Final 2014 Supplemental Environmental Site Assessment Report Bonjorni Site Ellensburg, Washington

Prepared for:

State of Washington Department of Ecology
Toxics Cleanup Program
Central Regional Office
15 West Yakima Avenue, Suite 200
Yakima, Washington 98902-3401

Prepared by:

TerraGraphics Environmental Engineering, Inc.
Teamed with Hart Crowser, Inc.

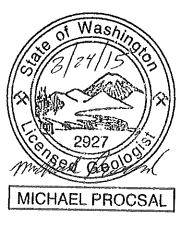
Contract #C1100144; Work Assignment #C11144VV

3501 West Elder Street, Suite 301 Boise, Idaho 83705 www.terragraphics.com

March 24, 2015

Approval Form

This document contains geologic work and is therefore submitted under the seal of an appropriately licensed professional, as required by Chapters 18.43 and 18.220 Revised Code of Washington (RCW).


Approved by:

Mile Pank

Date: 3/24/15

Mike Procsal, P.G.

Geologist, TerraGraphics Environmental Engineering, Inc.

Table of Contents

Executive Summary	V
Section 1.0 Introduction	1
1.1 Conceptual Site Model	1
1.2 Previous Assessment Activities	1
1.3 2014 Site Assessment Activities	2
Section 2.0 Field Activities	3
2.1 Soil Sampling	3
2.2 Well Installation	
Section 4.0 Results	5
4.1 Soil Sample Analysis	5
4.1.1 Estimated Volume of Petroleum Impacted Soil	5
4.2 Geology and Hydrogeology	6
4.3 Data Evaluation	
4.3.1 Precision	
4.3.2 Accuracy	
4.3.3 Completeness	
1 2	
Section 5.0 Summary	
Section 6.0 Conclusions and Recommendations	
6.2 Recommendations	
Section 7.0 References and Resources Used	
	10
List of Figures	
Figure 1. Site Layout and Vicinity Map	12
Figure 2. Sampling Locations and Estimated Extent of Soil Above Cle	eanup Level 13
Figure 3. Groundwater Contour Map August 2014	14
List of Tables	
Table 1. Soil Analytical Results	15
Appendices	
Appendix A Photographs	A
Appendix B Analytical Reports with Chain-of-Custody	B
Appendix C Boring Logs	

Acronyms and Abbreviations

bgs below ground surface

BTEXN benzene, toluene, ethylbenzene, total xylenes, and naphthalene

DRO diesel range organics

Ecology Washington State Department of Ecology

EDB ethylene dibromide EDC 1,2-dichloroethane

ESA Environmental Site Assessment

famsl feet above mean sea level GRO gasoline range organics

HCID Hydrocarbon Identification LCS laboratory control sample

μg/L micrograms per liter

mg/kg milligrams per kilogram
MTBE methyl tert-butyl ether

MTCA Model Toxics Control Act

NWTPH Northwest Total Petroleum Hydrocarbon

PID photo-ionization detector

QA/QC quality assurance/quality control RCW Revised Code of Washington

RPD relative percent difference

SAP/QAPP Sampling and Analysis Plan/Quality Assurance Project Plan

SG silica gel cleanup method

TerraGraphics Environmental Engineering, Inc.

TPH-Dx Total Petroleum Hydrocarbons-Diesel and Oil Range Organics

TPH-Gx Total Petroleum Hydrocarbons-Gasoline Range Organics

USEPA U.S. Environmental Protection Agency

UST underground storage tank
VOC volatile organic compound

VPH volatile petroleum hydrocarbons

WAC Washington Administrative Code

Executive Summary

TerraGraphics Environmental Engineering, Inc. (TerraGraphics) teamed with Hart Crowser, Inc. (under contract with the Washington State Department of Ecology [Ecology]) to identify potential soil and/or groundwater contamination at the Bonjorni Site, located in Ellensburg, Washington (Figure 1). Sample results were compared to Washington's Model Toxics Control Act (MTCA) (Washington Administrative Code [WAC] 173-340) Method A unrestricted cleanup levels (Tables 740-1 and 720-1, WAC 173-340-900). The objectives of this assessment are to delineate the full lateral extent of petroleum contamination at the subject property through soil and groundwater sampling, and quarterly groundwater monitoring events thereafter, as well as support selection and design interim remedial actions. This document summarizes field activities and analytical data collected, and provides recommendations.

Soil Quality

Direct Push Sampling: Soil borings were advanced at eight locations (BH-14 through BH-21, Figure 2) on August 5, 2014. A total of nine soil samples (including one duplicate sample) were collected from the soil borings based on field screening results using a portable MiniRae photoionization detector (PID). Samples were collected from the zone with the highest PID reading. The analytical results indicate that three samples were above one or more of the MTCA Method A Unrestricted Soil Cleanup Levels. Detected concentrations (expressed in milligrams per kilogram [mg/kg]) are summarized in Table 1 and the sample above the cleanup level is listed below:

- BH-14 (14 feet)
 - o GRO = 250 mg/kg, Cleanup Level = 100 mg/kg
- BH-15 (9 feet)
 - o GRO = 1,500 mg/kg, Cleanup Level = 100 mg/kg
- BH-17 (10 feet) (higher result between sample and duplicate shown)
 - o Gasoline Range Organics (GRO) = 220 mg/kg, Cleanup Level = 100 mg/kg
- BH-18 (13 feet)
 - o GRO = 940 mg/kg, Cleanup Level = 100 mg/kg

Although naphthalene was detected above the MTCA Method A Cleanup Level in sample BH-17, this data has been rejected since it does not meet the precision goals set forth in the QAPP.

Groundwater Sampling

Three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed as part of this assessment on August 5, 2014. Although no water samples were collected from the monitoring wells due to dry well conditions field staff measured the depth to groundwater and groundwater flow was calculated. Groundwater flows toward the southeast at approximately 0.046 ft/ft.

Summary and Recommendations

This investigation confirmed that petroleum-impacted soil is present beyond the extent of the 2013 investigation at the site. Petroleum-impacted soil appears to be most prevalent between and south of the former underground storage tanks (USTs) and the former dispenser island as indicated by the soil quality results for borings BH-14, BH-15, BH-17, and BH-18. The lateral extent of petroleum-impacted soil is loosely defined by an oval shape extending south under

Vantage Highway. The vertical extent of impacted soil is from approximately 9 feet bgs to 14 feet bgs with minor impacts observed as deep as 15 feet bgs and as shallow as 8 feet bgs.

Based on the available information and site-specific data collected, TerraGraphics concludes the following:

- Soil concentrations exceed MTCA A Unrestricted Soil Cleanup Levels at the site.
- Based on available data the lateral extent of petroleum impacted soil appears to be bounded to the north, south, east and west. Without remedial action, natural attenuation will not likely be an effective remediation strategy due to the elevated levels of GRO in soil

Based on the available information and site-specific data collected, TerraGraphics recommends the following:

- Complete additional groundwater monitoring to further characterize site groundwater.
- Implement a remediation strategy involving source soil excavation.
- The estimated volume of petroleum-impacted soil (based on the estimated extent of soil exceeding the MTCA A Unrestricted Soil Cleanup Levels for GRO and a depth range from 8 to 15 feet bgs) is 1,600 cubic yards which will require landfarming. The estimated amount of unimpacted overburden is 1,400 cubic yards (from 0 to 8 feet bgs). The total estimated volume of soil requiring excavation onsite is about 3,000 cubic yards.
- Complete a Feasibility Study.

Section 1.0 Introduction

The Bonjorni Site (hereinafter, referred to as the Site) is located at 5281 Vantage Highway, Ellensburg, Washington (Figure 1).

TerraGraphics Environmental Engineering, Inc. (TerraGraphics) teamed with Hart Crowser, Inc. (under contract with the Washington State Department of Ecology [Ecology]) in June 2014 to identify potential soil and/or groundwater contamination at the Site.

1.1 Conceptual Site Model

The Site is currently a rural residential property, but a service station historically operated at the Site from approximately the 1940s until 1970. Soil samples collected at the site between 2000 and 2014 revealed gasoline-range hydrocarbons exceeding MTCA Method A cleanup levels. Petroleum-impacted soil appeared to be most prevalent between and south of the former underground storage tanks (USTs) and the former dispenser island as indicated by the soil quality results in TerraGraphics' 2013 and 2014 data sets, however impacts do extend beneath Vantage Highway to the south. An estimated 1,600 cubic yards of impacted soil requiring landfarming, in addition to 1,400 of unimpacted overburden soil are at the Site. TerraGraphics' field crew noted a perched groundwater system at the site between approximately 6 and 9 feet below ground surface (bgs), however dry soil was encountered approximately 15 feet bgs. TerraGraphics installed monitoring wells at the site in 2014, although they have not been sampled due to minimal flow conditions.

1.2 Previous Assessment Activities

In the fall of 2000, four USTs were removed from the Site from two excavations (Figure 2). While the contents of the USTs were unknown, initial soil sampling indicated that the four USTs contained gasoline. During excavation activities soil samples were collected from the dispenser area which contained concentrations of gasoline-range hydrocarbons exceeding MTCA Method A cleanup levels. No petroleum hydrocarbons were detected from the excavation around the other three USTs.

Groundwater was not encountered during excavation, which was terminated at 8 feet bgs. The disposition of excavated material is unknown. The extent of the impacted soil and groundwater beyond the excavation is also unknown.

Recommendations from the 2000 excavation included additional assessment to delineate the full extent of petroleum contamination through further soil sampling and groundwater monitoring (Fulcrum 2001). In November 2013 Ecology requested additional site assessment and cleanup support. The investigation determined that petroleum-impacted soil was present at the site. Petroleum-impacted soil appeared to be most prevalent between and south of the former underground storage tanks (USTs) and the former dispenser island as indicated by the soil quality results for borings BH-3, BH-5, BH-6, and BH-11. An oval shape extending south to the edge of and possibly under Vantage Highway loosely defined the lateral extent of petroleum-impacted soil. The vertical extent of impacted soil was approximated between 4 feet bgs to 11 feet bgs with minor impacts observed as deep as 15 feet bgs and as shallow as 2 feet bgs.

During the 2013 investigation, TerraGraphics noted a perched groundwater system at the site between approximately 6 and 9 feet bgs. Dry soil was encountered approximately 15 feet bgs. The groundwater system at the site appeared to be laterally continuous locally and likely influenced by seasonal effects. Visual and olfactory evidence indicated that the perched water was petroleum impacted locally near BH-6 and possibly near BH-11 based on visual evidence and PID readings (TerraGraphics 2014a).

Based on the available information and site-specific data collected in November 2013, TerraGraphics concluded the following:

- Soil concentrations exceed MTCA A Unrestricted Soil Cleanup Levels at the site.
- The lateral extent of petroleum impacted soil has been bounded to the north and east with the possibility of additional impacts to the south beneath Vantage Highway.
- Petroleum impacted soil on the site was estimated at 1,800 cubic yards. This calculation was based on the estimated extent of soil exceeding the MTCA A Unrestricted Soil Cleanup Levels for GRO and a depth range from 0 to 15 feet bgs. This estimated volume includes un-impacted overburden (0 to 2 feet bgs).
- Petroleum impacts to perched groundwater are likely near boring BH-6 and may extend south based on field screening and analytical results.
- Natural attenuation will not likely be an effective remediation strategy due to the elevated levels of GRO in soil.

Based on the available information and site-specific data collected in November 2013, TerraGraphics recommended the following:

- Complete an additional soil and groundwater investigation to delineate soil impacts that potentially extend off site beneath the highway and to characterize site groundwater.
- Implement a remediation strategy following the remedial alternatives evaluation. The likely alternative based on the results of this assessment is source soil excavation. The perched groundwater will likely affect potential excavation activities between 6 and 9 feet bgs.

1.3 2014 Site Assessment Activities

In May 2014, Ecology requested additional site assessment and cleanup support. Ecology contracted Hart Crowser, Inc. and TerraGraphics to perform site assessment and characterization activities. The objectives of this assessment are to delineate the full lateral extent of petroleum contamination at the subject property through soil and groundwater sampling, and quarterly groundwater monitoring events thereafter, as well as support selection and design interim remedial actions. The results from the August 2014 site assessment activities are presented in the Environmental Site Assessment (ESA) Report herein.

Section 2.0 Field Activities

In general, sampling procedures followed the Sampling and Analysis Plan (SAP) / Quality Assurance Project Plan (QAPP) Addendum for Site Assessment and Post Remediation Monitoring at the Bonjorni Site, Ellensburg, Washington (TerraGraphics 2014b) except for the following:

 No groundwater was sampled from the installed wells due to dry or poor recharge conditions.

2.1 Soil Sampling

On August 5, 2014, TerraGraphics field crew completed a total of eight borings (BH-14 through BH-21). See Figure 2 for the soil boring locations. Photographs were taken during the soil boring process, and are included as Appendix A. Borings were advanced using a track-mounted AMS PowerProbe TM utilizing a single tube Geoprobe® 2-inch diameter 5-foot length macro-core barrel driven in 5-foot increments (e.g., 0-5 feet, 5-10 feet, 10-15 feet, etc.) to the target depth of the borehole. A new Geoprobe® macro-core liner was used to collect each sample interval. All soil samples were screened in the field using a portable MiniRae® 3000 PID to check for the presence of volatile organic compounds.

A total of nine soil samples (including one duplicate sample) were collected based on the highest PID reading and sent to Test America Labs in Seattle, Washington. The samples were analyzed for the following:

- Benzene, toluene, ethylbenzene, total xylenes, and naphthalene (BTEXN) by US Environmental Protection Agency (USEPA) Method 8260B (USEPA 1996);
- Methyl tert-butyl ether (MTBE) using USPEA Method 8260B (USEPA 1996);
- Ethylene dibromide (EDB) by USEPA Method 8260B (USEPA 1996);
- 1,2-dichloroethane (EDC) using USEPA Method 8260B (USEPA 1996);
- Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH-Gx) using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997);
- Total Petroleum Hydrocarbons-Diesel Range Organics (TPH-Dx) using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997); and
- Total recoverable lead using USEPA Method 200.8/6020 (USEPA 1994).

Complete laboratory data sheets and chain-of-custody documentation are included as Appendix B.

2.2 Well Installation

Three groundwater monitoring wells were installed on August 5, 2014 (MW-1, MW-2, and MW-3) (see Figure 2, and boring logs in Appendix C). The top of casing of each groundwater monitoring well was surveyed by a Washington licensed surveyor, Gray Surveying and Engineering Inc., in NAVD88 datum in the State Plane Projection, converted and expressed as elevation in feet above mean level (famsl). MW-1 was constructed of 2-inch schedule 40 polyvinyl chloride pre-pack assembly. MW-2 and MW-3 were constructed of ³/₄ inch schedule 40 polyvinyl chloride pre-pack assemblies. The screened interval was placed to ensure that the

maximum water table fluctuations are fully captured by the screen while still maintaining a sufficient well seal. Screen intervals were placed from about 3 to 8 feet bgs (MW-1) and about 7 to 12 feet bgs (MW-2 and MW-3). Screen intervals are noted on the boring logs. TerraGraphics' field crew attempted to develop the wells on August 7, 2014 using over-purge methods until groundwater quality stabilized (ph, conductivity, temperature, dissolved oxygen, and oxidation/reduction potential), however all three wells purged dry almost immediately. No groundwater samples were taken.

Section 4.0 Results

The data quality objectives as set forth in the SAP/QAPP Addendum (TerraGraphics 2014b) have been achieved. As a result, no data were reduced and the final completeness of the study was assessed at 100%. The following sections summarize the soil analytical results.

4.1 Soil Sample Analysis

Petroleum hydrocarbon concentrations in four of the nine soil samples collected were above one of the Method A Unrestricted Cleanup Levels. Detected concentrations (expressed in mg/kg) are summarized in Table 1, and those above the cleanup levels are summarized below:

- BH-14 (14 feet)
 - o GRO = 250 mg/kg, Cleanup Level = 100 mg/kg
- BH-15 (9 feet)
 - o GRO = 1,500 mg/kg, Cleanup Level = 100 mg/kg
- BH-17 (10 feet) (higher result between sample and duplicate shown)
 - o Gasoline Range Organics (GRO) = 220 mg/kg, Cleanup Level = 100 mg/kg
- BH-18 (13 feet)
 - o GRO = 940 mg/kg, Cleanup Level = 100 mg/kg

Although naphthalene was detected above the MTCA Method A Cleanup Level in sample BH-17, this data has been rejected since it does not meet the precision goals set forth in the QAPP Addendum.

Other analytes were detected above the laboratory reporting limits, but not above MTCA Soil Cleanup Levels including total lead, DRO, motor oil, toluene, ethylbenzene, total xylenes, napthalene, and GRO (Table 1). Borings that exhibited petroleum impacts (primarily gasoline) are indicated by PID readings and staining noted in the boring logs (Appendix C). Test America Analytical Lab indicated in the report narrative that the chromatographic response resembling a gasoline signature.

