

Phase II Environmental Site Assessment

South Lake Union Marriott AC 739 9th Avenue North Seattle, Washington

for WPPI Bellevue MFS, LLC

November 13, 2014

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206-728.2674

Phase II Environmental Site Assessment

South Lake Union Marriott AC 739 9th Avenue North **Seattle, Washington**

File No. 20776-003-00

November 13, 2014

Prepared for:

WPPI Bellevue MFS, LLC c/o AJH Development Services, LLC 10900 NE 4th Street, Suite 2300

Attention: Arne J. Hall

Prepared by:

GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101

206.728.2674

Jessica Smith, LG

Environmental Geologist

David A. Cook, LG, CPG

Principal

David A. Cook

JAS:DAC:leh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

sed Geolo

Copyright© 2014 by GeoEngineers, Inc. All rights reserved.

Table of Contents

EXE(CUTIVE SUMMARY	1
1.0	INTRODUCTION	1
2.0	BACKGROUND AND SUMMARY OF PREVIOUS STUDIES	1
2.1.	Previous Environmental Studies and Current or Historic Potential Sources of Contamination	1
3.0	PURPOSE AND SCOPE OF SERVICES	2
4.0	SUBSURFACE CONDITIONS	4
	Subsurface Soil Conditions	
5.0	SOIL SAMPLING AND CHEMICAL ANALYTICAL RESULTS	4
5.2. !	Soil Sampling Activities	5 5
6.0	GROUNDWATER SAMPLING AND CHEMICAL ANALYTICAL RESULTS	6
7.0	SOIL VAPOR SAMPLING AND CHEMICAL ANALYTICAL RESULTS	7
	Soil Vapor Sampling Soil Vapor Sample Chemical Analytical Results	
8.0	CONCLUSIONS	8
8.2. 8.3. 8.4.	Dangerous Waste Soil (DP-2 Location, West-Central Boundary of Property) Contaminated Soil (West Half of Property) Impacted Soil (East Half of Property) Groundwater Soil Vapor	9 9 9
9.0	LIMITATIONS	. 10

LIST OF TABLES

- Table 1. Soil Field Screening and Chemical Analytical Data (Petroleum Hydrocarbons, PCBs and Metals)
- Table 2. Soil Field Screening and Chemical Analytical Data (PAHs)
- Table 3. Soil Field Screening and Chemical Analytical Data (VOCs)
- Table 4. Groundwater Chemical Analytical Data (Petroleum Hydrocarobns, Metals, PAHs, and VOCs)
- Table 5. Sub-slab Soil Vapor Chemical Analytical Data (Petroleum Hydrocarbons and VOCs)

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Cross Section A-A'
- Figure 4. Cross-Section B-B'
- Figure 5. Cross-Section C-C'
- Figure 6. Cross-Section D-D'

APPENDICES

- Appendix A. Field Procedures and Boring Logs
- Appendix B. Chemical Analytical Program
- Appendix C. Report Limitations and Guidelines for Use

EXECUTIVE SUMMARY

A Phase II Environmental Site Assessment (ESA) was completed at 739 9th Avenue North in Seattle, Washington (subject property) in August and September 2014 (Figure 1). The objectives of the Phase II ESA were to: 1) evaluate the potential vertical and lateral extent of soil contamination associated with the current or past sources of contamination identified in the Phase I ESA; 2) evaluate impacts to fill soil from an unknown source; 3) evaluate groundwater conditions throughout the property; and, 4) evaluate the potential for vapor intrusion caused by volatile contamination in the subsurface. Several current and historic potential sources of contamination were identified on the subject property, including: current and former auto repair facilities, past light industrial use including the use of paints and automotive fluids, vehicle maintenance and body repair, a closed-in-place heating oil underground storage tank (UST), and fill material from an unknown source (Figure 2).

In addition to the historic sources of potential contamination, confirmed at the subject property, soil and groundwater contamination has been identified at the following adjacent properties that are located upgradient or cross-gradient of the subject property (Figure 2):

- Former Frank Kenney Toyota/715 9th Avenue. A 1988 site investigation reportedly identified localized shallow petroleum contamination at the site. Details regarding the nature and extent of the contamination were not included in the documents available for review.
- Former Roy Streets Shops (aka Seattle City Light Maintenance Facility). Petroleum contamination has been confirmed in soil and groundwater at the adjacent Roy Streets Shops site to the west. Groundwater samples obtained in 2002 from wells located in the alley along the shared boundary with the subject property (MW-101, MW-102, and MW-105) contained gasoline-range petroleum hydrocarbons and benzene, ethylbenzene, toluene, and xylenes (BETX compounds) at concentrations above Model Toxics Control Act (MTCA) Method A cleanup levels, according to the most recent data included in the Washington State Department of Ecology (Ecology) file. This indicates that contaminated groundwater from the Roy Street Shops site has likely migrated onto the subject property.
- **Former Bayside Volvo.** The north adjacent Bayside Volvo site has a long history of automotive repair activities and three USTs were closed-in-place at the site. Petroleum hydrocarbons have been identified in site soil and groundwater.
- Former American Linen Supply Co. Chlorinated solvents, petroleum, and BETX have been documented in soil and groundwater at the nearby American Linen Supply Co. (American Linen) site to the southwest. American Linen was formerly an industrial laundry that used dry cleaning solvents and is the source of a significant release to groundwater in the South Lake Union neighborhood. Contaminated groundwater has reportedly migrated from the American Linen site to the east and beneath the subject property. Significant cleanup action including electrical resistance heating has been completed at the American Linen site, but additional performance monitoring information is not yet available in Ecology's file, so we are unable to make an opinion on the success of the cleanup action at American Linen.

Four (4) hollow-stem auger borings and twelve (12) direct-push borings were completed at the subject property, with monitoring wells installed in three of the borings. Soil and groundwater samples were obtained from the borings/monitoring wells for chemical analysis. Additionally, sub-slab soil vapor samples were obtained from six locations across the property to characterize soil vapor and evaluate the potential for vapor intrusion caused by subsurface volatile contamination. Based on the geologic information and chemical analytical results obtained during this study we conclude the following regarding the subject property:

- Contaminated and dangerous waste soil. Petroleum, metals, volatile organic compounds (VOCs) and/or polycyclic aromatic hydrocarbon (PAH)-contaminated soil exceeding MTCA cleanup levels is present on the subject property and lead is present at one location (DP-2) at a concentration that exceeds the dangerous waste threshold. Additionally, a significant amount of decaying trash and debris (plastic, wood, glass, metal, and other unidentifiable garbage) was encountered on the western portion of the property in borings MW-3, GEI-4, DP-2, DP-8, DP-9, DP-11 and DP-12 between approximately 5 and 15 feet below the ground surface. The approximate locations of the borings as well as a visual summary of the chemical analytical results of the soil samples obtained from the borings are shown on Figure 3.
- Impacted soil. Impacted fill and native soil is present on the eastern half of the subject properties at depths ranging from approximately ground surface to approximately 15 feet below the ground surface. Cross-sections shown in Figures 3 through 6 show the estimated fill thicknesses across the property in relation to the current elevations and chemical analytical results of soil samples tested from fill and native soil. Although contaminants of concern were detected below the MTCA cleanup levels on the east half of the property, soil in these locations will require special handling and end-use disposal if excavated during the course of construction.
- Groundwater. Groundwater samples were obtained from the three monitoring wells (MW-1, MW-2, and MW-3) for chemical analysis. Benzene, vinyl chloride, and/or arsenic were detected at concentrations greater than their respective MTCA Method A Cleanup levels in monitoring wells MW-2 and/or MW-3. No contaminants of concern were detected at concentrations greater than MTCA cleanup levels in monitoring well MW-1 (at the northeast quadrant of the property) (Figure 4). There are multiple potential sources of benzene-contaminated groundwater beneath the subject property, including the subject property as well as the former north-adjacent Bayside Volvo, the south-adjacent Frank Kenney Toyota/715 9th Avenue property, and the Roy Street Shops site (which included historic use as a gasoline service station). However, based on the chemical analytical results of groundwater samples obtained from the monitoring wells located in the alley adjacent to the subject property, the most likely source is the Roy Street Shops site. The presence of arsenic at the subject property could be related to background conditions, reducing conditions associated with petroleum hydrocarbons, and/or related to a degrading debris layer at the property. The source of the VOC-contaminated groundwater could be from one of the former auto repair facilities at the subject property, nearby locations or the former dry cleaner and/or paint manufacturer located northwest of the subject property. However, because halogenated volatile organic compounds (HVOCs) were not detected in soil samples obtained from the subject property, the most likely source is the significant solvent release from the American Linen site located to the southwest.

If dewatering is required for construction purposes, it is possible that groundwater will need to be treated prior to discharge to meet dewatering discharge thresholds during construction activities.

■ **Soil vapor.** Contaminants of concern were detected at concentrations greater than the MTCA Method B soil vapor screening levels in four of the soil vapor samples, which indicates there is a potential vapor intrusion threat at the subject property. The potential soil vapor sources include gasoline and benzene-contaminated soil on the subject property as well as the solvent-contaminated groundwater beneath the subject property. Additional evaluation (including the completion of a Johnson and Ettinger [J&E] vapor intrusion model) could be conducted to further evaluate the vapor intrusion threat at the subject property and if mitigation (e.g., a chemical vapor barrier) is warranted.

This Executive Summary should be used only in the context of the full report for which it is intended.

1.0 INTRODUCTION

This report presents the findings of our Phase II Environmental Site Assessment (ESA) of the South Lake Union Marriott AC property completed from August to September 2014 at the property located at 739 9th Avenue North in downtown Seattle, Washington (subject property). The property is currently occupied by a single-story automotive paint and repair shop. The property is shown relative to surrounding physical features on the Vicinity Map, Figure 1. The site layout, including site structures, boring locations and cross-section lines are shown on the Site Plan, Figure 3.

2.0 BACKGROUND AND SUMMARY OF PREVIOUS STUDIES

2.1. Previous Environmental Studies and Current or Historic Potential Sources of Contamination

Several environmental studies have been completed on, or on portions, of the subject property. GeoEngineers, Inc. (GeoEngineers) completed a Phase I ESA for the subject property entitled; "Phase I Environmental Site Assessment, South Lake Union Marriott AC, 739 9th Avenue North, Seattle, Washington" dated November 13, 2014. For a description of the current and historic uses of the subject properties, as well as a list and review of previous studies completed on the subject properties please refer to our Phase I ESA report. A brief summary of key environmental findings from the Phase I ESA are described below.

Several current and historic potential sources of contamination were identified on the subject property, including: current and former auto repair facilities, past light industrial use including the use of paints and automotive fluids, vehicle maintenance and body repair, a closed in place heating oil underground storage tank (UST), and fill material from an unknown source (Figure 2).

In addition to the historic sources of potential contamination, confirmed at the subject property, soil and groundwater contamination has been identified at the following adjacent properties that are located upgradient or cross-gradient of the subject property (Figure 2):

- Former Frank Kenney Toyota/715 9th Avenue. A 1988 site investigation reportedly identified localized shallow petroleum contamination at the site. Details regarding the nature and extent of the contamination were not included in the documents available for review.
- Former Roy Streets Shops (aka Seattle City Light Maintenance Facility). Petroleum contamination has been confirmed in soil and groundwater at the adjacent Roy Streets Shops site to the west. Groundwater samples obtained in 2002 from wells located in the alley along the shared boundary with the subject property (MW-101, MW-102, and MW-105) contained gasoline-range petroleum hydrocarbons and benzene, ethylbenzene, toluene and xylenes (BETX compounds) at concentrations above Model Toxics Cleanup Act (MTCA) Method A cleanup levels, according to the most recent data included in the Washington State Department of Ecology (Ecology) file. This indicates that contaminated groundwater from the Roy Street Shops site has likely migrated onto the subject property.
- Former Bayside Volvo. The north adjacent Bayside Volvo site has a long history of automotive repair activities and three USTs were closed-in-place at the site. Petroleum hydrocarbons have been identified in site soil and groundwater.

Former American Linen Supply Co. Chlorinated solvents, petroleum, and BETX have been documented in soil and groundwater at the nearby American Linen Supply Co. (American Linen) site to the southwest. American Linen was formerly an industrial laundry that used dry cleaning solvents and is the source of a significant release to groundwater in the South Lake Union neighborhood. Contaminated groundwater has reportedly migrated from the American Linen site to the east and beneath the subject property. Significant cleanup action including electrical resistance heating has been completed at the American Linen site, but additional performance monitoring information is not yet available in Ecology's file, so we are unable to make an opinion on the success of the cleanup action at American Linen.

The potential contaminants of concern (based on current and historic site use, the presence of unknown fill, and our review of previous environmental reports) for the subject property include the following:

- Gasoline-, diesel- and heavy oil-range petroleum hydrocarbons;
- Metals:
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated biphenyl (PCBs); and
- Volatile organic compounds (VOCs) which include chlorinated VOCs.

The approximate locations of the adjacent properties and potential sources of contamination described above are shown on the Site Plan, Figure 2.

3.0 PURPOSE AND SCOPE OF SERVICES

The objectives of the Phase II ESA services described in this report were to: 1) evaluate the potential vertical and lateral extent of soil contamination associated with the current or past sources of contamination identified in the Phase I ESA; 2) evaluate contamination in fill soil that was imported from an unknown source; 3) evaluate groundwater conditions throughout the property; and, 4) evaluate the potential for vapor intrusion caused by volatile contamination in the subsurface. Our specific scope of services is presented in our proposal dated August 1, 2014. Our general environmental scope of services was as follows:

- 1. Prepared for the exploration program by completing a site-specific health and safety plan for use by GeoEngineers' employees working at the site, preparing an Exploration Plan to guide the drilling program and the chemical analytical testing approach and rationale and arranging for a utility locate (private and one-call) prior to the exploration programs.
- 2. Coordinated the disposal of investigation derived waste at a Subtitle C and D landfill. Soil removed from the borings was drummed, labeled and stored at the property pending permitted disposal.
- 3. Observed the completion of 16 borings (4 by hollow-stem auger and 12 by direct-push drilling methods) to depths ranging from approximately 13 to 65 feet below the ground surface (bgs). Three of the borings were completed as monitoring wells.

- 4. Obtained soil samples at approximately 2.5-foot or 5-foot intervals for field screening and possible chemical analysis. Performed field screening of soil samples for evidence of petroleum and/or VOC-related contamination using visual, water sheen and headspace vapor screening methods using a photoionization detector (PID). Visually classified the soil samples in general accordance with the American Society for Testing and Materials (ASTM) D 2488-00.
- 5. Submitted at least one or two soil samples from each boring for chemical analysis for one or more of the following:
 - Gasoline-range petroleum hydrocarbons using Northwest Method NWTPH-Gx;
 - Diesel- and heavy oil-range petroleum hydrocarbons using Northwest Method NWTPH-Dx;
 - Polychlorinated biphenyls (PCBs) using U.S. Environmental Protection Agency (EPA) Method 8082;
 - Resource Conservation and Recovery Act (RCRA) 8 Metals using EPA Methods 6000/7000 Series;
 - Polycyclic aromatic hydrocarbons (PAHs) using EPA Method 8270D; and,
 - Volatile organic compounds (VOCs) using EPA Method 8260B.
 - Select samples were submitted for Toxicity Characteristic Leaching Procedure (TCLP) testing of lead and mercury using EPA Method 1311. Additionally, soil samples with chromium detected at concentrations greater than the natural background were submitted for follow up chemical speciation.

Soil samples were submitted to Fremont Analytical (Fremont) in Seattle, Washington. In borings where contaminants of concern were detected at concentrations greater than the MTCA Method A cleanup levels, additional soil samples were submitted to attempt to evaluate the vertical extent of soil contamination.

- 6. Measured the depth to water in each of the monitoring wells using an electronic water level indicator.
- 7. Surveyed the top of casing of each well to evaluate groundwater flow direction at the time of water level measurement.
- 8. Obtained groundwater samples from the three monitoring wells. Groundwater samples were collected using low-flow purging and sampling methods.
- 9. Submitted each of the groundwater samples for chemical analysis of the following:
 - Gasoline-range petroleum hydrocarbons using Northwest Method NWTPH-Gx;
 - Diesel- and heavy oil-range petroleum hydrocarbons using Northwest Method NWTPH-Dx;
 - Resource Conservation and Recovery Act (RCRA) 8 Metals using EPA Methods 6000/7000 Series;
 - Polycyclic aromatic hydrocarbons (PAHs) using EPA Method 8270D; and,
 - Volatile organic compounds (VOCs) using EPA Method 8260B.
- 10. Installed six temporary sub-slab vapor sampling probes to assess potential vapor intrusion concerns.

- 11. Submitted each of the soil vapor samples for chemical analysis of VOCs and petroleum hydrocarbons using Method TO-15.
- 12. Evaluated the field and laboratory results relative to MTCA cleanup levels and MTCA soil vapor screening levels.

4.0 SUBSURFACE CONDITIONS

4.1. Subsurface Soil Conditions

Soil encountered at the site consists of relatively shallow fill (up to approximately 20 feet deep) overlying recent deposits and competent glacially consolidated soils.

- The fill generally consists of very loose to medium dense sand with variable silt and gravel content and/or soft to stiff silt with variable gravel and cobble content. Debris layers up to approximately 10 feet thick were observed with decaying wood and plastics, glass, and metal. The thickness of fill encountered in the explorations completed ranged from 12.5 to 19.5 feet bgs.
- The recent deposits typically consist of medium stiff to very stiff silt and clay with occasional sand interbeds and variable gravel content or loose to very dense sand with variable silt and gravel content. The recent deposits were typically observed below the fill and range in depth between 35.5 to 55 feet bgs.
- The glacially consolidated soils were encountered below the recent deposits. The glacially consolidated soils consists of sand and gravel which is made up of dense to very dense sand with varying amounts of silt and gravel. Glacial till-like deposits were encountered at a depth of 56 feet in boring MW-1. The glacially consolidated soils extend to the deepest depth explored. Additionally, while not encountered during our drilling activities, occasional cobbles and boulders have been observed in glacially consolidated soils in nearby excavations and may be present at this site.

The cross-sections presented in this report (Figures 6 through 9) show the fill/native contact and the chemical analytical results. The purpose of Figures 6 through 9 is to show the contact between fill and native soils and the chemical analytical results of soil samples tested from these horizons.

4.2. Subsurface Groundwater Conditions

Based on the monitoring well data, conditions observed during drilling, and data from monitoring wells in the vicinity, we anticipate that the regional groundwater table is between approximately elevations 7 and 10 feet (approximately 21 to 24 feet bgs).

5.0 SOIL SAMPLING AND CHEMICAL ANALYTICAL RESULTS

5.1. Soil Sampling Activities

Sixteen (16) borings were completed at the subject property to evaluate the presence of soil and groundwater contamination associated with the current and/or historic potential sources of contamination. The borings were generally located in the vicinity of historic or current sources of potential contamination on the subject property (including the paint mixing room, the painting rooms, the oil water separator and a closed-in-place UST) or near the property boundary to evaluate the potential impacts to the subject property

from off-site sources. Four of the borings (MW-1 through MW-3 and GEI-4) were completed on August 22, 2014 using hollow-stem auger boring techniques to obtain information for geotechnical engineering, preliminary environmental evaluation and to explore deeper, regional groundwater conditions through the installation of groundwater monitoring wells to depths of approximately 60 feet bgs. Subsequently, twelve (12) borings (DP-1 through DP-12) were completed on September 6, 2014 using direct-push boring techniques. Soil samples were obtained from fill and native soil in each of the borings for field screening and potential chemical analysis. Field screening methods consisted of visual, water sheen screening, and headspace vapor screening using a PID and are described in Appendix A.

A total of 36 discrete soil samples were submitted to Fremont Analytical in Seattle, Washington for chemical analysis of the potential contaminants of concern outlined in the scope of services section of this report.

Discrete soil samples were chosen for chemical analysis based on field screening evidence of contamination, the location of the sample relative to potential sources of contamination, the presence of debris in the sample, the location of the sample relative to groundwater and the location of the sample relative to fill and native soil.

5.2. Chemical Analytical Results

Chlorinated solvents (tetrachloroethene [PCE], trichloroethene [TCE], 1,2-dichloroethene [1,2-DCE], vinyl chloride, and cis-1,2-dichloroethene [cis-1,2-DCE]) were not detected in soil samples obtained from the subject property. Contaminants of concern were not detected or were detected at concentrations that are similar to the area background metals concentrations in soil samples obtained from the fill and native soil in borings MW-1, GEI-4, and DP-8. Contaminants of concern either were detected at concentrations greater than or less than the MTCA Method A Cleanup levels in each of the remaining borings. Chemical analytical results for soil samples are summarized in Tables 1 through 3 and on Figure 3. Laboratory reports are presented in Appendix B.

5.2.1. Contaminants Detected at Concentrations ABOVE the MTCA Cleanup Levels

One or more contaminants of concern (gasoline/BETX, diesel- and heavy oil-range hydrocarbons; naphthalene, lead, cadmium or mercury and carcinogenic PAHs [cPAHs]) were detected at concentrations greater than the MTCA Method A cleanup levels in soil samples obtained from eight (8) borings (MW-2, DP-2, DP-7, DP-8, DP-9, DP-10, DP-11 and DP-12) that are generally located in the western half of the subject property. The maximum extent of contamination detected at concentrations greater than the MTCA Method A cleanup level in the soil samples submitted for chemical analysis is approximately 35 feet bgs.

- Gasoline-range petroleum hydrocarbons, benzene and/or ethylbenzene were detected at concentrations greater than the MTCA Method A cleanup levels in samples obtained from borings DP-2, DP-7, DP-8, DP-9, DP-11 and/or DP-12 between approximately 5 and 20 feet bgs. The vertical extent of the gasoline-contamination in borings DP-2 and DP-7 is unknown because samples at the base of the borings contained concentrations of gasoline greater than the cleanup level and the borings could not be advanced further due to dense soils.
- PAHs and/or cPAHs were detected at concentrations greater than the MTCA Method A cleanup levels in both fill and native soil samples obtained from DP-2, DP-7, DP-8, DP-10, and DP-11 at depths ranging from the ground surface to approximately 35 feet bgs. The vertical extent of the PAH-contamination in

boring DP-8 is unknown because samples at the base of the boring contained concentrations of PAHs greater than the cleanup level and the boring could not be advanced further due to dense soils.

- **Metals** were detected in soil at concentrations greater than the corresponding MTCA Method A cleanup levels were lead (samples obtained from DP-2, DP-7, DP-8, DP-11, and DP-12), mercury (samples obtained from DP-8-7.5 and DP-9-5.0), and cadmium (sample DP-7-7.5). Soil samples with lead detected at concentrations greater than 200 milligrams per kilogram (mg/kg) and mercury detected at concentrations greater than 4 mg/kg were submitted for chemical analysis of Toxicity Characteristic Leaching Potential (TCLP). Lead and mercury were detected at concentrations less than the dangerous waste threshold in each of the samples submitted for TCLP with one exception: lead was detected at a concentration of 15.8 milligrams per liter (mg/L) in a sample (DP-2-10.0) obtained from approximately 10 feet bgs in boring DP-2, which is greater than the dangerous waste threshold of 5.0 mg/L.
- **Diesel- and heavy oil-range petroleum hydrocarbons** were detected in a sample obtained at approximately 2.5 feet bgs from boring DP-11 at concentrations greater than the MTCA Method A cleanup levels. Based on field screening and chemical analytical data, the diesel- and heavy oil-range petroleum contamination at DP-11 likely extends from the ground surface to approximately 15 feet bgs. Boring DP-11 is located adjacent to the oil/water separator in the western portion of the subject property.

5.2.2. Contaminants Detected at Concentrations BELOW the MTCA Cleanup Levels

One or more contaminants of concern (gasoline, diesel and heavy oil range hydrocarbons, cPAHs and VOCs [including 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, toluene, total xylenes, isopropylbenzene, n-butylbenzene, n-propylbenzene, p-isopropyltoluene, and sec-butylbenzene]) were detected at concentrations less than the MTCA Method A cleanup levels in fill soil samples obtained from five (5) borings (MW-3, DP-1, DP-3, DP-4 and DP-5) at depths ranging from ground surface to approximately 15 feet bgs. With the exception of MW-3, each of these borings are located on the eastern portion of the subject property. Additionally, contaminants of concern were detected at concentrations less than the MTCA cleanup levels in each of the borings discussed in Section 5.2.1 that also contained contaminants at concentrations greater than the MTCA Method A cleanup levels. Figure 3 shows the locations of explorations where soil samples had concentrations less than MTCA cleanup levels.

6.0 GROUNDWATER SAMPLING AND CHEMICAL ANALYTICAL RESULTS

Three of the four hollow-stem auger borings (MW-1 through MW-3) were completed as deep, permanent groundwater monitoring wells in the regional aquifer. The wells were screened at elevations ranging between 30 and -9 (approximately 27 and 59 feet bgs) and, at the time of sampling, the groundwater elevation ranged between approximately elevation 9.6 and 7.6 (approximately 20.9 to 24.0 feet bgs). Groundwater samples were obtained from each of the wells on September 6, 2014 using low-flow sampling methods. Groundwater sampling methods are described further in Appendix A. Each of the samples was submitted to Fremont Analytical in Seattle, Washington for chemical analysis outlined in the scope of services section of this report.

Contaminants of concern were not detected in groundwater samples obtained for chemical analysis from the groundwater monitoring wells, with the following exceptions:

- Gasoline-range petroleum hydrocarbons were detected at a concentration less than the MTCA Method A cleanup level in the groundwater sample obtained from MW-2 and one or more BETX compounds were detected in each of the three monitoring wells. However, the benzene concentration in the groundwater sample obtained from MW-2 was the only detection of BETX compounds that exceeded the corresponding MTCA Method A cleanup level. There are multiple potential sources of gasoline-contaminated groundwater beneath the subject property, including the subject property as well as the former north-adjacent Bayside Volvo, the south-adjacent Frank Kenney Toyota/715 9th Avenue property, and the Roy Street Shops site (which included historic use as a gasoline service station).
- were detected in groundwater samples obtained from monitoring wells MW-2 and MW-3. Vinyl chloride was detected at concentrations greater than the MTCA Method A cleanup level and 1,2-dichlloroethene and 1,2-dichloroethane were detected at concentrations less than the MTCA Method A cleanup levels. The source of the VOC-contaminated groundwater could be from the former auto repair facilities at the subject property, nearby locations or the former dry cleaner and/or paint manufacturer located northwest of the subject property. However, because HVOCs were not detected in soil samples obtained from the subject property, the most likely source is a significant solvent release from the American Linen site located to the southwest.
- Dissolved arsenic was only detected in MW-2 at concentrations greater than the MTCA Method A cleanup level. The presence of arsenic at the subject property could be related to background conditions or reducing conditions associated with petroleum hydrocarbons and/or related to a degrading debris layer at the property.

Groundwater chemical analytical results are presented graphically in Figure 4 and are summarized in Table 4. Laboratory reports are presented in Appendix B.

7.0 SOIL VAPOR SAMPLING AND CHEMICAL ANALYTICAL RESULTS

7.1. Soil Vapor Sampling

Six sub-slab soil vapor samples (SV-1 through SV-6) were obtained on September 19, 2014. Sub-slab soil vapor probes SV-1 through SV-5 were completed beneath the concrete building slab. Sub-slab soil vapor probe SV-6 was completed beneath the asphalt parking lot. The chemical analytical results for SV-6 are likely biased low due to interference of ambient air through the asphalt. The results of SV-6 are not intended to be used for regulatory purposes, but are intended to be screening level results for evaluating the potential for vapor intrusion in this location. Soil vapor sampling methods are described in Appendix A.

7.2. Soil Vapor Sample Chemical Analytical Results

Each of the soil vapor samples were submitted to ESC Lab Sciences in Mt. Juliet, Tennessee for chemical analysis of gasoline-range (low fraction) petroleum hydrocarbons and VOCs using EPA Method TO-15. Contaminants of concern were not detected at concentrations greater than the MTCA Method B Soil Vapor Screening Levels in samples SV-1 and SV-2, which are located beneath the building slab on the eastern portion of the property. Samples SV-3 through SV-6 were located on the western portions of the property and one or more contaminants of concern were detected at concentrations greater than the screening level in each of these samples, as described below.

- Petroleum-related compounds (including total petroleum hydrocarbons (low fraction), benzene, 1,2,4-trimethylbenzene, naphthalene and/or total xylenes) were detected in samples SV-3, SV-4, SV-5 and SV-6 at concentrations greater than the corresponding MTCA Method B soil vapor screening levels. Petroleum-related compounds were detected in both soil and groundwater samples obtained from the subject property.
- Solvent compounds (including 1,4-dioxane and/or tetrachloroethylene [PCE]) were detected at concentrations greater than MTCA Method B soil vapor screening levels in SV-4, SV-5 and SV-6. The compound 1,4-dioxane is commonly encountered at solvent release sites, often in conjunction with trichloroethene (TCE). 1,4-dioxane is also found in household cleaners, glues and aerosol sprays. 1,4-dioxane is hydrophilic, which makes it relatively immune to conventional treatment technologies used for other chlorinated solvents. Solvents were not detected in soil samples obtained from the subject property, so the likely source of the solvent-contaminated soil vapor is contaminated groundwater migrating onto the subject property from an off-site source.

Soil vapor chemical analytical results are presented graphically in Figure 5 and are summarized in Table 5. Laboratory reports are presented in Appendix B.

8.0 CONCLUSIONS

Based on the historical research, geologic and hydrogeologic evaluation and chemical analytical testing that we completed for the subject property, our report conclusions can be divided into five issues:

- 1. Lead-contaminated soil considered a dangerous waste located on the western portion of the property (DP-2);
- 2. Soil with contaminants of concern (petroleum hydrocarbons, BETX, naphthalene and metals) that exceed MTCA cleanup levels (referred to as "contaminated" soil);
- Soil with contaminants of concern (petroleum hydrocarbons, PAHs and cPAHs, VOCs [including BETX]
 and metals) present at concentrations less than the MTCA Method A cleanup levels (referred to as
 "impacted" soil);
- 4. Groundwater with contaminants of concern (arsenic, benzene, HVOCs) present at concentrations greater than the MTCA Method A cleanup levels; and,
- 5. Soil vapor with contaminants of concern (petroleum hydrocarbons, benzene, 1,4-dioxane, naphthalene, PCE, 1,2,4-trimethylbenzene, and xylenes) at concentrations greater than the MTCA Method B screening levels.

Each of these five issues are discussed below.

8.1. Dangerous Waste Soil (DP-2 Location, West-Central Boundary of Property)

Lead was detected at a concentration greater than the dangerous waste toxicity threshold in sample DP-2-10.0. Soil represented by this sample will require special handling and end-use disposal in accordance with the dangerous waste regulations (Washington Administrative Code [WAC] 173-303). Additional soil testing will be necessary before and likely during the remedial excavation to evaluate the potential lateral and vertical extent of the dangerous waste soil and document the remedial excavation and transport to a Subtitle C Landfill.

8.2. Contaminated Soil (West Half of Property)

Petroleum, metals, VOCs and/or PAH-contaminated soil exceeding MTCA Method A cleanup levels is present on the western half of the subject property to a maximum depth of approximately 35 feet bgs. Contaminated soil will require special handling and end-use disposal in accordance with Ecology's Model Toxics Control Act (MTCA, WAC-173-340) and Ecology's Publication No. 10-09-057, "Guidance for Remediation of Petroleum Contaminated Sites," dated September 2011. The approximate boring locations where contaminated soil was encountered are shown on Figure 3.

8.3. Impacted Soil (East Half of Property)

Impacted fill and native soil is present on the eastern half of the subject properties at depths ranging from approximately ground surface to approximately 15 feet bgs. Cross-sections shown in Figures 3 through 6 show the estimated fill thicknesses across the property in relation to the current elevations and chemical analytical results of soil samples tested from fill and native soil. Although contaminants of concern were detected below the MTCA cleanup levels on the east half of the property, soil in these locations will require special handling and end-use disposal if excavated during the course of construction.

8.4. Groundwater

Groundwater samples were obtained from the three monitoring wells (MW-1, MW-2, and MW-3) for chemical analysis. Benzene, vinyl chloride, and/or arsenic were detected at concentrations greater than their respective MTCA Method A Cleanup levels in monitoring wells MW-2 and/or MW-3. No contaminants of concern were detected at concentrations greater than MTCA cleanup levels in monitoring well MW-1 (at the northeast quadrant of the property, see Figure 4). There are multiple potential sources of benzene-contaminated groundwater beneath the subject property, including the subject property as well as the former north-adjacent Bayside Volvo, the south-adjacent Frank Kenney Toyota/715 9th Avenue property, and the Roy Street Shops site (which included historic use as a gasoline service station). However, based on the chemical analytical results of groundwater samples obtained from the monitoring wells located in the alley adjacent to the subject property, the most likely source is the Roy Street Shops site. The presence of arsenic at the subject property could be related to background conditions, reducing conditions associated with petroleum hydrocarbons, and/or related to a degrading debris layer at the property. The source of the VOC-contaminated groundwater could be from one of the former auto repair facilities at the subject property, nearby locations or the former dry cleaner and/or paint manufacturer located northwest of the subject property. However, because HVOCs were not detected in soil samples obtained from the subject property, the most likely source is the significant solvent release from the American Linen site located to the southwest.

If dewatering is required for construction purposes, it is possible that groundwater will need to be treated prior to discharge to meet dewatering discharge thresholds during construction activities.

8.5. Soil Vapor

Contaminants of concern were detected at concentrations greater than the MTCA Method B soil vapor screening levels in four of the soil vapor samples, which indicates there is a potential vapor intrusion threat at the subject property. The potential soil vapor sources include gasoline and benzene-contaminated soil on the subject property as well as the solvent-contaminated groundwater beneath the subject property. Additional evaluation (including the completion of a Johnson and Ettinger [J&E] vapor intrusion model) could be conducted to further evaluate the vapor intrusion threat at the subject property and if mitigation (e.g., a chemical vapor barrier) is warranted.

9.0 LIMITATIONS

We have prepared this report for the exclusive use of WPPI Bellevue MFS, LLC and their authorized agents. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood. any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix E, titled "Report Limitations and Guidelines for Use," for additional information pertaining to use of this report.

Table 1Soil Field Screening and Chemical Analytical Data (Petroleum Hydrocarbons, RCRA 8 Metals and PCBs) South Lake Union Marriott AC 739 9th Avenue North, Seattle, Washington

Exploration Location	Sample ID	Sample Depth	Field Se	creening ²	Pet	roleum Hydrocarb (mg/kg)	oons				RC	CRA 8 Metal (mg/kg)	s ⁵				PCBs ⁷
Location		(feet bgs)	Sheen	Headspace (ppm)	Gasoline Range ³	Diesel Range ⁴	Heavy Oil Range⁴	Arsenic	Barium	Cadmium	Chromium	Lead	TCLP Lead ⁶ µg/m ³	Mercury	Selenium	Silver	(mg/kg)
DP-1	DP-1-2.5	2.5	SS	<1	4.70 U	19.7 U	19.5	5.77	116	0.178	36.2	25		0.0588	0.407 U	0.422	
DI-T	DP-1-5.0	5	SS	<1	3.79 U	20.8 U	51.9 U	4.29	80.6	0.129	37.6	12.9		0.0515	0.426 U	0.259	
	DP-2-2.5	2.5	MS	<1	3.35 U	22.6 U	383	-			-						
DP-2	DP-2-10.0	10	HS	48	729	27.9 U	52.7	10.1	2140	0.522	28.8	367	15.8	0.206	0.571 U	0.483	
DF-Z	DP-2-12.5	12.5	NS	<1	57.4	23.5 U	58.8 U	5.57	141	0.731	72.5 ⁸	8.31		0.0648	0.507 U	0.134	-
	DP-2-15.0	15	NS	<1	34.9	-	-	-	-		-				-		
DP-3	DP-3-2.5	2.5	SS	<1	2.26	19.5 U	48.9 U	4.5	124	0.228	24.4	121		0.155	0.421 U	0.106	0.203 U
DF-3	DP-3-7.5	7.5	NS	<1	4.62 U	21.0 U	52.4 U	2.05	53.9	0.0615	28.6	2.4		0.0326	0.411 U	0.0523	
DP-4	DP-4-5.0	5	SS	<1	2.97 U	19.1 U	47.7 U	2.01	54.1	0.071	32.4	1.85	-	0.0158	0.431 U	0.0646	
DP-4	DP-4-15.0	15	SS	<1	4.86	22.5 U	56.2 U	2.12	63.5	0.0575	36.8	2.47		0.00983	0.428 U	0.0698	-
DP-5 DP-5-15.0 15 S			MS	<1	6.09 U	21.0 U	52.4 U	3.29	71.3	0.0868	41.6	3.23	-	0.0342	0.430 U	0.0763	0.152 U
DP-5	DP-5 DP-5-15.0 15 SS DP-6-2.5 2.5 SS			<1	4.89 U	22.3 U	55.6 U	3.68	96.2	0.0898	31	21.7	-	0.0915	1.15	0.0654	
DD C	DP-5-15.0 15 SS DP-6-2.5 2.5 SS			<1	4.64 U	19.4 U	48.4 U	3.17	50.5	0.1	33.1	31.5	-	0.0183	0.436 U	0.0661	
DP-6	DP-6-10.0	10	NS	<1	3.42 U	20.6 U	51.4 U	1.67	46.5	0.0507	24.9	1.81	-	0.0154	0.997	0.0329	
DD 7	DP-7-7.5	7.5	HS	80	175	468	74.4 U	10.3	1210	2.75	18.9	355	0.996	0.592	4.45	0.542	
DP-7	DP-7-13.0	13	HS	240	412	844	56.0 U	3.43	100	0.0837	31.7	18.7	-	0.0817	1.06	0.0634	-
	DP-8-7.5	7.5	HS	410	2,820	31.9 U	1550	14.6	780	1.07	21.7	1,080	0.200 U	5.45 ⁹	2.55	0.543	
DD 0	DP-8-20.0	20	NS	55	3.48 U	22.5 U	56.4 U	1.65	40.6	0.0478	21.5	2.68	-	0.0158	0.749	0.0301	
DP-8	DP-8-25.0	25	NS	20	-						-			-			
	DP-8-35.0	35	NS	6	3.32 U	20.9 U	52.2 U	-			-		-		-		-
DP-9	DP-9-5.0	5	MS	<1	152	20.5	16	19.3	1490	0.592	26.1	244	-	5.51 ⁹	5.02	1.07	
DP-9	DP-9-20.0	20	NS	<1	0.349	20.7 U	51.7 U	2.51	50	0.0674	25.9	2.46		0.0142	1.26	0.0429	
DP-10	DP-10-10.0	10	NS	<1	4.17 U	20.6 U	51.4 U	1.96	53.2	0.0525	28.4	2.29		0.0207	1.13	0.0296	
DD 44	DP-11-2.5	2.5	HS	67	5.29 U	15,800	2,230	2.59	424	1.83	27.1	1,370	3.26	0.099	1.01	0.235	
DP-11	DP-11-15.0	15	SS	2	23.3	24.9 U	62.1 U	6.21	139	0.161	66.3 ⁸	21.8		0.046	2.23	0.103	
	DP-12-7.5	7.5	SS	<1	4.76	21.7 U	230	8.76	677	0.38	44.5	604	0.200 U	0.166	1.88	0.909	
DP-12 DP-12-12.5 12.5 NS				<1	3.62	29.7 U	54.6	10.3	976	1.38	99.4 ⁸	1,390	0.200 U	0.443	1.71	0.53	
	DP-12-15.0	15	NS	<1		_	-	-	-		-		-				
MTCA Method A	A Cleanup Level	for Unrestricte	d Land Use	•	30/100 ¹⁰	2,000	2,000	20	16,000	2	2,000 ¹¹	250	NA	2	400	400	1
Metals Natural	Background Cor	ncentration			NA	NA	NA	7	NE	1	42	24	NA	0.07	NE	NE	NA
Metals Dangero	ous Waste Thres	hold			NA	NA	NA	NA	NA	NA	NA	NA	5.0	NA	NA	NA	NA

Exploration Location ¹	Sample ID	Sample Depth	Field Se	creening ²	Pet	roleum Hydrocarb (mg/kg)	ons				RO	CRA 8 Metal (mg/kg)	is ⁵				PCBs ⁷ (mg/kg)
Location		(feet bgs)	Sheen	Headspace (ppm)	Gasoline Range ³	Diesel Range ⁴	Heavy Oil Range ⁴	Arsenic	Barium	Cadmium	Chromium	Lead	TCLP Lead ⁶ µg/m ³	Mercury	Selenium	Silver	(IIIg/ kg)
MW-1	MW-1-1-2.5	2.5	NS	<1	4.52 U	23.4 U	58.4 U	4.88	84	0.105	43.9	6.07	-	0.239	0.083	0.125	-
	MW-2-2-5.0	5	NS	<1	9.29	24.5 U	61.2 U	5.83	744	0.908	27.2	519	0.200 U	0.254	0.478 U	0.548	-
MW-2	MW-2-4-10.0	10	NS	<1	-		-			-	-	714	0.500 U	-	-		-
	MW-2-8-20.0	20	NS	<1	-					_	-	2.02	-	-			
MW-3	MW-3-4-10.0	10	HS	180	14.7	21.5 U	93.4	2.58	68.9	0.108	32.8	10.9		0.0309	0.426 U	0.0449	-
IVIVV-3	MW-3-15-50.0	50	NS	<1	-	-	-	-	-	-	-	-	-	-	-	-	-
GEI-4	GEI-4-2-5.0	5	NS	<1	5.34 U	22.3 U	55.8 U	3.86	61.1	0.114	25.6	9.19	-	0.0646	0.434 U	0.0457	-
GEI-4	GEI-4-5-12.5	12.5	NS	<1	6.08 U	23.7 U	59.3 U	2.11	84.6	0.113	42.5	3.44		0.0391	0.450 U	0.0509	-
MTCA Method	A Cleanup Level	for Unrestricte	d Land Use		30/100 ¹⁰	2,000	2,000	20	16,000	2	2,000 ¹¹	250	NA	2	400	400	1
Metals Natural	Background Cor	ncentration			NA	NA	NA	7	NE	1	42	24	NA	0.07	NE	NE	NA
Metals Danger	ous Waste Thres	hold			NA	NA	NA	NA	NA	NA	NA	NA	5.0	NA	NA	NA	NA

Notes:

¹Approximate exploration locations shown on the attached figure. Chemical analytical testing by Fremont Analytical in Seattle, Washington. Samples were obtained between August 22nd and September 6th.

²Field screening methods are described in Appendix B.

³Gasoline-range hydrocarbons analyzed using Northwest Method NWTPH-Gx.

⁴Diesel- and heavy oil-range hydrocarbons analyzed by Northwest Method NWTPH-Dx.

 $^5\text{Total}$ metals analyzed by U.S. Environmental Protection Agency (EPA) 6010B/7471A.

 6 Toxicity Characteristic Leaching Procedure (TCLP) extraction using EPA Method 1311.

⁷Polychlorinated biphenyls (PCBs) analyzed by EPA 8082.

⁸The chromium detected in this sample was also submitted for Chromium Speciation using EPA Method 7196. Hexavalent chromium was not detected in this sample.

⁹This sample was submitted for a toxicity characteristic leaching procedure extraction (TCLP) for mercury. Mercury was not detected (<0.0169) in the analyzed sample.

¹⁰When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

¹¹Cleanup level for Chromium III.

- = not tested

bgs = below ground surface

mg/kg = milligrams per kilogram

MTCA = Model Toxics Cleanup Act

NE = Not Established

NA = Not Applicable

NS = no sheen, SS= slight sheen, MS = moderate sheen

ppm = parts per million

μg/m³ = micrograms per cubic meter

U = Analyte was not detected; detection limit listed

Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentraion greater than the MTCA Method A cleanup level.

Table 2

Soil Field Screening and Chemical Analytical Data (PAHs)

South Lake Union Marriott AC 739 9th Avenue North, Seattle, Washington

			Field	Screening					Non Corei	nogenic PAHs	lood (led)							Ooreine	genic PAHs ³	(a. /leat)			
			rieia s	screening		_	T		Non-Garcii	nogenic PAHS	(µg/kg)	1	-	T	,		r	Carcino	genic PAHS	(µg/ кg)		_	(8)
Exploration Location	Sample ID	Sample Depth	Sheen	Headspace (ppm)	Naphthalene	1-Methyinaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(ghi)perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Total cPAH TEQ ³ (µg/kg) (ND=0.5RL)
DP-1	DP-1-2.5	2.5	SS	<1	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	41.374 U
DI-1	DP-1-5.0	5	SS	<1	55.3 U	55.3 U	55.3 U	55.3 U	55.3 U	61.4	55.3 U	237	55.3 U	264	279	113	55.3 U	148	55.3 U	59.7	55.3 U	55.3 U	62.6
	DP-2-2.5	2.5	MS	<1	-	-		-	-			-				-			-	-			-
DP-2	DP-2-10.0	10	HS	48	14,700	12,000	20,900	90.8	76.5 U	76.5 U	76.5 U	150	76.5 U	99.4	76.5 U	76.5 U	76.5 U	76.5 U	76.5 U	76.5 U	76.5 U	76.5 U	57.7575 U
D1 -2	DP-2-12.5	12.5	NS	<1	65.7 U	149	40.9	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	49.6035 U
	DP-2-15.0	15.0	NS	<1	1	-		1	-			-	-		-	1			1	-			-
DP-3	DP-3-2.5	2.5	SS	<1	1120 U	1120 U	1120 U	1120 U	1120 U	1120 U	961	3,280	1120 U	1,890	3,540	1120 U	1120 U	1120 U	1120 U	1120 U	1120 U	1120 U	845.6 U ⁴
Di S	DP-3-7.5	7.5	NS	<1	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	41.676 U
DP-4	DP-4-5.0	5	SS	<1	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	40.5435 U
DI -4	DP-4-15.0	15	SS	<1	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	42.5065 U
DP-5	DP-5-7.5	7.5	MS	<1	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	42.129 U
DI-5	DP-5-15.0	15	SS	<1	56.5 U	25.0	34.5	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	42.6575 U
DP-6	DP-6-2.5	2.5	SS	<1	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	41.374 U
DF-0	DP-6-10.0	10	NS	<1	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	41.4495 U
DP-7	DP-7-7.5	7.5	HS	80	312	1,580	666	489	78.8 U	78.8 U	78.8 U	583	78.8 U	846	583	354	78.8 U	407	78.8 U	188	78.8 U	78.8 U	129.2
DI-1	DP-7-13.0	13	HS	240	907	9,120	6,840	1,000	55.2 U	55.2 U	55.2 U	780	1,560	3,950	964	400	352	385	55.2 U	55.2 U	55.2 U	55.2 U	439.056
	DP-8-7.5	7.5	HS	410	-	-	-	-	-		-	_	-	-	-	-			1	-	-		_
DP-8	DP-8-20.0	20	NS	55	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	174	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	187.5
Di 0	DP-8-25.0	25	NS	20	-	-		-	-			-	-	-	-	-		-	-	-	-		-
	DP-8-35.0	35	NS	6	188,000	120,000	266,000	8360 U ⁴	8360 U	8360 U	8360 U	8360 U	8360 U ⁴	8360 U	8360 U	8360 U	8,360 U ⁴	8360 U	8360 U	8360 U	8360 U	8360 U	6311.8 U ⁴
DP-9	DP-9-5.0	5	MS	<1	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	326	68.0 U	68.0 U	68.0 U	68.0 U	80.5
DI-9	DP-9-20.0	20	NS	<1	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	41.978 U
DP-10	DP-10-10.0	10	NS	<1	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	13.7	53.5 U	53.5 U	53.5 U	174	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	187.6
DP-11	DP-11-2.5	2.5	HS	67	953	18,600	24,500	1,290	292 U	292 U	292 U	792	2,100	292 U	1,170	292 U	292 U	292 U	292 U	394	292 U	292 U	222.9
DF-11	DP-11-15.0	15	SS	2	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	1.25	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	47.1875 U
	DP-12-7.5	7.5	SS	<1	72.2	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	238.58 U ⁴
DP-12	DP-12-12.5	12.5	NS	<1	39.7	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	154	69.8 U	69.8 U	69.8 U	64.6
	DP-12-15.0	15.0	NS	<1								_							-	-			-
MTCA Method	A or B Cleanup I	Level for Unrestri	cted Land Us	e ⁵	5,000	3.45E+04	3.20E+05	4.80E+06	NE	2.40E+07	NE	3.20E+06	3.20E+06	NE	2.40E+06	1,370	100	1.37E+03	1.37E+04	1.37E+05	137	1.37E+03	100

			Field S	creening					Non-Carcir	nogenic PAHs²	(µg/kg)							Carcino	ogenic PAHs ³	(µg/kg)			kg)
Exploration Location	Sample ID	Sample Depth	Sheen	Headspace (ppm)	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(ghi)perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Total сРАН ТЕQ ³ (µg/kg (ND=0.5RL)
MW-1	MW-1-1-2.5	2.5	NS	<1	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	42.205 U
	MW-2-2-5.0	5	NS	<1	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	45.3755 U
MW-2	MW-2-4-10.0	10	NS	<1		-	-	-	-	-	-		-	-	-	-	-	-	_	-	-	-	-
	MW-2-8-20.0	20	NS	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-3	MW-3-4-10.0	10	HS	180	57.6 U	125	91.2	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	42.8	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	43.488 U
IVIVV-3	MW-3-15-50.0	50	NS	<1		-							-	-		-			-	-	-		-
GEI-4	GEI-4-2-5.0	5	NS	<1	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	41.676 U
GLI-4	GEI-4-5-12.5	12.5	NS	<1	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	43.035 U
MTCA Method	A or B Cleanup Le	evel for Unrestri	cted Land Use	5	5,000	3.45E+04	3.20E+05	4.80E+06	NE	2.40E+07	NE	3.20E+06	3.20E+06	NE	2.40E+06	1,370	100	1.37E+03	1.37E+04	1.37E+05	137	1.37E+03	100

Notes:

¹Approximate exploration locations shown on the attached figure. Chemical analytical testing by Fremont Analytical in Seattle, Washington. Samples were obtained between August 22nd and September 6th.

²Polycyclic aromatic hydrocarbons (PAHs) analyzed by U.S. Environmental Protection Agency (EPA) Method 8270D/SIM. See the laboratory report for the full list of compounds analyzed.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) analyzed by EPA Method 8270D/SIM. Total cPAHs calculated using the toxicity equivalency (TEQ) methodology specified in Washington Administrative Code (WAC) 173-340-780(8). cPAHs that were not detected were assigned half the value of the detection limit for these calculations.

⁴This analyte was not detected in the soil sample, but the reporting limit for this sample is greater than the MTCA Method A cleanup level.

6 Model Toxics Cleanup Act (MTCA) Method A cleanup levels are listed here. If MTCA Method A cleanup level have not been established, Method B cleanup levels are listed instead.

-- = Not Tested

ug/kg = micrograms per kilogrambgs = below ground surface

NE = not established

ppm = parts per million

U = Analyte was not detected; detection limit listed.

µg/kg = micrograms per kilogram

Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentration greater than the MTCA Method A or B cleanup level.

Table 3

Soil Field Screening and Chemical Analytical Data (VOCs)

South Lake Union Marriott AC

739 9th Avenue North, Seattle, Washington

											Vo	latile Organic C	compounds (VOC	s) ²						
Exploration Location ¹	Sample ID	Sample Depth	Field S	creening	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Benzene	Ethylbenzene	Toluene	Total Xylenes	Isopropylbenzene (Cumene)	n-Butylbenzene	n-Propylbenzene	p-Isopropyttoluene	Sec-Butylbenzene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,2-Dichloroethane (1,2-DCE)	Vinyl Chloride (VC)	cis-1,2-Dichloroethene (cis-1,2-DCE)
			Sheen	Headspace (ppm)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
DP-1	DP-1-2.5	2.5	SS	<1	0.0188 U	0.0188 U	0.0188 U	0.0282 U	0.0188 U	18.8 U	0.0752 U	0.0188 U	0.0188 U	0.0188 U	0.0188 U	0.0188 U	0.0188 U	0.0282 U	0.00188 U	0.0188 U
DP-I	DP-1-5.0	5	SS	<1	0.0152 U	0.0152 U	0.0152 U	0.0227 U	0.0152 U	15.2 U	0.0606 U	0.0152 U	0.0152 U	0.0152 U	0.0152 U	0.0152 U	0.0152 U	0.0227 U	0.00152 U	0.0152 U
	DP-2-2.5	2.5	MS	<1				-	-				-				-	-		-
DP-2	DP-2-10.0	10	HS	48	2.06	0.296	2.13	5.92	2.28	5,455	2.34	6.21	10.5	0.124	1.59	0.0284 U	0.0284 U	0.0426 U	0.00284 U	0.0284 U
DP-2	DP-2-12.5	12.5	NS	<1	0.0436	0.0384	0.0286	0.0760	0.0213	117	0.483	0.301	1.61	0.0175 U	0.127	0.0175 U	0.0175 U	0.0263 U	0.00175 U	0.0175 U
	DP-2-15.0	15.0	NS	<1	_	_	_	-	_	-	-	-	_	-	-	-	-	-	_	-
DD 0	DP-3-2.5	2.5	SS	<1	0.0540	0.0232 U	0.0232 U	0.0407	0.0206	133.7	0.0617	0.0513	0.0617	0.0232 U	0.0232 U	0.0232 U	0.0232 U	0.0348 U	0.00232 U	0.0232 U
DP-3	DP-3-7.5	7.5	NS	<1	0.0185 U	0.0185 U	0.0185 U	0.0277 U	0.0185 U	18.5 U	0.0739 U	0.0185 U	0.0391	0.0185 U	0.0185 U	0.0185 U	0.0185 U	0.0277 U	0.00185 U	0.0185 U
	DP-4-5.0	5	SS	<1	0.0119 U	0.0119 U	0.0119 U	0.0178 U	0.0119 U	11.9 U	0.0475 U	0.0119 U	0.0119 U	0.0119 U	0.0119 U	0.0119 U	0.0119 U	0.0178 U	0.00119 U	0.0119 U
DP-4	DP-4-15.0	15	SS	<1	0.0412	0.0360	0.0243	0.0363	0.0195 U	95.8	0.0978	0.0385	0.132	0.0195 U	0.0490	0.0195 U	0.0195 U	0.0292 U	0.00195 U	0.0195 U
	DP-5-7.5	7.5	MS	<1	0.0243 U	0.0243 U	0.0243 U	0.0365	0.0243 U	24.3 U	0.0974 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0365 U	0.00243 U	0.0243 U
DP-5	DP-5-15.0	15	SS	<1	0.0433	0.0339	0.0141	0.00472	0.0151	101.3	0.0471	0.0375	0.0374	0.0195 U	0.0195 U	0.0195 U	0.0195 U	0.0293 U	0.00195 U	0.0195 U
	DP-6-2.5	2.5	SS	<1	0.0186 U	0.0186 U	0.0186 U	0.0279 U	0.0186 U	18.6 U	0.0743 U	0.0186 U	0.0186 U	0.0186 U	0.0186 U	0.0186 U	0.0186 U	0.0279 U	0.00186 U	0.0186 U
DP-6	DP-6-10.0	10	NS	<1	0.0137 U	0.0137 U	0.0137 U	0.0205 U	0.0137 U	13.7 U	0.0547 U	0.0137 U	0.0137 U	0.0137 U	0.0137 U	0.0137 U	0.0137 U	0.0205 U	0.00137 U	0.0137 U
	DP-7-7.5	7.5	HS	80	0.131	0.0973	0.346	0.170	0.225	669	0.730	0.607	0.926	0.0669	0.392	0.0333 U	0.0333 U	0.0499 U	0.00333 U	0.0333 U
DP-7	DP-7-13.0	13	HS	240	0.172	0.214	1.28	0.348	0.320	935	0.651	0.432	0.790	0.375	0.293	0.0262 U	0.0262 U	0.0394 U	0.00262 U	0.0262 U
	DP-8-7.5	7.5	HS	410	1.54	0.332	0.717	7.5	1.27	4,136	10.0	22.2	0.0291 U	2.29	6.46	0.0291 U	0.0291 U	0.0436 U	0.00291 U	0.0291 U
	DP-8-20.0	20	NS	55	0.0380	0.0315	0.312	0.0325	0.0183	162.7	0.0760	0.0176 U	0.122	0.0176 U	0.0176 U	0.0176 U	0.0176 U	0.0265 U	0.00176 U	0.0176 U
DP-8	DP-8-25.0	25.0	NS	20		_	0.0864	_	_	-	_	-	-		-	-	-	_	_	_
	DP-8-35.0	35	NS	6	0.0133 U	0.0133 U	0.0103	0.0215	0.00625	104.7	0.0369	0.0241	0.0279	0.0133 U	0.0133 U	0.0133 U	0.0133 U	0.0199 U	0.00133 U	0.0133 U
	DP-9-5.0	5	MS	<1	0.987	1.06	4.12	3.17	0.676	8,240	1.44	0.222	1.21	1.46	0.365	0.0375 U	0.0375 U	0.0563 U	0.00375 U	0.0375 U
DP-9	DP-9-20.0	20	NS	<1	0.0289	0.0141 U	0.00798	0.00539	0.00888	100.5	0.0459	0.0256	0.0299	0.0141 U	0.0141 U	0.0141 U	0.0141 U	0.0211 U	0.00141 U	0.0141 U
DP-10	DP-10-10.0	10	NS	<1	0.0167 U	0.0167 U	0.0167 U	0.0250 U	0.0167 U	16.7 U	0.0667 U	0.0167 U	0.0167 U	0.0167 U	0.0167 U	0.0167 U	0.0167 U	0.0250 U	0.00167 U	0.0167 U
DI 10	DP-11-2.5	2.5	HS	67	0.0533	0.0378	0.0212 U	0.0165	0.0120	119.1	0.0526	0.105	0.0669	0.0212 U	0.0564	0.0212 U	0.0212 U	0.0318 U	0.00212 U	0.0212 U
DP-11	DP-11-15.0	15	SS	2	0.0577	0.0516	0.0212 0	0.0147	0.0252	203.3	0.471	0.0486	0.254	0.0212 U	0.0592	0.0212 U	0.0212 U	0.0318 U	0.00212 U	0.0212 U
	DP-11-15.0	7.5	SS	<1	0.0869	0.0310 0.0413 U	0.0261	0.0147	0.0232	219.7	0.471 0.165 U	0.0480	0.0868	0.0242 0	0.0332 0.0413 U	0.0242 U	0.0242 U	0.0503 U	0.00242 U	0.0242 U
DP-12	DP-12-7.5	12.5	NS	<1	0.0220 U	0.0220 U	0.0358	0.00994	0.0232	118.1	0.103 U	0.0313	0.0450	0.0217 0.0220 U	0.0413 U	0.0220 U	0.0413 U	0.0331 U	0.00413 U	0.0220 U
DI -12	DP-12-12.0	15.0	NS	<1		- 0.0220 0	0.0338	0.00334	-	-	0.0882 0		0.0430			0.0220 0	0.0220 0	0.03310	0.002200	0.0220 0
M/M/ 1																				
MW-1	MW-1-1-2.5 MW-2-2-5.0	2.5 5	NS NS	<1 <1	0.0181 U 0.0391 U	0.0181 U 0.0391 U	0.0181 U	0.0271 U 0.0587 U	0.0181 U 0.0391 U	18.1 U	0.0723 U 0.156 U	0.0181 U 0.0391 U	0.0181 U 0.0391 U	0.0181 U 0.0699	0.0181 U 0.0391 U	0.0181 U 0.0391 U	0.0181 U 0.0391 U	0.0271 U 0.0587 U	0.00181 U 0.00391 U	0.0181 U 0.0391 U
MW-2					0.03910		0.0391 U ⁴			39.1 U										
IVI VV-∠	MW-2-4-10.0	10	NS	<1	-	-											-	-		
	MW-2-8-20.0	20	NS	<1	0.005811	0.0050.11	0.0058.11	- 0.038811	0.005811	 2E 8 II	0.102.11				0.0058.11	0.005811	- 0.0058.11	- 0.0300.11	0.0025811	0.005011
MW-3	MW-3-4-10.0	10	HS	180	0.0258 U	0.0258 U	0.0258 U	0.0388 U	0.0258 U	25.8 U	0.103 U	0.0525	0.0383	0.0435	0.0258 U	0.0258 U	0.0258 U	0.0388 U	0.00258 U	0.0258 U
	MW-3-15-50.0	50	NS	<1	0.0166 U	0.0166 U	0.0166 U	0.0249 U	0.0166 U	16.6 U	0.0663 U	0.0166 U	0.0166 U	0.0166 U	0.0166 U	0.0166 U	0.0166 U	0.0249 U	0.00166 U	0.0166 U
GEI-4	4 GEI-4-2-5.0 5 NS <1 GEI-4-5-12.5 12.5 NS <1				0.0214 U	0.0214 U	0.0214 U	0.0321 U	0.0214 U	21.4 U	0.0855 U	0.0214 U	0.0214 U	0.0214 U	0.0214 U	0.0214 U	0.0214 U	0.0321 U	0.00214 U	0.0214 U
		<u> </u>		1	0.0243 U	0.0243 U	0.0243 U	0.0365 U	0.0243 U	24.3 U	0.0972 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0365 U	0.00243 U	0.0243 U
MTCA Method	A or B Cleanup L	evel for Unrestri	cted Land Use	e°	NE	800	0.03	6	7	9,000	8,000	4,000	8,000	NE	8,000	0.05	0.05	11	0.67	160

Notes appear on Page 2

Notes:

¹Approximate exploration locations shown on the attached figure. Chemical analytical testing by Fremont Analytical in Seattle, Washington. Samples were obtained between August 22nd and September 6th.

²Volatile organic compounds (VOCs) analyzed by U.S. Environmental Protection Agency (EPA) Method 8260B. For VOCs, only detected compounds or contaminants of concern are presented in the table or listed in footnotes. See the laboratory report for the full list of compounds analyzed and detection limits.

³Model Toxics Cleanup Act (MTCA) Method A cleanup levels are listed here. If MTCA Method A cleanup level have not been established, Method B cleanup levels are listed instead.

- = Not Tested

bgs = below ground surface

ug/kg = micrograms per kilogrammg/kg = milligrams per kilogram

ne = not established

ppm = parts per million

U = not detect; detection limit list

µg/kg = micrograms per kilogram

Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentration greater than the MTCA Method A cleanup level.

Table 4

Groundwater Chemical Analytical Data (Petroleum Hydrocarbons, PAHs, VOCs and Metals)

South Lake Union Marriott AC 739 9th Avenue North, Seattle, Washington Seattle, Washington

				Approximate			Petrole	um Hydroca (µg/L)	arbons	PA (µg						VOCs ⁵ (µg/L)						1	Dissolved RC (µg	CRA 8 Metals	s ⁶		
Monitoring Well	Sample Date	Well Screen Depth (feet bgs)	Top of Casing (TOC) Elevation (feet NAVD88)	Elevation	Depth to Water (feet below TOC)	Groundwater Elevation (NAVD88)	Gasoline Range ²	Diesel Range ³	Heavy Oil Range ³	Non- Carcinogenic PAHs	Carcinogenic PAHs	В	т	E	х	PCE TCE	cis-1,2- Dichloro- ethene	1,2- Dichloro- ethane	Vinyl Chloride	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury S	elenium	Silver
MW-1-140906	09/06/14	39.8-59.8	30.1	-9.3	20.9	9.6	50.0 U	50.0 U	100 U	0.100 U	0.100 U	1.00 U	1.00 U 0.2	250 (0.240	1.00 U 0.500	U 1.00 U	1.00 U	0.200 U	0.750	200	0.200 U	0.479	0.194	0.100 U	0.370	0.200 U
MW-2-140906	09/06/14	27.0-37.0	31.0	4.6	24.0	7.6	28.9	50.0 U	100 U	0.100 U	0.100 U	14.1	1.00 U 1.0	00 U 0	0.410	1.00 U 0.500	U 4.44	1.00 U	1.34	3.98	251	0.0160	0.666	0.226	0.100 U	0.644	0.0365
MW-3-140906	09/06/14	49.4-59.4	-17.9	30.8	23.0	8.5	50.0 U	50.0 U	100 U	0.100 U	0.100 U	1.69	1.00 U 1.0	00 U 0	0.610	1.00 U 0.500	U 9.03	4.34	3.14	7.60	124	0.0165	0.444	0.161	0.100 U	0.586	1.04
	, ,				ınd Use		800/1,000 ⁸	500	500	ne	ne	5	1.000 7	00 2	1.000	5 5	160	5	0.2	5	3.200	5	50	15	2	80	80

Notes:

bgs = below ground surface

ne = not established

PCE = Tetrochloroethene

TCE = Trichloroethene

TOC = Top of Casing (reference point for measurements). Top of casings are within a few inches of ground surface at the respective monitoring well lo

 μ g/L = micrograms per liter

Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentraion greater than the MTCA Method A or B cleanup level.

¹Approximate exploration locations shown on the attached figures. Chemical analytical testing by Fremont Analytical in Seattle, Washington. Samples were obtained September 6, 2014.

 $^{^2}$ Gasoline-range hydrocarbons analyzed by Northwest Method NWTPH-Gx.

³Diesel- and heavy oil-range hydrocarbons analyzed by Northwest Method NWTPH-Dx.

⁴Polycyclic aromatic hydrocarbons (PAHs) analyzed by EPA Method 8270D/SIM. For PAHs, only detected compounds are presented in the table. See the laboratory report for the full list of compounds analyzed and detection limits.

⁵Volatile organic compounds (VOCs) and benzene (B), ethylbenzene (E), toluene (T) and total xylenes (X) analyzed by EPA Method 8260B. For VOCs, only select compounds are presented in the table. See the laboratory report for the full list of compounds analyzed and detection limits.

 $^{^{6}}$ Total metals analyzed by EPA 6010B/7471A.

 $^{^7 \}mbox{Chloroform}$ was detected at a concentration of 9.96 micrograms/liter in sample GEI-9-131125.

 $^{^8}$ When benzene is present, the gasoline range cleanup level is 800 μ g/kg. When benzene is not present the gasoline range cleanup level is 1,000 μ g/kg.

Table 5

Sub-slab Soil Vapor Chemical Analytical Data (Petroleum Hydrocarbons and VOCs) South Lake Union Marriott AC 739 9th Avenue North, Seattle, Washington Seattle, Washington

																			voc	Cs ² (µg/m³)	١															
Sub-Slab Soil Vapor Sample ID ¹	Sample Date	Total Petroleum Hydrocarbons (GC/MS) ² (Low Fraction) (µg/m³)	Helium Tracer Gas	Acetone	Benzene	Carbon disulfide	Сһіогоbепzепе	Chloromethane	Cyclohexane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dioxane	Ethanol	Ethylbenzene	4-Ethyltoluene	Trichlorofluoromethane	Dichlorodifluoromethane	Heptane	n-Hexane	Methylene Chloride	2-Butanone (MEK)	4-Methyl-2-pentanone (MIBK)	Methyl methacrylate	Naphthalene ³	2-Propanol	Propene	Styrene	Tetrachloroethylene	Tetrahydrofuran	Toluene	1,1,1-Trichloroethane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	2,2,4-Trimethylpentane	m&p-Xylene	o-Xylene
SV-1	09/19/14	580	3000	330	<1.28	<1.24	2.1	1.1	<1.38	<2.40	<2.40	<1.44	110	3	<1.96	6.7	4.1	<1.64	<1.41	5.2	7.7	25	1.7	<6.60	14	<1.38	1.7	3.3	<1.18	19	<2.18	<1.96	<1.96	<1.87	15	7.8
SV-2	09/19/14	660	3400	160	<1.28	<1.24	<1.85	<0.826	<1.38	<2.40	<2.40	1.7	150	1.9	<1.96	2.9	2.4	<1.64	1.9	1.7	15	23	2	<6.60	44	1.5	2.2	13	<1.18	22	3.6	2.2	<1.96	<1.87	8.7	3.8
SV-3	09/19/14	16,000	5900	1200	25	<6.22	11	<4.13	24	<12.0	<12.0	<7.21	770	370	23	<11.2	<9.89	530	26	45	290	110	<8.19	520	88	53	120	<13.6	<5.90	1800	<10.9	130	49	<9.34	1,800	780
SV-4	09/19/14	4,100	12000	690	54	10	<4.62	<2.07	52	15	<6.01	18	210	61	15	<5.62	<4.95	39	71	9.4	88	31	10	94	96	110	120	<6.79	<2.95	180	<5.44	54	25	9.3	260	69
SV-5	09/19/14	3,600	2600	2600	15	5.3	<7.39	<3.30	18	<9.62	<9.62	40	360	17	<7.85	<8.99	<7.91	11	21	<5.56	110	<40.9	6.6	<26.4	100	<5.51	21	2,400	8	120	<8.70	15	<7.85	<7.47	78	23
SV-6	09/19/14	450	-	52	4.2	<1.24	<1.85	<0.826	<1.38	<2.40	2.4	<1.44	34	6.9	<1.96	2.4	2.9	2.6	2.2	<1.39	7.7	<10.2	2.1	<6.60	<6.15	<1.38	9.4	120	<1.18	45	<2.18	3.6	<1.96	<1.87	29	9.1
MTCA Method Screening		1,400 4	na	1.42E+05	3.21	3,200	229	411	2.7E+04	914	ne	5	ne	4,570	ne	3,200	457	ne	3,200	2,740	22,900	13,700	3,200	0.735	ne	ne	4,570	96.2	ne	2.29E+04	2.29E+04	32	ne	ne	457	457

Notes

¹Approximate exploration locations shown on the attached figures. Chemical analytical testing by ESC Lab Sciences in Mt. Juliet, Tennessee. Samples were obtained September 19, 2014.

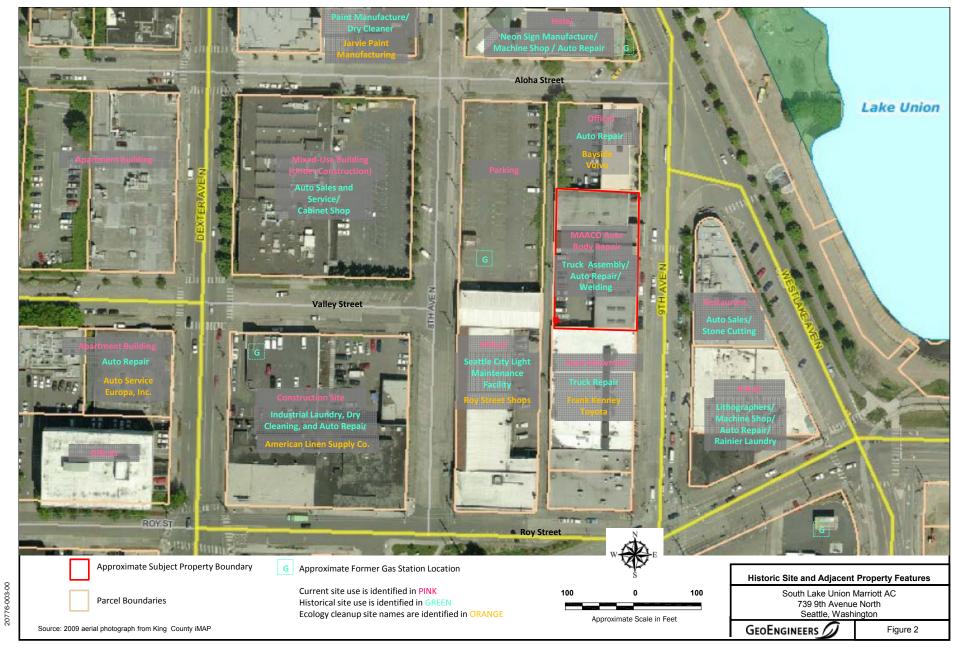
²Total petroleum hydrocarbons (low fraction) and volatile organica compounds (VOCs) analyzed by U.S. Environmental Protection Agency (EPA) Method TO-15. Units are based upon standard temperature and pressure.

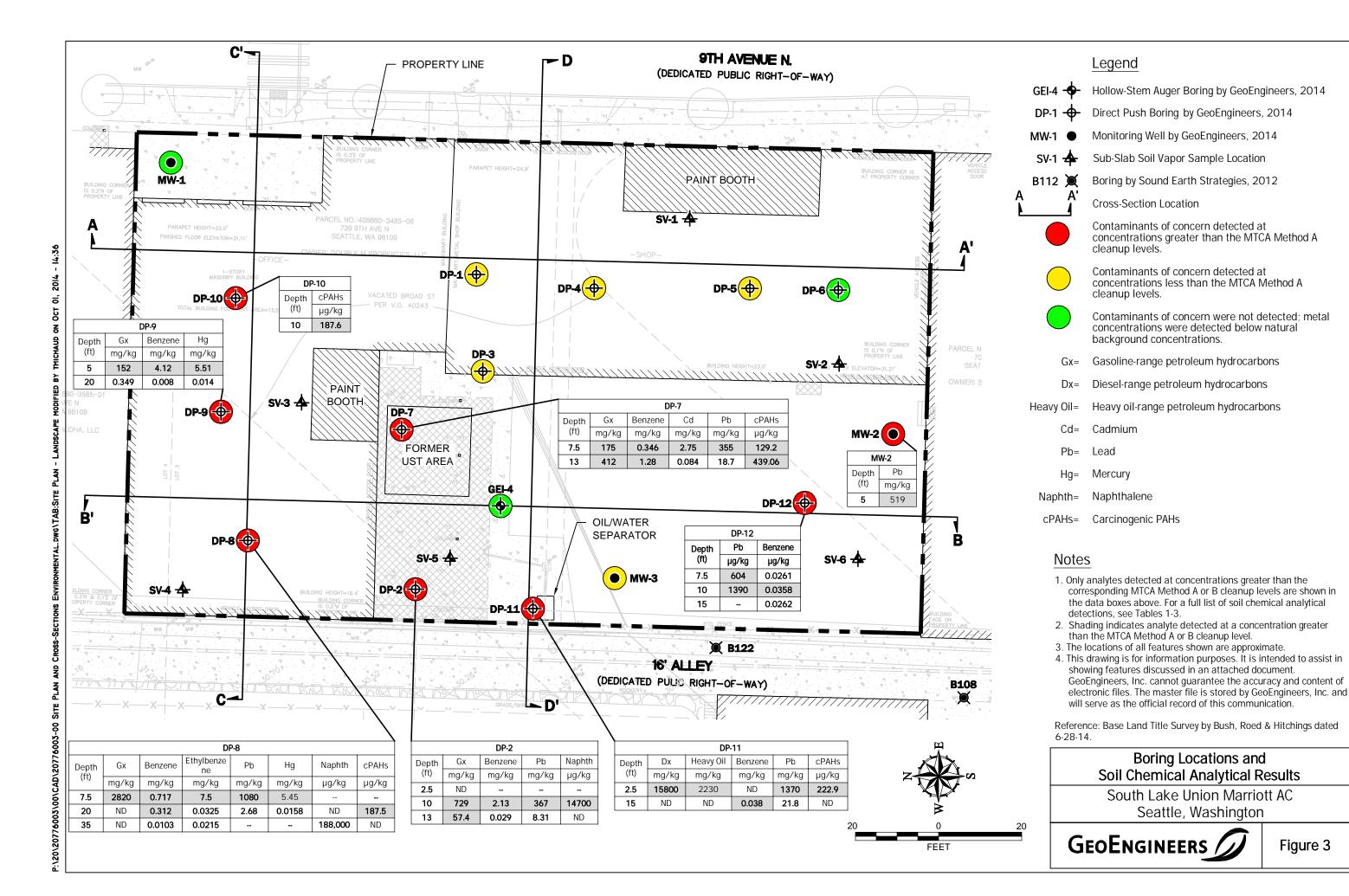
The Model Toxics Cleanup Act (MTCA) Method B soil gas screening level for air-phase petroleum hydrocarbon (APH) (EC9-12 aliphatics) fraction is 1.400 ug/m3. The Method B soil gas screening level for APH (EC9-10 aromatics) fraction and APH (EC5-8 aliphatics) fraction are 1.800ug/m3 and 27,000, respectively.

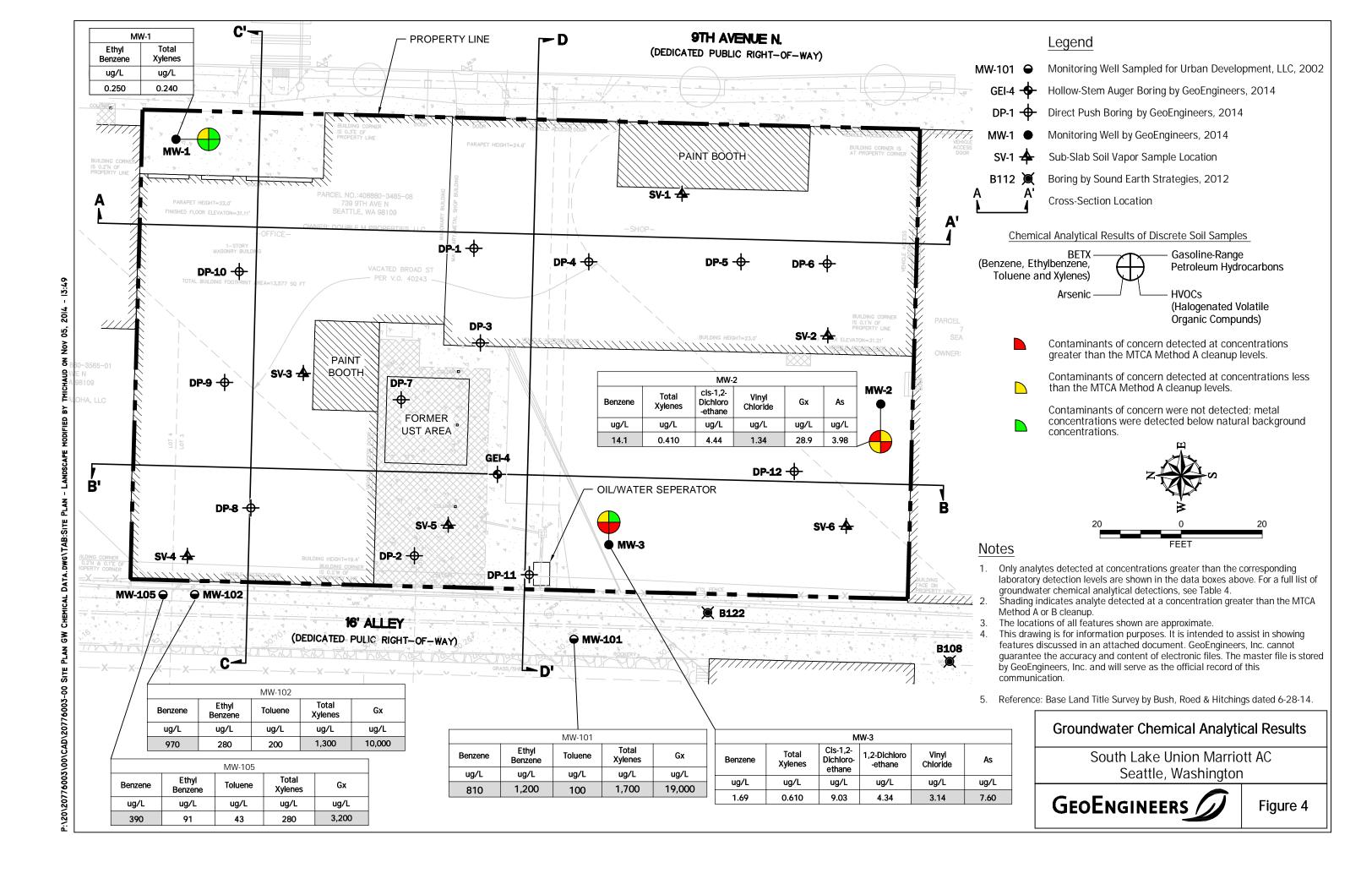
bgs = below ground surface

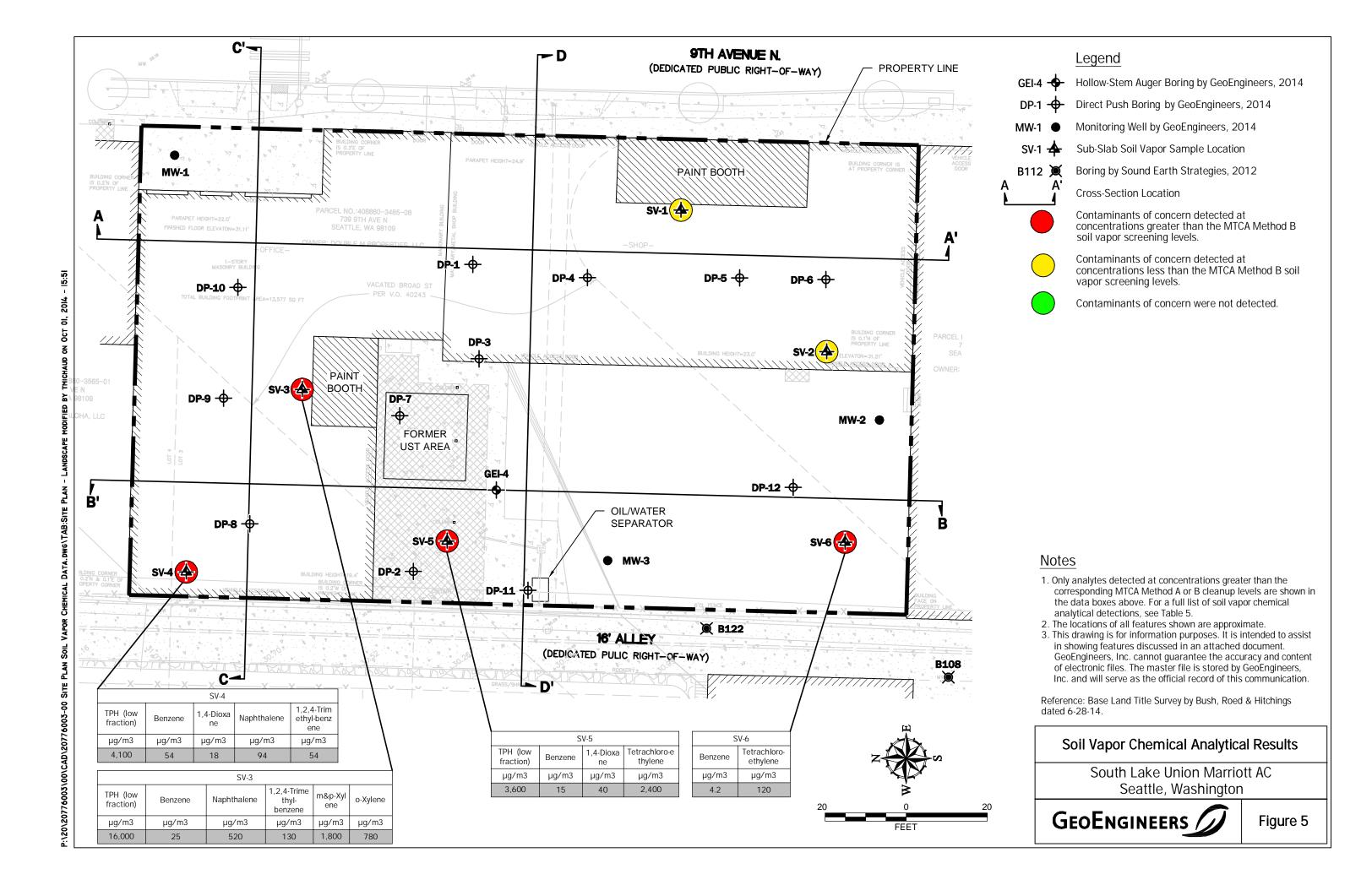
³Naphthalene detection limit is greater than the screening level.

na=not applicable


ne = not established


μg/m³= micrograms per meters cubed


Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentration greater than the MTCA Method A or B cleanup level.



3.\20\20776003\00\CAD\20776003-00

APPENDIX AField Procedures

APPENDIX A FIELD PROCEDURES

Underground Utility Locate

Prior to drilling activities, an underground utility locate was conducted in the area of the proposed boring locations to identify any subsurface utilities and/or potential underground physical hazards. An underground utility check consisting of contacting a local utility alert service and a private utility locating service was also performed.

Soil Sampling

Soil samples were obtained from exploratory borings advanced using two methods:

- A truck-mounted direct-push drilling equipment operated by Cascade Drilling of Woodinville, Washington. Direct push drilling was conducted in general accordance with Washington Administrative Code (WAC) 173-760 by a Washington state licensed drilling company. Continuous soil cores were obtained from the direct-push borings using 1.5-inch to 2.5-inch diameter, 5-foot long stainless steel sampler rods driven with a pneumatic hammer. Soil samples were collected in clean, plastic 1.5-inch to 2.5-inch diameter disposable liners. The liners were placed inside the sampling rod and then hydraulically driven or pushed into the soil at the selected sampling depth.
- A trailer-mounted, continuous-flight, hollow-stem auger drilling equipment operated by Geologic Drill Explorations of Spokane, Washington. The hollow-stem auger borings were generally sampled at 2.5-and 5-foot vertical intervals with a 2-inch outside diameter split-barrel standard penetration test (SPT) sampler. The disturbed samples were obtained by driving the sampler 18 inches into the soil with a 140-pound hammer free-falling 30 inches. The number of blows required for each 6 inches of penetration was recorded. The blow count ("N-Value") of the soil was calculated as the number of blows required for the second and third 6-inch intervals. This resistance, or N-value, provides a measure of the relative density of granular soils and the relative consistency of cohesive soils. Where very dense soil conditions precluded driving at least 18 inches, the penetrations resistance for the partial penetration was entered in the logs. The blow counts are shown on the boring logs at the respective sample depths.

A representative from our staff classified the soil encountered in each of the borings. Soil in the explorations was visually classified in general accordance with ASTM D 2488-94. The boring logs are presented in Figures A-2 through A-17.

The sampling equipment was decontaminated before each sampling attempt with a Liqui-Nox® solution wash and a distilled water rinse. Soil samples were obtained for field screening and possible chemical analysis. Soil samples obtained during the exploration activities were collected from the sampler with a stainless steel knife or new gloves. A portion of each sample was placed in laboratory-prepared sample jars for possible chemical analysis. The remaining portion of each sample was used for field screening.

At least one sample from each boring was selected for chemical analysis, based on criteria described in the report above. The soil samples were placed in a cooler with ice for transport to the laboratory. Standard chain-of-custody procedures were followed in transporting the soil samples to the laboratory.

Field Screening of Soil Samples

Soil samples obtained from the borings were screened in the field for evidence of contamination using: 1) visual examination; 2) sheen screening; and/or 3) or photoionization detector (PID). The results of headspace and sheen screening are included in the boring logs and in Table 1 for soil samples tested by chemical analysis.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons, such as motor oil or hydraulic oil, or when hydrocarbon concentrations are high. Sheen screening and headspace vapor screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup guidelines. Sheen screening involves placing soil in a pan of water and observing the water surface for signs of sheen. Sheen classifications are as follows:

No Sheen (NS) No visible sheen on water surface.

Slight Sheen (SS) Light, colorless, dull sheen; spread is irregular, not rapid; sheen

dissipates rapidly.

Moderate Sheen (MS) Light to heavy sheen, may have some color/iridescence; spread is

irregular to flowing; few remaining areas of no sheen on water surface.

Heavy Sheen (HS) Heavy sheen with color/iridescence; spread is rapid; entire water surface

may be covered with sheen.

Headspace vapor screening involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The probe of a PID is inserted in the bag and the instrument measures the concentration of combustible vapor in the air removed from the sample headspace. The PID measures concentrations in ppm (parts per million) and is calibrated to isobutylene. The PID is designed to quantify combustible gas and organic vapor concentrations up to 2,500 ppm. Field screening results are site-specific and vary with soil type, soil moisture content, temperature and type of contaminant.

Groundwater Monitoring

Monitoring Well Development

Each of the monitoring wells were developed prior to sampling efforts with either a submersible pump and dedicated tubing or by hand using a disposable bailer. Development activities at each well were continued until at least three well volumes of water were purged or the well went dry, whichever occurred first.

Depth to Groundwater

The depths to the groundwater table relative to ground surface were measured using an electric water level indicator. The electric indicator was cleaned with a Liqui-Nox® solution wash and a distilled water rinse prior to use in each well.

Groundwater Sampling

Groundwater samples were obtained either with a peristaltic pump, new plastic tubing, a flow-through cell and water parameter analyzer or using a bailer. After at least three well volumes of water were removed from each well casing, the well was purged dry or monitored parameters such as dissolved oxygen, temperature and conductivity stabilized over time indicating that groundwater from outside of the well casing is being removed from the well. The water samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. The sample containers were filled completely to eliminate headspace in the container. Chain-of-custody procedures were followed in transporting the water samples to the testing laboratory.

Sub-Slab Soil Vapor Sampling

Sub-slab Soil Vapor Probe Installation

Sub-slab soil vapor samples were collected using Vapor Pin[™] sampling devices. The Vapor Pins[™] were installed following the manufacturers' standard operating procedures (SOPs; attached to this appendix).

General installation procedures for the temporary sub-slab sampling device are as follows:

- Check for buried obstacles (pipes, electrical lines, etc.) prior to proceeding.
- Set up vacuum to collect drill cuttings.
- Drill a 5/8-inch diameter hole through the slab and approximately 1-inch into the underlying soil to form a void.
- Remove the drill bit, brush the hole with the bottle brush, and remove the loose cuttings with the vacuum.
- Place the lower end of sampling device assembly into the drilled hole. Place the small hole located in the handle of the extraction/installation tool over the sampling device to protect the barb fitting and cap, and tap the sampling device into place using a dead blow hammer. Make sure the extraction/installation tool is aligned parallel to the sampling device to avoid damaging the barb fitting.
- During installation, the silicone sleeve will form a slight bulge between the slab and the sample device shoulder. Place the protective cap on sampling device to prevent vapor loss prior to sampling.
- Allow at least 20 to 30 minutes for the sub-slab soil vapor conditions to equilibrate prior to sampling.
- Following soil vapor sample collection the Vapor PinTM sampling device was removed from the void and the hole was patched with concrete.

Sub-slab Soil Vapor Sampling Procedure

The following procedure will be followed to collect subslab soil vapor samples:

- New fluoropolymer (Teflon®) tubing was connected to the sub-slab soil vapor probe, using the barb fitting on the top of the sampling device and a piece of new silicone tubing.
- The tubing (aboveground) was connected to a sampling manifold.
- The sampling manifold was vacuum-tested (shut-in test) by briefly introducing a vacuum to the aboveground portion of the sampling train and checking for loss of vacuum. If vacuum loss was

- observed, connections and fittings in the sample train were checked and adjusted, then vacuum-tested again. This test was repeated until the sampling train demonstrated that a tight seal was achieved.
- A tracer gas shroud (clear plastic bag) was placed around the entire sample train (that is, the sub-slab soil gas probe where it enters the ground surface, the 1.0-liter Summa canister and associated tubing and manifold).
- The shroud was charged (filled) with a tracer gas (spec-grade 99.995% helium gas) and the tracer gas concentration within the shroud was measured using a hand-held monitor Ion Science Gascheck G3, which is capable of measuring helium in air in parts per million (ppm) prior to, during, and after completion of the sampling event. To charge the shroud a Teflon® tube with a ball valve was inserted under the shroud to connect with the compressed helium bottle. This same tube was used to monitor the helium concentration within the shroud periodically throughout the sampling process. The purpose of the periodic monitoring is to make sure helium is in contact with the sample train and the ground surface while the sub-slab vapor sample is collected. If readings inside the shroud indicated a concentration below saturation additional helium was added.
- The sampling train (aboveground and below ground components) was purged using an RKI Eagle multi-gas (oxygen, methane, carbon dioxide) monitor. The sample point was purged until readings (oxygen, methane, carbon dioxide) stabilized. After purging the helium concentration within the sampling train was measured and recorded. If the helium concentration in the sample train is greater than or equal to five percent of the helium concentration in the shroud, the seal was re-applied, fittings tightened, and the previous purging and measurement tests will be repeated (DTSC, 2012).
- The soil vapor sample was obtained using a 1-liter evacuated Summa canister (with approximately 30 inches of mercury vacuum set by the laboratory), with a regulated flow rate of less than approximately 200 milliliters per minute (DTSC, 2012). Also, vacuums induced on the vapor probe of less than 100 inches of water were maintained during sample collection. The canister was filled with soil vapor for approximately 5-minutes or until a vacuum equivalent of approximately 5 inches of mercury remained in the Summa canister. The initial and final canister vacuums were recorded on a soil vapor sampling field form.
- The canisters were provided by the analytical laboratory subcontractor (ESC Labs).
- Summa canisters were submitted to the analytical laboratory for chemical analysis of volatile organic compounds (VOCs), including gasoline-range organics, by U.S. Environmental Protection Agency (EPA) Method TO-15.

Investigative Waste Disposal

Drill cuttings and decontamination/purge water generated during drilling activities were temporarily stored on site in labeled 55-gallon drums pending chemical analytical results and off-site disposal.

SOIL CLASSIFICATION CHART

М	AJOR DIVISI	ONS	SYMBOLS		TYPICAL	
141.	AUGIN DIVIO	0110	_	LETTER	DESCRIPTIONS	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
00.20	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
			July July	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

ADDITIONAL MATERIAL SYMBOLS

SYMI	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	СС	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

Groundwater Contact

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata or geologic units

Approximate location of soil strata change within a geologic soil unit

Material Description Contact

Distinct contact between soil strata or geologic units

SS

MS

Approximate location of soil strata change within a geologic soil unit

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel

Standard Penetration Test (SPT)

Shelby tube

Direct-Push

Piston

Bulk or grab

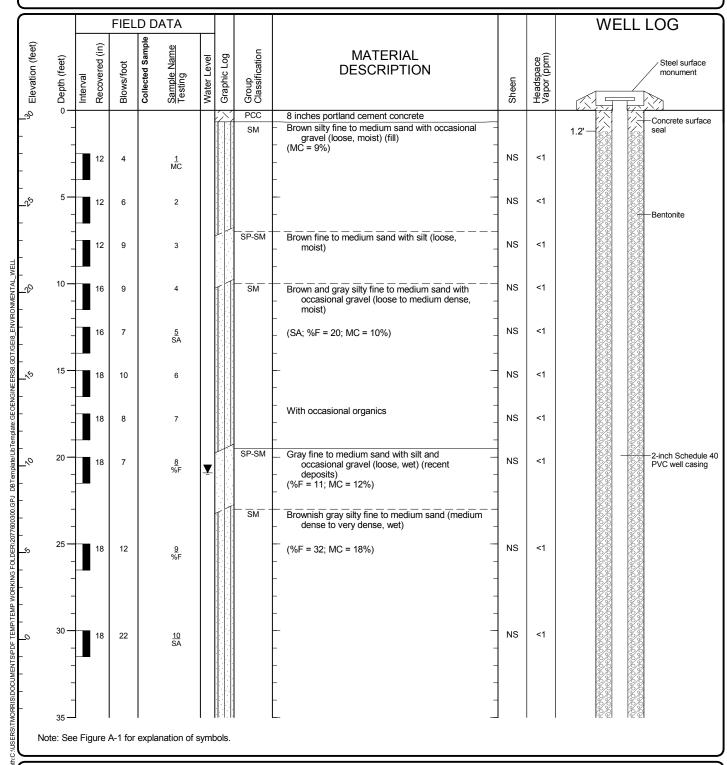
Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

A "P" indicates sampler pushed using the weight of the drill ria.

