand unit.

The recovery well was constructed with 6-inch-diameter, schedule 40 PVC well screen, riser pipe, and sediment collection sump. The top of the 5-foot-long screen (0.020-inch slots) was installed at a depth of approximately 6 inches below the top of the sand unit (approximately 24 feet bgs). A 2-foot-long sediment collection sump was installed below the screen. A flush-grade, traffic-rated, steel monument was installed to protect the well. The well construction details are presented on the soil boring log in Appendix A. Following installation, Cascade developed the well by using a combination of bailing and surging in order to minimize the amount of fine-grained material in the well screen and to increase groundwater flow into the well. The development water was stored on the property in properly labeled, 55-gallon drums until it was pumped through the groundwater treatment system described below.

Installation of Recovery/Treatment System

In June 2009, Wyser Construction, Inc., of Bothell, Washington, installed the deep groundwater recovery/treatment system under the direction of SLR personnel. An electronic submersible pump was installed in RW-1, and the bottom of the pump (the intake) was set near the top of the sediment collection sump (at the bottom of the screen). Two float switches were installed within the well to activate and deactivate the pump. The groundwater treatment system located in the southeastern corner of the property (see Figure 3). The treatment system consists of two canisters in series that are each filled with 1,000

pounds of activated carbon. A totalizing flow meter is located after the second carbon canister to record the pumping rate and the total volume of extracted groundwater. After the flow meter, the effluent line is plumbed into a 50-gallon equalization tank and the effluent from the tank discharges into the City of Longview sanitary sewer system. A plan view of the treatment system is shown on Figure 3.

Operation of Deep Groundwater Recovery/Treatment System

On June 17, 2009, the groundwater recovery/treatment system was activated. During system operation, SLR personnel monitored system performance in accordance with the requirements of a Permit for Utility Service from the City of Longview. From June 17 through September 28, 2009, a total of 592,675 gallons of water were recovered and treated by the system, and the groundwater pumping rates ranged from approximately 4 to 5 gallons per minute.

Treatment System Sample Analytical Results

At system activation, on a weekly basis for the first month of operation, and then on an every other week basis, treatment system samples were collected after the first carbon canister to monitor contaminant breakthrough and after the second carbon unit to monitor the system discharge concentrations. At system activation and on a monthly basis, an influent sample to the first carbon canister was also collected. All of the samples were submitted to Columbia Analytical Services, Inc. (CAS) in Kelso, Washington, for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B and GRO by Ecology Method NWTPH-Gx. On June 18, 2009 (the system activation sample), the influent sample to the first carbon canister contained benzene and total xylenes concentrations of 500 and 2.6 micrograms per liter ($\mu g/L$), respectively. Toluene. ethylbenzene, and GRO were not detected at concentrations above the method reporting limits (MRLs). On July 15, 2009, the influent sample to the first carbon canister contained benzene, toluene, ethylbenzene, and total xylenes concentrations of 230, 0.7, 4.0, and 6.4 µg/L, respectively. GRO was not detected at a concentration above the MRL. On August 13, 2009, the influent sample to the first carbon canister contained benzene, toluene, ethylbenzene, and total xylenes concentrations of 140, 0.5, 3.0, and 5.0 µg/L, respectively. GRO was not detected at a concentration above the MRL. On September 9, 2009, the influent sample to the first carbon canister contained benzene, ethylbenzene, and total xylenes concentrations of 95, 1.9, and 3.8 µg/L, respectively. Toluene and GRO were not detected at concentrations above the MRLs. None of the effluent samples from either carbon canister contained BTEX or GRO concentrations above the MRLs. The treatment system sample analytical results are presented in Table 1, and copies of the laboratory reports are presented in Appendix B.

Groundwater Monitoring Data

Immediately prior to activating the recovery/treatment system on June 17, 2009, SLR personnel measured the depths to groundwater in all of the shallow and deep groundwater monitoring wells and in deep recovery well RW-1. On July 1, July 29, August 26, and September 28, 2009, SLR measured the depths to groundwater in all of the shallow and deep wells and in the recovery well while the system was operating. The purpose of the groundwater level monitoring was to assess the radius of pumping influence. The depth to groundwater measurements were converted to groundwater elevations by using the results of previous well elevation surveys. The groundwater monitoring data from June through September 2009, as well as the monitoring data from previous groundwater sampling events, are presented in Table 2.

On June 17, 2009, the depths to groundwater in the deep wells (including the recovery well) ranged from 6.07 to 7.25 feet and the depths to groundwater in the shallow wells ranged from 3.65 to 6.61 feet. Free product was not observed in any of the wells. The groundwater elevations in the deep wells ranged from -0.02 to 2.31 feet above the NAVD 88 datum. The groundwater elevations in the shallow wells ranged from 2.46 to 5.38 feet above the NAVD 88 datum. The groundwater elevations in the deep and shallow wells were inconsistent and could not be used to determine general deep and shallow groundwater flow directions beneath the site area. The groundwater elevations in the deep and shallow wells on June 17, 2009, are shown on Figures 2 and 4, respectively.

After activation of the recovery/treatment system, the depths to groundwater in RW-1 ranged from 20.05 to 23.20 feet (-11.97 to -15.12 feet above the NAVD 88 datum). The drawdown in the well was approximately 13.9 to 16.5 feet. From June 17 to September 28, 2009, the depths to groundwater in the deep wells typically decreased by 0.55 to 0.75 feet. The depths to groundwater in the deep well (DMW-9) located approximately 10 feet from RW-1 decreased by 0.97 feet. From June 17 to September 28, 2009, the depths to groundwater in the shallow wells typically decreased by 0.35 to 1.41 feet. The depths to groundwater in the shallow well (MW-13) located approximately 6 feet from RW-1 decreased by 4.10 feet. Free product was not observed in any of the wells. During each monitoring event, the groundwater elevations in the deep and shallow wells were inconsistent and could not be used to determine general deep and shallow groundwater flow directions beneath the site area. The groundwater elevations in the deep and shallow wells on September 28, 2009, are shown on Figures 5 and 6, respectively.

September 2009 Groundwater Sampling Event

On September 2 and 3, 2009, SLR conducted a groundwater sampling event to evaluate the affects of the deep groundwater recovery system and to monitor the natural attenuation of the remaining petroleum hydrocarbon concentrations in the shallow and deep groundwater. Prior to sampling, the deep groundwater recovery/treatment system was deactivated on September 2nd, and SLR measured the depths to groundwater in all of the monitoring wells by using an electronic water level probe. The depths to groundwater in the shallow wells ranged from 5.19 to 7.79 feet and the depths to groundwater in the shallow wells ranged from 4.55 to 7.76 feet. The groundwater elevations in the deep wells ranged from 1.36 to 1.47 feet above the NAVD 88 datum. The groundwater elevations in the shallow and deep wells were inconsistent and could not be used to determine general shallow or deep groundwater flow directions beneath the site area. The groundwater monitoring data from the September 2009 sampling event are presented in Table 2.

SLR personnel collected groundwater samples from all of the shallow monitoring wells (MW-5, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, and MW-14) and all of the deep monitoring wells (DMW-3, DMW-4, DMW-5, DMW-6, DMW-7, DMW-8, DMW-9, and DMW-10) for laboratory analysis. SLR purged the shallow wells by using a peristaltic pump with dedicated tubing at a flow rate of approximately 0.33 liters per minute. The deep wells were purged by using disposable bailers. During purging, field parameters of temperature, conductivity, dissolved oxygen (DO), pH, and oxidation-reduction (redox) potential were measured. Each groundwater sample was collected following the stabilization of the field parameter measurements. At the time of sample collection, the dissolved ferrous iron concentration of the purge water was measured. The samples were submitted to Friedman & Bruya, Inc. (F&B) in Seattle, Washington for analysis. After completing the sampling activities, SLR reactivated the deep groundwater recovery/treatment system. The sampling purge water was pumped through the treatment system.

The groundwater samples were analyzed for BTEX and GRO. The analytical results showed that the groundwater sample from deep wells DMW-9 and DMW-10 contained benzene concentrations (2,800 and 9 μ g/L, respectively) that exceeded the MTCA Method A cleanup level (5 μ g/L). The sample collected from DMW-9 also contained a GRO concentration (14,000 μ g/L) that exceeded the Method A cleanup level (800 μ g/L). The groundwater samples from all of the other deep wells did not contain analyte concentrations above the MRLs. The groundwater samples from all of the shallow wells, except MW-10, did not contain analyte concentrations above the MRLs. The groundwater samples from MW-10 did not contain analyte concentrations greater than the Method A

cleanup levels or the MRLs. The groundwater sample analytical results (petroleum hydrocarbons only) from the September 2009 event, as well as from the previous sampling events, are presented in Table 3. Copies of the laboratory analytical reports are presented in Appendix C.

The groundwater samples were also analyzed for the following natural attenuation parameters: dissolved manganese by EPA Method 200.8, alkalinity by Standard Method SM 2320, dissolved methane by EPA Method RSK 175 Modified, sulfate by EPA Method 375.2, and nitrate by EPA Method 353.2. The sample analytical results showed that the greatest dissolved methane and alkalinity concentrations were at the remaining area of elevated petroleum hydrocarbon concentrations (at DMW-9). The groundwater sample analytical results and field measurements (DO, redox potential, and dissolved ferrous iron) for the natural attenuation parameters (from the September 2009 event as well as from the previous sampling events) are presented in Table 4. Copies of the laboratory analytical reports are presented in Appendix C.

CONCLUSIONS

From June 17 through September 28, 2009, the deep groundwater recovery/treatment system extracted and treated a total of 592,675 gallons of water. The system operated at pumping rates that ranged from approximately 4 to 5 gallons per minute. The treatment system influent sample analytical results (benzene concentrations ranging from 95 to 500 μ g/L) indicate that the system was effectively recovering petroleum hydrocarbon-impacted groundwater. The treatment system sample analytical results showed that the carbon treatment system effectively adsorbed the extracted petroleum hydrocarbons prior to discharge to the sanitary sewer system.

The groundwater monitoring data showed that the greatest decreases in groundwater elevations in the deep and shallow monitoring wells were in the wells (DMW-9 and MW-13) located nearest to the recovery well. This indicates that the pumping operations are influencing both the deep and shallow groundwater zones in the area near the recovery well. The groundwater sample analytical results from the September sampling event showed that only the samples from deep wells DMW-9 and DMW-10 contained petroleum hydrocarbon concentrations greater than the MTCA Method A cleanup levels. The benzene and GRO concentrations in the September 2009 groundwater samples were typically less than the detected concentrations during the previous sampling event (in October 2008), which indicates that the system operations and natural attenuation are effectively remediating the remaining hydrocarbon concentrations in the groundwater. The relatively higher dissolved methane and alkalinity concentrations in the remaining area of deep groundwater contamination are consistent with previous results, and indicate that the impacted

Project 001.0173.00010

Mr. Tom Middleton Page 8

groundwater occurs in a reducing (little or no oxygen) environment and that there is more biological activity where petroleum hydrocarbons are present.

If you have any questions or comments about this report, please contact Mike Staton at (425)471-0479.

Sincerely,

SLR International Corp

Michael D. Staton, L.G. Principal Geologist

Attachments: Limitations References Tables 1 through 4 Figures 1 through 6 Appendix A – Soil Boring Log Appendix B – Laboratory Analytical Reports – Treatment System Samples Appendix C – Laboratory Analytical Reports – Groundwater Samples

cc: Kurt Peterson, Cascadia Law Group PLLC

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

REFERENCES

- SLR International Corp. 2007. Feasibility Study Report, Former Arco Service Station #0855, Longview, Washington. February 22.
- SLR International Corp. 2008. Remedial Action Report, Former Arco Service Station #0855, 4603 Ocean Beach Highway, Longview, Washington. July 21.
- Washington Department of Ecology. 2001. Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC. Publication No. 94-06. Amended February 12.

Washington Department of Ecology. 2007. Letter to Wakefield Family LLC. October 11.

TABLES

Table 1Groundwater Treatment System Sample Analytical ResultsFormer ARCO Service Station #0855Longview, Washington

			6	a -	R. 11. 11. 8			
Date	Sample Location	Sample Name	(ug/L)	(ng/L)	Denzene 1 oluene Eluyidenzene 1 olai Ayrenes (ug/L) (ug/L) (ug/L) (ug/L)	1 UIAL AVIEN		(ue/L)
06/18/09	Influent - First Carbon	INF1-61809	500	<1.0	<1.0	2.6	Ş 🖓	<250
	Effluent - First Carbon	EFF1-61809	<0.5	<0.5	<0.5	<0.5	8	<250
	Effluent - Second Carbon	EFF2-61809	<0.5	<0.5	<0.5	<0.5	8	<250
06/25/09	Effluent - First Carbon	EFF1-62509	<0.5	<0.5	<0.5	<0.5	8	<250
	Effluent - Second Carbon	EFF2-62509	<0.5	<0.5	<0.5	<0.5	8	<250
60/10/20	Effluent - First Carbon	EFF1-7109	<0.5	<0.5	<0.5	<0.5	0	<250
	Effluent - Second Carbon	EFF2-7109	<0.5	<0.5	<0.5	<0.5	8	<250
07/08/09	Effluent - First Carbon	EFF1-7809	<0.5	<0.5	<0.5	<0.5	8	<250
	Effluent - Second Carbon	EFF2-7809	<0.5	<0.5	<0.5	<0.5	8	<250
07/15/09	Influent - First Carbon	INF1-71509	230	0.7	4.0	6.4	8	<250
	Effluent - First Carbon	EFF1-71509	<0.5	<0.5	<0.5	<0.5	8	<250
	Effluent - Second Carbon	EFF2-71509	<0.5	<0.5	<0.5	<0.5	8	<250
07/29/09	Effluent - First Carbon	EFF1-72909	<0.5	<0.5	<0.5	<0.5	0	<250
	Effluent - Second Carbon	EFF2-72909	<0.5	<0.5	<0.5	<0.5	8	<250
08/13/09	Influent - First Carbon	INF1-81309	140	0.5	3.0	5.0	8	<250
	Effluent - First Carbon	EFF1-81309	<0.5	<0.5	<0.5	<0.5	8	<250
	Effluent - Second Carbon	EFF2-81309	<0.5	<0.5	<0.5	<0.5	♡	<250
08/26/09	Effluent - First Carbon	EFF1-82609	<0.5	<0.5	· <0.5	<0.5	~~~	<250
	Effluent - Second Carbon	EFF2-82609	<0.5	<0.5	<0.5	<0.5	8	<250
60/60/60	Influent - First Carbon	INF1-9909	95	<0.5	1.9	3.8	<i>\</i> 2	<250
	Effluent - First Carbon	EFF1-9909	<0.5	<0.5	<0.5	<0.5	 ₽	<250
	Effluent - Second Carbon	EFF2-9909	<0.5	<0.5	<0.5	<0.5	0	<250
09/28/09	Effluent - First Carbon	EFF1-92809	<0.5	<0.5	<0.5	<0.5	<i>\</i> 2	<250
	Effluent - Second Carbon	EFF2-92809	<0.5	<0.5	<0.5	<0.5	0	<250
Notes:								
The deep	The deep groundwater recovery/treatment system was activated on June 17, 2009.	ient system was a	ctivated on .	June 17, 20	.60			
$\mu g/\Gamma = \pi$	$\mu g/L = micrograms per liter (ppb).$							
^a Benzene	^a Benzene, toluene, ethylbenzene, and total xylenes by EPA Method 8260B.	otal xylenes by E	PA Method	8260B.				
^b Gasoline	^b Gasoline-range organics (GRO) by Northwest Method NWTPH-Gx	orthwest Method	NWTPH-G	x.				

TM PROJECTS/001.0173.00010 Longview GW Remedial Action/Table 1 - System Sample Analytical Results

Well Number	Top of Casing Elevation ^a (feet)	Date Measured	Depth to Groundwater ^b (feet)	Free Product Thickness (feet)	Groundwater Elevation (feet)		
	nitoring Wells						
MW-1	8.34	03/27/00	4.36	NP	3.98		
ļ		05/23/00	5.20	NP	3.14		
		07/20/00	5.55	NP	2.79		
		10/18/00	5.41	NP	2.93		
		01/18/01	4.81	NP	3.53		
		04/18/01	4.58	NP	3.76		
		07/17/01	5.54	NP	2.80		
		10/18/01	5.26	NP	3.08		
		01/16/02	4.45	NP	3.89		
		07/09/03	5.80	NP	2.54		
	8.25 [°]	05/25/05	4.12	NP	4.13		
		12/07/05	3.77	NP	4.48		
		08/16/06	6.58	NP	1.67		
			Well abandoned in September 2007.				
MW-2	8.76	03/27/00	3.61	NP	5.15		
		05/23/00	4.64	NP	4.12		
		07/20/00	5.06	NP	3.70		
		10/18/00	5.19	NP	3.57		
		01/18/00	3.96	NP	4.80		
		04/18/01	3.83	NP	4.93		
		07/17/01	5.08	NP	3.68		
		10/18/01	4.83	NP	3.93		
		01/16/02	3.71	NP	5.05		
		07/09/03	5.36	NP	3.40		
	8.89 ^c	05/25/05	4.15	NP	4.74		
		12/07/05	4.09	NP	4.80		
	/	08/16/06	5.96	NP	2.93		
			Well abandoned in				
MW-3	8.78	03/27/00	5.61	NP	3.17		
		05/23/00	6.46	NP	2.32		
		07/20/00	7.05	NP	1.73		
		10/18/00	6.84	NP	1.94		
		01/18/01	6.37	NP	2.41		
		04/18/01	5.46	NP	3.32		
		07/17/01	6.93	NP	1.85		
		10/18/01	6.47	NP	2.31		
		01/16/01	4.83	NP	3.95		
		07/09/03	6.72	0.02	2.08*		
	8.58 ^c	05/25/05	4.65	Film	3.93		
	0.20	12/07/05	4.45	0.01	4.14*		
		08/16/06	6.91	0.24	1.86*		
		00/10/00		September 2007.	1.00		

Well Number	Top of Casing Elevation ^a (feet)	Date Measured	Depth to Groundwater ^b (feet)	Free Product Thickness (feet)	Groundwater Elevation (feet)
	nitoring_Wells (continue				
MW-4	8.78	11/15/00	6.88	NP	1.90
		01/18/01	6.78	NP	2.00
		04/18/01	6.90	NP	1.88
		07/17/01	7.50	NP	1.28
		10/18/01	6.92	NP	1.86
		01/16/02	6.15	NP	2.63
		07/09/03	7.04	NP	1.74
	8.69 [°]	05/25/05	6.24	NP	2.45
		12/07/05	5.70	NP	2.99
		08/16/06	6.84	NP	1.85
			Well abandoned ir		
MW-5	8.78	11/15/00	6.54	NP	2.24
		01/18/01	6.07	NP	2.71
		04/18/01	5.46	NP	3.32
		07/17/01	6.79	NP	1.99
		10/18/01	6.50	NP	2.28
		01/16/02	5.49	NP	3.29
		07/09/03	6.86	NP	1.92
	8.67 ^c	05/25/05	5.64	NP	3.03
	0.07	12/07/05	5.53	NP	3.14
		08/16/06	6.28	NP	2.39
		12/11/07	4.64	NP	4.03
		03/11/08	4.90	NP	3.77
		07/01/08	5.33	NP	3.34
		09/30/08	6.17	NP	2.50
			6.00	NP	2.50
		06/17/09 07/01/09	6.00 6.25	NP NP	2.07
			6.80	NP NP	1.87
		07/29/09			1.67
		08/26/09	6.98	NP ND	
		09/02/09	7.08	NP	1.59
		09/28/09	7.03	NP	1.64
MW-6	8.21	11/15/00	6.15	NP	2.06
		01/18/01	5.85	NP	2.36
		04/18/01	5.70	NP	2.51
		07/17/01	6.02	NP	2.19
		10/18/01	6.03	NP	2.18
		01/16/02	5.80	NP	2.41
		07/09/03	6.16	NP	2.05
	8.11 ^c	05/25/05	4.00	NP	4.11
		12/07/05	5.70	NP	2.41
		08/16/06	6.40	NP	1.71
			Well destroyed in	November 2007.	

Well Number	Top of Casing Elevation ^a (feet)	Date Measured	Depth to Groundwater ^b (feet)	Free Product Thickness (feet)	Groundwater Elevation (feet)
Shallow Mc	onitoring Wells (continue	 ad)			
MW-7	8.45	11/15/00	6.52	NP	1.93
	0.15	01/18/01	6.24	NP	2.21
		04/18/01	5.98	NP	2.47
		07/17/01	6.44	NP	2.01
		10/18/01	6.39	NP	2.06
		01/16/02	6.31	NP	2.14
		07/09/03	7.00	NP	1.45
	8.26 ^c	05/25/05	5.61	NP	2.65
		12/07/05	6.36 ^d	NP	1.90
		08/16/06	6.40	NP	1.86
				n September 2007.	
MW-8	6.45	05/25/05	4.50	NP	1.95
		12/07/05	3.69	NP	2.76
		08/16/06	4.67	NP	1.78
		12/11/07	3.55	NP	2.90
		03/11/08	3.51	NP	2.94
		07/01/08	4.03	NP	2.42
		09/30/08	4.19	NP	2.26
		06/17/09	3.91	NP	2.54
		07/01/09	3.89	NP	2.56
		07/29/09	4.12	NP	2.33
		08/26/09	4.47	NP	1.98
		09/02/09	4.55	NP	1.90
		09/28/09	4.51	NP	1.94
MW-9	9.43	05/25/05	4.66	NP	4.77
		12/07/05	4.59	NP	4.84
		08/16/06	5.23	NP	4.20
		12/11/07	4.52	NP	4.91
		03/11/08	4.65	NP	4.78
		07/01/08	5.06	NP	4.37
		09/30/08	5.08	NP	4.35
		06/17/09	5.05	NP	4.38
		07/01/09	5.01	NP	4.42
		07/29/09	5.20	NP	4.23
		08/26/09	5.05	NP	4.38
		09/02/09	5.20	NP	4.23
		09/28/09	4.97	NP	4.46
MW-10	9.52	05/25/05	10.30	NP	-0.78
		12/07/05	5.90	NP	3.62
		08/16/06	7.18	NP	2.34
		12/11/07	4.22	NP	5.30
		03/11/08	6.02	NP	3.50
		07/01/08	6.53	NP	2.99
		09/30/08	4.51	NP	5.01
		06/17/09	6.61	NP	2.91
		07/01/09	6.89	NP	2.63
		07/29/09	7.35	NP	2.17
		08/26/09	7.34	NP	2.18
		09/02/09	7.76	NP	1.76
		09/28/09	7.51	NP	2.01

Well Number	Top of Casing Elevation ^a (feet)	Date Measured	Depth to Groundwater ^b (feet)	Free Product Thickness (feet)	Groundwater Elevation (feet)
Shallow Mor	nitoring Wells (continue	ed)			L
MW-11	8.16	12/07/05	3.87	NP	4.29
		08/16/06	6.10	NP	2.06
		12/11/07	3.51	NP	4.65
		03/11/08	4.86	NP	3.30
		07/01/08	5.61	NP	2.55
		09/30/08	6.56	NP	1.60
		06/17/09	5.70	NP	2.46
		07/01/09	6.02	NP	2.14
		07/29/09	6.72	NP	1.44
		08/26/09	7.37	NP	0.79
		09/02/09	7.52	NP	0.64
		09/28/09	7.01	NP	1.15
MW-12	8.21	12/11/07	2.69	NP	5.52
		03/11/08	4.25	NP	3.96
		07/01/08	5.20	NP	3.01
		09/30/08	5.85	NP	2.36
		06/17/09	5.41	NP	2.80
		07/01/09	5.57	NP	2.64
		07/29/09	6.11	NP	2.10
		08/26/09	6.21	NP	2.00
		09/02/09	6.33	NP	1.88
		09/28/09	5.76	NP	2.45
MW-13	9.03	12/11/07	1.10	NP	7.93
		03/11/08	1.53	NP	7.50
		07/01/08	3.53	NP	5.50
		09/30/08	4.73	NP	4.30
		06/17/09	3.65	NP	5.38
		07/01/09	4.68	NP	4.35
		07/29/09	6.07	NP	2.96
		08/26/09	6.97	NP	2.06
		09/02/09	7.04	NP	1.99
		09/28/09	7.75	NP	1.28
MW-14	8.39	12/11/07	1.50	NP	6.89
		03/11/08	3.85	NP	4.54
		07/01/08	4.27	NP	4.12
		09/30/08	6.44	NP	1.95
		06/17/09	5.49	NP	2.90
		07/01/09	6.00	NP	2.39
		07/29/09	6.52	NP	1.87
		08/26/09	6.85	NP	1.54
		09/02/09	6.93	NP	1.46
		09/02/09	6.93 6.90	NP NP	1.40

Well	Top of Casing	Dete Meaning	Depth to	Free Product	Groundwater
Number	Elevation ^a (feet)	Date Measured	Groundwater ^b (feet)	Thickness (feet)	Elevation (feet)
Deep Monito	oring Wells				
DMW-1	8.55	12/07/05	6.73	NP	1.82
		08/16/06	6.28	NP	2.27
			Well abandoned in	n September 2007.	
DMW-2	8.29	12/07/05	6.10	NP	2.19
		08/16/06	6.71	NP	1.58
			Well abandoned in		
DMW-3	6.66	12/07/05	12.15 ^d	NP	-5.49
		08/16/06	4.55	NP	2.11
		12/11/07	4.60	NP	2.06
		03/11/08	5.68	NP	0.98
		07/01/08	5.52	NP	1.14
		09/30/08	5.03	NP	1.63
		06/17/09	6.68	NP	-0.02
		07/01/09	6.41	NP	0.25
		07/29/09	5.38	NP	1.28
		08/26/09	5.15	NP	1.51
		09/02/09	5.19	NP	1.47
		09/28/09	6.81	NP	-0.15
DMW-4	8.55	12/07/05	6.30	NP	2.25
		08/16/06	7.12	NP	1.43
		12/11/07	6.08	NP	2.47
		03/11/08	6.54	NP	2.01
		07/01/08	6.41	NP	2.14
		09/30/08	6.91	NP	1.64
		06/17/09	6.61	NP	1.94
		07/01/09	6.76	NP	1.79
		07/29/09	7.00	NP	1.55
		08/26/09	7.05	NP	1.50
		09/02/09	7.13	NP	1.42
		09/28/09	7.20	NP	1.35
DMW-5	8.14	12/07/05	5.88	NP	2.26
		08/16/06	6.57	NP	1.57
		12/11/07	5.75	NP	2.39
		03/11/08	6.14	NP	2.00
		07/01/08	5.01	NP	3.13
		09/30/08	6.52	NP	1.62
		06/17/09	6.23	NP	1.91
		07/01/09	6.36	NP	1.78
		07/29/09	6.65	NP	1.49
		08/26/09	6.66	NP	1.48
		09/02/09	6.75	NP	1.39
		09/28/09	6.79	NP NP	1.35

