Quarterly Groundwater Monitoring Fourth Quarter 2014

Tiger Oil North 1st Yakima, Washington

for

Washington State Department of Ecology

March 26, 2015

Quarterly Groundwater Monitoring Fourth Quarter 2014

Tiger Oil North 1st Yakima, Washington

for Washington State Department of Ecology

March 26, 2015

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Quarterly Groundwater Monitoring Fourth Quarter 2014

Tiger Oil North 1st Yakima, Washington

File No. 0504-101-00

March 26, 2015

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program - Central Region Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Attention: Mary Monahan

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Jedidiah R. Sugalski, PE Project Manager

Bruce D. Williams Principal

JRS:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	SCOPE OF SERVICES	3
4.0	FIELD ACTIVITIES	3
4.2.	Monitoring Well Headspace Vapor Monitoring Groundwater Elevation Monitoring Groundwater Sampling	4
5.0	CHEMICAL ANALYTICAL RESULTS	4
5.2.	Groundwater Chemical Analytical Results Natural Attenuation Parameters QA/QC Summary	5
6.0	CONCLUSIONS	6
7.0	LIMITATIONS	6
8.0	REFERENCES	6

LIST OF TABLES

Table 2. Summary of Groundwater Level Measurements

Table 3. Summary of Chemical Analytical Results - Groundwater

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. Site Plan and Sample Locations

Figure 3. Groundwater Elevation and Interpreted Flow Direction, December 11, 2014

APPENDICES

Appendix A. Field Procedures

Appendix B. Chemical Analytical Laboratory Report and Data Validation

Appendix C. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report describes groundwater monitoring activities conducted in December 2014 at the Tiger Oil North 1st site located at 1808 North 1st Street in Yakima, Washington (herein referred to as "site"). The site is located approximately as shown in the Vicinity Map, Figure 1.

Environmental activities at the site currently are managed by the Washington State Department of Ecology (Ecology). This report provides a brief site description and background, our scope of services, a description of field activities, chemical analytical results and conclusions for the December 2014 groundwater monitoring event.

2.0 SITE DESCRIPTION AND BACKGROUND

The site is located at 1808 North 1st Street in Yakima, Washington. The site is bordered by arterial roadway North 1st Street to the east and the Sun Country Inn to the south and west of the site. A paved entrance to the All Star Motel and Ron Nehls Auto Sales is located to the north as shown on Site Plan and Sample Locations, Figure 2.

The site operated as a retail gasoline station and convenience store until closure in 2001. The site contains two buildings and three historical fuel dispenser islands formerly under a central canopy. Buildings at the site include the larger former convenience store in the southwest corner of the site and a smaller kiosk near the center of the site. The site is generally paved, except where four former underground storage tanks (USTs) were removed from the north central portion of the site.

In 1982, a release of approximately 12,000 to 22,000 gallons of leaded and unleaded gasoline from delivery lines occurred between the tanks and dispensers (Wagner et al., 1991). The release reportedly contaminated drinking water wells to the east and residential units in the area were eventually connected to a public water supply source.

Remediation activities included installation of 34 groundwater monitoring wells and two recovery wells. These wells were installed both as part of the remediation activities and for a hydrogeological study performed in the area. It is unknown how many of these wells remain today and if decommissioning reports are available for the wells. These wells have not been located as part of previous assessments. Removal records indicate that approximately 40 gallons of free product were recovered between 1982 and 1983. Recovery efforts were ceased in 1983 because of the cost of spill response efforts and low product recovery volume. Groundwater monitoring conducted in 1989 indicated concentrations of benzene and xylenes were greater than Model Toxics Control Act (MTCA) Method A cleanup levels in groundwater samples collected from wells directly east of the site (Wagner et al., 1991).

In 2005, four USTs were decommissioned at the site and the subsurface fuel lines were drained and capped with quick setting cement. The tanks removed from the site included:

- 20,000-gallon steel unleaded gasoline tank
- 10,000-gallon steel unleaded gasoline tank

- 8,000-gallon steel unleaded gasoline tank
- 6,000-gallon diesel tank

Upon removal, the tanks were examined by Tetra Tech FW, Inc., Tri-Valley Construction and Ecology. The tanks had minor surface rust and were reported to be in good condition with no visual evidence of leaks or holes. However, some visual evidence of staining near the fill pipe and turbine unit, and in the surrounding soil was observed near the 20,000-gallon UST (Tetra Tech, 2005). Evidence of fill piping or turbine unit spillage was not observed on the other three tanks.

Soil samples collected from the tank removal excavation in 2005 indicated the presence of gasoline contamination at depths of 8 and 13 feet in 2 of the 10 samples collected (McCreedy, 2005). Detected gasoline in samples reportedly was weathered, as indicated by the absence of benzene. Fuel dispensers and product delivery lines were not assessed as part of the 2005 work.

In 2014, GeoEngineers, Inc. (GeoEngineers) conducted additional assessment activities in order to confirm the presence and extents of contamination identified during the 2005 UST removal (GeoEngineers, 2014c). The additional assessment activities included advancing eight direct-push borings, collecting groundwater samples from temporary wells installed in each direct-push boring, installing five groundwater monitoring wells and collecting the September 2014 groundwater sample from each of the new wells. Exploration locations and cleanup level exceedances are shown in Figure 2.

The results of the soil investigation indicated petroleum contamination exceeding MTCA Method A cleanup levels near the former tank pit and fuel dispenser islands. Analytical and field screening results of soil samples from borings N1DP-5, N1MW-3 and N1MW-5 generally indicated petroleum contamination had not migrated to the north or south of the property. Investigation results can be summarized by the following:

- Gasoline-range petroleum hydrocarbons (GRPH), diesel-range petroleum hydrocarbons (DRPH), benzene, toluene, ethylbenzene and xylenes (BTEX) and naphthalenes were detected at concentrations exceeding MTCA Method A cleanup levels in soil samples from N1DP-8.
- GRPH, benzene, ethylbenzene, xylenes and naphthalenes were detected at concentrations exceeding MTCA Method A cleanup levels in soil samples from N1DP-1 and N1DP-3.
- GRPH were detected at concentrations exceeding the MTCA Method A cleanup level in soil samples from N1DP-2 and N1DP-4.

Laboratory analytical results indicated contaminants of concern did not exceed MTCA Method A cleanup levels in groundwater samples collected from the five groundwater monitoring wells (N1MW-1 through N1MW-5). Results of hydrocarbon identification (HCID) analyses indicated the presence of GRPH, DRPH or oil-range petroleum hydrocarbon (ORPH) in temporary wells completed in N1DP-1 through N1DP-5. Sampling methods from temporary wells and analytical methods using HCID analysis are not as accurate as other methods and therefore the results should be considered as screening tools. Groundwater samples collected from the direct-push borings were generally turbid and analytical results might not be representative of actual groundwater conditions.

3.0 SCOPE OF SERVICES

GeoEngineers prepared a Work Plan, dated April 15, 2014 (GeoEngineers, 2014a) and supplemental memorandum (GeoEngineers, 2014b) to guide the groundwater monitoring activities described herein. The scope of services performed by GeoEngineers during the quarterly groundwater monitoring event conducted on December 11, 2014 included:

- Measuring well headspace vapors and depth to groundwater in each of the five monitoring wells (N1MW-1 through N1MW-5).
- Measuring water quality parameters including pH, temperature, specific conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP) and ferrous iron.
- Collecting primary groundwater samples from each well and a duplicate sample from N1MW-1 using low-flow/low-stress sampling techniques.
- Submitting groundwater samples to TestAmerica Laboratories, Inc. (TestAmerica) for chemical analysis of:
 - GRPH (Northwest Method NWTPH-Gx);
 - DRPH (Northwest Method NWTPH-Dx, with and without silica gel cleanup);
 - Volatile organic compounds (VOCs) (Environmental Protection Agency [EPA] Method 8260C);
 - 1,2-dibromoethane (EDB) (EPA Method 8011C);
 - Total organic carbon (TOC) (Method SM5310C);
 - Lead (EPA Method 200.7); and
 - Naphthalenes (EPA Method 8260C).
- Comparing laboratory analytical results with applicable project cleanup criteria.
- Calculating groundwater elevation within site monitoring wells.
- Estimating groundwater flow direction and the range in hydraulic gradient across the site.

Samples were also analyzed for two natural attenuation parameters: nitrate and sulfate (SO₄) by EPA Method 300.0. Soluble ferrous iron (Fe⁺²), which has a 15-minute hold time, was analyzed in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method.

4.0 FIELD ACTIVITIES

4.1. Monitoring Well Headspace Vapor Monitoring

Monitoring well headspace vapors were measured on December 11, 2014 using a photoionization detector (PID). Headspace measurements were collected by inserting the PID probe into the well casing immediately after removing the well cap and recording the maximum observed concentration. Headspace vapors were measured at 1.5 parts per million (ppm) in N1MW-1 and less than 1.0 ppm in monitoring wells N1MW-2 though N1MW-5, as shown in Summary of Groundwater Field Parameters, Table 1.

4.2. Groundwater Elevation Monitoring

Static depth to groundwater was measured in monitoring wells N1MW-1 through N1MW-5 on December 11, 2014 using an electronic water level indicator. Depth to groundwater ranged from 10.91 feet (N1MW-4) to 13.65 feet (N1MW-1) below the top of well casing, as shown in Summary of Groundwater Level Measurement, Table 2. Groundwater elevations ranged from about 1,070.80 feet in N1MW-2 to 1,071.22 feet in N1MW-4. In monitoring wells N1MW-1 through N1MW-5, groundwater elevations increased an average of about 0.2 feet relative to the previous monitoring event conducted during September 2014.

Based on groundwater elevations measured on December 11, 2014, groundwater flow in the shallow unconfined aquifer beneath the property generally was toward the east, as shown in Groundwater Elevation and Interpreted Flow Direction, December 11, 2014, Figure 3. The estimated hydraulic groundwater gradient of the shallow aquifer was about 0.003 feet per foot (about 16 feet per mile). Groundwater elevation contours were interpreted from depth to water measurements, surveyed elevations of well casings and Surfer Version 1.2.

4.3. Groundwater Sampling

Monitoring wells N1MW-1 through N1MW-5 were purged and sampled in general conformance with standard low-flow sampling methodology on December 11, 2014. A duplicate sample was collected from N1MW-1. A peristaltic pump and dedicated well tubing was used to purge and sample each well. Groundwater quality parameters were measured at approximate 3-minute intervals during well purging. Groundwater samples were collected in conformance with the stabilization and/or maximum purge time criteria presented in Appendix A. Groundwater field parameters recorded at the conclusion of well purging are provided in Table 1.

Purge water generated during groundwater sampling was drummed, labeled and stored on the site pending profiling and disposal.

5.0 CHEMICAL ANALYTICAL RESULTS

5.1. Groundwater Chemical Analytical Results

Analytical results for samples collected on December 11, 2014 are tabulated and compared to previous results and MTCA Method A cleanup levels in Summary of Chemical Analytical Results – Groundwater, Table 3. TestAmerica's laboratory report is provided in Appendix B.

The following is a summary of the December 11, 2014 analytical data:

- GRPH and DRPH were detected at concentrations less than the MTCA Method A cleanup levels in the sample from N1MW-2. GRPH and DRPH were not detected in samples collected from monitoring wells N1MW-1, N1MW-3, N1MW-4 or N1MW-5.
- Isopropylbenzene was detected at a concentration greater than its reporting limit in the sample from N1MW-2. This analyte does not have an established MTCA Method A or B cleanup level.

BTEX, EDB, 1,2-dichloroethane (EDC), methyl tert-butyl ether (MTBE), naphthalene, lead, 2-butanone, n-propylbenzene and sec-butylbenzene were either not detected or were detected at concentrations less than their respective cleanup levels in groundwater samples collected from site wells.

N1MW-2 is located downgradient of observed soil contamination on site and as such appears to be on the leading edge of the groundwater contamination plume. Though N1MW-1 is located closer to the observed soil contamination, only GRPH was detected at a concentration greater than cleanup level in the boring closest to N1MW-1 (N1DP-2) and other soil contamination observed is generally located cross-gradient to N1MW-1.

5.2. Natural Attenuation Parameters

In addition to the contaminants of concern, groundwater samples were analyzed for natural attenuation parameters and field parameters. Results of laboratory-analyzed natural attenuation parameters are provided in Table 3. Field measurement results are provided in Table 1. Reported field parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling. Low DO and nitrate concentrations observed in December 2014 suggest possible biodegradation of petroleum contamination near N1MW-2.

Dissolved oxygen was measured at 0.14 milligrams per liter (mg/L) in monitoring well N1MW-2, and about 1 mg/L in monitoring wells N1MW-1 and N1MW-5, suggesting that anaerobic conditions are present in shallow groundwater beneath the site near these wells and that electron acceptors other than oxygen will be relied on to metabolize contaminants during biodegradation reactions. In general, observed natural attenuation parameters suggest that natural attenuation processes (and associated loss of contaminant mass) currently are ongoing near N1MW-1, N1MW-2 and N1MW-5. This conclusion is based on the following observed conditions in monitoring wells N1MW-1, N1MW-2, and N1MW-5 relative to up and cross-gradient monitoring wells N1MW-3.

- Lower field-measured ORP and DO.
- A slight decrease in nitrate concentrations, which can act as an electron acceptor compound in natural attenuation processes.
- An increase in the ferrous iron concentrations in N1MW-1 and N1MW-5, which can be an indicator of natural attenuation processes.

5.3. QA/QC Summary

GeoEngineers reviewed the laboratory internal quality assurance/quality control (QA/QC) in the context of project data quality goals. Results of our review, as well as our evaluation of data suitability, are provided in Appendix B. In summary, it is our opinion that the quality of the analytical data generally is acceptable for the intended use. However, the following items were noted:

For Sample MW-2-121114 (collected from N1MW-2), the laboratory flagged the diesel-range hydrocarbons result with "Q5", indicating that the diesel-range hydrocarbons result was being influenced by the relative concentration of gasoline-range hydrocarbons in the sample. For this reason, the positive result for diesel-range hydrocarbons was qualified as estimated (J) in this sample, in order to signify a potential high bias.