Laboratory / Field Tests

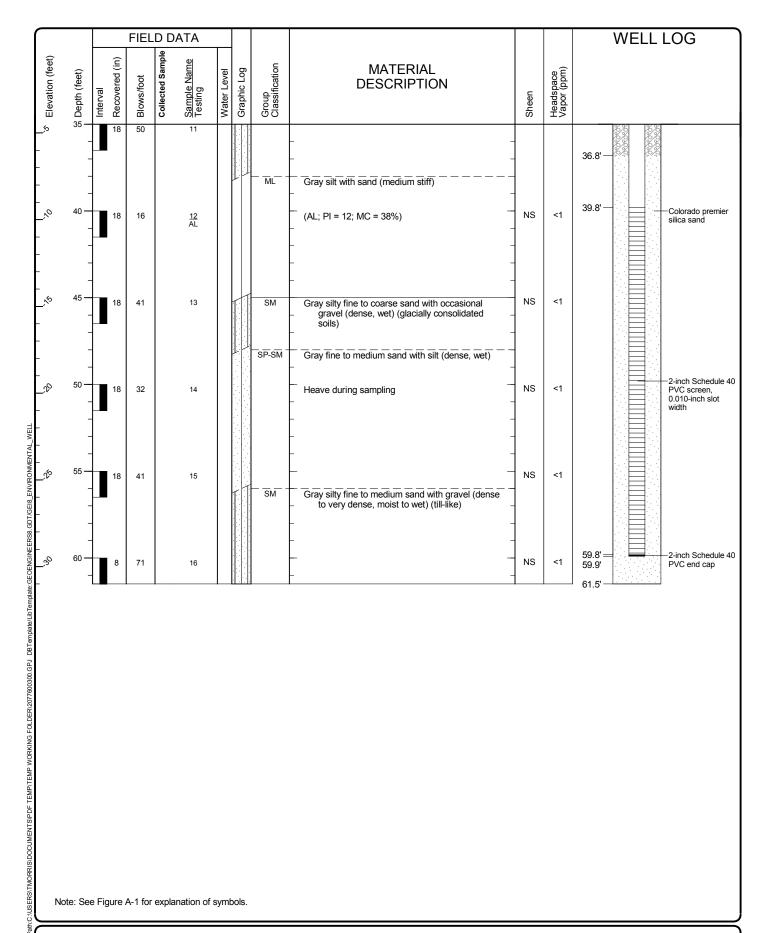
%F Percent fines Atterberg limits ΑL CA CP Chemical analysis Laboratory compaction test CS DS Consolidation test **Direct shear** HA Hydrometer analysis MC Moisture content MD Moisture content and dry density OC Organic content PΜ Permeability or hydraulic conductivity Plasticity index ы PP Pocket penetrometer **PPM** Parts per million Sieve analysis SA TX UC Triaxial compression Unconfined compression VS Vane shear **Sheen Classification** No Visible Sheen NS

Moderate Sheen HS **Heavy Sheen Not Tested**


Slight Sheen

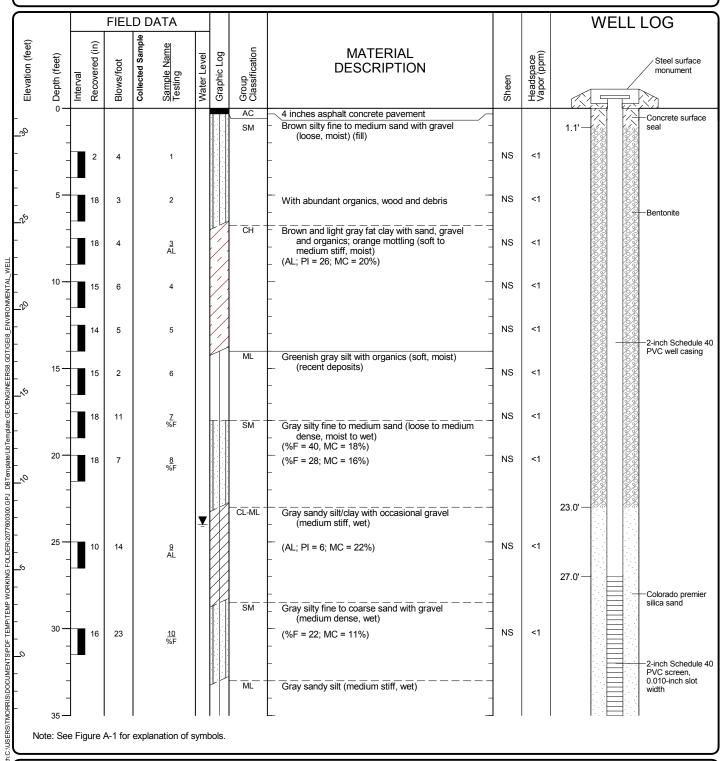
NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

KEY TO EXPLORATION LOGS


Start Drilled 8/22/2014	<u>End</u> 8/22/2014	Total Depth (ft)	61.5	Logged By Checked By	GP DPC	Driller Geologic Drill, Inc) .	Drilling Method Hollow-St	em Auger
Hammer Data	Autohai 140 (lbs) / 30			Drilling Equipment	Die	drich D50 Turbo	/	BIJ 490 as installed on 8/22/2014	to a depth of 59.8
Surface Elevation Vertical Datum		30.5 VD88		Top of Casing Elevation (ft)		30.10	(ft). <u>Groundwater</u>	Depth to	
Easting (X) Northing (Y)				Horizontal Datum			Date Measured 9/6/2014	Water (ft) 20.9	Elevation (ft) 9.6
Notes:									

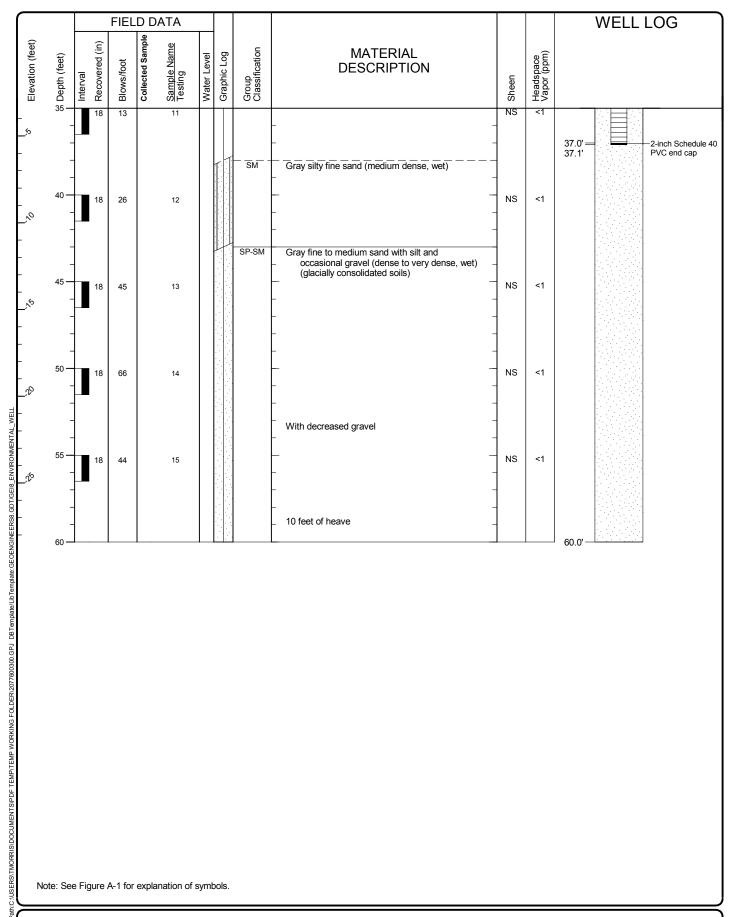
Log of Monitoring Well MW-1

Project: South Lake Union Marriott AC



Log of Monitoring Well MW-1 (continued)

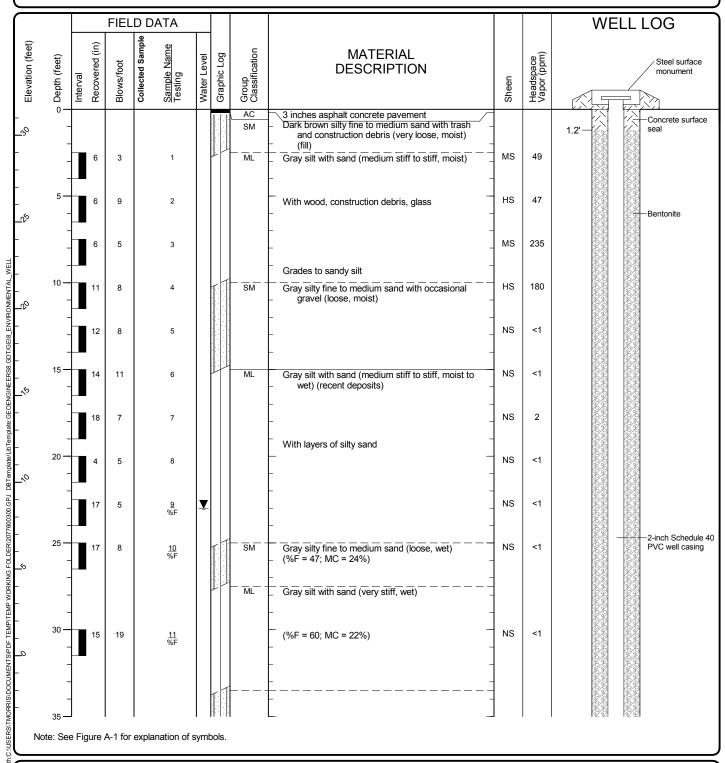
Project: South Lake Union Marriott AC


<u>Start</u> Drilled 8/23/2014	<u>End</u> 8/23/2014	Total Depth (ft)	60	Logged By Checked By		Driller Geologic Drill, Inc) .	Drilling Hollow-S	Stem Auger
Hammer Data	Autohar 140 (lbs) / 30			Drilling Equipment	Die	drich D50 Turbo	/	BIJ 492 as installed on 8/23/201	4 to a depth of 37
Surface Elevation (f Vertical Datum	,	31.6 VD88		Top of Casing Elevation (ft)		31.00	(ft). Groundwater	Depth to	
Easting (X) Northing (Y)				Horizontal Datum			Date Measured 9/6/2014	<u>Water (ft)</u> 24.0	Elevation (ft) 7.6
Notes:									

Log of Monitoring Well MW-2

Project: South Lake Union Marriott AC

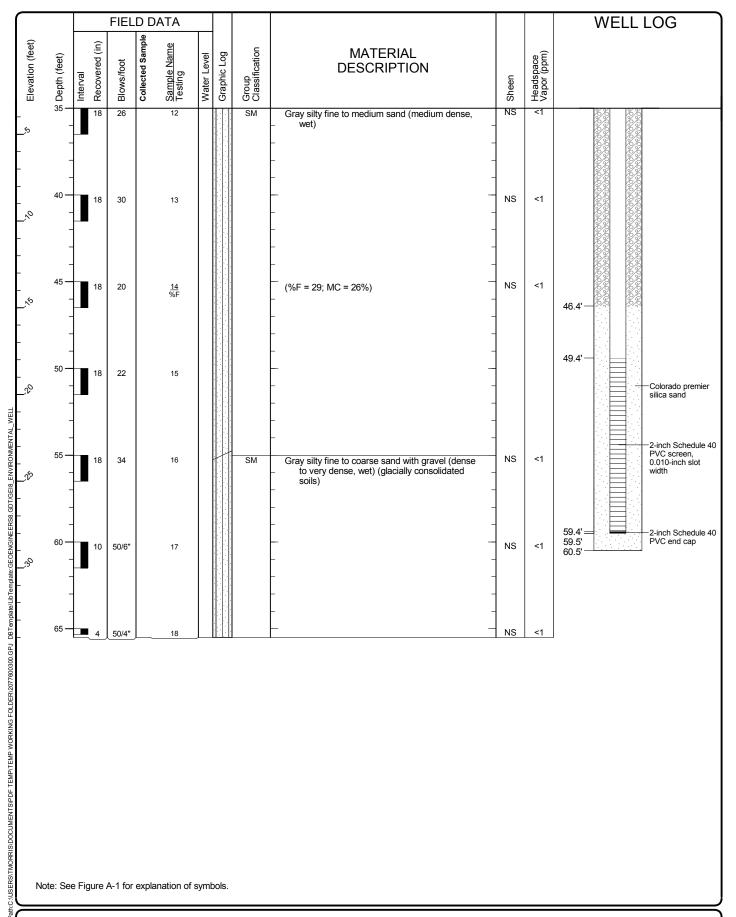
Log of Monitoring Well MW-2 (continued)



Project: South Lake Union Marriott AC

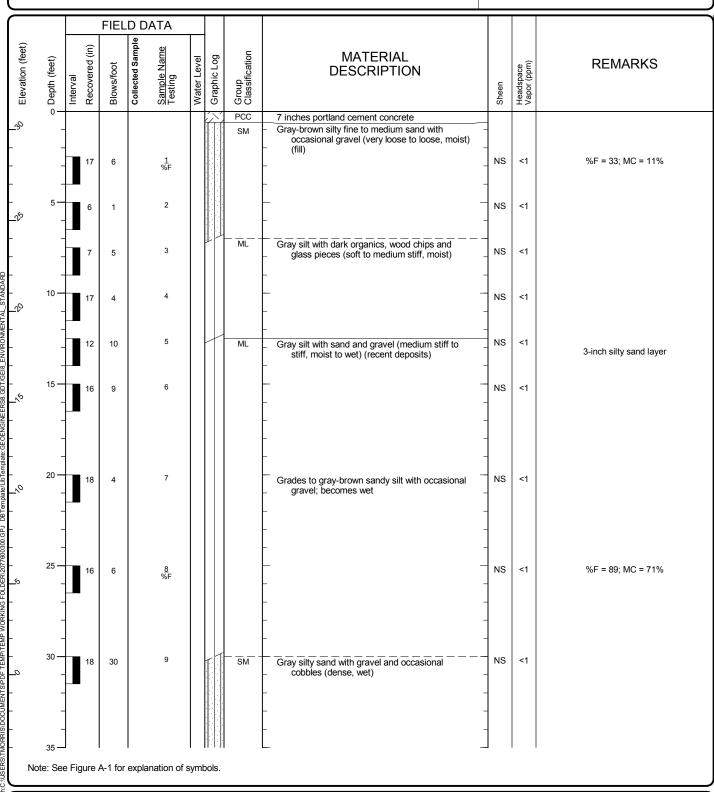
Project Location: Seattle, Washington
Project Number: 20776-003-00

Figure A-3 Sheet 2 of 2


Drilled	<u>Start</u> 8/23/2014	<u>End</u> 8/23/2014	Total Depth (ft)	65.5	Logged By Checked By	GP DPC	Driller Geologic Drill, Inc) .	Drilling Hollow- Method	Stem Auger
Hammer Data		Autohar 140 (lbs) / 30			Drilling Equipment	Die	drich D50 Turbo			014 to a depth of 59.4
Surface Vertical I	Elevation (ft Datum	,	31.5 VD88		Top of Casing Elevation (ft)		30.75	(ft). Groundwater	Depth to	
Easting (Horizontal Datum			Date Measured 9/6/2014	<u>Water (ft)</u> 23.0	Elevation (ft) 8.5
Notes:										

Log of Monitoring Well MW-3

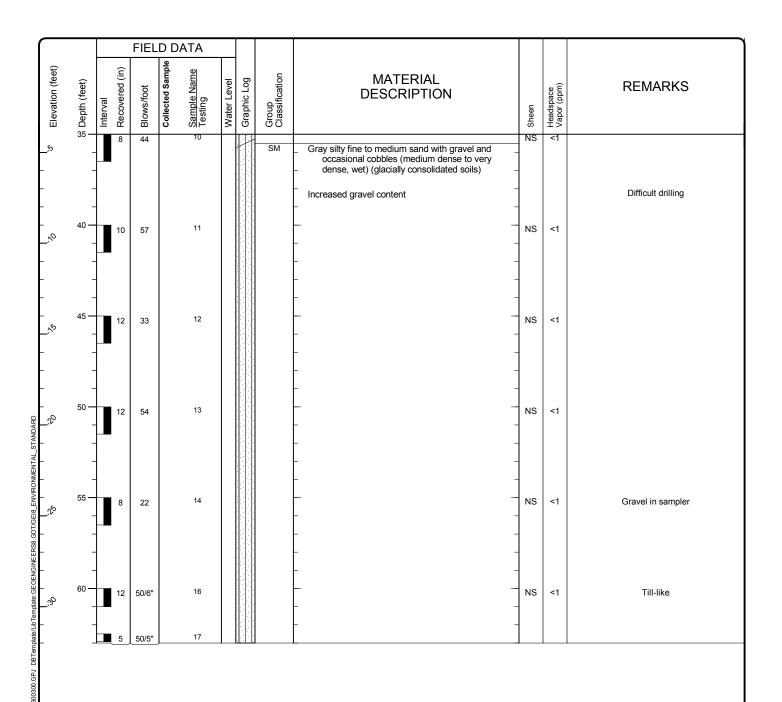
Project: South Lake Union Marriott AC



Log of Monitoring Well MW-3 (continued)

Project: South Lake Union Marriott AC

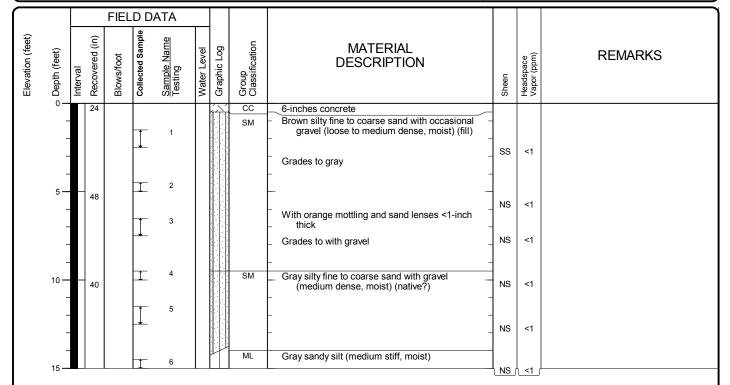
Drilled	<u>Start</u> 8/24/2014	<u>End</u> 8/24/2014	Total Depth (ft)	63	Logged By Checked By	GP DPC	Driller Geologic Drill, Inc).	Drilling Method	Hollow-St	tem Auger
	rface Elevation (ft) 31 rtical Datum NAVD88			Hammer Data	Autohammer (lbs) / 30 (in) Drop	Drilling Equipment		Diedrich D50 Turbo			
Easting (Northing					System Datum			Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:											


Log of Boring GEI-4

Project: South Lake Union Marriott AC

Project Location: Seattle, Washington
Project Number: 20776-003-00

Figure A-5 Sheet 1 of 2



Log of Boring GEI-4 (continued)

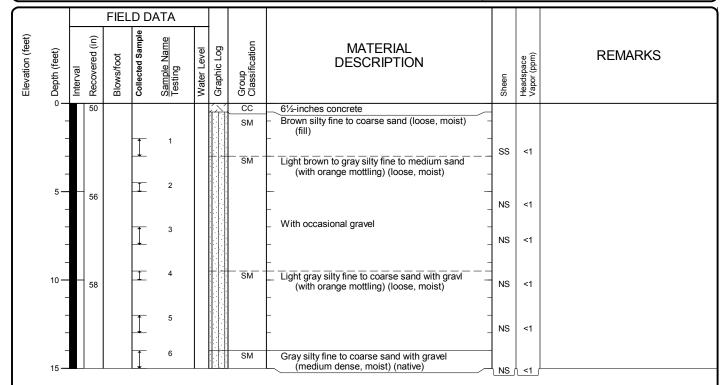
Project: South Lake Union Marriott AC

	<u>tart</u> <u>End</u> 2014 9/6/2014	Total Depth (ft)	15	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method Continuous	
Surface Eleva Vertical Datur		etermined		Hammer Data		Drilling Equipment		
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes:								

Log of Boring DP-1

Project: South Lake Union Marriott AC

	<u>tart</u> <u>End</u> 2014 9/6/2014	Total Depth (ft)	15	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method Continuous	
Surface Eleva Vertical Datur		etermined		Hammer Data		Drilling Equipment		
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes:								


				FIEL	D D	ATA							
Elevation (feet)	, Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —	3	30						CC SM	6-inches concrete Brown silty fine to coarse sand with gravel and			
	_					1			OW	debris (nails, glass shards, chert-like rock) (loose, moist) (fill) With decomposing wood	MS	<1	
	_				+	2				Grades to gray			
	5 -	4	40						Trash	Trash fill, sand size particles, decomposing wood and brick fragments	NS	<1	
	_				I	3				- -	NS	<1	
	10 —	- 3	36		I	4			SM	- - -	HS	48	
	_				1	5			ML	Gray sandy silt with occasional gravel (medium stiff, moist) (native?)	NS	<1	
	15 —				I	6				-	NS	` <1 ∫	

Log of Boring DP-2

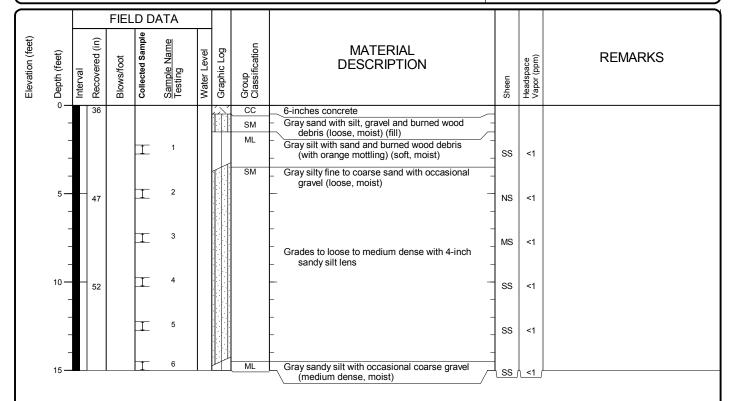
Project: South Lake Union Marriott AC

	<u>tart</u> <u>End</u> 2014 9/6/2014	Total Depth (ft)	15	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method Continuous	
Surface Eleva Vertical Datur		etermined		Hammer Data		Drilling Equipment		
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes:								

Log of Boring DP-3

Project: South Lake Union Marriott AC

Drilled	<u>Start</u> 9/6/2014	<u>End</u> 9/6/2014	Total Depth (ft)	20	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method	Continuous	
Surface E Vertical D	Elevation (ft) Datum	Undet	ermined		Hammer Data		Drilling Equipment			
Easting (X					System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:										


			ı	FIEL	D D	ATA							
Elevation (feet)	, Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-		39					台	CC SM	6- to 7-inches concrete Gray silty fine to coarse sand with gravel			
	-				I	1			SIM	(loose, moist) (fill) With burned debris and wood (medium dense, moist)	SS	<1	
	-												
	5 -	1	47		I	2			SP-SM	Gray fine to coarse sand with silt and occasional gravel (medium dense, moist)	SS	<1	
	-				I	3				- -	SS	<1	
	- 10 	H	45		I	4			ML	Gray silt (medium dense, moist)	NS	<1	
	-				I	5			SM	Gray-tan silty fine to coarse sand with occasional gravel (loose, moist) With increasing silt content and decreasing gravel content	SS	<1	
	_									Grades to loose to medium dense			
	15 — –	-	45		I	6				<u> </u>	SS	<1	Oil odor?
	-				I	7			SM	Gray silty fine to coarse sand with fine to coarse gravel (loose, moist)			
	20				I	8			ML	Becomes dark gray with occasional gravel (medium dense, moist) Dark gray silt (medium dense, moist) (native)	NS	\ <1 /	

Log of Boring DP-4

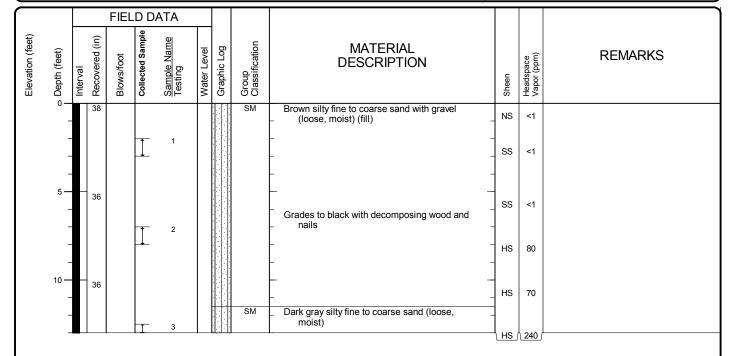
Project: South Lake Union Marriott AC

<u>Start</u> Drilled 9/6/2014	<u>End</u> 9/6/2014	Total Depth (ft)	15	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method Continuous	5
Surface Elevation (for Vertical Datum) Unde	termined		Hammer Data		Drilling Equipment		
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes:								

Log of Boring DP-5

Project: South Lake Union Marriott AC

	<u>tart</u> <u>End</u> 2014 9/6/2014	Total Depth (ft)	15	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method Continuous	
Surface Eleva Vertical Datur		etermined		Hammer Data		Drilling Equipment		
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes:								


			FIEL	D D	ATA					
Elevation (feet)	, Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	REMARKS
	0 —	41					行	CC SM	6-inches concrete Gray-brown silty fine to coarse sand (loose,	
	_				1			SM	moist) (fill) Tan-brown silty fine to medium sand (loose, ss <1	
	5 — -	42		Ī	2			SP-SM	With white sticky plastic material and orange mottling With reddish brown silt, becomes soft Gray-brown fine to coarse sand with silt and occasional gravel (loose, moist)	
	_			1	3				With increasing silt content SS <1	
	10 —	46		I	4			SM	Gray silty fine to coarse sand (medium dense, NS	
	- -			1	5				With 2-inch silt lens Grades to with gravel NS <1	
	15 —				6				- 	

Log of Boring DP-6

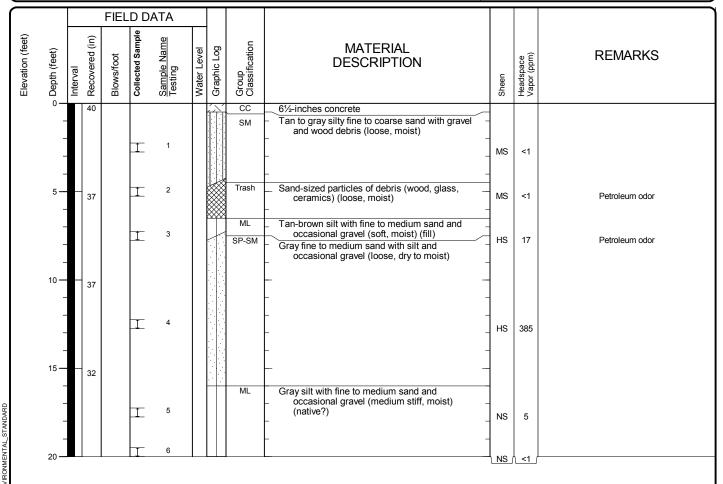
Project: South Lake Union Marriott AC

Sta Drilled 9/6/20	Total Depth (ft)	13	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method Continuous	
Surface Elevation Vertical Datum	termined		Hammer Data		Drilling Equipment		
Easting (X) Northing (Y)			System Datum		Groundwate	Depth to	Elevation (ft)
Notes:							

Log of Boring DP-7

Project: South Lake Union Marriott AC

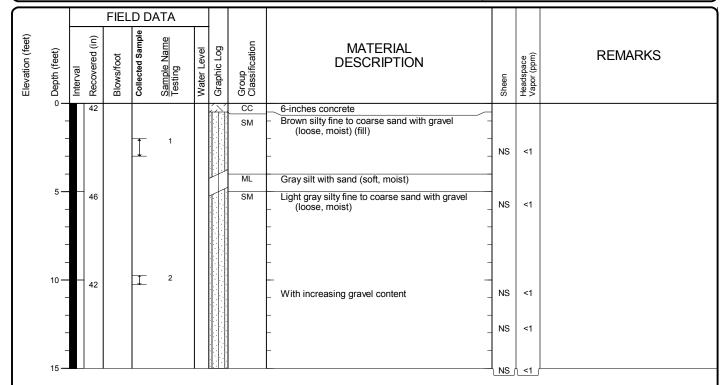
	<u>start</u> /2014	<u>End</u> 9/6/2014	Total Depth (ft)	35	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method	Continuous	
Surface Eleva Vertical Datur		Undet	ermined		Hammer Data		Drilling Equipment			
Easting (X) Northing (Y)					System Datum		Groundwate		Depth to Water (ft)	Elevation (ft)
Notes:										


			FIEI		ATA							
Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —	50						SM	Brown silty fine to coarse sand with gravel (loose, moist) -	NS	<1	
	5 	35						Trash	Trash layer with decomposing wood and glass shards	HS	30	With odor
	-								Becomes black with decomposing wood and silt	HS	410	With odor
	10 —	40						ML	Gray silt with sand (soft, moist)	NS	<1	With odor
	-								<u>-</u> -	HS	28	With odor
	15 — - -	50							- - -	ss	7	
	20 —	24						SM	Gray silty fine to medium sand with occasional gravel (loose, moist)	NS NS	50	
	-								- - -	NS	28	
	25 — - -	22						ML	Gray silt with sand (soft, moist to wet) (native?)	NS	20	
	30 —	36							With occasional gravel With gravel	NS	9	
	-								Becomes wet	NS	6	

Log of Boring DP-8

Project: South Lake Union Marriott AC

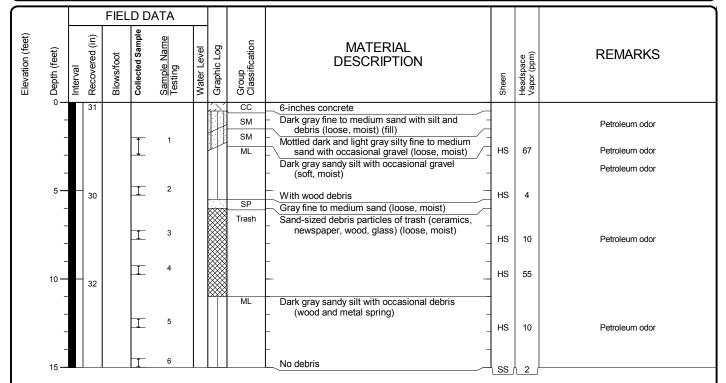
Drilled	<u>Start</u> 9/6/2014	<u>End</u> 9/6/2014	Total Depth (ft)	20	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method	Continuous	
Surface E Vertical D	Elevation (ft) Datum	Undet	ermined		Hammer Data		Drilling Equipment			
Easting (X					System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:										



Log of Boring DP-9

Project: South Lake Union Marriott AC

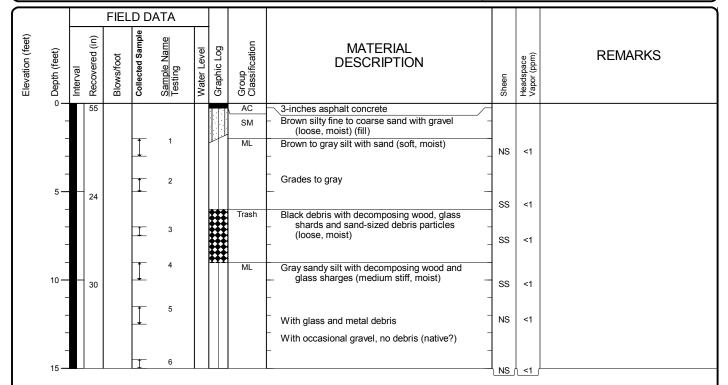
	<u>tart</u> <u>End</u> 2014 9/6/2014	Total Depth (ft)	15	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method Continuous	
Surface Eleva Vertical Datur		etermined		Hammer Data		Drilling Equipment		
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes:								



Log of Boring DP-10

Project: South Lake Union Marriott AC

Drilled	<u>Start</u> 9/6/2014	<u>End</u> 9/6/2014	Total Depth (ft)	15	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method	Continuous	
Surface I Vertical I	Elevation (ft) Datum	Undet	ermined		Hammer Data		Drilling Equipment			
Easting (Northing					System Datum		Groundwate		Depth to Water (ft)	Elevation (ft)
Notes:										



Log of Boring DP-11

Project: South Lake Union Marriott AC

	<u>tart</u> <u>End</u> 2014 9/6/2014	Total Depth (ft)	15	Logged By GHP Checked By	Driller Cascade Drilling, I	_P	Drilling Method Continuous	
Surface Eleva Vertical Datur		etermined		Hammer Data		Drilling Equipment		
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes:								

Log of Boring DP-12

Project: South Lake Union Marriott AC

Project Location: Seattle, Washington
Project Number: 20776-003-00

Figure A-17 Sheet 1 of 1

APPENDIX B Chemical Analytical Program

APPENDIX B CHEMICAL ANALYTICAL PROGRAM

Analytical Methods

Chain-of-custody procedures were followed during the transport of the field samples to the analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results, analytical methods reference and laboratory quality control (QC) records are included in this appendix. The analytical results are also summarized in the text and tables of this report.

Analytical Data Review

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the validity of the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. Data quality exceptions documented by the accredited laboratory were reviewed by GeoEngineers and are addressed in the data quality exception section of this appendix.

Analytical Data Review Summary

Based on review of the analytical data, it is our opinion that the analytical data are of acceptable quality for their intended use.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondJessica Smith
8410 154th Ave. NE
Redmond. WA 98052

RE: SLU Marriott Lab ID: 1408230

September 03, 2014

Attention Jessica Smith:

Fremont Analytical, Inc. received 17 sample(s) on 8/22/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Mal c. Fedy

Sincerely,

Mike Ridgeway President

Date: 09/03/2014

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott Lab Order: 1408230

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1408230-001	MW-1-1-2.5	08/22/2014 9:15 AM	08/22/2014 4:35 PM
1408230-002	MW-1-2-5.0	08/22/2014 9:20 AM	08/22/2014 4:35 PM
1408230-003	MW-1-3-7.5	08/22/2014 9:25 AM	08/22/2014 4:35 PM
1408230-004	MW-1-4-10.0	08/22/2014 9:30 AM	08/22/2014 4:35 PM
1408230-005	MW-1-5-12.5	08/22/2014 9:40 AM	08/22/2014 4:35 PM
1408230-006	MW-1-6-15.0	08/22/2014 9:47 AM	08/22/2014 4:35 PM
1408230-007	MW-1-7-17.5	08/22/2014 9:55 AM	08/22/2014 4:35 PM
1408230-008	MW-1-8-20.0	08/22/2014 10:00 AM	08/22/2014 4:35 PM
1408230-009	MW-1-9-25.0	08/22/2014 10:10 AM	08/22/2014 4:35 PM
1408230-010	MW-1-10-30.0	08/22/2014 10:20 AM	08/22/2014 4:35 PM
1408230-011	MW-1-11-35.0	08/22/2014 10:30 AM	08/22/2014 4:35 PM
1408230-012	MW-1-12-40.0	08/22/2014 10:40 AM	08/22/2014 4:35 PM
1408230-013	MW-1-13-45.0	08/22/2014 10:55 AM	08/22/2014 4:35 PM
1408230-014	MW-1-14-50.0	08/22/2014 11:10 AM	08/22/2014 4:35 PM
1408230-015	MW-1-15-55.0	08/22/2014 11:30 AM	08/22/2014 4:35 PM
1408230-016	MW-1-16-60.0	08/22/2014 11:45 AM	08/22/2014 4:35 PM
1408230-017	Trip Blank	08/21/2014 11:50 AM	08/22/2014 4:35 PM

Case Narrative

WO#: **1408230** Date: **9/3/2014**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Analytical Report

WO#: **1408230**Date Reported: **9/3/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/22/2014 9:15:00 AM

Project: SLU Marriott

Lab ID: 1408230-001 **Matrix**: Soil

Client Sample ID: MW-1-1-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8518	Analyst: EC
Diesel (Fuel Oil)	ND	23.4		mg/Kg-dry	1	8/31/2014 4:54:00 AM
Heavy Oil	ND	58.4		mg/Kg-dry	1	8/31/2014 4:54:00 AM
Surr: 2-Fluorobiphenyl	99.0	50-150		%REC	1	8/31/2014 4:54:00 AM
Surr: o-Terphenyl	91.8	50-150		%REC	1	8/31/2014 4:54:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8524	Analyst: NG
Naphthalene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
2-Methylnaphthalene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
1-Methylnaphthalene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Acenaphthylene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Acenaphthene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Fluorene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Phenanthrene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Anthracene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Fluoranthene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Pyrene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Benz(a)anthracene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Chrysene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Benzo(b)fluoranthene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Benzo(k)fluoranthene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Benzo(a)pyrene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Indeno(1,2,3-cd)pyrene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Dibenz(a,h)anthracene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Benzo(g,h,i)perylene	ND	55.9		μg/Kg-dry	1	8/27/2014 11:18:00 PM
Surr: 2-Fluorobiphenyl	103	42.7-132		%REC	1	8/27/2014 11:18:00 PM
Surr: Terphenyl-d14 (surr)	106	48.8-157		%REC	1	8/27/2014 11:18:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: R164	458 Analyst: BC
Gasoline	ND	4.52		mg/Kg-dry	1	8/28/2014 1:42:00 AM
Surr: Toluene-d8	99.7	65-135		%REC	1	8/28/2014 1:42:00 AM
Surr: 4-Bromofluorobenzene	103	65-135		%REC	1	8/28/2014 1:42:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

Analytical Report

WO#: **1408230**

Date Reported: 9/3/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/22/2014 9:15:00 AM

Project: SLU Marriott

Lab ID: 1408230-001 **Matrix**: Soil

Client Sample ID: MW-1-1-2.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 0.0542 8/28/2014 1:42:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0542 8/28/2014 1:42:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00181 mg/Kg-dry 8/28/2014 1:42:00 AM 1 Bromomethane ND 0.0813 1 8/28/2014 1:42:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0452 mg/Kg-dry 1 8/28/2014 1:42:00 AM Chloroethane ND 0.0542 8/28/2014 1:42:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0452 mg/Kg-dry 1 8/28/2014 1:42:00 AM ND 0.0181 8/28/2014 1:42:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0181 trans-1,2-Dichloroethene mg/Kg-dry 1 8/28/2014 1:42:00 AM Methyl tert-butyl ether (MTBE) ND 0.0452 8/28/2014 1:42:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM 2,2-Dichloropropane ND 0.0452 mg/Kg-dry 1 8/28/2014 1:42:00 AM cis-1,2-Dichloroethene ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM Chloroform ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0181 1 8/28/2014 1:42:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM Carbon tetrachloride ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM 1,2-Dichloroethane (EDC) ND 0.0271 8/28/2014 1:42:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 1:42:00 AM 0.0181 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM 1,2-Dichloropropane ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM Bromodichloromethane ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM ND 8/28/2014 1:42:00 AM Dibromomethane 0.0361 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM Toluene ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM ND 8/28/2014 1:42:00 AM trans-1,3-Dichloropropylene 0.0271 mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0271 mg/Kg-dry 1 8/28/2014 1:42:00 AM 1,3-Dichloropropane ND 0.0452 8/28/2014 1:42:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0181 8/28/2014 1:42:00 AM mg/Kg-dry 1 ND 1 8/28/2014 1:42:00 AM Dibromochloromethane 0.0271 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00452 mg/Kg-dry 1 8/28/2014 1:42:00 AM Chlorobenzene ND 0.0181 mg/Kg-dry 1 8/28/2014 1:42:00 AM 1,1,1,2-Tetrachloroethane ND 0.0271 mg/Kg-dry 1 8/28/2014 1:42:00 AM ND Ethylbenzene 0.0271 mg/Kg-dry 1 8/28/2014 1:42:00 AM m,p-Xylene ND 0.0181 mg/Kg-dry 8/28/2014 1:42:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Analytical Report

WO#: 1408230

Date Reported: 9/3/2014

GeoEngineers, Inc. - Redmond Collection Date: 8/22/2014 9:15:00 AM Client:

Project: SLU Marriott

Lab ID: 1408230-001 Matrix: Soil

Client Sample ID: MW-1-1-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by EPA Method 8260				Batch ID: 8540		Analyst: BC
o-Xylene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
Styrene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
Isopropylbenzene	ND	0.0723		mg/Kg-dry	1	8/28/2014 1:42:00 AM
Bromoform	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
n-Propylbenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
Bromobenzene	ND	0.0271		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,3,5-Trimethylbenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
2-Chlorotoluene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
4-Chlorotoluene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
tert-Butylbenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,2,3-Trichloropropane	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,2,4-Trichlorobenzene	ND	0.0452		mg/Kg-dry	1	8/28/2014 1:42:00 AM
sec-Butylbenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
4-Isopropyltoluene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,3-Dichlorobenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,4-Dichlorobenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
n-Butylbenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,2-Dichlorobenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0271		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,2,4-Trimethylbenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
Hexachlorobutadiene	ND	0.0903		mg/Kg-dry	1	8/28/2014 1:42:00 AM
Naphthalene	ND	0.0271		mg/Kg-dry	1	8/28/2014 1:42:00 AM
1,2,3-Trichlorobenzene	ND	0.0181		mg/Kg-dry	1	8/28/2014 1:42:00 AM
Surr: Dibromofluoromethane	102	63.7-129		%REC	1	8/28/2014 1:42:00 AM
Surr: Toluene-d8	101	61.4-128		%REC	1	8/28/2014 1:42:00 AM
Surr: 1-Bromo-4-fluorobenzene	93.2	63.1-141		%REC	1	8/28/2014 1:42:00 AM
lercury by EPA Method 7471		Batch ID: 8515		Analyst: MV		
Mercury	ND	0.258		mg/Kg-dry	1	8/27/2014 11:29:27 A
otal Metals by EPA Method 6020		Batch ID: 8516		Analyst: TN		
Arsenic	4.88	0.0890		mg/Kg-dry	1	8/26/2014 6:07:31 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Limit

- Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1408230**

Date Reported: 9/3/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/22/2014 9:15:00 AM

Project: SLU Marriott

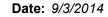
Lab ID: 1408230-001 **Matrix**: Soil

Client Sample ID: MW-1-1-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 8516	Analyst: TN
Barium	84.0	0.445		mg/Kg-dry	1	8/26/2014 6:07:31 PM
Cadmium	ND	0.178		mg/Kg-dry	1	8/26/2014 6:07:31 PM
Chromium	43.9	0.0890		mg/Kg-dry	1	8/26/2014 6:07:31 PM
Lead	6.07	0.178		mg/Kg-dry	1	8/26/2014 6:07:31 PM
Selenium	ND	0.445		mg/Kg-dry	1	8/26/2014 6:07:31 PM
Silver	0.125	0.0890		mg/Kg-dry	1	8/26/2014 6:07:31 PM
Sample Moisture (Percent	: Moisture)			Batch	n ID: R163	95 Analyst: TK
Percent Moisture	14.9			wt%	1	8/26/2014 12:22:52 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range


J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

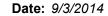
Total Metals by EPA Method 6020

Proiect:	SLU Marriott
Profect.	SLU Maillou

Sample ID: MB-8516	SampType: MBLK	SampType: MBLK		Units: mg/Kg		Prep Dat	te: 8/26/2014	RunNo: 16 4		
Client ID: MBLKS	Batch ID: 8516					Analysis Dat	e: 8/26/2014	SeqNo: 330	0463	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.100								
Barium	ND	0.500								
Cadmium	ND	0.200								
Chromium	ND	0.100								
Lead	ND	0.200								
Selenium	ND	0.500								
Silver	ND	0.100								

Sample ID: LCS-8516	SampType: LCS			Units: mg/Kg		Prep Date: 8/26/2014			RunNo: 164		
Client ID: LCSS	Batch ID: 8516					Analysis Dat	te: 8/26/20	14	SeqNo: 330)464	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	101	0.100	104.0	0	97.2	69.5	130.8				
Barium	823	0.500	779.0	0	106	74.8	125.3				
Cadmium	96.4	0.200	92.80	0	104	73.3	127.2				
Chromium	75.0	0.100	62.90	0	119	67.9	132				
Lead	329	0.200	319.0	0	103	75.9	124.1				
Selenium	79.1	0.500	77.70	0	102	63.1	136.4				
Silver	49.9	0.100	48.50	0	103	66.4	133.6				

Sample ID: 1408230-001ADUP	SampType: DUP			Units: mg/	/Kg-dry	Prep Da	te: 8/26/20	14	RunNo: 164	122	
Client ID: MW-1-1-2.5	Batch ID: 8516					Analysis Dat	te: 8/26/20	14	SeqNo: 330	1466	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4.72	0.0852						4.876	3.25	30	
Barium	78.6	0.426						83.98	6.56	30	
Cadmium	ND	0.170						0		30	
Chromium	44.2	0.0852						43.90	0.749	30	


Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

- D Dilution was required
- Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

CLIENT:

GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Total Metals by EPA Method 6020

Sample ID: 1408230-001ADUP	SampType: DUP			Units: mg/K	(g-dry	Prep Dat	e: 8/26/20	14	RunNo: 164	122	
Client ID: MW-1-1-2.5	Batch ID: 8516					Analysis Dat	e: 8/26/20	14	SeqNo: 330)466	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	5.74	0.170						6.070	5.51	30	
Selenium	ND	0.426						0		30	
Silver	ND	0.0852						0.1248	42.6	30	

Sample ID: 1408230-001AMS	SampType: MS	Units: mg/Kg-dry		Prep Date: 8/26/2014			RunNo: 164				
Client ID: MW-1-1-2.5	Batch ID: 8516					Analysis Da	te: 8/26/20	14	SeqNo: 330)468	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	45.0	0.0877	43.86	4.876	91.5	75	125				
Barium	136	0.439	43.86	83.98	119	75	125				
Cadmium	2.30	0.175	2.193	0.1053	100	75	125				
Chromium	93.5	0.0877	43.86	43.90	113	75	125				
Lead	27.2	0.175	21.93	6.070	96.1	75	125				
Selenium	4.37	0.439	4.386	0.08304	97.9	75	125				
Silver	2.06	0.0877	2.193	0.1248	88.3	75	125				

Sample ID: 1408230-001AMS	D SampType: MSD	Units: mg/Kg-dry			Prep Date: 8/26/2014			RunNo: 164			
Client ID: MW-1-1-2.5	Batch ID: 8516					Analysis Da	te: 8/26/20	14	SeqNo: 330)469	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	47.2	0.0904	45.21	4.876	93.7	75	125	44.99	4.89	30	
Barium	127	0.452	45.21	83.98	95.4	75	125	136.2	6.96	30	
Cadmium	2.51	0.181	2.260	0.1053	106	75	125	2.305	8.33	30	
Chromium	88.4	0.0904	45.21	43.90	98.5	75	125	93.55	5.61	30	
Lead	51.8	0.181	22.60	6.070	202	75	125	27.15	62.5	30	RS
Selenium	4.80	0.452	4.521	0.08304	104	75	125	4.375	9.20	30	
Silver	2.64	0.0904	2.260	0.1248	111	75	125	2.060	24.7	30	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1408230

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Total Metals by EPA Method 6020

Project: **SLU Marriott**

> SampType: MSD Units: mg/Kg-dry

Prep Date: 8/26/2014

RunNo: 16422

Sample ID: 1408230-001AMSD Client ID: MW-1-1-2.5

Batch ID: 8516

Analysis Date: 8/26/2014

SeqNo: 330469

Analyte

Result

SPK value SPK Ref Val

%REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit

Qual

NOTES:

SR - Poor spike recoveries and high RPD due to suspected sample inhomogeneity. The method is in control as indicated by the LCS.

RL

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required D

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1408230

CLIENT:

GeoEngineers, Inc. - Redmond

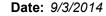
QC SUMMARY REPORT

Project: SLU Marrio	ett reamond						Merc	ury by EPA Method	7471
Sample ID: MB-8515	SampType: MBLK			Units: mg/Kg		Prep Date:	8/25/2014	RunNo: 16426	
Client ID: MBLKS	Batch ID: 8515					Analysis Date:	8/27/2014	SeqNo: 330556	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.250							
Sample ID: LCS-8515	SampType: LCS			Units: mg/Kg		Prep Date:	8/25/2014	RunNo: 16426	
Client ID: LCSS	Batch ID: 8515					Analysis Date:	8/27/2014	SeqNo: 330557	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	4.97	0.250	5.000	0	99.4	80	120		
Sample ID: 1408225-006ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date:	8/25/2014	RunNo: 16426	
Client ID: BATCH	Batch ID: 8515					Analysis Date:	8/27/2014	SeqNo: 330559	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.249					0	20	
Sample ID: 1408225-006AMS	SampType: MS			Units: mg/Kg	-dry	Prep Date:	8/25/2014	RunNo: 16426	
Client ID: BATCH	Batch ID: 8515					Analysis Date:	8/27/2014	SeqNo: 330560	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	0.460	0.224	0.4470	0.02627	97.1	70	130		
Sample ID: 1408225-006AMSD	SampType: MSD			Units: mg/Kg	-dry	Prep Date:	8/25/2014	RunNo: 16426	
Client ID: BATCH	Batch ID: 8515					Analysis Date:	8/27/2014	SeqNo: 330561	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	0.460	0.224	0.4470	0.02627	96.9	70	130 0.4605	0.194 20	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

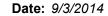
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marrio	ott						Diesei allu Tieavy		X EXI.
Sample ID: 1408225-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	8/28/2014	RunNo: 16508	
Client ID: BATCH	Batch ID: 8518					Analysis Date	8/31/2014	SeqNo: 332086	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	ND	22.7					0	30	
Heavy Oil	ND	56.8					0	30	
Surr: 2-Fluorobiphenyl	22.7		22.73		99.7	50	150	0	
Surr: o-Terphenyl	21.0		22.73		92.3	50	150	0	
Sample ID: LCS-8518	SampType: LCS			Units: mg/Kg		Prep Date	8/28/2014	RunNo: 16508	
Client ID: LCSS	Batch ID: 8518					Analysis Date	: 8/31/2014	SeqNo: 332105	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	485	19.8	494.1	0	98.1	65	135		
Surr: 2-Fluorobiphenyl	20.8		19.76		105	50	150		
Surr: o-Terphenyl	19.1		19.76		96.6	50	150		
Sample ID: MB-8518	SampType: MBLK			Units: mg/Kg		Prep Date	8/28/2014	RunNo: 16508	
Client ID: MBLKS	Batch ID: 8518					Analysis Date	8/31/2014	SeqNo: 332106	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0							
Heavy Oil	ND	50.0							
Surr: 2-Fluorobiphenyl	20.9		20.00		104	50	150		
Surr: o-Terphenyl	18.7		20.00		93.6	50	150		

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: SLU Mar	riott					.yu. 0u.	io riyare	carbons by	, LI A Mot		(Olivi)
Sample ID: MB-8524	SampType: MBLK			Units: µg/Kg		Prep Da	te: 8/27/2 0	14	RunNo: 16 4	462	
Client ID: MBLKS	Batch ID: 8524					Analysis Da	te: 8/27/2 0)14	SeqNo: 33	1443	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	455		500.0		91.0	42.7	132				
Surr: Terphenyl-d14 (surr)	439		500.0		87.8	48.8	157				

Sample ID: LCS-8524	SampType: LCS			Units: µg/Kg		Prep Dat	e: 8/27/20	14	RunNo: 164	162	
Client ID: LCSS	Batch ID: 8524					Analysis Dat	e: 8/27/20	14	SeqNo: 331	444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	758	50.0	1,000	0	75.8	61.6	125				
2-Methylnaphthalene	745	50.0	1,000	0	74.5	58.2	129				
1-Methylnaphthalene	818	50.0	1,000	0	81.8	56.4	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408230

Project:

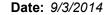
QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8524	SampType	LCS			Units: µg/Kg		Prep Date	e: 8/27/20	14	RunNo: 16 4	162	
Client ID: LCSS	Batch ID:	8524					Analysis Date	e: 8/27/20	14	SeqNo: 331	1444	
Analyte	1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene		661	50.0	1,000	0	66.1	52.2	133				
Acenaphthene		762	50.0	1,000	0	76.2	54	131				
Fluorene		766	50.0	1,000	0	76.6	53.4	131				
Phenanthrene		819	50.0	1,000	0	81.9	55.6	128				
Anthracene		744	50.0	1,000	0	74.4	51	132				
Fluoranthene		728	50.0	1,000	0	72.8	48.4	134				
Pyrene		758	50.0	1,000	0	75.8	48.6	135				
Benz(a)anthracene		704	50.0	1,000	0	70.4	41.9	136				
Chrysene		807	50.0	1,000	0	80.7	51.4	135				
Benzo(b)fluoranthene		742	50.0	1,000	0	74.2	39.7	137				
Benzo(k)fluoranthene		694	50.0	1,000	0	69.4	45.7	138				
Benzo(a)pyrene		654	50.0	1,000	0	65.4	45.3	135				
Indeno(1,2,3-cd)pyrene		629	50.0	1,000	0	62.9	45.4	137				
Dibenz(a,h)anthracene		730	50.0	1,000	0	73.0	45.8	134				
Benzo(g,h,i)perylene		715	50.0	1,000	0	71.5	45	134				
Surr: 2-Fluorobiphenyl		387		500.0		77.5	42.7	132				
Surr: Terphenyl-d14 (surr)		454		500.0		90.9	48.8	157				

Sample ID: 1408229-001ADUP	SampType: DUP			Units: μg/Κο	g-dry	Prep Date: 8/27/2	014	RunNo: 164	162	
Client ID: BATCH	Batch ID: 8524					Analysis Date: 8/27/2	014	SeqNo: 331	1446	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	978					0		30	D
2-Methylnaphthalene	ND	978					0		30	D
1-Methylnaphthalene	ND	978					0		30	D
Acenaphthylene	ND	978					0		30	D
Acenaphthene	ND	978					0		30	D
Fluorene	ND	978					0		30	D


Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
- Analyte detected below quantitation limits
- Reporting Limit

- Е Value above quantitation range
- Not detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

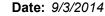
Sample ID: 1408229-001ADUP	SampType: DUP			Units: µg/k	Kg-dry	Prep Dat	te: 8/27/20)14	RunNo: 164	162	
Client ID: BATCH	Batch ID: 8524					Analysis Dat	te: 8/27/20)14	SeqNo: 331	1446	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	1,250	978						3,528	95.4	30	DR
Anthracene	ND	978						0		30	D
Fluoranthene	2,580	978						4,796	60.2	30	DR
Pyrene	3,190	978						5,673	55.9	30	DR
Benz(a)anthracene	ND	978						3,016	200	30	DR
Chrysene	1,570	978						2,383	41.3	30	D
Benzo(b)fluoranthene	1,870	978						2,568	31.7	30	D
Benzo(k)fluoranthene	ND	978						0		30	D
Benzo(a)pyrene	ND	978						3,392	200	30	DR
Indeno(1,2,3-cd)pyrene	2,740	978						3,156	14.1	30	D
Dibenz(a,h)anthracene	ND	978						0		30	D
Benzo(g,h,i)perylene	3,110	978						3,640	15.6	30	D
Surr: 2-Fluorobiphenyl	4,520		488.9		924	42.7	132		0		DS
Surr: Terphenyl-d14 (surr)	1,070		488.9		219	48.8	157		0		DS

NOTES:

R - High RPD due to suspected sample inhomogeneity. The method is in control as indicated by the Laboratory Control Sample (LCS).

Sample ID: 1408229-002AMS	SampType: MS			Units: μg/Kg	g-dry	Prep Da	te: 8/27/20)14	RunNo: 16 4	162	
Client ID: BATCH	Batch ID: 8524					Analysis Da	te: 8/27/2 0)14	SeqNo: 331	1448	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	1,000	1,003	0	97.8	42.9	138				D
2-Methylnaphthalene	1,580	1,000	1,003	0	157	42.8	151				DS
1-Methylnaphthalene	1,610	1,000	1,003	0	160	41.6	148				DS
Acenaphthylene	1,830	1,000	1,003	0	182	32.6	160				DS
Acenaphthene	1,550	1,000	1,003	0	155	46.3	142				DS
Fluorene	1,770	1,000	1,003	0	176	43.4	153				DS
Phenanthrene	1,480	1,000	1,003	0	148	45.5	140				DS

Qualifiers: Analyte detected in the associated Method Blank


D Dilution was required Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits

RPD outside accepted recovery limits Reporting Limit Ε Value above quantitation range

Not detected at the Reporting Limit

S - Outlying surrogate recoveries were observed in this sample, indicating a possible matrix effect. The LCS and MB recovered within range.

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1408229-002AMS	SampType: MS			Units: µg/k	(g-dry	Prep Da	te: 8/27/20	14	RunNo: 16 4	162	
Client ID: BATCH	Batch ID: 8524					Analysis Da	te: 8/27/20	14	SeqNo: 331	1448	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Anthracene	2,050	1,000	1,003	0	204	32.6	160				DS
Fluoranthene	2,510	1,000	1,003	1,732	77.6	44.6	161				D
Pyrene	2,990	1,000	1,003	2,239	74.6	48.3	158				D
Benz(a)anthracene	2,800	1,000	1,003	2,190	61.3	57.5	169				D
Chrysene	2,030	1,000	1,003	1,418	60.6	45.2	146				D
Benzo(b)fluoranthene	2,340	1,000	1,003	1,692	64.4	42.2	168				D
Benzo(k)fluoranthene	1,890	1,000	1,003	0	188	48	161				DS
Benzo(a)pyrene	3,200	1,000	1,003	2,349	84.7	34.4	179				D
Indeno(1,2,3-cd)pyrene	3,280	1,000	1,003	2,759	52.4	41.1	165				D
Dibenz(a,h)anthracene	4,530	1,000	1,003	0	452	38.1	166				DS
Benzo(g,h,i)perylene	3,830	1,000	1,003	3,155	67.2	45.6	157				D
Surr: 2-Fluorobiphenyl	2,510		501.5		500	42.7	132				DS
Surr: Terphenyl-d14 (surr)	1,070		501.5		213	48.8	157				DS

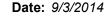
NOTES:

S - Outlying spike and surrogate recoveries were observed in this sample, indicating a possible matrix effect. The LCS and MB surrogates recovered within range.

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required


Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

CLIENT:

GeoEngineers, Inc. - Redmond

QC SUMMARY REPORT

Gasolino by NWTPH Gy

Project: SLU Marrio	ott								Gasoline	by NWT	PH-G
Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/Kg	dry	Prep Date	e: 8/27/20	14	RunNo: 164	158	
Client ID: BATCH	Batch ID: R16458					Analysis Date	e: 8/27/20	14	SeqNo: 331	1307	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	4.65						0		30	
Surr: Toluene-d8	2.28		2.324		98.0	65	135		0		
Surr: 4-Bromofluorobenzene	2.43		2.324		105	65	135		0		
Sample ID: LCS-R16458	SampType: LCS			Units: mg/Kg		Prep Date	e: 8/27/20	14	RunNo: 16 4	 458	
Client ID: LCSS	Batch ID: R16458					Analysis Date	e: 8/27/20	14	SeqNo: 331	1315	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	28.7	5.00	25.00	0	115	65	135		-		
Surr: Toluene-d8	2.43		2.500		97.2	65	135				
Surr: 4-Bromofluorobenzene	2.77		2.500		111	65	135				
Sample ID: MB-R16458	SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/27/20	14	RunNo: 16 4	458	
Client ID: MBLKS	Batch ID: R16458					Analysis Date	e: 8/27/20	14	SeqNo: 331	1316	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	2.51		2.500		100	65	135				
Surr: 4-Bromofluorobenzene	2.63		2.500		105	65	135				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408230

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 8/27/20)14	RunNo: 16 4	157	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/2 0	14	SeqNo: 331	1291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0558						0		30	
Chloromethane	ND	0.0558						0		30	
Vinyl chloride	ND	0.00186						0		30	
Bromomethane	ND	0.0837						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0465						0		30	
Chloroethane	ND	0.0558						0		30	
1,1-Dichloroethene	ND	0.0465						0		30	
Methylene chloride	ND	0.0186						0		30	
trans-1,2-Dichloroethene	ND	0.0186						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0465						0		30	
1,1-Dichloroethane	ND	0.0186						0		30	
2,2-Dichloropropane	ND	0.0465						0		30	
cis-1,2-Dichloroethene	ND	0.0186						0		30	
Chloroform	ND	0.0186						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0186						0		30	
1,1-Dichloropropene	ND	0.0186						0		30	
Carbon tetrachloride	ND	0.0186						0		30	
1,2-Dichloroethane (EDC)	ND	0.0279						0		30	
Benzene	ND	0.0186						0		30	
Trichloroethene (TCE)	ND	0.0186						0		30	
1,2-Dichloropropane	ND	0.0186						0		30	
Bromodichloromethane	ND	0.0186						0		30	
Dibromomethane	ND	0.0372						0		30	
cis-1,3-Dichloropropene	ND	0.0186						0		30	
Toluene	ND	0.0186						0		30	
trans-1,3-Dichloropropylene	ND	0.0279						0		30	
1,1,2-Trichloroethane	ND	0.0279						0		30	
1,3-Dichloropropane	ND	0.0465						0		30	
Tetrachloroethene (PCE)	ND	0.0186						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408230

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Date	8/27/20	14	RunNo: 16 4	157	
Client ID: BATCH	Batch ID: 8540					Analysis Date	8/27/20	14	SeqNo: 331	1291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	0.0279						0		30	
1,2-Dibromoethane (EDB)	ND	0.00465						0		30	
Chlorobenzene	ND	0.0186						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0279						0		30	
Ethylbenzene	ND	0.0279						0		30	
m,p-Xylene	ND	0.0186						0		30	
o-Xylene	ND	0.0186						0		30	
Styrene	ND	0.0186						0		30	
Isopropylbenzene	ND	0.0744						0		30	
Bromoform	ND	0.0186						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0186						0		30	
n-Propylbenzene	ND	0.0186						0		30	
Bromobenzene	ND	0.0279						0		30	
1,3,5-Trimethylbenzene	ND	0.0186						0		30	
2-Chlorotoluene	ND	0.0186						0		30	
4-Chlorotoluene	ND	0.0186						0		30	
tert-Butylbenzene	ND	0.0186						0		30	
1,2,3-Trichloropropane	ND	0.0186						0		30	
1,2,4-Trichlorobenzene	ND	0.0465						0		30	
sec-Butylbenzene	ND	0.0186						0		30	
4-Isopropyltoluene	ND	0.0186						0		30	
1,3-Dichlorobenzene	ND	0.0186						0		30	
1,4-Dichlorobenzene	ND	0.0186						0		30	
n-Butylbenzene	ND	0.0186						0		30	
1,2-Dichlorobenzene	ND	0.0186						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0279						0		30	
1,2,4-Trimethylbenzene	ND	0.0186						0		30	
Hexachlorobutadiene	ND	0.0930						0		30	
Naphthalene	ND	0.0279						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408230

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

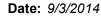
.U Marriott

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 8/27/20	14	RunNo: 16 4	157	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 33	1291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	ND	0.0186						0		30	
Surr: Dibromofluoromethane	2.33		2.324		100	63.7	129		0		
Surr: Toluene-d8	2.22		2.324		95.5	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	2.19		2.324		94.4	63.1	141		0		
Sample ID: 1408250-002BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 8/27/20	14	RunNo: 164	1 57	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 33	1293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.649	0.0555	0.9258	0	70.1	43.5	121				
Chloromethane	0.910	0.0555	0.9258	0	98.3	45	130				
Vinyl chloride	0.832	0.00185	0.9258	0	89.9	51.2	146				
Bromomethane	0.715	0.0833	0.9258	0	77.2	21.3	120				
Trichlorofluoromethane (CFC-11)	0.679	0.0463	0.9258	0	73.3	35	131				
Chloroethane	0.409	0.0555	0.9258	0	44.2	43.8	117				
1,1-Dichloroethene	1.14	0.0463	0.9258	0	123	61.9	141				
Methylene chloride	0.868	0.0185	0.9258	0	93.8	54.7	142				
trans-1,2-Dichloroethene	0.978	0.0185	0.9258	0	106	52	136				
Methyl tert-butyl ether (MTBE)	0.965	0.0463	0.9258	0	104	54.4	132				
1,1-Dichloroethane	1.01	0.0185	0.9258	0	109	51.8	141				
2,2-Dichloropropane	0.878	0.0463	0.9258	0	94.9	36	123				
cis-1,2-Dichloroethene	0.935	0.0185	0.9258	0	101	58.6	136				
Chloroform	0.992	0.0185	0.9258	0	107	53.2	129				
1,1,1-Trichloroethane (TCA)	1.03	0.0185	0.9258	0	111	58.3	145				
1,1-Dichloropropene	1.02	0.0185	0.9258	0	111	55.1	138				
Carbon tetrachloride	1.05	0.0185	0.9258	0	114	53.3	144				
1,2-Dichloroethane (EDC)	1.08	0.0278	0.9258	0	116	51.3	139				
Benzene	1.01	0.0185	0.9258	0	109	63.5	133				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

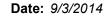
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-002BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 8/27/20	14	RunNo: 16 4	457	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 33	1293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	0.988	0.0185	0.9258	0	107	68.6	132				
1,2-Dichloropropane	0.996	0.0185	0.9258	0	108	59	136				
Bromodichloromethane	1.04	0.0185	0.9258	0	113	50.7	141				
Dibromomethane	0.995	0.0370	0.9258	0	107	50.6	137				
cis-1,3-Dichloropropene	0.970	0.0185	0.9258	0	105	50.4	138				
Toluene	1.02	0.0185	0.9258	0	110	63.4	132				
trans-1,3-Dichloropropylene	0.986	0.0278	0.9258	0	107	44.1	147				
1,1,2-Trichloroethane	0.984	0.0278	0.9258	0	106	51.6	137				
1,3-Dichloropropane	0.989	0.0463	0.9258	0	107	53.1	134				
Tetrachloroethene (PCE)	1.02	0.0185	0.9258	0	110	35.6	158				
Dibromochloromethane	1.04	0.0278	0.9258	0	112	55.3	140				
1,2-Dibromoethane (EDB)	0.995	0.00463	0.9258	0	107	50.4	136				
Chlorobenzene	1.01	0.0185	0.9258	0	109	60	133				
1,1,1,2-Tetrachloroethane	1.03	0.0278	0.9258	0	111	53.1	142				
Ethylbenzene	1.01	0.0278	0.9258	0	109	54.5	134				
m,p-Xylene	2.03	0.0185	1.852	0	110	53.1	132				
o-Xylene	1.01	0.0185	0.9258	0	109	53.3	139				
Styrene	1.00	0.0185	0.9258	0	109	51.1	132				
Isopropylbenzene	1.05	0.0741	0.9258	0	114	58.9	138				
Bromoform	1.03	0.0185	0.9258	0	111	57.9	130				
1,1,2,2-Tetrachloroethane	0.983	0.0185	0.9258	0	106	51.9	131				
n-Propylbenzene	1.06	0.0185	0.9258	0	114	53.6	140				
Bromobenzene	1.01	0.0278	0.9258	0	109	54.2	140				
1,3,5-Trimethylbenzene	1.06	0.0185	0.9258	0	115	51.8	136				
2-Chlorotoluene	1.02	0.0185	0.9258	0	110	51.6	136				
4-Chlorotoluene	1.01	0.0185	0.9258	0	110	50.1	139				
tert-Butylbenzene	1.06	0.0185	0.9258	0	115	50.5	135				
1,2,3-Trichloropropane	1.02	0.0185	0.9258	0	111	50.5	131				
1,2,4-Trichlorobenzene	1.01	0.0463	0.9258	0	109	50.8	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

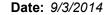
Sample ID: 1408250-002BMS	SampType: MS			Units: mg/h	(g-dry	Prep Da	te: 8/27/20	14	RunNo: 16 4	457	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	1.08	0.0185	0.9258	0	117	52.6	141				
4-Isopropyltoluene	1.06	0.0185	0.9258	0	115	52.9	134				
1,3-Dichlorobenzene	1.00	0.0185	0.9258	0	108	52.6	131				
1,4-Dichlorobenzene	0.990	0.0185	0.9258	0	107	52.9	129				
n-Butylbenzene	1.05	0.0185	0.9258	0	114	52.6	130				
1,2-Dichlorobenzene	0.987	0.0185	0.9258	0	107	55.8	129				
1,2-Dibromo-3-chloropropane	1.08	0.0278	0.9258	0	117	40.5	131				
1,2,4-Trimethylbenzene	1.02	0.0185	0.9258	0	111	50.6	137				
Hexachlorobutadiene	1.08	0.0926	0.9258	0	116	40.6	158				
Naphthalene	1.03	0.0278	0.9258	0	111	52.3	124				
1,2,3-Trichlorobenzene	1.02	0.0185	0.9258	0	110	54.4	124				
Surr: Dibromofluoromethane	2.36		2.314		102	63.7	129				
Surr: Toluene-d8	2.38		2.314		103	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.47		2.314		107	63.1	141				

Sample ID: LCS-8540	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/27/20	14	RunNo: 164	157	
Client ID: LCSS	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.701	0.0600	1.000	0	70.1	37.7	136				
Chloromethane	0.988	0.0600	1.000	0	98.8	38.8	132				
Vinyl chloride	0.887	0.00200	1.000	0	88.7	56.1	130				
Bromomethane	0.766	0.0900	1.000	0	76.6	41.3	148				
Trichlorofluoromethane (CFC-11)	0.732	0.0500	1.000	0	73.2	42.9	147				
Chloroethane	0.462	0.0600	1.000	0	46.2	37.1	144				
1,1-Dichloroethene	1.11	0.0500	1.000	0	111	49.7	142				
Methylene chloride	0.901	0.0200	1.000	0	90.1	54.5	131				
trans-1,2-Dichloroethene	0.984	0.0200	1.000	0	98.4	68	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

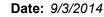
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8540	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/27/20	14	RunNo: 16 4	457	
Client ID: LCSS	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 33	1299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	0.949	0.0500	1.000	0	94.9	59.1	138				
1,1-Dichloroethane	1.01	0.0200	1.000	0	101	65.5	132				
2,2-Dichloropropane	0.958	0.0500	1.000	0	95.8	28.1	149				
cis-1,2-Dichloroethene	0.951	0.0200	1.000	0	95.1	71.6	123				
Chloroform	0.987	0.0200	1.000	0	98.7	67.5	129				
1,1,1-Trichloroethane (TCA)	0.989	0.0200	1.000	0	98.9	69	132				
1,1-Dichloropropene	1.00	0.0200	1.000	0	100	72.7	131				
Carbon tetrachloride	1.01	0.0200	1.000	0	101	63.4	137				
1,2-Dichloroethane (EDC)	1.05	0.0300	1.000	0	105	61.9	136				
Benzene	0.974	0.0200	1.000	0	97.4	74.6	124				
Trichloroethene (TCE)	0.939	0.0200	1.000	0	93.9	65.5	137				
1,2-Dichloropropane	0.995	0.0200	1.000	0	99.5	63.2	142				
Bromodichloromethane	1.03	0.0200	1.000	0	103	76.1	136				
Dibromomethane	1.00	0.0400	1.000	0	100	70	130				
cis-1,3-Dichloropropene	1.00	0.0200	1.000	0	100	59.1	143				
Toluene	1.00	0.0200	1.000	0	100	67.3	138				
trans-1,3-Dichloropropylene	0.980	0.0300	1.000	0	98.0	49.2	149				
1,1,2-Trichloroethane	0.981	0.0300	1.000	0	98.1	74.5	129				
1,3-Dichloropropane	0.971	0.0500	1.000	0	97.1	70	130				
Tetrachloroethene (PCE)	0.996	0.0200	1.000	0	99.6	52.7	150				
Dibromochloromethane	1.01	0.0300	1.000	0	101	70.6	144				
1,2-Dibromoethane (EDB)	0.975	0.00500	1.000	0	97.5	70	130				
Chlorobenzene	1.01	0.0200	1.000	0	101	76.1	123				
1,1,1,2-Tetrachloroethane	1.02	0.0300	1.000	0	102	74.8	131				
Ethylbenzene	0.988	0.0300	1.000	0	98.8	74	129				
m,p-Xylene	2.03	0.0200	2.000	0	102	79.8	128				
o-Xylene	0.990	0.0200	1.000	0	99.0	72.7	124				
Styrene	1.01	0.0200	1.000	0	101	76.8	130				
Isopropylbenzene	1.04	0.0800	1.000	0	104	70	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

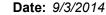
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8540	SampType: LCS			Units: mg/Kg	3	Prep Da	te: 8/27/20	14	RunNo: 16 4	157	
Client ID: LCSS	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	1.02	0.0200	1.000	0	102	67	154				
1,1,2,2-Tetrachloroethane	0.994	0.0200	1.000	0	99.4	60	130				
n-Propylbenzene	1.05	0.0200	1.000	0	105	74.8	125				
Bromobenzene	1.03	0.0300	1.000	0	103	49.2	144				
1,3,5-Trimethylbenzene	1.06	0.0200	1.000	0	106	74.6	123				
2-Chlorotoluene	1.03	0.0200	1.000	0	103	76.7	129				
4-Chlorotoluene	1.00	0.0200	1.000	0	100	77.5	125				
tert-Butylbenzene	1.06	0.0200	1.000	0	106	66.2	130				
1,2,3-Trichloropropane	1.00	0.0200	1.000	0	100	67.9	136				
1,2,4-Trichlorobenzene	1.01	0.0500	1.000	0	101	65.6	137				
sec-Butylbenzene	1.06	0.0200	1.000	0	106	75.6	133				
4-Isopropyltoluene	1.07	0.0200	1.000	0	107	76.8	131				
1,3-Dichlorobenzene	1.02	0.0200	1.000	0	102	72.8	128				
1,4-Dichlorobenzene	1.02	0.0200	1.000	0	102	72.6	126				
n-Butylbenzene	1.05	0.0200	1.000	0	105	65.3	136				
1,2-Dichlorobenzene	1.00	0.0200	1.000	0	100	72.8	126				
1,2-Dibromo-3-chloropropane	0.955	0.0300	1.000	0	95.5	61.2	139				
1,2,4-Trimethylbenzene	1.01	0.0200	1.000	0	101	77.5	129				
Hexachlorobutadiene	1.05	0.100	1.000	0	105	42	151				
Naphthalene	0.983	0.0300	1.000	0	98.3	62.3	134				
1,2,3-Trichlorobenzene	1.03	0.0200	1.000	0	103	62.1	140				
Surr: Dibromofluoromethane	2.58		2.500		103	63.7	129				
Surr: Toluene-d8	2.55		2.500		102	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.68		2.500		107	63.1	141				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

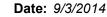
Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8540	SampType: MBLK			Units: mg/Kg		Prep Da	ite: 8/27/20	014	RunNo: 16 4	157	
Client ID: MBLKS	Batch ID: 8540					Analysis Da	ite: 8/27/20	014	SeqNo: 331	1300	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600									
Chloromethane	ND	0.0600									
Vinyl chloride	ND	0.00200									
Bromomethane	ND	0.0900									
Trichlorofluoromethane (CFC-11)	ND	0.0500									
Chloroethane	ND	0.0600									
1,1-Dichloroethene	ND	0.0500									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.0500									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane (EDC)	ND	0.0300									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

Naphthalene

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8540 SampType: MBLK Units: mg/Kg Prep Date: 8/27/2014 RunNo: 16457 Client ID: MBLKS Batch ID: 8540 Analysis Date: 8/27/2014 SeqNo: 331300 Result RI SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Analyte Qual Dibromochloromethane ND 0.0300 ND 0.00500 1,2-Dibromoethane (EDB) Chlorobenzene ND 0.0200 1.1.1.2-Tetrachloroethane ND 0.0300 Ethylbenzene ND 0.0300 m,p-Xylene ND 0.0200 ND 0.0200 o-Xylene ND 0.0200 Styrene Isopropylbenzene ND 0.0800 ND 0.0200 Bromoform ND 0.0200 1.1.2.2-Tetrachloroethane n-Propylbenzene ND 0.0200 ND 0.0300 Bromobenzene 0.0200 1,3,5-Trimethylbenzene ND 2-Chlorotoluene ND 0.0200 4-Chlorotoluene ND 0.0200 ND 0.0200 tert-Butylbenzene 1,2,3-Trichloropropane ND 0.0200 1,2,4-Trichlorobenzene ND 0.0500 sec-Butylbenzene ND 0.0200 ND 0.0200 4-Isopropyltoluene 1.3-Dichlorobenzene ND 0.0200 ND 0.0200 1.4-Dichlorobenzene n-Butvlbenzene ND 0.0200 ND 0.0200 1.2-Dichlorobenzene ND 0.0300 1,2-Dibromo-3-chloropropane ND 0.0200 1,2,4-Trimethylbenzene Hexachlorobutadiene ND 0.100

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND

0.0300

R RPD outside accepted recovery limits D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit Ε Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1408230

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriot	tt					Volatile	e Organi	c Compour	nds by EP	A Method	d 8260
Sample ID: MB-8540	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/27/20	14	RunNo: 164	457	
Client ID: MBLKS	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1300	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	2.41		2.500		96.6	63.7	129				
Surr: Toluene-d8	2.38		2.500		95.2	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.37		2.500		94.8	63.1	141				

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Reporting Limit

Dilution was required

Analyte detected below quantitation limits

Value above quantitation range

Not detected at the Reporting Limit

Sample Log-In Check List

C	ient Name:	GEI1	Work Order Numb	per: 1408230	
Lo	ogged by:	Clare Griggs	Date Received:	8/22/2014	4 4:35:00 PM
<u>Cha</u>	in of Custo	<u>ody</u>			
1.	Is Chain of Cu	ustody complete?	Yes 🗹	No \square	Not Present
2.	How was the s	sample delivered?	<u>Client</u>		
Log	ln .				
_	Coolers are pr	resent?	Yes 🗹	No 🗌	NA 🗆
			_		
4.	Shipping cont	ainer/cooler in good condition?	Yes 🔽	No 📙	
5.	Custody seals	intact on shipping container/cooler?	Yes	No 🗌	Not Required 🗹
6.	Was an attem	upt made to cool the samples?	Yes 🗹	No 🗌	NA \square
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes 🗹	No 🗌	NA 🗆
8.	Sample(s) in p	proper container(s)?	Yes 🗹	No 🗌	
9.	Sufficient sam	nple volume for indicated test(s)?	Yes 🗹	No 🗌	
		properly preserved?	Yes 🗹	No 🗌	
11.	Was preserva	tive added to bottles?	Yes	No 🗹	NA 🗆
12	Is the headspa	ace in the VOA vials?	Yes	No 🗆	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14.	Does paperwo	ork match bottle labels?	Yes 🔽	No 🗌	
15	Are matrices of	correctly identified on Chain of Custody?	Yes 🔽	No 🗆	
		t analyses were requested?	Yes 🗹	No 🗌	
		ng times able to be met?	Yes 🔽	No \square	
Spe	<u>cial H</u> andli	ing (if applicable)			
_		tified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person N		te:		
	By Whor		•	one Fax	☐ In Person
	Regardir				
	Client In	structions:			

Item Information

Item #	Temp °C	Condition
Cooler	8.6	Good
Sample	21.2	

Affects a coordinate with the lab in advance	×	×
TAT -> SameDay* NextDay* 2 Day 3 Day STD	Rectified 4 Date/Time	Relinquished
	mac- Aulpy 8/22/4:34 * Referred 8/22/14 16:35	Relinquished × + N
	Return to Client Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	Sample Disposal:
Special Remarks:	ircle): Nitrate Nitrite Onloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite	*** Anions (Grcle):
II Pb Sb Se Sr Sn Ti Ti U V Zn	alysis (Circle): MTCA-S RCRA-8 / Priority Pollutants TAL Individual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn No Na Mi	**Metals Analysis (Circle):
	MW-1-10-30.0 X 1020 V	10 MW-
	MW-1-9-25.00 1010	· MW ·
	1-8-20.0 1000	8 MW-1-
	1-7-17.5 PS	7 Muj - 1-
	1 + H6 O) S(1 - 9+MM WARD)	6 (DE) N
	1 S-12-1-S-1-S-1-S-1-WM	5 Musi
	Mw-14-10.0 930	4 Mw-1
	MW-1-3-7,5 / 925	3 ME-
	MW-1-2-5.0 920	2 MW-
		-mm:
Comments/Depth	Sample Sample Type (Matrix)* Of Grand Conference Confer	Sample Name
- Waste Water	ing Water, GW = Ground Water,	Matrix Codes:
20776-03-00	5	Reports To (
	Tel: Collected by:	City, State, Z
	GEI Project Name: SLU Mappioth	Client
\$ (C)	3600 Fremont Ave N. Tel: 206-352-3790 Seattle, WA 98103 Fax: 206-352-7178 Date: \$\begin{pmatrix} 2\leq 2\leq \leq \leq \leq \leq \leq \leq \leq	3600 Fremont Ave. Seattle, WA 98103
458280		
Chain of Custody Record	Fremont	

"Pfease coordinate with the lab in advance		
TAT-> SameDay^ NextDay^ 2 Day 3 Day STD	x vaecymme /	<
	Received A. L.	Reinquished Date/Time Date/Time
	Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	Return to Clent
Special Remarks:	Bromide O-Phosphate Fluoride Nitrate+Nitrite	Anions (circle): Nitrate Nitrite Chloride Sulfate
Ph Sh Se Sr Sn Ti Ti U V Zn	TAL /nd/wid/tnl: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	fence): Mico-2 808
		2000
	4	mw-1-16-60,0 4 1145 7
		MW-1-15-45.0 1130
		MW-1-14-4000
		1 MW-1- 13-45.0
		2 MW-1-12-40,0 1 1040 1
Comments/Depth		1 MW-1-11-35.0 8/24/1 1030 S
	Sample Sample	Sample Sample Date Time
=Waste Water	SD = Sediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water,	'Matrix Codes: A = Air, AQ = Aquebus, B = Bulk, O = Other, P = Product, S = Soil,
מסיים לורכוב	Email: Jasnuthoseaurow	REPORTS TO (PM): JESSICA Smith Fax:
	Collected by: OYAC	City, State, Zip Ledwood ret
41.	Ject Name: SLU Maur	Client: GEI
b	Date: 8/22/14 Laboratory Project No (internal):	3600 Fremont Ave N. Tel: 206-352-3790 Seattle, WA 98103 Fax: 206-352-7178
		1 Amalyanan
Chain of Custody Record	Ch	Fremont
	2	

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondJessica Smith
8410 154th Ave. NE
Redmond. WA 98052

RE: SLU Marriott Lab ID: 1408231

September 24, 2014

Attention Jessica Smith:

Fremont Analytical, Inc. received 49 sample(s) on 8/25/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Metals (SW6020) with TCLP Extraction (EPA 1311)

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malc. Rody

Sincerely,

Mike Ridgeway President

Date: 09/24/2014

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott Lab Order: 1408231

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1408231-001	MW-3-1-2.5	08/23/2014 7:20 AM	08/25/2014 8:19 AM
1408231-002	MW-3-2-5.0	08/23/2014 7:55 AM	08/25/2014 8:19 AM
1408231-003	MW-3-3-7.5	08/23/2014 8:15 AM	08/25/2014 8:19 AM
1408231-004	MW-3-4-10.0	08/23/2014 8:25 AM	08/25/2014 8:19 AM
1408231-005	MW-3-5-12.5	08/23/2014 8:35 AM	08/25/2014 8:19 AM
1408231-006	MW-3-6-15.0	08/23/2014 8:40 AM	08/25/2014 8:19 AM
1408231-007	MW-3-7-17.5	08/23/2014 8:45 AM	08/25/2014 8:19 AM
1408231-008	MW-3-8-20.0	08/23/2014 8:55 AM	08/25/2014 8:19 AM
1408231-009	MW-3-9-22.5	08/23/2014 9:00 AM	08/25/2014 8:19 AM
1408231-010	MW-3-10-25.0	08/23/2014 9:10 AM	08/25/2014 8:19 AM
1408231-011	MW-3-11-30.0	08/23/2014 9:30 AM	08/25/2014 8:19 AM
1408231-012	MW-3-12-35.0	08/23/2014 9:45 AM	08/25/2014 8:19 AM
1408231-013	MW-3-13-40.0	08/23/2014 9:55 AM	08/25/2014 8:19 AM
1408231-014	MW-3-14-45.0	08/23/2014 10:10 AM	08/25/2014 8:19 AM
1408231-015	MW-3-15-50.0	08/23/2014 10:20 AM	08/25/2014 8:19 AM
1408231-016	MW-3-16-55.0	08/23/2014 10:30 AM	08/25/2014 8:19 AM
1408231-017	MW-3-17-60.0	08/23/2014 10:45 AM	08/25/2014 8:19 AM
1408231-018	MW-3-18-65.0	08/23/2014 11:20 AM	08/25/2014 8:19 AM
1408231-019	MW-2-1-2.5	08/23/2014 2:20 PM	08/25/2014 8:19 AM
1408231-020	MW-2-2-5.0	08/23/2014 2:35 PM	08/25/2014 8:19 AM
1408231-021	MW-2-3-7.5	08/23/2014 2:47 PM	08/25/2014 8:19 AM
1408231-022	MW-2-4-10.0	08/23/2014 2:55 PM	08/25/2014 8:19 AM
1408231-023	MW-2-5-12.5	08/23/2014 3:03 PM	08/25/2014 8:19 AM
1408231-024	MW-2-6-15.0	08/23/2014 3:05 PM	08/25/2014 8:19 AM
1408231-025	MW-2-7-17.5	08/23/2014 3:14 PM	08/25/2014 8:19 AM
1408231-026	MW-2-8-20.0	08/23/2014 3:21 PM	08/25/2014 8:19 AM
1408231-027	MW-2-9-25.0	08/23/2014 3:30 PM	08/25/2014 8:19 AM
1408231-028	MW-2-10-30.0	08/23/2014 3:40 PM	08/25/2014 8:19 AM
1408231-029	MW-2-11-35.0	08/23/2014 3:45 PM	08/25/2014 8:19 AM
1408231-030	MW-2-12-40.0	08/23/2014 3:55 PM	08/25/2014 8:19 AM
1408231-031	MW-2-13-45.0	08/23/2014 4:00 PM	08/25/2014 8:19 AM
1408231-032	MW-2-14-50.0	08/23/2014 4:10 PM	08/25/2014 8:19 AM
1408231-033	MW-2-15-55.0	08/23/2014 4:25 PM	08/25/2014 8:19 AM
1408231-034	GEI-4-1-2.5	08/24/2014 7:50 AM	08/25/2014 8:19 AM
1408231-035	GEI-4-2-5.0	08/24/2014 8:00 AM	08/25/2014 8:19 AM
1408231-036	GEI-4-3-7.5	08/24/2014 8:05 AM	08/25/2014 8:19 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott **Lab Order:** 1408231

CLIENT:

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1408231-037	GEI-4-4-10.0	08/24/2014 8:07 AM	08/25/2014 8:19 AM
1408231-038	GEI-4-5-12.5	08/24/2014 8:12 AM	08/25/2014 8:19 AM
1408231-039	GEI-4-6-15.0	08/24/2014 8:20 AM	08/25/2014 8:19 AM
1408231-040	GEI-4-7-20.0	08/24/2014 8:35 AM	08/25/2014 8:19 AM
1408231-041	GEI-4-8-25.0	08/24/2014 8:50 AM	08/25/2014 8:19 AM
1408231-042	GEI-4-9-30.0	08/24/2014 9:00 AM	08/25/2014 8:19 AM
1408231-043	GEI-4-10-35.0	08/24/2014 9:05 AM	08/25/2014 8:19 AM
1408231-044	GEI-4-11-40.0	08/24/2014 10:05 AM	08/25/2014 8:19 AM
1408231-045	GEI-4-12-45.0	08/24/2014 10:15 AM	08/25/2014 8:19 AM
1408231-046	GEI-4-13-50.0	08/24/2014 10:30 AM	08/25/2014 8:19 AM
1408231-047	GEI-4-14-55.0	08/24/2014 10:45 AM	08/25/2014 8:19 AM
1408231-048	GEI-4-15-60.0	08/24/2014 11:00 AM	08/25/2014 8:19 AM
1408231-049	Trip Blank	08/21/2014 11:15 AM	08/25/2014 8:19 AM

Case Narrative

WO#: **1408231**Date: **9/24/2014**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

GeoEngineers, Inc. - Redmond

Analytical Report

Collection Date: 8/23/2014 8:25:00 AM

WO#: **1408231**Date Reported: **9/24/2014**

Project: SLU Marriott

Client:

Lab ID: 1408231-004 **Matrix**: Soil

Client Sample ID: MW-3-4-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8518	Analyst: EC
Diesel (Fuel Oil)	ND	21.5		mg/Kg-dry	1	8/31/2014 5:25:00 AM
Heavy Oil	93.4	53.8		mg/Kg-dry	1	8/31/2014 5:25:00 AM
Surr: 2-Fluorobiphenyl	98.6	50-150		%REC	1	8/31/2014 5:25:00 AM
Surr: o-Terphenyl	94.4	50-150		%REC	1	8/31/2014 5:25:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8524	Analyst: NG
Naphthalene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
2-Methylnaphthalene	91.2	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
1-Methylnaphthalene	125	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Acenaphthylene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Acenaphthene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Fluorene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Phenanthrene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Anthracene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Fluoranthene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Pyrene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benz(a)anthracene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Chrysene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benzo(b)fluoranthene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benzo(k)fluoranthene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benzo(a)pyrene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Indeno(1,2,3-cd)pyrene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Dibenz(a,h)anthracene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benzo(g,h,i)perylene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Surr: 2-Fluorobiphenyl	109	42.7-132		%REC	1	8/27/2014 11:42:00 PM
Surr: Terphenyl-d14 (surr)	111	48.8-157		%REC	1	8/27/2014 11:42:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: R164	158 Analyst: BC
Gasoline	14.7	6.46		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Surr: Toluene-d8	95.4	65-135		%REC	1	8/28/2014 2:11:00 AM
Surr: 4-Bromofluorobenzene	109	65-135		%REC	1	8/28/2014 2:11:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1408231**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 8:25:00 AM

Project: SLU Marriott

Lab ID: 1408231-004 **Matrix**: Soil

Client Sample ID: MW-3-4-10.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 0.0775 8/28/2014 2:11:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0775 8/28/2014 2:11:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00258 mg/Kg-dry 8/28/2014 2:11:00 AM 1 Bromomethane ND 0.116 1 8/28/2014 2:11:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0646 mg/Kg-dry 1 8/28/2014 2:11:00 AM Chloroethane ND 0.0775 8/28/2014 2:11:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0646 mg/Kg-dry 1 8/28/2014 2:11:00 AM ND 0.0258 8/28/2014 2:11:00 AM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Methyl tert-butyl ether (MTBE) ND 0.0646 8/28/2014 2:11:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM 2,2-Dichloropropane ND 0.0646 mg/Kg-dry 1 8/28/2014 2:11:00 AM cis-1,2-Dichloroethene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Chloroform ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM 1,1,1-Trichloroethane (TCA) ND 1 8/28/2014 2:11:00 AM 0.0258 mg/Kg-dry 1,1-Dichloropropene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Carbon tetrachloride ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM 1,2-Dichloroethane (EDC) ND 0.0388 8/28/2014 2:11:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 2:11:00 AM 0.0258 mg/Kg-dry 1 Trichloroethene (TCE) ND 8/28/2014 2:11:00 AM 0.0258 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Bromodichloromethane ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM ND Dibromomethane 0.0517 mg/Kg-dry 1 8/28/2014 2:11:00 AM cis-1,3-Dichloropropene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Toluene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM ND 0.0388 8/28/2014 2:11:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0388 mg/Kg-dry 1 8/28/2014 2:11:00 AM 1,3-Dichloropropane ND 0.0646 8/28/2014 2:11:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0258 8/28/2014 2:11:00 AM mg/Kg-dry 1 ND 1 8/28/2014 2:11:00 AM Dibromochloromethane 0.0388 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00646 mg/Kg-dry 1 8/28/2014 2:11:00 AM Chlorobenzene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM 1,1,1,2-Tetrachloroethane ND 0.0388 mg/Kg-dry 1 8/28/2014 2:11:00 AM ND Ethylbenzene 0.0388 mg/Kg-dry 1 8/28/2014 2:11:00 AM m,p-Xylene ND 0.0258 mg/Kg-dry 8/28/2014 2:11:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 8:25:00 AM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1408231-004 **Matrix**: Soil

Client Sample ID: MW-3-4-10.0

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260		Batch	ID: 8540	Analyst: BC
o-Xylene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Styrene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Isopropylbenzene	ND	0.103		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Bromoform	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AN
1,1,2,2-Tetrachloroethane	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
n-Propylbenzene	0.0383	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Bromobenzene	ND	0.0388		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,3,5-Trimethylbenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
2-Chlorotoluene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 Af
4-Chlorotoluene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AI
tert-Butylbenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AI
1,2,3-Trichloropropane	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 Al
1,2,4-Trichlorobenzene	ND	0.0646		mg/Kg-dry	1	8/28/2014 2:11:00 A
sec-Butylbenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 Al
4-Isopropyltoluene	0.0435	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 Al
1,3-Dichlorobenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 A
1,4-Dichlorobenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 A
n-Butylbenzene	0.0525	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 A
1,2-Dichlorobenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 A
1,2-Dibromo-3-chloropropane	ND	0.0388		mg/Kg-dry	1	8/28/2014 2:11:00 A
1,2,4-Trimethylbenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 A
Hexachlorobutadiene	ND	0.129		mg/Kg-dry	1	8/28/2014 2:11:00 Al
Naphthalene	ND	0.0388		mg/Kg-dry	1	8/28/2014 2:11:00 Al
1,2,3-Trichlorobenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 A
Surr: Dibromofluoromethane	99.2	63.7-129		%REC	1	8/28/2014 2:11:00 Al
Surr: Toluene-d8	101	61.4-128		%REC	1	8/28/2014 2:11:00 Al
Surr: 1-Bromo-4-fluorobenzene	98.4	63.1-141		%REC	1	8/28/2014 2:11:00 A
lercury by EPA Method 7471				Batch	ID: 8515	Analyst: M
Mercury	ND	0.258		mg/Kg-dry	1	8/27/2014 11:31:05 A
otal Metals by EPA Method 602	20			Batch	ID: 8516	Analyst: Ti
Arsenic	2.58	0.0852		mg/Kg-dry	1	8/26/2014 6:28:04 PI

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 8:25:00 AM

Project: SLU Marriott

Lab ID: 1408231-004 **Matrix**: Soil

Client Sample ID: MW-3-4-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 85	16 Analyst: TN
Barium	68.9	0.426		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Cadmium	ND	0.170		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Chromium	32.8	0.0852		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Lead	10.9	0.170		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Selenium	ND	0.426		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Silver	ND	0.0852		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Sample Moisture (Percen	t Moisture)			Batch	ı ID: R1	6417 Analyst: KZ
Percent Moisture	15.0			wt%	1	8/27/2014 7:54:28 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 10:20:00 AM

Project: SLU Marriott

Lab ID: 1408231-015 **Matrix**: Soil

Client Sample ID: MW-3-15-50.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 8/28/2014 2:41:00 AM Dichlorodifluoromethane (CFC-12) 0.0497 mg/Kg-dry 1 Chloromethane ND 0.0497 8/28/2014 2:41:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00166 8/28/2014 2:41:00 AM mg/Kg-dry 1 Bromomethane ND 0.0746 1 8/28/2014 2:41:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0414 mg/Kg-dry 1 8/28/2014 2:41:00 AM Chloroethane ND 0.0497 8/28/2014 2:41:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0414 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND 0.0166 8/28/2014 2:41:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0166 trans-1,2-Dichloroethene mg/Kg-dry 1 8/28/2014 2:41:00 AM Methyl tert-butyl ether (MTBE) ND 0.0414 8/28/2014 2:41:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 2,2-Dichloropropane ND 0.0414 mg/Kg-dry 1 8/28/2014 2:41:00 AM cis-1,2-Dichloroethene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Chloroform ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0166 1 8/28/2014 2:41:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Carbon tetrachloride ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2-Dichloroethane (EDC) ND 0.0249 8/28/2014 2:41:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 2:41:00 AM 0.0166 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 8/28/2014 2:41:00 AM 1,2-Dichloropropane ND 0.0166 mg/Kg-dry 1 Bromodichloromethane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND Dibromomethane 0.0332 mg/Kg-dry 1 8/28/2014 2:41:00 AM cis-1,3-Dichloropropene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Toluene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND 0.0249 8/28/2014 2:41:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,3-Dichloropropane ND 0.0414 8/28/2014 2:41:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0166 8/28/2014 2:41:00 AM mg/Kg-dry 1 ND 1 8/28/2014 2:41:00 AM Dibromochloromethane 0.0249 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00414 mg/Kg-dry 1 8/28/2014 2:41:00 AM Chlorobenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,1,1,2-Tetrachloroethane ND 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND Ethylbenzene 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM m,p-Xylene ND 0.0166 mg/Kg-dry 8/28/2014 2:41:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1408231

Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 10:20:00 AM Client:

Project: SLU Marriott

Lab ID: 1408231-015 Matrix: Soil

Client Sample ID: MW-3-15-50.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 0.0166 8/28/2014 2:41:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0166 8/28/2014 2:41:00 AM 1 Isopropylbenzene ND 0.0663 mg/Kg-dry 8/28/2014 2:41:00 AM 1 Bromoform ND 0.0166 1 8/28/2014 2:41:00 AM mg/Kg-dry 1,1,2,2-Tetrachloroethane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 8/28/2014 2:41:00 AM n-Propylbenzene ND 0.0166 mg/Kg-dry 1 Bromobenzene ND 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND 0.0166 1 8/28/2014 2:41:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry ND 2-Chlorotoluene 0.0166 8/28/2014 2:41:00 AM mg/Kg-dry 1 4-Chlorotoluene ND 0.0166 8/28/2014 2:41:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2,3-Trichloropropane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2,4-Trichlorobenzene ND 0.0414 mg/Kg-dry 1 8/28/2014 2:41:00 AM sec-Butylbenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND 0.0166 1 8/28/2014 2:41:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,4-Dichlorobenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM n-Butylbenzene ND 0.0166 8/28/2014 2:41:00 AM mg/Kg-dry 1 ND 8/28/2014 2:41:00 AM 1,2-Dichlorobenzene 0.0166 mg/Kg-dry 1 ND 8/28/2014 2:41:00 AM 1,2-Dibromo-3-chloropropane 0.0249 mg/Kg-dry 1 1,2,4-Trimethylbenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Hexachlorobutadiene ND 0.0829 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND Naphthalene 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2,3-Trichlorobenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Surr: Dibromofluoromethane 97.3 63.7-129 %REC 1 8/28/2014 2:41:00 AM Surr: Toluene-d8 99.1 61.4-128 %REC 1 8/28/2014 2:41:00 AM Surr: 1-Bromo-4-fluorobenzene 94.9 63.1-141 %REC 1 8/28/2014 2:41:00 AM Batch ID: R16417 Analyst: KZ

Sample Moisture (Percent Moisture)

Percent Moisture 22.2 wt% 1 8/27/2014 7:54:28 AM

- Analyte detected in the associated Method Blank В
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:35:00 PM

Project: SLU Marriott

Lab ID: 1408231-020 **Matrix**: Soil

Client Sample ID: MW-2-2-5.0

Analyses	Result	RL	Qual	Units	Inits DF		Date Analyzed	
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.				Batch ID: 8518		3518	Analyst: EC	
Diesel (Fuel Oil)	ND	24.5		mg/Kg-dry	1	8/31	/2014 5:56:00 AM	
Heavy Oil	ND	61.2		mg/Kg-dry	1	8/31	/2014 5:56:00 AM	
Surr: 2-Fluorobiphenyl	98.5	50-150		%REC	1	8/31	/2014 5:56:00 AM	
Surr: o-Terphenyl	93.0	50-150		%REC	1	8/31	/2014 5:56:00 AM	
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batch	n ID: 8	3524	Analyst: NG	
Naphthalene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
2-Methylnaphthalene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
1-Methylnaphthalene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Acenaphthylene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Acenaphthene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Fluorene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Phenanthrene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Anthracene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Fluoranthene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Pyrene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Benz(a)anthracene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Chrysene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Benzo(b)fluoranthene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Benzo(k)fluoranthene	ND	60.1		μg/Kg-dry	1	8/28	8/28/2014 12:05:00 AM	
Benzo(a)pyrene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Indeno(1,2,3-cd)pyrene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Dibenz(a,h)anthracene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Benzo(g,h,i)perylene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM	
Surr: 2-Fluorobiphenyl	99.0	42.7-132		%REC	1	8/28	/2014 12:05:00 AM	
Surr: Terphenyl-d14 (surr)	103	48.8-157		%REC	1	8/28	/2014 12:05:00 AM	
Gasoline by NWTPH-Gx				Batch	ı ID: I	R16458	Analyst: BC	
Gasoline	ND	9.78		mg/Kg-dry	1	8/28	/2014 3:11:00 AM	
Surr: Toluene-d8	101	65-135		%REC	1	8/28	/2014 3:11:00 AM	
Surr: 4-Bromofluorobenzene	104	65-135		%REC	1	8/28	/2014 3:11:00 AM	

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1408231**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:35:00 PM

Project: SLU Marriott

Lab ID: 1408231-020 **Matrix**: Soil

Client Sample ID: MW-2-2-5.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 8/28/2014 3:11:00 AM Dichlorodifluoromethane (CFC-12) 0.117 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.117 8/28/2014 3:11:00 AM 1 Vinyl chloride ND 0.00391 mg/Kg-dry 8/28/2014 3:11:00 AM 1 mg/Kg-dry Bromomethane ND 0.176 1 8/28/2014 3:11:00 AM Trichlorofluoromethane (CFC-11) ND 0.0978 mg/Kg-dry 1 8/28/2014 3:11:00 AM Chloroethane ND mg/Kg-dry 8/28/2014 3:11:00 AM 0.117 1 1,1-Dichloroethene ND 0.0978 mg/Kg-dry 1 8/28/2014 3:11:00 AM 0.0561 0.0391 1 8/28/2014 3:11:00 AM Methylene chloride mg/Kg-dry 0.0391 trans-1,2-Dichloroethene ND mg/Kg-dry 1 8/28/2014 3:11:00 AM ND Methyl tert-butyl ether (MTBE) 0.0978 8/28/2014 3:11:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 2,2-Dichloropropane ND 0.0978 mg/Kg-dry 1 8/28/2014 3:11:00 AM cis-1,2-Dichloroethene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM Chloroform ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0391 1 8/28/2014 3:11:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM Carbon tetrachloride ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,2-Dichloroethane (EDC) ND 0.0587 8/28/2014 3:11:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 3:11:00 AM 0.0391 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,2-Dichloropropane ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM Bromodichloromethane ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM ND Dibromomethane 0.0782 mg/Kg-dry 1 8/28/2014 3:11:00 AM cis-1,3-Dichloropropene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM Toluene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM trans-1,3-Dichloropropylene ND 0.0587 8/28/2014 3:11:00 AM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0587 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,3-Dichloropropane ND 0.0978 8/28/2014 3:11:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0391 8/28/2014 3:11:00 AM mg/Kg-dry 1 ND 1 8/28/2014 3:11:00 AM Dibromochloromethane 0.0587 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00978 mg/Kg-dry 1 8/28/2014 3:11:00 AM Chlorobenzene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,1,1,2-Tetrachloroethane ND 0.0587 mg/Kg-dry 1 8/28/2014 3:11:00 AM ND Ethylbenzene 0.0587 mg/Kg-dry 1 8/28/2014 3:11:00 AM m,p-Xylene ND 0.0391 mg/Kg-dry 8/28/2014 3:11:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1408231

Date Reported: 9/24/2014

Collection Date: 8/23/2014 2:35:00 PM Client: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

Lab ID: 1408231-020 Matrix: Soil

Client Sample ID: MW-2-2-5.0

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260		Batch	n ID: 8540	Analyst: BC
o-Xylene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Styrene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Isopropylbenzene	ND	0.156		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Bromoform	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
n-Propylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Bromobenzene	ND	0.0587		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,3,5-Trimethylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
2-Chlorotoluene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
4-Chlorotoluene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AN
tert-Butylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AN
1,2,3-Trichloropropane	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AN
1,2,4-Trichlorobenzene	ND	0.0978		mg/Kg-dry	1	8/28/2014 3:11:00 AM
sec-Butylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
4-Isopropyltoluene	0.0699	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,3-Dichlorobenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,4-Dichlorobenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
n-Butylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2-Dichlorobenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0587		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2,4-Trimethylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Hexachlorobutadiene	ND	0.196		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Naphthalene	ND	0.0587		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2,3-Trichlorobenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Surr: Dibromofluoromethane	101	63.7-129		%REC	1	8/28/2014 3:11:00 AM
Surr: Toluene-d8	106	61.4-128		%REC	1	8/28/2014 3:11:00 AM
Surr: 1-Bromo-4-fluorobenzene	94.2	63.1-141		%REC	1	8/28/2014 3:11:00 AM
lercury by EPA Method 7471				Batch	n ID: 8515	Analyst: M\
Mercury	ND	0.263		mg/Kg-dry	1	8/27/2014 11:32:42 A
otal Metals by EPA Method 602	20			Batch	n ID: 8516	Analyst: TN
Arsenic	5.83	0.0956		mg/Kg-dry	1	8/26/2014 6:31:29 PM

Ε Value above quantitation range

J Analyte detected below quantitation limits

Reporting Limit

Н Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:35:00 PM

Project: SLU Marriott

Lab ID: 1408231-020 **Matrix**: Soil

Client Sample ID: MW-2-2-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batch	n ID: 851	6 Analyst: TN
Barium	744	0.478		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Cadmium	0.908	0.191		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Chromium	27.2	0.0956		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Lead	519	0.191		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Selenium	ND	0.478		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Silver	0.548	0.0956		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Metals (SW6020) with TCLP Extracti	on (EPA 1	<u>311)</u>		Batch	n ID: 879	6 Analyst: TN
Lead	ND	0.200		mg/L	1	9/22/2014 11:17:11 AM
Sample Moisture (Percent Moisture)	1			Batch	n ID: R16	Analyst: KZ
Percent Moisture	19.5			wt%	1	8/27/2014 7:54:28 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:55:00 PM

Project: SLU Marriott

Lab ID: 1408231-022 **Matrix**: Soil

Client Sample ID: MW-2-4-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batc	h ID: 882	22 Analyst: TN
Lead	714	0.227		mg/Kg-dry	1	9/23/2014 6:08:52 PM
Sample Moisture (Percent Moistur	re)			Batc	h ID: R16	6932 Analyst: SL
Percent Moisture	30.2			wt%	1	9/23/2014 3:54:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:00:00 AM

Project: SLU Marriott

Lab ID: 1408231-035 **Matrix:** Soil

Client Sample ID: GEI-4-2-5.0

Analyses	Result	RL	Qual	Units	DF	Da	ate Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8	8518	Analyst: EC
Diesel (Fuel Oil)	ND	22.3		mg/Kg-dry	1	8/31	/2014 6:27:00 AM
Heavy Oil	ND	55.8		mg/Kg-dry	1	8/31	/2014 6:27:00 AM
Surr: 2-Fluorobiphenyl	97.6	50-150		%REC	1	8/31	/2014 6:27:00 AM
Surr: o-Terphenyl	90.7	50-150		%REC	1	8/31	/2014 6:27:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8	8524	Analyst: NG
Naphthalene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
2-Methylnaphthalene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
1-Methylnaphthalene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Acenaphthylene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Acenaphthene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Fluorene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Phenanthrene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Anthracene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Fluoranthene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Pyrene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Benz(a)anthracene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Chrysene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Benzo(b)fluoranthene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Benzo(k)fluoranthene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Benzo(a)pyrene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Dibenz(a,h)anthracene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Benzo(g,h,i)perylene	ND	55.2		μg/Kg-dry	1	8/28	/2014 12:28:00 AM
Surr: 2-Fluorobiphenyl	99.2	42.7-132		%REC	1	8/28	/2014 12:28:00 AM
Surr: Terphenyl-d14 (surr)	101	48.8-157		%REC	1	8/28	/2014 12:28:00 AM
Gasoline by NWTPH-Gx				Batch	ı ID: I	R16458	Analyst: BC
Gasoline	ND	5.34		mg/Kg-dry	1	8/28	/2014 3:40:00 AM
Surr: Toluene-d8	99.9	65-135		%REC	1	8/28	/2014 3:40:00 AM
Surr: 4-Bromofluorobenzene	108	65-135		%REC	1	8/28	/2014 3:40:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

DF

Units

WO#: 1408231

Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:00:00 AM Client:

RL

Qual

Project: SLU Marriott

Lab ID: 1408231-035 Matrix: Soil

Result

Client Sample ID: GEI-4-2-5.0

Analyses Date Analyzed Volatile Organic Compounds by EPA Method 8260 Batch ID: 8540 Analyst: BC ND 8/28/2014 3:40:00 AM Dichlorodifluoromethane (CFC-12) 0.0641 mg/Kg-dry 1 Chloromethane ND 0.0641 8/28/2014 3:40:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00214 mg/Kg-dry 8/28/2014 3:40:00 AM 1 Bromomethane ND 0.0962 1 8/28/2014 3:40:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0534 mg/Kg-dry 1 8/28/2014 3:40:00 AM Chloroethane ND 0.0641 8/28/2014 3:40:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0534 mg/Kg-dry 1 8/28/2014 3:40:00 AM ND 0.0214 8/28/2014 3:40:00 AM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Methyl tert-butyl ether (MTBE) ND 0.0534 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,1-Dichloroethane ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 2,2-Dichloropropane ND 0.0534 mg/Kg-dry 1 8/28/2014 3:40:00 AM cis-1,2-Dichloroethene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Chloroform ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0214 1 8/28/2014 3:40:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Carbon tetrachloride ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,2-Dichloroethane (EDC) ND 0.0321 8/28/2014 3:40:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 3:40:00 AM 0.0214 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,2-Dichloropropane ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Bromodichloromethane ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM ND Dibromomethane 0.0427 mg/Kg-dry 1 8/28/2014 3:40:00 AM cis-1,3-Dichloropropene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Toluene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM ND 0.0321 8/28/2014 3:40:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0321 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,3-Dichloropropane ND 0.0534 8/28/2014 3:40:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0214 8/28/2014 3:40:00 AM mg/Kg-dry 1 ND 0.0321 1 8/28/2014 3:40:00 AM Dibromochloromethane mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00534 mg/Kg-dry 1 8/28/2014 3:40:00 AM Chlorobenzene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,1,1,2-Tetrachloroethane ND 0.0321 mg/Kg-dry 1 8/28/2014 3:40:00 AM ND Ethylbenzene 0.0321 mg/Kg-dry 1 8/28/2014 3:40:00 AM m,p-Xylene ND 0.0214 mg/Kg-dry 8/28/2014 3:40:00 AM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Limit

- D Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:00:00 AM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1408231-035 **Matrix**: Soil

Client Sample ID: GEI-4-2-5.0

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by E	EPA Method	8260		Batch	ID: 8540	Analyst: BC
o-Xylene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Styrene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Isopropylbenzene	ND	0.0855		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Bromoform	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AN
1,1,2,2-Tetrachloroethane	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
n-Propylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Bromobenzene	ND	0.0321		mg/Kg-dry	1	8/28/2014 3:40:00 AM
1,3,5-Trimethylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
2-Chlorotoluene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
4-Chlorotoluene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
tert-Butylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
1,2,3-Trichloropropane	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
1,2,4-Trichlorobenzene	ND	0.0534		mg/Kg-dry	1	8/28/2014 3:40:00 Al
sec-Butylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AI
4-Isopropyltoluene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AI
1,3-Dichlorobenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 A
1,4-Dichlorobenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 A
n-Butylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 A
1,2-Dichlorobenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AI
1,2-Dibromo-3-chloropropane	ND	0.0321		mg/Kg-dry	1	8/28/2014 3:40:00 A
1,2,4-Trimethylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AI
Hexachlorobutadiene	ND	0.107		mg/Kg-dry	1	8/28/2014 3:40:00 AI
Naphthalene	ND	0.0321		mg/Kg-dry	1	8/28/2014 3:40:00 AI
1,2,3-Trichlorobenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 Al
Surr: Dibromofluoromethane	99.8	63.7-129		%REC	1	8/28/2014 3:40:00 AI
Surr: Toluene-d8	84.7	61.4-128		%REC	1	8/28/2014 3:40:00 AI
Surr: 1-Bromo-4-fluorobenzene	97.9	63.1-141		%REC	1	8/28/2014 3:40:00 AI
lercury by EPA Method 7471				Batch	ID: 8515	Analyst: M
Mercury	ND	0.262		mg/Kg-dry	1	8/27/2014 11:34:18 <i>A</i>
otal Metals by EPA Method 6020	!			Batch	ID: 8516	Analyst: TN
Arsenic	3.86	0.0867		mg/Kg-dry	1	8/26/2014 6:41:49 PI

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:00:00 AM

Project: SLU Marriott

Lab ID: 1408231-035 **Matrix:** Soil

Client Sample ID: GEI-4-2-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 8516	S Analyst: TN
Barium	61.1	0.434		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Cadmium	ND	0.173		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Chromium	25.6	0.0867		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Lead	9.19	0.173		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Selenium	ND	0.434		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Silver	ND	0.0867		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Sample Moisture (Percent	Moisture)			Batch	n ID: R164	417 Analyst: KZ
Percent Moisture	16.4			wt%	1	8/27/2014 7:54:28 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:12:00 AM

Project: SLU Marriott

Lab ID: 1408231-038 **Matrix**: Soil

Client Sample ID: GEI-4-5-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 851	8 Analyst: EC
Diesel (Fuel Oil)	ND	23.7		mg/Kg-dry	1	8/31/2014 6:57:00 AM
Heavy Oil	ND	59.3		mg/Kg-dry	1	8/31/2014 6:57:00 AM
Surr: 2-Fluorobiphenyl	99.2	50-150		%REC	1	8/31/2014 6:57:00 AM
Surr: o-Terphenyl	91.9	50-150		%REC	1	8/31/2014 6:57:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 852	24 Analyst: NG
Naphthalene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
2-Methylnaphthalene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
1-Methylnaphthalene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Acenaphthylene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Acenaphthene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Fluorene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Phenanthrene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Anthracene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Fluoranthene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Pyrene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benz(a)anthracene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Chrysene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benzo(b)fluoranthene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benzo(k)fluoranthene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benzo(a)pyrene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Indeno(1,2,3-cd)pyrene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Dibenz(a,h)anthracene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benzo(g,h,i)perylene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Surr: 2-Fluorobiphenyl	96.7	42.7-132		%REC	1	8/28/2014 12:51:00 AM
Surr: Terphenyl-d14 (surr)	92.5	48.8-157		%REC	1	8/28/2014 12:51:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R10	6458 Analyst: BC
Gasoline	ND	6.08		mg/Kg-dry	1	8/28/2014 4:09:00 AM
Surr: Toluene-d8	99.5	65-135		%REC	1	8/28/2014 4:09:00 AM
Surr: 4-Bromofluorobenzene	104	65-135		%REC	1	8/28/2014 4:09:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:12:00 AM

Project: SLU Marriott

Lab ID: 1408231-038 **Matrix**: Soil

Client Sample ID: GEI-4-5-12.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 8/28/2014 4:09:00 AM Dichlorodifluoromethane (CFC-12) 0.0729 mg/Kg-dry 1 Chloromethane ND 0.0729 8/28/2014 4:09:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00243 mg/Kg-dry 8/28/2014 4:09:00 AM 1 Bromomethane ND 0.109 1 8/28/2014 4:09:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0608 mg/Kg-dry 1 8/28/2014 4:09:00 AM Chloroethane ND 0.0729 8/28/2014 4:09:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0608 mg/Kg-dry 1 8/28/2014 4:09:00 AM ND 8/28/2014 4:09:00 AM Methylene chloride 0.0243 mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Methyl tert-butyl ether (MTBE) ND 0.0608 8/28/2014 4:09:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 2,2-Dichloropropane ND 0.0608 mg/Kg-dry 1 8/28/2014 4:09:00 AM cis-1,2-Dichloroethene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Chloroform ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,1,1-Trichloroethane (TCA) ND 1 8/28/2014 4:09:00 AM 0.0243 mg/Kg-dry 1,1-Dichloropropene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Carbon tetrachloride ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,2-Dichloroethane (EDC) ND 0.0365 8/28/2014 4:09:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 4:09:00 AM 0.0243 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,2-Dichloropropane ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Bromodichloromethane ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM ND 8/28/2014 4:09:00 AM Dibromomethane 0.0486 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Toluene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM ND 0.0365 8/28/2014 4:09:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0365 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,3-Dichloropropane ND 0.0608 8/28/2014 4:09:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0243 8/28/2014 4:09:00 AM mg/Kg-dry 1 ND 1 8/28/2014 4:09:00 AM Dibromochloromethane 0.0365 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00608 mg/Kg-dry 1 8/28/2014 4:09:00 AM Chlorobenzene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,1,1,2-Tetrachloroethane ND 0.0365 mg/Kg-dry 1 8/28/2014 4:09:00 AM ND 8/28/2014 4:09:00 AM Ethylbenzene 0.0365 mg/Kg-dry 1 m,p-Xylene ND 0.0243 mg/Kg-dry 8/28/2014 4:09:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:12:00 AM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1408231-038 **Matrix:** Soil

Client Sample ID: GEI-4-5-12.5

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
/olatile Organic Compounds by	EPA Method	8260		Batch	n ID: 8540	Analyst: BC
o-Xylene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
Styrene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
Isopropylbenzene	ND	0.0972		mg/Kg-dry	1	8/28/2014 4:09:00 AM
Bromoform	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AN
1,1,2,2-Tetrachloroethane	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AN
n-Propylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AN
Bromobenzene	ND	0.0365		mg/Kg-dry	1	8/28/2014 4:09:00 AM
1,3,5-Trimethylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
2-Chlorotoluene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
4-Chlorotoluene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
tert-Butylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
1,2,3-Trichloropropane	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
1,2,4-Trichlorobenzene	ND	0.0608		mg/Kg-dry	1	8/28/2014 4:09:00 AM
sec-Butylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Al
4-Isopropyltoluene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Al
1,3-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AI
1,4-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Af
n-Butylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AI
1,2-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Af
1,2-Dibromo-3-chloropropane	ND	0.0365		mg/Kg-dry	1	8/28/2014 4:09:00 Af
1,2,4-Trimethylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Af
Hexachlorobutadiene	ND	0.122		mg/Kg-dry	1	8/28/2014 4:09:00 Af
Naphthalene	ND	0.0365		mg/Kg-dry	1	8/28/2014 4:09:00 Af
1,2,3-Trichlorobenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Af
Surr: Dibromofluoromethane	99.4	63.7-129		%REC	1	8/28/2014 4:09:00 AM
Surr: Toluene-d8	97.3	61.4-128		%REC	1	8/28/2014 4:09:00 Af
Surr: 1-Bromo-4-fluorobenzene	94.0	63.1-141		%REC	1	8/28/2014 4:09:00 AM
lercury by EPA Method 7471				Batch	ı ID: 8515	Analyst: M
Mercury	ND	0.301		mg/Kg-dry	1	8/27/2014 11:35:55 A
otal Metals by EPA Method 602	<u>o</u>			Batch	ı ID: 8516	Analyst: TN
Arsenic	2.11	0.0901		mg/Kg-dry	1	8/26/2014 6:45:14 PM

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/24/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:12:00 AM

Project: SLU Marriott

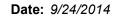
Lab ID: 1408231-038 **Matrix**: Soil

Client Sample ID: GEI-4-5-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Metho	od 6020			Batch	n ID: 85	516 Analyst: TN
Barium	84.6	0.450		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Cadmium	ND	0.180		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Chromium	42.5	0.0901		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Lead	3.44	0.180		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Selenium	ND	0.450		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Silver	ND	0.0901		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Sample Moisture (Percent	Moisture)			Batch	ı ID: R	16417 Analyst: KZ
Percent Moisture	20.1			wt%	1	8/27/2014 7:54:28 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range


J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Selenium Silver

QC SUMMARY REPORT

CLIENT	: Ge	oEngineers, Inc Ro	edmond										
Project:	SLU	J Marriott								Total Met	tals by EP	A Method	d 6020
Sample ID:	MB-8516	SampType:	MBLK			Units: mg/Kg		Prep Dat	e: 8/26/2 0)14	RunNo: 164	422	
Client ID:	MBLKS	Batch ID:	8516					Analysis Dat	e: 8/26/2 0)14	SeqNo: 330	0463	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	0.100									
Barium			ND	0.500									
Cadmium			ND	0.200									
Chromium			ND	0.100									
Lead			ND	0.200									
Selenium			ND	0.500									
Silver			ND	0.100									
Sample ID:	LCS-8516	SampType:	LCS			Units: mg/Kg		Prep Dat	e: 8/26/2 0)14	RunNo: 164	422	
Client ID:	LCSS	Batch ID:	8516					Analysis Dat	e: 8/26/2 0)14	SeqNo: 330	0464	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			101	0.100	104.0	0	97.2	69.5	130.8				
Barium			823	0.500	779.0	0	106	74.8	125.3				
Cadmium			96.4	0.200	92.80	0	104	73.3	127.2				
Chromium			75.0	0.100	62.90	0	119	67.9	132				
Lead			329	0.200	319.0	0	103	75.9	124.1				

Sample ID: 1408230-001ADUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Dat	e: 8/26/2 0	14	RunNo: 164	122	
Client ID: BATCH	Batch ID: 8516					Analysis Dat	e: 8/26/20	14	SeqNo: 330	1466	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4.72	0.0852						4.876	3.25	30	
Barium	78.6	0.426						83.98	6.56	30	
Cadmium	ND	0.170						0		30	
Chromium	44.2	0.0852						43.90	0.749	30	

0

0

102

103

63.1

66.4

136.4

133.6

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

79.1

49.9

0.500

0.100

RPD outside accepted recovery limits

D Dilution was required

77.70

48.50

- Analyte detected below quantitation limits
- Reporting Limit

- Е Value above quantitation range
- Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Work Order: 1408231

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Total Metals by EPA Method 6020

Sample ID: 1408230-001ADUP	SampType: DUP			Units: mg/M	(g-dry	Prep Dat	e: 8/26/20)14	RunNo: 16 4	122	
Client ID: BATCH	Batch ID: 8516					Analysis Dat	e: 8/26/20)14	SeqNo: 330	1466	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	5.74	0.170						6.070	5.51	30	
Selenium	ND	0.426						0		30	
Silver	ND	0.0852						0.1248	42.6	30	

Sample ID: 1408230-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 8/26/20	14	RunNo: 164	122	
Client ID: BATCH	Batch ID: 8516					Analysis Da	te: 8/26/20	14	SeqNo: 330)468	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	45.0	0.0877	43.86	4.876	91.5	75	125				
Barium	136	0.439	43.86	83.98	119	75	125				
Cadmium	2.30	0.175	2.193	0.1053	100	75	125				
Chromium	93.5	0.0877	43.86	43.90	113	75	125				
Lead	27.2	0.175	21.93	6.070	96.1	75	125				
Selenium	4.37	0.439	4.386	0.08304	97.9	75	125				
Silver	2.06	0.0877	2.193	0.1248	88.3	75	125				

Sample ID:	1408230-001AMSD	SampType: MSD	•		Units: mg/l	Kg-dry	Prep Da	te: 8/26/20	14	RunNo: 164	122	
Client ID:	BATCH	Batch ID: 8516					Analysis Da	te: 8/26/20	14	SeqNo: 330	0469	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		47.2	0.0904	45.21	4.876	93.7	75	125	44.99	4.89	30	<u> </u>
Barium		127	0.452	45.21	83.98	95.4	75	125	136.2	6.96	30	
Cadmium		2.51	0.181	2.260	0.1053	106	75	125	2.305	8.33	30	
Chromium		88.4	0.0904	45.21	43.90	98.5	75	125	93.55	5.61	30	
Lead		51.8	0.181	22.60	6.070	202	75	125	27.15	62.5	30	RS
Selenium		4.80	0.452	4.521	0.08304	104	75	125	4.375	9.20	30	
Silver		2.64	0.0904	2.260	0.1248	111	75	125	2.060	24.7	30	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Total Metals by EPA Method 6020

Project: SLU Marriott

Sample ID: 1408230-001AMSD	SampType: MSD	Units: mg/Kg-dry Prep Da	te: 8/26/2014	RunNo: 16422
Client ID: BATCH	Batch ID: 8516	Analysis Da	te: 8/26/2014	SeqNo: 330469

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

SR - Poor spike recoveries and high RPD due to suspected sample inhomogeneity. The method is in control as indicated by the LCS.

Sample ID: MB-8822	SampType: MBLK		Units: mg/Kg		Prep Date:	9/23/2014	RunNo: 169	954	
Client ID: MBLKS	Batch ID: 8822				Analysis Date:	9/23/2014	SeqNo: 340	391	
Analyte	Result	RL SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit RPD Ref Val	%RPD	RPDLimit	Qual

Lead ND 0.200

Sample ID: LCS-8822	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/23/201	14	RunNo: 169)54	
Client ID: LCSS	Batch ID: 8822					Analysis Dat	te: 9/23/201	14	SeqNo: 340	392	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	197	0.200	189.0	0	104	74.6	125.4				

Sample ID: 1408231-022ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 9/23/20	14	RunNo: 169	954	
Client ID: MW-2-4-10.0	Batch ID: 8822					Analysis Da	te: 9/23/20	14	SeqNo: 340	394	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	420	0.224						714.1	51.8	30	R

NOTES:

R - High RPD due to suspected sample inhomogeneity. The method is in control as indicated by the Laboratory Control Sample (LCS).