Well Number	Top of Casing Elevation ^a (feet)	Date Measured	Depth to Groundwater ^b (feet)	Free Product Thickness (feet)	Groundwater Elevation (feet)
Deep Monito	oring Wells (continued)				•
DMW-6	9.15	08/16/06	7.74	NP	1.41
		12/11/07	6.68	NP	2.47
		03/11/08	7.15	NP	2.00
		07/01/08	7.04	NP	2.11
		09/30/08	7.53	NP	1.62
		06/17/09	7.25	NP	1.90
		07/01/09	7.37	NP	1.78
		07/29/09	7.62	NP	1.53
		08/26/09	7.67	NP	1.48
		09/02/09	7.79	NP	1.36
		09/28/09	7.80	NP	1.35
DMW-7	8.12	08/16/06	6.68	NP	1.44
		12/11/07	5.68	NP	2.44
		03/11/08	6.11	NP	2.01
		07/01/08	6.02	NP	2.10
		09/30/08	6.61	NP	1.51
		06/17/09	6.07	NP	2.05
		07/01/09	6.20	NP	1.92
		07/29/09	6.51	NP	1.61
		08/26/09	6.51	NP	1.61
		09/02/09	6.74	NP	1.38
		09/28/09	6.80	NP	1.32
DMW-8	9.09	08/16/06	7.65	NP	1.44
		12/11/07	6.60	NP	2.49
		03/11/08	7.06	NP	2.03
		07/01/08	6.97	NP	2.12
		09/30/08	7.48	NP	1.61
		06/17/09	7.01	NP	2.08
		07/01/09	7.13	NP	1.96
		07/29/09	7.44	NP	1.65
		08/26/09	7.45	NP	1.64
		09/02/09	7.69	NP	1.40
		09/28/09	7.76	NP	1.33
DMW-9	8.86	12/11/07	5.39	NP	3.47
/ /		03/11/08	6.84	NP	2.02
		07/01/08	6.85	NP	2.01
		09/30/08	7.20	NP	1.66
		06/17/09	6.55	NP	2.31
		07/01/09	6.80	NP	2.06
		07/29/09	7.36	NP	1.50
		08/26/09	7.41	NP	1.45
		09/02/09	7.44	NP	1.42
		09/28/09	7.52	NP NP	1.34

Well Number	Top of Casing Elevation ^a (feet)	Date Measured	Depth to Groundwater ^b (feet)	Free Product Thickness (feet)	Groundwater Elevation (feet)	
Deep Monito	oring Wells (continued)		· · · · ·		•	
DMW-10	8.38	12/11/07	4.91	NP	3.47	
		03/11/08	6.35	NP	2.03	
		07/01/08	6.24	NP	2.14	
		09/30/08	6.75	NP	1.63	
		06/17/09	6.44	NP	1.94	
		07/01/09	6.61	NP	1.77	
		07/29/09	6.83	NP	1.55	
		08/26/09	6.89	NP	1.49	
		09/02/09	6.99	NP	1.39	
		09/28/09	7.03	NP	1.35	
Deep Recove	ery Well					
RW-1	8.08	06/17/09	6.13	NP	1.95	
		07/01/09	21.20	NP	-13.12	
		07/29/09	21.85	NP	-13.77	
		08/26/09	20.05	NP	-11.97	
		09/02/09	6.69	NP	1.39	
		09/28/09	23.20	NP	-15.12	

NOTES:

NP = Free prroduct was not present.

The deep groundwater recovery/treatment system was activated on June 17, 2009, after measuring the depths to groundwater in the wells.

Values in bold and italics were measured when the deep groundwater recovery system was operating.

^a Top of well casing elevations were surveyed relative to NAVD 88 datum.

^b Measurements in feet below top of well casing.

^c Top of casing (TOC) elevation was re-surveyed in May 2005.

Water in well was under pressure and rising when the cap was removed. The water level was recorded after the well cap was off for over 2 hours.

* Groundwater elevation corrected for product thickness by using the equation: Groundwater elevation = TOC elevation - depth to groundwater + (product thickness x 0.80).

	_						
		Benzene ^a	Toluene ^a	Ethylbenzene ^a	Total Xylenes ^a	GRO ^b	DRO ^c
Well Number	Sample Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MTCA Method A Cleanu	p Levels ^d	5	1,000	700	1,000	800	500
Shallow Wells	·				· · · · · ·		
MW-1	03/27/00	ND	ND	ND	ND	ND	ND
	05/23/00	ND	ND	ND	ND	ND	NA
	07/20/00	ND	ND	ND	ND	ND	NA
	10/18/00	ND	ND	1.61	ND	404	NA
	01/18/01	ND	ND	ND	ND	95.6	NA
	04/18/01	ND	ND	ND	ND	NA	NA
	07/17/01	ND	2.63	1.46	ND	386	NA
	10/18/01	ND	ND	ND	ND	ND	NA
	01/16/02	ND	ND	ND	ND	104	NA
	07/09/03	< 0.50	<0.50	<0.50	<1.0	<50	<250
	05/25/05	<1.0	<1.0	<1.0	<2.0	<100	<50
	11/30/05	<1.0	<1.0	<1.0	<3.0	<100	<50
				Vell abandoned in	September 2007		
MW-2	03/27/00	6.89	49.5	599	2,490	17,100	ND
	05/23/00	26.2	16.2	614	1,770	13,200	NA
	07/20/00	11.9	11.8	304	330	7,220	NA
	10/18/00	3.67	1.23	13.9	7.55	743	NA
	01/18/00	ND	ND	41.1	5.62	691	NA
	04/18/01	ND	ND	8.73	ND	NA	NA
	07/17/01	ND	1.26	14	ND	430	NA
	10/18/01	2.11	ND	3.64	ND	304	NA
	01/16/02	1.16	0.81	37.1	6.71	370	NA
	07/09/03	0.86	< 0.50	6.43	1.28	131	<250
	05/30/05	<1.0	<1.0	<1.0	<2.0	<100	52
	12/01/05	<1.0	<1.0	<1.0	<3.0	120	<50
	02/07/00	5.500		Vell abandoned in	<u> </u>		
MW-3	03/07/00	7,520	12,900	2,780	14,500	93,700 65 200	ND
	05/23/00	4,710	8,330	2,280	11,200	65,200	NA NA
	07/20/00	10,700	22,600 33,000	3,160 4,890	17,400 26,700	145,000 179,000	NA NA
	10/18/00	12,900	17,200	4,890 3,940		1/9,000	NA
	01/18/01	9,380 7,700	· · ·	3,430	20,230	121,000 NA	NA
1	04/18/01 07/17/01	7,700 10,100	15,300 21,400	4,120	16,990 20,900	940,000	NA
	10/18/01	7,200	19,700	3,340	17,300	940,000 139,000	NA
	01/16/02	13,600	26,600	3,920	20,800	139,000	NA
	01/18/02 07/09/03	13,800	20,000	4,560	20,800	124,000	3,750
	05/25/05	11,000		ampled due to pre	,		5,750
	11/28/05			ampled due to pre			
	11/20/05			Vell abandoned in			
L	<u> </u>			ren aballabilea II		·	

Well Number	Sample Date	Benzene ^a (μg/L)	Toluene ^a (µg/L)	Ethylbenzene ^a (µg/L)	Total Xylenes ^a (µg/L)	GRO ^b (μg/L)	DRO ^c (µg/L)
MTCA Method A Cleanu	p Levels ^d	5	1,000	700	1,000	800	500
Shallow Wells (continued)		,	1	,,		
MW-4	11/15/00	1,310	53.6	2,430	7,250	45,500	NA
	01/18/01	1,130	ND	2,030	2,764	29,400	NA
	04/18/01	1,280	ND	1,700	2,591	NA	NA
	07/17/01	1,610	35	2,870	1,870	34,900	NA
	10/18/01	1,040	ND	2,300	1,320	33,000	NA
	01/16/02	733	ND	920	948	19,300	NA
	07/09/03	906	39.1	1,350	156	14,100	798
	05/24/05	310	2.90	410	185 ^e	9,600	2,300
	12/01/05	990	140	1,100	1,353°	11,000	2,900 ^f
			v	Vell abandoned in	September 2007	•	
MW-5	11/15/00	ND	ND	ND	ND	ND	NA
	01/18/01	ND	ND	ND	ND	786	NA
	04/18/01	9.42	ND	6.76	10.1	NA	NA
	07/17/01	1.83	1.16	1.90	3.28	694	NA
	10/18/01	3.05	1.39	1.48	1.45	647	NA
	01/16/02	52.3	3.82	48	24.9	2,800	NA
	07/09/03	1.26	0.99	1.54	4.64	615	<250
	05/24/05	<1.0	<1.0	<1.0	<2.0	460	120
	11/28/05	<1.0	<1.0	<1.0	<3.0	420	230 ^f
	12/11/07	<1.0	<1.0	<1.0	<3.0	140	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/02/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
MW-6	11/15/00	ND	ND	ND	ND	131	NA
	01/18/01	ND	ND	ND	ND	732	NA
	04/18/01	ND	ND	ND	ND	NA	NA
	07/17/01	ND	1.35	1.33	5.79	892	NA
	10/18/01	ND	ND	2.60	5.48	1,000	NA
	01/16/02	ND	0.72	1.58	2.78	810	NA
	07/09/03	< 0.50	0.53	1.15	4.84	462	958
	05/25/05	<1.0	<1.0	<1.0	<2.0	370	270
	11/28/05	<1.0	<1.0	<1.0	<1.0	NA	<1.0
				Well destroyed in			
MW-7	11/15/00	ND	ND	ND	1.35	113	NA
	01/18/01	ND	ND	ND	ND	242	NA
	04/18/01	ND	ND	ND	ND	NA	NA
	07/17/01	ND	ND	ND	ND	275	NA
	10/18/01	ND	ND	ND	ND	286	NA
	01/16/02	ND	ND	ND	ND	362	NA
	07/09/03	< 0.50	<0.50	<0.50	1.48	232	2,050
	05/25/05	<1.0	<1.0	<1.0	<2.0	<100	220
	11/30/05	<1.0	<1.0	<1.0	<3.0	<100	140
			V	Vell abandoned in	September 2007	•	

Well Number	Sample Date	Benzene ^a (μg/L)	Toluene ^a (μg/L)	Ethylbenzene ^a (µg/L)	Total Xylenes ^a (µg/L)	GRO ^b (μg/L)	DRO ^c (µg/L)
MTCA Method A Cleanu		5	1,000	700	1,000	800	500
Shallow Wells (continued		5	1,000	/00	1,000	000	
MW-8	05/25/05	<1.0	<1.0	<1.0	<3.0	<100	<70
	11/29/05	<1.0	<1.0	<1.0	<3.0	<100	<50
	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/01/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/01/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
MW-9	05/25/05	<1.0	<1.0	<1.0	<3.0	<100	<50
	11/28/05	<1.0	<1.0	<1.0	<3.0	<100	<50
	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/02/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
MW-10	05/25/05	45	<1.0	110	<2.0	1,000	1,200
	11/30/05	31	<1.0	110	<3.0	1,400	1,000 ^f
	12/11/07	9.0	3.0	65	<3.0	3,100	1,000 ^g
	03/11/08	16	2.0	40	<3.0	3,000	1,200 ^g
	07/03/08	18	2.0	53	41	2,500	1,100 ^g
	10/02/08	<1.0	<1.0	<1.0	<3.0	1,300	NA
	09/03/09	<1.0	<1.0	2.0	<3.0	200	NA
MW-11	12/05/05	<1.0	<1.0	<1.0	<3.0	<100	<50
	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/02/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
MW-12	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/02/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
MW-13	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/03/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/02/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
MW-14	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	50
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/01/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA

		Benzene ^a	Toluene ^a	Ethylbenzene ^a	Total Xylenes ^a	GRO ^b	DRO ^c
Well Number	Sample Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MTCA Method A Cleanu	p Levels ^d	5	1,000	700	1,000	800	500
Deep Wells/Wellpoint							
SSB-15	05/25/05	9,600	1,200	2,400	11,600 ^e	67,000 E	2,300
DMW-1	12/07/05	4,000	160	1,100	4,090 ^e	22,000	2,900^f
	08/17/06	4,100	<1.0	520	841 ^e	16,000	930 ^f
			V	Vell abandoned in	September 2007	•	
DMW-2	12/07/05	11	<1.0	40	46 ^f	270	<50
	08/16/06	10	<1.0	5.6	<3.0	<100	<50
			V	Vell abandoned in	September 2007	•	
DMW-3	12/07/05	<1.0	<1.0	<1.0	<3.0	<50	<50
	08/17/06	<1.0	<1.0	<1.0	<3.0	<100	<50
	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/01/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
DMW-4	12/05/05	56	<1.0	<1.0	<3.0	230	<50
	08/17/06	5.7	<1.0	<1.0	<3.0	210	<50
	12/11/07	27	3.0	2.0	4.0	260	<50
	03/11/08	6.0	<1.0	<1.0	<3.0	230	68 ^g
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/02/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
DMW-5	12/05/05	36	<1.0	<1.0	<3.0	130	<50
	08/17/06	74	<1.0	<1.0	<3.0	170	<50
	12/11/07	41	<1.0	<1.0	<3.0	100	<50
	03/11/08	10	<1.0	<1.0	<3.0	<100	<50
	07/02/08	1.0	<1.0	<1.0	<3.0	<100	<50
	10/01/08	42	<1.0	<1.0	<3.0	110	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
DMW-6	08/16/06	<1.0	<1.0	<1.0	<3.0	<100	<50
	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/02/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA
DMW-7	08/16/06	<1.0	<1.0	<1.0	<3.0	<100	<50
	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/01/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/01/08	<1.0	<1.0	<1.0	<3.0	<100	NA
	09/03/09	<1.0	<1.0	<1.0	<3.0	<100	NA

Well Number MTCA Method A Cleanu	Sample Date	Benzene ^a (μg/L) 5	Toluene ^a (μg/L) 1,000	Ethylbenzene ^a (µg/L) 700	Total Xylenes ^a (µg/L) 1,000	GRO ^b (μg/L) 800	DRO ^c (μg/L) 500
Deep Wells/Wellpoint (co		5	1,000	/00	1,000	800	500
DMW-8	08/16/06	<1.0	<1.0	<1.0	<3.0	<100	<50
	12/11/07	<1.0	<1.0	<1.0	<3.0	<100	<50
	03/11/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	07/02/08	<1.0	<1.0	<1.0	<3.0	<100	<50
	10/02/08	<1.0	<1.0	<1.0	<3.0	<100	NA
DMW-9	09/03/09	<1.0 <1.0 6,100	<1.0 <1.0 1,900	<1.0 <1.0 970	<3.0 <3.0 3,100	<100 <100 27,000	NA NA 600 ^g
	03/11/08	3,000	150	380	880	13,000	450 ^g
	07/03/08	3,600	3.0	320	610	9,500	520 ^g
	10/02/08	3,300	4.0	140	270	8,600	NA
DMW-10	09/03/09	2,800	4.0	320	1,100	14,000	NA
	12/11/07	60	4.0	88	130	750	53 ^g
	03/11/08	75	4.0	140	120	1,000	74 ^g
	07/02/08	89	6.0	160	130	1,100	68 ^g
	10/01/08	90	5.0	120	25	820	NA
	09/03/09	9.0	<1.0	2.0	<3.0	<100	NA

NOTES: Values in bold exceed the MTCA Method A cleanup levels.

All concentrations in micrograms per liter (µg/L).

ND = Not detected above the laboratory method reporting limit (MRL).

NA = Not analyzed.

^a Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B or EPA Method 8260B.

^b Gasoline-range organics (GRO) by Ecology Method NWTPH-Gx.

^c Diesel-range organics (DRO) by Ecology Method NWTPH-Dx.

^d Chapter 173-340 WAC, Model Toxics Control Act (MTCA) Cleanup Regulation, Method A Cleanup Levels. Amended February 12, 2001.

^e Total xylenes calculated by using the formula: total xylenes concentration = (m, p-xylene concentration) + (o-xylene concentration).

The laboratory reported that the DRO concentration is due to overlap from the gasoline range.

^g The laboratory reported that the pattern of chromatogram peaks from the sample were not indicative of diesel.

Table 4 Groundwater Sample Analytical Results - Natural Attenuation Parameters Former Arco Service Station #0855 Longview, Washington

				Dissolved	Dissolved	Dissolved	Dissolved	Alkalinity	Redox
Sample	Sample	Nitrate ^a	Sulfate ^a	Methane ^b	Oxygen ^c	Manganese ^d	Ferrous Iron ^e	(mg/L	Potential ^g
Location	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	CaCO ³)	(mV)
Shallow Wells									
MW-5	12/12/07	12.2	969	0.6	0.2	2.9	5.0	10.3	119
	03/13/08	2.3	341	< 0.007	0.4	2.5	3.3	19.3	-123
	07/02/08	0.5	275	0.5	0.1	1.4	NM	80.8	10.0
	10/02/08	0.6	288	0.5	1.7	1.9	2.9	106	92.8
	09/03/09	<0.1	202	0.3	0.6	1.4	4.6	49.4	-67.4
MW-8	12/12/07	< 0.01	4.8	0.1	1.9	0.5	1.7	33.3	248
	03/13/08	< 0.2	6.6	0.001	0.7	0.4	2.1	57.6	-140
	07/01/08	< 0.1	14.0	2.0	0.2	0.4	NM	73.0	-78.9
	10/01/08	< 0.1	15.9	1.1	1.3	0.5	3.6	74.1	-49.3
	09/03/09	<0.1	0.1	1.5	0.7	0.4	4.4	67.4	-110
MW-9	12/12/07	0.5	5.0	0.0008	4.0	0.004	<0.1	40.1	237
	03/13/08	0.5	8.5	3.3	3.2	0.01	0.6	39.7	-33.5
	07/02/08	1.2	36.4	< 0.0007	2.2	0.02	NM	80.2	85.6
	10/02/08	0.3	8.0	0.004	2.8	0.4	0.6	51.6	135
	09/03/09	0.3	9.3	0.01	1.9	0.5	0.4	52.9	-123
MW-10	12/12/07	0.04	74.9	6.5	3.0	2.4	2.0	174	294
	03/13/08	< 0.2	186	1.8	2.1	2.2	3.1	160	-117
	07/02/08	< 0.2	199	7.3	0.1	3.3	NM	232	15.2
	10/02/08	<0.1	69.0	1.7	1.3	2.1	3.0	181	111
	09/03/09	< 0.1	34.3	7.9	1.3	1.4	3.0	180	111
MW-11	12/12/07	0.8	643	0.1	0.6	1.8	3.8	28.4	200
	03/13/08	0.4	199	< 0.0007	0.6	2.5	1.4	45.1	-81.5
	07/02/08	0.04	162	0.2	0.2	1.0	NM	89.4	25.4
	10/02/08	<0.1	89.5	0.4	1.5	1.8	2.4	138	27.1
	09/03/09	< 0.1	82.6	0.6	0.7	1.6	4.4	126	-88.1
MW-12	12/12/07	37.0	1,500	0.2	0.7	5.3	3.8	6.9	. 178
	03/13/08	27.5	1,060	0.0009	0.8	6.8	<0.1	58.8	-147
	07/02/08	< 0.1	204	0.5	0.2	8.3	NM	52.3	83.7
	10/02/08	0.4	1,280	0.3	0.9	11.3	<0.1	91.8	141
	09/03/09	<0.1	882	0.8	1.7	<u>1</u> 1.5	l.2	146	-117
MW-13	12/12/07	31.7	1,590	0.04	NM	8.7	<0.1	70.7	236
	03/13/08	21.5	1,540	0.005	0.6	9.1	<0. l	218	-113
	07/03/08	4.5	1,420	0.007	0.1	9.8	NM	133	21.9
	10/02/08	1.9	1,800	0.02	1.3	16.3	<0.1	152	376
	09/03/09	<0.1	805	0.1	0.6	11.3	0.2	96	-67
MW-14	12/12/07	16.7	1,190	0.07	2.5	9.4	0.2	16.0	215
	03/13/08	5.7	945	0.0009	2.4	7.1	1.2	57.8	-164
	07/02/08	1.0	891	< 0.0007	0.3	2.4	NM	43.4	28.7
	10/01/08	0.3	879	< 0.0007	1.6	1.9	<0.1	80.7	547
	09/03/09	<0.1	444	0.1	0.7	1.1	<0.1	45.4	-108
Deep Wells									
DMW-3	12/12/07	< 0.05	31.8	1.6	3.8	2.8	1.0	220	256
	03/13/08	< 0.2	23.4	2.5	2.0	2.6	3.0	197	-129
	07/02/08	< 0.1	43.9	1.6	0.2	2.3	NM	214	-96.2
	10/01/08	<0.1	22.2	2.2	1.3	2.8	3.5	210	276
	09/03/09	< 0.1	8.8	1.4	1.3	2.3	3.5	220	276

Table 4 Groundwater Sample Analytical Results - Natural Attenuation Parameters Former Arco Service Station #0855 Longview, Washington

Sample Location	Sample Date	Nitrate ^a (mg/L)	Sulfate ^a (mg/L)	Dissolved Methane ^b (mg/L)	Dissolved Oxygen ^c (mg/L)	Dissolved Manganese ^d (mg/L)	Dissolved Ferrous Iron ^e (mg/L)	Alkalinity ^f (mg/L CaCO ³)	Redox Potential ^g (mV)		
Deep Wells	Deep Wells (continued)										
DMW-4	12/12/07	< 0.01	22.4	10.1	0.1	2.2	3.6	174	105		
	03/13/08	< 0.2	297	0.0009	0.2	15.5	4.6	22.2	-137		
	07/02/08	3.4	1,040	1.6	0.1	2.3	NM	65.8	-86.8		
	10/02/08	<0.2	309	0.9	1.1	3.4	3.0	72.7	-18.4		
	09/03/09	<0.1	24.4	4.2	1.5	1.7	4.4	178	-93.0		
DMW-5	12/12/07	<0.01	13.0	13.7	0.1	2.3	3.4	177	102		
	03/13/08	<0.2	10.3	8.2	0.2	2.9	3.6	180	-128		
	07/02/08	<0.1	42.6	8.8	0.4	2.5	NM	221	-101		
	10/01/08	<0.1	7.7	5.9	1.4	2.4	NM	166	48.6		
	09/03/09	< 0.05	33.6	4.2	1.7	1.6	2.8	126	-318		
DMW-6	12/12/07	< 0.01	8.0	11.7	0.2	1.7	2.2	104	121		
	03/13/08	<0.2	7.5	9.5	0.2	4.3	2.2	112	-137		
	07/02/08	< 0.1	54.0	7.6	0.1	2.0	NM	149	-86.1		
	10/02/08	< 0.1	39.0	6.4	1.1	2.0	2.6	154	-25.6		
	09/03/09	< 0.1	< 0.1	9.5	0.5	1.7	4.2	146	-117		
DMW-7	12/12/07	< 0.01	23.3	9.1	0.3	3.7	3.1	158	93.6		
	03/13/08	<0.2	29.6	8.3	0.4	12.4	3.0	155	-172		
	07/01/08	<0.1	53.3	5.6	0.2	5.6	NM	195	-88.1		
	10/01/08	<0.2	34.7	5.2	1.5	6.4	3.0	203	6.9		
•	09/03/09	< 0.05	18.0	5.9	2.2	3.5	4.2	174	-261.0		
DMW-8	12/12/07	0.01	6.2	3.8	0.2	1.9	4.4	133	109		
	03/13/08	< 0.2	17.6	2.0	0.3	2.1	3.1	107	-160		
	07/02/08	< 0.1	37.0	1.6	0.2	1.8	NM	109	-5.9		
	10/02/08	<0.1	26.8	2.0	1.2	2.0	2.6	151	1,103		
	09/03/09	< 0.05	23.2	3.1	1.7	1.9	3.6	142	-290		
DMW-9	12/12/07	< 0.01	55.7	27.4	0.2	1.9	5.7	270	113		
	03/13/08	<0.5	32.2	19.8	0.2	3.4	3.7	355	-128		
	07/03/08	<0.1	38.9	21.1	0.2	2.6	NM	406	-83.8		
	10/02/08	<0.1	20.0	21.0	1.2	2.8	2.7	451	4.0		
	09/03/09	<0.1	<0.1	20.6	0.7	2.1	4.2	330	-120		
DMW-10	12/12/07	<0.01	24.2	11.3	0.09	3.0	3.6	191	92.5		
	03/13/08	<0.2	7.7	8.1	0.1	5.4	3.1	· 227	-94.2		
	07/02/08	<0.1	27.9	11.0	0.3	4.0	NM	266	-113		
	10/01/08	<0.2	5.3	11.5	1.5	4.5	4.4	271	-0.6		
	09/03/09	< 0.05	32.7	2.9	1.1	2.1	2.8	117	-343		

NOTES:

NM = Not measured.

mg/L = milligrams per liter (ppm).

^a Nitrate by EPA Method 353.2.

^a Sulfate by EPA Method 375.2.

^b Dissolved methane by EPA Method RSK 175 Modified.

^c Dissolved oxygen by EPA Method 360.1 (field instrument reading).

^d Dissolved manganese by EPA Method 200.8.