4.1.1 Estimated Volume of Petroleum Impacted Soil

The lateral extent of petroleum impacted soil exceeding cleanup levels has been bounded to the north, south, east, and west based on analytical and field screening results. Figure 2 shows the estimated extent of petroleum impacted soil that exceeds MTCA Method A Unrestricted Soil Cleanup Level of 100 mg/kg for GRO. TerraGraphics previously estimated petroleum-impacted soil north of Vantage Highway to be at least 1,800 cubic yards (TerraGraphics 2014a). Beneath Vantage Highway, the vertical extent of petroleum-impacted soil appears to be greatest from 9 to 14 feet bgs with minor impacts as shallow as 8 feet bgs and as deep as 15 feet bgs. Using a conservative approach, an estimate of the petroleum-impacted soil was calculated using a depth range of 8 to 15 feet bgs and a lateral extent as interpreted from the GRO isocontour of 100 mg/kg (Figure 2). The estimated volume of petroleum-impacted soil (above MTCA Method A Unrestricted Soil Cleanup Levels) is 1,600 cubic yards (from about 8 feet bgs to 15 bgs) which will require landfarming. The estimated amount of unimpacted overburden is 1,400 cubic yards. The total estimated volume of soil requiring excavation onsite is about 3,000 cubic yards.

4.2 Geology and Hydrogeology

In general, the site lithology consists of fill material from 0 feet to 1 feet bgs (or 0 feet to 3 feet bgs if boring was in the right-of-way) with silt and silty gravel from 2 feet to 15 feet bgs with occasional clayer silt layer layers from 4 to 6 feet bgs. Groundwater was encountered at the site at approximately 9 feet bgs, however moist soils were encountered around 7 feet bgs. Drilling met refusal in some locations as shallow as 12 feet bgs due to the presence of tightly packed gravel. More detailed information of the subsurface conditions can be found in the boring logs included as Appendix C.

During drilling, wet soil was encountered at most of the borings from about 7 to 9 feet bgs. However, dry soil was encountered beneath the wet soils around 13 feet bgs to 15 feet bgs. The water bearing zone appears to be a perched water system that is laterally continuous locally. Although visual and olfactory evidence showed no impacts at most boring locations, it is possible that groundwater has been impacted at the site.

4.3 Data Evaluation

Holding times were met for all methods in all samples. The following samples were received in pre-weighed containers with a label that was added in the field, which would cause a slight low bias in the final results as the label adds in as sample weight: BH-14 14', BH-15 9', BH-16 8', BH-17 10', BH-17 D 10', BH-18 13', BH-19 11', BH-20 10', and BH-21 9'. However, no data are qualified because of this modification.

4.3.1 Precision

Data precision was assessed by evaluating RPDs for a field duplicate, laboratory LCS/LCSD pairs, and a laboratory duplicate. Most RPDs where the original sample and the duplicate sample had detections above the MDL were within the SAP/QAPP Addendum specified range (\leq 50% for field duplicate, \leq 20% or \leq 25% for LCSD depending on the analyte, and \leq 20% for laboratory duplicate). In instances where the original field sample result was above the MDL and the duplicate field sample was below the MDL, then TerraGraphics used half of the MDL to calculate the RPD. The calculated RPDs for toluene and naphthalene in soil had calculated RPDs of 116% and 200%, respectively. Therefore, TerraGraphics rejected this data in samples BH-17 10' and BH-17 D 10'. All other data met precision goals.

4.3.2 Accuracy

Accuracy of laboratory data was assessed based on percent recovery of LCS samples. All LCS percent recoveries for soil were within the acceptable range specified by the SAP/QAPP Addendum (50-125%).

The percent recovery for bromofluorobenzene, a surrogate, from samples BH-14 14' (197%), BH-17 10' (154%), and BH-18 13' (335%) for NWTPH-Gx were above the acceptable range (50-125%). If the percent recovery is greater than the upper acceptance limit, qualify detects as estimated high (J+) and do not qualify non-detects. Therefore, qualifiers were assigned to GRO in BH-14 14', BH-17 10', and BH-18 13' based on surrogate recovery.

4.3.3 Completeness

Completeness is an estimate of the amount of valid data obtained from the analytical measurement system for a given set of data. Percent completeness is defined as:

Percent Completeness =
$$\frac{(N_{nq})}{N_t} \times 100$$
 where:

 N_{nq} = number of samples analyzed that meet the data quality goals

 N_t = total number of samples analyzed

Data are considered to meet data quality goals when data are not rejected. The SAP/QAPP Addendum specifies a target percent completeness of 95% for this project (TerraGraphics 2014b). Based on the QA/QC review described here, the final completeness for soil data analyzed by TestAmerica for the 2014 Bonjorni Site sampling event is 98.1%.

4.3.4 Comparability

Data comparability was assessed based on field collection and laboratory methods. All data were obtained using standard protocols for sample collection and laboratory analysis and are sufficient for comparison with other site data. The dataset for the site sampling at Bonjorni Site is determined to be of acceptable quality.

Section 5.0 Summary

This investigation determined that petroleum-impacted soil is present at the site. Petroleum-impacted soil appears to be most prevalent between and south of the former USTs and dispenser island as indicated by the soil quality results for borings BH-14, BH-15, BH-17, and BH-18. The lateral extent of petroleum impacted soil is defined to be an oval shape extending south under Vantage Highway. The vertical extent of impacted soil beneath Vantage Highway is from approximately 9 feet bgs to 14 feet bgs with minor impacts observed as deep as 15 feet bgs and as shallow as 8 feet bgs.

A perched groundwater lens was encountered approximately between 7 and 9 feet bgs and appears to be influenced by seasonal effects (Fulcrum 2001). Dry soil was encountered around 13 feet bgs to 15 feet bgs. Groundwater impacts are likely present near BH-14 and BH-15 and may be present at other locations including BH-17 and BH-18 based upon elevated soil concentrations at the groundwater interface.

Section 6.0 Conclusions and Recommendations

Based on the information obtained during these site assessment activities, remedial action is recommended at the site. Conclusions and recommendations are summarized in the following sections.

6.1 Conclusions

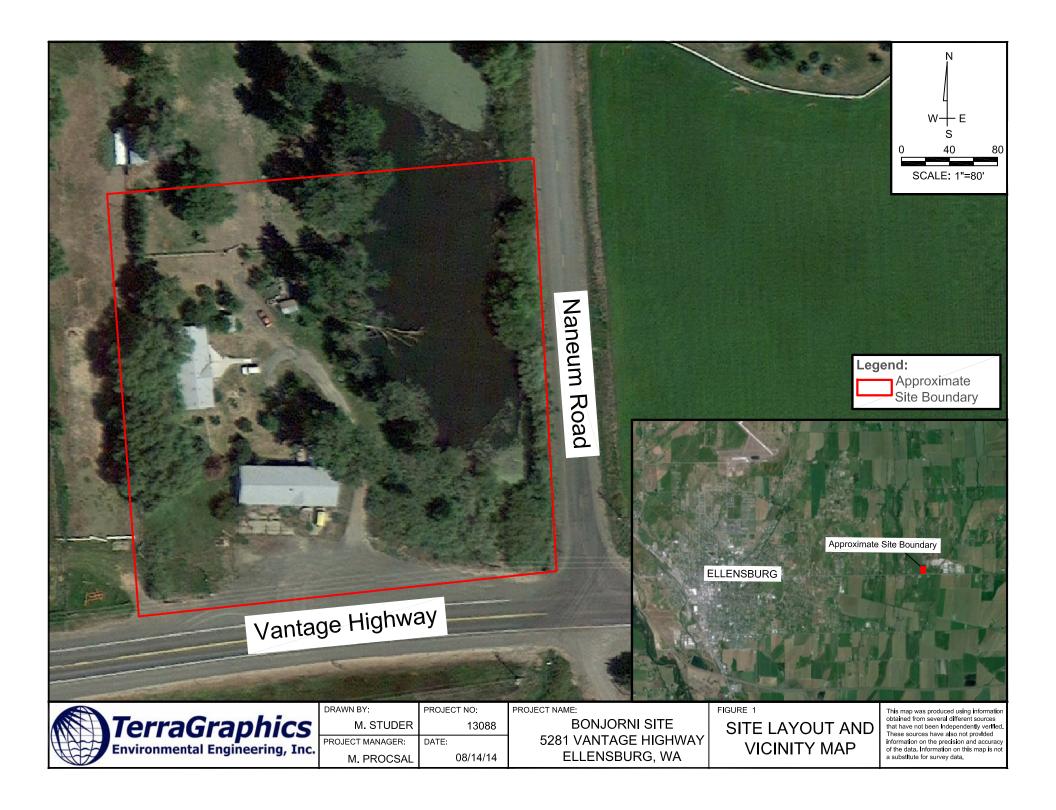
Based on the available information and site-specific data collected, TerraGraphics concludes the following:

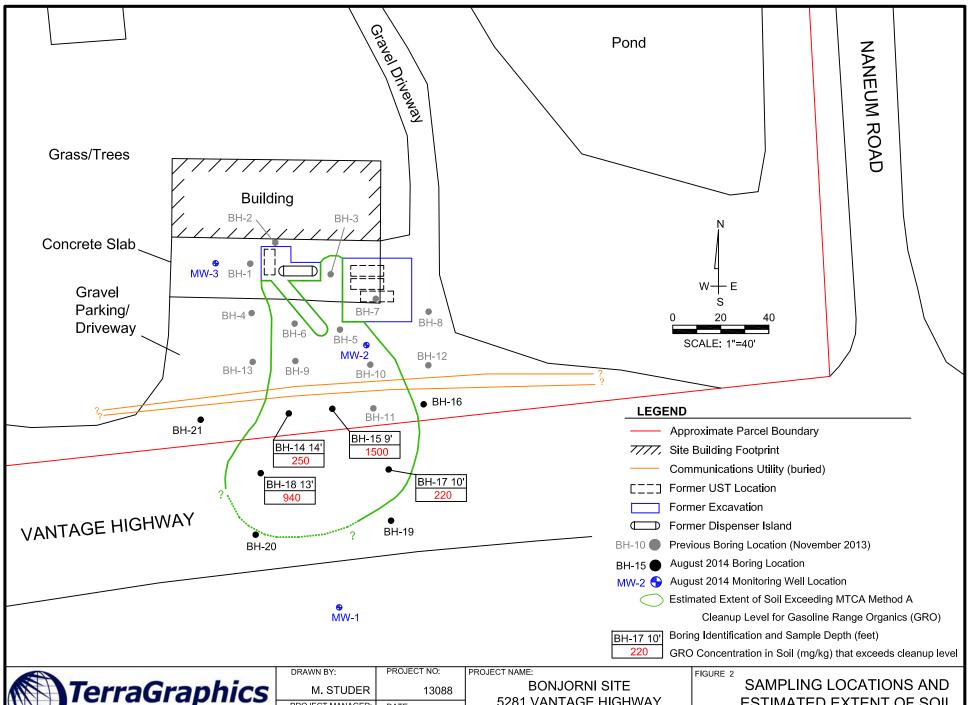
- Soil concentrations exceed MTCA A Unrestricted Soil Cleanup Levels at the site.
- Based on available data the lateral extent of petroleum impacted soil appears to be bounded to the north, south, east and west. Without remedial action, natural attenuation will not likely be an effective remediation strategy due to the elevated levels of GRO in soil.

6.2 Recommendations

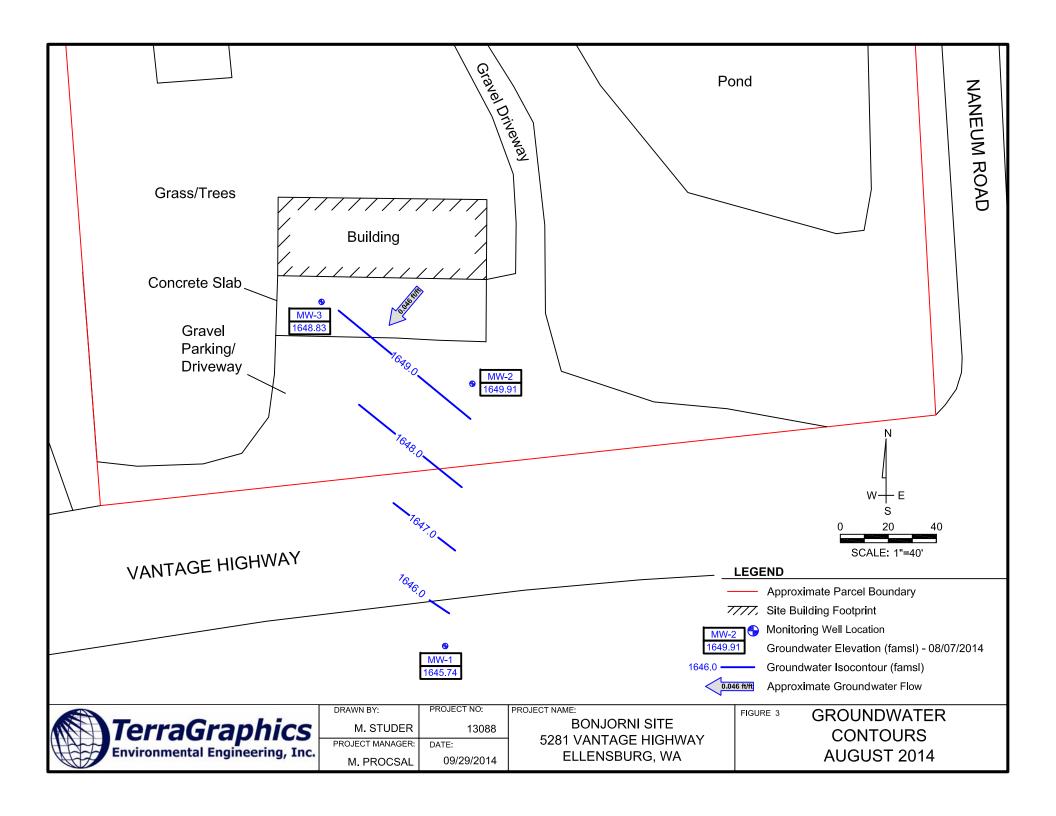
Based on the available information and site-specific data collected, TerraGraphics recommends the following:

- Complete additional groundwater monitoring to further characterize site groundwater.
- Implement a remediation strategy involving source soil excavation.
- The estimated volume of petroleum-impacted soil (based on the estimated extent of soil exceeding the MTCA A Unrestricted Soil Cleanup Levels for GRO and a depth range from 8 to 15 feet bgs) is 1,600 cubic yards which will require landfarming. The estimated amount of unimpacted overburden is 1,400 cubic yards (from 0 to 8 feet bgs). The total estimated volume of soil requiring excavation onsite is about 3,000 cubic yards.
- Complete a Feasibility Study.


Section 7.0 References and Resources Used


- Washington State Department of Ecology (Ecology), 1997. Analytical Methods for Petroleum Hydrocarbons. ECY 97-602, June 1997.
- Fulcrum Environmental Consulting (Fulcrum), 2001. Underground Storage Tank Site Assessment; April 26.
- TerraGraphics Environmental Engineering, Inc. (TerraGraphics), 2013. Sampling Analysis Plan (SAP) / Quality Assurance Project Plan (QAPP) for Site Assessment and Post Remediation Monitoring at the Bonjorni Site, Ellensburg, Washington. Prepared for State of Washington Department of Ecology. November 22, 2013.
- TerraGraphics, 2014a. Environmental Site Assessment Report Bonjorni Site, Ellensburg, Washington. Prepared for the State of Washington Department of Ecology Toxics Cleanup Program. March 2014.
- TerraGraphics, 2014b. SAP / QAPP Addendum for Site Assessment and Post Remediation Monitoring at the Bonjorni Site, Ellensburg, Washington. Prepared for State of Washington Department of Ecology. June 20, 2014.
- USEPA, 1994. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma Mass Spectrometry, Revision 5.4.
- USEPA, 1996. Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Revision 2.
- USEPA, 2002a. USEPA Guidance on Environmental Data Verification and Data Validation, USEPA QA/G-8; November.
- USEPA, 2002b. USEPA Guidance for Quality Assurance Project Plans, USEPA QA/G-5; December.
- USEPA, 2004. Final USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, USEPA 540-R-04-004; October.
- USEPA, 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process, USEPA QA/G-4; February.
- USEPA. 2007a. Inductively Coupled Plasma-Atomic Emission Spectrometry. February 2007: Revision 3
- USEPA, 2007b. Contract Laboratory Program Statement of Work for Organics Analysis Multi-Media, Multi-Concentration SOM01.2. June 2007.
- USEPA, 2010. Contract Laboratory Program Statement of Work for Inorganic Superfund Methods (Multi-Media, Multi-Concentration) ISM01.2. January 2010.
- USEPA: Office of Superfund Remediation and Technology Innovation (OSRTI), 2008. *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review*. OSWER 9240.1-48; USEPA 540-R-08-01; June.

- USEPA: OSRTI, 2010. *USEPA Contract Laboratory Program National Functional Guidelines* for Inorganic Superfund Data Review. OSWER 9240.1-51; USEPA 540-R-10-011; January.
- Washington Administrative Code (WAC) 173-160. Title 173, Chapter 173-160: Minimum Standards for Construction and Maintenance of Wells. Last update: 12/19/08, http://apps.leg.wa.gov/wac/default.aspx?cite=173-160.
- WAC 173-340. Title 173, Chapter 173-340: Model Toxics Control Act cleanup. Last update: 10/12/07, http://apps.leg.wa.gov/wac/default.aspx?cite=173-340.
- Wilde, F.D., ed., 2008. Field measurements: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, accessed July 12, 2010, http://pubs.water.usgs.gov/twri9A6/.