6.0 CONCLUSIONS

Fourth quarter 2014 groundwater monitoring activities took place at the North 1st Street site on December 11, 2014. Depth to groundwater ranged from 10.91 feet (N1MW-4) to 13.65 feet (N1MW-1) below the top of well casing. Groundwater elevations ranged from about 1,070.80 feet in N1MW-2 to 1,071.22 feet in N1MW-4; elevations increased an average of approximately 0.2 feet, as measured in the five site wells, relative to the previous monitoring event. Groundwater elevations at the site indicated groundwater flow in the shallow unconfined aquifer beneath the property generally was toward the east.

Groundwater samples collected during the December 2014 groundwater monitoring event did not contain contaminants of concern exceeding MTCA Method A cleanup levels. GRPH and DRPH were detected in N1MW-2 at concentrations less than the MTCA Method A cleanup levels and less than the results from the September 2014 sampling event. The laboratory indicated that DRPH concentrations reported for the sample from N1MW-2 were likely due to overlap from a gasoline-range product. Natural attenuation parameters indicate possible biodegradation near N1MW-1, N1MW-2, and N1MW-5. These locations might be near the fringe of the documented groundwater plume from previous studies. Samples analyzed from the remaining monitoring wells were generally less than laboratory reporting limits for suspected petroleum-based contaminants.

7.0 LIMITATIONS

We have prepared this report for the exclusive use of Ecology and their authorized agents.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to "Report Limitations and Guidelines for Use," Appendix C, for additional information pertaining to use of this report.

8.0 REFERENCES

- GeoEngineers, Inc., 2014a. "Sampling and Analysis Plan Soil and Groundwater Assessment." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, April 15, 2014.
- GeoEngineers, Inc., 2014b. "Tiger Oil Work Plan Amendment Monitoring Wells." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, July 21, 2014.
- GeoEngineers, Inc., 2014c. "Phase II Site Assessment Report." Tiger Oil North 1st, Yakima, Washington. GEI File No. 0504-101-00, February 11, 2015.

- McCreedy, Re: Tiger Oil Corporation (Tiger). 2005. 1808 North First Street (North First) and 1606 East Nob Hill Blvd. (East Nob), Yakima, Washington. Letter to Alex Smith, Assistant Attorney General, Ecology Division and Thomas L. Mackie, Hydrogeologist Site Manager, Toxics Cleanup Program, Department of Ecology. April 9, 2005.
- Puls, R. W. and M. J. Barcelona. 1996. Low-flow (Minimal Drawdown) Ground-water Sampling Procedures: EPA Ground Water Issue, April 1996, p.1-9.
- Tetra Tech, 2005, "UST Decommissioning and Site Assessment at Tiger Oil Corporation Facility, 1808 First Avenue, Yakima, Washington," March 17, 2005.
- U.S. Environmental Protection Agency. 1996. Region 1, "Low Stress (Low-Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells", EPA SOP No. GW 0001, Revision No. 2. July 30, 1996.
- U.S. Environmental Protection Agency. 2008. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency. 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency. 2010. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.
- Wagner, Richard J., Ebbert, J.C. 1991. "Changes Between 1984 and 1989 in the Concentration and Aerial Extent of Ground-Water Contamination from a Gasoline and Diesel Fuel Leak at a Site in Yakima, Washington," United States Geological Survey (USGS), Preliminary Draft April 10, 1991.

Table 1

Summary of Groundwater Field Parameters¹

Tiger Oil North 1st Street

Yakima, Washington

				Specific	Dissolved				Soluble	Monitoring Well
Well	Date		Temperature	Conductivity	Oxygen	ORP - Field ²	ORP - Normalized ³	Turbidity	Ferrous Iron	Headspace ⁴
Number	Collected	рН	(°C)	(mS/cm)	(mg/L)	(mV)	(mV)	(NTU)	(mg/L)	(ppm)
N1MW-1	09/18/14	6.57	17.03	0.25	2.46	54	256	16.31	1.25	1.5
	12/11/14	6.59	16.99	0.23	1.04	13	215	1.15	1.0	1.5
N1MW-2	09/18/14	6.69	17.46	0.27	0.05	-143	59	1.03	0	0.0
	12/11/14	6.49	16.50	0.25	0.14	-90	112	4.13	0	0.0
N1MW-3	09/18/14	6.75	16.25	0.26	5.69	-148	55	0.07	0	0.3
	12/11/14	6.65	16.32	0.24	6.32	142	345	0.86	0	0.3
N1MW-4	09/18/14	6.68	16.77	0.24	5.82	90	292	4.48	0	0.1
IN 11VI VV-4	12/11/14	6.65	15.83	0.21	6.77	135	338	0.59	0	0.1
N1MW-5	09/18/14	6.49	18.25	0.25	0.98	-25	176	0.12	1.5	0.1
C-WINTNI	12/11/14	6.53	17.01	0.23	0.90	-24	178	2.35	2.0	0.1

Notes:

¹Reported water quality parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling.

 $^2\mbox{Field}$ ORP values are relative to the reference electrode associated with the multi-parameter meter.

³Normalized ORP values have been normalized, using algorithms provided by the instrument manufacturer, to the standard hydrogen electrode (SHE).

⁴Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.

ORP = Oxidation reduction potential; °C = degrees Celsius; mS/cm = millisiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; NTU = nephelometric turbidity units

ppm = parts per million

Table 2Summary of Groundwater Level MeasurmentsTiger Oil North 1st StreetYakima, Washington

Well Number	Grid Northing ¹ (feet)	Grid Easting ¹ (feet)	Top of Casing Elevation ² (feet)	Screen Elevation ² (feet)	Date Measured	Depth to Groundwater ³ (feet)	Groundwater Elevation ² (feet)	Change in Groundwater Elevation ⁴ (feet)				
N1MW-1	470569.0	1637341.4	1,084.85	1075.4 to 1065.4	09/18/14	13.78	1,071.07	NA				
	410000.0	1001041.4	1,004.00	1010.4 (0 1000.4	12/11/14	13.65	1,071.20	0.13				
N1MW-2	N1MW-2 470616.9 163	1637480.0	1,083.81	1073.8 to 1063.8	09/18/14	13.31	1,070.50	NA				
		1007400.0		1010.0 (0 1000.0	12/11/14	13.01	1,070.80	0.30				
N1MW-3	470475.5	1637358.7	1,084.61	1074.6 to 1064.6	09/18/14	13.75	1,070.86	NA				
N±MW-5	470473.3	1037330.7	1,084.81	1,004.01	1,004.01	1,004.01	1,00 1.01	101 110 13 100 110	12/11/14	13.56	1,071.05	0.19
N1MW-4	470595.3	1637199.9	1,082.13	1075.1 to 1065.1	09/18/14	11.10	1,071.03	NA				
	410000.0	1037199.9	1,002.13	1075.1 (0 1065.1	12/11/14	10.91	1,071.22	0.19				
N1MW-5	470681.7	1637363.0	1,083.43	1074.4 to 1064.4	09/18/14	12.48	1,070.95	NA				
	470681.7	1037303.0		1074.4 (0 1064.4	12/11/14	12.27	1,071.16	0.21				

Notes:

¹Grid northing and easting are referenced to NAD83, Washington State Plane Coordinate System, South Zone.

 $^{2}\mbox{Elevations}$ are referenced to the North American Vertical Datum of 1988 (NAVD88).

³Depth to water measurements obtained from the north side of the top of PVC well casing.

⁴Represents change in groundwater elevation from previous monitoring event, as measured in monitoring wells.

NA = Not Applicable

Table 3

Summary of Chemical Analytical Results - Groundwater¹

Tiger Oil North 1st Street

Yakima, Washington

Well ID	Regulatory Levels ²	N1M	/IW-1	Duplicate (N1MW-1)	N1N	IW-2	N1N	IW-3	N1N	IW-4	N1N	IW-5
Date Sampled		09/18/14	12/11/14	12/11/14	09/18/14	12/11/14	09/18/14	12/11/14	09/18/14	12/11/14	09/18/14	12/11/14
Method NWTPH-Gx - Gasoline Range (µg/L)							-					
Gasoline-range hydrocarbons	800/1,000 ³	256	<100	<100	506	372	<100	<100	<100	<100	<100	<100
Method NWTPH-Dx - Diesel Range (µg/L)				•			•				•	
Diesel-range hydrocarbons	500	<0.234	<233	<232	459	269 J	<231	<234	<232	<232	238	<234
Diesel-range hydrocarbons w/silica gel	500	NT	NT	NT	<229	247 J	NT	NT	NT	NT	<230	NT
Heavy Oil-Range Hydrocarbons	500	<0.389	<388	<386	<382	<383	<386	<389	<386	<387	<384	<391
Heavy Oil-Range Hydrocarbons w/silica gel	500	NT	NT	NT	<382	<383	NT	NT	NT	NT	<384	NT
Method EPA 8011 - EDB (µg/L)											•	
1,2-dibromoethane (EDB)	0.01	NT	<0.0100	<0.0100	NT	<0.0100	NT	<0.0100	NT	<0.0100	NT	<0.0100
Method EPA 8260C - VOCs (µg/L) ⁴											•	
1,2-Dichloroethane (EDC)	5	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Benzene	5	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Ethylbenzene	700	<1.00	<1.00	<1.00	5.17	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Methyl t-butyl ether (MTBE)	20	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Naphthalene	160	<2.00	<2.00	<2.00	3.15	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Toluene	1,000	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Xylene, m-,p-		<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Xylene, o-	1,000 ⁵	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Xlylene, Total		<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
2-Butanone	4,800 ⁶	<10.0	<10.0	<10.0	<10.0	16.2	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Isopropylbenzene	NE	<1.00	<1.00	<1.00	5.69	4.59	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
N-Propylbenzene	800 ⁶	<1.00	<1.00	<1.00	15.2	2.56	<1.00	<1.00	<1.00	<1.00	1.22	1.78
sec-Butylbenzene	800 ⁶	<1.00	<1.00	<1.00	2.80	3.24	<1.00	<1.00	<1.00	<1.00	<1.00	1.21
Metals Method EPA 200.7 - Total Lead (mg/L)							-					
Lead	0.015	NT	<0.0140	<0.0140	NT	<0.0140	NT	<0.0140	NT	<0.0140	NT	<0.0140
Conventionals (mg/L)												
Nitrate-Nitrogen	10 ⁷	0.840	0.610	0.550	<0.200	<0.200	1.24	0.740	0.950	0.620	0.490	0.350
Sulfate	250 ⁸	9.69	7.90	7.81	5.25	5.50	10.1	8.25	8.49	6.92	9.68	9.25
Total Organic Carbon	NE	1.55	1.05	1.05	1.66	1.41	1.22	<1.00	1.19	<1.00	1.36	1.09

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

 $^3\text{Cleanup}$ level for GRPH is 800 $\mu\text{g/L}$ when benzene is present, 1,000 $\mu\text{g/L}$ when benzene is not present.

⁴Only VOCs detected at concentrations greater than their reporting limits are listed in the table. For a complete list of VOCs analyzed see the laboratory analytical report, Appendix B.

⁵Cleanup level for total xylenes.

⁶MTCA Method B cleanup level.

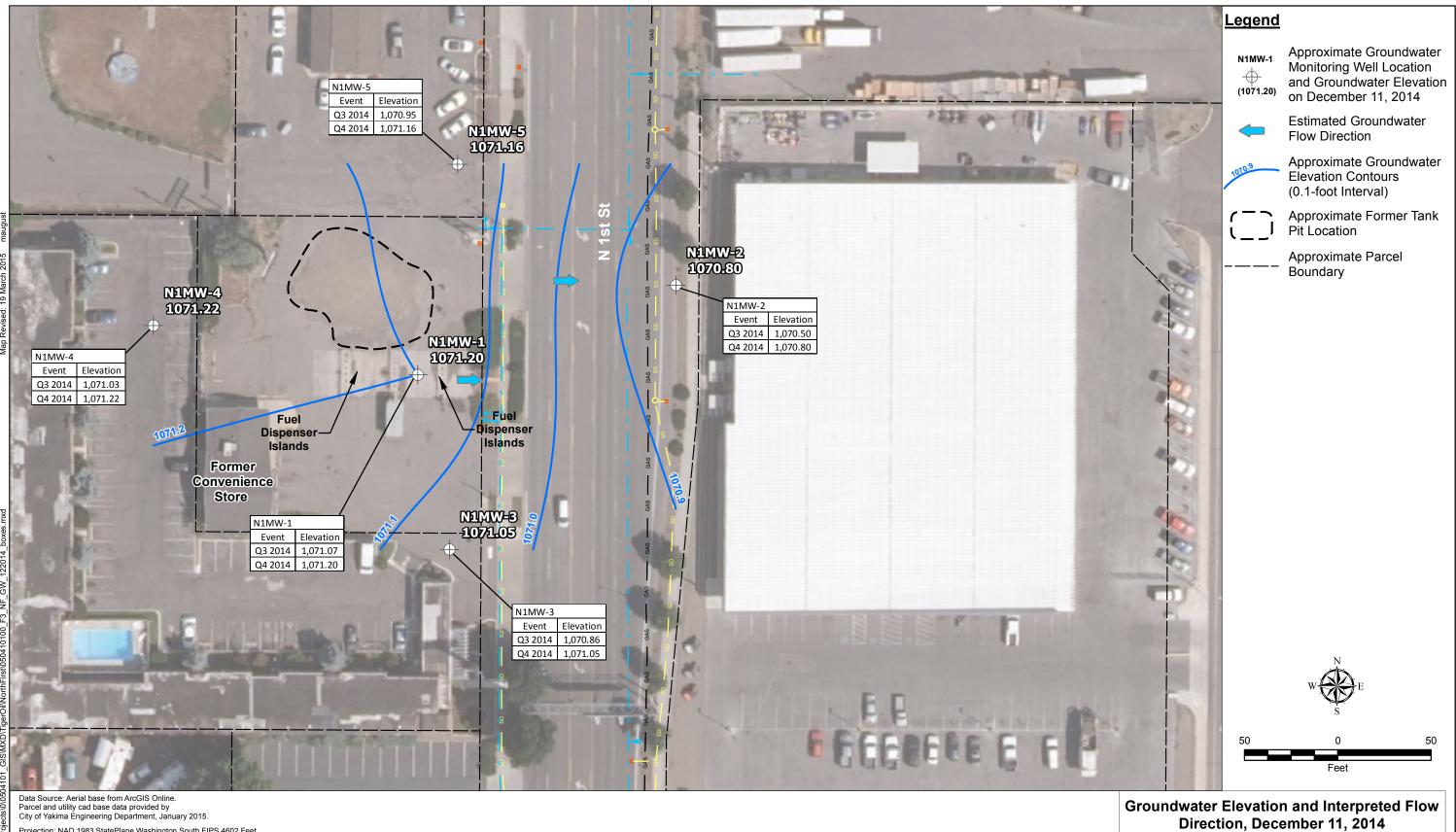
⁷Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

⁸Secondary maximum contaminant level recommeded by the Environmental Protection Agency.