^e Dissolved ferrous iron by Standard Method SM 3500 (field test kit).

^f Alkalinity by Standard Method SM 2320.

^g Oxidation-reduction (redox) potential by EPA Method D1498-76 (field instrument reading).

:\DRIVE_E1Clients\SLR\001\001.0173.00010\02-02.dwg, 10/1/2009 7:53:25 PM, B

LEGEND

- DMW-5 O DEEP GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION
- RW-1 O DEEP GROUNDWATER RECOVERY WELL LOCATION AND DESIGNATION
- (1.94) DEEP GROUNDWATER ELEVATION (IN FEET ABOVE THE NAVD 88 DATUM)

FIGURE 2 FORMER ARCO SERVICE STATION #0855 4603 OCEAN BEACH HIGHWAY LONGVIEW, WASHINGTON DEEP GROUNDWATER ELEVATIONS -JUNE 17, 2009 (PRIOR TO SYSTEM ACTIVATION)

FORMER ARCO SERVICE STATION #0855 4603 OCEAN BEACH HIGHWAY LONGVIEW, WASHINGTON

SITE PLAN AND SYSTEM LAYOUT

LEGEND

- MW-5 🔶 SHALLOW GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION
- RW-1 🙆 DEEP GROUNDWATER RECOVERY WELL LOCATION AND LOCATION
 - (2.91) SHALLOW GROUNDWATER ELEVATION (IN FEET ABOVE THE NAVD 88 DATUM)

FIGURE 4 FORMER ARCO SERVICE STATION #0855 4603 OCEAN BEACH HIGHWAY LONGVIEW, WASHINGTON SHALLOW GROUNDWATER ELEVATIONS -JUNE 17, 2009 (PRIOR TO SYSTEM ACTIVATION)

C:\DRIVE_E\Clients\SLR\001\001.0173.00010\03-05.dwg, 10/5/2009 6:47:48 PM, BDT

LEGEND

- DMW-5 O DEEP GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION
- RW-1 O DEEP GROUNDWATER RECOVERY WELL LOCATION AND DESIGNATION
- (1.35) DEEP GROUNDWATER ELEVATION (IN FEET ABOVE THE NAVD 88 DATUM)

FIGURE 5 FORMER ARCO SERVICE STATION #0855 4603 OCEAN BEACH HIGHWAY LONGVIEW, WASHINGTON DEEP GROUNDWATER ELEVATIONS -SEPTEMBER 28, 2009 (SYSTEM OPERATING)

APPENDIX A SOIL BORING LOG

S	LR	Bothell Teleph	, Washi one: 42	enue SE ington 98 5.402.88	3021		WELL NUMBER RW-1 PAGE 1 OF 3			
		Corp Fax: 42								
CLIENT Wakefield Family, LLC										
						PROJECT LOCATION Longview, W				
	DATE STARTED <u>9/5/08</u> COMPLETED <u>10/30/08</u> DRILLING DRILLING CONTRACTOR <u>Cascade Drilling</u>									
					w Stem Auger					
						AT END OF AFTER DRILLING				
DEPTH (ft)	ШЦ	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRAM			
0.0	S									
CENERAL BH/TP/WELL FORMER ARCO #0055.6PJ GINT US. CDT 2/5/09	-		SP		GRAVELLY SAND, light	brown, fine- to coarse-grained, some fine wet, no hydrocarbon-like odors (FILL).	to Cement Hydrated bentonite chips Native sand backfill Hydrated bentonite chips			
8						(Continued Next Page)				

Between depths of 15 and 25.5 feet, soil samples were collected on a continuous basis by using a decontaminated 18-inch-long, 2-inch inside-diameter split-spoon sampler.

SS = split-spoon sampler

SLR GENERAL

Soil samples collected during initial drilling on September 5, 2008.
SLR SLR SLR SLR International Corp SLR International Corp		VELL NUMBER RW-1 PAGE 3 OF 3
CLIENT Wakefield Family, LLC	PROJECT NAME Former Arco Service	e Station #0855
PROJECT NUMBER 001.0173.00008	PROJECT LOCATION Longview, Was	shington
DEPTH (ft) INTERVAL TYPE NAME BLOW COUNTS PER FOOT (N VALUE)	MATERIAL DESCRIPTION	WELL DIAGRAM
32.5	SAND, dark gray, fine- to coarse-grained, dense, wet, no hydrocarbon-like odors. <i>(continued)</i>	6"-diameter Sch. 40 PVC well cap
35.0	 Boring completed at 35.0 feet. WELL COMPLETION DETAILS 0.3 to 24.3 feet: 6.0-inch-diameter Schedule 40 PVC blan pipe. 24.3 to 29.3 feet: 6.0-inch-diameter Schedule 40 PVC we with 0.020-inch machined slots. 29.3 to 31.3 feet: 6.0-inch-diameter Schedule 40 PVC su 0 to 1.5 feet: Concrete. 1.5 to 3 feet: Hydrated bentonite chips. 3 to 10 feet: Native sand. 10 to 18.5 feet: Hydrated bentonite chips. 18.5 to 32 feet: #2/12 Cemex sand. 32 to 35 feet: Native sand. 	ell screen
REMARKS Between depths of 15 and 25.5 feet, s split-spoon sampler. SS = split-spoon sampler Soil samples collected during initial dri	samples were collected on a continuous basis by using a decontaminat	ed 18-inch-long, 2-inch inside-diamete

SLR GENERAL FORMER ARCO #0855.GPJ GINT US.GDT 11/4/08

APPENDIX B

LABORATORY ANALYTICAL REPORTS – TREATMENT SYSTEM SAMPLES

June 22, 2009

Analytical Report for Service Request No: K0905504

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Longview

Dear Mike:

Enclosed are the results of the samples submitted to our laboratory on June 18, 2009. For your reference, these analyses have been assigned our service request number K0905504.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/LG

Page 1 of <u>2</u>]

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon
- range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

SLR International Client: **Project:** Longview Sample Matrix: Water

Service Request No.: Date Received:

K0905504 06/18/09

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Three water samples were received for analysis at Columbia Analytical Services on 06/18/09. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Gasoline Range Organics by Method NWTPH-Gx

No anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for m,p-Xylenes in Initial Calibration (ICAL) ID 8530. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 9.7%. The calibration met the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

Elevated Detection Limits:

The sample INF1-61809 required dilutions due to the presence of elevated levels of Benzene. The reporting limits were adjusted to reflect the dilution.

No other anomalies associated with the analysis of these samples were observed.

	R	06/22/09
and by	·	Date

Analytical Results

Client:	SLR International	Service Request:	K0905504
Project:	Longview	Date Collected:	06/18/2009
Sample Matrix:	Water	Date Received:	06/18/2009

Gasoline Range Organics

Sample Name:	INF1-61809	Units:	0
Lab Code:	K0905504-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	06/19/09	06/19/09	KWG0905351	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	98	50-150	06/19/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International	Service Request: 1	K0905504
Project:	Longview	Date Collected:	06/18/2009
Sample Matrix:	Water	Date Received:	06/18/2009

Gasoline Range Organics

Sample Name: Lab Code:	EFF1-61809 K0905504-00	2						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx			·			1	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	06/19/09	06/19/09	KWG0905351	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	99	50-150	06/19/09	Acceptable

Comments:

_

Analytical Results

Client: Project: Sample Matrix:	SLR International Longview Water	Date	ce Request: e Collected: e Received:	06/18/2009
		Gasoline Range Organics	The Mark	a.

Sample Name:	EFF2-61809	Units:	Ų
Lab Code:	K0905504-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	06/19/09	06/19/09	KWG0905351	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	99	50-150	06/19/09	Acceptable

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0905504
Project:	Longview	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Gasoline Range Organics

Sample Name: Lab Code:	Method Blank KWG090535							Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx]	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	06/19/09	06/19/09	KWG0905351	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzenc	99	50-150	06/19/09	Acceptable	

Comments:

QA/QC Report

Service Request: K0905504

Client:SLR InternationalProject:LongviewSample Matrix:Water

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5030B **Analysis Method:** NWTPH-Gx Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>
INF1-61809	K0905504-001	98
EFF1-61809	K0905504-002	99
EFF2-61809	K0905504-003	99
Batch QCDUP	KWG0905351-1	99
Method Blank	KWG0905351-3	99
Batch QC	K0905283-018	99
Lab Control Sample	KWG0905351-2	104

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Longview
Sample Matrix:	Water

Scrvice Request: K0905504 Date Extracted: 06/19/2009 Date Analyzed: 06/19/2009

Duplicate Sample Summary Gasoline Range Organics

Sample Name:	Batch QC	Units:	0
Lab Code:	K0905283-018	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	NWTPH-Gx	Extraction Lot:	

			Batch Q KWG09	•	Relative	
Analyte Name	MRL	Sample Result	Duplicate Result	e Sample Average	Percent Difference	RPD Limit
Gasoline Range Organics-NWTPH	250	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	SLR International
Project:	Longview
Sample Matrix:	Water

Lab Control Spike Summary **Gasoline Range Organics**

Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Lab (KW	Control Samp /G0905351-2 Control Spik	!	%Rec	Units: Basis: Level: Extraction Lot:	NA . Low
Analyte Name		Result	Expected	%Rec	Limits		
Gasoline Range Organics	S-NWTPH	479	500	96	80-119		

Results flagged with an asterisk (*) indicate values outside control criteria. Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Service Request: K0905504 Date Extracted: 06/19/2009 Date Analyzed: 06/19/2009

Analytical Results

Client:	SLR International	Service Request:	K0905504
Project:	Longview	Date Collected:	06/18/2009
Sample Matrix:	Water	Date Received:	06/18/2009

Volatile Organics by GC/MS

Sample Name:	INF1-61809	Units:	C .
Lab Code:	K0905504-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result_Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	500 D	10	20	06/19/09	06/19/09	KWG0905356	
Toluene	ND U	1.0	2	06/19/09	06/19/09	KWG0905356	
Ethylbenzene	ND U	1.0	2	06/19/09	06/19/09	KWG0905356	
m,p-Xylenes	2.6 D	1.0	2	06/19/09	06/19/09	KWG0905356	
o-Xylene	ND U	1.0	2	06/19/09	06/19/09	KWG0905356	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	104	78-129	06/19/09	Acceptable	
Dibromofluoromethane	95	73-122	06/19/09	Acceptable	
4-Bromofluorobenzene	92	68-117	06/19/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International	Service
Project:	Longview	Date
Sample Matrix:	Water	Date

 Service Request:
 K0905504

 Date Collected:
 06/18/2009

 Date Received:
 06/18/2009

Volatile Organics by GC/MS

Sample Name:	EFF 1-61809	Units:	<u> </u>
Lab Code:	K0905504-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0,50]	06/19/09	06/19/09	KWG0905356	
Toluene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
Ethylbenzene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
m,p-Xylenes	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
o-Xylene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	105	78-129	06/19/09	Acceptable	
Dibromofluoromethane	98	73-122	06/19/09	Acceptable	
4-Bromofluorobenzene	90	68-117	06/19/09	Acceptable	

Comments:

Merged

Page

Analytical Results

Client:	SLR International	Service Request:	K0905504
Project:	Longview	Date Collected:	06/18/2009
Sample Matrix:	Water	Date Received:	06/18/2009

Volatile Organics by GC/MS

Sample Name:	EFF2-61809	Units:	C
Lab Code:	K0905504-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
Toluene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
Ethylbenzene	ND U	0.50]	06/19/09	06/19/09	KWG0905356	
m,p-Xylenes	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
o-Xylene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	107	78-129	06/19/09	Acceptable
Dibromofluoromethane	100	73-122	06/19/09	Acceptable
4-Bromofluorobenzene	91	68-117	06/19/09	Acceptable

Comments:

Analytical Results

e

Client:	SLR International
Project:	Longview
Sample Matrix:	Water

Service Request: K0905504 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0905356-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
Toluene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
Ethylbenzene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
m,p-Xylenes	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	
o-Xylene	ND U	0.50	1	06/19/09	06/19/09	KWG0905356	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	106	78-129	06/19/09	Acceptable	
Dibromofluoromethane	97	73-122	06/19/09	Acceptable	
4-Bromofluorobenzene	90	68-117	06/19/09	Acceptable	

Comments:

Merged

Form 1A - Organic 16

QA/QC Report

Service Request: K0905504

Client:SProject:ISample Matrix:V

SLR International Longview Water

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: PERCENT Level: Low

.

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>
INF1-61809	K0905504-001	104	95	92
EFF1-61809	K0905504-002	105	98	90
EFF2-61809	K0905504-003	107	100	91
Method Blank	KWG0905356-4	106	97	90
INF1-61809MS	KWG0905356-1	105	95	98
INF1-61809DMS	KWG0905356-2	106	95	97
Lab Control Sample	KWG0905356-3	106	97	98

Surrogate Recovery Control Limits (%)

Sur2 = Dibromofluoromethane73-122Sur3 = 4-Bromofluorobenzene68-117	Surl = Toluene-d8	78-129	
Sur3 = 4-Bromofluorobenzene 68-117	Sur2 = Dibromofluoromethane	73-122	
	Sur3 = 4-Bromofluorobenzene	68-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:SLR InternationalProject:LongviewSample Matrix:Water

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organics by GC/MS

Sample Name:	INF 1-61809	Units:	C.
Lab Code:	K0905504-001	Basis:	
Extraction Method:	EPA 5030B	Level:	. = .
Analysis Method:	8260B	Extraction Lot:	

	Sample	KV	F1-61809MS VG0905356- Aatrix Spike		KV	1-61809DM VG0905356-2 cate Matrix S	2	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Benzene	500	706	200	103	675	200	88	69-126	4	30
Toluene	ND	210	200	105	201	200	100	66-128	4	30
Ethylbenzene	ND	207	200	104	198	200	99	65-126	5	30
m,p-Xylenes	2.6	428	400	106	404	400	100	63-130	6	30
o-Xylene	ND	216	200	108	208	200	104	65-130	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Service Request: K0905504

Date Extracted: 06/19/2009

Date Analyzed: 06/19/2009

QA/QC Report

Client:	SLR International
Project:	Longview
Sample Matrix:	Water

Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0905356

 Service Request:
 K0905504

 Date Extracted:
 06/19/2009

 Date Analyzed:
 06/19/2009

		ΚW	Control Samp /G0905356-3 Control Spik		%Rec	
	Analyte Name	Result	Expected	%Rec	Limits	
ī	Benzene	10.1	10.0	101	74-118	
	Toluene	10.9	10.0	109	74-117	
	Ethylbenzene	10.5	10.0	105	71-118	
	m,p-Xylenes	21.5	20.0	108	73-119	
	o-Xylene	10.8	10.0	108	74-120	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Columbia		CHAIN OF CUSTODY	~	SR#: NOGOLOGY	
	1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222	• (800) 695-7222×07 • FAX	FAX (360) 636-1068 PAGE	OF COC #	
PROJECT NAME (CURIQUIPUU)		/ -			
					_
PROJECT MANAGER Mike Stated			18 [() () () () () () () () () () () () () (_
SYR		199 ((1)) (1)) (1)) (1)) (1)) (1)) (1))		04 (c) X 2 (c)	
22122 SE 20 12 Bldg	H. SA	1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANDE NOSI		
1 1 1				X 20102+	
DDRESS MICHTER MAN	QSURCORP. COM		(MC 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10		
402-58C				[0. citro] 20	
SAMPLER'S SIGNATURE					
SAMPLE I.D. DATE	TIME LAB I.D. MATRIX /	٥ ' \ S & F & [] [] [] [] [] [] [] [] []	P. 60 (5 12) A. 60 (5 / 12 <		REMARKS
INF2-61809 6/18/09	// Sa Gw	XX			
EFF1-61809 1	1202 16	××			
62.	->				
					T
REPORT REQUIREMENTS	INVOICE INFORMATION	Circle which metals are to be analyzed:			
I. Routine Report: Method	Bill To: Mike Station	Total Metals: Ai As Sb Ba Be B Ca	Cd Co Cr Cu Fe Pb Mg Mn	Mo Ni K Ag Na Se Sr TI Sn V Zr	Zn Hg
	lass a	Dissolved Metals: AI As Sb Ba Be B Ca	ar Cu Fe Pb M	K Ag Na Se Sr TI Sn V	Zn Hg
		'INDICATE STATE HYDROCARBON PROCEDURE:	AK CA WI	MORTHWEST) OTHER: (CIRCLE ONE)	IE)
II. Heport Dup., MS, MSD as required	JND REQ	SPECIAL INSTRUCTIONS/COMMENTS:			
III. Data Validation Report (includes all raw data)	5 Day	place have Results	K to Mike Staten	hered has n	
IV. CLP Deliverable Report	Standard (10-15 working days) Provide FAX Results	8		~	
V. EDD	Monday 6/22/09 Requested Report Date	-			
			RELINQUISHED BY:	RECEIVED BY:	
Date/Time	1	Date/Time IS24 Signature	Date/Time	Signature Date/Time	NUT NUT
Printed Name Firm	Printed Name	Printed Name	ame	Printed Name Firm	
				E.	#1 0

June 26, 2009

Analytical Report for Service Request No: K0905699

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Longview/001.0173.00010

Dear Mike:

Enclosed are the results of the rush samples submitted to our laboratory on June 25, 2009. For your reference, these analyses have been assigned our service request number K0905699.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/ln

Page 1 of

cc: Chris Kramer, SLR International, West Linn, OR

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
M	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.

M The duplicate injection precision was not met.

- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range,
- ¹ but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:SLR InternationalProject:LongviewSample Matrix:Water

Service Request No.: Date Received: K0905699 06/25/09

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Two water samples were received for analysis at Columbia Analytical Services on 06/25/09. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Gasoline Range Organics by Method NWTPH-Gx

No anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for Bromoform in Initial Calibration (ICAL) ID 8347. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 11.0%. The calibration met the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No other anomalies associated with the analysis of these samples were observed.

06/29/09

Approved by

Analytical Results

Client:	SLR International	Service Request:	K0905699
Project:	Longview/001.0173.00010	Date Collected:	06/25/2009
Sample Matrix:	Water	Date Received:	06/25/2009

Gasoline Range Organics

Sample Name: Lab Code:	EFF1-62509 K0905699-001	Units: Basis:	0
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Notr
Gasoline Range Organics-NWTPH	ND U	250]	06/26/09	06/26/09	KWG0905566	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	103	50-150	06/26/09	Acceptable

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0905699
Project:	Longview/001.0173.00010	Date Collected:	06/25/2009
Sample Matrix:	Water	Date Received:	06/25/2009

Gasoline Range Organics

Sample Name: Lab Code:	EFF2-62509 K0905699-00	2						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx]	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	06/26/09	06/26/09	KWG0905566	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	103	50-150	06/26/09	Acceptable

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0905699
Project:	Longview/001.0173.00010	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Gasoline Range Organics

Sample Name: Lab Code:	Method Bl KWG0905							Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030 NWTPH-(-						Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	06/26/09	06/26/09	KWG0905566	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	103	50-150	06/26/09	Acceptable	•

Comments:

QA/QC Report

Client:SLR InternationalProject:Longview/001.0173.00010Sample Matrix:Water

Service Request: K0905699

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method:	EPA 5030B
Analysis Method:	NWTPH-Gx

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>		
EFF1-62509	K0905699-001	103		
EFF2-62509	K0905699-002	103		
EFF2-62509DUP	KWG0905566-4	99		
Method Blank	KWG0905566-3	103		
Lab Control Sample	KWG0905566-1	107		
Duplicate Lab Control Sample	KWG0905566-2	108		

Surrogate Recovery Control Limits (%)

Surl = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0905699 Date Extracted: 06/26/2009 Date Analyzed: 06/26/2009

Duplicate Sample Summary Gasoline Range Organics

Sample Name:	EFF2-62509	Units:	-
Lab Code:	K0905699-002	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	NWTPH-Gx	Extraction Lot:	
		EFE2 62500DUD	

			Sample	EFF2-62 KWG09 Duplicat	05566-4	Relative Percent	RPD Limit
Analyte Name	MRL		Result	Result	Average	Difference	
Gasoline Range Organics-NWTPH	250	•	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0905699

 Date Extracted:
 06/26/2009

 Date Analyzed:
 06/26/2009

Lab Control Spike/Duplicate Lab Control Spike Summary Gasoline Range Organics

Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx							В	nits: asis: evel:	NA
										KWG0905566
		KW	Control Samp G0905566-1 Control Spike		KW	Lab Control S /G0905566-2 : Lab Control	1	%Rec		RPD
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	
Gasoline Range Organic	s-NWTPH	518	500	104	510	500	102	80-119	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Volatile Organics by GC/MS

Sample Name:	EFF1-62509	Units:	C/
Lab Code:	K0905699-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	06/26/09	06/26/09	KWG0905575	
Toluene	ND U	0.50	1	06/26/09	06/26/09	KWG0905575	
Ethylbenzene	ND U	0.50	1	06/26/09	06/26/09	KWG0905575	
m,p-Xylenes	ND U	0.50]	06/26/09	06/26/09	KWG0905575	
o-Xylene	ND U	0.50	1	06/26/09	06/26/09	KWG0905575	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	100	78-129	06/26/09	Acceptable
Dibromofluoromethane 4-Bromofluorobenzene	100 85	73-122 68-117	06/26/09 06/26/09	Acceptable Acceptable

Comments:

Merged

SuperSet Reference RR103367

 Service Request:
 K0905699

 Date Collected:
 06/25/2009

 Date Received:
 06/25/2009

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0905699

 Date Collected:
 06/25/2009

 Date Received:
 06/25/2009

Volatile Organics by GC/MS

Sample Name:	EFF2-62509	Units:	Ç.
Lab Code:	K0905699-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U	0.50	1	06/25/09	06/25/09	KWG0905575	
Toluene	ND U	0.50	1	06/25/09	06/25/09	KWG0905575	
Ethylbenzene	ND U	. 0.50	,1	06/25/09	06/25/09	KWG0905575	
m,p-Xylenes	ND U	0.50] .	06/25/09	06/25/09	KWG0905575	
o-Xylene	ND U	0.50	1	06/25/09	06/25/09	KWG0905575	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	99	78-129	06/25/09	Acceptable
Dibromofluoromethane	98	73-122	06/25/09	Acceptable
4-Bromofluorobenzenc	82	68-117	06/25/09	Acceptable

Comments:

Merged

Form 1A - Organic 13

Page] of [SuperSct Reference: RR103367

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0905699 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0905575-5	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND	U	0.50]	06/25/09	06/25/09	KWG0905575	
Toluene	ND	U	0.50	1	06/25/09	06/25/09	KWG0905575	
Ethylbenzene	ND	U	0.50	1	06/25/09	06/25/09	KWG0905575	
m,p-Xylenes	ND	U	0.50	· 1	06/25/09	06/25/09	KWG0905575	
o-Xylene	ND	U	0.50	1	06/25/09	06/25/09	KWG0905575	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	103	78-129	06/25/09	Acceptable
Dibromofluoromethane	97	73-122	06/25/09	Acceptable
4-Bromofluorobenzene	87	68-117	06/25/09	Acceptable

Comments:

Merged

SuperSet Reference RR103367
QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

. ..

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method: Analysis Method:	EPA 5030B 8260B		Units: Level:	PERCENT Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
EFF1-62509	K0905699-001	100	100	85
EFF2-62509	K0905699-002	99	98	82
Method Blank	KWG0905575-5	103	97	87
Lab Control Sample	KWG0905575-3	105	99	98
Duplicate Lab Control Sample	KWG0905575-4	106	100	95

Surrogate Recovery Control Limits (%)

$rac{1}{2}$		
Surl = Toluene-d8	78-129	i i
Sur2 = Dibromofluoromethane	73-122	
Sur3 = 4-Bromofluorobenzene	68-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Page

Service Request: K0905699

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0905699 Date Extracted: 06/25/2009 Date Analyzed: 06/25/2009 -06/26/2009

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B			Units:	ug/L
Analysis Method:	8260B			Basis:	NA
				Level:	Low
				Extraction Lot:	KWG0905575
		Lab Control Sample KWG0905575-3	Duplicate Lab Control Sample KWG0905575-4		
		Lab Control Spike	Duplicate Lab Control Spike		

	Lab	Control Spik	e	Duplicate	e Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Benzene	11.2	10.0	112	11.7	10.0	117	74-118	4	30
Toluene	9.92	10.0	99	10.1	10.0	101	74-117	2	30
Ethylbenzene	9.28	10.0	93	9.42	10.0	94	71-118]	30
m,p-Xylenes	18.3	20.0	91	18.7	20.0	94	73-119	2	30
o-Xylene	8.97	10.0	90	9.24	10.0	92	74-120	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

VA volumbia	CHAIN OF CUSTODY	SR#: YOS C Z SUC
1317 South 13th Ave. • 1317 South 13th Ave. •	1317 South 13th Ava. ・ Kelso: WA 98626 ・ (360) 577-7222 ・ (800) 695-7222x07 ・ FAX (360) 636-1068 PAGE	3E OF COC#
FRCATECT MANNE PRCAECT MANNER FARCHER MULLE STATEN FOR STATEST FOR ANANGER MILLE STATEN FOR STATEST FOR ANANGER MILLE STATEN FOR ANANGER MATTERS SLA FOR ANANGER STATEST FALL DO BATE TIME LABID. SAMPLE I.D. DATE TIME LABID. SAMPLE I.D. DATE TIME LABID. SAMPLE I.D. DATE TIME LABID.	Image: Contract of Discrete of Discre	Слапида Судица Судица Судица Судица Судица Судица Судица Судица Судица Судица Судица Судица Судица Сок Сок Сок Сок Сок Сок Сок Сок
Eft2-62509 V 1055	XX XX XX XX XX XX XX XX XX XX XX XX XX	2-4-4ve-114-
ORT REQUIREMENTS Routine Report: Method Blank, Surrogate. as required	Circle which metals are to be analyzed: Total Metals: At As Sb Ba Be B Ca Cri Co Cr Cu Fe Pt Dissolved Metals: At As St Ba Be B Ca Cd Co Ci Cu Fe P inDiCATE STATE HYDROCARBON PROCEDURE: AK CA	D Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg h Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg WI NORTHWEST DTHER: (CIRCLE ONE)
II. Report Dup MS, MSD as TUBNAROUND REQUIREMENTS required 24 hr III. Data Validation Report 5 Day (includes all raw data) 5 Day IV. CLP Deliverable Report 5 Day V. EDD Requested Report Date		
RELINQUISHED BY: Signature April 7 North Date/Lune Printed Name Firm	RECEIVED BY: RELINQUISHED BY: Prigrature Internation Signature Internation Printed Name Firm	RECEIVED BY: Signature Date/Time Printed Name Firm

17

(360) 636-1068 fax

July 6, 2009

Analytical Report for Service Request No: K0905880

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Longview/001.0173.00010

Dear Mike:

Enclosed are the results of the rush samples submitted to our laboratory on July 01, 2009. For your reference, these analyses have been assigned our service request number K0905880.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

57/13/05

Pradeep Divvela Project Chemist

PD/ln

Page 1 of 18

cc: Chris Kramer, SLR International, West Linn, OR

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.