TerraGra Environmental Engi	phics
Environmental Engi	neering, Inc.

DRAWN BY:	PROJECT NO:
M. STUDER	13088
PROJECT MANAGER:	DATE:
M. PROCSAL	10/08/14

5281 VANTAGE HIGHWAY ELLENSBURG, WA

ESTIMATED EXTENT OF SOIL ABOVE CLEANUP LEVEL

Table 1 Soil Analytical Results (mg/kg) Bonjorni Site Ellensburg, Washington

		Sample Depth (feet bgs)				Total												
Sample ID/Sar	nple Date	Sar (fee	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Lead	EDC	EDB	ETBE	MTBE	TAME	TBA	GRO	DRO	Motor Oil	Heavy Oil #
BH-14-14'	8/5/2014	14	< 0.0038	0.0056 JB	0.011 JB	0.015 J	0.024 JB	4.0	< 0.0036	< 0.0037	-	< 0.0066		-	250 J+	49 Y	<10	-
BH-15-9'	8/5/2014	9	< 0.0044	0.0038 JB	< 0.0025	< 0.0074	< 0.0075	3.9	< 0.0041	< 0.0042	-	< 0.0075	-	-	1,500	400 Y	10 J	-
BH-16-8'	8/5/2014	8	< 0.0040	< 0.0030	< 0.0023	< 0.0068	< 0.0069	4.2	< 0.0038	< 0.0039	-	< 0.0069	-	-	31	6.4 J	<10	-
BH-17-10'	8/5/2014	10	< 0.0036	<0.0027 R	< 0.0021	< 0.0062	12.0 R	3.2	< 0.0034	< 0.0035	-	< 0.0062	-	-	190 J+	41 Y	<10	-
BH-17-10' DUP	8/5/2014	10	< 0.0050	0.0051 R	< 0.0029	< 0.0086	<0.0086 R	3.2	< 0.0047	< 0.0049	-	< 0.0086	-	-	220	36 Y	<10	-
BH-18-13'	8/5/2014	13	< 0.0051	< 0.0038	< 0.0029	< 0.0086	< 0.0087	3.6	< 0.0048	< 0.0049	-	< 0.0087		-	940 J+	160 Y	<9.7	-
BH-19-11'	8/5/2014	11	< 0.0048	< 0.0036	< 0.0027	< 0.0082	< 0.0082	1.5	< 0.0045	< 0.0046	-	< 0.0082	-	-	44	39 Y	<10	-
BH-20-10'	8/5/2014	10	< 0.0063	< 0.0047	< 0.0036	< 0.0108	< 0.011	3.5	< 0.0060	< 0.0061	-	< 0.0110	-	-	30	36 Y	<10	-
BH-21-9'	8/5/2014	9	< 0.0045	< 0.0033	< 0.0026	< 0.0078	< 0.0077	4.9	< 0.0042	< 0.0044	-	< 0.0077	-	-	4.2 JB	7.6 J	<10	-
BH-1 7'	11/25/2013	7	<0.0011 J	<0.0022 J	<0.0011 J	<0.0033 J	<0.0056 J	4.0	<0.0011 J	<0.0011 J	<0.011 J	<0.0011 J	<0.011 J	<0.011 J	<5.9	<32	<63	47.5
BH-2 8'	11/25/2013	8	<0.0011 J	<0.0022 J	<0.0011 J	<0.0034 J	<0.0056 J	4.3	<0.0011 J	<0.0011 J	<0.011 J	<0.0011 J	<0.011 J	<0.011 J	<4.7	<29	<59	44
BH-3 8'	11/25/2013	8	***<0.14	< 0.36	< 0.36	<0.36 J	< 0.36	3.8	***<0.14	< 0.36	<0.36 J	< 0.36	<0.36 J	<3.6	750	180 Y	<49	204.5
BH-5 8'	11/25/2013	8	***<0.041	< 0.1	< 0.1	< 0.2	< 0.1	4.7	***<0.041	< 0.1	<0.1 J	< 0.1	<0.1 J	<1.0	250	73 Y	<55	100.5
BH-6 4'	11/25/2013	4	***<0.25 J	< 0.63	14 J	28.9 J	72 J	17	***<0.25	< 0.63	<0.63 J	***<0.63	<0.63 J	<6.3	19,000	4,300 Y	<62	4,331
BH-6 4' DUP	11/25/2013	4	***<0.23 J	< 0.57	25 J	48 J	130 J	20	***<0.23	< 0.57	<0.57 J	***<0.57	<0.57 J	<5.7	17,000	4,800 Y	<59	4,829.5
BH-8 8'	11/26/2013	8	<0.00097 J	<0.0019 J	<0.00097 J	<0.00287 J	<0.0048 J	3.5	<0.00097 J	<0.00097 J	<0.0097 J	<0.00097 J	<0.0097 J	<0.0097 J	<5.0	<28	<57	42.5
BH-9 4'	11/26/2013	4	<0.0011 J	<0.0022 J	0.012 J	0.0144 J	0.10 J	5.3	<0.0011 J	<0.0011 J	<0.011 J	<0.0011 J	<0.011 J	<0.011 J	84	<29	<59	44
BH-11 11'	11/26/2013	11	***<0.074 J	< 0.190	<0.190 J	<0.380 J	<0.190 J	11	***<0.074	< 0.190	<0.190 J	***<0.190	<0.190 J	<1.9	400	54 Y	98	152
BH-12 10'	11/26/2013	10	<0.0012 J	<0.0024 J	<0.0012 J	<0.0036 J	<0.0061 J	4.1	<0.0012 J	<0.0012 J	<0.012 J	<0.0012 J	<0.012 J	<0.012 J	<4.0	<27	<55	41
(Fulcrum 2001)																		
E1121-01 7'	11/20/2000	7	-	-	-	-	-	-	-	-	-	-	-	-	<20	<50	-	<100
E1121-02 5.5'	11/20/2000	5.5	-	-	-	-	-	-	-	-	-	-	-	-	<20	<50	-	<100
E1121-03 7.5'	11/20/2000	7.5	-	-	-	-	-	-	-	-	-	-	-	-	<20	< 50	-	<100
E1121-04 7'	11/20/2000	7	-	-	-	-	-	-	-	-	-	-	-	-	<20	<50	-	<100
E1121-05	11/20/2000	unknown	-	-	-	-	•	-	-	-	-	-	-	-	<20	<50	-	<100
E1121-06 3'	11/20/2000	3	-	-	-	-	-	-	-	-	-	-	-	-	11,500	< 50	-	<100
E1121-07 5'	11/20/2000	5	-	-	-	-	-	-	-	-	-	-	-	-	5,000	<50	-	<100
	Soil Cleanup Leve ted Land (mg/kg)	els for	0.03	7	6	9	5	250.0	Method B 0.024	0.005	-	0.1	-	-	100 or 30*	2,000	2,000 or 4,000**	2,000

Notes:

All concentrations are reported in mg/kg = milligrams per kilogram.

Concentrations in **BOLD** are above the Screening Levels as defined by Washington's Model Toxics Control Act (MTCA) (WAC 173-340) Method A Groundwater Cleanup Levels (Table 720-1, WAC 173-340-900).

GRO = Gasoline Range Organics analyzed by Method NWTPH-Gx

DRO = Diesel Range Organics analyzed by Method NWTPH-Dx

MTBE = methyl tert-butyl ether

EDC = 1,2-dichloroethane

EDB = ethylene dibromide

ETBE = Ehtyl tert-Butyl Ether

TAME = Tert-amyl methyl ether

TBA = Tert-butyl alcohol

bgs = below ground surface

m+p-Xylene and o-Xylene results were added to represent Total Xylene concentration and compared to Total Xylene Cleanup Level.

- < = less than the method detection limit
- Y = The chromatographic response resembles a typical fuel pattern.
- J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.
- J+= Result is qualified based on a high surrogate percent recovery.
- JB = Compound was found in the blank and sample less than 10 times the field result.
- R = Sample was rejected based on internal QA/QC review.
- * = when gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylenes are less than 1% of the gasoline mixture then the cleanup level is 100 mg/kg, all other gasoline mixtures have a cleanup level of 30 mg/kg.
- ** = heavy oil cleanup level is 2,000 mg/kg, mineral oil cleanup level is 4,000 mg/kg.
- *** = Reporting limit exceeds the cleanup level.
- = No established value, not sampled.
- # = summation of DRO and Motor Oil values. 1/2 detection limit used where necessary in summation of heavy oil concentrations.

For EDC a MTCA Method A Cleanup Level has not been established therefore the MTCA Method B Cleanup Level is listed which was established based on the leaching pathway (protective of groundwater).

Appendix A

Photographs

Photo 1

Photo of site near Vantage Highway facing East.

Photo 3

Advancing boring BH-17.

www.TerrraGraphics.com

PRINT DATE: August 18, 2014

PROJECT NUMBER: 13088 PROJECT MANAGER: Mike Procsal CREATED BY:

Melody Studer

Bonjorni Site 5281 Vantage Highway Ellensburg, WA

PROJECT NAME:

Photo 2

Soil core from boring BH-18.

Photo 4

Drill rig positioned over MW-1. Photo taken at ground level facing South showing a significant crown over Vantage Highway

PHOTO LOG, APPENDIX A

Bonjorni Site August 2014 Site Visit

Photo 4

Advancing montoring well MW-1

Photo 5

Monitoring well MW-3.

PRINT DATE:
August 18, 2014
PROJECT NUMBER:

13088

PROJECT MANAGER:
Mike Procsal
R: CREATED BY:
Melody Studer

PROJECT NAME:

Bonjorni Site
5281 Vantage Highway
Ellensburg, WA

PHOTO LOG, APPENDIX A

Bonjorni Site August 2014 Site Visit

Appendix B

Analytical Reports with Chain-of-Custody

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-44882-1 Client Project/Site: Bonjorni, Wa

For:

TerraGraphics Inc TerraGraphics Environmental Engineering 3501 W. Elder, Suite 301 Boise, Idaho 83705

Attn: Mike Procsal

David & Burk

Authorized for release by: 8/20/2014 11:45:06 AM

David Burk, Project Manager I (253)248-4972

david.burk@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa TestAmerica Job ID: 580-44882-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	16
Chronicle	23
Certification Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

4

-5

b

8

9

Case Narrative

Client: TerraGraphics Inc

TestAmerica Job ID: 580-44882-1

Project/Site: Bonjorni, Wa

Job ID: 580-44882-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-44882-1

Receipt

The samples were received on 8/8/2014 9:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.4° C.

Except:

The following samples were received in pre-weighed containers with a label that was added in the field, which would cause a slight low bias in the final results as the label adds in as sampel weight. BH-14 14' (580-44882-1), BH-15 9' (580-44882-2), BH-16 8' (580-44882-3), BH-17 10' (580-44882-4), BH-17 D 10' (580-44882-5), BH-18 13' (580-44882-6), BH-19 11' (580-44882-7), BH-20 10' (580-44882-8), BH-21 9' (580-44882-9).

GC/MS VOA

Method(s) 5035: Sample matrix absorbed the initial methanol present in the vial. Not enough remaining to extract for testing. As per PM response 10 mL of methanol was added to sample. Soil weight is an over estimation of actual weight because remaining methanol that did not leak is included.

Method(s) 8260B: The method blank for batch 166686 contained Toluene, Naphthalene and Ethylbenzene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260B: The method blank for batch 167240 contained Naphthalene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260B: The continuing calibration verification (CCV) recovered above the upper control limit for Vinyl chloride and since this compound is a CCC compound all target compounds were then evaluated. All target compounds passed criteria therefore data have been reported. (CCV 580-167240/2)

Method(s) NWTPH-Gx: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: Trip Blank (580-44882-10). Gasoline

Method(s) NWTPH-Gx: The method blank for batch 167044 contained Gasoline above the method detection limit. This target analyte concentration was less than half the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) NWTPH-Gx: Surrogate BFB recovery for the following sample(s) was outside control limits: BH-14 14' (580-44882-1), BH-17 10' (580-44882-4), BH-18 13' (580-44882-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) NWTPH-Gx: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: BH-15 9' (580-44882-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) NWTPH-Dx: In analytical batch 166938, for the following sample(s) from preparation batch 166822: BH-14 14' (580-44882-1), BH-15 9' (580-44882-2), BH-17 10' (580-44882-4), BH-17 D 10' (580-44882-5), BH-18 13' (580-44882-6), BH-19 11' (580-44882-7), BH-20 10' (580-44882-8), the results in the #2 Diesel Fuel (C10-C24) range(s) are due primarily to a weathered gasoline product. The affected analyte range(s) have been Y qualified and reported.

Method(s) NWTPH-Dx: In analytical batch 166938, for the following sample from preparation batch 166822: BNSF-Spoils-1 (580-44892-1), the results in the #2 Diesel Fuel (C10-C24) and Motor Oil (>C24-C36) range(s) are due to what most closely resembles a complex mixture of weathered/degraded diesel fuel. The affected analyte range(s) have been Y qualified and reported.

3

4

-

6

1

1 N

Case Narrative

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa TestAmerica Job ID: 580-44882-1

Job ID: 580-44882-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3546: In preparation batch 166822, the following samples are very rocky and contains standing water: BH-17 10' (580-44882-4), BH-17 D 10' (580-44882-5)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Definitions/Glossary

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa TestAmerica Job ID: 580-44882-1

Qualifiers

GC/MS VOA

(Qualifier	Qualifier Description
Ē	3	Compound was found in the blank and sample.
,	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	GC VOA	

Qualifier	Qualifier Description
X	Surrogate is outside control limits
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

GC Semi VOA

Qualifier	Qualifier Description
Y	The chromatographic response resembles a typical fuel pattern.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary Abbreviation

TEQ

Toxicity Equivalent Quotient (Dioxin)

%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

2

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Analyte

Lead

Lab Sample ID: 580-44882-1

Matrix: Solid

Matrix: Solid
Percent Solids: 84.9

Client Sample ID: BH-14 14' Date Collected: 08/05/14 08:39 Date Received: 08/08/14 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		18	3.8	ug/Kg	₩	08/12/14 10:02	08/12/14 12:38	1
Toluene	5.6	JB	44	2.9	ug/Kg	₽	08/12/14 10:02	08/12/14 12:38	1
Ethylbenzene	11	JB	44	2.2	ug/Kg	₽	08/12/14 10:02	08/12/14 12:38	1
m-Xylene & p-Xylene	9.4	J	44	3.3	ug/Kg	₽	08/12/14 10:02	08/12/14 12:38	1
o-Xylene	5.6	J	44	3.3	ug/Kg	₩	08/12/14 10:02	08/12/14 12:38	1
Naphthalene	24	JB	44	6.6	ug/Kg	₽	08/12/14 10:02	08/12/14 12:38	1
Methyl tert-butyl ether	ND		44	6.6	ug/Kg	₽	08/12/14 10:02	08/12/14 12:38	1
EDC	ND		18	3.6	ug/Kg	₽	08/12/14 10:02	08/12/14 12:38	1
EDB	ND		18	3.7	ug/Kg	₽	08/12/14 10:02	08/12/14 12:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		71 - 136				08/12/14 10:02	08/12/14 12:38	1
4-Bromofluorobenzene (Surr)	108		70 - 120				08/12/14 10:02	08/12/14 12:38	1
Toluene-d8 (Surr)	106		80 - 120				08/12/14 10:02	08/12/14 12:38	1
Trifluorotoluene (Surr)	107		65 - 140				08/12/14 10:02	08/12/14 12:38	1

Trifluorotoluene (Surr)	107		65 - 140				08/12/14 10:02	08/12/14 12:38	1
Dibromofluoromethane (Surr)	97		75 - 132				08/12/14 10:02	08/12/14 12:38	1
Method: NWTPH-Gx - Northwest	t - Volatile Petro	oleum Prod	lucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	250	В	4.4	0.55	mg/Kg	₩	08/14/14 18:31	08/15/14 07:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	197	X	50 - 150				08/14/14 18:31	08/15/14 07:52	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	49	Y	28	6.5	mg/Kg	\$	08/13/14 10:13	08/14/14 13:56	1
Motor Oil (>C24-C36)	ND		57	10	mg/Kg	₽	08/13/14 10:13	08/14/14 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	81		<u> 50 - 150</u>				08/13/14 10:13	08/14/14 13:56	

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	85		0.10	0.10	%			08/12/14 14:32	1
Percent Moisture	15		0.10	0.10	%			08/12/14 14:32	1

RL

1.3

Result Qualifier

4.0

MDL Unit

0.13 mg/Kg

Prepared

08/15/14 09:31

Analyzed

08/15/14 18:36

Dil Fac

Client Sample Results

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Client Sample ID: BH-15 9'