J flag indicates results are qualified as estimated. See data validation report for additional information.

Bold indicates analyte concentration exceeds laboratory reporting limit.

 μ g/L = micrograms per liter; NT = not tested; NE = not established



- 2. This drawing is for information purposes. It is intended
- to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc.
- and will serve as the official record of this communication.

GEOENGINEERS

Figure 2

- Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet

Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document
- GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc.
- and will serve as the official record of this communication. 3. Groundwater elevations are referred to the North American
- Vertical Datum of 1988 (NAVD 88). 4. Groundwater elevations contours interpreted by Surfer Version 12.

Tiger Oil North 1st Yakima, Washington

GEOENGINEERS

Figure 3

APPENDIX A Field Procedures

APPENDIX A FIELD PROCEDURES

General

Groundwater conditions at the Tiger Oil North 1st site were monitored on December 11, 2014 by measuring depth to groundwater and sampling groundwater in monitoring wells N1MW-1 through N1MW-5, which are situated at the approximate locations shown on Figure 3. Field methods generally were performed in compliance with the project Work Plan dated April 15, 2014 (GeoEngineers, 2014a).

Groundwater Elevations

Depths to groundwater were measured relative to the north side of the monitoring well casing rim using an electric water level indicator. The probe of the water level indicator was decontaminated between wells using a detergent wash, followed by two distilled water rinses.

Low-Flow Sampling Procedures

Groundwater sampling was performed consistent with the EPA's low-flow groundwater sampling procedure, as described by EPA (1996) and Puls and Barcelona (1996). Monitoring well purging and sampling activities were accomplished using a Cole-Parmer Masterflex or GeoTech Environmental peristaltic pump and dedicated tubing. During purging activities, water quality parameters, including pH, conductivity, temperature, ORP and DO, were measured using a Troll 9500 multi-parameter meter equipped with a flow-through cell. Water quality measurements were recorded approximately every 3 minutes. The meter calibration was verified at the beginning of each work day consistent with manufacturer recommendations prior to purging and sampling activities.

Groundwater samples were collected after (1) water quality parameters had stabilized; or (2) a maximum purge time of 30 minutes was achieved. During purging and sampling, purge rate was not allowed to exceed 500 milliliters per minute. Water quality parameter stabilization criteria include the following:

- Turbidity: ±10 percent for values greater than 5 nephelometric turbidity units (NTU);
- D0: ±10 percent for values greater than 0.5 mg/L;
- Conductivity: ±3 percent;
- Temperature: ±3 percent; and
- ORP: ±10 millivolts (mV).

After groundwater quality stabilization criteria or maximum purge time were reached, the pump's discharge tubing was disconnected from the flow-through cell and groundwater samples were collected for analysis. Each sample was pumped directly into sample containers supplied by the laboratory. Groundwater samples collected for chemical analysis were kept cool during on-site storage and transport to the laboratory. Chain-of-custody procedures were observed during transport of the groundwater samples.

APPENDIX B

Chemical Analytical Laboratory Report and Data Validation

APPENDIX B CHEMICAL ANALYTICAL LABORATORY REPORT AND DATA VALIDATION

General

This report documents the results of a United States EPA-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of groundwater samples collected as part of the December 2014 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Tiger Oil, North 1st Street Site located at 1808 North 1st Street in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The QA/QC procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with Quality Assurance Project Plan (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014a), the data validation included review of the following QC elements:

- Data package completeness
- Chain-of-custody documentation
- Holding times and sample preservation
- Surrogate recoveries
- Method blanks
- Matrix spikes (MS)/matrix spike duplicates (MSD)
- Laboratory control samples (LCS)/laboratory control sample duplicates (LCSD)
- Laboratory and field duplicates
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table B-1.

TABLE B-1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDGs	Samples Validated
SXL0080	MW-1-121114, MW-Dup-121114, MW-2-121114, MW-3-121114, MW-4-121114, MW-5-121114

CHEMICAL ANALYSIS PERFORMED

TestAmerica, located in Spokane, Washington, performed laboratory analyses on the groundwater samples using the following methods:

- Petroleum hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Petroleum hydrocarbons with Silica Gel (SG) Cleanup (NWTPH-Dx/SG) by Method NWTPH-Dx/SG;
- Gas-range hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- VOCs by Method SW8260C;
- EDB by Method SW8011;
- Total metals by Method EPA200.7;
- Anions by Method EPA300.0; and
- TOC by Method SM5310C

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory appears to have followed adequate corrective action processes; however, the laboratory analytical report does not contain a case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical report. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added

to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in any of the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a MS analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. MSD analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if any element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A LCS is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS/LCSD sample analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits, with the following exception:

SDG SXL0080: (VOCs) The percent recovery for dichlorodifluoromethane was greater than the control limits in the LCS extracted on December 16, 2014. There were no positive results for this target analyte in the associated field samples; therefore, no action was required for this outlier.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit 20 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 20 percent.

SDG SXL0080: One field duplicate sample pair, MW-1-121114 and MW-Dup-121114, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair.

Miscellaneous

SDG SXL0080: (NWTPH-Dx and NWTPH-Dx/SG) For Sample MW-2-121114, the laboratory flagged the diesel-range hydrocarbons result with "Q5", indicating that the diesel-range hydrocarbons result was being influenced by the relative concentration of gasoline-range hydrocarbons in the sample. For this reason, the positive result for diesel-range hydrocarbons was qualified as estimated (J) in this sample, in order to signify a potential high bias.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD percent recovery values, with the exception noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values.

All data are acceptable for the intended use, with the following qualifications listed below in Table B-2.

Sample ID	Analyte	Qualifier	Result
MW-2-121114	Diesel-range hydrocarbons	J	Other

TABLE B-2: SUMMARY OF QUALIFIED SAMPLES

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SXL0080

Client Project/Site: 0504-101-00 Client Project Description: Tiger Oil- North 1st

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: JR Sugalski

tandre trington

Authorized for release by: 12/31/2014 9:25:11 AM Randee Arrington, Project Manager (509)924-9200

Randee.Arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents 2	2
Sample Summary	3
Definitions	4
Client Sample Results	
QC Sample Results	19
Chronicle	27
Certification Summary	
Method Summary	32
Chain of Custody	33

Sample Summary

Matrix

Water

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

Client Sample ID

MW-1-121114

MW-2-121114

MW-3-121114

MW-4-121114

MW-5-121114

MW-1-121114

MW-2-121114

MW-3-121114

MW-4-121114

MW-5-121114

MW-Dup-121114

MW-Dup-121114

Lab Sample ID

SXL0080-01

SXL0080-02

SXL0080-03

SXL0080-04

SXL0080-05

SXL0080-06

SXL0091-01

SXL0091-02

SXL0091-03

SXL0091-04

SXL0091-05

SXL0091-06

TestAmerica Job ID: SXL0080

Received

12/12/14 09:10

12/12/14 09:10

12/12/14 09:10

12/12/14 09:10

12/12/14 09:10

12/12/14 09:10

12/12/14 14:50

12/12/14 14:50

12/12/14 14:50

12/12/14 14:50

12/12/14 14:50

12/12/14 14:50

Collected

12/11/14 14:06

12/11/14 11:41

12/11/14 12:53

12/11/14 12:18

12/11/14 13:27

12/11/14 12:00

12/11/14 14:06

12/11/14 11:41

12/11/14 12:53

12/11/14 12:18

12/11/14 13:27

12/11/14 12:00

9

Qualifiers

GCMS Volati	les	Λ
Qualifier	Qualifier Description	-+
L	Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.	5
Fuels		
Qualifier	Qualifier Description	
Q5	Results in the diesel organics range are primarily due to overlap from a gasoline range product.	
Glossary		. 8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	9
%R	Percent Recovery	

%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Sulfate

Client Sample ID: MW-1-121114

TestAmerica Job ID: SXL0080

Lab Sample ID: SXL0080-01

	+					Lab Sam		
Date Collected: 12/11/14 14:06							Matrix	c: Water
Date Received: 12/12/14 09:10								
— Method: EPA 300.0 - Anions by EP	A Method 300 0							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.610	0.200		mg/L		12/12/14 09:27	12/12/14 09:51	1.00
Sulfate	7.90	0.500		mg/L		12/12/14 09:27	12/12/14 09:51	1.00
				-				
Client Sample ID: MW-2-12111	4					Lab Sam	ple ID: SXL0	080-02
Date Collected: 12/11/14 11:41							Matrix	c: Wate
Date Received: 12/12/14 09:10								
Method: EPA 300.0 - Anions by EP	A Method 300.0							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	ND	0.200		mg/L		12/12/14 09:27	12/12/14 10:05	1.00
Sulfate	5.50	0.500		mg/L		12/12/14 09:27	12/12/14 10:05	1.00
L								
Client Sample ID: MW-3-12111	4					Lab Sam	ple ID: SXL0	080-03
Date Collected: 12/11/14 12:53							Matrix	c: Wate
Date Received: 12/12/14 09:10								
Method: EPA 300.0 - Anions by EPA Analyte	Result Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.740	0.200		mg/L		12/12/14 09:27	12/12/14 10:19	1.00
Sulfate	8.25	0.500		mg/L		12/12/14 09:27	12/12/14 10:19	1.00
		0.000						
Client Sample ID: MW-4-12111	4					Lab Sam	ple ID: SXL0	080-04
Date Collected: 12/11/14 12:18							-	c: Water
Date Received: 12/12/14 09:10								
Method: EPA 300.0 - Anions by EP					_			
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.620	0.200		mg/L		12/12/14 09:27	12/12/14 10:33	1.00
Sulfate	6.92	0.500		mg/L		12/12/14 09:27	12/12/14 10:33	1.00
Client Sample ID: MW-5-12111	4					Lah Sam	ple ID: SXL0	080-05
Date Collected: 12/11/14 13:27							-	c: Water
Date Received: 12/12/14 09:10							matri	. mater
Method: EPA 300.0 - Anions by EP								
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.350	0.200		mg/L		12/12/14 09:27	12/12/14 10:48	1.00
Sulfate	9.25	0.500		mg/L		12/12/14 09:27	12/12/14 10:48	1.00
Client Sample ID: MW-Dup-121	1114					Lab Sam	ple ID: SXL0	080-06
Date Collected: 12/11/14 12:00								c: Water
Date Received: 12/12/14 09:10								
Method: EPA 300.0 - Anions by EP	A Method 300 0							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.550	0.200		mg/L		12/12/14 09:27	12/12/14 11:02	1.00
		0.500		<u> </u>		40/40/44 00 07	10/10/11 11 00	

12/12/14 09:27 12/12/14 11:02

0.500

mg/L

7.81

1.00

Client Sample ID: MW-1-121114 Date Collected: 12/11/14 14:06 Date Received: 12/12/14 14:50

Lab Sample ID: SXL0091-01 Matrix: Water

5

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND L	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Chloromethane	ND	3.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
/inyl chloride	ND	0.200	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Bromomethane	ND	5.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Chloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Trichlorofluoromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
1,1-Dichloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Dichlorofluoromethane	ND	0.200	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Carbon disulfide	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Methylene chloride	ND	10.0	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Acetone	ND	25.0	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
rans-1,2-Dichloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Methyl tert-butyl ether	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
1,1,2-Trichlorotrifluoroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
1,1-Dichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
cis-1,2-Dichloroethene	ND	1.00	· · · · · · · · · · · · · · · · · · ·	12/16/14 08:55	12/16/14 12:25	1.(
	ND	1.00	ug/L	12/16/14 08:55		
2,2-Dichloropropane			ug/L		12/16/14 12:25	1.0
Bromochloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Chloroform	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
Carbon tetrachloride	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.0
,1,1-Trichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
Butanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 12:25	1.
lexane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
,1-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
Benzene	ND	0.200	ug/L	12/16/14 08:55	12/16/14 12:25	1.
,2-Dichloroethane (EDC)	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
richloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
Dibromomethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
,2-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
Bromodichloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
is-1,3-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
oluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
-Methyl-2-pentanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 12:25	1.
rans-1,3-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
etrachloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
,1,2-Trichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
Dibromochloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
,3-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
,2-Dibromoethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
- Hexanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 12:25	1.
thylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
Chlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
,1,1,2-Tetrachloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	 1.
n,p-Xylene	ND	2.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
-Xylene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
Styrene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
Bromoform	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.
sopropylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 12:25	1.