M The duplicate injection precision was not met.

- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number	
Alaska DEC UST	UST-040	
Arizona DHS	AZ0339	
Arkansas - DEQ	88-0637	
California DHS	2286	
Colorado DPHE	-	
Florida DOH	E87412	
Hawaii DOH	-	
Idaho DHW	-	
Indiana DOH	C-WA-01	
Louisiana DEQ	3016	
Louisiana DHH	LA050010	
Maine DHS	WA0035	
Michigan DEQ	9949	
Minnesota DOH	053-999-368	
Montana DPHHS	CERT0047	
Nevada DEP	WA35	
New Jersey DEP	WA005	
New Mexico ED	-	
North Carolina DWQ	605	
Oklahoma DEQ	9801	
Oregon - DHS	WA200001	
South Carolina DHEC	61002	
Utah DOH	COLU	1
Washington DOE	C1203	
Wisconsin DNR	998386840	
Wyoming (EPA Region 8)		

Client:SLR InternationalProject:LongviewSample Matrix:Water

Service Request No.: Date Received: K0905880 07/10/09

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS).

Sample Receipt

Two ground water samples were received for analysis at Columbia Analytical Services on 07/10/09. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Gasoline Range Organics by EPA Method 8015B

No anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

No anomalies associated with the analysis of these samples were observed.

07/13/09

Approved by

5

Date

Analytical Results

Client:	SLR International	Service Request:	K0905880
Project:	Longview/001.0173.00010	Date Collected:	07/01/2009
Sample Matrix:	Water	Date Received:	07/01/2009

Gasoline Range Organics

Sample Name: Lab Code:	EFF1 - 7109 K0905880-00	1						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx						I	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	07/01/09	07/01/09	KWG0905788	

1,4-Difluorobenzene	102	50-150	07/01/09	Acceptable

Comments:

Analytical Results

Client:	SLR International	Service Request:	K090588()
Project:	Longview/001.0173.00010	Date Collected:	07/01/2009
Sample Matrix:	Water	Date Received:	07/01/2009

Gasoline Range Organics

Sample Name: Lab Code:	EFF2 - 7109 K0905880-00	2						0 nits: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx						1	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	07/01/09	07/01/09	KWG0905788	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	101	50-150	07/01/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0905880
Project:	Longview/001.0173.00010	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Gasoline Range Organics

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0905788-3	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	07/01/09	07/01/09	KWG0905788	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	102	50-150	07/01/09	Acceptable

Comments:

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0905880

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method:	EPA 5030B
Analysis Method:	NWTPH-Gx

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>
EFF1 - 7109	K0905880-001	102
EFF2 - 7109	K0905880-002	101 .
EFF2 - 7109DUP	KWG0905788-1	102
Method Blank	KWG0905788-3	102
Lab Control Sample	KWG0905788-2	106

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Duplicate Sample Summary Gasoline Range Organics

Sample Name:	EFF2 - 7109	Units:	
Lab Code:	K0905880-002	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	NWTPH-Gx	Extraction Lot:	
		EFF2 - 7109DUP KWG0905788-1 Relative	

		Sample	Duplicate	e Sample	Percent	RPD Limit	
Analyte Name	MRL	Result	Result	Average	Difference		
Gasoline Range Organics-NWTPH	250	ND	ND	ND		30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3B - Organic

Service Request: K0905880 Date Extracted: 07/01/2009 Date Analyzed: 07/01/2009

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Lab Control Spike Summary Gasoline Range Organics

Extraction Method:	EPA 5030B
Analysis Method:	NWTPH-Gx

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0905788

 Service Request:
 K0905880

 Date Extracted:
 07/01/2009

 Date Analyzed:
 07/01/2009

	KW	Control Samp /G0905788-2 Control Spike		%Rec		
Analyte Name	Result	Expected	%Rec	Limits		
Gasoline Range Organics-NWTPH	471	500	94	80-119		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0905880

 Date Collected:
 07/01/2009

 Date Received:
 07/01/2009

Volatile Organics by GC/MS

Sample Name: Lab Code:	EFF1 - 7109 K0905880-001		Units: Basis:	-
Extraction Method: Analysis Method:	EPA 5030B 8260B	•	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	
Toluene	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	
Ethylbenzene	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	
m,p-Xylenes	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	
o-Xylene	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluenc-d8	92	78-129	07/02/09	Acceptable	
Dibromofluoromethane	91	73-122	07/02/09	Acceptable	
4-Bromofluorobenzene	89	68-117	07/02/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0905880 Date Collected: 07/01/2009 Date Received: 07/01/2009

Volatile Organics by GC/MS

Sample Name:	EFF2 - 7109	Units:	0
Lab Code:	K0905880-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
	Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
	Benzene	ND U	0.50	1	07/02/09	07/02/09	KWG0905802	
-	Tolucne	ND U	0.50	1	07/02/09	07/02/09	KWG0905802	
	Ethylbenzene	ND U	0.50	1	07/02/09	07/02/09	KWG0905802	
	m,p-Xylenes	ND U	0.50	1	07/02/09	07/02/09	KWG0905802	
	o-Xylene	ND U	0.50	1	07/02/09	07/02/09	KWG0905802	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	_
Toluene-d8	93	78-129	07/02/09	Acceptable	
Dibromofluoromethane	90	73-122	07/02/09	Acceptable	
4-Bromofluorobenzene	89	68-117	07/02/09	Acceptable	

Comments:

Printed: 07/02/2009 17:06:27 a Stealth/Crystal.rpt/Form1m.rpt

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0905880 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0905802-3	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	
Toluene	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	
Ethylbenzene	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	
m.p-Xylenes	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	
o-Xylene	ND	U	0.50	1	07/02/09	07/02/09	KWG0905802	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tolucne-d8	94	78-129	07/02/09	Acceptable
Dibromofluoromethane	91	73-122	07/02/09	Acceptable
4-Bromofluorobenzene	87	68-117	07/02/09	Acceptable

Comments:

Merged

.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0905880

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
EFF1 - 7109	K0905880-001	92	91	89
EFF2 - 7109	K0905880-002	93	90	89
Method Blank	KWG0905802-3	94	91	87
Lab Control Sample	KWG0905802-1	97	93	95
Duplicate Lab Control Sample	KWG0905802-2	98	91	93

Surrogate Recovery Control Limits (%)

Sur1 = Toluene-d8	78-129		
Sur2 = Dibromofluoromethane	73-122		
Sur3 = 4-Bromofluorobenzene	68-117		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0905880 Date Extracted: 07/02/2009 Date Analyzed: 07/02/2009

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method: Analysis Method:	EPA 5030B 8260B							В	evel:	NA
		KW	Control Samp /G0905802-1 Control Spik		KW	Lab Control /G0905802-2 e Lab Control		%Rec		RPD
Analyte Name	-	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	
Benzene		9.28	10.0	93	8.87	10.0	89	74-118	5	30
Toluene		8.85	10.0	89	8.57	10.0	86	74-117	3	30
Ethylbenzene		9.21	10.0	92	8.76	10.0	88	71-118	5	30
m.p-Xylenes		19.2	20.0	96	18.0	20.0	90	73-119	6	30
o-Xylene		9.69	10.0	97	9.32	10.0	93	74-120	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

	Services"
Lolumbia	Analytical

CHAIN OF CUSTODY

SR#:	OF /
	PAGE /
CHAIN OF CUSIODY	0000 0000 111 FC 000F 100 1000F FFJ 10007 - 0004F FFJ 10007 - 00000 - 0000
CHAIN	141A DOCOL . 2000 A14

/ OF / COC#	ВЕМАРКS 10X 9020 [] AOX 1650[] 506[] 10X 9020 [] AOX 1650[] 506[] 10X 9020 [] AOX 1650[] 10X 9020		1.1.1		g Min Mo Ni K Ag Na Se Sr TI Sn V Zn Hg g Mn Mo Ni K Ag Na Se Sr TI Sn V Zn Hg MORTHWEST) OTHER: (CIRCLE ONE)		Signature Date/Time Printed Name Firm
1317 South 13th Ave. • Kelso. WA 98626 • (360) 577-7222 • (800) 695-7222x07 • FAX (360) 636-1068 PAGE	PROECT NAME PROECT NAME PROEC	7109 71/09 925 Cold 6 XX			ORT REQUIREMENTS P.O. # Routine Report: Method Bill To: Blank. Surrogate, as required	III. Data Validation Report (includes all raw data) V. EDD V. EDD Requested Report Date 1000000000000000000000000000000000000	RELINOUISHED BY: RELINOUISHED BY: RELINOUISHED BY: Signature The firm The firm Signature Date/firme Date/firme Printed Name Firm Printed Name

(360) 577-7222

(360) 636-1068 fax

July 10, 2009

Analytical Report for Service Request No: K0906113

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Longview/001.0173.00010

Dear Mike:

Enclosed are the results of the samples submitted to our laboratory on July 08, 2009. For your reference, these analyses have been assigned our service request number K0906113.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela

Project Chemist

PD/rh

Page 1 of 19

Acronyms

	v
ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client: SLR International Project: Longview Sample Matrix: Water Service Request No.: K0906113 Date Received: 07/08/09

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Two water samples were received for analysis at Columbia Analytical Services on 07/08/09. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Gasoline Range Organics by EPA Method 8015B

No anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for m,p-Xylenes in Initial Calibration (ICAL) ID 8530. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 9.7%. The calibration met the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No other anomalies associated with the analysis of these samples were observed.

othola

Approved by

Date

Analytical Results

Client:	SLR International	Service Request:	K0906113
Project:	Longview/001.0173.00010	Date Collected:	07/08/2009
Sample Matrix:	Water	Date Received:	07/08/2009

Gasoline Range Organics

Sample Name: Lab Code:	Eff1-7809 K0906113-00	1						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx						1	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	11	250	1	07/09/09	07/09/09	KINCOOO SOOO	
		ND	0	250	1	07/09/09	07/09/09	KWG0905990	
			0	230	1	07/09/09	07/09/09	K.wG0905990	

Surrogate Name	%Rec	Limits	Analyzed	Note	
1,4-Difluorobenzene	102	50-150	07/09/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0906113
Project:	Longview/001.0173.00010	Date Collected:	07/08/2009
Sample Matrix:	Water	Date Received:	07/08/2009

Gasoline Range Organics

Sample Name: Lab Code:	Eff2-7809 K0906113-00	2						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx]	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	07/09/09	07/09/09	KWG0905990	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	102	50-150	07/09/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International	Service Request: K09	06113
Project:	Longview/001.0173.00010	Date Collected: NA	
Sample Matrix:	Water	Date Received: NA	

Gasoline Range Organics

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0905990-3	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND	U	250]	07/09/09	07/09/09	KWG0905990	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	101	50-150	07/09/09	Acceptable

Comments:

Merged

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906113

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method:	EPA 5030B		Units:	PERCENT
Analysis Method:	NWTPH-Gx		Level:	Low
Sample Name	Lab Code	<u>Sur1</u>		

	-	
Eff1-7809	K0906113-001	102
Eff2-7809	K0906113-002	102
Eff2-7809DUP	KWG0905990-1	101
Method Blank	KWG0905990-3	101
Lab Control Sample	KWG0905990-2	106

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Duplicate Sample Summary Gasoline Range Organics

Sample Name: Lab Code:	Eff2-7809 K0906113-002				Units: Basis:	Ç
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx			E	Level: xtraction Lot:	
		Sample	Eff2-7809D KWG090599 Duplicate Sar	90-1	Relative Percent	RPD Limit
Analyte Name	MRL	Result	Result	Average	Difference	

Analyte Mante	ma		Result	7 trei uge		
Gasoline Range Organics-NWTPH	250	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Service Request: K0906113 Date Extracted: 07/09/2009 Date Analyzed: 07/09/2009

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Lab Control Spike Summary Gasoline Range Organics

	EPA 5030B NWTPH-Gx						Units: Basis: Level:	NA
						Ext	raction Lot:	KWG0905990
Lab Control Sample KWG0905990-2 Lab Control Spike				%Rec				
Analyte Name		Result	Expected	%Rec	Limits			
Gasoline Range Organics-	NWTPH	467	500	93	80-119			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Service Request:
 K0906113

 Date Extracted:
 07/09/2009

 Date Analyzed:
 07/09/2009

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0906113

 Date Collected:
 07/08/2009

 Date Received:
 07/08/2009

Volatile Organics by GC/MS

Sample Name:	Eff1-7809	Units:	U
Lab Code:	K0906113-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	
Toluene	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	
Ethylbenzene	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	
m,p-Xylenes	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	
o-Xylene	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	104	78-129	07/09/09	Acceptable	
Dibromofluoromethane	89	73-122	07/09/09	Acceptable	
4-Bromofluorobenzene	95	68-117	07/09/09	Acceptable	

Comments:

.

Analytical Results

Client:	SLR International	Service Request:	K0906113
Project:	Longview/001.0173.00010	Date Collected:	07/08/2009
Sample Matrix:	Water	Date Received:	07/08/2009

Volatile Organics by GC/MS

Sample Name:	Eff2-7809	Units:	•
Lab Code:	K0906113-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	
Toluene	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	
Ethylbenzene	ND U	0.50	. 1	07/09/09	07/09/09	KWG0905980	
m,p-Xylenes	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	
o-Xylene	ND U	0.50	1	07/09/09	07/09/09	KWG0905980	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	103	78-129	07/09/09	Acceptable	
Dibromofluoromethane	89	73-122	07/09/09	Acceptable	
4-Bromofluorobenzene	93	68-117	07/09/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906113 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0905980-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	07/08/09	07/08/09	KWG0905980	
Toluene	ND U	0.50	1	07/08/09	07/08/09	KWG0905980	
Ethylbenzene	ND U	0,50	1	07/08/09	07/08/09	KWG0905980	
m,p-Xylenes	ND U	0.50	1	07/08/09	07/08/09	KWG0905980	
o-Xylene	ND U	0.50	1	07/08/09	07/08/09	KWG0905980	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	<i>i</i>
Toluene-d8	104	78-129	07/08/09	Acceptable	
Dibromofluoromethane	87	73-122	07/08/09	Acceptable	
4-Bromofluorobenzene	92	68-117	07/08/09	Acceptable	

Comments:

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906113

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
Eff1-7809	K0906113-001	104	89	95
Eff2-7809	K0906113-002	103	89	93
Method Blank	KWG0905980-4	104	87	92
Batch QC	K0905777-009	103	88	97
Batch QCMS	KWG0905980-1	105	87	96
Batch QCDMS	KWG0905980-2	105	87	95
Lab Control Sample	KWG0905980-3	106	88	96

Surrogate Recovery Control Limits (%)

Sur1 = Toluene-d8	78-129	
Sur2 = Dibromofluoromethane	73-122	
Sur3 = 4-Bromofluorobenzene	68-117	

Results Nagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906113 Date Extracted: 07/08/2009 Date Analyzed: 07/08/2009

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organics by GC/MS

Sample Name:	Batch QC	Units:	0
Lab Code:	K0905777-009	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

Analyte Name	Sample	Batch QCMS KWG0905980-1 Matrix Spike			Batch QCDMS KWG0905980-2 Duplicate Matrix Spike			%Rec		RPD
	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Benzene	0.96	49.6	50.0	97	47.7	50.0	93	69-126	4	30
Toluene	0.95	51.2	50.0	101	49.0	50.0	96	66-128	4	30
Ethylbenzene	10	59.6	50.0	99	57.2	50.0	94	65-126	4	30
m,p-Xylenes	1.3	103	100	102	101	100	99	63-130	2	30
o-Xylene	1.6	54.4	50.0	106	52.0	50.0	101	65-130	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.
QA/QC Report

Client:SLR InternationalProject:Longview/001.0173.00010Sample Matrix:Water

Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0905980

	KW	Control Samp /G0905980-3 Control Spike		%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Benzene	10.2	10.0	102	74-118	
Toluene	10.7	10.0	107	74-117	
Ethylbenzene	10.7	10.0	107	71-118	
m,p-Xylenes	21.4	20.0	107	73-119	
o-Xylene	11.1	10.0	111	74-120	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Service Request:
 K0906113

 Date Extracted:
 07/08/2009

 Date Analyzed:
 07/08/2009

Columbia	CHAIN OF CUSTODY	SR#: 1000 (4/1)
1317 South 13th Ave. • Kelso. WA 98626 • (360) 577-7222	 (800) 695-7222x07 FAX (360) 636-1068 	PAGE { OF } COC #
PROJECT NAME / CON A GUNYE W		
Mike Station		
COMPANYADHESS CR Z 2122 20 Mr. Avr. 5 E Blog H.	WI V 1991	
CITVETATEZIP Q., N. // I	2 518 18 90 12 12 18 90 12 12 12 12 18 90 12 12 18 90 12 12 18 90 19 12 18 90 19 12 19 12 18 90 19 12 19 12 1	V-CP
Net a la l		1888 1888 1987 1987
MSTATEN () SCRUDEPCON		
0088-2061		
samplers signatures	14. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	03-VC
SAMPLE I.D. DATE TIME LAB I.D. MATRIX V	8 1 2 8 H H G 1 1 0 1 2 2 1 2 8 1 4 1 4	Q HN Nd
7X04 7/8/63 In40 GL		
The state of the second		
202 2		41 10 17
REPORT REQUIREMENTS	Circle which metals are to be analyzed:	
I. Routine Report: Method Bill To:	Total Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe	Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg
	Dissolved Metals. At As Sb Ba Be B Ca Cd Co Cr Cu Fe	Pb Mg Mn Mo Ni K Ag Na Se Sr TI Sn V Zn Hg
required	*INDICATE STATE HYDROCARBON PROCEDURE: AK CA	WI MORTHWEST) OTHER: (CIRCLE ONE)
UND REQ	SPECIAL INSTRUCTIONS/COMMENTS:	٢
III. Data Validation Report (5 Day	FFF2-F809"	
R		
IV. CLP Deliverable Report	-> EA-1-7809	
i i		
RELINQUISHED BY: 151 RE	RECEIVED BY: 7/ / RELINQUISHED BY:	RECEIVED BY:
Date/Time	Date/Time 2. A Signature Date/Time	ne Signature Date/Time
Printed Name Firm Firm	Firm i All Printed Name Firm	Printed Name Firm

(360) 636-1068 fax

July 16, 2009

Analytical Report for Service Request No: K0906329

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Longview/001.0173.00010

Dear Mike:

Enclosed are the results of the rush samples submitted to our laboratory on July 15, 2009. For your reference, these analyses have been assigned our service request number K0906329.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divve

Project Chemist

PD/lb

Page 1 of

cc: Chris Kramer, SLR International

Acronyms

	C C C C C C C C C C C C C C C C C C C
ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- B The analyte was found in the associated method biank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL'MDL.
- ; The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met
- N The Matrix Spike sample recovery is not within control limits. See case narrative
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL (MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- ≠ The control limit criteria is not applicable. See case narrative
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL
- i The MRL'MDL has been elevated due to a chromatographic interference.
- X See case narrative

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Analytical Results

Client:	SLR International	Service Request:	K0906329
Project:	Longview/001.0173.00010	Date Collected:	07/15/2009
Sample Matrix:	Water	Date Received:	07/15/2009

Gasoline Range Organics

Sample Name: Lab Code:	INF1-71509 K0906329-00]						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx						J	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250]	07/15/09	07/15/09	KWG0906175	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	99	50-150	07/15/09	Acceptable

Comments:

Merged

Analytical Results

Client:	SLR International	Service Request:	K0906329
Project:	Longview/001.0173.00010	Date Collected:	07/15/2009
Sample Matrix:	Water	Date Received:	07/15/2009

Gasoline Range Organics

Sample Name:	EFF1-71509	Units:	0
Lab Code:	K0906329-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	07/15/09	07/15/09	KWG0906175	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	100	50-150	07/15/09	Acceptable

Comments:

Merged

.

Analytical Results

Client:	SLR International	Service Request:	K0906329
Project:	Longview/001.0173.00010	Date Collected:	07/15/2009
Sample Matrix:	Water	Date Received:	07/15/2009

Gasoline Range Organics

Sample Name:	EFF2-71509	Units:	0
Lab Code:	K0906329-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	07/15/09	07/15/09	KWG0906175	

. . .

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	100	50-150	07/15/09	Acceptable	

Comments:

Merged

Analytical Results

Client:	SLR International	Service Request: K(0906329
Project:	Longview/001.0173.00010	Date Collected: NA	A
Sample Matrix:	Water	Date Received: NA	A

Gasoline Range Organics

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0906175-3	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND	U	250	1	07/15/09	07/15/09	KWG0906175	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	99	50-150	07/15/09	Acceptable	

Comments:

Mcrged

.

QA/QC Report

Client:SLR InternationalProject:Longview/001.0173.00010Sample Matrix:Water

Service Request: K0906329

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5030B **Analysis Method:** NWTPH-Gx

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>
INF1-71509	K0906329-001	99
EFF1-71509	K0906329-002	100
EFF2-71509	K0906329-003	100
EFF2-71509DUP	KWG0906175-1	99
Method Blank	KWG0906175-3	99
Lab Control Sample	KWG0906175-2	104

Surrogate Recovery Control Limits (%)

Surl = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906329 Date Extracted: 07/15/2009 Date Analyzed: 07/15/2009

Duplicate Sample Summary Gasoline Range Organics

Sample Name:	EFF2-71509	Units:	ę
Lab Code:	K0906329-003	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	NWTPH-Gx	Extraction Lot:	

		Sample	EFF2-71 KWG09 Duplicat	06175-1	Relative Percent	RPD Limit
Analyte Name	MRL	Result	Result	Average	Difference	
Gasoline Range Organics-NWTPH	250	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

SuperSet Reference: RR103982

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

NWTPH-Gx

Extraction Method: EPA 5030B

Analysis Method:

Lab Control Spike Summary Gasoline Range Organics

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG09061	175
--	-----

	Lab Control Sample KWG0906175-2 Lab Control Spike			%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Gasoline Range Organics-NWTPH	473	500	95	80-119	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Service Request:
 K0906329

 Date Extracted:
 07/15/2009

 Date Analyzed:
 07/15/2009

Analytical Results

Client:	SLR International	Service Request:
Project:	Longview/001.0173.00010	Date Collected:
Sample Matrix:	Water	Date Received:

Volatile Organics by GC/MS

Sample Name:	INF1-71509	Units:	0
Lab Code:	K0906329-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

		Dilution	Date	Date	Extraction	
Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
230 D	5.0	10	07/15/09	07/15/09	KWG0906179	
0.70	0.50	1	07/15/09	07/15/09	KWG0906179	
4.0	0.50	1	07/15/09	07/15/09	KWG0906179	
6.4	0.50	1	07/15/09	07/15/09	KWG0906179	
ND U	0.50	1	07/15/09	07/15/09	KWG0906179	
	230 D 0.70 4.0 6.4	230 D 5.0 0.70 0.50 4.0 0.50 6.4 0.50	Result Q MRL Factor 230 D 5.0 10 0.70 0.50 1 4.0 0.50 1 6.4 0.50 1	Result Q MRL Factor Extracted 230 D 5.0 10 07/15/09 0.70 0.50 1 07/15/09 4.0 0.50 1 07/15/09 6.4 0.50 1 07/15/09	Result Q MRL Factor Extracted Analyzed 230 D 5.0 10 07/15/09 07/15/09 0.70 0.50 1 07/15/09 07/15/09 4.0 0.50 1 07/15/09 07/15/09 6.4 0.50 1 07/15/09 07/15/09	Result Q MRL Factor Extracted Analyzed Lot 230 D 5.0 10 07/15/09 07/15/09 KWG0906179 0.70 0.50 1 07/15/09 07/15/09 KWG0906179 4.0 0.50 1 07/15/09 07/15/09 KWG0906179 6.4 0.50 1 07/15/09 07/15/09 KWG0906179

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	94	78-129	07/15/09	Acceptable	
Dibromofluoromethane	91	73-122	07/15/09	Acceptable	
4-Bromofluorobenzene	94	68-117	07/15/09	Acceptable	

Comments:

Merged

K0906329 07/15/2009 07/15/2009

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0906329

 Date Collected:
 07/15/2009

 Date Received:
 07/15/2009

Volatile Organics by GC/MS

Sample Name:	EFF1-71509	Units:	
Lab Code:	K0906329-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
Toluene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
Ethylbenzene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
m,p-Xylenes	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
o-Xylene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	96	78-129	07/15/09	Acceptable	
Dibromofluoromethane	93	73-122	07/15/09	Acceptable	
4-Bromofluorobenzene	90	68-117	07/15/09	Acceptable	

Comments:

Merged

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906329 Date Collected: 07/15/2009 Date Received: 07/15/2009

Volatile Organics by GC/MS

Sample Name:	EFF2-71509	Units:	U
Lab Code:	K0906329-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
Toluene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
Ethylbenzene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
m,p-Xylenes	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
o-Xylene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	93	78-129	07/15/09	Acceptable	
Dibromofluoromethane	94	73-122	07/15/09	Acceptable	
4-Bromofluorobenzene	72	68-117	07/15/09	Acceptable	

Comments:

Merged

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906329 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0906179-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
Toluene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
Ethylbenzene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
m,p-Xylenes	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	
o-Xylene	ND	U	0.50	1	07/15/09	07/15/09	KWG0906179	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	97	78-129	07/15/09	Acceptable	
Dibromofluoromethane	93	73-122	07/15/09	Acceptable	
4-Bromofluorobenzene	91	68-117	07/15/09	Acceptable	

Comments:

Mcrged

,

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method:EPA 5030BAnalysis Method:8260B

Units: PERCENT Level: Low

Service Request: K0906329

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>	<u>Sur3</u>
INF1-71509	K0906329-001	94	91	94
EFF1-71509	K0906329-002	96	93	90
EFF2-71509	K0906329-003	93	94	72
Method Blank	KWG0906179-4	97	93	91
INF1-71509MS	KWG0906179-1	101	95	96
INF1-71509DMS	KWG0906179-2	99	96	98
Lab Control Sample	KWG0906179-3	101	97	97
-				

Surrogate Recovery Control Limits (%)

Sur1 = Toluene-d8	78-129	
Sur2 = Dibromofluoromethane	73-122	
Sur3 = 4-Bromofluorobenzene	68-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

,

1

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

.