Date Collected: 08/05/14 09:05

Date Received: 08/08/14 09:15

Percent Solids

Percent Moisture

TestAmerica Job ID: 580-44882-1

Lab Sample ID: 580-44882-2

Matrix: Solid
Percent Solids: 88.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		20	4.4	ug/Kg	\$	08/12/14 10:02	08/12/14 13:08	1
Toluene	3.8	JB	50	3.2	ug/Kg	₽	08/12/14 10:02	08/12/14 13:08	1
Ethylbenzene	ND		50	2.5	ug/Kg	₩	08/12/14 10:02	08/12/14 13:08	1
m-Xylene & p-Xylene	ND		50	3.7	ug/Kg	₽	08/12/14 10:02	08/12/14 13:08	1
o-Xylene	ND		50	3.7	ug/Kg	₽	08/12/14 10:02	08/12/14 13:08	1
Naphthalene	ND		50	7.5	ug/Kg	₽	08/12/14 10:02	08/12/14 13:08	1
Methyl tert-butyl ether	ND		50	7.5	ug/Kg		08/12/14 10:02	08/12/14 13:08	1
EDC	ND		20	4.1	ug/Kg	₽	08/12/14 10:02	08/12/14 13:08	1
EDB	ND		20	4.2	ug/Kg	₽	08/12/14 10:02	08/12/14 13:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		71 - 136				08/12/14 10:02	08/12/14 13:08	1
4-Bromofluorobenzene (Surr)	117		70 - 120				08/12/14 10:02	08/12/14 13:08	1
Toluene-d8 (Surr)	106		80 - 120				08/12/14 10:02	08/12/14 13:08	1
Trifluorotoluene (Surr)	106		65 - 140				08/12/14 10:02	08/12/14 13:08	1
Dibromofluoromethane (Surr)	96		75 - 132				08/12/14 10:02	08/12/14 13:08	1
- Method: NWTPH-Gx - Northwo	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1500		250	31	mg/Kg	₽	08/15/14 13:05	08/16/14 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		50 - 150				08/15/14 13:05	08/16/14 18:05	1
- Method: NWTPH-Dx - Northwe	est - Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	400	Υ	27	6.3	mg/Kg	‡	08/13/14 10:13	08/14/14 14:14	1
Motor Oil (>C24-C36)	10	J	55	10	mg/Kg	₽	08/13/14 10:13	08/14/14 14:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	82		50 - 150				08/13/14 10:13	08/14/14 14:14	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	3.9		1.4	0.14	mg/Kg	*	08/15/14 09:31	08/15/14 18:40	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

08/12/14 14:32

08/12/14 14:32

0.10

0.10

89

11

0.10 %

0.10 %

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Client Sample ID: BH-16 8'

Lab Sample ID: 580-44882-3

Date Collected: 08/05/14 09:35

Date Received: 08/08/14 09:15

Matrix: Solid
Percent Solids: 88.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		18	4.0	ug/Kg	₩	08/12/14 10:02	08/12/14 13:38	
Toluene	ND		46	3.0	ug/Kg	₽	08/12/14 10:02	08/12/14 13:38	
Ethylbenzene	ND		46	2.3	ug/Kg	₩	08/12/14 10:02	08/12/14 13:38	
m-Xylene & p-Xylene	ND		46	3.4	ug/Kg	₩.	08/12/14 10:02	08/12/14 13:38	
o-Xylene	ND		46	3.4	ug/Kg	₽	08/12/14 10:02	08/12/14 13:38	
Naphthalene	ND		46	6.9	ug/Kg	₩	08/12/14 10:02	08/12/14 13:38	
Methyl tert-butyl ether	ND		46	6.9	ug/Kg		08/12/14 10:02	08/12/14 13:38	
EDC	ND		18	3.8	ug/Kg	₽	08/12/14 10:02	08/12/14 13:38	
EDB	ND		18	3.9	ug/Kg	₩	08/12/14 10:02	08/12/14 13:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		71 - 136				08/12/14 10:02	08/12/14 13:38	
4-Bromofluorobenzene (Surr)	99		70 - 120				08/12/14 10:02	08/12/14 13:38	
Toluene-d8 (Surr)	101		80 - 120				08/12/14 10:02	08/12/14 13:38	
Trifluorotoluene (Surr)	105		65 - 140				08/12/14 10:02	08/12/14 13:38	
Dibromofluoromethane (Surr)	97		75 - 132				08/12/14 10:02	08/12/14 13:38	
Gasoline Surrogate	31 %Recovery		4.6	0.57	mg/Kg	<u> </u>	08/14/14 18:31 Prepared	08/15/14 08:53 Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	107		50 - 150				08/14/14 18:31	08/15/14 08:53	
Method: NWTPH-Dx - Northwe		Detroleum							
	st - Semi-Volatile	Petroleum	Products (GC)						
		Qualifier	Products (GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte		Qualifier	· ,			D	Prepared 08/13/14 10:13	Analyzed 08/14/14 14:32	
Analyte #2 Diesel (C10-C24)	Result	Qualifier	RL /	6.4					
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	Result 6.4	Qualifier J	RL 28	6.4	mg/Kg		08/13/14 10:13	08/14/14 14:32	
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	Result 6.4 ND	Qualifier J	RL 28 56	6.4	mg/Kg		08/13/14 10:13 08/13/14 10:13	08/14/14 14:32 08/14/14 14:32	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	Result 6.4 ND %Recovery	Qualifier J	28 56 <i>Limits</i>	6.4	mg/Kg		08/13/14 10:13 08/13/14 10:13 Prepared	08/14/14 14:32 08/14/14 14:32 Analyzed	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate p-Terphenyl Method: 6010B - Metals (ICP)	Result 6.4 ND %Recovery 71	Qualifier J	28 56 <i>Limits</i>	6.4	mg/Kg	— *	08/13/14 10:13 08/13/14 10:13 Prepared	08/14/14 14:32 08/14/14 14:32 Analyzed	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte	Result 6.4 ND %Recovery 71	Qualifier J Qualifier	RL 28 56 56 Limits 50 - 150	6.4 10 MDL	mg/Kg mg/Kg	*	08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13	08/14/14 14:32 08/14/14 14:32 Analyzed 08/14/14 14:32	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead	Result 6.4 ND %Recovery 71 Result	Qualifier J Qualifier	RL 28 56	6.4 10 MDL	mg/Kg mg/Kg	— *	08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13 Prepared	08/14/14 14:32 08/14/14 14:32 Analyzed 08/14/14 14:32 Analyzed	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate p-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry	Result	Qualifier J Qualifier	RL 28 56	6.4 10 MDL 0.13	mg/Kg mg/Kg	— *	08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13 Prepared	08/14/14 14:32 08/14/14 14:32 Analyzed 08/14/14 14:32 Analyzed	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry Analyte Percent Solids	Result	Qualifier Qualifier Qualifier	RL 28 56 Limits 50 - 150 RL 1.3	6.4 10 MDL 0.13	mg/Kg mg/Kg Unit mg/Kg	<u></u>	08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13 Prepared 08/15/14 09:31	08/14/14 14:32 08/14/14 14:32 Analyzed 08/14/14 14:32 Analyzed 08/15/14 18:43	Dil Fa

4

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Client Sample ID: BH-17 10'

Date Collected: 08/05/14 10:02

Date Received: 08/08/14 09:15

Lead

Analyte

Percent Solids

Percent Moisture

General Chemistry

Lab Sample ID: 580-44882-4

Matrix: Solid

Matrix: Solid Percent Solids: 86.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		16	3.6	ug/Kg	\$	08/12/14 10:02	08/18/14 15:27	1
Toluene	ND		41	2.7	ug/Kg	₽	08/12/14 10:02	08/18/14 15:27	1
Ethylbenzene	ND		41	2.1	ug/Kg	₽	08/12/14 10:02	08/18/14 15:27	1
m-Xylene & p-Xylene	ND		41	3.1	ug/Kg	₽	08/12/14 10:02	08/18/14 15:27	1
o-Xylene	ND		41	3.1	ug/Kg	₽	08/12/14 10:02	08/18/14 15:27	1
Naphthalene	12	JB	41	6.2	ug/Kg	₩	08/12/14 10:02	08/18/14 15:27	1
Methyl tert-butyl ether	ND		41	6.2	ug/Kg		08/12/14 10:02	08/18/14 15:27	1
EDC	ND		16	3.4	ug/Kg	₽	08/12/14 10:02	08/18/14 15:27	1
EDB	ND		16	3.5	ug/Kg	₽	08/12/14 10:02	08/18/14 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		71 - 136				08/12/14 10:02	08/18/14 15:27	1
4-Bromofluorobenzene (Surr)	101		70 - 120				08/12/14 10:02	08/18/14 15:27	1
Toluene-d8 (Surr)	108		80 - 120				08/12/14 10:02	08/18/14 15:27	1
Trifluorotoluene (Surr)	101		65 - 140				08/12/14 10:02	08/18/14 15:27	1
Dibromofluoromethane (Surr)	101		75 - 132				08/12/14 10:02	08/18/14 15:27	1
· Method: NWTPH-Gx - Northw	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	190	В	4.1	0.51	mg/Kg	₽	08/14/14 18:31	08/15/14 09:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	154	X	50 - 150				08/14/14 18:31	08/15/14 09:24	1
Method: NWTPH-Dx - Northw	est - Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	41	Y	28	6.5	mg/Kg	₩	08/13/14 10:13	08/14/14 14:50	1
Motor Oil (>C24-C36)	ND		57	10	mg/Kg	₽	08/13/14 10:13	08/14/14 14:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50 - 150				08/13/14 10:13	08/14/14 14:50	1
Method: 6010B - Metals (ICP)									
metriod. 00 10D - metais (101)									

1.3

RL

0.10

0.10

3.2

87

13

Result Qualifier

0.13 mg/Kg

RL Unit

0.10 %

0.10 %

08/15/14 18:47

Analyzed

08/12/14 14:32

08/12/14 14:32

Dil Fac

08/15/14 09:31

Prepared

D

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Client Sample ID: BH-17 D 10'

Date Collected: 08/05/14 10:05 Date Received: 08/08/14 09:15

Percent Moisture

Lab Sample ID: 580-44882-5

Matrix: Solid
Matrix. Solid
Doroont Colido, 94 6
Percent Solids: 84.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		23	5.0	ug/Kg	\$	08/12/14 10:02	08/12/14 14:39	
Toluene	5.1	J B	58	3.7	ug/Kg	₽	08/12/14 10:02	08/12/14 14:39	
Ethylbenzene	ND		58	2.9	ug/Kg	₩	08/12/14 10:02	08/12/14 14:39	
m-Xylene & p-Xylene	ND		58	4.3	ug/Kg		08/12/14 10:02	08/12/14 14:39	
o-Xylene	ND		58	4.3	ug/Kg	₽	08/12/14 10:02	08/12/14 14:39	
Naphthalene	ND		58	8.6	ug/Kg	₽	08/12/14 10:02	08/12/14 14:39	
Methyl tert-butyl ether	ND		58	8.6	ug/Kg		08/12/14 10:02	08/12/14 14:39	
EDC	ND		23	4.7	ug/Kg	₽	08/12/14 10:02	08/12/14 14:39	
EDB	ND		23	4.9	ug/Kg	₽	08/12/14 10:02	08/12/14 14:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	100		71 - 136				08/12/14 10:02	08/12/14 14:39	
4-Bromofluorobenzene (Surr)	101		70 - 120				08/12/14 10:02	08/12/14 14:39	
Toluene-d8 (Surr)	104		80 - 120				08/12/14 10:02	08/12/14 14:39	
Trifluorotoluene (Surr)	104		65 - 140				08/12/14 10:02	08/12/14 14:39	
Dibromofluoromethane (Surr)	96		75 - 132				08/12/14 10:02	08/12/14 14:39	
Gasoline	220				mg/Kg				
Surrogate		Qualifier	Limits 50 - 150				Prepared 08/14/14 18:31	Analyzed 08/15/14 09:55	Dil F
4-Bromofluorobenzene (Surr)	143		3U - 13U				U0/14/14 10.31		
								06/15/14 09.55	
Method: NWTPH-Dx - Northwe	est - Semi-Volatile	Petroleum						06/15/14 09.55	
Analyte	Result	Qualifier	Products (GC)	MDL		D	Prepared	Analyzed	Dil F
Analyte	Result 36		Products (GC) RL 29		Unit mg/Kg	-			Dil F
Analyte #2 Diesel (C10-C24)	Result	Qualifier	Products (GC)	6.5			Prepared	Analyzed	Dil F
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	Result 36	Qualifier Y	Products (GC) RL 29	6.5	mg/Kg	-	Prepared 08/13/14 10:13	Analyzed 08/14/14 15:08	Dil F
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	Result 36	Qualifier Y	Products (GC) RL 29 57	6.5	mg/Kg	-	Prepared 08/13/14 10:13 08/13/14 10:13	Analyzed 08/14/14 15:08 08/14/14 15:08	
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate p-Terphenyl	Result 36 ND %Recovery	Qualifier Y	Products (GC) RL 29 57 Limits	6.5	mg/Kg	-	Prepared 08/13/14 10:13 08/13/14 10:13 Prepared	Analyzed 08/14/14 15:08 08/14/14 15:08 Analyzed	
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate 0-Terphenyl Method: 6010B - Metals (ICP)	Result 36 ND %Recovery 76	Qualifier Y	Products (GC) RL 29 57 Limits	6.5 10	mg/Kg	— ₩ ₩	Prepared 08/13/14 10:13 08/13/14 10:13 Prepared	Analyzed 08/14/14 15:08 08/14/14 15:08 Analyzed	Dil F
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte	Result 36 ND %Recovery 76	Qualifier Y Qualifier	Products (GC) RL 29 57 Limits 50 - 150	6.5 10 MDL	mg/Kg mg/Kg	*	Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13	Analyzed 08/14/14 15:08 08/14/14 15:08 Analyzed 08/14/14 15:08	
Method: NWTPH-Dx - Northwood Analyte #2 Diesel (C10-C24) Wotor Oil (>C24-C36) Surrogate D-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry	Result 36 ND %Recovery 76 Result	Qualifier Y Qualifier	Products (GC) RL 29 57 Limits 50 - 150	6.5 10 MDL	mg/Kg mg/Kg	— ₩ ₩	Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13 Prepared	Analyzed 08/14/14 15:08 08/14/14 15:08 Analyzed 08/14/14 15:08 Analyzed	Dil F
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate p-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead	Result 36 ND %Recovery 76 Result 3.2	Qualifier Y Qualifier	Products (GC) RL 29 57 Limits 50 - 150	6.5 10 MDL 0.10	mg/Kg mg/Kg Unit mg/Kg Unit	— ₩ ₩	Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13 Prepared	Analyzed 08/14/14 15:08 08/14/14 15:08 Analyzed 08/14/14 15:08 Analyzed	Dil F
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate p-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry	Result 36 ND %Recovery 76 Result 3.2	Qualifier Qualifier Qualifier	Products (GC) RL 29 57 Limits 50 - 150 RL 1.0	6.5 10 MDL 0.10	mg/Kg mg/Kg Unit mg/Kg Unit		Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13 Prepared 08/15/14 09:31	Analyzed 08/14/14 15:08 08/14/14 15:08 Analyzed 08/14/14 15:08 Analyzed 08/14/14 15:08	Dil I

08/12/14 14:32

0.10

0.10 %

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Percent Moisture

Client Sample ID: BH-18 13'

Date Collected: 08/05/14 10:31 Date Received: 08/08/14 09:15 Lab Sample ID: 580-44882-6

Matrix: Solid	
Percent Solids: 90.2	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		23	5.1	ug/Kg	<u></u>	08/12/14 10:02	08/12/14 15:09	
Toluene	ND		58	3.8	ug/Kg	₩	08/12/14 10:02	08/12/14 15:09	
Ethylbenzene	ND		58	2.9	ug/Kg	₽	08/12/14 10:02	08/12/14 15:09	
m-Xylene & p-Xylene	ND		58	4.3	ug/Kg		08/12/14 10:02	08/12/14 15:09	
o-Xylene	ND		58	4.3	ug/Kg	₩	08/12/14 10:02	08/12/14 15:09	
Naphthalene	ND		58	8.7	ug/Kg	₽	08/12/14 10:02	08/12/14 15:09	
Methyl tert-butyl ether	ND		58	8.7	ug/Kg		08/12/14 10:02	08/12/14 15:09	
EDC	ND		23	4.8	ug/Kg	₽	08/12/14 10:02	08/12/14 15:09	
EDB	ND		23	4.9	ug/Kg	₽	08/12/14 10:02	08/12/14 15:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		71 - 136				08/12/14 10:02	08/12/14 15:09	
4-Bromofluorobenzene (Surr)	119		70 - 120				08/12/14 10:02	08/12/14 15:09	
Toluene-d8 (Surr)	104		80 - 120				08/12/14 10:02	08/12/14 15:09	
Trifluorotoluene (Surr)	104		65 - 140				08/12/14 10:02	08/12/14 15:09	
Dibromofluoromethane (Surr)	95		75 - 132				08/12/14 10:02	08/12/14 15:09	
Gasoline	940	B	5.8	0.72	mg/Kg	#	08/14/14 18:31	08/15/14 10:26	D# F-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	335	X	50 - 150				08/14/14 18:31	08/15/14 10:26	
Method: NWTPH-Dx - Northwest	- Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	
				MDL					Dil Fa
#2 Diesel (C10-C24)	160	Y	27	6.1	mg/Kg	\	08/13/14 10:13	08/14/14 15:26	
	160 ND	Y		6.1	mg/Kg mg/Kg	\$	08/13/14 10:13 08/13/14 10:13	08/14/14 15:26 08/14/14 15:26	
			27	6.1					Dil Fa
Motor Oil (>C24-C36) Surrogate	ND			6.1			08/13/14 10:13	08/14/14 15:26	
Motor Oil (>C24-C36) Surrogate o-Terphenyl	ND %Recovery		27 53 <i>Limits</i>	6.1			08/13/14 10:13 Prepared	08/14/14 15:26 Analyzed	Dil Fa
Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP)	ND **Recovery 82		27 53 Limits 50 - 150	6.1 9.7		D	08/13/14 10:13 Prepared 08/13/14 10:13 Prepared	08/14/14 15:26 Analyzed 08/14/14 15:26 Analyzed	Dil Fa
Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte	ND **Recovery 82	Qualifier	27 53 Limits 50 - 150	6.1 9.7 MDL	mg/Kg	*	08/13/14 10:13 Prepared 08/13/14 10:13	08/14/14 15:26 Analyzed 08/14/14 15:26	Dil Fa
o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry	%Recovery 82 Result 3.6	Qualifier Qualifier	27 53 Limits 50 - 150 RL 1.5	6.1 9.7 MDL 0.15	mg/Kg Unit mg/Kg		08/13/14 10:13 Prepared 08/13/14 10:13 Prepared 08/15/14 09:31	08/14/14 15:26 Analyzed 08/14/14 15:26 Analyzed 08/15/14 18:54	Dil Fa
Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead	%Recovery 82 Result 3.6	Qualifier	27 53 Limits 50 - 150	6.1 9.7 MDL	mg/Kg Unit mg/Kg Unit	D	08/13/14 10:13 Prepared 08/13/14 10:13 Prepared	08/14/14 15:26 Analyzed 08/14/14 15:26 Analyzed	Dil Fa

