Kennedy/Jenks Consultants

**Engineers & Scientists** 

2001 32nd Avenue South, Suite 100 Federal Way, Washington 98001 253-835-6400 FAX: 253-952-3435

6 April 2015

Ms. Jing Liu Toxic Cleanup Program Washington State Department of Ecology 3190 160th Avenue SE Bellevue, Washington 98008

Subject: Quarterly Groundwater Monitoring Event Report, February 2015 Cornet Bay Marina Oak Harbor, Washington K/J 1396010.00

Dear Ms. Liu:

This letter report presents the findings of the third quarterly groundwater monitoring event that was performed following completion of remediation activities at the Cornet Bay Marina (site) in June 2014. The site is located at the northern end of Whidbey Island, Island County, Washington and bounded on the west by Cornet Bay and on the east by Cornet Bay Road. A site vicinity map is included as Figure 1 (attached).

The work documented in this letter report was performed on behalf of the Washington State Department of Ecology (Ecology) in support of a cleanup action completed at the site. The work performed includes the third quarterly groundwater monitoring of six site monitoring wells and two groundwater seeps.

# Background

In January 1989, a release occurred from ruptured underground fuel lines and caused impacts to soil and groundwater behind the wooden bulkhead at the site. After discovery of the release, the original underground storage tanks (USTs) and piping were emptied and removed. Following removal of the old tanks and piping, a two-compartment 12,000-gallon aboveground storage tank (AST) (9,000-gallon gasoline and 3,000-gallon diesel) and steel piping were installed. The tank was installed in a belowground reinforced concrete vault near the footprint of the former UST excavation. The location of the tank vault is shown on Figure 2 (attached).

In February 1993, a Consent Decree (Ecology Site Cleanup No. 2011, Consent Decree No. 93-2-00018-3) was established between Ecology and the Cornet Bay Marina site owner/operator (Mr. Milton Woods). The consent decree required an investigation and cleanup of the site in accordance with the requirements of Model Toxics Control Act (MTCA) [Washington Administrative Code (WAC) 173-340].

In August 2011, Ecology authorized Kennedy/Jenks Consultants to prepare a Remedial Investigation/Feasibility Study (RI/FS) Work Plan (Work Plan) to 1) collect supplemental information regarding the distribution of affected soil and groundwater, 2) assess the potential for vapor intrusion at the onsite building, and 3) evaluate overall site conditions with the intent to identify and select a cleanup action for the site.

The Work Plan was implemented from August through December 2011 and documented in the RI/FS report dated July 2013. The preferred remedial alternative identified in the FS included replacement of the dilapidated wooden bulkhead with a new steel sheet pile bulkhead and removal and disposal of contaminated soil. Following completion of the RI/FS, the following activities were performed in support of implementing the selected remedial alternative:

- Preparation of a cleanup action plan (CAP), dated July 2013, that summarized key elements of the remedial action.
- Extensive permitting activities, including a State of Washington National Pollutant Discharge Elimination System (NPDES) permit, a Construction Stormwater General Permit (CSGP), and a U.S. Army Corps of Engineers (Corps) Nationwide Permit (NWP).
- Preparation of an Engineering Design Report (EDR), dated September 2013. The EDR provided details regarding the cleanup requirements, engineering design concepts and criteria, and plans for confirmation monitoring.
- Preparation of construction issue specifications and plans (Project Documents) for implementation by Ecology's selected remediation contractor.

The remedial action field work was completed from December 2013 through June 2014 by Ecology's selected remediation contractor (Glacier Environmental, Inc. of Mukilteo, Washington). The substantive remedial activities (including summary of performance monitoring results) for the remedial action are summarized in the Construction Completion Report (CCR) dated October 2014.

Following completion of the remedial action, four new groundwater monitoring wells (MW-1R, MW-2R, MW-4R, and MW-10R) were installed at the site on 13 August 2014 (refer to Figure 2). The four new wells replaced prior monitoring wells that had been abandoned as part of the cleanup activities. Each of the new wells and two previously installed monitoring wells (MW-7 and MW-9) were developed to remove fine-grained sediments from the filter-pack. Following development, each of the wells was surveyed by KPG of Seattle, Washington to identify top of casing elevation.

# Scope of Work

## **Quarterly Groundwater Monitoring**

The third quarterly monitoring event was performed on 24 February 2015. Field activities performed included the following:

- Groundwater level monitoring was conducted by gauging each of six site monitoring wells using an electronic water level depth probe. The groundwater elevation at each well was calculated by measuring the depth to water (to +/- 0.01 foot) and subtracting this measurement from the surveyed monitoring well casing elevations. Water levels were measured at high and low tides. Water levels were measured from 0850 to 0928, within approximately 1 hour of the 0851 high tide at Cornet Bay. Water levels were measured again from 1431 to 1510, within approximately 1.5 hours of the 1547 low tide at Cornet Bay.
- Groundwater sampling was performed using low-flow purging and sampling techniques with wells purged at a rate of approximately 0.1 to 0.25 liter per minute using a peristaltic pump. Field parameter monitoring included temperature, pH, specific conductance, dissolved oxygen, oxidation/reduction potential (ORP), and relative turbidity. Due to difficulties in the field, no turbidity was recorded for well MW-7. With the exception of well MW-1R that experienced slow recharge, purging continued until field parameters indicated stable conditions (refer to Table 1, attached).
- Groundwater samples were collected from the six monitoring wells and submitted to Analytical Resources, Incorporated (ARI) in Tukwila, Washington, for the following analyses:
  - Gasoline-range organics (GRO) using Ecology Method Northwest Total Petroleum Hydrocarbons as Gasoline (NWTPH-Gx).
  - Diesel-range organics (DRO) using Ecology Method Northwest Total Petroleum Hydrocarbons as Diesel Extended (NWTPH-Dx).
  - Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by Method SW8260C.
- Quality assurance/quality control (QA/QC) samples were collected and include:
  - One field duplicate sample (MW-1-2R-22415) was collected and analyzed for each of the primary chemical of concern (COC) analytes (GRO, DRO, and BTEX) from well MW-2R.
  - Trip blanks were included with the shipment (24 February 2015) to the analytical laboratory.
- Groundwater samples were also collected for analysis of selected monitored natural attenuation (MNA) parameters, including nitrate/nitrite, ammonia, sulfate, sulfide, dissolved iron (field filtered), and methane.
- Groundwater seep samples were collected from two seep locations along the bulkhead during low tide (for purposes of access). Sampling was performed by collecting seep water in a plastic bottle, followed by immediate transfer to the designated sampling bottles. Samples were submitted to ARI for analysis of DRO and GRO. Groundwater seep locations are included on Figure 2.

Groundwater Purge and Sample Forms are included in Attachment A.

## **Monitoring Results**

### **Groundwater Elevation Results**

The results of water level monitoring are summarized in Table 2 (attached).Potentiometric surface elevation maps of site groundwater are provided on Figure 3A (attached) for high tide data and Figure 3B (attached) for low tide data. Based on historical water level monitoring data, site groundwater levels are tidally influenced (especially near the bulkhead). Groundwater hydraulic gradient at the site slopes from the upland areas towards Cornet Bay (from east to west) during both high and low tide. During high tide, groundwater levels nearest the bulkhead rise approximately 4 to 5 feet, decreasing the hydraulic gradient magnitude across the site while maintaining the overall gradient direction. Current water level monitoring results obtained on 24 February 2015 indicate groundwater gradient conditions are consistent with historical monitoring results.

## **Analytical Results**

As indicated above, groundwater samples for the six site wells and two groundwater seep locations were submitted for GRO, DRO, and BTEX compounds on 24 February 2015. The analytical results of groundwater samples collected during this quarterly monitoring event are summarized in Table 3 (attached). All analyte concentrations (including GRO, DRO, and BTEX) in groundwater samples were below laboratory reporting limits for each well and two seep samples with two exceptions; benzene was detected in seep location SEEP-2 and duplicate sample collected from well MW-2R (MW-1-2R-22415).

As site groundwater discharges to surface water and is not used for potable consumption, compliance with groundwater cleanup levels for the site are based on comparison to applicable, relevant, and appropriate requirement (ARARs) or other relevant screening criteria. All analyte concentrations in the samples were either below the MTCA Method A Cleanup Level, Clean Water Act (CWA) values, or the National Oceanic and Atmospheric Administration's (NOAA) *Screening Quick Reference Tables* (SQUIRT) values. Comparison of site groundwater with these standards and screening levels demonstrate the remedial action completed in June 2014 was successful in removing contaminated site soils that could impact surface water in Cornet Bay. Groundwater laboratory analytical results are summarized in Table 3 and the laboratory analytical reports are provided in Attachment B.