Sample ID: 1408231-022AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 9/23/20	14	RunNo: 169)54	
Client ID: MW-2-4-10.0	Batch ID: 8822					Analysis Dat	te: 9/23/20	14	SeqNo: 340	396	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	574	0.220	27.54	714.1	-509	75	125				S

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Total Metals by EPA Method 6020

Project: SLU Marriott

Sample ID: 1408231-022AMS SampType: MS Units: mg/Kg-dry Prep Date: 9/23/2014 RunNo: 16954

Client ID: MW-2-4-10.0 Batch ID: 8822 Analysis Date: 9/23/2014 SeqNo: 340396

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

S - Analyte concentration was too high for accurate spike recoveries. A duplicate analysis was performed with similar results, indicating a matrix effect.

Sample ID: 1408231-022AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Dat	e: 9/23/20	14	RunNo: 169	954	
Client ID: MW-2-4-10.0	Batch ID: 8822					Analysis Dat	e: 9/23/20	14	SeqNo: 340	397	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	188	0.224	27.97	714.1	-1,880	75	125	573.8	101	30	RS

NOTES:

SR - Poor spike recoveries and high RPD due analyte concentrations being too high for accurate recoveries. Similar results observed in the MS.

Sample ID: 1408231-022APDS	SampType: PDS			Units: mg	/Kg-dry	Prep Da	te: 9/23/20	14	RunNo: 169	954	
Client ID: MW-2-4-10.0	Batch ID: 8822					Analysis Da	te: 9/23/20	14	SeqNo: 340	398	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	1,380	0.227	25.0	1,260	245	75	125				S

NOTES:

S - Analyte concentration was too high for accurate spike recovery.

J Analyte detected below quantitation limits

RL Reporting Limit

ND Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

CLIENT : GeoEngine	ers, Inc Redmond						
Project: SLU Marrio	ott					Mer	cury by EPA Method 747
Sample ID: MB-8515	SampType: MBLK			Units: mg/K	g	Prep Date: 8/25/2014	RunNo: 16426
Client ID: MBLKS	Batch ID: 8515					Analysis Date: 8/27/2014	SeqNo: 330556
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.250					
Sample ID: LCS-8515	SampType: LCS			Units: mg/K	g	Prep Date: 8/25/2014	RunNo: 16426
Client ID: LCSS	Batch ID: 8515					Analysis Date: 8/27/2014	SeqNo: 330557
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	4.97	0.250	5.000	0	99.4	80 120	
Sample ID: 1408225-006ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Date: 8/25/2014	RunNo: 16426
Client ID: BATCH	Batch ID: 8515					Analysis Date: 8/27/2014	SeqNo: 330559
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.249				0	20
Sample ID: 1408225-006AMS	SampType: MS			Units: mg/K	g-dry	Prep Date: 8/25/2014	RunNo: 16426
Client ID: BATCH	Batch ID: 8515					Analysis Date: 8/27/2014	SeqNo: 330560
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	0.460	0.224	0.4470	0.02627	97.1	70 130	
Sample ID: 1408225-006AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Date: 8/25/2014	RunNo: 16426
Client ID: BATCH	Batch ID: 8515					Analysis Date: 8/27/2014	SeqNo: 330561
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	0.460	0.224	0.4470	0.02627	96.9	70 130 0.4605	0.194 20

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

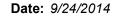
CLIENT: GeoEngineers, Inc. - Redmond

Project:	SLU Marrio	tt					Metals ((SW602	0) with TCI	_P Extract	ion (EPA	. 1311)
Sample ID: L	LCS-8796	SampType: LCS			Units: mg/L		Prep Date	9/22/20	14	RunNo: 16	895	
Client ID: L	LCSS	Batch ID: 8796	;				Analysis Date	9/22/20	14	SeqNo: 33	9276	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		2.23	0.200	2.500	0	89.2	65	135				
Sample ID: 1	1408231-020ADUP	SampType: DUP			Units: mg/L		Prep Date	: 9/22/20	14	RunNo: 16	895	
Client ID: N	MW-2-2-5.0	Batch ID: 8796	;				Analysis Date	9/22/20	14	SeqNo: 33	9278	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	0.200						0		30	
Sample ID: 1	1408231-020AMS	SampType: MS			Units: mg/L		Prep Date	e: 9/22/20	14	RunNo: 16	895	
Client ID: N	MW-2-2-5.0	Batch ID: 8796	i				Analysis Date	9/22/20	14	SeqNo: 339	9279	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		2.10	0.200	2.500	0	84.0	65	135				
Sample ID: 1	1408231-020AMSD	SampType: MSD			Units: mg/L		Prep Date	e: 9/22/20	14	RunNo: 16	895	
Client ID: N	MW-2-2-5.0	Batch ID: 8796	i				Analysis Date	9/22/20	14	SeqNo: 339	9280	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		2.10	0.200	2.500	0	84.0	65	135	2.099	0.0148	30	
Sample ID: N	MB-8776FB	SampType: MBL	K		Units: mg/L		Prep Date	: 9/22/20	14	RunNo: 16	895	
Client ID: N	MBLKS	Batch ID: 8796	i				Analysis Date	9/22/20	14	SeqNo: 339	9294	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	0.200		-							

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

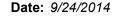
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marrio	ott						Diesei allu Tieavy		X EXI.
Sample ID: 1408225-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	8/28/2014	RunNo: 16508	
Client ID: BATCH	Batch ID: 8518					Analysis Date	8/31/2014	SeqNo: 332086	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	ND	22.7					0	30	
Heavy Oil	ND	56.8					0	30	
Surr: 2-Fluorobiphenyl	22.7		22.73		99.7	50	150	0	
Surr: o-Terphenyl	21.0		22.73		92.3	50	150	0	
Sample ID: LCS-8518	SampType: LCS			Units: mg/Kg		Prep Date	8/28/2014	RunNo: 16508	
Client ID: LCSS	Batch ID: 8518					Analysis Date	: 8/31/2014	SeqNo: 332105	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	485	19.8	494.1	0	98.1	65	135		
Surr: 2-Fluorobiphenyl	20.8		19.76		105	50	150		
Surr: o-Terphenyl	19.1		19.76		96.6	50	150		
Sample ID: MB-8518	SampType: MBLK			Units: mg/Kg		Prep Date	8/28/2014	RunNo: 16508	
Client ID: MBLKS	Batch ID: 8518					Analysis Date	8/31/2014	SeqNo: 332106	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0							
Heavy Oil	ND	50.0							
Surr: 2-Fluorobiphenyl	20.9		20.00		104	50	150		
Surr: o-Terphenyl	18.7		20.00		93.6	50	150		

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: SLU Marr	iott				Po	olyaromatic	Hydroca	rbons by	EPA Met	hod 8270	(SIM)
Sample ID: MB-8524	SampType: MBLK			Units: µg/Kg	_	Prep Date:	8/27/2014		RunNo: 164	162	
Client ID: MBLKS	Batch ID: 8524					Analysis Date:	8/27/2014		SeqNo: 331	1443	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ghLimit RP	D Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	455		500.0		91.0	42.7	132				
Surr: Terphenyl-d14 (surr)	439		500.0		87.8	48.8	157				

Sample ID: LCS-8524	SampType: LCS			Units: µg/Kg		Prep Dat	e: 8/27/20 1	14	RunNo: 164	62	
Client ID: LCSS	Batch ID: 8524					Analysis Dat	e: 8/27/20 1	14	SeqNo: 331	444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	758	50.0	1,000	0	75.8	61.6	125				
2-Methylnaphthalene	745	50.0	1,000	0	74.5	58.2	129				
1-Methylnaphthalene	818	50.0	1,000	0	81.8	56.4	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
 - Analyte detected below quantitation limits
- Reporting Limit

- Е Value above quantitation range
- Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Work Order: 1408231

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

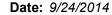
Sample ID: LCS-8524	SampType: LCS			Units: µg/Kg		Prep Dat	e: 8/27/20	14	RunNo: 16 4	162	
Client ID: LCSS	Batch ID: 8524					Analysis Dat	e: 8/27/20	14	SeqNo: 331	444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	661	50.0	1,000	0	66.1	52.2	133				
Acenaphthene	762	50.0	1,000	0	76.2	54	131				
Fluorene	766	50.0	1,000	0	76.6	53.4	131				
Phenanthrene	819	50.0	1,000	0	81.9	55.6	128				
Anthracene	744	50.0	1,000	0	74.4	51	132				
Fluoranthene	728	50.0	1,000	0	72.8	48.4	134				
Pyrene	758	50.0	1,000	0	75.8	48.6	135				
Benz(a)anthracene	704	50.0	1,000	0	70.4	41.9	136				
Chrysene	807	50.0	1,000	0	80.7	51.4	135				
Benzo(b)fluoranthene	742	50.0	1,000	0	74.2	39.7	137				
Benzo(k)fluoranthene	694	50.0	1,000	0	69.4	45.7	138				
Benzo(a)pyrene	654	50.0	1,000	0	65.4	45.3	135				
Indeno(1,2,3-cd)pyrene	629	50.0	1,000	0	62.9	45.4	137				
Dibenz(a,h)anthracene	730	50.0	1,000	0	73.0	45.8	134				
Benzo(g,h,i)perylene	715	50.0	1,000	0	71.5	45	134				
Surr: 2-Fluorobiphenyl	387		500.0		77.5	42.7	132				
Surr: Terphenyl-d14 (surr)	454		500.0		90.9	48.8	157				

Sample ID: 1408229-001ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Da	te: 8/27/20	14	RunNo: 164	462	
Client ID: BATCH	Batch ID: 8524					Analysis Da	te: 8/27/20	14	SeqNo: 33	1446	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	978						0		30	D
2-Methylnaphthalene	ND	978						0		30	D
1-Methylnaphthalene	ND	978						0		30	D
Acenaphthylene	ND	978						0		30	D
Acenaphthene	ND	978						0		30	D
Fluorene	ND	978						0		30	D

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1408229-001ADUP	SampType: DUP			Units: µg/M	(g-dry	Prep Da	te: 8/27/20)14	RunNo: 164	462	
Client ID: BATCH	Batch ID: 8524					Analysis Dat	te: 8/27/20	114	SeqNo: 331	1446	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	1,250	978						3,528	95.4	30	DR
Anthracene	ND	978						0		30	D
Fluoranthene	2,580	978						4,796	60.2	30	DR
Pyrene	3,190	978						5,673	55.9	30	DR
Benz(a)anthracene	ND	978						3,016	200	30	DR
Chrysene	1,570	978						2,383	41.3	30	D
Benzo(b)fluoranthene	1,870	978						2,568	31.7	30	D
Benzo(k)fluoranthene	ND	978						0		30	D
Benzo(a)pyrene	ND	978						3,392	200	30	DR
Indeno(1,2,3-cd)pyrene	2,740	978						3,156	14.1	30	D
Dibenz(a,h)anthracene	ND	978						0		30	D
Benzo(g,h,i)perylene	3,110	978						3,640	15.6	30	D
Surr: 2-Fluorobiphenyl	4,520		488.9		924	42.7	132		0		DS
Surr: Terphenyl-d14 (surr)	1,070		488.9		219	48.8	157		0		DS

NOTES:

R - High RPD due to suspected sample inhomogeneity. The method is in control as indicated by the Laboratory Control Sample (LCS).

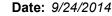
Sample ID: 1408229-002AMS	SampType: MS			Units: µg/Kg-dry Prep Date: 8/27/2014)14	RunNo: 16462		
Client ID: BATCH	Batch ID: 8524					Analysis Da	te: 8/27/2 0)14	SeqNo: 331	1448	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	1,000	1,003	0	97.8	42.9	138				D
2-Methylnaphthalene	1,580	1,000	1,003	0	157	42.8	151				DS
1-Methylnaphthalene	1,610	1,000	1,003	0	160	41.6	148				DS
Acenaphthylene	1,830	1,000	1,003	0	182	32.6	160				DS
Acenaphthene	1,550	1,000	1,003	0	155	46.3	142				DS
Fluorene	1,770	1,000	1,003	0	176	43.4	153				DS
Phenanthrene	1,480	1,000	1,003	0	148	45.5	140				DS

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required


Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

S - Outlying surrogate recoveries were observed in this sample, indicating a possible matrix effect. The LCS and MB recovered within range.

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

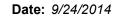
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1408229-002AMS	SampType: MS	Units: µg/Kg-dry Prep Date: 8/27/2014						RunNo: 16 4	162		
Client ID: BATCH	Batch ID: 8524					Analysis Da	te: 8/27/2014		SeqNo: 331	1448	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	PD Ref Val	%RPD	RPDLimit	Qual
Anthracene	2,050	1,000	1,003	0	204	32.6	160				DS
Fluoranthene	2,510	1,000	1,003	1,732	77.6	44.6	161				D
Pyrene	2,990	1,000	1,003	2,239	74.6	48.3	158				D
Benz(a)anthracene	2,800	1,000	1,003	2,190	61.3	57.5	169				D
Chrysene	2,030	1,000	1,003	1,418	60.6	45.2	146				D
Benzo(b)fluoranthene	2,340	1,000	1,003	1,692	64.4	42.2	168				D
Benzo(k)fluoranthene	1,890	1,000	1,003	0	188	48	161				DS
Benzo(a)pyrene	3,200	1,000	1,003	2,349	84.7	34.4	179				D
Indeno(1,2,3-cd)pyrene	3,280	1,000	1,003	2,759	52.4	41.1	165				D
Dibenz(a,h)anthracene	4,530	1,000	1,003	0	452	38.1	166				DS
Benzo(g,h,i)perylene	3,830	1,000	1,003	3,155	67.2	45.6	157				D
Surr: 2-Fluorobiphenyl	2,510		501.5		500	42.7	132				DS
Surr: Terphenyl-d14 (surr)	1,070		501.5		213	48.8	157				DS

NOTES:

S - Outlying spike and surrogate recoveries were observed in this sample, indicating a possible matrix effect. The LCS and MB surrogates recovered within range.

Holding times for preparation or analysis exceeded


Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Surr: 4-Bromofluorobenzene

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	tt							Gasoline by NWTPH-0
Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Date	e: 8/27/2014	RunNo: 16458
Client ID: BATCH	Batch ID: R16458					Analysis Date	e: 8/27/2014	SeqNo: 331307
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qua
Gasoline	ND	4.65					0	30
Surr: Toluene-d8	2.28		2.324		98.0	65	135	0
Surr: 4-Bromofluorobenzene	2.43		2.324		105	65	135	0
Sample ID: LCS-R16458	SampType: LCS			Units: mg/K		Prep Date	e: 8/27/2014	RunNo: 16458
Client ID: LCSS	Batch ID: R16458					Analysis Date	e: 8/27/2014	SeqNo: 331315
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qua
Gasoline	28.7	5.00	25.00	0	115	65	135	
Surr: Toluene-d8	2.43		2.500		97.2	65	135	
Surr: 4-Bromofluorobenzene	2.77		2.500		111	65	135	
Sample ID: MB-R16458	SampType: MBLK			Units: mg/K		Prep Date	e: 8/27/2014	RunNo: 16458
Client ID: MBLKS	Batch ID: R16458					Analysis Date	e: 8/27/2014	SeqNo: 331316
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qua
Gasoline	ND	5.00						
Surr: Toluene-d8	2.51		2.500		100	65	135	

105

65

135

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

2.63

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

2.500

Е Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1408231

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 8/27/20)14	RunNo: 16 4	157	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/2 0	14	SeqNo: 331	1291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0558						0		30	
Chloromethane	ND	0.0558						0		30	
Vinyl chloride	ND	0.00186						0		30	
Bromomethane	ND	0.0837						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0465						0		30	
Chloroethane	ND	0.0558						0		30	
1,1-Dichloroethene	ND	0.0465						0		30	
Methylene chloride	ND	0.0186						0		30	
trans-1,2-Dichloroethene	ND	0.0186						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0465						0		30	
1,1-Dichloroethane	ND	0.0186						0		30	
2,2-Dichloropropane	ND	0.0465						0		30	
cis-1,2-Dichloroethene	ND	0.0186						0		30	
Chloroform	ND	0.0186						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0186						0		30	
1,1-Dichloropropene	ND	0.0186						0		30	
Carbon tetrachloride	ND	0.0186						0		30	
1,2-Dichloroethane (EDC)	ND	0.0279						0		30	
Benzene	ND	0.0186						0		30	
Trichloroethene (TCE)	ND	0.0186						0		30	
1,2-Dichloropropane	ND	0.0186						0		30	
Bromodichloromethane	ND	0.0186						0		30	
Dibromomethane	ND	0.0372						0		30	
cis-1,3-Dichloropropene	ND	0.0186						0		30	
Toluene	ND	0.0186						0		30	
trans-1,3-Dichloropropylene	ND	0.0279						0		30	
1,1,2-Trichloroethane	ND	0.0279						0		30	
1,3-Dichloropropane	ND	0.0465						0		30	
Tetrachloroethene (PCE)	ND	0.0186						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408231

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/h	(g-dry	Prep Dat	e: 8/27/2 0	14	RunNo: 164	157	
Client ID: BATCH	Batch ID: 8540					Analysis Dat	e: 8/27/2 0	14	SeqNo: 33	1291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	0.0279						0		30	
1,2-Dibromoethane (EDB)	ND	0.00465						0		30	
Chlorobenzene	ND	0.0186						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0279						0		30	
Ethylbenzene	ND	0.0279						0		30	
m,p-Xylene	ND	0.0186						0		30	
o-Xylene	ND	0.0186						0		30	
Styrene	ND	0.0186						0		30	
Isopropylbenzene	ND	0.0744						0		30	
Bromoform	ND	0.0186						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0186						0		30	
n-Propylbenzene	ND	0.0186						0		30	
Bromobenzene	ND	0.0279						0		30	
1,3,5-Trimethylbenzene	ND	0.0186						0		30	
2-Chlorotoluene	ND	0.0186						0		30	
4-Chlorotoluene	ND	0.0186						0		30	
tert-Butylbenzene	ND	0.0186						0		30	
1,2,3-Trichloropropane	ND	0.0186						0		30	
1,2,4-Trichlorobenzene	ND	0.0465						0		30	
sec-Butylbenzene	ND	0.0186						0		30	
4-Isopropyltoluene	ND	0.0186						0		30	
1,3-Dichlorobenzene	ND	0.0186						0		30	
1,4-Dichlorobenzene	ND	0.0186						0		30	
n-Butylbenzene	ND	0.0186						0		30	
1,2-Dichlorobenzene	ND	0.0186						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0279						0		30	
1,2,4-Trimethylbenzene	ND	0.0186						0		30	
Hexachlorobutadiene	ND	0.0930						0		30	
Naphthalene	ND	0.0279						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SL	U Marriot
-------------	-----------

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/M	(g-dry	Prep Dat	e: 8/27/20	14	RunNo: 164	57	
Client ID: BATCH	Batch ID: 8540					Analysis Dat	e: 8/27/20	14	SeqNo: 331	291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	ND	0.0186						0		30	
Surr: Dibromofluoromethane	2.33		2.324		100	63.7	129		0		
Surr: Toluene-d8	2.22		2.324		95.5	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	2.19		2.324		94.4	63.1	141		0		

Sample ID: 1408250-002BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 8/27/2014	RunNo: 16457	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/2014	SeqNo: 331293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD F	Ref Val %RPD RPDLimi	Qual
Dichlorodifluoromethane (CFC-12)	0.649	0.0555	0.9258	0	70.1	43.5	121		
Chloromethane	0.910	0.0555	0.9258	0	98.3	45	130		
Vinyl chloride	0.832	0.00185	0.9258	0	89.9	51.2	146		
Bromomethane	0.715	0.0833	0.9258	0	77.2	21.3	120		
Trichlorofluoromethane (CFC-11)	0.679	0.0463	0.9258	0	73.3	35	131		
Chloroethane	0.409	0.0555	0.9258	0	44.2	43.8	117		
1,1-Dichloroethene	1.14	0.0463	0.9258	0	123	61.9	141		
Methylene chloride	0.868	0.0185	0.9258	0	93.8	54.7	142		
trans-1,2-Dichloroethene	0.978	0.0185	0.9258	0	106	52	136		
Methyl tert-butyl ether (MTBE)	0.965	0.0463	0.9258	0	104	54.4	132		
1,1-Dichloroethane	1.01	0.0185	0.9258	0	109	51.8	141		
2,2-Dichloropropane	0.878	0.0463	0.9258	0	94.9	36	123		
cis-1,2-Dichloroethene	0.935	0.0185	0.9258	0	101	58.6	136		
Chloroform	0.992	0.0185	0.9258	0	107	53.2	129		
1,1,1-Trichloroethane (TCA)	1.03	0.0185	0.9258	0	111	58.3	145		
1,1-Dichloropropene	1.02	0.0185	0.9258	0	111	55.1	138		
Carbon tetrachloride	1.05	0.0185	0.9258	0	114	53.3	144		
1,2-Dichloroethane (EDC)	1.08	0.0278	0.9258	0	116	51.3	139		
Benzene	1.01	0.0185	0.9258	0	109	63.5	133		

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

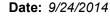
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-002BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 8/27/20	14	RunNo: 16 4	157	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	0.988	0.0185	0.9258	0	107	68.6	132				
1,2-Dichloropropane	0.996	0.0185	0.9258	0	108	59	136				
Bromodichloromethane	1.04	0.0185	0.9258	0	113	50.7	141				
Dibromomethane	0.995	0.0370	0.9258	0	107	50.6	137				
cis-1,3-Dichloropropene	0.970	0.0185	0.9258	0	105	50.4	138				
Toluene	1.02	0.0185	0.9258	0	110	63.4	132				
trans-1,3-Dichloropropylene	0.986	0.0278	0.9258	0	107	44.1	147				
1,1,2-Trichloroethane	0.984	0.0278	0.9258	0	106	51.6	137				
1,3-Dichloropropane	0.989	0.0463	0.9258	0	107	53.1	134				
Tetrachloroethene (PCE)	1.02	0.0185	0.9258	0	110	35.6	158				
Dibromochloromethane	1.04	0.0278	0.9258	0	112	55.3	140				
1,2-Dibromoethane (EDB)	0.995	0.00463	0.9258	0	107	50.4	136				
Chlorobenzene	1.01	0.0185	0.9258	0	109	60	133				
1,1,1,2-Tetrachloroethane	1.03	0.0278	0.9258	0	111	53.1	142				
Ethylbenzene	1.01	0.0278	0.9258	0	109	54.5	134				
m,p-Xylene	2.03	0.0185	1.852	0	110	53.1	132				
o-Xylene	1.01	0.0185	0.9258	0	109	53.3	139				
Styrene	1.00	0.0185	0.9258	0	109	51.1	132				
Isopropylbenzene	1.05	0.0741	0.9258	0	114	58.9	138				
Bromoform	1.03	0.0185	0.9258	0	111	57.9	130				
1,1,2,2-Tetrachloroethane	0.983	0.0185	0.9258	0	106	51.9	131				
n-Propylbenzene	1.06	0.0185	0.9258	0	114	53.6	140				
Bromobenzene	1.01	0.0278	0.9258	0	109	54.2	140				
1,3,5-Trimethylbenzene	1.06	0.0185	0.9258	0	115	51.8	136				
2-Chlorotoluene	1.02	0.0185	0.9258	0	110	51.6	136				
4-Chlorotoluene	1.01	0.0185	0.9258	0	110	50.1	139				
tert-Butylbenzene	1.06	0.0185	0.9258	0	115	50.5	135				
1,2,3-Trichloropropane	1.02	0.0185	0.9258	0	111	50.5	131				
1,2,4-Trichlorobenzene	1.01	0.0463	0.9258	0	109	50.8	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

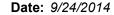
Sample ID: 1408250-002BMS	SampType: MS			Units: mg/l	Kg-dry	•	te: 8/27/20		RunNo: 164		
Client ID: BATCH	Batch ID: 8540					Analysis Dat	e: 8/27/20	14	SeqNo: 33	1293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	1.08	0.0185	0.9258	0	117	52.6	141				
4-Isopropyltoluene	1.06	0.0185	0.9258	0	115	52.9	134				
1,3-Dichlorobenzene	1.00	0.0185	0.9258	0	108	52.6	131				
1,4-Dichlorobenzene	0.990	0.0185	0.9258	0	107	52.9	129				
n-Butylbenzene	1.05	0.0185	0.9258	0	114	52.6	130				
1,2-Dichlorobenzene	0.987	0.0185	0.9258	0	107	55.8	129				
1,2-Dibromo-3-chloropropane	1.08	0.0278	0.9258	0	117	40.5	131				
1,2,4-Trimethylbenzene	1.02	0.0185	0.9258	0	111	50.6	137				
Hexachlorobutadiene	1.08	0.0926	0.9258	0	116	40.6	158				
Naphthalene	1.03	0.0278	0.9258	0	111	52.3	124				
1,2,3-Trichlorobenzene	1.02	0.0185	0.9258	0	110	54.4	124				
Surr: Dibromofluoromethane	2.36		2.314		102	63.7	129				
Surr: Toluene-d8	2.38		2.314		103	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.47		2.314		107	63.1	141				

Sample ID: LCS-8540	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/27/20	14	RunNo: 164	157	
Client ID: LCSS	Batch ID: 8540					Analysis Dat	te: 8/27/20	14	SeqNo: 331	1299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.701	0.0600	1.000	0	70.1	37.7	136				
Chloromethane	0.988	0.0600	1.000	0	98.8	38.8	132				
Vinyl chloride	0.887	0.00200	1.000	0	88.7	56.1	130				
Bromomethane	0.766	0.0900	1.000	0	76.6	41.3	148				
Trichlorofluoromethane (CFC-11)	0.732	0.0500	1.000	0	73.2	42.9	147				
Chloroethane	0.462	0.0600	1.000	0	46.2	37.1	144				
1,1-Dichloroethene	1.11	0.0500	1.000	0	111	49.7	142				
Methylene chloride	0.901	0.0200	1.000	0	90.1	54.5	131				
trans-1,2-Dichloroethene	0.984	0.0200	1.000	0	98.4	68	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

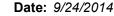
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8540	SampType: LCS			Units: mg/K	(g	Prep Da	te: 8/27/20	14	RunNo: 16 4	157	
Client ID: LCSS	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	0.949	0.0500	1.000	0	94.9	59.1	138				
1,1-Dichloroethane	1.01	0.0200	1.000	0	101	65.5	132				
2,2-Dichloropropane	0.958	0.0500	1.000	0	95.8	28.1	149				
cis-1,2-Dichloroethene	0.951	0.0200	1.000	0	95.1	71.6	123				
Chloroform	0.987	0.0200	1.000	0	98.7	67.5	129				
1,1,1-Trichloroethane (TCA)	0.989	0.0200	1.000	0	98.9	69	132				
1,1-Dichloropropene	1.00	0.0200	1.000	0	100	72.7	131				
Carbon tetrachloride	1.01	0.0200	1.000	0	101	63.4	137				
1,2-Dichloroethane (EDC)	1.05	0.0300	1.000	0	105	61.9	136				
Benzene	0.974	0.0200	1.000	0	97.4	74.6	124				
Trichloroethene (TCE)	0.939	0.0200	1.000	0	93.9	65.5	137				
1,2-Dichloropropane	0.995	0.0200	1.000	0	99.5	63.2	142				
Bromodichloromethane	1.03	0.0200	1.000	0	103	76.1	136				
Dibromomethane	1.00	0.0400	1.000	0	100	70	130				
cis-1,3-Dichloropropene	1.00	0.0200	1.000	0	100	59.1	143				
Toluene	1.00	0.0200	1.000	0	100	67.3	138				
trans-1,3-Dichloropropylene	0.980	0.0300	1.000	0	98.0	49.2	149				
1,1,2-Trichloroethane	0.981	0.0300	1.000	0	98.1	74.5	129				
1,3-Dichloropropane	0.971	0.0500	1.000	0	97.1	70	130				
Tetrachloroethene (PCE)	0.996	0.0200	1.000	0	99.6	52.7	150				
Dibromochloromethane	1.01	0.0300	1.000	0	101	70.6	144				
1,2-Dibromoethane (EDB)	0.975	0.00500	1.000	0	97.5	70	130				
Chlorobenzene	1.01	0.0200	1.000	0	101	76.1	123				
1,1,1,2-Tetrachloroethane	1.02	0.0300	1.000	0	102	74.8	131				
Ethylbenzene	0.988	0.0300	1.000	0	98.8	74	129				
m,p-Xylene	2.03	0.0200	2.000	0	102	79.8	128				
o-Xylene	0.990	0.0200	1.000	0	99.0	72.7	124				
Styrene	1.01	0.0200	1.000	0	101	76.8	130				
Isopropylbenzene	1.04	0.0800	1.000	0	104	70	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

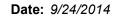
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8540	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/27/20	14	RunNo: 164	157	
Client ID: LCSS	Batch ID: 8540					Analysis Dat	te: 8/27/20	14	SeqNo: 331	1299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	1.02	0.0200	1.000	0	102	67	154				
1,1,2,2-Tetrachloroethane	0.994	0.0200	1.000	0	99.4	60	130				
n-Propylbenzene	1.05	0.0200	1.000	0	105	74.8	125				
Bromobenzene	1.03	0.0300	1.000	0	103	49.2	144				
1,3,5-Trimethylbenzene	1.06	0.0200	1.000	0	106	74.6	123				
2-Chlorotoluene	1.03	0.0200	1.000	0	103	76.7	129				
4-Chlorotoluene	1.00	0.0200	1.000	0	100	77.5	125				
tert-Butylbenzene	1.06	0.0200	1.000	0	106	66.2	130				
1,2,3-Trichloropropane	1.00	0.0200	1.000	0	100	67.9	136				
1,2,4-Trichlorobenzene	1.01	0.0500	1.000	0	101	65.6	137				
sec-Butylbenzene	1.06	0.0200	1.000	0	106	75.6	133				
4-Isopropyltoluene	1.07	0.0200	1.000	0	107	76.8	131				
1,3-Dichlorobenzene	1.02	0.0200	1.000	0	102	72.8	128				
1,4-Dichlorobenzene	1.02	0.0200	1.000	0	102	72.6	126				
n-Butylbenzene	1.05	0.0200	1.000	0	105	65.3	136				
1,2-Dichlorobenzene	1.00	0.0200	1.000	0	100	72.8	126				
1,2-Dibromo-3-chloropropane	0.955	0.0300	1.000	0	95.5	61.2	139				
1,2,4-Trimethylbenzene	1.01	0.0200	1.000	0	101	77.5	129				
Hexachlorobutadiene	1.05	0.100	1.000	0	105	42	151				
Naphthalene	0.983	0.0300	1.000	0	98.3	62.3	134				
1,2,3-Trichlorobenzene	1.03	0.0200	1.000	0	103	62.1	140				
Surr: Dibromofluoromethane	2.58		2.500		103	63.7	129				
Surr: Toluene-d8	2.55		2.500		102	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.68		2.500		107	63.1	141				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

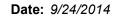
Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8540	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/27/2 0	14	RunNo: 16 4	157	
Client ID: MBLKS	Batch ID: 8540					Analysis Da	te: 8/27/2 0	14	SeqNo: 331	1300	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600									
Chloromethane	ND	0.0600									
Vinyl chloride	ND	0.00200									
Bromomethane	ND	0.0900									
Trichlorofluoromethane (CFC-11)	ND	0.0500									
Chloroethane	ND	0.0600									
1,1-Dichloroethene	ND	0.0500									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.0500									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane (EDC)	ND	0.0300									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8540	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 8/27/2 0	14	RunNo: 16 4	157	
Client ID: MBLKS	Batch ID: 8540					Analysis Dat	e: 8/27/2 0)14	SeqNo: 331	300	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	0.0300									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0200									
1,1,1,2-Tetrachloroethane	ND	0.0300									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Styrene	ND	0.0200									
Isopropylbenzene	ND	0.0800									
Bromoform	ND	0.0200									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0200									
Bromobenzene	ND	0.0300									
1,3,5-Trimethylbenzene	ND	0.0200									
2-Chlorotoluene	ND	0.0200									
4-Chlorotoluene	ND	0.0200									
tert-Butylbenzene	ND	0.0200									
1,2,3-Trichloropropane	ND	0.0200									
1,2,4-Trichlorobenzene	ND	0.0500									
sec-Butylbenzene	ND	0.0200									
4-Isopropyltoluene	ND	0.0200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.0300									
1,2,4-Trimethylbenzene	ND	0.0200									
Hexachlorobutadiene	ND	0.100									
Naphthalene	ND	0.0300									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriot	t					Volatil	e Organic Comp	ounds by EPA M	letnod 8260
Sample ID: MB-8540	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/27/2014	RunNo: 16457	
Client ID: MBLKS	Batch ID: 8540					Analysis Da	te: 8/27/2014	SeqNo: 331300	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref \	/al %RPD RP	DLimit Qual
1,2,3-Trichlorobenzene	ND	0.0200							
Surr: Dibromofluoromethane	2.41		2.500		96.6	63.7	129		
Surr: Toluene-d8	2.38		2.500		95.2	61.4	128		
Surr: 1-Bromo-4-fluorobenzene	2.37		2.500		94.8	63.1	141		

Holding times for preparation or analysis exceeded

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Sample Log-In Check List

С	lient Name:	GEI1	Work Or	der Number:	140	08231
Lo	ogged by:	Clare Griggs	Date Re	ceived:	8/25	25/2014 8:19:00 AM
Cha	in of Custo	<u>ody</u>				
1.	Is Chain of Cu	ustody complete?	Yes	✓	No l	□ Not Present □
2.	How was the s	sample delivered?	Clien	<u>t</u>		
Log	<u>In</u>					
3.	Coolers are pr	resent?	Yes	\checkmark	No	□ NA □
4.	Shipping cont	ainer/cooler in good condition?	Yes	✓	No	
5.	Custody seals	intact on shipping container/cooler?	Yes		No l	Not Required ✓
6.	Was an attem	pt made to cool the samples?	Yes	✓	No	□ NA □
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes	✓	No	\square NA \square
8.	Sample(s) in p	proper container(s)?	Yes	✓	No	
9.	Sufficient sam	nple volume for indicated test(s)?	Yes	✓	No	
10.	Are samples p	properly preserved?	Yes	✓	No	
11.	Was preserva	tive added to bottles?	Yes		No	✓ NA □
12.	Is the headspa	ace in the VOA vials?	Yes		No	□ NA ✓
		es containers arrive in good condition(unbroken)?	Yes	✓	No	
14.	Does paperwo	ork match bottle labels?	Yes	\checkmark	No	
15.	Are matrices of	correctly identified on Chain of Custody?	Yes	✓	No	
		t analyses were requested?	Yes	✓	No	
17.	Were all holdi	ng times able to be met?	Yes	✓	No	
Spe	cial Handli	ing (if applicable)				
18.	Was client no	tified of all discrepancies with this order?	Yes		No	□ NA ✓
	Person N	Notified: Date:				
	By Whor	m: Via:	「	il 🗌 Phone	: 🔲	Fax In Person
	Regardir	ng:				
	Client In	structions:				

19. Additional remarks:

Received two MeOH VOAs with the sampling time of 8:07 on 8/24, one reads "GEI-4-4-10" and the other "GEI-4-4-60". Based on the COC and sampling time they should both be labelled as "GEI-4-4-10".

Item Information

Item #	Temp °C	Condition
Cooler 1	4.2	Good
Cooler 2	2.3	Good
Sample 1	2.0	Good
Sample 2	3.1	Good

APlease coordinate with the lab in advance	× <
TAT -> SameDay^ NextDay^ 2 Day 3 Day STD	O Descrime Rigenved
	* Charles Marce Prepy 8/24/14 1505 x COROLL John Storting Ostor Time 8/25/14 8:19
	Disposal: Return to Client Disposal by Lab (A tec m
Special Remarks:	****Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Vétrate+Nitrite
ii Pb Sb Se Sr Sn Ti Ti U ∀ Zn	(Circle): MTC
	0
	900
	8 MW-3-8-200 8SS
	, MW-2-7-17.5 845
	5 NM -3-5-12.5 835
	1 MW-3-4-10.0 825 W W W
	3 MW-3-3-7.5 815
	2 MM-3-2-5.0 1 755 1
	8214720 S
Comments/Death	Sample Name Sample Sample Sample (Matrix)* Sample Sampl
V = Waste Water	*Matrix Codes: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Soild, W = Water, DW = Drinking Water, GW = Ground Water, WW = Waste Water
20776-03-00	11: Jessica Smith Fax:
	City, State, Zip Tel: Collected for
#	GET
4000	Date: 8/23)14 Laboratory Project No (Internal):
190221	TEATO
Chain of Custody Record	Fremont
	CHARLES THE PARTY OF THE PARTY

TAT -> SameDay^ NextDay^ 2 Day 3 Day STD	Regelveer	(
	S x 1 SMA J M Date/Time 8/75/14 8:19	Reinsperded Nace Philips 8/24/14 1525
	Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	Sample Disposal: Return to Client Disposal by L
Special Remarks:	Bromide O-Phosphate Fluoride Nitrate+Nitrite	***Anions (Circle): Nitrate Nitrite Chloride Sulfate
Pb Sb Se Sr Sn Ti Ti U V Zn	TAL Individual: Ag Al As 8 8a 8e Ca Cd Co Cr Cu Fe Hg K Mg Min Mo Na Ni i	**Metals Analysis (Circle): MTCA-5 MCRA-8 Priority Pollutants
		10 MW-2-2-5.0 1 1435 V
		· MW-2-1-2.5 1420
		8 MM-3-18-650 1120
		, NM-3-17-60:0 1245
	8	, MN-3-15-50.0 1020
		1010 MW-3-14-45.0 1010
		, MW-3-13-40.0 955
		2 MW-3-17-35,0 1 945
		1 MW-3-11-30,0 8/3/11 930 S
Comments/Depth	1 () () () () () () () () () (Sample Name Sample Time (Max
WW = Waste Water	N = Drinking Water, GW = Ground Water,	"Matrix Courst: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product,
80776-003-W	Email: Ja snowth @ Georg welf 3 20	JESSILA SMUTTH
	collected by: GYALL PHULLY	ie, Zip
	1	155
	Name	H-SO
ነ	Date: \$23/14 Page: 2	3600 Fremont Ave N. Tel: 206-352-3790 Seattle, WA 98103 Fax: 206-352-7178
	A de accesso de Charles de La Constantina del Constantina de la Co	Amalyana
chain of custody Record	Chai	Fremont
n of Created Books	2	

"Please coordinate with the lab in advance

TAT -> SameDay* NextDay* 2 Day 3 Day STD	7			(Upate/Time	sempusmed
7	81:3 MM oscoline 8/25/14 8:10	5	1 41/19	Why 8/2	Relinquelle Nace Mapy 8/24/14 1525
	Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	by Lab (A fee may	nt Disposal	Return to Client	Sample Disposal:
Special Remarks:	D-Phosphate Fluoride Witrate+Witrite	Bromide	Chloride Sulfate	Nitrite	***Anions (Circle): Nitrate
NI Pb Sb Se Sr Sn Ti Ti U Y Zn	individual: Ag Al As 8 8s 8e Ca Cd Co Cr Cu Fe Hg K Mg Mm Mo Na N	ints TAL	B Priority Pollutants	MTCA-5 RCRA-8	**Metals Analysis (Circle): MTCA-5
		4	1225	-400 V	of the min
			ShSI		MW-2-11-35.0
			Ohsi	30.0	· MW2-10-300
			1530	-25.0	MW 2-9-25,0
			152	20,0	· MW-8-8-20,0
			P19	13.6	5 MW-2-7
			1808	-150	051-9-E-MM.
			1503	12.5	, MW-2-5-12,5
		^	SShi	0,0	2 MW-2-4-10,0
		0	HTH1 11/52/18		1 MW-2-3-7,5
WW = Waste Water Comments/Depth	SD = Sediment, St. = Solid, W = Water, DW = Drinking Water, GW = Ground Water, WW SD = Sediment, St. = Solid, W = Water, DW = Drinking Water, GW = Ground Water, WW SD = Sediment, St. = Solid, W = Water, DW = Drinking Water, GW = Ground Water, WW SD = Sediment, St. = Solid, W = Water, DW = Drinking Water, GW = Ground Water, WW SD = Sediment, St. = Solid, W = Water, DW = Drinking Water, GW = Ground Water, WW SD = Sediment, St. = Solid, W = Water, DW = Drinking Water, GW = Ground Water, WW SD = Sediment, St. = Solid, W = Water, DW = Drinking Water, GW = Ground Water, WW SD = Sediment, St. = Solid, W = GW = Ground Water, WW SD = Sediment, St. = Solid, W = GW =	p = Product, S = Soll, S P = Product, S = Soll, S Sample Type Type Inne (Matrix)*	lk, O = Other, P = Proc Sample Sample Date Time	AQ = Aqueous, 8 = Builic, See	*Matrix Codes: A = Air, AQ
30776-03-00		Fax:	Smith	essica Sn	1
73	collected by: Grace Drugy	Tel:			City, State, Zip
ST	Project Name: SLU Markott			420	Address
S	9	Dai	2-3790	Tel: 206-352-3790 Fax: 206-352-7178	3600 Fremont Ave N. Seattle, WA 98103
1.0			ZINGUYARGO.	Ama	
Chain of Custody Record	Cha			- remont	

TAT -> SameDay* NextDay* 2 Day 3 Day 5TD		Necesya No.		Control	nond Cond
	Jun 8/25/H8:19	* Share Trulp = 8 24/14 1525 * Receiped	21 h1/Ka	July 8/2	Relinquished
	after 30 days.)	Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	Disposal by Lab	Return to Client	Sample Disposal;
Special Remarks:	Fluoride Nitrate+Nitrite	Bromide O-Phosphate Fluc	Sulfate	ate Nitrite Chloride	***Anions (Circle): Nitrate
b Sb Se Sr Sn Ti Ti U V Zn	B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb	TAL Individual: Ag Al As B	Priority Pollutants	E MTCA-5 (RCRA-8)	**Metals Analysis (Circle): MTCA-5
	×		835	-7-20.1 X	10 GEI-4-7-20.1
	(1 OE 8	0-150	0.21-4-6-130
	8	<	812	-5-125	8 GEI-4-5-12S
	>		40%	0.07	, GET-4-4-0.0
	(208	57.5	· GEE-4-37.5
	8	Ø	300	1-5.0	, GCI-4-A-5.0
			750	1-1-25 821 W	180-66I-4-1-25
	<		1625	1 055-	MW-2-15-550
			1610	1.000	1 MW-2-14-50,0
			3/600 S	MW-2-13-450 82141600	1 MW-2-1
Comments/Depth	WI CONTE	1 50 10 100 Capita	Sample Type Time (Matrix)**	Sample Date	Sample Name
			Sample		
No: WAV = Waste Water	Project DW = Drinking Water, GW = Ground Water,	Soil, SD = Sediment, SL = Soild, W = Water,	Other, P = Product, 5 = Soil,	AC = Aqueous, B = Bulk, O = Other,	*Matrix Codes: A = Air, AC
	wast Caro				-1
	Collected by COAS DILI DU	Loc	Tal		Address:
20776-03-00	Project Name: SLU Maparott	Pro		CEI	Client:
4	Page:	Date: 8/23/14	90 78	Tel: 206-352-3790 Fax: 206-352-7178	3600 Fremont Ave N. Seattle, WA 98103
			TOTAL	Analytical	
chain of custody Record	Cinali			-remont	
of Created Board	Chair				WEIN INCOME.

<
~
<
5
<
-
-
=,
m
10
=
=
0
-
=
57
<u> </u>
_
D)
=
~
=
-
0
D)
_
•
0
-
3
_

TAT -> SameDay* NextDay* 2 Day 3 Day STD			-
	* 1880 from 8/25/14 5:17	2 Miles 8/24/14 /525	telinquished NA
	posed if samples are retained after 30 days,	1	Sample Disposal:
Special Remarks:	O-Phosphate Fluoride Nitrate+Nitrite	Nitrate Nitrite Chloride Sulfate Bromide	Anions (Circle):
NI Pb Sb Se Sr Sn Tl Tl U V Zn	Individual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na N	(Circle): MTCA-5 RCRA-8 Priority Pollutants TAL	"Metals Analysis (Circle):
			10
			9
	E	0011 A 609-51-4-139	-139
			139 ·
			£39 °
			GET
		DOI 0.01-11-4-133	139 "
		SOP 0-25-01-733	239
			139 °
And the district and the same		S 052 HZ BOSE 8-4-13G	139
		Sample Sample Type Time (Matrig)*	Sample Name
W = Waste Water	ing Water, GW = Ground	r, P=Product, S=Soil,	*Matrix Codes: A
Project No. COLLAND TO THE COLLAND T	Email JASMAN Georgy Dioper No. 21	REPORTS TO (PM): Jessica Smith Fax:	Reports To (PM
		* Edunghad	Address: City, State, Zip
	ject Name:	GEOGRA WEEKS	Client:
<u>\$</u>	Date: 824 14 Laboratory Project No [internal]:	N. Tel: 206-352-3790 Fax: 206-352-7178	3500 Fremont Ave N. Seattle, WA 98103
Chain of Custody Record	5	-remont	
	2		作がという

www.fremontanalytical.com

N	Muj-3- 11-20.0 8/2/11 930 S	mple Name	rix Codes: A = Air, AQ = A	ports to (PM): JESSICA SMUTTY	y, State, Zip	ent:	attle, WA 98103		F
4	30,0 3		quepus, B = Bulk	Silves	Ridmond	E39	Tel: 206-352-3790 Fax: 206-352-7178	dine	Fremont
	21/12	Sample	. O = Othe	MAN	8-		52-3790 52-7178	annique an	9
2	930	Sample	r, P = Proc	٥				777	큐
7	N	Sample Type (Matrix)*	duct, 5 = 50	Fax:	Tel:				
	X (30 And per d. Smith all a dush Co	Communas/Dopth	trix Codes: A = Alr., AQ = Aqueous, B = Bulk, O = Other, P = Product, 1 = Sall, SD = Sediment, SL = Solid, W = Water, DW = Orinking Water, GW = Ground Water, WW = Waste Water	Email Jasmuth @ George Watholest No: 20776-003-00	collected by: GYALL PMLPY	Project Name: SLV MORLISH	Date: 8 23/14 Page: 2 ot 5	Laboratory Project No (Internal): A082-31	Chain of Custody Record

www.fremontanalytical.com

	*Please coordinate with the lab in advance			1			
	TAT-> SameDay^ NextDay^ 2 Day 3 Day STD	- 1			the 'I	Date/	relinquistred
		Date/Time 8/15/14 8:19	" Recopyed Win of line		124/14	hulpy 8	marce hulpy 8/24/14 1505
			Oisposel by Lab. (A fee may be assessed if samples are retained ofter 30 days.)	osal by Lab (A fee may a	Client Disp	Return to Client	Sample Disposal:
	Special Remarks:	Natrite	O-Phosphate Fluoride Nitrate-Nitrite	Sulface Bromide	Chloride Su	Nitrate Nitrite	***Anions (Circle):
	PB So Se St Sn Ti Ti U V Zn	Cr Cu Fe Hg K Mg Mn Mo Na M	Individual: Ag Al As B Ba Be Ca Cd Co	illutants TAL	RCRA-B Priority Pollutants		"Metals Analysis (Circle): MTCA-5
		<		4	A 1222	ON A PRIM	" Mus-2-
					1242		mw-a-
					1540	MW-2-10-300	· Mw-2-
					1530	WW 2-8-35.0	- CMM
					1521	8-20,0	· Mw-2-
					200	MW-2-7-185	5 MW-2-
	~				ISOS	6-150	1 mw-2-6-150
				0	1503	519.5	2.8-5-MM
enthan	(8) 46 (100 GYDLE P. 9/23 NO	~		-	SShi	4-10,0	MW-2-4-10,0
		×		0)	1441 hiszla		MW-2-3-7,5
	Comments/Depth			Sample Type [Matrix)*	Sample Sample Date Time		Sample Name
	Vaste Water	rinking Water, GW = Ground Water, WW =1	SD = Sediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water, WW = Waste Water	Product, 5 = 5oil, 5	ulk, O = Other, P=	, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil,	"Matrix Codes: A » Air,
	017603-00	ASMI HOGEOGICINEORS	Email: JASM	Fax:	A L	Jessica Smith	Reports To (PM):
		Crace Druce	Locations	Tal			Address:
	7	SLU MARRIST	Project Name:		.,	GEI	Client
	5	(O)	1 8/23/14	Date:	Tel: 206-352-3790 Fax: 206-352-7178	ķ	3600 Fremont Ave N. Seattle, WA 98103
	408281	Inhustricas Brainet No Onternall		10	Amalyacan	Ar	
	Chain of Custody Record	Chai			<u> </u>	remon	
	of Control of Control	Ĉ.					(Merch Merch

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondJessica Smith
8410 154th Ave. NE
Redmond. WA 98052

RE: SLU Marriott Lab ID: 1408231

September 26, 2014

Attention Jessica Smith:

Fremont Analytical, Inc. received 49 sample(s) on 8/25/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Metals (SW6020) with TCLP Extraction (EPA 1311)

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malc. Rody

Sincerely,

Mike Ridgeway President

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott **Lab Order:** 1408231

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1408231-001	MW-3-1-2.5	08/23/2014 7:20 AM	08/25/2014 8:19 AM
1408231-002	MW-3-2-5.0	08/23/2014 7:55 AM	08/25/2014 8:19 AM
1408231-003	MW-3-3-7.5	08/23/2014 8:15 AM	08/25/2014 8:19 AM
1408231-004	MW-3-4-10.0	08/23/2014 8:25 AM	08/25/2014 8:19 AM
1408231-005	MW-3-5-12.5	08/23/2014 8:35 AM	08/25/2014 8:19 AM
1408231-006	MW-3-6-15.0	08/23/2014 8:40 AM	08/25/2014 8:19 AM
1408231-007	MW-3-7-17.5	08/23/2014 8:45 AM	08/25/2014 8:19 AM
1408231-008	MW-3-8-20.0	08/23/2014 8:55 AM	08/25/2014 8:19 AM
1408231-009	MW-3-9-22.5	08/23/2014 9:00 AM	08/25/2014 8:19 AM
1408231-010	MW-3-10-25.0	08/23/2014 9:10 AM	08/25/2014 8:19 AM
1408231-011	MW-3-11-30.0	08/23/2014 9:30 AM	08/25/2014 8:19 AM
1408231-012	MW-3-12-35.0	08/23/2014 9:45 AM	08/25/2014 8:19 AM
1408231-013	MW-3-13-40.0	08/23/2014 9:55 AM	08/25/2014 8:19 AM
1408231-014	MW-3-14-45.0	08/23/2014 10:10 AM	08/25/2014 8:19 AM
1408231-015	MW-3-15-50.0	08/23/2014 10:20 AM	08/25/2014 8:19 AM
1408231-016	MW-3-16-55.0	08/23/2014 10:30 AM	08/25/2014 8:19 AM
1408231-017	MW-3-17-60.0	08/23/2014 10:45 AM	08/25/2014 8:19 AM
1408231-018	MW-3-18-65.0	08/23/2014 11:20 AM	08/25/2014 8:19 AM
1408231-019	MW-2-1-2.5	08/23/2014 2:20 PM	08/25/2014 8:19 AM
1408231-020	MW-2-2-5.0	08/23/2014 2:35 PM	08/25/2014 8:19 AM
1408231-021	MW-2-3-7.5	08/23/2014 2:47 PM	08/25/2014 8:19 AM
1408231-022	MW-2-4-10.0	08/23/2014 2:55 PM	08/25/2014 8:19 AM
1408231-023	MW-2-5-12.5	08/23/2014 3:03 PM	08/25/2014 8:19 AM
1408231-024	MW-2-6-15.0	08/23/2014 3:05 PM	08/25/2014 8:19 AM
1408231-025	MW-2-7-17.5	08/23/2014 3:14 PM	08/25/2014 8:19 AM
1408231-026	MW-2-8-20.0	08/23/2014 3:21 PM	08/25/2014 8:19 AM
1408231-027	MW-2-9-25.0	08/23/2014 3:30 PM	08/25/2014 8:19 AM
1408231-028	MW-2-10-30.0	08/23/2014 3:40 PM	08/25/2014 8:19 AM
1408231-029	MW-2-11-35.0	08/23/2014 3:45 PM	08/25/2014 8:19 AM
1408231-030	MW-2-12-40.0	08/23/2014 3:55 PM	08/25/2014 8:19 AM
1408231-031	MW-2-13-45.0	08/23/2014 4:00 PM	08/25/2014 8:19 AM
1408231-032	MW-2-14-50.0	08/23/2014 4:10 PM	08/25/2014 8:19 AM
1408231-033	MW-2-15-55.0	08/23/2014 4:25 PM	08/25/2014 8:19 AM
1408231-034	GEI-4-1-2.5	08/24/2014 7:50 AM	08/25/2014 8:19 AM
1408231-035	GEI-4-2-5.0	08/24/2014 8:00 AM	08/25/2014 8:19 AM
1408231-036	GEI-4-3-7.5	08/24/2014 8:05 AM	08/25/2014 8:19 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott **Lab Order:** 1408231

CLIENT:

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1408231-037	GEI-4-4-10.0	08/24/2014 8:07 AM	08/25/2014 8:19 AM
1408231-038	GEI-4-5-12.5	08/24/2014 8:12 AM	08/25/2014 8:19 AM
1408231-039	GEI-4-6-15.0	08/24/2014 8:20 AM	08/25/2014 8:19 AM
1408231-040	GEI-4-7-20.0	08/24/2014 8:35 AM	08/25/2014 8:19 AM
1408231-041	GEI-4-8-25.0	08/24/2014 8:50 AM	08/25/2014 8:19 AM
1408231-042	GEI-4-9-30.0	08/24/2014 9:00 AM	08/25/2014 8:19 AM
1408231-043	GEI-4-10-35.0	08/24/2014 9:05 AM	08/25/2014 8:19 AM
1408231-044	GEI-4-11-40.0	08/24/2014 10:05 AM	08/25/2014 8:19 AM
1408231-045	GEI-4-12-45.0	08/24/2014 10:15 AM	08/25/2014 8:19 AM
1408231-046	GEI-4-13-50.0	08/24/2014 10:30 AM	08/25/2014 8:19 AM
1408231-047	GEI-4-14-55.0	08/24/2014 10:45 AM	08/25/2014 8:19 AM
1408231-048	GEI-4-15-60.0	08/24/2014 11:00 AM	08/25/2014 8:19 AM
1408231-049	Trip Blank	08/21/2014 11:15 AM	08/25/2014 8:19 AM

Case Narrative

WO#: **1408231**Date: **9/26/2014**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1408231**Date Reported: **9/26/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 8:25:00 AM

Project: SLU Marriott

Lab ID: 1408231-004 **Matrix**: Soil

Client Sample ID: MW-3-4-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8518	Analyst: EC
Diesel (Fuel Oil)	ND	21.5		mg/Kg-dry	1	8/31/2014 5:25:00 AM
Heavy Oil	93.4	53.8		mg/Kg-dry	1	8/31/2014 5:25:00 AM
Surr: 2-Fluorobiphenyl	98.6	50-150		%REC	1	8/31/2014 5:25:00 AM
Surr: o-Terphenyl	94.4	50-150		%REC	1	8/31/2014 5:25:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8524	Analyst: NG
Naphthalene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
2-Methylnaphthalene	91.2	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
1-Methylnaphthalene	125	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Acenaphthylene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Acenaphthene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Fluorene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Phenanthrene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Anthracene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Fluoranthene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Pyrene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benz(a)anthracene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Chrysene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benzo(b)fluoranthene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benzo(k)fluoranthene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benzo(a)pyrene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Indeno(1,2,3-cd)pyrene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Dibenz(a,h)anthracene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Benzo(g,h,i)perylene	ND	57.6		μg/Kg-dry	1	8/27/2014 11:42:00 PM
Surr: 2-Fluorobiphenyl	109	42.7-132		%REC	1	8/27/2014 11:42:00 PM
Surr: Terphenyl-d14 (surr)	111	48.8-157		%REC	1	8/27/2014 11:42:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: R164	158 Analyst: BC
Gasoline	14.7	6.46		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Surr: Toluene-d8	95.4	65-135		%REC	1	8/28/2014 2:11:00 AM
Surr: 4-Bromofluorobenzene	109	65-135		%REC	1	8/28/2014 2:11:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 8:25:00 AM

Project: SLU Marriott

Lab ID: 1408231-004 **Matrix**: Soil

Client Sample ID: MW-3-4-10.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 0.0775 8/28/2014 2:11:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0775 8/28/2014 2:11:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00258 mg/Kg-dry 8/28/2014 2:11:00 AM 1 Bromomethane ND 0.116 1 8/28/2014 2:11:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0646 mg/Kg-dry 1 8/28/2014 2:11:00 AM Chloroethane ND 0.0775 8/28/2014 2:11:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0646 mg/Kg-dry 1 8/28/2014 2:11:00 AM ND 0.0258 8/28/2014 2:11:00 AM Methylene chloride mg/Kg-dry 1 8/28/2014 2:11:00 AM ND trans-1,2-Dichloroethene 0.0258 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0646 8/28/2014 2:11:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM 2,2-Dichloropropane ND 0.0646 mg/Kg-dry 1 8/28/2014 2:11:00 AM cis-1,2-Dichloroethene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Chloroform ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM 1,1,1-Trichloroethane (TCA) ND 1 8/28/2014 2:11:00 AM 0.0258 mg/Kg-dry 1,1-Dichloropropene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Carbon tetrachloride ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM 1,2-Dichloroethane (EDC) ND 0.0388 8/28/2014 2:11:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 2:11:00 AM 0.0258 mg/Kg-dry 1 Trichloroethene (TCE) ND 8/28/2014 2:11:00 AM 0.0258 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Bromodichloromethane ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM ND 8/28/2014 2:11:00 AM Dibromomethane 0.0517 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM Toluene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM ND 0.0388 8/28/2014 2:11:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0388 mg/Kg-dry 1 8/28/2014 2:11:00 AM 1,3-Dichloropropane ND 0.0646 8/28/2014 2:11:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0258 8/28/2014 2:11:00 AM mg/Kg-dry 1 ND 1 8/28/2014 2:11:00 AM Dibromochloromethane 0.0388 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00646 mg/Kg-dry 1 8/28/2014 2:11:00 AM Chlorobenzene ND 0.0258 mg/Kg-dry 1 8/28/2014 2:11:00 AM 1,1,1,2-Tetrachloroethane ND 0.0388 mg/Kg-dry 1 8/28/2014 2:11:00 AM ND Ethylbenzene 0.0388 mg/Kg-dry 1 8/28/2014 2:11:00 AM m,p-Xylene ND 0.0258 mg/Kg-dry 8/28/2014 2:11:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

DF

Units

WO#: 1408231

Date Reported: 9/26/2014

Date Analyzed

Collection Date: 8/23/2014 8:25:00 AM Client: GeoEngineers, Inc. - Redmond

RL

Qual

Project: SLU Marriott

Analyses

Lab ID: 1408231-004 Matrix: Soil

Result

Client Sample ID: MW-3-4-10.0

naiyses	Result	KL	Quai	Units	DΓ	Date Analyzed
/olatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 8540	Analyst: BC
o-Xylene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Styrene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Isopropylbenzene	ND	0.103		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Bromoform	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
n-Propylbenzene	0.0383	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Bromobenzene	ND	0.0388		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,3,5-Trimethylbenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
2-Chlorotoluene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
4-Chlorotoluene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AN
tert-Butylbenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,2,3-Trichloropropane	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,2,4-Trichlorobenzene	ND	0.0646		mg/Kg-dry	1	8/28/2014 2:11:00 AM
sec-Butylbenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
4-Isopropyltoluene	0.0435	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,3-Dichlorobenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,4-Dichlorobenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
n-Butylbenzene	0.0525	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,2-Dichlorobenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0388		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,2,4-Trimethylbenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Hexachlorobutadiene	ND	0.129		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Naphthalene	ND	0.0388		mg/Kg-dry	1	8/28/2014 2:11:00 AM
1,2,3-Trichlorobenzene	ND	0.0258		mg/Kg-dry	1	8/28/2014 2:11:00 AM
Surr: Dibromofluoromethane	99.2	63.7-129		%REC	1	8/28/2014 2:11:00 AM
Surr: Toluene-d8	101	61.4-128		%REC	1	8/28/2014 2:11:00 AM
Surr: 1-Bromo-4-fluorobenzene	98.4	63.1-141		%REC	1	8/28/2014 2:11:00 AM
ercury by EPA Method 7471				Batch	ı ID: 8515	Analyst: M\
Mercury	ND	0.258		mg/Kg-dry	1	8/27/2014 11:31:05 A
otal Metals by EPA Method 602	<u>20</u>			Batch	ı ID: 8516	Analyst: TN
Arsenic	2.58	0.0852		mg/Kg-dry	1	8/26/2014 6:28:04 PM

- E Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 8:25:00 AM

Project: SLU Marriott

Lab ID: 1408231-004 **Matrix**: Soil

Client Sample ID: MW-3-4-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	nod 6020			Batch	n ID: 85	16 Analyst: TN
Barium	68.9	0.426		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Cadmium	ND	0.170		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Chromium	32.8	0.0852		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Lead	10.9	0.170		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Selenium	ND	0.426		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Silver	ND	0.0852		mg/Kg-dry	1	8/26/2014 6:28:04 PM
Sample Moisture (Percen	t Moisture)			Batch	ı ID: R1	6417 Analyst: KZ
Percent Moisture	15.0			wt%	1	8/27/2014 7:54:28 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 10:20:00 AM

Project: SLU Marriott

Lab ID: 1408231-015 **Matrix**: Soil

Client Sample ID: MW-3-15-50.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 8/28/2014 2:41:00 AM Dichlorodifluoromethane (CFC-12) 0.0497 mg/Kg-dry 1 Chloromethane ND 0.0497 8/28/2014 2:41:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00166 mg/Kg-dry 8/28/2014 2:41:00 AM 1 Bromomethane ND 0.0746 1 8/28/2014 2:41:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0414 mg/Kg-dry 1 8/28/2014 2:41:00 AM Chloroethane ND 0.0497 8/28/2014 2:41:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0414 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND 0.0166 8/28/2014 2:41:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0166 trans-1,2-Dichloroethene mg/Kg-dry 1 8/28/2014 2:41:00 AM Methyl tert-butyl ether (MTBE) ND 0.0414 8/28/2014 2:41:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 2,2-Dichloropropane ND 0.0414 mg/Kg-dry 1 8/28/2014 2:41:00 AM cis-1,2-Dichloroethene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Chloroform ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0166 1 8/28/2014 2:41:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Carbon tetrachloride ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2-Dichloroethane (EDC) ND 0.0249 8/28/2014 2:41:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 2:41:00 AM 0.0166 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2-Dichloropropane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Bromodichloromethane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND Dibromomethane 0.0332 mg/Kg-dry 1 8/28/2014 2:41:00 AM cis-1,3-Dichloropropene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Toluene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND 0.0249 8/28/2014 2:41:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,3-Dichloropropane ND 0.0414 8/28/2014 2:41:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0166 8/28/2014 2:41:00 AM mg/Kg-dry 1 ND 1 8/28/2014 2:41:00 AM Dibromochloromethane 0.0249 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00414 mg/Kg-dry 1 8/28/2014 2:41:00 AM Chlorobenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,1,1,2-Tetrachloroethane ND 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND Ethylbenzene 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM m,p-Xylene ND 0.0166 mg/Kg-dry 8/28/2014 2:41:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1408231

Date Reported: 9/26/2014

GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 10:20:00 AM Client:

Project: SLU Marriott

Lab ID: 1408231-015 Matrix: Soil

Client Sample ID: MW-3-15-50.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 0.0166 8/28/2014 2:41:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0166 8/28/2014 2:41:00 AM 1 Isopropylbenzene ND 0.0663 mg/Kg-dry 8/28/2014 2:41:00 AM 1 Bromoform ND 0.0166 1 8/28/2014 2:41:00 AM mg/Kg-dry 1,1,2,2-Tetrachloroethane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM n-Propylbenzene ND 0.0166 mg/Kg-dry 8/28/2014 2:41:00 AM 1 Bromobenzene ND 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND 0.0166 1 8/28/2014 2:41:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry ND 2-Chlorotoluene 0.0166 8/28/2014 2:41:00 AM mg/Kg-dry 1 4-Chlorotoluene ND 0.0166 8/28/2014 2:41:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2,3-Trichloropropane ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2,4-Trichlorobenzene ND 0.0414 mg/Kg-dry 1 8/28/2014 2:41:00 AM sec-Butylbenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND 0.0166 1 8/28/2014 2:41:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,4-Dichlorobenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM n-Butylbenzene ND 0.0166 8/28/2014 2:41:00 AM mg/Kg-dry 1 ND 8/28/2014 2:41:00 AM 1,2-Dichlorobenzene 0.0166 mg/Kg-dry 1 ND 8/28/2014 2:41:00 AM 1,2-Dibromo-3-chloropropane 0.0249 mg/Kg-dry 1 1,2,4-Trimethylbenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Hexachlorobutadiene ND 0.0829 mg/Kg-dry 1 8/28/2014 2:41:00 AM ND Naphthalene 0.0249 mg/Kg-dry 1 8/28/2014 2:41:00 AM 1,2,3-Trichlorobenzene ND 0.0166 mg/Kg-dry 1 8/28/2014 2:41:00 AM Surr: Dibromofluoromethane 97.3 63.7-129 %REC 1 8/28/2014 2:41:00 AM Surr: Toluene-d8 99.1 61.4-128 %REC 1 8/28/2014 2:41:00 AM Surr: 1-Bromo-4-fluorobenzene 94.9 63.1-141 %REC 1 8/28/2014 2:41:00 AM Batch ID: R16417 Analyst: KZ

Sample Moisture (Percent Moisture)

Percent Moisture 22.2 wt% 1 8/27/2014 7:54:28 AM

- Analyte detected in the associated Method Blank В
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:35:00 PM

Project: SLU Marriott

Lab ID: 1408231-020 **Matrix:** Soil

Client Sample ID: MW-2-2-5.0

Analyses	Result	RL	Qual	Units	DF	Da	ate Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8	8518	Analyst: EC
Diesel (Fuel Oil)	ND	24.5		mg/Kg-dry	1	8/31	/2014 5:56:00 AM
Heavy Oil	ND	61.2		mg/Kg-dry	1	8/31	/2014 5:56:00 AM
Surr: 2-Fluorobiphenyl	98.5	50-150		%REC	1	8/31	/2014 5:56:00 AM
Surr: o-Terphenyl	93.0	50-150		%REC	1	8/31	/2014 5:56:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8	8524	Analyst: NG
Naphthalene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
2-Methylnaphthalene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
1-Methylnaphthalene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Acenaphthylene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Acenaphthene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Fluorene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Phenanthrene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Anthracene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Fluoranthene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Pyrene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Benz(a)anthracene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Chrysene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Benzo(b)fluoranthene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Benzo(k)fluoranthene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Benzo(a)pyrene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Indeno(1,2,3-cd)pyrene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Dibenz(a,h)anthracene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Benzo(g,h,i)perylene	ND	60.1		μg/Kg-dry	1	8/28	/2014 12:05:00 AM
Surr: 2-Fluorobiphenyl	99.0	42.7-132		%REC	1	8/28	/2014 12:05:00 AM
Surr: Terphenyl-d14 (surr)	103	48.8-157		%REC	1	8/28	/2014 12:05:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: I	R16458	Analyst: BC
Gasoline	ND	9.78		mg/Kg-dry	1	8/28	/2014 3:11:00 AM
Surr: Toluene-d8	101	65-135		%REC	1	8/28	/2014 3:11:00 AM
Surr: 4-Bromofluorobenzene	104	65-135		%REC	1	8/28	/2014 3:11:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:35:00 PM

Project: SLU Marriott

Lab ID: 1408231-020 **Matrix**: Soil

Client Sample ID: MW-2-2-5.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 8/28/2014 3:11:00 AM Dichlorodifluoromethane (CFC-12) 0.117 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.117 8/28/2014 3:11:00 AM 1 Vinyl chloride ND 0.00391 mg/Kg-dry 8/28/2014 3:11:00 AM 1 mg/Kg-dry Bromomethane ND 0.176 1 8/28/2014 3:11:00 AM Trichlorofluoromethane (CFC-11) ND 0.0978 mg/Kg-dry 1 8/28/2014 3:11:00 AM Chloroethane ND mg/Kg-dry 8/28/2014 3:11:00 AM 0.117 1 1,1-Dichloroethene ND 0.0978 mg/Kg-dry 1 8/28/2014 3:11:00 AM 0.0561 0.0391 1 8/28/2014 3:11:00 AM Methylene chloride mg/Kg-dry 0.0391 8/28/2014 3:11:00 AM trans-1,2-Dichloroethene ND mg/Kg-dry 1 ND Methyl tert-butyl ether (MTBE) 0.0978 8/28/2014 3:11:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 2,2-Dichloropropane ND 0.0978 mg/Kg-dry 1 8/28/2014 3:11:00 AM cis-1,2-Dichloroethene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM Chloroform ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0391 1 8/28/2014 3:11:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM Carbon tetrachloride ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,2-Dichloroethane (EDC) ND 0.0587 8/28/2014 3:11:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 3:11:00 AM 0.0391 mg/Kg-dry 1 Trichloroethene (TCE) ND 8/28/2014 3:11:00 AM 0.0391 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM Bromodichloromethane ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM ND Dibromomethane 0.0782 mg/Kg-dry 1 8/28/2014 3:11:00 AM cis-1,3-Dichloropropene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM Toluene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM trans-1,3-Dichloropropylene ND 0.0587 8/28/2014 3:11:00 AM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0587 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,3-Dichloropropane ND 0.0978 8/28/2014 3:11:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0391 8/28/2014 3:11:00 AM mg/Kg-dry 1 ND 1 8/28/2014 3:11:00 AM Dibromochloromethane 0.0587 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00978 mg/Kg-dry 1 8/28/2014 3:11:00 AM Chlorobenzene ND 0.0391 mg/Kg-dry 1 8/28/2014 3:11:00 AM 1,1,1,2-Tetrachloroethane ND 0.0587 mg/Kg-dry 1 8/28/2014 3:11:00 AM ND Ethylbenzene 0.0587 mg/Kg-dry 1 8/28/2014 3:11:00 AM m,p-Xylene ND 0.0391 mg/Kg-dry 8/28/2014 3:11:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:35:00 PM

Project: SLU Marriott

Lab ID: 1408231-020 **Matrix**: Soil

Client Sample ID: MW-2-2-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260		Batch	n ID: 8540	Analyst: BC
o-Xylene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Styrene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Isopropylbenzene	ND	0.156		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Bromoform	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
n-Propylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Bromobenzene	ND	0.0587		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,3,5-Trimethylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
2-Chlorotoluene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
4-Chlorotoluene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
tert-Butylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2,3-Trichloropropane	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2,4-Trichlorobenzene	ND	0.0978		mg/Kg-dry	1	8/28/2014 3:11:00 AM
sec-Butylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
4-Isopropyltoluene	0.0699	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,3-Dichlorobenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,4-Dichlorobenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
n-Butylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2-Dichlorobenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0587		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2,4-Trimethylbenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Hexachlorobutadiene	ND	0.196		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Naphthalene	ND	0.0587		mg/Kg-dry	1	8/28/2014 3:11:00 AM
1,2,3-Trichlorobenzene	ND	0.0391		mg/Kg-dry	1	8/28/2014 3:11:00 AM
Surr: Dibromofluoromethane	101	63.7-129		%REC	1	8/28/2014 3:11:00 AM
Surr: Toluene-d8	106	61.4-128		%REC	1	8/28/2014 3:11:00 AM
Surr: 1-Bromo-4-fluorobenzene	94.2	63.1-141		%REC	1	8/28/2014 3:11:00 AM
Mercury by EPA Method 7471				Batch	n ID: 8515	Analyst: MV
Mercury	ND	0.263		mg/Kg-dry	1	8/27/2014 11:32:42 AI
otal Metals by EPA Method 602	<u>:0</u>			Batch	n ID: 8516	Analyst: TN
Arsenic	5.83	0.0956		mg/Kg-dry	1	8/26/2014 6:31:29 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:35:00 PM

Project: SLU Marriott

Lab ID: 1408231-020 **Matrix:** Soil

Client Sample ID: MW-2-2-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batch	n ID: 8516	S Analyst: TN
Barium	744	0.478		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Cadmium	0.908	0.191		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Chromium	27.2	0.0956		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Lead	519	0.191		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Selenium	ND	0.478		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Silver	0.548	0.0956		mg/Kg-dry	1	8/26/2014 6:31:29 PM
Metals (SW6020) with TCLP Extract	ion (EPA 1	<u>311)</u>		Batch	n ID: 8796	S Analyst: TN
Lead	ND	0.200		mg/L	1	9/22/2014 11:17:11 AM
Sample Moisture (Percent Moisture))			Batch	n ID: R16	417 Analyst: KZ
Percent Moisture	19.5			wt%	1	8/27/2014 7:54:28 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 2:55:00 PM

Project: SLU Marriott

Lab ID: 1408231-022 **Matrix**: Soil

Client Sample ID: MW-2-4-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batch	n ID: 882	22 Analyst: TN
Lead	714	0.227		mg/Kg-dry	1	9/23/2014 6:08:52 PM
Metals (SW6020) with TCLP Extraction (EPA 1311)				Batch	n ID: 88	51 Analyst: TN
Lead	ND	0.500		mg/L	1	9/26/2014 2:24:24 PM
Sample Moisture (Percent Moistur	<u>e)</u>			Batch	n ID: R1	6932 Analyst: SL
Percent Moisture	30.2			wt%	1	9/23/2014 3:54:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/23/2014 3:21:00 PM

Project: SLU Marriott

Lab ID: 1408231-026 **Matrix**: Soil

Client Sample ID: MW-2-8-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batc	h ID: 885	64 Analyst: TN
Lead	2.02	0.183		mg/Kg-dry	1	9/26/2014 3:50:10 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batc	h ID: R1	7028 Analyst: SL
Percent Moisture	13.8			wt%	1	9/25/2014 3:59:17 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:00:00 AM

Project: SLU Marriott

Lab ID: 1408231-035 **Matrix**: Soil

Client Sample ID: GEI-4-2-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8518	3 Analyst: EC
Diesel (Fuel Oil)	ND	22.3		mg/Kg-dry	1	8/31/2014 6:27:00 AM
Heavy Oil	ND	55.8		mg/Kg-dry	1	8/31/2014 6:27:00 AM
Surr: 2-Fluorobiphenyl	97.6	50-150		%REC	1	8/31/2014 6:27:00 AM
Surr: o-Terphenyl	90.7	50-150		%REC	1	8/31/2014 6:27:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8524	Analyst: NG
Naphthalene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
2-Methylnaphthalene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
1-Methylnaphthalene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Acenaphthylene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Acenaphthene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Fluorene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Phenanthrene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Anthracene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Fluoranthene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Pyrene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Benz(a)anthracene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Chrysene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Benzo(b)fluoranthene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Benzo(k)fluoranthene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Benzo(a)pyrene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Dibenz(a,h)anthracene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Benzo(g,h,i)perylene	ND	55.2		μg/Kg-dry	1	8/28/2014 12:28:00 AM
Surr: 2-Fluorobiphenyl	99.2	42.7-132		%REC	1	8/28/2014 12:28:00 AM
Surr: Terphenyl-d14 (surr)	101	48.8-157		%REC	1	8/28/2014 12:28:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R164	458 Analyst: BC
Gasoline	ND	5.34		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Surr: Toluene-d8	99.9	65-135		%REC	1	8/28/2014 3:40:00 AM
Surr: 4-Bromofluorobenzene	108	65-135		%REC	1	8/28/2014 3:40:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1408231** Date Reported: **9/26/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:00:00 AM

Project: SLU Marriott

Lab ID: 1408231-035 **Matrix**: Soil

Client Sample ID: GEI-4-2-5.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 8/28/2014 3:40:00 AM Dichlorodifluoromethane (CFC-12) 0.0641 mg/Kg-dry 1 Chloromethane ND 0.0641 8/28/2014 3:40:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00214 8/28/2014 3:40:00 AM mg/Kg-dry 1 Bromomethane ND 0.0962 1 8/28/2014 3:40:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0534 mg/Kg-dry 1 8/28/2014 3:40:00 AM Chloroethane ND 0.0641 8/28/2014 3:40:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0534 mg/Kg-dry 1 8/28/2014 3:40:00 AM ND 0.0214 8/28/2014 3:40:00 AM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Methyl tert-butyl ether (MTBE) ND 0.0534 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,1-Dichloroethane ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 2,2-Dichloropropane ND 0.0534 mg/Kg-dry 1 8/28/2014 3:40:00 AM cis-1,2-Dichloroethene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Chloroform ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0214 1 8/28/2014 3:40:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Carbon tetrachloride ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,2-Dichloroethane (EDC) ND 0.0321 8/28/2014 3:40:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 3:40:00 AM 0.0214 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,2-Dichloropropane ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Bromodichloromethane ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM ND Dibromomethane 0.0427 mg/Kg-dry 1 8/28/2014 3:40:00 AM cis-1,3-Dichloropropene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM Toluene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM ND 0.0321 8/28/2014 3:40:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0321 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,3-Dichloropropane ND 0.0534 8/28/2014 3:40:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0214 8/28/2014 3:40:00 AM mg/Kg-dry 1 ND 0.0321 1 8/28/2014 3:40:00 AM Dibromochloromethane mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00534 mg/Kg-dry 1 8/28/2014 3:40:00 AM Chlorobenzene ND 0.0214 mg/Kg-dry 1 8/28/2014 3:40:00 AM 1,1,1,2-Tetrachloroethane ND 0.0321 mg/Kg-dry 1 8/28/2014 3:40:00 AM ND Ethylbenzene 0.0321 mg/Kg-dry 1 8/28/2014 3:40:00 AM m,p-Xylene ND 0.0214 mg/Kg-dry 8/28/2014 3:40:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:00:00 AM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1408231-035 **Matrix:** Soil

Client Sample ID: GEI-4-2-5.0

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by E	EPA Method	8260		Batch	ID: 8540	Analyst: BC
o-Xylene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Styrene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Isopropylbenzene	ND	0.0855		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Bromoform	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AN
1,1,2,2-Tetrachloroethane	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
n-Propylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
Bromobenzene	ND	0.0321		mg/Kg-dry	1	8/28/2014 3:40:00 AM
1,3,5-Trimethylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
2-Chlorotoluene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
4-Chlorotoluene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
tert-Butylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
1,2,3-Trichloropropane	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AM
1,2,4-Trichlorobenzene	ND	0.0534		mg/Kg-dry	1	8/28/2014 3:40:00 Al
sec-Butylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AI
4-Isopropyltoluene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AI
1,3-Dichlorobenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 A
1,4-Dichlorobenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 A
n-Butylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 A
1,2-Dichlorobenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AI
1,2-Dibromo-3-chloropropane	ND	0.0321		mg/Kg-dry	1	8/28/2014 3:40:00 A
1,2,4-Trimethylbenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 AI
Hexachlorobutadiene	ND	0.107		mg/Kg-dry	1	8/28/2014 3:40:00 AI
Naphthalene	ND	0.0321		mg/Kg-dry	1	8/28/2014 3:40:00 AI
1,2,3-Trichlorobenzene	ND	0.0214		mg/Kg-dry	1	8/28/2014 3:40:00 Al
Surr: Dibromofluoromethane	99.8	63.7-129		%REC	1	8/28/2014 3:40:00 AI
Surr: Toluene-d8	84.7	61.4-128		%REC	1	8/28/2014 3:40:00 AI
Surr: 1-Bromo-4-fluorobenzene	97.9	63.1-141		%REC	1	8/28/2014 3:40:00 AI
lercury by EPA Method 7471				Batch	ID: 8515	Analyst: M
Mercury	ND	0.262		mg/Kg-dry	1	8/27/2014 11:34:18 <i>A</i>
otal Metals by EPA Method 6020	!			Batch	ID: 8516	Analyst: TN
Arsenic	3.86	0.0867		mg/Kg-dry	1	8/26/2014 6:41:49 PI

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:00:00 AM

Project: SLU Marriott

Lab ID: 1408231-035 **Matrix:** Soil

Client Sample ID: GEI-4-2-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 8516	S Analyst: TN
Barium	61.1	0.434		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Cadmium	ND	0.173		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Chromium	25.6	0.0867		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Lead	9.19	0.173		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Selenium	ND	0.434		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Silver	ND	0.0867		mg/Kg-dry	1	8/26/2014 6:41:49 PM
Sample Moisture (Percent	Moisture)			Batch	n ID: R164	417 Analyst: KZ
Percent Moisture	16.4			wt%	1	8/27/2014 7:54:28 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1408231**Date Reported: **9/26/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:12:00 AM

Project: SLU Marriott

Lab ID: 1408231-038 **Matrix:** Soil

Client Sample ID: GEI-4-5-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8518	Analyst: EC
Diesel (Fuel Oil)	ND	23.7		mg/Kg-dry	1	8/31/2014 6:57:00 AM
Heavy Oil	ND	59.3		mg/Kg-dry	1	8/31/2014 6:57:00 AM
Surr: 2-Fluorobiphenyl	99.2	50-150		%REC	1	8/31/2014 6:57:00 AM
Surr: o-Terphenyl	91.9	50-150		%REC	1	8/31/2014 6:57:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8524	Analyst: NG
Naphthalene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
2-Methylnaphthalene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
1-Methylnaphthalene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Acenaphthylene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Acenaphthene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Fluorene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Phenanthrene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Anthracene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Fluoranthene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Pyrene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benz(a)anthracene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Chrysene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benzo(b)fluoranthene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benzo(k)fluoranthene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benzo(a)pyrene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Indeno(1,2,3-cd)pyrene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Dibenz(a,h)anthracene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Benzo(g,h,i)perylene	ND	57.0		μg/Kg-dry	1	8/28/2014 12:51:00 AM
Surr: 2-Fluorobiphenyl	96.7	42.7-132		%REC	1	8/28/2014 12:51:00 AM
Surr: Terphenyl-d14 (surr)	92.5	48.8-157		%REC	1	8/28/2014 12:51:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R164	58 Analyst: BC
Gasoline	ND	6.08		mg/Kg-dry	1	8/28/2014 4:09:00 AM
Surr: Toluene-d8	99.5	65-135		%REC	1	8/28/2014 4:09:00 AM
Surr: 4-Bromofluorobenzene	104	65-135		%REC	1	8/28/2014 4:09:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1408231** Date Reported: **9/26/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:12:00 AM

Project: SLU Marriott

Lab ID: 1408231-038 **Matrix**: Soil

Client Sample ID: GEI-4-5-12.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8540 Analyst: BC ND 8/28/2014 4:09:00 AM Dichlorodifluoromethane (CFC-12) 0.0729 mg/Kg-dry 1 Chloromethane ND 0.0729 8/28/2014 4:09:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00243 mg/Kg-dry 8/28/2014 4:09:00 AM 1 Bromomethane ND 0.109 1 8/28/2014 4:09:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0608 mg/Kg-dry 1 8/28/2014 4:09:00 AM Chloroethane ND 0.0729 8/28/2014 4:09:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0608 mg/Kg-dry 1 8/28/2014 4:09:00 AM ND 8/28/2014 4:09:00 AM Methylene chloride 0.0243 mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Methyl tert-butyl ether (MTBE) ND 0.0608 8/28/2014 4:09:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 2,2-Dichloropropane ND 0.0608 mg/Kg-dry 1 8/28/2014 4:09:00 AM cis-1,2-Dichloroethene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Chloroform ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,1,1-Trichloroethane (TCA) ND 1 8/28/2014 4:09:00 AM 0.0243 mg/Kg-dry 1,1-Dichloropropene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Carbon tetrachloride ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,2-Dichloroethane (EDC) ND 0.0365 8/28/2014 4:09:00 AM mg/Kg-dry 1 Benzene ND 8/28/2014 4:09:00 AM 0.0243 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,2-Dichloropropane ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Bromodichloromethane ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM ND 8/28/2014 4:09:00 AM Dibromomethane 0.0486 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM Toluene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM ND 0.0365 8/28/2014 4:09:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0365 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,3-Dichloropropane ND 0.0608 8/28/2014 4:09:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0243 8/28/2014 4:09:00 AM mg/Kg-dry 1 ND 1 8/28/2014 4:09:00 AM Dibromochloromethane 0.0365 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00608 mg/Kg-dry 1 8/28/2014 4:09:00 AM Chlorobenzene ND 0.0243 mg/Kg-dry 1 8/28/2014 4:09:00 AM 1,1,1,2-Tetrachloroethane ND 0.0365 mg/Kg-dry 1 8/28/2014 4:09:00 AM ND 8/28/2014 4:09:00 AM Ethylbenzene 0.0365 mg/Kg-dry 1 m,p-Xylene ND 0.0243 mg/Kg-dry 8/28/2014 4:09:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:12:00 AM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1408231-038 **Matrix:** Soil

Client Sample ID: GEI-4-5-12.5

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
/olatile Organic Compounds by	EPA Method	8260		Batch	n ID: 8540	Analyst: BC
o-Xylene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
Styrene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
Isopropylbenzene	ND	0.0972		mg/Kg-dry	1	8/28/2014 4:09:00 AM
Bromoform	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AN
1,1,2,2-Tetrachloroethane	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AN
n-Propylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AN
Bromobenzene	ND	0.0365		mg/Kg-dry	1	8/28/2014 4:09:00 AM
1,3,5-Trimethylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
2-Chlorotoluene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
4-Chlorotoluene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
tert-Butylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
1,2,3-Trichloropropane	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AM
1,2,4-Trichlorobenzene	ND	0.0608		mg/Kg-dry	1	8/28/2014 4:09:00 AM
sec-Butylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Al
4-Isopropyltoluene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Al
1,3-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AI
1,4-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Af
n-Butylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 AI
1,2-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Af
1,2-Dibromo-3-chloropropane	ND	0.0365		mg/Kg-dry	1	8/28/2014 4:09:00 Af
1,2,4-Trimethylbenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Af
Hexachlorobutadiene	ND	0.122		mg/Kg-dry	1	8/28/2014 4:09:00 Af
Naphthalene	ND	0.0365		mg/Kg-dry	1	8/28/2014 4:09:00 Af
1,2,3-Trichlorobenzene	ND	0.0243		mg/Kg-dry	1	8/28/2014 4:09:00 Af
Surr: Dibromofluoromethane	99.4	63.7-129		%REC	1	8/28/2014 4:09:00 AM
Surr: Toluene-d8	97.3	61.4-128		%REC	1	8/28/2014 4:09:00 Af
Surr: 1-Bromo-4-fluorobenzene	94.0	63.1-141		%REC	1	8/28/2014 4:09:00 AM
lercury by EPA Method 7471				Batch	ı ID: 8515	Analyst: M
Mercury	ND	0.301		mg/Kg-dry	1	8/27/2014 11:35:55 A
otal Metals by EPA Method 602	<u>o</u>			Batch	ı ID: 8516	Analyst: TN
Arsenic	2.11	0.0901		mg/Kg-dry	1	8/26/2014 6:45:14 PM

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1408231**

Date Reported: 9/26/2014

Client: GeoEngineers, Inc. - Redmond Collection Date: 8/24/2014 8:12:00 AM

Project: SLU Marriott

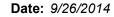
Lab ID: 1408231-038 **Matrix:** Soil

Client Sample ID: GEI-4-5-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Metho	od 6020			Batch	n ID: 85	16 Analyst: TN
Barium	84.6	0.450		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Cadmium	ND	0.180		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Chromium	42.5	0.0901		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Lead	3.44	0.180		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Selenium	ND	0.450		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Silver	ND	0.0901		mg/Kg-dry	1	8/26/2014 6:45:14 PM
Sample Moisture (Percent	<u>Moisture)</u>			Batch	ı ID: R1	6417 Analyst: KZ
Percent Moisture	20.1			wt%	1	8/27/2014 7:54:28 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range


J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Total Metals by EPA Method 6020

Proiect:	SLU Marriott
Profect.	SLU Maillou

Sample ID: MB-8516	SampType: MBLK	Ur	nits: mg/Kg Prep Date	e: 8/26/2014	RunNo: 16422	
Client ID: MBLKS	Batch ID: 8516		Analysis Date	e: 8/26/2014	SeqNo: 330463	
Analyte	Result	RL SPK value SPK R	ef Val %REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	ND 0.	00				
Barium	ND 0.5	500				
Cadmium	ND 0.2	200				
Chromium	ND 0.	00				
Lead	ND 0.2	200				
Selenium	ND 0.5	500				
Silver	ND 0.	00				

Sample ID: LCS-8516	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/26/20	14	RunNo: 164	122	
Client ID: LCSS	Batch ID: 8516				Analysis Date: 8/26/2014				SeqNo: 330)464	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	101	0.100	104.0	0	97.2	69.5	130.8				
Barium	823	0.500	779.0	0	106	74.8	125.3				
Cadmium	96.4	0.200	92.80	0	104	73.3	127.2				
Chromium	75.0	0.100	62.90	0	119	67.9	132				
Lead	329	0.200	319.0	0	103	75.9	124.1				
Selenium	79.1	0.500	77.70	0	102	63.1	136.4				
Silver	49.9	0.100	48.50	0	103	66.4	133.6				

Sample ID: 1408230-001ADUP	SampType: DUP	RL SPK value SPK Ref Val %REC 0.0852			Prep Da	te: 8/26/20	14	RunNo: 16 4			
Client ID: BATCH	Batch ID: 8516					Analysis Da	te: 8/26/20	14	SeqNo: 330)466	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4.72	0.0852						4.876	3.25	30	
Barium	78.6	0.426						83.98	6.56	30	
Cadmium	ND	0.170						0		30	
Chromium	44.2	0.0852						43.90	0.749	30	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

- D Dilution was required
- J Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Work Order: 1408231

CLIENT:

GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Total Metals by EPA Method 6020

Sample ID: 1408230-001ADUP	SampType: DUP			Units: mg/h	(g-dry	Prep Dat	e: 8/26/20	14	RunNo: 16 4	122	
Client ID: BATCH	Batch ID: 8516					Analysis Dat	e: 8/26/20	14	SeqNo: 330) 466	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	5.74	0.170						6.070	5.51	30	
Selenium	ND	0.426						0		30	
Silver	ND	0.0852						0.1248	42.6	30	

Sample ID: 1408230-001AMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 8/26/20	14	RunNo: 164	122	
Client ID: BATCH	Batch ID: 8516		/			Analysis Date: 8/26/2014		14	SeqNo: 330468		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	45.0	0.0877	43.86	4.876	91.5	75	125				
Barium	136	0.439	43.86	83.98	119	75	125				
Cadmium	2.30	0.175	2.193	0.1053	100	75	125				
Chromium	93.5	0.0877	43.86	43.90	113	75	125				
Lead	27.2	0.175	21.93	6.070	96.1	75	125				
Selenium	4.37	0.439	4.386	0.08304	97.9	75	125				
Silver	2.06	0.0877	2.193	0.1248	88.3	75	125				

Sample ID: 1408230-001AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 8/26/20	14	RunNo: 164	122		
Client ID: BATCH	Batch ID: 8516				Analysis Date: 8/26/2014				SeqNo: 330469			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	47.2	0.0904	45.21	4.876	93.7	75	125	44.99	4.89	30		
Barium	127	0.452	45.21	83.98	95.4	75	125	136.2	6.96	30		
Cadmium	2.51	0.181	2.260	0.1053	106	75	125	2.305	8.33	30		
Chromium	88.4	0.0904	45.21	43.90	98.5	75	125	93.55	5.61	30		
Lead	51.8	0.181	22.60	6.070	202	75	125	27.15	62.5	30	RS	
Selenium	4.80	0.452	4.521	0.08304	104	75	125	4.375	9.20	30		
Silver	2.64	0.0904	2.260	0.1248	111	75	125	2.060	24.7	30		

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Total Metals by EPA Method 6020

Project: SLU Marriott

Sample ID: 1408230-001AMSD SampType: MSD Units: mg/Kg-dry Prep Date: 8/26/2014 RunNo: 16422

Client ID: BATCH Batch ID: 8516 Analysis Date: 8/26/2014 SeqNo: 330469

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

SR - Poor spike recoveries and high RPD due to suspected sample inhomogeneity. The method is in control as indicated by the LCS.

Sample ID: MB-8822 SampType: MBLK Units: mg/Kg Prep Date: 9/23/2014 RunNo: 16954

Client ID: MBLKS Batch ID: 8822 Analysis Date: 9/23/2014 SeqNo: 340391

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Lead ND 0.200

Sample ID: LCS-8822 SampType: LCS Units: mg/Kg Prep Date: 9/23/2014 RunNo: 16954 Client ID: LCSS Batch ID: 8822 Analysis Date: 9/23/2014 SeqNo: 340392 RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val **RPDLimit** Analyte Result %RPD Qual

Lead 197 0.200 189.0 0 104 74.6 125.4

Sample ID: 1408231-022ADUP SampType: DUP Units: mg/Kg-dry Prep Date: 9/23/2014 RunNo: 16954

Client ID: MW-2-4-10.0 Batch ID: 8822 Analysis Date: 9/23/2014 SeqNo: 340394

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Lead 420 0.224 714.1 51.8 30 R

NOTES:

R - High RPD due to suspected sample inhomogeneity. The method is in control as indicated by the Laboratory Control Sample (LCS).

Sample ID: 1408231-022AMS	SampType: MS			Units: mg/	/Kg-dry	Prep Da	te: 9/23/20 1	14	RunNo: 169	954	
Client ID: MW-2-4-10.0	Batch ID: 8822					Analysis Da	te: 9/23/20 1	14	SeqNo: 340	396	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	574	0.220	27.54	714.1	-509	75	125				S

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded J Analyte detected

J Analyte detected below quantitation limits

E Value above quantitation range

ND Not detected at the Reporting Limit

RPD outside accepted recovery limits RL Reporting Limit S Spike recovery outside accepted recovery limits

Dilution was required

D

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Total Metals by EPA Method 6020

Project: **SLU Marriott**

Sample ID: 1408231-022AMS SampType: MS Units: mg/Kg-dry Prep Date: 9/23/2014 RunNo: 16954

Client ID: MW-2-4-10.0 Batch ID: 8822 Analysis Date: 9/23/2014 SeqNo: 340396

%RPD RPDLimit SPK value SPK Ref Val Result RI %REC LowLimit HighLimit RPD Ref Val Qual Analyte

NOTES:

S - Analyte concentration was too high for accurate spike recoveries. A duplicate analysis was performed with similar results, indicating a matrix effect.

RunNo: 16954 Sample ID: 1408231-022AMSD SampType: MSD Units: mg/Kg-dry Prep Date: 9/23/2014 MW-2-4-10.0 Client ID: Batch ID: 8822 Analysis Date: 9/23/2014 SeqNo: 340397 Result SPK value SPK Ref Val **RPDLimit** Analyte RL %REC LowLimit HighLimit RPD Ref Val %RPD Qual Lead 188 0.224 27.97 714.1 -1.880 75 125 573.8 101 30 RS

NOTES:

SR - Poor spike recoveries and high RPD due analyte concentrations being too high for accurate recoveries. Similar results observed in the MS.

0.227

Sample ID: 1408231-022APDS SampType: PDS Prep Date: 9/23/2014 RunNo: 16954 Units: mg/Kg-dry Client ID: MW-2-4-10.0 Batch ID: 8822 Analysis Date: 9/23/2014 SeqNo: 340398 RI SPK value SPK Ref Val Analyte Result %REC LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Qual

1,260

245

75

125

Lead NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

1,380

Sample ID: MB-8854 RunNo: 17064 SampType: MBLK Units: mg/Kg Prep Date: 9/26/2014 **MBLKS** 8854 Analysis Date: 9/26/2014 Client ID: Batch ID: SeqNo: 341815

25.0

SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Result RL %REC Qual

ND 0.200 Lead

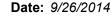
Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits


Reporting Limit

Ε Value above quantitation range

ND Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

S

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Total Metals by EPA Method 6020 Project: **SLU Marriott** Sample ID: LCS-8854 SampType: LCS Units: mg/Kg Prep Date: 9/26/2014 RunNo: 17064 Client ID: LCSS Batch ID: 8854 Analysis Date: 9/26/2014 SeqNo: 341816 Result SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte RL %REC Qual 197 0.400 189.0 0 104 74.6 125.4 Lead Sample ID: 1408231-026ADUP SampType: **DUP** Units: mg/Kg-dry Prep Date: 9/26/2014 RunNo: 17064 Client ID: MW-2-8-20.0 Batch ID: 8854 Analysis Date: 9/26/2014 SeqNo: 341818 Result RL SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** %REC Qual Analyte 2.11 0.183 2.018 4.51 30 Lead Sample ID: 1408231-026AMS SampType: MS Units: mg/Kg-dry Prep Date: 9/26/2014 RunNo: 17064 Client ID: MW-2-8-20.0 Batch ID: 8854 Analysis Date: 9/26/2014 SeqNo: 341820 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte I ead 25.9 0.183 22 85 2 018 105 75 125 Sample ID: 1408231-026AMSD SampType: MSD Units: mg/Kg-dry Prep Date: 9/26/2014 RunNo: 17064 Analysis Date: 9/26/2014 Client ID: MW-2-8-20.0 Batch ID: 8854 SeqNo: 341823 RI SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val Analyte Result %RFC %RPD **RPDLimit** Qual 75 30 Lead 26.2 0.183 22 85 2 018 106 125 25 91 1.15

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1408231

CLIENT:

GeoEngineers, Inc. - Redmond

QC SUMMARY REPORT

Project:	-	riott							Merc	cury by EP	A Metho	d 7471
Sample ID:	MB-8515	SampType: MBLI	K		Units: mg	/Kg	Prep Da	te: 8/25/20)14	RunNo: 164	426	
Client ID:	MBLKS	Batch ID: 8515					Analysis Da	te: 8/27/20)14	SeqNo: 330	0556	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.250									
Sample ID:	LCS-8515	SampType: LCS			Units: mg	/Kg	Prep Da	te: 8/25/20)14	RunNo: 164	426	
Client ID:	LCSS	Batch ID: 8515					Analysis Da	te: 8/27/20)14	SeqNo: 330	0557	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		4.97	0.250	5.000	0	99.4	80	120				
Sample ID:	1408225-006ADUP	SampType: DUP			Units: mg	/Kg-dry	Prep Da	te: 8/25/20)14	RunNo: 164	426	
Client ID:	BATCH	Batch ID: 8515					Analysis Da	te: 8/27/20	14	SeqNo: 330	0559	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.249						0		20	
Sample ID:	1408225-006AMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 8/25/20)14	RunNo: 164	426	
Client ID:	BATCH	Batch ID: 8515					Analysis Da	te: 8/27/20)14	SeqNo: 330	0560	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.460	0.224	0.4470	0.02627	97.1	70	130				
Sample ID:	1408225-006AMSD	SampType: MSD			Units: mg	/Kg-dry	Prep Da	te: 8/25/20)14	RunNo: 164	426	
Client ID:	BATCH	Batch ID: 8515					Analysis Da	te: 8/27/20)14	SeqNo: 330	0561	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.460	0.224	0.4470	0.02627	96.9	70	130	0.4605	0.194	20	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project:	SLU Marrio	tt					Metals	(SW602	0) with TCI	_P Extract	ion (EPA	. 1311)
Sample ID: I	LCS-8796	SampType: LCS			Units: mg/L		Prep Date	e: 9/22/20	14	RunNo: 168	395	
Client ID:	LCSS	Batch ID: 8796					Analysis Date	e: 9/22/20	14	SeqNo: 339	9276	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		2.23	0.200	2.500	0	89.2	65	135				
Sample ID: 1	1408231-020ADUP	SampType: DUP			Units: mg/L		Prep Date	e: 9/22/20	14	RunNo: 168	395	
Client ID:	MW-2-2-5.0	Batch ID: 8796					Analysis Date	e: 9/22/20	14	SeqNo: 339	9278	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	0.200						0		30	
Sample ID: 1	1408231-020AMS	SampType: MS			Units: mg/L		Prep Date	e: 9/22/20	14	RunNo: 168	395	
Client ID:	MW-2-2-5.0	Batch ID: 8796					Analysis Date	e: 9/22/20	14	SeqNo: 339	9279	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		2.10	0.200	2.500	0	84.0	65	135				
Sample ID: 1	1408231-020AMSD	SampType: MSD			Units: mg/L		Prep Date	e: 9/22/20	14	RunNo: 168	395	
Client ID:	MW-2-2-5.0	Batch ID: 8796					Analysis Date	e: 9/22/20	14	SeqNo: 339	9280	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		2.10	0.200	2.500	0	84.0	65	135	2.099	0.0148	30	
Sample ID:	MB-8776FB	SampType: MBLK			Units: mg/L		Prep Date	e: 9/22/20	14	RunNo: 168	395	
Client ID:	MBLKS	Batch ID: 8796					Analysis Date	e: 9/22/20	14	SeqNo: 339	294	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	0.200									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Date: 9/26/2014

Work Order: 1408231

QC SUMMARY REPORT

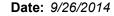
CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	ott					Metals ((SW602	0) with TCI	_P Extract	ion (EPA	1311)
Sample ID: LCS-8851	SampType: LCS			Units: mg/L		Prep Date	9/26/20	14	RunNo: 17 0	061	
Client ID: LCSS	Batch ID: 8851					Analysis Date	9/26/20	14	SeqNo: 341	1748	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	2.68	0.500	2.500	0	107	65	135				
Sample ID: 1408231-022ADUP	SampType: DUP			Units: mg/L		Prep Date	: 9/26/20 ⁻	14	RunNo: 170	061	
Client ID: MW-2-4-10.0	Batch ID: 8851					Analysis Date	9/26/20	14	SeqNo: 341	1750	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	ND	0.500						0		30	
Sample ID: 1408231-022AMS	SampType: MS			Units: mg/L		Prep Date	: 9/26/20 ²	14	RunNo: 170	061	
Client ID: MW-2-4-10.0	Batch ID: 8851					Analysis Date	9/26/20	14	SeqNo: 341	1751	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	2.60	0.500	2.500	0.05802	102	65	135				
Sample ID: 1408231-022AMSD	SampType: MSD			Units: mg/L		Prep Date	: 9/26/20 ⁻	14	RunNo: 170	061	
Client ID: MW-2-4-10.0	Batch ID: 8851					Analysis Date	9/26/20	14	SeqNo: 341	1752	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	2.59	0.500	2.500	0.05802	101	65	135	2.603	0.473	30	
Sample ID: MB-8850FB	SampType: MBLK			Units: mg/L		Prep Date	: 9/26/20 ⁴	14	RunNo: 170	061	
Client ID: MBLKS	Batch ID: 8851					Analysis Date	: 9/26/20 ⁴	14	SeqNo: 341	1753	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	ND	0.500									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: **SLU Marriott** Sample ID: 1408225-001ADUP SampType: **DUP** Units: mg/Kg-dry Prep Date: 8/28/2014 RunNo: 16508 Client ID: BATCH Batch ID: 8518 Analysis Date: 8/31/2014 SeqNo: 332086 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Diesel (Fuel Oil) ND 22.7 0 30 ND 30 Heavy Oil 56.8 Surr: 2-Fluorobiphenyl 22.7 22.73 99.7 50 150 0 Surr: o-Terphenyl 21.0 22.73 92.3 50 150 0

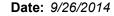
Sample ID: LCS-8518	SampType: LCS			Units: mg/Kg		Prep Dat	e: 8/28/2014	1	RunNo: 165	808	
Client ID: LCSS	Batch ID: 8518					Analysis Dat	e: 8/31/2014	1	SeqNo: 332	105	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	485	19.8	494.1	0	98.1	65	135				
Surr: 2-Fluorobiphenyl	20.8		19.76		105	50	150				
Surr: o-Terphenyl	19.1		19.76		96.6	50	150				

Sample ID: MB-8518	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 8/28/20	14	RunNo: 165	808	
Client ID: MBLKS	Batch ID: 8518					Analysis Dat	te: 8/31/20	14	SeqNo: 332	106	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	20.9		20.00		104	50	150				
Surr: o-Terphenyl	18.7		20.00		93.6	50	150				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

ND Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: SLU Marri	ott				Ро	lyaromati	ic Hydro	carbons by	y EPA Met	hod 8270	(SIM)
Sample ID: MB-8524	SampType: MBLK			Units: µg/Kg		Prep Dat	e: 8/27/2 0)14	RunNo: 164	462	
Client ID: MBLKS	Batch ID: 8524					Analysis Dat	e: 8/27/2 0)14	SeqNo: 33	1443	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	455		500.0		91.0	42.7	132				
Surr: Terphenyl-d14 (surr)	439		500.0		87.8	48.8	157				
Comple ID: 1 CC 0524	CompTime: 100			Linite:/IV.		Dran Dat	0/07/0/	M 4	DunNo. 40	400	

Sample ID: LCS-8524	SampType: LCS			Units: µg/Kg		Prep Dat	e: 8/27/201	14	RunNo: 164	62	
Client ID: LCSS	Batch ID: 8524					Analysis Dat	e: 8/27/201	14	SeqNo: 331	444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	758	50.0	1,000	0	75.8	61.6	125				
2-Methylnaphthalene	745	50.0	1,000	0	74.5	58.2	129				
1-Methylnaphthalene	818	50.0	1,000	0	81.8	56.4	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Date: 9/26/2014

Work Order: 1408231

Project:

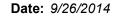
QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8524	SampType: LCS			Units: µg/Kg		Prep Date	8/27/201	14	RunNo: 164	162	
Client ID: LCSS	Batch ID: 8524					Analysis Date	8/27/201	14	SeqNo: 331	1444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	661	50.0	1,000	0	66.1	52.2	133				
Acenaphthene	762	50.0	1,000	0	76.2	54	131				
Fluorene	766	50.0	1,000	0	76.6	53.4	131				
Phenanthrene	819	50.0	1,000	0	81.9	55.6	128				
Anthracene	744	50.0	1,000	0	74.4	51	132				
Fluoranthene	728	50.0	1,000	0	72.8	48.4	134				
Pyrene	758	50.0	1,000	0	75.8	48.6	135				
Benz(a)anthracene	704	50.0	1,000	0	70.4	41.9	136				
Chrysene	807	50.0	1,000	0	80.7	51.4	135				
Benzo(b)fluoranthene	742	50.0	1,000	0	74.2	39.7	137				
Benzo(k)fluoranthene	694	50.0	1,000	0	69.4	45.7	138				
Benzo(a)pyrene	654	50.0	1,000	0	65.4	45.3	135				
Indeno(1,2,3-cd)pyrene	629	50.0	1,000	0	62.9	45.4	137				
Dibenz(a,h)anthracene	730	50.0	1,000	0	73.0	45.8	134				
Benzo(g,h,i)perylene	715	50.0	1,000	0	71.5	45	134				
Surr: 2-Fluorobiphenyl	387		500.0		77.5	42.7	132				
Surr: Terphenyl-d14 (surr)	454		500.0		90.9	48.8	157				

Sample ID: 1408229-001ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Dat	e: 8/27/20	14	RunNo: 16 4	462	
Client ID: BATCH	Batch ID: 8524					Analysis Dat	e: 8/27/20	14	SeqNo: 331	1446	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	978						0		30	D
2-Methylnaphthalene	ND	978						0		30	D
1-Methylnaphthalene	ND	978						0		30	D
Acenaphthylene	ND	978						0		30	D
Acenaphthene	ND	978						0		30	D
Fluorene	ND	978						0		30	D


Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
- Analyte detected below quantitation limits
- Reporting Limit

- Ε Value above quantitation range
- Not detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1408229-001ADUP	SampType: DUP			Units: µg/k	(g-dry	Prep Da	te: 8/27/20	14	RunNo: 164	162	
Client ID: BATCH	Batch ID: 8524					Analysis Da	te: 8/27/20	14	SeqNo: 331	1446	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	1,250	978						3,528	95.4	30	DR
Anthracene	ND	978						0		30	D
Fluoranthene	2,580	978						4,796	60.2	30	DR
Pyrene	3,190	978						5,673	55.9	30	DR
Benz(a)anthracene	ND	978						3,016	200	30	DR
Chrysene	1,570	978						2,383	41.3	30	D
Benzo(b)fluoranthene	1,870	978						2,568	31.7	30	D
Benzo(k)fluoranthene	ND	978						0		30	D
Benzo(a)pyrene	ND	978						3,392	200	30	DR
Indeno(1,2,3-cd)pyrene	2,740	978						3,156	14.1	30	D
Dibenz(a,h)anthracene	ND	978						0		30	D
Benzo(g,h,i)perylene	3,110	978						3,640	15.6	30	D
Surr: 2-Fluorobiphenyl	4,520		488.9		924	42.7	132		0		DS
Surr: Terphenyl-d14 (surr)	1,070		488.9		219	48.8	157		0		DS

NOTES:

R - High RPD due to suspected sample inhomogeneity. The method is in control as indicated by the Laboratory Control Sample (LCS).

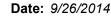
Sample ID: 1408229-002AMS	SampType: MS			Units: µg/Kg-dry Prep Date: 8/27/2014			14	RunNo: 16462			
Client ID: BATCH	Batch ID: 8524					Analysis Da	te: 8/27/20	14	SeqNo: 331	1448	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	1,000	1,003	0	97.8	42.9	138				D
2-Methylnaphthalene	1,580	1,000	1,003	0	157	42.8	151				DS
1-Methylnaphthalene	1,610	1,000	1,003	0	160	41.6	148				DS
Acenaphthylene	1,830	1,000	1,003	0	182	32.6	160				DS
Acenaphthene	1,550	1,000	1,003	0	155	46.3	142				DS
Fluorene	1,770	1,000	1,003	0	176	43.4	153				DS
Phenanthrene	1,480	1,000	1,003	0	148	45.5	140				DS

Qualifiers: Analyte detected in the associated Method Blank

D Dilution was required Holding times for preparation or analysis exceeded

Reporting Limit

RPD outside accepted recovery limits


Analyte detected below quantitation limits

Spike recovery outside accepted recovery limits

Ε Value above quantitation range

Not detected at the Reporting Limit

S - Outlying surrogate recoveries were observed in this sample, indicating a possible matrix effect. The LCS and MB recovered within range.