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organics by GC/MS

Sample Name:	INF1-71509	Units:	0
Lab Code:	K0906329-001	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

	Sample	INF1-71509MS INF1-71509DMS KWG0906179-1 KWG0906179-2 Sample <u>Matrix Spike</u> Duplicate Matrix Spike						%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Benzene	230	324	100	94	302	100	72	69-126	7	30
Toluene	0.70	98.2	100	98	92.1	100	91	66-128	6	30
Ethylbenzene	4.0	101	100	97	96.2	100	92	65-126	4	30
m,p-Xylenes	6.4	205	200	99	197	200	95	63-130	4	30
o-Xylene	ND	103	100	103	100	100	100	65-130	3	30

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable. Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1 of 1

 Service Request:
 K0906329

 Date Extracted:
 07/15/2009

 Date Analyzed:
 07/15/2009

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units:	ug/L
Basis :	NA
Level:	Low
Extraction Lot:	KWG0906179

 Service Request:
 K0906329

 Date Extracted:
 07/15/2009

 Date Analyzed:
 07/15/2009

	KW	Control Samp /G0906179-3 Control Spik		%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Benzene	9.58	10.0	96	74-118	
Toluene	9.45	10.0	95	74-117	
Ethylbenzene	9.33	10.0	93	71-118	
m,p-Xylenes	19.2	20.0	96	73-119	
o-Xylene	9.88	10.0	99	74-120	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

16329			/ /		_	_		/	_			REMARKS			1-L- ners	1 1 1 1 1 1					V Zn Hg	V Zn Hg	ONE)							
, <u> </u>	COC #						/ /	/ /		/ /					2					1	Se Sr TI Sn	Se Sr TI Sn	(CIRCLE					RECEIVED BY:	Date/Time	
SR#:				000 C'		20 [2] 20	0 L 0 L 0 L 0 L 0 L 0 L 0 L 0 L 0 L 0 L	_	16	70-	206 X 206 X 206 X										o Ni K Ag Na	o Ni K Ag Na	VEST OTHER:					ä	Signature	1
	PAGE /					P ₆	-40 NIOS	SSIC	4 (Mi		epine Col	CV-Hd									PD Mg Mn Mo	Pb Mg Mn Mo	A WI NORTHWEST						116	
				ISI 8		Jd	50		0	158	SIEL SH SH									-	Co Cr Cu Fe	d Co Cr Cu Fe	EDURE: AK CA					RELINQUISHED BY	Date/Time	
CUSTODY	222×07 • FAX (360) 636-1068		-		01	¢99)		Haib	Wille	HH BSED	s,8, 991	DC DC								alyzed:	Ba Be B Ca Cd	Ba Be B Ca Cd	*INDICATE STATE HYDROCARBON PROCEDURE	COMMENTS:		71509	Forzif	RE	Signature	1
OF CUS	7222 • (800) 695-7222×07	A STATE OF A	X			·	1200	-	· 30	0	INVOL JATILE TOCK	b	-	XX						Circle which metals are to be analyzed	ds Sb	AI As Sb	E STATE HYDRC	INSTRUCTIONS/COMMENTS:		TNF2-7	E42-3	/ /6.	15/23	(1) 7
CHAIN	3626 • (360) 577-7					IER.	TAIN TAIN				38W										Total Metals: AI	Dissolved Metals:	*INDICAT	SPECIAL				RECEIVED BY:	PL Date/	4
	1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7					C. Are SE		12021	ory. Carr			LAB I.D. MATRIX	1		->					INVOICE INFORMATION				TURNAROUND REQUIREMENTS	5 Day Standard (10-15 working dave)	Provide FAX Results	Requested Report Date?	-	Signature	
vices*	1317 South 13th A	,	ner	01000000	has	N	RIdy H	WA 78	2	•		TIME	1002	1015	1025	3				INVOIC	Bill To:	-			5 Day		Reque	2100/00	1/10/01/1/	
mbia ytical Serv			NJ -	_ I 🗸		SLR. Zi	,	Bothell.	metatora	102-5800	ON Pr)))	6ast	603/t						REPORT REQUIREMENTS	Routine Report: Method	Blank, Surrogate, as		Report Dup., MS, MSD as required	Data Validation Report (includes all raw data)	IV. CLP Deliverable Report		RELINQUISHED BY	Date/Time	
A coumbia Analytical Services		PROJECT NAME	PROJECT NUMBER	PROJECT MANAGER		CUMPANI/AUDHESS		٦	E-MAIL ADDRESS	FHONE # 255	124	SAMPLEID	F- FAVE		57.					REPORT RE	I. Routine	Blank, S	required		III. Data Va (include	IV. CLP De	V. EDD	, RE	Signature	

July 31, 2009

Analytical Report for Service Request No: K0906779

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Longview/001.0173.00010

Dear Mike:

Enclosed are the results of the rush samples submitted to our laboratory on July 29, 2009. For your reference, these analyses have been assigned our service request number K0906779.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/lb

Page 1 of 1 CA

cc: Chris Kramer, SLR International. West Linn, OR

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyze was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- j The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

13-

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number	
Alaska DEC UST	UST-040	
Arizona DHS	AZ0339	
Arkansas - DEQ	88-0637	
California DHS	2286	
Colorado DPHE	-	
Florida DOH	E87412	
Hawaii DOH	-	
Idaho DHW	-	
Indiana DOH	C-WA-01	
Louisiana DEQ	3016	
Louisiana DHH	LA050010	
Maine DHS	WA0035	
Michigan DEQ	9949	
Minnesota DOH	053-999-368	
Montana DPHHS	CERT0047	1
Nevada DEP	WA35	
New Jersey DEP	WA005	
New Mexico ED	-	
North Carolina DWQ	605	
Oklahoma DEQ	9801	
Oregon - DHS	WA200001	
South Carolina DHEC	61002	
Utah DOH	COLU	
Washington DOE	C1203	
Wisconsin DNR	998386840	
Wyoming (EPA Region 8)	-	

Client:SLR internationalProject:LongviewSample Matrix:Water

Service Request No.: K0906779 Date Received: 07/29/09

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Two water samples were received for analysis at Columbia Analytical Services on 07/29/09. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Gasoline Range Organics by Method NWTPH - Gx

No anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for Bromoform in Initial Calibration (ICAL) ID 8610. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 9.7%. The calibration met the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No other anomalies associated with the analysis of these samples were observed.

	R	03105109
Approved by		Date

Analytical Results

Client:	SLR International	Service Request:	K0906779
Project:	Longview/001.0173.00010	Date Collected:	07/29/2009
Sample Matrix:	Water	Date Received:	07/29/2009

Gasoline Range Organics

Sample Name:	EFF1-72909	Units:	U
Lab Code:	K0906779-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	07/30/09	07/30/09	KWG0906609	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
J,4-Difluorobenzene	96	50-150	07/30/09	Acceptable

Comments:

Merged

۲

Analytical Results

Client:	SLR International	Service Request:	K0906779
Project:	Longview/001.0173.00010	Date Collected:	07/29/2009
Sample Matrix:	Water	Date Received:	07/29/2009

Gasoline Range Organics

Sample Name: Lab Code:	EFF2-72909 K0906779-002				Units: ug/L Basis: NA
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx				Level: Low
		Dilution	Date	Date	Extraction

Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	07/30/09	07/30/09	KWG0906609	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	96	50-150	07/30/09	Acceptable

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0906779
Project:	Longview/001.0173.00010	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Gasoline Range Organics

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0906609-3	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	07/30/09	07/30/09	KWG0906609	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	96	50-150	07/30/09	Acceptable	

Comments:

Merged

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5030B Analysis Method: NWTPH-Gx

Sample Name	Lab Code	Sur1
EFF1-72909	K0906779-001	96
EFF2-72909	K0906779-002	96
EFF1-72909DUP	KWG0906609-4	96
Method Blank	KWG0906609-3	96
Lab Control Sample	KWG0906609-1	99
Duplicate Lab Control Sample	KWG0906609-2	99

4

Surrogate Recovery Control Limits (%)

Surl = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Service Request: K0906779

Units: PERCENT

Level: Low

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906779 Date Extracted: 07/30/2009 Date Analyzed: 07/30/2009

Duplicate Sample Summary Gasoline Range Organics

Sample Name: Lab Code:	EFF1-72909 K0906779-001			Units: ug/L Basis: NA
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx			Level: Low Extraction Lot: KWG0906609
Analyte Name	MRL	Sample Result	EFF1-72909DUP KWG0906609-4 Duplicate Sample Result Average	Relative Percent RPD Limit Difference

Analyte Name	MIKL		Result	Average		
Gasoline Range Organics-NWTPH	250	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906779 Date Extracted: 07/30/2009 Date Analyzed: 07/30/2009

Lab Control Spike/Duplicate Lab Control Spike Summary Gasoline Range Organics

Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx							B L	nits: 1 asis: 1 cvel: 1 Lot: 1	NA
	_	КW	Control Samp /G0906609-1 Control Spike		KW	Lab Control /G0906609-2 2 Lab Control	2	%Rec		RPD
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Gasoline Range Organic	s-NWTPH	485	500	97	514	500	103	80-119	6	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Volatile Organics by GC/MS

Sample Name:	EFF1-72909	Units:	
Lab Code:	K0906779-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	1	07/29/09	07/29/09	KWG0906620	
Toluene	ND	U	0.50	1	07/29/09	07/29/09	KWG0906620	
Ethylbenzene	ND	U	0.50	1	07/29/09	07/29/09	KWG0906620	
m,p-Xylenes	ND	U	0.50	1	07/29/09	07/29/09	KWG0906620	
o-Xylene	ND	U	0.50	1	07/29/09	07/29/09	KWG0906620	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	100	78-129	07/29/09	Acceptable	
Dibromofluoromethane	98	73-122	07/29/09	Acceptable	
4-Bromofluorobenzene	93	68-117	07/29/09	Acceptable	

Comments:

 Service Request:
 K0906779

 Date Collected:
 07/29/2009

 Date Received:
 07/29/2009

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0906779

 Date Collected:
 07/29/2009

 Date Received:
 07/29/2009

Volatile Organics by GC/MS

– Sample Name:	EFF2-72909	Units:	C.
Lab Code:	K0906779-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U	0.50	1	07/29/09	07/29/09	KWG0906620	
Toluene	ND U	0.50	1	07/29/09	07/29/09	KWG0906620	
Ethylbenzene	ND U	0,50]	07/29/09	07/29/09	KWG0906620	
m,p-Xylenes	ND U	0.50]	07/29/09	07/29/09	KWG0906620	
o-Xylene	ND U	0.50	1	07/29/09	07/29/09	KWG0906620	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	99	78-129	07/29/09	Acceptable
Dibromofluoromethane	98	73-122	07/29/09	Acceptable
4-Bromofluorobenzene	85	68-117	07/29/09	Acceptable

Comments:

Merged

Form 1A - Organic 13

Page [of] SuperSet Reference RR104454

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906779 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	C
Lab Code:	KWG0906620-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

		Dilution	Date	Date	Extraction	
Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
ND U	0.50	1	07/29/09	07/29/09	KWG0906620	
ND U	0.50	1	07/29/09	07/29/09	KWG0906620	
ND U	0.50	1	07/29/09	07/29/09	KWG0906620	
ND U	0.50	1	07/29/09	07/29/09	KWG0906620	
ND U	0.50	1	07/29/09	07/29/09	KWG0906620	
	ND U ND U ND U ND U	ND U 0.50 ND U 0.50	Result Q MRL Factor ND U 0.50 1 ND U 0.50 1	Result Q MRL Factor Extracted ND U 0.50 1 07/29/09 ND U 0.50 1 07/29/09	Result Q MRL Factor Extracted Analyzed ND U 0.50 1 07/29/09 07/29/09 ND U 0.50 1 07/29/09 07/29/09	Result Q MRL Factor Extracted Analyzed Lot ND U 0.50 1 07/29/09 07/29/09 KWG0906620 ND U 0.50 1 07/29/09 07/29/09 KWG0906620

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	99	78-129	07/29/09	Acceptable
Dibromofluoromethane	96	73-122	07/29/09	Acceptable
4-Bromofluorobenzene	93	68-117	07/29/09	Acceptable

Comments:

Merged

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0906779

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method: Analysis Method:		Units: Level:	PERCENT Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
EFF1-72909	K0906779-001	100	98	93
EFF2-72909	K0906779-002	99	98	85
Method Blank	KWG0906620-4	99	96	93
EFF2-72909MS	KWG0906620-1	103	99	100
EFF2-72909DMS	KWG0906620-2	103	101	97
Lab Control Sample	KWG0906620-3	102	98	99

Surrogate Recovery Control Limits (%)

Surl = Toluene-d8	78-129	
Sur2 = Dibromofluoromethane	73-122	
Sur3 = 4-Bromofluorobenzene	68-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.
QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organics by GC/MS

Sample Name:	EFF2-72909	Units:	0
Lab Code:	K0906779-002	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

	Sample	ΚV	F2-72909MS VG0906620- Matrix Spike	-	KV	72-72909DM VG0906620-1 ate Matrix S	2	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Benzene	ND	10.1	10.0	101	9.55	10.0	96	69-126	6	30
Toluene	ND	9.57	10.0	96	9.34	10.0	93	66-128	2	30
Ethylbenzene	ND	8.75	10.0	88	8.49	10.0	85	65-126	3	30
m,p-Xylenes	ND	17.8	20.0	89	17.3	20.0	86	63-130	3	30
o-Xylene	ND	8.83	10.0	88	8.83	10.0	88	65-130	0	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Service Request:
 K0906779

 Date Extracted:
 07/29/2009

 Date Analyzed:
 07/29/2009

QA/QC Report

Client:SLR InternationalProject:Longview/001.0173.00010Sample Matrix:Water

Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0906620

Service Request: K0906779

Date Extracted: 07/29/2009

Date Analyzed: 07/29/2009

	KW	Control Samp G0906620-3 Control Spik		%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Benzene	9.45	10.0	95	74-118	
Toluene	8.99	10.0	90	74-117	
Ethylbenzene	8.68	10.0	87	71-118	
m,p-Xylenes	18.1	20.0	91	73-119	
o-Xylene	9.20	10.0	92	74-120	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

M Volumia Maabutical Samiros	U	CHAIN OF CU	CUSTODY	ninės	SR#:	
1317 South 13th Ave.	 Kelso, WA 98626 • (360) 577-7222 	(360) 577-7222 · (800) 695-7222×07	. FAX	PAGE /	0F <u>/</u> C	COC #
PROJECT NAME (AP AGA YOU)						
PROJECT NUMBER OOL , OT73, 00010					00, 00, 00	
COMPANYADDHESS S.R 27122 294 AVE	SE 84	10000000000000000000000000000000000000	MIN (MOIR)	panjneq	1059 03 (01) 03 (01) 03 (01) 03 (01) 03 (01)	
CIIVSTATEZE BIANON INTER		80 8 8 8 8 8 8 8 8 8 8	Hd	ossic Dissic	NI	
MSTATEN (1) SLRCORP.	Con		AT/9	IN INC	_	
702 - 8860			H to	17 e 17 e 1991	COL 50	. /
SAMPLER'S SIGNATURE	18Wr	emivo emivo emivo emivo emivo emivo	\$,80 991	etals; Betals; Betals; CO	06 X 00 00 X 00	
SAMPLE I.D. DATE TIME LAB I.D.	MATRIX /	0, 7, 8, 7, 0		20 0 B		HEMARKS
EFF1-72909 7/29/09 915	64					
EFF2-72904 J 925	GW					29 hr m
	and a more a second					
	and more than the second s				source and the second	
INVOICE IN REPORT REQUIREMENTS	INVOICE INFORMATION	Circle which metals are to be analyzed	analyzed:			
I. Routine Report: Method Bill To:		Total Metals: AI As Sb	Ba Be B Ca Cd Co Cr	Cu Fe Pb Mg Mh N	Mo Ni K Ag Na Se	e Sr Tl Sn V Zn Hg
urrogate, as		Dissolved Metals: AI As Sb	Ba Be B Ca Cd Co Cr	Cu Fe Pb Mg Mn I	Mo Ni K Ag Na Se	e Sr TI Sn V Zn Hg
		*INDICATE STATE HYDR	*INDICATE STATE HYDROCARBON PROCEDURE:	AK CA WI NORTH	NORTHWEST, OTHER.	(CIRCLE ONE)
II. Report Dup., MS, MSD as TURNAROUND required	TURNAROUND REQUIREMENTS	SPECIAL INSTRUCTIONS/COMMENTS	S/COMMENTS:	and the second se	and the second se	
	a dama na mangana na ma		T6764			
U	Standard (10-15 working days)					
V FDD	Provide FAX Results	-T-+-TA	F-2-72909			
	Requested Report Date			Anno any any ang		
RELINQUISHED BY: 1053	M RECE	RECEIVED BY: 181.C	RELINQUISHED BY	HED BY:	RECI	RECEIVED BY:
6	Signature Date Date	Date Time	Signature	Date/Time	Signature	Date/Time
Firm	Printed Name	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Printed Name	F-irin	Printed Name	Firm BC 1 06

(360) 636-1068 fax

August 17, 2009

Analytical Report for Service Request No: K0907395

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Longview/001.0173.00010

Dear Mike:

Enclosed are the results of the rush samples submitted to our laboratory on August 13, 2009. For your reference, these analyses have been assigned our service request number K0907395.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

3/17/09

Pradeep Divvela Project Chemist

PD/rh

Page 1 of 💋

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U. The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number	
Alaska DEC UST	UST-040	_
Arizona DHS	AZ0339	
Arkansas - DEQ	88-0637	•
California DHS	2286	_
Colorado DPHE	-	
Florida DOH	E87412	
Hawaii DOH	-	
Idaho DHW	-	
Indiana DOH	C-WA-01	
Louisiana DEQ	3016	
Louisiana DHH	LA050010	
Maine DHS	WA0035	
Michigan DEQ	9949	
Minnesota DOH	053-999-368	
Montana DPHHS	CERT0047	
Nevada DEP	WA35	
New Jersey DEP	WA005	
New Mexico ED	-	
North Carolina DWQ	605	
Oklahoma DEQ	9801	
Oregon - DHS	WA200001	
South Carolina DHEC	61002	
Utah DOH	COLU	
Washington DOE	C1203	
Wisconsin DNR	998386840	
Wyoming (EPA Region 8)	-	

Analytical Results

Client:	SLR International	Service Request:	K0907395
Project:	Longview/001.0173.00010	Date Collected:	08/13/2009
Sample Matrix:	Water	Date Received:	08/13/2009

Gasoline Range Organics

Sample Name: Lab Code:	INF1-81309 K0907395-00	INF1-81309 K0907395-001							
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx								
					Dilution	Date	Date	Extraction	
Analyte Name		Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	08/13/09	08/13/09	KWG0907127	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	87	50-150	08/13/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0907395
Project:	Longview/001.0173.00010	Date Collected:	08/13/2009
Sample Matrix:	Water	Date Received:	08/13/2009

Gasoline Range Organics

Sample Name:	EFF1-81309	Units:	ug/L
Lab Code:	K0907395-002	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	1	08/13/09	08/13/09	KWG0907127	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	88	50-150	08/13/09	Acceptable

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0907395
Project:	Longview/001.0173.00010	Date Collected:	08/13/2009
Sample Matrix:	Water	Date Received:	08/13/2009

Gasoline Range Organics

Sample Name: Lab Code:	EFF2-81309 K0907395-00	3						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx						1	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	U	250	1	08/13/09	08/13/09	KWG0907127	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	88	50-150	08/13/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0907395
Project:	Longview/001.0173.00010	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Gasoline Range Organics

Sample Name: Lab Code:	Method Blank KWG090712								Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx]	Level: Low	
Analyte Name		Result	Q	MRL	-	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organic	s-NWTPH	ND	Ū	250		1	08/13/09	08/13/09	KWG0907127	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	87	50-150	08/13/09	Acceptable	

Comments:

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0907395

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method:	EPA 5030B
Analysis Method:	NWTPH-Gx

Units:	PERCENT
Level:	Low

Sample Name	Lab Code	<u>Sur1</u>
INF1-81309	K0907395-001	87
EFF1-81309	K0907395-002	88
EFF2-81309	K0907395-003	88
Batch QCDUP	KWG0907127-1	82
Method Blank	KWG0907127-3	87
Batch QC	K0907169-002	81
Lab Control Sample	KWG0907127-2	90

Surrogate Recovery Control Limits (%)

Surl = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0907395 Date Extracted: 08/14/2009 Date Analyzed: 08/14/2009

Duplicate Sample Summary Gasoline Range Organics

Sample Name:	Batch QC	Units:	0
Lab Code:	K0907169-002	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	NWTPH-Gx	Extraction Lot:	

		Sample	Batch (KWG09 Duplicat	•	Relative Percent	RPD Limit
Analyte Name	MRL	Result	Result	Average	Difference	
Gasoline Range Organics-NWTPH	1300	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Lab Control Spike Summary Gasoline Range Organics

Extraction Method:	EPA 5030B	Units:	ug/L
Analysis Method:	NWTPH-Gx	Basis:	NA
·		Level:	Low
		Extraction Lot:	KWG0907127

	KW	Control Samp /G0907127-2 Control Spike	2	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Gasoline Range Organics-NWTPH	468	500	94	80-119

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Service Request:
 K0907395

 Date Extracted:
 08/13/2009

 Date Analyzed:
 08/13/2009

Analytical Results

Client:	SLR International	Service Request:	K0907395
Project:	Longview/001.0173.00010	Date Collected:	08/13/2009
Sample Matrix:	Water	Date Received:	08/13/2009

Volatile Organics by GC/MS

Sample Name:	INF1-81309	Units:	0
Lab Code:	K0907395-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	140	D	2.5	5	08/13/09	08/13/09	KWG0907121	
Toluene	0.51		0.50	1	08/13/09	08/13/09	KWG0907121	
Ethylbenzene	3.0		0.50	1	08/13/09	08/13/09	KWG0907121	
m,p-Xylenes	5.0		0.50	1	08/13/09	08/13/09	KWG0907121	
o-Xylene	ND	U,	0.50	1	08/13/09	08/13/09	KWG0907121	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tolucne-d8	110	78-129	08/13/09	Acceptable
Dibromofluoromethane	101	73-122	08/13/09	Acceptable
4-Bromofluorobenzene	98	68-117	08/13/09	Acceptable

Comments:

Printed: 08/14/2009 15:37:29 u Stealth'Crystal.rpt/Form1m.rpt

Merged

.

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0907395 Date Collected: 08/13/2009 Date Received: 08/13/2009

Volatile Organics by GC/MS

Sample Name:	EFF1-81309	Units:	0
Lab Code:	K0907395-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U	0.50	1	08/13/09	08/13/09	KWG0907121	
Tolucne	ND U	0.50	1	08/13/09	08/13/09	KWG0907121	
Ethylbenzene	ND U	0.50	1	08/13/09	08/13/09	KWG0907121	
m.p-Xylenes	ND U	0.50]	08/13/09	08/13/09	KWG0907121	
o-Xylene	ND U	0.50	l	08/13/09	08/13/09	KWG0907121	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	112	78-129	08/13/09	Acceptable	
Dibromofluoromethane	102	73-122	08/13/09	Acceptable	
4-Bromofluorobenzene	98	68-117	08/13/09	Acceptable	

Comments:

Mcrged

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0907395

 Date Collected:
 08/13/2009

 Date Received:
 08/13/2009

Volatile Organics by GC/MS

Sample Name:	EFF2-81309	Units:	0
Lab Code:	K0907395-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	1	08/13/09	08/13/09	KWG0907121	
Toluene	ND	U	0.50	1	08/13/09	08/13/09	KWG0907121	
Ethylbenzene	ND	U	0.50	1	08/13/09	08/13/09	KWG0907121	
m.p-Xylenes	ND	U	0.50	1	08/13/09	08/13/09	KWG0907121	
o-Xylene	ND	U	0.50	1	08/13/09	08/13/09	KWG0907121	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tolucne-d8	112	78-129	08/13/09	Acceptable
Dibromofluoromethane	102	73-122	08/13/09	Acceptable
4-Bromofluorobenzene	98	68-117	08/13/09	Acceptable

Comments:

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Ground water

Service Request: K0907395 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0907121-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	08/13/09	08/13/09	KWG0907121	
Toluene	ND U	0.50	1	08/13/09	08/13/09	KWG0907121	
Ethylbenzene	ND U	0.50	1	08/13/09	08/13/09	KWG0907121	
m,p-Xylenes	ND U	0.50	1	08/13/09	08/13/09	KWG0907121	
o-Xylene	ND U	0.50	1	08/13/09	08/13/09	KWG0907121	

.. .