As indicated above, site groundwater samples were also submitted for analysis of baseline MNA parameters (identified above) to assess natural biodegradation of possible residual hydrocarbon compounds (refer to Table 1). The results indicate conducive conditions in site groundwater to support natural biodegradation of any residual soil or groundwater COC impacts at the site via aerobic and/or anaerobic respiration.

Kennedy/Jenks Consultants appreciates the opportunity to provide continued support to Ecology on this project. Should you have any questions regarding the information contained herein, please do not hesitate to contact us at (253) 835-6400.

Very truly yours,

KENNEDY/JENKS CONSULTANTS

hrener

Ty C. Schreiner, L.Hg. Vice President

Attachments:

<u>Tables</u>

- Table 1 Water Quality and Geochemical Parameters
- Table 2 Summary of Groundwater Elevation Data
- Table 3 Groundwater Analytical Results

**Figures** 

Figure 1 – Site Location

Figure 2 – Site Plan

Figure 3A – Groundwater Potentiometric Surface Map – High Tide, February 2015

Figure 3B – Groundwater Potentiometric Surface Map – Low Tide, February 2015

Attachments

Attachment A – Groundwater Purge and Sample Forms Attachment B – Laboratory Analytical Reports

Tables

### **Table 1: Water Quality and Geochemical Parameters**

|                       | _                         |      |                         | Water Qualit       | y Parameters <sup>(a)</sup> |                               |                     |                                 |                     | Geochemi          | cal Parameter     | s                 |                          |
|-----------------------|---------------------------|------|-------------------------|--------------------|-----------------------------|-------------------------------|---------------------|---------------------------------|---------------------|-------------------|-------------------|-------------------|--------------------------|
| Monitoring<br>Well ID | Sample<br>Collection Date | рН   | Conductivity<br>(mS/cm) | Turbidity<br>(NTU) | Temperature<br>(°C)         | Dissolved<br>Oxygen<br>(mg/L) | ORP<br>(mV)         | Nitrate+<br>Nitrite<br>(mg-N/L) | Ammonia<br>(mg-N/L) | Sulfate<br>(mg/L) | Sulfide<br>(mg/L) | Methane<br>(µg/L) | Dissolved Iron<br>(mg/L) |
| MW-1R                 | 9/18/2014                 | 6.79 | 1.920                   | 22.2               | 20.44                       | 4.37                          | 111                 | 0.180                           | 1.17                | 64.5              | 0.050 U           | 11.8              | <sup>(b)</sup>           |
| MW-1R                 | 11/25/2014                | 7.23 | 0.957 <sup>(c)</sup>    | 32 <sup>(c)</sup>  | 11.8                        | 4.46 <sup>(c)</sup>           | 61.9 <sup>(c)</sup> | 16.3                            | 0.026               | 80.0              | 0.050 U           | 0.7 U             | 0.05 U                   |
| MW-1R                 | 2/24/2015                 | 7.14 | 1.908                   | 137.00             | 10.4                        | 5.31                          | 38.7                | 5.41                            | 0.037               | 44.7              | 0.161             | 0.7 U             | 0.83                     |
| MW-2R                 | 8/15/2014                 | 6.77 | 1.260                   | 28.8               | 17.42                       | 6.15                          | 79                  | 1.320                           | 0.116               | 64.3              | 0.050 U           | 0.7 U             | 0.05 U                   |
| MW-2R                 | 11/25/2014                | 7.11 | 0.267                   | 80                 | 11.0                        | 9.82                          | 205.0               | 0.654                           | 0.018               | 20.4              | 0.098             | 0.7 U             | 0.15                     |
| MW-2R                 | 2/24/2015                 | 6.40 | 2.851                   | 29.30              | 10.2                        | 3.48                          | 61.3                | 0.095                           | 0.318               | 66.5              | 0.100             | 116               | 3.91                     |
| MW-4R                 | 8/15/2014                 | 7.25 | 1.400                   | 32.9               | 16.24                       | 3.51                          | -18                 | 0.714                           | 0.022               | 96.0              | 0.050 U           | 13.2              | 0.05 U                   |
| MW-4R                 | 11/25/2014                | 7.38 | 0.308                   | 6.7                | 11.0                        | 9.85                          | 251.1               | 2.21                            | 0.034               | 42.5              | 0.050 U           | 0.7 U             | 0.05 U                   |
| MW-4R                 | 2/24/2015                 | 7.00 | 1.454                   | 3.76               | 10.15                       | 3.74                          | 50.9                | 0.513                           | 0.013               | 10                | 0.050 U           | 96.2              | 0.31                     |
| MW-7                  | 8/14/2014                 | 6.67 | 0.673                   | 16.3               | 17.47                       | 2.16                          | -175                | 0.024                           | 14.5                | 19.7              | 0.050 U           | 1,160             | 14.4                     |
| MW-7                  | 11/25/2014                | 7.11 | 0.455                   | 0.90               | 11.5                        | 0.16                          | -115.4              | 0.012                           | 10.9                | 24.1              | 0.050 U           | 1,760             | 12.9                     |
| MW-7                  | 2/24/2015                 | 6.73 | 0.761                   | NM                 | 9.41                        | 0.98                          | -83.1               | 0.010 U                         | 8.38                | 25.3              | 0.050 U           | 700               | 9.13                     |
| MW-9                  | 8/14/2014                 | 6.91 | 0.693                   | 17.0               | 17.82                       | 2.95                          | 10                  | 0.010 U                         | 0.376               | 10.8              | 0.050 U           | 0.7 U             | 0.05 U                   |
| MW-9                  | 11/25/2014                | 7.14 | 0.676                   | 5.2                | 12.7                        | 0.26                          | -7.0                | 0.010 U                         | 0.266               | 12.8              | 0.050 U           | 323               | 0.58                     |
| MW-9                  | 2/24/2015                 | 6.89 | 1.379                   | 25.30              | 10.57                       | 0.69                          | -0.3                | 0.011                           | 0.462               | 65.6              | 0.050 U           | 241               | 0.05 U                   |
| MW-10R                | 8/15/2014                 | 7.03 | 2.160                   | 165.0              | 18.23                       | 7.73                          | -30                 | 0.084                           | 4.61                | 98.6              | 0.100             | 5,180             | 2.07                     |
| MW-10R                | 11/25/2014                | 6.83 | 1.608                   | 10                 | 12.2                        | 0.32                          | 108.0               | 0.010 U                         | 3.10                | 211               | 0.059             | 3,000             | 1.99                     |
| MW-10R                | 2/24/2015                 | 6.62 | 3.539                   | 3.68               | 10.98                       | 0.69                          | 51                  | 0                               | 3.31                | 363               | 0.050 U           | 1,680             | 1.91                     |

### Notes:

(a) Water quality parameter readings at the completion of purging and prior to sampling.

(b) Well was not sampled for dissolved iron due to slow recharge.

(c) Well sampled prior to water quality parameter stabilization due to slow recharge.

mS/cm = milli-Siemens per centimeter.

NTU = nephelometric turbidity unit.

°C = degrees Celsius.

mg/L = milligrams per liter.

ORP = oxidation-reduction potential.

mV = millivolt.

mg-N/L = milligram nitrogen per liter.

mg/L = milligrams per liter.

 $\mu$ g/L = micrograms per liter.

"U" = Not detected at or above laboratory reporting limits.

NM = Not measured due to turbidity reading difficulties.

### Table 2: Summary of Groundwater Elevation Data

|                       |             | Top of PVC Well            |                      |                       |
|-----------------------|-------------|----------------------------|----------------------|-----------------------|
| Monitoring Well       | Measurement | Elevation <sup>(a)</sup>   | Depth to Groundwater | Groundwater Elevation |
| ID                    | Date        | (feet amsl) <sup>(3)</sup> | (feet)               | (feet amsl)           |
| MW-1R                 | 8/15/2014   | 14.19                      | 8.98                 | 5.21                  |
| MW-1R                 | 11/25/2014  | 14.19                      | 4.81                 | 9.38                  |
| MW-1R <sup>(c)</sup>  | 2/24/2015   | 14.19                      | 5.32                 | 8.87                  |
| MW-1R <sup>(d)</sup>  | 2/24/2015   | 14.19                      | 7.96                 | 6.23                  |
| MW-2R                 | 8/15/2014   | 13.87                      | 7.80                 | 6.07                  |
| MW-2R                 | 11/25/2014  | 13.87                      | 6.72                 | 7.15                  |
| MW-2R <sup>(c)</sup>  | 2/24/2015   | 13.87                      | 5.13                 | 8.74                  |
| MW-2R <sup>(d)</sup>  | 2/24/2015   | 13.87                      | 5.19                 | 8.68                  |
| MW-4R                 | 8/15/2014   | 13.76                      | 5.61                 | 8.15                  |
| MW-4R                 | 11/25/2014  | 13.76                      | 4.86                 | 8.90                  |
| MW-4R <sup>(c)</sup>  | 2/24/2015   | 13.76                      | 5.92                 | 7.84                  |
| MW-4R <sup>(d)</sup>  | 2/24/2015   | 13.76                      | 10.62                | 3.14                  |
| MW-7                  | 8/14/2014   | 13.66                      | 2.59                 | 11.07                 |
| MW-7                  | 11/25/2014  | 13.66                      | 0.47                 | 13.19                 |
| MW-7 <sup>(c)</sup>   | 2/24/2015   | 13.66                      | 2.04                 | 11.62                 |
| MW-7 <sup>(d)</sup>   | 2/24/2015   | 13.66                      | 2.09                 | 11.57                 |
| MW-9                  | 8/14/2014   | 12.83                      | 3.28                 | 9.55                  |
| MW-9                  | 11/25/2014  | 12.83                      | 1.84                 | 10.99                 |
| MW-9 <sup>(c)</sup>   | 2/24/2015   | 12.83                      | 3.31                 | 9.52                  |
| MW-9 <sup>(d)</sup>   | 2/24/2015   | 12.83                      | 2.65                 | 10.18                 |
| MW-10R                | 8/15/2014   | 13.42                      | 4.19                 | 9.23                  |
| MW-10R                | 11/25/2014  | 13.42                      | 3.57                 | 9.85                  |
| MW-10R <sup>(c)</sup> | 2/24/2015   | 13.42                      | 3.52                 | 9.90                  |
| MW-10R <sup>(d)</sup> | 2/24/2015   | 13.42                      | 3.55                 | 9.87                  |