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

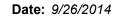
•											
Sample ID: 1408229-002AMS	SampType: MS			Units: μg/Kg-dry Prep Date: 8/27/2014 Analysis Date: 8/27/2014			14	RunNo: 16 4	462		
Client ID: BATCH	Batch ID: 8524					Analysis Da	te: 8/27/20	14	SeqNo: 331	1448	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Anthracene	2,050	1,000	1,003	0	204	32.6	160				DS
Fluoranthene	2,510	1,000	1,003	1,732	77.6	44.6	161				D
Pyrene	2,990	1,000	1,003	2,239	74.6	48.3	158				D
Benz(a)anthracene	2,800	1,000	1,003	2,190	61.3	57.5	169				D
Chrysene	2,030	1,000	1,003	1,418	60.6	45.2	146				D
Benzo(b)fluoranthene	2,340	1,000	1,003	1,692	64.4	42.2	168				D
Benzo(k)fluoranthene	1,890	1,000	1,003	0	188	48	161				DS
Benzo(a)pyrene	3,200	1,000	1,003	2,349	84.7	34.4	179				D
Indeno(1,2,3-cd)pyrene	3,280	1,000	1,003	2,759	52.4	41.1	165				D
Dibenz(a,h)anthracene	4,530	1,000	1,003	0	452	38.1	166				DS
Benzo(g,h,i)perylene	3,830	1,000	1,003	3,155	67.2	45.6	157				D
Surr: 2-Fluorobiphenyl	2,510		501.5		500	42.7	132				DS
Surr: Terphenyl-d14 (surr)	1,070		501.5		213	48.8	157				DS

NOTES:

S - Outlying spike and surrogate recoveries were observed in this sample, indicating a possible matrix effect. The LCS and MB surrogates recovered within range.

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

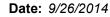
Gasolino by NWTPH Gy

Project: SLU Marrio	tt								Gasoline	by NWT	PH-G
Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/Kg-	-dry	Prep Dat	e: 8/27/20	14	RunNo: 164	158	
Client ID: BATCH	Batch ID: R16458					Analysis Dat	e: 8/27/20	14	SeqNo: 331	307	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	4.65						0		30	
Surr: Toluene-d8	2.28		2.324		98.0	65	135		0		
Surr: 4-Bromofluorobenzene	2.43		2.324		105	65	135		0		
Sample ID: LCS-R16458	SampType: LCS			Units: mg/Kg		Prep Dat	e: 8/27/20	14	RunNo: 164	158	
Client ID: LCSS	Batch ID: R16458					Analysis Dat	e: 8/27/20	14	SeqNo: 331	1315	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	28.7	5.00	25.00	0	115	65	135				
Surr: Toluene-d8	2.43		2.500		97.2	65	135				
Surr: 4-Bromofluorobenzene	2.77		2.500		111	65	135				
Sample ID: MB-R16458	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 8/27/20	14	RunNo: 164	ļ58	
Client ID: MBLKS	Batch ID: R16458					Analysis Dat	e: 8/27/20	14	SeqNo: 331	1316	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	2.51		2.500		100	65	135				
Surr: 4-Bromofluorobenzene	2.63		2.500		105	65	135				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

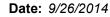
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 8/27/20	14	RunNo: 164	157	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0558						0		30	
Chloromethane	ND	0.0558						0		30	
Vinyl chloride	ND	0.00186						0		30	
Bromomethane	ND	0.0837						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0465						0		30	
Chloroethane	ND	0.0558						0		30	
1,1-Dichloroethene	ND	0.0465						0		30	
Methylene chloride	ND	0.0186						0		30	
trans-1,2-Dichloroethene	ND	0.0186						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0465						0		30	
1,1-Dichloroethane	ND	0.0186						0		30	
2,2-Dichloropropane	ND	0.0465						0		30	
cis-1,2-Dichloroethene	ND	0.0186						0		30	
Chloroform	ND	0.0186						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0186						0		30	
1,1-Dichloropropene	ND	0.0186						0		30	
Carbon tetrachloride	ND	0.0186						0		30	
1,2-Dichloroethane (EDC)	ND	0.0279						0		30	
Benzene	ND	0.0186						0		30	
Trichloroethene (TCE)	ND	0.0186						0		30	
1,2-Dichloropropane	ND	0.0186						0		30	
Bromodichloromethane	ND	0.0186						0		30	
Dibromomethane	ND	0.0372						0		30	
cis-1,3-Dichloropropene	ND	0.0186						0		30	
Toluene	ND	0.0186						0		30	
trans-1,3-Dichloropropylene	ND	0.0279						0		30	
1,1,2-Trichloroethane	ND	0.0279						0		30	
1,3-Dichloropropane	ND	0.0465						0		30	
Tetrachloroethene (PCE)	ND	0.0186						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	ite: 8/27/20	14	RunNo: 164	157	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	0.0279						0		30	
1,2-Dibromoethane (EDB)	ND	0.00465						0		30	
Chlorobenzene	ND	0.0186						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0279						0		30	
Ethylbenzene	ND	0.0279						0		30	
m,p-Xylene	ND	0.0186						0		30	
o-Xylene	ND	0.0186						0		30	
Styrene	ND	0.0186						0		30	
Isopropylbenzene	ND	0.0744						0		30	
Bromoform	ND	0.0186						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0186						0		30	
n-Propylbenzene	ND	0.0186						0		30	
Bromobenzene	ND	0.0279						0		30	
1,3,5-Trimethylbenzene	ND	0.0186						0		30	
2-Chlorotoluene	ND	0.0186						0		30	
4-Chlorotoluene	ND	0.0186						0		30	
tert-Butylbenzene	ND	0.0186						0		30	
1,2,3-Trichloropropane	ND	0.0186						0		30	
1,2,4-Trichlorobenzene	ND	0.0465						0		30	
sec-Butylbenzene	ND	0.0186						0		30	
4-Isopropyltoluene	ND	0.0186						0		30	
1,3-Dichlorobenzene	ND	0.0186						0		30	
1,4-Dichlorobenzene	ND	0.0186						0		30	
n-Butylbenzene	ND	0.0186						0		30	
1,2-Dichlorobenzene	ND	0.0186						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0279						0		30	
1,2,4-Trimethylbenzene	ND	0.0186						0		30	
Hexachlorobutadiene	ND	0.0930						0		30	
Naphthalene	ND	0.0279						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Date: 9/26/2014

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 8/27/20	14	RunNo: 164	157	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1291	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	ND	0.0186						0		30	
Surr: Dibromofluoromethane	2.33		2.324		100	63.7	129		0		
Surr: Toluene-d8	2.22		2.324		95.5	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	2.19		2.324		94.4	63.1	141		0		
Sample ID: 1408250-002BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 8/27/20	114	RunNo: 164	157	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.649	0.0555	0.9258	0	70.1	43.5	121				
Chloromethane	0.910	0.0555	0.9258	0	98.3	45	130				
Vinyl chloride	0.832	0.00185	0.9258	0	89.9	51.2	146				
Bromomethane	0.715	0.0833	0.9258	0	77.2	21.3	120				
Trichlorofluoromethane (CFC-11)	0.679	0.0463	0.9258	0	73.3	35	131				
Chloroethane	0.409	0.0555	0.9258	0	44.2	43.8	117				
1,1-Dichloroethene	1.14	0.0463	0.9258	0	123	61.9	141				
Methylene chloride	0.868	0.0185	0.9258	0	93.8	54.7	142				
trans-1,2-Dichloroethene	0.978	0.0185	0.9258	0	106	52	136				
Methyl tert-butyl ether (MTBE)	0.965	0.0463	0.9258	0	104	54.4	132				
1,1-Dichloroethane	1.01	0.0185	0.9258	0	109	51.8	141				
2,2-Dichloropropane	0.878	0.0463	0.9258	0	94.9	36	123				
cis-1,2-Dichloroethene	0.935	0.0185	0.9258	0	101	58.6	136				
Chloroform	0.992	0.0185	0.9258	0	107	53.2	129				
1,1,1-Trichloroethane (TCA)	1.03	0.0185	0.9258	0	111	58.3	145				
1,1-Dichloropropene	1.02	0.0185	0.9258	0	111	55.1	138				
Carbon tetrachloride	1.05	0.0185	0.9258	0	114	53.3	144				
1,2-Dichloroethane (EDC)	1.08	0.0278	0.9258	0	116	51.3	139				

Qualifiers: Analyte detected in the associated Method Blank

Benzene

Holding times for preparation or analysis exceeded

1.01

0.0185

RPD outside accepted recovery limits

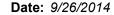
D Dilution was required

Analyte detected below quantitation limits

0

109

63.5


Reporting Limit

0.9258

Value above quantitation range

133

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

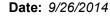
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1408250-002BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 8/27/20	14	RunNo: 16 4	457	
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 33	1293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	0.988	0.0185	0.9258	0	107	68.6	132				
1,2-Dichloropropane	0.996	0.0185	0.9258	0	108	59	136				
Bromodichloromethane	1.04	0.0185	0.9258	0	113	50.7	141				
Dibromomethane	0.995	0.0370	0.9258	0	107	50.6	137				
cis-1,3-Dichloropropene	0.970	0.0185	0.9258	0	105	50.4	138				
Toluene	1.02	0.0185	0.9258	0	110	63.4	132				
trans-1,3-Dichloropropylene	0.986	0.0278	0.9258	0	107	44.1	147				
1,1,2-Trichloroethane	0.984	0.0278	0.9258	0	106	51.6	137				
1,3-Dichloropropane	0.989	0.0463	0.9258	0	107	53.1	134				
Tetrachloroethene (PCE)	1.02	0.0185	0.9258	0	110	35.6	158				
Dibromochloromethane	1.04	0.0278	0.9258	0	112	55.3	140				
1,2-Dibromoethane (EDB)	0.995	0.00463	0.9258	0	107	50.4	136				
Chlorobenzene	1.01	0.0185	0.9258	0	109	60	133				
1,1,1,2-Tetrachloroethane	1.03	0.0278	0.9258	0	111	53.1	142				
Ethylbenzene	1.01	0.0278	0.9258	0	109	54.5	134				
m,p-Xylene	2.03	0.0185	1.852	0	110	53.1	132				
o-Xylene	1.01	0.0185	0.9258	0	109	53.3	139				
Styrene	1.00	0.0185	0.9258	0	109	51.1	132				
Isopropylbenzene	1.05	0.0741	0.9258	0	114	58.9	138				
Bromoform	1.03	0.0185	0.9258	0	111	57.9	130				
1,1,2,2-Tetrachloroethane	0.983	0.0185	0.9258	0	106	51.9	131				
n-Propylbenzene	1.06	0.0185	0.9258	0	114	53.6	140				
Bromobenzene	1.01	0.0278	0.9258	0	109	54.2	140				
1,3,5-Trimethylbenzene	1.06	0.0185	0.9258	0	115	51.8	136				
2-Chlorotoluene	1.02	0.0185	0.9258	0	110	51.6	136				
4-Chlorotoluene	1.01	0.0185	0.9258	0	110	50.1	139				
tert-Butylbenzene	1.06	0.0185	0.9258	0	115	50.5	135				
1,2,3-Trichloropropane	1.02	0.0185	0.9258	0	111	50.5	131				
1,2,4-Trichlorobenzene	1.01	0.0463	0.9258	0	109	50.8	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

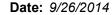
Sample ID: 1408250-002BMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 8/27/20	14	RunNo: 164	457	_
Client ID: BATCH	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 33	1293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	1.08	0.0185	0.9258	0	117	52.6	141				
4-Isopropyltoluene	1.06	0.0185	0.9258	0	115	52.9	134				
1,3-Dichlorobenzene	1.00	0.0185	0.9258	0	108	52.6	131				
1,4-Dichlorobenzene	0.990	0.0185	0.9258	0	107	52.9	129				
n-Butylbenzene	1.05	0.0185	0.9258	0	114	52.6	130				
1,2-Dichlorobenzene	0.987	0.0185	0.9258	0	107	55.8	129				
1,2-Dibromo-3-chloropropane	1.08	0.0278	0.9258	0	117	40.5	131				
1,2,4-Trimethylbenzene	1.02	0.0185	0.9258	0	111	50.6	137				
Hexachlorobutadiene	1.08	0.0926	0.9258	0	116	40.6	158				
Naphthalene	1.03	0.0278	0.9258	0	111	52.3	124				
1,2,3-Trichlorobenzene	1.02	0.0185	0.9258	0	110	54.4	124				
Surr: Dibromofluoromethane	2.36		2.314		102	63.7	129				
Surr: Toluene-d8	2.38		2.314		103	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.47		2.314		107	63.1	141				

Sample ID: LCS-8540	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/27/20	14	RunNo: 164	157	
Client ID: LCSS	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	1299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.701	0.0600	1.000	0	70.1	37.7	136				
Chloromethane	0.988	0.0600	1.000	0	98.8	38.8	132				
Vinyl chloride	0.887	0.00200	1.000	0	88.7	56.1	130				
Bromomethane	0.766	0.0900	1.000	0	76.6	41.3	148				
Trichlorofluoromethane (CFC-11)	0.732	0.0500	1.000	0	73.2	42.9	147				
Chloroethane	0.462	0.0600	1.000	0	46.2	37.1	144				
1,1-Dichloroethene	1.11	0.0500	1.000	0	111	49.7	142				
Methylene chloride	0.901	0.0200	1.000	0	90.1	54.5	131				
trans-1,2-Dichloroethene	0.984	0.0200	1.000	0	98.4	68	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

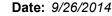
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8540	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/27/20	14	RunNo: 16 4	457	
Client ID: LCSS	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 33	1299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	0.949	0.0500	1.000	0	94.9	59.1	138				
1,1-Dichloroethane	1.01	0.0200	1.000	0	101	65.5	132				
2,2-Dichloropropane	0.958	0.0500	1.000	0	95.8	28.1	149				
cis-1,2-Dichloroethene	0.951	0.0200	1.000	0	95.1	71.6	123				
Chloroform	0.987	0.0200	1.000	0	98.7	67.5	129				
1,1,1-Trichloroethane (TCA)	0.989	0.0200	1.000	0	98.9	69	132				
1,1-Dichloropropene	1.00	0.0200	1.000	0	100	72.7	131				
Carbon tetrachloride	1.01	0.0200	1.000	0	101	63.4	137				
1,2-Dichloroethane (EDC)	1.05	0.0300	1.000	0	105	61.9	136				
Benzene	0.974	0.0200	1.000	0	97.4	74.6	124				
Trichloroethene (TCE)	0.939	0.0200	1.000	0	93.9	65.5	137				
1,2-Dichloropropane	0.995	0.0200	1.000	0	99.5	63.2	142				
Bromodichloromethane	1.03	0.0200	1.000	0	103	76.1	136				
Dibromomethane	1.00	0.0400	1.000	0	100	70	130				
cis-1,3-Dichloropropene	1.00	0.0200	1.000	0	100	59.1	143				
Toluene	1.00	0.0200	1.000	0	100	67.3	138				
trans-1,3-Dichloropropylene	0.980	0.0300	1.000	0	98.0	49.2	149				
1,1,2-Trichloroethane	0.981	0.0300	1.000	0	98.1	74.5	129				
1,3-Dichloropropane	0.971	0.0500	1.000	0	97.1	70	130				
Tetrachloroethene (PCE)	0.996	0.0200	1.000	0	99.6	52.7	150				
Dibromochloromethane	1.01	0.0300	1.000	0	101	70.6	144				
1,2-Dibromoethane (EDB)	0.975	0.00500	1.000	0	97.5	70	130				
Chlorobenzene	1.01	0.0200	1.000	0	101	76.1	123				
1,1,1,2-Tetrachloroethane	1.02	0.0300	1.000	0	102	74.8	131				
Ethylbenzene	0.988	0.0300	1.000	0	98.8	74	129				
m,p-Xylene	2.03	0.0200	2.000	0	102	79.8	128				
o-Xylene	0.990	0.0200	1.000	0	99.0	72.7	124				
Styrene	1.01	0.0200	1.000	0	101	76.8	130				
Isopropylbenzene	1.04	0.0800	1.000	0	104	70	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

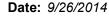
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8540	SampType: LCS			Units: mg/Kg	3	Prep Da	te: 8/27/20	14	RunNo: 16 4	157	
Client ID: LCSS	Batch ID: 8540					Analysis Da	te: 8/27/20	14	SeqNo: 331	299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	1.02	0.0200	1.000	0	102	67	154				
1,1,2,2-Tetrachloroethane	0.994	0.0200	1.000	0	99.4	60	130				
n-Propylbenzene	1.05	0.0200	1.000	0	105	74.8	125				
Bromobenzene	1.03	0.0300	1.000	0	103	49.2	144				
1,3,5-Trimethylbenzene	1.06	0.0200	1.000	0	106	74.6	123				
2-Chlorotoluene	1.03	0.0200	1.000	0	103	76.7	129				
4-Chlorotoluene	1.00	0.0200	1.000	0	100	77.5	125				
tert-Butylbenzene	1.06	0.0200	1.000	0	106	66.2	130				
1,2,3-Trichloropropane	1.00	0.0200	1.000	0	100	67.9	136				
1,2,4-Trichlorobenzene	1.01	0.0500	1.000	0	101	65.6	137				
sec-Butylbenzene	1.06	0.0200	1.000	0	106	75.6	133				
4-Isopropyltoluene	1.07	0.0200	1.000	0	107	76.8	131				
1,3-Dichlorobenzene	1.02	0.0200	1.000	0	102	72.8	128				
1,4-Dichlorobenzene	1.02	0.0200	1.000	0	102	72.6	126				
n-Butylbenzene	1.05	0.0200	1.000	0	105	65.3	136				
1,2-Dichlorobenzene	1.00	0.0200	1.000	0	100	72.8	126				
1,2-Dibromo-3-chloropropane	0.955	0.0300	1.000	0	95.5	61.2	139				
1,2,4-Trimethylbenzene	1.01	0.0200	1.000	0	101	77.5	129				
Hexachlorobutadiene	1.05	0.100	1.000	0	105	42	151				
Naphthalene	0.983	0.0300	1.000	0	98.3	62.3	134				
1,2,3-Trichlorobenzene	1.03	0.0200	1.000	0	103	62.1	140				
Surr: Dibromofluoromethane	2.58		2.500		103	63.7	129				
Surr: Toluene-d8	2.55		2.500		102	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.68		2.500		107	63.1	141				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

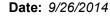
Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8540	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/27/2 0)14	RunNo: 16 4	157	
Client ID: MBLKS	Batch ID: 8540					Analysis Da	te: 8/27/20)14	SeqNo: 331	1300	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600									
Chloromethane	ND	0.0600									
Vinyl chloride	ND	0.00200									
Bromomethane	ND	0.0900									
Trichlorofluoromethane (CFC-11)	ND	0.0500									
Chloroethane	ND	0.0600									
1,1-Dichloroethene	ND	0.0500									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.0500									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane (EDC)	ND	0.0300									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond SLU Marriott

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8540	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/27/2 0)14	RunNo: 164	157	
Client ID: MBLKS	Batch ID: 8540			Simol mg/1tg		Analysis Da			SeqNo: 331		
		RL	CDK value	SPK Ref Val	0/ DEC				%RPD	RPDLimit	0
Analyte	Result	KL	SPK value	SPK Rei Vai	%REC	LOWLITTIL	підпіліпі	RPD Ref Val	%RPD	RPDLIIIII	Qua
Dibromochloromethane	ND	0.0300									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0200									
1,1,1,2-Tetrachloroethane	ND	0.0300									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Styrene	ND	0.0200									
Isopropylbenzene	ND	0.0800									
Bromoform	ND	0.0200									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0200									
Bromobenzene	ND	0.0300									
1,3,5-Trimethylbenzene	ND	0.0200									
2-Chlorotoluene	ND	0.0200									
4-Chlorotoluene	ND	0.0200									
tert-Butylbenzene	ND	0.0200									
1,2,3-Trichloropropane	ND	0.0200									
1,2,4-Trichlorobenzene	ND	0.0500									
sec-Butylbenzene	ND	0.0200									
4-Isopropyltoluene	ND	0.0200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.0300									
1,2,4-Trimethylbenzene	ND	0.0200									
Hexachlorobutadiene	ND	0.100									
Naphthalene	ND	0.0300									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Reporting Limit

Analyte detected below quantitation limits

Value above quantitation range Not detected at the Reporting Limit

Analytical

Date: 9/26/2014

Work Order: 1408231

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriot	t					voiatile	e Organic Compou	inas by EP	A Method	3 8260
Sample ID: MB-8540	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 8/27/2014	RunNo: 164	157	
Client ID: MBLKS	Batch ID: 8540					Analysis Dat	e: 8/27/2014	SeqNo: 331	1300	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	ND	0.0200								
Surr: Dibromofluoromethane	2.41		2.500		96.6	63.7	129			
Surr: Toluene-d8	2.38		2.500		95.2	61.4	128			
Surr: 1-Bromo-4-fluorobenzene	2.37		2.500		94.8	63.1	141			

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Sample Log-In Check List

C	lient Name:	GEI1	Work Or	der Number:	14082	31
Lo	ogged by:	Clare Griggs	Date Re	ceived:	8/25/2	2014 8:19:00 AM
Cha	in of Custo	<u>ody</u>				
1.	Is Chain of Cu	ustody complete?	Yes	✓	No \square	Not Present
2.	How was the s	sample delivered?	Clien	<u>t</u>		
Log	<u>In</u>					
3.	Coolers are pr	resent?	Yes	\checkmark	No \square	NA 🗆
4.	Shipping cont	ainer/cooler in good condition?	Yes	✓	No 🗆	
5.	Custody seals	intact on shipping container/cooler?	Yes		No 🗌	Not Required 🗹
6.	Was an attem	upt made to cool the samples?	Yes	\checkmark	No 🗌	NA 🗆
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes	✓	No 🗌	NA 🗆
8.	Sample(s) in p	proper container(s)?	Yes	✓	No 🗌	
9.	Sufficient sam	nple volume for indicated test(s)?	Yes	✓	No \square	
10.	Are samples p	properly preserved?	Yes	✓	No \square	
11.	Was preserva	tive added to bottles?	Yes		No 🔽	NA 🗆
12	Is the headspa	ace in the VOA vials?	Yes		No 🗆	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes	✓	No \square	
14.	Does paperwo	ork match bottle labels?	Yes	✓	No \square	
15	Are matrices of	correctly identified on Chain of Custody?	Yes	✓	No 🗆	
		t analyses were requested?	Yes	✓	No 🗌	
		ng times able to be met?	Yes	\checkmark	No \square	
Spe	cial Handli	ing (if applicable)				
18.	Was client no	tified of all discrepancies with this order?	Yes		No \square	NA 🗹
	Person N	Notified: Date:				
	By Who		" 🗌 eMa	il Phone	· 🗌 Fax	x In Person
	Regardir					_
	Client In	structions:				

19. Additional remarks:

Received two MeOH VOAs with the sampling time of 8:07 on 8/24, one reads "GEI-4-4-10" and the other "GEI-4-4-60". Based on the COC and sampling time they should both be labelled as "GEI-4-4-10".

Item Information

Item #	Temp °C	Condition
Cooler 1	4.2	Good
Cooler 2	2.3	Good
Sample 1	2.0	Good
Sample 2	3.1	Good

oplease coordinate with the lab an advance	*	×
TAT - SameDaux Newthern 2 Day 2 Day STD	Repaired or the State 1, 11 1 200 x Vertigation 2010 8/122/14 8:10	B ×
	Date/Time	Ð
	Sample Disposal: Return to Client Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	150
Special Remarks:	***Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite	:
NI Pb Sb Se Sr Sn Ti Ti U V Zn	**Metals Analysis (Circle): MTCA-5 TCRA-8 Priority Pollutants TAL Individual: Ag Al As 8 8a 8e Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na	1:
	W 1435 V 8	15
		10
	8 MM-3-18-650 1120 1	00
	7 NNW-3-17-60:0 JOHS 1	7
	6 MW-3-16-55.0 1030	g)
	, MN-3-15-50.0 1020 (X)	W.
	1 MW-3-14-45.0 100	és.
		w
		N
		140
Comments/Depth	Sample Name Sample S	
/W = Waste Water	*Matrix Codes: A = Air., AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Soild, W = Water, DW = Drinking Water, GW = Ground Water, WW = Waste Water	
@ 0076-003-W	JESSICA SMITH FAX: Email: JOSNING to	
	City, State, Zip Eddmord Tel: Collected by: GYALE Phyly	
	Client: GET Project Name: SLV MOURISH	
* 	3600 Fremont Ave N. Tel: 206-352-3790 Seattle, WA 98103 Fax: 206-352-7178 Date: \$ 23 4 Page: 2	
Chain of Custody Record	Fremont	
		_

TAT -> SameDay* NextDay* 2 Day 3 Day STD	5		,	0	- Partie and	
7	1.2 h1/548 m 2 m 2/62/14 8:10	1 53	1/ H/K	D- 82	Relinations of Marce Malon 8/24/14 1525	X Reli
	Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	by Lab (A fee may be	C Disposal	Return to Client	Sample Disposal:	Sam
Special Remarks:	O-Phosphate Fluoride Mitrate+Nitrite	Bromide	Chloride Sulfate	Nitrite Ch	***Anions (Circle): Nitrate	1
I Pb Sb Se Sr Sn Ti Ti U V Zn	Individual: Ag Al As 8 8a 8e Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	nts TAL	Priority Pollutants	ICA-5 RCRA-8	**Metals Analysis (Circle): MTCA-5	:
	<	4	1225	100 V	ON APPINI	10
			ShS		MW-8-11-35.0	9
			Ohsi	Ó	MM-2-10-300	00
			1530	5,0	MW 2-9-25.0	7
			152	0,0	MW-8-8-2010	on.
			ЫŞ	79	ディーアーMM	Lin
			1808	Ó	051-9-E-MM	4
			1503	9	mw-2-5-12,5	ω
		^	SShi	0	MW-2-4-10,0	12
		0	HTH 1 15218		· MW-2-3-7,5	-
WW = Waste Water Comments/Depth	sediment, SL = Solite, W = Water, DM = Drinking Water, GW = Ground Water, SC GW GW GW GW GW GW GW SC GW GW GW GW GW GW GW G	S = Soil, while whe when the strick)*	Sample Sample Time (Ma	S = Bulk	Sample Name	5
30776-03-00	Email: JASMITHEGEOGIA Project			3	PM):	20
	collected by: Grace Drucky	Tel:			City, State, Zip	0
	Project Name: SCO (T) (ACC) (T) (Location:			000	Address:	> 0
F' ₉	- 1 - 3	Date	2-7178	Fax: 206-352-7178	Seattle, WA 98103	60 6
	Laboratory Project No (Internal):		NO PRINCIPAL	Amai		-
Chain of Custody Record	Cha			Fremont		
						٦

TAT-> SameDay* NextDay* 2 Day 3 Day 5TD	Dateytime	Necepted/		Chateyrime	neunquinea.	
	D M. Barring 25/H 8:19	* Shace Truly 8/24/14 1525 * CANCE	11 41/12	Ruly S	* Dinacet	
	ed after 30 days.)	Disposal by tab (A fee may be assessed if samples are retained after 30 days.)	☐ Disposal by La	Return to Client	Sample Disposal:	_
Special Remarks:	Fluoride Nitrate+Nitrite	Bromide O-Phosphate FI	Chloride Sulfate	Narite	***Anions (Circle): Nitrate	_
Pb Sb Se Sr Sn Tl Tl U V Zn	Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	TAL Individual: Ag Al As B	Priority Pollucants	MTCA-S RCRA-B	**Metals Analysis (Circle):	-
	<		835	7-20.1	10 GEI-4-7-20.1	
	((1 0ex	6-150	0.51-9-4-6-130	
	8	8	812	5-125	8 GEI-4-8-12S	
	>		40%	0.07-	0.07-4-4-0.0	-
	(208	57.5	6 CE-4-37.5	
	8	8	200	1-5.0	5 GCI-4-A-5.0	_
			824 N 750		180-6-1-4-1-2.5	
	<	,	1625 1	-550 V	MW-2-15-550	_
			1610	-800	11-6-MM:	
			NU1600 S	2 8 05h-8	1 MW-2-13-450 82141600	
Comments/Depth	13 10 10 10 10 10 10 10 10 10 10 10 10 10	15 15 ST 150 100 100 100 100 100 100 100 100 100	_	Sample Date	Sample Name	
		ite	Sample			
WW = Waste Water	DW = Drinking Water, GW = Ground Water,	SD = Sediment, SL =	Other, P = Product, 5 = Soll,		*Matrix Codes: A = Air, AQ	
	Email: Project No:		Fax	AMICE SIMP	Reports To (PM):	
	Collected by: GEASE TH/LPY	0	Tel:		City, State, Zip	
		-		(Address:	
4 207/6-03-00	Project Name: SLU Mappingt			H32	Client:	
4		Date: 8/23/14	1790 7178	Tel: 206-352-3790 Fax: 206-352-7178	3600 Fremont Ave N. Seattle, WA 98103	
			TO DIEGOUS	Gradus See		
chail of castody vector	2			remont		
in of Custody Bosond	Cha				MAY WAS	

-
~
- 3
-
-
-
~
-
-
m
10
-
-
=
0
-
-
_
C)
=
_
m)
ш
=
~
-
-
0
20
_
_
-
-
0
\simeq
3
3
_

	1000 from 125/14 5:17	824/14/885 M	3/24/14	nquished Duby Date/Time
	ssed if samples are retained after 30 days.)	1.5	, a	iample Disposal: Return to Clent
Special Remarks:	O-Phosphate Fluoride Nitrate+Nitrite	Sulfate Bromide	Chibride Su	Anions (Circle): Nitrate Nitrite C
NIPb Sb Se Sr Sn Tl Tl U V Zn	Individual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na	TAL	8 Priority Pollutants	"Metals Analysis (Circle): MTCA-5 RCRA-8
			-	
	E	*		4 COP-SI-4-239
		5	Shal	0.55-4-14-50
		0	1030	687-4-13-50.0
			1015	05x-4-12-45.0
		<i>D</i> A	2001	CEI-4-11-40.0
			306	0-52-01-1230
		-		CCE-6-4-139
Sommon and part from the state of the state	×	S	08 & HZ	42/8/05-8-4-130
		Sample Type	Sample Sample	Sample Name
W = Waste Water	dog Water, GW = Ground	P=Product, S=Soil, SD=	B = Bulk, O = Other, P =	*Matrix Codes: A = Air, AQ = Aqueous, B = Bulk,
Project No. 2014	Email JASMAN GOOD WHO PROJECT NO. A	Fax:	\$	REPORTS TO (PM): Jessica Smith
	Location:	Tel:	a	Address: Leavys
	Project Name:		neer	Client: GEOGRA UNIONS
g.	Date: 824 14 Laboratory Project No (internal):		12-3790 52-7178	3500 Fremont Ave N. Tel: 206-352-3790 Seattle, WA 98103 Fax: 206-352-7178
		i .	anoississis	Analyz
clidin of custody kecord				

		12	re retained after 30 d	Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	V Lab (A fee may)	Disposal b	n to Client	Return to Client	Sample Disposati	_
	Special Remarks:	Nitrate+Nitrite	Fluoride	O-Phosphate	Bromide	Suffate	Chloride	Nitrate Nitrite	***Anions (Circle):	
	Pb Sb Se Sr Sn II II U V Zn	Co Cd Co Cr Cu Fe Hg K Mg Mn Ma Na Ni	As B Ba Be	individual Ag Al	ts TAL	Priority Pollutants	PACRAS !		"Metals Analysis (Circle): MTCA-5	
_			8	8	8	M35	1	2-5.0	10 NM-2-2-S.O	_
_						1420		1-2,5	, MW-2-	_
_					_	1120	-	18-650	18-650	
_						Spe		17-600	, NM-3-1	
_						1030		16-55.0	· MW-3-16-55.0	
					8	1020		15-50.0	, MN-3-1	
					,	9/0		MW-3-14-450	1 MW-3-	
						25 b		MW-3-13-40-0	, MW-3-	_
					7	Shb		17-35,0		
WSW (Whole pard South 9/19	×			N	930	3 23/17	-30,0	7_	
	Comments/Dopth			100 100 100 100 100 100 100 100 100 100	Sample Type (Matrix)*	Sample Time	Sample Date		Sample Name	
	WW = Waste Water	ing Water, GW = Ground Water,	old, w-Water,	= Sediment SL= 5	S = Sall,	ter, P = Product,	=Bulk, O=Otl	AQ = Aquepus, B = Bulk, O = Other,	5	-
_	20116-003-00	Email: Jasmud h @ Governg we hoper no:	Email: Jd		M.	5 Fax:	Smith	Jessica Smith	Reports To (PM):	_
		Grace Phuly	Collected by:			Tal:	DOLO.	Redmond	City, State, Zip	
		l k	Project Name: Location:				. H	E39	Client:	
	\$ 5	Page	41/8	8 23/14	Date:		Tel: 206-352-3790 Fax: 206-352-7178	F	3600 Fremont Ave N. Seattle, WA 98103	
	08231	Laboratory Project No (Internal):	•			100	Amalytical			
	chain of custody Record	cna				2	<u>0</u>	Fremont		
	a of Custadu Bosova	Ch.:								_

TAT -> SameDay* NextDay* 2 Day 3 Day STD

*Please coordinate with the lab is advance

www.fremontanalytical.com

	A Direct & control or total could when I also lies a decrease							
	TAT -> SameDay^ NextDay^ 2 Day 3 Day STD	ate/Time /	7		_	Date/Time	_	partgruprise
		Date/Time 8/15/14 8:19	own ha	200	11 41/	7 8 2	e hulp	Prace hulpy 8/24/14 1525
			ed if samples are retained after 30 days.)	by Lab (A fee may be assu	lesads:0	Return to Client	0	amele Disposat
	Special Remarks:	Altrite	O-Phosphate Fluoride Nitrate-Nitrite	Bromide	ride Sulfate	Nitrite Chloride	Nitrate	**Anions (Circle):
	MAPB Sto Se St Sn Ti Ti U V Zn	Cu Fe Hg K Mg Mn Mo Na	Individual: Ag Al As B Ba Be Ca Cd Co Cr	TAL	Priority Pollutants	5 RCRA-B	Circle): MTCA	*Metals Analysis (Circle): MTCA-5
		<		<	1885	6	ON A PON	· Mu-s
					1242		MW-8-11-35.0	MW-8
					1540	Ó	MW-2-10-300	Mw
					1530	0	NW 2-8-35.0	- MM
					152	ŏ	8-20	mw-a
					ম	0	中央	MW-2-7-195
	~				1808	0	051-9-E-MM	E-MIN- 3
	1 1				1503	-1	MW-2-5-0,5	mw-2
stan	(8) be per Grace P. 9/23 Next Law			-	SShi		MW-2-4-10,0	MW-2-
	A CONTRACTOR OF THE PARTY OF TH	×		0)	HTH1 11/52/8		3-7.5	MW-2-3-7,5
	Comments/Depth			Sample Type (18)	e Sample Time	Sample	-	Sample Name
	Waste Water		SD = Sediment, SL = Solid, W = Water, DW = D		P = Pro	us, 8 = Bulk, O		"Matrix Codes: A " Air
	3	Collected by: Clark Plant Needes it	Collected by:	16:		S S	10000	City, State, Zip
		CARCO DALLOU	Locations					Address:
	+	SLU Marriott	Project Name:			GEI	0	Clients
	S	(g)	Bate: 8/23/14	Date	7178	Tel: 206-352-3790 Fax: 206-352-7178	ķ	Seattle, WA 98103
	408281				anniyatan a	Amus.		
	Chain of Custody Record	Chai			Į	remont	70	1
					1			

www.fremontanalytical.com

	Appearance with the lability advance	A STATE OF THE STA	//		-	Data/Time	-	Stering Street
	TAT - Compliant Newslaw 2 Day 3 Day STD	les 8/25/14 8:19	of and	199	4/14	T X Z	Dinace hulon 8/24/14 1505	Relination of
		1	Disposed by Lab (4 fee may as accorded if simples an extensed after 30 days. Boscoled	sal by Lab (4 fee m	Odsio	Return to Client		Sample Disposat.
		urrate, Natrike	e O-Phosphate Fluoride	ate Brumide	nde Sulfate	Natrite Chloride	Natato	***Anions (Circle):
	Special Remarks:	Be Co Cd Co Cr Cu Fe Hg X Mg Mn Mo	individual: Ag Al As		Friently Pollutants	HCRA-8	""Metals Analysis (Circle): MTCA-5	""Metals Analysis
		-		4	1885	0	ON FIRM	IN MUN-
					1242		MW-2-11-35.0	5 MW 2
					Ohsi	0	MW-2-10-300	" Mw
					1530	0	0.28-2-P MIN	- MM
		8			IS4	0	MILL 3-8-2010	· Mul-o
					P.IS		0x1-4-6-WM	s Mul-a
1/25 KILLER	WHOLD DON GO THINDY				Sosi		051-9-E-MM	· WW ·
9					1503		MW-2-5-12,5	s mw-a
abs crising	WHO WAS CONTRACT TO THE CONTRACT OF THE CONTRA	× ×		-	SShi	_	4-10,0	2 MW-2-4-10,0
1		×		0	JTH1 16152B	825	3-7.5	- MW - 2-
	Community/Depth			Sample Type (Matrix)*	Sample Time	Sample Date		Sample Name
	sae Water	AQ = Aqueous, 8 = Bulk, 0 = Other, P = Product, 5 = Sell, 3D = Sediment, 3t = Solid, W = Water, DW = Brinking Water, 6W = Ground Water, WW = Water Water	D = Sediment, St = Solid, W = W	oduct, 5 = 5oil, 5	Other, P = Pro	8 = 8 /8, 0 ×	Air, AQ = Aqueous,	*Matrix Codes: A = Air,
	Project No: 20776-003-00	JASMITH OGEOGRATIVE PROJECT NO. 3	Email:	Fax:	*	Smi	1	Reports To (PM):
	3	collected by: Grace Printy	Collecte	Tel:				Address: City, State, Zip
		Name SUU MARKOU	Project Name:			739	30	Client
	5		Date: 8/23/14	D	90	Tel: 206-352-3790 Fax: 206-352-7178	×	3600 Fremont Ave N. Seattle, WA 98103
	408281	Laboratory Project no (internal):			WLCASIE	analysison.		=
	Chain of Custody Record	Chain			1	35	Fromont	
	South Land	2						

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondGrace Philpy
8410 154th Ave. NE
Redmond. WA 98052

RE: SLU Marriott Lab ID: 1409077

September 24, 2014

Attention Grace Philpy:

Fremont Analytical, Inc. received 75 sample(s) on 9/8/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Dissolved Mercury by EPA Method 245.1

Dissolved Metals by EPA Method 200.8

Gasoline by NWTPH-Gx

Hexavalent Chromium by EPA Method 7196

Mercury by EPA Method 7470

Mercury by EPA Method 7471

Metals (SW6020) with TCLP Extraction (EPA 1311)

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malc. Rody

Sincerely,

www.fremontanalytical.com

Mike Ridgeway President

Date: 09/24/2014

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott **Lab Order:** 1409077

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1409077-001	DP-1-2.5	09/06/2014 9:24 AM	09/08/2014 12:00 PM
1409077-002	DP-1-5.0	09/06/2014 9:30 AM	09/08/2014 12:00 PM
1409077-003	DP-1-7.5	09/06/2014 9:45 AM	09/08/2014 12:00 PM
1409077-004	DP-1-10.0	09/06/2014 9:52 AM	09/08/2014 12:00 PM
1409077-005	DP-1-12.5	09/06/2014 10:03 AM	09/08/2014 12:00 PM
1409077-006	DP-1-15.0	09/06/2014 10:10 AM	09/08/2014 12:00 PM
1409077-007	DP-2-2.5	09/06/2014 11:25 AM	09/08/2014 12:00 PM
1409077-008	DP-2-5.0	09/06/2014 11:31 AM	09/08/2014 12:00 PM
1409077-009	DP-2-7.5	09/06/2014 11:45 AM	09/08/2014 12:00 PM
1409077-010	DP-2-10.0	09/06/2014 11:50 AM	09/08/2014 12:00 PM
1409077-011	DP-2-12.5	09/06/2014 12:05 PM	09/08/2014 12:00 PM
1409077-012	DP-2-15.0	09/06/2014 12:10 PM	09/08/2014 12:00 PM
1409077-013	DP-3-2.5	09/06/2014 10:25 AM	09/08/2014 12:00 PM
1409077-014	DP-3-5.0	09/06/2014 10:31 AM	09/08/2014 12:00 PM
1409077-015	DP-3-7.5	09/06/2014 10:43 AM	09/08/2014 12:00 PM
1409077-016	DP-3-10.0	09/06/2014 10:52 AM	09/08/2014 12:00 PM
1409077-017	DP-3-12.5	09/06/2014 11:00 AM	09/08/2014 12:00 PM
1409077-018	DP-3-15.0	09/06/2014 11:06 AM	09/08/2014 12:00 PM
1409077-019	DP-4-2.5	09/06/2014 9:46 AM	09/08/2014 12:00 PM
1409077-020	DP-4-5.0	09/06/2014 9:50 AM	09/08/2014 12:00 PM
1409077-021	DP-4-7.5	09/06/2014 10:05 AM	09/08/2014 12:00 PM
1409077-022	DP-4-10	09/06/2014 10:13 AM	09/08/2014 12:00 PM
1409077-023	DP-4-12.5	09/06/2014 10:25 AM	09/08/2014 12:00 PM
1409077-024	DP-4-15.0	09/06/2014 10:31 AM	09/08/2014 12:00 PM
1409077-025	DP-4-17.5	09/06/2014 10:45 AM	09/08/2014 12:00 PM
1409077-026	DP-4-20.0	09/06/2014 10:54 AM	09/08/2014 12:00 PM
1409077-027	DP-5-2.5	09/06/2014 11:21 AM	09/08/2014 12:00 PM
1409077-028	DP-5-5.0	09/06/2014 11:30 AM	09/08/2014 12:00 PM
1409077-029	DP-5-7.5	09/06/2014 11:41 AM	09/08/2014 12:00 PM
1409077-030	DP-6-2.5	09/06/2014 8:47 AM	09/08/2014 12:00 PM
1409077-031	DP-6-5.0	09/06/2014 8:52 AM	09/08/2014 12:00 PM
1409077-032	DP-6-7.5	09/06/2014 9:00 AM	09/08/2014 12:00 PM
1409077-033	DP-6-10.0	09/06/2014 9:04 AM	09/08/2014 12:00 PM
1409077-034	DP-6-12.5	09/06/2014 9:07 AM	09/08/2014 12:00 PM
1409077-035	DP-6-15.0	09/06/2014 9:10 AM	09/08/2014 12:00 PM
1409077-036	DP-7-2.5	09/06/2014 2:22 PM	09/08/2014 12:00 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Work Order Sample Summary

CLIENT: GeoEngineers, Inc. - Redmond
Project: SLU Marriott
Lab Order: 1409077

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1409077-037	DP-7-7.5	09/06/2014 2:29 PM	09/08/2014 12:00 PM
1409077-038	DP-7-13.0	09/06/2014 2:30 PM	09/08/2014 12:00 PM
1409077-039	DP-8-2.5	09/06/2014 12:23 PM	09/08/2014 12:00 PM
1409077-040	DP-5-10.0	09/06/2014 11:49 AM	09/08/2014 12:00 PM
1409077-041	DP-5-12.5	09/06/2014 12:02 PM	09/08/2014 12:00 PM
1409077-042	DP-5-15.0	09/06/2014 12:08 PM	09/08/2014 12:00 PM
1409077-043	DP-9-2.5	09/06/2014 2:00 PM	09/08/2014 12:00 PM
1409077-044	DP-9-5.0	09/06/2014 2:52 PM	09/08/2014 12:00 PM
1409077-045	DP-9-7.5	09/06/2014 2:22 PM	09/08/2014 12:00 PM
1409077-046	DP-9-12.5	09/06/2014 2:30 PM	09/08/2014 12:00 PM
1409077-047	DP-9-17.5	09/06/2014 2:39 PM	09/08/2014 12:00 PM
1409077-048	DP-9-20.0	09/06/2014 2:50 PM	09/08/2014 12:00 PM
1409077-049	DP-8-35.0	09/06/2014 1:30 PM	09/08/2014 12:00 PM
1409077-050	MW-2-140906	09/06/2014 9:40 AM	09/08/2014 12:00 PM
1409077-051	MW-3-140906	09/06/2014 11:10 AM	09/08/2014 12:00 PM
1409077-052	MW-1-140906	09/06/2014 1:30 PM	09/08/2014 12:00 PM
1409077-053	DP-8-5.0	09/06/2014 12:25 PM	09/08/2014 12:00 PM
1409077-054	DP-8-7.5	09/06/2014 12:40 PM	09/08/2014 12:00 PM
1409077-055	DP-8-10.0	09/06/2014 12:43 PM	09/08/2014 12:00 PM
1409077-056	DP-8-12.5	09/06/2014 12:50 PM	09/08/2014 12:00 PM
1409077-057	DP-8-15.0	09/06/2014 12:55 PM	09/08/2014 12:00 PM
1409077-058	DP-8-20.0	09/06/2014 1:05 PM	09/08/2014 12:00 PM
1409077-059	DP-8-25.0	09/06/2014 1:20 PM	09/08/2014 12:00 PM
1409077-060	DP-10-2.5	09/06/2014 1:46 PM	09/08/2014 12:00 PM
1409077-061	DP-10-10.0	09/06/2014 1:53 PM	09/08/2014 12:00 PM
1409077-062	DP-11-2.5	09/06/2014 12:36 PM	09/08/2014 12:00 PM
1409077-063	DP-11-5.0	09/06/2014 12:42 PM	09/08/2014 12:00 PM
1409077-064	DP-11-7.5	09/06/2014 12:59 PM	09/08/2014 12:00 PM
1409077-065	DP-11-9.5	09/06/2014 1:02 PM	09/08/2014 12:00 PM
1409077-066	DP-11-12.5	09/06/2014 1:14 PM	09/08/2014 12:00 PM
1409077-067	DP-11-15.0	09/06/2014 1:27 PM	09/08/2014 12:00 PM
1409077-068	DP-12-2.5	09/06/2014 8:10 AM	09/08/2014 12:00 PM
1409077-069	DP-12-5.0	09/06/2014 8:13 AM	09/08/2014 12:00 PM
1409077-070	DP-12-7.5	09/06/2014 8:21 AM	09/08/2014 12:00 PM
1409077-071	DP-12-10.0	09/06/2014 8:27 AM	09/08/2014 12:00 PM
1409077-072	DP-12-12.5	09/06/2014 8:30 AM	09/08/2014 12:00 PM
1409077-073	DP-12-15.0	09/06/2014 8:31 AM	09/08/2014 12:00 PM
1409077-074	Trip Blank	09/04/2014 11:15 AM	09/08/2014 12:00 PM
1409077-075	Trip Blank	09/04/2014 11:23 AM	09/08/2014 12:00 PM

Case Narrative

WO#: **1409077**Date: **9/24/2014**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:24:00 AM

Project: SLU Marriott

Lab ID: 1409077-001 **Matrix**: Soil

Client Sample ID: DP-1-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	19.7		mg/Kg-dry	1	9/10/2014 10:03:00 AM
Heavy Oil	ND	49.3		mg/Kg-dry	1	9/10/2014 10:03:00 AM
Surr: 2-Fluorobiphenyl	102	50-150		%REC	1	9/10/2014 10:03:00 AM
Surr: o-Terphenyl	94.6	50-150		%REC	1	9/10/2014 10:03:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	า ID: 8667	Analyst: NG
Naphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
2-Methylnaphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
1-Methylnaphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Acenaphthylene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Acenaphthene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Fluorene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Phenanthrene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Benz(a)anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Chrysene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Benzo(b)fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Benzo(k)fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Benzo(a)pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Indeno(1,2,3-cd)pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Dibenz(a,h)anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Benzo(g,h,i)perylene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM
Surr: 2-Fluorobiphenyl	92.2	42.7-132		%REC	1	9/12/2014 2:34:00 AM
Surr: Terphenyl-d14 (surr)	121	48.8-157		%REC	1	9/12/2014 2:34:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	693 Analyst: EM
Gasoline	ND	4.70		mg/Kg-dry	1	9/10/2014 7:04:00 AM
Surr: Toluene-d8	102	65-135		%REC	1	9/10/2014 7:04:00 AM
Surr: 4-Bromofluorobenzene	91.2	65-135		%REC	1	9/10/2014 7:04:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:24:00 AM

Project: SLU Marriott

Lab ID: 1409077-001 **Matrix**: Soil

Client Sample ID: DP-1-2.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0564 9/10/2014 7:04:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0564 9/10/2014 7:04:00 AM 1 Vinyl chloride ND 0.00188 mg/Kg-dry 9/10/2014 7:04:00 AM 1 mg/Kg-dry Bromomethane ND 0.0846 1 9/10/2014 7:04:00 AM Trichlorofluoromethane (CFC-11) ND 0.0470 mg/Kg-dry 1 9/10/2014 7:04:00 AM Chloroethane ND 0.0564 mg/Kg-dry 9/10/2014 7:04:00 AM 1 1,1-Dichloroethene ND 0.0470 mg/Kg-dry 1 9/10/2014 7:04:00 AM ND 0.0188 1 9/10/2014 7:04:00 AM Methylene chloride mg/Kg-dry ND 0.0188 trans-1,2-Dichloroethene mg/Kg-dry 1 9/10/2014 7:04:00 AM Methyl tert-butyl ether (MTBE) ND 0.0470 9/10/2014 7:04:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM 2,2-Dichloropropane ND 0.0470 mg/Kg-dry 1 9/10/2014 7:04:00 AM cis-1,2-Dichloroethene ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM Chloroform ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0188 1 9/10/2014 7:04:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM Carbon tetrachloride ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM 1,2-Dichloroethane (EDC) ND 0.0282 9/10/2014 7:04:00 AM mg/Kg-dry 1 Benzene ND 9/10/2014 7:04:00 AM 0.0188 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM 1,2-Dichloropropane ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM Bromodichloromethane ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM ND 9/10/2014 7:04:00 AM Dibromomethane 0.0376 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM Toluene ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM trans-1,3-Dichloropropylene ND 0.0282 9/10/2014 7:04:00 AM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0282 mg/Kg-dry 1 9/10/2014 7:04:00 AM 1,3-Dichloropropane ND 0.0470 9/10/2014 7:04:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0188 9/10/2014 7:04:00 AM mg/Kg-dry 1 ND 1 9/10/2014 7:04:00 AM Dibromochloromethane 0.0282 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00470 mg/Kg-dry 1 9/10/2014 7:04:00 AM Chlorobenzene ND 0.0188 9/10/2014 7:04:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0282 mg/Kg-dry 1 9/10/2014 7:04:00 AM ND 9/10/2014 7:04:00 AM Ethylbenzene 0.0282 mg/Kg-dry 1 m,p-Xylene ND 0.0188 mg/Kg-dry 9/10/2014 7:04:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:24:00 AM

Project: SLU Marriott

Ε

J

RL Reporting Limit

Value above quantitation range

Analyte detected below quantitation limits

Lab ID: 1409077-001 **Matrix**: Soil

Client Sample ID: DP-1-2.5

nalyses	Result	RL	Qual	Units	DF	ı	Date Analyzed
Volatile Organic Compounds by E	PA Method	<u>8260</u>		Batch	ı ID:	8663	Analyst: EN
o-Xylene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Styrene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Isopropylbenzene	ND	0.0752		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Bromoform	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
n-Propylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Bromobenzene	ND	0.0282		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,3,5-Trimethylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
2-Chlorotoluene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
4-Chlorotoluene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
tert-Butylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2,3-Trichloropropane	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2,4-Trichlorobenzene	ND	0.0470		mg/Kg-dry	1		9/10/2014 7:04:00 AM
sec-Butylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
4-Isopropyltoluene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,3-Dichlorobenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,4-Dichlorobenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
n-Butylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2-Dichlorobenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0282		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2,4-Trimethylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Hexachlorobutadiene	ND	0.0940		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Naphthalene	ND	0.0282		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2,3-Trichlorobenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Surr: Dibromofluoromethane	96.2	63.7-129		%REC	1		9/10/2014 7:04:00 AM
Surr: Toluene-d8	104	61.4-128		%REC	1		9/10/2014 7:04:00 AM
Surr: 1-Bromo-4-fluorobenzene	92.8	63.1-141		%REC	1		9/10/2014 7:04:00 AM
Mercury by EPA Method 7471				Batch	ı ID:	8665	Analyst: TN
Mercury	ND	0.270		mg/Kg-dry	1		9/9/2014 4:54:24 PM
Total Metals by EPA Method 6020				Batch	ı ID:	8664	Analyst: TN
Arsenic	5.77	0.0815		mg/Kg-dry	1		9/9/2014 5:42:25 PM

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:24:00 AM

Project: SLU Marriott

Lab ID: 1409077-001 **Matrix**: Soil

Client Sample ID: DP-1-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	nod 6020			Batcl	ı ID:	8664 Analyst: TN
Barium	116	0.407		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Cadmium	0.178	0.163		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Chromium	36.2	0.0815	[RA]	mg/Kg-dry	1	9/10/2014 2:37:15 PM
Lead	25.0	0.163		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Selenium	ND	0.407		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Silver	0.422	0.0815		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Sample Moisture (Percen	t Moisture)			Batcl	ı ID:	R16685 Analyst: SL
Percent Moisture	11.1			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-002 **Matrix**: Soil

Client Sample ID: DP-1-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.				Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	20.8		mg/Kg-dry	1	9/10/2014 11:06:00 AM
Heavy Oil	ND	51.9		mg/Kg-dry	1	9/10/2014 11:06:00 AM
Surr: 2-Fluorobiphenyl	95.7	50-150		%REC	1	9/10/2014 11:06:00 AM
Surr: o-Terphenyl	85.7	50-150		%REC	1	9/10/2014 11:06:00 AM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batch	n ID: 8667	Analyst: NG
Naphthalene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
2-Methylnaphthalene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
1-Methylnaphthalene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Acenaphthylene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Acenaphthene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Fluorene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Phenanthrene	264	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Anthracene	61.4	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Fluoranthene	237	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Pyrene	279	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Benz(a)anthracene	113	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Chrysene	59.7	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Benzo(b)fluoranthene	148	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Benzo(k)fluoranthene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Benzo(a)pyrene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Dibenz(a,h)anthracene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Benzo(g,h,i)perylene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM
Surr: 2-Fluorobiphenyl	92.7	42.7-132		%REC	1	9/12/2014 2:57:00 AM
Surr: Terphenyl-d14 (surr)	113	48.8-157		%REC	1	9/12/2014 2:57:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM
Gasoline	ND	3.79		mg/Kg-dry	1	9/10/2014 8:03:00 AM
Surr: Toluene-d8	103	65-135		%REC	1	9/10/2014 8:03:00 AM
Surr: 4-Bromofluorobenzene	90.3	65-135		%REC	1	9/10/2014 8:03:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-002 **Matrix**: Soil

Client Sample ID: DP-1-5.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 8:03:00 AM Dichlorodifluoromethane (CFC-12) 0.0455 mg/Kg-dry 1 Chloromethane ND 0.0455 9/10/2014 8:03:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00152 mg/Kg-dry 9/10/2014 8:03:00 AM 1 mg/Kg-dry Bromomethane ND 0.0682 1 9/10/2014 8:03:00 AM Trichlorofluoromethane (CFC-11) ND 0.0379 mg/Kg-dry 1 9/10/2014 8:03:00 AM Chloroethane ND 0.0455 9/10/2014 8:03:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0379 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 0.0152 1 9/10/2014 8:03:00 AM Methylene chloride mg/Kg-dry ND trans-1,2-Dichloroethene 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Methyl tert-butyl ether (MTBE) ND 0.0379 9/10/2014 8:03:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 2,2-Dichloropropane ND 0.0379 mg/Kg-dry 1 9/10/2014 8:03:00 AM cis-1,2-Dichloroethene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Chloroform ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 0.0152 1,1,1-Trichloroethane (TCA) ND 1 9/10/2014 8:03:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Carbon tetrachloride ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2-Dichloroethane (EDC) ND 0.0227 9/10/2014 8:03:00 AM mg/Kg-dry 1 Benzene ND 9/10/2014 8:03:00 AM 0.0152 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2-Dichloropropane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Bromodichloromethane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 9/10/2014 8:03:00 AM Dibromomethane 0.0303 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Toluene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 0.0227 9/10/2014 8:03:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0227 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,3-Dichloropropane ND 0.0379 9/10/2014 8:03:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry 1 ND 1 9/10/2014 8:03:00 AM Dibromochloromethane 0.0227 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00379 mg/Kg-dry 1 9/10/2014 8:03:00 AM Chlorobenzene ND 9/10/2014 8:03:00 AM 0.0152 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0227 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 9/10/2014 8:03:00 AM Ethylbenzene 0.0227 mg/Kg-dry 1 m,p-Xylene ND 0.0152 mg/Kg-dry 9/10/2014 8:03:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:30:00 AM Client:

Project: SLU Marriott

Lab ID: 1409077-002 Matrix: Soil

Client Sample ID: DP-1-5.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0152 9/10/2014 8:03:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0152 9/10/2014 8:03:00 AM 1 Isopropylbenzene ND 0.0606 mg/Kg-dry 9/10/2014 8:03:00 AM 1 mg/Kg-dry Bromoform ND 0.0152 1 9/10/2014 8:03:00 AM 1,1,2,2-Tetrachloroethane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM n-Propylbenzene ND 0.0152 mg/Kg-dry 9/10/2014 8:03:00 AM 1 Bromobenzene ND 0.0227 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 1 9/10/2014 8:03:00 AM 1,3,5-Trimethylbenzene 0.0152 mg/Kg-dry 2-Chlorotoluene ND 9/10/2014 8:03:00 AM 0.0152 mg/Kg-dry 1 4-Chlorotoluene ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2,3-Trichloropropane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2,4-Trichlorobenzene ND 0.0379 mg/Kg-dry 1 9/10/2014 8:03:00 AM sec-Butylbenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 0.0152 1 9/10/2014 8:03:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,4-Dichlorobenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM n-Butylbenzene ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry 1 ND 9/10/2014 8:03:00 AM 1,2-Dichlorobenzene 0.0152 mg/Kg-dry 1 ND 1,2-Dibromo-3-chloropropane 0.0227 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2,4-Trimethylbenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Hexachlorobutadiene ND 0.0758 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 9/10/2014 8:03:00 AM Naphthalene 0.0227 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 94.2 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/10/2014 8:03:00 AM Surr: Toluene-d8 104 61.4-128 %REC 1 9/10/2014 8:03:00 AM Surr: 1-Bromo-4-fluorobenzene 92.0 63.1-141 %REC 1 9/10/2014 8:03:00 AM Batch ID: 8665 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.260 mg/Kg-dry 9/9/2014 4:56:00 PM Batch ID: 8664 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 4.29 0.0853 mg/Kg-dry 1 9/9/2014 5:45:50 PM D

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Limit RL

- Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-002 **Matrix**: Soil

Client Sample ID: DP-1-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	า ID: 8664	Analyst: TN
Barium	80.6	0.426		mg/Kg-dry	1	9/9/2014 5:45:50 PM
Cadmium	ND	0.171		mg/Kg-dry	1	9/9/2014 5:45:50 PM
Chromium	37.6	0.0853	[RA]	mg/Kg-dry	1	9/10/2014 2:40:40 PM
Lead	12.9	0.171		mg/Kg-dry	1	9/9/2014 5:45:50 PM
Selenium	ND	0.426		mg/Kg-dry	1	9/9/2014 5:45:50 PM
Silver	0.259	0.0853		mg/Kg-dry	1	9/9/2014 5:45:50 PM
Sample Moisture (Percent	: Moisture)			Batch	n ID: R166	885 Analyst: SL
Percent Moisture	12.5			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-007 **Matrix**: Soil

Client Sample ID: DP-2-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 867	0 Analyst: EC
Diesel (Fuel Oil)	ND	22.6		mg/Kg-dry	1	9/10/2014 11:38:00 AM
Heavy Oil	383	56.5		mg/Kg-dry	1	9/10/2014 11:38:00 AM
Surr: 2-Fluorobiphenyl	96.8	50-150		%REC	1	9/10/2014 11:38:00 AM
Surr: o-Terphenyl	92.0	50-150		%REC	1	9/10/2014 11:38:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R16	6693 Analyst: EM
Gasoline	ND	3.35		mg/Kg-dry	1	9/10/2014 10:01:00 AM
Surr: Toluene-d8	103	65-135		%REC	1	9/10/2014 10:01:00 AM
Surr: 4-Bromofluorobenzene	95.5	65-135		%REC	1	9/10/2014 10:01:00 AM
Sample Moisture (Percent Moi	sture)			Batch	n ID: R16	6685 Analyst: SL
Percent Moisture	16.6			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-010 **Matrix**: Soil

Client Sample ID: DP-2-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	27.9		mg/Kg-dry	1	9/10/2014 12:09:00 PM
Heavy Oil	ND	69.7		mg/Kg-dry	1	9/10/2014 12:09:00 PM
Surr: 2-Fluorobiphenyl	106	50-150		%REC	1	9/10/2014 12:09:00 PM
Surr: o-Terphenyl	82.6	50-150		%REC	1	9/10/2014 12:09:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	า ID: 8667	Analyst: NG
Naphthalene	14,700	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
2-Methylnaphthalene	20,900	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
1-Methylnaphthalene	12,000	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Acenaphthylene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Acenaphthene	90.8	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Fluorene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Phenanthrene	99.4	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Anthracene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Fluoranthene	150	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Pyrene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Benz(a)anthracene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Chrysene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Benzo(b)fluoranthene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Benzo(k)fluoranthene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Benzo(a)pyrene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Indeno(1,2,3-cd)pyrene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Dibenz(a,h)anthracene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Benzo(g,h,i)perylene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM
Surr: 2-Fluorobiphenyl	104	42.7-132		%REC	1	9/12/2014 3:19:00 AM
Surr: Terphenyl-d14 (surr)	126	48.8-157		%REC	1	9/12/2014 3:19:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	693 Analyst: EM
Gasoline	729	70.9	D	mg/Kg-dry	10	9/11/2014 10:52:00 PM
Surr: Toluene-d8	94.3	65-135		%REC	1	9/10/2014 10:30:00 AM
Surr: 4-Bromofluorobenzene	109	65-135		%REC	1	9/10/2014 10:30:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-010 **Matrix**: Soil

Client Sample ID: DP-2-10.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0851 9/10/2014 10:30:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0851 9/10/2014 10:30:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00284 9/10/2014 10:30:00 AM mg/Kg-dry 1 Bromomethane ND 0.128 1 9/10/2014 10:30:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0709 mg/Kg-dry 1 9/10/2014 10:30:00 AM Chloroethane ND 0.0851 9/10/2014 10:30:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0709 mg/Kg-dry 1 9/10/2014 10:30:00 AM ND 0.0284 1 9/10/2014 10:30:00 AM Methylene chloride mg/Kg-dry ND trans-1,2-Dichloroethene 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Methyl tert-butyl ether (MTBE) ND 0.0709 9/10/2014 10:30:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 2,2-Dichloropropane ND 0.0709 mg/Kg-dry 1 9/10/2014 10:30:00 AM cis-1,2-Dichloroethene ND 0.0284 1 9/10/2014 10:30:00 AM mg/Kg-dry Chloroform ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0284 1 9/10/2014 10:30:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Carbon tetrachloride ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,2-Dichloroethane (EDC) ND 0.0426 9/10/2014 10:30:00 AM mg/Kg-dry 1 Benzene 2.13 9/10/2014 10:30:00 AM 0.0284 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,2-Dichloropropane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Bromodichloromethane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM ND 9/10/2014 10:30:00 AM Dibromomethane 0.0567 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Toluene 2.28 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM ND 0.0426 9/10/2014 10:30:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0426 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,3-Dichloropropane ND 0.0709 1 9/10/2014 10:30:00 AM mg/Kg-dry Tetrachloroethene (PCE) ND 0.0284 9/10/2014 10:30:00 AM mg/Kg-dry 1 ND 1 9/10/2014 10:30:00 AM Dibromochloromethane 0.0426 mg/Kg-dry ND 0.00709 1,2-Dibromoethane (EDB) mg/Kg-dry 1 9/10/2014 10:30:00 AM Chlorobenzene ND 0.0284 9/10/2014 10:30:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0426 mg/Kg-dry 1 9/10/2014 10:30:00 AM 5.92 D Ethylbenzene 0.426 mg/Kg-dry 10 9/11/2014 10:52:00 PM m,p-Xylene 4.65 0.0284 mg/Kg-dry 9/10/2014 10:30:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:50:00 AM

Project: SLU Marriott

В

Ε

J

RL

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

Value above quantitation range

Reporting Limit

Lab ID: 1409077-010 **Matrix**: Soil

Client Sample ID: DP-2-10.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM 0.805 0.0284 9/10/2014 10:30:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0284 1 9/10/2014 10:30:00 AM Isopropylbenzene 2.34 0.113 mg/Kg-dry 9/10/2014 10:30:00 AM 1 Bromoform ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,1,2,2-Tetrachloroethane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 9/11/2014 10:52:00 PM n-Propylbenzene 10.5 0.284 D mg/Kg-dry 10 Bromobenzene ND 0.0426 mg/Kg-dry 1 9/10/2014 10:30:00 AM 0.296 0.0284 1 9/10/2014 10:30:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 2-Chlorotoluene 0.0284 9/10/2014 10:30:00 AM ND mg/Kg-dry 1 ND 4-Chlorotoluene 0.0284 9/10/2014 10:30:00 AM mg/Kg-dry 1 0.0836 tert-Butylbenzene 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,2,3-Trichloropropane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,2,4-Trichlorobenzene ND 0.0709 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1.59 sec-Butylbenzene 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 0.124 0.0284 1 9/10/2014 10:30:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,4-Dichlorobenzene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM n-Butylbenzene 6.21 0.284 D mg/Kg-dry 10 9/11/2014 10:52:00 PM ND 0.0284 9/10/2014 10:30:00 AM 1,2-Dichlorobenzene mg/Kg-dry 1 ND 9/10/2014 10:30:00 AM 1,2-Dibromo-3-chloropropane 0.0426 mg/Kg-dry 1 2.06 1,2,4-Trimethylbenzene 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Hexachlorobutadiene ND 0.142 mg/Kg-dry 1 9/10/2014 10:30:00 AM 3.17 9/10/2014 10:30:00 AM Naphthalene 0.0426 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 98.6 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/10/2014 10:30:00 AM Surr: Toluene-d8 93.4 61.4-128 %REC 1 9/10/2014 10:30:00 AM Surr: 1-Bromo-4-fluorobenzene 111 63.1-141 %REC 1 9/10/2014 10:30:00 AM Batch ID: 8665 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.373 mg/Kg-dry 9/9/2014 4:57:37 PM Batch ID: 8664 Analyst: TN **Total Metals by EPA Method 6020** 0.114 Arsenic 10.1 mg/Kg-dry 1 9/9/2014 5:49:15 PM

D

Н

ND

S

Dilution was required

Not detected at the Reporting Limit

Holding times for preparation or analysis exceeded

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-010 **Matrix**: Soil

Client Sample ID: DP-2-10.0

Analyses	Result	RL	Qual	Units	DF	D	ate Analyzed
Total Metals by EPA Method 6020				Batch	ı ID:	8664	Analyst: TN
Barium	2,140	0.571		mg/Kg-dry	1	9/9/	2014 5:49:15 PM
Cadmium	0.522	0.228		mg/Kg-dry	1	9/9/	2014 5:49:15 PM
Chromium	28.8	0.114	[RA]	mg/Kg-dry	1	9/10	0/2014 2:44:05 PM
Lead	367	0.228		mg/Kg-dry	1	9/9/	2014 5:49:15 PM
Selenium	ND	0.571		mg/Kg-dry	1	9/9/	2014 5:49:15 PM
Silver	0.483	0.114		mg/Kg-dry	1	9/9/	2014 5:49:15 PM
Metals (SW6020) with TCLP Extract	ion (EPA 1	<u>311)</u>		Batch	ı ID:	8796	Analyst: TN
Lead	15.8	0.200		mg/L	1	9/22	2/2014 11:30:53 AM
Sample Moisture (Percent Moisture))			Batch	ı ID:	R16685	Analyst: SL
Percent Moisture	35.6			wt%	1	9/10	0/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-011 **Matrix**: Soil

Client Sample ID: DP-2-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	23.5		mg/Kg-dry	1	9/10/2014 12:41:00 PM
Heavy Oil	ND	58.8		mg/Kg-dry	1	9/10/2014 12:41:00 PM
Surr: 2-Fluorobiphenyl	90.5	50-150		%REC	1	9/10/2014 12:41:00 PM
Surr: o-Terphenyl	76.7	50-150		%REC	1	9/10/2014 12:41:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)		3270 (SIM)		Batch	n ID: 8667	Analyst: NG
Naphthalene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
2-Methylnaphthalene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
1-Methylnaphthalene	149	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Acenaphthylene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Acenaphthene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Fluorene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Phenanthrene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Anthracene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Fluoranthene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Pyrene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Benz(a)anthracene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Chrysene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Benzo(b)fluoranthene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Benzo(k)fluoranthene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Benzo(a)pyrene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Indeno(1,2,3-cd)pyrene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Dibenz(a,h)anthracene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Benzo(g,h,i)perylene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM
Surr: 2-Fluorobiphenyl	87.5	42.7-132		%REC	1	9/12/2014 3:42:00 AM
Surr: Terphenyl-d14 (surr)	117	48.8-157		%REC	1	9/12/2014 3:42:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	693 Analyst: EM
Gasoline	57.4	4.38		mg/Kg-dry	1	9/10/2014 11:00:00 AM
Surr: Toluene-d8	97.6	65-135		%REC	1	9/10/2014 11:00:00 AM
Surr: 4-Bromofluorobenzene	96.9	65-135		%REC	1	9/10/2014 11:00:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-011 **Matrix**: Soil

Client Sample ID: DP-2-12.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0525 9/10/2014 11:00:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0525 9/10/2014 11:00:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00175 mg/Kg-dry 9/10/2014 11:00:00 AM 1 Bromomethane ND 0.0788 1 9/10/2014 11:00:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0438 mg/Kg-dry 1 9/10/2014 11:00:00 AM Chloroethane ND 0.0525 9/10/2014 11:00:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0438 mg/Kg-dry 1 9/10/2014 11:00:00 AM ND 1 9/10/2014 11:00:00 AM Methylene chloride 0.0175 mg/Kg-dry 9/10/2014 11:00:00 AM ND 0.0175 trans-1,2-Dichloroethene mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 9/10/2014 11:00:00 AM 0.0438 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM 2,2-Dichloropropane ND 0.0438 mg/Kg-dry 1 9/10/2014 11:00:00 AM cis-1,2-Dichloroethene ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM Chloroform ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM 0.0175 1,1,1-Trichloroethane (TCA) ND 1 9/10/2014 11:00:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM Carbon tetrachloride ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM 1,2-Dichloroethane (EDC) ND 0.0263 9/10/2014 11:00:00 AM mg/Kg-dry 1 Benzene 0.0286 9/10/2014 11:00:00 AM 0.0175 mg/Kg-dry 1 Trichloroethene (TCE) 9/10/2014 11:00:00 AM ND 0.0175 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM Bromodichloromethane ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM ND 9/10/2014 11:00:00 AM Dibromomethane 0.0350 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM Toluene 0.0213 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM ND 0.0263 9/10/2014 11:00:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0263 mg/Kg-dry 1 9/10/2014 11:00:00 AM 1,3-Dichloropropane ND 0.0438 9/10/2014 11:00:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0175 9/10/2014 11:00:00 AM mg/Kg-dry 1 ND 1 9/10/2014 11:00:00 AM Dibromochloromethane 0.0263 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00438 mg/Kg-dry 1 9/10/2014 11:00:00 AM Chlorobenzene ND 0.0175 9/10/2014 11:00:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0263 mg/Kg-dry 1 9/10/2014 11:00:00 AM 0.0760 9/10/2014 11:00:00 AM Ethylbenzene 0.0263 mg/Kg-dry 1 m,p-Xylene 0.117 0.0175 mg/Kg-dry 9/10/2014 11:00:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:05:00 PM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-011 **Matrix**: Soil

Client Sample ID: DP-2-12.5

Analyses	Result	RL	Qual	Units	DF		Date Analyzed
Volatile Organic Compounds by	EPA Method	8260		Batch	ı ID:	8663	Analyst: EM
o-Xylene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AM
Styrene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AM
Isopropylbenzene	0.483	0.0701		mg/Kg-dry	1		9/10/2014 11:00:00 AM
Bromoform	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AN
1,1,2,2-Tetrachloroethane	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AM
n-Propylbenzene	1.61	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AM
Bromobenzene	ND	0.0263		mg/Kg-dry	1		9/10/2014 11:00:00 AM
1,3,5-Trimethylbenzene	0.0384	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AN
2-Chlorotoluene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AM
4-Chlorotoluene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AM
tert-Butylbenzene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AM
1,2,3-Trichloropropane	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AM
1,2,4-Trichlorobenzene	ND	0.0438		mg/Kg-dry	1		9/10/2014 11:00:00 Al
sec-Butylbenzene	0.127	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 Al
4-Isopropyltoluene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AI
1,3-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 AI
1,4-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 Al
n-Butylbenzene	0.301	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 Al
1,2-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 Al
1,2-Dibromo-3-chloropropane	ND	0.0263		mg/Kg-dry	1		9/10/2014 11:00:00 Al
1,2,4-Trimethylbenzene	0.0436	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 Al
Hexachlorobutadiene	ND	0.0876		mg/Kg-dry	1		9/10/2014 11:00:00 AI
Naphthalene	0.107	0.0263		mg/Kg-dry	1		9/10/2014 11:00:00 Al
1,2,3-Trichlorobenzene	ND	0.0175		mg/Kg-dry	1		9/10/2014 11:00:00 Al
Surr: Dibromofluoromethane	88.8	63.7-129		%REC	1		9/10/2014 11:00:00 AI
Surr: Toluene-d8	96.5	61.4-128		%REC	1		9/10/2014 11:00:00 Al
Surr: 1-Bromo-4-fluorobenzene	98.7	63.1-141		%REC	1		9/10/2014 11:00:00 A
Mercury by EPA Method 7471				Batch	ı ID:	8665	Analyst: TN
Mercury	ND	0.308		mg/Kg-dry	1		9/9/2014 4:59:13 PM
otal Metals by EPA Method 602	20			Batch	ı ID:	8664	Analyst: TN
Arsenic	5.57	0.101		mg/Kg-dry	1		9/9/2014 5:52:41 PM

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-011 **Matrix**: Soil

Client Sample ID: DP-2-12.5

Analyses	Result	RL	Qual	Units	DF	•	Date Analyzed
Total Metals by EPA Method	1 6020			Batch	n ID:	8664	Analyst: TN
Barium	141	0.507		mg/Kg-dry	1		9/9/2014 5:52:41 PM
Cadmium	0.731	0.203		mg/Kg-dry	1		9/9/2014 5:52:41 PM
Chromium	72.5	0.101	[RA]	mg/Kg-dry	1		9/10/2014 2:47:31 PM
Lead	8.31	0.203		mg/Kg-dry	1		9/9/2014 5:52:41 PM
Selenium	ND	0.507		mg/Kg-dry	1		9/9/2014 5:52:41 PM
Silver	0.134	0.101		mg/Kg-dry	1		9/9/2014 5:52:41 PM
Sample Moisture (Percent M	loisture)			Batch	n ID:	R166	85 Analyst: SL
Percent Moisture	24.7			wt%	1		9/10/2014 10:35:08 AM
Hexavalent Chromium by El	PA Method 7196			Batch	ı ID:	8795	Analyst: MW
Chromium, Hexavalent	ND	0.648		mg/Kg-dry	1		9/21/2014 10:18:25 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:10:00 PM

Project: SLU Marriott

Lab ID: 1409077-012 **Matrix**: Soil

Client Sample ID: DP-2-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline by NWTPH-Gx				Batcl	n ID: 88	38 Analyst: EM
Gasoline	34.9	4.37	Н	mg/Kg-dry	1	9/24/2014 2:43:00 PM
Surr: Toluene-d8	101	65-135	Н	%REC	1	9/24/2014 2:43:00 PM
Surr: 4-Bromofluorobenzene	95.2	65-135	Н	%REC	1	9/24/2014 2:43:00 PM
Sample Moisture (Percent Mois	ture)			Batcl	n ID: R1	16932 Analyst: SL
Percent Moisture	22.5			wt%	1	9/23/2014 3:54:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: 1409077 Date Reported: 9/24/2014

Collection Date: 9/6/2014 10:25:00 AM Client: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

Lab ID: 1409077-013 Matrix: Soil

Client Sample ID: DP-3-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (P	CB) by EPA 808	<u>2</u>		Batch	n ID: 868	38 Analyst: NG
Aroclor 1016	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1221	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1232	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1242	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1248	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1254	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1260	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1262	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1268	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Total PCBs	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Surr: Decachlorobiphenyl	79.4	50.2-159		%REC	1	9/11/2014 7:31:00 PM
Surr: Tetrachloro-m-xylene	78.0	60.3-134		%REC	1	9/11/2014 7:31:00 PM
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Batch	n ID: 867	70 Analyst: EC
Diesel (Fuel Oil)	ND	19.5		mg/Kg-dry	1	9/10/2014 1:12:00 PM
Heavy Oil	ND	48.9		mg/Kg-dry	1	9/10/2014 1:12:00 PM
Surr: 2-Fluorobiphenyl	88.2	50-150		%REC	1	9/10/2014 1:12:00 PM
Surr: o-Terphenyl	81.3	50-150		%REC	1	9/10/2014 1:12:00 PM
Polyaromatic Hydrocarbons b	oy EPA Method	8270 (SIM)		Batch	n ID: 866	67 Analyst: NG
Naphthalene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
2-Methylnaphthalene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
1-Methylnaphthalene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Acenaphthylene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Acenaphthene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Fluorene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Phenanthrene	1,890	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Anthracene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Fluoranthene	3,280	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Pyrene	3,540	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Benz(a)anthracene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Chrysene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Benzo(b)fluoranthene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM

- **Qualifiers:** B Analyte detected in the associated Method Blank
 - Ε Value above quantitation range
 - J Analyte detected below quantitation limits
 - RL Reporting Limit

- D Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-013 **Matrix**: Soil

Client Sample ID: DP-3-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	า ID: 8667	Analyst: NG
Benzo(k)fluoranthene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Benzo(a)pyrene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Indeno(1,2,3-cd)pyrene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Dibenz(a,h)anthracene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Benzo(g,h,i)perylene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Surr: 2-Fluorobiphenyl	58.2	42.7-132	D	%REC	20	9/12/2014 4:05:00 AM
Surr: Terphenyl-d14 (surr)	62.2	48.8-157	D	%REC	20	9/12/2014 4:05:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM
Gasoline	ND	5.80		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Surr: Toluene-d8	101	65-135		%REC	1	9/10/2014 11:29:00 AM
Surr: 4-Bromofluorobenzene	93.3	65-135		%REC	1	9/10/2014 11:29:00 AM
Volatile Organic Compounds b	y EPA Method	<u>8260</u>		Batch	n ID: 8663	Analyst: EM
Dichlorodifluoromethane (CFC-12)	ND	0.0696		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Chloromethane	ND	0.0696		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Vinyl chloride	ND	0.00232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Bromomethane	ND	0.104		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Trichlorofluoromethane (CFC-11)	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Chloroethane	ND	0.0696		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,1-Dichloroethene	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Methylene chloride	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
trans-1,2-Dichloroethene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Methyl tert-butyl ether (MTBE)	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,1-Dichloroethane	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
2,2-Dichloropropane	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM
cis-1,2-Dichloroethene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Chloroform	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,1,1-Trichloroethane (TCA)	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
4.4.5:11		0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,1-Dichloropropene	ND	0.0232				
1,1-Dichloropropene Carbon tetrachloride	ND ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
• •				mg/Kg-dry mg/Kg-dry	1 1	9/10/2014 11:29:00 AM 9/10/2014 11:29:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-013 **Matrix**: Soil

Client Sample ID: DP-3-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds	by EPA Method	<u>8260</u>		Batch	n ID: 866	3 Analyst: EM
Trichloroethene (TCE)	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,2-Dichloropropane	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Bromodichloromethane	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Dibromomethane	ND	0.0464		mg/Kg-dry	1	9/10/2014 11:29:00 AM
cis-1,3-Dichloropropene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Toluene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
trans-1,3-Dichloropropylene	ND	0.0348		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,1,2-Trichloroethane	ND	0.0348		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,3-Dichloropropane	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Tetrachloroethene (PCE)	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Dibromochloromethane	ND	0.0348		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,2-Dibromoethane (EDB)	ND	0.00580		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Chlorobenzene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,1,1,2-Tetrachloroethane	ND	0.0348		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Ethylbenzene	0.0407	0.0348		mg/Kg-dry	1	9/10/2014 11:29:00 AM
m,p-Xylene	0.0765	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
o-Xylene	0.0572	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Styrene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Isopropylbenzene	ND	0.0928		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Bromoform	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
n-Propylbenzene	0.0617	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Bromobenzene	ND	0.0348		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,3,5-Trimethylbenzene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
2-Chlorotoluene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
4-Chlorotoluene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
tert-Butylbenzene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,2,3-Trichloropropane	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,2,4-Trichlorobenzene	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM
sec-Butylbenzene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
4-Isopropyltoluene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,3-Dichlorobenzene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,4-Dichlorobenzene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
n-Butylbenzene	0.0513	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,2-Dichlorobenzene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
,	· · -					

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-013 **Matrix:** Soil

Client Sample ID: DP-3-2.5

Analyses	Result	RL	Qual	Units	DF	•	Date Analyzed
Volatile Organic Compounds by	y EPA Method	<u>8260</u>		Batch	ı ID:	8663	Analyst: EM
1,2-Dibromo-3-chloropropane	ND	0.0348		mg/Kg-dry	1		9/10/2014 11:29:00 AM
1,2,4-Trimethylbenzene	0.0540	0.0232		mg/Kg-dry	1		9/10/2014 11:29:00 AM
Hexachlorobutadiene	ND	0.116		mg/Kg-dry	1		9/10/2014 11:29:00 AM
Naphthalene	0.0796	0.0348		mg/Kg-dry	1		9/10/2014 11:29:00 AM
1,2,3-Trichlorobenzene	ND	0.0232		mg/Kg-dry	1		9/10/2014 11:29:00 AM
Surr: Dibromofluoromethane	86.3	63.7-129		%REC	1		9/10/2014 11:29:00 AM
Surr: Toluene-d8	95.6	61.4-128		%REC	1		9/10/2014 11:29:00 AM
Surr: 1-Bromo-4-fluorobenzene	95.0	63.1-141		%REC	1		9/10/2014 11:29:00 AM
Mercury by EPA Method 7471				Batch	ı ID:	8681	Analyst: TN
Mercury	ND	0.265		mg/Kg-dry	1		9/10/2014 3:35:13 PM
Total Metals by EPA Method 60	20			Batch	ı ID:	8664	Analyst: TN
Arsenic	4.50	0.0841		mg/Kg-dry	1		9/9/2014 5:56:06 PM
Barium	124	0.421		mg/Kg-dry	1		9/9/2014 5:56:06 PM
Cadmium	0.228	0.168		mg/Kg-dry	1		9/9/2014 5:56:06 PM
Chromium	24.4	0.0841	[RA]	mg/Kg-dry	1		9/10/2014 2:50:56 PM
Lead	121	0.168		mg/Kg-dry	1		9/9/2014 5:56:06 PM
Selenium	ND	0.421		mg/Kg-dry	1		9/9/2014 5:56:06 PM
Silver	0.106	0.0841		mg/Kg-dry	1		9/9/2014 5:56:06 PM
Sample Moisture (Percent Mois	ture)			Batch	ı ID:	R1668	35 Analyst: SL
Percent Moisture	12.6			wt%	1		9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:43:00 AM

Project: SLU Marriott

Lab ID: 1409077-015 **Matrix:** Soil

Client Sample ID: DP-3-7.5

Analyses	Result	RL	Qual	Units	DF		ate Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	8670	Analyst: EC
Diesel (Fuel Oil)	ND	21.0		mg/Kg-dry	1	9/1	0/2014 1:44:00 PM
Heavy Oil	ND	52.4		mg/Kg-dry	1	9/1	0/2014 1:44:00 PM
Surr: 2-Fluorobiphenyl	93.6	50-150		%REC	1	9/1	0/2014 1:44:00 PM
Surr: o-Terphenyl	78.8	50-150		%REC	1	9/1	0/2014 1:44:00 PM
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	n ID:	8667	Analyst: NG
Naphthalene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
2-Methylnaphthalene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
1-Methylnaphthalene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Acenaphthylene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Acenaphthene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Fluorene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Phenanthrene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Anthracene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Fluoranthene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Pyrene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Benz(a)anthracene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Chrysene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Benzo(b)fluoranthene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Benzo(k)fluoranthene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Benzo(a)pyrene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Dibenz(a,h)anthracene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Benzo(g,h,i)perylene	ND	55.2		μg/Kg-dry	1	9/1	2/2014 5:12:00 AM
Surr: 2-Fluorobiphenyl	96.9	42.7-132		%REC	1	9/1	2/2014 5:12:00 AM
Surr: Terphenyl-d14 (surr)	112	48.8-157		%REC	1	9/1	2/2014 5:12:00 AM
Gasoline by NWTPH-Gx				Batch	n ID:	R16693	Analyst: EM
Gasoline	ND	4.62		mg/Kg-dry	1	9/1	0/2014 11:58:00 AM
Surr: Toluene-d8	102	65-135		%REC	1	9/1	0/2014 11:58:00 AM
Surr: 4-Bromofluorobenzene	92.6	65-135		%REC	1	9/1	0/2014 11:58:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:43:00 AM

Project: SLU Marriott

Lab ID: 1409077-015 **Matrix**: Soil

Client Sample ID: DP-3-7.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0554 9/10/2014 11:58:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0554 9/10/2014 11:58:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00185 mg/Kg-dry 9/10/2014 11:58:00 AM 1 Bromomethane ND 0.0831 1 9/10/2014 11:58:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0462 mg/Kg-dry 1 9/10/2014 11:58:00 AM Chloroethane ND 0.0554 9/10/2014 11:58:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0462 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 0.0185 9/10/2014 11:58:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0185 9/10/2014 11:58:00 AM trans-1,2-Dichloroethene mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0462 9/10/2014 11:58:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 2,2-Dichloropropane ND 0.0462 mg/Kg-dry 1 9/10/2014 11:58:00 AM cis-1,2-Dichloroethene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Chloroform ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0185 1 9/10/2014 11:58:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Carbon tetrachloride ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,2-Dichloroethane (EDC) ND 0.0277 9/10/2014 11:58:00 AM mg/Kg-dry 1 Benzene ND 9/10/2014 11:58:00 AM 0.0185 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/10/2014 11:58:00 AM 0.0185 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Bromodichloromethane ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 9/10/2014 11:58:00 AM Dibromomethane 0.0369 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Toluene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 0.0277 9/10/2014 11:58:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0277 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,3-Dichloropropane ND 0.0462 9/10/2014 11:58:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 ND 1 9/10/2014 11:58:00 AM Dibromochloromethane 0.0277 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00462 mg/Kg-dry 1 9/10/2014 11:58:00 AM Chlorobenzene ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0277 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND Ethylbenzene 0.0277 mg/Kg-dry 1 9/10/2014 11:58:00 AM m,p-Xylene ND 0.0185 mg/Kg-dry 9/10/2014 11:58:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

Collection Date: 9/6/2014 10:43:00 AM Client: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

Lab ID: 1409077-015 Matrix: Soil

Client Sample ID: DP-3-7.5

Analyses	Result	RL	Qual	Units	DF		Date Analyzed
Volatile Organic Compounds by E	PA Method	8260		Batch	ı ID:	8663	Analyst: EM
o-Xylene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
Styrene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
Isopropylbenzene	ND	0.0739		mg/Kg-dry	1		9/10/2014 11:58:00 AM
Bromoform	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
n-Propylbenzene	0.0391	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
Bromobenzene	ND	0.0277		mg/Kg-dry	1		9/10/2014 11:58:00 AN
1,3,5-Trimethylbenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AN
2-Chlorotoluene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AN
4-Chlorotoluene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AN
tert-Butylbenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
1,2,3-Trichloropropane	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
1,2,4-Trichlorobenzene	ND	0.0462		mg/Kg-dry	1		9/10/2014 11:58:00 AM
sec-Butylbenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
4-Isopropyltoluene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
1,3-Dichlorobenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 Al
1,4-Dichlorobenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 Al
n-Butylbenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
1,2-Dichlorobenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0277		mg/Kg-dry	1		9/10/2014 11:58:00 Al
1,2,4-Trimethylbenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 Al
Hexachlorobutadiene	ND	0.0924		mg/Kg-dry	1		9/10/2014 11:58:00 Al
Naphthalene	ND	0.0277		mg/Kg-dry	1		9/10/2014 11:58:00 AM
1,2,3-Trichlorobenzene	ND	0.0185		mg/Kg-dry	1		9/10/2014 11:58:00 AM
Surr: Dibromofluoromethane	90.7	63.7-129		%REC	1		9/10/2014 11:58:00 AM
Surr: Toluene-d8	95.1	61.4-128		%REC	1		9/10/2014 11:58:00 AM
Surr: 1-Bromo-4-fluorobenzene	94.1	63.1-141		%REC	1		9/10/2014 11:58:00 AM
lercury by EPA Method 7471				Batch	ı ID:	8665	Analyst: TN
Mercury	ND	0.264		mg/Kg-dry	1		9/9/2014 5:02:28 PM
otal Metals by EPA Method 6020				Batch	ı ID:	8664	Analyst: TN
Arsenic	2.05	0.0822		mg/Kg-dry	1		9/9/2014 5:59:31 PM

Value above quantitation range

Analyte detected below quantitation limits

RL Reporting Limit

Holding times for preparation or analysis exceeded Н

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:43:00 AM

Project: SLU Marriott

Lab ID: 1409077-015 **Matrix:** Soil

Client Sample ID: DP-3-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method	d 6020			Batch	n ID: 866	64 Analyst: TN
Barium	53.9	0.411		mg/Kg-dry	1	9/9/2014 5:59:31 PM
Cadmium	ND	0.164		mg/Kg-dry	1	9/9/2014 5:59:31 PM
Chromium	28.6	0.0822	[RA]	mg/Kg-dry	1	9/10/2014 2:54:21 PM
Lead	2.40	0.164		mg/Kg-dry	1	9/9/2014 5:59:31 PM
Selenium	ND	0.411		mg/Kg-dry	1	9/9/2014 5:59:31 PM
Silver	ND	0.0822		mg/Kg-dry	1	9/9/2014 5:59:31 PM
Sample Moisture (Percent M	Moisture)			Batch	n ID: R10	6685 Analyst: SL
Percent Moisture	10.6			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-020 **Matrix**: Soil

Client Sample ID: DP-4-5.0

Analyses	Result	RL	Qual	Units	DF	1	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID:	8670	Analyst: EC
Diesel (Fuel Oil)	ND	19.1		mg/Kg-dry	1	g	9/10/2014 2:16:00 PM
Heavy Oil	ND	47.7		mg/Kg-dry	1	9	9/10/2014 2:16:00 PM
Surr: 2-Fluorobiphenyl	93.5	50-150		%REC	1	9	9/10/2014 2:16:00 PM
Surr: o-Terphenyl	81.9	50-150		%REC	1	9	9/10/2014 2:16:00 PM
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	n ID:	8667	Analyst: NG
Naphthalene	ND	53.7		μg/Kg-dry	1	9	9/12/2014 5:35:00 AM
2-Methylnaphthalene	ND	53.7		μg/Kg-dry	1	ç	9/12/2014 5:35:00 AM
1-Methylnaphthalene	ND	53.7		μg/Kg-dry	1	ç	9/12/2014 5:35:00 AM
Acenaphthylene	ND	53.7		μg/Kg-dry	1	g	9/12/2014 5:35:00 AM
Acenaphthene	ND	53.7		μg/Kg-dry	1	ç	9/12/2014 5:35:00 AM
Fluorene	ND	53.7		μg/Kg-dry	1	ç	9/12/2014 5:35:00 AM
Phenanthrene	ND	53.7		μg/Kg-dry	1	ç	9/12/2014 5:35:00 AM
Anthracene	ND	53.7		μg/Kg-dry	1	ç	9/12/2014 5:35:00 AM
Fluoranthene	ND	53.7		μg/Kg-dry	1	ç	9/12/2014 5:35:00 AM
Pyrene	ND	53.7		μg/Kg-dry	1	g	9/12/2014 5:35:00 AM
Benz(a)anthracene	ND	53.7		μg/Kg-dry	1	g	9/12/2014 5:35:00 AM
Chrysene	ND	53.7		μg/Kg-dry	1	g	9/12/2014 5:35:00 AM
Benzo(b)fluoranthene	ND	53.7		μg/Kg-dry	1	9	9/12/2014 5:35:00 AM
Benzo(k)fluoranthene	ND	53.7		μg/Kg-dry	1	9	9/12/2014 5:35:00 AM
Benzo(a)pyrene	ND	53.7		μg/Kg-dry	1	g	9/12/2014 5:35:00 AM
Indeno(1,2,3-cd)pyrene	ND	53.7		μg/Kg-dry	1	g	9/12/2014 5:35:00 AM
Dibenz(a,h)anthracene	ND	53.7		μg/Kg-dry	1	9	9/12/2014 5:35:00 AM
Benzo(g,h,i)perylene	ND	53.7		μg/Kg-dry	1	g	9/12/2014 5:35:00 AM
Surr: 2-Fluorobiphenyl	94.0	42.7-132		%REC	1	9	9/12/2014 5:35:00 AM
Surr: Terphenyl-d14 (surr)	110	48.8-157		%REC	1	9	9/12/2014 5:35:00 AM
Gasoline by NWTPH-Gx				Batch	n ID:	R1669	3 Analyst: EM
Gasoline	ND	2.97		mg/Kg-dry	1	g	9/10/2014 12:28:00 PM
Surr: Toluene-d8	90.9	65-135		%REC	1	ç	9/10/2014 12:28:00 PM
Surr: 4-Bromofluorobenzene	95.2	65-135		%REC	1	9	9/10/2014 12:28:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-020 **Matrix**: Soil

Client Sample ID: DP-4-5.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0356 9/10/2014 12:28:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0356 9/10/2014 12:28:00 PM mg/Kg-dry 1 Vinyl chloride ND 0.00119 mg/Kg-dry 9/10/2014 12:28:00 PM 1 Bromomethane ND 0.0535 1 9/10/2014 12:28:00 PM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0297 mg/Kg-dry 1 9/10/2014 12:28:00 PM Chloroethane ND 0.0356 9/10/2014 12:28:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0297 mg/Kg-dry 1 9/10/2014 12:28:00 PM ND 9/10/2014 12:28:00 PM Methylene chloride 0.0119 mg/Kg-dry 1 ND 9/10/2014 12:28:00 PM trans-1,2-Dichloroethene 0.0119 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 9/10/2014 12:28:00 PM 0.0297 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM 2,2-Dichloropropane ND 0.0297 mg/Kg-dry 1 9/10/2014 12:28:00 PM cis-1,2-Dichloroethene ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM Chloroform ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0119 1 9/10/2014 12:28:00 PM mg/Kg-dry 1,1-Dichloropropene ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM Carbon tetrachloride ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM 1,2-Dichloroethane (EDC) ND 0.0178 9/10/2014 12:28:00 PM mg/Kg-dry 1 Benzene ND 9/10/2014 12:28:00 PM 0.0119 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/10/2014 12:28:00 PM 0.0119 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM Bromodichloromethane ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM ND 9/10/2014 12:28:00 PM Dibromomethane 0.0238 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM Toluene ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM ND 0.0178 9/10/2014 12:28:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0178 mg/Kg-dry 1 9/10/2014 12:28:00 PM 1,3-Dichloropropane ND 9/10/2014 12:28:00 PM 0.0297 mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0119 9/10/2014 12:28:00 PM mg/Kg-dry 1 ND 1 9/10/2014 12:28:00 PM Dibromochloromethane 0.0178 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00297 mg/Kg-dry 1 9/10/2014 12:28:00 PM Chlorobenzene ND 9/10/2014 12:28:00 PM 0.0119 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0178 mg/Kg-dry 1 9/10/2014 12:28:00 PM ND Ethylbenzene 0.0178 mg/Kg-dry 1 9/10/2014 12:28:00 PM m,p-Xylene ND 0.0119 mg/Kg-dry 9/10/2014 12:28:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

Collection Date: 9/6/2014 9:50:00 AM Client: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

Lab ID: 1409077-020 Matrix: Soil

Client Sample ID: DP-4-5.0

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260		Batch	1D: 8	663 Analyst: EM
o-Xylene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
Styrene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
Isopropylbenzene	ND	0.0475		mg/Kg-dry	1	9/10/2014 12:28:00 PM
Bromoform	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,1,2,2-Tetrachloroethane	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
n-Propylbenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
Bromobenzene	ND	0.0178		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,3,5-Trimethylbenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
2-Chlorotoluene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
4-Chlorotoluene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
tert-Butylbenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,2,3-Trichloropropane	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,2,4-Trichlorobenzene	ND	0.0297		mg/Kg-dry	1	9/10/2014 12:28:00 PM
sec-Butylbenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
4-Isopropyltoluene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,3-Dichlorobenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,4-Dichlorobenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
n-Butylbenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,2-Dichlorobenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0178		mg/Kg-dry	1	9/10/2014 12:28:00 PN
1,2,4-Trimethylbenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
Hexachlorobutadiene	ND	0.0594		mg/Kg-dry	1	9/10/2014 12:28:00 PM
Naphthalene	ND	0.0178		mg/Kg-dry	1	9/10/2014 12:28:00 PM
1,2,3-Trichlorobenzene	ND	0.0119		mg/Kg-dry	1	9/10/2014 12:28:00 PM
Surr: Dibromofluoromethane	88.8	63.7-129		%REC	1	9/10/2014 12:28:00 PM
Surr: Toluene-d8	90.9	61.4-128		%REC	1	9/10/2014 12:28:00 PM
Surr: 1-Bromo-4-fluorobenzene	95.2	63.1-141		%REC	1	9/10/2014 12:28:00 PM
Mercury by EPA Method 7471				Batch	1D: 8	665 Analyst: TN
Mercury	ND	0.265		mg/Kg-dry	1	9/9/2014 5:05:16 PM
otal Metals by EPA Method 602	<u>0</u>			Batch	1D: 8	664 Analyst: TN
Arsenic	2.01	0.0861		mg/Kg-dry	1	9/9/2014 6:02:57 PM

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-020 **Matrix**: Soil

Client Sample ID: DP-4-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method	<u>6020</u>			Batch	n ID: 866	64 Analyst: TN
Barium	54.1	0.431		mg/Kg-dry	1	9/9/2014 6:02:57 PM
Cadmium	ND	0.172		mg/Kg-dry	1	9/9/2014 6:02:57 PM
Chromium	32.4	0.0861	[RA]	mg/Kg-dry	1	9/10/2014 2:57:47 PM
Lead	1.85	0.172		mg/Kg-dry	1	9/9/2014 6:02:57 PM
Selenium	ND	0.431		mg/Kg-dry	1	9/9/2014 6:02:57 PM
Silver	ND	0.0861		mg/Kg-dry	1	9/9/2014 6:02:57 PM
Sample Moisture (Percent Mo	oisture)			Batch	ı ID: R1	6685 Analyst: SL
Percent Moisture	9.30			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:31:00 AM

Project: SLU Marriott

Lab ID: 1409077-024 **Matrix**: Soil

Client Sample ID: DP-4-15.0

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8	8670	Analyst: EC
Diesel (Fuel Oil)	ND	22.5		mg/Kg-dry	1	9/10/	2014 3:51:00 PM
Heavy Oil	ND	56.2		mg/Kg-dry	1	9/10/	2014 3:51:00 PM
Surr: 2-Fluorobiphenyl	92.9	50-150		%REC	1	9/10/	2014 3:51:00 PM
Surr: o-Terphenyl	90.2	50-150		%REC	1	9/10/	2014 3:51:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8	8667	Analyst: NG
Naphthalene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
2-Methylnaphthalene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
1-Methylnaphthalene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Acenaphthylene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Acenaphthene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Fluorene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Phenanthrene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Anthracene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Fluoranthene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Pyrene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Benz(a)anthracene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Chrysene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Benzo(b)fluoranthene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Benzo(k)fluoranthene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Benzo(a)pyrene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Indeno(1,2,3-cd)pyrene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Dibenz(a,h)anthracene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Benzo(g,h,i)perylene	ND	56.3		μg/Kg-dry	1	9/12/	2014 5:58:00 AM
Surr: 2-Fluorobiphenyl	82.4	42.7-132		%REC	1	9/12/	2014 5:58:00 AM
Surr: Terphenyl-d14 (surr)	103	48.8-157		%REC	1	9/12/	2014 5:58:00 AM
Gasoline by NWTPH-Gx				Batch	ı ID: F	R16693	Analyst: EM
Gasoline	ND	4.87		mg/Kg-dry	1	9/10/	2014 12:57:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/10/	2014 12:57:00 PM
Surr: 4-Bromofluorobenzene	94.0	65-135		%REC	1	9/10/	2014 12:57:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:31:00 AM

Project: SLU Marriott

Lab ID: 1409077-024 **Matrix**: Soil

Client Sample ID: DP-4-15.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0585 9/10/2014 12:57:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0585 9/10/2014 12:57:00 PM mg/Kg-dry 1 Vinyl chloride ND 0.00195 mg/Kg-dry 9/10/2014 12:57:00 PM 1 Bromomethane ND 0.0877 1 9/10/2014 12:57:00 PM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0487 mg/Kg-dry 1 9/10/2014 12:57:00 PM Chloroethane ND 0.0585 9/10/2014 12:57:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0487 mg/Kg-dry 1 9/10/2014 12:57:00 PM ND 0.0195 1 9/10/2014 12:57:00 PM Methylene chloride mg/Kg-dry ND 0.0195 9/10/2014 12:57:00 PM trans-1,2-Dichloroethene mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0487 9/10/2014 12:57:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM 2,2-Dichloropropane ND 0.0487 mg/Kg-dry 1 9/10/2014 12:57:00 PM cis-1,2-Dichloroethene ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM Chloroform ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0195 1 9/10/2014 12:57:00 PM mg/Kg-dry 1,1-Dichloropropene ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM Carbon tetrachloride ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM 1,2-Dichloroethane (EDC) ND 0.0292 9/10/2014 12:57:00 PM mg/Kg-dry 1 Benzene 0.0243 9/10/2014 12:57:00 PM 0.0195 mg/Kg-dry 1 Trichloroethene (TCE) 9/10/2014 12:57:00 PM ND 0.0195 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM Bromodichloromethane ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM ND 9/10/2014 12:57:00 PM Dibromomethane 0.0390 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM Toluene ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM trans-1,3-Dichloropropylene 0.0292 ND 9/10/2014 12:57:00 PM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0292 mg/Kg-dry 1 9/10/2014 12:57:00 PM 1,3-Dichloropropane ND 0.0487 9/10/2014 12:57:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0195 9/10/2014 12:57:00 PM mg/Kg-dry 1 ND 1 9/10/2014 12:57:00 PM Dibromochloromethane 0.0292 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00487 mg/Kg-dry 1 9/10/2014 12:57:00 PM Chlorobenzene ND 0.0195 9/10/2014 12:57:00 PM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0292 mg/Kg-dry 1 9/10/2014 12:57:00 PM 0.0363 Ethylbenzene 0.0292 mg/Kg-dry 1 9/10/2014 12:57:00 PM m,p-Xylene 0.0958 0.0195 mg/Kg-dry 9/10/2014 12:57:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:31:00 AM Client:

Project: SLU Marriott

Lab ID: 1409077-024 Matrix: Soil

Client Sample ID: DP-4-15.0

Analyses	Result	RL	Qual	Units	DF		Date Analyzed
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	8663	Analyst: EM
o-Xylene	ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
Styrene	ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
Isopropylbenzene	0.0978	0.0780		mg/Kg-dry	1		9/10/2014 12:57:00 PM
Bromoform	ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
1,1,2,2-Tetrachloroethane	ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
n-Propylbenzene	0.132	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
Bromobenzene	0.132 ND	0.0193		mg/Kg-dry	1		9/10/2014 12:57:00 PM
1,3,5-Trimethylbenzene	0.0360	0.0292		mg/Kg-dry	1		9/10/2014 12:57:00 PM
2-Chlorotoluene	0.0300 ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
4-Chlorotoluene	ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
tert-Butylbenzene	ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
•	ND ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
1,2,3-Trichloropropane	ND ND	0.0195			1		9/10/2014 12:57:00 PM
1,2,4-Trichlorobenzene	0.0490	0.0467		mg/Kg-dry mg/Kg-dry	1		9/10/2014 12:57:00 PM
sec-Butylbenzene	0.0490 ND	0.0195		0 0 ,	1		9/10/2014 12:57:00 PM
4-Isopropyltoluene	ND ND			mg/Kg-dry			
1,3-Dichlorobenzene	ND ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
1,4-Dichlorobenzene		0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
n-Butylbenzene	0.0385	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
1,2-Dichlorobenzene	ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0292		mg/Kg-dry	1		9/10/2014 12:57:00 PM
1,2,4-Trimethylbenzene	0.0412	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
Hexachlorobutadiene	ND	0.0975		mg/Kg-dry	1		9/10/2014 12:57:00 PM
Naphthalene	ND	0.0292		mg/Kg-dry	1		9/10/2014 12:57:00 PM
1,2,3-Trichlorobenzene	ND	0.0195		mg/Kg-dry	1		9/10/2014 12:57:00 PM
Surr: Dibromofluoromethane	97.1	63.7-129		%REC	1		9/10/2014 12:57:00 PM
Surr: Toluene-d8	112	61.4-128		%REC	1		9/10/2014 12:57:00 PM
Surr: 1-Bromo-4-fluorobenzene	95.5	63.1-141		%REC	1		9/10/2014 12:57:00 PM
Mercury by EPA Method 7471				Batch	ID:	8665	Analyst: TN
Mercury	ND	0.251		mg/Kg-dry	1		9/9/2014 5:06:53 PM
Total Metals by EPA Method 602	<u>o</u>			Batch	ID:	8664	Analyst: TN
Arsenic	2.12	0.0856		mg/Kg-dry	1		9/9/2014 6:06:22 PM

- Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- Holding times for preparation or analysis exceeded Н
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:31:00 AM

Project: SLU Marriott

Lab ID: 1409077-024 **Matrix**: Soil

Client Sample ID: DP-4-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 602	<u>20</u>			Batch	n ID: 866	64 Analyst: TN
Barium	63.5	0.428		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Cadmium	ND	0.171		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Chromium	36.8	0.0856	[RA]	mg/Kg-dry	1	9/10/2014 3:01:12 PM
Lead	2.47	0.171		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Selenium	ND	0.428		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Silver	ND	0.0856		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Sample Moisture (Percent Moist	ture)			Batch	ı ID: R1	6685 Analyst: SL
Percent Moisture	14.1			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:41:00 AM

Project: SLU Marriott

Lab ID: 1409077-029 **Matrix**: Soil

Client Sample ID: DP-5-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	'H-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	21.0		mg/Kg-dry	1	9/10/2014 4:23:00 PM
Heavy Oil	ND	52.4		mg/Kg-dry	1	9/10/2014 4:23:00 PM
Surr: 2-Fluorobiphenyl	94.5	50-150		%REC	1	9/10/2014 4:23:00 PM
Surr: o-Terphenyl	87.2	50-150		%REC	1	9/10/2014 4:23:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG
Naphthalene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
2-Methylnaphthalene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
1-Methylnaphthalene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Acenaphthylene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Acenaphthene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Fluorene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Phenanthrene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Anthracene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Fluoranthene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Pyrene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benz(a)anthracene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Chrysene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benzo(b)fluoranthene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benzo(k)fluoranthene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benzo(a)pyrene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Dibenz(a,h)anthracene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benzo(g,h,i)perylene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Surr: 2-Fluorobiphenyl	79.5	42.7-132		%REC	1	9/12/2014 6:20:00 AM
Surr: Terphenyl-d14 (surr)	101	48.8-157		%REC	1	9/12/2014 6:20:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM
Gasoline	ND	6.09		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Surr: Toluene-d8	99.5	65-135		%REC	1	9/10/2014 1:27:00 PM
Surr: 4-Bromofluorobenzene	90.0	65-135		%REC	1	9/10/2014 1:27:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:41:00 AM

Project: SLU Marriott

Lab ID: 1409077-029 **Matrix**: Soil

Client Sample ID: DP-5-7.5

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	/ EPA Method	<u>8260</u>		Batch	n ID: 860	Analyst: EM
Dichlorodifluoromethane (CFC-12)	ND	0.0730		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Chloromethane	ND	0.0730		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Vinyl chloride	ND	0.00243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Bromomethane	ND	0.110		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Trichlorofluoromethane (CFC-11)	ND	0.0609		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Chloroethane	ND	0.0730		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,1-Dichloroethene	ND	0.0609		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Methylene chloride	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
trans-1,2-Dichloroethene	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.0609		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,1-Dichloroethane	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
2,2-Dichloropropane	ND	0.0609		mg/Kg-dry	1	9/10/2014 1:27:00 PM
cis-1,2-Dichloroethene	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Chloroform	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,1,1-Trichloroethane (TCA)	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,1-Dichloropropene	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Carbon tetrachloride	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,2-Dichloroethane (EDC)	ND	0.0365		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Benzene	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Trichloroethene (TCE)	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,2-Dichloropropane	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Bromodichloromethane	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Dibromomethane	ND	0.0487		mg/Kg-dry	1	9/10/2014 1:27:00 PM
cis-1,3-Dichloropropene	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Toluene	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
trans-1,3-Dichloropropylene	ND	0.0365		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,1,2-Trichloroethane	ND	0.0365		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,3-Dichloropropane	ND	0.0609		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Tetrachloroethene (PCE)	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Dibromochloromethane	ND	0.0365		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,2-Dibromoethane (EDB)	ND	0.00609		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Chlorobenzene	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM
1,1,1,2-Tetrachloroethane	ND	0.0365		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Ethylbenzene	ND	0.0365		mg/Kg-dry	1	9/10/2014 1:27:00 PM
m,p-Xylene	ND	0.0243		mg/Kg-dry	1	9/10/2014 1:27:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