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tolucne-d8	112	78-129	08/13/09	Acceptable
Dibromofluoromethane	100	73-122	08/13/09	Acceptable
4-Bromofluorobenzene	98 [.]	68-117	08/13/09	Acceptable

Comments:

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method: EPA 5030B Analysis Method: 8260B Units: PERCENT Level: Low

Service Request: K0907395

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>	<u>Sur3</u>
INF1-81309	K0907395-001	110	101	98
EFF1-81309	K0907395-002	112	102	98
EFF2-81309	K0907395-003	112	102	98
Method Blank	KWG0907121-4	112	100	98
Batch QC	K0907101-008	111	101	99
Batch QCMS	KWG0907121-1	111	100	100
Batch QCDMS	KWG0907121-2	111	99	100
Lab Control Sample	KWG0907121-3	112	99	100

Surrogate Recovery Control Limits (%)

Surl = Toluene-d8	78-129		
Sur2 = Dibromofluoromethane	73-122		
Sur3 = 4-Bromofluorobenzene	68-117		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

16

QA/QC Report

Client:SLR InternationalProject:Longview/001.0173.00010Sample Matrix:Ground water

Service Request: K0907395 Date Extracted: 08/13/2009 Date Analyzed: 08/13/2009

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organics by GC/MS

Sample Name:	Batch QC	Units:	2
Lab Code:	K0907101-008	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

		KV	atch QCMS VG0907121- Aatrix Spike	1	KV	tich QCDMS VG0907121-2 cate Matrix S	2			
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	RPD Limit
Benzene	ND	10.3	10.0	103	. 10.5	10.0	105	69-126	2	30
Toluene	ND	10.6	10.0	106	10.8	10.0	108	66-128	2	30
Ethylbenzene	ND	10.4	10.0	104	10.5	10.0	105	65-126	1	30
m,p-Xylenes	ND	20.5	20.0	102	20.8	20.0	104	63-130	2	30
o-Xylene	ND	10.2	10.0	102	10.4	10.0	104	65-130	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

17

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Ground water

Service Request: K0907395 Date Extracted: 08/13/2009 Date Analyzed: 08/13/2009

Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units:	ug/L
Basis:	NA
Level:	Low
Extraction Lot:	KWG0907121

	Lab Control Sample KWG0907121-3 Lab Control Spike		WG0907121-3	
Analyte Name	Result	Expected	%Rec	%Rec Limits
Benzene	10.0	10.0	100	74-118
Toluene	10.3	10.0	103	74-117
Ethylbenzene	9.99	10.0	100	71-118
m.p-Xylenes	19.7	20.0	99	73-119
o-Xylene	10.2	10.0	102	74-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

	Servic
columbia	Analytical
X	0

CHAIN OF CUSTODY

Columbia Analytical Services	es.	CHAIN	N OF CUSTODY	зтору		SR#:	(110 (11)
	1317 South 13th Ave. • Kelso. WA 98626 • (360) 577-7222 •	93626 · (360)	577-7222 • (800) 695-7222×07	• FAX	PAGEOF		COC #
PROJECT NAME (COMMENDED)	1000					10	
Star Star	42		CMAS	SI8 (1 20°	
SUR		MER	1702 9 Xq	WI VII VII VII VII VII VII VII VII VII V	рөл (рөл	053	
7 62			96 96 805 805 805		Vossi WIS	91 XC	
EAML ADRESS AA CAS A CONTRACT OF T	VA V Plan a Casa		((((((((((((((SS1 SS1 SS1 SS SS H (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)		
]]	ر ز	10 4	0 10 9 2 8 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			17 02	
L'				CH C C C C C C C C C C C C C C C C C C			
	TIME LAB I.D. MATRIX	\rightarrow	· / · · / · / ·		× a a b b x		MEWIAHAS
INF4-81309 8/13/0	uc) 2401 g	6	$\times \times$				
EF2-81309	10.55	6	XX				
Eft2- 81309 V	1105 4	9	XX				×74-4-745
REPORT REQUIREMENTS	INVOICE INFORMATION		Circle which metals are to be analyzed	nalyzed			
 Routine Report: Method 	P.O.# Bill To:	To	Total Metals: AI As Sb I	Ba Be B Ca Cd Co Ci Cu	Fe Pb Mg Min Mo Ni K	K Ag Na Se	Sr TI Sn V Zn Hg
Blank, Surrogate, as		Dissol	Dissolved Metals. Al As Sb	Ba Be B Ca Cd Co Cr Cu	Fe Pb Mg Mn Mo Ni I	K Ag Na Se	sr TI Sn V Zn Hg
			ICATE STATE HYDRC	'INDICATE STATE HYDROCARBON PROCEDURE: AK	CA WI MORTHWEST OTHER	OTHER:	(CIRCLE ONE)
 II. Report Dup., MS, MSD as required 	IND REQU	MENTS SPECIAL	INSTRUCTIO	(COMMENTS:			
III. Data Validation Report	5-Day 48 nr.	\wedge	EA7-81	81309			
(includes all raw data) IV CLP Deliverable Report	Standard (10-15 working days)	g days)					
	Provide FAX Hesults	4	DWP1-81309	:6,			;
	Requested Report Date	0	GF2-81309	9			
	69 1130 Ball	RECEIVED BY	BY: 15/10 11.57	RELINQUISHED BY:	BY:	RECE	RECEIVED BY:
- mer	Y.		Date//me	Signature Date	Date/Time Signature	ture	Date/Time
Printed Name Firm	Printed Name		Firm	Printed Name Firm		Printed Name	Firm

(360) 636-1068 fax

September 10, 2009

Analytical Report for Service Request No: K0907874

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, W.A. 98021

RE: Former Arco Station #0855/001.0173.00010

Dear Mike:

Enclosed are the results of the samples submitted to our laboratory on August 26, 2009. For your reference, these analyses have been assigned our service request number K0907874.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela

Project Chemist

PD/In

Page 1 of

cc: Chris Kramer, SLR International, West Linn, OR

62

Acronyms

issible concentration of a
e USEPA.
m Improvement
ess than the PQL but greater

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- \check{H} The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	· -
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Analytical Results

Client:	SLR International
Project:	Former Arco Station #0855/001.0173.00010
Sample Matrix:	Water

Service Request: K0907874 Date Collected: 08/26/2009 Date Received: 08/26/2009

Gasoline Range Organics

D:1.54	ion Date	Date	Extraction	
Extraction Method:EPA 5030BAnalysis Method:NWTPH-Gx		L	Level: Low	
Sample Name: Eff1-82609 Lab Code: K0907874-001			Units: ug/L Basis: NA	

Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTP	ND U	250]	09/08/09	09/08/09	KWG0908034	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	101	50-150	09/08/09	Acceptable

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0907874
Project:	Former Arco Station #0855/001.0173.00010	Date Collected:	08/26/2009
Sample Matrix:	Water	Date Received:	08/26/2009

Gasoline Range Organics

Sample Name: Lab Code:	Eff2-82609 K0907874-002					Units: ug/L Basis: NA
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx					Level: Low
			Dilution	Date	Date	Extraction

			Dilution	Date	Dutt	Battaction	
Analyte Name	Result (Q MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTP	ND I	J 250	1	09/08/09	09/08/09	KWG0908034	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	101	50-150	09/08/09	Acceptable	-

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0907874
Project:	Former Arco Station #0855/001.0173.00010	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Gasoline Range Organics

Sample Name: Lab Code:	Method Blanl KWG090803						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx]	Level: Low	
Analyte Name		Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organ	nics-NWTP	ND Ü	250	1	09/08/09	09/08/09	KWG0908034	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	101	50-150	09/08/09	Acceptable

Comments:

QA/QC Report

Client:SLR InternationalProject:Former Arco Station #0855/001.0173.00010Sample Matrix:Water

Service Request: K0907874

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5030B Analysis Method: NWTPH-Gx Units: PERCENT Level: Low

Sample Name	<u>Lab Code</u>	<u>Sur1</u>
Eff1-82609	K0907874-001	101
Eff2-82609	K0907874-002	101
Batch QCDUP	KWG0908034-1	102
Method Blank	KWG0908034-3	101
Batch QC	K0907919-004	101
Lab Control Sample	KWG0908034-2	105

Surrogate Recovery Control Limits (%)

Surl = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Form 2A - Organic

•

QA/QC Report

Client:	SLR International
Project:	Former Arco Station #0855/001.0173.00010
Sample Matrix:	Water

Service Request: K0907874 Date Extracted: 09/08/2009 Date Analyzed: 09/08/2009

Duplicate Sample Summary Gasoline Range Organics

Sample Name:	Batch QC	Units:	0
Lab Code:	K0907919-004	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	NWTPH-Gx	Extraction Lot:	

		Sample	Batch Q K WG090 Duplicate	08034-1	Relative Percent	RPD Limit
Analyte Name	MRL	Result	Result	Average	Difference	
Gasoline Range Organics-NWTPH	250	ND	ND	ND	-	30

1

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:SLR InternationalProject:Former Arco Station #0855/001.0173.00010Sample Matrix:Water

Lab Control Spike Summary Gasoline Range Organics

Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx					Units: Basis: Level:	NA
						Extraction Lot:	KWG0908034
	-	KW	Control Samp VG0908034-2 Control Spik		%Rec		
Analyte Name		Result	Expected	%Rec	Limits		
Gasoline Range Organics	s-NWTPH	489	500	98	80-119		

Results flagged with an asterisk (*) indicate values outside control criteria. Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

10

Service Request: K0907874

Date Extracted: 09/08/2009

Date Analyzed: 09/08/2009

Analytical Results

Client:	SLR International
Project:	Former Arco Station #0855/001.0173.00010
Sample Matrix:	Water

Service Request: K0907874 Date Collected: 08/26/2009 Date Received: 08/26/2009

Volatile Organics by GC/MS

Sample Name:	Eff1-82609	Units:	0
Lab Code:	K0907874-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

		-		Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	
Toluene	ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	
Ethylbenzene	ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	
m,p-Xylenes	ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	
o-Xylene	ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	109	78-129	09/03/09	Acceptable
Dibromofluoromethane	96	73-122	09/03/09	Acceptable
4-Bromofluorobenzene	90	68-117	09/03/09	Acceptable

Comments:

Analytical Results

Client:	SLR International
Project:	Former Arco Station #0855/001.0173.00010
Sample Matrix:	Water

Service Request: K0907874 Date Collected: 08/26/2009 Date Received: 08/26/2009

Volatile Organics by GC/MS

Sample Name:	Eff2-82609	Units:	0
Lab Code:	K0907874-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	09/03/09	09/03/09	KWG0907962	
Toluene	ND U	0.50	1	09/03/09	09/03/09	KWG0907962	
Ethylbenzene	ND U	0.50	1	09/03/09	09/03/09	KWG0907962	
m,p-Xylenes	ND U	0.50	1	09/03/09	09/03/09	KWG0907962	
o-Xylene	ND U	0.50	1	09/03/09	09/03/09	KWG0907962	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	109	78-129	09/03/09	Acceptable	
Dibromofluoromethane	97	73-122	09/03/09	Acceptable	
4-Bromofluorobenzene	91	68-117	09/03/09	Acceptable	

Comments:

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:	SLR International
Project:	Former Arco Station #0855/001.0173.00010
Sample Matrix:	Water

Service Request: K0907874 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0907962-5	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	
Toluene	ND	U	0.50	I	09/03/09	09/03/09	KWG0907962	
Ethylbenzene	ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	
m,p-Xylenes	ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	
o-Xylene	. ND	U	0.50	1	09/03/09	09/03/09	KWG0907962	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	110	78-129	09/03/09	Acceptable
Dibromofluoromethane	94	73-122	09/03/09	Acceptable
4-Bromofluorobenzene	92	68-117	09/03/09	Acceptable

Comments:

Merged

.

QA/QC Report

Client:	SLR International
Project:	Former Arco Station #0855/001.0173.00010
Sample Matrix:	Water

Service Request: K0907874

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>	<u>Sur3</u>
Batch QCDMS	KWG0907962-2	108	91	93
Lab Control Sample	KWG0907962-3	107	90	94
Duplicate Lab Control Sample	KWG0907962-4	109	91	94
Eff1-82609	K0907874-001	109	96	90
Eff2-82609	K0907874-002	109	97	91
Method Blank	KWG0907962-5	110	94	92
Batch QC	K0907909-002	107	94	93
Batch QCMS	KWG0907962-1	108	90	93

Surrogate Recovery Control Limits (%)

Surl = Toluene-d8	78-129	
Sur2 = Dibromofluoromethane	73-122	
Sur3 = 4-Bromofluorobenzene	68-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.
QA/QC Report

Client:SLR InternationalProject:Former Arco Station #0855/001.0173.00010Sample Matrix:Water

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organics by GC/MS

Sample Name:	Batch QC	Units:	0
Lab Code:	K0907909-002	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

		KV	atch QCMS VG0907962- Aatrix Spike	1	KV	tch QCDMS VG0907962-2 ate Matrix S	2			
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	RPD Limit
Benzene	ND	9.66	10.0	97	9.72	10.0	97	69-126	1	30
Toluene	ND	10.3	10.0	103	10.4	10.0	104	66-128	1	30
Ethylbenzene	ND	10.3	10.0	103	10.4	10.0	104	65-126	1	30
m,p-Xylenes	ND	20.6	. 20.0	103	20.6	20.0	103	63-130	0	30
o-Xylene	ND	10.3	10.0	103	10.3	10.0	103	65-130	0	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Service Request: K0907874 Date Extracted: 09/03/2009 Date Analyzed: 09/03/2009

QA/QC Report

Client:	SLR International
Project:	Former Arco Station #0855/001.0173.00010
Sample Matrix:	Water

Service Request: K0907874 Date Extracted: 09/03/2009 Date Analyzed: 09/03/2009

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method: Analysis Method:	EPA 5030B 8260B							B L	evel:	ug/L NA Low KWG0907962
	_	KW	Control Samp /G0907962-3 Control Spike		KW	Lab Control /G0907962-4 2 Lab Control		%Rec		RPD
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	
Benzene		9.01	10.0	90	9.03	10.0	90	74-118	0	30
Toluene		9.27	10.0	93	9,50	10.0	95	74- 11 7	2	30
Ethylbenzene		9.31	10.0	93	9.47	10.0	95	71-118	2	30
m,p-Xylenes		18.7	20.0	94	19.0	20.0	95	73-119	2	30
o-Xylene		9.59	10.0	96	9.60	10.0	96	74-120	0	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

C columbia	CHAIN OF CUSTODY	SR#: KOUCU SUH
	1317 South 13th Ave. • Kelso WA 93626 + (300) 577-7222 + (800) 695-7222x07 + FAX (360) 636-1068	PAGE OF L COC #
PRIVICIANT FORMER AND STATION #055, PROJECT NAMERIA OFF. 091.0173.00010 PROJECT NAMAGER MILLESTATION	North Start	Pa,
CET STATE 219 E MAN ADDIESS METATAN ESTEWED, 60M PHONE # FAX#	H2 33101 H2 33101 10103-10102 - 8121 10001-00102 - 8121 008170-0010600	x 8050 1 × 40 x 19 x 8050 1 × 40 x 19 3 × 10 000 (01,019) N05+N0 103 007 (01,019) N05+N0 103 007 (123 102 103 007 00 103 007 00 103 007 00 103 00 100 103 00 103 00 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
SAMPLE ID. DATE TIME LABI.D. M.	8 / 2 & 1 × 6 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	40
Eff 2-82008-26 11:45 6	Er le	
REPORT REQUIREMENTS P.O.# INVOICE INFORMATION P.O.# Bill To: Isolution Report: Method Bill To:	Carcles whitch triestals, and to be enablyzed. Total hieratis: AL AS Sb Ba Be B Ca Cd Co Ci Cu F Dissolves Meints: AL AS Sb Ba Ba B Ca Cd Co Cr Cu	Pb Mag Min Mio Ni K Ag Na Se Sr Ti Si -
up MS. MSD as TURNAROUND REQUIDENT	IREMENTS SPECIAL INSTRUCTIONS/COMMENTS: AK CA 48 hr.	A WI NORTHWEST ØTHER: (CIRCLE ONE)
	orking days) lits	
	RECEIVED BY:	RECEIVED BY:
<u> 5. 8-26-07/12-</u> 73	ue /eves &/xx/es /225 Signalure Date/Time	ne Date/Time
	Punjed Name Firm Firm Firm	Printed Name Firm

(360) 636-1068 fax

September 16, 2009

Analytical Report for Service Request No: K0908389

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Former Arco Station #0855 (Longview)/001.0173.00010

Dear Mike:

Enclosed are the results of the rush samples submitted to our laboratory on September 09, 2009. For your reference, these analyses have been assigned our service request number K0908389.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/rh

Page 1 of 2D

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is iess than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Analytical Results

Client:	SLR International	Service Request:	K0908389
Project:	Former Arco Station #0855 (Longview)/001.0173.00010	Date Collected:	09/09/2009
Sample Matrix:	Water	Date Received:	09/09/2009

Gasoline Range Organics

Sample Name:	INF1-9909	Units:	0
Lab Code:	K0908389-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	<u> </u>	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTP	ND U	250	1	09/14/09	09/14/09	KWG0908199	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	103	50-150	09/14/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0908389
Project:	Former Arco Station #0855 (Longview)/001.0173.00010	Date Collected:	09/09/2009
Sample Matrix:	Water	Date Received:	09/09/2009

Gasoline Range Organics

Sample Name:	EFF1-9909	Units:	0
Lab Code:	K0908389-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTP	ND	U	250	1	09/14/09	09/14/09	KWG0908199	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	103	50-150	09/14/09	Acceptable

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0908389
Project:	Former Arco Station #0855 (Longview)/001.0173.00010	Date Collected:	09/09/2009
Sample Matrix:	Water	Date Received:	09/09/2009

Gasoline Range Organics

Sample Name: Lab Code:	EFF2-9909 K0908389-00	3						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx]	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organ	nics-NWTP	ND	U	250	1	09/14/09	09/14/09	KWG0908199	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	103	50-150	09/14/09	Acceptable	_

Comments:

Analytical Results

Client:	SLR International	Service Request:	K0908389
Project:	Former Arco Station #0855 (Longview)/001.0173.00010	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Gasoline Range Organics

Sample Name: Lab Code:	Method Blan KWG090819	-						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx]	Level: Low	
Analyte Name		Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organ	nics-NWTP	ND	U	250	1	09/14/09	09/14/09	KWG0908199	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	103	50-150	09/14/09	Acceptable

Comments:

QA/QC Report

Client: SLR International Former Arco Station #0855 (Longview)/001.0173.00010 Project: Water Sample Matrix:

Surrogate Recovery Summary

Gasoline Range Organics

Extraction Method: EPA 5030B Analysis Method: NWTPH-Gx

Units: PERCENT Level: Low

Service Request: K0908389

Sample Name	Lab Code	<u>Sur1</u>
INF1-9909	K0908389-001	103
EFF1-9909	K0908389-002	103
EFF2-9909	K0908389-003	103
EFF2-9909DUP	KWG0908199-1	103
Method Blank	KWG0908199-3	103
Lab Control Sample	KWG0908199-2	107

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	SLR International
Project:	Former Arco Station #0855 (Longview)/001.0173.00010
Sample Matrix:	Water

Service Request: K0908389 Date Extracted: 09/14/2009 Date Analyzed: 09/14/2009

Duplicate Sample Summary	
Gasoline Range Organics	

Gasoline Range Organics	S-NWTPH 250	ND	ND	ND		30
Analyte Name	MRL	Result	Result	Average	Difference	
		Sample	Duplicate	Sample	Percent	RPD Limit
			KWG090)8199-1	Relative	
			EFF2-99	09DUP		
Analysis Method:	NWTPH-Gx				Extraction Lot:	KWG0908199
Extraction Method:	EPA 5030B				Level:	
Lab Code:	K0908389-003				Basis:	NA
Sample Name:	EFF2-9909				Units:	-

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Results flagged with an asterisk (*) indicate values outside control criteria.

11

l of 1

Client: Project: Sample Matrix:	SLR Internat Former Arco Water		0855 (Longvi	ew)/001.0	Service Request: Date Extracted: Date Analyzed:	()9/14/20()9	
					pike Summary nge Organics		
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx					Units: Basis: Level: Extraction Lot:	NA Low
	_	КW	Control Samp /G0908199-2 Control Spik		%Rec		
Analyte Name		Result	Expected	%Rec	Limits		
Gasoline Range Organic	s-NWTPH	486	500	97	80-119		

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Analytical Results

Client:	SLR International
Project:	Former Arco Station #0855 (Longview)/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0908389

 Date Collected:
 09/09/2009

 Date Received:
 09/09/2009

Volatile Organics by GC/MS

Sample Name:	INF 1-9909	Units:	0
Lab Code:	K0908389-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	95 D	2.5	5	09/11/09	09/11/09	KWG0908190	
Toluene	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	
Ethylbenzene	1.9	0.50	I	09/11/09	09/11/09	KWG0908190	
m,p-Xylenes	3.8	0.50	1	09/11/09	09/11/09	KWG0908190	
o-Xylene	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	

Surrogate Name	%Rec	Control Límits	Date Analyzed	Note	
Toluene-d8	106	78-129	09/11/09	Acceptable	
Dibromofluoromethane	98	73-122	09/11/09	Acceptable	
4-Bromofluorobenzene	91	68-117	09/11/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International
Project:	Former Arco Station #0855 (Longview)/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0908389

 Date Collected:
 09/09/2009

 Date Received:
 09/09/2009

Volatile Organics by GC/MS

Sample Name:	EFF1-9909	Units:	U
Lab Code:	K0908389-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

lote
_

- -

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	109	78-129	09/11/09	Acceptable
Dibromofluoromethane	101	73-122	09/11/09	Acceptable
4-Bromofluorobenzene	91	68-117	09/11/09	Acceptable

Comments:

Analytical Results

Client:	SLR International
Project:	Former Arco Station #0855 (Longview)/001.0173.00010
Sample Matrix:	Water

Service Request: K0908389 Date Collected: 09/09/2009 Date Received: 09/09/2009

Volatile Organics by GC/MS

Sample Name:	EFF2-9909	Units:	0
Lab Code:	K0908389-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U '	0.50	1	09/11/09	09/11/09	KWG0908190	
Toluene	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	
Ethylbenzene	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	
m,p-Xylenes	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	
o-Xylene	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	109	78-129	09/11/09	Acceptable
Dibromofluoromethane	100	73-122	09/11/09	Acceptable
4-Bromofluorobenzene	91	68-117	09/11/09	Acceptable

Comments:

Form 1A - Organic

14

Analytical Results

Client:	SLR International
Project:	Former Arco Station #0855 (Longview)/001.0173.00010
Sample Matrix:	Water

Service Request: K0908389 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	2
Lab Code:	KWG0908190-6	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50		09/11/09	09/11/09	KWG0908190	
Toluene	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	
Ethylbenzene	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	
m,p-Xylenes	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	
o-Xylene	ND U	0.50	1	09/11/09	09/11/09	KWG0908190	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	108	78-129	09/11/09	Acceptable
Dibromofluoromethane	99	73-122	09/11/09	Acceptable
4-Bromofluorobenzene	89	68-117	09/11/09	Acceptable

Comments:

QA/QC Report

Client:SL R InternationalProject:Former Arco Station #0855 (Longview)/001.0173.00010Sample Matrix:Water

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method:EPA 5030BAnalysis Method:8260B

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
INF1-9909	K0908389-001	106	98	91
EFF1-9909	K0908389-002	109	101	91
EFF2-9909	K0908389-003	109	100	91
Method Blank	KWG0908190-6	108	99	89
Batch QC	K0908239-016	108	99	92
Batch QCMS	KWG0908190-3	106	96	91
Batch QCDMS	KWG0908190-4	107	96	92
Lab Control Sample	KWG0908190-5	107	98	94

Surrogate Recovery Control Limits (%)

Surl = Toluene-d8	78-129		
Sur2 = Dibromofluoromethane	73-122		
Sur3 = 4-Bromofluorobenzene	68-117		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Service Request: K0908389

QA/QC Report

Client:	SLR International
Project:	Former Arco Station #0855 (Longview)/001.0173.00010
Sample Matrix:	Water

Service Request: K0908389 Date Extracted: 09/11/2009 Date Analyzed: 09/11/2009

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organics by GC/MS

Batch QC K0908239-016	Units: Basis:	<u> </u>
	Level: Extraction Lot:	
		K0908239-016 Basis: EPA 5030B Level:

	Sample	KV	atch QCMS VG0908190- Matrix Spike	3	KV	atch QCDMS VG0908190- cate Matrix S	4	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Benzene	ND	10.4	10.0	104	10.1	10.0	101	69-126	3	30
Toluene	ND	10.7	10.0	107	10.3	10.0	103	66-128	4	30
Ethylbenzene	ND	10.6	10.0	106	10,3	10.0	103	65-126	3	30
m,p-Xylenes	ND	21.3	20.0	106	20.4	20.0	102	63-130	4	30
o-Xylene	ND	10.6	10.0	106	10.2	10.0	102	65-130	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

QA/QC Report

Client:SL R InternationalProject:Former Arco Station #0855 (Longview)/001.0173.00010Sample Matrix:Water

Service Request: K0908389 Date Extracted: 09/11/2009 Date Analyzed: 09/11/2009

Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method:EPA 5030BAnalysis Method:8260B

,

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0908190

	Lab Control Sample KWG0908190-5 Lab Control Spike			%Rec	
Analyte Name	Result	Expected	%Rec	Limits	·
Benzene	9.60	10.0	96	74-118	
Toluene	9.66	10.0	97	74-117	
Ethylbenzene	9.58	10.0	96	71-118	
m,p-Xylenes	19.3	20.0	97	73-119	
o-Xylene	9.69	10.0	97	74-120	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

SuperSet Reference: RR106059

	CHAIN OF	CUSTODY	SR#: KD	srr: Koucessu
13 ALT	uth 13th Ave. • Kelso, WA 98626 • (360) 577-7222 •	(800) 695-7222×07 · FAX (360) 636-1068 PAGE	OF	COC #
PROVECT NUMBER AND STALAUN 7 PROVECT NUMBER OO 1. 0173	+0855 (Longuran) / ///	1 VIS	57.90 58 90 90 90	
nike	SW 25 SW 25 SW25	18 7 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	100 001 001 001 001 00 001 00 00	
CITVISTATE/2IP	1200	VISI8 VISI8 VISI8 VISI8 VISI8 VISI8 VISI8	LDS LDS	
S MStaton Q			SSI SSI SSI	
3	00000000000000000000000000000000000000		000 000-00	
SAMPLER'S SIGNATURE		4HS 98/10100 00002 1002 1002	002 N-02-N- CO N-02-N-	
SAMPLE I.D. DATE	LAB I.D. MATRIX Z S SS XS XS	24 20 0 F 2 80		s (
11 Lable				My My
Eft 1 - 9909 1	12Y& () X			
EH2-9900	1250 6 X			->
¥				
REPORT REQUIREMENTS	INVOICE INFORMATION Circle which metals are to be analyzed:	analyzed:		
I. Routine Report: Method	Bill To: Total Metals: AI As Sb	Ba Be B Ca Cd Co Cr Cu Fe Pb	Mg Mn Mo Ni K Ag Na Se	Sr TI Sn V Zn Hg
Blank, Surrogate, as reouired	Dissolved Metals: Al As Sb	r Cu Fe Pb	Mg Mn Mo Ni K Ag Na Se	Sr TI Sn
se USM SM out Duror H		INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI	MORTHWEST OTHER	(CIRCLE ONE)
	1URNAROUND REQUIREMENTS SPECIAL INSTRUCTIONS/COMMENTS: 24 hr. 48 hr. 21 hr. 22 hr. 22 hr. 22 hr. 23 hr. 24 hr. 24 hr. 24 hr. 24 hr. 25 hr. 26 hr. 27 hr. 27 hr. 28	S/COMMENTS:).	
III. Data Validation Report (includes all raw data)	X 5 Day - AS Day IA	Fandries 110 ret [
IV. CLP Deliverable Report				
V. EDD	Requested Report Date			
		RELINQUISHED BY:	RECI	RECEIVED BY:
Date Made	R 1979 / www. Kern 2/9/007/353	Signature Date/Time	Signature	Date/Time
Primed Name Firm 74	Firm	Printed Name Firm	Printed Name	Firm

(360) 636-1068 fax

October 5, 2009

Analytical Report for Service Request No: K0909116

Mike Staton SLR International 22122 SE 20th Bldg H Bothell, WA 98021

RE: Longview/001.0173.00010

Dear Mike:

Enclosed are the results of the rush samples submitted to our laboratory on September 28, 2009. For your reference, these analyses have been assigned our service request number K0909116.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela

Project Chemist

PD/rh

Pagel of 17

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

* The result is an outlier. See case narrative

- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL or LOQ but greater than or equal to the MDL or LOD.
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The LOD has been adjusted for dilution.
- i The MRL/MDL or LOO/LOD has been elevated due to a matrix interference.