08/12/14 14:32

0.10

0.10 %

9.8

2

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Client Sample ID: BH-19 11'

Date Collected: 08/05/14 11:13 Date Received: 08/08/14 09:15 Lab Sample ID: 580-44882-7

Matrix: Solid

Percent Solids: 87.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND			4.8	ug/Kg	<u> </u>	08/12/14 10:02	08/12/14 16:40	
Toluene	ND		55	3.6	ug/Kg	₩	08/12/14 10:02	08/12/14 16:40	
Ethylbenzene	ND		55	2.7	ug/Kg	₽	08/12/14 10:02	08/12/14 16:40	
m-Xylene & p-Xylene	ND		55	4.1	ug/Kg	₩	08/12/14 10:02	08/12/14 16:40	
o-Xylene	ND		55	4.1	ug/Kg	₩	08/12/14 10:02	08/12/14 16:40	
Naphthalene	ND		55	8.2	ug/Kg	₩	08/12/14 10:02	08/12/14 16:40	
Methyl tert-butyl ether	ND		55	8.2	ug/Kg		08/12/14 10:02	08/12/14 16:40	
EDC	ND		22	4.5	ug/Kg	₽	08/12/14 10:02	08/12/14 16:40	
EDB	ND		22	4.6	ug/Kg	₽	08/12/14 10:02	08/12/14 16:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		71 - 136				08/12/14 10:02	08/12/14 16:40	
4-Bromofluorobenzene (Surr)	100		70 - 120				08/12/14 10:02	08/12/14 16:40	
Toluene-d8 (Surr)	104		80 - 120				08/12/14 10:02	08/12/14 16:40	
Trifluorotoluene (Surr)	104		65 - 140				08/12/14 10:02	08/12/14 16:40	
Dibromofluoromethane (Surr)	96		75 - 132				08/12/14 10:02	08/12/14 16:40	
Method: NWTPH-Gx - Northwo		Oleum Prod Qualifier	ucts (GC) RL 5.5	MDL 0.68	Unit mg/Kg	<u>D</u>	Prepared 08/15/14 13:05	Analyzed 08/16/14 17:34	
Analyte Gasoline	Result 44	Qualifier	RL 5.5				08/15/14 13:05	08/16/14 17:34	
Analyte Gasoline Surrogate	Result 44 %Recovery		RL 5.5				08/15/14 13:05 Prepared	08/16/14 17:34 Analyzed	
Analyte	Result 44	Qualifier	RL 5.5				08/15/14 13:05	08/16/14 17:34	
Analyte Gasoline Surrogate	Result 44 %Recovery 117	Qualifier Qualifier	RL 5.5 Limits 50 - 150				08/15/14 13:05 Prepared	08/16/14 17:34 Analyzed	
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	Result 44 %Recovery 117 est - Semi-Volatile	Qualifier Qualifier	RL 5.5 Limits 50 - 150		mg/Kg		08/15/14 13:05 Prepared	08/16/14 17:34 Analyzed	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwe	Result 44 %Recovery 117 est - Semi-Volatile	Qualifier Qualifier Petroleum	RL	0.68	mg/Kg		08/15/14 13:05 Prepared 08/15/14 13:05	08/16/14 17:34 Analyzed 08/16/14 17:34	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte	Result 44 %Recovery 117 est - Semi-Volatile Result	Qualifier Qualifier Petroleum Qualifier	RL	0.68 MDL 6.4	mg/Kg	\tilde{\pi}	08/15/14 13:05 Prepared 08/15/14 13:05 Prepared	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24)	Result 44 %Recovery 117 est - Semi-Volatile Result 39 ND %Recovery	Qualifier Qualifier Petroleum Qualifier Y	RL	0.68 MDL 6.4	mg/Kg Unit mg/Kg		08/15/14 13:05 Prepared 08/15/14 13:05 Prepared 08/13/14 10:13	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed 08/14/14 16:02	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	Result 44 %Recovery 117 est - Semi-Volatile Result 39 ND	Qualifier Qualifier Petroleum Qualifier Y	RL	0.68 MDL 6.4	mg/Kg Unit mg/Kg		08/15/14 13:05 Prepared 08/15/14 13:05 Prepared 08/13/14 10:13 08/13/14 10:13	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed 08/14/14 16:02 08/14/14 16:02	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	Result	Qualifier Qualifier Petroleum Qualifier Y Qualifier	RL 5.5 Limits 50 - 150 Products (GC) RL 28 56 Limits 50 - 150	0.68 MDL 6.4 10	mg/Kg Unit mg/Kg mg/Kg	D	08/15/14 13:05 Prepared 08/15/14 13:05 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed 08/14/14 16:02 08/14/14 16:02 Analyzed	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate 0-Terphenyl Method: 6010B - Metals (ICP)	Result 44 %Recovery 117 est - Semi-Volatile Result 39 ND %Recovery 77 Result	Qualifier Qualifier Petroleum Qualifier Y	RL	0.68 MDL 6.4 10	Unit mg/Kg mg/Kg mg/Kg	D	08/15/14 13:05 Prepared 08/15/14 13:05 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed 08/14/14 16:02 08/14/14 16:02 Analyzed 08/14/14 16:02	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	Result	Qualifier Qualifier Petroleum Qualifier Y Qualifier	RL 5.5 Limits 50 - 150 Products (GC) RL 28 56 Limits 50 - 150	0.68 MDL 6.4 10	mg/Kg Unit mg/Kg mg/Kg	D	08/15/14 13:05 Prepared 08/15/14 13:05 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed 08/14/14 16:02 08/14/14 16:02 Analyzed 08/14/14 16:02	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry	Result	Qualifier Qualifier Petroleum Qualifier Y Qualifier Qualifier	RL 5.5 Limits 50 - 150 Products (GC) RL 28 56 Limits 50 - 150 RL 1.4	MDL 6.4 10 MDL 0.14	Unit mg/Kg mg/Kg mg/Kg		08/15/14 13:05 Prepared 08/15/14 13:05 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13 Prepared 08/13/14 10:13	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed 08/14/14 16:02 08/14/14 16:02 Analyzed 08/14/14 16:02 Analyzed 08/14/14 16:02	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry Analyte	Result	Qualifier Qualifier Petroleum Qualifier Y Qualifier	RL	MDL 6.4 10 MDL 0.14	Unit mg/Kg mg/Kg mg/Kg mg/Kg	D	08/15/14 13:05 Prepared 08/15/14 13:05 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed 08/14/14 16:02 08/14/14 16:02 Analyzed 08/14/14 16:02 Analyzed 08/14/14 16:02 Analyzed Analyzed	Dil Fa Dil Fa Dil Fa Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry	Result	Qualifier Qualifier Petroleum Qualifier Y Qualifier Qualifier	RL 5.5 Limits 50 - 150 Products (GC) RL 28 56 Limits 50 - 150 RL 1.4	MDL 6.4 10 MDL 0.14	Unit mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg		08/15/14 13:05 Prepared 08/15/14 13:05 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13 Prepared 08/13/14 10:13	08/16/14 17:34 Analyzed 08/16/14 17:34 Analyzed 08/14/14 16:02 08/14/14 16:02 Analyzed 08/14/14 16:02 Analyzed 08/14/14 16:02	Dil Fa

TestAmerica Job ID: 580-44882-1

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Percent Moisture

Client Sample ID: BH-20 10' Date Collected: 08/05/14 11:50 Date Received: 08/08/14 09:15

Lab Sample ID: 580-44882-8

Sample ID. 300-44002-0	
Matrix: Solid	
Percent Solids: 85 1	
Percent Solins, vs. 1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		29	6.3	ug/Kg	<u> </u>	08/12/14 10:02	08/12/14 15:40	
Toluene	ND		72	4.7	ug/Kg	₩	08/12/14 10:02	08/12/14 15:40	
Ethylbenzene	ND		72	3.6	ug/Kg	₩	08/12/14 10:02	08/12/14 15:40	
m-Xylene & p-Xylene	ND		72	5.4	ug/Kg		08/12/14 10:02	08/12/14 15:40	
o-Xylene	ND		72	5.4	ug/Kg	₽	08/12/14 10:02	08/12/14 15:40	
Naphthalene	ND		72	11	ug/Kg	₽	08/12/14 10:02	08/12/14 15:40	
Methyl tert-butyl ether	ND		72	11	ug/Kg		08/12/14 10:02	08/12/14 15:40	
EDC	ND		29	6.0	ug/Kg	₩	08/12/14 10:02	08/12/14 15:40	
EDB	ND		29	6.1	ug/Kg	₽	08/12/14 10:02	08/12/14 15:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	100		71 - 136				08/12/14 10:02	08/12/14 15:40	
4-Bromofluorobenzene (Surr)	100		70 - 120				08/12/14 10:02	08/12/14 15:40	
Toluene-d8 (Surr)	103		80 - 120				08/12/14 10:02	08/12/14 15:40	
Trifluorotoluene (Surr)	103		65 - 140				08/12/14 10:02	08/12/14 15:40	
Dibromofluoromethane (Surr)	97		75 - 132				08/12/14 10:02	08/12/14 15:40	
Analyte	Result	Qualifier	RL		Unit	D	Prepared 00/44/44/40/24	Analyzed	
Analyte					Unit mg/Kg	<u>D</u>	Prepared 08/14/14 18:31	Analyzed 08/15/14 11:58	
Analyte Gasoline Surrogate	Result 30 %Recovery	Qualifier B	RL 7.2				08/14/14 18:31 Prepared	08/15/14 11:58 Analyzed	Dil Fa
Analyte Gasoline Surrogate	Result 30	Qualifier B	7.2				08/14/14 18:31	08/15/14 11:58	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwe	Result 30 %Recovery 105 est - Semi-Volatile	Qualifier B Qualifier Petroleum	RL 7.2 Limits 50 - 150 Products (GC)	0.90	mg/Kg	*	08/14/14 18:31 Prepared 08/14/14 18:31	08/15/14 11:58 Analyzed 08/15/14 11:58	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwo	Result 30 %Recovery 105 est - Semi-Volatile Result	Qualifier B Qualifier Petroleum Qualifier	RL 7.2 Limits 50 - 150 Products (GC) RL	0.90	mg/Kg	— <u> </u>	08/14/14 18:31 Prepared 08/14/14 18:31 Prepared	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwo		Qualifier B Qualifier Petroleum	RL 7.2	0.90 MDL 6.5	mg/Kg Unit mg/Kg		08/14/14 18:31 Prepared 08/14/14 18:31 Prepared 08/13/14 10:13	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed 08/14/14 16:20	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwo	Result 30 %Recovery 105 est - Semi-Volatile Result	Qualifier B Qualifier Petroleum Qualifier	RL 7.2 Limits 50 - 150 Products (GC) RL	0.90 MDL 6.5	mg/Kg	— <u> </u>	08/14/14 18:31 Prepared 08/14/14 18:31 Prepared	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwo		Qualifier B Qualifier Petroleum Qualifier Y	RL 7.2	0.90 MDL 6.5	mg/Kg Unit mg/Kg		08/14/14 18:31 Prepared 08/14/14 18:31 Prepared 08/13/14 10:13	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed 08/14/14 16:20	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwo	Result 30 %Recovery 105 est - Semi-Volatile Result 36 ND	Qualifier B Qualifier Petroleum Qualifier Y	RL 7.2 Limits 50 - 150 Products (GC) RL 28 57	0.90 MDL 6.5	mg/Kg Unit mg/Kg		08/14/14 18:31 Prepared 08/14/14 18:31 Prepared 08/13/14 10:13 08/13/14 10:13	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed 08/14/14 16:20 08/14/14 16:20	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwole Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	Result 30 %Recovery 105 est - Semi-Volatile Result 36 ND %Recovery	Qualifier B Qualifier Petroleum Qualifier Y	RL 7.2	0.90 MDL 6.5	mg/Kg Unit mg/Kg		08/14/14 18:31 Prepared 08/14/14 18:31 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed 08/14/14 16:20 08/14/14 16:20 Analyzed	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northword (Surrogate) 4-Bromofluorobenzene (Surrogate) 4-Bromofluorobenzene (Surrogate) 5-Terphenyl Method: 6010B - Metals (ICP)	Result 30	Qualifier B Qualifier Petroleum Qualifier Y	RL 7.2	0.90 MDL 6.5 10	mg/Kg Unit mg/Kg	D	08/14/14 18:31 Prepared 08/14/14 18:31 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed 08/14/14 16:20 08/14/14 16:20 Analyzed	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwood (Surrogate) #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate po-Terphenyl Method: 6010B - Metals (ICP) Analyte	Result 30	Qualifier B Qualifier Petroleum Qualifier Y Qualifier	RL 7.2 Limits 50 - 150 Products (GC) RL 28 57 Limits 50 - 150	0.90 MDL 6.5 10	mg/Kg Unit mg/Kg mg/Kg	D	08/14/14 18:31 Prepared 08/14/14 18:31 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed 08/14/14 16:20 08/14/14 16:20 Analyzed 08/14/14 16:20	Dil Fa
Method: NWTPH-Gx - Northw Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northw Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead General Chemistry	Result 30 %Recovery 105 est - Semi-Volatile Result 36 ND %Recovery 74 Result	Qualifier B Qualifier Petroleum Qualifier Y Qualifier	RL 7.2 Limits 50 - 150 Products (GC) RL 28 57 Limits 50 - 150 RL	0.90 MDL 6.5 10	Unit mg/Kg mg/Kg	D	08/14/14 18:31 Prepared 08/14/14 18:31 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed 08/14/14 16:20 08/14/14 16:20 Analyzed 08/14/14 16:20 Analyzed 08/14/14 16:20	Dil Fa
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northword Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl Method: 6010B - Metals (ICP) Analyte Lead	Result 30	Qualifier B Qualifier Petroleum Qualifier Y Qualifier	RL 7.2 Limits 50 - 150 Products (GC) RL 28 57 Limits 50 - 150 RL	0.90 MDL 6.5 10 MDL 0.14	Unit mg/Kg mg/Kg mg/Kg mg/Kg	D	08/14/14 18:31 Prepared 08/14/14 18:31 Prepared 08/13/14 10:13 08/13/14 10:13 Prepared 08/13/14 10:13	08/15/14 11:58 Analyzed 08/15/14 11:58 Analyzed 08/14/14 16:20 08/14/14 16:20 Analyzed 08/14/14 16:20 Analyzed 08/14/14 16:20	Dil Fa Dil Fa Dil Fa Dil Fa

08/12/14 14:32

0.10

15

0.10 %

Client Sample ID: BH-21 9'