### Notes:

(a) Casing elevations were surveyed on 15 August 2014 by KPG, Inc. of Tacoma, Washington.

(b) Water quality parameter readings at the completion of purging and prior to sampling.

(c) Groundwater elevation collected at high tide.

(d) Groundwater elevation collected at low tide.

PVC = polyvinyl chloride.

amsl = above mean sea level.

Third Quarterly Groundwater Monitoring Event Report, February 2015, Cornet Bay Marina, Oak Harbor, Washington April 2015

### **Table 3: Groundwater Analytical Results**

| Monitoring Well            | Sample<br>Collection    | Total Petro          | leum Hydrocarbo | ons (ug/l ) <sup>(a)</sup> | v                  | olatile Organic C     | compounds (ua/L      | (b)            |
|----------------------------|-------------------------|----------------------|-----------------|----------------------------|--------------------|-----------------------|----------------------|----------------|
| ID                         | Date                    | Gasoline             | Diesel          | Oil                        | Benzene            | Toluene               | Ethylbenzene         | Total Xylenes  |
| MW-1R                      | 8/18/2014               | 250 U                | 100 U           | 200 U                      | 1.0 U              | 1.0 U                 | 1.0 U                | 3.0 U          |
| MW-1R                      | 11/25/2014              | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-1R                      | 2/24/2015               | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-2R                      | 8/15/2014               | 250 U                | 100 U           | 200 U                      | 1.5                | 1.0 U                 | 1.0 U                | 3.0 U          |
| MW-2R                      | 11/25/2014              | 250 U / 250 U        | 100 U / 100 U   | 200 U / 200 U              | 0.20 U/0.20 U      | 0.20 U/0.20 U         | 0.20 U/0.20 U        | 0.60 U/0.60 U  |
| MW-2R                      | 2/24/2015               | 250 U / 250 U        | 100 U           | 200 U                      | 1.0 U / 0.42       | 1.0 U / 0.20 U        | 1.0 U / 0.20 U       | 3.0 U / 0.60 U |
| MW-4R                      | 8/15/2014               | 250 U                | 100 U           | 200 U                      | 1.0 U              | 1.0 U                 | 1.0 U                | 3.0 U          |
| MW-4R                      | 11/25/2014              | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-4R                      | 2/24/2015               | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-7                       | 8/14/2014               | 250 U                | 100 U           | 200 U                      | 1.0 U              | 1.0 U                 | 1.0 U                | 3.0 U          |
| MW-7                       | 11/25/2014              | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-7                       | 2/24/2015               | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-9                       | 8/14/2014               | 250 U                | 100 U           | 200 U                      | 1.0 U              | 1.0 U                 | 1.0 U                | 3.0 U          |
| MW-9                       | 11/25/2014              | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-9                       | 2/24/2015               | 250 U                | 110 U           | 220 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-10R                     | 8/15/2014               | 250 U / 250 U        | 100 U / 100 U   | 200 U / 200 U              | 1.0 U / 1.0 U      | 1.0 U / 1.0 U         | 1.0 U / 1.0 U        | 3.0 U / 3.0 U  |
| MW-10R                     | 11/25/2014              | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| MW-10R                     | 2/24/2015               | 250 U                | 100 U           | 200 U                      | 1.0 U              | 1.0 U                 | 1.0 U                | 3.0 U          |
| SEEP-1                     | 2/24/2015               | 250 U                | 100 U           | 200 U                      | 0.20 U             | 0.20 U                | 0.20 U               | 0.60 U         |
| SEEP-2                     | 2/24/2015               | 250 U                | 100 U           | 200 U                      | 0.81               | 0.20 U                | 0.20 U               | 0.60 U         |
| MTCA Method A C            | Cleanup Level           | 1,000 <sup>(c)</sup> | 500             | 500                        | 51 <sup>(d)</sup>  | 15,000 <sup>(d)</sup> | 2,100 <sup>(d)</sup> | 1,000          |
| NOAA SQUIRT M<br>Chronic E | larine Values<br>ffects | NA                   | NA              | NA                         | 110 <sup>(e)</sup> | 215 <sup>(e)</sup>    | 25 <sup>(e)</sup>    | NA             |

### Notes:

- (a) Samples were analyzed for diesel- and heavy oil-range, hydrocarbons using Northwest Total Petroleum Hydrocarbon (TPH) Method NWTPH-Dx with Acid/Silica Gel Clean-up and for gasoline-range hydrocarbons using Northwest TPH Method NWTPH-G.
- (b) Select aromatic volatile organic compounds (VOC) analyzed by EPA Method 8021B.
- (c) Cleanup level without presence of benzene.
- (d) Cleanup level is based on Clean Water Act CWA 303 (c)(4)(B).
- (e) Value based on NOAA Screening Quick Reference Tables (SQUIRT).

 $\mu$ g/L = micrograms per liter.

- U = Not detected at or above laboratory reporting limits or limits of quantitation.
- MTCA = Washington State Department of Ecology Model Toxics Control Act (WAC 173-340).
- NOAA = National Oceanic and Atmostpheric Administration.
- NA = Not measured, Not available, or Not applicable.

Where two values are displayed, the second is the analytical result for a field duplicate sample.

Figures





Source: Esri, DigitalGlobe, GeoEve, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

### Legend

- MW-9 🗭 Existing Monitoring Well
- MW-1R 🕺 2014 Monitoring Well
  - $\circ$ Approximate Location of Seep
  - Approximate Property Boundary
  - Former Timber Bulkhead and Current Sheet Pile Bulkhead

**Note:** 1. Approximate property boundary obtained from survey performed on 17 November 2011. Boundary located on east portion of site is identified as right-of-way.



100

# Kennedy/Jenks Consultants

Washington State Department of Ecology Cornet Bay Marina

Site Plan

1396010\*00 March 2015

Figure 2



Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Legend

MW-9  $\oplus$  Existing Monitoring Well (With December 2014 Groundwater Level Elevation, feet above MSL)

MW-1R  $\oplus$  2014 Monitoring Well (With December 2014 Groundwater Level Elevation, feet above MSL)

-8:0- Approximate Groundwater Elevation Contour (Elevation, feet above MSL)

• Approximate Location of Seep

Former Timber Bulkhead and Current Sheet Pile Bulkhead

----- Approximate Property Boundary

**Note:** 1. Approximate property boundary obtained from survey performed on 17 November 2011. Boundary located on east portion of site is identified as right-of-way.



# Kennedy/Jenks Consultants

Washington State Department of Ecology Cornet Bay Marina

**Groundwater Potentiometric** Surface Map - High Tide February 2015

> 1396010\*00 March 2015

> > Figure 3A



Legend

- MW-9  $\oplus$  Existing Monitoring Well (With February 2015 Groundwater Level Elevation, feet above MSL)
- MW-1R  $\oplus$  2014 Monitoring Well (With February 2015 Groundwater Level Elevation, feet above MSL)
  - -8:0- Approximate Groundwater Elevation Contour (Elevation, feet above MSL)
  - Approximate Location of Seep
  - Former Timber Bulkhead and Current Sheet Pile Bulkhead

----- Approximate Property Boundary

**Note:** 1. Approximate property boundary obtained from survey performed on 17 November 2011. Boundary located on east portion of site is identified as right-of-way.