E Value above quantitation range

RL Reporting Limit

Analyte detected below quantitation limits

Analytical Report

DF

H Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

ND Not detected at the Reporting Limit

Units

WO#: **1409077**Date Reported: **9/24/2014**

Date Analyzed

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:41:00 AM

RL

Qual

Project: SLU Marriott

Analyses

Lab ID: 1409077-029 **Matrix**: Soil

Result

Client Sample ID: DP-5-7.5

naiyses	Result	KL	Quai	Units	דע		Date Analyzed
/olatile Organic Compounds by E	PA Method	<u>8260</u>		Batch	ID:	8663	Analyst: EM
o-Xylene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Styrene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Isopropylbenzene	ND	0.0974		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Bromoform	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,1,2,2-Tetrachloroethane	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
n-Propylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Bromobenzene	ND	0.0365		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,3,5-Trimethylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
2-Chlorotoluene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
4-Chlorotoluene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
tert-Butylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2,3-Trichloropropane	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2,4-Trichlorobenzene	ND	0.0609		mg/Kg-dry	1		9/10/2014 1:27:00 PM
sec-Butylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
4-Isopropyltoluene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,3-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,4-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
n-Butylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0365		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2,4-Trimethylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Hexachlorobutadiene	ND	0.122		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Naphthalene	ND	0.0365		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2,3-Trichlorobenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Surr: Dibromofluoromethane	90.2	63.7-129		%REC	1		9/10/2014 1:27:00 PM
Surr: Toluene-d8	100	61.4-128		%REC	1		9/10/2014 1:27:00 PM
Surr: 1-Bromo-4-fluorobenzene	91.6	63.1-141		%REC	1		9/10/2014 1:27:00 PM
lercury by EPA Method 7471				Batch	ID:	8665	Analyst: TN
Mercury	ND	0.251		mg/Kg-dry	1		9/9/2014 5:12:56 PM
otal Metals by EPA Method 6020				Batch	ID:	8664	Analyst: TN
Arsenic	3.29	0.0860		mg/Kg-dry	1		9/9/2014 6:16:43 PM

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:41:00 AM

Project: SLU Marriott

Lab ID: 1409077-029 **Matrix**: Soil

Client Sample ID: DP-5-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 86	64 Analyst: TN
Barium	71.3	0.430		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Cadmium	ND	0.172		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Chromium	41.6	0.0860	[RA]	mg/Kg-dry	1	9/10/2014 3:04:37 PM
Lead	3.23	0.172		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Selenium	ND	0.430		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Silver	ND	0.0860		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Sample Moisture (Percent	Moisture)			Batch	ı ID: R1	6685 Analyst: SL
Percent Moisture	11.2			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:47:00 AM

Project: SLU Marriott

Lab ID: 1409077-030 **Matrix:** Soil

Client Sample ID: DP-6-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	19.4		mg/Kg-dry	1	9/10/2014 5:27:00 PM
Heavy Oil	ND	48.4		mg/Kg-dry	1	9/10/2014 5:27:00 PM
Surr: 2-Fluorobiphenyl	95.8	50-150		%REC	1	9/10/2014 5:27:00 PM
Surr: o-Terphenyl	85.2	50-150		%REC	1	9/10/2014 5:27:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG
Naphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
2-Methylnaphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
1-Methylnaphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Acenaphthylene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Acenaphthene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Fluorene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Phenanthrene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benz(a)anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Chrysene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benzo(b)fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benzo(k)fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benzo(a)pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Indeno(1,2,3-cd)pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Dibenz(a,h)anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benzo(g,h,i)perylene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Surr: 2-Fluorobiphenyl	73.4	42.7-132		%REC	1	9/12/2014 6:43:00 AM
Surr: Terphenyl-d14 (surr)	115	48.8-157		%REC	1	9/12/2014 6:43:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	693 Analyst: EM
Gasoline	ND	4.64		mg/Kg-dry	1	9/10/2014 2:26:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/10/2014 2:26:00 PM
Surr: 4-Bromofluorobenzene	88.9	65-135		%REC	1	9/10/2014 2:26:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:47:00 AM

Project: SLU Marriott

Lab ID: 1409077-030 **Matrix**: Soil

Client Sample ID: DP-6-2.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0557 9/10/2014 2:26:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0557 9/10/2014 2:26:00 PM 1 Vinyl chloride ND 0.00186 mg/Kg-dry 9/10/2014 2:26:00 PM 1 mg/Kg-dry Bromomethane ND 0.0836 1 9/10/2014 2:26:00 PM Trichlorofluoromethane (CFC-11) ND 0.0464 mg/Kg-dry 1 9/10/2014 2:26:00 PM Chloroethane ND 0.0557 mg/Kg-dry 9/10/2014 2:26:00 PM 1 1,1-Dichloroethene ND 0.0464 mg/Kg-dry 1 9/10/2014 2:26:00 PM ND 0.0186 9/10/2014 2:26:00 PM Methylene chloride mg/Kg-dry 1 ND 0.0186 9/10/2014 2:26:00 PM trans-1,2-Dichloroethene mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0464 9/10/2014 2:26:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM 2,2-Dichloropropane ND 0.0464 mg/Kg-dry 1 9/10/2014 2:26:00 PM cis-1,2-Dichloroethene ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM Chloroform ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0186 1 9/10/2014 2:26:00 PM mg/Kg-dry 1,1-Dichloropropene ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM Carbon tetrachloride ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM 1,2-Dichloroethane (EDC) ND 0.0279 9/10/2014 2:26:00 PM mg/Kg-dry 1 Benzene ND 9/10/2014 2:26:00 PM 0.0186 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/10/2014 2:26:00 PM 0.0186 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM Bromodichloromethane ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM ND 9/10/2014 2:26:00 PM Dibromomethane 0.0372 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM Toluene ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM trans-1,3-Dichloropropylene ND 0.0279 9/10/2014 2:26:00 PM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0279 mg/Kg-dry 1 9/10/2014 2:26:00 PM 1,3-Dichloropropane ND 0.0464 9/10/2014 2:26:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0186 9/10/2014 2:26:00 PM mg/Kg-dry 1 ND 1 9/10/2014 2:26:00 PM Dibromochloromethane 0.0279 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00464 mg/Kg-dry 1 9/10/2014 2:26:00 PM Chlorobenzene ND 0.0186 9/10/2014 2:26:00 PM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0279 mg/Kg-dry 1 9/10/2014 2:26:00 PM ND Ethylbenzene 0.0279 mg/Kg-dry 1 9/10/2014 2:26:00 PM m,p-Xylene ND 0.0186 mg/Kg-dry 9/10/2014 2:26:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:47:00 AM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-030 **Matrix**: Soil

Client Sample ID: DP-6-2.5

nalyses	Result	RL	Qual	Units	DF	ı	Date Analyzed
/olatile Organic Compounds by E	PA Method	8260		Batch	ı ID:	8663	Analyst: EM
o-Xylene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
Styrene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
Isopropylbenzene	ND	0.0743		mg/Kg-dry	1		9/10/2014 2:26:00 PM
Bromoform	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,1,2,2-Tetrachloroethane	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
n-Propylbenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
Bromobenzene	ND	0.0279		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,3,5-Trimethylbenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
2-Chlorotoluene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
4-Chlorotoluene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
tert-Butylbenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,2,3-Trichloropropane	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,2,4-Trichlorobenzene	ND	0.0464		mg/Kg-dry	1		9/10/2014 2:26:00 PM
sec-Butylbenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
4-Isopropyltoluene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,3-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,4-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
n-Butylbenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,2-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0279		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,2,4-Trimethylbenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
Hexachlorobutadiene	ND	0.0929		mg/Kg-dry	1		9/10/2014 2:26:00 PM
Naphthalene	ND	0.0279		mg/Kg-dry	1		9/10/2014 2:26:00 PM
1,2,3-Trichlorobenzene	ND	0.0186		mg/Kg-dry	1		9/10/2014 2:26:00 PM
Surr: Dibromofluoromethane	90.9	63.7-129		%REC	1		9/10/2014 2:26:00 PM
Surr: Toluene-d8	101	61.4-128		%REC	1		9/10/2014 2:26:00 PM
Surr: 1-Bromo-4-fluorobenzene	90.2	63.1-141		%REC	1		9/10/2014 2:26:00 PM
Mercury by EPA Method 7471				Batch	ı ID:	8665	Analyst: TN
Mercury	ND	0.244		mg/Kg-dry	1		9/9/2014 5:15:00 PM
Total Metals by EPA Method 6020				Batch	ı ID:	8664	Analyst: TN
Arsenic	3.17	0.0872		mg/Kg-dry	1		9/9/2014 6:20:08 PM

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:47:00 AM

Project: SLU Marriott

Lab ID: 1409077-030 **Matrix:** Soil

Client Sample ID: DP-6-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method	d 6020			Batch	ı ID:	8664 Analyst: TN
Barium	50.5	0.436		mg/Kg-dry	1	9/9/2014 6:20:08 PM
Cadmium	ND	0.174		mg/Kg-dry	1	9/9/2014 6:20:08 PM
Chromium	33.1	0.0872	[RA]	mg/Kg-dry	1	9/10/2014 3:08:02 PM
Lead	31.5	0.174		mg/Kg-dry	1	9/9/2014 6:20:08 PM
Selenium	ND	0.436		mg/Kg-dry	1	9/9/2014 6:20:08 PM
Silver	ND	0.0872		mg/Kg-dry	1	9/9/2014 6:20:08 PM
Sample Moisture (Percent M	Moisture)			Batch	ı ID:	R16685 Analyst: SL
Percent Moisture	11.8			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:04:00 AM

Project: SLU Marriott

Lab ID: 1409077-033 **Matrix:** Soil

Client Sample ID: DP-6-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	20.6		mg/Kg-dry	1	9/10/2014 5:59:00 PM
Heavy Oil	ND	51.4		mg/Kg-dry	1	9/10/2014 5:59:00 PM
Surr: 2-Fluorobiphenyl	92.8	50-150		%REC	1	9/10/2014 5:59:00 PM
Surr: o-Terphenyl	78.2	50-150		%REC	1	9/10/2014 5:59:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batch	า ID: 8667	Analyst: NG
Naphthalene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
2-Methylnaphthalene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
1-Methylnaphthalene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Acenaphthylene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Acenaphthene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Fluorene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Phenanthrene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Anthracene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Fluoranthene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Pyrene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benz(a)anthracene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Chrysene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benzo(b)fluoranthene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benzo(k)fluoranthene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benzo(a)pyrene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Indeno(1,2,3-cd)pyrene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Dibenz(a,h)anthracene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benzo(g,h,i)perylene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Surr: 2-Fluorobiphenyl	62.4	42.7-132		%REC	1	9/12/2014 7:05:00 AM
Surr: Terphenyl-d14 (surr)	97.6	48.8-157		%REC	1	9/12/2014 7:05:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM
Gasoline	ND	3.42		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/10/2014 2:56:00 PM
Surr: 4-Bromofluorobenzene	89.7	65-135		%REC	1	9/10/2014 2:56:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:04:00 AM

Project: SLU Marriott

Lab ID: 1409077-033 **Matrix**: Soil

Client Sample ID: DP-6-10.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0410 9/10/2014 2:56:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0410 9/10/2014 2:56:00 PM 1 Vinyl chloride ND 0.00137 mg/Kg-dry 9/10/2014 2:56:00 PM 1 mg/Kg-dry Bromomethane ND 0.0615 1 9/10/2014 2:56:00 PM Trichlorofluoromethane (CFC-11) ND 0.0342 mg/Kg-dry 1 9/10/2014 2:56:00 PM 9/10/2014 2:56:00 PM Chloroethane ND 0.0410 mg/Kg-dry 1 1,1-Dichloroethene ND 0.0342 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 0.0137 9/10/2014 2:56:00 PM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Methyl tert-butyl ether (MTBE) ND 9/10/2014 2:56:00 PM 0.0342 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 2,2-Dichloropropane ND 0.0342 mg/Kg-dry 1 9/10/2014 2:56:00 PM cis-1,2-Dichloroethene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Chloroform ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0137 1 9/10/2014 2:56:00 PM mg/Kg-dry 1,1-Dichloropropene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Carbon tetrachloride ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,2-Dichloroethane (EDC) ND 0.0205 9/10/2014 2:56:00 PM mg/Kg-dry 1 Benzene ND 9/10/2014 2:56:00 PM 0.0137 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/10/2014 2:56:00 PM 0.0137 mg/Kg-dry 1 0.0137 1,2-Dichloropropane ND mg/Kg-dry 1 9/10/2014 2:56:00 PM Bromodichloromethane ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 9/10/2014 2:56:00 PM Dibromomethane 0.0273 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Toluene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM trans-1,3-Dichloropropylene ND 0.0205 9/10/2014 2:56:00 PM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0205 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,3-Dichloropropane ND 0.0342 9/10/2014 2:56:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0137 9/10/2014 2:56:00 PM mg/Kg-dry 1 ND 1 9/10/2014 2:56:00 PM Dibromochloromethane 0.0205 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00342 mg/Kg-dry 1 9/10/2014 2:56:00 PM Chlorobenzene ND 9/10/2014 2:56:00 PM 0.0137 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0205 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND Ethylbenzene 0.0205 mg/Kg-dry 1 9/10/2014 2:56:00 PM m,p-Xylene ND 0.0137 mg/Kg-dry 9/10/2014 2:56:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:04:00 AM Client:

Project: SLU Marriott

Lab ID: 1409077-033 Matrix: Soil

Client Sample ID: DP-6-10.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 2:56:00 PM o-Xylene 0.0137 mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0137 9/10/2014 2:56:00 PM 1 Isopropylbenzene ND 0.0547 mg/Kg-dry 9/10/2014 2:56:00 PM 1 mg/Kg-dry Bromoform ND 0.0137 1 9/10/2014 2:56:00 PM 1,1,2,2-Tetrachloroethane ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM n-Propylbenzene ND 0.0137 mg/Kg-dry 9/10/2014 2:56:00 PM 1 Bromobenzene ND 0.0205 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 1 9/10/2014 2:56:00 PM 1,3,5-Trimethylbenzene 0.0137 mg/Kg-dry 2-Chlorotoluene ND 9/10/2014 2:56:00 PM 0.0137 mg/Kg-dry 1 4-Chlorotoluene ND 9/10/2014 2:56:00 PM 0.0137 mg/Kg-dry 1 tert-Butylbenzene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,2,3-Trichloropropane ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,2,4-Trichlorobenzene ND 0.0342 mg/Kg-dry 1 9/10/2014 2:56:00 PM sec-Butylbenzene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 0.0137 1 9/10/2014 2:56:00 PM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,4-Dichlorobenzene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM n-Butylbenzene ND 0.0137 9/10/2014 2:56:00 PM mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 1,2-Dichlorobenzene 0.0137 mg/Kg-dry 1 ND 9/10/2014 2:56:00 PM 1,2-Dibromo-3-chloropropane 0.0205 mg/Kg-dry 1 1,2,4-Trimethylbenzene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Hexachlorobutadiene ND 0.0684 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 9/10/2014 2:56:00 PM Naphthalene 0.0205 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Surr: Dibromofluoromethane 92.3 63.7-129 %REC 1 9/10/2014 2:56:00 PM Surr: Toluene-d8 102 61.4-128 %REC 1 9/10/2014 2:56:00 PM Surr: 1-Bromo-4-fluorobenzene 91.1 63.1-141 %REC 1 9/10/2014 2:56:00 PM Batch ID: 8665 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.266 mg/Kg-dry 9/9/2014 5:16:37 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 1.67 0.0855 mg/Kg-dry 1 9/10/2014 4:05:10 PM

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:04:00 AM

Project: SLU Marriott

Lab ID: 1409077-033 **Matrix:** Soil

Client Sample ID: DP-6-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	า ID: 867	4 Analyst: TN
Barium	46.5	0.428		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Cadmium	ND	0.171		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Chromium	24.9	0.0855		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Lead	1.81	0.171		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Selenium	0.997	0.428		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Silver	ND	0.0855		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Sample Moisture (Percent	: Moisture)			Batch	n ID: R16	6685 Analyst: SL
Percent Moisture	11.4			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:29:00 PM

Project: SLU Marriott

Lab ID: 1409077-037 **Matrix:** Soil

Client Sample ID: DP-7-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (Polychlorinated Biphenyls)	CB) by EPA 808	<u>2</u>		Batch	n ID: 8688	Analyst: NG
Aroclor 1016	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Aroclor 1221	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Aroclor 1232	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Aroclor 1242	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Aroclor 1248	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Aroclor 1254	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Aroclor 1260	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Aroclor 1262	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Aroclor 1268	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Total PCBs	ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
Surr: Decachlorobiphenyl	80.2	50.2-159		%REC	1	9/11/2014 8:10:00 PM
Surr: Tetrachloro-m-xylene	86.6	60.3-134		%REC	1	9/11/2014 8:10:00 PM
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	468	29.8		mg/Kg-dry	1	9/10/2014 6:31:00 PM
Heavy Oil	ND	74.4		mg/Kg-dry	1	9/10/2014 6:31:00 PM
Surr: 2-Fluorobiphenyl	102	50-150		%REC	1	9/10/2014 6:31:00 PM
Surr: o-Terphenyl	87.0	50-150		%REC	1	9/10/2014 6:31:00 PM
Polyaromatic Hydrocarbons k	y EPA Method	8270 (SIM)		Batch	n ID: 8667	Analyst: NG
Naphthalene	312	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
2-Methylnaphthalene	666	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
1-Methylnaphthalene	1,580	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Acenaphthylene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Acenaphthene	489	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Fluorene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Phenanthrene	846	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Anthracene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Fluoranthene	583	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Pyrene	583	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Benz(a)anthracene	354	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Chrysene	188	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
Benzo(b)fluoranthene	407	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Date Analyzed

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:29:00 PM

RL

Qual

Units

DF

Project: SLU Marriott

Analyses

Lab ID: 1409077-037 **Matrix**: Soil

Result

Client Sample ID: DP-7-7.5

Analyses	Result	RL	Quai	Units	DΓ	Date Analyz	ea
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	n ID: 866	7 Analyst:	NG
Benzo(k)fluoranthene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00) AM
Benzo(a)pyrene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00) AM
Indeno(1,2,3-cd)pyrene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00) AM
Dibenz(a,h)anthracene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00) AM
Benzo(g,h,i)perylene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00) AM
Surr: 2-Fluorobiphenyl	64.5	42.7-132		%REC	1	9/12/2014 7:28:00) AM
Surr: Terphenyl-d14 (surr)	153	48.8-157		%REC	1	9/12/2014 7:28:00) AM
Gasoline by NWTPH-Gx				Batch	n ID: R16	714 Analyst:	EM
Gasoline	175	8.32		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Surr: Toluene-d8	98.0	65-135		%REC	1	9/11/2014 4:40:00) AM
Surr: 4-Bromofluorobenzene	97.1	65-135		%REC	1	9/11/2014 4:40:00) AM
Volatile Organic Compounds by	/ EPA Method	8260		Batch	n ID: 867	2 Analyst:	EM
Dichlorodifluoromethane (CFC-12)	ND	0.0998		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Chloromethane	ND	0.0998		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Vinyl chloride	ND	0.00333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Bromomethane	ND	0.150		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Trichlorofluoromethane (CFC-11)	ND	0.0832		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Chloroethane	ND	0.0998		mg/Kg-dry	1	9/11/2014 4:40:00) AM
1,1-Dichloroethene	ND	0.0832		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Methylene chloride	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
trans-1,2-Dichloroethene	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Methyl tert-butyl ether (MTBE)	ND	0.0832		mg/Kg-dry	1	9/11/2014 4:40:00) AM
1,1-Dichloroethane	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
2,2-Dichloropropane	ND	0.0832		mg/Kg-dry	1	9/11/2014 4:40:00) AM
cis-1,2-Dichloroethene	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Chloroform	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
1,1,1-Trichloroethane (TCA)	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
1,1-Dichloropropene	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Carbon tetrachloride	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM
1,2-Dichloroethane (EDC)	ND	0.0499		mg/Kg-dry	1	9/11/2014 4:40:00) AM
Benzene	0.346	0.0333		mg/Kg-dry	1	9/11/2014 4:40:00) AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:29:00 PM

Project: SLU Marriott

Lab ID: 1409077-037 **Matrix**: Soil

Client Sample ID: DP-7-7.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0333 9/11/2014 4:40:00 AM Trichloroethene (TCE) mg/Kg-dry 1 1,2-Dichloropropane ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 Bromodichloromethane ND 0.0333 mg/Kg-dry 9/11/2014 4:40:00 AM 1 mg/Kg-dry Dibromomethane ND 0.0665 1 9/11/2014 4:40:00 AM cis-1,3-Dichloropropene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM Toluene 0.225 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 trans-1,3-Dichloropropylene ND 0.0499 mg/Kg-dry 1 9/11/2014 4:40:00 AM ND 0.0499 1 9/11/2014 4:40:00 AM 1,1,2-Trichloroethane mg/Kg-dry ND 0.0832 9/11/2014 4:40:00 AM 1,3-Dichloropropane mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 Dibromochloromethane ND 0.0499 mg/Kg-dry 1 9/11/2014 4:40:00 AM 1,2-Dibromoethane (EDB) ND 0.00832 mg/Kg-dry 1 9/11/2014 4:40:00 AM Chlorobenzene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM ND 1,1,1,2-Tetrachloroethane 0.0499 mg/Kg-dry 1 9/11/2014 4:40:00 AM Ethylbenzene 0.170 0.0499 1 9/11/2014 4:40:00 AM mg/Kg-dry m,p-Xylene 0.545 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM o-Xylene 0.124 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM Styrene ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 0.730 9/11/2014 4:40:00 AM Isopropylbenzene 0.133 mg/Kg-dry 1 9/11/2014 4:40:00 AM Bromoform ND 0.0333 mg/Kg-dry 1 ND 1,1,2,2-Tetrachloroethane 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM n-Propylbenzene 0.926 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM ND 9/11/2014 4:40:00 AM Bromobenzene 0.0499 mg/Kg-dry 1 0.0973 1,3,5-Trimethylbenzene 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM 2-Chlorotoluene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM 4-Chlorotoluene ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM 1,2,3-Trichloropropane ND 0.0333 1 9/11/2014 4:40:00 AM mg/Kg-dry 1,2,4-Trichlorobenzene ND 0.0832 9/11/2014 4:40:00 AM mg/Kg-dry 1 0.392 0.0333 1 9/11/2014 4:40:00 AM sec-Butylbenzene mg/Kg-dry 0.0669 0.0333 4-Isopropyltoluene mg/Kg-dry 1 9/11/2014 4:40:00 AM 1,3-Dichlorobenzene ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 1,4-Dichlorobenzene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM n-Butylbenzene 0.607 9/11/2014 4:40:00 AM 0.0333 mg/Kg-dry 1 1,2-Dichlorobenzene ND 0.0333 mg/Kg-dry 9/11/2014 4:40:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:29:00 PM

Project: SLU Marriott

Lab ID: 1409077-037 **Matrix**: Soil

Client Sample ID: DP-7-7.5

Analyses	Result	RL	Qual	Units	DF	=	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260		Batch	ı ID:	8672	Analyst: EM
1,2-Dibromo-3-chloropropane	ND	0.0499		mg/Kg-dry	1	9	9/11/2014 4:40:00 AM
1,2,4-Trimethylbenzene	0.131	0.0333		mg/Kg-dry	1	ç	9/11/2014 4:40:00 AM
Hexachlorobutadiene	ND	0.166		mg/Kg-dry	1	g	9/11/2014 4:40:00 AM
Naphthalene	ND	0.0499		mg/Kg-dry	1	g	9/11/2014 4:40:00 AM
1,2,3-Trichlorobenzene	ND	0.0333		mg/Kg-dry	1	ç	9/11/2014 4:40:00 AM
Surr: Dibromofluoromethane	98.4	63.7-129		%REC	1	g	9/11/2014 4:40:00 AM
Surr: Toluene-d8	109	61.4-128		%REC	1	g	9/11/2014 4:40:00 AM
Surr: 1-Bromo-4-fluorobenzene	101	63.1-141		%REC	1	9	9/11/2014 4:40:00 AM
Mercury by EPA Method 7471				Batch	ı ID:	8681	Analyst: TN
Mercury	0.592	0.340		mg/Kg-dry	1	9	9/10/2014 3:41:43 PM
Total Metals by EPA Method 602	<u>o</u>			Batch	ı ID:	8674	Analyst: TN
Arsenic	10.3	0.127		mg/Kg-dry	1	9	9/10/2014 4:25:43 PM
Barium	1,210	0.636		mg/Kg-dry	1	9	9/10/2014 4:25:43 PM
Cadmium	2.75	0.254		mg/Kg-dry	1	9	9/10/2014 4:25:43 PM
Chromium	18.9	0.127		mg/Kg-dry	1	9	9/10/2014 4:25:43 PM
Lead	355	0.254		mg/Kg-dry	1	9	9/10/2014 4:25:43 PM
Selenium	4.45	0.636		mg/Kg-dry	1	9	9/10/2014 4:25:43 PM
Silver	0.542	0.127		mg/Kg-dry	1	9	9/10/2014 4:25:43 PM
Metals (SW6020) with TCLP Extra	action (EPA 1	<u>1311)</u>		Batch	ı ID:	8796	Analyst: TN
Lead	0.996	0.200		mg/L	1	9	9/22/2014 11:34:19 AM
Sample Moisture (Percent Moistu	ure)			Batch	ı ID:	R1668	5 Analyst: SL
Percent Moisture	37.6			wt%	1	9	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-038 **Matrix:** Soil

Client Sample ID: DP-7-13.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	'H-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	844	22.4		mg/Kg-dry	1	9/10/2014 7:03:00 PM
Heavy Oil	ND	56.0		mg/Kg-dry	1	9/10/2014 7:03:00 PM
Surr: 2-Fluorobiphenyl	88.8	50-150		%REC	1	9/10/2014 7:03:00 PM
Surr: o-Terphenyl	85.6	50-150		%REC	1	9/10/2014 7:03:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batch	n ID: 8667	Analyst: NG
Naphthalene	907	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
2-Methylnaphthalene	6,840	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
1-Methylnaphthalene	9,120	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Acenaphthylene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Acenaphthene	1,000	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Fluorene	1,560	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Phenanthrene	3,950	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Anthracene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Fluoranthene	780	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Pyrene	964	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benz(a)anthracene	400	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Chrysene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benzo(b)fluoranthene	385	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benzo(k)fluoranthene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benzo(a)pyrene	352	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Dibenz(a,h)anthracene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benzo(g,h,i)perylene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Surr: 2-Fluorobiphenyl	65.0	42.7-132		%REC	1	9/12/2014 7:51:00 AM
Surr: Terphenyl-d14 (surr)	150	48.8-157		%REC	1	9/12/2014 7:51:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	714 Analyst: EM
Gasoline	412	65.6	D	mg/Kg-dry	10	9/11/2014 11:21:00 PM
Surr: Toluene-d8	99.4	65-135		%REC	1	9/11/2014 5:39:00 AM
Surr: 4-Bromofluorobenzene	95.4	65-135		%REC	1	9/11/2014 5:39:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-038 **Matrix**: Soil

Client Sample ID: DP-7-13.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0787 9/11/2014 5:39:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0787 9/11/2014 5:39:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00262 mg/Kg-dry 9/11/2014 5:39:00 AM 1 mg/Kg-dry Bromomethane ND 0.118 1 9/11/2014 5:39:00 AM Trichlorofluoromethane (CFC-11) ND 0.0656 mg/Kg-dry 1 9/11/2014 5:39:00 AM Chloroethane ND 0.0787 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0656 mg/Kg-dry 1 9/11/2014 5:39:00 AM ND 0.0262 9/11/2014 5:39:00 AM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Methyl tert-butyl ether (MTBE) ND 0.0656 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 2,2-Dichloropropane ND 0.0656 mg/Kg-dry 1 9/11/2014 5:39:00 AM cis-1,2-Dichloroethene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Chloroform ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0262 1 9/11/2014 5:39:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Carbon tetrachloride ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,2-Dichloroethane (EDC) ND 0.0394 9/11/2014 5:39:00 AM mg/Kg-dry 1 Benzene 1.28 9/11/2014 5:39:00 AM 0.0262 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/11/2014 5:39:00 AM 0.0262 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Bromodichloromethane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM ND 9/11/2014 5:39:00 AM Dibromomethane 0.0525 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Toluene 0.320 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM trans-1,3-Dichloropropylene ND 0.0394 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,3-Dichloropropane ND 0.0656 9/11/2014 5:39:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 ND 0.0394 1 9/11/2014 5:39:00 AM Dibromochloromethane mg/Kg-dry ND 0.00656 1,2-Dibromoethane (EDB) mg/Kg-dry 1 9/11/2014 5:39:00 AM Chlorobenzene ND 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.348 Ethylbenzene 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM m,p-Xylene 0.775 0.0262 mg/Kg-dry 9/11/2014 5:39:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:30:00 PM

Project: SLU Marriott

В

Ε

J

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

Value above quantitation range

Lab ID: 1409077-038 **Matrix**: Soil

Client Sample ID: DP-7-13.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.160 0.0262 9/11/2014 5:39:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0262 9/11/2014 5:39:00 AM 1 Isopropylbenzene 0.651 0.105 mg/Kg-dry 9/11/2014 5:39:00 AM 1 mg/Kg-dry Bromoform ND 0.0262 1 9/11/2014 5:39:00 AM 1,1,2,2-Tetrachloroethane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM n-Propylbenzene 0.790 0.0262 mg/Kg-dry 9/11/2014 5:39:00 AM 1 Bromobenzene ND 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.214 0.0262 1 9/11/2014 5:39:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 2-Chlorotoluene 0.0262 9/11/2014 5:39:00 AM ND mg/Kg-dry 1 0.0799 4-Chlorotoluene 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,2,3-Trichloropropane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,2,4-Trichlorobenzene ND 0.0656 mg/Kg-dry 1 9/11/2014 5:39:00 AM sec-Butylbenzene 0.293 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.375 0.0262 1 9/11/2014 5:39:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,4-Dichlorobenzene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM n-Butylbenzene 0.432 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry ND 9/11/2014 5:39:00 AM 1,2-Dichlorobenzene 0.0262 mg/Kg-dry 1 ND 9/11/2014 5:39:00 AM 1,2-Dibromo-3-chloropropane 0.0394 mg/Kg-dry 1 0.172 1,2,4-Trimethylbenzene 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Hexachlorobutadiene ND 0.131 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.411 9/11/2014 5:39:00 AM Naphthalene 0.0394 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Surr: Dibromofluoromethane 94.6 63.7-129 %REC 1 9/11/2014 5:39:00 AM Surr: Toluene-d8 114 61.4-128 %REC 1 9/11/2014 5:39:00 AM Surr: 1-Bromo-4-fluorobenzene 98.9 63.1-141 %REC 1 9/11/2014 5:39:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.279 mg/Kg-dry 9/10/2014 3:43:18 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 3.43 0.0878 mg/Kg-dry 1 9/10/2014 4:29:08 PM

RL Reporting Limit S Spike recovery outside accepted recovery limits

D

Н

ND

Dilution was required

Not detected at the Reporting Limit

Holding times for preparation or analysis exceeded

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-038 **Matrix:** Soil

Client Sample ID: DP-7-13.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 867	4 Analyst: TN
Barium	100	0.439		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Cadmium	ND	0.176		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Chromium	31.7	0.0878		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Lead	18.7	0.176		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Selenium	1.06	0.439		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Silver	ND	0.0878		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Sample Moisture (Percent	t Moisture)			Batch	n ID: R16	685 Analyst: SL
Percent Moisture	13.7			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:08:00 PM

Project: SLU Marriott

Lab ID: 1409077-042 **Matrix**: Soil

Client Sample ID: DP-5-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	22.3		mg/Kg-dry	1	9/10/2014 7:34:00 PM
Heavy Oil	ND	55.6		mg/Kg-dry	1	9/10/2014 7:34:00 PM
Surr: 2-Fluorobiphenyl	89.7	50-150		%REC	1	9/10/2014 7:34:00 PM
Surr: o-Terphenyl	75.5	50-150		%REC	1	9/10/2014 7:34:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batch	n ID: 8667	Analyst: NG
Naphthalene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
2-Methylnaphthalene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
1-Methylnaphthalene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Acenaphthylene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Acenaphthene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Fluorene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Phenanthrene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Anthracene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Fluoranthene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Pyrene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benz(a)anthracene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Chrysene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benzo(b)fluoranthene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benzo(k)fluoranthene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benzo(a)pyrene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Indeno(1,2,3-cd)pyrene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Dibenz(a,h)anthracene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benzo(g,h,i)perylene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Surr: 2-Fluorobiphenyl	78.2	42.7-132		%REC	1	9/12/2014 8:13:00 AM
Surr: Terphenyl-d14 (surr)	119	48.8-157		%REC	1	9/12/2014 8:13:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	14 Analyst: EM
Gasoline	ND	4.89		mg/Kg-dry	1	9/11/2014 7:37:00 AM
Surr: Toluene-d8	98.7	65-135		%REC	1	9/11/2014 7:37:00 AM
Surr: 4-Bromofluorobenzene	90.7	65-135		%REC	1	9/11/2014 7:37:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:08:00 PM

Project: SLU Marriott

Lab ID: 1409077-042 **Matrix**: Soil

Client Sample ID: DP-5-15.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0586 9/11/2014 7:37:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0586 9/11/2014 7:37:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00195 mg/Kg-dry 9/11/2014 7:37:00 AM 1 Bromomethane ND 0.0880 9/11/2014 7:37:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0489 mg/Kg-dry 1 9/11/2014 7:37:00 AM Chloroethane ND 0.0586 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0489 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND 0.0195 9/11/2014 7:37:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0195 9/11/2014 7:37:00 AM trans-1,2-Dichloroethene mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0489 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 2,2-Dichloropropane ND 0.0489 mg/Kg-dry 1 9/11/2014 7:37:00 AM cis-1,2-Dichloroethene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Chloroform ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0195 1 9/11/2014 7:37:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Carbon tetrachloride ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,2-Dichloroethane (EDC) ND 0.0293 9/11/2014 7:37:00 AM mg/Kg-dry 1 Benzene ND 9/11/2014 7:37:00 AM 0.0195 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/11/2014 7:37:00 AM 0.0195 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Bromodichloromethane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND 9/11/2014 7:37:00 AM Dibromomethane 0.0391 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Toluene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM trans-1,3-Dichloropropylene ND 0.0293 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0293 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,3-Dichloropropane ND 0.0489 9/11/2014 7:37:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry 1 ND 1 9/11/2014 7:37:00 AM Dibromochloromethane 0.0293 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00489 mg/Kg-dry 1 9/11/2014 7:37:00 AM Chlorobenzene ND 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0293 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND Ethylbenzene 0.0293 mg/Kg-dry 1 9/11/2014 7:37:00 AM m,p-Xylene 0.0639 0.0195 mg/Kg-dry 9/11/2014 7:37:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:08:00 PM

Project: SLU Marriott

Lab ID: 1409077-042 **Matrix**: Soil

Client Sample ID: DP-5-15.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0374 0.0195 9/11/2014 7:37:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0195 9/11/2014 7:37:00 AM 1 Isopropylbenzene ND 0.0782 mg/Kg-dry 9/11/2014 7:37:00 AM 1 mg/Kg-dry Bromoform ND 0.0195 1 9/11/2014 7:37:00 AM 1,1,2,2-Tetrachloroethane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM n-Propylbenzene 0.0374 0.0195 mg/Kg-dry 9/11/2014 7:37:00 AM 1 Bromobenzene ND 0.0293 mg/Kg-dry 1 9/11/2014 7:37:00 AM 0.0339 1 9/11/2014 7:37:00 AM 1,3,5-Trimethylbenzene 0.0195 mg/Kg-dry 2-Chlorotoluene 9/11/2014 7:37:00 AM ND 0.0195 mg/Kg-dry 1 ND 4-Chlorotoluene 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry 1 ND tert-Butylbenzene 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,2,3-Trichloropropane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,2,4-Trichlorobenzene ND 0.0489 mg/Kg-dry 1 9/11/2014 7:37:00 AM sec-Butylbenzene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND 0.0195 1 9/11/2014 7:37:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,4-Dichlorobenzene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM n-Butylbenzene 0.0375 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry 1 ND 9/11/2014 7:37:00 AM 1,2-Dichlorobenzene 0.0195 mg/Kg-dry 1 ND 9/11/2014 7:37:00 AM 1,2-Dibromo-3-chloropropane 0.0293 mg/Kg-dry 1 0.0433 1,2,4-Trimethylbenzene 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Hexachlorobutadiene ND 0.0977 mg/Kg-dry 1 9/11/2014 7:37:00 AM 0.0621 9/11/2014 7:37:00 AM Naphthalene 0.0293 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 92.3 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 7:37:00 AM Surr: Toluene-d8 109 61.4-128 %REC 1 9/11/2014 7:37:00 AM Surr: 1-Bromo-4-fluorobenzene 94.5 63.1-141 %REC 1 9/11/2014 7:37:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.282 mg/Kg-dry 9/10/2014 3:44:54 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 3.68 0.0902 mg/Kg-dry 1 9/10/2014 4:32:34 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:08:00 PM

Project: SLU Marriott

Lab ID: 1409077-042 **Matrix**: Soil

Client Sample ID: DP-5-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 86	Analyst: TN
Barium	96.2	0.451		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Cadmium	ND	0.180		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Chromium	31.0	0.0902		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Lead	21.7	0.180		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Selenium	1.15	0.451		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Silver	ND	0.0902		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Sample Moisture (Percent	t Moisture)			Batch	ı ID: R	16685 Analyst: SL
Percent Moisture	14.7			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:52:00 PM

Project: SLU Marriott

Lab ID: 1409077-044 **Matrix**: Soil

Client Sample ID: DP-9-5.0

Analyses	Result	RL	Qual	Units	DF		Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	8670	Analyst: EC
Diesel (Fuel Oil)	ND	27.0		mg/Kg-dry	1	9	/10/2014 8:06:00 PM
Heavy Oil	ND	67.5		mg/Kg-dry	1	9	/10/2014 8:06:00 PM
Surr: 2-Fluorobiphenyl	91.6	50-150		%REC	1	9	/10/2014 8:06:00 PM
Surr: o-Terphenyl	75.3	50-150		%REC	1	9	/10/2014 8:06:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batch ID: 8675			Analyst: NG
Naphthalene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
2-Methylnaphthalene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
1-Methylnaphthalene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Acenaphthylene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Acenaphthene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Fluorene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Phenanthrene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Anthracene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Fluoranthene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Pyrene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Benz(a)anthracene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Chrysene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Benzo(b)fluoranthene	326	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Benzo(k)fluoranthene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Benzo(a)pyrene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Indeno(1,2,3-cd)pyrene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Dibenz(a,h)anthracene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Benzo(g,h,i)perylene	ND	68.0		μg/Kg-dry	1	9	/12/2014 8:35:00 AM
Surr: 2-Fluorobiphenyl	103	42.7-132		%REC	1	9	/12/2014 8:35:00 AM
Surr: Terphenyl-d14 (surr)	139	48.8-157		%REC	1	9	/12/2014 8:35:00 AM
Gasoline by NWTPH-Gx				Batch	n ID:	R16714	4 Analyst: EM
Gasoline	152	9.38		mg/Kg-dry	1	9	/11/2014 12:02:00 PM
Surr: Toluene-d8	98.1	65-135		%REC	1	9	/11/2014 12:02:00 PM
Surr: 4-Bromofluorobenzene	93.0	65-135		%REC	1	9	/11/2014 12:02:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:52:00 PM

Project: SLU Marriott

Lab ID: 1409077-044 **Matrix**: Soil

Client Sample ID: DP-9-5.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 12:02:00 PM Dichlorodifluoromethane (CFC-12) 0.113 mg/Kg-dry 1 Chloromethane ND 0.113 9/11/2014 12:02:00 PM mg/Kg-dry 1 Vinyl chloride ND 0.00375 mg/Kg-dry 9/11/2014 12:02:00 PM 1 Bromomethane ND 0.169 9/11/2014 12:02:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0938 mg/Kg-dry 1 9/11/2014 12:02:00 PM Chloroethane ND 9/11/2014 12:02:00 PM 0.113 mg/Kg-dry 1 1,1-Dichloroethene ND 0.0938 mg/Kg-dry 1 9/11/2014 12:02:00 PM ND 0.0375 9/11/2014 12:02:00 PM Methylene chloride mg/Kg-dry 1 ND 0.0375 9/11/2014 12:02:00 PM trans-1,2-Dichloroethene mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0938 9/11/2014 12:02:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 2,2-Dichloropropane ND 0.0938 mg/Kg-dry 1 9/11/2014 12:02:00 PM cis-1,2-Dichloroethene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM Chloroform ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0375 1 9/11/2014 12:02:00 PM mg/Kg-dry 1,1-Dichloropropene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM Carbon tetrachloride ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,2-Dichloroethane (EDC) ND 0.0563 9/11/2014 12:02:00 PM mg/Kg-dry 1 Benzene 4.12 9/11/2014 12:02:00 PM 0.0375 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/11/2014 12:02:00 PM 0.0375 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM Bromodichloromethane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM ND 9/11/2014 12:02:00 PM Dibromomethane 0.0750 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 0.676 Toluene 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM trans-1,3-Dichloropropylene ND 0.0563 9/11/2014 12:02:00 PM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0563 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,3-Dichloropropane ND 0.0938 9/11/2014 12:02:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 ND 1 9/11/2014 12:02:00 PM Dibromochloromethane 0.0563 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00938 mg/Kg-dry 1 9/11/2014 12:02:00 PM Chlorobenzene ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0563 mg/Kg-dry 1 9/11/2014 12:02:00 PM 3.17 Ethylbenzene 0.0563 mg/Kg-dry 1 9/11/2014 12:02:00 PM m,p-Xylene 6.85 0.0375 mg/Kg-dry 9/11/2014 12:02:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:52:00 PM

Project: SLU Marriott

Lab ID: 1409077-044 **Matrix**: Soil

Client Sample ID: DP-9-5.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0375 9/11/2014 12:02:00 PM o-Xylene 1.39 mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0375 9/11/2014 12:02:00 PM 1 Isopropylbenzene 1.44 0.150 mg/Kg-dry 9/11/2014 12:02:00 PM 1 mg/Kg-dry Bromoform ND 0.0375 1 9/11/2014 12:02:00 PM 1,1,2,2-Tetrachloroethane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM n-Propylbenzene 1.21 0.0375 mg/Kg-dry 9/11/2014 12:02:00 PM 1 Bromobenzene ND 0.0563 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,3,5-Trimethylbenzene 1.06 0.0375 1 9/11/2014 12:02:00 PM mg/Kg-dry 2-Chlorotoluene ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 4-Chlorotoluene ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 tert-Butylbenzene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,2,3-Trichloropropane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,2,4-Trichlorobenzene ND 0.0938 mg/Kg-dry 1 9/11/2014 12:02:00 PM 0.365 sec-Butylbenzene 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1.46 0.0375 1 9/11/2014 12:02:00 PM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,4-Dichlorobenzene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM n-Butylbenzene 0.222 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 ND 9/11/2014 12:02:00 PM 1,2-Dichlorobenzene 0.0375 mg/Kg-dry 1 ND 9/11/2014 12:02:00 PM 1,2-Dibromo-3-chloropropane 0.0563 mg/Kg-dry 1 0.987 1,2,4-Trimethylbenzene 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM Hexachlorobutadiene ND 0.188 mg/Kg-dry 1 9/11/2014 12:02:00 PM 0.330 1 9/11/2014 12:02:00 PM Naphthalene 0.0563 mg/Kg-dry 1,2,3-Trichlorobenzene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 90.6 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 12:02:00 PM Surr: Toluene-d8 110 61.4-128 %REC 1 9/11/2014 12:02:00 PM Surr: 1-Bromo-4-fluorobenzene 97.0 63.1-141 %REC 1 9/11/2014 12:02:00 PM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury 5.51 3.13 D mg/Kg-dry 10 9/10/2014 4:16:16 PM Batch ID: 8811 Analyst: MW Mercury by EPA Method 7470 Mercury ND 0.138 µg/L-dry 1 9/23/2014 4:43:29 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:52:00 PM

Project: SLU Marriott

Lab ID: 1409077-044 **Matrix**: Soil

Client Sample ID: DP-9-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Metal	nod 6020			Batcl	n ID: 8674	Analyst: TN
Arsenic	19.3	0.106		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Barium	1,490	0.530		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Cadmium	0.592	0.212		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Chromium	26.1	0.106		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Lead	244	0.212		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Selenium	5.02	0.530		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Silver	1.07	0.106		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Sample Moisture (Percen	<u>it Moisture)</u>			Batcl	n ID: R166	85 Analyst: SL
Percent Moisture	27.4			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:50:00 PM

Project: SLU Marriott

Lab ID: 1409077-048 **Matrix**: Soil

Client Sample ID: DP-9-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID: 867	0 Analyst: EC
Diesel (Fuel Oil)	ND	20.7		mg/Kg-dry	1	9/10/2014 8:38:00 PM
Heavy Oil	ND	51.7		mg/Kg-dry	1	9/10/2014 8:38:00 PM
Surr: 2-Fluorobiphenyl	87.2	50-150		%REC	1	9/10/2014 8:38:00 PM
Surr: o-Terphenyl	76.4	50-150		%REC	1	9/10/2014 8:38:00 PM
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	n ID: 867	5 Analyst: NG
Naphthalene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
2-Methylnaphthalene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
1-Methylnaphthalene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Acenaphthylene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Acenaphthene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Fluorene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Phenanthrene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Anthracene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Fluoranthene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Pyrene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benz(a)anthracene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Chrysene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benzo(b)fluoranthene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benzo(k)fluoranthene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benzo(a)pyrene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Dibenz(a,h)anthracene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benzo(g,h,i)perylene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Surr: 2-Fluorobiphenyl	96.1	42.7-132		%REC	1	9/12/2014 9:20:00 AM
Surr: Terphenyl-d14 (surr)	127	48.8-157		%REC	1	9/12/2014 9:20:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R16	Analyst: EM
Gasoline	ND	3.52		mg/Kg-dry	1	9/11/2014 8:06:00 AM
Surr: Toluene-d8	99.8	65-135		%REC	1	9/11/2014 8:06:00 AM
Surr: 4-Bromofluorobenzene	92.6	65-135		%REC	1	9/11/2014 8:06:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:50:00 PM

Project: SLU Marriott

Lab ID: 1409077-048 **Matrix**: Soil

Client Sample ID: DP-9-20.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0422 9/11/2014 8:06:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0422 9/11/2014 8:06:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00141 mg/Kg-dry 9/11/2014 8:06:00 AM 1 Bromomethane ND 0.0633 1 9/11/2014 8:06:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0352 mg/Kg-dry 1 9/11/2014 8:06:00 AM Chloroethane ND 0.0422 9/11/2014 8:06:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0352 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 0.0141 9/11/2014 8:06:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0141 trans-1,2-Dichloroethene mg/Kg-dry 1 9/11/2014 8:06:00 AM Methyl tert-butyl ether (MTBE) ND 0.0352 9/11/2014 8:06:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 2,2-Dichloropropane ND 0.0352 mg/Kg-dry 1 9/11/2014 8:06:00 AM cis-1,2-Dichloroethene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Chloroform ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0141 1 9/11/2014 8:06:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Carbon tetrachloride ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,2-Dichloroethane (EDC) ND 0.0211 9/11/2014 8:06:00 AM mg/Kg-dry 1 Benzene ND 9/11/2014 8:06:00 AM 0.0141 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,2-Dichloropropane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Bromodichloromethane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 9/11/2014 8:06:00 AM Dibromomethane 0.0281 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Toluene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 0.0211 9/11/2014 8:06:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0211 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,3-Dichloropropane ND 0.0352 9/11/2014 8:06:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 ND 1 9/11/2014 8:06:00 AM Dibromochloromethane 0.0211 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00352 mg/Kg-dry 1 9/11/2014 8:06:00 AM Chlorobenzene ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0211 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND Ethylbenzene 0.0211 mg/Kg-dry 1 9/11/2014 8:06:00 AM m,p-Xylene 0.0698 0.0141 mg/Kg-dry 9/11/2014 8:06:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:50:00 PM

Project: SLU Marriott

Ε

J

RL

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-048 **Matrix**: Soil

Client Sample ID: DP-9-20.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0307 0.0141 9/11/2014 8:06:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0141 9/11/2014 8:06:00 AM 1 Isopropylbenzene ND 0.0563 mg/Kg-dry 9/11/2014 8:06:00 AM 1 mg/Kg-dry Bromoform ND 0.0141 1 9/11/2014 8:06:00 AM 1,1,2,2-Tetrachloroethane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM n-Propylbenzene 0.0299 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Bromobenzene ND 0.0211 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 0.0141 1 9/11/2014 8:06:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 2-Chlorotoluene ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 4-Chlorotoluene ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,2,3-Trichloropropane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,2,4-Trichlorobenzene ND 0.0352 mg/Kg-dry 1 9/11/2014 8:06:00 AM sec-Butylbenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 0.0141 1 9/11/2014 8:06:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,4-Dichlorobenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM n-Butylbenzene 0.0256 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry ND 0.0141 9/11/2014 8:06:00 AM 1,2-Dichlorobenzene mg/Kg-dry 1 ND 9/11/2014 8:06:00 AM 1,2-Dibromo-3-chloropropane 0.0211 mg/Kg-dry 1 0.0289 1,2,4-Trimethylbenzene 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Hexachlorobutadiene ND 0.0704 mg/Kg-dry 1 9/11/2014 8:06:00 AM 0.0459 9/11/2014 8:06:00 AM Naphthalene 0.0211 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 90.6 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 8:06:00 AM Surr: Toluene-d8 107 61.4-128 %REC 1 9/11/2014 8:06:00 AM Surr: 1-Bromo-4-fluorobenzene 96.6 63.1-141 %REC 1 9/11/2014 8:06:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.251 mg/Kg-dry 9/10/2014 4:02:31 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 2.51 0.0879 mg/Kg-dry 1 9/10/2014 4:46:20 PM В Analyte detected in the associated Method Blank D Qualifiers: Dilution was required

Н

ND

S

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:50:00 PM

Project: SLU Marriott

Lab ID: 1409077-048 **Matrix:** Soil

Client Sample ID: DP-9-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 602	<u>0</u>			Batch	n ID: 86	74 Analyst: TN
Barium	50.0	0.440		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Cadmium	ND	0.176		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Chromium	25.9	0.0879		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Lead	2.46	0.176		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Selenium	1.26	0.440		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Silver	ND	0.0879		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Sample Moisture (Percent Moiste	ure)			Batch	ı ID: R1	6685 Analyst: SL
Percent Moisture	11.2			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-049 **Matrix**: Soil

Client Sample ID: DP-8-35.0

Analyses	Result	RL	Qual	Units	DF	Da	nte Analyzed
Diesel and Heavy Oil by NWTPI	I-Dx/Dx Ext.			Batch	n ID: 86	70	Analyst: EC
Diesel (Fuel Oil)	ND	20.9		mg/Kg-dry	1	9/10	/2014 9:10:00 PM
Heavy Oil	ND	52.2		mg/Kg-dry	1	9/10	/2014 9:10:00 PM
Surr: 2-Fluorobiphenyl	88.8	50-150		%REC	1	9/10	/2014 9:10:00 PM
Surr: o-Terphenyl	76.3	50-150		%REC	1	9/10	/2014 9:10:00 PM
Gasoline by NWTPH-Gx				Batch	ı ID: Rí	16714	Analyst: EM
Gasoline	ND	3.32		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Surr: Toluene-d8	100	65-135		%REC	1	9/11	/2014 8:36:00 AM
Surr: 4-Bromofluorobenzene	91.7	65-135		%REC	1	9/11	/2014 8:36:00 AM
Volatile Organic Compounds by	/ EPA Method	<u>8260</u>		Batch	n ID: 86	72	Analyst: EM
Dichlorodifluoromethane (CFC-12)	ND	0.0399		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Chloromethane	ND	0.0399		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Vinyl chloride	ND	0.00133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Bromomethane	ND	0.0598		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Trichlorofluoromethane (CFC-11)	ND	0.0332		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Chloroethane	ND	0.0399		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,1-Dichloroethene	ND	0.0332		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Methylene chloride	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
trans-1,2-Dichloroethene	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Methyl tert-butyl ether (MTBE)	ND	0.0332		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,1-Dichloroethane	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
2,2-Dichloropropane	ND	0.0332		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
cis-1,2-Dichloroethene	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Chloroform	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,1,1-Trichloroethane (TCA)	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,1-Dichloropropene	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Carbon tetrachloride	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,2-Dichloroethane (EDC)	ND	0.0199		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Benzene	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Trichloroethene (TCE)	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,2-Dichloropropane	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Bromodichloromethane	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-049 **Matrix**: Soil

Client Sample ID: DP-8-35.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM Dibromomethane ND 0.0266 9/11/2014 8:36:00 AM mg/Kg-dry 1 mg/Kg-dry cis-1,3-Dichloropropene ND 0.0133 1 9/11/2014 8:36:00 AM Toluene ND 0.0133 mg/Kg-dry 9/11/2014 8:36:00 AM 1 mg/Kg-dry trans-1,3-Dichloropropylene ND 0.0199 1 9/11/2014 8:36:00 AM 1,1,2-Trichloroethane ND 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,3-Dichloropropane ND 0.0332 mg/Kg-dry 1 9/11/2014 8:36:00 AM Tetrachloroethene (PCE) ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM Dibromochloromethane ND 0.0199 1 9/11/2014 8:36:00 AM mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00332 mg/Kg-dry 1 9/11/2014 8:36:00 AM ND Chlorobenzene 9/11/2014 8:36:00 AM 0.0133 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM Ethylbenzene 0.0215 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM m,p-Xylene 0.0774 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM o-Xylene 0.0273 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM Styrene ND 0.0133 1 9/11/2014 8:36:00 AM mg/Kg-dry Isopropylbenzene ND 0.0531 mg/Kg-dry 1 9/11/2014 8:36:00 AM Bromoform ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,1,2,2-Tetrachloroethane ND 0.0133 9/11/2014 8:36:00 AM mg/Kg-dry 1 0.0279 9/11/2014 8:36:00 AM n-Propylbenzene 0.0133 mg/Kg-dry 1 Bromobenzene ND 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM ND 1,3,5-Trimethylbenzene 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 2-Chlorotoluene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM ND 9/11/2014 8:36:00 AM 4-Chlorotoluene 0.0133 mg/Kg-dry 1 tert-Butylbenzene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,2,3-Trichloropropane ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,2,4-Trichlorobenzene ND 0.0332 9/11/2014 8:36:00 AM mg/Kg-dry 1 sec-Butylbenzene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 4-Isopropyltoluene ND 0.0133 1 9/11/2014 8:36:00 AM mg/Kg-dry 1,3-Dichlorobenzene ND 0.0133 1 9/11/2014 8:36:00 AM mg/Kg-dry ND 1,4-Dichlorobenzene 1 9/11/2014 8:36:00 AM 0.0133 mg/Kg-dry 0.0241 n-Butylbenzene 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,2-Dichlorobenzene ND 0.0133 9/11/2014 8:36:00 AM mg/Kg-dry 1 1,2-Dibromo-3-chloropropane ND 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,2,4-Trimethylbenzene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM Hexachlorobutadiene ND 0.0664 mg/Kg-dry 9/11/2014 8:36:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-049 **Matrix**: Soil

Client Sample ID: DP-8-35.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	y EPA Method	8260		Batch	n ID: 86	72 Analyst: EM
Naphthalene	0.0516	0.0199		mg/Kg-dry	1	9/11/2014 8:36:00 AM
1,2,3-Trichlorobenzene	ND	0.0133		mg/Kg-dry	1	9/11/2014 8:36:00 AM
Surr: Dibromofluoromethane	92.1	63.7-129		%REC	1	9/11/2014 8:36:00 AM
Surr: Toluene-d8	108	61.4-128		%REC	1	9/11/2014 8:36:00 AM
Surr: 1-Bromo-4-fluorobenzene	95.7	63.1-141		%REC	1	9/11/2014 8:36:00 AM
Sample Moisture (Percent Mois	ture)			Batch	n ID: Rí	16685 Analyst: SL
Percent Moisture	14.2			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:40:00 AM

Project: SLU Marriott

Lab ID: 1409077-050 **Matrix**: Water

Client Sample ID: MW-2-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Bato	h ID: 8679	Analyst: EC
Diesel (Fuel Oil)	ND	50.0		μg/L	1	9/11/2014 3:25:00 PM
Heavy Oil	ND	100		μg/L	1	9/11/2014 3:25:00 PM
Surr: 2-Fluorobiphenyl	79.3	50-150		%REC	1	9/11/2014 3:25:00 PM
Surr: o-Terphenyl	76.1	50-150		%REC	1	9/11/2014 3:25:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Bato	h ID: 8680	Analyst: NG
Naphthalene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
2-Methylnaphthalene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
1-Methylnaphthalene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Acenaphthylene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Acenaphthene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Fluorene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Phenanthrene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Anthracene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Fluoranthene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Pyrene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benz(a)anthracene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Chrysene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benzo(b)fluoranthene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benzo(k)fluoranthene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benzo(a)pyrene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Indeno(1,2,3-cd)pyrene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Dibenz(a,h)anthracene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benzo(g,h,i)perylene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Surr: 2-Fluorobiphenyl	87.5	23.9-122		%REC	1	9/11/2014 11:55:00 PM
Surr: Terphenyl-d14	125	33.4-135		%REC	1	9/11/2014 11:55:00 PM
Gasoline by NWTPH-Gx				Bato	h ID: R166	82 Analyst: EM
Gasoline	ND	50.0		μg/L	1	9/9/2014 11:26:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/9/2014 11:26:00 PM
Surr: 4-Bromofluorobenzene	102	65-135		%REC	1	9/9/2014 11:26:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:40:00 AM

Project: SLU Marriott

Lab ID: 1409077-050 **Matrix**: Water

Client Sample ID: MW-2-140906

Analyses Result RL Qual Units DF **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: R16668 Analyst: BC 9/9/2014 11:26:00 PM ND 1.00 Dichlorodifluoromethane (CFC-12) μg/L 1 Chloromethane ND 1.00 9/9/2014 11:26:00 PM μg/L 1 Vinyl chloride 1.34 0.200 9/9/2014 11:26:00 PM μg/L 1 Bromomethane ND 1.00 9/9/2014 11:26:00 PM μg/L 1 Trichlorofluoromethane (CFC-11) ND 1.00 μg/L 1 9/9/2014 11:26:00 PM Chloroethane NΠ 1.00 9/9/2014 11:26:00 PM μg/L 1 1,1-Dichloroethene ND 1.00 μg/L 1 9/9/2014 11:26:00 PM ND 9/9/2014 11:26:00 PM Methylene chloride 1.00 μg/L 1 ND trans-1,2-Dichloroethene 1.00 μg/L 9/9/2014 11:26:00 PM Methyl tert-butyl ether (MTBE) ND 1.00 μg/L 1 9/9/2014 11:26:00 PM μg/L 1,1-Dichloroethane ND 1.00 1 9/9/2014 11:26:00 PM 2,2-Dichloropropane ND 2.00 μg/L 1 9/9/2014 11:26:00 PM cis-1,2-Dichloroethene 4.44 1.00 1 9/11/2014 1:53:00 AM μg/L Chloroform ND 1.00 μg/L 1 9/9/2014 11:26:00 PM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 9/9/2014 11:26:00 PM 1 1,1-Dichloropropene ND 1.00 μg/L 1 9/9/2014 11:26:00 PM Carbon tetrachloride ND 1.00 μg/L 1 9/9/2014 11:26:00 PM 1,2-Dichloroethane (EDC) ND 1.00 9/9/2014 11:26:00 PM μg/L Benzene 14.1 1.00 1 9/11/2014 1:53:00 AM μg/L Trichloroethene (TCE) 0.500 ND μg/L 1 9/9/2014 11:26:00 PM 1,2-Dichloropropane ND 1.00 μg/L 1 9/9/2014 11:26:00 PM Bromodichloromethane ND 1.00 μg/L 1 9/9/2014 11:26:00 PM ND Dibromomethane 1.00 μg/L 1 9/9/2014 11:26:00 PM cis-1,3-Dichloropropene ND 1.00 1 9/9/2014 11:26:00 PM μg/L Toluene ND 1.00 μg/L 1 9/9/2014 11:26:00 PM ND 1.00 μg/L 9/9/2014 11:26:00 PM trans-1,3-Dichloropropene 1 1,1,2-Trichloroethane ND 1.00 μg/L 1 9/9/2014 11:26:00 PM 1,3-Dichloropropane ND 1.00 9/9/2014 11:26:00 PM μg/L 1 Tetrachloroethene (PCE) ND 1.00 9/9/2014 11:26:00 PM μg/L 1 9/9/2014 11:26:00 PM ND 1 Dibromochloromethane 1.00 μg/L 0.0600 1,2-Dibromoethane (EDB) ND μg/L 1 9/9/2014 11:26:00 PM Chlorobenzene ND 1.00 μg/L 1 9/9/2014 11:26:00 PM μg/L 1,1,1,2-Tetrachloroethane ND 1.00 1 9/9/2014 11:26:00 PM Ethylbenzene ND 1.00 μg/L 1 9/9/2014 11:26:00 PM m,p-Xylene ND 1.00 9/9/2014 11:26:00 PM μg/L

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:40:00 AM

Project: SLU Marriott

Lab ID: 1409077-050 **Matrix**: Water

Client Sample ID: MW-2-140906

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
/olatile Organic Compounds by	y EPA Method	8260		Batc	h ID: R166	668 Analyst: BC
o-Xylene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Styrene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Isopropylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Bromoform	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
n-Propylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PN
Bromobenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PN
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PN
2-Chlorotoluene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
4-Chlorotoluene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
tert-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	9/9/2014 11:26:00 PM
sec-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
n-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Hexachlorobutadiene	ND	4.00		μg/L	1	9/9/2014 11:26:00 PM
Naphthalene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	9/9/2014 11:26:00 PM
Surr: Dibromofluoromethane	94.3	61.7-130		%REC	1	9/9/2014 11:26:00 PM
Surr: Toluene-d8	93.7	40.1-139		%REC	1	9/9/2014 11:26:00 PM
Surr: 1-Bromo-4-fluorobenzene	93.2	68.2-127		%REC	1	9/9/2014 11:26:00 PM
Dissolved Mercury by EPA Method 245.1					h ID: 8690	Analyst: TN
Mercury	ND	0.100		μg/L	1	9/11/2014 4:50:43 PM
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID: 8658	Analyst: TN
Arsenic	3.98	1.00		μg/L	1	9/9/2014 1:21:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:40:00 AM

Project: SLU Marriott

Lab ID: 1409077-050 **Matrix**: Water

Client Sample ID: MW-2-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Metals by EF	PA Method 200.8			Bato	ch ID: 8658	Analyst: TN
Barium	251	0.500		μg/L	1	9/9/2014 1:21:00 PM
Cadmium	ND	0.200		μg/L	1	9/9/2014 1:21:00 PM
Chromium	0.666	0.500		μg/L	1	9/9/2014 1:21:00 PM
Lead	ND	1.00		μg/L	1	9/9/2014 1:21:00 PM
Selenium	ND	1.00		μg/L	1	9/9/2014 1:21:00 PM
Silver	ND	0.200		μg/L	1	9/9/2014 1:21:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:10:00 AM

Project: SLU Marriott

Lab ID: 1409077-051 **Matrix**: Water

Client Sample ID: MW-3-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Bato	h ID: 8679	Analyst: EC
Diesel (Fuel Oil)	ND	50.0		μg/L	1	9/11/2014 4:28:00 PM
Heavy Oil	ND	100		μg/L	1	9/11/2014 4:28:00 PM
Surr: 2-Fluorobiphenyl	84.6	50-150		%REC	1	9/11/2014 4:28:00 PM
Surr: o-Terphenyl	78.2	50-150		%REC	1	9/11/2014 4:28:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	270 (SIM)		Bato	h ID: 8680	Analyst: NG
Naphthalene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
2-Methylnaphthalene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
1-Methylnaphthalene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Acenaphthylene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Acenaphthene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Fluorene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Phenanthrene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Anthracene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Fluoranthene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Pyrene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benz(a)anthracene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Chrysene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benzo(b)fluoranthene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benzo(k)fluoranthene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benzo(a)pyrene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Indeno(1,2,3-cd)pyrene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Dibenz(a,h)anthracene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benzo(g,h,i)perylene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Surr: 2-Fluorobiphenyl	91.0	23.9-122		%REC	1	9/12/2014 12:41:00 AM
Surr: Terphenyl-d14	115	33.4-135		%REC	1	9/12/2014 12:41:00 AM
Gasoline by NWTPH-Gx				Bato	h ID: R166	82 Analyst: EM
Gasoline	ND	50.0		μg/L	1	9/9/2014 11:53:00 PM
Surr: Toluene-d8	100	65-135		%REC	1	9/9/2014 11:53:00 PM
Surr: 4-Bromofluorobenzene	102	65-135		%REC	1	9/9/2014 11:53:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:10:00 AM

Project: SLU Marriott

Lab ID: 1409077-051 **Matrix**: Water

Client Sample ID: MW-3-140906

Analyses Result RL Qual Units DF **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: R16668 Analyst: BC ND 1.00 9/9/2014 11:53:00 PM Dichlorodifluoromethane (CFC-12) μg/L 1 Chloromethane ND 1.00 9/9/2014 11:53:00 PM μg/L 1 Vinyl chloride 3.14 0.200 9/9/2014 11:53:00 PM μg/L 1 Bromomethane ND 1.00 9/9/2014 11:53:00 PM μg/L 1 Trichlorofluoromethane (CFC-11) ND 1.00 μg/L 1 9/9/2014 11:53:00 PM Chloroethane NΠ 1.00 9/9/2014 11:53:00 PM μg/L 1 1,1-Dichloroethene ND 1.00 μg/L 1 9/9/2014 11:53:00 PM ND Methylene chloride 1.00 μg/L 1 9/9/2014 11:53:00 PM ND trans-1,2-Dichloroethene 1.00 μg/L 9/9/2014 11:53:00 PM Methyl tert-butyl ether (MTBE) ND 1.00 μg/L 1 9/9/2014 11:53:00 PM μg/L 1,1-Dichloroethane ND 1.00 1 9/9/2014 11:53:00 PM 2,2-Dichloropropane ND 2.00 μg/L 1 9/9/2014 11:53:00 PM cis-1,2-Dichloroethene 9.03 1.00 1 9/11/2014 1:25:00 AM μg/L Chloroform ND 1.00 μg/L 1 9/9/2014 11:53:00 PM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 9/9/2014 11:53:00 PM 1 1,1-Dichloropropene ND 1.00 μg/L 1 9/9/2014 11:53:00 PM Carbon tetrachloride ND 1.00 μg/L 1 9/9/2014 11:53:00 PM 1,2-Dichloroethane (EDC) 4.34 1.00 9/11/2014 1:25:00 AM μg/L 1.69 Benzene 1.00 1 9/11/2014 1:25:00 AM μg/L Trichloroethene (TCE) 0.500 ND μg/L 1 9/9/2014 11:53:00 PM 1,2-Dichloropropane ND 1.00 μg/L 1 9/9/2014 11:53:00 PM Bromodichloromethane ND 1.00 μg/L 1 9/9/2014 11:53:00 PM ND Dibromomethane 1.00 μg/L 1 9/9/2014 11:53:00 PM cis-1,3-Dichloropropene ND 1.00 1 9/9/2014 11:53:00 PM μg/L Toluene ND 1.00 μg/L 1 9/9/2014 11:53:00 PM ND 1.00 μg/L 9/9/2014 11:53:00 PM trans-1,3-Dichloropropene 1 1,1,2-Trichloroethane ND 1.00 μg/L 1 9/9/2014 11:53:00 PM 1,3-Dichloropropane ND 1.00 9/9/2014 11:53:00 PM μg/L 1 Tetrachloroethene (PCE) ND 1.00 9/9/2014 11:53:00 PM μg/L 1 9/9/2014 11:53:00 PM ND 1 Dibromochloromethane 1.00 μg/L 0.0600 1,2-Dibromoethane (EDB) ND μg/L 1 9/9/2014 11:53:00 PM Chlorobenzene ND 1.00 μg/L 1 9/9/2014 11:53:00 PM μg/L 1,1,1,2-Tetrachloroethane ND 1.00 1 9/9/2014 11:53:00 PM Ethylbenzene ND 1.00 μg/L 1 9/9/2014 11:53:00 PM m,p-Xylene ND 1.00 9/9/2014 11:53:00 PM μg/L

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:10:00 AM

Project: SLU Marriott

Lab ID: 1409077-051 **Matrix**: Water

Client Sample ID: MW-3-140906

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
/olatile Organic Compounds by	y EPA Method	<u>8260</u>		Batc	h ID: R166	668 Analyst: BC
o-Xylene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Styrene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Isopropylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Bromoform	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
n-Propylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PN
Bromobenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PN
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PN
2-Chlorotoluene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
4-Chlorotoluene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
tert-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	9/9/2014 11:53:00 PM
sec-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
n-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Hexachlorobutadiene	ND	4.00		μg/L	1	9/9/2014 11:53:00 PM
Naphthalene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	9/9/2014 11:53:00 PM
Surr: Dibromofluoromethane	97.5	61.7-130		%REC	1	9/9/2014 11:53:00 PM
Surr: Toluene-d8	93.9	40.1-139		%REC	1	9/9/2014 11:53:00 PM
Surr: 1-Bromo-4-fluorobenzene	93.2	68.2-127		%REC	1	9/9/2014 11:53:00 PM
Dissolved Mercury by EPA Method 245.1					h ID: 8690	Analyst: TN
Mercury	ND	0.100		μg/L	1	9/11/2014 4:57:32 PM
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID: 8658	Analyst: TN
Arsenic	7.60	1.00		μg/L	1	9/9/2014 1:34:42 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:10:00 AM

Project: SLU Marriott

Lab ID: 1409077-051 **Matrix**: Water

Client Sample ID: MW-3-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Metals by EP	A Method 200.8			Bato	ch ID: 8658	Analyst: TN
Barium	124	0.500		μg/L	1	9/9/2014 1:34:42 PM
Cadmium	ND	0.200		μg/L	1	9/9/2014 1:34:42 PM
Chromium	ND	0.500		μg/L	1	9/9/2014 1:34:42 PM
Lead	ND	1.00		μg/L	1	9/9/2014 1:34:42 PM
Selenium	ND	1.00		μg/L	1	9/9/2014 1:34:42 PM
Silver	1.04	0.200		μg/L	1	9/9/2014 1:34:42 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-052 **Matrix**: Water

Client Sample ID: MW-1-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Bato	h ID: 8679	Analyst: EC
Diesel (Fuel Oil)	ND	50.0		μg/L	1	9/12/2014 10:35:00 AM
Heavy Oil	ND	100		μg/L	1	9/12/2014 10:35:00 AM
Surr: 2-Fluorobiphenyl	72.0	50-150		%REC	1	9/12/2014 10:35:00 AM
Surr: o-Terphenyl	65.9	50-150		%REC	1	9/12/2014 10:35:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	<u>3270 (SIM)</u>		Bato	h ID: 8680) Analyst: NG
Naphthalene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
2-Methylnaphthalene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
1-Methylnaphthalene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Acenaphthylene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Acenaphthene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Fluorene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Phenanthrene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Anthracene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Fluoranthene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Pyrene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benz(a)anthracene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Chrysene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benzo(b)fluoranthene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benzo(k)fluoranthene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benzo(a)pyrene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Indeno(1,2,3-cd)pyrene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Dibenz(a,h)anthracene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benzo(g,h,i)perylene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Surr: 2-Fluorobiphenyl	83.9	23.9-122		%REC	1	9/12/2014 1:26:00 AM
Surr: Terphenyl-d14	108	33.4-135		%REC	1	9/12/2014 1:26:00 AM
Gasoline by NWTPH-Gx				Bato	h ID: R16	682 Analyst: EM
Gasoline	ND	50.0		μg/L	1	9/10/2014 12:22:00 AM
Surr: Toluene-d8	99.1	65-135		%REC	1	9/10/2014 12:22:00 AM
Surr: 4-Bromofluorobenzene	107	65-135		%REC	1	9/10/2014 12:22:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-052 **Matrix**: Water

Client Sample ID: MW-1-140906

Analyses Result RL Qual Units DF **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: R16668 Analyst: BC 1.00 9/10/2014 12:22:00 AM Dichlorodifluoromethane (CFC-12) ND μg/L 1 Chloromethane ND 1.00 9/10/2014 12:22:00 AM μg/L 1 Vinyl chloride ND 0.200 9/10/2014 12:22:00 AM μg/L 1 Bromomethane ND 1.00 9/10/2014 12:22:00 AM μg/L 1 Trichlorofluoromethane (CFC-11) ND 1.00 μg/L 1 9/10/2014 12:22:00 AM 9/10/2014 12:22:00 AM Chloroethane ND 1.00 μg/L 1 1,1-Dichloroethene ND 1.00 μg/L 1 9/10/2014 12:22:00 AM ND 9/10/2014 12:22:00 AM Methylene chloride 1.00 μg/L 1 ND 9/10/2014 12:22:00 AM trans-1,2-Dichloroethene 1.00 μg/L Methyl tert-butyl ether (MTBE) ND 1.00 9/10/2014 12:22:00 AM μg/L 1 1,1-Dichloroethane ND 1.00 μg/L 1 9/10/2014 12:22:00 AM 2,2-Dichloropropane ND 2.00 μg/L 1 9/10/2014 12:22:00 AM cis-1,2-Dichloroethene ND 1.00 1 9/10/2014 12:22:00 AM μg/L Chloroform ND 1.00 μg/L 1 9/10/2014 12:22:00 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 9/10/2014 12:22:00 AM 1 1,1-Dichloropropene ND 1.00 μg/L 1 9/10/2014 12:22:00 AM Carbon tetrachloride NΠ 1.00 μg/L 1 9/10/2014 12:22:00 AM 1,2-Dichloroethane (EDC) ND 1.00 9/10/2014 12:22:00 AM μg/L 9/10/2014 12:22:00 AM ND Benzene 1.00 1 μg/L Trichloroethene (TCE) 0.500 ND μg/L 1 9/10/2014 12:22:00 AM 1,2-Dichloropropane ND 1.00 μg/L 1 9/10/2014 12:22:00 AM Bromodichloromethane ND 1.00 μg/L 1 9/10/2014 12:22:00 AM ND Dibromomethane 1.00 μg/L 1 9/10/2014 12:22:00 AM cis-1,3-Dichloropropene ND 1.00 1 9/10/2014 12:22:00 AM μg/L Toluene ND 1.00 μg/L 1 9/10/2014 12:22:00 AM ND 1.00 μg/L 9/10/2014 12:22:00 AM trans-1,3-Dichloropropene 1 1,1,2-Trichloroethane ND 1.00 1 9/10/2014 12:22:00 AM μg/L 1,3-Dichloropropane ND 1.00 9/10/2014 12:22:00 AM μg/L 1 Tetrachloroethene (PCE) ND 1.00 9/10/2014 12:22:00 AM μg/L 1 9/10/2014 12:22:00 AM ND 1 Dibromochloromethane 1.00 μg/L 0.0600 1,2-Dibromoethane (EDB) ND μg/L 1 9/10/2014 12:22:00 AM Chlorobenzene ND 1.00 μg/L 1 9/10/2014 12:22:00 AM μg/L 1,1,1,2-Tetrachloroethane ND 1.00 1 9/10/2014 12:22:00 AM Ethylbenzene ND 1.00 μg/L 1 9/10/2014 12:22:00 AM m,p-Xylene ND 1.00 9/10/2014 12:22:00 AM μg/L

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-052 **Matrix**: Water

Client Sample ID: MW-1-140906

analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds b	y EPA Method	<u>8260</u>		Batc	h ID: R166	668 Analyst: BC
o-Xylene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Styrene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Isopropylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Bromoform	ND	1.00		μg/L	1	9/10/2014 12:22:00 AN
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
n-Propylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Bromobenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
2-Chlorotoluene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
4-Chlorotoluene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
tert-Butylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
1,2,3-Trichloropropane	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	9/10/2014 12:22:00 Al
sec-Butylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AI
4-Isopropyltoluene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
1,3-Dichlorobenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
1,4-Dichlorobenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
n-Butylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
1,2-Dichlorobenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 A
Hexachlorobutadiene	ND	4.00		μg/L	1	9/10/2014 12:22:00 A
Naphthalene	ND	1.00		μg/L	1	9/10/2014 12:22:00 Al
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	9/10/2014 12:22:00 Al
Surr: Dibromofluoromethane	100	61.7-130		%REC	1	9/10/2014 12:22:00 AI
Surr: Toluene-d8	95.3	40.1-139		%REC	1	9/10/2014 12:22:00 AI
Surr: 1-Bromo-4-fluorobenzene	97.8	68.2-127		%REC	1	9/10/2014 12:22:00 AI
Dissolved Mercury by EPA Method 245.1				Bato	h ID: 8690	Analyst: TN
Mercury	ND	0.100		μg/L	1	9/11/2014 4:59:13 PM
Dissolved Metals by EPA Metho	od 200.8			Bato	h ID: 8658	Analyst: TN
Arsenic	ND	1.00		μg/L	1	9/9/2014 1:38:08 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-052 **Matrix**: Water

Client Sample ID: MW-1-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Metals by EP	A Method 200.8			Bato	ch ID: 8658	Analyst: TN
Barium	200	0.500		μg/L	1	9/9/2014 1:38:08 PM
Cadmium	ND	0.200		μg/L	1	9/9/2014 1:38:08 PM
Chromium	ND	0.500		μg/L	1	9/9/2014 1:38:08 PM
Lead	ND	1.00		μg/L	1	9/9/2014 1:38:08 PM
Selenium	ND	1.00		μg/L	1	9/9/2014 1:38:08 PM
Silver	ND	0.200		μg/L	1	9/9/2014 1:38:08 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:40:00 PM

Project: SLU Marriott

Lab ID: 1409077-054 **Matrix**: Soil

Client Sample ID: DP-8-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	31.9		mg/Kg-dry	1	9/11/2014 8:02:00 AM
Heavy Oil	1,550	79.6		mg/Kg-dry	1	9/11/2014 8:02:00 AM
Surr: 2-Fluorobiphenyl	111	50-150		%REC	1	9/11/2014 8:02:00 AM
Surr: o-Terphenyl	99.0	50-150		%REC	1	9/11/2014 8:02:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: DB
Naphthalene	188,000	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
2-Methylnaphthalene	266,000	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
1-Methylnaphthalene	120,000	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Acenaphthylene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Acenaphthene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Fluorene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Phenanthrene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Anthracene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Fluoranthene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Pyrene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benz(a)anthracene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Chrysene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benzo(b)fluoranthene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benzo(k)fluoranthene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benzo(a)pyrene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Indeno(1,2,3-cd)pyrene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Dibenz(a,h)anthracene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benzo(g,h,i)perylene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Surr: 2-Fluorobiphenyl	73.2	42.7-132	D	%REC	100	9/16/2014 2:07:00 PM
Surr: Terphenyl-d14 (surr)	145	48.8-157	D	%REC	100	9/16/2014 2:07:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: 8672	Analyst: EM
Gasoline	2,820	364	D	mg/Kg-dry	50	9/15/2014 10:47:00 AM
Surr: Toluene-d8	104	65-135		%REC	1	9/11/2014 11:03:00 AM
Surr: 4-Bromofluorobenzene	131	65-135		%REC	1	9/11/2014 11:03:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:40:00 PM

Project: SLU Marriott

Lab ID: 1409077-054 **Matrix**: Soil

Client Sample ID: DP-8-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 86	72 Analyst: EM
Dichlorodifluoromethane (CFC-12)	ND	0.0873		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Chloromethane	ND	0.0873		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Vinyl chloride	ND	0.00291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Bromomethane	ND	0.131		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Trichlorofluoromethane (CFC-11)	ND	0.0727		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Chloroethane	ND	0.0873		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,1-Dichloroethene	ND	0.0727		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Methylene chloride	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
trans-1,2-Dichloroethene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Methyl tert-butyl ether (MTBE)	ND	0.0727		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,1-Dichloroethane	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
2,2-Dichloropropane	ND	0.0727		mg/Kg-dry	1	9/11/2014 11:03:00 AM
cis-1,2-Dichloroethene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Chloroform	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,1,1-Trichloroethane (TCA)	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,1-Dichloropropene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Carbon tetrachloride	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,2-Dichloroethane (EDC)	ND	0.0436		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Benzene	0.717	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Trichloroethene (TCE)	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,2-Dichloropropane	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Bromodichloromethane	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Dibromomethane	ND	0.0582		mg/Kg-dry	1	9/11/2014 11:03:00 AM
cis-1,3-Dichloropropene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Toluene	1.27	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
trans-1,3-Dichloropropylene	ND	0.0436		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,1,2-Trichloroethane	ND	0.0436		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,3-Dichloropropane	ND	0.0727		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Tetrachloroethene (PCE)	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Dibromochloromethane	ND	0.0436		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,2-Dibromoethane (EDB)	ND	0.00727		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Chlorobenzene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
1,1,1,2-Tetrachloroethane	ND	0.0436		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Ethylbenzene	27.7	2.18	D	mg/Kg-dry	50	9/15/2014 10:47:00 AM
m,p-Xylene	3.30	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:40:00 PM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-054 **Matrix**: Soil

Client Sample ID: DP-8-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by l	EPA Method	<u>8260</u>		Batch	n ID: 8672	Analyst: EM
o-Xylene	0.836	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Styrene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 AM
Isopropylbenzene	10.0	5.82	D	mg/Kg-dry	50	9/15/2014 10:47:00 Af
Bromoform	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 Al
1,1,2,2-Tetrachloroethane	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
n-Propylbenzene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
Bromobenzene	ND	0.0436		mg/Kg-dry	1	9/11/2014 11:03:00 A
1,3,5-Trimethylbenzene	0.332	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
2-Chlorotoluene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
4-Chlorotoluene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
tert-Butylbenzene	0.167	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
1,2,3-Trichloropropane	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
1,2,4-Trichlorobenzene	ND	0.0727		mg/Kg-dry	1	9/11/2014 11:03:00 A
sec-Butylbenzene	6.46	1.45	D	mg/Kg-dry	50	9/15/2014 10:47:00 A
4-Isopropyltoluene	2.29	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
1,3-Dichlorobenzene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
1,4-Dichlorobenzene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
n-Butylbenzene	22.2	1.45	D	mg/Kg-dry	50	9/15/2014 10:47:00 A
1,2-Dichlorobenzene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
1,2-Dibromo-3-chloropropane	ND	0.0436		mg/Kg-dry	1	9/11/2014 11:03:00 A
1,2,4-Trimethylbenzene	1.54	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
Hexachlorobutadiene	ND	0.145		mg/Kg-dry	1	9/11/2014 11:03:00 A
Naphthalene	149	2.18	D	mg/Kg-dry	50	9/15/2014 10:47:00 A
1,2,3-Trichlorobenzene	ND	0.0291		mg/Kg-dry	1	9/11/2014 11:03:00 A
Surr: Dibromofluoromethane	93.4	63.7-129		%REC	1	9/11/2014 11:03:00 A
Surr: Toluene-d8	119	61.4-128		%REC	1	9/11/2014 11:03:00 A
Surr: 1-Bromo-4-fluorobenzene	114	63.1-141		%REC	1	9/11/2014 11:03:00 A
lercury by EPA Method 7471				Batch	n ID: 8681	Analyst: TN
Mercury	5.45	4.15	D	mg/Kg-dry	10	9/10/2014 4:17:54 PM
Mercury by EPA Method 7470				Batch	n ID: 8811	Analyst: MV
Mercury	ND	0.169		μg/L-dry	1	9/23/2014 4:50:19 PN

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:40:00 PM

Project: SLU Marriott

Lab ID: 1409077-054 **Matrix**: Soil

Client Sample ID: DP-8-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batch	ID: 8	8674 Analyst: TN
Arsenic	14.6	0.126		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Barium	780	0.632		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Cadmium	1.07	0.253		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Chromium	21.7	0.126		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Lead	1,080	0.253		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Selenium	2.55	0.632		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Silver	0.543	0.126		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Metals (SW6020) with TCLP Extracti	ion (EPA 1	<u>311)</u>		Batch	ID: 8	8796 Analyst: TN
Lead	ND	0.200		mg/L	1	9/22/2014 11:37:44 AM
Sample Moisture (Percent Moisture))			Batch	ID: I	R16685 Analyst: SL
Percent Moisture	41.0			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-058 **Matrix**: Soil

Client Sample ID: DP-8-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8671	Analyst: EC
Diesel (Fuel Oil)	ND	22.5		mg/Kg-dry	1	9/10/2014 1:32:00 PM
Heavy Oil	ND	56.4		mg/Kg-dry	1	9/10/2014 1:32:00 PM
Surr: 2-Fluorobiphenyl	77.4	50-150		%REC	1	9/10/2014 1:32:00 PM
Surr: o-Terphenyl	89.2	50-150		%REC	1	9/10/2014 1:32:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: NG
Naphthalene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
2-Methylnaphthalene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
1-Methylnaphthalene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Acenaphthylene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Acenaphthene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Fluorene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Phenanthrene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Anthracene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Fluoranthene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Pyrene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benz(a)anthracene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Chrysene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benzo(b)fluoranthene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benzo(k)fluoranthene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benzo(a)pyrene	174	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Indeno(1,2,3-cd)pyrene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Dibenz(a,h)anthracene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benzo(g,h,i)perylene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Surr: 2-Fluorobiphenyl	93.4	42.7-132		%REC	1	9/12/2014 10:28:00 AM
Surr: Terphenyl-d14 (surr)	120	48.8-157		%REC	1	9/12/2014 10:28:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	714 Analyst: EM
Gasoline	ND	4.41		mg/Kg-dry	1	9/11/2014 9:05:00 AM
Surr: Toluene-d8	102	65-135		%REC	1	9/11/2014 9:05:00 AM
Surr: 4-Bromofluorobenzene	92.4	65-135		%REC	1	9/11/2014 9:05:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-058 **Matrix**: Soil

Client Sample ID: DP-8-20.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 9:05:00 AM Dichlorodifluoromethane (CFC-12) 0.0529 mg/Kg-dry 1 Chloromethane ND 0.0529 9/11/2014 9:05:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00176 mg/Kg-dry 9/11/2014 9:05:00 AM 1 mg/Kg-dry Bromomethane ND 0.0794 1 9/11/2014 9:05:00 AM Trichlorofluoromethane (CFC-11) ND 0.0441 mg/Kg-dry 1 9/11/2014 9:05:00 AM Chloroethane ND 0.0529 mg/Kg-dry 9/11/2014 9:05:00 AM 1 1,1-Dichloroethene ND 0.0441 mg/Kg-dry 1 9/11/2014 9:05:00 AM ND 0.0176 1 9/11/2014 9:05:00 AM Methylene chloride mg/Kg-dry ND 0.0176 9/11/2014 9:05:00 AM trans-1,2-Dichloroethene mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 9/11/2014 9:05:00 AM 0.0441 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 2,2-Dichloropropane ND 0.0441 mg/Kg-dry 1 9/11/2014 9:05:00 AM cis-1,2-Dichloroethene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Chloroform ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0176 1 9/11/2014 9:05:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Carbon tetrachloride ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,2-Dichloroethane (EDC) ND 0.0265 9/11/2014 9:05:00 AM mg/Kg-dry 1 0.312 Benzene 9/11/2014 9:05:00 AM 0.0176 mg/Kg-dry 1 Trichloroethene (TCE) 9/11/2014 9:05:00 AM ND 0.0176 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Bromodichloromethane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM ND 9/11/2014 9:05:00 AM Dibromomethane 0.0353 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Toluene 0.0183 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM trans-1,3-Dichloropropylene ND 0.0265 9/11/2014 9:05:00 AM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0265 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,3-Dichloropropane ND 0.0441 1 9/11/2014 9:05:00 AM mg/Kg-dry Tetrachloroethene (PCE) ND 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry 1 ND 1 9/11/2014 9:05:00 AM Dibromochloromethane 0.0265 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00441 mg/Kg-dry 1 9/11/2014 9:05:00 AM Chlorobenzene ND 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0265 mg/Kg-dry 1 9/11/2014 9:05:00 AM 0.0325 9/11/2014 9:05:00 AM Ethylbenzene 0.0265 mg/Kg-dry 1 m,p-Xylene 0.128 0.0176 mg/Kg-dry 9/11/2014 9:05:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:05:00 PM

Project: SLU Marriott

Ε

J

RL

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-058 **Matrix**: Soil

Client Sample ID: DP-8-20.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0347 0.0176 9/11/2014 9:05:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0176 9/11/2014 9:05:00 AM 1 0.0760 Isopropylbenzene 0.0706 mg/Kg-dry 9/11/2014 9:05:00 AM 1 mg/Kg-dry Bromoform ND 0.0176 1 9/11/2014 9:05:00 AM 1,1,2,2-Tetrachloroethane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 9/11/2014 9:05:00 AM n-Propylbenzene 0.122 0.0176 mg/Kg-dry 1 Bromobenzene ND 0.0265 mg/Kg-dry 1 9/11/2014 9:05:00 AM 0.0315 0.0176 1 9/11/2014 9:05:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 2-Chlorotoluene 0.0176 9/11/2014 9:05:00 AM ND mg/Kg-dry 1 ND 4-Chlorotoluene 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,2,3-Trichloropropane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,2,4-Trichlorobenzene ND 0.0441 mg/Kg-dry 1 9/11/2014 9:05:00 AM sec-Butylbenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM ND 0.0176 1 9/11/2014 9:05:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,4-Dichlorobenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM n-Butylbenzene ND 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry ND 9/11/2014 9:05:00 AM 1,2-Dichlorobenzene 0.0176 mg/Kg-dry 1 ND 9/11/2014 9:05:00 AM 1,2-Dibromo-3-chloropropane 0.0265 mg/Kg-dry 1 0.0380 1,2,4-Trimethylbenzene 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Hexachlorobutadiene ND 0.0882 mg/Kg-dry 1 9/11/2014 9:05:00 AM 0.0617 9/11/2014 9:05:00 AM Naphthalene 0.0265 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 93.0 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 9:05:00 AM Surr: Toluene-d8 110 61.4-128 %REC 1 9/11/2014 9:05:00 AM Surr: 1-Bromo-4-fluorobenzene 96.4 63.1-141 %REC 1 9/11/2014 9:05:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.246 mg/Kg-dry 9/10/2014 4:06:36 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 1.65 0.0893 mg/Kg-dry 1 9/10/2014 4:53:10 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

Н

ND

S

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-058 **Matrix:** Soil

Client Sample ID: DP-8-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 867	4 Analyst: TN
Barium	40.6	0.447		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Cadmium	ND	0.179		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Chromium	21.5	0.0893		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Lead	2.68	0.179		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Selenium	0.749	0.447		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Silver	ND	0.0893		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Sample Moisture (Percent	t Moisture)			Batch	n ID: R16	6685 Analyst: SL
Percent Moisture	13.9			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:20:00 PM

Project: SLU Marriott

Lab ID: 1409077-059 **Matrix**: Soil

Client Sample ID: DP-8-25.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	y EPA Method	8260		Batch	n ID: 8	3824 Analyst: EM
Benzene	0.0864	0.0160	Н	mg/Kg-dry	1	9/24/2014 9:16:00 AM
Surr: Dibromofluoromethane	101	63.7-129	Н	%REC	1	9/24/2014 9:16:00 AM
Surr: Toluene-d8	100	64.3-131	Н	%REC	1	9/24/2014 9:16:00 AM
Surr: 1-Bromo-4-fluorobenzene	98.2	63.1-141	Н	%REC	1	9/24/2014 9:16:00 AM
Sample Moisture (Percent Mois	ture)			Batch	ı ID: F	R16932 Analyst: SL
Percent Moisture	28.0			wt%	1	9/23/2014 3:54:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:53:00 PM

Project: SLU Marriott

Lab ID: 1409077-061 **Matrix**: Soil

Client Sample ID: DP-10-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8671	Analyst: EC
Diesel (Fuel Oil)	ND	20.6		mg/Kg-dry	1	9/10/2014 2:33:00 PM
Heavy Oil	ND	51.4		mg/Kg-dry	1	9/10/2014 2:33:00 PM
Surr: 2-Fluorobiphenyl	75.8	50-150		%REC	1	9/10/2014 2:33:00 PM
Surr: o-Terphenyl	88.4	50-150		%REC	1	9/10/2014 2:33:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: NG
Naphthalene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
2-Methylnaphthalene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
1-Methylnaphthalene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Acenaphthylene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Acenaphthene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Fluorene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Phenanthrene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Anthracene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Fluoranthene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Pyrene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benz(a)anthracene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Chrysene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benzo(b)fluoranthene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benzo(k)fluoranthene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benzo(a)pyrene	174	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Indeno(1,2,3-cd)pyrene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Dibenz(a,h)anthracene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benzo(g,h,i)perylene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Surr: 2-Fluorobiphenyl	97.3	42.7-132		%REC	1	9/12/2014 10:50:00 AM
Surr: Terphenyl-d14 (surr)	115	48.8-157		%REC	1	9/12/2014 10:50:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	714 Analyst: EM
Gasoline	ND	4.17		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Surr: Toluene-d8	99.8	65-135		%REC	1	9/11/2014 9:35:00 AM
Surr: 4-Bromofluorobenzene	91.4	65-135		%REC	1	9/11/2014 9:35:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:53:00 PM

Project: SLU Marriott

Lab ID: 1409077-061 **Matrix**: Soil

Client Sample ID: DP-10-10.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0500 9/11/2014 9:35:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0500 9/11/2014 9:35:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00167 mg/Kg-dry 9/11/2014 9:35:00 AM 1 Bromomethane ND 0.0750 1 9/11/2014 9:35:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0417 mg/Kg-dry 1 9/11/2014 9:35:00 AM Chloroethane ND 0.0500 9/11/2014 9:35:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0417 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 0.0167 9/11/2014 9:35:00 AM Methylene chloride mg/Kg-dry 1 ND 9/11/2014 9:35:00 AM trans-1,2-Dichloroethene 0.0167 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 9/11/2014 9:35:00 AM 0.0417 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 2,2-Dichloropropane ND 0.0417 mg/Kg-dry 1 9/11/2014 9:35:00 AM cis-1,2-Dichloroethene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Chloroform ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0167 1 9/11/2014 9:35:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Carbon tetrachloride ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,2-Dichloroethane (EDC) ND 0.0250 9/11/2014 9:35:00 AM mg/Kg-dry 1 Benzene ND 9/11/2014 9:35:00 AM 0.0167 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/11/2014 9:35:00 AM 0.0167 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Bromodichloromethane ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 9/11/2014 9:35:00 AM Dibromomethane 0.0333 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Toluene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM trans-1,3-Dichloropropylene ND 9/11/2014 9:35:00 AM 0.0250 mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0250 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,3-Dichloropropane ND 0.0417 9/11/2014 9:35:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry 1 ND 1 9/11/2014 9:35:00 AM Dibromochloromethane 0.0250 mg/Kg-dry ND 1,2-Dibromoethane (EDB) 0.00417 mg/Kg-dry 1 9/11/2014 9:35:00 AM Chlorobenzene ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0250 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND Ethylbenzene 0.0250 mg/Kg-dry 1 9/11/2014 9:35:00 AM

0.0167

Qualifiers:

m,p-Xylene

B Analyte detected in the associated Method Blank

ND

- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

D Dilution was required

mg/Kg-dry

H Holding times for preparation or analysis exceeded

9/11/2014 9:35:00 AM

- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Date Analyzed

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:53:00 PM

RL

Qual

Units

DF

Project: SLU Marriott

Analyses

Lab ID: 1409077-061 **Matrix**: Soil

Result

Client Sample ID: DP-10-10.0

naiyses	Result	KL	Quai	Units	DF	Date Analyzed
Volatile Organic Compounds by EF	PA Method	8260		Batch	n ID: 8672	Analyst: EM
o-Xylene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Styrene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Isopropylbenzene	ND	0.0667		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Bromoform	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
n-Propylbenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Bromobenzene	ND	0.0250		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,3,5-Trimethylbenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
2-Chlorotoluene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
4-Chlorotoluene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
tert-Butylbenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,2,3-Trichloropropane	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,2,4-Trichlorobenzene	ND	0.0417		mg/Kg-dry	1	9/11/2014 9:35:00 AM
sec-Butylbenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
4-Isopropyltoluene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,3-Dichlorobenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,4-Dichlorobenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
n-Butylbenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,2-Dichlorobenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0250		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,2,4-Trimethylbenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Hexachlorobutadiene	ND	0.0833		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Naphthalene	ND	0.0250		mg/Kg-dry	1	9/11/2014 9:35:00 AM
1,2,3-Trichlorobenzene	ND	0.0167		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Surr: Dibromofluoromethane	90.6	63.7-129		%REC	1	9/11/2014 9:35:00 AM
Surr: Toluene-d8	105	61.4-128		%REC	1	9/11/2014 9:35:00 AM
Surr: 1-Bromo-4-fluorobenzene	95.4	63.1-141		%REC	1	9/11/2014 9:35:00 AM
Mercury by EPA Method 7471				Batch	n ID: 8681	Analyst: TN
Mercury	ND	0.253		mg/Kg-dry	1	9/10/2014 4:08:14 PM
otal Metals by EPA Method 6020				Batch	n ID: 8674	Analyst: TN
Arsenic	1.96	0.0857		mg/Kg-dry	1	9/10/2014 4:56:36 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:53:00 PM

Project: SLU Marriott

Lab ID: 1409077-061 **Matrix**: Soil

Client Sample ID: DP-10-10.0

Analyses	ses Result RL Qual Units DF					
Total Metals by EPA Method	6020			Batch	n ID: 8674	4 Analyst: TN
Barium	53.2	0.428		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Cadmium	ND	0.171		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Chromium	28.4	0.0857		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Lead	2.29	0.171		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Selenium	1.13	0.428		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Silver	ND	0.0857		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Sample Moisture (Percent Mo	oisture)			Batch	n ID: R16	685 Analyst: SL
Percent Moisture	10.2			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:36:00 PM

Project: SLU Marriott

Lab ID: 1409077-062 **Matrix:** Soil

Client Sample ID: DP-11-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 86	71 Analyst:	EC	
Diesel (Fuel Oil)	15,800	22.5		mg/Kg-dry	1	9/10/2014 3:04:00	PM	
Heavy Oil	2,230	56.1		mg/Kg-dry	1	9/10/2014 3:04:00	РМ	
Surr: 2-Fluorobiphenyl	134	50-150		%REC	1	9/10/2014 3:04:00	PM	
Surr: o-Terphenyl	107	50-150		%REC	1	9/10/2014 3:04:00	PM	
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 86	75 Analyst:	DB	
Naphthalene	953	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
2-Methylnaphthalene	24,500	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
1-Methylnaphthalene	18,600	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Acenaphthylene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Acenaphthene	1,290	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Fluorene	2,100	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Phenanthrene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Anthracene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Fluoranthene	792	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Pyrene	1,170	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Benz(a)anthracene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Chrysene	394	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Benzo(b)fluoranthene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Benzo(k)fluoranthene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Benzo(a)pyrene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Indeno(1,2,3-cd)pyrene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Dibenz(a,h)anthracene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Benzo(g,h,i)perylene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00	PM	
Surr: 2-Fluorobiphenyl	84.8	42.7-132	D	%REC	5	9/16/2014 5:19:00	PM	
Surr: Terphenyl-d14 (surr)	116	48.8-157	D	%REC	5	9/16/2014 5:19:00	PM	
Gasoline by NWTPH-Gx				Batch	n ID: R1	6714 Analyst:	EM	
Gasoline	ND	5.29		mg/Kg-dry	1	9/11/2014 10:04:00	D AM	
Surr: Toluene-d8	99.3	65-135		%REC	1	9/11/2014 10:04:00	MA C	
Surr: 4-Bromofluorobenzene	93.2	65-135		%REC	1	9/11/2014 10:04:00	MA C	

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:36:00 PM

Project: SLU Marriott

Lab ID: 1409077-062 **Matrix**: Soil

Client Sample ID: DP-11-2.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0635 9/11/2014 10:04:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0635 9/11/2014 10:04:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00212 9/11/2014 10:04:00 AM mg/Kg-dry 1 Bromomethane ND 0.0953 1 9/11/2014 10:04:00 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0529 mg/Kg-dry 1 9/11/2014 10:04:00 AM Chloroethane ND 0.0635 9/11/2014 10:04:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0529 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND 9/11/2014 10:04:00 AM Methylene chloride 0.0212 mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Methyl tert-butyl ether (MTBE) ND 0.0529 9/11/2014 10:04:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 2,2-Dichloropropane ND 0.0529 mg/Kg-dry 1 9/11/2014 10:04:00 AM cis-1,2-Dichloroethene ND 0.0212 1 9/11/2014 10:04:00 AM mg/Kg-dry Chloroform ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0212 1 9/11/2014 10:04:00 AM mg/Kg-dry 1,1-Dichloropropene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Carbon tetrachloride ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,2-Dichloroethane (EDC) ND 0.0318 9/11/2014 10:04:00 AM mg/Kg-dry 1 ND 9/11/2014 10:04:00 AM Benzene 0.0212 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,2-Dichloropropane ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Bromodichloromethane ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND 9/11/2014 10:04:00 AM Dibromomethane 0.0424 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Toluene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND 0.0318 9/11/2014 10:04:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0318 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,3-Dichloropropane ND 0.0529 9/11/2014 10:04:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0212 9/11/2014 10:04:00 AM mg/Kg-dry 1 ND 1 9/11/2014 10:04:00 AM Dibromochloromethane 0.0318 mg/Kg-dry 1,2-Dibromoethane (EDB) ND 0.00529 mg/Kg-dry 1 9/11/2014 10:04:00 AM Chlorobenzene ND 9/11/2014 10:04:00 AM 0.0212 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0318 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND Ethylbenzene 0.0318 mg/Kg-dry 1 9/11/2014 10:04:00 AM m,p-Xylene 0.0776 0.0212 mg/Kg-dry 9/11/2014 10:04:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:36:00 PM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-062 **Matrix**: Soil

Client Sample ID: DP-11-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID: 8672	Analyst: EM
o-Xylene	0.0415	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 AM
Styrene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 AM
Isopropylbenzene	ND	0.0847		mg/Kg-dry	1	9/11/2014 10:04:00 AM
Bromoform	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 Al
n-Propylbenzene	0.0669	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 Al
Bromobenzene	ND	0.0318		mg/Kg-dry	1	9/11/2014 10:04:00 Al
1,3,5-Trimethylbenzene	0.0378	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
2-Chlorotoluene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
4-Chlorotoluene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
tert-Butylbenzene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
1,2,3-Trichloropropane	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
1,2,4-Trichlorobenzene	ND	0.0529		mg/Kg-dry	1	9/11/2014 10:04:00 A
sec-Butylbenzene	0.0564	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
4-Isopropyltoluene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
1,3-Dichlorobenzene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
1,4-Dichlorobenzene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
n-Butylbenzene	0.105	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
1,2-Dichlorobenzene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
1,2-Dibromo-3-chloropropane	ND	0.0318		mg/Kg-dry	1	9/11/2014 10:04:00 A
1,2,4-Trimethylbenzene	0.0533	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
Hexachlorobutadiene	ND	0.106		mg/Kg-dry	1	9/11/2014 10:04:00 A
Naphthalene	0.0704	0.0318		mg/Kg-dry	1	9/11/2014 10:04:00 A
1,2,3-Trichlorobenzene	ND	0.0212		mg/Kg-dry	1	9/11/2014 10:04:00 A
Surr: Dibromofluoromethane	90.4	63.7-129		%REC	1	9/11/2014 10:04:00 A
Surr: Toluene-d8	106	61.4-128		%REC	1	9/11/2014 10:04:00 A
Surr: 1-Bromo-4-fluorobenzene	97.4	63.1-141		%REC	1	9/11/2014 10:04:00 A
lercury by EPA Method 7471				Batch	ID: 8681	Analyst: TN
Mercury	ND	0.256		mg/Kg-dry	1	9/10/2014 4:09:50 PM
otal Metals by EPA Method 602	20			Batch	ID: 8674	Analyst: TN
Arsenic	2.59	0.0866		mg/Kg-dry	1	9/10/2014 5:00:01 PM

Holding times for preparation or analysis exceeded

Н

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:36:00 PM

Project: SLU Marriott

Lab ID: 1409077-062 **Matrix**: Soil

Client Sample ID: DP-11-2.5

Analyses	alyses Result RL Qual Units DF	Date Analyzed			
Total Metals by EPA Method 6020			Batch	n ID: 867	4 Analyst: TN
Barium	424	0.433	mg/Kg-dry	1	9/10/2014 5:00:01 PM
Cadmium	1.83	0.173	mg/Kg-dry	1	9/10/2014 5:00:01 PM
Chromium	27.1	0.0866	mg/Kg-dry	1	9/10/2014 5:00:01 PM
Lead	1,370	0.173	mg/Kg-dry	1	9/10/2014 5:00:01 PM
Selenium	1.01	0.433	mg/Kg-dry	1	9/10/2014 5:00:01 PM
Silver	0.235	0.0866	mg/Kg-dry	1	9/10/2014 5:00:01 PM
Metals (SW6020) with TCLP Extracti	ion (EPA 1	<u>311)</u>	Batch	n ID: 879	6 Analyst: TN
Lead	3.26	0.200	mg/L	1	9/22/2014 11:41:10 AM
Sample Moisture (Percent Moisture))		Batch	n ID: R16	6685 Analyst: SL
Percent Moisture	14.4		wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:27:00 PM

Project: SLU Marriott

Lab ID: 1409077-067 **Matrix:** Soil

Client Sample ID: DP-11-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch ID: 8671		1 Analyst: EC
Diesel (Fuel Oil)	ND	24.9		mg/Kg-dry	1	9/10/2014 3:35:00 PM
Heavy Oil	ND	62.1		mg/Kg-dry	1	9/10/2014 3:35:00 PM
Surr: 2-Fluorobiphenyl	84.5	50-150		%REC	1	9/10/2014 3:35:00 PM
Surr: o-Terphenyl	100	50-150		%REC	1	9/10/2014 3:35:00 PM
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	n ID: 867	75 Analyst: NG
Naphthalene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
2-Methylnaphthalene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
1-Methylnaphthalene			9/12/2014 11:58:00 AM			
Acenaphthylene	ND	62.5		μg/Kg-dry 1		9/12/2014 11:58:00 AM
Acenaphthene	ND	62.5		1.2 2 .)		9/12/2014 11:58:00 AM
Fluorene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Phenanthrene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Anthracene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Fluoranthene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Pyrene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benz(a)anthracene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Chrysene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benzo(b)fluoranthene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benzo(k)fluoranthene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benzo(a)pyrene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Indeno(1,2,3-cd)pyrene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Dibenz(a,h)anthracene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benzo(g,h,i)perylene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Surr: 2-Fluorobiphenyl	79.1	42.7-132		%REC	1	9/12/2014 11:58:00 AM
Surr: Terphenyl-d14 (surr)	121	48.8-157		%REC	1	9/12/2014 11:58:00 AM
Gasoline by NWTPH-Gx				Batch	1D: R16	6714 Analyst: EM
Gasoline	23.3	6.05		mg/Kg-dry	1	9/11/2014 2:59:00 PM
Surr: Toluene-d8	99.1	65-135		%REC	1	9/11/2014 2:59:00 PM
Surr: 4-Bromofluorobenzene	94.4	65-135		%REC	1	9/11/2014 2:59:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:27:00 PM

Project: SLU Marriott

Lab ID: 1409077-067 **Matrix**: Soil

Client Sample ID: DP-11-15.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0726 9/11/2014 2:59:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0726 9/11/2014 2:59:00 PM mg/Kg-dry 1 Vinyl chloride ND 0.00242 mg/Kg-dry 9/11/2014 2:59:00 PM 1 Bromomethane ND 0.109 9/11/2014 2:59:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0605 mg/Kg-dry 1 9/11/2014 2:59:00 PM Chloroethane ND 0.0726 9/11/2014 2:59:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0605 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 0.0242 9/11/2014 2:59:00 PM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Methyl tert-butyl ether (MTBE) ND 0.0605 9/11/2014 2:59:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 2,2-Dichloropropane ND 0.0605 mg/Kg-dry 1 9/11/2014 2:59:00 PM cis-1,2-Dichloroethene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Chloroform ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0242 1 9/11/2014 2:59:00 PM mg/Kg-dry 1,1-Dichloropropene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Carbon tetrachloride ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,2-Dichloroethane (EDC) ND 0.0363 9/11/2014 2:59:00 PM mg/Kg-dry 1 0.0375 Benzene 9/11/2014 2:59:00 PM 0.0242 mg/Kg-dry 1 Trichloroethene (TCE) 9/11/2014 2:59:00 PM ND 0.0242 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Bromodichloromethane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 9/11/2014 2:59:00 PM Dibromomethane 0.0484 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Toluene 0.0252 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 0.0363 9/11/2014 2:59:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0363 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,3-Dichloropropane ND 0.0605 9/11/2014 2:59:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 ND 0.0363 1 9/11/2014 2:59:00 PM Dibromochloromethane mg/Kg-dry ND 0.00605 1,2-Dibromoethane (EDB) mg/Kg-dry 1 9/11/2014 2:59:00 PM Chlorobenzene ND 9/11/2014 2:59:00 PM 0.0242 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0363 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND Ethylbenzene 0.0363 mg/Kg-dry 1 9/11/2014 2:59:00 PM

0.0242

Qualifiers:

m,p-Xylene

B Analyte detected in the associated Method Blank

0.144

- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

D Dilution was required

mg/Kg-dry

H Holding times for preparation or analysis exceeded

9/11/2014 2:59:00 PM

- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:27:00 PM

Project: SLU Marriott

Lab ID: 1409077-067 **Matrix**: Soil

Client Sample ID: DP-11-15.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0593 0.0242 9/11/2014 2:59:00 PM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0242 9/11/2014 2:59:00 PM 1 Isopropylbenzene 0.471 0.0968 mg/Kg-dry 9/11/2014 2:59:00 PM 1 Bromoform ND 0.0242 1 9/11/2014 2:59:00 PM mg/Kg-dry 1,1,2,2-Tetrachloroethane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM n-Propylbenzene 0.254 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 Bromobenzene ND 0.0363 mg/Kg-dry 1 9/11/2014 2:59:00 PM 0.0516 0.0242 1 9/11/2014 2:59:00 PM 1,3,5-Trimethylbenzene mg/Kg-dry 2-Chlorotoluene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 4-Chlorotoluene 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 tert-Butylbenzene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,2,3-Trichloropropane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,2,4-Trichlorobenzene ND 0.0605 mg/Kg-dry 1 9/11/2014 2:59:00 PM sec-Butylbenzene 0.0592 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 0.0242 1 9/11/2014 2:59:00 PM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,4-Dichlorobenzene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM n-Butylbenzene 0.0486 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry ND 1,2-Dichlorobenzene 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 9/11/2014 2:59:00 PM 1,2-Dibromo-3-chloropropane 0.0363 mg/Kg-dry 1 1,2,4-Trimethylbenzene 0.0577 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Hexachlorobutadiene ND 0.121 mg/Kg-dry 1 9/11/2014 2:59:00 PM 0.0767 9/11/2014 2:59:00 PM Naphthalene 0.0363 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Surr: Dibromofluoromethane 93.9 63.7-129 %REC 1 9/11/2014 2:59:00 PM Surr: Toluene-d8 112 61.4-128 %REC 1 9/11/2014 2:59:00 PM Surr: 1-Bromo-4-fluorobenzene 98.2 63.1-141 %REC 1 9/11/2014 2:59:00 PM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.293 mg/Kg-dry 9/10/2014 4:11:26 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 6.21 0.0955 mg/Kg-dry 1 9/10/2014 5:03:26 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:27:00 PM