Date Collected: 08/05/14 14:28

Date Received: 08/08/14 09:15

Analyte

Percent Solids

Percent Moisture

Lab Sample ID: 580-44882-9

Matrix: Solid Percent Solids: 87.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		21	4.5	ug/Kg	₩	08/12/14 10:02	08/12/14 16:10	
Toluene	ND		51	3.3	ug/Kg	₽	08/12/14 10:02	08/12/14 16:10	
Ethylbenzene	ND		51	2.6	ug/Kg	₽	08/12/14 10:02	08/12/14 16:10	
m-Xylene & p-Xylene	ND		51	3.9	ug/Kg	₽	08/12/14 10:02	08/12/14 16:10	
o-Xylene	ND		51	3.9	ug/Kg	₽	08/12/14 10:02	08/12/14 16:10	
Naphthalene	ND		51	7.7	ug/Kg	₽	08/12/14 10:02	08/12/14 16:10	
Methyl tert-butyl ether	ND		51	7.7	ug/Kg	\$	08/12/14 10:02	08/12/14 16:10	
EDC	ND		21	4.2	ug/Kg	☼	08/12/14 10:02	08/12/14 16:10	
EDB	ND		21	4.4	ug/Kg	₽	08/12/14 10:02	08/12/14 16:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	100		71 - 136				08/12/14 10:02	08/12/14 16:10	
4-Bromofluorobenzene (Surr)	99		70 - 120				08/12/14 10:02	08/12/14 16:10	
Toluene-d8 (Surr)	103		80 - 120				08/12/14 10:02	08/12/14 16:10	
Trifluorotoluene (Surr)	103		65 - 140				08/12/14 10:02	08/12/14 16:10	
Dibromofluoromethane (Surr)	95		75 - 132				08/12/14 10:02	08/12/14 16:10	
Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	4.2	JB	5.1	0.64	mg/Kg	*	08/14/14 18:31	08/15/14 12:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	109		50 - 150				08/14/14 18:31	08/15/14 12:29	
Method: NWTPH-Dx - Northwe	est - Semi-Volatile	e Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	7.6	J	27	6.2	mg/Kg	*	08/13/14 10:13	08/14/14 16:38	-
Motor Oil (>C24-C36)	ND		55	10	mg/Kg	₽	08/13/14 10:13	08/14/14 16:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	85		50 - 150				08/13/14 10:13	08/14/14 16:38	
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	4.9		1.5	0.15	mg/Kg	<u> </u>	08/15/14 09:31	08/15/14 19:10	-
Lead									
Lead General Chemistry	-1.0								

Analyzed

08/12/14 14:32

08/12/14 14:32

Dil Fac

RL

0.10

0.10

RL Unit

0.10 %

0.10 %

D

Prepared

Result Qualifier

88

Client Sample Results

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa TestAmerica Job ID: 580-44882-1

Client Sample ID: Trip Blank Date Collected: 07/29/14 00:00 Lab Sample ID: 580-44882-10

Matrix: Solid

Date Received: 08/08/14 09:15

Method: NWTPH-Gx - Northwes	st - Volatile Petro	oleum Prod	lucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	16	В	4.0	0.50	mg/Kg		08/12/14 15:29	08/12/14 20:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		50 - 150				08/12/14 15:29	08/12/14 20:32	1

5

6

9

TestAmerica Job ID: 580-44882-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-166699/1-A

Matrix: Solid

Analysis Batch: 166686

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 166699

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		16	3.5	ug/Kg		08/12/14 10:01	08/12/14 10:28	1
Toluene	2.80	J	40	2.6	ug/Kg		08/12/14 10:01	08/12/14 10:28	1
Ethylbenzene	2.12	J	40	2.0	ug/Kg		08/12/14 10:01	08/12/14 10:28	1
m-Xylene & p-Xylene	ND		40	3.0	ug/Kg		08/12/14 10:01	08/12/14 10:28	1
o-Xylene	ND		40	3.0	ug/Kg		08/12/14 10:01	08/12/14 10:28	1
Naphthalene	9.14	J	40	6.0	ug/Kg		08/12/14 10:01	08/12/14 10:28	1
Methyl tert-butyl ether	ND		40	6.0	ug/Kg		08/12/14 10:01	08/12/14 10:28	1
EDC	ND		16	3.3	ug/Kg		08/12/14 10:01	08/12/14 10:28	1
EDB	ND		16	3.4	ug/Kg		08/12/14 10:01	08/12/14 10:28	1

мв мв

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	71 - 136	08/12/14 10:01	08/12/14 10:28	1
4-Bromofluorobenzene (Surr)	100	70 - 120	08/12/14 10:01	08/12/14 10:28	1
Toluene-d8 (Surr)	103	80 - 120	08/12/14 10:01	08/12/14 10:28	1
Trifluorotoluene (Surr)	120	65 - 140	08/12/14 10:01	08/12/14 10:28	1
Dibromofluoromethane (Surr)	95	75 - 132	08/12/14 10:01	08/12/14 10:28	1

Lab Sample ID: LCS 580-166699/2-A

Matrix: Solid

Analysis Batch: 166686

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 166699

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	800	856		ug/Kg		107	70 - 128	
Toluene	800	869		ug/Kg		109	75 - 126	
Ethylbenzene	800	887		ug/Kg		111	78 - 126	
m-Xylene & p-Xylene	800	882		ug/Kg		110	78 ₋ 126	
o-Xylene	800	874		ug/Kg		109	77 - 127	
Naphthalene	800	922		ug/Kg		115	14 _ 170	
Methyl tert-butyl ether	800	859		ug/Kg		107	65 - 125	
EDC	800	911		ug/Kg		114	71 _ 128	
EDB	800	947		ug/Kg		118	69 - 126	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		71 - 136
4-Bromofluorobenzene (Surr)	99		70 - 120
Toluene-d8 (Surr)	101		80 - 120
Trifluorotoluene (Surr)	114		65 - 140
Dibromofluoromethane (Surr)	100		75 - 132

Lab Sample ID: LCSD 580-166699/3-A

Matrix: Solid

Ethylbenzene

Analysis Batch: 166686

Client Sa	mple ID:	Lab (Control	Samp	le Dup
			Prep Ty	pe: To	tal/NA

78 - 126

110

Prep Batch: 166699

Spike LCSD LCSD RPD %Rec. Analyte Added Result Qualifier Unit %Rec Limits Limit Benzene 800 848 106 70 - 128 19 ug/Kg Toluene 800 871 ug/Kg 109 75 - 126 19

882

ug/Kg

TestAmerica Seattle

Page 16 of 30

800

TestAmerica Job ID: 580-44882-1

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-166699/3-A

Matrix: Solid

Analysis Batch: 166686

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 166699

	Бріке	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	800	872		ug/Kg		109	78 - 126	1	23
o-Xylene	800	865		ug/Kg		108	77 - 127	1	22
Naphthalene	800	939		ug/Kg		117	14 - 170	2	50
Methyl tert-butyl ether	800	830		ug/Kg		104	65 - 125	3	30
EDC	800	887		ug/Kg		111	71 - 128	3	18
EDB	800	928		ug/Kg		116	69 - 126	2	21

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101	-	71 - 136
4-Bromofluorobenzene (Surr)	101		70 - 120
Toluene-d8 (Surr)	102		80 - 120
Trifluorotoluene (Surr)	112		65 - 140
Dibromofluoromethane (Surr)	100		75 - 132

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 167252

Lab Sample ID: MB 580-167252/1-A **Matrix: Solid**

Analysis Batch: 167240

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	ND		16	3.5	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		
Toluene	ND		40	2.6	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		
Ethylbenzene	ND		40	2.0	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		
m-Xylene & p-Xylene	ND		40	3.0	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		
o-Xylene	ND		40	3.0	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		
Naphthalene	6.35	J	40	6.0	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		
Methyl tert-butyl ether	ND		40	6.0	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		
EDC	ND		16	3.3	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		
EDB	ND		16	3.4	ug/Kg		08/18/14 08:24	08/18/14 08:52	1		

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		71 - 136	08/18/14 08:24	08/18/14 08:52	
4-Bromofluorobenzene (Surr)	98		70 - 120	08/18/14 08:24	08/18/14 08:52	1
Toluene-d8 (Surr)	105		80 - 120	08/18/14 08:24	08/18/14 08:52	1
Trifluorotoluene (Surr)	95		65 - 140	08/18/14 08:24	08/18/14 08:52	1
Dibromofluoromethane (Surr)	97		75 ₋ 132	08/18/14 08:24	08/18/14 08:52	1

Lab Sample ID: LCS 580-167252/2-A

Matrix: Solid

Analysis Batch: 167240

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 167252

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	800	719		ug/Kg		90	70 - 128	
Toluene	800	754		ug/Kg		94	75 - 126	
Ethylbenzene	800	775		ug/Kg		97	78 - 126	
m-Xylene & p-Xylene	800	755		ug/Kg		94	78 - 126	
o-Xylene	800	752		ug/Kg		94	77 - 127	
Naphthalene	800	724		ug/Kg		91	14 - 170	
Methyl tert-butyl ether	800	658		ug/Kg		82	65 - 125	

TestAmerica Seattle

TestAmerica Job ID: 580-44882-1

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Prep Type: Total/NA

Prep Batch: 167252

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-167252/2-A **Client Sample ID: Lab Control Sample Matrix: Solid**

Analysis Batch: 167240

LCS LCS Spike Analyte Added Result Qualifier Limits Unit %Rec EDC 800 621 78 71 - 128 ug/Kg EDB 800 697 ug/Kg 69 - 126

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		71 - 136
4-Bromofluorobenzene (Surr)	96		70 - 120
Toluene-d8 (Surr)	104		80 - 120
Trifluorotoluene (Surr)	90		65 - 140
Dibromofluoromethane (Surr)	96		75 - 132

Lab Sample ID: LCSD 580-167252/3-A

Matrix: Solid

Analysis Batch: 167240

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 167252**

7 maryolo Batom 101210								-	UU_
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	800	735		ug/Kg		92	70 - 128	2	19
Toluene	800	760		ug/Kg		95	75 - 126	1	19
Ethylbenzene	800	779		ug/Kg		97	78 - 126	1	23
m-Xylene & p-Xylene	800	764		ug/Kg		95	78 - 126	1	23
o-Xylene	800	753		ug/Kg		94	77 - 127	0	22
Naphthalene	800	753		ug/Kg		94	14 - 170	4	50
Methyl tert-butyl ether	800	649		ug/Kg		81	65 - 125	1	30
EDC	800	637		ug/Kg		80	71 - 128	3	18
EDB	800	714		ug/Kg		89	69 - 126	2	21

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		71 - 136
4-Bromofluorobenzene (Surr)	94		70 - 120
Toluene-d8 (Surr)	105		80 - 120
Trifluorotoluene (Surr)	90		65 - 140
Dibromofluoromethane (Surr)	97		75 - 132

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-166738/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 166738**

Analysis Batch: 166768

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1.19	J	4.0	0.50	mg/Kg		08/12/14 12:47	08/12/14 19:00	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		50 - 150	08/12/14 12:47	08/12/14 19:00	1
Trifluorotoluene (Surr)	70		50 - 150	08/12/14 12:47	08/12/14 19:00	1

TestAmerica Seattle

TestAmerica Job ID: 580-44882-1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 580-166738/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 166768 **Prep Batch: 166738** Spike LCS LCS Added Analyte Result Qualifier %Rec Limits Unit D 40.0 68 - 120 Gasoline 36.1 mg/Kg 90

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		50 - 150
Trifluorotoluene (Surr)	106		50 - 150

Lab Sample ID: LCSD 580-166738/3-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Solid Analysis Batch: 166768

Prep Batch: 166738 Spike LCSD LCSD RPD %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline 40.0 46.3 mg/Kg 116 68 - 120 25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		50 - 150
Trifluorotoluene (Surr)	118		50 - 150
	4-Bromofluorobenzene (Surr)	Surrogate %Recovery 4-Bromofluorobenzene (Surr) 107	4-Bromofluorobenzene (Surr) 107

Lab Sample ID: MB 580-167041/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 167044

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Gasoline 0.769 J 4.0 0.50 mg/Kg 08/14/14 18:31 08/15/14 06:19

MB MB Surrogate %Recovery Qualifier I imits 4-Bromofluorobenzene (Surr)

Prepared Analyzed Dil Fac 108 50 - 150 08/14/14 18:31 08/15/14 06:19

mg/Kg

Lab Sample ID: LCS 580-167041/2-A **Matrix: Solid**

Analysis Batch: 167044

Gasoline

Prep Batch: 167041 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits

40.0

LCS LCS Surrogate %Recovery Qualifier Limits 50 - 150 4-Bromofluorobenzene (Surr) 109

Lab Sample ID: LCSD 580-167041/3-A

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 167044 **Prep Batch: 167041** Spike LCSD LCSD RPD %Rec. Analyte babbA Result Qualifier Limits RPD Limit Unit D %Rec 40.0 Gasoline 44.1 mg/Kg 110 68 - 120 3

42.9

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		50 - 150

TestAmerica Seattle

Prep Batch: 167041

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

68 - 120

Client Sample ID: Lab Control Sample Dup

TestAmerica Job ID: 580-44882-1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: MB 580-167114/1-A

Matrix: Solid

Analysis Batch: 167148

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 167114

мв мв

Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac 08/15/14 13:05 Gasoline ND 4.0 0.50 mg/Kg 08/16/14 10:09

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 50 - 150 08/15/14 13:05 08/16/14 10:09 4-Bromofluorobenzene (Surr) 108

> Spike Added

> > 40.0

Spike

LCS LCS

LCSD LCSD

38.2

Result Qualifier

Unit

mg/Kg

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 580-167114/2-A

Matrix: Solid

Analyte

Gasoline

Analysis Batch: 167148

68 _ 120

Prep Type: Total/NA Prep Batch: 167114

Limits %Rec

LCS LCS

Surrogate %Recovery Qualifier Limits 50 - 150 4-Bromofluorobenzene (Surr) 109

Lab Sample ID: LCSD 580-167114/3-A

Matrix: Solid

Analysis Batch: 167148

Client Sample ID: Lab Control Sample Dup

96

Prep Type: Total/NA

Prep Batch: 167114 RPD

%Rec. Limits RPD Limit

Added Result Qualifier Analyte Unit %Rec Gasoline 40.0 38.1 95 68 - 120 0 mg/Kg

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 113 50 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-166822/1-A

MR MR

Matrix: Solid

Analysis Batch: 166938

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 166822

Qualifier Result RL Unit Prepared Analyzed Dil Fac #2 Diesel (C10-C24) ND 25 5.7 mg/Kg 08/13/14 10:13 08/14/14 12:44 Motor Oil (>C24-C36) ND 50 mg/Kg 08/13/14 10:13 08/14/14 12:44

MB MB

Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed o-Terphenyl 84 50 - 150 08/13/14 10:13 08/14/14 12:44

Lab Sample ID: LCS 580-166822/2-A

Matrix: Solid

Analysis Batch: 166938

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 166822

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
#2 Diesel (C10-C24)		500	437		mg/Kg		87	70 - 125	
Motor Oil (>C24-C36)		502	481		mg/Kg		96	64 - 127	

TestAmerica Seattle

TestAmerica Job ID: 580-44882-1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 580-166822/2-A

Matrix: Solid

Analysis Batch: 166938

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 166822**

LCS LCS

Surrogate **%Recovery Qualifier** Limits o-Terphenyl 94 50 - 150

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Lab Sample ID: LCSD 580-166822/3-A

Analysis Batch: 166938

Prep Type: Total/NA

Prep Batch: 166822 RPD %Rec. Limits RPD Limit

Spike LCSD LCSD Analyte Added Result Qualifier Unit %Rec #2 Diesel (C10-C24) 500 434 87 70 - 125 16 mg/Kg Motor Oil (>C24-C36) 502 479 96 64 - 127 0 17 mg/Kg

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 90 50 - 150

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 580-167073/21-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 167271

Prep Type: Total/NA

Prep Batch: 167073

MR MR

Qualifier MDL Unit Analyte Result RL Prepared Analyzed ND 1.5 08/15/14 09:31 08/15/14 17:54 Lead 0.15 mg/Kg

Lab Sample ID: LCS 580-167073/22-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 167271

Prep Type: Total/NA **Prep Batch: 167073**

%Rec.

Spike LCS LCS Analyte Added Result Qualifier D %Rec Limits Unit 50.0 50.0 100 80 - 120 Lead mg/Kg

Lab Sample ID: LCSD 580-167073/23-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analyte

Lead

Analysis Batch: 167271

Prep Type: Total/NA **Prep Batch: 167073**

%Rec. RPD Limits RPD Limit

Spike LCSD LCSD babbA Result Qualifier Analyte Unit D %Rec 50.0 Lead 50.7 mg/Kg 101 80 - 120

LCSSRM LCSSRM

144

Result Qualifier

Unit

mg/Kg

Spike

Added

133

Lab Sample ID: LCSSRM 580-167073/24-A

Matrix: Solid

Analysis Batch: 167271

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 167073

%Rec.

%Rec

108.1

Limits

72.9 - 127.