![](_page_13_Figure_10.jpeg)

# Kennedy/Jenks Consultants

Washington State Department of Ecology Cornet Bay Marina

**Groundwater Potentiometric** Surface Map - Low Tide February 2015

> 1396010\*00 March 2015

> > Figure 3B

# Attachment A

Groundwater Purge and Sample Forms

| Date: Project Name: Project Number: Sampling Personnel: Water Level Meter: Purging Equipment: Sampling Time: Purge Depth (ft): Total Discharge (                                                         | 2-24-15<br>Dernet Ba<br>1396010<br>AML - C<br>rerface P<br>ristaltic P<br>00<br>8.0'     | y Maria<br>00<br>J<br>nobe                                                                                           | Well Ni<br>Monum<br>Well Di<br>Well Ci<br>Total C<br>Screen<br>Depth                           | umber:<br>nent Type:<br>iameter (in):<br>ondition:<br>asing Depth<br>ned Interval (fi                                                                                                                                      | Stickup:<br><u>2 inch</u><br>(ft):(C   | AW-1R<br>ad<br>b, 2 1                      | ft PVC) | Flush:     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|---------|------------|
| Project Name:<br>Project Number:<br>Sampling Personnel:<br>Water Level Meter:<br>Purging Equipment:<br>Sampling Time:<br>Purge Depth (ft):<br>Total Discharge (                                          | I396010<br>AML - C<br>rerface Pr<br>ristaltic P<br>00<br>8.01                            | y Maria<br>00<br>J<br>robe<br>unp                                                                                    | Monurr<br>Well Di<br>Well C<br>Total C<br>Screen<br>Depth                                      | nent Type:<br>iameter (in):<br>ondition:<br>casing Depth (<br>ned Interval (fi                                                                                                                                             | Stickup:<br>2 inch<br>(ft):(C<br>:):(C | ()<br>20<br>), 2 ti                        | ft PVC) | Flush:     |
| Project Number:<br>Sampling Personnel:<br>Water Level Meter:<br>Purging Equipment:<br>Sampling Time:<br>Purge Depth (ft):<br>Total Discharge (                                                           | 1396010<br>AML - C<br>rerface P<br>ristaltic P<br>00<br>8.0'                             | J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J                          | Well Di<br>Well Ci<br>Total C<br>Screen<br>Depth                                               | iameter (in):<br>ondition:<br>casing Depth<br>ied Interval (fi                                                                                                                                                             | 2 inch<br>Go<br>(ft):(C                | ed                                         |         | Reference: |
| Sampling Personnel:<br>Water Level Meter:<br>Purging Equipment: ?<br>Sampling Time:?<br>Purge Depth (ft):<br>Total Discharge (                                                                           | AML - C<br>rerface Pr<br>ristaltic P<br>00<br>8.0'                                       | d<br>abe<br>unp                                                                                                      | Well C<br>Total C<br>Screen<br>Depth                                                           | ondition:<br>asing Depth<br>and Interval (fl                                                                                                                                                                               | (ft):(C                                | ed<br>), 2 tr<br>tr                        | 00      | Reference: |
| Water Level Meter:          Purging Equipment:       ?         Sampling Time:       !         Purge Depth (ft):          Total Discharge (       !         Water Disposal:                               | ristaltic P<br>8.01                                                                      | robe<br>unp                                                                                                          | Total C<br>Screen<br>Depth                                                                     | asing Depth                                                                                                                                                                                                                | (ft):(C                                | ), 2 t                                     | 00      | Reference: |
| Valer Level Meter.          Purging Equipment:       >         Sampling Time:          Purge Depth (ft):          Total Discharge (gal):          Water Disposal:                                        | ristaltic P<br>8.01                                                                      | unp                                                                                                                  | Screen                                                                                         | ied Interval (fl                                                                                                                                                                                                           |                                        | 1                                          | 00      |            |
| Sampling Time: 1C<br>Purge Depth (ft):<br>Total Discharge (1):<br>Water Disposal: 1                                                                                                                      | nistalije t<br>20<br>8.0'                                                                | web                                                                                                                  | Depth                                                                                          | te Creunduret                                                                                                                                                                                                              | ···· <u> </u>                          |                                            |         |            |
| Sampling Time: 10<br>Purge Depth (ft):<br>Total Discharge ( )<br>Water Disposal:                                                                                                                         | 00<br>8.0'                                                                               |                                                                                                                      | Dopui                                                                                          |                                                                                                                                                                                                                            |                                        | 57 - 1                                     | 00      | тос        |
| Sampling Time:     IC       Purge Depth (ft):                                                                                                                                                            | 8.0'                                                                                     |                                                                                                                      | Depth                                                                                          |                                                                                                                                                                                                                            | Well -                                 |                                            |         |            |
| Total Discharge (                                                                                                                                                                                        | 8.0                                                                                      |                                                                                                                      | Volum                                                                                          | e Calculation:                                                                                                                                                                                                             |                                        |                                            |         |            |
| Water Disposal:                                                                                                                                                                                          | A. 7 C                                                                                   |                                                                                                                      | Volum                                                                                          | e Calculation.                                                                                                                                                                                                             | Multiplier for                         | 2 0.16                                     | Casing  | /olumo     |
| Water Disposal:                                                                                                                                                                                          | 5.5                                                                                      | 11                                                                                                                   | vvater (f                                                                                      | l) +                                                                                                                                                                                                                       | Casing<br>Diameter (in)                | 4 0.64                                     | = (ga   | ai)        |
|                                                                                                                                                                                                          | rum on site                                                                              | - SSgal                                                                                                              |                                                                                                |                                                                                                                                                                                                                            |                                        | 6 1 44                                     |         |            |
| Weather:Su                                                                                                                                                                                               | <u>~~</u>                                                                                |                                                                                                                      |                                                                                                |                                                                                                                                                                                                                            |                                        | 0 1.44                                     |         |            |
| Water Quality Meter(s)                                                                                                                                                                                   | Mode                                                                                     | Cali                                                                                                                 | bration Date/T                                                                                 | ime                                                                                                                                                                                                                        |                                        | QA/QC S                                    | amples  |            |
| Temp/pH/SC/ORP/DO:                                                                                                                                                                                       | YSI                                                                                      |                                                                                                                      |                                                                                                |                                                                                                                                                                                                                            | Туре                                   | Sa                                         | mple ID | Time       |
| Other:                                                                                                                                                                                                   | HACH                                                                                     |                                                                                                                      |                                                                                                |                                                                                                                                                                                                                            |                                        |                                            |         |            |
| Other:                                                                                                                                                                                                   |                                                                                          |                                                                                                                      |                                                                                                |                                                                                                                                                                                                                            |                                        |                                            |         |            |
| Sample                                                                                                                                                                                                   | Sample                                                                                   | Containers                                                                                                           |                                                                                                | Field                                                                                                                                                                                                                      | Turbidity/                             | Analysis                                   | M       | S/MSD &    |
|                                                                                                                                                                                                          |                                                                                          | Pres.                                                                                                                | Vol.                                                                                           | Filtered                                                                                                                                                                                                                   | Color                                  | Requeste                                   | d Co    | omments    |
| Min to south                                                                                                                                                                                             |                                                                                          | • >                                                                                                                  | r oo J                                                                                         |                                                                                                                                                                                                                            | Classic                                | 115015                                     |         |            |
| PUJ-IN-LOIDS                                                                                                                                                                                             | paper                                                                                    | 1                                                                                                                    | SOUPL I                                                                                        |                                                                                                                                                                                                                            | Coury                                  | North-NA                                   |         |            |