X See case narrative.

Q See case narrative. One or more quality control criteria was outside the limits.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated concentration that is less than the MRL or LOQ but greater than or equal to the MDL or LOD.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition :
- U Analyte was not detected and is reported as less than the LOD or as defined by the project. The LOD has been adjusted for any dilution or
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD has been elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- O See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C. The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
-] The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition : U Analyte was not detected and is reported as less than the LOD or as defined by the project. The LOD has been adjusted for any dilution or
- j The MRL/MDL or LOO/LOD has been elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil. but does not match the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

4

Analytical Results

Client:	SLR International		Service Request:	K0909116
Project:	Longview/001.0173.00010		Date Collected:	09/28/2009
Sample Matrix:	Water		Date Received:	09/28/2009

Gasoline Range Organics

Sample Name:	Eff1-92809	Units:	0
Lab Code:	K0909116-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTP	ND U	250	1	10/02/09	10/02/09	KWG0908964	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	94	50-150	10/02/09	Acceptable	· · ·

Comments:

Form 1A - Organic

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0909116

 Date Collected:
 09/28/2009

 Date Received:
 09/28/2009

Gasoline Range Organics

Sample Name: Lab Code:	Eff2-92809 K0909116-002					Units: ug/L Basis: NA
Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx					Level: Low
			Dilution	Date	Date	Extraction

			Dilution	Date	Date	EXII action		
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Ne	\$
Gasoline Range Organics-NWTP	ND U	250	1	10/02/09	10/02/09	KWG0908964		,

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	94	50-150	10/02/09	Acceptable

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	SLR International	Service Request:	K0909116
Project:	Longview/001.0173.00010	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Gasoline Range Organics

L

Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTP	ND U	250	1	10/02/09	10/02/09	KWG0908964	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	94	50-150	10/02/09	Acceptable	

Comments:

Merged

,

QA/QC Report

Client:SLR InternationalProject:Longview/001.0173.00010Sample Matrix:Water

Service Request: K0909116

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5030B Analysis Method: NWTPH-Gx Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>
Eff1-92809	K0909116-001	94
Eff2-92809	K0909116-002	94
Batch QCDUP	KWG0908964-1	93
Method Blank	KWG0908964-3	94
Batch QC	K0908871-053	93
Lab Control Sample	KWG0908964-2	97

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

8

QA/QC Report

Client:	SLR International		
Project:	Longview/001.0173.00010		
Sample Matrix:	Water		

Service Request: K0909116 Date Extracted: 10/02/2009 Date Analyzed: 10/02/2009

Duplicate Sample Summary Gasoline Range Organics

Sample Name:	Batch QC	Units:	U
Lab Code:	K0908871-053	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	NWTPH-Gx	Extraction Lot:	

			Batch (QCDUP		
		Comple	KWG09		Relative	
Analyte Name	MRL	Sample Result	Result	e Sample Average	Percent Difference	RPD Limit
Gasoline Range Organics-NWTPH	250	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request:	K0909116
Date Extracted:	10/02/2009
Date Analyzed:	10/02/2009

Lab Control Spike Summary Gasoline Range Organics

Extraction Method: Analysis Method:	EPA 5030B NWTPH-Gx	(Units: Basis: Level: Extraction Lot;	NA Low
Lab Control Sample KWG0908964-2 Lab Control Spike			%Rec				
Analyte Name		Result	Expected	%Rec	Limits		
Gasoline Range Organic	s-NWTPH	476	500	95	80-119		

Results flagged with an asterisk (*) indicate values outside control criteria. Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1 of]

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0909116

 Date Collected:
 09/28/2009

 Date Received:
 09/28/2009

Volatile Organics by GC/MS

Sample Name:	Eff1-92809	Units:	U
Lab Code:	K0909116-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	
Toluene	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	
Ethylbenzene	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	
m,p-Xylenes	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	
o-Xylene	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	97	78-129	09/29/09	Acceptable	
Dibromofluoromethane	99	73-122	09/29/09	Acceptable	
4-Bromofluorobenzene	90	68-117	09/29/09	Acceptable	

Comments:

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

 Service Request:
 K0909116

 Date Collected:
 09/28/2009

 Date Received:
 09/28/2009

Volatile Organics by GC/MS

Sample Name:	Eff2-92809	Units:	<i>c</i>
Lab Code:	K0909116-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0,50	1	09/29/09	09/29/09	KWG0908857	
Toluene	ND	U	0.50	1	09/29/09	09/29/09	KWG0908857	
Ethylbenzene	ND	U	0.50	1	09/29/09	09/29/09	KWG0908857	
m,p-Xylenes	ND	U	0.50	1	09/29/09	09/29/09	KWG0908857	
o-Xylene	. ND	U	0.50	1	09/29/09	09/29/09	KWG0908857	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Toluene-d8	98	78-129	09/29/09	Acceptable
Dibromofluoromethane	102	73-122	09/29/09	Acceptable
4-Bromofluorobenzene	90	68-117	09/29/09	Acceptable

Comments:

Merged

1 of 1

Analytical Results

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0909116 Date Collected: NA Date Received: NA

Volatile Organics by GC/MS

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0908857-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	
Toluene	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	
Ethylbenzene	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	
m,p-Xylenes	ND U	0.50]	09/29/09	09/29/09	KWG0908857	
o-Xylene	ND U	0.50	1	09/29/09	09/29/09	KWG0908857	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Toluene-d8	97	78-129	09/29/09	Acceptable	
Dibromofluoromethane	101	73-122	09/29/09	Acceptable	
4-Bromofluorobenzene	91	68-117	09/29/09	Acceptable	

Comments:
COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Surrogate Recovery Summary Volatile Organics by GC/MS

Extraction Method: EPA 5030B 8260B **Analysis Method:**

Units:	PERCENT
Level:	Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
Eff1-92809	K0909116-001	97	99	90
Eff2-92809	K0909116-002	98	102	90
Method Blank	KWG0908857-4	97	101	91
Lab Control Sample	KWG0908857-3	102	105	98
Duplicate Lab Control Sample	KWG0908857-5	102	105	96

Surrogate Recovery Control Limits (%)

Surl = Toluene-d8	78-129
Sur2 = Dibromofluoromethane	73-122
Sur3 = 4-Bromofluorobenzene	68-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Service Request: K0909116

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:	SLR International
Project:	Longview/001.0173.00010
Sample Matrix:	Water

Service Request: K0909116 Date Extracted: 09/29/2009 Date Analyzed: 09/29/2009

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organics by GC/MS

Extraction Method: Analysis Method:	EPA 5030B 8260B							В	nits: u asis: 1 evel: 1 Lot: 1	Ā
	_	KW	Control Samp /G0908857-3 Control Spike		KW	Lab Control S /G0908857-5 2 Lab Control		%Rec		RPD
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Benzene		9.18	10.0	92	8.63	10.0	86	74-118	6	30
Toluene		9.50	10.0	95	8.83	10.0	88	74-117	7	30
Ethylbenzene		9.41	10.0	94	8.60	10.0	86	71-118	9	30
m,p-Xylenes		18.8	20.0	94	17.6	20.0	88	73-119	6	30
o-Xylene		9.22	10.0	92	8.80	10.0	88	74-120	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Columbia	CHAI	IAIN OF CUSTODY	SR#: 1	140 90 7116-
	1317 South 13th Ave. • Kelso, WA 98626 • (360)	577-7222 • (800) 695-7222×07 • FAX	PAGE OF 1	coc #
PROJECT NAME LENG NPW				
Q	010			
COMPANY/ADDRESS			01 10 10	
2rk		W15 W15 V14 V14 V14 V14 V14 V14 V14 V14 V14 V14		
CITYISTATE/ZIP			Dissig	
E-MAIL ADDRESS MSTATEN(9) SLICLOCT	P. Con		To leto	
SAMPLER'S SIGNATUBE.				
SAMPLE I.D. DATE TIME	LAB I.D. MATRIX	Solo Jost Fred DD A COOL OF A COOL FL A	CV PH N H	/ / REMARKS
Eff1-92809 9/28/09 1050	\sim			
EFFZ-92809 L 1100	7			
REPORT REQUIREMENTS	INVOICE INFORMATION	Circle which metals are to be analyzed:		
1. Routine Report: Method Bill To:		Total Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu F	Fe Pb Mg Mn Mo Ni K Ag Na	Se Sr TI Sn V Zn Hg
		Dissolved Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu F	Fe Pb Mg Mn Mo Ni K Ag Na	Se Sr TI Sn V Zn Hg
nainhai		*INDICATE STATE HYDROCARBON PROCEDURE: AK	CA WI MORTHWEST OTHER:	(CIRCLE ONE)
TURN MSU as TURN required	UND REQ	SPECIAL INSTRUCTIONS/COMMENTS:		
lation Report -	5 Day 48 m.	S Day TAT AF both Samples	oles	
IV. CLP Deliverable Report	Provide FAX Results			
V. EDD	Requested Report Date			
RELINQUISHED BY: 8/00	、	RECEIVED BY:		RECEIVED BY:
Signature Date/Time H	Printed Name	Date/Time Date/Time Date/Time Date/Time Date/Time Prime Firm	Time Signature Printed Name	Date/Time Firm
		and the second		#1 07

APPENDIX C

LABORATORY ANALYTICAL REPORTS – GROUNDWATER SAMPLES

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

September 16, 2009

Mike Staton, Project Manager SLR International Corp. 22122 20th Ave. SE., H-150 Bothell, WA 98021

Dear Mr. Staton:

Included are the results from the testing of material submitted on September 4, 2009 from the Former Arco 0855 001.0173.00010, F&BI 909051 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SLR0916R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 4, 2009 by Friedman & Bruya, Inc. from the SLR International Corp. Former Arco 0855 001.0173.00010, F&BI 909051 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SLR International Corp.
909051-01	MW8-0909
909051-02	MW11-0909
909051-03	DMW3-0909
909051-04	DMW4-0909
909051-05	MW5-0909
909051-06	DMW9-0909
909051-07	MW13-0909
909051-08	MW14-0909
909051-09	MW12-0909
909051-10	MW9-0909
909051-11	DMW6-0909
909051-12	MW10-0909

The samples sent to Analytical Resources for nitrate, sulfate, alkalinity, and dissolved methane analyses. Review of the enclosed report indicates that all quality assurance was acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/16/09 Date Received: 09/04/09 Project: Former Arco 0855 001.0173.00010, F&BI 909051 Date Extracted: 09/08/09 and 09/09/09 Date Analyzed: 09/08/09 and 09/09/09

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW8-0909 909051-01	<1	<1	<1	<3	<100	60
MW11-0909 909051-02	<1	<1	<1	<3	<100	72
DMW3-0909 909051-03	<1	<1	<1	<3	<100	67
DMW4-0909 909051-04	<1	<1	<1	<3	<100	73
MW5-0909 909051-05	<1	<1	<1	<3	<100	59
DMW9-0909 d 909051-06 1/40	2,800	4	320	1,100	14,000	87
MW13-0909 909051-07	<1	<1	<1	<3	<100	67
MW14-0909 909051-08	<1	<1	<1	<3	<100	69
MW12-0909 909051-09	<1	<1	<1	<3	<100	60
MW9-0909 909051-10	<1	<1	<1	<3	<100	70
DMW6-0909	<1	<1	<1	<3	<100	71

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 09/16/09 Date Received: 09/04/09 Project: Former Arco 0855 001.0173.00010, F&BI 909051 Date Extracted: 09/08/09 and 09/09/09 Date Analyzed: 09/08/09 and 09/09/09

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW10-0909 909051-12	<1	<1	2	<3	200	72
Method Blank	<1	<1	<1	<3	<100	73

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW8-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-01 909051-01.088 ICPMS1 btb
Internal Standard Germanium	:	% Recovery: 71	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		427		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW11-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-02 909051-02.089 ICPMS1 btb
Internal Standard: Germanium		% Recovery: 76	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		1,550		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DMW3-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-03 909051-03.090 ICPMS1 btb
Internal Standard Germanium	:	% Recovery: 78	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		2,300		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DMW4-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-04 909051-04.091 ICPMS1 btb
Internal Standard: Germanium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:	C	Concentration ug/L (ppb)		
Manganese		1,660		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW5-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-05 909051-05.092 ICPMS1 btb
Internal Standard Germanium	:	% Recovery: 82	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		1,430		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DMW9-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	national Corp. co 0855 001.0173.00010 093
Internal Standard: Germanium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:	(Concentration ug/L (ppb)		
Manganese		2,110		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW13-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-07 909051-07.084 ICPMS1 btb	
Internal Standard Germanium	% Recov 73	ery: Lower 60	Upper Limit: 125	
Analyte:	Concentr ug/L (p			
Manganese	11,30	0		

10

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW14-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-08 909051-08.094 ICPMS1 btb
Internal Standard: Germanium		% Recovery: 74	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		1,120		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW12-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator: Lower	SLR International Corp. Former Arco 0855 001.0173.00010 909051-09 909051-09.095 ICPMS1 btb Upper
Internal Standard Germanium	:	% Recovery: 70	Limit: 60	Limit: 125
Analyte:		Concentration ug/L (ppb) 11,500		
Manganese		11,300		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW9-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-10 909051-10.096 ICPMS1 btb
Internal Standard: Germanium		% Recovery: 71	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		450		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DMW6-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb))	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-11 909051-11.097 ICPMS1 btb
Internal Standard Germanium	:	% Recovery: 86	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		1,700		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW10-0909 09/04/09 09/09/09 09/09/09 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 909051-12 909051-12.099 ICPMS1 btb
Internal Standard: Germanium		% Recovery: 77	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		1,420		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 09/09/09 09/09/09 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Former Arco 0855 001.0173.00010 I9-368 mb I9-368 mb.082 ICPMS1 btb
Internal Standard Germanium	: % Recovery: 74	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Manganese	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/16/09 Date Received: 09/04/09 Project: Former Arco 0855 001.0173.00010, F&BI 909051

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

1....

Laboratory Code: 909051-02 (Duplicate)

			Relative Percent
Reporting	Sample	Duplicate	Difference
Units	Result	Result	(Limit 20)
ug/L (ppb)	<1	<1	nm
ug/L (ppb)	<1	<1	nm
ug/L (ppb)	<1	<1	nm
ug/L (ppb)	<3	<3	nm
ug/L (ppb)	<100	<100	nm
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Result ug/L (ppb) <1	Units Result Result ug/L (ppb) <1

Laboratory Code: Laboratory Control Sample

		Percent						
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Benzene	ug/L (ppb)	50	82	65-118				
Toluene	ug/L (ppb)	50	81	72-122				
Ethylbenzene	ug/L (ppb)	50	83	73-126				
Xylenes	ug/L (ppb)	150	82	74-118				
Gasoline	ug/L (ppb)	1,000	105	69-134				

ENVIRONMENTAL CHEMISTS

Date of Report: 09/16/09 Date Received: 09/04/09 Project: Former Arco 0855 001.0173.00010, F&BI 909051

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 909051-07 (Duplicate)

5	· · ·	,		Relative	
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Manganese	mg/kg (ppm)	11,300	11,500	2	0-20

Laboratory Code: 909051-07 (Matrix Spike)

				Percent	
		Spike	Sample	Recovery	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Manganese	mg/kg (ppm)	20	11,300	0 b	50-150

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Manganese	mg/kg (ppm)	20	95	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - The analyte indicated was found in the method blank. The result should be considered an estimate.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - The sample was extracted outside of holding time. Results should be considered estimates.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\mathsf{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.

vo - The value reported fell outside the control limits established for this analyte.

- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

September 14, 2009

Mike Erdahl Friedman & Bruya 3012 – 16th Avenue West Seattle, WA 9819-2029

Project: 909051 PO# H-1986 ARI ID: PN13

Dear Mr. Erdahl:

Please find enclosed the original Chain of Custody record, sample receipt documentation, and the final data for the samples from the project referenced above.

Sample receipt information and analytical details are addressed in the Case Narrative.

An electronic copy of this package will be kept on file at ARI. Should you have any questions or concerns, please feel free to call me at your convenience.

Respectfully,

ANALYTICAL RESOURCES, INC.

Eric Branson Project Manager (206) 695-6213 <u>eric@arilabs.com</u> <u>www.arilabs.com</u>

Page 1 of 24

Case Narrative

- Sample Receipt & Analytical Details -

Sample Receipt:

Analytical Resources, Inc. accepted twelve water samples in good condition on 09/03/09. For further details regarding sample receipt please refer to the enclosed Cooler Receipt Form and Preservation Verification sheet.

The samples were analyzed for the parameters listed below, as requested on the Chain of Custody.

Methane / Ethane / Ethene by RSK 175M

The analysis was completed routinely.

Conventional Chemistry Parameters:

-Alkalinity by Standard Method 2320-

The analysis was completed routinely.

-Nitrate Calculation by EPA Method 353.2-

The analysis was completed routinely.

-Sulfate by EPA Method 375.2-

The analysis was completed routinely.

-	Page # of TURNAROUND TIME	⊂ Standard (2 Weeks) ⊂ RUSH	· La postante politica a	SAMPLE DISPOSAL hispose after 30 days	□ Return samples □ Will call with instructions		Notes													DATE TIME	32:6 PU/4/P				
۲ ر		PO# H-19'86 Bus				REQUESTED	Alkalinity D:یماریدا ملوالدیر Rek-195	*											->	 COMPANY	Friedman & Bruya	ARI			
rody		ż					etsilu2	×				_							?	 	F				
F CUSI					Please Email Results merdahl@friedmanandbruya.com	ANALYSES	9. Nitrate	× ×	-					-					> >	 G		114/4/1/1/			
O NI					Please Email Results hl@friedmanandbruy		ΛЬΗ													PRINT' NAME		2/2			
CHA	ßR	NO.			e Ema riedma		ЕРН													 PRINT	dahl				
IPLE	RACTI	'NAME/N			Pleas Jahl@fi			-													Michael Erdahl	UILLIAG			
SAN	SUBCONTRACTER	PROJECT NAME/NO 90905		REMARKS	mero		# of jars	<i>L</i> U		_									->		Mich				
SUBCONTRACT SAMPLE CHAIN OF CUSTODY	SUB	PRO		REM			Matrix	3											->			u l umbc			
SUBCO		. Inc.			(206) 283-5044		Time Sampled	6824	1013	1114	1210	1252	1430	1522	1614	1659	1812	1942	0461	SIGNATURE	M CC~	11/17/10 11	:Ac		
	Michael Erdahl	Friedman and Bruya, Inc.	3012 16th Ave W	Seattle, WA 98119	Fax # (2)		Date Sampled	9/2/09	-										->		Relingeristeetsy	Received by:	Relinquished by:	Received by:	
	fichael	riedma	012 161	eattle,	-8282		Lab ID													Inc.	Vest	3029			-
	Send Report To M		Address 3(City, State, ZIP_Se	Phone # (206) 285-8282		Sample ID	N108-0405	DAMWII - 09.09	17MW3-0909	BMW4 -0909	MW5-0909	DMW9-0909	MW13-OG1061	bobo-himw	MW12-0909	1000-bMH	DMW6-0909	MW10-0909	Friedman & Bruya, Inc.	3012 16th Avenue West	Seattle, WA 98119-2029	Ph. (206) 285-8282	Fax (206) 283-5044	

ORGANICS ANALYSIS DATA SHEET METHANE ETHANE ETHENE Modified RSK 175

Page 1 of 2 Matrix: Water QC Report No: PN13-Friedman & Bruya, Inc. Project: H-1986 909051 Date Received: 09/04/09

Data Release Authorized: Reported: 10/02/09

ARI ID	Sample ID	Analysis Date	DL	Analyte	RL	Result
	 MW8~0909	09/10/09	1.0	Methane	0.7	1,470
PN13A	MW8-0909	00/10/00	1.0	Ethane	1.2	< 1.2 U
09-20737				Ethene	1.1	< 1.1 U
PN13B	MW11-0909	09/10/09	1.0	Methane	0.7	581
09-20738				Ethane	1.2	< 1.2 U
0,50,50				Ethene	1.1	< 1.1 U
PN13C	DMW3-0909	09/10/09	1.0	Methane	0.7	1,420
09-20739				Ethane	1.2	< 1.2 U
09 20100				Ethene	1.1	< 1.1 U
PN13D	DMW4-0909	09/10/09	1.0	Methane	0.7	4,220
09-20740				Ethane	1.2	< 1.2 U
				Ethene	1.1	< 1.1 U
PN13E	MW5-0909	09/10/09	1.0	Methane	0.7	290
09-20741				Ethane	1.2	< 1.2 U
				Ethene	1.1	< 1.1 U
PN13F	DMW9-0909	09/10/09	1.0	Methane	0.7	20,600
09-20742				Ethane	1.2	33.3
				Ethene	1.1	< 1.1 U
PN13G	MW13-0909	09/10/09	1.0	Methane	0.7	121
09-20743				Ethane	1.2	< 1.2 U
				Ethene	1.1	< 1.1 U
PN13H	MW14-0909	09/10/09	1.0	Methane	0.7	101
09-20744				Ethane	1.2	< 1.2 U
				Ethene	1.1	< 1.1 U
PN13I	MW12-0909	09/10/09	1.0	Methane	0.7	761
09-20745				Ethane	1.2	< 1.2 U
				Ethene	1.1	< 1.1 U
PN13J	MW9-0909	09/10/09	1.0	Methane	0.7	12.6
09-20746				Ethane	1.2	< 1.2 U
				Ethene	1.1	< 1.1 U
PN13K	DMW6-0909	09/10/09	1.0	Methane	0.7	9,520
09-20747				Ethane	1.2	< 1.2 U
				Ethene	1.1	< 1.1 U

ORGANICS ANALYSIS DATA SHEET METHANE ETHANE ETHENE Modified RSK 175

Page 2 of 2 Matrix: Water QC Report No: PN13-Friedman & Bruya, Inc. Project: H-1986 909051 Date Received: 09/04/09

Data Release Authorized:

ARI ID	Sample ID	Analysis Date	DL	Analyte	RL	Result
PN13L 09-20748	MW10-0909	09/10/09	1.0	Methane Ethane Ethene	0.7 1.2 1.1	7,880 < 1.2 U < 1.1 U
091009MB 091009MB 091009MB	Method Blank Method Blank Method Blank	09/10/09 09/10/09 09/10/09	1.0 1.0 1.0	Methane Ethane Ethene	0.7 1.2 1.1	< 0.7 U < 1.2 U < 1.1 U

Reported in ug/L (ppb)

RSK 175 WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: PN13-Friedman & Bruya, Inc. Project: H-1986 909051

ARI ID	Client ID	PRP	TOT OUT
PN13A	MW8-0909	85.4%	0
PN13B	MW11-0909	91.2%	0
PN13C	DMW3-0909	88.3%	0
PN13D	DMW4-0909	88.9%	0
PN13E	MW5-0909	97.78	0
PN13F	DMW9-0909	86.8%	0
PN13G	MW13-0909	88.1%	0
PN13H	MW14-0909	96.5%	0
PN13I	MW12-0909	86.3%	0
PN13J	MW9-0909	96.6%	0
PN13K	DMW6-0909	90.2%	0
PN13L	MW10-0909	89.1%	0
MB-091009	Method Blank	88.0%	0
LCS-091009	Lab Control	89.4%	0
LCSD-091009	Lab Control Dup	93.2%	0

LCS/MB	LIMITS	QC	LIMITS

(PRP) = Propane (79-132) (72-122)

Log Number Range: 09-20737 to 09-20748

Page 1 for PN13

FORM-II RSK 175

ORGANICS ANALYSIS DATA SHEET METHANE ETHANE ETHENE Modified RSK 175

Page 1 of 1 Matrix: Water QC Report No: PN13-Friedman & Bruya, Inc. Project: H-1986 909051 Date Received: 09/04/09

Data Release Authorized: 2007 Reported: 09/14/09

ARI ID	Analysis Date	Analyte	Spike	Result	Recovery	RPD
091009LCS 091009LCSD	09/10/09	Methane	654	576 579	88.0% 88.5%	0.5%
091009LCS 091009LCSD	09/10/09	Ethane	1,230	1,220 1,210	99.4% 98.6%	0.8%
091009LCS 091009LCSD	09/10/09	Ethene	1,150	1,140 1,120	99.5% 97.8%	1.8%

Reported in ug/L (ppb)

Matrix: Water Data Release Authorized: Reported: 09/11/09

Project: H-1986 Event: 909051 Date Sampled: 09/03/09 Date Received: 09/04/09

Client ID: MW8-0909 ARI ID: 09-20737 PN13A

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	67.4
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	0.1	0.1

RL Analytical reporting limit

Matrix: Water Data Release Authorized: Reported: 10/02/09 Project: H-1986 Event: 909051 Date Sampled: 09/03/09 Date Received: 09/04/09

Client ID: MW11-0909 ARI ID: 09-20738 PN13B

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	. 1.0	126
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 . 090409#1	EPA 300.0.	mg/L	10.0	82.6

RL Analytical reporting limit

Project: H-1986 Event: 909051 Date Sampled: 09/03/09 Date Received: 09/04/09

Client ID: DMW3-0909 ARI ID: 09-20739 PN13C

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	220
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	0.5	8.8

RL Analytical reporting limit

Project: H-1986 Event: 909051 Date Sampled: 09/03/09 Date Received: 09/04/09

Client ID: DMW4-0909 ARI ID: 09-20740 PN13D

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	178
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	0.5	24.4

RL Analytical reporting limit

Matrix: Water Data Release Authorized: Reported: 09/11/09

Project: H-1986 Event: 909051 Date Sampled: 09/03/09 Date Received: 09/04/09

Client ID: MW5-0909 ARI ID: 09-20741 PN13E

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	49.4
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	20.0	202

RL Analytical reporting limit

Matrix: Water Data Release Authorized Reported: 09/11/09

Client ID: DMW9-0909 ARI ID: 09-20742 PN13F

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	330
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	0.1	< 0.1 U

RL Analytical reporting limit

Matrix: Water Data Release Authorized Reported: 09/11/09

Client ID: MW13-0909 ARI ID: 09-20743 PN13G

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	96.0
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	50.0	805

RL Analytical reporting limit

.