Project: SLU Marriott

Lab ID: 1409077-067 **Matrix:** Soil

Client Sample ID: DP-11-15.0

Analyses	Result	RL	Qual	Units	DF		Date Analyzed
Total Metals by EPA Method 60	rium 139 0.477 dmium ND 0.191 romium 66.3 0.0955 ad 21.8 0.191 denium 2.23 0.477 ver 0.103 0.0955		Batch	ı ID: 8674		Analyst: TN	
Barium	139	0.477		mg/Kg-dry	1	9	9/10/2014 5:03:26 PM
Cadmium	ND	0.191		mg/Kg-dry	1	ę	9/10/2014 5:03:26 PM
Chromium	66.3	0.0955		mg/Kg-dry	1	ę	9/10/2014 5:03:26 PM
Lead	21.8	0.191		mg/Kg-dry	1	ç	9/10/2014 5:03:26 PM
Selenium	2.23	0.477		mg/Kg-dry	1	ę	9/10/2014 5:03:26 PM
Silver	0.103	0.0955		mg/Kg-dry	1	(9/10/2014 5:03:26 PM
Sample Moisture (Percent Mois	sture)			Batch	ı ID:	R1668	5 Analyst: SL
Percent Moisture	22.4			wt%	1	(9/10/2014 10:35:08 AM
Hexavalent Chromium by EPA	Method 7196			Batch	ı ID:	8795	Analyst: MW
Chromium, Hexavalent	ND	0.640		mg/Kg-dry	1	ç	9/21/2014 10:22:25 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:21:00 AM

Project: SLU Marriott

Lab ID: 1409077-070 **Matrix**: Soil

Client Sample ID: DP-12-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID: 8671	l Analyst: EC		
Diesel (Fuel Oil)	ND	21.7		mg/Kg-dry	1	9/10/2014 4:06:00 PM		
Heavy Oil	230	54.3		mg/Kg-dry	1	9/10/2014 4:06:00 PM		
Surr: 2-Fluorobiphenyl	91.4	50-150		%REC	1	9/10/2014 4:06:00 PM		
Surr: o-Terphenyl	92.2	50-150		%REC	1	9/10/2014 4:06:00 PM		
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	5 Analyst: DB		
Naphthalene	72.2	316	JD	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
2-Methylnaphthalene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
1-Methylnaphthalene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Acenaphthylene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Acenaphthene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Fluorene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Phenanthrene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Anthracene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Fluoranthene	ND	316	D	D μg/Kg-dry		9/16/2014 5:50:00 PM		
Pyrene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Benz(a)anthracene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Chrysene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Benzo(b)fluoranthene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Benzo(k)fluoranthene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Benzo(a)pyrene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Indeno(1,2,3-cd)pyrene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Dibenz(a,h)anthracene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Benzo(g,h,i)perylene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM		
Surr: 2-Fluorobiphenyl	72.1	42.7-132	D	%REC	5	9/16/2014 5:50:00 PM		
Surr: Terphenyl-d14 (surr)	125	48.8-157	D	%REC	5	9/16/2014 5:50:00 PM		
Gasoline by NWTPH-Gx				Batch	n ID: R16	714 Analyst: EM		
Gasoline	ND	10.3		mg/Kg-dry	1	9/11/2014 3:29:00 PM		
Surr: Toluene-d8	101	65-135		%REC	1	9/11/2014 3:29:00 PM		
Surr: 4-Bromofluorobenzene	96.7	65-135		%REC	1	9/11/2014 3:29:00 PM		

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:21:00 AM

Project: SLU Marriott

Lab ID: 1409077-070 **Matrix**: Soil

Client Sample ID: DP-12-7.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 3:29:00 PM Dichlorodifluoromethane (CFC-12) 0.124 mg/Kg-dry 1 Chloromethane ND 0.124 9/11/2014 3:29:00 PM mg/Kg-dry 1 Vinyl chloride ND 0.00413 mg/Kg-dry 9/11/2014 3:29:00 PM 1 Bromomethane ND 0.186 9/11/2014 3:29:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.103 mg/Kg-dry 1 9/11/2014 3:29:00 PM Chloroethane ND 0.124 9/11/2014 3:29:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.103 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 0.0413 9/11/2014 3:29:00 PM Methylene chloride mg/Kg-dry 1 ND 0.0413 trans-1,2-Dichloroethene mg/Kg-dry 1 9/11/2014 3:29:00 PM Methyl tert-butyl ether (MTBE) ND 0.103 9/11/2014 3:29:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 2,2-Dichloropropane ND 0.103 mg/Kg-dry 1 9/11/2014 3:29:00 PM cis-1,2-Dichloroethene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Chloroform ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0413 1 9/11/2014 3:29:00 PM mg/Kg-dry 1,1-Dichloropropene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Carbon tetrachloride ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,2-Dichloroethane (EDC) ND 0.0619 9/11/2014 3:29:00 PM mg/Kg-dry 1 Benzene ND 9/11/2014 3:29:00 PM 0.0413 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,2-Dichloropropane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Bromodichloromethane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 9/11/2014 3:29:00 PM Dibromomethane 0.0825 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Toluene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 0.0619 9/11/2014 3:29:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,3-Dichloropropane ND 9/11/2014 3:29:00 PM 0.103 mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry 1 ND 0.0619 1 9/11/2014 3:29:00 PM Dibromochloromethane mg/Kg-dry ND 0.0103 1,2-Dibromoethane (EDB) mg/Kg-dry 1 9/11/2014 3:29:00 PM Chlorobenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,1,1,2-Tetrachloroethane ND 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND Ethylbenzene 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM m,p-Xylene 0.138 0.0413 mg/Kg-dry 9/11/2014 3:29:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:21:00 AM

Project: SLU Marriott

Lab ID: 1409077-070 **Matrix**: Soil

Client Sample ID: DP-12-7.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0817 0.0413 9/11/2014 3:29:00 PM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0413 9/11/2014 3:29:00 PM 1 Isopropylbenzene ND 0.165 mg/Kg-dry 9/11/2014 3:29:00 PM 1 mg/Kg-dry Bromoform ND 0.0413 1 9/11/2014 3:29:00 PM 1,1,2,2-Tetrachloroethane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM n-Propylbenzene 0.0868 0.0413 mg/Kg-dry 9/11/2014 3:29:00 PM 1 Bromobenzene ND 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 0.0413 1 9/11/2014 3:29:00 PM 1,3,5-Trimethylbenzene mg/Kg-dry 2-Chlorotoluene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 4-Chlorotoluene ND 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry 1 tert-Butylbenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,2,3-Trichloropropane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,2,4-Trichlorobenzene ND 0.103 mg/Kg-dry 1 9/11/2014 3:29:00 PM sec-Butylbenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 0.0413 1 9/11/2014 3:29:00 PM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,4-Dichlorobenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM n-Butylbenzene 0.0813 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry 1 ND 1,2-Dichlorobenzene 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 1,2-Dibromo-3-chloropropane 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM 0.0869 1,2,4-Trimethylbenzene 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Hexachlorobutadiene ND 0.206 mg/Kg-dry 1 9/11/2014 3:29:00 PM 0.179 9/11/2014 3:29:00 PM Naphthalene 0.0619 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 89.3 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 3:29:00 PM Surr: Toluene-d8 97.6 61.4-128 %REC 1 9/11/2014 3:29:00 PM Surr: 1-Bromo-4-fluorobenzene 101 63.1-141 %REC 1 9/11/2014 3:29:00 PM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.281 mg/Kg-dry 9/10/2014 4:13:02 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 8.76 0.0956 mg/Kg-dry 1 9/10/2014 5:06:52 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:21:00 AM

Project: SLU Marriott

Lab ID: 1409077-070 **Matrix**: Soil

Client Sample ID: DP-12-7.5

Analyses	Result	RL	Qual	Units	DF	-	Date Analyzed
Total Metals by EPA Method 6020				Batch	ı ID:	8674	Analyst: TN
Barium	677	0.478		mg/Kg-dry	1	,	9/10/2014 5:06:52 PM
Cadmium	0.380	0.191		mg/Kg-dry	1	,	9/10/2014 5:06:52 PM
Chromium	44.5	0.0956		mg/Kg-dry	1	,	9/10/2014 5:06:52 PM
Lead	604	0.191		mg/Kg-dry	1	,	9/10/2014 5:06:52 PM
Selenium	1.88	0.478		mg/Kg-dry	1	,	9/10/2014 5:06:52 PM
Silver	0.909	0.0956		mg/Kg-dry	1	!	9/10/2014 5:06:52 PM
Metals (SW6020) with TCLP Extrac	tion (EPA 1	<u>311)</u>		Batch	ID:	8796	Analyst: TN
Lead	ND	0.200		mg/L	1	,	9/22/2014 11:51:29 AM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R1668	5 Analyst: SL
Percent Moisture	21.9			wt%	1	,	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-072 **Matrix**: Soil

Client Sample ID: DP-12-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8671	Analyst: EC
Diesel (Fuel Oil)	ND	29.7		mg/Kg-dry	1	9/10/2014 4:37:00 PM
Heavy Oil	ND	74.4		mg/Kg-dry	1	9/10/2014 4:37:00 PM
Surr: 2-Fluorobiphenyl	86.2	50-150		%REC	1	9/10/2014 4:37:00 PM
Surr: o-Terphenyl	96.0	50-150		%REC	1	9/10/2014 4:37:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: NG
Naphthalene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
2-Methylnaphthalene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
1-Methylnaphthalene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Acenaphthylene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Acenaphthene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Fluorene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Phenanthrene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Anthracene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Fluoranthene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Pyrene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benz(a)anthracene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Chrysene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benzo(b)fluoranthene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benzo(k)fluoranthene	154	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benzo(a)pyrene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Indeno(1,2,3-cd)pyrene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Dibenz(a,h)anthracene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benzo(g,h,i)perylene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Surr: 2-Fluorobiphenyl	91.0	42.7-132		%REC	1	9/12/2014 4:10:00 PM
Surr: Terphenyl-d14 (surr)	133	48.8-157		%REC	1	9/12/2014 4:10:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: R167	714 Analyst: EM
Gasoline	ND	5.51		mg/Kg-dry	1	9/11/2014 3:59:00 PM
Surr: Toluene-d8	100	65-135		%REC	1	9/11/2014 3:59:00 PM
Surr: 4-Bromofluorobenzene	94.5	65-135		%REC	1	9/11/2014 3:59:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-072 **Matrix**: Soil

Client Sample ID: DP-12-12.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0661 9/11/2014 3:59:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0661 9/11/2014 3:59:00 PM 1 Vinyl chloride ND 0.00220 mg/Kg-dry 9/11/2014 3:59:00 PM 1 mg/Kg-dry Bromomethane ND 0.0992 1 9/11/2014 3:59:00 PM Trichlorofluoromethane (CFC-11) ND 0.0551 mg/Kg-dry 1 9/11/2014 3:59:00 PM Chloroethane ND 0.0661 9/11/2014 3:59:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0551 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 0.0220 9/11/2014 3:59:00 PM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Methyl tert-butyl ether (MTBE) ND 0.0551 9/11/2014 3:59:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 2,2-Dichloropropane ND 0.0551 mg/Kg-dry 1 9/11/2014 3:59:00 PM cis-1,2-Dichloroethene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Chloroform ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0220 1 9/11/2014 3:59:00 PM mg/Kg-dry 1,1-Dichloropropene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Carbon tetrachloride ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,2-Dichloroethane (EDC) ND 0.0331 9/11/2014 3:59:00 PM mg/Kg-dry 1 Benzene 0.0358 9/11/2014 3:59:00 PM 0.0220 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,2-Dichloropropane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Bromodichloromethane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 9/11/2014 3:59:00 PM Dibromomethane 0.0441 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Toluene 0.0344 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM trans-1,3-Dichloropropylene ND 0.0331 9/11/2014 3:59:00 PM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,3-Dichloropropane ND 0.0551 9/11/2014 3:59:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0220 9/11/2014 3:59:00 PM mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 1 Dibromochloromethane 0.0331 mg/Kg-dry ND 0.00551 1,2-Dibromoethane (EDB) mg/Kg-dry 1 9/11/2014 3:59:00 PM Chlorobenzene ND 9/11/2014 3:59:00 PM 0.0220 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND Ethylbenzene 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM m,p-Xylene 0.0745 0.0220 mg/Kg-dry 9/11/2014 3:59:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-072 **Matrix**: Soil

Client Sample ID: DP-12-12.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0436 0.0220 9/11/2014 3:59:00 PM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0220 9/11/2014 3:59:00 PM 1 Isopropylbenzene ND 0.0882 mg/Kg-dry 9/11/2014 3:59:00 PM 1 mg/Kg-dry Bromoform ND 0.0220 1 9/11/2014 3:59:00 PM 1,1,2,2-Tetrachloroethane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM n-Propylbenzene 0.0450 0.0220 9/11/2014 3:59:00 PM mg/Kg-dry 1 Bromobenzene ND 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 0.0220 1 9/11/2014 3:59:00 PM 1,3,5-Trimethylbenzene mg/Kg-dry 2-Chlorotoluene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 4-Chlorotoluene ND 9/11/2014 3:59:00 PM 0.0220 mg/Kg-dry 1 tert-Butylbenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,2,3-Trichloropropane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,2,4-Trichlorobenzene ND 0.0551 mg/Kg-dry 1 9/11/2014 3:59:00 PM sec-Butylbenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 1 9/11/2014 3:59:00 PM 4-Isopropyltoluene 0.0220 mg/Kg-dry 1,3-Dichlorobenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,4-Dichlorobenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM n-Butylbenzene 0.0417 0.0220 9/11/2014 3:59:00 PM mg/Kg-dry 1 ND 1,2-Dichlorobenzene 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 1,2-Dibromo-3-chloropropane 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 1,2,4-Trimethylbenzene 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Hexachlorobutadiene ND 0.110 mg/Kg-dry 1 9/11/2014 3:59:00 PM 0.0914 9/11/2014 3:59:00 PM Naphthalene 0.0331 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 87.0 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 3:59:00 PM Surr: Toluene-d8 96.6 61.4-128 %REC 1 9/11/2014 3:59:00 PM Surr: 1-Bromo-4-fluorobenzene 98.4 63.1-141 %REC 1 9/11/2014 3:59:00 PM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury 0.443 0.353 mg/Kg-dry 9/10/2014 4:14:39 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 10.3 0.112 mg/Kg-dry 1 9/10/2014 5:10:17 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-072 **Matrix**: Soil

Client Sample ID: DP-12-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Total Metals by EPA Method	6020			Batch	n ID: 8674	Analyst: TN		
Barium	976	0.558		mg/Kg-dry	1	9/10/2014 5:10:17 PM		
Cadmium	1.38	0.223		mg/Kg-dry	1	9/10/2014 5:10:17 PM		
Chromium	99.4	0.112		mg/Kg-dry	1	9/10/2014 5:10:17 PM		
Lead	1,390	0.223		mg/Kg-dry	1	9/10/2014 5:10:17 PM		
Selenium	1.71	0.558		mg/Kg-dry	1	9/10/2014 5:10:17 PM		
Silver	0.530	0.112		mg/Kg-dry	1	9/10/2014 5:10:17 PM		
Metals (SW6020) with TCLP E	extraction (EPA 13	<u>811)</u>		Batch	n ID: 8796	Analyst: TN		
Lead	ND	0.200		mg/L	1	9/22/2014 11:54:55 AM		
Sample Moisture (Percent Mo	oisture)			Batch	n ID: R166	85 Analyst: SL		
Percent Moisture	33.2			wt%	1	9/10/2014 10:35:08 AM		
Hexavalent Chromium by EPA	A Method 7196			Batch	n ID: 8795	Analyst: MW		
Chromium, Hexavalent	ND	0.731		mg/Kg-dry	1	9/21/2014 10:23:25 AM		

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:31:00 AM

Project: SLU Marriott

Lab ID: 1409077-073 **Matrix:** Soil

Client Sample ID: DP-12-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	y EPA Method		Batch	ı ID:	8824 Analyst: EM	
Benzene	ND	0.0262	Н	mg/Kg-dry	1	9/24/2014 10:14:00 AM
Surr: Dibromofluoromethane	99.3	63.7-129	Н	%REC	1	9/24/2014 10:14:00 AM
Surr: Toluene-d8	100	64.3-131	Н	%REC	1	9/24/2014 10:14:00 AM
Surr: 1-Bromo-4-fluorobenzene	95.8	63.1-141	Н	%REC	1	9/24/2014 10:14:00 AM
Sample Moisture (Percent Mois	ture)			Batch	ı ID:	R16932 Analyst: SL
Percent Moisture	23.2			wt%	1	9/23/2014 3:54:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Date: 9/24/2014

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

CLIENT:	· ·	ers, Inc Redmond						Hoyaval	ent Chromi	ium hv FP	Δ Methor	d 719
Project:	SLU Marrio	ott						IICAGVAI		idili by Li		u / 13
Sample ID:	MB-8795	SampType: MBLK			Units: mg/	Kg	Prep Dat	te: 9/21/20	14	RunNo: 168	390	
Client ID:	MBLKS	Batch ID: 8795					Analysis Dat	te: 9/21/20	14	SeqNo: 339	9168	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, I	Hexavalent	ND	0.500									
Sample ID:	LCS-8795	SampType: LCS			Units: mg/	Kg	Prep Dat	te: 9/21/20	14	RunNo: 168	890	
Client ID:	LCSS	Batch ID: 8795					Analysis Dat	te: 9/21/20	14	SeqNo: 339	9169	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, I	Hexavalent	2.41	0.500	2.500	0	96.3	65	135				
Sample ID:	1409077-011ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Dat	te: 9/21/20	14	RunNo: 168	890	
Client ID:	DP-2-12.5	Batch ID: 8795					Analysis Dat	te: 9/21/20	14	SeqNo: 339	9171	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, I	Hexavalent	ND	0.646						0		30	
Sample ID:	1409077-011AMS	SampType: MS			Units: mg/	Kg-dry	Prep Dat	te: 9/21/20	14	RunNo: 168	890	
Client ID:	DP-2-12.5	Batch ID: 8795					Analysis Dat	te: 9/21/20	14	SeqNo: 339	9172	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, I	Hexavalent	3.82	0.646	3.231	0	118	65	135				
Sample ID:	1409077-011AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Dat	te: 9/21/20	14	RunNo: 168	890	
Client ID:	DP-2-12.5	Batch ID: 8795					Analysis Dat	te: 9/21/20	14	SeqNo: 339	9173	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	Hexavalent	3.70	0.660	3.299	0	112	65	135	3.816	3.10	30	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Date: 9/24/2014

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Dissolved Metals by EPA Method 200.8

Project: SLU Marriott

Sample ID: MB-8658 SampType: MBLK			Units: μg/L			Prep Date: 9/9/2014			RunNo: 16661		
Client ID: MBLKW	Batch ID: 8658			Analysis Date: 9/9/2014				SeqNo: 334			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00									
Barium	ND	0.500									
Cadmium	ND	0.200									
Chromium	ND	0.500									
Lead	ND	1.00									
Selenium	ND	1.00									
Silver	ND	0.200									
Sample ID: LCS-8658	SampType: LCS			Units: µg/L		Prep Da	te: 9/9/20 1	14	RunNo: 16 0	661	

Sample ID: LCS-8658	SampType: LCS		Units: µg/L			Prep Date: 9/9/2014			RunNo: 16661		
Client ID: LCSW	Batch ID: 8658					Analysis Date: 9/9/2014			SeqNo: 334920		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	101	1.00	100.0	0	101	85	115				
Barium	105	0.500	100.0	0	105	85	115				
Cadmium	4.48	0.200	5.000	0	89.7	85	115				
Chromium	104	0.500	100.0	0	104	85	115				
Lead	50.3	1.00	50.00	0	101	85	115				
Selenium	9.80	1.00	10.00	0	98.0	85	115				
Silver	4.80	0.200	5.000	0	96.0	85	115				

Sample ID: 1409077-050DDUP	SampType: DUP		Units: µg/L			Prep Da	te: 9/9/201	4	RunNo: 16661			
Client ID: MW-2-140906	Batch ID: 8658					Analysis Date: 9/9/2014				SeqNo: 334922		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	3.20	1.00						3.984	21.9	30	_	
Barium	251	0.500						251.1	0.0910	30		
Cadmium	ND	0.200						0		30		
Chromium	0.560	0.500						0.6665	17.4	30		

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

Barium

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Dissolved Metals by EPA Method 200.8

Project:	SLU Marriott							Diss	orved wet	als by El A	- Metriou	200.0
Sample ID: 140907	77-050DDUP Samp	Гуре: DUP			Units: µg/L		Prep Da	te: 9/9/2014		RunNo: 160	661	
Client ID: MW-2-	-140906 Batch	ID: 8658					Analysis Da	te: 9/9/2014		SeqNo: 334	4922	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	1.00						0		30	
Selenium		ND	1.00						0		30	
Silver		ND	0.200						0		30	
Sample ID: 140907	77-050DMS Samp1	Гуре: МЅ			Units: µg/L		Prep Da	te: 9/9/2014		RunNo: 160	661	
Client ID: MW-2-	-140906 Batch	ID: 8658					Analysis Da	te: 9/9/2014		SeqNo: 334	4923	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		540	1.00	500.0	3.984	107	70	130				

Cadmium	25.6	0.200	25.00	0.01600	102	70	130		
Chromium	529	0.500	500.0	0.6665	106	70	130		
Lead	237	1.00	250.0	0.2265	94.9	70	130		
Selenium	59.4	1.00	50.00	0.6435	117	70	130		
Silver	20.9	0.200	25.00	0.03650	83.3	70	130		
Sample ID: 1409077-050DMSD	SampType: MSD			Units: μg/L		Prep Date:	9/9/2014	RunNo: 16661	
Client ID: MW-2-140906	Batch ID: 8658					Analysis Date:	9/9/2014	SeqNo: 334924	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual

251.1

107

70

130

Client ID: MW-2-140906	Batch ID: 8658					Analysis Da	te: 9/9/201	4	SeqNo: 334	1924	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	547	1.00	500.0	3.984	109	70	130	540.3	1.32	30	
Barium	779	0.500	500.0	251.1	106	70	130	788.5	1.21	30	
Cadmium	25.2	0.200	25.00	0.01600	101	70	130	25.60	1.66	30	
Chromium	540	0.500	500.0	0.6665	108	70	130	528.8	2.05	30	
Lead	238	1.00	250.0	0.2265	95.0	70	130	237.4	0.121	30	
Selenium	59.0	1.00	50.00	0.6435	117	70	130	59.36	0.672	30	
Silver	20.5	0.200	25.00	0.03650	81.8	70	130	20.86	1.85	30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

788

0.500

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

500.0

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Dissolved Metals by EPA Method 200.8

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

· ·	ers, Inc Redmond					Disso	lved Mercu	ırv by EPA	Method	245.1
Project: SLU Marrio										
Sample ID: MB-8690	SampType: MBLK			Units: µg/L		Prep Date: 9/11/201	4	RunNo: 167	'33	
Client ID: MBLKW	Batch ID: 8690					Analysis Date: 9/11/201	4	SeqNo: 336	195	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.100								
Sample ID: LCS-8690	SampType: LCS			Units: µg/L		Prep Date: 9/11/201	4	RunNo: 167	'33	
Client ID: LCSW	Batch ID: 8690					Analysis Date: 9/11/201	4	SeqNo: 336	196	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	2.30	0.100	2.000	0	115	85 115				
Sample ID: 1409077-050DDUP	SampType: DUP			Units: µg/L		Prep Date: 9/11/201	4	RunNo: 167	'33	
Client ID: MW-2-140906	Batch ID: 8690					Analysis Date: 9/11/201	4	SeqNo: 336	198	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.100					0		20	
Sample ID: 1409077-050DMS	SampType: MS			Units: µg/L		Prep Date: 9/11/201	4	RunNo: 167	'33	
Client ID: MW-2-140906	Batch ID: 8690					Analysis Date: 9/11/201	4	SeqNo: 336	199	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	2.38	0.100	2.000	0	119	80 120				
Sample ID: 1409077-050DMSD	SampType: MSD			Units: µg/L		Prep Date: 9/11/201	4	RunNo: 167	'33	
Client ID: MW-2-140906	Batch ID: 8690					Analysis Date: 9/11/201	4	SeqNo: 336	200	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	2.38	0.100	2.000	0	119	80 120	2.380	0	20	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

CLIENT:

GeoEngineers, Inc. - Redmond

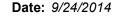
QC SUMMARY REPORT

Total Metals by EPA Method 6020

Project: SLU Marriott									i Otal Met	.ais by L	-FA Method	u 0020
Sample ID: MB-8664	SampType: N	MBLK			Units: mg/Kg		Prep Date	9/9/201	4	RunNo:	16678	
Client ID: MBLKS	Batch ID: 8	3664					Analysis Date	e: 9/9/201	4	SeqNo: 3	335221	
Analyte	Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RP	D RPDLimit	Qual
Arsenic		ND	0.100									
Barium	1	ND	0.500									
Cadmium	1	ND	0.200									
Chromium	1	ND	0.100									
Lead	1	ND	0.200									
Selenium	1	ND	0.500									
Silver	I	ND	0.100									
Sample ID: LCS-8664	SampType: L	_CS			Units: mg/Kg		Prep Date	e: 9/9/201	4	RunNo:	16678	
Client ID: LCSS	Batch ID: 8	3664					Analysis Date	e: 9/9/201	4	SeqNo:	335222	

Sample ID: LCS-8664	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/9/201	4	RunNo: 166	678	
Client ID: LCSS	Batch ID: 8664					Analysis Da	te: 9/9/201	4	SeqNo: 338	5222	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	107	0.100	104.0	0	103	69.5	130.8				
Barium	836	0.500	779.0	0	107	74.8	125.3				
Cadmium	86.4	0.200	92.80	0	93.1	73.3	127.2				
Chromium	79.6	0.100	62.90	0	127	67.9	132				
Lead	314	0.200	319.0	0	98.5	75.9	124.1				
Selenium	79.7	0.500	77.70	0	103	63.1	136.4				
Silver	47.3	0.100	48.50	0	97.6	66.4	133.6				

Sample ID: 1409084-001ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 166	678	
Client ID: BATCH	Batch ID: 8664					Analysis Dat	te: 9/9/201	4	SeqNo: 335	5224	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	3.12	0.0819						3.031	2.77	30	
Barium	59.5	0.410						57.43	3.56	30	
Cadmium	ND	0.164						0		30	
Chromium	27.5	0.0819						25.37	8.01	30	


Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
- Analyte detected below quantitation limits
- Reporting Limit

- E Value above quantitation range
- Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

CLIENT:

GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Total Metals by EPA Method 6020

Sample ID: 1409084-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	e: 9/9/201	4	RunNo: 166	678	
Client ID: BATCH	Batch ID: 8664					Analysis Dat	e: 9/9/201	4	SeqNo: 335	5224	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	6.56	0.164						7.209	9.43	30	
Selenium	ND	0.410						0		30	
Silver	ND	0.0819						0		30	

7/2014 RunNo: 16678
M2014 SeqNo: 335226
imit RPD Ref Val %RPD RPDLimit Qual
125
125
125
125 S
125
125
125
125

NOTES:

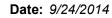
S - Outlying spike recovery observed. A duplicate analysis was performed and was within range.

Sample ID: 1409084-001AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 16678			
Client ID: BATCH	Batch ID: 8664					SeqNo: 338	5227					
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	47.1	0.0858	42.88	3.031	103	75	125	44.90	4.71	30		
Barium	110	0.429	42.88	57.43	123	75	125	102.9	6.62	30		
Cadmium	2.59	0.172	2.144	0.1030	116	75	125	2.527	2.33	30		
Chromium	78.2	0.0858	42.88	25.37	123	75	125	75.84	3.06	30		
Lead	31.6	0.172	21.44	7.209	114	75	125	30.95	1.99	30		
Selenium	4.83	0.429	4.288	0	113	75	125	4.751	1.55	30		

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

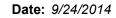
Total Metals by EPA Method 6020

Project:	SLU Marriott												
Sample ID:	1409084-001AMSD	SampType	MSD			Units: mg/Kg	-dry	Prep Dat	e: 9/9/201	4	RunNo: 166	578	
Client ID:	BATCH	Batch ID:	8664					Analysis Dat	e: 9/9/201	4	SeqNo: 338	5227	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver			1.97	0.0858	2.144	0.05412	89.3	75	125	1.942	1.42	30	
Sample ID:	CCV-8664E	SampType	: CCV			Units: µg/L		Prep Dat	e: 9/10/20	14	RunNo: 166	678	
Client ID:	CCV	Batch ID:	8664					Analysis Dat	e: 9/10/20	14	SeqNo: 338	5530	
Analyte		ı	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			101	1.00	100.0	0	101	90	110				
Sample ID:	CCV-8664F	SampType	CCV			Units: µg/L		Prep Dat	e: 9/10/20	14	RunNo: 166	678	
Client ID:	CCV	Batch ID:	8664					Analysis Dat	e: 9/10/20	14	SeqNo: 338	5542	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			100	1.00	100.0	0	100	90	110				
Sample ID:	MB-8674	SampType	: MBLK			Units: mg/Kg		Prep Dat	e: 9/10/20	14	RunNo: 167	702	
Client ID:	MBLKS	Batch ID:	8674					Analysis Dat	e: 9/10/20	14	SeqNo: 338	5676	
Analyte		ı	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	0.100									
Barium			ND	0.500									
Cadmium			ND	0.200									
Chromium			ND	0.100									
				0.000									
Lead			ND	0.200									
Lead Selenium			ND ND	0.200									

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

CLIENT: GeoEngineers, Inc. - Redmond

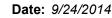
Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Project: SLU Marriott

QC SUMMARY REPORT

Total Metals by EPA Method 6020


Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Sample ID:	LCS-8674	SampType:	LCS			Units: mg/h	(g	Prep Dat	te: 9/10/20	14	RunNo: 167	702	
Client ID:	LCSS	Batch ID:	8674					Analysis Dat	te: 9/10/20	14	SeqNo: 335	5679	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			108	0.100	104.0	0	104	69.5	130.8				
Barium			834	0.500	779.0	0	107	74.8	125.3				
Cadmium			93.5	0.200	92.80	0	101	73.3	127.2				
Chromium			68.1	0.100	62.90	0	108	67.9	132				
Lead			349	0.200	319.0	0	109	75.9	124.1				
Selenium			73.9	0.500	77.70	0	95.0	63.1	136.4				
Silver			50.6	0.100	48.50	0	104	66.4	133.6				
Sample ID:	1409077-033ADUP	SampType:	DUP			Units: mg/h	(g-dry	Prep Dat	te: 9/10/20	14	RunNo: 167	702	
Client ID:	DP-6-10.0	Batch ID:	8674					Analysis Dat	te: 9/10/20	14	SeqNo: 335	5681	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			1.60	0.0849						1.672	4.56	30	
Barium			46.3	0.425						46.47	0.317	30	
Cadmium			ND	0.170						0		30	
Chromium			23.8	0.0849						24.88	4.50	30	
Lead			1.86	0.170						1.815	2.54	30	
Selenium			0.877	0.425						0.9969	12.8	30	
Silver			ND	0.0849						0		30	
Sample ID:	1409077-033AMS	SampType:	MS			Units: mg/h	(g-dry	Prep Dat	te: 9/10/20	14	RunNo: 167	702	
Client ID:	DP-6-10.0	Batch ID:	8674					Analysis Dat	te: 9/10/20	14	SeqNo: 335	5683	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			43.9	0.0862	43.10	1.672	97.9	75	125				
Barium			89.9	0.431	43.10	46.47	101	75	125				
Cadmium			2.05	0.172	2.155	0.05073	92.7	75	125				
Chromium			71.8	0.0862	43.10	24.88	109	75	125				

Analyte detected below quantitation limits

Reporting Limit

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Total Metals by EPA Method 6020

Sample ID: 1409077-033AMS	SampType: MS			Units: mg/	Prep Da	te: 9/10/20	14	RunNo: 167	702		
Client ID: DP-6-10.0	Batch ID: 8674	·				Analysis Da	te: 9/10/20	14	SeqNo: 335	5683	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	24.6	0.172	21.55	1.815	106	75	125				
Selenium	5.27	0.431	4.310	0.9969	99.0	75	125				
Silver	2.08	0.0862	2.155	0.03289	95.0	75	125				

Sample ID: 1409077-033AMSD SampType: MSD		Units: mg/Kg-		Kg-dry	Prep Da	te: 9/10/20	14	RunNo: 167	702		
Client ID: DP-6-10.0	Batch ID: 8674					Analysis Da	te: 9/10/20	14	SeqNo: 33	5684	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	45.2	0.0855	42.77	1.672	102	75	125	43.87	3.06	30	
Barium	95.4	0.428	42.77	46.47	114	75	125	89.86	6.02	30	
Cadmium	2.13	0.171	2.139	0.05073	97.4	75	125	2.049	4.05	30	
Chromium	76.4	0.0855	42.77	24.88	121	75	125	71.82	6.24	30	
Lead	24.0	0.171	21.39	1.815	104	75	125	24.58	2.31	30	
Selenium	4.87	0.428	4.277	0.9969	90.4	75	125	5.266	7.90	30	
Silver	2.06	0.0855	2.139	0.03289	94.6	75	125	2.080	1.18	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT	: GeoEnginee	ers, Inc Redmond						•	OUWINA		
Project:	: SLU Marriot	t						Merc	ury by EP	A Method	1 7471
Sample ID:	: MB-8665	SampType: MBLK			Units: mg/Kg		Prep Date: 9/9/2014		RunNo: 166	77	
Client ID:	MBLKS	Batch ID: 8665					Analysis Date: 9/9/2014		SeqNo: 335	131	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.250								
Sample ID:	: LCS-8665	SampType: LCS			Units: mg/Kg		Prep Date: 9/9/2014		RunNo: 166	577	
Client ID:	LCSS	Batch ID: 8665					Analysis Date: 9/9/2014		SeqNo: 335	132	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury NOTES:	=	6.35	0.250	5.000	0	127	80 120				S
	ying spike recovery observe		in detections	s may be quair							
	: 1409084-001ADUP	SampType: DUP			Units: mg/Kg-di	ry	Prep Date: 9/9/2014		RunNo: 166		
Client ID:	BATCH	Batch ID: 8665					Analysis Date: 9/9/2014		SeqNo: 335	134	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.247					0		20	
Comple ID:											
Sample ID.	: 1409084-001AMS	SampType: MS			Units: mg/Kg-dı	ry	Prep Date: 9/9/2014		RunNo: 166	77	
Client ID:	: 1409084-001AMS BATCH	SampType: MS Batch ID: 8665			Units: mg/Kg-di	ry	Prep Date: 9/9/2014 Analysis Date: 9/9/2014		RunNo: 166 SeqNo: 335		
			RL	SPK value		ry %REC	·	RPD Ref Val			Qual
Client ID:		Batch ID: 8665	RL 0.247	SPK value			Analysis Date: 9/9/2014	RPD Ref Val	SeqNo: 335	135	Qual
Client ID: Analyte Mercury		Batch ID: 8665 Result			SPK Ref Val	%REC 122	Analysis Date: 9/9/2014 LowLimit HighLimit F	RPD Ref Val	SeqNo: 335	RPDLimit	Qual
Client ID: Analyte Mercury	ВАТСН	Batch ID: 8665 Result 0.628			SPK Ref Val 0.02533	%REC 122	Analysis Date: 9/9/2014 LowLimit HighLimit F 70 130	RPD Ref Val	SeqNo: 335 %RPD	RPDLimit	Qual
Client ID: Analyte Mercury Sample ID:	: 1409084-001AMSD	Batch ID: 8665 Result 0.628 SampType: MSD			SPK Ref Val 0.02533 Units: mg/Kg-di	%REC 122	Analysis Date: 9/9/2014 LowLimit HighLimit F 70 130 Prep Date: 9/9/2014		SeqNo: 335 %RPD RunNo: 166	RPDLimit	Qual

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Mercury by EPA Method 7471

Sample ID: 1409084-001AMSD SampType: MSD Units: mg/Kg-dry Prep Date: 9/9/2014 RunNo: 16677 Client ID: BATCH Batch ID: 8665 Analysis Date: 9/9/2014 SeqNo: 335136 SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Result RL %REC Qual Analyte

Sample ID: CCV-8665C SampType: CCV Prep Date: 9/9/2014 RunNo: 16677 Units: µg/L Analysis Date: 9/9/2014 Client ID: CCV 8665 SeqNo: 335151 Batch ID: Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Qual Mercury 5.19 0.250 5.000 0 104 90 110 Sample ID: CCV-8665D RunNo: 16677 SampType: CCV Units: µg/L Prep Date: 9/9/2014

Analysis Date: 9/9/2014 Client ID: CCV 8665 Batch ID: SeqNo: 335157 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Qual Mercury 5.23 0.250 5.000 0 105 90 110

Sample ID: MB-8681 SampType: MBLK Prep Date: 9/10/2014 Units: mg/Kg RunNo: 16699 Client ID: **MBLKS** Batch ID: 8681 Analysis Date: 9/10/2014 SeqNo: 335622 %REC Qual Analyte Result RL SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD **RPDLimit**

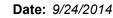
Mercury ND 0.250

Sample ID: LCS-8681	SampType: LCS			Units: mg/Kg		Prep Dat	te: 9/10/20	14	RunNo: 166	399	
Client ID: LCSS	Batch ID: 8681					Analysis Dat	te: 9/10/20	14	SeqNo: 335	5623	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	4.56	0.250	5.000	0	91.2	80	120				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

CLIENT:

GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Mercury by EPA Method 7471

Sample ID: 1409077-013ADUP	SampType: DUP		Units: mg/Kg-dry			Prep Da	te: 9/10/20	14	RunNo: 166	699	
Client ID: DP-3-2.5	Batch ID: 8681					Analysis Date: 9/10/2014			SeqNo: 335	625	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.280						0		20	

Sample ID: 1409077-013AMS	SampType: MS	Units: mg/Kg-dry			Prep Da	te: 9/10/20	14	RunNo: 166	399		
Client ID: DP-3-2.5	Batch ID: 8681	Ar				Analysis Date: 9/10/2014			SeqNo: 335	5626	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.617	0.242	0.4849	0.2762	70.2	70	130				

Sample ID: 1409077-013AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Dat	te: 9/10/20	14	RunNo: 166	99	
Client ID: DP-3-2.5	Batch ID: 8681					Analysis Dat	te: 9/10/20	14	SeqNo: 335	627	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.700	0.242	0.4849	0.2762	87.4	70	130	0.6168	12.7	20	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

CLIENT: GeoEngineers, Inc. - Redmond **QC SUMMARY REPORT**

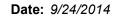
Maraum by EDA Mathed 7470

Project:	SLU Marriott									Merc	ury by EP	A Metho	d 747
Sample ID:	MB-8811	SampType:	MBLK			Units: µg/I	_	Prep Dat	e: 9/23/20	14	RunNo: 169	940	
Client ID:	MBLKW	Batch ID:	8811					Analysis Dat	e: 9/23/20	14	SeqNo: 340	0076	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			ND	0.100									
Sample ID: I	LCS-8811	SampType:	LCS			Units: µg/l	_	Prep Dat	e: 9/23/20	14	RunNo: 169	940	
Client ID: L	LCSW	Batch ID:	8811					Analysis Dat	e: 9/23/20	14	SeqNo: 340	0077	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			2.31	0.100	2.500	0	92.4	70	130				
Sample ID: 1	1409077-044ADUP	SampType:	DUP			Units: µg/l	dry	Prep Dat	e: 9/23/20	14	RunNo: 169	940	
Client ID:	DP-9-5.0	Batch ID:	8811					Analysis Dat	e: 9/23/20	14	SeqNo: 340	0079	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			ND	0.138						0		20	
Sample ID: 1	1409077-044AMS	SampType:	MS			Units: µg/l	dry	Prep Dat	e: 9/23/20	14	RunNo: 169	940	
Client ID:	DP-9-5.0	Batch ID:	8811					Analysis Dat	e: 9/23/20	14	SeqNo: 340	080	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			3.06	0.138	3.445	0.01516	88.4	70	130				
Sample ID: 1	1409077-044AMSD	SampType:	MSD			Units: µg/l	dry	Prep Dat	e: 9/23/20	14	RunNo: 169	940	
Client ID:	DP-9-5.0	Batch ID:	8811					Analysis Dat	e: 9/23/20	14	SeqNo: 340	0081	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury			3.06	0.138	3.445	0.01516	88.4	70	130	3.059	0	20	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

CLIENT: GeoEngi	ineers, Inc Redmond					Motale	(C/MCU20) with TCL	D Extract	ion (EDA	1211\
Project: SLU Mar	rriott					Wietais	(300020) WILLI TOL	-P EXIIACI	IOII (EPA	1311)
Sample ID: LCS-8796	SampType: LCS			Units: mg/L		Prep Dat	e: 9/22/201 4	4	RunNo: 168	95	
Client ID: LCSS	Batch ID: 8796					Analysis Dat	e: 9/22/201 4	4	SeqNo: 339	276	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	2.23	0.200	2.500	0	89.2	65	135				
Sample ID: 1408231-020ADUP	SampType: DUP			Units: mg/L		Prep Dat	e: 9/22/201 4	4	RunNo: 168	395	
Client ID: BATCH	Batch ID: 8796					Analysis Dat	e: 9/22/201 4	4	SeqNo: 339	278	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	ND	0.200						0		30	
Sample ID: 1408231-020AMS	SampType: MS			Units: mg/L		Prep Dat	e: 9/22/201 4	4	RunNo: 168	395	
Client ID: BATCH	Batch ID: 8796					Analysis Dat	e: 9/22/201 4	4	SeqNo: 339	279	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	2.10	0.200	2.500	0	84.0	65	135				
Sample ID: 1408231-020AMSE	SampType: MSD			Units: mg/L		Prep Dat	e: 9/22/201 4	4	RunNo: 168	395	
Client ID: BATCH	Batch ID: 8796					Analysis Dat	e: 9/22/201 4	4	SeqNo: 339	280	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	2.10	0.200	2.500	0	84.0	65	135	2.099	0.0148	30	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marriott

Sample ID: 1409077-058ADUP	SampType: DUP			Units: mg/K	a_drv	Pren Dat	te: 9/9/201	4	RunNo: 160	694	
Client ID: DP-8-20.0	Batch ID: 8671			Onits. Ing/N	g-ury	·					
						Analysis Dat			SeqNo: 33		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	23.1						0		30	
Heavy Oil	ND	57.7						0		30	
Surr: 2-Fluorobiphenyl	17.4		23.06		75.3	50	150		0		
Surr: o-Terphenyl	20.2		23.06		87.6	50	150		0		
Sample ID: LCS-8671	SampType: LCS			Units: mg/K	g	Prep Dat	te: 9/9/201	4	RunNo: 160	694	
Client ID: LCSS	Batch ID: 8671					Analysis Dat	te: 9/10/20	14	SeqNo: 33	5490	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	512	20.0	500.0	0	102	65	135				
Surr: 2-Fluorobiphenyl	17.9		20.00		89.5	50	150				
Surr: o-Terphenyl	18.4		20.00		91.9	50	150				
Sample ID: MB-8671	SampType: MBLK			Units: mg/K	g	Prep Dat	te: 9/9/201	4	RunNo: 160	694	
Client ID: MBLKS	Batch ID: 8671					Analysis Dat	te: 9/10/20	14	SeqNo: 33	5491	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	15.4		20.00		77.2	50	150				
Surr: o-Terphenyl	18.2		20.00		91.2	50	150				
Sample ID: 1409077-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 9/9/201	4	RunNo: 160	696	
Client ID: DP-1-2.5	Batch ID: 8670					Analysis Dat	te: 9/10/20	14	SeqNo: 33	5505	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	19.5						0		30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marriott

Project: SLU Marric	ott						Diesei a	iiu iicavy (311 by 1444 1		
Sample ID: 1409077-001ADUP	SampType: DUP			Units: mg/k	(g-dry	Prep Date	e: 9/9/201 4	4	RunNo: 166	396	
Client ID: DP-1-2.5	Batch ID: 8670					Analysis Date	e: 9/10/20 1	14	SeqNo: 338	5505	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heavy Oil	ND	48.6						0		30	
Surr: 2-Fluorobiphenyl	18.4		19.45		94.7	50	150		0		
Surr: o-Terphenyl	18.4		19.45		94.8	50	150		0		
Sample ID: LCS-8670	SampType: LCS			Units: mg/k	 (g	Prep Date	e: 9/9/201 4	1	RunNo: 166		
Client ID: LCSS	Batch ID: 8670					Analysis Date	e: 9/10/20 1	14	SeqNo: 338	5512	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	539	20.0	500.0	0	108	65	135				
Surr: 2-Fluorobiphenyl	20.2		20.00		101	50	150				
Surr: o-Terphenyl	17.7		20.00		88.4	50	150				
Sample ID: MB-8670	SampType: MBLK			Units: mg/k	(g	Prep Date	e: 9/9/201 4	4	RunNo: 166	96	
Client ID: MBLKS	Batch ID: 8670					Analysis Date	e: 9/10/20 1	14	SeqNo: 33	5513	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	21.5		20.00		108	50	150				
Surr: o-Terphenyl	17.2		20.00		86.0	50	150				
Sample ID: 1409077-029ADUP	SampType: DUP			Units: mg/k	(g-dry	Prep Date	e: 9/9/201 4	4	RunNo: 166	96	
Client ID: DP-5-7.5	Batch ID: 8670					Analysis Date	e: 9/10/20 1	14	SeqNo: 338	5704	
G. G. G. T.			ODIC I	CDI/ Dof Vol	0/ DEC	Loud imit	Liahl imit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte	Result	RL	SPK value	SPK Rei Vai	%REC	LOWLITTIL	підпіліпі	KED Kei vai	701 N D	RPDLIIIII	Quai
	Result ND	21.1	SPK value	SPK Rei Vai	%REC	LOWLITTIL	HIGHLIIIII	0	701 (I D	30	Quai

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded J Ana

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

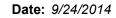
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: 1409077-029ADUP	SampType: DUP	Units: mg/Kg-dry		Prep Da	te: 9/9/201	4	RunNo: 166	696			
Client ID: DP-5-7.5	Batch ID: 8670					Analysis Da	14	SeqNo: 338	5704		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl	19.9		21.05		94.5	50	150		0		
Surr: o-Terphenyl	16.2		21.05		76.9	50	150		0		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

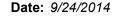
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marrio	ott						Diesei a	ind Heavy (Oil by NW I	PH-DX/D	x Ext.
Sample ID: 1409077-050BDUP	SampType: DUP			Units: µg/L		Prep Date	e: 9/10/20	14	RunNo: 167	28	
Client ID: MW-2-140906	Batch ID: 8679					Analysis Date	e: 9/11/20	14	SeqNo: 336	090	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0						0		30	
Heavy Oil	ND	100						0		30	
Surr: 2-Fluorobiphenyl	59.9		80.00		74.9	50	150		0		
Surr: o-Terphenyl	56.2		80.00		70.2	50	150		0		
Sample ID: MB-8679	SampType: MBLK			Units: µg/L		Prep Date	e: 9/10/20	14	RunNo: 167	28	
Client ID: MBLKW	Batch ID: 8679					Analysis Date	e: 9/11/20	14	SeqNo: 336	167	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Surr: 2-Fluorobiphenyl	51.1		80.00		63.8	50	150				
Surr: o-Terphenyl	56.3		80.00		70.3	50	150				
Sample ID: LCS-8679	SampType: LCS			Units: µg/L		Prep Date	e: 9/10/20	14	RunNo: 167	28	
Client ID: LCSW	Batch ID: 8679					Analysis Date	e: 9/11/20	14	SeqNo: 336	168	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	874	50.0	1,000	0	87.4	65	135				
Surr: 2-Fluorobiphenyl	56.5		80.00		70.6	50	150				
Surr: o-Terphenyl	58.8		80.00		73.5	50	150				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

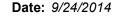
Project: SLU Mari	riott				Ро	lyaroma	tic Hydro	ocarbons by	/ EPA Met	hod 8270) (SIM
Sample ID: MB-8667	SampType: MBLK			Units: µg/Kg		Prep Da	ate: 9/9/20	14	RunNo: 16	703	
Client ID: MBLKS	Batch ID: 8667					Analysis Da	ate: 9/10/2	014	SeqNo: 33	5711	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	391		500.0		78.3	42.7	132				
Surr: Terphenyl-d14 (surr)	516		500.0		103	48.8	157				

Sample ID: LCS-8667	SampType: LCS	Type: LCS			ts: μg/Kg Prep Date			4	RunNo: 167		
Client ID: LCSS	Batch ID: 8667					Analysis Dat	e: 9/10/20	14	SeqNo: 335	5712	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,110	50.0	1,000	0	111	61.6	125				
2-Methylnaphthalene	1,060	50.0	1,000	0	106	58.2	129				
1-Methylnaphthalene	982	50.0	1,000	0	98.2	56.4	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8667	SampType: LCS			Units: µg/Kg		Prep Da	te: 9/9/201	4	RunNo: 167	703	
Client ID: LCSS	Batch ID: 8667					Analysis Dat	te: 9/10/20	14	SeqNo: 335	5712	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	902	50.0	1,000	0	90.2	52.2	133				
Acenaphthene	926	50.0	1,000	0	92.6	54	131				
Fluorene	941	50.0	1,000	0	94.1	53.4	131				
Phenanthrene	886	50.0	1,000	0	88.6	55.6	128				
Anthracene	835	50.0	1,000	0	83.5	51	132				
Fluoranthene	1,040	50.0	1,000	0	104	48.4	134				
Pyrene	1,050	50.0	1,000	0	105	48.6	135				
Benz(a)anthracene	1,060	50.0	1,000	0	106	41.9	136				
Chrysene	866	50.0	1,000	0	86.6	51.4	135				
Benzo(b)fluoranthene	661	50.0	1,000	0	66.1	39.7	137				
Benzo(k)fluoranthene	775	50.0	1,000	0	77.5	45.7	138				
Benzo(a)pyrene	651	50.0	1,000	0	65.1	45.3	135				
Indeno(1,2,3-cd)pyrene	522	50.0	1,000	0	52.2	45.4	137				
Dibenz(a,h)anthracene	535	50.0	1,000	0	53.5	45.8	134				
Benzo(g,h,i)perylene	454	50.0	1,000	0	45.4	45	134				
Surr: 2-Fluorobiphenyl	560		500.0		112	42.7	132				
Surr: Terphenyl-d14 (surr)	624		500.0		125	48.8	157				

Sample ID: 1409084-004AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 9/9/201	4	RunNo: 167	703	
Client ID: BATCH	Batch ID: 8667					Analysis Da	te: 9/10/20	14	SeqNo: 335	722	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	849	52.0	1,040	0	81.6	42.9	138				
2-Methylnaphthalene	923	52.0	1,040	0	88.7	42.8	151				
1-Methylnaphthalene	905	52.0	1,040	0	86.9	41.6	148				
Acenaphthylene	883	52.0	1,040	0	84.9	32.6	160				
Acenaphthene	969	52.0	1,040	152.3	78.5	46.3	142				
Fluorene	966	52.0	1,040	184.3	75.1	43.4	153				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1409084-004AMS	SampType: MS	Units: μg/Kg-dry			Prep Date: 9/9/2014			RunNo: 16703			
Client ID: BATCH	Batch ID: 8667					Analysis Da	te: 9/10/20	14	SeqNo: 338	5722	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	1,260	52.0	1,040	1,423	-15.4	45.5	140				S
Anthracene	856	52.0	1,040	171.4	65.8	32.6	160				
Fluoranthene	1,540	52.0	1,040	1,154	36.7	44.6	161				S
Pyrene	1,570	52.0	1,040	1,031	51.4	48.3	158				
Benz(a)anthracene	1,240	52.0	1,040	303.6	90.0	57.5	169				
Chrysene	907	52.0	1,040	192.5	68.7	45.2	146				
Benzo(b)fluoranthene	873	52.0	1,040	180.2	66.6	42.2	168				
Benzo(k)fluoranthene	843	52.0	1,040	0	81.1	48	161				
Benzo(a)pyrene	720	52.0	1,040	115.9	58.1	34.4	179				
Indeno(1,2,3-cd)pyrene	577	52.0	1,040	67.28	49.0	41.1	165				
Dibenz(a,h)anthracene	573	52.0	1,040	0	55.1	38.1	166				
Benzo(g,h,i)perylene	504	52.0	1,040	64.49	42.3	45.6	157				S
Surr: 2-Fluorobiphenyl	499		520.2		96.0	42.7	132				
Surr: Terphenyl-d14 (surr)	569		520.2		109	48.8	157				

NOTES:

S - Outlying QC recoveries were associated with this sample. The method is in control as indicated by the LCS.

Sample ID: 1409084-005ADUP	SampType: DUP		Units: µg/Kg-dry	Prep Date: 9/9/2014	RunNo: 16703
Client ID: BATCH	Batch ID: 8667			Analysis Date: 9/10/2014	SeqNo: 335723
Analyte	Result	RL SPK value SPF	K Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Naphthalene	ND	52.4		0	30
2-Methylnaphthalene	ND	52.4		0	30
1-Methylnaphthalene	ND	52.4		0	30
Acenaphthylene	ND	52.4		0	30
Acenaphthene	ND	52.4		0	30
Fluorene	ND	52.4		0	30
Phenanthrene	ND	52.4		0	30
Anthracene	ND	52.4		0	30
Fluorene Phenanthrene	ND ND	52.4 52.4		-	30 30

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
- Analyte detected below quantitation limits
- Reporting Limit

- Ε Value above quantitation range
- Not detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1409084-005ADUP	SampType: DUP			Units: µg/Kg-dry Prep Date: 9/9/2014				RunNo: 16703			
Client ID: BATCH	Batch ID: 8667					Analysis Da	te: 9/10/20	14	SeqNo: 338	5723	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	ND	52.4						0		30	
Pyrene	ND	52.4						0		30	
Benz(a)anthracene	ND	52.4						0		30	
Chrysene	ND	52.4						0		30	
Benzo(b)fluoranthene	ND	52.4						0		30	
Benzo(k)fluoranthene	ND	52.4						0		30	
Benzo(a)pyrene	ND	52.4						0		30	
Indeno(1,2,3-cd)pyrene	ND	52.4						0		30	
Dibenz(a,h)anthracene	ND	52.4						0		30	
Benzo(g,h,i)perylene	ND	52.4						0		30	
Surr: 2-Fluorobiphenyl	458		523.9		87.5	42.7	132		0		
Surr: Terphenyl-d14 (surr)	602		523.9		115	48.8	157		0		

Sample ID: MB-8675	SampType: MBLK			Units: µg/Kg		Prep Date: 9/10/2014	RunNo: 16704	
Client ID: MBLKS	Batch ID: 8675					Analysis Date: 9/10/2014	SeqNo: 335728	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	ND	50.0						
2-Methylnaphthalene	ND	50.0						
1-Methylnaphthalene	ND	50.0						
Acenaphthylene	ND	50.0						
Acenaphthene	ND	50.0						
Fluorene	ND	50.0						
Phenanthrene	ND	50.0						
Anthracene	ND	50.0						
Fluoranthene	ND	50.0						
Pyrene	ND	50.0						
Benz(a)anthracene	ND	50.0						

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project:	SLU Marriott

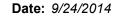
Sample ID: MB-8675	SampType: MBLK			Units: μg/Kg		Prep Dat	te: 9/10/201	14	RunNo: 167	'04	
Client ID: MBLKS	Batch ID: 8675					Analysis Dat	te: 9/10/201	14	SeqNo: 335	728	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	379		500.0		75.8	42.7	132				
Surr: Terphenyl-d14 (surr)	548		500.0		110	48.8	157				

Sample ID: LCS-8675	SampType: LCS		•	Units: µg/Kg		Prep Date	9/10/20	14	RunNo: 16	704	
Client ID: LCSS	Batch ID: 8675					Analysis Date	9/10/20	14	SeqNo: 33	5729	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,090	50.0	1,000	0	109	61.6	125				
2-Methylnaphthalene	1,140	50.0	1,000	0	114	58.2	129				
1-Methylnaphthalene	1,120	50.0	1,000	0	112	56.4	132				
Acenaphthylene	1,110	50.0	1,000	0	111	52.2	133				
Acenaphthene	1,130	50.0	1,000	0	113	54	131				
Fluorene	1,120	50.0	1,000	0	112	53.4	131				
Phenanthrene	1,090	50.0	1,000	0	109	55.6	128				
Anthracene	1,060	50.0	1,000	0	106	51	132				
Fluoranthene	1,210	50.0	1,000	0	121	48.4	134				
Pyrene	1,250	50.0	1,000	0	125	48.6	135				
Benz(a)anthracene	1,310	50.0	1,000	0	131	41.9	136				
Chrysene	1,050	50.0	1,000	0	105	51.4	135				
Benzo(b)fluoranthene	1,090	50.0	1,000	0	109	39.7	137				
Benzo(k)fluoranthene	973	50.0	1,000	0	97.3	45.7	138				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8675	SampType: LCS		Units: µg/Kg			Prep Da	te: 9/10/2014	RunNo: 16 7		
Client ID: LCSS	Batch ID: 8675					Analysis Da	te: 9/10/2014	SeqNo: 33	5729	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(a)pyrene	862	50.0	1,000	0	86.2	45.3	135			
Indeno(1,2,3-cd)pyrene	675	50.0	1,000	0	67.5	45.4	137			
Dibenz(a,h)anthracene	681	50.0	1,000	0	68.1	45.8	134			
Benzo(g,h,i)perylene	588	50.0	1,000	0	58.8	45	134			
Surr: 2-Fluorobiphenyl	549		500.0		110	42.7	132			
Surr: Terphenyl-d14 (surr)	594		500.0		119	48.8	157			

Sample ID: CCV-B-8667	SampType: CCV			Units: µg/L		Prep Da	te: 9/11/20	14	RunNo: 167	' 03	
Client ID: CCV	Batch ID: 8667					Analysis Da	te: 9/11/20	14	SeqNo: 336	405	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,010	50.0	1,000	0	101	80	120				
2-Methylnaphthalene	1,020	50.0	1,000	0	102	80	120				
1-Methylnaphthalene	1,020	50.0	1,000	0	102	80	120				
Acenaphthylene	1,020	50.0	1,000	0	102	80	120				
Acenaphthene	1,030	50.0	1,000	0	103	80	120				
Fluorene	1,000	50.0	1,000	0	100	80	120				
Phenanthrene	1,010	50.0	1,000	0	101	80	120				
Anthracene	1,000	50.0	1,000	0	100	80	120				
Fluoranthene	956	50.0	1,000	0	95.6	80	120				
Pyrene	943	50.0	1,000	0	94.3	80	120				
Benz(a)anthracene	973	50.0	1,000	0	97.3	80	120				
Chrysene	1,000	50.0	1,000	0	100	80	120				
Benzo(b)fluoranthene	853	50.0	1,000	0	85.3	80	120				
Benzo(k)fluoranthene	1,070	50.0	1,000	0	107	80	120				
Benzo(a)pyrene	879	50.0	1,000	0	87.9	80	120				
Indeno(1,2,3-cd)pyrene	923	50.0	1,000	0	92.3	80	120				
Dibenz(a,h)anthracene	877	50.0	1,000	0	87.7	80	120				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

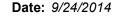
Sample ID: CCV-B-8667	SampType: CCV			Units: µg/L		Prep Da	te: 9/11/20	14	RunNo: 167	703	
Client ID: CCV	Batch ID: 8667					Analysis Da	te: 9/11/20	14	SeqNo: 336	6405	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(g,h,i)perylene	1,140	50.0	1,000	0	114	80	120				
Surr: 2-Fluorobiphenyl	489		500.0		97.8	50.4	142				
Surr: Terphenyl-d14 (surr)	460		500.0		91.9	48.8	157				

Sample ID: 1409077-044ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Dat	te: 9/10/20	14	RunNo: 16 7	704	
Client ID: DP-9-5.0	Batch ID: 8675					Analysis Dat	te: 9/12/20	14	SeqNo: 336	6768	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	70.1	67.9						0	200	30	
2-Methylnaphthalene	ND	67.9						0		30	
1-Methylnaphthalene	ND	67.9						0		30	
Acenaphthylene	ND	67.9						0		30	
Acenaphthene	ND	67.9						0		30	
Fluorene	ND	67.9						0		30	
Phenanthrene	ND	67.9						0		30	
Anthracene	ND	67.9						0		30	
Fluoranthene	ND	67.9						0		30	
Pyrene	ND	67.9						0		30	
Benz(a)anthracene	ND	67.9						0		30	
Chrysene	ND	67.9						0		30	
Benzo(b)fluoranthene	255	67.9						326.3	24.5	30	
Benzo(k)fluoranthene	ND	67.9						0		30	
Benzo(a)pyrene	257	67.9						0	200	30	
Indeno(1,2,3-cd)pyrene	ND	67.9						0		30	
Dibenz(a,h)anthracene	ND	67.9						0		30	
Benzo(g,h,i)perylene	ND	67.9						0		30	
Surr: 2-Fluorobiphenyl	631		678.8		93.0	42.7	132		0		
Surr: Terphenyl-d14 (surr)	971		678.8		143	48.8	157		0		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Sample ID: 1409077-044ADUP

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: SLU Marriott

SampType: DUP Units: $\mu g/Kg$ -dry Prep Date: 9/10/2014 RunNo: 16704

Client ID: **DP-9-5.0** Batch ID: **8675** Analysis Date: **9/12/2014** SeqNo: **336768**

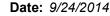
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: 1409077-048AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 9/10/20	14	RunNo: 167	704	_
Client ID: DP-9-20.0	Batch ID: 8675					Analysis Da	te: 9/12/20	14	SeqNo: 336	6770	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	968	53.4	1,068	0	90.7	42.9	138				
2-Methylnaphthalene	1,030	53.4	1,068	0	96.9	42.8	151				
1-Methylnaphthalene	1,070	53.4	1,068	0	100	41.6	148				
Acenaphthylene	1,160	53.4	1,068	0	109	32.6	160				
Acenaphthene	1,140	53.4	1,068	0	107	46.3	142				
Fluorene	1,180	53.4	1,068	0	111	43.4	153				
Phenanthrene	1,150	53.4	1,068	0	108	45.5	140				
Anthracene	1,140	53.4	1,068	0	107	32.6	160				
Fluoranthene	1,210	53.4	1,068	71.19	107	44.6	161				
Pyrene	1,220	53.4	1,068	72.13	108	48.3	158				
Benz(a)anthracene	1,480	53.4	1,068	0	139	57.5	169				
Chrysene	1,090	53.4	1,068	0	102	45.2	146				
Benzo(b)fluoranthene	1,430	53.4	1,068	0	134	42.2	168				
Benzo(k)fluoranthene	1,250	53.4	1,068	0	117	48	161				
Benzo(a)pyrene	1,270	53.4	1,068	0	119	34.4	179				
Indeno(1,2,3-cd)pyrene	1,610	53.4	1,068	0	151	41.1	165				
Dibenz(a,h)anthracene	1,520	53.4	1,068	0	142	38.1	166				
Benzo(g,h,i)perylene	1,290	53.4	1,068	0	121	45.6	157				
Surr: 2-Fluorobiphenyl	377		533.9		70.6	42.7	132				
Surr: Terphenyl-d14 (surr)	593		533.9		111	48.8	157				

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: ICV	SampType: ICV			Units: µg/L		Prep Da	ite: 9/16/20	14	RunNo: 167	790	
Client ID: ICV	Batch ID: R16790					Analysis Da	ite: 9/16/20	14	SeqNo: 337	7515	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	953	50.0	1,000	0	95.3	70	130				
2-Methylnaphthalene	910	50.0	1,000	0	91.0	70	130				
1-Methylnaphthalene	896	50.0	1,000	0	89.6	70	130				
Acenaphthylene	914	50.0	1,000	0	91.4	70	130				
Acenaphthene	948	50.0	1,000	0	94.8	70	130				
Fluorene	865	50.0	1,000	0	86.5	70	130				
Phenanthrene	958	50.0	1,000	0	95.8	70	130				
Anthracene	980	50.0	1,000	0	98.0	70	130				
Fluoranthene	988	50.0	1,000	0	98.8	70	130				
Pyrene	1,000	50.0	1,000	0	100	70	130				
Benz(a)anthracene	988	50.0	1,000	0	98.8	70	130				
Chrysene	961	50.0	1,000	0	96.1	70	130				
Benzo(b)fluoranthene	1,020	50.0	1,000	0	102	70	130				
Benzo(k)fluoranthene	1,020	50.0	1,000	0	102	70	130				
Benzo(a)pyrene	1,020	50.0	1,000	0	103	70	130				
Indeno(1,2,3-cd)pyrene	823	50.0	1,000	0	82.3	70	130				
Dibenz(a,h)anthracene	761	50.0	1,000	0	76.1	70	130				
Benzo(g,h,i)perylene	813	50.0	1,000	0	81.3	70	130				
Surr: 2-Fluorobiphenyl	416		500.0		83.3	50.4	142				
Surr: Terphenyl-d14 (surr)	561		500.0		112	48.8	157				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-8680	SampType: MBLK			Units: µg/L		Prep Date:	9/10/201	14	RunNo: 167	'36	
Client ID: MBLKW	Batch ID: 8680					Analysis Date:	9/11/201	14	SeqNo: 336	243	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.100									
2-Methylnaphthalene	ND	0.100									
1-Methylnaphthalene	ND	0.100									
Acenaphthylene	ND	0.100									
Acenaphthene	ND	0.100									
Fluorene	ND	0.100									
Phenanthrene	ND	0.100									
Anthracene	ND	0.100									
Fluoranthene	ND	0.100									
Pyrene	ND	0.100									
Benz(a)anthracene	ND	0.100									
Chrysene	ND	0.100									
Benzo(b)fluoranthene	ND	0.100									
Benzo(k)fluoranthene	ND	0.100									
Benzo(a)pyrene	ND	0.100									
Indeno(1,2,3-cd)pyrene	ND	0.100									
Dibenz(a,h)anthracene	ND	0.100									
Benzo(g,h,i)perylene	ND	0.100									
Surr: 2-Fluorobiphenyl	1.47		2.000		73.5	23.9	122				
Surr: Terphenyl-d14	1.76		2.000		87.9	33.4	135				

Sample ID: 1409077-050CDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 9/10/2 0	14	RunNo: 167	'36	
Client ID: MW-2-140906	Batch ID: 8680					Analysis Dat	e: 9/12/20	14	SeqNo: 336	247	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.100						0		30	
2-Methylnaphthalene	ND	0.100						0		30	
1-Methylnaphthalene	ND	0.100						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
 - Analyte detected below quantitation limits
- Reporting Limit

- Ε Value above quantitation range
- Not detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

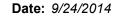
Sample ID: 1409077-050CDUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/10/2 0)14	RunNo: 167	736	
Client ID: MW-2-140906	Batch ID: 8680					Analysis Da	te: 9/12/2 0)14	SeqNo: 336	6247	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	ND	0.100						0		30	
Acenaphthene	ND	0.100						0		30	
Fluorene	ND	0.100						0		30	
Phenanthrene	ND	0.100						0		30	
Anthracene	ND	0.100						0		30	
Fluoranthene	ND	0.100						0		30	
Pyrene	ND	0.100						0		30	
Benz(a)anthracene	ND	0.100						0		30	
Chrysene	ND	0.100						0		30	
Benzo(b)fluoranthene	ND	0.100						0		30	
Benzo(k)fluoranthene	ND	0.100						0		30	
Benzo(a)pyrene	ND	0.100						0		30	
Indeno(1,2,3-cd)pyrene	ND	0.100						0		30	
Dibenz(a,h)anthracene	ND	0.100						0		30	
Benzo(g,h,i)perylene	ND	0.100						0		30	
Surr: 2-Fluorobiphenyl	1.77		2.000		88.4	23.9	122		0		
Surr: Terphenyl-d14	1.64		2.000		82.2	33.4	135		0		

Sample ID: 1409077-051CMS	SampType: MS			Units: µg/L		Prep Da	te: 9/10/20	14	RunNo: 167	736	
Client ID: MW-3-140906	Batch ID: 8680					Analysis Dat	te: 9/12/20	14	SeqNo: 336	6249	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	3.10	0.100	4.000	0	77.5	31.2	104				
2-Methylnaphthalene	3.40	0.100	4.000	0	85.0	33.9	109				
1-Methylnaphthalene	3.43	0.100	4.000	0	85.7	33.2	110				
Acenaphthylene	3.57	0.100	4.000	0	89.1	40.5	98.7				
Acenaphthene	3.72	0.100	4.000	0	93.1	30.6	117				
Fluorene	4.08	0.100	4.000	0	102	35.2	99.1				S

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1409077-051CMS	SampType: MS			Units: µg/L		Prep Da	te: 9/10/20	14	RunNo: 167	736	
Client ID: MW-3-140906	Batch ID: 8680					Analysis Da	te: 9/12/20	14	SeqNo: 330	6249	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	4.03	0.100	4.000	0	101	42.7	111				
Anthracene	3.07	0.100	4.000	0	76.7	43.9	103				
Fluoranthene	4.41	0.100	4.000	0	110	56.1	115				
Pyrene	4.28	0.100	4.000	0	107	44.2	134				
Benz(a)anthracene	4.73	0.100	4.000	0	118	50.4	128				
Chrysene	3.64	0.100	4.000	0	90.9	41.4	118				
Benzo(b)fluoranthene	4.39	0.100	4.000	0	110	50.8	121				
Benzo(k)fluoranthene	3.58	0.100	4.000	0	89.4	43.4	113				
Benzo(a)pyrene	3.68	0.100	4.000	0	91.9	40.8	128				
Indeno(1,2,3-cd)pyrene	4.13	0.100	4.000	0	103	29.5	126				
Dibenz(a,h)anthracene	4.41	0.100	4.000	0	110	31.4	120				
Benzo(g,h,i)perylene	4.27	0.100	4.000	0	107	30	116				
Surr: 2-Fluorobiphenyl	1.79		4.000		44.8	23.9	122				
Surr: Terphenyl-d14	2.20		4.000		54.9	33.4	135				
NOTES:											

NOTES:

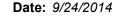
S - Outlying QC recoveries were associated with this sample. The method is in control as indicated by the LCS.

Sample ID: LCS-8680	SampType: LCS			Units: µg/L		Prep Da	te: 9/10/2 0	14	RunNo: 167	736	
Client ID: LCSW	Batch ID: 8680					Analysis Da	te: 9/11/20	14	SeqNo: 336	6254	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2.78	0.100	4.000	0	69.6	13.7	121				
2-Methylnaphthalene	2.80	0.100	4.000	0	70.1	35.4	110				
1-Methylnaphthalene	2.85	0.100	4.000	0	71.3	37.5	116				
Acenaphthylene	3.02	0.100	4.000	0	75.5	39.2	114				
Acenaphthene	3.18	0.100	4.000	0	79.4	37	113				
Fluorene	3.44	0.100	4.000	0	86.0	40.3	117				
Phenanthrene	3.64	0.100	4.000	0	90.9	35.1	118				
Anthracene	3.54	0.100	4.000	0	88.4	45.4	115				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8680	SampType: LCS			Units: µg/L		Prep Da	te: 9/10/20	14	RunNo: 16736			
Client ID: LCSW	Batch ID: 8680				Analysis Date: 9/11/2014			14	SeqNo: 336254			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Fluoranthene	3.85	0.100	4.000	0	96.2	49.7	126					
Pyrene	3.88	0.100	4.000	0	96.9	48.1	123					
Benz(a)anthracene	4.44	0.100	4.000	0	111	48.7	126					
Chrysene	3.61	0.100	4.000	0	90.3	45.1	114					
Benzo(b)fluoranthene	4.09	0.100	4.000	0	102	52.2	126					
Benzo(k)fluoranthene	4.08	0.100	4.000	0	102	45.5	121					
Benzo(a)pyrene	3.76	0.100	4.000	0	94.0	38.4	121					
Indeno(1,2,3-cd)pyrene	4.61	0.100	4.000	0	115	23.9	143					
Dibenz(a,h)anthracene	4.46	0.100	4.000	0	112	24.9	141					
Benzo(g,h,i)perylene	4.27	0.100	4.000	0	107	35.9	139					
Surr: 2-Fluorobiphenyl	1.54		4.000		38.4	23.9	122					
Surr: Terphenyl-d14	2.15		4.000		53.7	33.4	135					

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

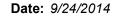
Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Project: SLU Marrio	ott			Po	olychlori	nated Bipho	enyls (PCE	B) by EP	A 8082		
Sample ID: MB-8688	SampType: MBLK			Units: mg/Kg		Prep Da	te: 9/11/2 0)14	RunNo: 167	738	
Client ID: MBLKS	Batch ID: 8688					Analysis Da	te: 9/11/2 0)14	SeqNo: 330	6292	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.100									
Aroclor 1221	ND	0.100									
Aroclor 1232	ND	0.100									
Aroclor 1242	ND	0.100									
Aroclor 1248	ND	0.100									
Aroclor 1254	ND	0.100									
Aroclor 1260	ND	0.100									
Aroclor 1262	ND	0.100									
Aroclor 1268	ND	0.100									
Total PCBs	ND	0.100									
Surr: Decachlorobiphenyl	43.3		50.00		86.6	50.2	159				
Surr: Tetrachloro-m-xylene	38.8		50.00		77.6	60.3	134				
Sample ID: LCS-8688	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/11/2 0)14	RunNo: 167	738	
Client ID: LCSS	Batch ID: 8688					Analysis Da	te: 9/11/2 0)14	SeqNo: 336293		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.10	0.100	1.000	0	110	45.8	133				
Aroclor 1260	1.13	0.100	1.000	0	113	57	134				
Surr: Decachlorobiphenyl	45.3		50.00		90.6	50.2	159				
Surr: Tetrachloro-m-xylene	39.7		50.00		79.4	60.3	134				
Sample ID: 1409077-013ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Da	te: 9/11/2 0)14	RunNo: 167	738	
Client ID: DP-3-2.5	Batch ID: 8688					Analysis Da	te: 9/11/2 0)14	SeqNo: 330	6295	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.108						0		30	
Aroclor 1221	ND	0.108						0		30	
Qualifiers: B Analyte detected in	the associated Method Blank		D Dilution wa	as required			E Valu	e above quantitation ra	ange		

Analyte detected below quantitation limits

Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polychlorinated Biphenyls (PCB) by EPA 8082

Project:	SLU Marriott
Sample ID:	1409077-013ADUP

DP-3-2.5	Batch ID:	8688

SampType: DUP	Units: mg/Kg-dry	Prep Date:	9/11/2014	RunNo: 16738
Batch ID: 8688		Analysis Date:	9/11/2014	SeqNo: 336295

Client ID: DP-3-2.5	Batch ID: 8688					Analysis Da	te: 9/11/2 0	14	SeqNo: 330	6295	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1232	ND	0.108						0		30	
Aroclor 1242	ND	0.108						0		30	
Aroclor 1248	ND	0.108						0		30	
Aroclor 1254	ND	0.108						0		30	
Aroclor 1260	ND	0.108						0		30	
Aroclor 1262	ND	0.108						0		30	
Aroclor 1268	ND	0.108						0		30	
Total PCBs	ND	0.108						0		30	
Surr: Decachlorobiphenyl	42.5		53.93		78.9	50.2	159		0		
Surr: Tetrachloro-m-xylene	40.0		53.93		74.2	60.3	134		0		

Sample ID: 1409077-037AMS Client ID: DP-7-7.5	SampType: MS Batch ID: 8688			Units: mg/l	〈g-dry	Prep Date: 9/11/2014 Analysis Date: 9/11/2014			RunNo: 16738 SeqNo: 336297		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.64	0.147	1.465	0	112	61.7	139				
Aroclor 1260	1.59	0.147	1.465	0	108	63.1	138				
Surr: Decachlorobiphenyl	63.2		73.25		86.3	50.2	159				
Surr: Tetrachloro-m-xylene	59.9		73.25		81.7	60.3	134				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

CLIENT: GeoEngineers, Inc. - Redmond

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Project: SLU Marrio	ott								Gasoline	by NWT	PH-G
Sample ID: 1409077-001BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Da	te: 9/9/201	4	RunNo: 166	693	
Client ID: DP-1-2.5	Batch ID: R16693					Analysis Da	te: 9/10/20	14	SeqNo: 338	5470	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	4.70						0		30	
Surr: Toluene-d8	2.41		2.350		103	65	135		0		
Surr: 4-Bromofluorobenzene	2.13		2.350		90.5	65	135		0		
Sample ID: LCS-R16693	SampType: LCS			Units: mg/K	g	Prep Da	te: 9/10/20	14	RunNo: 166	693	
Client ID: LCSS	Batch ID: R16693					Analysis Da	te: 9/10/20	14	SeqNo: 338	5479	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	24.2	5.00	25.00	0	96.8	65	135				
Surr: Toluene-d8	2.54		2.500		101	65	135				
Surr: 4-Bromofluorobenzene	2.36		2.500		94.3	65	135				
Sample ID: MB-R16693	SampType: MBLK			Units: mg/K	g	Prep Da	te: 9/9/201	4	RunNo: 166	593	
Client ID: MBLKS	Batch ID: R16693					Analysis Da	te: 9/9/201	4	SeqNo: 338	5480	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	2.55		2.500		102	65	135				
Surr: 4-Bromofluorobenzene	2.24		2.500		89.8	65	135				
Sample ID: 1409077-037BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Da	te: 9/10/20	14	RunNo: 16 7	714	
Client ID: DP-7-7.5	Batch ID: R16714					Analysis Da	te: 9/11/20	14	SeqNo: 338	5913	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	189	8.32						174.6	8.17	30	
Surr: Toluene-d8	4.06		4.158		97.7	65	135		0		
Surr: 4-Bromofluorobenzene	3.99		4.158		96.0	65	135		0		
Qualifiers: B Analyte detected in	the associated Method Blank		D Dilution wa	as required			E Value	e above quantitation r	ange		

Analyte detected below quantitation limits

Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Gasoline by NWTPH-Gx

Project: **SLU Marriott**

Sample ID: 1409077-037BDUP SampType: **DUP** Units: mg/Kg-dry Prep Date: 9/10/2014 RunNo: 16714 Client ID: DP-7-7.5 Batch ID: R16714

Analysis Date: 9/11/2014 SeqNo: 335913

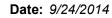
Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte

Sample ID: LCS-R16714	SampType	: LCS			Units: mg/l	K g	Prep Dat	te: 9/11/20	14	RunNo: 16 7	714	
Client ID: LCSS	Batch ID:	R16714					Analysis Dat	te: 9/11/20	14	SeqNo: 33	5922	
Analyte	1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		22.9	5.00	25.00	0	91.4	65	135				
Surr: Toluene-d8		2.51		2.500		101	65	135				
Surr: 4-Bromofluorobenzene		2.42		2.500		96.6	65	135				
Sample ID: MB-R16714	SampType	: MBLK			Units: mg/l	K g	Prep Dat	te: 9/11/20	14	RunNo: 167	714	
Client ID: MBLKS	Batch ID:	R16714					Analysis Dat	te: 9/11/20	14	SeqNo: 33	5923	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	5.00									
Surr: Toluene-d8		2.45		2.500		98.0	65	135				
Surr: 4-Bromofluorobenzene		2.30		2.500		92.0	65	135				
Sample ID: 1409090-001BDUP	SampType	: DUP			Units: mg/l	Kg-dry	Prep Dat	te: 9/10/20	14	RunNo: 167	714	
Client ID: BATCH	Batch ID:	R16714					Analysis Dat	te: 9/11/20	14	SeqNo: 330	6612	
Analyte	1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	5.18						0		30	
Surr: Toluene-d8		2.50		2.590		96.6	65	135		0		
Surr: 4-Bromofluorobenzene		2.56		2.590		98.8	65	135		0		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

ND Not detected at the Reporting Limit

CLIENT:

GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Project: SLU Marrio	ott								Guoomio	~y	`	
Sample ID: CCV-R16693C	SampType: CCV			Units: mg/Kç]	Prep Dat	e: 9/11/20	14	RunNo: 166	693		
Client ID: CCV	Batch ID: R16693					Analysis Dat	e: 9/11/20	14	SeqNo: 336	617		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua	
Gasoline	554	5.00	500.0	0	111	80	120					
Surr: Toluene-d8	50.6		50.00		101	65	135					
Surr: 4-Bromofluorobenzene	49.1		50.00		98.2	65	135					
Sample ID: CCV-R16714D	SampType: CCV			Units: mg/Kg]	Prep Dat	e: 9/15/20	14	RunNo: 167	714		
Client ID: CCV	Batch ID: R16714					Analysis Dat	e: 9/15/20	14	SeqNo: 336	6672		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua	
Gasoline	431	5.00	500.0	0	86.1	80	120					
Surr: Toluene-d8	49.2		50.00		98.4	65	135					
Surr: 4-Bromofluorobenzene	48.6		50.00		97.2	65	135					
Sample ID: 1409077-012BDUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Dat	e: 9/24/20	14	RunNo: 169	994		
Client ID: DP-2-15.0	Batch ID: 8838					Analysis Dat	e: 9/24/20	14	SeqNo: 340	730		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua	
Gasoline	33.2	4.37						34.95	5.05	30	Н	
Surr: Toluene-d8	2.19		2.187		100	65	135		0		Н	
Surr: 4-Bromofluorobenzene	2.05		2.187		94.0	65	135		0		Н	
Sample ID: LCS-8838	SampType: LCS			Units: mg/Kg)	Prep Dat	e: 9/24/20	14	RunNo: 169	994		
Client ID: LCSS	Batch ID: 8838					Analysis Dat	e: 9/24/20	14	SeqNo: 340	732		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua	
Gasoline	27.1	5.00	25.00	0	108	65	135					
Surr: Toluene-d8	2.50		2.500		100	65	135					
Surr: 4-Bromofluorobenzene	2.47		2.500		98.9	65	135					
Qualifiers: B Analyte detected in	the associated Method Blank	ociated Method Blank D Dilution was required					E Value above quantitation range					
H Holding times for p	reparation or analysis exceeded	is exceeded J Analyte detected below quantitation limits					ND Not detected at the Reporting Limit					

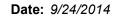
R RPD outside accepted recovery limits RL Reporting Limit S S Spike recovery outside accepted recovery limits

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Gasoline by NWTPH-Gx


Project: SLU Marriott

Sample ID: LCS-8838 SampType: LCS Units: mg/Kg Prep Date: 9/24/2014 RunNo: 16994

Client ID: LCSS Batch ID: 8838 Analysis Date: 9/24/2014 SeqNo: 340732

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: MB-8838 Client ID: MBLKS	SampType: MBLK Batch ID: 8838	Units: mg/Kg				Prep Date: 9/24/2014 Analysis Date: 9/24/2014				RunNo: 16994 SeqNo: 340733		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Gasoline	ND	5.00										
Surr: Toluene-d8	2.49		2.500		99.6	65	135					
Surr: 4-Bromofluorobenzene	2.44		2.500		97.5	65	135					

CLIENT:

GeoEngineers, Inc. - Redmond

R RPD outside accepted recovery limits

Project: SLU Marriott

QC SUMMARY REPORT

S Spike recovery outside accepted recovery limits

Gasoline by NWTPH-Gx

Project: SLU Marrio	ott								Guoomio		•
Sample ID: 1409077-052ADUP	SampType: DUP			Units: µg/L		Prep Date	: 9/10/201	14	RunNo: 166	82	
Client ID: MW-1-140906	Batch ID: R16682					Analysis Date	9/10/201	14	SeqNo: 335	254	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0						0		30	
Surr: Toluene-d8	50.0		50.00		100	65	135		0	0	
Surr: 4-Bromofluorobenzene	54.3		50.00		109	65	135		0	0	
Sample ID: 1409083-001ADUP	SampType: DUP			Units: µg/L		Prep Date	: 9/9/2014	4	RunNo: 166	682	
Client ID: BATCH	Batch ID: R16682					Analysis Date	: 9/9/2014	4	SeqNo: 335	257	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0						0		30	
Surr: Toluene-d8	51.7		50.00		103	65	135		0	0	
Surr: 4-Bromofluorobenzene	51.9		50.00		104	65	135		0	0	
Sample ID: LCS-R16682	SampType: LCS			Units: µg/L		Prep Date	9/9/2014	4	RunNo: 166	682	
Client ID: LCSW	Batch ID: R16682					Analysis Date	: 9/9/2014	4	SeqNo: 335	261	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	593	50.0	500.0	0	119	65	135				
Surr: Toluene-d8	50.5		50.00		101	65	135				
Surr: 4-Bromofluorobenzene	50.6		50.00		101	65	135				
Sample ID: MB-R16682	SampType: MBLK			Units: µg/L		Prep Date	e: 9/9/2014	1	RunNo: 166	82	
Client ID: MBLKW	Batch ID: R16682					Analysis Date	9/9/2014	4	SeqNo: 335	262	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0									
Surr: Toluene-d8	52.5		50.00		105	65	135				
Surr: 4-Bromofluorobenzene	50.3		50.00		101	65	135				
Qualifiers: B Analyte detected in	the associated Method Blank		D Dilution wa	as required			E Value	above quantitation ra	ange		
H Holding times for pr	reparation or analysis exceeded		J Analyte de	tected below quantitation I	imits		ND Not de	etected at the Report	ting Limit		

RL Reporting Limit

Batch ID:

Date: 9/24/2014

Work Order: 1409077

MBLKW

CLIENT:

Client ID:

GeoEngineers, Inc. - Redmond

QC SUMMARY REPORT

Project: SLU Marriott

Gasoline by NWTPH-Gx

Sample ID: MB-R16682 SampType: MBLK Units: $\mu g/L$ Prep Date: 9/9/2014 RunNo: 16682

R16682 Analysis Date: 9/9/2014 SeqNo: 335262

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-001BDUP	SampType: DUP			Units: mg/l	Cg-dry	Prep Da	te: 9/9/201	4	RunNo: 16 0	692	
Client ID: DP-1-2.5	Batch ID: 8663					Analysis Da	te: 9/10/2 0	14	SeqNo: 33	5444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0564						0		30	
Chloromethane	ND	0.0564						0		30	
Vinyl chloride	ND	0.00188						0		30	
Bromomethane	ND	0.0846						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0470						0		30	
Chloroethane	ND	0.0564						0		30	
1,1-Dichloroethene	ND	0.0470						0		30	
Methylene chloride	ND	0.0188						0		30	
trans-1,2-Dichloroethene	ND	0.0188						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0470						0		30	
1,1-Dichloroethane	ND	0.0188						0		30	
2,2-Dichloropropane	ND	0.0470						0		30	
cis-1,2-Dichloroethene	ND	0.0188						0		30	
Chloroform	ND	0.0188						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0188						0		30	
1,1-Dichloropropene	ND	0.0188						0		30	
Carbon tetrachloride	ND	0.0188						0		30	
1,2-Dichloroethane (EDC)	ND	0.0282						0		30	
Benzene	ND	0.0188						0		30	
Trichloroethene (TCE)	ND	0.0188						0		30	
1,2-Dichloropropane	ND	0.0188						0		30	
Bromodichloromethane	ND	0.0188						0		30	
Dibromomethane	ND	0.0376						0		30	
cis-1,3-Dichloropropene	ND	0.0188						0		30	
Toluene	ND	0.0188						0		30	
trans-1,3-Dichloropropylene	ND	0.0282						0		30	
1,1,2-Trichloroethane	ND	0.0282						0		30	
1,3-Dichloropropane	ND	0.0470						0		30	
Tetrachloroethene (PCE)	ND	0.0188						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-001BDUP	SampType: DUP			Units: mg/h	(g-dry	Prep Da	te: 9/9/201	4	RunNo: 16 0	692	
Client ID: DP-1-2.5	Batch ID: 8663					Analysis Da	te: 9/10/2 0	14	SeqNo: 33	5444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	0.0282						0		30	
1,2-Dibromoethane (EDB)	ND	0.00470						0		30	
Chlorobenzene	ND	0.0188						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0282						0		30	
Ethylbenzene	ND	0.0282						0		30	
m,p-Xylene	ND	0.0188						0		30	
o-Xylene	ND	0.0188						0		30	
Styrene	ND	0.0188						0		30	
Isopropylbenzene	ND	0.0752						0		30	
Bromoform	ND	0.0188						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0188						0		30	
n-Propylbenzene	ND	0.0188						0		30	
Bromobenzene	ND	0.0282						0		30	
1,3,5-Trimethylbenzene	ND	0.0188						0		30	
2-Chlorotoluene	ND	0.0188						0		30	
4-Chlorotoluene	ND	0.0188						0		30	
tert-Butylbenzene	ND	0.0188						0		30	
1,2,3-Trichloropropane	ND	0.0188						0		30	
1,2,4-Trichlorobenzene	ND	0.0470						0		30	
sec-Butylbenzene	ND	0.0188						0		30	
4-Isopropyltoluene	ND	0.0188						0		30	
1,3-Dichlorobenzene	ND	0.0188						0		30	
1,4-Dichlorobenzene	ND	0.0188						0		30	
n-Butylbenzene	ND	0.0188						0		30	
1,2-Dichlorobenzene	ND	0.0188						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0282						0		30	
1,2,4-Trimethylbenzene	ND	0.0188						0		30	
Hexachlorobutadiene	ND	0.0940						0		30	
Naphthalene	ND	0.0282						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

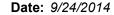
Project:	SLU Marriott
----------	--------------

Sample ID: 1409077-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 160	592	
Client ID: DP-1-2.5	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 33	5444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	ND	0.0188						0		30	
Surr: Dibromofluoromethane	2.15		2.350		91.5	63.7	129		0		
Surr: Toluene-d8	2.26		2.350		96.1	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	2.17		2.350		92.2	63.1	141		0		
Sample ID: 1409077-002BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 160	692	
Client ID: DP-1-5.0	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 33	5450	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.729	0.0455	0.7581	0	96.2	43.5	121				
Chloromethane	0.696	0.0455	0.7581	0	91.8	45	130				
Vinyl chloride	0.764	0.00152	0.7581	0	101	51.2	146				
Bromomethane	0.651	0.0682	0.7581	0	85.8	21.3	120				
Trichlorofluoromethane (CFC-11)	0.327	0.0379	0.7581	0	43.1	35	131				
Chloroethane	0.454	0.0455	0.7581	0	59.9	43.8	117				
1,1-Dichloroethene	0.880	0.0379	0.7581	0	116	61.9	141				
Methylene chloride	0.885	0.0152	0.7581	0	117	54.7	142				
trans-1,2-Dichloroethene	0.845	0.0152	0.7581	0	111	52	136				
Methyl tert-butyl ether (MTBE)	0.675	0.0379	0.7581	0	89.1	54.4	132				
1,1-Dichloroethane	0.816	0.0152	0.7581	0	108	51.8	141				
2,2-Dichloropropane	0.528	0.0379	0.7581	0	69.6	36	123				
cis-1,2-Dichloroethene	0.722	0.0152	0.7581	0	95.3	58.6	136				
Chloroform	0.803	0.0152	0.7581	0	106	53.2	129				
1,1,1-Trichloroethane (TCA)	0.815	0.0152	0.7581	0	108	58.3	145				
1,1-Dichloropropene	0.779	0.0152	0.7581	0	103	55.1	138				
Carbon tetrachloride	0.779	0.0152	0.7581	0	103	53.3	144				
1,2-Dichloroethane (EDC)	0.693	0.0227	0.7581	0	91.4	51.3	139				
Benzene	0.791	0.0152	0.7581	0	104	63.5	133				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

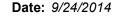
Project: SLU Marriott

Sample ID: 1409077-002BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 9/9/201	4	RunNo: 166	692	
Client ID: DP-1-5.0	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 338	5450	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	0.815	0.0152	0.7581	0	108	68.6	132				
1,2-Dichloropropane	0.782	0.0152	0.7581	0	103	59	136				
Bromodichloromethane	0.770	0.0152	0.7581	0	102	50.7	141				
Dibromomethane	0.751	0.0303	0.7581	0	99.0	50.6	137				
cis-1,3-Dichloropropene	0.686	0.0152	0.7581	0	90.5	50.4	138				
Toluene	0.803	0.0152	0.7581	0	106	63.4	132				
trans-1,3-Dichloropropylene	0.708	0.0227	0.7581	0	93.4	44.1	147				
1,1,2-Trichloroethane	0.776	0.0227	0.7581	0	102	51.6	137				
1,3-Dichloropropane	0.787	0.0379	0.7581	0	104	53.1	134				
Tetrachloroethene (PCE)	0.831	0.0152	0.7581	0	110	35.6	158				
Dibromochloromethane	0.748	0.0227	0.7581	0	98.7	55.3	140				
1,2-Dibromoethane (EDB)	0.769	0.00379	0.7581	0	101	50.4	136				
Chlorobenzene	0.798	0.0152	0.7581	0	105	60	133				
1,1,1,2-Tetrachloroethane	0.789	0.0227	0.7581	0	104	53.1	142				
Ethylbenzene	0.797	0.0227	0.7581	0	105	54.5	134				
m,p-Xylene	1.62	0.0152	1.516	0	107	53.1	132				
o-Xylene	0.795	0.0152	0.7581	0	105	53.3	139				
Styrene	0.793	0.0152	0.7581	0	105	51.1	132				
Isopropylbenzene	0.791	0.0606	0.7581	0	104	58.9	138				
Bromoform	0.707	0.0152	0.7581	0	93.2	57.9	130				
1,1,2,2-Tetrachloroethane	0.776	0.0152	0.7581	0	102	51.9	131				
n-Propylbenzene	0.803	0.0152	0.7581	0	106	53.6	140				
Bromobenzene	0.795	0.0227	0.7581	0	105	54.2	140				
1,3,5-Trimethylbenzene	0.820	0.0152	0.7581	0	108	51.8	136				
2-Chlorotoluene	0.817	0.0152	0.7581	0	108	51.6	136				
4-Chlorotoluene	0.811	0.0152	0.7581	0	107	50.1	139				
tert-Butylbenzene	0.816	0.0152	0.7581	0	108	50.5	135				
1,2,3-Trichloropropane	0.793	0.0152	0.7581	0	105	50.5	131				
1,2,4-Trichlorobenzene	0.742	0.0379	0.7581	0	97.9	50.8	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

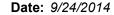
Sample ID: 1409077-002BMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 16 0	692	
Client ID: DP-1-5.0	Batch ID: 8663					Analysis Da	te: 9/10/2 0	14	SeqNo: 33	5450	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	0.818	0.0152	0.7581	0	108	52.6	141				
4-Isopropyltoluene	0.835	0.0152	0.7581	0	110	52.9	134				
1,3-Dichlorobenzene	0.794	0.0152	0.7581	0	105	52.6	131				
1,4-Dichlorobenzene	0.801	0.0152	0.7581	0	106	52.9	129				
n-Butylbenzene	0.779	0.0152	0.7581	0	103	52.6	130				
1,2-Dichlorobenzene	0.761	0.0152	0.7581	0	100	55.8	129				
1,2-Dibromo-3-chloropropane	0.790	0.0227	0.7581	0	104	40.5	131				
1,2,4-Trimethylbenzene	0.812	0.0152	0.7581	0	107	50.6	137				
Hexachlorobutadiene	0.825	0.0758	0.7581	0	109	40.6	158				
Naphthalene	0.754	0.0227	0.7581	0	99.5	52.3	124				
1,2,3-Trichlorobenzene	0.787	0.0152	0.7581	0	104	54.4	124				
Surr: Dibromofluoromethane	1.83		1.895		96.6	63.7	129				
Surr: Toluene-d8	1.99		1.895		105	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	1.97		1.895		104	63.1	141				

Sample ID: LCS-8663	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/9/201	4	RunNo: 166	592	
Client ID: LCSS	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 338	5463	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.719	0.0600	1.000	0	71.9	37.7	136				
Chloromethane	0.728	0.0600	1.000	0	72.8	38.8	132				
Vinyl chloride	0.820	0.00200	1.000	0	82.0	56.1	130				
Bromomethane	0.774	0.0900	1.000	0	77.4	41.3	148				
Trichlorofluoromethane (CFC-11)	0.771	0.0500	1.000	0	77.1	42.9	147				
Chloroethane	0.707	0.0600	1.000	0	70.7	37.1	144				
1,1-Dichloroethene	0.794	0.0500	1.000	0	79.4	49.7	142				
Methylene chloride	0.727	0.0200	1.000	0	72.7	54.5	131				
trans-1,2-Dichloroethene	0.878	0.0200	1.000	0	87.8	68	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

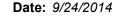
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8663	SampType: LCS			Units: mg/K	g	Prep Da	te: 9/9/201	4	RunNo: 166	692	
Client ID: LCSS	Batch ID: 8663					Analysis Da	te: 9/10/20	114	SeqNo: 335	5463	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	0.763	0.0500	1.000	0	76.3	59.1	138				
1,1-Dichloroethane	0.881	0.0200	1.000	0	88.1	65.5	132				
2,2-Dichloropropane	0.776	0.0500	1.000	0	77.6	28.1	149				
cis-1,2-Dichloroethene	0.924	0.0200	1.000	0	92.4	71.6	123				
Chloroform	0.955	0.0200	1.000	0	95.5	67.5	129				
1,1,1-Trichloroethane (TCA)	0.906	0.0200	1.000	0	90.6	69	132				
1,1-Dichloropropene	0.914	0.0200	1.000	0	91.4	72.7	131				
Carbon tetrachloride	0.886	0.0200	1.000	0	88.6	63.4	137				
1,2-Dichloroethane (EDC)	0.815	0.0300	1.000	0	81.5	61.9	136				
Benzene	1.02	0.0200	1.000	0	102	74.6	124				
Trichloroethene (TCE)	0.936	0.0200	1.000	0	93.6	65.5	137				
1,2-Dichloropropane	0.952	0.0200	1.000	0	95.2	63.2	142				
Bromodichloromethane	0.904	0.0200	1.000	0	90.4	76.1	136				
Dibromomethane	0.924	0.0400	1.000	0	92.4	70	130				
cis-1,3-Dichloropropene	0.883	0.0200	1.000	0	88.3	59.1	143				
Toluene	0.967	0.0200	1.000	0	96.7	67.3	138				
trans-1,3-Dichloropropylene	0.905	0.0300	1.000	0	90.5	49.2	149				
1,1,2-Trichloroethane	0.987	0.0300	1.000	0	98.7	74.5	129				
1,3-Dichloropropane	0.961	0.0500	1.000	0	96.1	70	130				
Tetrachloroethene (PCE)	0.950	0.0200	1.000	0	95.0	52.7	150				
Dibromochloromethane	0.909	0.0300	1.000	0	90.9	70.6	144				
1,2-Dibromoethane (EDB)	0.960	0.00500	1.000	0	96.0	70	130				
Chlorobenzene	1.01	0.0200	1.000	0	101	76.1	123				
1,1,1,2-Tetrachloroethane	0.984	0.0300	1.000	0	98.4	74.8	131				
Ethylbenzene	0.992	0.0300	1.000	0	99.2	74	129				
m,p-Xylene	2.04	0.0200	2.000	0	102	79.8	128				
o-Xylene	1.00	0.0200	1.000	0	100	72.7	124				
Styrene	0.997	0.0200	1.000	0	99.7	76.8	130				
Isopropylbenzene	0.963	0.0800	1.000	0	96.3	70	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

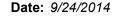
Volatile Organic Compounds by EPA Method 8260

Project: SLU Marrio	tt					Volatil	e Organi	c Compoui	nds by EP	A Method	յ 8260 -
Sample ID: LCS-8663	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/9/201	4	RunNo: 166	92	
Client ID: LCSS	Batch ID: 8663					Analysis Da	te: 9/10/2 0	14	SeqNo: 335	5463	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	0.935	0.0200	1.000	0	93.5	67	154				
1,1,2,2-Tetrachloroethane	1.03	0.0200	1.000	0	103	60	130				
n-Propylbenzene	0.977	0.0200	1.000	0	97.7	74.8	125				
Bromobenzene	1.01	0.0300	1.000	0	101	49.2	144				
1,3,5-Trimethylbenzene	0.988	0.0200	1.000	0	98.8	74.6	123				
2-Chlorotoluene	0.992	0.0200	1.000	0	99.2	76.7	129				
4-Chlorotoluene	0.987	0.0200	1.000	0	98.7	77.5	125				
tert-Butylbenzene	0.969	0.0200	1.000	0	96.9	66.2	130				
1,2,3-Trichloropropane	1.01	0.0200	1.000	0	101	67.9	136				
1,2,4-Trichlorobenzene	0.928	0.0500	1.000	0	92.8	65.6	137				
sec-Butylbenzene	0.962	0.0200	1.000	0	96.2	75.6	133				
4-Isopropyltoluene	0.985	0.0200	1.000	0	98.5	76.8	131				
1,3-Dichlorobenzene	1.01	0.0200	1.000	0	101	72.8	128				
1,4-Dichlorobenzene	1.03	0.0200	1.000	0	103	72.6	126				
n-Butylbenzene	0.969	0.0200	1.000	0	96.9	65.3	136				
1,2-Dichlorobenzene	1.00	0.0200	1.000	0	100	72.8	126				
1,2-Dibromo-3-chloropropane	0.955	0.0300	1.000	0	95.5	61.2	139				
1,2,4-Trimethylbenzene	1.01	0.0200	1.000	0	101	77.5	129				
Hexachlorobutadiene	0.972	0.100	1.000	0	97.2	42	151				
Naphthalene	0.954	0.0300	1.000	0	95.4	62.3	134				
1,2,3-Trichlorobenzene	0.972	0.0200	1.000	0	97.2	62.1	140				
Surr: Dibromofluoromethane	2.33		2.500		93.2	63.7	129				
Surr: Toluene-d8	2.52		2.500		101	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.57		2.500		103	63.1	141				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond SLU Marriott

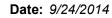
Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriot	l .							•			
Sample ID: MB-8663	SampType: MBLK			Units: mg/Kg		Prep Da	te: 9/9/20 1	4	RunNo: 166	592	
Client ID: MBLKS	Batch ID: 8663					Analysis Da	te: 9/9/20 1	4	SeqNo: 338	5464	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600									
Chloromethane	ND	0.0600									
Vinyl chloride	ND	0.00200									
Bromomethane	ND	0.0900									
Trichlorofluoromethane (CFC-11)	ND	0.0500									
Chloroethane	ND	0.0600									
1,1-Dichloroethene	ND	0.0500									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.0500									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane (EDC)	ND	0.0300									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8663	SampType: MBLK			Units: mg/Kg		Prep Da	te: 9/9/20 1	4	RunNo: 16 0	692	
Client ID: MBLKS	Batch ID: 8663					Analysis Da	te: 9/9/20 1	4	SeqNo: 33	5464	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	0.0300									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0200									
1,1,1,2-Tetrachloroethane	ND	0.0300									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Styrene	ND	0.0200									
Isopropylbenzene	ND	0.0800									
Bromoform	ND	0.0200									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0200									
Bromobenzene	ND	0.0300									
1,3,5-Trimethylbenzene	ND	0.0200									
2-Chlorotoluene	ND	0.0200									
4-Chlorotoluene	ND	0.0200									
tert-Butylbenzene	ND	0.0200									
1,2,3-Trichloropropane	ND	0.0200									
1,2,4-Trichlorobenzene	ND	0.0500									
sec-Butylbenzene	ND	0.0200									
4-Isopropyltoluene	ND	0.0200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.0300									
1,2,4-Trimethylbenzene	ND	0.0200									
Hexachlorobutadiene	ND	0.100									
Naphthalene	ND	0.0300									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriott

Project. SLO Marrio									
Sample ID: MB-8663	SampType: MBLK			Units: mg/Kg	J	Prep Date	e: 9/9/2014	RunNo: 16692	
Client ID: MBLKS	Batch ID: 8663					Analysis Date	e: 9/9/2014	SeqNo: 335464	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,2,3-Trichlorobenzene	ND	0.0200							
Surr: Dibromofluoromethane	2.37		2.500		94.7	63.7	129		
Surr: Toluene-d8	2.51		2.500		100	61.4	128		
Surr: 1-Bromo-4-fluorobenzene	2.28		2.500		91.3	63.1	141		
Sample ID: 1409077-037BDUP	SampType: DUP			Units: mg/Kg	j-dry	Prep Date	e: 9/10/2014	RunNo: 16710	
Client ID: DP-7-7.5	Batch ID: 8672					Analysis Date	e: 9/11/2014	SeqNo: 335859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual

Client ID: DP-7-7.5	Batch ID: 8672					Analysis Da	ite: 9/11/20	14	SeqNo: 33	5859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0998						0		30	
Chloromethane	ND	0.0998						0		30	
Vinyl chloride	ND	0.00333						0		30	
Bromomethane	ND	0.150						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0832						0		30	
Chloroethane	ND	0.0998						0		30	
1,1-Dichloroethene	ND	0.0832						0		30	
Methylene chloride	ND	0.0333						0		30	
trans-1,2-Dichloroethene	ND	0.0333						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0832						0		30	
1,1-Dichloroethane	ND	0.0333						0		30	
2,2-Dichloropropane	ND	0.0832						0		30	
cis-1,2-Dichloroethene	ND	0.0333						0		30	
Chloroform	ND	0.0333						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0333						0		30	
1,1-Dichloropropene	ND	0.0333						0		30	
Carbon tetrachloride	ND	0.0333						0		30	
1,2-Dichloroethane (EDC)	ND	0.0499						0		30	
Benzene	0.350	0.0333						0.3458	1.31	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-037BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 9/10/2 0)14	RunNo: 167	710	
Client ID: DP-7-7.5	Batch ID: 8672					Analysis Da	te: 9/11/2 0)14	SeqNo: 335	5859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	ND	0.0333						0		30	
1,2-Dichloropropane	ND	0.0333						0		30	
Bromodichloromethane	ND	0.0333						0		30	
Dibromomethane	ND	0.0665						0		30	
cis-1,3-Dichloropropene	ND	0.0333						0		30	
Toluene	0.207	0.0333						0.2252	8.53	30	
trans-1,3-Dichloropropylene	ND	0.0499						0		30	
1,1,2-Trichloroethane	ND	0.0499						0		30	
1,3-Dichloropropane	ND	0.0832						0		30	
Tetrachloroethene (PCE)	ND	0.0333						0		30	
Dibromochloromethane	ND	0.0499						0		30	
1,2-Dibromoethane (EDB)	ND	0.00832						0		30	
Chlorobenzene	ND	0.0333						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0499						0		30	
Ethylbenzene	0.156	0.0499						0.1702	8.47	30	
m,p-Xylene	0.529	0.0333						0.5451	2.97	30	
o-Xylene	0.117	0.0333						0.1243	6.49	30	
Styrene	ND	0.0333						0		30	
Isopropylbenzene	0.753	0.133						0.7296	3.14	30	
Bromoform	ND	0.0333						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0333						0		30	
n-Propylbenzene	0.941	0.0333						0.9261	1.57	30	
Bromobenzene	ND	0.0499						0		30	
1,3,5-Trimethylbenzene	0.102	0.0333						0.09731	4.27	30	
2-Chlorotoluene	ND	0.0333						0		30	
4-Chlorotoluene	ND	0.0333						0		30	
tert-Butylbenzene	ND	0.0333						0		30	
1,2,3-Trichloropropane	ND	0.0333						0		30	
1,2,4-Trichlorobenzene	ND	0.0832						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project:	SLU Marriott

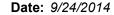
Sample ID: 1409077-037BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 9/10/20	14	RunNo: 16 7	710	
Client ID: DP-7-7.5	Batch ID: 8672					Analysis Dat	e: 9/11/2 0	114	SeqNo: 338	5859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	0.413	0.0333						0.3919	5.29	30	
4-Isopropyltoluene	0.0753	0.0333						0.06688	11.8	30	
1,3-Dichlorobenzene	ND	0.0333						0		30	
1,4-Dichlorobenzene	ND	0.0333						0		30	
n-Butylbenzene	0.630	0.0333						0.6071	3.77	30	
1,2-Dichlorobenzene	ND	0.0333						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0499						0		30	
1,2,4-Trimethylbenzene	0.117	0.0333						0.1307	10.7	30	
Hexachlorobutadiene	ND	0.166						0		30	
Naphthalene	ND	0.0499						0		30	
1,2,3-Trichlorobenzene	ND	0.0333						0		30	
Surr: Dibromofluoromethane	3.91		4.158		94.0	63.7	129		0		
Surr: Toluene-d8	4.52		4.158		109	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	4.15		4.158		99.9	63.1	141		0		

Sample ID: 1409077-038BMS	SampType: MS			Units: mg/h	g-dry	Prep Da	te: 9/10/20	14	RunNo: 16 7	710	
Client ID: DP-7-13.0	Batch ID: 8672					Analysis Da	te: 9/11/20	14	SeqNo: 338	5861	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.36	0.0787	1.312	0	103	43.5	121				
Chloromethane	1.28	0.0787	1.312	0	97.7	45	130				
Vinyl chloride	1.52	0.00262	1.312	0	116	51.2	146				
Bromomethane	1.14	0.118	1.312	0	87.0	21.3	120				
Trichlorofluoromethane (CFC-11)	0.505	0.0656	1.312	0	38.5	35	131				
Chloroethane	0.821	0.0787	1.312	0	62.6	43.8	117				
1,1-Dichloroethene	1.47	0.0656	1.312	0	112	61.9	141				
Methylene chloride	1.86	0.0262	1.312	0	142	54.7	142				
trans-1,2-Dichloroethene	1.51	0.0262	1.312	0	115	52	136				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

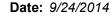
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-038BMS	SampType: MS			Units: mg/h	(g-dry	Prep Da	te: 9/10/20	14	RunNo: 16 7	710	
Client ID: DP-7-13.0	Batch ID: 8672					Analysis Da	te: 9/11/2 0	14	SeqNo: 338	5861	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	1.34	0.0656	1.312	0	102	54.4	132				
1,1-Dichloroethane	1.25	0.0262	1.312	0	95.2	51.8	141				
2,2-Dichloropropane	1.08	0.0656	1.312	0	82.4	36	123				
cis-1,2-Dichloroethene	1.32	0.0262	1.312	0	101	58.6	136				
Chloroform	1.02	0.0262	1.312	0	77.7	53.2	129				
1,1,1-Trichloroethane (TCA)	1.23	0.0262	1.312	0	94.1	58.3	145				
1,1-Dichloropropene	1.27	0.0262	1.312	0	96.6	55.1	138				
Carbon tetrachloride	1.29	0.0262	1.312	0	98.0	53.3	144				
1,2-Dichloroethane (EDC)	1.06	0.0394	1.312	0	80.7	51.3	139				
Benzene	2.55	0.0262	1.312	1.277	97.2	63.5	133				
Trichloroethene (TCE)	1.51	0.0262	1.312	0	115	68.6	132				
1,2-Dichloropropane	1.39	0.0262	1.312	0	106	59	136				
Bromodichloromethane	1.58	0.0262	1.312	0	120	50.7	141				
Dibromomethane	1.45	0.0525	1.312	0	111	50.6	137				
cis-1,3-Dichloropropene	1.45	0.0262	1.312	0	110	50.4	138				
Toluene	1.73	0.0262	1.312	0.3196	107	63.4	132				
trans-1,3-Dichloropropylene	1.43	0.0394	1.312	0	109	44.1	147				
1,1,2-Trichloroethane	3.21	0.0394	1.312	0	245	51.6	137				S
1,3-Dichloropropane	1.52	0.0656	1.312	0	116	53.1	134				
Tetrachloroethene (PCE)	1.50	0.0262	1.312	0	114	35.6	158				
Dibromochloromethane	1.36	0.0394	1.312	0	104	55.3	140				
1,2-Dibromoethane (EDB)	1.67	0.00656	1.312	0	127	50.4	136				
Chlorobenzene	1.19	0.0262	1.312	0	90.4	60	133				
1,1,1,2-Tetrachloroethane	1.39	0.0394	1.312	0	106	53.1	142				
Ethylbenzene	1.83	0.0394	1.312	0.3479	113	54.5	134				
m,p-Xylene	3.23	0.0262	2.624	0.7749	93.4	53.1	132				
o-Xylene	1.40	0.0262	1.312	0.1598	94.9	53.3	139				
Styrene	1.28	0.0262	1.312	0	97.4	51.1	132				
Isopropylbenzene	1.97	0.105	1.312	0.6508	100	58.9	138				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

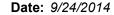
Sample ID: 1409077-038BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 9/10/20	14	RunNo: 16 7	710	
Client ID: DP-7-13.0	Batch ID: 8672					Analysis Da	te: 9/11/20	14	SeqNo: 338	5861	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	1.37	0.0262	1.312	0	104	57.9	130				
1,1,2,2-Tetrachloroethane	1.04	0.0262	1.312	0	79.2	51.9	131				
n-Propylbenzene	2.07	0.0262	1.312	0.7902	97.2	53.6	140				
Bromobenzene	1.36	0.0394	1.312	0	104	54.2	140				
1,3,5-Trimethylbenzene	1.43	0.0262	1.312	0.2136	92.7	51.8	136				
2-Chlorotoluene	1.18	0.0262	1.312	0	89.9	51.6	136				
4-Chlorotoluene	1.25	0.0262	1.312	0.07995	89.3	50.1	139				
tert-Butylbenzene	1.32	0.0262	1.312	0	101	50.5	135				
1,2,3-Trichloropropane	1.17	0.0262	1.312	0	89.2	50.5	131				
1,2,4-Trichlorobenzene	1.90	0.0656	1.312	0	145	50.8	130				S
sec-Butylbenzene	1.58	0.0262	1.312	0.2930	98.2	52.6	141				
4-Isopropyltoluene	1.96	0.0262	1.312	0.3752	121	52.9	134				
1,3-Dichlorobenzene	1.38	0.0262	1.312	0	105	52.6	131				
1,4-Dichlorobenzene	1.14	0.0262	1.312	0	87.3	52.9	129				
n-Butylbenzene	1.83	0.0262	1.312	0.4319	106	52.6	130				
1,2-Dichlorobenzene	1.47	0.0262	1.312	0	112	55.8	129				
1,2-Dibromo-3-chloropropane	1.49	0.0394	1.312	0	114	40.5	131				
1,2,4-Trimethylbenzene	1.39	0.0262	1.312	0.1724	92.4	50.6	137				
Hexachlorobutadiene	1.77	0.131	1.312	0	135	40.6	158				
Naphthalene	1.95	0.0394	1.312	0.4111	117	52.3	124				
1,2,3-Trichlorobenzene	1.88	0.0262	1.312	0	143	54.4	124				S
Surr: Dibromofluoromethane	3.12		3.280		95.2	63.7	129				
Surr: Toluene-d8	3.73		3.280		114	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	3.24		3.280		98.9	63.1	141				
NOTES:											

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required


Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

S - Outlying QC recoveries were associated with this sample. The method is in control as indicated by the LCS.