|                                                                                                                                                                                                          | UUM                                                                                      |                                                                                                                      | YUAL                                                                                           |                                                                                                                                                                                                                            |                                        | Plequane                                   | ·v l    |            |
|                                                                                                                                                                                                          | VOA                                                                                      | HCI                                                                                                                  | YOAL                                                                                           |                                                                                                                                                                                                                            |                                        |                                            |         |            |
|                                                                                                                                                                                                          | roly                                                                                     | No                                                                                                                   | COUNC                                                                                          |                                                                                                                                                                                                                            |                                        | CO 110 -                                   | 20      |            |
|                                                                                                                                                                                                          |                                                                                          |                                                                                                                      |                                                                                                |                                                                                                                                                                                                                            |                                        | 504, NO-                                   | N03     |            |
|                                                                                                                                                                                                          |                                                                                          | ZnAcid                                                                                                               |                                                                                                |                                                                                                                                                                                                                            |                                        | SUN NOa-1<br>Sulfide                       | N03     |            |
|                                                                                                                                                                                                          |                                                                                          | Zn Acid<br>HzSOu                                                                                                     |                                                                                                |                                                                                                                                                                                                                            |                                        | SUY NOET<br>Sulfide<br>Amonomic            | NO3     |            |
|                                                                                                                                                                                                          |                                                                                          | Zn Acid<br>H2SO4<br>HNO3                                                                                             |                                                                                                |                                                                                                                                                                                                                            |                                        | SUy NOs-<br>Sulfide<br>Amononio<br>Diss Fe | 003     |            |
|                                                                                                                                                                                                          |                                                                                          | ZnAcil<br>H2SO4<br>HNO3                                                                                              |                                                                                                |                                                                                                                                                                                                                            |                                        | SUn NOET<br>Sulfide<br>Ameronia<br>Diss Fe | 003     |            |
|                                                                                                                                                                                                          |                                                                                          | Zn Acid<br>H2SQ4<br>HNQ3                                                                                             |                                                                                                |                                                                                                                                                                                                                            |                                        | SULFICE<br>Sulfide<br>Amoronia<br>Diss Fe  | ×       |            |
|                                                                                                                                                                                                          |                                                                                          | Zn Aeid<br>H2SQ4<br>HNQ3                                                                                             |                                                                                                |                                                                                                                                                                                                                            |                                        | SUn NOET<br>Sulfide<br>Anoronio<br>Diss Fe |         |            |
| 7                                                                                                                                                                                                        | me 0951                                                                                  | Zn Aeid<br>H2SQ4<br>H1N03<br>0954                                                                                    | 0957                                                                                           | 1000                                                                                                                                                                                                                       |                                        | SULFide<br>Sulfide<br>Amoronia<br>Diss Fe  |         |            |
| Parameter (every 5 min)                                                                                                                                                                                  | me 0951<br>3 min                                                                         | Zn Aeid<br>H2SQ4<br>HNQ3<br>0954<br>3 min                                                                            | 0957<br>3 min                                                                                  | 1000<br>3 min                                                                                                                                                                                                              | min                                    | SULFide<br>Sulfide<br>Amononio<br>Diss Fe  | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (tail/min)                                                                                                                                                          | me 0951<br>35 min<br>250                                                                 | Zn Aeid<br>H2SQ4<br>H1NO3<br>0954<br>3 min<br>250                                                                    | 0957<br>3 min<br>250                                                                           | 1000<br>3 min<br>250                                                                                                                                                                                                       | min                                    | SUy NOCT<br>Sulfide<br>Anoronio<br>Diss Fe | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (Val/min)<br>Volume Purged (dal)                                                                                                                                    | me 0951<br>35 min<br>250                                                                 | Zn Aeid<br>H2SQ4<br>H1NO3<br>0954<br>3 min<br>250<br>0,450                                                           | 0957<br>3 min<br>250<br>1.5                                                                    | 1000<br>3 min<br>250<br>2.25                                                                                                                                                                                               | min                                    | SULFide<br>Sulfide<br>Anoronio<br>Diss Fe  | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)                                                                                                                | me 0951<br>35 min<br>250<br>-<br>5.37                                                    | Zn Aeid<br>H2SQ4<br>H1N03<br>0954<br>3 min<br>250<br>0, 150<br>6, 10                                                 | 0957<br>3 min<br>250<br>1.5<br>6.53                                                            | 1000<br>3 min<br>250<br>2,25<br>6.72                                                                                                                                                                                       | min                                    | SULFide<br>Sulfide<br>Amononio<br>Diss Fe  | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Temperature (Celsius)                                                                                       | me 0951<br>35 min<br>250<br>-<br>5.37<br>10.25                                           | Zn Aeid<br>H2SQ4<br>H1NQ7<br>0954<br>3 min<br>250<br>0,450<br>6.10<br>10.37                                          | 0957<br>3 min<br>250<br>1.5<br>6.53<br>10.36                                                   | 1000<br>3 min<br>250<br>2.25<br>6.72<br>10 55                                                                                                                                                                              | min                                    | SULFIDE<br>Sulfide<br>Amononio<br>Diss Fe  | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (every 5 min)<br>Volume Purged (celsius)<br>Water Depth (ft)<br>Temperature (Celsius)<br>pH                                                                         | me 0951<br>35 min<br>250<br>-<br>5.37<br>10.25<br>6.60                                   | Zn Aeid<br>H2SQ4<br>H1NO3<br>0954<br>3 min<br>250<br>0,450<br>6.10<br>10.32<br>7.06                                  | 0957<br>3 min<br>250<br>1.5<br>6.53<br>10.36<br>7.12                                           | 1000<br>3 min<br>250<br>2.25<br>6.72<br>10 55<br>7,14                                                                                                                                                                      | min                                    | SUY NOS<br>Sulfide<br>Anoronio<br>Diss Fe  | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (yal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Temperature (Celsius)<br>pH<br>Sp. Conductance (mS/cm)                                                      | me 0951<br>35 min<br>250<br>-<br>5.37<br>10.25<br>6,60<br>1.930                          | Zn Aeid<br>H2SQ4<br>H1N03<br>0954<br>3 min<br>250<br>0,159<br>6.10<br>10.32<br>7.06<br>1.915                         | 0957<br>3 min<br>250<br>1.5<br>6.53<br>10.36<br>7.12<br>1.907                                  | 1000<br>3 min<br>250<br>2.25<br>6.72<br>10 55<br>7,14<br>1.908                                                                                                                                                             | min                                    | SULFide<br>Sulfide<br>Amononio<br>Diss Fe  | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Temperature (Celsius)<br>pH<br>Sp. Conductance (mS/cm)<br>DO (mg/L)                                         | me 0951<br>35 min<br>250<br>-<br>5.37<br>10.25<br>6,60<br>1.930                          | ZnAeid<br>H2SQ4<br>H1N03<br>0954<br>3 min<br>250<br>0,450<br>6.10<br>10.32<br>7.06<br>1.915<br>5.63                  | 0957<br>3 min<br>250<br>1.5<br>6.53<br>10.36<br>7.12<br>1.907<br>5.39                          | 1000<br>3 min<br>250<br>2,25<br>6.72<br>10 55<br>7,14<br>1.908<br>5.31                                                                                                                                                     | min                                    | SULFide<br>Sulfide<br>Amononio<br>Diss Fe  | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Temperature (Celsius)<br>pH<br>Sp. Conductance (mS/cm)<br>DO (mg/L)<br>ORP (mV)                             | me 0951<br>3 min<br>250<br>-<br>5.37<br>10.25<br>6.60<br>1.930<br>10.45<br>45 7          | Zn Aeid<br>H2SQ4<br>H1N03<br>0954<br>3 min<br>250<br>0,450<br>6.10<br>10.32<br>7.06<br>1.915<br>5.63<br>31.5         | 0957<br>3 min<br>250<br>1.5<br>6.53<br>10.36<br>7.12<br>1.907<br>5.39<br>36.1                  | $   \begin{array}{r}     1000 \\     \overline{3} \\     \overline{250} \\     \overline{2.25} \\     6.7 \\     \overline{1055} \\     7.14 \\     1.908 \\     \overline{5.31} \\     \overline{38.7} \\   \end{array} $ | min                                    | SUN NOST<br>Sulfide<br>Amononio<br>Diss Fe | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (very 5 min)<br>Volume Purged (dol)<br>Water Depth (ft)<br>Temperature (Celsius)<br>pH<br>Sp. Conductance (mS/cm)<br>DO (mg/L)<br>ORP (mV)<br>Turbidity (NTLI)      | me 0951<br>35 min<br>250<br>-<br>5.37<br>10.25<br>6,60<br>1,930<br>10.45<br>45.3<br>15,1 | Zn Aeid<br>H2SQ4<br>H1N03<br>0954<br>3 min<br>250<br>0,450<br>6.10<br>10.32<br>7.06<br>1.915<br>5.63<br>31.5<br>87 ( | 0957<br>3 min<br>250<br>1.5<br>6.53<br>10.36<br>7.12<br>1.907<br>5.39<br>36.1<br>124 0         | 1000<br>3 min<br>250<br>2.25<br>6.72<br>10.55<br>7.14<br>1.908<br>5.51<br>38.7<br>38.7<br>38.7                                                                                                                             | min                                    | SUN NOCT<br>Sulfide<br>Anononio<br>Diss Fe | min     | mi         |
| Parameter (every 5 min)<br>Flow Rate (yal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Temperature (Celsius)<br>pH<br>Sp. Conductance (mS/cm)<br>DO (mg/L)<br>ORP (mV)<br>Turbidity (NTU)<br>Color | me 0951<br>35 min<br>250<br>-<br>5.37<br>10.25<br>6.60<br>1.930<br>10.45<br>45.3<br>75.1 | ZnAeid<br>H2SQ4<br>H1N03<br>0954<br>3 min<br>250<br>0,450<br>6.10<br>10.32<br>7.66<br>1.915<br>5.63<br>31.5<br>87.6  | 0957<br>3 min<br>250<br>1.5<br>6.53<br>10.36<br>7.12<br>1.907<br>5.39<br>36.1<br>124.0<br>Chec | 1000<br>3 min<br>250<br>2.25<br>6.72<br>10.55<br>7.14<br>1.908<br>5.51<br>38.7<br>1370<br>Chart                                                                                                                            | min                                    | SULFide<br>Sulfide<br>Amoronic<br>Diss Fe  | min     |            |