Client Sample ID: MW-1-121114 Date Collected: 12/11/14 14:06 Date Received: 12/12/14 14:50

Lab Sample ID: SXL0091-01 Matrix: Water

8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
Bromobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,3,5-Trimethylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
2-Chlorotoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,2,3-Trichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
4-Chlorotoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
tert-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
sec-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
p-Isopropyltoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
n-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
Hexachlorobutadiene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
Naphthalene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	103		71.2 - 143				12/16/14 08:55	12/16/14 12:25	1.00
1,2-dichloroethane-d4	109		70 - 140				12/16/14 08:55	12/16/14 12:25	1.00
Toluene-d8	95.3		74.1 - 135				12/16/14 08:55	12/16/14 12:25	1.00
4-bromofluorobenzene	101		68.7 - 141				12/16/14 08:55	12/16/14 12:25	1.00
Method: NWTPH-Gx - Gasoline	e Hydrocarbons I	by NWTPH	-Gx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		12/16/14 08:55	12/16/14 12:25	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	101		68.7 - 141				12/16/14 08:55	12/16/14 12:25	1.00
Method: EPA 8011 - EDB by E									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/L		12/15/14 08:27	12/15/14 19:31	1.00
Method: NWTPH-Dx - Semivol									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.233		mg/L		12/16/14 12:01	12/16/14 23:06	1.00
Heavy Oil Range Hydrocarbons	ND		0.388		mg/L		12/16/14 12:01	12/16/14 23:06	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91.4		50 - 150				12/16/14 12:01	12/16/14 23:06	1.00
n-Triacontane-d62	97.1		50 - 150				12/16/14 12:01	12/16/14 23:06	1.00
Method: EPA 200.7 - Total Met	· · · · · · · · · · · · · · · · · · ·								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Lead	ND	0.0140	mg/L		12/18/14 14:54	12/23/14 17:05	1.00			

TestAmerica Job ID: SXL0080

5

Client Sample ID: MW-1-121114 Date Collected: 12/11/14 14:06						Lab Sample ID: SXL0091-0 Matrix: Wate					
Date Received: 12/12/14 14:50											
_											
Method: SM 5310C - TOC	Desult	Qualifian		MDI	11		Description	A	D!!		
Analyte		Qualifier	RL 1.00	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Total Organic Carbon	1.05		1.00		mg/L		12/17/14 12:56	12/17/14 12:56	I		
Client Sample ID: MW-2-1211 Date Collected: 12/11/14 11:41	14						Lab Sam	ple ID: SXL0 Matrix	091-02 <: Water		
Date Received: 12/12/14 14:50											
Method: EPA 8260C - Volatile Org		-			11		Descented	A	D!!		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Dichlorodifluoromethane	ND	L	1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Chloromethane	ND		3.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Vinyl chloride	ND		0.200		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Bromomethane	ND		5.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Chloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Trichlorofluoromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,1-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Dichlorofluoromethane	ND		0.200		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Carbon disulfide	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Methylene chloride	ND		10.0		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Acetone	ND		25.0		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
trans-1,2-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Methyl tert-butyl ether	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,1-Dichloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
cis-1,2-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
2,2-Dichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Bromochloromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Chloroform	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Carbon tetrachloride	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,1,1-Trichloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
2-Butanone	16.2		10.0		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Hexane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,1-Dichloropropene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Benzene	ND		0.200		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,2-Dichloroethane (EDC)	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Trichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Dibromomethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,2-Dichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Bromodichloromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
cis-1,3-Dichloropropene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Toluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
4-Methyl-2-pentanone	ND		10.0		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
trans-1,3-Dichloropropene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Tetrachloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,1,2-Trichloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
Dibromochloromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,3-Dichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
1,2-Dibromoethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
2-Hexanone	ND		10.0				12/16/14 08:55	12/16/14 12:48	1.00		
Ethylbenzene	ND		1.00		ug/L ug/L		12/16/14 08:55	12/16/14 12:48	1.00		
	(IVI)										

Client Sample ID: MW-2-121114 Date Collected: 12/11/14 11:41 Date Received: 12/12/14 14:50

Lab Sample ID: SXL0091-02 Matrix: Water

5 4 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
m,p-Xylene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
o-Xylene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
Styrene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
Bromoform	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
Isopropylbenzene	4.59		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
n-Propylbenzene	2.56		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
Bromobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,3,5-Trimethylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
2-Chlorotoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,2,3-Trichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
4-Chlorotoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
tert-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
sec-Butylbenzene	3.24		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
p-Isopropyltoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
n-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
Hexachlorobutadiene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
I,2,4-Trichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
Naphthalene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane			71.2 - 143				12/16/14 08:55	12/16/14 12:48	1.0
1,2-dichloroethane-d4	109		70 - 140				12/16/14 08:55	12/16/14 12:48	1.0
Toluene-d8	91.3		74.1 - 135				12/16/14 08:55	12/16/14 12:48	1.0
1-bromofluorobenzene	101		68.7 - 141				12/16/14 08:55	12/16/14 12:48	1.0
Method: NWTPH-Gx - Gasoline	Hydrocarbons I	ov NWTPH	-Gx						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	372		100		ug/L		12/16/14 08:55	12/16/14 12:48	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-bromofluorobenzene	101		68.7 - 141				12/16/14 08:55	12/16/14 12:48	1.0
Method: EPA 8011 - EDB by EP	A Mothed 9044								
Analyte		Qualifier	RL	мпі	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND	acuanner	0.0100		5			12/15/14 18:34	

Method: NWTPH-Dx - Semivolatile F	Petroleum Products by NW	[PH-Dx w/S	Silica Gel Cleanup
A	Descult Occalificati	-	MDI II

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	0.247	Q5	0.230		mg/L		12/16/14 12:01	12/17/14 16:30	1.00
Heavy Oil Range Hydrocarbons	ND		0.383		mg/L		12/16/14 12:01	12/17/14 16:30	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98.1		50 - 150				12/16/14 12:01	12/17/14 16:30	1.00

Limits

50 - 150

RL

0.230

0.383

Limits

50 - 150

50 - 150

MDL Unit

mg/L

mg/L

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup (Continued)

%Recovery Qualifier

Result Qualifier

Qualifier

98.9

0.269 Q5

%Recovery

ND

92.3

100

Client Sample ID: MW-2-121114 Date Collected: 12/11/14 11:41

Date Received: 12/12/14 14:50

Diesel Range Hydrocarbons

Heavy Oil Range Hydrocarbons

Surrogate

Analyte

Surrogate

o-Terphenyl

n-Triacontane-d62

n-Triacontane-d62

Lab Sample ID: SXL0091-02 Matrix: Water

Analyzed

12/17/14 16:30

Analyzed

12/16/14 23:29

12/16/14 23:29

Analyzed

12/16/14 23:29

12/16/14 23:29

Prepared

12/16/14 12:01

Prepared

12/16/14 12:01

12/16/14 12:01

Prepared

12/16/14 12:01

12/16/14 12:01

D

Dil Fac

Dil Fac

1.00

1.00

1.00

1.00

Dil Fac

1.00

8
9

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0140		mg/L		12/18/14 14:54	12/23/14 17:07	1.00
Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.41		1.00		mg/L		12/17/14 12:56	12/17/14 12:56	1

Client Sample ID: MW-3-121114

Date Collected: 12/11/14 12:53

Lab Sample ID: SXL0091-03 Matrix: Water

Date Received: 12/12/14 14:50

Analyte	Result (Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND L	L 1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Chloromethane	ND	3	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Vinyl chloride	ND	0.2	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Bromomethane	ND	5	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Chloroethane	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Trichlorofluoromethane	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
1,1-Dichloroethene	ND	1	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Dichlorofluoromethane	ND	0.2	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Carbon disulfide	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Methylene chloride	ND	1	0.0	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Acetone	ND	2	5.0	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
trans-1,2-Dichloroethene	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Methyl tert-butyl ether	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
1,1,2-Trichlorotrifluoroethane	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
1,1-Dichloroethane	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
cis-1,2-Dichloroethene	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
2,2-Dichloropropane	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Bromochloromethane	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Chloroform	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Carbon tetrachloride	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
1,1,1-Trichloroethane	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
2-Butanone	ND	1).0	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Hexane	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
1,1-Dichloropropene	ND	1.	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Benzene	ND	0.2	00	ug/L		12/16/14 08:55	12/16/14 13:10	1.00

4-bromofluorobenzene

Client Sample ID: MW-3-121114 Date Collected: 12/11/14 12:53 Date Received: 12/12/14 14:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: SXL0091-03 Matrix: Water

8

Analyte	Result Q		MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichloroethane (EDC)	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Trichloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Dibromomethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,2-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Bromodichloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
cis-1,3-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Toluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
4-Methyl-2-pentanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
trans-1,3-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Tetrachloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,1,2-Trichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Dibromochloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,3-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,2-Dibromoethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
2-Hexanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Ethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Chlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
m,p-Xylene	ND	2.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
o-Xylene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Styrene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Bromoform	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Isopropylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
n-Propylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Bromobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,3,5-Trimethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
2-Chlorotoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,2,3-Trichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
4-Chlorotoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
tert-Butylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,2,4-Trimethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
sec-Butylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
p-lsopropyltoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,3-Dichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,4-Dichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
n-Butylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,2-Dichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,2-Dibromo-3-chloropropane	ND	5.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Hexachlorobutadiene	ND	2.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,2,4-Trichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Naphthalene	ND	2.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
1,2,3-Trichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:10	1.00
Surrogate	%Recovery Q	ualifier Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane		71.2 - 143		12/16/14 08:55	12/16/14 13:10	1.00
1,2-dichloroethane-d4	109	70 - 140		12/16/14 08:55	12/16/14 13:10	1.00
	98.3	74.1 - 135		12/16/14 08:55	12/16/14 13:10	

TestAmerica Spokane

12/16/14 13:10

12/16/14 08:55

68.7 - 141

98.3

Client Sample ID: MW-3-121114

Date Collected: 12/11/14 12:53 Date Received: 12/12/14 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		12/16/14 08:55	12/16/14 13:10	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	98.3		68.7 - 141				12/16/14 08:55	12/16/14 13:10	1.00
_ Method: EPA 8011 - EDB by EPA	A Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/L		12/15/14 08:27	12/15/14 18:48	1.00
_ Method: NWTPH-Dx - Semivolati	le Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.234		mg/L		12/16/14 12:01	12/16/14 23:53	1.00
Heavy Oil Range Hydrocarbons	ND		0.389		mg/L		12/16/14 12:01	12/16/14 23:53	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	87.0		50 - 150				12/16/14 12:01	12/16/14 23:53	1.00
n-Triacontane-d62	93.3		50 - 150				12/16/14 12:01	12/16/14 23:53	1.00
_ Method: EPA 200.7 - Total Metals	s by FPA 200 S	eries Meth	nods						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0140		mg/L		12/18/14 14:54	12/23/14 17:10	1.00
_ Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		1.00		mg/L		12/17/14 12:56	12/17/14 12:56	1

Client Sample ID: MW-4-121114

Date Received: 12/12/14 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	L	1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Chloromethane	ND		3.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Vinyl chloride	ND		0.200		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Bromomethane	ND		5.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Chloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Trichlorofluoromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
1,1-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Dichlorofluoromethane	ND		0.200		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Carbon disulfide	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Methylene chloride	ND		10.0		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Acetone	ND		25.0		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Methyl tert-butyl ether	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
1,1-Dichloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
2,2-Dichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Bromochloromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00
Chloroform	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:32	1.00

TestAmerica Spokane

Lab Sample ID: SXL0091-03

Lab Sample ID: SXL0091-04

Matrix: Water

TestAmerica Job ID: SXL0080

Matrix: Water

Date Collected: 12/11/14 12:18

1,2,3-Trichlorobenzene

Client Sample ID: MW-4-121114 Date Collected: 12/11/14 12:18 Date Received: 12/12/14 14:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

TestAmerica Job ID: SXL0080

Lab Sample ID: SXL0091-04 Matrix: Water

	5
	8
	0

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,1,1-Trichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
2-Butanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Hexane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,1-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Benzene	ND	0.200	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,2-Dichloroethane (EDC)	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Trichloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Dibromomethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,2-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Bromodichloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
cis-1,3-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Toluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
4-Methyl-2-pentanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
trans-1,3-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Tetrachloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,1,2-Trichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Dibromochloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,3-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,2-Dibromoethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
2-Hexanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Ethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Chlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
m,p-Xylene	ND	2.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
o-Xylene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Styrene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Bromoform	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Isopropylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
n-Propylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Bromobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,3,5-Trimethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
2-Chlorotoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,2,3-Trichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
4-Chlorotoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
tert-Butylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,2,4-Trimethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
sec-Butylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
p-Isopropyltoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,3-Dichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,4-Dichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
n-Butylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,2-Dichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,2-Dibromo-3-chloropropane	ND	5.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
Hexachlorobutadiene	ND	2.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00
1,2,4-Trichlorobenzene	ND	1.00		12/16/14 08:55	12/16/14 13:32	1.00
			ug/L			
Naphthalene	ND	2.00	ug/L	12/16/14 08:55	12/16/14 13:32	1.00

TestAmerica Spokane

12/16/14 13:32

12/16/14 08:55

1.00

ug/L

ND

trans-1,2-Dichloroethene

Methyl tert-butyl ether

Client Sample ID: MW-4-12	1114						Lab Sam	ple ID: SXL0	091-04	
ate Collected: 12/11/14 12:18							Matrix: Water			
ate Received: 12/12/14 14:50								Watin	. wate	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa	
Dibromofluoromethane		Quaimer	71.2 - 143				12/16/14 08:55	12/16/14 13:32	1.00	
1.2-dichloroethane-d4	113		70 - 140				12/16/14 08:55	12/16/14 13:32	1.00	
Toluene-d8	97.0		74.1 - 135				12/16/14 08:55	12/16/14 13:32	1.00	
4-bromofluorobenzene	97.0 101		68.7 - 141				12/16/14 08:55	12/16/14 13:32	1.00	
-biomonuorobenzene	101		00.7 - 141				12/10/14 00.00	12/10/14 13:32	1.0	
Method: NWTPH-Gx - Gasoline		-				_				
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fa	
Gasoline Range Hydrocarbons	ND		100		ug/L		12/16/14 08:55	12/16/14 13:32	1.0	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa	
1-bromofluorobenzene	101		68.7 - 141				12/16/14 08:55	12/16/14 13:32	1.0	
Method: EPA 8011 - EDB by El Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
,2-Dibromoethane			0.0100		ug/L		12/15/14 08:27	12/15/14 19:03	1.0	
			0.0100		ug/L		12,10,11,00.21	12,10,11,10.00		
lethod: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	y NWTPH-Dx							
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
Diesel Range Hydrocarbons	ND		0.232		mg/L		12/16/14 12:01	12/17/14 00:16	1.0	
leavy Oil Range Hydrocarbons	ND		0.387		mg/L		12/16/14 12:01	12/17/14 00:16	1.0	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa	
p-Terphenyl	91.2		50 - 150				12/16/14 12:01	12/17/14 00:16	1.0	
n-Triacontane-d62	98.0		50 - 150				12/16/14 12:01	12/17/14 00:16	1.0	
Method: EPA 200.7 - Total Meta Analyte		Qualifier	IODS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
Lead		Quanner	0.0140				12/18/14 14:54	12/23/14 17:13	1.0	
eau	ND		0.0140		mg/L		12/10/14 14.54	12/23/14 17:13	1.0	
Method: SM 5310C - TOC										
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa	
otal Organic Carbon	ND		1.00		mg/L		12/17/14 12:56	12/17/14 12:56		
lient Sample ID: MW-5-12	1114						Lab Sam	ple ID: SXL0	091-0	
ate Collected: 12/11/14 13:27									k: Wate	
ate Received: 12/12/14 14:50								Wath	. Wate	
Method: EPA 8260C - Volatile C	•	Qualifier	A Method 82600 RL	; MDL	Unit	D	Droparad	Analyzed	Dil Fa	
Analyte Dichlorodifluoromethane	ND		- <u> 1.00</u>		ug/L		Prepared 12/16/14 08:55	Analyzed 12/16/14 13:55	1.0	
Chloromethane	ND	-	3.00				12/16/14 08:55	12/16/14 13:55	1.0	
	ND		0.200		ug/L			12/16/14 13:55		
/inyl chloride					ug/L		12/16/14 08:55		1.0	
romomethane	ND		5.00		ug/L		12/16/14 08:55	12/16/14 13:55	1.0	
Chloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:55	1.0	
richlorofluoromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:55	1.(
,1-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:55	1.(
hichlorofluoromethane	ND		0.200		ug/L		12/16/14 08:55	12/16/14 13:55	1.(
arbon disulfide	ND		1.00		ug/L		12/16/14 08:55	12/16/14 13:55	1.(
lethylene chloride	ND		10.0		ug/L		12/16/14 08:55	12/16/14 13:55	1.0	
cetone	ND		25.0		ug/L		12/16/14 08:55	12/16/14 13:55	1.0	
trans-1 2-Dichloroethene	ND		1 00		ua/l		12/16/14 08:55	12/16/14 13:55	1 (