QC Sample Results

Client: TerraGraphics Inc
Project/Site: Bonjorni, Wa

TestAmerica Job ID: 580-44882-1

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-44882-6 DU

Matrix: Solid

Client Sample ID: BH-18 13'

Prep Type: Total/NA

Analysis Batch: 166757

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Solids	90		89		%	_	 	1	20
Percent Moisture	9.8		11		%			11	20

3

5

6

8

TestAmerica Job ID: 580-44882-1

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Client Sample ID: BH-14 14'

Date Collected: 08/05/14 08:39

Date Received: 08/08/14 09:15

Lab Sample ID: 580-44882-1

Matrix: Solid Percent Solids: 84.9

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166699	08/12/14 10:02	CRH	TAL SEA
Total/NA	Analysis	8260B		1	166686	08/12/14 12:38	PS1	TAL SEA
Total/NA	Prep	5035			167041	08/14/14 18:31	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	167044	08/15/14 07:52	IWH	TAL SEA
Total/NA	Prep	3546			166822	08/13/14 10:13	CTC	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	166938	08/14/14 13:56	JJP	TAL SEA
Total/NA	Prep	3050B			167073	08/15/14 09:31	KJV	TAL SEA
Total/NA	Analysis	6010B		1	167271	08/15/14 18:36	SPP	TAL SEA
Total/NA	Analysis	D 2216		1	166757	08/12/14 14:32	DA	TAL SEA

Client Sample ID: BH-15 9' Lab Sample ID: 580-44882-2

Date Collected: 08/05/14 09:05 **Matrix: Solid** Date Received: 08/08/14 09:15 Percent Solids: 88.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166699	08/12/14 10:02	CRH	TAL SEA
Total/NA	Analysis	8260B		1	166686	08/12/14 13:08	PS1	TAL SEA
Total/NA	Prep	5035			167114	08/15/14 13:05	UEP	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	167148	08/16/14 18:05	CJ	TAL SEA
Total/NA	Prep	3546			166822	08/13/14 10:13	CTC	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	166938	08/14/14 14:14	JJP	TAL SEA
Total/NA	Prep	3050B			167073	08/15/14 09:31	KJV	TAL SEA
Total/NA	Analysis	6010B		1	167271	08/15/14 18:40	SPP	TAL SEA
Total/NA	Analysis	D 2216		1	166757	08/12/14 14:32	DA	TAL SEA

Client Sample ID: BH-16 8' Lab Sample ID: 580-44882-3 Date Collected: 08/05/14 09:35 Matrix: Solid Date Received: 08/08/14 09:15

Batch Batch Dilution Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab 08/12/14 10:02 Total/NA Prep 5035 CRH TAL SEA 166699 Total/NA Analysis 8260B 166686 08/12/14 13:38 PS1 TAL SEA Total/NA 5035 IWH TAL SEA Prep 167041 08/14/14 18:31 Total/NA Analysis NWTPH-Gx 167044 08/15/14 08:53 IWH TAL SEA Total/NA Prep 3546 166822 08/13/14 10:13 CTC TAL SEA Total/NA Analysis NWTPH-Dx 166938 08/14/14 14:32 JJP TAL SEA TAL SEA Total/NA Prep 3050B 167073 08/15/14 09:31 KJV Total/NA 6010B 08/15/14 18:43 SPP TAL SEA Analysis Total/NA Analysis D 2216 166757 08/12/14 14:32 DA TAL SEA

9

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Lab Sample ID: 580-44882-4

Matrix: Solid
Percent Solids: 86.6

Client Sample ID: BH-17 10' Date Collected: 08/05/14 10:02

Date Received: 08/08/14 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166699	08/12/14 10:02	CRH	TAL SEA
Total/NA	Analysis	8260B		1	167240	08/18/14 15:27	AS	TAL SEA
Total/NA	Prep	5035			167041	08/14/14 18:31	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	167044	08/15/14 09:24	IWH	TAL SEA
Total/NA	Prep	3546			166822	08/13/14 10:13	CTC	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	166938	08/14/14 14:50	JJP	TAL SEA
Total/NA	Prep	3050B			167073	08/15/14 09:31	KJV	TAL SEA
Total/NA	Analysis	6010B		1	167271	08/15/14 18:47	SPP	TAL SEA
Total/NA	Analysis	D 2216		1	166757	08/12/14 14:32	DA	TAL SEA

Client Sample ID: BH-17 D 10'

Date Collected: 08/05/14 10:05 Date Received: 08/08/14 09:15 Lab Sample ID: 580-44882-5

Matrix: Solid Percent Solids: 84.6

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166699	08/12/14 10:02	CRH	TAL SEA
Total/NA	Analysis	8260B		1	166686	08/12/14 14:39	PS1	TAL SEA
Total/NA	Prep	5035			167041	08/14/14 18:31	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	167044	08/15/14 09:55	IWH	TAL SEA
Total/NA	Prep	3546			166822	08/13/14 10:13	CTC	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	166938	08/14/14 15:08	JJP	TAL SEA
Total/NA	Prep	3050B			167073	08/15/14 09:31	KJV	TAL SEA
Total/NA	Analysis	6010B		1	167271	08/15/14 18:50	SPP	TAL SEA
Total/NA	Analysis	D 2216		1	166757	08/12/14 14:32	DA	TAL SEA

Client Sample ID: BH-18 13'

Date Collected: 08/05/14 10:31 Date Received: 08/08/14 09:15

Lab Sample ID:	580-44882-6
	Matrix: Solid
Parcar	at Solide: 90.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166699	08/12/14 10:02	CRH	TAL SEA
Total/NA	Analysis	8260B		1	166686	08/12/14 15:09	PS1	TAL SEA
Total/NA	Prep	5035			167041	08/14/14 18:31	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	167044	08/15/14 10:26	IWH	TAL SEA
Total/NA	Prep	3546			166822	08/13/14 10:13	CTC	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	166938	08/14/14 15:26	JJP	TAL SEA
Total/NA	Prep	3050B			167073	08/15/14 09:31	KJV	TAL SEA
Total/NA	Analysis	6010B		1	167271	08/15/14 18:54	SPP	TAL SEA
Total/NA	Analysis	D 2216		1	166757	08/12/14 14:32	DA	TAL SEA

TestAmerica Seattle

2

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa

Lab Sample ID: 580-44882-7

Matrix: Solid
Percent Solids: 87.1

Client Sample ID: BH-19 11'

Date Collected: 08/05/14 11:13 Date Received: 08/08/14 09:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166699	08/12/14 10:02	CRH	TAL SEA
Total/NA	Analysis	8260B		1	166686	08/12/14 16:40	PS1	TAL SEA
Total/NA	Prep	5035			167114	08/15/14 13:05	UEP	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	167148	08/16/14 17:34	CJ	TAL SEA
Total/NA	Prep	3546			166822	08/13/14 10:13	CTC	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	166938	08/14/14 16:02	JJP	TAL SEA
Total/NA	Prep	3050B			167073	08/15/14 09:31	KJV	TAL SEA
Total/NA	Analysis	6010B		1	167271	08/15/14 19:03	SPP	TAL SEA
Total/NA	Analysis	D 2216		1	166757	08/12/14 14:32	DA	TAL SEA

Client Sample ID: BH-20 10'

Lab Sample ID: 580-44882-8

Date Collected: 08/05/14 11:50

Date Received: 08/08/14 09:15

Matrix: Solid
Percent Solids: 85.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166699	08/12/14 10:02	CRH	TAL SEA
Total/NA	Analysis	8260B		1	166686	08/12/14 15:40	PS1	TAL SEA
Total/NA	Prep	5035			167041	08/14/14 18:31	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	167044	08/15/14 11:58	IWH	TAL SEA
Total/NA	Prep	3546			166822	08/13/14 10:13	CTC	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	166938	08/14/14 16:20	JJP	TAL SEA
Total/NA	Prep	3050B			167073	08/15/14 09:31	KJV	TAL SEA
Total/NA	Analysis	6010B		1	167271	08/15/14 19:06	SPP	TAL SEA
Total/NA	Analysis	D 2216		1	166757	08/12/14 14:32	DA	TAL SEA

Client Sample ID: BH-21 9'

Date Collected: 08/05/14 14:28

Lab Sample ID: 580-44882-9

Matrix: Solid

Date Received: 08/08/14 09:15 Percent Solids: 87.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166699	08/12/14 10:02	CRH	TAL SEA
Total/NA	Analysis	8260B		1	166686	08/12/14 16:10	PS1	TAL SEA
Total/NA	Prep	5035			167041	08/14/14 18:31	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	167044	08/15/14 12:29	IWH	TAL SEA
Total/NA	Prep	3546			166822	08/13/14 10:13	CTC	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	166938	08/14/14 16:38	JJP	TAL SEA
Total/NA	Prep	3050B			167073	08/15/14 09:31	KJV	TAL SEA
Total/NA	Analysis	6010B		1	167271	08/15/14 19:10	SPP	TAL SEA
Total/NA	Analysis	D 2216		1	166757	08/12/14 14:32	DA	TAL SEA

Lab Chronicle

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa TestAmerica Job ID: 580-44882-1

Lab Sample ID: 580-44882-10

Matrix: Solid

Date Collected: 07/29/14 00:00 Date Received: 08/08/14 09:15

Client Sample ID: Trip Blank

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			166738	08/12/14 15:29	KMH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	166768	08/12/14 20:32	IWH	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

5

o

9

Certification Summary

Client: TerraGraphics Inc TestAmerica Job ID: 580-44882-1

Project/Site: Bonjorni, Wa

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-113	07-25-15
California	NELAP	9	01115CA	01-31-14 *
California	State Program	9	2901	01-31-15
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-14
USDA	Federal		P330-11-00222	04-08-17
Washington	State Program	10	C553	02-17-15

3

4

5

0

10

 $[\]ensuremath{^{\star}}$ Certification renewal pending - certification considered valid.

Sample Summary

Client: TerraGraphics Inc Project/Site: Bonjorni, Wa TestAmerica Job ID: 580-44882-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-44882-1	BH-14 14'	Solid	08/05/14 08:39	08/08/14 09:15
580-44882-2	BH-15 9'	Solid	08/05/14 09:05	08/08/14 09:15
580-44882-3	BH-16 8'	Solid	08/05/14 09:35	08/08/14 09:15
580-44882-4	BH-17 10'	Solid	08/05/14 10:02	08/08/14 09:15
580-44882-5	BH-17 D 10'	Solid	08/05/14 10:05	08/08/14 09:15
580-44882-6	BH-18 13'	Solid	08/05/14 10:31	08/08/14 09:15
580-44882-7	BH-19 11'	Solid	08/05/14 11:13	08/08/14 09:15
580-44882-8	BH-20 10'	Solid	08/05/14 11:50	08/08/14 09:15
580-44882-9	BH-21 9'	Solid	08/05/14 14:28	08/08/14 09:15
580-44882-10	Trip Blank	Solid	07/29/14 00:00	08/08/14 09:15

4

5

7

8

9

10

10 TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047

Short Hold

| Kusii

Custody Record Chain of

THE LEADER IN ENVIRONMENTAL TESTING		Fax 253-922-5047 www.testamerica	Fax 253-922-5047 www.testamericainc.com		[2014
client Spranies		Client Contact	Contact 200	S.		Date 5/5/)4	Chain of Custody Numbe	30 30 30 8/20/
	ļ	Telephone Nu	Telephone Number (Area Code,	VFax Number		Lab Number	Page /	of j
State	Zip Code 公子/O大	Sampler	CSCA	Lab Contact	W W	Analysis (Attach list if more space is needed)		
Project Name and Location (State) BONDSINI MA		Billing Contact	ntact		-Gx Dx		Special I	Special Instructions/
ContractPurchase Objer/Quote No.			Matrix	Containers & Preservatives	CS PH PH		Condition	Conditions of Receipt
ocation may be) Date	Time Air	Aqueous Sed. Soll	Unpres. H2S04 HN03 HCI NaOH ZnAc/ NaOH	333 y			
邓丰工工	क/5/14	2530	X		XXXX			
BH- 15 9	8/5/H	0905	X	<i>w</i>	XXXX			
8H-16 8	85/H	0435	X	3	XXXX			
BH- 17 10'	18/8/14 N	002	\propto	3	XXXX			0
BH- 17 D 10	S 5 H	85	X	W 	XXX			of 3
BH-18 13'	8/5/14	03)	X	<i>w</i>	XXX		7.70	e 29
BH-19 11	8/5/14	1113	×	\(\omega\)	XXXX	580-44882 Chain of Custody	ıstody	Pag
BH-20 10	8/5/14	1150	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	XXX	THE PARTY		
84-21 3	8/5/14	1428	×	4	XXXX	Cooler/TB Dig/	R cor 3 m	L Sull
TRIB BLANK				**************************************	>	Cooler Ds6/M	CON @ La	ь
						Wet Packs Pa	Päcking DUDD	
Cooler Possible Hazaro	Possible Hazard Identification Non-Hazard		□ Skin Irritant □	☐ Poison B ☐ Unknown ☐ R	Sample Disposal Return To Client	Disposal By Lab Archive For Months		(A fee may be assessed if samples are retained longer than 1 month)
Turn Around Time Required (business days) ☐ 24 Hours ☐ 48 Hours ☐ 5 Days ☐ 10 Days	Days 🔲 15 Days	Other	Surlace	QC Requirements (Specify)				
1. Rellinguished By Sign/Print MHU/M/ M/ / M/KE PROCSAL	12	Date	Time 1300	1. Received By Sign/Prins	Mediss-Ames	20	8/8/2014	Time 915
		Date	Time	2. Received By Sign/Print			Date	Time
3. Relinquished By Sign/Print		Date	Time	3. Received By Sign/Print			Date	Тіте
Comments		-						

:

Login Sample Receipt Checklist

Client: TerraGraphics Inc Job Number: 580-44882-1

Login Number: 44882 List Source: TestAmerica Seattle

List Number: 1

Creator: Ames, Melissa R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

Δ

5

7

9

10

1.

Appendix C

Boring Logs

ENVIRONMENTAL BH - GINT STD US.GDT - 10/8/14 13:05 - R:\GINT\TG PROJECTS\BONJORN\\BONJORN\\ZGPJ

TerraGraphics Env. Engineering 988 S. Longmont Ave. Suite 200 Boise, ID 83706

BORING NUMBER BH-14

CLIENT Hart Crowser / Dept. of Ecology	PROJECT NAME Bonjorni		
PROJECT NUMBER 13088	PROJECT LOCATION Ellensburg, WA		
DATE STARTED <u>8/5/14</u> COMPLETED <u>8/5/14</u>	GROUND ELEVATION TBD HOLE SIZE 2 inches		
DRILLING CONTRACTOR Pacific Soil and Water	GROUND WATER LEVELS:		
DRILLING METHOD Macro - Core	$\overline{igspace}$ AT TIME OF DRILLING $\underline{9.00~\mathrm{ft}}$		
LOGGED BY Mike Procsal CHECKED BY Melody Studer			
NOTES	AFTER DRILLING		
SAMPLE TYPE NUMBER NUMBER (N VALUE) (N VALUE) ENVIRONMENTAL DATA GRAPHIC LOG	MATERIAL DESCRIPTION WELL DIAGRAM		
FILL, Gravel, Dry			
PID = 0 GRAVELLY SILT, clay	SILT, (ML) dark blackish brown, dry, <50%		
PID = 0			
PID = 0			
PID = 0 GRAVEL WITH SI	LT, CLAY, (GM)		
PID = 0	AND, (GP) dry, some >2" rock		
PID = 0			
PID = 4.6			
10.0 GRAVEL WITH S/	AND, (SP) brown, wet		
12.5 PID = 4.6	se with alternating grading		
PID = 60 from 11' to 13', hai	LT, SAND, (GP-GM) angular gravel, staining rd drilling		
14' 08:39 - AM 15.0 PID = 93.6			
	ottom of borehole at 15.0 feet.		