| Groundwater Pu        | urge an      | d Sample F | orm (Minin | nal Drawdo            | wn)               |                         | Kennedy/Jen  | ks Consultants |
|-----------------------|--------------|------------|------------|-----------------------|-------------------|-------------------------|--------------|----------------|
| Date:                 | 2.2          | 4.15       |            | Well N                | lumber:           | M                       | J-28         |                |
| Project Name:         | Corn         | et Bay     | Marina     | Monur                 | nent Type:        | Stickup:                | (ft PVC      | C) Flush 🖌     |
| Project Number:       | 132          | 6010       |            | Well D                | liameter (in):    | 2 inch                  |              |                |
| Sampling Personnel    | : Am         | L-C)       |            | Well C                | ondition:         | Good                    |              |                |
| Water Level Meter:    | Inte         | rhave P    | robe       | Total (               | Casing Depth      | (ft):                   | 0.67 toc     | Reference:     |
| Puraina Equipment:    | Park         | 1 D        |            | Scree                 | ned Interval (    | ft) <sup>.</sup>        | toc          |                |
|                       | ISLOW        | the way    |            | Depth                 | to Groundwa       | iter (ft): 9            | .7.3 toc     | тос            |
| Sampling Time:        | -1410        |            |            | Depth                 | to LNAPL (ft      | ): Well                 |              |                |
| Purge Depth (ft):     | <u> </u>     | .0'        |            | <br>Volum             | e Calculation     | :                       |              | <b>*</b>       |
| Total Discharge (hal  | <u>.</u>     | -801       |            | Water                 | Column            | Multiplier for          | 2 0.16       | Casing Volume  |
| Water Disposal        | 0            | + F(       | al dem     | (1                    | ft) +             | Casing<br>Diameter (in) | 4 0.64 =     | (gai)          |
| Weather               | <u>C</u>     | 4.570      |            | ·                     |                   | 0.16                    | 6 1.44       |                |
|                       | - Sradi      | - of F     |            | . L                   |                   |                         |              |                |
| Water Quality Meter(  | s)           | Model      | Cali       | ibration Date/1       | lime .            |                         | QA/QC Sample | 95             |
| Temp/pH/SC/ORP/C      | 00:          | YSI        |            | <u><u><u></u></u></u> |                   | Туре                    | Sample       | ID Time        |
| Other:                | 1            | HACH       | 1          | 144.15                |                   | Duplicat                | e MW-1-2R-   | 27412          |
| Other:                |              |            |            |                       |                   |                         |              |                |
| Samnie                |              | Sample     | Containere | 0.                    | Field             | Turbidity/              | Analysis     | MS/MSD &       |
|                       | No           | Туре       | Pres       | Vol                   | Filtered          | Color                   | Requested    | Comments       |
| AN 1 0 0 32W          | 7            | 1996       | 1103.      |                       | i intered         |                         | THEY I       |                |
| MW- UC-LCTIN          | 5            | 004        | 17H        | yone                  |                   | Clondy                  | ISTEX-G      |                |
|                       | 6            | Hinder     | ~          | 500 mL                |                   | l                       | Diesel Dx    |                |
|                       | 2            | VOA        | -          | Yonl                  |                   |                         | Methine      |                |
|                       | <u> </u>     | Poly       |            | SOOnl                 |                   |                         | Son-North    |                |
|                       | <u>ر</u>     | <u>ر ۲</u> |            |                       |                   | ļ                       | Annonia      |                |
|                       | ١            |            |            |                       |                   |                         | Sulfide      |                |
|                       | ι            | *          |            | ト                     |                   |                         | DissFe       |                |
|                       |              |            |            |                       |                   |                         |              |                |
|                       |              |            |            |                       |                   |                         |              |                |
|                       |              |            |            |                       |                   |                         |              |                |
|                       | Time         | 137.0      | 127.5      | 1770                  | 1235              | 1340                    | 1745 1.7     | 60 1755        |
| Parameter (every 5 m  | in)          | F min      | 5 min      | 5 min                 | 5 mir             | min s min               | 5 min 5      | min 5 mir      |
| Flow Rate (gat/min)   |              |            | 0.1        |                       | 0.1               | 01                      | DIO          | 1 81           |
| Volume Purged (gal    | <u>₽</u>     | 05         | 1.0        | 10                    | 70                | ZC                      | 2 1 7        | C Un           |
| Water Denth (#)       |              | 977        | 9 7/       | 9 20                  | 940               | 10.01                   | 1010 90      | 7 9 67         |
| Tomporature (Coloir   |              | 10 44      | 1041       | 10.00                 |                   | 10.01                   | 10.17 10     |                |
|                       |              | 10.7 5     |            | 10.15                 | 10.00             | 640                     | rue ru       | 12 11 14       |
|                       |              | 6.30       | 0.77       | 6.4L                  | 6.76              | 0.0                     | 2 076 7      | 2 6 7 2        |
| Sp. Conductance (mS   | /cm)         | 1.446      | ditt>      | 6.154                 | 7.757             | 110                     | C.0 00 C.    | 17 - 00        |
| DO (mg/L)             |              | 12.68      | 5.42       | 5.75                  | 8.54              | 14.81                   | 4.18 3,      | 2 3.87         |
| ORP (mV)              |              | 24.6       | 27.7       | 33,9                  | 35.6              | 52.5                    | 00.5 61      | 7 62.7         |
| Turbidity (NTU)       |              | Oversang   | 1 439      | 995 0                 | 506               | 660                     | 613 12       | 0 52.6         |
| Color                 |              | Brown      | Brown.     | Cleast                | Browl             | B.So un                 | Krown Cle    | en cleas       |
| Odor/Evidence of LNAP |              | N          | N          | VN                    | N                 | N                       | N            | $V \mid N$     |
|                       |              |            |            | Brown                 |                   |                         |              |                |
| Notes: 1.1.           | ا <b>ر</b> م | , ml       | A 100 - 1  |                       | 0 61 .            | ~ 0-                    | 1            | the all all    |
| Wat                   | res          | ave ap     | puess      | o hav                 | <u>= &gt;toff</u> | 2 and                   | ing once     | Urbidity       |
| began                 | Xa C         | ecsed      | se (vi     | 350                   | •                 |                         | ſ            | -              |
|                       |              |            |            |                       |                   |                         |              |                |
|                       |              |            |            |                       |                   |                         |              |                |
|                       |              |            |            |                       |                   |                         |              |                |
|                       |              |            |            |                       | <u></u>           |                         |              |                |

| Time                      | 1.400  | 1405  |     |     |           |             |       |         |
|---------------------------|--------|-------|-----|-----|-----------|-------------|-------|---------|
| Parameter (every 5 min)   | 35 min | 5 min | min | min | min       | min         | nin 🖓 | min     |
| Flow Rate (gal/min) Linia | 0.1    | 0,1   |     |     | Section 1 | 2001-70.93¥ | 100   | <u></u> |
| Volume Purged (gal)       | 4.5    | 5.0   |     |     |           | 010 VIV     | £.    |         |
| Water Depth (ft)          | 9.93   | 9.95  |     |     |           | 6-22 - 127  |       |         |
| Temperature (Celsius)     | 10.00  | 10.23 |     |     | -50 00 9  | man 2 a sid | 1-1   |         |
| рН                        | 6,43   | 6.40  |     |     |           |             |       |         |
| Sp. Conductance (mS/cm)   | 2.855  | 7.851 |     |     |           |             |       |         |
| DO (mg/L)                 | 3.57   | 3.48  |     |     |           |             |       |         |
| ORP (mV)                  | 63.8   | 61.3  |     |     |           | 0. P        |       |         |
| Turbidity (NTU)           | 31.9   | 29.5  |     |     |           |             | •     |         |
| Color                     | Cleers | Cleas |     | ·   | 13/2 Jag  | 1. 340      | - 401 |         |
| Odor/Evidence of LNAPL    | N      | N. CN |     |     |           | 323 6       | 24.55 |         |

154

| Time                    |                 |     |     |                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
|-------------------------|-----------------|-----|-----|---------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| Parameter (every 5 min) | min             | min | min | min                 | min | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | min | min |
| Flow Rate (gal/min)     |                 |     |     |                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| Volume Purged (gal)     |                 |     | ·   |                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| Water Depth (ft)        |                 |     |     |                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| Temperature (Celsius)   |                 |     | *   |                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| pH                      | 5. 10 M         |     |     | C.C.                |     | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I   |     |
| Sp. Conductance (mS/cm) | $\Delta$        |     |     | 1 10 100<br>1 10 10 |     | to the second se | 1   |     |
| DO (mg/L)               | -31.            |     |     | Î.                  |     | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |     |
| ORP (mV)                | - 1 <del></del> |     |     | ×1.                 |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |
| Turbidity (NTU)         | <b>•</b> • •    |     |     |                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| Color                   |                 |     |     |                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| Odor/Evidence of LNAPL  |                 |     |     |                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |

· . . .