TestAmerica Spokane

12/16/14 13:55

12/16/14 13:55

12/16/14 08:55

12/16/14 08:55

1.00

1.00

ug/L ug/L

ND

ND

1.00

1,4-Dichlorobenzene

n-Butylbenzene

Client Sample ID: MW-5-121114 Date Collected: 12/11/14 13:27 Date Received: 12/12/14 14:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: SXL0091-05 Matrix: Water

5

8

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,1-Dichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
cis-1,2-Dichloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
2,2-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Bromochloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Chloroform	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Carbon tetrachloride	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,1,1-Trichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
2-Butanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Hexane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,1-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Benzene	ND	0.200	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,2-Dichloroethane (EDC)	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Trichloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Dibromomethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,2-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Bromodichloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
cis-1,3-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Toluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
4-Methyl-2-pentanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
trans-1,3-Dichloropropene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Tetrachloroethene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,1,2-Trichloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Dibromochloromethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,3-Dichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,2-Dibromoethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
2-Hexanone	ND	10.0	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Ethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Chlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
m,p-Xylene	ND	2.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
o-Xylene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Styrene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Bromoform	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Isopropylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
n-Propylbenzene	1.78	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
Bromobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,3,5-Trimethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
2-Chlorotoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,2,3-Trichloropropane	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
4-Chlorotoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
tert-Butylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,2,4-Trimethylbenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
sec-Butylbenzene	1.21	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
p-Isopropyltoluene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1,3-Dichlorobenzene	ND	1.00	ug/L	12/16/14 08:55	12/16/14 13:55	1.00
1 4 Dichlorobonzono		1.00		12/16/14 08:55	12/16/14 13:55	1 00

TestAmerica Spokane

12/16/14 13:55

12/16/14 13:55

1.00

1.00

ug/L

ug/L

12/16/14 08:55

12/16/14 08:55

ND

ND

1.00

RL

1.00

5.00

2.00

1.00

2.00

1.00

Limits

71.2 - 143

70 - 140

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

12/16/14 08:55

12/16/14 08:55

12/16/14 08:55

12/16/14 08:55

12/16/14 08:55

12/16/14 08:55

Prepared

12/16/14 08:55

12/16/14 08:55

Analyte

1,2-Dichlorobenzene

Hexachlorobutadiene

Naphthalene

Surrogate

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Dibromofluoromethane

1,2-dichloroethane-d4

1,2-Dibromo-3-chloropropane

Client Sample ID: MW-5-121114 Date Collected: 12/11/14 13:27 Date Received: 12/12/14 14:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

ND

ND

ND

ND

ND

ND

100

109

Qualifier

%Recovery

Result Qualifier

Lab Sample ID: SXL0091-05 Matrix: Water

Analyzed

12/16/14 13:55

12/16/14 13:55

12/16/14 13:55

12/16/14 13:55

12/16/14 13:55

12/16/14 13:55

Analyzed

12/16/14 13:55

12/16/14 13:55

5

Dil Fac

1.00

1.00

1.00

1.00

1.00

1.00

Dil Fac

1.00

1.00

,									
Toluene-d8	94.9		74.1 - 135				12/16/14 08:55	12/16/14 13:55	1.00
4-bromofluorobenzene	99.4		68.7 - 141				12/16/14 08:55	12/16/14 13:55	1.00
Method: NWTPH-Gx - Gasoline	Hydrocarbons k	oy NWTPH	-Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		12/16/14 08:55	12/16/14 13:55	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	99.4		68.7 - 141				12/16/14 08:55	12/16/14 13:55	1.00
Method: EPA 8011 - EDB by EF	PA Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/L		12/15/14 08:27	12/15/14 19:17	1.00
			•						
Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte			•	MDL	Unit mg/L	D	Prepared	Analyzed	Dil Fac
Analyte Diesel Range Hydrocarbons	Result			MDL		D			
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	Result ND	Qualifier	RL	MDL	mg/L	D	12/16/14 12:01	12/17/14 01:02	1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	Result ND ND	Qualifier	RL 0.234 0.391	MDL	mg/L	D	12/16/14 12:01 12/16/14 12:01	12/17/14 01:02 12/17/14 01:02	1.00
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62	Result ND ND %Recovery	Qualifier	RL 0.234 0.391 <i>Limits</i>	MDL	mg/L	<u> </u>	12/16/14 12:01 12/16/14 12:01 Prepared	12/17/14 01:02 12/17/14 01:02 Analyzed	1.00 1.00 Dil Fac
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62	Result ND ND %Recovery 93.1 100	Qualifier Qualifier	RL 0.234 0.391 Limits 50 - 150 50 - 150	MDL	mg/L	<u>D</u>	12/16/14 12:01 12/16/14 12:01 Prepared 12/16/14 12:01	12/17/14 01:02 12/17/14 01:02 Analyzed 12/17/14 01:02	1.00 1.00 Dil Fac 1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl	Result ND ND %Recovery 93.1 100 ND	Qualifier Qualifier	RL 0.234 0.391 Limits 50 - 150 50 - 150	MDL	mg/L mg/L	D	12/16/14 12:01 12/16/14 12:01 Prepared 12/16/14 12:01	12/17/14 01:02 12/17/14 01:02 Analyzed 12/17/14 01:02	1.00 1.00 Dil Fac 1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Total Meta Analyte	Result ND ND %Recovery 93.1 100 ND	Qualifier Qualifier	RL 0.234 0.391 <u>Limits</u> 50 - 150 50 - 150		mg/L mg/L		12/16/14 12:01 12/16/14 12:01 Prepared 12/16/14 12:01 12/16/14 12:01	12/17/14 01:02 12/17/14 01:02 Analyzed 12/17/14 01:02 12/17/14 01:02	1.00 1.00 Dil Fac 1.00 1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Total Meta	Result ND ND %Recovery 93.1 100 Ils by EPA 200 S Result	Qualifier Qualifier	RL 0.234 0.391 <u>Limits</u> 50 - 150 50 - 150 nods RL		mg/L mg/L		12/16/14 12:01 12/16/14 12:01 Prepared 12/16/14 12:01 12/16/14 12:01 Prepared	12/17/14 01:02 12/17/14 01:02 Analyzed 12/17/14 01:02 12/17/14 01:02 Analyzed	1.00 1.00 <i>Dil Fac</i> 1.00 1.00
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate o-Terphenyl n-Triacontane-d62 Method: EPA 200.7 - Total Meta Analyte Lead	Result ND ND %Recovery 93.1 100 state Is by EPA 200 S Result ND	Qualifier Qualifier	RL 0.234 0.391 <u>Limits</u> 50 - 150 50 - 150 nods RL		mg/L mg/L Unit mg/L		12/16/14 12:01 12/16/14 12:01 Prepared 12/16/14 12:01 12/16/14 12:01 Prepared	12/17/14 01:02 12/17/14 01:02 Analyzed 12/17/14 01:02 12/17/14 01:02 Analyzed	1.00 1.00 <i>Dil Fac</i> 1.00 1.00

Client Sample ID: MW-Dup-121114 Date Collected: 12/11/14 12:00

Date Received: 12/12/14 14:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C a a lute MDI

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND L	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Chloromethane	ND	3.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Vinyl chloride	ND	0.200	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Bromomethane	ND	5.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Chloroethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00

TestAmerica Spokane

Matrix: Water

1,2,3-Trichloropropane

Client Sample ID: MW-Dup-121114 Date Collected: 12/11/14 12:00 Date Received: 12/12/14 14:50

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: SXL0091-06 Matrix: Water

4 5 6

8

Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,1-Dichloroethene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Dichlorofluoromethane	ND	0.200	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Carbon disulfide	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Methylene chloride	ND	10.0	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Acetone	ND	25.0	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
trans-1,2-Dichloroethene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Methyl tert-butyl ether	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,1,2-Trichlorotrifluoroethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,1-Dichloroethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
cis-1,2-Dichloroethene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
2,2-Dichloropropane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Bromochloromethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Chloroform	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Carbon tetrachloride	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,1,1-Trichloroethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
2-Butanone	ND	10.0	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Hexane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,1-Dichloropropene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Benzene	ND	0.200	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,2-Dichloroethane (EDC)	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Trichloroethene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Dibromomethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,2-Dichloropropane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Bromodichloromethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
cis-1,3-Dichloropropene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Toluene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
4-Methyl-2-pentanone	ND	10.0	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
trans-1,3-Dichloropropene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Tetrachloroethene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,1,2-Trichloroethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Dibromochloromethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,3-Dichloropropane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,2-Dibromoethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
2-Hexanone	ND	10.0	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Ethylbenzene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Chlorobenzene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
m,p-Xylene	ND	2.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
o-Xylene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Styrene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Bromoform	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Isopropylbenzene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
n-Propylbenzene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Bromobenzene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,3,5-Trimethylbenzene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00
2-Chlorotoluene	ND	1.00	ug/L		12/16/14 08:55	12/16/14 14:17	1.00

TestAmerica Spokane

12/16/14 14:17

1.00

ug/L

12/16/14 08:55

ND

Client Sample ID: MW-Dup-121114 Date Collected: 12/11/14 12:00 Date Received: 12/12/14 14:50

Lab Sample ID: SXL0091-06 Matrix: Water

er 4 - 4 ac 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chlorotoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
tert-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,2,4-Trimethylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
sec-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
p-Isopropyltoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,3-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,4-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
n-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,2-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Hexachlorobutadiene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,2,4-Trichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Naphthalene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
1,2,3-Trichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	101		71.2 _ 143				12/16/14 08:55	12/16/14 14:17	1.00
1,2-dichloroethane-d4	116		70 - 140				12/16/14 08:55	12/16/14 14:17	1.00
Toluene-d8	95.1		74.1 - 135				12/16/14 08:55	12/16/14 14:17	1.00
4-bromofluorobenzene	103		68.7 - 141				12/16/14 08:55	12/16/14 14:17	1.00

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		100		ug/L		12/16/14 08:55	12/16/14 14:17	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-bromofluorobenzene	103		68.7 - 141				12/16/14 08:55	12/16/14 14:17	1.00
Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/L		12/15/14 08:27	12/15/14 19:31	1.00
- Method: NWTPH-Dx - Semivolatil	e Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.232		mg/L		12/16/14 12:01	12/17/14 01:26	1.00
Heavy Oil Range Hydrocarbons	ND		0.386		mg/L		12/16/14 12:01	12/17/14 01:26	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89.8		50 - 150				12/16/14 12:01	12/17/14 01:26	1.00
n-Triacontane-d62	96.5		50 - 150				12/16/14 12:01	12/17/14 01:26	1.00
Method: EPA 200.7 - Total Metals	by EPA 200 S	eries Meth	ods						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0140		mg/L		12/18/14 14:54	12/23/14 17:18	1.00
_ Method: SM 5310C - TOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.05		1.00		mg/L		12/17/14 12:56	12/17/14 12:56	-

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

2 3 4 5

5
6

8

Lab Sample ID: 14L0088-BLK1							Client Sa	mple ID: Metho	
Matrix: Water								Prep Typ	
Analysis Batch: 14L0088	Disale	Diamia						Prep Batch: 14L	.0088_P
Analyte		Blank Qualifier	RL	MDI	Unit	D	Prepared	Analyzad	Dil Fac
Dichlorodifluoromethane	ND		RL		ug/L		12/16/14 08:55	Analyzed 12/16/14 09:49	1.00
Chloromethane	ND	L	3.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Vinyl chloride	ND		0.200		-				1.00
			5.00		ug/L		12/16/14 08:55	12/16/14 09:49	
Bromomethane	ND				ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Chloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Trichlorofluoromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,1-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Dichlorofluoromethane	ND		0.200		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Carbon disulfide	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Methylene chloride	ND		10.0		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Acetone	ND		25.0		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Methyl tert-butyl ether	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,1,2-Trichlorotrifluoroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,1-Dichloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
2,2-Dichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Bromochloromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Chloroform	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Carbon tetrachloride	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,1,1-Trichloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
2-Butanone	ND		10.0		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Hexane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,1-Dichloropropene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Benzene	ND		0.200		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,2-Dichloroethane (EDC)	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Trichloroethene	ND		1.00		-		12/16/14 08:55	12/16/14 09:49	1.00
					ug/L				
Dibromomethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,2-Dichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Bromodichloromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
cis-1,3-Dichloropropene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Toluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
4-Methyl-2-pentanone	ND		10.0		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
trans-1,3-Dichloropropene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Tetrachloroethene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Dibromochloromethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,3-Dichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,2-Dibromoethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
2-Hexanone	ND		10.0		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Ethylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Chlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
1,1,1,2-Tetrachloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
m,p-Xylene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
o-Xylene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00
Styrene	ND		1.00				12/16/14 08:55	12/16/14 09:49	1.00
-					ug/L				
Bromoform Isopropylbenzene	ND ND		1.00 1.00		ug/L ug/L		12/16/14 08:55 12/16/14 08:55	12/16/14 09:49 12/16/14 09:49	1.00 1.00