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

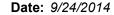
Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriot				Halta. ##		D D.		4.4	Down New 125		
Sample ID: LCS-8672	SampType: LCS			Units: mg/K	g	•	te: 9/10/20		RunNo: 167		
Client ID: LCSS	Batch ID: 8672					Analysis Da	te: 9/11/20	14	SeqNo: 335	866	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.923	0.0600	1.000	0	92.3	37.7	136				
Chloromethane	0.969	0.0600	1.000	0	96.9	38.8	132				
Vinyl chloride	0.926	0.00200	1.000	0	92.6	56.1	130				
Bromomethane	1.00	0.0900	1.000	0	100	41.3	148				
Trichlorofluoromethane (CFC-11)	0.964	0.0500	1.000	0	96.4	42.9	147				
Chloroethane	1.04	0.0600	1.000	0	104	37.1	144				
1,1-Dichloroethene	0.984	0.0500	1.000	0	98.4	49.7	142				
Methylene chloride	1.03	0.0200	1.000	0	103	54.5	131				
trans-1,2-Dichloroethene	1.06	0.0200	1.000	0	106	68	130				
Methyl tert-butyl ether (MTBE)	0.918	0.0500	1.000	0	91.8	59.1	138				
1,1-Dichloroethane	0.951	0.0200	1.000	0	95.1	65.5	132				
2,2-Dichloropropane	0.946	0.0500	1.000	0	94.6	28.1	149				
cis-1,2-Dichloroethene	1.00	0.0200	1.000	0	100	71.6	123				
Chloroform	0.873	0.0200	1.000	0	87.3	67.5	129				
1,1,1-Trichloroethane (TCA)	1.03	0.0200	1.000	0	103	69	132				
1,1-Dichloropropene	0.974	0.0200	1.000	0	97.4	72.7	131				
Carbon tetrachloride	1.07	0.0200	1.000	0	107	63.4	137				
1,2-Dichloroethane (EDC)	0.921	0.0300	1.000	0	92.1	61.9	136				
Benzene	0.927	0.0200	1.000	0	92.7	74.6	124				
Trichloroethene (TCE)	1.07	0.0200	1.000	0	107	65.5	137				
1,2-Dichloropropane	1.01	0.0200	1.000	0	101	63.2	142				
Bromodichloromethane	1.17	0.0200	1.000	0	117	76.1	136				
Dibromomethane	1.03	0.0400	1.000	0	103	70	130				
cis-1,3-Dichloropropene	0.980	0.0200	1.000	0	98.0	59.1	143				
Toluene	0.999	0.0200	1.000	0	99.9	67.3	138				
trans-1,3-Dichloropropylene	0.974	0.0300	1.000	0	97.4	49.2	149				
1,1,2-Trichloroethane	1.01	0.0300	1.000	0	101	74.5	129				
1,3-Dichloropropane	1.05	0.0500	1.000	0	105	70	130				
Tetrachloroethene (PCE)	1.08	0.0200	1.000	0	108	52.7	150				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8672	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/10/20	14	RunNo: 167	710	
Client ID: LCSS	Batch ID: 8672					Analysis Da	te: 9/11/20	14	SeqNo: 33	5866	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	1.01	0.0300	1.000	0	101	70.6	144				
1,2-Dibromoethane (EDB)	1.14	0.00500	1.000	0	114	70	130				
Chlorobenzene	0.953	0.0200	1.000	0	95.3	76.1	123				
1,1,1,2-Tetrachloroethane	1.17	0.0300	1.000	0	117	74.8	131				
Ethylbenzene	1.12	0.0300	1.000	0	112	74	129				
m,p-Xylene	1.96	0.0200	2.000	0	98.0	79.8	128				
o-Xylene	0.944	0.0200	1.000	0	94.4	72.7	124				
Styrene	0.962	0.0200	1.000	0	96.2	76.8	130				
Isopropylbenzene	0.947	0.0800	1.000	0	94.7	70	130				
Bromoform	1.12	0.0200	1.000	0	112	67	154				
1,1,2,2-Tetrachloroethane	0.950	0.0200	1.000	0	95.0	60	130				
n-Propylbenzene	0.970	0.0200	1.000	0	97.0	74.8	125				
Bromobenzene	1.05	0.0300	1.000	0	105	49.2	144				
1,3,5-Trimethylbenzene	0.989	0.0200	1.000	0	98.9	74.6	123				
2-Chlorotoluene	0.980	0.0200	1.000	0	98.0	76.7	129				
4-Chlorotoluene	0.980	0.0200	1.000	0	98.0	77.5	125				
tert-Butylbenzene	0.949	0.0200	1.000	0	94.9	66.2	130				
1,2,3-Trichloropropane	0.916	0.0200	1.000	0	91.6	67.9	136				
1,2,4-Trichlorobenzene	1.08	0.0500	1.000	0	108	65.6	137				
sec-Butylbenzene	0.944	0.0200	1.000	0	94.4	75.6	133				
4-Isopropyltoluene	1.15	0.0200	1.000	0	115	76.8	131				
1,3-Dichlorobenzene	1.05	0.0200	1.000	0	105	72.8	128				
1,4-Dichlorobenzene	0.883	0.0200	1.000	0	88.3	72.6	126				
n-Butylbenzene	0.951	0.0200	1.000	0	95.1	65.3	136				
1,2-Dichlorobenzene	1.02	0.0200	1.000	0	102	72.8	126				
1,2-Dibromo-3-chloropropane	1.01	0.0300	1.000	0	101	61.2	139				
1,2,4-Trimethylbenzene	0.975	0.0200	1.000	0	97.5	77.5	129				
Hexachlorobutadiene	1.03	0.100	1.000	0	103	42	151				
Naphthalene	0.874	0.0300	1.000	0	87.4	62.3	134				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

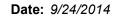
	eers, inc Reamona					\/_I_4!I	0	naviada bir EDA Matha	1 0000
Project: SLU Marrio	ott					voiatiie	e Organic Com	pounds by EPA Metho	a 8260
Sample ID: LCS-8672	SampType: LCS			Units: mg/Kg		Prep Dat	e: 9/10/2014	RunNo: 16710	
Client ID: LCSS	Batch ID: 8672					Analysis Dat	e: 9/11/2014	SeqNo: 335866	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLimit	Qual
1,2,3-Trichlorobenzene	1.14	0.0200	1.000	0	114	62.1	140		
Surr: Dibromofluoromethane	2.51		2.500		100	63.7	129		
Surr: Toluene-d8	2.55		2.500		102	61.4	128		
Surr: 1-Bromo-4-fluorobenzene	2.65		2.500		106	63.1	141		
Sample ID: MB-8672	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 9/10/2014	RunNo: 16710	
Sample ID: MB-8672 Client ID: MBLKS	SampType: MBLK Batch ID: 8672			Units: mg/Kg		•	re: 9/10/2014 re: 9/11/2014	RunNo: 16710 SeqNo: 335867	
'		RL	SPK value	Units: mg/Kg	%REC	•		SeqNo: 335867	Qual
Client ID: MBLKS	Batch ID: 8672 Result	RL 0.0600	SPK value		%REC	Analysis Dat	re: 9/11/2014	SeqNo: 335867	Qual
Client ID: MBLKS Analyte	Batch ID: 8672 Result		SPK value		%REC	Analysis Dat	re: 9/11/2014	SeqNo: 335867	Qual
Client ID: MBLKS Analyte Dichlorodifluoromethane (CFC-12)	Batch ID: 8672 Result ND	0.0600	SPK value		%REC	Analysis Dat	re: 9/11/2014	SeqNo: 335867	Qual
Client ID: MBLKS Analyte Dichlorodifluoromethane (CFC-12) Chloromethane	Batch ID: 8672 Result ND ND	0.0600 0.0600	SPK value		%REC	Analysis Dat	re: 9/11/2014	SeqNo: 335867	Qual
Client ID: MBLKS Analyte Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride	Batch ID: 8672 Result ND ND ND ND	0.0600 0.0600 0.00200	SPK value		%REC	Analysis Dat	re: 9/11/2014	SeqNo: 335867	Qual

Chloromethane	ND	0.0600
Vinyl chloride	ND	0.00200
Bromomethane	ND	0.0900
Trichlorofluoromethane (CFC-11)	ND	0.0500
Chloroethane	ND	0.0600
1,1-Dichloroethene	ND	0.0500
Methylene chloride	ND	0.0200
trans-1,2-Dichloroethene	ND	0.0200
Methyl tert-butyl ether (MTBE)	ND	0.0500
1,1-Dichloroethane	ND	0.0200
2,2-Dichloropropane	ND	0.0500
cis-1,2-Dichloroethene	ND	0.0200
Chloroform	ND	0.0200
1,1,1-Trichloroethane (TCA)	ND	0.0200
1,1-Dichloropropene	ND	0.0200
Carbon tetrachloride	ND	0.0200
1,2-Dichloroethane (EDC)	ND	0.0300
Benzene	ND	0.0200

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

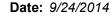
Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8672	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 9/10/2 0	014	RunNo: 167	710	
Client ID: MBLKS	Batch ID: 8672					Analysis Dat	e: 9/11/2 0)14	SeqNo: 338	5867	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									
Dibromochloromethane	ND	0.0300									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0200									
1,1,1,2-Tetrachloroethane	ND	0.0300									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Styrene	ND	0.0200									
Isopropylbenzene	ND	0.0800									
Bromoform	ND	0.0200									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0200									
Bromobenzene	ND	0.0300									
1,3,5-Trimethylbenzene	ND	0.0200									
2-Chlorotoluene	ND	0.0200									
4-Chlorotoluene	ND	0.0200									
tert-Butylbenzene	ND	0.0200									
1,2,3-Trichloropropane	ND	0.0200									
1,2,4-Trichlorobenzene	ND	0.0500									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project:	SLU Marriott			voiatile Organic Compou	nas by EPA Wethod 8260
Sample ID: MB-86	72 SampType:	MBLK	Units: mg/Kg	Prep Date: 9/10/2014	RunNo: 16710
Client ID: MBLK	Batch ID:	8672		Analysis Date: 9/11/2014	SeqNo: 335867
A1. 4 -	_		N/ 1 OD// D ()/ 1		0/ BBB BBB1 : :: 0

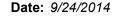
OHORICID. WIDERO	Baton IB. 0072					/ ilidiyolo Da	. J/ 11/20	17	Ocq110. 330	J001	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	ND	0.0200									
4-Isopropyltoluene	ND	0.0200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.0300									
1,2,4-Trimethylbenzene	ND	0.0200									
Hexachlorobutadiene	ND	0.100									
Naphthalene	ND	0.0300									
1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	2.41		2.500		96.4	63.7	129				
Surr: Toluene-d8	2.67		2.500		107	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.40		2.500		95.9	63.1	141				

Sample ID: CCV-8663B	SampType: CCV			Units: μg/L		Prep Da	te: 9/11/20	14	RunNo: 166	592	
Client ID: CCV	Batch ID: 8663					Analysis Da	te: 9/11/20	14	SeqNo: 336	379	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	22.8	0.0300	20.00	0	114	80	120				
n-Propylbenzene	18.9	0.0200	20.00	0	94.6	80	120				
n-Butylbenzene	19.2	0.0200	20.00	0	95.8	80	120				
Surr: Dibromofluoromethane	46.2		50.00		92.5	63.7	129				
Surr: Toluene-d8	53.9		50.00		108	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	50.0		50.00		100	63.1	141				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

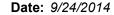
Volatile Organic Compounds by EPA Method 8260

Sample ID: CCV-8672B	SampType: CCV			Units: µg/L		Prep Date:	9/15/2014	RunNo: 167	10	
Client ID: CCV	Batch ID: 8672					Analysis Date:	9/15/2014	SeqNo: 336	675	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qua
Ethylbenzene	21.1	0.0300	20.00	0	106	80	120			
Isopropylbenzene	18.2	0.0800	20.00	0	91.0	80	120			
sec-Butylbenzene	19.1	0.0200	20.00	0	95.6	80	120			
n-Butylbenzene	18.6	0.0200	20.00	0	93.1	80	120			
Naphthalene	17.1	0.0300	20.00	0	85.4	80	120			
Surr: Dibromofluoromethane	52.3		50.00		105	63.7	129			
Surr: Toluene-d8	49.7		50.00		99.4	61.4	128			
Surr: 1-Bromo-4-fluorobenzene	55.0		50.00		110	63.1	141			
Sample ID: LCS-8824	SampType: LCS			Units: mg/Kg		Prep Date:	9/23/2014	RunNo: 169	55	
Client ID: LCSS	Batch ID: 8824					Analysis Date:	9/24/2014	SeqNo: 340	419	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	0.655	0.0200	1.000	0	65.5	64.3	133			
Surr: Dibromofluoromethane	2.58		2.500		103	63.7	129			
Surr: Toluene-d8	2.62		2.500		105	64.3	131			
Surr: 1-Bromo-4-fluorobenzene	2.61		2.500		105	63.1	141			
Sample ID: MB-8824	SampType: MBLK			Units: mg/Kg		Prep Date:	9/23/2014	RunNo: 169	55	
Client ID: MBLKS	Batch ID: 8824					Analysis Date:	9/23/2014	SeqNo: 340	420	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0200								
Surr: Dibromofluoromethane	2.34		2.500		93.6	63.7	129			
Surr: Toluene-d8	2.60		2.500		104	64.3	131			
Surr: 1-Bromo-4-fluorobenzene	2.33		2.500		93.1	63.1	141			

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-059BDUP	SampType: DUP			Units: mg/K	(g-dry	Prep Dat	te: 9/23/20	14	RunNo: 169	955	
Client ID: DP-8-25.0	Batch ID: 8824					Analysis Dat	te: 9/24/20	14	SeqNo: 340)457	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.0591	0.0160						0.08638	37.5	30	RH
Surr: Dibromofluoromethane	2.00		1.994		100	63.7	129		0		Н
Surr: Toluene-d8	1.97		1.994		98.9	64.3	131		0		Н
Surr: 1-Bromo-4-fluorobenzene NOTES:	1.95		1.994		97.9	63.1	141		0		Н

Project:

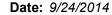
R - High RPD due to low analyte concentration. In this range, high RPD's may be expected.

Sample ID: 1409077-073BMS	SampType: MS			Units: mg/l	(g-dry	Prep Da	te: 9/23/20	14	RunNo: 169	955	
Client ID: DP-12-15.0	Batch ID: 8824					Analysis Da	te: 9/24/20	14	SeqNo: 340)553	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.855	0.0262	1.310	0	65.3	63.5	133				Н
Surr: Dibromofluoromethane	3.44		3.274		105	63.7	129				Н
Surr: Toluene-d8	3.41		3.274		104	64.3	131				Н
Surr: 1-Bromo-4-fluorobenzene	3.43		3.274		105	63.1	141				Н

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

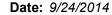
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-R16668	SampType: LCS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 16 0	668	
Client ID: LCSW	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 334	4995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	25.8	1.00	20.00	0	129	43	136				
Chloromethane	25.1	1.00	20.00	0	126	43.9	139				
Vinyl chloride	26.3	0.200	20.00	0	131	53.6	139				
Bromomethane	28.6	1.00	20.00	0	143	44.8	148				
Trichlorofluoromethane (CFC-11)	25.4	1.00	20.00	0	127	63.7	133				
Chloroethane	25.4	1.00	20.00	0	127	53	141				
1,1-Dichloroethene	25.5	1.00	20.00	0	128	65.6	136				
Methylene chloride	25.0	1.00	20.00	0	125	67.1	131				
trans-1,2-Dichloroethene	24.1	1.00	20.00	0	121	71.7	129				
Methyl tert-butyl ether (MTBE)	25.2	1.00	20.00	0	126	67.7	131				
1,1-Dichloroethane	24.7	1.00	20.00	0	124	67.9	134				
2,2-Dichloropropane	27.6	2.00	20.00	0	138	33.7	152				
cis-1,2-Dichloroethene	24.8	1.00	20.00	0	124	71.1	130				
Chloroform	24.6	1.00	20.00	0	123	76.7	124				
1,1,1-Trichloroethane (TCA)	25.5	1.00	20.00	0	127	71	131				
1,1-Dichloropropene	24.8	1.00	20.00	0	124	74.5	126				
Carbon tetrachloride	24.9	1.00	20.00	0	124	66.2	134				
1,2-Dichloroethane (EDC)	25.6	1.00	20.00	0	128	70	129				
Benzene	24.8	1.00	20.00	0	124	73.1	126				
Trichloroethene (TCE)	24.8	0.500	20.00	0	124	65.2	136				
1,2-Dichloropropane	24.8	1.00	20.00	0	124	70.5	130				
Bromodichloromethane	25.5	1.00	20.00	0	128	74.6	127				S
Dibromomethane	25.3	1.00	20.00	0	126	75.5	126				S
cis-1,3-Dichloropropene	25.2	1.00	20.00	0	126	62.6	137				
Toluene	24.8	1.00	20.00	0	124	61.3	145				
trans-1,3-Dichloropropene	26.1	1.00	20.00	0	131	58.5	142				
1,1,2-Trichloroethane	27.3	1.00	20.00	0	136	76	124				S
1,3-Dichloropropane	25.7	1.00	20.00	0	129	73.5	127				S
Tetrachloroethene (PCE)	24.6	1.00	20.00	0	123	47.5	147				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-R16668	SampType: LCS			Units: µg/L		Prep Da	te: 9/9/201 4	4	RunNo: 16 0	668	
Client ID: LCSW	Batch ID: R16668					Analysis Da	te: 9/9/201 4	4	SeqNo: 334	4995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	24.9	1.00	20.00	0	125	67.2	134				
1,2-Dibromoethane (EDB)	25.1	0.0600	20.00	0	126	73.6	125				S
Chlorobenzene	25.4	1.00	20.00	0	127	73.9	126				S
1,1,1,2-Tetrachloroethane	25.7	1.00	20.00	0	128	76.8	124				S
Ethylbenzene	25.0	1.00	20.00	0	125	72	130				
m,p-Xylene	49.8	1.00	40.00	0	125	73	131				
o-Xylene	25.9	1.00	20.00	0	130	72.1	131				
Styrene	25.4	1.00	20.00	0	127	64.3	140				
Isopropylbenzene	25.2	1.00	20.00	0	126	73.9	128				
Bromoform	25.1	1.00	20.00	0	125	63.8	135				
1,1,2,2-Tetrachloroethane	26.0	1.00	20.00	0	130	62.9	132				
n-Propylbenzene	23.9	1.00	20.00	0	119	74.5	127				
Bromobenzene	25.0	1.00	20.00	0	125	71	131				
1,3,5-Trimethylbenzene	24.8	1.00	20.00	0	124	73.1	128				
2-Chlorotoluene	25.4	1.00	20.00	0	127	70.8	130				
4-Chlorotoluene	25.2	1.00	20.00	0	126	70.1	131				
tert-Butylbenzene	24.6	1.00	20.00	0	123	68.2	131				
1,2,3-Trichloropropane	25.3	1.00	20.00	0	126	67.7	131				
1,2,4-Trichlorobenzene	20.8	2.00	20.00	0	104	72.4	127				
sec-Butylbenzene	23.9	1.00	20.00	0	119	72	129				
4-Isopropyltoluene	23.6	1.00	20.00	0	118	69.2	130				
1,3-Dichlorobenzene	26.9	1.00	20.00	0	134	72.4	129				S
1,4-Dichlorobenzene	25.4	1.00	20.00	0	127	70.6	128				
n-Butylbenzene	24.1	1.00	20.00	0	121	73.8	127				
1,2-Dichlorobenzene	25.4	1.00	20.00	0	127	74.2	129				
1,2-Dibromo-3-chloropropane	22.1	1.00	20.00	0	110	63.1	136				
1,2,4-Trimethylbenzene	25.1	1.00	20.00	0	125	73.4	127				
Hexachlorobutadiene	23.5	4.00	20.00	0	117	58.6	138				
Naphthalene	15.9	1.00	20.00	0	79.7	50.4	140				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriot	tt					Volatile	e Organi	ic Compour	ias by EP	A Method	3 8260
Sample ID: LCS-R16668	SampType: LCS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	68	
Client ID: LCSW	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 334	1995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	14.5	4.00	20.00	0	72.4	50.2	139				
Surr: Dibromofluoromethane	47.5		50.00		95.0	61.7	130				
Surr: Toluene-d8	48.0		50.00		96.0	40.1	139				
Surr: 1-Bromo-4-fluorobenzene NOTES:	45.6		50.00		91.3	68.2	127				

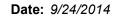
S - Outlying QC recoveries were observed (high bias). There were no detections of these analytes in the samples, no further action is required.

Sample ID: MB-R16668	SampType: MBLK		Units: µg/L		Prep Date: 9/9/2014	RunNo: 16668
Client ID: MBLKW	Batch ID: R16668			A	Analysis Date: 9/9/2014	SeqNo: 334996
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00				
Chloromethane	ND	1.00				
Vinyl chloride	ND	0.200				
Bromomethane	ND	1.00				
Trichlorofluoromethane (CFC-11)	ND	1.00				
Chloroethane	ND	1.00				
1,1-Dichloroethene	ND	1.00				
Methylene chloride	ND	1.00				
trans-1,2-Dichloroethene	ND	1.00				
Methyl tert-butyl ether (MTBE)	ND	1.00				
1,1-Dichloroethane	ND	1.00				
2,2-Dichloropropane	ND	2.00				
cis-1,2-Dichloroethene	ND	1.00				
Chloroform	ND	1.00				
1,1,1-Trichloroethane (TCA)	ND	1.00				
1,1-Dichloropropene	ND	1.00				
Carbon tetrachloride	ND	1.00				
1,2-Dichloroethane (EDC)	ND	1.00				
Ouglifiere. B. Analyte detected in the	an appariated Mathad Dlank		D. Dilution was required		F Value above quantitat	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

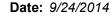
Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-R16668	SampType: MBLK			Units: μg/L		Prep Da	te: 9/9/20	14	RunNo: 166	68	
Client ID: MBLKW	Batch ID: R16668					Analysis Da	te: 9/9/20	14	SeqNo: 334	1996	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00									
Trichloroethene (TCE)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
Bromodichloromethane	ND	1.00									
Dibromomethane	ND	1.00									
cis-1,3-Dichloropropene	ND	1.00									
Toluene	ND	1.00									
trans-1,3-Dichloropropene	ND	1.00									
1,1,2-Trichloroethane	ND	1.00									
1,3-Dichloropropane	ND	1.00									
Tetrachloroethene (PCE)	ND	1.00									
Dibromochloromethane	ND	1.00									
1,2-Dibromoethane (EDB)	ND	0.0600									
Chlorobenzene	ND	1.00									
1,1,1,2-Tetrachloroethane	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Styrene	ND	1.00									
Isopropylbenzene	ND	1.00									
Bromoform	ND	1.00									
1,1,2,2-Tetrachloroethane	ND	1.00									
n-Propylbenzene	ND	1.00									
Bromobenzene	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
2-Chlorotoluene	ND	1.00									
4-Chlorotoluene	ND	1.00									
tert-Butylbenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Proiect:	SLU Marriott
I I DICCL.	OLU Maillui

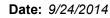
Sample ID: MB-R16668	SampType: MBLK			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	668	
Client ID: MBLKW	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 334	4996	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	ND	2.00									
sec-Butylbenzene	ND	1.00									
4-Isopropyltoluene	ND	1.00									
1,3-Dichlorobenzene	ND	1.00									
1,4-Dichlorobenzene	ND	1.00									
n-Butylbenzene	ND	1.00									
1,2-Dichlorobenzene	ND	1.00									
1,2-Dibromo-3-chloropropane	ND	1.00									
1,2,4-Trimethylbenzene	ND	1.00									
Hexachlorobutadiene	ND	4.00									
Naphthalene	ND	1.00									
1,2,3-Trichlorobenzene	ND	4.00									
Surr: Dibromofluoromethane	46.0		50.00		91.9	61.7	130				
Surr: Toluene-d8	47.2		50.00		94.3	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	46.0		50.00		91.9	68.2	127				

Sample ID: 1409077-052ADUP	SampType: DUP			Units: µg/L		Prep Da	ite: 9/10/20	14	RunNo: 160	668	
Client ID: MW-1-140906	Batch ID: R16668					Analysis Da	te: 9/10/2 0	14	SeqNo: 33	5266	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00						0		30	
Chloromethane	ND	1.00						0		30	
Vinyl chloride	ND	0.200						0		30	
Bromomethane	ND	1.00						0		30	
Trichlorofluoromethane (CFC-11)	ND	1.00						0		30	
Chloroethane	ND	1.00						0		30	
1,1-Dichloroethene	ND	1.00						0		30	
Methylene chloride	ND	1.00						0		30	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

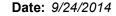
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-052ADUP	SampType: DUP			Units: µg/L		Prep Da	ite: 9/10/20	114	RunNo: 166	68	
Client ID: MW-1-140906	Batch ID: R16668					Analysis Da	te: 9/10/2 0	14	SeqNo: 338	5266	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,2-Dichloroethene	ND	1.00						0		30	
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,1-Dichloroethane	ND	1.00						0		30	
2,2-Dichloropropane	ND	2.00						0		30	
cis-1,2-Dichloroethene	ND	1.00						0		30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.0600						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

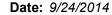
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-052ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/10/2 0	114	RunNo: 166	668	
Client ID: MW-1-140906	Batch ID: R16668					Analysis Dat	te: 9/10/2 0	14	SeqNo: 335	5266	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachlorobutadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	49.5		50.00		99.0	61.7	130		0		
Surr: Toluene-d8	48.3		50.00		96.6	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	49.8		50.00		99.7	68.2	127		0		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

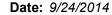
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409082-005AMS	SampType: MS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	668	
Client ID: BATCH	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 33	5279	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Dichlorodifluoromethane (CFC-12)	24.9	1.00	20.00	0	124	33.3	122				S
Chloromethane	25.6	1.00	20.00	0	128	48.2	145				
Vinyl chloride	26.1	0.200	20.00	0	131	58.1	158				
Bromomethane	25.2	1.00	20.00	0	126	31.5	135				
Trichlorofluoromethane (CFC-11)	27.6	1.00	20.00	0	138	54.7	138				S
Chloroethane	27.2	1.00	20.00	0	136	49.9	143				
1,1-Dichloroethene	28.8	1.00	20.00	0	144	63	141				S
Methylene chloride	24.4	1.00	20.00	0	122	61.6	135				
trans-1,2-Dichloroethene	26.5	1.00	20.00	0	132	63.5	138				
Methyl tert-butyl ether (MTBE)	25.3	1.00	20.00	0	126	60.9	132				
1,1-Dichloroethane	26.1	1.00	20.00	0	131	67.8	136				
2,2-Dichloropropane	25.2	2.00	20.00	0	126	31.5	121				S
cis-1,2-Dichloroethene	26.3	1.00	20.00	0	131	67.1	123				S
Chloroform	25.0	1.00	20.00	0	125	66.7	136				
1,1,1-Trichloroethane (TCA)	26.8	1.00	20.00	0.2200	133	64.2	146				
1,1-Dichloropropene	27.1	1.00	20.00	0	136	73.8	136				
Carbon tetrachloride	26.0	1.00	20.00	0	130	62.7	146				
1,2-Dichloroethane (EDC)	26.0	1.00	20.00	0	130	63.4	137				
Benzene	26.2	1.00	20.00	0	131	65.4	138				
Trichloroethene (TCE)	27.2	0.500	20.00	0	136	60.4	134				S
1,2-Dichloropropane	25.8	1.00	20.00	0	129	62.6	138				
Bromodichloromethane	25.0	1.00	20.00	0	125	59.4	139				
Dibromomethane	23.9	1.00	20.00	0	120	63.6	139				
cis-1,3-Dichloropropene	25.8	1.00	20.00	0	129	63.8	132				
Toluene	26.5	1.00	20.00	0	133	64	139				
trans-1,3-Dichloropropene	24.5	1.00	20.00	0	122	57.7	125				
1,1,2-Trichloroethane	26.8	1.00	20.00	0	134	59.4	127				S
1,3-Dichloropropane	25.4	1.00	20.00	0	127	64.3	135				
Tetrachloroethene (PCE)	25.9	1.00	20.00	0	130	50.3	133				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409082-005AMS	SampType: MS			Units: μg/L		Prep Da	te: 9/9/201	4	RunNo: 16 0	668	
Client ID: BATCH	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 33	5279	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	25.0	1.00	20.00	0	125	61.6	139				
1,2-Dibromoethane (EDB)	26.3	0.0600	20.00	0	132	63.2	134				
Chlorobenzene	26.1	1.00	20.00	0	131	65.8	134				
1,1,1,2-Tetrachloroethane	24.8	1.00	20.00	0	124	65.4	135				
Ethylbenzene	25.8	1.00	20.00	0	129	64.5	136				
m,p-Xylene	52.1	1.00	40.00	0	130	63.3	135				
o-Xylene	26.9	1.00	20.00	0	134	65.4	134				S
Styrene	25.7	1.00	20.00	0	129	59.1	134				
Isopropylbenzene	25.9	1.00	20.00	0.2100	128	56	147				
Bromoform	25.5	1.00	20.00	0	128	57.7	139				
1,1,2,2-Tetrachloroethane	27.2	1.00	20.00	0	136	59.8	146				
n-Propylbenzene	24.8	1.00	20.00	0.2500	123	57.6	142				
Bromobenzene	26.2	1.00	20.00	0	131	63.6	130				S
1,3,5-Trimethylbenzene	25.7	1.00	20.00	0	129	59.9	136				
2-Chlorotoluene	25.3	1.00	20.00	0	127	61.7	134				
4-Chlorotoluene	26.4	1.00	20.00	0.1500	131	58.4	134				
tert-Butylbenzene	25.4	1.00	20.00	0	127	66.8	141				
1,2,3-Trichloropropane	25.5	1.00	20.00	0	128	62.4	129				
1,2,4-Trichlorobenzene	22.0	2.00	20.00	0.6600	107	50.9	133				
sec-Butylbenzene	24.4	1.00	20.00	0.1900	121	56	146				
4-Isopropyltoluene	24.6	1.00	20.00	0.1600	122	56.4	136				
1,3-Dichlorobenzene	26.4	1.00	20.00	0	132	58.2	128				S
1,4-Dichlorobenzene	26.3	1.00	20.00	0	132	60.1	123				S
n-Butylbenzene	24.1	1.00	20.00	0.3700	118	54.6	135				
1,2-Dichlorobenzene	27.0	1.00	20.00	0	135	65.4	133				S
1,2-Dibromo-3-chloropropane	27.2	1.00	20.00	0	136	51.8	142				
1,2,4-Trimethylbenzene	25.0	1.00	20.00	0.1200	125	63.7	132				
Hexachlorobutadiene	22.6	4.00	20.00	0.9100	109	58.1	130				
Naphthalene	18.2	1.00	20.00	2.030	81.0	54.5	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409082-005AMS	SampType: MS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 16 6	668	
Client ID: BATCH	Batch ID: R16668					Analysis Dat	te: 9/9/201	4	SeqNo: 338	5279	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	15.8	4.00	20.00	1.990	69.0	57	131				
Surr: Dibromofluoromethane	46.8		50.00		93.6	61.7	130				
Surr: Toluene-d8	47.2		50.00		94.4	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	47.1		50.00		94.2	68.2	127				
NOTES:											

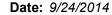
S - Outlying spike recoveries were associated with this sample. The method is in control as indicated by the LCS.

Sample ID: 1409083-001ADUP	SampType: DI	UP		Units: µg/L		Prep Da	te: 9/9/20 1	14	RunNo: 166	68	
Client ID: BATCH	Batch ID: R	16668				Analysis Da	te: 9/9/20 1	14	SeqNo: 338	5281	
Analyte	Resi	ult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	N	D 1.00						0		30	
Chloromethane	N	D 1.00						0		30	
Vinyl chloride	N	D 0.200						0		30	
Bromomethane	N	D 1.00						0		30	
Trichlorofluoromethane (CFC-11)	N	D 1.00						0		30	
Chloroethane	N	D 1.00						0		30	
1,1-Dichloroethene	N	D 1.00						0		30	
Methylene chloride	N	D 1.00						0		30	
trans-1,2-Dichloroethene	N	D 1.00						0		30	
Methyl tert-butyl ether (MTBE)	N	D 1.00						0		30	
1,1-Dichloroethane	N	D 1.00						0		30	
2,2-Dichloropropane	N	D 2.00						0		30	
cis-1,2-Dichloroethene	N	D 1.00						0		30	
Chloroform	N	D 1.00						0		30	
1,1,1-Trichloroethane (TCA)	N	D 1.00						0		30	
1,1-Dichloropropene	N	D 1.00						0		30	
Carbon tetrachloride	N	D 1.00						0		30	
1,2-Dichloroethane (EDC)	N	D 1.00						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

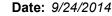
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409083-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 16 0	668	
Client ID: BATCH	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 33	5281	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.0600						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409083-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 16 0	668	
Client ID: BATCH	Batch ID: R16668					Analysis Dat	te: 9/9/201	4	SeqNo: 33	5281	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachlorobutadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	46.8		50.00		93.5	61.7	130		0		
Surr: Toluene-d8	46.6		50.00		93.2	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	47.5		50.00		94.9	68.2	127		0		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Sample Log-In Check List

C	lient Name:	GEI1	Work Order Number	1409077	
Lo	ogged by:	Clare Griggs	Date Received:	9/8/2014	12:00:00 PM
Cha	in of Custo	<u>ody</u>			
1.	Is Chain of Cu	ustody complete?	Yes 🗹	No \square	Not Present
2.	How was the	sample delivered?	Client		
Log	<u>In</u>				
3.	Coolers are pr	resent?	Yes 🗸	No \square	NA \square
4.	Shipping cont	ainer/cooler in good condition?	Yes 🗸	No 🗌	
5.	Custody seals	s intact on shipping container/cooler?	Yes	No 🗌	Not Required ✓
6.	Was an attem	npt made to cool the samples?	Yes 🔽	No 🗌	NA \square
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes 🗹	No 🗌	NA 🗆
8.	Sample(s) in p	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sam	nple volume for indicated test(s)?	Yes 🗹	No \square	
10.	Are samples p	properly preserved?	Yes 🗹	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA \square
12.	Is the headspa	ace in the VOA vials?	Yes	No 🗹	na 🗆
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No \square	
14.	Does paperwo	ork match bottle labels?	Yes 🗹	No 🗌	
15.	Are matrices of	correctly identified on Chain of Custody?	Yes 🔽	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No \square	
17.	Were all holdi	ing times able to be met?	Yes 🗹	No \square	
Spe	cial Handli	ing (if applicable)			
		tified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person N	Notified: Date:			
	By Who	m: Via:	eMail Phon	e 🗌 Fax	☐ In Person
	Regardir	ng:			
	Client In	structions:			
40	Additional rom				

19. Additional remarks:

Item Information

Item #	Temp °C	Condition
Cooler 1	5.6	Good
Cooler 2	5.7	Good
Cooler 3	4.9	Good
Sample 1	2.3	Good
Sample 2	3.8	Good
Sample 3	0.9	Good

Affects coordinate with the lab in advance

TAT -> SameDay^ NextDay^ 2 Day 3 Day STD	Determine	111	Returned			Date/Time		Relimmuished
	9/8/14 1200	P	× () (MOOR	233	9/7/14 2 3:00pm	3	Relinquished × Nac
	Date/Time	re retained after 30 days.)	Disposal by Lab (A fee may be assessed if samples are retained after 30 days.)	asal by Lab (A fee)	O Disp	Return to Client	n	Sample Disposal:
approximate regional regions	Nitrate+Nitribe	Fluoride Nitr	de O-Phosphate	Sulfate Bromide	Chloride Su	Nîtrite Chic	Nitrate	***Anions (Circle):
70	d Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	As 8 8a 8e Ca Cd	individual: Ag Al	Butants TAL	Priority Pollutants	:A-5 RCRA-B	(Circle): MTC	"Metals Analysis (Circle): MTCA-5
	<	8	8		950	<	05	-h 200 "
	2)	1		946		50	h-201°
					1106		-150	
					0)]		-125	3-24
		(_	4050	O	- 10.0	· pp-3-
	8	8	8		1043			, 01-3-
					1031		5.0	, pp-3-
	SAS	8	8	8	1025		5,6	, DP-3-25
	-				1210	_	0.31-6	2 DP - 2
	>	8	8	83:1	Sore	9/10	13.5	DP-2-12.5
Comments/Depth			SC CONTROL OF STREET	Sample Type [Matrix]*	Sample Time	Sample Date		Sample Name
WW = Waste Water	king Water, GW = Ground Water,	W = Water,	P = Product, S = Soil, SD = Sediment, SL = Solid,	educt, S = Soil,	Dother, P = Pr	AQ = Aqueous, 8 = Bulk, Ou	1 6	*Matrix Codes: A = Air,
20-800-METOR	Project No:	Email:		Fax:	,	While Phillow	Grice	Reports To (PM):
		Collected by:	425 841 10000	14: 425		Drywwy.	3	City, State, Zip
North	From the bet	Location:						Address:
	SLU Marriott	Project Name:					回り	
g A	Page	1	Date: 9/14/14	D	90	Tel: 206-352-3790 Fax: 206-352-7178	ž	3600 Fremont Ave N. Seattle, WA 98103
	Laboratory Project No (internal):				Tien	Amalysica	5	
Chain of Custody Record	Chai				1		Ď	

APlease coordinate with the lab in advance

www.fremontanalytical.com

Comments/Depth	Guillia de Control de	Type Macrit)* Type I all falls are by Lab (A tee by Lab (A tee) (A tee by Lab (A tee	12.5 1013 1013 1031 1035	Sample Name DP-4-10 DP-4-12.5 DP-4-13.0 DP-4-13.0 DP-4-3.0 DP-4-3.0 DP-5-3.5 DP-4-3.0 DP-5-3.5 DP-4-3.0 Relinquished
God Took and to the terminal of the terminal o	Guillia de Control de	Sample Type Time (Macris)* 1005 8vil 1005 1		5 DP-4-1 5 DP-4-1 5 DP-4-1 6 DP-4-1 7 DP-4-1 8 DP-5-6 9 DP-5-6 9 DP-5-6 9 DP-5-6 9 DP-5-6 8 DP-6-1 100 DP-5-6 9 DP-6-1 100 DP-5-6 9 DP-5-6 9 DP-6-1 100
The High K Mig Mn Mo Na Ni Pb Sb Se Sr Sn Special Remarks:	Signature of the state of the s	Sample Type Time (Macris)* 005 851 005 005 005 1045 1045 1054 1141 1140 Sulface Brown	San	5 DP-4-1 5 DP-4-1 6 DP-4-1 6 DP-4-1 7 DP-4-1 8 DP-5-6 9 DP-5-6 9 DP-5-6 10 DP-5-6 10 DP-5-6 10 DP-5-6 10 DP-5-6
Te Hg K Mg Mn Mo Na N Pb Sb Se Sr Sn	All All Al As B Ba Be Ca Cd Co Cr	7 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		5 DP-4-1 5 DP-4-1 5 DP-4-1 5 DP-4-1 6 DP-4-1 7 DP-4-1 7 DP-4-1 8 DP-5-6 9 DP-5-6
		Soil (Washing)		155
		Marris (Marris)		DP-4-1 DP-4-1 DP-4-1 DP-4-1
		Macris (Macris)		DP-4-1
		Macrit)*		DP-4-1
		(Macrix)*		DP-4-1
		Sv.1		DP-4-1
		Macris)*		1111
		Soil (Macris)*		177
		(Matrit)*		1
100 (00 (00 m) ((Matrix)*		-
		Type (Matrix)*	Sample Date	Sample Name
Chain of Custody Record Laboratory Project No (internal): Page: 3 of: 8 SLU (Nay Lubt) Page: 30 of: 8 SLU (Nay Lubt) Page: 30 776 03-00 Finding Wither, 6W = Ground Water, WW = Waste Water	Project Name: Location: Collected by: Email: O D D D SL = Solid, W = Washt, DW = D SL = Solid, W = Washt, DW = D	Fax:	206-352-7177 206-352-7177 3-8-10 3-8-10	A A A A A A A A A A A A A A A A A A A

*** Anions (Circle): ample Disposal:

Nitrate

DP-8-2,5

Sample Name

DP-6-2,5

DP-6-7.5 DP- 6- 5.0

DR-6-12-5

15.0

DP-7-75 DP-7-05 0,01 -9- AD

Reports To (PM): City, State, Zip Client:

Seattle, WA 98103 3600 Fremont Ave N.

Please coordinate with the lab in advence

TAT-> SameDay" Nextuay" 2 Day 3 Day 310	C925-1111-1	111	Meggyed.		Date/Time	
	1/8/17 1200	Y		Som	~ 9/7/14 @ 2 Jan	anthe
		d (Fomples are retained after 30 days.)	Disposal by Lab (A fee may be aspeced to	Olsposal by La	Return to Client	Disposal:
	Nitrate+Nitrite	Fluoride	Bromide O-Phosphace	le Sulfate	e Nitrite Chloride	**Anions (Circle): Nitrate
Special Remarks:	Co Cr Cu Fe Hg X Mg Min Mo Na Ni	As 8 8a 8e Ca	TAL Individual: Ag Al	Priority Pollutants	MTCA-S RCRA-8	*Metals Analysis (Circle): MTCA-5
2	4	-		1320	57.60	DP-8-25-0
	8	8	8	1308	0,0	DP-8-200
				12C)	0	02-8-15-0
				1250	S	5-61-8-90
				Shel	ó	DP-8-100
	8	8	8	OHC		NP-8-7.5
			7	1725	-	DR-8-80
	8	8	8	N 050	109000 9/6/14	2651 41/1/19 20 60 41 -1 - COW
	\X	18	0	3	ON #1/1/6 0050H	1-8-WW
	X	13 15 16	8	0940 W	0906 1/6/14	MW-2-140906
Comments/Depth	(1)	13/3/3/3/3/	10/0/0	=	Date	Sample Name
	San	1		Sample Type	Sample	
	(C) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	Series Contraction of the Contra	Sag.			
	1000	1	\			
	134	1 100				
1.5	B = Bulk, D = Other, P = Product, S = Soil, SD = Sediment, SL = Soild, W = Water, DW = Drinking Water, GW = Ground Water, WW = Waste Water	SL = Splid, W = Water, DW =	Sail, SD = Sediment, S	er, P=Product, S:		Autrix Codes: A = Air, AQ = Aqueous
02-5.00-71.101	Email: GPHLLP YOU GOODS AND BEET TO CON					city, scatter, city
	A Dates	•	425-861-6000	1111 18857 Tel: 4		
COPRICE WARRANT	South LAKE Chilory	Project Name: Location:			77	Client
-	i		+		7	Seottle, WA SOLUS
3	Page: 0	/IA	Date: 9/6/14		Tel: 206-352-3790	600 Fremont Ave N.
	Laboratory Project No (internal):			cal	Analytical	
					Tello	
Chain of Custody Record	Chair			-		ELEVAN
	2					

IAL-> SameDay mexicony away away are	1 3		THE PERSON			Date/Time		Relinquished	
Total Composition Name of Day 570	11	A A	K		10100	11/2	11/2	S. C. S.	100
	Quantifica 1200	3	Pécewad!		Chillipsed A	Ste/Time	011	Relinguished &	14.000
		e retained after 30 days.)	Disposal by Lab (A tee may be assumed) samples are retained after 30 days	by Lab (A fee sury	Disposal	Return to Client	Retu	Sample Disposal:	
district and control of	Nitrate+Nitrite	Fluoride Nitr	O-Phosphate	Bromide	de Sulfate	Chloride	Nitrate Nitrite	""Anions (Circle): N	
2	Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	As 8 8a 8e Ca Cd	Individual: Ag Al	ints TAL	Priority Pollutants	ACHA-8	e): MTCA-5	**Metals Analysis (Circle): MTCA-5	
	3			۵	0813	1	ō	10 P-12-50	
					0180		2.5	Dp-12-25	
	8	8	8	8	1324	_	O	, DP-11-15.0	
		9			1314	-	in	2.61-11-90,5	
					६८इ		9	, Dp-11-9.5	
					1258			DP-11-7.5	
					ENE			DP-11-50	
	8	8	8	8	1236		-1	JP-11-25	-
	8	8	8	(X)	1357		ó	0,01-01-000	
	1			2.48	1346	2/4	9	DP-10-25	
Comments/Depth			SCA BOOK BOOK BOOK BOOK BOOK BOOK BOOK BOO	Sample Type Matrix)*	Sample	Sample		Sample Name	
Waste Water	cing Water, GW = Ground	W = Water,	SD = Sediment, SL = Solid,	5 = Soil,	ther, P = Product,	B = Bulk, O = Other,	AQ = Aqueous, B	1	
Project No: 20774-005-00				90	Fax	335		Reports To (PM):	
		Collected by:	841 4000	5617	FEE STR	WA	Recliment	ie, Zip	
		Location:						Address:	
+	SLU Marriat	Project Name:	(4				142	Clippe	
8	4	1	9/11/14	Date:	66 5	Tel: 206-352-3790 Fax: 206-352-7178	Tel: 2 Fax: 2	3600 Fremont Ave N. Seattle, WA 98103	
	Laboratory Project Na (Internal):				1001	TO STANSFORM	1		
						0			
Chain of Custody Record	Chai							W. V. S. S.	

www.fremontanalytical.com

TAT -> SameDay^ NextDay^ 2 Day 3 Day STD	9
	Reinquistred Date/Time Recovered Date/Time
	11/18/18 - 11-1/18/19 300 Becoming 6000 11-1/18/18/14/1/18
	Sample Disposal: Return to Client Disposal by Lab (A fee may be assessed if somples are retained after 30 days.)
Special Remarks:	***Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite
Pb Sb Se Sr Sn Ti Ti U V Zn	**Metals Analysis (Circle): MTCA-5 ACRA-8) Priority Pollutents TAL Individual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na NI
	10
	¥ 083) ¥
	,
	DP-12-10.0 1 827
September of September Sep	7/6/M0821 S 8 8 8 8
Community County	Sample Name Sample Sample Sample (Macrin)* Sample Name Sample Sample Sample (Macrin)* Sample Name Sample Samp
WW = Waste Water	W=Drinking Water GW = Ground Water,
20776-03-00	Fax
5	Tel:
手	Address: Red mand tocation: SW Market
\$	3600 Fremont Ave N. Tel: 206-352-3790 Seattle, WA 98103 Fax: 206-352-7178 Date: 9/6/14
	Zin .
Chain of Custody Record	Fremont
	SECRETARY STATE OF THE

	Alliance considerate with the lab in advance			110					CHARLESTER			- Contraction	- Carrier
	TAT -> SameDay* NextDay* 2 Day 3 Day STD				Lawred .	7	+		Date/Time	Dat Date	1	N. C.	t
		H 1280	000	3	Section of the sectio	-	NOG	NO ED: E B HILL	50	4/6	July 1	Sandahea	× 20
				d if samples are retained after 30 days.	V.	Disposal by Lab (A fee may be an	sal by Lab (□ Dispo	to Client	Ruturn to Client		Sample Disposal;	Same
	Special Remarks:	100	Nitrate+Nitrite	Fluoride	O-Phosphate	Bromide		ter Suffate	Chloride	Nitrite	E Nitrate	***Anions (Circle):	A
	NI Pb Sb Se Sr Sn Ti Ti U V Zn	Cu Fe Hg K Wg Mn Mo Na Ni	Ca Cd Co Cr	As B Ba Be	Individual: Ag Al A	TAL fad	utants	Priority Pollutants	RCRA-8	-	(Circle):	*Metals Analysis (Circle): MTCA-5	M.
		8	8	8	B	E	+	-58°	1	a	-10.0	P-2-	01
		4						1145		10.4	ナール	# \$	g D
							-	1131	-		2.5.0	DP-2-	*
		×		8	8		1:83	St =	2/4		2-2.5	DP - 2-	7 0
		. 4					4	9101	4		15.0	DP-1.	0
								1003	_		12.5	DP-1	5
								952			10.0	DP-1	U,
							-	945	-		5.4	8-1-	A.
			8	8	8	8	F	920	-		5.0	DP - 1-	D
ASA.	But htmk. I red profession	7	K	0	100	8	1:08	402	9/10		9.08	DP-1-	Ö
-	Comments/Depth	1		100	0/8/6/4	1	(Matrix)*	Time	Date			Sample Name	San
	/	Va.	S. C.		CONT.	1	Sample	Sample	Semple				
		STORY OF THE PARTY	30.00	A CONTRACTOR									
		1	Carles I	80									
	11111	1	100	1				-	manual war	an tennantur - Pas	173	WHEN COOKS: WIN WAY	DEW.
	Water, WW = Wasta Water	GW - Ground		Email: NW - Water DW -	SD = Sediment, St = Solid, W = Water	Sell 50 + Se	Fax: P = Product S = Soil.	7	Philos		-	Reports To (PM):	Rep
	2002			Collected by:	6000	ODD INS STH	Jet 4	10 10 10 1 1 W		Redmonel	Pu	City, State, Zip	City
	4 Narha	39 am Avenue	4	Location:								Address:	Add
		- Marnott	15	Project Name:				5	Time of	are training	6	nit:	Client
	· · · · · · · · · · · · · · · · · · ·	-	Page:	1	411116	Date:		8 0	Tel: 206-352-3790 Fax: 206-352-7178	Tel: 20 Fax: 20	Ave N.	3600 Fremont Ave N. Seattle, WA 98103	360
	409071A	Laboratory Project No (internal):	Labor					18718	amaignacort	7.17			
								=	6		-		
	Chain of Custody Record	Cha						-				Z ALE	10

5
5
5
>
≥ .
=
mi.
-
3
0
3
7
D)
3
D)
-
~
₫.
0
a
-
0

Affects coordinate with the lab in advance		ж				*
TAT -> SameDay^ NextDay^ 2 Day 3 Day STD	d (Daté/Time	Resetted		Date/Time		Relinguished
	1 9/8/1 1200	Received	3pm	Mary Som	100	Relinquished A
	agrobies are retained after 50 days.)	by Lab (A fee may be	☐ Disposal	Return to Client	20	Sample Disposal:
Special Remarks.	O-Phosphate Flueride Nitrate+Nibitle	Bromide	de Sulfate	Nitrite Chloride		***Anions (Circle):
NI PS Sh Se Sr Sn Ti Ti U V Zn	Ag AI AS B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na	ants TAL Individual	Priority Pollutants	-s Acras	(Circle): MTCA-5	"Metals Analysis (Circle):
		8	==	1	2.4-	m DP-
		0	1130		3.0	, DP-5-
			100	_	15.00	5.8-S-AG
	6	(1054	4	30.0	, DP-4-
			1045		17.5	· PP-4-
	8 8	8	1601		-15.0	5 DP-4-15.0
					1	4
		-	Stol	-	- 12.5	1 P-4-
			6101	-	- 10	2 DP-4-
	7	241	1005	alla	-7.5	1 PP-4
Comments/Depth		Sample Sample (Marrie) Sample (Marrie)	Sample Time	Sample Date		Sample Name
WW = Waste Water	SL=Solid, W=Warks, DW=Dhaling Warks, GW=Ground Water,	uct, 5 = 508, 50 = Sediment,	ther, P - Product,	s, a-auk, d-ocher	Ur, AQ = Aqueous,	*Matrix Codes: A = Air,
20776-003-00		Fax:		Grace Thulps		Reports To (PM):
2	collected by: Car Co. Phyly /Al. Cac	Tel:		Redynand	nes	City, State, Zip
	Project Name: SLW (TAILALDET)			CEI		Client
\$	6 3	Date 91	6,0	Tel: 206-352-3790 Fax: 206-352-7178	×	3600 Fremont Ave N. Seattle, WA 98103
	Loboratory Project No (Internal):		(ROIA	Zmaiyakai		
citation customy necond	<u> </u>		2		TO O	R. Control
ain of Custody Becord	Ch.				١	

"Metals Analysis (Circle): MTCA-5

ACRA-B

Priority Pollutants

P DP-

7-13.0 5.8-8

1430

1223

DP-7-75 DP-7-05 Dp-6-

***Anions (Circle):

Marate

Mirite

Chloride

Sulfate

Disposal by t

Sample Disposal:

	ab (A fee may be asserted to assert	Bromide	TAL	N N	Va	(Sa)	#.	nple e	S = 50H,	9
Reco	Roger	de o		0)8	8	- 19	10 100	SD = Sedin	Date:
1	O Saldure John	O-Phasphate	Individual: Ag Al As B Sa Se	8	8	8	R &	111	Collected b Email: Ø SD = Sediment, SL = Solid, W = Water	9/6/14 Projec
7	amples are retained ofter 10 days.	Fluoride	As 8 Sa	8	XX.	8			Collected by Email: O	Project Name
	Coles GE	e Nitr	0	2	2	8	8	14. 12 13.1	1	Name
pare/Trep	A Party	Nitrate+Nitrite	000	8	Ø	8	8 4	0 1 0 1 0 1 0 1		Page:
1	4		Fe Hg K				100		1 455	Page: 4 Mark
	1200		Mg Mn	-	2		- +		Charge Project	V) A
	8		Mo Na Ni		8				Project No:	ankent
TAI ->		_	- 2				+	181		# 1
SameDay			Sr Sn				0		20776-03	09
TAT -> SameDay* NextDay* 2 Day 3 Day STI			AGEL				Comments/Depth	/	103	
y 2 Day			201				Depth		8	
3 Day ST										

Reports To (PM): BRACE PMU A Fext
*Matrix Codes: A = Air, AQ = Aqueous, B = Bulk, O = Obad, P = Product,

Fax Tel Client:

City, State, Zip Address:

redmod

Seattle, WA 98103

Fax: 206-352-7178 Tel: 206-352-3790

139

THE WATER

3600 Fremont Ave N.

Sample Name

DP-6-2,5

9/6/14 Sample

Sample

ES8

80

DP- 6- 5.0

DP-

6-7.5

DR-6-12.5

15.0

910

422 である

407

404

DP-6-10.0

"Anions (Circle):

DP-9-7.5

DP-9-2.5 P-9-5,0

2-5

ample Disposa

Client:

Address:

Seattle, WA 98103

3600 Fremont Ave N.

City, State, Zip

"Please coordinate with the lab in advance		110						×
TAT -> SameDay* NextDay* 2 Day 3 Day STD	Ogto/Timé	111	A Child		-	Date/Time	1	Refrougher
	- 9/8/14 1200	424	, mercenda		3m	17/14/D 7/14/12	14/10-	Refrequished A
		surricities are retained after 30 days.	A	Cisposal by Lab (A fee may be asymmet	Olsposal I	Return to Client	O Retu	Semele Disposal:
Special Remarks:	Nitrate+Mitrite	Fluaride N	O-Phosphate	Bromide	de Suifate	te Chloride	Mitrate Nitrite	***Anions (Circle):
26 St St St St TI TI U V Zh	Ed Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	As B Ba Be Ca	Individuat: Ag Al	AS TAL	Priority Pollutants	RCRA-8	rcle): MTCA-5	"Metals Analysis (Circle):
	4			_	1320	4	8-25-0	8-39 0
	8	8	8	Ø	1305		8-20.0	-8 -40 °
		>	>		1255		8-15.0	· DQ-8-
					1250		8-12.5	, DP-8-
					5 Prei		0.01-8	-B-90-
	8	8	8	8	OHCI		27	5.7-8-7.5
		7 .	7	-	1228	-	0	08-8-80
	8	8	8	3	-	09/6/14	=	-1-WM:
	×8	8	6	3	100	HO900 9/6/4 (110	- HO90	2-WW 2
	N X X	8	8	8	0940	7/6/14	140°906	1 MW- 2-140906
Comments/Depth			Sold Control of Contro	Sample Type (Matria)*	Sample Time	Sample		Sample Name
Waste Water	inking Water, GW = Grou	W = Water.	SD = Sediment, SL = Solid.		B = Bulk, O = Other, P = Product, S = Soil,	=Bulk, 0=0		*Matrix Codes: A = Air,
04-500-11/02 3-50	MISKRO	Email: GPW	-		Pant Py Fast	D.	PACE TO THE	Resports To (PM):
SEAMILE	Down Care Onton	Collected by:	CAN-1-1-10 XC+		90057 1	P		Address:
OC SLU MARQUOTT	10.3	Project Name:					CAR	Client:
*		F	Date: 9/6/14	Date:	80	Tel: 206-352-3790 Fax: 206-352-7178	×	3600 Fremont Ave N. Seattle, WA 98103
	Leberatory Project No (Internal):				10014	Thomas Marcal	1	
					2		Q D	
Chain of Custody Record	Chai							WELV SEED

		1						(1) 10 Miles	
TAT -> SameDay* NextDay* 2 Day 3 Day STD	allocation of the state of the	a /////	RETENNED			ato/Time	-	Relinquished	
	7/8/14 1200	かつる	Secretary O		NO E COLUMNIC 1/5/15	10/1/10)	1	Relinquished &	Charles and the
		samples are retained after 10 days.)	100	Disposal by Lab (A tee may be assumed	Disposal	n to Clent	Return to Client	Sample Disposal:	
operation normalists	Nitrate+Mitrite	Fluoride Nitrate	O-Phosphate	Bromide	le Sulfate	Chloride	Nitrate Nitrite	***Anions (Circle):	-
Pb Sb Se Sr Sn Tl Tl U V Zn	Cr Cu Fe Hg K Mg Mn Mo Na Ni	As B Ba Se Ca Cd Co	Individual: Ag Al /	WI	Priority Pollutants	ACRA-8	rcle): MTCA-5	**Metals Analysis (Circle):	_
	3			A	0813	1	50	10 DP-12-50	
					0810		2-25	DP-12-	
	8	8	8	8	1327	-	1-15×0	, DP-11-	
)	1		13/4	-	2,5	, DP-11-12.5	
					६८		2.5	, DP-11-9.5	
					1928		5	DP-11-7,5	
					とりで		0	, DP-11-50	
	8	8	8	8	1236		25	JP-11-25	
			8	8	1357		0,0	DP-10-100	
) 			28		2	25	DP-10-25	
Comments/Depth			So To Tool	Sample Type (Matrix)*		Sample Date		Sample Name	
Waste Water	100		50 = Sediment, St. o Solid, W. o Water,	5 * 508,	her, P=Product,	B = Sulic, D = Other,	AQ= Aqueous,	*Matrix Codes: A = Air.	
Molective: AD++W-000-00		Email:						Reports To (PM):	
		Collected by:	2000 100	5615	ALCS/NO		Bichmind, WA	City, State, Zip	
		Location:						Address:	
	SLU Mamist	Project Name:					149	Client:	
\$	4	1	4/4/4	Date:	& J	Tel: 206-352-3790 Fax: 206-352-7178	×	3600 Fremont Ave N. Seattle, WA 98103	
	Inheretory Project No fetermeli-				1877	and the same	Total Service		
citalli of custody Necold					2	<u>5</u>	remont		
n of Custody Bosord	Chai								

٤
¥.
frem
onta
inaly
tica.
.com

And Property Record Ann. Tel. 26.55.27.299 Seattle, MA Settle. Concert. Annual Concert.	Mg Me Mo Na Ni Pla 56 Se Sr Sn Ti Ti U V Special Remarks	Urate-Nitrite	O-Phosphate Fluor assessed if samples are retained a		3pm	Date/Time	12/6-	SA C
ATTICHED TO THE PROPERTY POLICIANS. ACT 206-352-3178 POJECT PARTY POLICIANS. Tel: CONCLET PROJECT Manner. Fac: Tel: CONCLET PROJECT Manner. CONCLET PROJECT Manner. Sample Sample Sample Tree: Sample Sample Sample Tree: Sample Sample Sample Tree: ACT S 96 (MOT2) S 96 (MOT	Mg Mn Mo Na NI Pb Sb Se Sr Sn Ti Ti U V Special Remarks:	Cd Co Cr Cu Fe Hg Utrate-Vilitite	O-Phosphate Flugr					Contribuse
Tel: CRACE PROJECT PROJECT SE SOUS SO Sedences, St. Sold, W. WHATE-PROJECT WE GOVERN WAS THE PROJECT WE SOUND WE SAMPLE THE PROJECT SE SOUS SO Sedences, St. Sold, W. WHATE-PROJECT WE SOUND WE SAMPLE THE PROJECT SE SOUS SO SEDENCE, St. SOLD, W. WHATE-PROJECT SE SOUS SO SEDENCE, St. SOLD, W. WHATE-PROJECT SE SOUS SOLD SEDENCE, ST. SOLD, W. WHATE-PROJECT SE SOLD SE SEDENCE, ST. SOLD, W. WHATE-PROJECT SE SOLD SE SEDENCE, ST. SOLD, W. WHATE-PROJECT SE SOLD SE SEDENCE, ST. SOLD SE SEDEN	Mg Min Mo Na NI Pla Sb Se Sr Sn Ti Ti U V Special Remarks	Be Ca Cd Co Cr Cu Fe Hg Nitrate+Nitrite		by Lab (A lee may be	□ okposal	Return to Client	D	Samele Disposati
Tel: 206-252-7178 Tel: 206-252-	A II II OS SS SS SP II II A OW GW	Be Ca Cd Co Cr Cu Fe Hg				10	Nitrate	***Anions (Circle):
Tel: 206-252-7178 Tel: 206-252-			Al As B	174.1	Priority Polluta			Metals Analysis
Expressive transfer of the tra						-		10
Laboratory Project Na [interest] 1: 206-352-7178 Date: 9/6/14 Project Name: SLD MOLE Tel: Project Name: SLD MOLE B-Bulk, Or Short: Profescot. 5 stock, 50 stedeneer, 51 stock, www. wash, DW Dhough Water (Water) Collected by: Email: 9 D. D. D. Collected by: Collected by: Email: 9 D. D. D. Collected by: Email: 9 D. D. D. Collected by: Collected by: Email: 9 D. D. D. Collected by: Ema								
Laboratory Project No finternally 1: 206-352-3790 2: 206-352-7178 Date: 9/6/14 Project Name: SLD NOLL Project Name: SLD NOLL Collected by: Fax: Enail: a D. D. C. Collected by:								
Laboratory Project No (internal) 1. 206-352-3790 1. 206-352-7178 Date: QLQ/JU Project Name: SUU MQU Collected by: Email: Q My Collected by: Email: Q								
A TOO STATE Date: QLO 14 Project Name: SLU MOLE A Sample Sample Type (Marror)								
1. 206-352-7178 Date: 9/6/14 Project Name: SLU MOLE Location: Tel: Collected by: Email: 9 M. D. Collected by: Frace: Sample Sample Time (Matron) Sample Sample Sample (Matron) Sample Sample (Matron) Sample Sample (Matron) Sampl				4		-		
Laboretory Project Ne (internal) 1: 206-352-7178 Detc: 9/6/14 Project Name: Sum May: Sum May: Sum May: Sumple Fax: Tel: Collected by: Email: 9 May: Dw = Officials water by = Ground was Sample Sample Sample Type Date: Time (Marror): St. Soll, SD = Sediment, St. Sold, w = Water, Dw = Officials water, Dw	S			-	083	-	1-150	D8-13
1. 206-352-3790 1. 206-352-3790 1. 206-352-7178 Date: 9/6/14 Project Name: Sample (Matrix) Sample Sample Time (Matrix) Sample Sample Sample (Matrix) Sample Sample Sample (Matrix) Sample Sample Sample Sample (Matrix) Sample S	8	8)	8	8	0830		J-12.5	DP-10
1 206-352-3790 1: 206-352-3790 2: 206-352-7178 Date: 9/6/14 Project Name: Sumple Sample S					468		2-10,0	D8-1
Laboratory Fraject No [internal] 1: 206-352-7178 Date: 9/6/14 Project Name: Sumple Sample	8		8		M082	19/10	2-7.5	D8-18
1. 206-352-7178 Date: 9/6/14 Project Name: SLU MARA Location: Collected by: B = Bulk, to glober, P = Product. 5 = Sold, SD - Sediment, SL = Sold, W = Wards, DW = Dhruby Waster GW = Ground Waster GW = GW				4		Samp		ample Name
1. 206-352-7178 Dete: 9/6/14 Project Name: SLU Mark Location: Collected by: Email: 9 phuby@georgingo	W = Ground Water, WW = Waste Water	" Ware!" DW = Drinade Water G	- Sediment, St Solid, W			O. Ning . B 'tho	- Aut, Aut angues	MELIN CHRIST
Date: 9/6/14 Project Name: SW MARA Location: Tel: Collected by:	- 10776-03	on aphiloped	Em			Thule	काष्ट्रिक व	Reports To (PA
Tremont Ave N. Tel: 206-352-3790 c, WA 98103 Fax: 206-352-7178 Dete: 9/6/14 Page: 9 Project Name: SW MORE		ation:		Tel:	9	MANA	7	City, State, Zip
1 Tel: 206-352-3790 N. Tel: 206-352-3790 Date: 9/6/14 Page: 8	Marcott	1000	Pro		+	13	4	Client
Teal	(internal):	1	· 9/6/14	Dat	7178	Tel: 206-352-	18 AVE N. 98103	3600 Fremon Seattle, WA
חב					MICOL	Amal	TO SERVICE STATE OF THE PARTY O	
	Chain of Custody Reco				Ĭ		TO	

www.fremontanalytical.com

THE TOP STATE ANTO INTERCEPT AND INTERCEPT A		TAT -> SameDayn NextDayn 2.0ay 3.0ay STD	A solic Course	1						2
The internal			9/8/14 1200	10 T	1000		83	11/4/b	3/2	astr
Analysis and Analy				visited alto 30 days.)	or regularity property	t yen sol A) dell y) Disposalt	2000	O Retu	Sample Disposal:
ANTOINE CONTROL CONTRO		Special Remeates	ile+Niirite		O-Phosphate	Bromide				***Anions (Circle):
Tel: 2005-557-778 Tel: 2005-557-788 Ten: 2005-557		A II II, WS AS B5 G5 Gd	CO OF OU FO HE K ME MIN MO PLO NO	B Ba Be Ca	IN By		Priority Poliutar		rcle): MTCA-5	Metals Analysis (Ci
APTOINT FORT IN THE CONTROL OF THE C			4	8	8		1330	6	92.9	JB-81
APTICIPATE THE CONTROL OF CUSTODY RECORD Tel: 206-552-3778 Tel: 206-552-3778 Tel: Collected by: Sungar Sungar Collected by: C			8	8	8	B	256		0.00	DP-9-
Chain of Custody Record Tel: 206-523-3730 Fax: 206-523-3730 Tel: 20							班		N.	DP-9-
Chain of Custody Record Tel: 106-583-3790 Fax:							230		13.5	DP-9-
Tet: 206-352-3178 Date: 46/14 Project Name: SW Mark Labet Location: Collected by: Swingle Sample	1						tot !		2,4	DP-9-
Tel: 206-352-3790 Fax: 206-352-3790 Fax: 206-352-3790 Tel: Collected by: Collected	G	Add Analysis	8	8	8	3	252		5,0	DP-9-
Tel: 206-352-3730 Fax: 206-362-3730 Fax: 206-362-				(((pool		3.5	DP-9-
AMITINAS (COT) Tel: 206-352-3790 Fax: 206-352-3790 Fax: 206-352-3790 Tel: Project Name: SW MONE Location: Tel: Collected by: Email: Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DALLO U G Q DOLL SMAD Location: G Q DALLO U G Q DA			8		8	8	Soti		15.0	DP-5-
Tel: 206-352-3738 Fax: 206-352-3738 Date: 9/6/14 Project Name: SW MONE Collected by: Collec						-	1702	-	Sie	DP-5-1
Tel: 206-352-3790 Fax: 206-352-3798 Date: 96/14 Project Name: SU MANA Collected by: Collected by						-	145	2	0.0	P-5-
Date: 9/6/14 Project Name: SW Mark DW Stone Ground Water, 5% Soil, 50 - Sediment, 5% - Soild, W = Ward: DW = Ohndrig Water, 5W = Ground Water,					6///			Sample Date		imple Name
Date: 9/6/14 Project Name: SW MONE Location: Collected by:		*Waste Matter	Water, GW = Ground Water,	ild W=Wartr. DW:	= Sediment, SL = So	ect, 5 = 5olf, 50		B-Bulk, o'- d	AC - Aqueous	strix Codes: A = Ale
Fremont Ave N. 1et: 206-352-3730 a, WA 98103 GET Project Name: SW Mark Location: Control of the state of		Gm	I Care smean	Collected by:		8		ماءاد	107/01	ity, State, Zip
Fremont Ave N. 1et: 206-352-3790 a, WA 98103 GEF Project Name: SIN MANA Project Name: SIN MANA			A Parent	Location:				aron	Rea	iddress:
Cemont Amount Amount		F 8 €	Mana	Project Name:	19/1	Date	78	206-352-71		Seattle, WA 981
C		+1090+			, ,		No.	Avenue	No. of Lot	
		in of Custody Record	Cha				7	S S	0	

**Metals Analysis (Circle): MTCA-5

RCRA-8 P

Priority Pollucants

individual Ag Al As B Ba Be

Ca Cd Co Cr Cu Fe Nitrate+Nitrite

HE K ME MIN

No Na Na

76 St St St Sn

=

TI U V Zn

002

Sulfate

Bromide

O-Phasphate

Fluoride

08-H-20

DR-4-750

946

1106

8

18-3-125

DP-3-

0.0

4501 Ehou

DP-3-7-5

DP-3-25

250

1031

3

(8)

***Anions (Circle):

Marate

Mining

Seturn to Clerk

Disposal by Lab (A fee may be asset

ロロームー可ら	DP-2-12.5	ample Name	atrix Codes: A = Air, AQ = a	Reports To (PM): GYE	diz'an	#	Clent: GE	Seattle, WA 98103		
_	9/10	Sample Date	Aqueous, 8 = Bulk, dupos	Griece Pivilon	DAMMAN	0	<u>al</u>	Tel: 206-352-3790 Fox: 206-352-7178	Amagaaa	remont
016	1305 So:1	Sample Time	er, P. Prod						COL	₹.
2	8 - 8	Sample Sample (1987)	uct, 5=5oil, 5D=Sediment, 5L=5oi	Fax:	14: 425 SUI GOOD			MATTER SONO		
	8		Sd, W = Water, DW = 1	Email:	Collected by:	Location:	Project Name:	1		
X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	×®	Comments/Empth	farty Codes: A + Aut, AC) - Aquebus, B = Bulk, OulDither, P + Product, S = Soll, SD = Sediment, SL = Solld, W = Water, DW + Orbitolog Water, GW = Ground Water, WW + Water Water	100-003-00 PHT-063-00		THON MANY TO PET		9 00	Laboratory Project No (internol): 1409077	Chain of Custody Record

TAT-> SameDay* NextDdy* 2 Day 3 Day STD
*Please coordinate with the lab in advance.

"Place scottingly part the late in adverse

Distribution: White - Lab. Yellow - File, Pink - Originator

www.fremontanalytical.com

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

Report Summary

Thursday September 25, 2014

Report Number: L723055 Samples Received: 09/20/14 Client Project: 20776-003-00

Description: SLU Marriott AC

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

red Willis , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979, IA Lab #364, EPA - TN002

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-01

Project # : 20776-003-00

Date Received : September 20, 2014

SLU Marriott AC Description

Site ID : Sample ID SV-1

Collected By :

09/19/14 00:00 Collection Date:

Parameter	Cas#	Mol Wgh	t RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
Volatile Organics									
Acetone	67-64-1	58.1	25.0	59.0	140	330	TO-15	09/22/14	20
Allyl chloride	107-05-1	76.53	0.400	1.30	< 0.40	< 1.3	TO-15	09/22/14	2
Benzene	71-43-2	78.1	0.400	1.30	< 0.40	< 1.3	TO-15	09/22/14	2
Benzyl Chloride	100-44-7	127	0.400	2.10	< 0.40	< 2.1	TO-15	09/22/14	2
Bromodichloromethane	75-27-4	164	0.400	2.70	< 0.40	< 2.7	TO-15	09/22/14	2
Bromoform	75-25-2	253	1.20	12.0	< 1.2	< 12.	TO-15	09/22/14	2
Bromomethane	74-83-9	94.9	0.400	1.60	< 0.40	< 1.6	TO-15	09/22/14	2
1,3-Butadiene	106-99-0	54.1	4.00	8.90	< 4.0	< 8.9	TO-15	09/22/14	2
Carbon disulfide	75-15-0	76.1	0.400	1.20	< 0.40	< 1.2	TO-15	09/22/14	2
Carbon tetrachloride	56-23-5	154	0.400	2.50	< 0.40	< 2.5	TO-15	09/22/14	2
Chlorobenzene	108-90-7	113	0.400	1.80	0.46	2.1	TO-15	09/22/14	2
Chloroethane	75-00-3	64.5	0.400	1.10	< 0.40	< 1.1	TO-15	09/22/14	2
Chloroform	67-66-3	119	0.400	1.90	< 0.40	< 1.9	TO-15	09/22/14	2
Chloromethane	74-87-3	50.5	0.400		0.51	1.1	TO-15	09/22/14	2
2-Chlorotoluene	95-49-8	126	0.400	2.10	< 0.40	< 2.1	TO-15	09/22/14	2
Cyclohexane	110-82-7	84.2	0.400	1.40	< 0.40	< 1.4	TO-15	09/22/14	2
Dibromochloromethane	124-48-1	208	0.400	3.40	< 0.40	< 3.4	TO-15	09/22/14	2
1,2-Dibromoethane	106-93-4	188	0.400	3.40	< 0.40	< 3.4	TO-15	09/22/14	2
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	< 0.40	< 2.4	TO-15		2
	541-73-1	147		2.40	< 0.40	< 2.4		09/22/14	2
1,3-Dichlorobenzene			0.400				TO-15	09/22/14	
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	< 0.40	< 2.4	TO-15	09/22/14	2
1,2-Dichloroethane	107-06-2	99	0.400	1.60	< 0.40	< 1.6	TO-15	09/22/14	2
1,1-Dichloroethane	75-34-3	98	0.400	1.60	< 0.40	< 1.6	TO-15	09/22/14	2
1,1-Dichloroethene	75-35-4	96.9	0.400	1.60	< 0.40	< 1.6	TO-15	09/22/14	2
cis-1,2-Dichloroethene	156-59-2	96.9	0.400	1.60	< 0.40	< 1.6	TO-15	09/22/14	2
trans-1,2-Dichloroethene	156-60-5	96.9	0.400	1.60	< 0.40	< 1.6	TO-15	09/22/14	2
1,2-Dichloropropane	78-87-5	113	0.400	1.80	< 0.40	< 1.8	TO-15	09/22/14	2
cis-1,3-Dichloropropene	10061-01-5		0.400	1.80	< 0.40	< 1.8	TO-15	09/22/14	2
trans-1,3-Dichloropropene	10061-02-6		0.400	1.80	< 0.40	< 1.8	TO-15	09/22/14	2
1,4-Dioxane	123-91-1	88.1	0.400	1.40	< 0.40	< 1.4	TO-15	09/22/14	2
Ethanol	64-17-5	46.1	1.26	2.40	56.	110	TO-15	09/22/14	2
Ethylbenzene	100-41-4	106	0.400	1.70	0.69	3.0	TO-15	09/22/14	2
4-Ethyltoluene	622-96-8	120	0.400	2.00	< 0.40	< 2.0	TO-15	09/22/14	2
Trichlorofluoromethane	75-69-4	137.4	0.400	2.20	1.2	6.7	TO-15	09/22/14	2
Dichlorodifluoromethane	75-71-8	120.92		2.00	0.82	4.1	TO-15	09/22/14	2
1,1,2-Trichlorotrifluoroethane	76-13-1	187.4	0.400	3.10	< 0.40	< 3.1	TO-15	09/22/14	2
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	< 0.40	< 2.8	TO-15	09/22/14	2
Heptane	142-82-5	100	0.400	1.60	< 0.40	< 1.6	TO-15	09/22/14	2
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.0	< 1.3	< 13.	TO-15	09/22/14	2
n-Hexane	110-54-3	86.2	0.400	1.40	< 0.40	< 1.4	TO-15	09/22/14	2
Isopropylbenzene	98-82-8	120.2	0.400	2.00	< 0.40	< 2.0	TO-15	09/22/14	2
Methylene Chloride	75-09-2	84.9	0.400	1.40	1.5	5.2	TO-15	09/22/14	2
Methyl Butyl Ketone	591-78-6	100	2.50	10.0	< 2.5	< 10.	TO-15	09/22/14	2

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-01

Date Received : September 20, 2014 Description

SLU Marriott AC

Site ID :

Sample ID SV-1

Project # : 20776-003-00

Collected By

09/19/14 00:00 Collection Date :

Parameter	Cas#	Mol Wght	RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
2-Butanone (MEK)	78-93-3	72.1	2.50	7.40	2.6	7.7	TO-15	09/22/14	2
4-Methyl-2-pentanone (MIBK)	108-10-1	100.1	2.50	10.0	6.1	25.	TO-15	09/22/14	2
Methyl methacrylate	80-62-6	100.12	0.400	1.60	0.41	1.7	TO-15	09/22/14	2
MTBE	1634-04-4	88.1	0.400	1.40	< 0.40	< 1.4	TO-15	09/22/14	2
Naphthalene	91-20-3	128	1.26	6.60	< 1.3	< 6.6	TO-15	09/22/14	2
2-Propanol	67-63-0	60.1	2.50	6.10	5.8	14.	TO-15	09/22/14	2
Propene	115-07-1	42.1	0.800	1.40	< 0.80	< 1.4	TO-15	09/22/14	2
Styrene	100-42-5	104	0.400	1.70	0.40	1.7	TO-15	09/22/14	2
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.70	< 0.40	< 2.7	TO-15	09/22/14	2
Tetrachloroethylene	127-18-4	166	0.400	2.70	0.48	3.3	TO-15	09/22/14	2
Tetrahydrofuran	109-99-9	72.1	0.400	1.20	< 0.40	< 1.2	TO-15	09/22/14	2
Toluene	108-88-3	92.1	0.400	1.50	5.1	19.	TO-15	09/22/14	2
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.30	< 1.3	< 9.3	TO-15	09/22/14	2
1,1,1-Trichloroethane	71-55-6	133	0.400	2.20	< 0.40	< 2.2	TO-15	09/22/14	2
1,1,2-Trichloroethane	79-00-5	133	0.400	2.20	< 0.40	< 2.2	TO-15	09/22/14	2
Trichloroethylene	79-01-6	131	0.400	2.10	< 0.40	< 2.1	TO-15	09/22/14	2
1,2,4-Trimethylbenzene	95-63-6	120	0.400	2.00	< 0.40	< 2.0	TO-15	09/22/14	2
1,3,5-Trimethylbenzene	108-67-8	120	0.400	2.00	< 0.40	< 2.0	TO-15	09/22/14	2
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.90	< 0.40	< 1.9	TO-15	09/22/14	2
Vinyl chloride	75-01-4	62.5	0.400	1.00	< 0.40	< 1.0	TO-15	09/22/14	2
Vinyl Bromide	593-60-2	106.95	0.400	1.70	< 0.40	< 1.7	TO-15	09/22/14	2
Vinyl acetate	108-05-4	86.1	0.400	1.40	< 0.40	< 1.4	TO-15	09/22/14	2
m&p-Xylene	1330-20-7	106	0.800	3.50	3.4	15.	TO-15	09/22/14	2
o-Xylene	95-47-6	106	0.400	1.70	1.8	7.8	TO-15	09/22/14	2
1,4-Bromofluorobenzene	460-00-4				93.3	% Rec.	TO-15	09/22/14	2

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Site ID :

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-02

Project #: 20776-003-00

Date Received September 20, 2014

Description SLU Marriott AC

Sample ID SV-2

Collected By

Collection Date : 09/19/14 00:00

Cas# Mol Wght RDL1 RDL2 ppbv ug/m3 Method Date Dil. Parameter

Volatile Organics									
Acetone	67-64-1	58.1	2.50	5.90	69.	160	TO-15	09/22/14	2
Allyl chloride	107-05-1	76.53		1.30	< 0.40	< 1.3	TO-15	09/22/14	2
Benzene	71-43-2	78.1		1.30	< 0.40	< 1.3	TO-15	09/22/14	2
Benzyl Chloride	100-44-7	127		2.10	< 0.40	< 2.1	TO-15	09/22/14	2
Bromodichloromethane	75-27-4	164		2.10	< 0.40	< 2.1	TO-15	09/22/14	2
	75-27-4 75-25-2	253		12.0					2
Bromoform					< 1.2	< 12.	TO-15	09/22/14	2
Bromomethane	74-83-9	94.9		1.60	< 0.40	< 1.6	TO-15	09/22/14	
1,3-Butadiene	106-99-0	54.1		8.90	< 4.0	< 8.9	TO-15	09/22/14	2
Carbon disulfide	75-15-0	76.1		1.20	< 0.40	< 1.2	TO-15	09/22/14	
Carbon tetrachloride	56-23-5	154		2.50	< 0.40	< 2.5	TO-15	09/22/14	2
Chlorobenzene	108-90-7	113		1.80	< 0.40	< 1.8	TO-15	09/22/14	2
Chloroethane	75-00-3	64.5		1.10	< 0.40	< 1.1	TO-15	09/22/14	2
Chloroform	67-66-3	119		1.90	< 0.40	< 1.9	TO-15	09/22/14	2
Chloromethane	74-87-3	50.5	0.400 0		< 0.40	< 0.83	TO-15	09/22/14	2
2-Chlorotoluene	95-49-8	126		2.10	< 0.40	< 2.1	TO-15	09/22/14	2
Cyclohexane	110-82-7	84.2		1.40	< 0.40	< 1.4	TO-15	09/22/14	2
Dibromochloromethane	124-48-1	208		3.40	< 0.40	< 3.4	TO-15	09/22/14	2
1,2-Dibromoethane	106-93-4	188		3.10	< 0.40	< 3.1	TO-15	09/22/14	2
1,2-Dichlorobenzene	95-50-1	147		2.40	< 0.40	< 2.4	TO-15	09/22/14	2
1,3-Dichlorobenzene	541-73-1	147		2.40	< 0.40	< 2.4	TO-15	09/22/14	2
1,4-Dichlorobenzene	106-46-7	147		2.40	< 0.40	< 2.4	TO-15	09/22/14	2
1,2-Dichloroethane	107-06-2	99		1.60	< 0.40	< 1.6	TO-15	09/22/14	2
1,1-Dichloroethane	75-34-3	98		1.60	< 0.40	< 1.6	TO-15	09/22/14	2
1,1-Dichloroethene	75-35-4	96.9		1.60	< 0.40	< 1.6	TO-15	09/22/14	2
cis-1,2-Dichloroethene	156-59-2	96.9		1.60	< 0.40	< 1.6	TO-15	09/22/14	2
trans-1,2-Dichloroethene	156-60-5	96.9		1.60	< 0.40	< 1.6	TO-15	09/22/14	2
1,2-Dichloropropane	78-87-5	113		1.80	< 0.40	< 1.8	TO-15	09/22/14	2
cis-1,3-Dichloropropene	10061-01-5	111		1.80	< 0.40	< 1.8	TO-15	09/22/14	2
trans-1,3-Dichloropropene	10061-02-6	111		1.80	< 0.40	< 1.8	TO-15	09/22/14	2
1,4-Dioxane	123-91-1	88.1		1.40	0.46	1.7	TO-15	09/22/14	2
Ethanol	64-17-5	46.1		24.0	82.	150	TO-15	09/22/14	20
Ethylbenzene	100-41-4	106		1.70	0.43	1.9	TO-15	09/22/14	2
4-Ethyltoluene	622-96-8	120	0.400	2.00	< 0.40	< 2.0	TO-15	09/22/14	2
Trichlorofluoromethane	75-69-4	137.4	0.400	2.20	0.52	2.9	TO-15	09/22/14	2
Dichlorodifluoromethane	75-71-8	120.92	0.400	2.00	0.48	2.4	TO-15	09/22/14	2
1,1,2-Trichlorotrifluoroethane	76-13-1	187.4	0.400	3.10	< 0.40	< 3.1	TO-15	09/22/14	2
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	< 0.40	< 2.8	TO-15	09/22/14	2
Heptane	142-82-5	100	0.400	1.60	< 0.40	< 1.6	TO-15	09/22/14	2
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.0	< 1.3	< 13.	TO-15	09/22/14	2
n-Hexane	110-54-3	86.2	0.400	1.40	0.55	1.9	TO-15	09/22/14	2
Isopropylbenzene	98-82-8	120.2		2.00	< 0.40	< 2.0	TO-15	09/22/14	2
Methylene Chloride	75-09-2	84.9		1.40	0.48	1.7	TO-15	09/22/14	2
Methyl Butyl Ketone	591-78-6	100	2.50	10.0	< 2.5	< 10.	TO-15	09/22/14	2

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-02

Project # : 20776-003-00

Date Received : September 20, 2014 Description

SLU Marriott AC

Site ID : Sample ID SV-2

Collected By

09/19/14 00:00 Collection Date:

Parameter	Cas# Mol Wgl	ht RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
2-Butanone (MEK) 78-	93-3 72.1	2.50	7.40	5.0	15.	TO-15	09/22/14	2
	3-10-1 100.1	2.50	10.0	5.5	23.	TO-15	09/22/14	2
Methyl methacrylate 80-	62-6 100.12	2 0.400	1.60	0.50	2.0	TO-15	09/22/14	2
MTBE 1634	1-04-4 88.1	0.400	1.40	< 0.40	< 1.4	TO-15	09/22/14	2
Naphthalene 91-	-20-3 128	1.26	6.60	< 1.3	< 6.6	TO-15	09/22/14	2
2-Propanol 67-	63-0 60.1	2.50	6.10	18.	44.	TO-15	09/22/14	2
Propene 115	5-07-1 42.1	0.800	1.40	0.85	1.5	TO-15	09/22/14	2
Styrene 100	104	0.400	1.70	0.51	2.2	TO-15	09/22/14	2
1,1,2,2-Tetrachloroethane 79-	34-5 168	0.400	2.70	< 0.40	< 2.7	TO-15	09/22/14	2
Tetrachloroethylene 127	7-18-4 166	0.400	2.70	1.9	13.	TO-15	09/22/14	2
Tetrahydrofuran 109	9-99-9 72.1	0.400	1.20	< 0.40	< 1.2	TO-15	09/22/14	2
Toluene 108	3-88-3 92.1	0.400	1.50	5.9	22.	TO-15	09/22/14	2
1,2,4-Trichlorobenzene 120)-82-1 181	1.26	9.30	< 1.3	< 9.3	TO-15	09/22/14	2
1,1,1-Trichloroethane 71-	-55-6 133	0.400	2.20	0.66	3.6	TO-15	09/22/14	2
1,1,2-Trichloroethane 79-	-00-5 133	0.400	2.20	< 0.40	< 2.2	TO-15	09/22/14	2
Trichloroethylene 79-	-01-6 131	0.400	2.10	< 0.40	< 2.1	TO-15	09/22/14	2
1,2,4-Trimethylbenzene 95-	-63-6 120	0.400	2.00	0.45	2.2	TO-15	09/22/14	2
1,3,5-Trimethylbenzene 108	3-67-8 120	0.400	2.00	< 0.40	< 2.0	TO-15	09/22/14	2
2,2,4-Trimethylpentane 540	0-84-1 114.22	2 0.400	1.90	< 0.40	< 1.9	TO-15	09/22/14	2
Vinyl chloride 75-	01-4 62.5	0.400	1.00	< 0.40	< 1.0	TO-15	09/22/14	2
Vinyl Bromide 593	3-60-2 106.95	5 0.400	1.70	< 0.40	< 1.7	TO-15	09/22/14	2
	3-05-4 86.1	0.400	1.40	< 0.40	< 1.4	TO-15	09/22/14	2
	106	0.800	3.50	2.0	8.7	TO-15	09/22/14	2
o-Xylene 95-	47-6 106	0.400	1.70	0.87	3.8	TO-15	09/22/14	2
1,4-Bromofluorobenzene 460	0-00-4			98.9	% Rec.	TO-15	09/22/14	2

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-03

Date Received : September 20, 2014

SLU Marriott AC Description

Site ID :

Sample ID SV-3

Project # : 20776-003-00

Collected By :

09/19/14 00:00 Collection Date:

Parameter	Cas#	Mol Wght	RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
Volatile Organics									
Acetone	67-64-1	58.1	31.2	74.0	510	1200	TO-15	09/24/14	25
Allyl chloride	107-05-1	76.53	2.00	6.30	< 2.0	< 6.3	TO-15	09/22/14	10
Benzene	71-43-2	78.1	2.00	6.40	7.7	25.	TO-15	09/22/14	10
Benzyl Chloride	100-44-7	127	2.00	10.0	< 2.0	< 10.	TO-15	09/22/14	10
Bromodichloromethane	75-27-4	164	2.00	13.0	< 2.0	< 13.	TO-15	09/22/14	10
Bromoform	75-25-2	253	6.00	62.0	< 6.0	< 62.	TO-15	09/22/14	10
Bromomethane	74-83-9	94.9	2.00	7.80	< 2.0	< 7.8	TO-15	09/22/14	10
1,3-Butadiene	106-99-0	54.1	20.0	44.0	< 20.	< 44.	TO-15	09/22/14	10
Carbon disulfide	75-15-0	76.1	2.00	6.20	< 2.0	< 6.2	TO-15	09/22/14	10
Carbon tetrachloride	56-23-5	154	2.00	13.0	< 2.0	< 13.	TO-15	09/22/14	10
Chlorobenzene	108-90-7	113	2.00	9.20	2.4	11.	TO-15	09/22/14	10
Chloroethane	75-00-3	64.5	2.00	5.30	< 2.0	< 5.3	TO-15	09/22/14	10
Chloroform	67-66-3	119	2.00	9.70	< 2.0	< 9.7	TO-15	09/22/14	10
Chloromethane	74-87-3	50.5	2.00	4.10	< 2.0	< 4.1	TO-15	09/22/11	10
2-Chlorotoluene	95-49-8	126	2.00	10.0	< 2.0	< 10.	TO-15	09/22/11	10
Cyclohexane	110-82-7	84.2	2.00	6.90	7.1	24.	TO-15	09/22/14	10
Dibromochloromethane	124-48-1	208	2.00	17.0	< 2.0	< 17.	TO-15	09/22/14	10
1,2-Dibromoethane	106-93-4	188	2.00	15.0	< 2.0	< 15.	TO-15	09/22/14	10
1,2-Dichlorobenzene	95-50-1	147	2.00	12.0	< 2.0	< 12.	TO-15	09/22/14	10
1,3-Dichlorobenzene	541-73-1	147	2.00	12.0	< 2.0	< 12.	TO-15	09/22/14	10
1,4-Dichlorobenzene	106-46-7		2.00	12.0	< 2.0	< 12.		09/22/14	10
		147 99	2.00		< 2.0	< 12. < 8.1	TO-15		10
1,2-Dichloroethane	107-06-2			8.10			TO-15	09/22/14	
1,1-Dichloroethane	75-34-3	98	2.00	8.00	< 2.0	< 8.0	TO-15	09/22/14	10
1,1-Dichloroethene	75-35-4	96.9	2.00	7.90	< 2.0	< 7.9	TO-15	09/22/14	10
cis-1,2-Dichloroethene	156-59-2	96.9	2.00	7.90	< 2.0	< 7.9	TO-15	09/22/14	10
trans-1,2-Dichloroethene	156-60-5	96.9	2.00	7.90	< 2.0	< 7.9	TO-15	09/22/14	10
1,2-Dichloropropane	78-87-5	113	2.00	9.20	< 2.0	< 9.2	TO-15	09/22/14	10
cis-1,3-Dichloropropene	10061-01-5		2.00	9.10	< 2.0	< 9.1	TO-15	09/22/14	10
trans-1,3-Dichloropropene	10061-02-6		2.00	9.10	< 2.0	< 9.1	TO-15	09/22/14	10
1,4-Dioxane	123-91-1	88.1	2.00	7.20	< 2.0	< 7.2	TO-15	09/22/14	10
Ethanol	64-17-5	46.1	6.30	12.0	410	770	TO-15	09/22/14	10
Ethylbenzene	100-41-4	106	2.00	8.70	85.	370	TO-15	09/22/14	10
4-Ethyltoluene	622-96-8	120	2.00	9.80	4.6	23.	TO-15	09/22/14	10
Trichlorofluoromethane	75-69-4	137.4	2.00	11.0	< 2.0	< 11.	TO-15	09/22/14	10
Dichlorodifluoromethane	75-71-8	120.92	2.00	9.90	< 2.0	< 9.9	TO-15	09/22/14	10
1,1,2-Trichlorotrifluoroethane	76-13-1	187.4	2.00	15.0	< 2.0	< 15.	TO-15	09/22/14	10
1,2-Dichlorotetrafluoroethane	76-14-2	171	2.00	14.0	< 2.0	< 14.	TO-15	09/22/14	10
Heptane	142-82-5	100	2.00	8.20	130	530	TO-15	09/22/14	10
Hexachloro-1,3-butadiene	87-68-3	261	6.30	67.0	< 6.3	< 67.	TO-15	09/22/14	10
n-Hexane	110-54-3	86.2	2.00	7.10	7.3	26.	TO-15	09/22/14	10
Isopropylbenzene	98-82-8	120.2	2.00	9.80	< 2.0	< 9.8	TO-15	09/22/14	10
Methylene Chloride	75-09-2	84.9	2.00	6.90	13.	45.	TO-15	09/22/14	10
Methyl Butyl Ketone	591-78-6	100	12.5	51.0	< 13.	< 51.	TO-15	09/22/14	10

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-03

Date Received : September 20, 2014

Site ID :

SLU Marriott AC Description

Project # : 20776-003-00

Sample ID SV-3

Collected By 09/19/14 00:00 Collection Date :

Parameter	Cas#	Mol Wght	RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
2-Butanone (MEK)	78-93-3	72.1	12.5	37.0	100	290	TO-15	09/22/14	10
4-Methyl-2-pentanone (MIBK)	108-10-1	100.1	12.5	51.0	26.	110	TO-15	09/22/14	10
Methyl methacrylate	80-62-6	100.12	2.00	8.20	< 2.0	< 8.2	TO-15	09/22/14	10
MTBE	1634-04-4	88.1	2.00	7.20	< 2.0	< 7.2	TO-15	09/22/14	10
Naphthalene	91-20-3	128	6.30	33.0	100	520	TO-15	09/22/14	10
2-Propanol	67-63-0	60.1	12.5	31.0	36.	88.	TO-15	09/22/14	10
Propene	115-07-1	42.1	4.00	6.90	31.	53.	TO-15	09/22/14	10
Styrene	100-42-5	104	2.00	8.50	28.	120	TO-15	09/22/14	10
1,1,2,2-Tetrachloroethane	79-34-5	168	2.00	14.0	< 2.0	< 14.	TO-15	09/22/14	10
Tetrachloroethylene	127-18-4	166	2.00	14.0	< 2.0	< 14.	TO-15	09/22/14	10
Tetrahydrofuran	109-99-9	72.1	2.00	5.90	< 2.0	< 5.9	TO-15	09/22/14	10
Toluene	108-88-3	92.1	2.00	7.50	480	1800	TO-15	09/22/14	10
1,2,4-Trichlorobenzene	120-82-1	181	6.30	47.0	< 6.3	< 47.	TO-15	09/22/14	10
1,1,1-Trichloroethane	71-55-6	133	2.00	11.0	< 2.0	< 11.	TO-15	09/22/14	10
1,1,2-Trichloroethane	79-00-5	133	2.00	11.0	< 2.0	< 11.	TO-15	09/22/14	10
Trichloroethylene	79-01-6	131	2.00	11.0	< 2.0	< 11.	TO-15	09/22/14	10
1,2,4-Trimethylbenzene	95-63-6	120	2.00	9.80	26.	130	TO-15	09/22/14	10
1,3,5-Trimethylbenzene	108-67-8	120	2.00	9.80	10.	49.	TO-15	09/22/14	10
2,2,4-Trimethylpentane	540-84-1	114.22	2.00	9.30	< 2.0	< 9.3	TO-15	09/22/14	10
Vinyl chloride	75-01-4	62.5	2.00	5.10	< 2.0	< 5.1	TO-15	09/22/14	10
Vinyl Bromide	593-60-2	106.95	2.00	8.70	< 2.0	< 8.7	TO-15	09/22/14	10
Vinyl acetate	108-05-4	86.1	2.00	7.00	< 2.0	< 7.0	TO-15	09/22/14	10
m&p-Xylene	1330-20-7	106	4.00	17.0	420	1800	TO-15	09/22/14	10
o-Xylene	95-47-6	106	2.00	8.70	180	780	TO-15	09/22/14	10
1,4-Bromofluorobenzene	460-00-4				93.9	% Rec.	TO-15	09/22/14	10

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-04

Project #: 20776-003-00

Date Received : September 20, 2014

Description SLU Marriott AC

Site ID : Sample ID SV-4

Collected By

Jessica Smith

Collection Date : 09/19/14 00:00

Parameter	Cas#	Mol Wght	RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
Volatile Organics									
Acetone	67-64-1	58.1	31.2	74.0	290	690	TO-15	09/24/14	25
Allyl chloride	107-05-1	76.53	1.00	3.10	< 1.0	< 3.1	TO-15	09/22/14	5
Benzene	71-43-2	78.1	1.00	3.20	17.	54.	TO-15	09/22/14	5
Benzyl Chloride	100-44-7	127	1.00	5.20	< 1.0	< 5.2	TO-15	09/22/14	5
Bromodichloromethane	75-27-4	164	1.00	6.70	< 1.0	< 6.7	TO-15	09/22/14	5
Bromoform	75-25-2	253	3.00	31.0	< 3.0	< 31.	TO-15	09/22/14	5
Bromomethane	74-83-9	94.9	1.00	3.90	< 1.0	< 3.9	TO-15	09/22/14	5
1,3-Butadiene	106-99-0	54.1	10.0	22.0	< 10.	< 22.	TO-15	09/22/11	5
Carbon disulfide	75-15-0	76.1	1.00	3.10	3.2	10.	TO-15	09/22/14	5
Carbon tetrachloride	56-23-5	154	1.00	6.30	< 1.0	< 6.3	TO-15	09/22/14	5
Chlorobenzene	108-90-7	113	1.00	4.60	< 1.0	< 4.6	TO-15	09/22/11	5
Chloroethane	75-00-3	64.5	1.00	2.60	< 1.0	< 2.6	TO-15	09/22/14	5
Chloroform	67-66-3	119	1.00	4.90	< 1.0	< 4.9	TO-15	09/22/11	5
Chloromethane	74-87-3	50.5	1.00	2.10	< 1.0	< 2.1	TO-15	09/22/14	5
2-Chlorotoluene	95-49-8	126	1.00	5.20	< 1.0	< 5.2	TO-15	09/22/14	5
Cyclohexane	110-82-7	84.2	1.00	3.40	15.	52.	TO-15	09/22/14	5
Dibromochloromethane	124-48-1	208	1.00	8.50	< 1.0	< 8.5	TO-15	09/22/14	5
1,2-Dibromoethane	106-93-4	188	1.00	7.70	< 1.0	< 7.7	TO-15	09/22/14	5
1,2-Diblomoethane 1,2-Dichlorobenzene	95-50-1	147	1.00	6.00	2.5	15.	TO-15	09/22/14	5
1,3-Dichlorobenzene	541-73-1	147	1.00	6.00	< 1.0	< 6.0	TO-15	09/22/14	5
1,4-Dichlorobenzene	106-46-7	147	1.00	6.00	< 1.0	< 6.0	TO-15	09/22/14	5
1,2-Dichloroethane	107-06-2	99	1.00	4.00	< 1.0	< 4.0	TO-15	09/22/14	5
1,1-Dichloroethane	75-34-3	98	1.00	4.00	< 1.0	< 4.0	TO-15	09/22/14	5
1,1-Dichloroethene	75-35-4	96.9	1.00	4.00	< 1.0	< 4.0	TO-15	09/22/14	5
cis-1,2-Dichloroethene	156-59-2	96.9	1.00	4.00	< 1.0	< 4.0	TO-15	09/22/14	5
trans-1,2-Dichloroethene	156-60-5	96.9	1.00	4.00	< 1.0	< 4.0	TO-15	09/22/14	5
1,2-Dichloropropane	78-87-5	113	1.00	4.60	< 1.0	< 4.6	TO-15	09/22/14	5
cis-1,3-Dichloropropene	10061-01-5		1.00	4.50	< 1.0	< 4.5	TO-15	09/22/11	5
trans-1,3-Dichloropropene	10061-02-6		1.00	4.50	< 1.0	< 4.5	TO-15	09/22/14	5
1,4-Dioxane	123-91-1	88.1	1.00	3.60	5.0	18.	TO-15	09/22/11	5
Ethanol	64-17-5	46.1	3.15	5.90	110	210	TO-15	09/22/14	5
Ethylbenzene	100-41-4	106	1.00	4.30	14.	61.	TO-15	09/22/14	5
4-Ethyltoluene	622-96-8	120	1.00	4.90	3.0	15.	TO-15	09/22/14	5
Trichlorofluoromethane	75-69-4	137.4	1.00	5.60	< 1.0	< 5.6	TO-15	09/22/14	5
Dichlorodifluoromethane	75-71-8	120.92	1.00	4.90	< 1.0	< 4.9	TO-15	09/22/14	5
1,1,2-Trichlorotrifluoroethane	76-13-1	187.4	1.00	7.70	< 1.0	< 7.7	TO-15	09/22/14	5
1,2-Dichlorotetrafluoroethane	76-14-2	171	1.00	7.00	< 1.0	< 7.7	TO-15	09/22/14	5
•	142-82-5	100	1.00	4.10	9.6	39.	TO-15	09/22/14	5
Heptane Hexachloro-1,3-butadiene	87-68-3	261	3.15	34.0	9.6 < 3.2	< 34.	TO-15	09/22/14	5 5
n-Hexane	110-54-3	86.2	1.00	3.50	20.	71.	TO-15	09/22/14	5
Isopropylbenzene	98-82-8	120.2	1.00	4.90	< 1.0	< 4.9	TO-15	09/22/14	5 5
Methylene Chloride	75-09-2	84.9	1.00	3.50	2.7	9.4	TO-15	09/22/14	5
Methylene Chioride Methyl Butyl Ketone	591-78-6	100	6.25	26.0	< 6.3	< 26.	TO-15	09/22/14	5 5
Mechyl Bucyl Recoile	331-10-0	T 0 0	0.45	∠∪.∪	< U.J	< ZU.	10-13	U D / Z Z / I H	J

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-04

Project # : 20776-003-00

Date Received : September 20, 2014

Description SLU Marriott AC

Site ID : Sample ID SV-4

Collected By

09/19/14 00:00 Collection Date:

Parameter	Cas#	Mol Wght	RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
2-Butanone (MEK)	78-93-3	72.1	6.25	18.0	30.	88.	TO-15	09/22/14	5
	108-10-1	100.1	6.25	26.0	7.6	31.	TO-15	09/22/14	5
	80-62-6	100.12	1.00	4.10	2.5	10.	TO-15	09/22/14	5
MTBE 1	634-04-4	88.1	1.00	3.60	< 1.0	< 3.6	TO-15	09/22/14	5
Naphthalene	91-20-3	128	3.15	16.0	18.	94.	TO-15	09/22/14	5
2-Propanol	67-63-0	60.1	6.25	15.0	39.	96.	TO-15	09/22/14	5
Propene	115-07-1	42.1	2.00	3.40	61.	110	TO-15	09/22/14	5
Styrene	100-42-5	104	1.00	4.30	29.	120	TO-15	09/22/14	5
1,1,2,2-Tetrachloroethane	79-34-5	168	1.00	6.90	< 1.0	< 6.9	TO-15	09/22/14	5
Tetrachloroethylene	127-18-4	166	1.00	6.80	< 1.0	< 6.8	TO-15	09/22/14	5
Tetrahydrofuran	109-99-9	72.1	1.00	2.90	< 1.0	< 2.9	TO-15	09/22/14	5
Toluene	108-88-3	92.1	1.00	3.80	47.	180	TO-15	09/22/14	5
1,2,4-Trichlorobenzene	120-82-1	181	3.15	23.0	< 3.2	< 23.	TO-15	09/22/14	5
	71-55-6	133	1.00	5.40	< 1.0	< 5.4	TO-15	09/22/14	5
1,1,2-Trichloroethane	79-00-5	133	1.00	5.40	< 1.0	< 5.4	TO-15	09/22/14	5
Trichloroethylene	79-01-6	131	1.00	5.40	< 1.0	< 5.4	TO-15	09/22/14	5
1,2,4-Trimethylbenzene	95-63-6	120	1.00	4.90	11.	54.	TO-15	09/22/14	5
1,3,5-Trimethylbenzene	108-67-8	120	1.00	4.90	5.1	25.	TO-15	09/22/14	5
2,2,4-Trimethylpentane	540-84-1	114.22	1.00	4.70	2.0	9.3	TO-15	09/22/14	5
	75-01-4	62.5	1.00	2.60	< 1.0	< 2.6	TO-15	09/22/14	5
Vinyl Bromide	593-60-2	106.95	1.00	4.40	< 1.0	< 4.4	TO-15	09/22/14	5
	108-05-4	86.1	1.00	3.50	< 1.0	< 3.5	TO-15	09/22/14	5
	330-20-7	106	2.00	8.70	59.	260	TO-15	09/22/14	5
	95-47-6	106	1.00	4.30	16.	69.	TO-15	09/22/14	5
1,4-Bromofluorobenzene	460-00-4				98.5	% Rec.	TO-15	09/22/14	5

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

20776-003-00

REPORT OF ANALYSIS

September 25, 2014

Project # :

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-05

Date Received : September 20, 2014
Description : SLU Marriott AC

SLU Marriott AC

Site ID : SV-5

Collected By :