Time Parameter (every 5 min) min min min min min min min min Flow Rate (gal/min) Volume Purged (gal) Water Depth (ft) Temperature (Celsius) pН Sp. Conductance (mS/cm) DO (mg/L) ORP (mV) Turbidity (NTU) Color Odor/Evidence of LNAPL

| 2-24<br><u>Cornet</u> F<br>13960<br><u>AML</u><br><u>Interfac</u><br><u>Reristalti</u><br><u>IIIQ</u><br><u>8.0'</u><br><u>0</u> A.sita<br><u>Moi</u><br><u>YSI</u><br><u>Hacl</u><br><u>Samp</u><br><u>2</u><br><u>YON</u> | I S gal d<br>S gal d<br>S gal d<br>S gal d<br>S gal d<br>S gal d                                                                                               | Well Well Well Well Well Vell Volu Volun Water Water Water Water Volun Volu Note Volu Note Volu Note Volu Note Volu Note Volu Note Note Note Note Note Note Note Note | Number:<br>Jiment Type:<br>Diameter (in):<br>Condition:<br>Casing Depth<br>ened Interval (<br>h to Groundwa<br>h to LNAPL (ft<br>me Calculation<br>r Column<br>(ft)<br>Time<br>Field<br>Filtered | Multiplier         Stickup         2 inch         Coocl         (ft):         (ft):         ater (ft):         (ft):         Well         Diameter (in)         O.16         Type         Turbidity/         Color | )-4R<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1<br>:(1 | ft PVC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flush: _X<br>Reference<br>TOC<br>yolume<br>gal)<br>Time<br>S/MSD &<br>comments                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Cornet T<br>13960<br>AML<br>Interfac<br>Peristalti<br>IIIQ<br>0.0'<br>~8.0<br>On.sita<br>YSI<br>Hack<br>Samp<br>No. Type<br>2 Ander<br>2 VOA                                                                                | Day Mariy<br>10.00<br>CJ<br>CJ<br>CJ<br>C<br>Probe<br>C<br>Probe<br>C<br>S<br>gal d<br>Jel<br>Ca<br>D<br>Le<br>Ca<br>D<br>Le<br>Ca<br>D<br>Pres.               | Monu<br>Well<br>Well<br>Control<br>Scree<br>Depti<br>Depti<br>Water<br>Water                                                                                          | Ument Type:<br>Diameter (in):<br>Condition:<br>Casing Depth<br>ened Interval (<br>h to Groundwa<br>h to LNAPL (ft<br><u>ne Calculation</u><br>(ft)<br>Time<br>Field<br>Filtered                  | Stickup 2 inch Coacl (ft): [0.59] (ft): ater (ft): 5 (multiplier for Casing Diameter (in) O.16 Type Turbidity/ Color Cleas                                                                                         | (1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft PVC)<br>5c<br>5c<br>5c<br>5c<br>5c<br>5c<br>5c<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flush: _X                                                                                           |
| 13960<br>AML<br>Interfac<br>Peristalti<br>IIIQ<br>8.0'<br>A8.0<br>On.sita<br>Moi<br>YSI<br>Hac<br>Samp<br>No. Type<br>2 Ander<br>2 VOA                                                                                      | I O · 00<br>- C.J<br>e Probe<br>c Probe<br>c Probe<br>S gal d<br>Jel Ca<br>Die Containers<br>Pres.                                                             | Weii Weii Weii Weii Total Scree Depti Volur Water Water Water Water Volur Vol. SOO                                                                                    | Diameter (in):<br>Condition:<br>Casing Depth<br>ened Interval (<br>h to Groundwa<br>h to LNAPL (ft<br>me Calculation<br>r Column<br>(ft)<br>Time<br>Field<br>Filtered                            | 2 inch<br>Coad<br>(ft): {0.39 }<br>(ft): ater (ft): 5<br>i): Well<br>Diameter (in)<br>0.16<br>Type<br>Turbidity/<br>Color                                                                                          | 2 0.16<br>4 0.64<br>6 1.44<br>QA/QC Sa<br>San<br>Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Soc      Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc     Soc | Reference       TOC       Volume       gal)       Time       AS/MSD &       comments                |
| AML<br>hterfac<br>Peristalti<br>IIIQ<br>0.0'<br>~8.0<br>On.sita<br>Mon<br>YSI<br>Hack<br>Samp<br>No. Type<br>2 Ander<br>2 VOA                                                                                               | CJ<br><u>e</u> Probe<br><u>c</u> Prope<br><u>5</u> S gal d<br><u>5</u> S gal d | Vol.                                                                                                                                                                  | Condition:<br>Casing Depth<br>ened Interval (<br>h to Groundwa<br>h to LNAPL (ft<br>ne Calculation<br>rColumn<br>(ft)<br>Time<br>Field<br>Filtered                                               | Good           n (ft):         (0.39)           (ft):                                                                                                                                                              | $\begin{array}{c} & & & & \\ 3.774 & 44_{tc} \\ & & & \\ \hline & & & \\ 1.25 & tc \\ \hline & & & \\ 2 & 0.16 \\ \hline 4 & 0.64 \\ \hline 6 & 1.44 \\ \hline \hline \\ 0.64 \\ \hline 6 & 1.44 \\ \hline \hline \\ 0.64 \\ \hline 6 & 1.44 \\ \hline \hline \\ 0.64 \\ \hline \hline \\ 6 & 1.44 \\ \hline \hline \\ \hline \\ Analysis \\ Requested \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EC<br>DC<br>DC<br>Casing<br>(G<br>Imples<br>nple ID<br>N<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference<br>TOC<br>J Volume<br>gal)<br>Time                                                        |
| Interfac<br>Peristalti<br>IIIQ<br>0.0'<br>~8.0<br>On.sita<br>YSI<br>Hack<br>Samp<br>No. Type<br>2 Ander<br>2 VOA                                                                                                            | e Probe<br>c Pionp<br>55 gal d<br>Jel Ca<br>Del Ca                                                                                                             | Total<br>Scree<br>Depti<br>Volur<br>Water<br>Water                                                                                                                    | Casing Depth<br>ened Interval (<br>h to Groundwa<br>h to LNAPL (ft<br>ne Calculation<br>r Column<br>(ft)<br>Time<br>Field<br>Filtered                                                            | n (ft): [0.39]<br>(ft):                                                                                                                                                                                            | 2 0.16<br>4 0.64<br>6 1.44<br>QA/QC Sa<br>San<br>Analysis<br>Requested<br>D ≺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Casing<br>= Casing<br>(s<br>mples<br>nple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference         TOC         Volume         Volume         Time         fis/MSD &         comments |
| Peristalti<br>IIIQ<br>0.0'<br>A 8.0<br>On.sita<br>Moi<br>YSI<br>Hack<br>Samp<br>No. Type<br>2 Ander<br>2 VOA                                                                                                                | ic Promp                                                                                                                                                       | Screi<br>Depti<br>Volur<br>Water<br>Water<br>Ilibration Date/                                                                                                         | ened Interval (<br>h to Groundwa<br>h to LNAPL (ft<br>me Calculation<br>r Column<br>(ft)<br>Time<br>Field<br>Filtered                                                                            | (ft)<br>ater (ft):                                                                                                                                                                                                 | tc           2         0.16           4         0.64           6         1.44           QA/QC Sa           Sam           Analysis           Requested           D <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = Casing<br>(c<br>mples<br>nple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOC<br>3 Volume<br>gal)<br>Time<br>AS/MSD &<br>comments                                             |
| 1110<br>8.0'<br>~8.0<br>0                                                                                                                                                                                                   | Sgal d<br>Sgal d<br>Sel Ca<br>Ne Containers                                                                                                                    | Depti                                                                                                                                                                 | h to Groundwa<br>h to LNAPL (ft<br>ne Calculation<br>rColumn<br>(ft)<br>Time<br>Field<br>Filtered                                                                                                | Turbidity/                                                                                                                                                                                                         | 2 0.16<br>4 0.64<br>6 1.44<br>QA/QC Sa<br>Sam<br>Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = Casing (s<br>imples<br>nple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOC<br>3 Volume<br>gal)<br>Time<br>AS/MSD &<br>comments                                             |
| IIIQ           Ø.0'           ~8.0           On.site           Mon           YSI           Hack           Samp           No.           Type           Z           YOA                                                       | 5 S gal d<br>del Ca<br>Die Containers<br>Pres.                                                                                                                 | Depti                                                                                                                                                                 | h to LNAPL (ft<br>ne Calculatior<br>r Column<br>(ft)<br>Time<br>Field<br>Filtered                                                                                                                | t): Well                                                                                                                                                                                                           | 2 0.16<br>4 0.64<br>6 1.44<br>QA/QC Sa<br>San<br>Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = Casing<br>(s<br>mples<br>nple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 Volume<br>gal)<br>Time<br>AS/MSD &<br>comments                                                    |
| Ør. O'       ~ 8.0       Ør. Sira       Moi       YSI       Hack       Samp       No.       Type       Z     Ander       Z     VOA                                                                                          | 55 gal d<br>del Ca                                                                                                                                             | Volur<br>Water<br>Nibration Date/                                                                                                                                     | Time<br>Field<br>Filtered                                                                                                                                                                        | Turbidity/                                                                                                                                                                                                         | 2     0.16       4     0.64       6     1.44       QA/QC Sa       San       Analysis       Requested       >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = Casing (t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AS/MSD &                                                                                            |
| No. Type<br>2 VOA                                                                                                                                                                                                           | 55 gal d<br>dei Ca<br>Die Containers<br>Pres.                                                                                                                  | Water                                                                                                                                                                 | r Column<br>(ft) *<br>Time<br>Field<br>Filtered                                                                                                                                                  | Turbidity/<br>Color                                                                                                                                                                                                | 2 0.16<br>4 0.64<br>6 1.44<br>QA/QC Sa<br>San<br>Analysis<br>Requested<br>D≺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = Casing ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume<br>gal)<br>Time<br>AS/MSD &<br>comments                                                      |
| DA. Sita<br>Mon<br>YSI<br>Hack<br>Samp<br>No. Type<br>Z Ander<br>Z VOA                                                                                                                                                      | 5 S gal d<br>del Ca<br>Del Ca<br>De Containers<br>Pres.                                                                                                        | silibration Date/                                                                                                                                                     | Time<br>Field<br>Filtered                                                                                                                                                                        | Casing C<br>Diameter (in)<br>O.16<br>Type<br>Turbidity/<br>Color                                                                                                                                                   | 4     0.64       6     1.44       QA/QC Sa       Sam       Analysis       Requested       D <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = Casing (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AS/MSD &                                                                                            |
| Mo<br>YSI<br>Haach<br>Samp<br>No. Type<br>Z Ander<br>Z VOA                                                                                                                                                                  | del Ca                                                                                                                                                         | alibration Date/                                                                                                                                                      | Time<br>Field<br>Filtered                                                                                                                                                                        | O.16<br>Type<br>Turbidity/<br>Color                                                                                                                                                                                | 6 1.44<br>QA/QC Sa<br>San<br>Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Imples<br>nple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time<br>AS/MSD &                                                                                    |
| No. Type<br>2 Yon                                                                                                                                                                                                           | del Ca                                                                                                                                                         | Vol.                                                                                                                                                                  | Field<br>Filtered                                                                                                                                                                                | Turbidity/<br>Color                                                                                                                                                                                                | QA/QC Sa<br>San<br>Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Imples<br>nple ID<br>N<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time<br>AS/MSD &                                                                                    |
| YSI<br>Hack<br>Samp<br>No. Type<br>Z Anber<br>Z VON                                                                                                                                                                         | De Containers Pres.                                                                                                                                            | Vol.                                                                                                                                                                  | Field<br>Filtered                                                                                                                                                                                | Type<br>Turbidity/<br>Color                                                                                                                                                                                        | QA/QC San<br>San<br>Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | amples<br>nple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time                                                                                                |
| No. Type<br>2 Ander<br>2 VOA                                                                                                                                                                                                | >le Containers<br>Pres.                                                                                                                                        | Vol.<br>500                                                                                                                                                           | Field<br>Filtered                                                                                                                                                                                | Turbidity/<br>Color<br>Cleas                                                                                                                                                                                       | Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Npie iD<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AS/MSD &                                                                                            |
| Samp<br>No. Type<br>2 Ander<br>2 VOA                                                                                                                                                                                        | Die Containers                                                                                                                                                 | Vol.<br>500                                                                                                                                                           | Field<br>Filtered                                                                                                                                                                                | Turbidity/<br>Color                                                                                                                                                                                                | Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AS/MSD &                                                                                            |