Lab Sample ID: 14L0088-BLK1

Analysis Batch: 14L0088

Matrix: Water

Client Sample ID: Method Blank

6
8

Ргер Тур	e: Total	
Prep Batch: 14L	0088_P	
Analyzed	Dil Fac	
12/16/14 00:40	1 00	

Analysis Batch. 1420000	Blank	Blank						Top Baton. 14	0000_1	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
n-Propylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,1,2,2-Tetrachloroethane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
Bromobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,3,5-Trimethylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
2-Chlorotoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,2,3-Trichloropropane	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
4-Chlorotoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
tert-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,2,4-Trimethylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
sec-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
p-Isopropyltoluene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,3-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,4-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
n-Butylbenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,2-Dichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,2-Dibromo-3-chloropropane	ND		5.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
Hexachlorobutadiene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,2,4-Trichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
Naphthalene	ND		2.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	
1,2,3-Trichlorobenzene	ND		1.00		ug/L		12/16/14 08:55	12/16/14 09:49	1.00	

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		71.2 - 143	12/16/14 08:55	12/16/14 09:49	1.00
1,2-dichloroethane-d4	105		70 - 140	12/16/14 08:55	12/16/14 09:49	1.00
Toluene-d8	99.5		74.1 - 135	12/16/14 08:55	12/16/14 09:49	1.00
4-bromofluorobenzene	103		68.7 - 141	12/16/14 08:55	12/16/14 09:49	1.00

Lab Sample ID: 14L0088-BS1 N

Matrix: Water							Prep Type: To
Analysis Batch: 14L0088							Prep Batch: 14L0088
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	10.0	14.4	L	ug/L		144	60 - 140
Chloromethane	10.0	12.4		ug/L		124	60 - 140
Vinyl chloride	10.0	11.9		ug/L		119	60 - 140
Bromomethane	10.0	12.7		ug/L		127	60 - 140
Chloroethane	10.0	12.2		ug/L		122	60 - 140
Trichlorofluoromethane	10.0	12.0		ug/L		120	60 - 140
1,1-Dichloroethene	10.0	12.2		ug/L		122	78.1 - 155
Dichlorofluoromethane	10.0	11.9		ug/L		119	60 - 140
Carbon disulfide	10.0	11.9		ug/L		119	60 - 140
Methylene chloride	10.0	8.54		ug/L		85.4	60 - 140
Acetone	50.0	52.0		ug/L		104	60 - 140
trans-1,2-Dichloroethene	10.0	10.8		ug/L		108	60 - 140
Methyl tert-butyl ether	10.0	11.1		ug/L		111	80.1 - 128
1,1,2-Trichlorotrifluoroethane	10.0	11.4		ug/L		114	60 - 140
1,1-Dichloroethane	10.0	11.4		ug/L		114	60 - 140
cis-1,2-Dichloroethene	10.0	10.8		ug/L		108	60 - 140

TestAmerica Spokane

Client Sample ID: Lab Control Sample

5 6

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14L0088-BS1					Client	Sampl	e ID: Lab Control Sample
Matrix: Water							Prep Type: Tota
Analysis Batch: 14L0088	Spike	LCS	1.05				Prep Batch: 14L0088_F %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
2,2-Dichloropropane	10.0	12.4		ug/L		124	60 - 140
Bromochloromethane	10.0	11.3		ug/L		113	60 - 140
Chloroform	10.0	11.4		ug/L		114	60 - 140
Carbon tetrachloride	10.0	11.0		ug/L		110	60 - 140
1,1,1-Trichloroethane	10.0	10.9		ug/L		109	60 - 140
2-Butanone	50.0	48.7		ug/L		97.4	60 - 140
Hexane	10.0	10.6		ug/L		106	60 - 140
1,1-Dichloropropene	10.0	11.7		ug/L		117	60 - 140
Benzene	10.0	10.8		ug/L		108	80 - 122
1,2-Dichloroethane (EDC)	10.0	12.1		ug/L		121	63.9 - 144
Trichloroethene	10.0	10.2		ug/L		102	74.8 - 123
Dibromomethane	10.0	10.2		ug/L		102	60 - 140
1,2-Dichloropropane	10.0	10.9		ug/L ug/L		110	60 - 140 60 - 140
Bromodichloromethane	10.0	11.0		ug/L		115	60 - 140 60 - 140
							60 - 140
cis-1,3-Dichloropropene	10.0	11.1		ug/L		111	
	10.0	9.96		ug/L		99.6	80 - 123
4-Methyl-2-pentanone	50.0	50.3		ug/L		101	60 - 140
rans-1,3-Dichloropropene	10.0	10.5		ug/L		105	60 - 140
Fetrachloroethene	10.0	10.4		ug/L		104	60 - 140
,1,2-Trichloroethane	10.0	10.6		ug/L		106	60 - 140
Dibromochloromethane	10.0	11.3		ug/L		113	60 - 140
I,3-Dichloropropane	10.0	10.8		ug/L		108	60 - 140
1,2-Dibromoethane	10.0	10.2		ug/L		102	70 - 130
2-Hexanone	50.0	47.8		ug/L		95.5	60 - 140
Ethylbenzene	10.0	10.1		ug/L		101	80 - 120
Chlorobenzene	10.0	10.4		ug/L		104	79.2 - 125
1,1,1,2-Tetrachloroethane	10.0	11.0		ug/L		110	60 - 140
n,p-Xylene	10.0	10.1		ug/L		101	80 - 120
o-Xylene	10.0	10.5		ug/L		105	80 - 120
Styrene	10.0	10.5		ug/L		105	60 - 140
Bromoform	10.0	9.61		ug/L		96.1	60 - 140
sopropylbenzene	10.0	10.6		ug/L		106	60 - 140
n-Propylbenzene	10.0	10.5		ug/L		105	60 - 140
1,1,2,2-Tetrachloroethane	10.0	10.5		ug/L		105	60 - 140
Bromobenzene	10.0	10.6		ug/L		106	60 - 140
I,3,5-Trimethylbenzene	10.0	10.1		ug/L		101	60 - 140
2-Chlorotoluene	10.0	10.7		ug/L		107	60 - 140
,2,3-Trichloropropane	10.0	9.48		ug/L		94.8	60 - 140
I-Chlorotoluene	10.0	10.9		ug/L		109	60 - 140
ert-Butylbenzene	10.0	10.4		ug/L		104	60 - 140
,2,4-Trimethylbenzene	10.0	10.1		ug/L		101	60 - 140
ec-Butylbenzene	10.0	10.1		ug/L		101	60 - 140
-Isopropyltoluene	10.0	10.1		ug/L		101	60 - 140
,3-Dichlorobenzene	10.0	10.8		ug/L		108	60 - 140
,4-Dichlorobenzene	10.0	10.5		ug/L		105	60 - 140
I-Butylbenzene	10.0	10.4		ug/L		104	60 - 140
,2-Dichlorobenzene	10.0	10.9		ug/L		109	60 - 140
I,2-Dibromo-3-chloropropane	10.0	10.3		ug/L		103	60 <u>-</u> 140

5 6

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14L0088-BS1							Client	Sampl	e ID: Lab Control Sample
Matrix: Water									Prep Type: Total
Analysis Batch: 14L0088			Spike	LCS	LCS				Prep Batch: 14L0088_P %Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Hexachlorobutadiene			10.0	9.62		ug/L		96.2	60 - 140
1,2,4-Trichlorobenzene			10.0	9.04		ug/L		90.4	60 - 140
Naphthalene			10.0	9.20		ug/L		92.0	62.8 - 132
1,2,3-Trichlorobenzene			10.0	9.13		ug/L		91.3	60 - 140
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Dibromofluoromethane	101		71.2 - 143						
1,2-dichloroethane-d4	111		70 - 140						
Toluene-d8	96.9		74.1 - 135						
4-bromofluorobenzene	99.1		68.7 - 141						

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 14L0088-BLK1											Client Sa	ample ID: Metho	d Blank
Matrix: Water												Prep Typ	e: Total
Analysis Batch: 14L0088												Prep Batch: 14	_0088_P
	В	lank	Blank										
Analyte	Re	sult	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons		ND		100			ug/L			12/1	6/14 08:55	12/16/14 09:49	1.00
	В	lank	Blank										
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyzed	Dil Fac
4-bromofluorobenzene		103		68.7 - 141						12/1	6/14 08:55	12/16/14 09:49	1.00
Lab Sample ID: 14L0088-BS2									С	lient	Sample	ID: Lab Control	Sample
Matrix: Water												Prep Typ	be: Total
Analysis Batch: 14L0088												Prep Batch: 14	_0088 P
				Spike	LCS	LCS						%Rec.	
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Gasoline Range Hydrocarbons				1000	840			ug/L			84.0	80 - 120	
	LCS	LCS											
Surrogate	%Recovery	Qua	lifier	Limits									

 4-bromofluorobenzene
 94.7
 68.7 - 141

Method: EPA 8011 - EDB by EPA Method 8011

Lab Sample ID: 14L0079-BLK1 Matrix: Water Analysis Batch: 14L0079						mple ID: Metho Prep Typ Prep Batch: 14L	e: Total		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/L		12/15/14 08:27	12/16/14 10:33	1.00
1,2-Dibromo-3-chloropropane	ND		0.0100		ug/L		12/15/14 08:27	12/16/14 10:33	1.00

n-Triacontane-d62

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 14L0079-BS1 Matrix: Water Analysis Batch: 14L0079					Client	Sample	e ID: Lab Control Sample Prep Type: Total Prep Batch: 14L0079_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromoethane	0.125	0.154		ug/L		123	60 - 140
1,2-Dibromo-3-chloropropane	0.125	0.171		ug/L		137	60 - 140
Lab Sample ID: 14L0079-BS2					Client	Sample	e ID: Lab Control Sample
Matrix: Water							Prep Type: Total
Analysis Batch: 14L0079							Prep Batch: 14L0079_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromoethane	0.125	0.146		ug/L		117	60 - 140
1,2-Dibromo-3-chloropropane	0.125	0.124		ug/L		99.2	60 - 140

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup

Lab Sample ID: 14L0093-BLK1												Client Sa	ample ID:	Method	d Blank
Matrix: Water													Pre	р Туре	e: Total
Analysis Batch: 14L0093													Prep Batc		
	BI	ank	Blank												
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Pi	repared	Analyz	ed	Dil Fac
Diesel Range Hydrocarbons		ND		0.	.240			mg/L			12/10	6/14 12:01	12/17/14	16:07	1.00
Heavy Oil Range Hydrocarbons		ND		0.4	.400			mg/L			12/10	6/14 12:01	12/17/14	16:07	1.00
	BI	ank	Blank												
Surrogate	%Recov	/ery	Qualifier	Limits	5						PI	repared	Analyz	ed	Dil Fac
o-Terphenyl		31.4		50 - 15	50					-	12/1	6/14 12:01	12/17/14	16:07	1.00
n-Triacontane-d62	S	98.9		50 - 15	50						12/1	6/14 12:01	12/17/14	16:07	1.00
Lab Sample ID: 14L0093-BS1										CI	ient	Sample	ID: Lab Co	ontrol s	Sample
Matrix: Water															e: Total
Analysis Batch: 14L0093													Prep Batc		
-				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Diesel Range Hydrocarbons				3.20		2.07			mg/L			64.6	50 _ 150		
	LCS	LCS													
Surrogate	%Recovery	Qual	lifier	Limits											
o-Terphenyl	90.9			50 - 150											

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

103

Lab Sample ID: 14L0093-BLK1 Matrix: Water Analysis Batch: 14L0093			mple ID: Metho Prep Typ Prep Batch: 14L	e: Total					
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.240		mg/L		12/16/14 12:01	12/16/14 20:47	1.00
Heavy Oil Range Hydrocarbons	ND		0.400		mg/L		12/16/14 12:01	12/16/14 20:47	1.00

50 - 150

2 3 4

Lab Sample ID: 14L0093-BLK1 Matrix: Water								Client Sa	ample ID: Metho Prep Typ	
Analysis Batch: 14L0093									Prep Batch: 14L	
	Blank	Blank								
Surrogate	%Recovery	Qualifier	Limits				F	Prepared	Analyzed	Dil Fac
o-Terphenyl	81.0		50 _ 150				12/1	16/14 12:01	12/16/14 20:47	1.00
n-Triacontane-d62	101		50 - 150				12/1	16/14 12:01	12/16/14 20:47	1.00
Lab Sample ID: 14L0093-BS1							Client	t Sample	ID: Lab Control	Sample
Matrix: Water									Prep Typ	e: Total
Analysis Batch: 14L0093									Prep Batch: 14L	_0093_P
-			Spike	LCS	LCS				%Rec.	_
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons			3.20	1.90		mg/L		59.4	50 - 150	
	LCS LCS	3								
Surrogate	%Recovery Qua	lifier	Limits							
o-Terphenyl	88.5		50 - 150							
n-Triacontane-d62	101		50 _ 150							

Method: EPA 200.7 - Total Metals by EPA 200 Series Methods

Lab Sample ID: 14L0117-BLK1											Client S	ample ID:	Method	Blank
Matrix: Water												Pre	p Type	: Total
Analysis Batch: 14L0117												Prep Bato	h: 14L0	117_P
	В	lank Blank												
Analyte	Re	esult Qualifier		RL		MDL	Unit		D	Pi	repared	Analyz	ed	Dil Fac
Lead		ND		0.0140			mg/L			12/18	8/14 14:54	12/23/14	16:37	1.00
Lab Sample ID: 14L0117-BS1									Cli	ient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water												Pre	p Type	: Total
Analysis Batch: 14L0117												Prep Bato	h: 14L0	117_P
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits		
Lead			1.00		1.03			mg/L		_	103	85 - 115		
Lab Sample ID: 14L0117-MS1											Client	Sample ID	: Matrix	Spike
Matrix: Water												Pre	p Type	: Total
Analysis Batch: 14L0117												Prep Bato	h: 14L0	117_P
	Sample	Sample	Spike	Matrix	Spike	Matri	x Spike					%Rec.		
Analyte	Result	Qualifier	Added		Result	Quali	ifier	Unit		D	%Rec	Limits		
Lead	ND		1.00		1.01			mg/L			101	70 - 130		
Lab Sample ID: 14L0117-MSD1									Clien	it Sa	mple ID	: Matrix Sp	oike Dup	olicate
Matrix: Water												Pre	p Type	: Total
Analysis Batch: 14L0117												Prep Bato	h: 14L0	117_P
	Sample	Sample	Spike	ıtrix Spik	ke Dup	Matri	x Spike	Duț				%Rec.		RPD
Analyte	Result	Qualifier	Added		Result	Quali	ifier	Unit		D	%Rec	Limits	RPD	Limit
Lead	ND		1.00		0.995			mg/L		_	99.5	70 - 130	1.97	20