ENVIRONMENTAL BH - GINT STD US.GDT - 10/8/14 13:05 - R:\GINT\TG PROJECTS\BONJORN\\BONJORN\\ZGPJ

TerraGraphics Env. Engineering 988 S. Longmont Ave. Suite 200 Boise, ID 83706

BORING NUMBER BH-15

PROJECT NUMBER 1308 PROJECT LOCATION Elliensburg, WA	CLIEN	IT Hart	Crowser / D	ept. of Ecol	ogy		PROJECT NAME Bonjorni			
DRILLING METHOD Macro - Core Checked By Melody Studer ATTIME OF DRILLING	PROJ	ECT NUM	IBER _130	88			PROJECT LOCATION _E	Ilensburg, WA		
Code Day Misc Process Checked By Melody Studer AT END OF DRILLING 9,00 ft	DATE	STARTE	D 8/5/14		COMPLETED	8/5/14	GROUND ELEVATION _	TBD H	OLE SIZE 2 inches	
CHECKED BY Melody Studer AT END OF DRILLING	DRILL	ING CON	ITRACTOR	Pacific So	il and Water		GROUND WATER LEVEL	.S:		
AFTER DRILLING AFTE	DRILL	ING MET	HOD Mac	ro - Core			$\overline{igspace}$ at time of drill	ING 9.00 ft		
AFTER DRILLING AFTE	LOGG	ED BY	Mike Procs	al	CHECKED BY	Melody Studer	AT END OF DRILLI	NG		
MATERIAL DESCRIPTION WELL DIAGRAM MATERIAL DESCRIPTION WELL DIAGRAM WELL DIAGRAM WELL DIAGRAM WELL DIAGRAM WELL DIAGRAM PID = 0 A0 Clayey gravel at 4° CLAYEY GRAVEL, (GC) dry GRAVEL WITH SILT, (GM) light brown, dry, 70% recovery PID = 0.6 PID = 10 PID = 210 PID = 210 PID = 22 PID = 210 PID = 22 PID = 23 PID = 210 PID = 23 PID = 23 PID = 210 PID = 23 PID = 23 PID = 210 PID = 23 PID = 24 PID = 25 PID = 25 PID = 25 PID = 27 PID = 28 PID = 3	NOTE	S								
PID = 0				7						
PID = 0 1.0 PID = 0 A Clayey gravel at 4" CLAYEY GRAVEL, (GC) dry GRAVEL WITH SILT, (GM) light brown, dry, 70% recovery PID = 0 7.5 PID = 0 FORLY GRAVEL WITH SAND, (GP) PID = 210 GRAVEL WITH SAND, (GM) coarse grained, wet POORLY GRADED SAND, (SP) wet POORLY GRAVEL WITH SILT, CLAY, (GM) wet less clay PID = 3 PID = 10 Rest clay POORLY GRADED SAND, (SP) wet POORLY GRADED SAND, (SP) wet POORLY GRADED SAND, (SP) wet POORLY GRAVEL WITH SILT, CLAY, (GM) wet		SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTA DATA			ATERIAL DESCRIPTION		WELL DIAGRAM	
2.5 PID = 0 PI						FILL, Gravel, Dry				
2.5 PID = 0 PI				PID = 0	1.0					
PID = 0 PID =						SILTY SAND WITH	GRAVEL, (SM) dry, mediur	n stiffness		
PID = 0 PID =										
PID = 0 PID =	25			PID = 0						
A.0 A.0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry 7.5 PID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry PID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry FID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry FID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry FID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry FID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry FID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry FID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry FID = 0 Clayey gravel at 4' CLAYEY GRAVEL, (GC) dry FID = 0 Clayey gravel at 4' CLAYEY GRAVEL WITH SILT, (GM) light brown, dry, 70% recovery FID = 0 Clayey gravel at 4' CLAYEY GRAVEL WITH SILT, (GM) light brown, dry, 70% recovery FID = 0 Clayey gravel at 4' CLAYEY GRAVEL WITH SILT, (GM) light brown, dry, 70% recovery FID = 10 Clayey gravel at 4' CLAYEY GRAVEL WITH SILT, (GM) light brown, dry, 70% recovery FID = 10 Clayey gravel at 4' CLAYEY GRAVEL WITH SILT, (GM) light brown, dry, 70% recovery FID = 210 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey Gravel at 4' CLAYEY GRAVEL WITH SAND, (GM) coarse grained, wet FID = 10 Clayey G										
PID = 0 Solution of the property of the prope				PID = 0						
PID = 0 Solution of the property of the prope										
7.5 PID = 0.6 PID = 210 PID = 22 PID = 22 PID = 210 PID = 22 PID = 22 PID = 210 PID = 22 PID = 210 PID = 22 PID = 3 PID = 3 PID = 3 PID = 3	 5.0 _			PID = 0	5.0	CLAYEY GRAVEL, (<i></i>		
PID = 0.6 PID = 0.6 PID = 0.6 PID = 0.6 POORLY GRADED GRAVEL WITH SAND, (GP) GRAVEL WITH SAND, (GM) coarse grained, wet POORLY GRADED SAND, (SP) wet				PID = 0						
9' 09:05 AM PID = 210 PID = 210 POORLY GRADED SAND, (GM) coarse grained, wet 10.0 POORLY GRADED SAND, (SP) wet 12.5 GRAVEL WITH SILT, CLAY, (GM) wet 12.5 PID = 10 PID = 3 PID = 3 PID = 3	7.5 	BH-15		PID = 0.6	7.5		GRAVEL WITH SAND, (GF	o)		
PID = 22 11.5 GRAVEL WITH SILT, CLAY, (GM) wet PID = 3 PID = 3 POORLY GRADED SAND, (SP) wet Its.		9' 09:05		PID = 210	P D D - 1-	GRAVEL WITH SAN	ID, (GM) coarse grained, w	et		
PID = 10 PID = 3 PID = 3 PID = 3 PID = 3	10.0 					POORLY GRADED	SAND, (SP) wet			
PID = 3 0 15.0	 - 12.5 			PID = 10			, CLAY, (GM) wet			
15.0	_					ess clay				
Bottom of borehole at 15.0 feet.	1 <u>5</u> .0			PID = 3	15.0					
						Bott	om of borehole at 15.0 feet	•		

BORING NUMBER BH-16

	CLIEN	T Hart 0	Crowser / D	ept. of Eco	logy		PROJECT NAME Bonjorni	
	PROJ	ECT NUN	IBER _130	88			PROJECT LOCATION Ellensburg, WA	
	DATE	STARTE	D 8/5/14		COMPL	ETED 8/5/14	GROUND ELEVATION TBD	HOLE SIZE 2 inches
							GROUND WATER LEVELS:	
							_	
						KED BY _Melody Studer		
	NOTE			-			AFTER DRILLING	
ŀ				J			· · · · · · · · · · · · · · · · · · ·	
	O DEPTH O (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG		ATERIAL DESCRIPTION	WELL DIAGRAM
						FILL, Gravel, Dry		
				PID = 0	1.0	O GRAVEL WITH SAN	ND, (GP)	
ı	 2.5			PID = 0	0 0 2.	5		
				PID = 0	3.	GRAVELLY SILT, S clay	ILT, (ML) dark blackish brown, dry, <50%	
ENVIRONMENTAL BH - GINT STD US.GDT - 10/8/14 13:05 - R:\GINT\TG PROJECTS\BONJORN\BONJORN\R.GPJ	5.0 	BH-16 8' 09:35 AM		PID = 0 PID = 0 PID = 0		GRAVEL WITH SILT	ND, (GP) dry, some >2" rock	
14 13:05 - R:\GINT\T				PID = 0			e with alternating grading	
US.GDT - 10/8/1	_12.5 			PID = 0	12		Г, SAND, (GP-GM) angular gravel, staining drilling	
TSTD				PID = 0	000	5		
Ö					1 (1) [1] 14	i.5 Bott	om of borehole at 14.5 feet.	
NVIRONMENTAL BH								

BORING NUMBER BH-17

٥	LIEN	T Hart	Crowser / D	ept. of Ecol	ogy			PROJECT NAME Bonjorni			
P	ROJ	ECT NUM	IBER <u>130</u>	88				PROJECT LOCATION Ellensburg, WA			
0	ATE	STARTE	D 8/5/14		COM	IPLET	ED 8/5/14	GROUND ELEVATION TBD	HOLE SIZE 2 inches		
	RILL	ING CON	ITRACTOR	Pacific Sc	oil and	Wate	r	GROUND WATER LEVELS:			
	RILL	ING MET	HOD Mad	ro - Core				$\sqrt{2}$ at time of drilling $9.00~{ m ft}$			
L	.ogg	ED BY _	Mike Procs	al	CHE	CKED	BY Melody Studer	AT END OF DRILLING			
N	IOTE	3 Duplio	cate Sample	e Collected				AFTER DRILLING			
H				7							
_	_	SAMPLE TYPE NUMBER	့ တွေ့	ENVIRONMENTAL DATA	ပ						
Ē	(#) E (#)	-E T ABE	BLOW COUNTS (N VALUE)	MMATA	GRAPHIC LOG		M	ATERIAL DESCRIPTION	WELL DIAGRAM		
2	ם כ	MPI	N COL	8 0	GR/ L						
	0.0	SA		N							
H	0.0			ш			FILL, Gravel, Road I	Bed, Dry			
ŀ	-			PID = 0							
┢	-										
ŀ	-			PID = 0							
 	<u>,</u>										
H	2.5			PID = 0							
F	-					3.0_	CLAY/SILT, (CL-ML) stiff, high plasticity, slow dilatancy	-		
F	-										
H	-										
ŀ				PID = 0							
-	5.0										
+	-			PID = 0							
ŀ	-										
35	-										
SNI2.	-			PID = 0	601	7.0_	GRAVEL WITH SAN	ND, (GP) some >2" rock	_		
NON I	7.5			1 12 0	600		GIVIVEE WITH GA	(SI) 30III 5 2 100K			
NI/BC	-				000						
NON-	-			PID = 0.4	1000	{ 	moist at 9'				
NBO!	-	BH-17		1.12 0.1	00	9.0	∇	and poorly graded, wet	_		
ECT.	-	10' 10:02					0.211 07.112, (0.11)	odna poorty gradou, wot			
ő 1	0.0	AM BH-17[PID = 35			wet at 10'				
TITG	4	10'		55							
.egl	4	10:05 AM									
- R	-										
13:0	-			PID = 5							
0/8/1	2.5					12.5		Refusal at 12.5 feet.			
1-1							Bot	tom of borehole at 12.5 feet.			
US.G											
STD											
GINT											
BH											
ENVIRONMENTAL BH - GINT STD US.GDT - 10/8/14 13:05 - R./GINTTG PROJECTS/BONJORNIBONJORNI2.GPJ											
NME											
VIRO											
Ä L											

BORING NUMBER BH-18 PAGE 1 OF 1

CLIE	NT Hart	Crowser / D	ept. of Ecol	logy		PROJECT NAME Bonjorni	
						PROJECT LOCATION Ellensburg, WA	
						GROUND ELEVATION TBD	
						GROUND WATER LEVELS:	·
- 1						AT END OF DRILLING	
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	N	MATERIAL DESCRIPTION	WELL DIAGRAM
0.0			ш	XXXX	FILL, Gravel, Road	Rase Dry	
-	-		PID = 0		TILL, Gravel, Road	Base, Bry	
-	-		1.5				
-	+		PID = 0				
	-						
2.5							
-	-		PID = 0		3.0 GRAVELLY SILT, ((ML) brown, moist, medium plasticity	
	+					, , , , , , , , , , , , , , , , , , , ,	
	1						
+ - ^	1		PID = 0				
5.0	+				Clay @ 5'		
	1						
-					6.0 CLAY/SILT, (CL-MI	 L)	
GPJ	1						
ORNIZ 7.5	1				Alternating Gravel	>2" and Silt/Clay with sand	
0 7.5	-						
RNI/B	-		PID = 0				
ONO -	1						
TS/BC	1				Coarse @ 9'		
) 10.0	1		PID = 0		10.0 🗸		
G PR					POORLY GRADED	SAND WITH GRAVEL, (SP) brown, wet	
F F							
R:\G			PID = 0				
3:05 -							
12.5							
- 10/8	bh-18 13'		PID = 15				
GDT	10:31 AM				Stained @ 13'		
SU OF							
INT ST					Dry from 13.5' to 15	5'	
ENVIRONMENTAL BH - GINT STD US.GDT - 10/8/14 13:05 - R.\GINT\TG PROJECTS\BONJORN\BONJO			PID = 0		15.0		
AL BI			<u> </u>	,	Во	ettom of borehole at 15.0 feet.	
MEN							
RON							
EN EN							

BORING NUMBER BH-19

PRO DATI DRIL DRIL	JECT NUM E STARTE LING COM LING MET	MBER <u>130</u> ; D <u>8/5/14</u> ITRACTOR THOD <u>Mac</u>	Pacific So	COM	PLETED 8/5/14 Water	GROUND ELEVATION TBD HOLE SIZE 2 inches GROUND WATER LEVELS: AT TIME OF DRILLING 10.00 ft		
1	GED BY _		aı	CHEC	CKED BY Melody Studer	AFTER DRILLING		
O DEPTH	NA N	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	MAT	TERIAL DESCRIPTION	WELL DIAGRAM	
ENVIRONMENTAL BH - GINT STD US.GDT - 108/14 13:05 - R:\circlination ROLL 108/14 13:05 - R:\circlination Roll 12:05 10:05 1	BH-19 - 11' 11:13 - AM		В PID = 0		Orange sand Wet @ 10' SILTY SAND, (SM) we 11.5 GRAVEL WITH SAND			

BORING NUMBER BH-20

CLIEN	T Hart 0	Crowser / D	ept. of Ecol	ogy		PROJECT NAME Bonjorni		
		IBER _130				PROJECT LOCATION _Ellensburg,		
						GROUND ELEVATION TBD	HOLE SIZE 2 inches	
						GROUND WATER LEVELS:	_	
1			ro - Core				ft	
1		WIKE Procs			CKED BY Melody Studer			
NOTE					-	AFTER DRILLING		
DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	MA	TERIAL DESCRIPTION	WELL DIAGRAM	
0.0			Ш		FILL, Gravel, Dry			
			PID = 0					
2.5			PID = 0		3.0			
			PID = 0 PID = 0			D, (GP) dry, some >2" rock		
5.0			PID = 0		GRAVEL WITH SILT,	(GM) light brown, dry		
7.5			PID = 91		[∑] Wet @ 9'			
10.0 	BH-20 10' 11:50 AM		PID = 125		Dry @ 10.5'			
			PID = 3	p Y ICT	12.0	Refusal at 12.0 feet.		
					Botto	m of borehole at 12.0 feet.		
:								

BORING NUMBER BH-21 PAGE 1 OF 1

	CLIEN	IT Hart	Crowser / D	ept. of Eco	logy		PROJECT NAME Bonjorni	
	PROJ	ECT NUM	IBER _130	88			PROJECT LOCATION Ellensburg, WA	
	DATE	STARTE	D 8/5/14		COM	PLETED 8/5/14	GROUND ELEVATION TBD F	HOLE SIZE 2 inches
	DRILL	ING CON	ITRACTOR	Pacific So	oil and \	Water	GROUND WATER LEVELS:	
	DRILL	ING MET	HOD Mac	ro - Core			$\overline{igspace}$ at time of drilling $\underline{7.00~\mathrm{ft}}$	
	LOGG	ED BY _	Mike Procs	al	CHE	CKED BY Melody Studer	AT END OF DRILLING	
	NOTE	s					AFTER DRILLING	
t		111		AL.				
	O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	M/	ATERIAL DESCRIPTION	WELL DIAGRAM
Ī						FILL, Gravel, Sand,	Dry	
-	· –			PID = 0		1.5 GRAVELLY SILT, (N	/IL) dark brown, dry	_
	2.5			PID = 0				
	· -			PID = 0		GRAVELLY LEAN C	LAY, (CL) dry, stiff, high plasticity, slow	_
-	5.0			PID = 0		GRAVEL WITH SAN	ID, (GP) angular, dry	-
2.GPJ	· –			PID = 0		∇		
RNI/BONJORNI	7.5			PID = 0		Dry above 7'; Wet @	77'	
CTS/BONJO	. –	BH-21 9' 2:28 PM		PID = 0				
TG PROJE	10.0			PID = 0		10.0 GRAVEL WITH SAN	ID, (GP) wet	_
3:05 - R:\GINT	· -			PID = 0		12.0		
GDT - 10/8/14 1:	12.5			PID = 0		GRAVEL WITH SILT	Г, (GM) wet	-
GINT STD US.				PID = 0 PID = 0		45.0		
팖	15.0			l	TUIC	15.0 Bott	om of borehole at 15.0 feet.	
ENVIRONMENTAL BH - GINT STD US.GDT - 10/8/14 13:05 - R:\GINT\TG PROJECTS\BONJORN\BONJORN\IZ.GPJ								

BORING NUMBER MW-1 PAGE 1 OF 1

			Crowser / D				PROJECT NAME Bonjorni PROJECT LOCATION Ellensburg, WA			
					COMP	LETED 8/5/14	GROUND ELEVATION 1650.84 ft GROUND WATER LEVELS:			
	DRILL	ING MET	HOD Mac	ro - Core			AT TIME OF DRILLING Dry	; Wet from 5' to 12'		
	LOGGED BY Mike Procsal CHECKED BY Me				CHECI	KED BY Melody Studer				
,	O DEPTH O (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	MATE	ERIAL DESCRIPTION	WELL DIAGRAM		
ROJECTS/BONJORNI/BONJORNIZ.GPJ	0.0 2.5 5.0 			Ш				Filter sand 2.5' to 8.5' Figure 2" prepack slotted well screen 3.2' to 8.5'		
ENVIRONMENTAL BH - GINT STD US.GDT - 10/8/14 13:05 - R:\GINT\TG PROJECTS\										

BORING NUMBER MW-2

CLIENT Hart Crowser / Dept. of Eco		PROJECT NAME Bonjorni PROJECT LOCATION Ellensburg, WA		
		GROUND ELEVATION 1653.1 ft HOLE SIZE 3/4 inches		
DRILLING CONTRACTOR Pacific S				
DRILLING METHOD Macro - Core				
NOTES	CHECKED BY Melody Studer	AT END OF DRILLING AFTER DRILLING		
SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) ENVIRONMENTAL DATA	GRAPHIC LOG LOG	ERIAL DESCRIPTION	WELL DIAGRAM	
0.0			Filter sand 6.5' to 12.5' Filter sand 6.5' to 12.5' 3/4" prepack slotted well screen 7.5' to 12.5'	

BORING NUMBER MW-3 PAGE 1 OF 1

	CLIENT Hart Crowser / Dept. of Ecology PROJECT NUMBER 13088 DATE STARTED 8/5/14 COMPLETED 8/5/14								
							GROUND ELEVATION 1653.34 ft		
	DRILLING CONTRACTOR Pacific Soil and Water DRILLING METHOD Macro - Core						AT TIME OF DRILLING AT END OF DRILLING		
	NOTE						AFTER DRILLING		
	o DEPTH o (ft)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	MATI	ERIAL DESCRIPTION	WELL DIAGRAM	
ENVIRONMENTAL BH - GINT STD US.GDT - 10/8/14 13:05 - R.'GINTTG PROJECTS\BONJORN\BONJORN\BONJORN\ZGPJ	0.0 	SAS .						Filter sand 6.0' to 12.0' Filter sand 6.0' to 12.0' 3/4" prepack slotted well screen 7.0' to 12.0'	
ENVIRONA									