Client ID: MW14-0909 ARI ID: 09-20744 PN13H

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	45.4
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	50.0	444

RL Analytical reporting limit

SAMPLE RESULTS-CONVENTIONALS PN13-Friedman & Bruya, Inc.

Matrix: Water Data Release Authorized Reported: 09/11/09

Project: H-1986 Event: 909051 Date Sampled: 09/03/09 Date Received: 09/04/09

Client ID: MW12-0909 ARI ID: 09-20745 PN13I

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	146
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	50.0	882

RL Analytical reporting limit

Client ID: MW9-0909 ARI ID: 09-20746 PN13J

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	52.9
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	0.3
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	0.5	9.3

RL Analytical reporting limit

Client ID: DMW6-0909 ARI ID: 09-20747 PN13K

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	146
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/04/09 090409#1	EPA 300.0	mg/L	0.1	< 0.1 U

RL Analytical reporting limit U Undetected at reported detection limit

Water Sample Report-PN13

Matrix: Water Data Release Authorized Reported: 09/11/09

Client ID: MW10-0909 ARI ID: 09-20748 PN13L

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/04/09 090409#1	SM 2320	mg/L CaCO3	1.0	180
N-Nitrate	09/04/09 090409#1	EPA 300.0	mg-N/L	0.1	< 0.1 U
Sulfate	09/08/09 090809#1	EPA 300.0	mg/L	5.0	34.3

RL Analytical reporting limit

Project: H-1986 Event: 909051 Date Sampled: 09/03/09 Date Received: 09/04/09

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: PN13J C	lient ID: MW9-090	9					
N-Nitrate	EPA 300.0	09/04/09	mg-N/L	0.3	2.1	2.0	90.0%
Sulfate	EPA 300.0	09/04/09	mg/L	9.3	19.8	10.0	105.0%

Project: H-1986 Event: 909051 Date Sampled: 09/03/09 Date Received: 09/04/09

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: PN13A	Client ID: MW8-0909)				
Alkalinity	SM 2320	09/04/09	mg/L CaCO3	67.4	67.0	0.6%
ARI ID: PN13J	Client ID: MW9-0909	9				
N-Nitrate	EPA 300.0	09/04/09	mg-N/L	0.3	0.3	0.0%
Sulfate	EPA 300.0	09/04/09	mg/L	9.3	9.3	0.0%

Project: H-1986 Event: 909051 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank
N-Nitrate	EPA 300.0	09/04/09	mg-N/L	< 0.1 U
Sulfate	EPA 300.0	09/04/09 09/08/09	mg/L	< 0.1 U < 0.1 U

Project: H-1986 Event: 909051 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Alkalinity ERA #P114506	SM 2320	09/04/09	mg/L CaCO3	70.5	70.7	99.7%
N-Nitrate ERA #09127	EPA 300.0	09/04/09	mg-N/L	2.8	3.0	93.3%
Sulfate ERA #220109	EPA 300.0	09/04/09 09/08/09	mg/L	2.9 2.9	3.0 3.0	96.7% 96.7%

909051		· ·	SA	SAMPLE CHAIN OF CUSTODY	AIN OF CU	ISTOI	- • •	Ш М		9-0	og-uy-or	5-1		/cn	428 /cv
Send Report To MIKE	STATON			SAMPLERS (signature)	signature)		- }	- (†		· .			Face #	NAROUN	TURNAROUND TIME
Company SLK				PROJECT NAMENO.) # ;	0855	10		10.10	PO# 000.2710./00	000	XStanda RUSH Rush cha	JSH JSH charges	& Standard (2 Weeks) D RUSH Rush charges authorized by:	d by:
Address J.J. C. J. ANT. AND SE	H ANS SE	(+-120	8	610-100	0/000 °EE 10-100	·									•.
City, State, ZIP BOTHELL, WA		18086		REMARKS	oresorrative	the	ferr	< ء	Vode	de la		Ê	SAM Spose uff	SAMPLE DISPOSA K Dispose after 30 days	POSAL
Phone # (475) 403 - 5800 Fax # (475) 403 - 8488	Po Fax # (U)-5	8-60h(468	San	hole	1000-PWMD	60-	60					Durn Sum ill call w	U kenun samples D Will call with instructions	tions
									NALY	SES 1	ue ou	ANALYSES REQUESTED			
			- -	-					02	340	<u> </u>	-#4	57		
Sample ID	Lab ID	Date	Time	Sample Type	e de containers	isesi(I-H niloesD-	208 Vd	s by 820	HE8 38 p3 85	0.008	8.006	1.0	<u>- 15</u>		Notes
			•		(div)) OAS	5 69	روبي ماهويزي	AIKa) Auszin Auszin Auszin Auszin Auszin A	521 69		
MW8-0909	01 A-F	9/3/09	-tre80	Water	146	\times	X	i	· · ·	\ge	X	\bigcirc			
BMWII-0909	OZA-F		1013												-
DMW3-0009	03A.F		1111												
DMW4-0909	oyA·F		1910												
MW5-0909	OSAF		1252								· · · ·				
DMW9-0909	06 AF		1430		· ·									Rinsed	-Her vots
MW 13 - 0909	07A-F		1533												-
Mw14-0909	08 A-F		le 14												
MW12-0909	09 A.F	·	1659											•	
P060 - PWM	IO AF	\mathbf{h}	6/81	1	→	->	~			->	>	γ		, 1	
Friedman & Bruya, Inc.		SIGRATURE	B		PRINT NAME	NAMB				8	COMPANY	≿		DATE	TIME
3012 16th Avenue West	5	e i e		OH &	HUS LEE				SLR	¥			6	3/4/09	apto
Seattle, WA 98119-2029	Received by:	1 an	and	5	Chan Ph	1 an			<u>++ </u>	é B	M		4/6	4/09	d:15
7878-C97 (007) .u.J	Keimquished by:	-													
Fax (206) 283-5044	Received by:														
FORMSYCOCKOCIDOC										0		No. 1	Contraction of the	2	0.
												Tooler Hill			ŀ

909051 Send Report To Mi Company SLR Company SLR Address 20100- City, State, ZIP (2010- Phone # (425)400- MVIO-0909 MVIO-0909 MVIO-0909 MVIO-0909 MVIO-0909 Phone Weth Seattle, WA 98119-2029 Ph. (206) 285-8282	1051 SAMPLE CHAIN OF CUSTODY ME 09-04-09 V3/BIG	MIKE STATON SAMPLERS (signame)	Company SLR Romer ARCO # 0855 001.0173.00010 Rush charges authorized by:	(WA 98001 REMARKS Fax # (475) 403 - 8488		VOCs by \$260 Lab ID Date TPH-Diesei TPH-Diesei TPH-Casoline Shin ple Type Contain of Casoline Contain of Casoline	11 A-F 9/3/07 1842 Water #6 XX XX	-0907 124F (1940 (1 XXXX XX XX 2000									<u> </u>	Relinquished by	1,98119-2029 Received by M all all all all Nhan Phan I and FEBIT 1/4/09 9:15 285-8282 Relinquished by:	
--	---	--------------------------------	--	--	--	--	-----------------------------------	---	--	--	--	--	--	--	--	--	----------	-----------------	---	--

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

September 16, 2009

Mike Staton, Project Manager SLR International Corp. 22122 20th Ave. SE., H-150 Bothell, WA 98021

Dear Mr. Staton:

Included are the results from the testing of material submitted on September 3, 2009 from the Fmr Arco 0855 001.0173.00010, F&BI 909034 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SLR0916R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 3, 2009 by Friedman & Bruya, Inc. from the SLR International Corp. Fmr Arco 0855 001.0173.00010, F&BI 909034 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SLR International Corp.
909034-01	DMW7-0909
909034-02	DMW8-0909
909034-03	DMW5-0909
909034-04	DMW10-0909

The samples sent to Analytical Resources for nitrate, sulfate, alkalinity, and dissolved methane analyses. Review of the enclosed report indicates that all quality assurance was acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/16/09 Date Received: 09/03/09 Project: Fmr Arco 0855 001.0173.00010, F&BI 909034 Date Extracted: 09/04/09 Date Analyzed: 09/04/09

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
DMW7-0909 909034-01	<1	<1	<1	<3	<100	66
DMW8-0909 909034-02	<1	<1	<1	<3	<100	61
DMW5-0909 909034-03	<1	<1	<1	<3	<100	75
DMW10-0909 909034-04	9	<1	2	<3	<100	76
Method Blank	<1	<1	<1	<3	<100	82

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DMW7-0909 09/03/09 09/09/09 09/09/09 Water ug/L (ppb)	9	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Fmr Arco 0855 001.0173.00010 909034-01 909034-01.100 ICPMS1 btb
Internal Standard: Germanium		% Recovery: 86	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		3,540		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DMW8-0909 09/03/09 09/09/09 09/09/09 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Fmr Arco 0855 001.0173.00010 909034-02 909034-02.101 ICPMS1 btb
Internal Standard Germanium		% Recovery: 77	Lower Limit: 60	Upper Limit: 125
Analyte:	(Concentration ug/L (ppb)		
Manganese		1,860		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DMW5-0909 09/03/09 09/09/09 09/09/09 Water ug/L (ppb)	9	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Fmr Arco 0855 001.0173.00010 909034-03 909034-03.102 ICPMS1 btb
Internal Standard: Germanium		% Recovery: 81	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Manganese		1,570		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DMW10-0909 09/03/09 09/09/09 09/09/09 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Fmr Arco 0855 001.0173.00010 909034-04 909034-04.103 ICPMS1 btb
Internal Standard Germanium	82	Lower Limit: 60	Upper Limit: 125
Analyte: Manganese	Concentration ug/L (ppb) 2,080		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan NA 09/09/09 09/09/09 Water ug/L (ppb)	k	Client: Project: Lab ID: Data File: Instrument: Operator:	SLR International Corp. Fmr Arco 0855 001.0173.00010 I9-368 mb I9-368 mb.082 ICPMS1 btb
Internal Standard: Germanium	(% Recovery: 74	Lower Limit: 60	Upper Limit: 125
Analyte:	C	Concentration ug/L (ppb)		
Manganese		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/16/09 Date Received: 09/03/09 Project: Fmr Arco 0855 001.0173.00010, F&BI 909034

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 909025-02 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	90	65-118
Toluene	ug/L (ppb)	50	88	72-122
Ethylbenzene	ug/L (ppb)	50	91	73-126
Xylenes	ug/L (ppb)	150	90	74-118
Gasoline	ug/L (ppb)	1,000	104	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 09/16/09 Date Received: 09/03/09 Project: Fmr Arco 0855 001.0173.00010, F&BI 909034

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 909051-07 (Duplicate)

		Somolo	Duplicato	Relative	Assertance
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Manganese	mg/kg (ppm)	11,300	11,500	2	0-20

Laboratory Code: 909051-07 (Matrix Spike)

				Percent		
		Spike	Sample	Recovery	Acceptance	
Analyte	Reporting Units	Level	Result	MS	Criteria	
Manganese	mg/kg (ppm)	20	11,300	0 b	50-150	

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Manganese	mg/kg (ppm)	20	95	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an \sim estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - The analyte indicated was found in the method blank. The result should be considered an estimate.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - The sample was extracted outside of holding time. Results should be considered estimates.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

Ic - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

pr – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The pattern of peaks present is not indicative of diesel.

y - The pattern of peaks present is not indicative of motor oil.

September 14, 2009

Mike Erdahl Friedman & Bruya 3012 – 16th Avenue West Seattle, WA 9819-2029

Project: 909034 PO# H-1952 ARI ID: PM93

Dear Mr. Erdahl:

Please find enclosed the original Chain of Custody record, sample receipt documentation, and the final data for the samples from the project referenced above.

Sample receipt information and analytical details are addressed in the Case Narrative.

An electronic copy of this package will be kept on file at ARI. Should you have any questions or concerns, please feel free to call me at your convenience.

Respectfully,

ANALYTICAL RESOURCES, INC.

Eric Branson Project Manager (206) 695-6213 eric@arilabs.com www.arilabs.com

Case Narrative

- Sample Receipt & Analytical Details -

Sample Receipt:

Analytical Resources, Inc. accepted four water samples in good condition on 09/03/09. For further details regarding sample receipt please refer to the enclosed Cooler Receipt Form and Preservation Verification sheet.

The samples were analyzed for the parameters listed below, as requested on the Chain of Custody.

Methane / Ethane / Ethene by RSK 175M

The analysis was completed routinely.

Conventional Chemistry Parameters:

-Alkalinity by Standard Method 2320-

The analysis was completed routinely.

-Nitrate Calculation by EPA Method 353.2-

The sample matrix required that the analysis be performed at a 5x dilution. As such, the Reporting Limits have been elevated.

-Sulfate by EPA Method 375.2-

The analysis was completed routinely.

-	Page #of	≪Standard (2 Weeks) © RUSH Rush charges authorized by:	SAMPLE DISPOSAL Disnose after 30 days	□ Return samples □ Will call with instructions		Notes									DATE TIME	9/2/07 10,25	9/3/69 /225	
		X X M M M M M M M M M M M M M M M M M M			CD.										COMPANY	c Bruya		
		P0# [1-1952			ANALYSES REQUESTED	1):5:14cd 14c4mm	×	×	΄Χ	X					COM	r riedman & Bruya	R	
λŪ					S REC	viinile AlA	X	×	X	×				_	F	LTI		
USTC				com	LYSE	ətsiluZ	X	×	×	\times	_							
OF CI				Please Email Results merdahl@friedmanandbruya.com	ANA	ofrate	*	× ,	×	×					1E			
AIN C		_		Please Email Results hl@friedmanandbruy		HdA							_	 	PRINT NAME	-	Hedson	
CH/	ER	nmenno. Gegus y		se Ema riedm		EPH					 				PRIN'	raani		
[PLE	RACTY	NAME		Pleas lahl@f		oil and Grease							-			Michael Ergani	K.c.S	
SAM	SUBCONTRACTER	PROJECT NAME/NO	REMARKS	mero		# of jars										INIICI		
WTRACT SAMPLE CHAIN OF CUSTODY	SUB	PRO	REM			Matrix	ŝ											
SUBCONTR		Inc.		(206) 283-5044		Time Sampled	10 50	1200	1152	13 45					SIGNATURE	Re C		
	Michael Erdahl	Friedman and Bruya, Inc 3012 16th Ave W	Seattle, WA 98119	Fax # (20		Date Sampled	0/2/00								Dolling Marth	An management	Received by: Relinquished by:	Received by:
	lichael	riedma	attle,	-8282		Lab ID									Inc.	Vest	2029	
	Send Report To M		tte, ZIP	01		Sample ID	DMW7 - OGOG	DMW8 - 0909	DAM 5-09051	DW WID - ONION					Friedman & Bruya, Inc.	3012 16th Avenue West	Seattle, WA 98119-2029 Ph. (206) 285-8282	Fax (206) 283-5044

ORGANICS ANALYSIS DATA SHEET METHANE ETHANE ETHENE

Modified RSK 175 Page 1 of 1 Matrix: Water QC Report No: PM93-Friedman & Bruya, Inc. Project: H-1952 909034 Date Received: 09/03/09

Data Release Authorized:

ARI ID	Sample ID	Analysis Date	DL	Analyte	RL	Result
PM93A 09-20642	DMW7-0909	09/10/09	1.0	Methane Ethane Ethene	0.7 1.2 1.1	5,860 < 1.2 U < 1.1 U
PM93B 09-20643	DMW8-0909	09/10/09	1.0	Methane Ethane Ethene	0.7 1.2 1.1	3,080 < 1.2 U < 1.1 U
PM93C 09-20644	DMW5-0909	09/10/09	1.0	Methane Ethane Ethene	0.7 1.2 1.1	4,180 < 1.2 U < 1.1 U
PM93D 09-20645	DMW10-0909	09/10/09	1.0	Methane Ethane Ethene	0.7 1.2 1.1	2,900 < 1.2 U < 1.1 U
091009MB 091009MB 091009MB	Method Blank Method Blank Method Blank	09/10/09 09/10/09 09/10/09	1.0 1.0 1.0	Methane Ethane Ethene	0.7 1.2 1.1	< 0.7 U < 1.2 U < 1.1 U

Reported in ug/L (ppb)

RSK 175 WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: PM93-Friedman & Bruya, Inc. Project: H-1952 909034

ARI ID	Client ID	PRP	TOT OUT
PM93A	DMW7-0909	89.6%	0
PM93B	DMW8-0909	88.2%	0
PM93C	DMW5-0909	95.4%	0
PM93D	DMW10-0909	92.5%	0
MB-091009	Method Blank	88.0%	0
LCS-091009	Lab Control	89.4%	0
LCSD-091009	Lab Control Dup	93.2%	0

.

LCS/MB LIMITS QC LIMITS

(PRP) = Propane (79-132) (72-122)

Log Number Range: 09-20642 to 09-20645

ORGANICS ANALYSIS DATA SHEET METHANE ETHANE ETHENE Modified RSK 175 Page 1 of 1 Matrix: Water

QC Report No: PM93-Friedman & Bruya, Inc. Project: H-1952 909034 Date Received: 09/03/09

Data Release Authorized: 7 Reported: 09/14/09

ARI ID	Analysis Date	Analyte	Spike	Result	Recovery	RPD
091009LCS 091009LCSD	09/10/09	Methane	654	576 579	88.0% 88.5%	0.5%
091009LCS 091009LCSD	09/10/09	Ethane	1,230	1,220 1,210	99.4% 98.6%	0.8%
091009LCS 091009LCSD	09/10/09	Ethene	1,150	1,140 1,120	99.5% 97.8%	1.8%

_

Reported in ug/L (ppb)

SAMPLE RESULTS-CONVENTIONALS PM93-Friedman & Bruya, Inc.

Matrix: Water Data Release Authorized Reported: 10/05/09

Project: H-1952 Event: 909034 Date Sampled: 09/02/09 Date Received: 09/03/09

Client ID: DMW7-0909 ARI ID: 09-20642 PM93A

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/03/09 090309#1	SM 2320	mg/L CaCO3	1.0	174
N-Nitrate	09/03/09	Calculated	mg-N/L	0.050	< 0.050 U
Sulfate	09/08/09 090809#1	EPA 375.2	mg/L	10.0	18.0

RL Analytical reporting limit

ANALYTICAL

RESOURCES

Client ID: DMW8-0909 ARI ID: 09-20643 PM93B

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/03/09 090309#1	SM 2320	mg/L CaCO3	1.0	142
N-Nitrate	09/03/09	Calculated	mg-N/L	0.050	< 0.050 U
Sulfate	09/08/09 090809#1	EPA 375.2	mg/L	10.0	23.2

RL Analytical reporting limit

Project: H-1952 Event: 909034 Date Sampled: 09/02/09 Date Received: 09/03/09

Client ID: DMW5-0909 ARI ID: 09-20644 PM93C

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/03/09 090309#1	SM 2320	mg/L CaCO3	1.0	126
N-Nitrate	09/03/09	Calculated	mg-N/L	0.050	< 0.050 U
Sulfate	09/08/09 090809#1	EPA 375.2	mg/L	10.0	33.6

RL Analytical reporting limit

.

SAMPLE RESULTS-CONVENTIONALS PM93-Friedman & Bruya, Inc.

Project: H-1952 Event: 909034 Date Sampled: 09/02/09 Date Received: 09/03/09

Client ID: DMW10-0909 ARI ID: 09-20645 PM93D

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	09/03/09 090309#1	SM 2320	mg/L CaCO3	1.0	117
N-Nitrate	09/03/09	Calculated	mg-N/L	0.050	< 0.050 U
Sulfate	09/08/09 090809#1	EPA 375.2	mg/L	10.0	32.7

RL Analytical reporting limit

REPLICATE RESULTS-CONVENTIONALS PM93-Friedman & Bruya, Inc.

,

Matrix: Water Data Release Authorized: Reported: 09/09/09			-	oject: H Event: 9 mpled: 0 eived: 0	09034 9/02/09	
Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: PM93A	Client ID: DMW7-09	09				
Alkalinity	SM 2320	09/03/09	mg/L CaCO3	174	172	1.2%

	Λ
Matrix: Water	hi
Data Release Authorized:	K.
Reported: 10/05/09 (

Project:	H-1952
Event:	909034
Date Sampled:	NA
Date Received:	NA

Analyte	Method	Date	Units	Blank
Sulfate	EPA 375.2	09/08/09	mg/L	< 2.0 U

•

Water Method Blank Report-PM93

STANDARD REFERENCE RESULTS-CONVENTIONALS PM93-Friedman & Bruya, Inc.

Matrix: Water Data Release Authorized: Reported: 10/05/09 Project: H-1952 Event: 909034 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Alkalinity ERA #P114506	SM 2320	09/03/09	mg/L CaCO3	66.5	70.7	94.1%
Sulfate ERA #37065	EPA 375.2	09/08/09	mg/L	25.0	25.0	100.0%

Water Standard Reference Report-PM93

909034	• • •	•	SA	SAMPLE CHAIN OF CUSTODY	IN OF CU	STODY		Ň	ME 09-03-07	0-	-0-		X	S H F
Send Report To MIKE STATON	STATC	No.		SAMPLERS (stenature CHELS (12)	(Snature)							TURNAROUND TIME	- CINDON	of /
Company SUR Address 23133- 9044		Arr. 8F H-150	0	NAN ST	MENNO. 0 #0853) in		8	PO#	OIR	Rush Rush	N Standard (2 Weeks) D RUSH Rush charges suthorized by:	Veeks) thorized	by:
City, State, ZIP Bothell	11 W4	16086 4M		REMARKS						1	A D	SAMPLE DIST & Dispose after 30 days D Return seminles	SAMPLE DISPOSA se tifter 30 days sermiter	OSAL
Phone # 495 - 403 - 5800 Fax # 425 - 403 - 8488	CD Fax # U25	8-607-5	88/1			. •	·					D Will call with instructions	instructi	SIIO
								ANA	ANAL YSES REQUESTED	RQUI	STED			
Sam ple ID	Lab ID	Date	Time	Sample Type	# of containers	isesid-HAT sailozaD-HAT	AOC ² P ³ 8760 BLEX P ³ 8071B	SVOCs by 8270	Providence - Coros Figures - Coros Figures - Coros - C	B'OPE FO	1.015 1.012 Ba Criterini	5£1~X53	Z	Notes
DMW 7 - 0709	01A-F	60/5/6	1050	Water	Ø	Ŕ			X	Ŕ	\mathbf{k}			
DMW8-0909	caA-F		1300											
DMM5 - 0909	03 A-F		1955					 						
0mm0-0203	OY A-F	>	1345	- - >) -		~		1		2			
		-												
			•		4									
•														
Friedman & Brwa, Inc.	1 1	SIGNATURE	8		PRINT NAME	IAME		$\left - \right $	1	COMPANY	۲. ۲	DATE	TE	TIME
3012 16th Avenue West	Relinquished by:	n N		CHRIS	21S LEE	ЦI.		- '	SLR			10/6	w/e	IHHS
Seattle, WA 98119-2029	Received by:	af ani	(m)	Nhan		Rhan			Febl			9/3/	3/09 6	06:30
7970-C97 (007) .u.s	venuquaned by	-												Annual Annua
14 ax (2002) 283-9444	Keceived by:								•					
FORMSKOCKOCLDOC								•	Sam	htta	recent	Camin the received at 21	22 30	0