2 3 4 5 6 7

Method: EPA 200.7 - Total Me	etals by	EPA	200 Se	ries M	ethods	Co	ntinu	ed)							
Lab Sample ID: 14L0117-DUP1												Clie	nt Sample	e ID: Du	plicate
Matrix: Water													Pr	ер Туре	: Tota
Analysis Batch: 14L0117													Prep Bate	ch: 14L0)117_F
	Sample	Sam	ple		Dupli	cate	Duplic	ate							RPI
Analyte	Result	Qual	ifier		Re	sult	Qualif	ier	Unit		D			RPD	Limi
Lead	ND					ND			mg/L		_				20
Method: EPA 300.0 - Anions	by EPA	Met	hod 300	.0											
Lab Sample ID: 14L0074-BLK1												Client Sa	ample ID:	Method	l Blank
Matrix: Water													Pr	ер Туре	: Tota
Analysis Batch: 14L0074													Prep Bate	ch: 14L0)074_F
	E	Blank	Blank												
Analyte	R	esult	Qualifier		RL		MDL (Jnit		D	P	repared	Analy	zed	Dil Fa
Nitrate-Nitrogen		ND			0.200		r	ng/L		1	2/1	2/14 09:27	12/12/14	11:31	1.00
Sulfate		ND			0.500		r	ng/L		1	2/1	2/14 09:27	12/12/14	11:31	1.00
Lab Sample ID: 14L0074-BS1										Clie	ent	Sample	ID: Lab C	ontrol S	Sample
Matrix: Water													Pr	ер Туре	: Tota
Analysis Batch: 14L0074													Prep Bate	ch: 14L0)074_F
				Spike		LCS	LCS						%Rec.		
Analyte				Added	Re	sult	Qualif	ier	Unit		D	%Rec	Limits		
Nitrate-Nitrogen				5.00		4.90			mg/L		_	98.0	90 - 110		
Sulfate				12.5		12.5			mg/L			99.8	90 - 110		
Lab Sample ID: 14L0074-MS1												Client S	ample ID:	: MW-1-1	121114
Matrix: Water													Pr	ер Туре	: Tota
Analysis Batch: 14L0074													Prep Bate	ch: 14L0)074_F
	Sample	Sam	ple	Spike	Matrix S	pike	Matrix	Spike)				%Rec.		
Analyte	Result	Qual	ifier	Added	Re	sult	Qualif	ier	Unit		D	%Rec	Limits		
Nitrate-Nitrogen	0.610			5.00		5.58			mg/L		_	99.3	80 - 120		
Sulfate	7.90			12.5		21.3			mg/L			107	80 - 120		
Lab Sample ID: 14L0074-MSD1												Client S	ample ID:	: MW-1-1	121114
Matrix: Water													Pr	ер Туре	: Tota
Analysis Batch: 14L0074													Prep Bate	ch: 14L0)074_F
	Sample	Sam	ple	Spike	ıtrix Spike	Dup	Matrix	Spike	Dup				%Rec.		RPD
Analyte	Result	Qual	ifier	Added	Re	sult	Qualif	ier	Unit		D	%Rec	Limits	RPD	Limi
Nitrate-Nitrogen	0.610			5.00		5.60			mg/L			99.8	80 - 120	0.394	12.1
Sulfate	7.90			12.5		21.3			mg/L			107	80 - 120	0.155	10
Lab Sample ID: 14L0074-DUP1												Client S	ample ID:		
Matrix: Water													Pr	ер Туре	: Tota
Analysis Batch: 14L0074	Sample	Sam	nle		Durli	cate	Duplic	ate					Prep Bate	ch: 14L0	0074_F
Analyte	Result				-		Qualif		Unit		D			RPD	Limi
Nitrate-Nitrogen	0.610	Judi				.580	Qualif		mg/L		_			5.04	13.1
-															
Sulfate	7.90					7.91			mg/L					0.126	15.7

Method: SM 5310C - TOC

Total Organic Carbon

Lab Sample ID: 214965-1										Client Sa	mple ID:	Method	Blank	
Matrix: Water											Pr	ер Туре	: Total	- 2
Analysis Batch: 214965											Prep Ba	tch: 214	4965_P	
	В	lank Bla	ank											
Analyte	Re	esult Qu	alifier	RL	N	IDL Ur	nit	D	Р	repared	Analy	zed	Dil Fac	
TOC Result 1		ND		1.00		m	g/L		12/1	7/14 12:56	12/17/14	12:56	1	
TOC Result 2		ND		1.00		m	g/L		12/1	7/14 12:56	12/17/14	12:56	1	
Total Organic Carbon		ND		1.00		m	g/L		12/1	7/14 12:56	12/17/14	12:56	1	
Lab Sample ID: 214965-4								С	lient	Sample	ID: Lab C	ontrol S	Sample	
Matrix: Water											Pr	ер Туре	: Total	- 1
Analysis Batch: 214965			0 11		1.00						Prep Ba	tch: 214	4965_P	
• • •			Spike	_	LCS				_	a/ B	%Rec.			
Analyte TOC Result 1			Added		Result	Qualifie			D	%Rec	Limits			
			10.0		9.768		mg/L			98	90 - 110			
TOC Result 2			10.0		9.910		mg/L			99	90 - 110			
Total Organic Carbon			10.0	:	9.839		mg/L			98	90 _ 110			
Lab Sample ID: 214965-10								Clie	nt Sa	ample ID:	Matrix S	pike Du	plicate	
Matrix: Water											Pr	ер Туре	: Total	
Analysis Batch: 214965											Prep Ba	tch: 214	4965_P	
	Sample	Sample	Spike	ıtrix Spike	e Dup	Matrix S	pike Dur				%Rec.		RPD	
Analyte	Result	Qualifier	- Added	R	Result	Qualifie	r Unit		D	%Rec	Limits	RPD	Limit	
TOC Result 1			20.0		20.78		mg/L			99	75 - 122	0	20	
TOC Result 2			20.0	:	20.87		mg/L			99	75 - 122	1	20	
Total Organic Carbon			20.0	:	20.82		mg/L			99	75 _ 122	1	20	
Lab Sample ID: 214965-9										Client S	Sample ID): Matrix	Spike	
Matrix: Water												ер Туре		
Analysis Batch: 214965											Prep Ba			
	Sample	Sample	Spike	Matrix \$	Spike	Matrix S	pike				%Rec.		_	
Analyte	Result	Qualifier	- Added	R	Result	Qualifie	r Unit		D	%Rec	Limits			
TOC Result 1			20.0		20.80		mg/L			99	75 - 122			
TOC Result 2			20.0	:	21.11		mg/L			101	75 - 122			

20.0

20.96

mg/L

100

75 - 122

Date Collected: 12/11/14 14:06

Date Received: 12/12/14 09:10

Prep Type

Total

Total

Client Sample ID: MW-1-121114

Batch

Туре

Prep

Analysis

Batch

Method

Wet Chem

EPA 300.0

Lab Sample ID: SXL0080-01

7

Lab Sample ID: SXL0080-02 Matrix: Water

Matrix: Water

Date Received: 12/12/14 09:10	Date Collected: 12/11/14 11:41
	Date Received: 12/12/14 09:10

Client Sample ID: MW-2-121114

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14L0074_P	12/12/14 09:27	MS	TAL SPK
Total	Analysis	EPA 300.0		1.00	14L0074	12/12/14 10:05	MS	TAL SPK

Dilution

Factor

1.00

1.00

Run

Client Sample ID: MW-3-121114

Date Collected: 12/11/14 12:53 Date Received: 12/12/14 09:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14L0074_P	12/12/14 09:27	MS	TAL SPK
Total	Analysis	EPA 300.0		1.00	14L0074	12/12/14 10:19	MS	TAL SPK

Client Sample ID: MW-4-121114

Date Collected: 12/11/14 12:18 Date Received: 12/12/14 09:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14L0074_P	12/12/14 09:27	MS	TAL SPK
Total	Analysis	EPA 300.0		1.00	14L0074	12/12/14 10:33	MS	TAL SPK

Client Sample ID: MW-5-121114

Date Collected: 12/11/14 13:27 Date Received: 12/12/14 09:10

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	14L0074_P	12/12/14 09:27	MS	TAL SPK
Total	Analysis	EPA 300.0		1.00	14L0074	12/12/14 10:48	MS	TAL SPK

Client Sample ID: MW-Dup-121114 Date Collected: 12/11/14 12:00 Date Received: 12/12/14 09:10

Г		Batch	Datah		Dilution	Detah	Dremered		
		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
-	Fotal	Prep	Wet Chem		1.00	14L0074_P	12/12/14 09:27	MS	TAL SPK
-	Fotal	Analysis	EPA 300.0		1.00	14L0074	12/12/14 11:02	MS	TAL SPK

TestAmerica Spokane

Batch

Number

14L0074

14L0074 P

Prepared

or Analyzed

12/12/14 09:27

12/12/14 09:51

Analyst

MS

MS

Lab

TAL SPK TAL SPK

Page 27 of 36

Matrix: Water

Lab Sample ID: SXL0080-04

Lab Sample ID: SXL0080-05

Lab Sample ID: SXL0080-06

Lab Sample ID: SXL0080-03

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: SXL0091-01 Matrix: Water

5 6 7

Client Sample ID: MW-1-121114

Date Collected: 12/11/14 14:06 Date Received: 12/12/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	EPA 8260C		1.00	14L0088	12/16/14 12:25	MS	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14L0088	12/16/14 12:25	MS	TAL SPK
Total	Prep	EPA 3580		1.00	14L0079_P	12/15/14 08:27	IAB	TAL SPK
Total	Analysis	EPA 8011		1.00	14L0079	12/15/14 19:31	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.971	14L0093_P	12/16/14 12:01	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14L0093	12/16/14 23:06	NMI	TAL SPK
Total	Prep	EPA 3005A		1.00	14L0117_P	12/18/14 14:54	JSP	TAL SPK
Total	Analysis	EPA 200.7		1.00	14L0117	12/23/14 17:05	ICP	TAL SPK
Total	Analysis	SM 5310C		1	214965	12/17/14 12:56	JAB	TAL NSH
Total	Prep	NA			214965_P	12/17/14 12:56		TAL NSH

Client Sample ID: MW-2-121114 Date Collected: 12/11/14 11:41 Date Received: 12/12/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	EPA 8260C		1.00	14L0088	12/16/14 12:48	MS	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14L0088	12/16/14 12:48	MS	TAL SPK
Total	Prep	EPA 3580		1.00	14L0079_P	12/15/14 08:27	IAB	TAL SPK
Total	Analysis	EPA 8011		1.00	14L0079	12/15/14 18:34	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.958	14L0093_P	12/16/14 12:01	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14L0093	12/16/14 23:29	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.958	14L0093_P	12/16/14 12:01	NI	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14L0093	12/17/14 16:30	NMI	TAL SPK
Total	Prep	EPA 3005A		1.00	14L0117_P	12/18/14 14:54	JSP	TAL SPK
Total	Analysis	EPA 200.7		1.00	14L0117	12/23/14 17:07	ICP	TAL SPK

Client Sample ID: MW-3-121114

Date Collected: 12/11/14 12:53 Date Received: 12/12/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	EPA 8260C		1.00	14L0088	12/16/14 13:10	MS	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14L0088	12/16/14 13:10	MS	TAL SPK
Total	Prep	EPA 3580		1.00	14L0079_P	12/15/14 08:27	IAB	TAL SPK
Total	Analysis	EPA 8011		1.00	14L0079	12/15/14 18:48	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.973	14L0093_P	12/16/14 12:01	IAB	TAL SPK

Lab Sample ID: SXL0091-02

Matrix: Water

Lab Sample ID: SXL0091-03

Matrix: Water

Matrix: Water

Lab Sample ID: SXL0091-03

2 3 4 5 6 7

Client Sample ID: MW-3-121114

Date Collected: 12/11/14 12:53 Date Received: 12/12/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	NWTPH-Dx		1.00	14L0093	12/16/14 23:53	NMI	TAL SPK
Total	Prep	EPA 3005A		1.00	14L0117_P	12/18/14 14:54	JSP	TAL SPK
Total	Analysis	EPA 200.7		1.00	14L0117	12/23/14 17:10	ICP	TAL SPK

Client Sample ID: MW-4-121114 Date Collected: 12/11/14 12:18 Date Received: 12/12/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	EPA 8260C		1.00	14L0088	12/16/14 13:32	MS	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14L0088	12/16/14 13:32	MS	TAL SPK
Total	Prep	EPA 3580		1.00	14L0079_P	12/15/14 08:27	IAB	TAL SPK
Total	Analysis	EPA 8011		1.00	14L0079	12/15/14 19:03	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.968	14L0093_P	12/16/14 12:01	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14L0093	12/17/14 00:16	NMI	TAL SPK
Total	Prep	EPA 3005A		1.00	14L0117_P	12/18/14 14:54	JSP	TAL SPK
Total	Analysis	EPA 200.7		1.00	14L0117	12/23/14 17:13	ICP	TAL SPK

Client Sample ID: MW-5-121114

Date Collected: 12/11/14 13:27 Date Received: 12/12/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	EPA 8260C		1.00	14L0088	12/16/14 13:55	MS	TAL SPK
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14L0088	12/16/14 13:55	MS	TAL SPK
Total	Prep	EPA 3580		1.00	14L0079_P	12/15/14 08:27	IAB	TAL SPK
Total	Analysis	EPA 8011		1.00	14L0079	12/15/14 19:17	NMI	TAL SPK
Total	Prep	EPA 3510/600 Series		0.977	14L0093_P	12/16/14 12:01	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14L0093	12/17/14 01:02	NMI	TAL SPK
Total	Prep	EPA 3005A		1.00	14L0117_P	12/18/14 14:54	JSP	TAL SPK
Total	Analysis	EPA 200.7		1.00	14L0117	12/23/14 17:15	ICP	TAL SPK