Collection Date : 09/19/14 00:00

Cas# Mol Wght RDL1 RDL2 ppbv ug/m3 Method Date Dil. Parameter Volatile Organics 67-64-1 58.1 125. 300. 1100 2600 TO-15 09/24/14 100 Acetone Allyl chloride 107-05-1 76.53 1.60 5.00 < 1.6 < 5.0 TO-15 09/22/14 8 4.6 09/22/14 71-43-2 78.1 1.60 5.10 15. TO-15 8 Benzene Benzyl Chloride 100-44-7 127 1.60 8.30 < 1.6 < 8.3 TO-15 09/22/14 8 75-27-4 < 1.6 09/22/14 Bromodichloromethane TO-15 164 1.60 11.0 < 11. 8 75-25-2 TO-15 09/22/14 Bromoform 253 4.80 50.0 < 4.8 < 50. 8 74-83-9 94.9 Bromomethane 1.60 6.20 < 1.6 < 6.2 TO-15 09/22/14 8 < 35. 1,3-Butadiene 106-99-0 54.1 16.0 35.0 < 16. TO-15 09/22/14 8 Carbon disulfide 75-15-0 76.1 1.60 5.00 1.7 5.3 TO-15 09/22/14 8 Carbon tetrachloride 56-23-5 154 1.60 10.0 < 1.6 < 10. TO-15 09/22/14 8 7.40 < 7.4 Chlorobenzene 108-90-7 113 1.60 < 1.6 TO-15 09/22/14 8 Chloroethane 75-00-3 64.5 1.60 4.20 < 1.6 < 4.2 TO-15 09/22/14 Chloroform 67-66-3 119 1.60 7.80 < 1.6 < 7.8 TO-15 09/22/14 Chloromethane 74-87-3 50.5 1.60 3.30 < 1.6 < 3.3 TO-15 09/22/14 < 1.6 < 8.2 95-49-8 TO-15 09/22/14 2-Chlorotoluene 126 1.60 8.20 Cyclohexane 110-82-7 84.2 1.60 5.50 5.1 18. TO-15 09/22/14 Dibromochloromethane 124-48-1 208 1.60 14.0 < 1.6 < 14. TO-15 09/22/14 < 1.6 09/22/14 1,2-Dibromoethane 106-93-4 188 1.60 12.0 < 12. TO-15 1,2-Dichlorobenzene 95-50-1 147 1.60 9.60 < 1.6 < 9.6 TO-15 09/22/14 < 9.6 1,3-Dichlorobenzene 541-73-1 147 1.60 9.60 < 1.6 TO-15 09/22/14 1.60 9.60 < 9.6 09/22/14 1.4-Dichlorobenzene 106-46-7 147 < 1.6 TO-15 8 107-06-2 99 1.60 < 1.6 < 6.5 TO-15 09/22/14 1,2-Dichloroethane 6.50 8 1,1-Dichloroethane 75-34-3 75-35-4 98 1.60 6.40 < 1.6 < 6.4 TO-15 09/22/14 8 96.9 < 1.6 < 6.3 TO-15 09/22/14 1,1-Dichloroethene 1.60 8 6.30 cis-1,2-Dichloroethene trans-1,2-Dichloroethene 156-59-2 1.60 09/22/14 96.9 6.30 < 1.6 < 6.3 TO-15 < 1.6 156-60-5 < 6.3 TO-15 09/22/14 8 96.9 1.60 6.30 1,2-Dichloropropane 78-87-5 1.60 < 7.4 09/22/14 113 7.40 < 1.6 TO-15 8 < 7.3 7.30 cis-1,3-Dichloropropene 10061-01-5 111 1.60 < 1.6 TO-15 09/22/14 8 < 7.3 trans-1,3-Dichloropropene 10061-02-6 111 1.60 7.30 < 1.6 TO-15 09/22/14 8 1,4-Dioxane 123-91-1 88.1 1.60 5.80 11. 40. TO-15 09/22/14 8 Ethanol 64-17-5 46.1 5.04 9.50 190 360 TO-15 09/22/14 Ethylbenzene 100-41-4 106 1.60 6.90 4.0 17. TO-15 09/22/14 8 < 7.9 4-Ethyltoluene 622-96-8 120 1.60 7.90 < 1.6 TO-15 09/22/14 Trichlorofluoromethane 75-69-4 137.4 9.00 < 1.6 < 9.0 TO-15 09/22/14 1.60 < 1.6 Dichlorodifluoromethane 75-71-8 120.92 7.90 < 7.9 TO-15 09/22/14 1.60 09/22/14 1,1,2-Trichlorotrifluoroethane 76-13-1 187.4 1.60 12.0 < 1.6 < 12. TO-15 < 1.6 1,2-Dichlorotetrafluoroethane 76-14-2 171 1.60 11.0 < 11. TO-15 09/22/14 Heptane 142-82-5 100 1.60 6.50 2.8 11. TO-15 09/22/14 Hexachloro-1,3-butadiene 87-68-3 261 5.04 54.0 < 5.0 < 54. TO-15 09/22/14 21. 110-54-3 1.60 5.9 TO-15 09/22/14 n-Hexane 86.2 5.60 8 Isopropylbenzene 120.2 7.90 < 7.9 98-82-8 1.60 < 1.6 TO-15 09/22/14 8 Methylene Chloride 1.60 75-09-2 84.9 5.60 < 1.6 < 5.6 TO-15 09/22/14 8 10.0 Methyl Butyl Ketone 591-78-6 100 41.0 < 10. < 41. TO-15 09/22/14 8

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-05

Date Received : September 20, 2014 SLU Marriott AC Description

Site ID :

Sample ID SV-5

Project # : 20776-003-00

Collected By

09/19/14 00:00 Collection Date:

Parameter	Cas#	Mol Wght	RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
2-Butanone (MEK)	78-93-3	72.1	10.0	29.0	36.	110	TO-15	09/22/14	8
4-Methyl-2-pentanone (MIBK)	108-10-1	100.1	10.0	41.0	< 10.	< 41.	TO-15	09/22/14	8
Methyl methacrylate	80-62-6	100.12	1.60	6.60	1.6	6.6	TO-15	09/22/14	8
MTBE	1634-04-4	88.1	1.60	5.80	< 1.6	< 5.8	TO-15	09/22/14	8
Naphthalene	91-20-3	128	5.04	26.0	< 5.0	< 26.	TO-15	09/22/14	8
2-Propanol	67-63-0	60.1	10.0	25.0	41.	100	TO-15	09/22/14	8
Propene	115-07-1	42.1	3.20	5.50	< 3.2	< 5.5	TO-15	09/22/14	8
Styrene	100-42-5	104	1.60	6.80	5.0	21.	TO-15	09/22/14	8
1,1,2,2-Tetrachloroethane	79-34-5	168	1.60	11.0	< 1.6	< 11.	TO-15	09/22/14	8
Tetrachloroethylene	127-18-4	166	1.60	11.0	350	2400	TO-15	09/22/14	8
Tetrahydrofuran	109-99-9	72.1	1.60	4.70	2.7	8.0	TO-15	09/22/14	8
Toluene	108-88-3	92.1	1.60	6.00	33.	120	TO-15	09/22/14	8
1,2,4-Trichlorobenzene	120-82-1	181	5.04	37.0	< 5.0	< 37.	TO-15	09/22/14	8
1,1,1-Trichloroethane	71-55-6	133	1.60	8.70	< 1.6	< 8.7	TO-15	09/22/14	8
1,1,2-Trichloroethane	79-00-5	133	1.60	8.70	< 1.6	< 8.7	TO-15	09/22/14	8
Trichloroethylene	79-01-6	131	1.60	8.60	< 1.6	< 8.6	TO-15	09/22/14	8
1,2,4-Trimethylbenzene	95-63-6	120	1.60	7.90	3.0	15.	TO-15	09/22/14	8
1,3,5-Trimethylbenzene	108-67-8	120	1.60	7.90	< 1.6	< 7.9	TO-15	09/22/14	8
2,2,4-Trimethylpentane	540-84-1	114.22	1.60	7.50	< 1.6	< 7.5	TO-15	09/22/14	8
Vinyl chloride	75-01-4	62.5	1.60	4.10	< 1.6	< 4.1	TO-15	09/22/14	8
Vinyl Bromide	593-60-2	106.95	1.60	7.00	< 1.6	< 7.0	TO-15	09/22/14	8
Vinyl acetate	108-05-4	86.1	1.60	5.60	< 1.6	< 5.6	TO-15	09/22/14	8
m&p-Xylene	1330-20-7	106	3.20	14.0	18.	78.	TO-15	09/22/14	8
o-Xylene	95-47-6	106	1.60	6.90	5.3	23.	TO-15	09/22/14	8
1,4-Bromofluorobenzene	460-00-4				98.8	% Rec.	TO-15	09/22/14	8

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-06

Project # : 20776-003-00

Date Received : September 20, 2014

SLU Marriott AC Description

Site ID :

Sample ID SV-6

Collected By :

09/19/14 00:00 Collection Date:

Parameter	Cas#	Mol Wgh	t RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
Volatile Organics									
Acetone	67-64-1	58.1	2.50	5.90	22.	52.	TO-15	09/23/14	2
Allyl chloride	107-05-1	76.53	0.400	1.30	< 0.40	< 1.3	TO-15	09/23/14	2
Benzene	71-43-2	78.1	0.400	1.30	1.3	4.2	TO-15	09/23/14	2
Benzyl Chloride	100-44-7	127	0.400	2.10	< 0.40	< 2.1	TO-15	09/23/14	2
Bromodichloromethane	75-27-4	164	0.400	2.70	< 0.40	< 2.7	TO-15	09/23/14	2
Bromoform	75-25-2	253	1.20	12.0	< 1.2	< 12.	TO-15	09/23/14	2
Bromomethane	74-83-9	94.9	0.400	1.60	< 0.40	< 1.6	TO-15	09/23/14	2
1,3-Butadiene	106-99-0	54.1	4.00	8.90	< 4.0	< 8.9	TO-15	09/23/14	2
Carbon disulfide	75-15-0	76.1	0.400	1.20	< 0.40	< 1.2	TO-15	09/23/14	2
Carbon tetrachloride	56-23-5	154	0.400	2.50	< 0.40	< 2.5	TO-15	09/23/14	2
Chlorobenzene	108-90-7	113	0.400	1.80	< 0.40	< 1.8	TO-15	09/23/14	2
Chloroethane	75-00-3	64.5	0.400	1.10	< 0.40	< 1.1	TO-15	09/23/14	2
Chloroform	67-66-3	119	0.400	1.90	< 0.40	< 1.9	TO-15	09/23/14	2
Chloromethane	74-87-3	50.5	0.400		< 0.40	< 0.83	TO-15	09/23/14	2
2-Chlorotoluene	95-49-8	126	0.400	2.10	< 0.40	< 2.1	TO-15	09/23/14	2
Cyclohexane	110-82-7	84.2	0.400	1.40	< 0.40	< 1.4	TO-15	09/23/14	2
Dibromochloromethane	124-48-1	208	0.400	3.40	< 0.40	< 3.4	TO-15	09/23/14	2
1,2-Dibromoethane	106-93-4	208 188	0.400	3.40	< 0.40	< 3.4	TO-15	09/23/14	2
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	< 0.40	< 2.4	TO-15	09/23/14	2
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	0.40	2.4	TO-15	09/23/14	2
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	< 0.40	< 2.4	TO-15	09/23/14	2
1,2-Dichloroethane	107-06-2	99	0.400	1.60	< 0.40	< 1.6	TO-15	09/23/14	2
1,1-Dichloroethane	75-34-3	98	0.400	1.60	< 0.40	< 1.6	TO-15	09/23/14	2
1,1-Dichloroethene	75-35-4	96.9	0.400	1.60	< 0.40	< 1.6	TO-15	09/23/14	2
cis-1,2-Dichloroethene	156-59-2	96.9	0.400	1.60	< 0.40	< 1.6	TO-15	09/23/14	2
trans-1,2-Dichloroethene	156-60-5	96.9	0.400	1.60	< 0.40	< 1.6	TO-15	09/23/14	2
1,2-Dichloropropane	78-87-5	113	0.400	1.80	< 0.40	< 1.8	TO-15	09/23/14	2
cis-1,3-Dichloropropene	10061-01-5		0.400	1.80	< 0.40	< 1.8	TO-15	09/23/14	2
trans-1,3-Dichloropropene	10061-02-6		0.400	1.80	< 0.40	< 1.8	TO-15	09/23/14	2
1,4-Dioxane	123-91-1	88.1	0.400	1.40	< 0.40	< 1.4	TO-15	09/23/14	2
Ethanol	64-17-5	46.1	1.26	2.40	18.	34.	TO-15	09/23/14	2
Ethylbenzene	100-41-4	106	0.400	1.70	1.6	6.9	TO-15	09/23/14	2
4-Ethyltoluene	622-96-8	120	0.400	2.00	< 0.40	< 2.0	TO-15	09/23/14	2
Trichlorofluoromethane	75-69-4	137.4	0.400	2.20	0.42	2.4	TO-15	09/23/14	2
Dichlorodifluoromethane	75-71-8	120.92	0.400	2.00	0.59	2.9	TO-15	09/23/14	2
1,1,2-Trichlorotrifluoroethane	76-13-1	187.4	0.400	3.10	< 0.40	< 3.1	TO-15	09/23/14	2
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	< 0.40	< 2.8	TO-15	09/23/14	2
Heptane	142-82-5	100	0.400	1.60	0.63	2.6	TO-15	09/23/14	2
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.0	< 1.3	< 13.	TO-15	09/23/14	2
n-Hexane	110-54-3	86.2	0.400	1.40	0.63	2.2	TO-15	09/23/14	2
Isopropylbenzene	98-82-8	120.2	0.400	2.00	< 0.40	< 2.0	TO-15	09/23/14	2
Methylene Chloride	75-09-2	84.9	0.400	1.40	< 0.40	< 1.4	TO-15	09/23/14	2
Methyl Butyl Ketone	591-78-6	100	2.50	10.0	< 2.5	< 10.	TO-15	09/23/14	2
					=.5	= 0 .	-3 -3	,,	_

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-06

Date Received : September 20, 2014

SLU Marriott AC Description

Site ID :

Sample ID SV-6

Project # : 20776-003-00

Collected By

09/19/14 00:00 Collection Date :

Parameter	Cas#	Mol Wght	RDL1	RDL2	ppbv	ug/m3	Method	Date	Dil.
2-Butanone (MEK)	78-93-3	72.1	2.50	7.40	2.6	7.7	TO-15	09/23/14	2
4-Methyl-2-pentanone (MIBK)	108-10-1	100.1	2.50	10.0	< 2.5	< 10.	TO-15	09/23/14	2
Methyl methacrylate	80-62-6	100.12	0.400	1.60	0.52	2.1	TO-15	09/23/14	2
MTBE	1634-04-4	88.1	0.400	1.40	< 0.40	< 1.4	TO-15	09/23/14	2
Naphthalene	91-20-3	128	1.26	6.60	< 1.3	< 6.6	TO-15	09/23/14	2
2-Propanol	67-63-0	60.1	2.50	6.10	< 2.5	< 6.1	TO-15	09/23/14	2
Propene	115-07-1	42.1	0.800	1.40	< 0.80	< 1.4	TO-15	09/23/14	2
Styrene	100-42-5	104	0.400	1.70	2.2	9.4	TO-15	09/23/14	2
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.70	< 0.40	< 2.7	TO-15	09/23/14	2
Tetrachloroethylene	127-18-4	166	0.400	2.70	18.	120	TO-15	09/23/14	2
Tetrahydrofuran	109-99-9	72.1	0.400	1.20	< 0.40	< 1.2	TO-15	09/23/14	2
Toluene	108-88-3	92.1	0.400	1.50	12.	45.	TO-15	09/23/14	2
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.30	< 1.3	< 9.3	TO-15	09/23/14	2
1,1,1-Trichloroethane	71-55-6	133	0.400	2.20	< 0.40	< 2.2	TO-15	09/23/14	2
1,1,2-Trichloroethane	79-00-5	133	0.400	2.20	< 0.40	< 2.2	TO-15	09/23/14	2
Trichloroethylene	79-01-6	131	0.400	2.10	< 0.40	< 2.1	TO-15	09/23/14	2
1,2,4-Trimethylbenzene	95-63-6	120	0.400	2.00	0.74	3.6	TO-15	09/23/14	2
1,3,5-Trimethylbenzene	108-67-8	120	0.400	2.00	< 0.40	< 2.0	TO-15	09/23/14	2
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.90	< 0.40	< 1.9	TO-15	09/23/14	2
Vinyl chloride	75-01-4	62.5	0.400	1.00	< 0.40	< 1.0	TO-15	09/23/14	2
Vinyl Bromide	593-60-2	106.95	0.400	1.70	< 0.40	< 1.7	TO-15	09/23/14	2
Vinyl acetate	108-05-4	86.1	0.400	1.40	< 0.40	< 1.4	TO-15	09/23/14	2
m&p-Xylene	1330-20-7	106	0.800	3.50	6.8	29.	TO-15	09/23/14	2
o-Xylene	95-47-6	106	0.400	1.70	2.1	9.1	TO-15	09/23/14	2
1,4-Bromofluorobenzene	460-00-4				96.3	% Rec.	TO-15	09/23/14	2

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Site ID :

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

Date Received : September 20, 2014

Description : SLU Marriott AC

Sample ID : SV-1

Collected By

Collection Date : 09/19/14 00:00

Project #: 20776-003-00

ESC Sample # : L723055-07

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Helium	3000	250	ppm	ASTM 1946	09/23/14	10

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Site ID :

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

Date Received September 20, 2014

Description SLU Marriott AC

Sample ID SV-2

Collected By

Collection Date : 09/19/14 00:00 ESC Sample # : L723055-08

Project # : 20776-003-00

Result Det. Limit Units Method Dil. Parameter Date Helium 3400 250 ASTM 1946 09/23/14 10 mqq

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

Date Received September 20, 2014

Description SLU Marriott AC

Sample ID SV-3

Collected By

Collection Date : 09/19/14 00:00 ESC Sample # : L723055-09

Site ID :

Project # : 20776-003-00

Result Det. Limit Units Method Dil. Parameter Date Helium 5900 250 ASTM 1946 09/24/14 10 mqq

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 09/25/14 13:54 Printed: 09/25/14 13:55

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Site ID :

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

Date Received : September 20, 2014

Description : SLU Marriott AC

Sample ID : SV-4

Collected By

Collection Date : 09/19/14 00:00

Project #: 20776-003-00

ESC Sample # : L723055-10

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Helium	12000	250	ppm	ASTM 1946	09/24/14	10

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 09/25/14 13:54 Printed: 09/25/14 13:55

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

20776-003-00

Est. 1970

REPORT OF ANALYSIS

September 25, 2014

Project # :

Jessica Smith GeoEngineers - Everett, WA 8410 154th Avenue NE Redmond, WA 98052

ESC Sample # : L723055-11

Date Received : September 20, 2014
Description : SLU Marriott AC

Site ID : Sample ID : SV-5

Collected By :

Collection Date : 09/19/14 00:00

 Parameter
 Result
 Det. Limit
 Units
 Method
 Date
 Dil.

 Helium
 2600
 250
 ppm
 ASTM 1946
 09/24/14
 10

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 09/25/14 13:54 Printed: 09/25/14 13:55

Summary of Remarks For Samples Printed 09/25/14 at 13:55:26

TSR Signing Reports: 358

1L summa & sampling manifold

Sample: L723055-01 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 SHIPPINGPR= \$102.13 + \$97.88 (\$200.01) for outbound 2nd Day Delivery. 1L summa & sampling manifold Sample: L723055-02 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-03 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-04 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-05 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-06 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-07 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-08 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-09 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-10 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54 1L summa & sampling manifold Sample: L723055-11 Account: GEOENGEWA Received: 09/20/14 09:00 Due Date: 09/26/14 00:00 RPT Date: 09/25/14 13:54

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

		Laboratory 1	Blank			
Analyte	Result	Units	% Rec	Limit	Batch Date Analyzed	f
1,1,1-Trichloroethane	< .2	ppb			WG744240 09/21/14 10:4	
1,1,2,2-Tetrachloroethane	< .2	ppb			WG744240 09/21/14 10:4	
1,1,2-Trichloroethane	< .2	ppb			WG744240 09/21/14 10:4	
1,1,2-Trichlorotrifluoroethane	< .2	ppb			WG744240 09/21/14 10:4	
1,1-Dichloroethane	< .2	ppb			WG744240 09/21/14 10:4	
1,1-Dichloroethene	< .2	ppb			WG744240 09/21/14 10:4	
1,2,4-Trichlorobenzene	< .63	ppb			WG744240 09/21/14 10:4	
1,2,4-Trimethylbenzene	< .2	ppb			WG744240 09/21/14 10:4	
1,2-Dibromoethane	< .2	ppb			WG744240 09/21/14 10:4	
1,2-Dichlorobenzene	< .2	ppb			WG744240 09/21/14 10:4	
1,2-Dichloroethane	< .2	ppb			WG744240 09/21/14 10:4	
1,2-Dichloropropane	< .2	ppb			WG744240 09/21/14 10:4	
1,2-Dichlorotetrafluoroethane	< .2	ppb			WG744240 09/21/14 10:4	
1,3,5-Trimethylbenzene	< .2	ppb			WG744240 09/21/14 10:4	
1,3-Butadiene	< 2	ppb			WG744240 09/21/14 10:4	13
1,3-Dichlorobenzene	< .2	ppb			WG744240 09/21/14 10:4	13
1,4-Dichlorobenzene	< .2	ppb			WG744240 09/21/14 10:4	13
1,4-Dioxane	< .2	ppb			WG744240 09/21/14 10:4	13
2,2,4-Trimethylpentane	< .2	ppb			WG744240 09/21/14 10:4	13
2-Butanone (MEK)	< 1.25	ppb			WG744240 09/21/14 10:4	13
2-Chlorotoluene	< .2	ppb			WG744240 09/21/14 10:4	13
2-Propanol	< 1.25	ppb			WG744240 09/21/14 10:4	13
4-Ethyltoluene	< .2	ppb			WG744240 09/21/14 10:4	13
4-Methyl-2-pentanone (MIBK)	< 1.25	ppb			WG744240 09/21/14 10:4	13
Acetone	< 1.25	ppb			WG744240 09/21/14 10:4	13
Allyl chloride	< .2	ppb			WG744240 09/21/14 10:4	13
Benzene	< .2	ppb			WG744240 09/21/14 10:4	13
Benzyl Chloride	< .2	ppb			WG744240 09/21/14 10:4	13
Bromodichloromethane	< .2	ppb			WG744240 09/21/14 10:4	13
Bromoform	< .6	ppb			WG744240 09/21/14 10:4	13
Bromomethane	< .2	ppb			WG744240 09/21/14 10:4	13
Carbon disulfide	< .2	ppb			WG744240 09/21/14 10:4	13
Carbon tetrachloride	< .2	ppb			WG744240 09/21/14 10:4	13
Chlorobenzene	< .2	ppb			WG744240 09/21/14 10:4	13
Dibromochloromethane	< .2	ppb			WG744240 09/21/14 10:4	13
Chloroethane	< .2	ppb			WG744240 09/21/14 10:4	13
Chloroform	< .2	ppb			WG744240 09/21/14 10:4	13
Chloromethane	< .2	ppb			WG744240 09/21/14 10:4	13
cis-1,2-Dichloroethene	< .2	ppb			WG744240 09/21/14 10:4	13
cis-1,3-Dichloropropene	< .2	ppb			WG744240 09/21/14 10:4	13
Cyclohexane	< .2	ppb			WG744240 09/21/14 10:4	13
Dichlorodifluoromethane	< .2	ppb			WG744240 09/21/14 10:4	13
Ethanol	< .63	ppb			WG744240 09/21/14 10:4	13
Ethylbenzene	< .2	ppb			WG744240 09/21/14 10:4	13
Heptane	< .2	ppb			WG744240 09/21/14 10:4	13
Hexachloro-1,3-butadiene	< .63	ppb			WG744240 09/21/14 10:4	
Isopropylbenzene	< .2	ppb			WG744240 09/21/14 10:4	13
m&p-Xylene	< .4	ppb			WG744240 09/21/14 10:4	
Methyl Butyl Ketone	< 1.25	ppb			WG744240 09/21/14 10:4	13
Methyl methacrylate	< .2	ppb			WG744240 09/21/14 10:4	
MTBE	< .2	ppb			WG744240 09/21/14 10:4	
Methylene Chloride	< .2	ppb			WG744240 09/21/14 10:4	13
n-Hexane	< .2	ppb			WG744240 09/21/14 10:4	
Naphthalene	< .63	ppb			WG744240 09/21/14 10:4	
o-Xylene	< .2	dqq			WG744240 09/21/14 10:4	
Propene	< .4	ppb			WG744240 09/21/14 10:4	
Styrene	< .2	ppb			WG744240 09/21/14 10:4	
Tetrachloroethylene	< .2	ppb			WG744240 09/21/14 10:4	
Tetrahydrofuran	< .2	ppb			WG744240 09/21/14 10:4	
# Destaurant		-1-14-1				

* Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

		Laboratory	Rlank		
Analyte	Result	Units	% Rec	Limit	Batch Date Analyzed
Toluene	< .2	ppb			WG744240 09/21/14 10:43
trans-1,2-Dichloroethene	< .2	ppb			WG744240 09/21/14 10:43
trans-1,3-Dichloropropene	< .2	dqq			WG744240 09/21/14 10:43
Trichloroethylene	< .2	dqq			WG744240 09/21/14 10:43
Trichlorofluoromethane	< .2	ppb			WG744240 09/21/14 10:43
Vinyl acetate	< .2	ppb			WG744240 09/21/14 10:43
Vinyl Bromide	< .2	ppb			WG744240 09/21/14 10:43
Vinyl chloride	< .2	ddd			WG744240 09/21/14 10:43
1,4-Bromofluorobenzene	·	% Rec.	98.70	60-140	WG744240 09/21/14 10:43
1,1,1-Trichloroethane	< .2	ppb			WG744351 09/22/14 10:39
1,1,2,2-Tetrachloroethane	< .2	ppb			WG744351 09/22/14 10:39
1,1,2-Trichloroethane	< .2	ppb			WG744351 09/22/14 10:39
1,1,2-Trichlorotrifluoroethane	< .2	dqq			WG744351 09/22/14 10:39
1,1-Dichloroethane	< .2	ppb			WG744351 09/22/14 10:39
1,1-Dichloroethene	< .2	ppb			WG744351 09/22/14 10:39
1,2,4-Trichlorobenzene	< .63	ppb			WG744351 09/22/14 10:39
1,2,4-Trimethylbenzene	< .2	dqq			WG744351 09/22/14 10:39
1,2-Dibromoethane	< .2	ppb			WG744351 09/22/14 10:39
1,2-Dichlorobenzene	< .2	ppb			WG744351 09/22/14 10:39
1,2-Dichloroethane	< .2				WG744351 09/22/14 10:39
	< .2	ppb			WG744351 09/22/14 10:39 WG744351 09/22/14 10:39
1,2-Dichloropropane	< .2	ppb			
1,2-Dichlorotetrafluoroethane	< .2	ppb			WG744351 09/22/14 10:39
1,3,5-Trimethylbenzene		ppb			WG744351 09/22/14 10:39
1,3-Butadiene	< 2	ppb			WG744351 09/22/14 10:39
1,3-Dichlorobenzene	< .2	ppb			WG744351 09/22/14 10:39
1,4-Dichlorobenzene	< .2	ppb			WG744351 09/22/14 10:39
1,4-Dioxane	< .2	ppb			WG744351 09/22/14 10:39
2,2,4-Trimethylpentane	< .2	ppb			WG744351 09/22/14 10:39
2-Butanone (MEK)	< 1.25	ppb			WG744351 09/22/14 10:39
2-Chlorotoluene	< .2	ppb			WG744351 09/22/14 10:39
2-Propanol	< 1.25	ppb			WG744351 09/22/14 10:39
4-Ethyltoluene	< .2	ppb			WG744351 09/22/14 10:39
4-Methyl-2-pentanone (MIBK)	< 1.25	ppb			WG744351 09/22/14 10:39
Acetone	< 1.25	ppb			WG744351 09/22/14 10:39
Allyl chloride	< .2	ppb			WG744351 09/22/14 10:39
Benzene	< .2	ppb			WG744351 09/22/14 10:39
Benzyl Chloride	< .2	ppb			WG744351 09/22/14 10:39
Bromodichloromethane	< .2	ppb			WG744351 09/22/14 10:39
Bromoform	< .6	ppb			WG744351 09/22/14 10:39
Bromomethane	< .2	ppb			WG744351 09/22/14 10:39
Carbon disulfide	< .2	ppb			WG744351 09/22/14 10:39
Carbon tetrachloride	< .2	ppb			WG744351 09/22/14 10:39
Chlorobenzene	< .2	ppb			WG744351 09/22/14 10:39
Dibromochloromethane	< .2	ppb			WG744351 09/22/14 10:39
Chloroethane	< .2	ppb			WG744351 09/22/14 10:39
Chloroform	< .2	ppb			WG744351 09/22/14 10:39
Chloromethane	< .2	ppb			WG744351 09/22/14 10:39
cis-1,2-Dichloroethene	< .2	ppb			WG744351 09/22/14 10:39
cis-1,3-Dichloropropene	< .2	ppb			WG744351 09/22/14 10:39
Cyclohexane	< .2	ppb			WG744351 09/22/14 10:39
Dichlorodifluoromethane	< .2	ppb			WG744351 09/22/14 10:39
Ethanol	< .63	ppb			WG744351 09/22/14 10:39
Ethylbenzene	< .2	ppb			WG744351 09/22/14 10:39
Heptane	< .2	ppb			WG744351 09/22/14 10:39
Hexachloro-1,3-butadiene	< .63	ppb			WG744351 09/22/14 10:39
Isopropylbenzene	< .2	ppb			WG744351 09/22/14 10:39
m&p-Xylene	< .4	ppb			WG744351 09/22/14 10:39
* Performance of this Analyte			ria		

^{*} Performance of this Analyte is outside of established criteria.

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

		Laboratory	Blank		
Analyte	Result	Units	% Rec	Limit	Batch Date Analyzed
Methyl Butyl Ketone	< 1.25	ppb			WG744351 09/22/14 10:39
Methyl methacrylate	< .2	ppb			WG744351 09/22/14 10:39
MTBE	< .2	dqq			WG744351 09/22/14 10:39
Methylene Chloride	< .2	dqq			WG744351 09/22/14 10:39
n-Hexane	< .2	ppb			WG744351 09/22/14 10:39
Naphthalene	< .63	ppb			WG744351 09/22/14 10:39
o-Xylene	< .2	ppb			WG744351 09/22/14 10:39
Propene	< .4	ppb			WG744351 09/22/14 10:39
Styrene	< .2	dqq			WG744351 09/22/14 10:39
-	< .2				WG744351 09/22/14 10:39
Tetrachloroethylene Tetrahydrofuran	< .2	ppb			WG744351 09/22/14 10:39 WG744351 09/22/14 10:39
	< .2	ppb			WG744351 09/22/14 10:39
Toluene trans-1,2-Dichloroethene	< .2	ppb			WG744351 09/22/14 10:39 WG744351 09/22/14 10:39
		ppb			
trans-1,3-Dichloropropene	< .2	ppb			WG744351 09/22/14 10:39
Trichloroethylene		ppb			WG744351 09/22/14 10:39
Trichlorofluoromethane	< .2	ppb			WG744351 09/22/14 10:39
Vinyl acetate	< .2	ppb			WG744351 09/22/14 10:39
Vinyl Bromide	< .2	ppb			WG744351 09/22/14 10:39
Vinyl chloride	< .2	ppb			WG744351 09/22/14 10:39
1,4-Bromofluorobenzene		% Rec.	95.40	60-140	WG744351 09/22/14 10:39
1,1,1-Trichloroethane	< .2	ppb			WG744556 09/23/14 11:22
1,1,2,2-Tetrachloroethane	< .2	ppb			WG744556 09/23/14 11:22
1,1,2-Trichloroethane	< .2	ppb			WG744556 09/23/14 11:22
1,1,2-Trichlorotrifluoroethane	< .2	dqq			WG744556 09/23/14 11:22
1,1-Dichloroethane	< .2	ppb			WG744556 09/23/14 11:22
1,1-Dichloroethene	< .2	ppb			WG744556 09/23/14 11:22
1,2,4-Trichlorobenzene	< .63	ppb			WG744556 09/23/14 11:22
1,2,4-Trimethylbenzene	< .2	ppb			WG744556 09/23/14 11:22
1,2-Dibromoethane	< .2	ppb			WG744556 09/23/14 11:22
1,2-Dichlorobenzene	< .2	ppb			WG744556 09/23/14 11:22
1,2-Dichloroethane	< .2	ppb			WG744556 09/23/14 11:22
1,2-Dichloropropane	< .2	ppb			WG744556 09/23/14 11:22
1,2-Dichlorotetrafluoroethane	< .2	ppb			WG744556 09/23/14 11:22
1,3,5-Trimethylbenzene	< .2	ppb			WG744556 09/23/14 11:22
1,3-Butadiene	< 2	ppb			WG744556 09/23/14 11:22
1,3-Dichlorobenzene	< .2	ppb			WG744556 09/23/14 11:22
1,4-Dichlorobenzene	< .2	ppb			WG744556 09/23/14 11:22
1,4-Dioxane	< .2	ppb			WG744556 09/23/14 11:22
2,2,4-Trimethylpentane	< .2	ppb			WG744556 09/23/14 11:22
2-Butanone (MEK)	< 1.25	dqq			WG744556 09/23/14 11:22
2-Chlorotoluene	< .2	dqq			WG744556 09/23/14 11:22
2-Propanol	< 1.25				WG744556 09/23/14 11:22
	< .2	ppb			
4-Ethyltoluene	< 1.25	ppb			WG744556 09/23/14 11:22
4-Methyl-2-pentanone (MIBK)		ppb			WG744556 09/23/14 11:22
Acetone	< 1.25	ppb			WG744556 09/23/14 11:22
Allyl chloride	< .2	ppb			WG744556 09/23/14 11:22
Benzene	< .2	ppb			WG744556 09/23/14 11:22
Benzyl Chloride	< .2	ppb			WG744556 09/23/14 11:22
Bromodichloromethane	< .2	ppb			WG744556 09/23/14 11:22
Bromoform	< .6	ppb			WG744556 09/23/14 11:22
Bromomethane	< .2	ppb			WG744556 09/23/14 11:22
Carbon disulfide	< .2	ppb			WG744556 09/23/14 11:22
Carbon tetrachloride	< .2	ppb			WG744556 09/23/14 11:22
Chlorobenzene	< .2	ppb			WG744556 09/23/14 11:22
Dibromochloromethane	< .2	ppb			WG744556 09/23/14 11:22
Chloroethane	< .2	ppb			WG744556 09/23/14 11:22
Chloroform	< .2	ppb			WG744556 09/23/14 11:22
* Derformance of this Analyte		tablished crite	ria		

^{*} Performance of this Analyte is outside of established criteria.

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

Chloromethane	723/14 11: 723/14 11: 723/14 11: 723/14 11: 723/14 11:	:22 :22 :22
cis-1,2-Dichloroethene < .2 ppb WG744556 09/ cis-1,3-Dichloropropene < .2 ppb WG744556 09/ Cyclohexane < .2 ppb WG744556 09/ Dichlorodifluoromethane < .2 ppb WG744556 09/ Ethanol < .63 ppb WG744556 09/ Ethylbenzene < .2 ppb WG744556 09/ Heytane < .2 ppb WG744556 09/ Hexachloro-1,3-butadiene < .63 ppb WG744556 09/ Msp-Sylene < .2 ppb WG744556 09/ Methyl Butyl Ketone < 1.25 ppb WG744556 09/ Methyl methacrylate < .2 ppb WG744556 09/ MTBE < .2 ppb WG744556 09/ Methylene Chloride < .2 ppb WG744556 09/ n-Hexane < .2 ppb WG744556 09/	723/14 11: 723/14 11: 723/14 11: 723/14 11: 723/14 11:	:22 :22
cis-1,2-Dichloroethene < .2	723/14 11: 723/14 11: 723/14 11: 723/14 11: 723/14 11:	:22 :22
cis-1,3-Dichloropropene < .2	723/14 11: 723/14 11: 723/14 11: 723/14 11:	:22
Cyclohexane < .2 ppb WG744556 09/ Dichlorodifluoromethane < .2	/23/14 11: /23/14 11: /23/14 11:	
Dichlorodifluoromethane < .2 ppb WG744556 09/ Ethanol < .63	/23/14 11: /23/14 11:	
Ethanol	23/14 11:	
Ethylbenzene < .2		
Heptane < .2	' 2 2 / 1 / 1 1 1 4	
Hexachloro-1,3-butadiene < .63		
Isopropylbenzene < .2	- ,	
m&p-Xylene < .4		
Methyl Butyl Ketone < 1.25		
Methyl methacrylate < .2 ppb WG744556 09/ MTBE < .2	23/14 11:	:22
MTBE < .2	23/14 11:	:22
Methylene Chloride < .2	23/14 11:	:22
n-Hexane < .2 ppb WG744556 09/	23/14 11:	:22
••	23/14 11:	:22
North-holono WG744FF6 00/	23/14 11:	:22
Naphthalene < .63 ppb WG744556 09/	23/14 11:	:22
o-Xylene < .2 ppb WG744556 09/	23/14 11:	:22
Propene < .4 ppb WG744556 09/	23/14 11:	:22
Styrene < .2 ppb WG744556 09/	23/14 11:	:22
Tetrachloroethylene < .2 ppb WG744556 09/	23/14 11:	:22
Tetrahydrofuran < .2 ppb WG744556 09/	23/14 11:	:22
Toluene < .2 ppb WG744556 09/	23/14 11:	:22
trans-1,2-Dichloroethene < .2 ppb WG744556 09/	23/14 11	:22
trans-1,3-Dichloropropene < .2 ppb WG744556 09/		
Trichloroethylene < .2 ppb WG744556 09/		
Trichlorofluoromethane < .2 ppb WG744556 09/	- ,	
Vinyl acetate	- ,	
Vinyl Bromide		
Vinyl bloride	- ,	
1,4-Bromofluorobenzene	- ,	
1,4 Bromorration	25/14 11.	. 22
Helium < 25 mg/l WG744551 09/	(00 (14	:48
	23/14 11:	
Helium < 25 mg/l WG744838 09/	23/14 11:	

		Laboratory Con	ntrol Sample			
Analyte	Units	Known Val	Result	% Rec	Limit	Batch
1,1,1-Trichloroethane	ppb	3.75	3.85	103.	70-130	WG744240
1,1,2,2-Tetrachloroethane	ppb	3.75	3.89	104.	70-130	WG744240
1,1,2-Trichloroethane	ppb	3.75	3.98	106.	70-130	WG744240
1,1,2-Trichlorotrifluoroethane	ppb	3.75	3.83	102.	70-130	WG744240
1,1-Dichloroethane	ppb	3.75	3.87	103.	70-130	WG744240
1,1-Dichloroethene	ppb	3.75	3.84	102.	70-130	WG744240
1,2,4-Trichlorobenzene	ppb	3.75	3.94	105.	59.7-155	WG744240
1,2,4-Trimethylbenzene	ppb	3.75	4.00	107.	70-130	WG744240
1,2-Dibromoethane	ppb	3.75	3.93	105.	70-130	WG744240
1,2-Dichlorobenzene	ppb	3.75	4.01	107.	70-130	WG744240
1,2-Dichloroethane	dqq	3.75	3.84	102.	70-130	WG744240
1,2-Dichloropropane	ppb	3.75	3.90	104.	70-130	WG744240
1,2-Dichlorotetrafluoroethane	ppb	3.75	3.91	104.	70-130	WG744240
1,3,5-Trimethylbenzene	dqq	3.75	3.98	106.	70-130	WG744240
1,3-Butadiene	ppb	3.75	3.68	98.0	70-130	WG744240
1,3-Dichlorobenzene	dqq	3.75	3.99	106.	70-130	WG744240
1,4-Dichlorobenzene	ppb	3.75	4.03	107.	70-130	WG744240
1,4-Dioxane	dqq	3.75	3.92	105.	70-130	WG744240
* Dowformango of this Analysta		F ogtoblished grit	tomin			

^{*} Performance of this Analyte is outside of established criteria.

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

Analyte	Units	Laboratory Con Known Val	trol Sample Result	% Rec	Limit	Batch
2,2,4-Trimethylpentane	ppb	3.75	4.03	108.	70-130	WG744240
2-Butanone (MEK)	ppb	3.75	3.91	104.	70-130	WG744240
2-Chlorotoluene	ppb	3.75	3.95	105.	70-130	WG744240
2-Propanol	ppb	3.75	3.68	98.1	62.2-137	WG744240
4-Ethyltoluene	ppb	3.75	3.98	106.	70-130	WG744240
4-Methyl-2-pentanone (MIBK)	ppb	3.75	3.74	99.7	51.3-144	WG744240
Acetone	ppb	3.75	3.08	82.0	70-130	WG744240
Allyl chloride	ppb	3.75	3.74	99.8	70-130	WG744240
Benzene	ppb	3.75	3.87	103.	70-130	WG744240
Benzyl Chloride	ppb	3.75	4.23	113.	70-130	WG744240
Bromodichloromethane Bromoform	ppb	3.75 3.75	3.93 4.02	105. 107.	70-130 70-130	WG744240 WG744240
Bromomethane	ppb	3.75		107.	70-130	WG744240 WG744240
	ppb		3.79		70-130	
Carbon disulfide Carbon tetrachloride	ppb	3.75 3.75	3.85 3.89	103. 104.	70-130	WG744240 WG744240
Chlorobenzene	ppb	3.75	3.89	104.	70-130	WG744240
Dibromochloromethane	ppb	3.75	3.95	106.	70-130	WG744240
Chloroethane	ppb	3.75	3.75	99.9	70-130	WG744240
Chloroform	dqq dqq	3.75	3.85	103.	70-130	WG744240
Chloromethane	ppb	3.75	3.79	101.	70-130	WG744240
cis-1,2-Dichloroethene	ppb	3.75	3.82	101.	70-130	WG744240
cis-1,3-Dichloropropene	ppb	3.75	3.95	105.	70-130	WG744240
Cyclohexane	ppb	3.75	3.87	103.	70-130	WG744240
Dichlorodifluoromethane	ppb	3.75	3.85	103.	70-130	WG744240
Ethanol	dqq	3.75	3.74	99.8	52.6-145	WG744240
Ethylbenzene	ppb	3.75	3.91	104.	70-130	WG744240
Heptane	ppb	3.75	4.06	108.	70-130	WG744240
Hexachloro-1,3-butadiene	ppb	3.75	4.11	110.	55.7-144	WG744240
Isopropylbenzene	ppb	3.75	3.95	105.	70-130	WG744240
m&p-Xylene	ppb	7.5	7.77	104.	70-130	WG744240
Methyl Butyl Ketone	dqq	3.75	3.88	103.	36.5-155	WG744240
Methyl methacrylate	ppb	3.75	3.54	94.5	70-130	WG711210
MTBE	ppb	3.75	3.80	101.	70-130	WG744240
Methylene Chloride	dqq	3.75	3.55	94.6	70-130	WG744240
n-Hexane	ppb	3.75	3.89	104.	70-130	WG744240
Naphthalene	ppb	3.75	3.96	106.	53.4-158	WG744240
o-Xylene	ppb	3.75	3.89	104.	70-130	WG744240
Propene	ppb	3.75	3.70	98.5	70-130	WG744240
Styrene	ppb	3.75	3.98	106.	70-130	WG744240
Tetrachloroethylene	ppb	3.75	3.95	105.	70-130	WG744240
Tetrahydrofuran	ppb	3.75	3.73	99.5	70-130	WG744240
Toluene	ppb	3.75	3.97	106.	70-130	WG744240
trans-1,2-Dichloroethene	ppb	3.75	3.80	101.	70-130	WG744240
trans-1,3-Dichloropropene	ppb	3.75	3.91	104.	70-130	WG744240
Trichloroethylene	ppb	3.75	3.90	104.	70-130	WG744240
Trichlorofluoromethane	ppb	3.75	3.88	103.	70-130	WG744240
Vinyl acetate	ppb	3.75	3.85	103.	70-130	WG744240
Vinyl Bromide	ppb	3.75	3.88	104.	70-130	WG744240
Vinyl chloride	ppb	3.75	3.81	102.	70-130	WG744240
1,4-Bromofluorobenzene				99.70	60-140	WG744240
1,1,1-Trichloroethane	dqq	3.75	3.92	105.	70-130	WG744351
1,1,2,2-Tetrachloroethane	ppb	3.75	3.94	105.	70-130	WG744351
1,1,2-Trichloroethane	ppb	3.75	3.95	105.	70-130	WG744351
1,1,2-Trichlorotrifluoroethane	ppb	3.75	3.90	104.	70-130	WG744351
1,1-Dichloroethane	ppb	3.75	3.92	105.	70-130	WG744351
1,1-Dichloroethene	ppb	3.75	3.84	102.	70-130	WG744351
1,2,4-Trichlorobenzene	ppb	3.75	3.94	105.	59.7-155	WG744351
0.00						

^{*} Performance of this Analyte is outside of established criteria.

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

		Laboratory Con	ntrol Sample				
Analyte	Units	Known Val	Result	% Rec	Limit	Batch	
1,2,4-Trimethylbenzene	ppb	3.75	4.02	107.	70-130	WG744351	
1,2-Dibromoethane	ppb	3.75	3.97	106.	70-130	WG744351	
1,2-Dichlorobenzene	ppb	3.75	4.06	108.	70-130	WG744351	
1,2-Dichloroethane	ppb	3.75	3.80	101.	70-130	WG744351	
1,2-Dichloropropane	ppb	3.75	3.88	104.	70-130	WG744351	
1,2-Dichlorotetrafluoroethane	ppb	3.75	3.94	105.	70-130	WG744351	
1,3,5-Trimethylbenzene	ppb	3.75	4.00	107.	70-130	WG744351	
1,3-Butadiene	ppb	3.75	3.67	97.8	70-130	WG744351	
1,3-Dichlorobenzene	ppb	3.75	4.08	109.	70-130	WG744351	
1,4-Dichlorobenzene	ppb	3.75	4.09	109.	70-130	WG744351	
1,4-Dioxane	ppb	3.75	3.96	106.	70-130	WG744351	
2,2,4-Trimethylpentane	ppb	3.75	4.03	107.	70-130	WG744351	
2-Butanone (MEK)	ppb	3.75	3.92	104.	70-130	WG744351	
2-Chlorotoluene	ppb	3.75	3.94	105.	70-130	WG744351	
2-Propanol	ppb	3.75	3.67	97.9	62.2-137	WG744351	
4-Ethyltoluene	ppb	3.75	3.99	106.	70-130	WG744351	
4-Methyl-2-pentanone (MIBK)	ppb	3.75	3.76	100.	51.3-144	WG744351	
Acetone	ppb	3.75	3.09	82.5	70-130	WG744351	
Allyl chloride	ppb	3.75	3.75	100.	70-130	WG744351	
Benzene	ppb	3.75	3.88	104.	70-130	WG744351	
Benzyl Chloride	ppb	3.75	4.22	113.	70-130	WG744351	
Bromodichloromethane	ppb	3.75	3.92	105.	70-130	WG744351	
Bromoform	ppb	3.75	4.05	108.	70-130	WG744351	
Bromomethane	ppb	3.75	3.85	103.	70-130	WG744351	
Carbon disulfide	ppb	3.75	3.86	103.	70-130	WG744351	
Carbon tetrachloride	ppb	3.75	3.96	106.	70-130	WG744351	
Chlorobenzene	ppb	3.75	3.93	105.	70-130	WG744351	
Dibromochloromethane	ppb	3.75	3.97	106.	70-130	WG744351	
Chloroethane	ppb	3.75	3.83	102.	70-130	WG744351	
Chloroform	ppb	3.75	3.92	104.	70-130	WG744351	
Chloromethane	ppb	3.75	3.76	100.	70-130	WG744351	
cis-1,2-Dichloroethene	ppb	3.75	3.85	103.	70-130	WG744351	
cis-1,3-Dichloropropene	ppb	3.75	3.91	104.	70-130	WG744351	
Cyclohexane	ppb	3.75	3.90	104.	70-130	WG744351	
Dichlorodifluoromethane	ppb	3.75	3.95	105.	70-130	WG744351	
Ethanol	ppb	3.75	3.76	100.	52.6-145	WG744351	
Ethylbenzene	ppb	3.75	3.96	106.	70-130	WG744351	
Heptane	ppb	3.75	4.02	107.	70-130	WG744351	
Hexachloro-1,3-butadiene	ppb	3.75	4.16	111.	55.7-144	WG744351	
Isopropylbenzene	ppb	3.75	3.99	106.	70-130	WG744351	
m&p-Xylene	ppb	7.5	7.83	104.	70-130	WG744351	
Methyl Butyl Ketone	ppb	3.75	3.81	102.	36.5-155	WG744351	
Methyl methacrylate	ppb	3.75	3.53	94.2	70-130	WG744351	
MTBE	ppb	3.75	3.80	101. 96.3	70-130	WG744351	
Methylene Chloride	ppb	3.75	3.61		70-130	WG744351	
n-Hexane	ppb	3.75	3.89	104.	70-130	WG744351	
Naphthalene	ppb	3.75 3.75	4.00 3.91	107. 104.	53.4-158 70-130	WG744351	
o-Xylene	ppb	3.75	3.91	97.4	70-130	WG744351 WG744351	
Propene	ppb						
Styrene Totroghloroothylono	ppb	3.75	4.01 3.98	107. 106.	70-130 70-130	WG744351	
Tetrachloroethylene Tetrahydrofuran	ppb	3.75 3.75	3.98	98.9	70-130	WG744351 WG744351	
Tetranydrofuran Toluene	ppb	3.75	3.71	98.9 106.	70-130	WG744351 WG744351	
Toluene trans-1,2-Dichloroethene	ppb	3.75	3.99	106.	70-130	WG744351 WG744351	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ppb	3.75	3.81	102.	70-130	WG744351 WG744351	
	ppb	3.75	3.91				
Trichloroethylene	ppb			105. 104.	70-130	WG744351	
Trichlorofluoromethane Vinyl acetate	ppb	3.75 3.75	3.92 3.86	104.	70-130 70-130	WG744351 WG744351	
Vinyl acetate Vinyl Bromide	ppb	3.75	3.86	103.	70-130	WG744351 WG744351	
* Performance of this Analyte	ppb			103.	/0-130	WG/44351	

^{*} Performance of this Analyte is outside of established criteria.
For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

Analyte	Units	Laboratory Con Known Val	trol Sample Result	% Rec	Limit	Batch
Vinyl chloride	ppb	3.75	3.83	102.	70-130	WG744351
1,4-Bromofluorobenzene	ddd	3.75	3.03	100.0	60-140	WG74435
1.1.1-Trichloroethane	dqq	3.75	4.05	108.	70-130	WG744556
1,1,2,2-Tetrachloroethane	ppb	3.75	4.12	110.	70-130	WG744556
1,1,2-Trichloroethane	dqq	3.75	4.25	113.	70-130	WG744556
1,1,2-Trichlorotrifluoroethane	ppb	3.75	4.10	109.	70-130	WG744556
1,1-Dichloroethane	ppb	3.75	4.01	107.	70-130	WG744556
1,1-Dichloroethene	ppb	3.75	3.96	106.	70-130	WG744556
1,2,4-Trichlorobenzene	dqq	3.75	4.02	107.	59.7-155	WG744556
1,2,4-Trimethylbenzene	ppb	3.75	4.18	111.	70-130	WG74455
1,2-Dibromoethane	ppb	3.75	4.19	112.	70-130	WG744556
1,2-Dichlorobenzene	ppb	3.75	4.21	112.	70-130	WG74455
1,2-Dichloroethane	ppb	3.75	4.02	107.	70-130	WG74455
1,2-Dichloropropane	dqq	3.75	4.07	109.	70-130	WG744556
1,2-Dichlorotetrafluoroethane	dqq	3.75	4.06	108.	70-130	WG744556
1,3,5-Trimethylbenzene	ppb	3.75	4.14	111.	70-130	WG744556
1,3-Butadiene	ppb	3.75	3.72	99.3	70-130	WG744556
1,3-Dichlorobenzene	dqq	3.75	4.27	114.	70-130	WG744556
1,4-Dichlorobenzene	ppb	3.75	4.27	114.	70-130	WG744556
1,4-Dioxane	ppb	3.75	4.15	111.	70-130	WG744556
2,2,4-Trimethylpentane	ppb	3.75	4.14	110.	70-130	WG744556
2-Butanone (MEK)	ppb	3.75	4.01	107.	70-130	WG744556
2-Chlorotoluene	ppb	3.75	4.17	111.	70-130	WG744556
2-Propanol	dqq	3.75	3.78	101.	62.2-137	WG744556
4-Ethyltoluene		3.75	4.20	112.	70-130	WG744556
4-Ethyltoluene 4-Methyl-2-pentanone (MIBK)	ppb	3.75	3.90	104.	51.3-144	WG744556
Acetone	ppb	3.75	3.14	83.8	70-130	WG744556
	ppb			102.	70-130	
Allyl chloride Benzene	ppb	3.75 3.75	3.84 4.08	102.	70-130	WG744556 WG744556
	ppb		4.08	115.		
Benzyl Chloride Bromodichloromethane	ppb	3.75 3.75	4.33	110.	70-130 70-130	WG744556
	ppb					
Bromoform Bromomethane	ppb	3.75 3.75	4.23	113. 106.	70-130 70-130	WG744556
Bromometnane Carbon disulfide	ppb		3.99	106.	70-130	WG744556
	ppb	3.75 3.75			70-130	WG744556
Carbon tetrachloride	ppb		4.14	111.		WG744556
Chlorobenzene	ppb	3.75	4.18	112.	70-130	WG744556
Dibromochloromethane	ppb	3.75	4.19	112.	70-130	WG744556
Chloroethane	ppb	3.75	3.92	104.	70-130	WG744556
Chloroform	ppb	3.75	4.00	107.	70-130	WG744556
Chloromethane	ppb	3.75	3.86	103.	70-130	WG744556
cis-1,2-Dichloroethene	ppb	3.75	3.92	105.	70-130	WG744556
cis-1,3-Dichloropropene	ppb	3.75	4.10	109.	70-130	WG744556
Cyclohexane	ppb	3.75	4.05	108.	70-130	WG744556
Dichlorodifluoromethane	ppb	3.75	4.19	112.	70-130	WG744556
Ethanol	ppb	3.75	3.82	102.	52.6-145	WG744556
Ethylbenzene	ppb	3.75	4.14	110.	70-130	WG744556
Heptane	ppb	3.75	4.20	112.	70-130	WG744556
Hexachloro-1,3-butadiene	ppb	3.75	4.34	116.	55.7-144	WG744556
Isopropylbenzene	ppb	3.75	4.17	111.	70-130	WG744556
m&p-Xylene	ppb	7.5	8.29	111.	70-130	WG744556
Methyl Butyl Ketone	ppb	3.75	4.02	107.	36.5-155	WG74455
Methyl methacrylate	ppb	3.75	3.65	97.3	70-130	WG74455
MTBE	ppb	3.75	3.94	105.	70-130	WG74455
Methylene Chloride	ppb	3.75	3.66	97.5	70-130	WG744556
n-Hexane	ppb	3.75	4.01	107.	70-130	WG744556
Naphthalene	ppb	3.75	4.09	109.	53.4-158	WG744556
o-Xylene	ppb	3.75	4.16	111.	70-130	WG744556

^{*} Performance of this Analyte is outside of established criteria.

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

Analyte

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

% Rec Limit Batch

Quality Assurance Report Level II

L723055

Laboratory Control Sample

Known Val Result

Units

September 25, 2014

Propene	ppb	3.75		3.77	101.		-130	WG744556
Styrene	ppb	3.75		4.22	112.		-130	WG744556
Tetrachloroethylene	ppb	3.75		4.24	113.	70	-130	WG744556
Tetrahydrofuran	ppb	3.75		3.83	102.	70	-130	WG744556
Toluene	ppb	3.75		4.17	111.	70	-130	WG744556
trans-1,2-Dichloroethene	ppb	3.75		3.94	105.	70	-130	WG744556
trans-1,3-Dichloropropene	ppb	3.75		4.12	110.	70	-130	WG744556
Trichloroethylene	ppb	3.75		4.14	110.		-130	WG744556
Trichlorofluoromethane	ppb	3.75		4.08	109.		-130	WG744556
Vinyl acetate	ppb	3.75		3.88	103.		-130	WG744556
Vinyl Bromide	ppb	3.75		4.17	111.		-130	WG744556
Vinyl chloride		3.75		3.97	106.		-130 -130	WG744556
	ppb	3.75		3.97				
1,4-Bromofluorobenzene					97.10	60	-140	WG744556
Helium	mg/l	500		421.	84.3	70	-130	WG744551
Helium	mg/l	500		551.	110.	70	-130	WG744838
				Sample Duplica				
Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batch
1,1,1-Trichloroethane	ppb	3.82	3.85	102.	70-130	0.810	25	WG744240
1,1,2,2-Tetrachloroethane	ppb	3.81	3.89	102.	70-130	2.10	25	WG744240
1,1,2-Trichloroethane	ppb	3.90	3.98	104.	70-130	1.96	25	WG744240
1,1,2-Trichlorotrifluoroethane	dqq	3.84	3.83	102.	70-130	0.210	25	WG744240
1,1-Dichloroethane	dqq	3.82	3.87	102.	70-130	1.29	25	WG744240
1,1-Dichloroethene	ppb	3.78	3.84	101.	70-130	1.67	25	WG744240
1,2,4-Trichlorobenzene	ppb	3.77	3.94	100.	59.7-155	4.38	25	WG744240
1,2,4-Trimethylbenzene	ppb	3.87	4.00	103.	70-130	3.26	25	WG744240
1,2-Dibromoethane	dqq	3.87	3.93	103.	70-130	1.53	25	WG744240
1,2-Dichlorobenzene		3.90	4.01	104.	70-130	2.74	25	WG744240
1,2-Dichloroethane	ppb	3.77	3.84	101.	70-130	1.63	25	WG744240
	ppb							
1,2-Dichloropropane	ppb	3.83	3.90	102.	70-130	1.76	25	WG744240
1,2-Dichlorotetrafluoroethane	ppb	3.83	3.91	102.	70-130	2.14	25	WG744240
1,3,5-Trimethylbenzene	ppb	3.86	3.98	103.	70-130	2.99	25	WG744240
1,3-Butadiene	ppb	3.70	3.68	99.0	70-130	0.780	25	WG744240
1,3-Dichlorobenzene	ppb	3.91	3.99	104.	70-130	2.11	25	WG744240
1,4-Dichlorobenzene	ppb	3.89	4.03	104.	70-130	3.36	25	WG744240
1,4-Dioxane	ppb	3.82	3.92	102.	70-130	2.66	25	WG744240
2,2,4-Trimethylpentane	ppb	3.96	4.03	106.	70-130	1.87	25	WG744240
2-Butanone (MEK)	ppb	3.87	3.91	103.	70-130	1.05	25	WG744240
2-Chlorotoluene	ppb	3.81	3.95	102.	70-130	3.60	25	WG744240
2-Propanol	dqq	3.60	3.68	96.0	62.2-137	2.10	25	WG744240
4-Ethyltoluene	dqq	3.87	3.98	103.	70-130	2.79	25	WG744240
4-Methyl-2-pentanone (MIBK)	ppb	3.70	3.74	99.0	51.3-144	0.900	25	WG744240
Acetone	ppb	3.01	3.08	80.0	70-130	2.03	25	WG744240
Allyl chloride	ppb	3.68	3.74	98.0	70-130	1.65	25	WG744240
Benzene	ppb	3.81	3.87	102.	70-130	1.62	25	WG744240
Benzyl Chloride	ppb	4.06	4.23	108.	70-130	4.17	25	WG744240
Bromodichloromethane		3.84	3.93	102.	70-130	2.14	25	WG744240 WG744240
Bromoform	ppb						25 25	
	ppb	3.86	4.02	103.	70-130	4.21	25 25	WG744240
Bromomethane	ppb	3.75	3.79	100.	70-130	0.880		WG744240
Carbon disulfide	ppb	3.75	3.85	100.	70-130	2.53	25	WG744240
Carbon tetrachloride	ppb	3.87	3.89	103.	70-130	0.620	25	WG744240
Chlorobenzene	ppb	3.90	3.95	104.	70-130	1.28	25	WG744240
Dibromochloromethane	ppb	3.90	3.97	104.	70-130	1.58	25	WG744240
Chloroethane	ppb	3.72	3.75	99.0	70-130	0.760	25	WG744240

roethane ppb 3.72 3.75 99.0 70-130 0
* Performance of this Analyte is outside of established criteria.
For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

Chloroform			_ ,						
Chloroform	Analyte			_			RDD	T.imit	Batch
chloromethane ppb 3.70 3.79 99.0 70-130 2.25 25 WC cis-1,2-Dichlorosthene ppb 3.80 3.82 101. 70-130 0.60 25 WG cis-1,3-Dichlorospoene ppb 3.87 3.95 103. 70-130 2.06 25 WG Cyclohexane ppb 4.05 3.83 3.87 102. 70-130 1.01 25 WG Dichlorodifluoromethane ppb 4.05 1.08 70-134 5.00 2.55 WG EhylEneme ppb 3.83 3.85 108. 70-130 2.83 25 WG Heptane ppb 3.99 4.11 106. 55,7-144 3.18 25 WG Heptane ppb 3.88 3.95 103. 70-130 2.52 25 WG Heptane ppb 3.88 3.95 103. 70-130 2.52 25 WG Heptane<	Analyte	UIIICS	Kesuit	Ker	31.60	птипт	RFD	DIMILC	Batter
cis-1_2-Dichloroethene pb 3.80 3.82 101. 70-130 0.620 25 WG cis-1_3-Dichloropropene pb 3.87 3.95 103. 70-130 1.01 25 WG Cyclobaxane pb 3.83 3.87 108. 70-130 1.01 25 WG Ethanol pb 3.72 3.74 9.0 52.6-145 6.080 25 WG Ethanol pb 3.72 3.74 99.0 52.6-145 6.080 25 WG Ethanol pb 3.62 3.14 100. 70-130 2.5 80 Ethanol pb 3.83 3.9 4.11 106. 55.7-144 3.18 25 WG Hexachloro-1,3-butatien pb 3.6 3.99 4.11 106. 55.7-144 3.18 25 WG Machylanc pb 3.43 3.54 3.54 93.0 70-130 1.52 25 WG	Chloroform	ppb	3.83	3.85	102.	70-130	0.360	25	WG744240
cis-1_3-Dichloropropene ppb 3.87 3.95 103. 70-130 2.06 25 WG Cyclohexane ppb 4.38 3.87 102. 70-130 1.01 25 WG Etharlon ppb 4.05 3.85 108. 70-130 5.02 25 WG Ethylbenzene ppb 3.95 1.02. 70-130 2.59 25 WG Betyleneme ppb 3.95 4.06 105. 70-130 2.83 25 WG Hexaerloor-1, 3-butadiene ppb 3.98 4.11 106. 55,7-144 3.18 2.98 25 WG Methyl miryl Retone ppb 1.61 7,79 102. 70-130 2.0 2.5 WG Methyl methyl Retone ppb 3.74 3.80 101. 36.5-155 2.54 25 WG Mrss ppb 3.74 3.80 100. 70-130 1.82 25 WG	Chloromethane	ppb	3.70	3.79	99.0	70-130	2.25	25	WG744240
Cyclohexane pb 3.83 3.87 102. 70-130 1.01 25 WG Ethanol pb 3.85 108. 70-130 5.02 25 WG Ethylhenzene pb 3.72 3.74 99.0 52.6-145 6.680 25 WG Ethylhenzene pb 3.91 102. 70-130 2.59 25 WG Heptane pb 3.95 4.16 105. 70-130 2.83 25 WG Ieopropylhenzene pb 3.85 3.95 103. 70-130 2.52 25 WG Iaopropylhenzene pb 3.65 3.77 102. 70-130 2.52 25 WG Iaopropylhenzene pb 3.61 7.77 102. 70-130 2.52 WG Methylanch pb 3.79 3.18 801 10. 70-130 1.8 2.8 2.8 WG Maricani pb 3.61	cis-1,2-Dichloroethene	ppb	3.80	3.82	101.	70-130	0.620	25	WG744240
Dechlorodifiluoromethane	cis-1,3-Dichloropropene	ppb	3.87	3.95	103.	70-130	2.06	25	WG744240
Ethanol Pgb 3.72 3.74 99.0 52.6-145 0.680 25 WG Ethylphenzene pgb 3.81 3.91 102 70-130 2.59 25 WG WG WG WG WG WG WG W	Cyclohexane	ppb	3.83	3.87	102.	70-130	1.01	25	WG744240
Ethylbenzene	Dichlorodifluoromethane	ppb	4.05	3.85	108.	70-130	5.02	25	WG744240
Heptane	Ethanol	ppb	3.72	3.74	99.0	52.6-145	0.680	25	WG744240
Hexachloro-1,3-butadiene	Ethylbenzene	ppb							WG744240
Isopropylbenzene	Heptane	ppb	3.95	4.06	105.	70-130	2.83	25	WG744240
msp-xylene ppb 7.61 7.77 102. 70-130 2.01 25 WG Methyl methacrylate ppb 3.78 3.88 101. 36-5155 2.54 25 WG METHYL methacrylate ppb 3.74 3.80 100. 70-130 1.82 25 WG Methylene Chloride ppb 3.72 3.81 3.80 100. 70-130 1.83 25 WG Naphthalene ppb 3.81 3.89 102. 70-130 1.83 25 WG Naphthalene ppb 3.81 3.89 102. 70-130 1.81 25 WG Propene ppb 3.65 3.70 97.0 70-130 1.11 25 WG Etyrene ppb 3.65 3.70 97.0 70-130 1.11 25 WG Tetrahydrofuran ppb 3.83 3.95 104. 70-130 1.66 25 WG	Hexachloro-1,3-butadiene	ppb							WG744240
Methyl Butyl Ketone ppb 3.78 3.88 101. 36.5-155 2.54 25 WG Methyl methaorylate ppb 3.74 3.80 100. 70-130 1.52 25 WG MTBE ppb 3.74 3.80 100. 70-130 1.52 25 WG McHylene Chloride ppb 3.81 3.89 102. 70-130 1.83 25 WG n-Hexane ppb 3.81 3.89 102. 70-130 1.83 25 WG e-Xylene ppb 3.65 3.70 97.0 70-130 1.53 25 WG Fropene ppb 3.62 3.99 105. 70-130 1.49 25 WG Fropene ppb 3.73 3.73 100. 70-130 1.49 25 WG Styrene ppb 3.73 3.73 100. 70-130 1.66 25 WG Tetrahydrofura ppb	Isopropylbenzene	ppb	3.85	3.95	103.	70-130	2.52		WG744240
Mathly methacrylate ppb 3.49 3.54 93.0 70-130 1.58 25 WG MTBR ppb 3.74 3.80 100. 70-130 0.880 25 WG Methylene Chloride ppb 3.61 3.89 102. 70-130 0.880 25 WG Naphthalene ppb 3.61 3.89 102. 70-130 1.83 25 WG Naphthalene ppb 3.65 3.70 97.0 70-130 1.11 25 WG Propene ppb 3.65 3.70 97.0 70-130 1.11 25 WG Tetrachloroethylene ppb 3.99 3.95 104. 70-130 1.66 25 WG Tetrans-1,2-Dichloroethene ppb 3.73 3.70 97.0 70-130 1.66 25 WG Tetrans-1,2-Dichloroethene ppb 3.78 3.80 101. 70-130 0.96 2.8 WG	m&p-Xylene	ppb	7.61	7.77	102.	70-130	2.01		WG744240
MRBE	Methyl Butyl Ketone	ppb	3.78	3.88	101.	36.5-155	2.54		WG744240
Methylene Chloride ppb 3.52 3.55 94.0 70-130 0.880 25 WG Naphthalene ppb 3.81 3.96 102. 53.4-158 3.88 25 WG Naphthalene ppb 3.81 3.96 102. 53.4-158 3.88 25 WG Propene ppb 3.65 3.70 97.0 70-130 1.11 25 WG Styrene ppb 3.92 3.98 105. 70-130 1.49 25 WG Tetrachloroethylene ppb 3.73 104. 70-130 1.66 25 WG Toluene ppb 3.73 104. 70-130 1.66 25 WG Toluene ppb 3.79 104. 70-130 1.51 25 WG Tetans-1, 2-bichloroethene ppb 3.86 3.91 103. 70-130 1.91 25 WG Trichloroethylene ppb 3.85 3.8	Methyl methacrylate	ppb	3.49	3.54	93.0	70-130	1.58		WG744240
n-Hexane	MTBE	ppb	3.74	3.80	100.	70-130	1.52	25	WG744240
Naphthalene	Methylene Chloride	ppb	3.52	3.55	94.0	70-130	0.880	25	WG744240
c-Xylene ppb 3.83 3.89 102. 70-130 1.53 25 WC Propene ppb 3.65 3.70 97.0 70-130 1.11 25 WG Styrene ppb 3.92 3.98 105. 70-130 1.49 25 WG Tetrahydrofuran ppb 3.73 3.73 100. 70-130 1.66 25 WG Tetrahydrofuran ppb 3.73 3.73 100. 70-130 1.31 25 WG Tetrahydrofuran ppb 3.73 3.73 100. 70-130 1.31 25 WG Tetrahydrofuran ppb 3.78 3.80 101. 70-130 1.31 25 WG Tetrahydrofuran ppb 3.66 3.91 103. 70-130 0.560 25 WG Trichloroethane ppb 3.83 3.80 101. 70-130 1.92 25 WG Yinyl abromide	n-Hexane	ppb	3.81	3.89	102.	70-130	1.83		WG744240
Propens	Naphthalene	ppb	3.81	3.96	102.	53.4-158	3.88		WG744240
Styrene	o-Xylene	ppb	3.83	3.89	102.	70-130	1.53	25	WG744240
Tetrachloroethylene	Propene	ppb	3.65	3.70	97.0	70-130	1.11	25	WG744240
Tetrahydrofuran ppb 3.73 3.73 100. 70-130 0.0600 25 WG Toluene ppb 3.92 3.97 104. 70-130 1.31 25 WG trans-1,2-Dichloroethene ppb 3.78 3.80 101. 70-130 1.29 25 WG trans-1,3-Dichloropropene ppb 3.86 3.91 103. 70-130 1.29 25 WG Trichloroethylene ppb 3.83 3.90 102. 70-130 1.29 25 WG Trichloroethylene ppb 3.83 3.90 102. 70-130 1.91 25 WG Trichloroethylene ppb 3.85 3.88 103. 70-130 0.730 25 WG Trichloroethylene ppb 3.85 3.88 103. 70-130 0.730 25 WG Trichloroethylene ppb 3.79 3.85 101. 70-130 0.750 25 WG Triph lorde ppb 3.91 3.88 101. 70-130 0.750 25 WG Triph lorde ppb 3.91 3.88 101. 70-130 0.750 25 WG Triph lorde ppb 3.78 3.81 101. 70-130 0.750 25 WG Triph lorde ppb 3.78 3.81 101. 70-130 0.750 25 WG Triph lorde ppb 3.78 3.81 101. 70-130 0.750 25 WG Triph lorde ppb 3.94 3.92 105. 70-130 0.750 25 WG Triph lorde ppb 4.03 3.94 107. 70-130 0.750 25 WG Triph lorder ppb 4.08 3.95 109. 70-130 3.15 25 WG Triph lorder ppb 3.94 0.88 3.95 109. 70-130 3.15 25 WG Triph lorder ppb 3.94 0.88 3.92 105. 70-130 0.470 25 WG Triph lorder ppb 3.94 0.88 3.92 105. 70-130 0.300 25 WG Triph lorder ppb 3.94 0.88 3.92 105. 70-130 1.58 25 WG Triph lorder ppb 3.94 0.88 3.92 105. 70-130 1.58 25 WG Triph lorder ppb 3.94 0.88 3.92 105. 70-130 1.58 25 WG Triph lorder ppb 3.94 0.88 3.92 105. 70-130 1.58 25 WG Triph lorder ppb 3.94 0.88 3.94 104. 70-130 1.93 25 WG Triph lorder ppb 3.94 0.88 3.97 109. 70-130 1.93 25 WG Triph lorder ppb 4.04 4.02 110. 70-130 1.93 25 WG Triph lorder ppb 4.08 3.97 109. 70-130 2.76 25 WG Triph lorder ppb 4.08 3.97 109. 70-130 3.83 25 WG Triph lorder ppb 4.08 3.97 109. 70-130 3.83 25 WG Triph lorder ppb 3.99 3.94 106. 70-130 3.83 25 WG Triph lorder ppb 4.06 4.06 108. 70-130 3.83 25 WG Triph lorder ppb 3.99 3.94 106. 70-130 3.83 25 WG Triph lorder ppb 3.99 3.94 106. 70-130 1.75 25 WG Triph lorder ppb 3.99 3.99 3.99 3.99 3.99 3.99 3.99 3.9	Styrene	ppb	3.92	3.98	105.	70-130	1.49	25	WG744240
Toluene	Tetrachloroethylene	ppb	3.89	3.95	104.	70-130	1.66	25	WG744240
trans-1,2-Dichloroethene ppb 3.78 3.80 101. 70-130 0.560 25 WG' trans-1,3-Dichloropropene ppb 3.86 3.91 103. 70-130 1.29 25 WG' Trichloroethylene ppb 3.85 3.88 103. 70-130 0.730 25 WG' Vinyl Bromide ppb 3.79 3.85 101. 70-130 0.750 25 WG' Vinyl Bromide ppb 3.91 3.88 104. 70-130 0.750 25 WG' Vinyl chloride ppb 3.91 3.88 104. 70-130 0.750 25 WG' 1,4-Bromofluorobenzene ppb 3.94 3.92 105. 70-130 0.470 25 WG' 1,1,2-Trichloroethane ppb 4.03 3.94 107. 70-130 0.470 25 WG' 1,1,2-Trichloroethane ppb 3.97 3.90 106. 70-130 3.15 25	Tetrahydrofuran	ppb	3.73	3.73	100.	70-130	0.0600	25	WG744240
trans-1,3-Dichloropropene ppb 3.86 3.91 103. 70-130 1.29 25 WG' Trichlorothlylene ppb 3.83 3.90 102. 70-130 1.91 25 WG' Vinyl acetate ppb 3.79 3.85 101. 70-130 1.59 25 WG' Vinyl Bromide ppb 3.91 3.88 104. 70-130 0.750 25 WG' Vinyl chloride ppb 3.78 3.81 101. 70-130 0.750 25 WG' 1,4-Eromofluorobenzene ppb 3.78 3.81 101. 70-130 0.750 25 WG' 1,1,2-Trichloroethane ppb 3.94 3.92 105. 70-130 0.470 25 WG' 1,1,2-Trichloroethane ppb 4.08 3.95 109. 70-130 3.15 25 WG' 1,1-pichloroethane ppb 3.97 3.90 106. 70-130 1.58 25	Toluene	ppb	3.92	3.97	104.	70-130	1.31	25	WG744240
Trichloroethylene	trans-1,2-Dichloroethene	ppb	3.78	3.80	101.	70-130	0.560	25	WG744240
Trichlorofluromethane	trans-1,3-Dichloropropene	ppb	3.86	3.91	103.	70-130	1.29	25	WG744240
Vinyl acetate Oph 3.79 3.85 101 70-130 1.59 25 WG' Vinyl Bromide ppb 3.91 3.88 104 70-130 0.750 25 WG' Vinyl chloride ppb 3.78 3.81 101 70-130 0.750 25 WG' 1,4-Bromofluorobenzene ppb 3.94 3.92 105 70-130 0.470 25 WG' 1,1,2-Trichloroethane ppb 4.03 3.94 107 70-130 2.30 25 WG' 1,1,2-Trichloroethane ppb 4.08 3.95 109 70-130 3.15 25 WG' 1,1-pichloroethane ppb 3.97 3.90 106 70-130 1.58 25 WG' 1,1-pichloroethane ppb 3.97 3.90 106 70-130 1.58 25 WG' 1,2-trichloroethane ppb 3.84 3.94 102 59.7-155 2.65 25 WG'	Trichloroethylene	ppb	3.83	3.90	102.	70-130	1.91		WG744240
Vinyl Bromide ppb 3.91 3.88 104. 70-130 0.750 25 WG' 1,4-Bromofluorobenzene ppb 3.78 3.81 101. 70-130 0.750 25 WG' 1,1,1-Trichlorocthane ppb 3.94 3.92 105. 70-130 0.470 25 WG' 1,1,2-Trichlorocthane ppb 4.08 3.95 109. 70-130 3.15 25 WG' 1,1,2-Trichlorocthane ppb 3.97 3.90 106. 70-130 3.15 25 WG' 1,1,2-Trichlorocthane ppb 3.97 3.90 106. 70-130 1.58 25 WG' 1,1-Dichlorocthane ppb 3.92 3.92 105. 70-130 0.0300 25 WG' 1,1-Prichlorocthane ppb 3.84 104. 70-130 1.93 25 WG' 1,2-Firthlorobenzene ppb 4.14 4.02 110. 70-130 2.56 25 WG' </td <td>Trichlorofluoromethane</td> <td>ppb</td> <td>3.85</td> <td>3.88</td> <td>103.</td> <td>70-130</td> <td>0.730</td> <td>25</td> <td>WG744240</td>	Trichlorofluoromethane	ppb	3.85	3.88	103.	70-130	0.730	25	WG744240
Vinyl chloride ppb 3.78 3.81 101. 70-130 0.750 25 WG' 1,4-Bromofluorobenzene 99.30 60-140 0.470 25 WG' 1,1,1-Trichloroethane ppb 4.03 3.94 107. 70-130 0.470 25 WG' 1,1,2-Trichloroethane ppb 4.08 3.95 109. 70-130 3.15 25 WG' 1,1,2-Trichloroethane ppb 3.97 3.90 106. 70-130 1.58 25 WG' 1,1-Dichloroethane ppb 3.92 3.92 105. 70-130 1.58 25 WG' 1,1-Dichloroethane ppb 3.91 3.84 104. 70-130 1.93 25 WG' 1,2-Hrighloroethane ppb 3.84 3.94 102. 59,7-155 2.65 25 WG' 1,2-Dichlorobenzene ppb 4.14 4.02. 110. 70-130 2.58 25 WG' 1,2-Dichl	Vinyl acetate	ppb	3.79	3.85	101.	70-130	1.59		WG744240
1,4-Bromofluorobenzene ppb 3.94 3.92 105. 70-130 0.470 25 WG 1,1,2-Tetrachloroethane ppb 4.03 3.94 107. 70-130 2.30 25 WG 1,1,2-Trichloroethane ppb 4.08 3.95 109. 70-130 3.15 25 WG 1,1,2-Trichloroethane ppb 3.97 3.90 106. 70-130 1.58 25 WG 1,1-Dichloroethane ppb 3.92 3.92 105. 70-130 0.0300 25 WG 1,1-Dichloroethane ppb 3.91 3.84 104. 70-130 1.93 25 WG 1,1-Dichloroethene ppb 3.91 3.84 104. 70-130 1.93 25 WG 1,2-A-Trimethylbenzene ppb 4.14 4.02 110. 70-130 2.76 25 WG 1,2-Dichloroethane ppb 4.08 3.97 109. 70-130 2.58 25 WG 1,2-Dichloroethane ppb 4.08 3.97 109. 70-130 2.58 25 WG 1,2-Dichloroethane ppb 4.06 4.06 108. 70-130 0.0600 25 WG 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichloroethane ppb 4.02 3.88 107. 70-130 3.83 25 WG 1,2-Dichloroethane ppb 3.99 3.94 106. 70-130 3.49 25 WG 1,2-Dichloroethane ppb 3.99 3.94 106. 70-130 3.49 25 WG 1,3-S-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.21 25 WG 1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.75 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.75 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.75 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.96 108. 70-130 1.38 25 WG 1,4-Dicknoethane ppb 4.07 3.99 109. 70-130 2.04 25 WG 1,4-Dicknoethane ppb 4.07 3.99 109. 70-130 2.04 25 WG	Vinyl Bromide	ppb	3.91	3.88	104.	70-130	0.750	25	WG744240
1,1,1-Trichloroethane ppb 3.94 3.92 105. 70-130 0.470 25 WG 1,1,2,2-Tetrachloroethane ppb 4.03 3.94 107. 70-130 2.30 25 WG 1,1,2-Trichloroethane ppb 4.08 3.95 109. 70-130 3.15 25 WG 1,1,2-Trichlorotrifluoroethane ppb 3.97 3.90 106. 70-130 1.58 25 WG 1,1-Dichloroethane ppb 3.92 3.92 105. 70-130 0.0300 25 WG 1,1-Dichloroethane ppb 3.91 3.84 104. 70-130 1.93 25 WG 1,2-A-Trimethylbenzene ppb 3.84 3.94 102. 59.7-155 2.65 25 WG 1,2,4-Trimethylbenzene ppb 4.14 4.02 110. 70-130 2.76 25 WG 1,2-Dichloroethane ppb 4.08 3.97 109. 70-130 2.58 25 WG 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,3-Dichloroethane ppb 3.99 3.94 106. 70-130 3.49 25 WG 1,3-S-Trimethylbenzene ppb 4.04 4.00 108. 70-130 3.49 25 WG 1,3-S-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.21 25 WG 1,3-S-Trimethylbenzene ppb 4.14 4.08 110. 70-130 1.75 25 WG 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.75 25 WG 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.75 25 WG 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.75 25 WG 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.75 25 WG 1,3-Dichlorobenzene ppb 4.07 3.96 108. 70-130 1.51 25 WG 1,4-Dicknee ppb 4.07 3.96 108. 70-130 1.38 25 WG 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.38 25 WG 2,2,4-Trimethylpentane ppb 3.79 3.92 106. 70-130 1.38 25 WG 2-Chorotoluene ppb 3.79 3.92 106. 70-130 1.38 25 WG 2-Chorotoluene ppb 3.79 3.92 106. 70-130 1.38 25 WG 2-Chorotoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG 4-Ethyltoluene	Vinyl chloride	ppb	3.78	3.81			0.750	25	WG744240
1,1,2,2-Tetrachloroethane ppb 4.03 3.94 107. 70-130 2.30 25 WG 1,1,2-Trichloroethane ppb 4.08 3.95 109. 70-130 3.15 25 WG 1,1,2-Trichloroethane ppb 3.97 3.90 106. 70-130 1.58 25 WG 1,1-Dichloroethane ppb 3.92 3.92 105. 70-130 0.0300 25 WG 1,1-Dichloroethane ppb 3.91 3.84 104. 70-130 1.93 25 WG 1,2-A-Trichlorobenzene ppb 3.84 3.94 102. 59.7-155 2.65 25 WG 1,2-A-Trimethylbenzene ppb 4.14 4.02 110. 70-130 2.58 25 WG 1,2-Dichlorobenzene ppb 4.08 3.97 109. 70-130 2.58 25 WG 1,2-Dichlorobenzene ppb 4.06 4.06 108. 70-130 2.58 25 WG 1,2-Dichloropenzene ppb 4.02 3.88 107. 70-130 3.83 25 WG 1,2-Dichloropenzene ppb 4.02 3.88 107. 70-130 3.83 25 WG 1,2-Dichloropenzene ppb 4.02 3.88 107. 70-130 3.83 25 WG 1,2-Dichloropenzene ppb 4.02 3.88 107. 70-130 3.83 25 WG 1,2-Dichloropenzene ppb 4.02 3.88 107. 70-130 3.89 25 WG 1,3-Dichlorobenzene ppb 4.04 4.00 108. 70-130 3.49 25 WG 1,3-Dichlorobenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG 1,3-Dichlorobenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG 1,3-Dichlorobenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG 1,3-Dichlorobenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG 1,3-Dichlorobenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG 1,3-Dichlorobenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG 1,3-Dichlorobenzene ppb 4.07 4.08 110. 70-130 1.51 25 WG 1,4-Dichlorobenzene ppb 4.07 3.96 108. 70-130 1.51 25 WG 1,4-Dichlorobenzene ppb 4.07 3.96 108. 70-130 1.38 25 WG 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.38 25 WG 2-Chlorotoluene ppb 4.07 4.03 1.08. 70-130 1.38 25 WG 2-Chlorotoluene ppb 4.07 4.03 1.08. 70-130 2.26 1 25 WG 2-Propanol ppb 4.07 3.99 109. 70-130 2.12 25 WG 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG 4-Ethyltoluene	1,4-Bromofluorobenzene				99.30	60-140			WG744240
1,1,2-Trichloroethane ppb 4.08 3.95 109. 70-130 3.15 25 WG 1,1,2-Trichlorotrifluoroethane ppb 3.97 3.90 106. 70-130 1.58 25 WG 1,1-Dichloroethane ppb 3.92 3.92 105. 70-130 0.0300 25 WG 1,2-Dichloroethane ppb 3.84 104. 70-130 1.93 25 WG 1,2,4-Trichlorobenzene ppb 3.84 3.94 102. 59.7-155 2.65 25 WG 1,2-Jerichlorobenzene ppb 4.08 3.97 109. 70-130 2.76 25 WG 1,2-Dichlorobenzene ppb 4.06 4.06 108. 70-130 2.58 25 WG 1,2-Dichlorobethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichlorobethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichlorobetrafluoroethane ppb 3.99 3.94 106.	1,1,1-Trichloroethane	dqq	3.94	3.92	105.	70-130	0.470	25	WG744351
1,1,2-Trichloroethane ppb 4.08 3.95 109. 70-130 3.15 25 WG 1,1,2-Trichlorotrifluoroethane ppb 3.97 3.90 106. 70-130 1.58 25 WG 1,1-Dichloroethane ppb 3.92 3.92 105. 70-130 0.0300 25 WG 1,2-Dichloroethane ppb 3.84 104. 70-130 1.93 25 WG 1,2,4-Trichlorobenzene ppb 3.84 3.94 102. 59.7-155 2.65 25 WG 1,2,4-Trimethylbenzene ppb 4.08 3.97 109. 70-130 2.76 25 WG 1,2-Dichromoethane ppb 4.08 3.97 109. 70-130 2.58 25 WG 1,2-Dichlorobenzene ppb 4.06 4.06 108. 70-130 3.83 25 WG 1,2-Dichloroethane ppb 3.99 3.94 106. 70-130 3.83 25 WG 1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106.	1,1,2,2-Tetrachloroethane		4.03	3.94	107.	70-130	2.30	25	WG744351
1,1,2-Trichlorotrifluoroethane ppb 3.97 3.90 106. 70-130 1.58 25 WG' 1,1-Dichloroethane ppb 3.92 3.92 105. 70-130 0.0300 25 WG' 1,1-Dichloroethane ppb 3.91 3.84 104. 70-130 1.93 25 WG' 1,2,4-Trichlorobenzene ppb 3.84 3.94 102. 59.7-155 2.65 25 WG' 1,2,4-Trimethylbenzene ppb 4.14 4.02 110. 70-130 2.76 25 WG' 1,2-Dibromoethane ppb 4.08 3.97 109. 70-130 2.58 25 WG' 1,2-Dichlorobenzene ppb 4.06 4.06 108. 70-130 2.58 25 WG' 1,2-Dichloropropane ppb 3.95 3.80 105. 70-130 3.83 25 WG' 1,3-S-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG' 1,3-Butadiene ppb 3.73 3.67 <td< td=""><td></td><td></td><td>4.08</td><td>3.95</td><td>109.</td><td>70-130</td><td>3.15</td><td>25</td><td>WG744351</td></td<>			4.08	3.95	109.	70-130	3.15	25	WG744351
1,1-Dichloroethene ppb 3.91 3.84 104. 70-130 1.93 25 WG 1,2,4-Trichlorobenzene ppb 3.84 3.94 102. 59.7-155 2.65 25 WG 1,2-Dichlorozene ppb 4.14 4.02 110. 70-130 2.76 25 WG 1,2-Dichlorosethane ppb 4.06 3.97 109. 70-130 2.58 25 WG 1,2-Dichlorosethane ppb 4.06 4.06 108. 70-130 0.0600 25 WG 1,2-Dichloropropane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG 1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106. 70-130 1.21 25 WG 1,3-Farimethylbenzene ppb 4.04 4.00 108. 70-130 1.28 25 WG 1,3-Butadiene ppb 4.14 4.08 110.	1,1,2-Trichlorotrifluoroethane		3.97	3.90	106.	70-130	1.58	25	WG744351
1,1-Dichloroethene ppb 3.91 3.84 104. 70-130 1.93 25 WG' 1,2,4-Trichlorobenzene ppb 3.84 3.94 102. 59.7-155 2.65 25 WG' 1,2,4-Trimethylbenzene ppb 4.14 4.02 110. 70-130 2.76 25 WG' 1,2-Dichloromoethane ppb 4.06 108. 70-130 2.58 25 WG' 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG' 1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG' 1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG' 1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG' 1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG' 1,3-Fartimethylbenzene ppb 3.94 106. 70-130 1	1,1-Dichloroethane	dqq	3.92	3.92	105.	70-130	0.0300	25	WG744351
1,2,4-Trimethylbenzene ppb 4.14 4.02 110. 70-130 2.76 25 WG' 1,2-Dibromoethane ppb 4.08 3.97 109. 70-130 2.58 25 WG' 1,2-Dichlorobenzene ppb 4.06 4.06 108. 70-130 0.0600 25 WG' 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG' 1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106. 70-130 3.49 25 WG' 1,3-Strimethylbenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG' 1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG' 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG' 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 2.5 WG' 1,4-Dioxane ppb 4.07 3.96 108.	1,1-Dichloroethene		3.91	3.84	104.	70-130	1.93	25	WG744351
1,2-Dibromoethane ppb 4.08 3.97 109. 70-130 2.58 25 WG 1,2-Dichlorobenzene ppb 4.06 4.06 108. 70-130 0.0600 25 WG 1,2-Dichloroethane ppb 3.95 3.80 105. 70-130 3.83 25 WG 1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG 1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106. 70-130 1.21 25 WG 1,3,5-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.21 25 WG 1,3,5-Trimethylbenzene ppb 3.73 3.67 100. 70-130 1.75 25 WG 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.75 25 WG 1,4-Dichlorobenzene ppb 4.07 3.96 108. 70-130 0.730 25 WG 2,2,4-Trimethylpentane ppb 4.07 3.96 108. 70-130 2.61 25 WG 2,2,4-Trimethylpentane ppb 4.07 3.96 108. 70-130 1.01 25 WG 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG 2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WG 2-Propanol ppb 4.07 3.99 109. 70-130 2.04 25 WG 4-Ethyltoluene	1,2,4-Trichlorobenzene	dqq	3.84	3.94	102.	59.7-155	2.65	25	WG744351
1,2-Dichlorobenzene ppb 4.06 4.06 108. 70-130 0.0600 25 WG' 1,2-Dichlorocthane ppb 3.95 3.80 105. 70-130 3.83 25 WG' 1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG' 1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106. 70-130 1.21 25 WG' 1,3,5-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG' 1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG' 1,4-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG' 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WG' 1,4-Dichlorobenzene ppb 4.07 3.96 108. 70-130 0.730 25 WG' 2,2,4-Trimethylpentane ppb 4.07 4.03	1,2,4-Trimethylbenzene	ppb	4.14	4.02	110.	70-130	2.76	25	WG744351
1,2-Dichlorobenzene ppb 4.06 4.06 108. 70-130 0.0600 25 WG' 1,2-Dichlorocthane ppb 3.95 3.80 105. 70-130 3.83 25 WG' 1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG' 1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106. 70-130 1.21 25 WG' 1,3,5-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG' 1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG' 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG' 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WG' 1,4-Dichlorobenzene ppb 4.07 3.96 108. 70-130 0.730 25 WG' 2,2,4-Trimethylpentane ppb 4.07 4.03	1,2-Dibromoethane	dqq	4.08	3.97	109.	70-130	2.58	25	WG744351
1,2-Dichloropropane ppb 4.02 3.88 107. 70-130 3.49 25 WG' 1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106. 70-130 1.21 25 WG' 1,3,5-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG' 1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG' 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG' 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WG' 1,4-Dioxane ppb 4.07 3.96 108. 70-130 0.730 25 WG' 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WG' 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG' 2-Propanol ppb 3.72 3.67 99.0 6	1,2-Dichlorobenzene		4.06	4.06	108.	70-130	0.0600	25	WG744351
1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106. 70-130 1.21 25 WG' 1,3,5-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG' 1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG' 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG' 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WG' 1,4-Dioxane ppb 4.07 3.96 108. 70-130 2.61 25 WG' 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WG' 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG' 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG' 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG'	1,2-Dichloroethane	ppb	3.95	3.80	105.	70-130	3.83	25	WG744351
1,2-Dichlorotetrafluoroethane ppb 3.99 3.94 106. 70-130 1.21 25 WG' 1,3,5-Trimethylbenzene ppb 4.04 4.00 108. 70-130 1.08 25 WG' 1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG' 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG' 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WG' 1,4-Dioxane ppb 4.07 3.96 108. 70-130 2.61 25 WG' 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WG' 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG' 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG' 4-Ethyltoluene ppb 4.07 3.99 109. 70-13									WG744351
1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG* 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG* 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WG* 1,4-Dioxane ppb 4.07 3.96 108. 70-130 2.61 25 WG* 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WG* 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG* 2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WG* 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG* 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG*			3.99	3.94	106.	70-130	1.21	25	WG744351
1,3-Butadiene ppb 3.73 3.67 100. 70-130 1.75 25 WG* 1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG* 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WG* 1,4-Dioxane ppb 4.07 3.96 108. 70-130 2.61 25 WG* 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WG* 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG* 2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WG* 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG* 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG*			4.04	4.00	108.	70-130	1.08	25	WG744351
1,3-Dichlorobenzene ppb 4.14 4.08 110. 70-130 1.51 25 WG' 1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WG' 1,4-Dioxane ppb 4.07 3.96 108. 70-130 2.61 25 WG' 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WG' 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG' 2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WG' 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG' 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG'	1,3-Butadiene		3.73	3.67	100.	70-130	1.75	25	WG744351
1,4-Dichlorobenzene ppb 4.12 4.09 110. 70-130 0.730 25 WGT 1,4-Dioxane ppb 4.07 3.96 108. 70-130 2.61 25 WGT 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WGT 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WGT 2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WGT 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WGT 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WGT	•								WG744351
1,4-Dioxane ppb 4.07 3.96 108. 70-130 2.61 25 WG' 2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WG' 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG' 2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WG' 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG' 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG'	•							25	WG744351
2,2,4-Trimethylpentane ppb 4.07 4.03 108. 70-130 1.01 25 WG* 2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG* 2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WG* 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG* 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG*									WG744351
2-Butanone (MEK) ppb 3.97 3.92 106. 70-130 1.38 25 WG* 2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WG* 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG* 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG*	·								WG744351
2-Chlorotoluene ppb 4.03 3.94 107. 70-130 2.12 25 WG* 2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG* 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG*									WG744351
2-Propanol ppb 3.72 3.67 99.0 62.2-137 1.35 25 WG' 4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG'	· · ·								WG744351
4-Ethyltoluene ppb 4.07 3.99 109. 70-130 2.04 25 WG									WG744351
	-								WG744351
4-Methyl-2-pentanone (MIBK) ppb 3.88 3.76 104. 51.3-144 3.24 25 WG	<u> </u>							25	WG744351
									WG744351

^{*} Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

		Laboratory	z Control	Sample Duplica	te			
Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batch
Allyl chloride	ppb	3.81	3.75	102.	70-130	1.61	25	WG744351
Benzene	ppb	4.00	3.88	107.	70-130	2.98	25	WG744351
Benzyl Chloride	ppb	4.23	4.22	113.	70-130	0.200	25	WG744351
Bromodichloromethane	ppb	4.04	3.92	108.	70-130	2.96	25	WG744351
Bromoform	ppb	4.12	4.05	110.	70-130	1.72	25	WG744351
Bromomethane	ppb	3.80	3.85	101.	70-130	1.55	25	WG744351
Carbon disulfide	ppb	3.87	3.86	103.	70-130	0.330	25	WG744351
Carbon tetrachloride	ppb	4.02	3.96	107.	70-130	1.37	25	WG744351
Chlorobenzene	ppb	4.12	3.93	110.	70-130	4.79	25	WG744351
Dibromochloromethane	ppb	4.12	3.97	110.	70-130	3.79	25	WG744351
Chloroethane	ppb	3.88	3.83	103.	70-130	1.38	25	WG744351
Chloroform	ppb	3.91	3.92	104.	70-130	0.0900	25	WG744351
Chloromethane	ppb	3.80	3.76	101.	70-130	1.29	25	WG744351
cis-1,2-Dichloroethene	ppb	3.88	3.85	104.	70-130	0.780	25	WG744351
cis-1,3-Dichloropropene	ppb	4.04	3.91	108.	70-130	3.23	25	WG744351
Cyclohexane	ppb	3.96	3.90	106.	70-130	1.58	25	WG744351
Dichlorodifluoromethane	ppb	4.30	3.95	115.	70-130	8.37	25	WG744351
Ethanol	ppb	3.73	3.76	100.	52.6-145	0.760	25	WG744351
Ethylbenzene	ppb	4.04	3.96	108.	70-130	2.04	25	WG744351
Heptane	ppb	4.10	4.02	109.	70-130	1.98	25	WG744351
Hexachloro-1,3-butadiene	ppb	4.17	4.16	111.	55.7-144	0.380	25	WG744351
Isopropylbenzene	ppb	4.06	3.99	108.	70-130	1.64	25	WG744351
m&p-Xylene	ppb	7.98	7.83	106.	70-130	1.85	25	WG744351
Methyl Butyl Ketone	ppb	3.90	3.81	104.	36.5-155	2.38	25	WG744351
Methyl methacrylate	ppb	3.60	3.53	96.0	70-130	1.93	25	WG744351
MTBE	ppb	3.83	3.80	102.	70-130	0.740	25	WG744351
Methylene Chloride	ppb	3.58	3.61	96.0	70-130	0.830	25	WG744351
n-Hexane	ppb	3.92	3.89	104.	70-130	0.690	25	WG744351
Naphthalene	ppb	3.94	4.00	105.	53.4-158	1.61	25	WG744351
o-Xylene	ppb	4.03	3.91	107.	70-130	2.97	25	WG744351
Propene	ppb	3.71	3.65	99.0	70-130	1.63	25	WG744351
Styrene	ppb	4.10	4.01	109.	70-130	2.26	25	WG744351
Tetrachloroethylene	ppb	4.05	3.98	108.	70-130	1.67	25	WG744351
Tetrahydrofuran	ppb	3.80	3.71	101.	70-130	2.44	25	WG744351
Toluene	ppb	4.07	3.99	108.	70-130	2.05	25	WG744351
trans-1,2-Dichloroethene	ppb	3.83	3.81	102.	70-130	0.520	25	WG744351
trans-1,3-Dichloropropene	ppb	4.07	3.91	108.	70-130	4.05	25	WG744351
Trichloroethylene	ppb	4.02	3.94	107.	70-130	2.06	25	WG744351
Trichlorofluoromethane	ppb	3.96	3.92	106.	70-130	1.04	25	WG744351
Vinyl acetate	ppb	3.84	3.86	102.	70-130	0.280	25	WG744351
Vinyl Bromide	ppb	4.00	3.95	107.	70-130	1.42	25	WG744351
Vinyl chloride	ppb	3.86	3.83	103.	70-130	0.700	25	WG744351
1,4-Bromofluorobenzene				98.60	60-140			WG744351
1,1,1-Trichloroethane	ppb	4.11	4.05	110.	70-130	1.38	25	WG744556
1,1,2,2-Tetrachloroethane	dqq	4.18	4.12	112.	70-130	1.53	25	WG744556
1,1,2-Trichloroethane	ppb	4.30	4.25	115.	70-130	1.25	25	WG744556
1,1,2-Trichlorotrifluoroethane	dqq	4.16	4.10	111.	70-130	1.38	25	WG744556
1,1-Dichloroethane	dqq	4.12	4.01	110.	70-130	2.66	25	WG744556
1,1-Dichloroethene	ppb	4.08	3.96	109.	70-130	2.98	25	WG744556
1,2,4-Trichlorobenzene	ppb	4.20	4.02	112.	59.7-155	4.30	25	WG744556
1,2,4-Trimethylbenzene	ppb	4.21	4.18	112.	70-130	0.650	25	WG744556
1,2-Dibromoethane	ppb	4.29	4.19	114.	70-130	2.48	25	WG744556
1,2-Dichlorobenzene	ppb	4.32	4.21	115.	70-130	2.57	25	WG744556
1,2-Dichloroethane	dqq	4.11	4.02	109.	70-130	2.01	25	WG744556
1,2-Dichloropropane	ppb	4.18	4.07	111.	70-130	2.68	25	WG744556
1,2-Dichlorotetrafluoroethane	ppb	4.16	4.06	111.	70-130	2.28	25	WG744556
1,3,5-Trimethylbenzene	dqq	4.22	4.14	113.	70-130	1.90	25	WG744556
* Performance of this Analyte								

^{*} Performance of this Analyte is outside of established criteria.

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

		Laborator	y Control :	Sample Duplica				
Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batch
1 2 Post a 3 cm a		3.76	3.72	100.	70-130	1.03	25	WG7445
1,3-Butadiene 1,3-Dichlorobenzene	ppb	4.29	4.27	114.	70-130	0.510	25 25	WG7445 WG7445
· ·	ppb	4.29	4.27	114.	70-130	1.47	25 25	
1,4-Dichlorobenzene	ppb							WG7445
1,4-Dioxane	ppb	4.28	4.15	114.	70-130	3.24	25	WG7445
2,2,4-Trimethylpentane	ppb	4.21	4.14	112.	70-130	1.79	25	WG7445
2-Butanone (MEK)	ppb	4.17	4.01	111.	70-130	3.75	25	WG7445
2-Chlorotoluene	ppb	4.29	4.17	114.	70-130	2.90	25	WG7445
2-Propanol	ppb	3.85	3.78	103.	62.2-137	1.86	25	WG7445
4-Ethyltoluene	ppb	4.26	4.20	114.	70-130	1.54	25	WG7445
4-Methyl-2-pentanone (MIBK)	ppb	4.04	3.90	108.	51.3-144	3.41	25	WG7445
Acetone	ppb	3.26	3.14	87.0	70-130	3.46	25	WG7445
Allyl chloride	ppb	3.90	3.84	104.	70-130	1.46	25	WG74455
Benzene	ppb	4.14	4.08	110.	70-130	1.33	25	WG7445
Benzyl Chloride	ppb	4.45	4.33	118.	70-130	2.76	25	WG7445
Bromodichloromethane	ppb	4.18	4.14	111.	70-130	1.01	25	WG7445
Bromoform	ppb	4.32	4.23	115.	70-130	2.06	25	WG7445
Bromomethane	ppb	4.02	3.99	107.	70-130	0.840	25	WG7445
Carbon disulfide	ppb	4.01	3.98	107.	70-130	0.780	25	WG7445
Carbon tetrachloride	ppb	4.18	4.14	111.	70-130	0.800	25	WG7445
Chlorobenzene	ppb	4.30	4.18	114.	70-130	2.71	25	WG7445
Dibromochloromethane	ppb	4.28	4.19	114.	70-130	2.31	25	WG74455
Chloroethane	ppb	4.03	3.92	107.	70-130	2.81	25	WG74455
Chloroform	ppb	4.10	4.00	109.	70-130	2.59	25	WG74455
Chloromethane	dqq	4.01	3.86	107.	70-130	3.87	25	WG74455
cis-1,2-Dichloroethene	dqq	4.03	3.92	107.	70-130	2.72	25	WG74455
cis-1,3-Dichloropropene	ppb	4.22	4.10	112.	70-130	2.77	25	WG74455
Cyclohexane	dqq	4.10	4.05	109.	70-130	1.42	25	WG74455
Dichlorodifluoromethane	ppb	4.08	4.19	109.	70-130	2.61	25	WG74455
Ethanol	ppb	3.97	3.82	106.	52.6-145	4.08	25	WG74455
Ethylbenzene	dqq	4.23	4.14	113.	70-130	2.30	25	WG74455
Heptane	dqq	4.23	4.20	113.	70-130	0.730	25	WG74455
Hexachloro-1,3-butadiene	ppb	4.34	4.34	116.	55.7-144	0.0700	25	WG7445
Isopropylbenzene	dqq	4.21	4.17	112.	70-130	1.02	25	WG74455
m&p-Xylene	dqq	8.32	8.29	111.	70-130	0.300	25	WG74455
Methyl Butyl Ketone	ppb	4.05	4.02	108.	36.5-155	0.830	25	WG74455
Methyl methacrylate	ppb	3.75	3.65	100.	70-130	2.68	25	WG74455
MTBE	dqq	4.00	3.94	107.	70-130	1.51	25	WG74455
Methylene Chloride	ppb	3.75	3.66	100.	70-130	2.63	25	WG74455
n-Hexane	ppb	4.08	4.01	100.	70-130	1.84	25	WG74455
Naphthalene	dqq	4.23	4.09	113.	53.4-158	3.29	25	WG74455
o-Xylene	ppb	4.15	4.16	111.	70-130	0.320	25	WG74455
Propene		3.83	3.77	102.	70-130	1.52	25	WG74455
Styrene	ppb	4.29	4.22	114.	70-130	1.71	25	WG74455
Tetrachloroethylene	ppb	4.29	4.24	114.	70-130	2.36	25	WG74455
-	ppb	3.92	3.83	105.	70-130	2.50	25 25	WG74455
Tetrahydrofuran	ppb							
Toluene	ppb	4.25	4.17	113.	70-130	1.75	25	WG74455
trans-1,2-Dichloroethene	ppb	4.00	3.94	107.	70-130	1.46	25	WG74455
trans-1,3-Dichloropropene	ppb	4.18	4.12	111.	70-130	1.39	25	WG7445!
Trichloroethylene	ppb	4.23	4.14	113.	70-130	2.34	25	WG7445!
Trichlorofluoromethane	ppb	4.13	4.08	110.	70-130	1.27	25	WG7445
Vinyl acetate	ppb	3.99	3.88	106.	70-130	2.85	25	WG7445
Vinyl Bromide	ppb	4.18	4.17	112.	70-130	0.280	25	WG7445
Vinyl chloride	ppb	3.98	3.97	106.	70-130	0.110	25	WG7445
1,4-Bromofluorobenzene				97.70	60-140			WG7445
Helium	mg/l	424.	421.	85.0	70-130	0.610	25	WG7445

^{*} Performance of this Analyte is outside of established criteria.
For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L723055

September 25, 2014

		Laboratory	Control Sa	mple Duplicate				
Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batch
Helium	mg/l	562.	551.	112.	70-130	2.14	25	WG744838

Batch number /Run number / Sample number cross reference

WG744240: R2991685: L723055-01 02 WG744351: R2992062: L723055-01 02 03 04 WG744556: R2992171: L723055-03 04 05 06 WG744551: R2992367: L723055-07 08 WG744838: R2992872: L723055-09 10 11

 $^{^{\}star}$ * Calculations are performed prior to rounding of reported values.

^{*} Performance of this Analyte is outside of established criteria.
For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

GeoEngineers - Everett, WA Jessica Smith 8410 154th Avenue NE

Redmond, WA 98052

Quality Assurance Report Level II

L723055

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

September 25, 2014

Billing Information:									An	alysis / Co	ntainer	/ Preserva	tive	Chain of 0	Custody	Page of	
GeoEngineers - Everett, WA			Accounts Payable 8410 154th Avenue NE Redmond, WA 98052					(only						L· A· B	RLAB	SC
Report to: Em			Email To: ja	nail To: jasmith@geoengineers.com											Mount Jul Phone: 61	iet, TN 371 5-758-585 0-767-585	1000000
Project Description: SLU Marriott AC			Collected: Seattle, WA					HVOCs								BASS	
hone: 425-861-6022 Client Project # 20776-003-00				Lab Project # GEOENGEWA-2077600300				(Helium	10000						L014		
Collected by (print): Ali Cochrane	Site/Facility ID	#		P.O. #				10	Summa						100000000	m: GEO ite:T96	engewa 968
Collected by (Signature): Immediately Packed on Ice N Y	Same D	ab MUST Be Day ay Day	200%	Standaro Email?	Results Needed (+WY AYB No X_Yes NoYes	und No.	Sur	ASTM1940	7-15 54						TSR: 35	Prelogin: P483141 TSR: 358 - Jarred Willis PB: P P P P P P P P P P P P P P P P P P	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Catrs	TO-15	1000	7						Rem./Co	ntaminant	
SV-1	1	Air		9/19/19		1	X	X									-07
SV-2		Air		1		1	X	X							, A.		-09
SV-3		Air				1	X	X							-0.	Agreement of	-10
SV-4		Air				1	X	1							9	1	-
SV-5		Air		1		1	X	X	1						-		-1(
5V-L				-		+			X						~ (20	
				age.			1								77		
		140-5	4														
The second second																	
* Matrix: SS - Soil GW - Groundwa Remarks:(5) 1L summa cans 1 additional	and (5) sampl	ing manif	olds		ment #					pH		_ Temp _ Other _		Hol	d #		
Relinquished by : (Signature)		Date:	9/14	4:05pm			É,			/	iex C		UPS Received:		ndition:	(lat	use only)
Relinquished by : (Signature)	<u> </u>	Date:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Time:	Received for lab b	y! (Sigg	lature)			Date:	0	6tler Time	DINO	CHICAGO PROPERTY	C Seal Intact: Checked:	Y	NNA F:

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of WPPI Bellevue MFS, LLC, their authorized agents and regulatory agencies. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment or remedial action study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except WPPI Bellevue MFS, LLC should rely on this plan without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based on a Unique Set of Project-Specific Factors

This report applies to 739 9th Avenue North of Seattle, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this remedial action plan, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the GeoSciences, www.asfe.org.

Reliance Conditions for Third Parties

No third party may rely on the product of our services unless GeoEngineers agrees in advance, and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Subsurface Conditions Can Change

This report is based on conditions that existed at the time our site studies were performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-Site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the Site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject Site or reuse of the affected media on Site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject Site to another location or its reuse on Site in instances that we were not aware of or could not control.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Client desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

Geotechnical, Geologic and Environmental Reports Should Not Be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from the sampling locations at the site documented in past reports. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. There is always a potential that areas of contamination exist in portions of the site that were not sampled or tested during this or previous studies. Our remedial action plan, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Have we delivered World Class Client Service?

Please let us know by visiting **www.geoengineers.com/feedback**.