Client Sample ID: MW-Dup-121114 Date Collected: 12/11/14 12:00 Date Received: 12/12/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	EPA 8260C		1.00	14L0088	12/16/14 14:17	MS	TAL SPK

TestAmerica Spokane

TAL SPK

Lab Sample ID: SXL0091-04 Matrix: Water

Lab Sample ID: SXL0091-05

Lab Sample ID: SXL0091-06

Matrix: Water

er o

Matrix: Water

Client Sample ID: MW-Dup-121114

Date Collected: 12/11/14 12:00 Date Received: 12/12/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14L0088_P	12/16/14 08:55	MS	TAL SPK
Total	Analysis	NWTPH-Gx		1.00	14L0088	12/16/14 14:17	MS	TAL SPK
Total	Prep	EPA 3510/600 Series		0.965	14L0093_P	12/16/14 12:01	IAB	TAL SPK
Total	Analysis	NWTPH-Dx		1.00	14L0093	12/17/14 01:26	NMI	TAL SPK
Total	Prep	EPA 3005A		1.00	14L0117_P	12/18/14 14:54	JSP	TAL SPK
Total	Analysis	EPA 200.7		1.00	14L0117	12/23/14 17:18	ICP	TAL SPK

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Lab Sample ID: SXL0091-06 Matrix: Water

7 8 9

4.4

Laboratory: TestAmerica Spokane	Laboratory:	TestAmerica	Spokane
---------------------------------	-------------	--------------------	---------

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-15

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	A2LA		NA: NELAP & A2LA	12-31-15
A2LA	ISO/IEC 17025		0453.07	12-31-15
Alaska (UST)	State Program	10	UST-087	10-31-15
Arizona	State Program	9	AZ0473	05-05-15
Arkansas DEQ	State Program	6	88-0737	04-25-15
California	NELAP	9	1168CA	10-31-14
Connecticut	State Program	1	PH-0220	12-31-15
Florida	NELAP	4	E87358	06-30-15
Illinois	NELAP	5	200010	12-09-15
lowa	State Program	7	131	04-01-16
Kansas	NELAP	7	E-10229	01-31-15
Kentucky (UST)	State Program	4	19	06-30-15
Kentucky (WW)	State Program	4	90038	12-31-15
Louisiana	NELAP	6	30613	06-30-15
Maryland	State Program	3	316	03-31-15
Massachusetts	State Program	1	M-TN032	06-30-15
Minnesota	NELAP	5	047-999-345	12-31-15
Mississippi	State Program	4	N/A	06-30-15
Montana (UST)	State Program	8	NA	02-24-20
Nevada	State Program	9	TN00032	07-31-15
New Hampshire	NELAP	1	2963	10-09-15
New Jersey	NELAP	2	TN965	06-30-15
New York	NELAP	2	11342	03-31-15
North Carolina (WW/SW)	State Program	4	387	12-31-15
North Dakota	State Program	8	R-146	06-30-15
Ohio VAP	State Program	5	CL0033	10-16-15
Oklahoma	State Program	6	9412	08-31-15
Oregon	NELAP	10	TN200001	04-29-15
Pennsylvania	NELAP	3	68-00585	06-30-15
Rhode Island	State Program	1	LAO00268	12-30-14
South Carolina	State Program	4	84009 (001)	02-28-15
South Carolina (DW)	State Program	4	84009 (002)	02-23-17
Tennessee	State Program	4	2008	02-23-17
Texas	NELAP	6	T104704077	08-31-15
USDA	Federal		S-48469	10-30-16
Utah	NELAP	8	TN00032	07-31-15
Virginia	NELAP	3	460152	06-14-15
Washington	State Program	10	C789	07-19-15
West Virginia DEP	State Program	3	219	02-28-15
Wisconsin	State Program	5	998020430	08-31-15
Wyoming (UST)	A2LA	8	453.07	12-31-15

Client: Geo Engineers - Spokane Project/Site: 0504-101-00

TestAmerica Job ID: SXL0080

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx w/Silica Gel Cleanup		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
EPA 200.7	Total Metals by EPA 200 Series Methods		TAL SPK
EPA 300.0	Anions by EPA Method 300.0		TAL SPK
SM 5310C	TOC		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980 TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

<u>TestAmerica</u>

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

0

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

THE LEADER IN ENVIRONMENTAL TESTING

					CHAIN	I OF (CUST	ODY	REPO	KI			-	Work O	rder #;	SXLOOPO	
CLIENT: (TEO EASING	eci				INVOIO	CE TO:										ROUND REQUES	βT
	Vi Via	al de Q	Cent.	au an	5.54										in	Business Days *	
REPORT TO: UR SUGAIS ADDRESS: 523 E Sc Speckare	and Are	ABRIC]	3										l na ra	Organic &	Inorganic Analyses	
Spokane a	NA 99202	-												STD.	Petroleum	4 3 2 Hydrocarbon Analyses	
PHONE: 509 - 363-3125 PROJECT NAME: Tist 01	FAX: 507-36	5-5126			P.O. NU.	MBER:	PRE	SERVATI	VE	<u> </u>				াস্থ	74	3 2 1	<1
		54 54.												डते	, 1		
PROJECT NUMBER: 0504	- (01-00			<u>i _ I _</u>		<u> </u>	REQUES	TED AN/	ALYSES	<u> </u>				0	THER	Specify:	
SAMPLED BY: Juil			¥	2										* Turnaround	Requests les	ss than standard may incu	r Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMPL DATE/T		Nit take	sulfate										MATRIX (W, S, O)		LOCATION/ COMMENTS	TA WO ID
1 MW-1-121114	12/11/14	1406	×	X										ω			
	Ì	([4]	1			ļ											
2, MW-3-121114		1253											.				
MW-4-121114		1218															
5 MW-5-121114	т.	1327					ļ					ļ					
· MW-DUP-12114		1200									_				1		
7																·	
8																	
9											-						
10																	
RELEASED BY: 7 7 PRINT NAME: USH IN TELE	<u>,</u>	FIRM: (-	reo		DATI	= 12/11 = 15ī			RECEIVED B	ir:/}i ⊧(at d	Staphiler	5		FIRM	Testh	DATE: MUNICA TIME:	12-12-14 9:10
RELEASED BY:	«	b			DATI		<u>,</u>		RECEIVED E							DATE	
PRINT NAME:		FIRM:			TIM	3:			PRINT NAMI	E:				FIRM	<i>I</i> :	TIME: TEMP:	
ADDITIONAL REMARKS:				_												1.9 PA	CE OF
	·····	<u> </u>	· .													TAL	1000 (0612

÷.	
4	
2	
÷.	
1	
۰.	
1	
1	
1	
1	
1	
1	
i.	
÷	
1	
1	
÷.	
1	
1	
1	
1	
1	
÷	
i.	
1	
(0	
1	
4	
1	
1	
1	
1	
1	
1	
	1
	1
1	1
	1
:	1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	1
	1
	1
	1
	1
	1
A A A A A A A A A A A A A A A A A A A	1
	1
	1
	1
	1
Active Ac	1
	1
	1
	1
	1
and the second second second second	1
and the second sec	1
and the second sec	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

1

ŝ,

ļ.

TestAmerica Spokane Sample Receipt Form

Work Order #SXLODPO CI	liontGeoEngin	us			Project: Tiger (il - North
Date/Time Received: 12-12-14 9-10)j	By:CS				
Samples Delivered By: Shipping Service	Courier Client	Other	. <u> </u>			
List Air Bill Number(s) or Attach a photocopy of	of the Air Bill:	K. Market		I	F.	
Receipt Phase		Yes	No	NA	Commen	nts
Were samples received in a cooler:		X				
Custody Seals are present and intact:						
Are CoC documents present:						
Necessary signatures:		\succ				
Thermal Preservation Type: Blue ice	Gel Ice	Dry Ice	None	Other:		
Temperature: °C Thermometer ((Circle one Serial #12)	2208348 Ke	eyring IR	Serial # 11 [.]	1874910 IR Gun 2)(accej	otance criteria 0-6
Temperature out of range: Not enough ice	e ice melted w	/in 4hrs of	collection]Other:	
Log-in Phase Date/Time: 1217-14 9.20 By	y(D)	Yes	No	NA	Commer	its
Are sample labels affixed and completed for e	ach container	X				
Samples containers were received intact:		X				
Do sample IDs match the CoC	·····	X				
Appropriate sample containers were received	for tests requested	У				
Are sample volumes adequate for tests reques	sted	X				
Appropriate preservatives were used for the te	ests requested	X				
pH of inorganic samples checked and is within	n method specification	<u>X</u>		·····		
Are VOC samples free of bubbles >6mm (1/4"	' diameter)			X		
Are dissolved parameters field filtered						
Do any samples need to be filtered or preserve	ed by the lab			X		
Does this project require quick turnaround ana	alysis		<u>×</u>		Nitrate	
Are there any short hold time tests (see chart)	below)	\star			Nathmic	
Are any samples within 2 days of or past expin	ation	<u> </u>			۲	
Was the CoC scanned		<u>\</u>	~			
Were there Non-conformance issues at login			<u>~</u>	x		
If yes, was a CAR generated #				9		

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

1

Form No. SP-FORM-SPL-002 12 December 2012

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

0

 253-922-2310
 FAX 922-5047

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

				C]	HAIN	N OF	CUSI	rody	REI	ORT			Work G	rder #1	5×20091	
CLIENT: GeoFAGNEESS					INVOIO	CE TO:								TURNAI	ROUND REQUES	5T
REPORT TO: JT Suged SKi ADDRESS: 573 E Second Spokene with PHONE: SUF - 363-317 FAX: PROJECT NAME: Tige- Oil	i jsugelski@; Auc 29702	<u>Ĵ</u> coe	siver											Organic &	Business Days * Inorganic Analyses 4 3 2 [1 <1
PHONE: 509-363-312- FAX:	509-363-3126	i			P.O. NU	MBER:									Hydrocarbon Analyses	
PROJECT NAME: Type Oil	North 1st st		1			<u>r</u>	PR	ESERVAI	IVE	1				ם שו	3 2 1	<1
PROJECT NUMBER: 0 JOCI - 10				L S			REQUE	STEDAL	IALYSES				 4		Specify:	
SAMPLED BY: しんして		+	101	150		300		1 200	5				* Turnaround	Requests les:	s than standard may incu	r Rush Charge
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	Nuct PH- Car	Hatter	22.20	Ĩ	Nerntrul	503 103	STEDA (DORESYNS)	Lea,				MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
1 MW-1-121114 17	2/11/14 1406	X		\times	\times	×	X	X	×				 ω	9		
2 MW-2-121114]												 <u> </u>			
3 MW-2-121114	1 253															
1 mw-4-121114	1218															
5 MW-5-121114	1 1327				- -				$\left - \right $							
6 MW-DUP-121114	1 1200			₹.	V	U U			4							
7						,			_				 			
8						<u> </u>										_
9																-
10 RELEASED BY: 7					DATE		12/1	L	DECEN		, 1d			I	DATE:	1-11-110
PRINT NAME: John Rice	FIRM: C	20			TIME		•	/	PRINTN		E SL	roliton	FIRM	Testfin	nia me	Mitos
RELEASED BY:		-			DATE				RECEIV			Ĩ			DATE:	
PRINT NAME: ADDITIONAL REMARKS:	FIRM:				TIMÈ	2			PRINTN	AMË:			 FIRM	<u>-</u>	TEMP: 4-7	GE OF
<u> </u>		i														-1000 (0612

2014

		erica S Receip	-			
Work Order #: JXL()) 91	Client JEOENQ	ineurs)		Project:	North 1st St
Date/Time Received: 12/214 14	30 05	By:CS				
Samples Delivered By: Shipping Serv	ice Courier 🗐	it []Othe	r:			······································
List Air Bill Number(s) or Attach a photoco	ppy of the Air Bill:			i jest star til jest som samt som som		
Receipt Phase		Yes	No	NA .		Comments
Were samples received in a cooler:		X				
Custody Seals are present and intact:				X	. <u>.</u>	*******
Are CoC documents present:		X	ļ			
Necessary signatures:		X				
Thermal Preservation Type: Blue Ice		Dry Ice	None	Other:		
Temperature 4. / °C Thermome	/ ter (Circle one Serial #12	22208348 K	eyring IR	Serial # 11	1874910 li	R Gun 2)(acceptance criteria 0-6
Temperature out of range: Not enough	n ice	w/in 4hrs of	collection	NA _]Other:	
Log-in Phase 2121 15:2	By CB	Yes	Na	NA -		Comments
Are sample labels affixed and completed f	or each container	م	-			:
Samples containers were received intact:		イ				
Do sample IDs match the CoC		<u>حر</u>	-			
Appropriate sample containers were receiv	ved for tests requested		<u> </u>			
Are sample volumes adequate for tests re-	quested	<u>≻</u>				
Appropriate preservatives were used for th	e tests requested	<u>></u>				
pH of inorganic samples checked and is w	ithin method specification					
Are VOC samples free of bubbles >6mm (1/4" diameter)	7				
Are dissolved parameters field filtered				حر		
Do any samples need to be filtered or pres	erved by the lab			<u> </u>	1. s ad a star s mar an	
Does this project require quick turnaround	analysis	<u> </u>				- 1
Are there any short hold time tests (see ch	art below)	ļ				
Are any samples within 2 days of or past e	xpiration		\geq			
Was the CoC scanned		7	<u> </u>			
Were there Non-conformance issues at log	gin		(
If yes, was a CAR generated #						

į

2

24 hours or less Coliform Bacteria

Chromlum +6

Form No. SP-FORM-SPL-002 12 December 2012

l

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Washington State Department of Ecology (Ecology). This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Tiger Oil North 1st site located at 1808 North 1st Street in Yakima, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with Ecology and generally accepted environmental practices in this area at the time this report was prepared.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Environmental Regulations are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

No ESA can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable, but recognize that separating logs from the report can elevate risk.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Geoenvironmental Reports Should Not be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