| Samı<br>No. Type<br>Z Anber<br>Z VOA                                                                                                                                                                                        | Die Containers<br>Pres.                                                                                                                                        | Vol.<br>500                                                                                                                                                           | Field<br>Filtered                                                                                                                                                                                | Turbidity/<br>Color<br>Clear                                                                                                                                                                                       | Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AS/MSD &                                                                                            |
| Sami<br>No. Type<br>2 Ander<br>2 VOA                                                                                                                                                                                        | Die Containers<br>Pres.                                                                                                                                        | Vol.                                                                                                                                                                  | Field<br>Filtered                                                                                                                                                                                | Turbidity/<br>Color                                                                                                                                                                                                | Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AS/MSD &                                                                                            |
| No. Type<br>2 Anber<br>2 VOA                                                                                                                                                                                                | Pres.                                                                                                                                                          | Vol.<br>500                                                                                                                                                           | Filtered                                                                                                                                                                                         | Color                                                                                                                                                                                                              | Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | comments                                                                                            |
| 2 Anber<br>2 VOA                                                                                                                                                                                                            |                                                                                                                                                                | 500                                                                                                                                                                   |                                                                                                                                                                                                  | Clear                                                                                                                                                                                                              | D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 2 VON                                                                                                                                                                                                                       |                                                                                                                                                                | 1                                                                                                                                                                     |                                                                                                                                                                                                  |                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                                             |                                                                                                                                                                | 40                                                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                                                                    | Methan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     |
| 3 VOA                                                                                                                                                                                                                       | HCI                                                                                                                                                            | 40                                                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                                                                    | BETX - G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 1 Poly                                                                                                                                                                                                                      |                                                                                                                                                                | 500                                                                                                                                                                   | Τ                                                                                                                                                                                                |                                                                                                                                                                                                                    | SO 4 NOZN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     |
| 1 1-                                                                                                                                                                                                                        | ZnAc                                                                                                                                                           |                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                    | Silfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 1                                                                                                                                                                                                                           | HESOY                                                                                                                                                          |                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                    | Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 1 1                                                                                                                                                                                                                         | HNOS                                                                                                                                                           | 1                                                                                                                                                                     |                                                                                                                                                                                                  |                                                                                                                                                                                                                    | Dice . Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>`</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |
|                                                                                                                                                                                                                             | · ·                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| Time 1040                                                                                                                                                                                                                   | 1045                                                                                                                                                           | 1050                                                                                                                                                                  | 1055                                                                                                                                                                                             | 1100                                                                                                                                                                                                               | 1105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| <u> </u>                                                                                                                                                                                                                    | in <u>s</u> min                                                                                                                                                | 5 min                                                                                                                                                                 | 5 min                                                                                                                                                                                            | 5 min                                                                                                                                                                                                              | 5 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mir                                                                                                 |
| 0.20                                                                                                                                                                                                                        | 0 0.200                                                                                                                                                        | 0,200                                                                                                                                                                 | 0.2                                                                                                                                                                                              | 6.2                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| -                                                                                                                                                                                                                           | 1                                                                                                                                                              | 2                                                                                                                                                                     | 3                                                                                                                                                                                                | 4                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 5,23                                                                                                                                                                                                                        | 5.68                                                                                                                                                           | 5.72                                                                                                                                                                  | 5.20                                                                                                                                                                                             | 5.23                                                                                                                                                                                                               | 5.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 9.91                                                                                                                                                                                                                        | 9.91                                                                                                                                                           | 9.99                                                                                                                                                                  | 10.07                                                                                                                                                                                            | 10.13                                                                                                                                                                                                              | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 6.75                                                                                                                                                                                                                        | 6.93                                                                                                                                                           | 6.99                                                                                                                                                                  | 6.99                                                                                                                                                                                             | 7.01                                                                                                                                                                                                               | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| ) 0.765                                                                                                                                                                                                                     | 0-881                                                                                                                                                          | 1.031                                                                                                                                                                 | 1.402                                                                                                                                                                                            | 1411                                                                                                                                                                                                               | 1.454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 10.43                                                                                                                                                                                                                       | 7.40                                                                                                                                                           | 6.65                                                                                                                                                                  | 501                                                                                                                                                                                              | 4.82                                                                                                                                                                                                               | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 89.5                                                                                                                                                                                                                        | 53.2                                                                                                                                                           | 63.9                                                                                                                                                                  | 36.3                                                                                                                                                                                             | 42.8                                                                                                                                                                                                               | CA.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| 27.2                                                                                                                                                                                                                        | 38.4                                                                                                                                                           | 43.7                                                                                                                                                                  | 7.40                                                                                                                                                                                             | 5.33                                                                                                                                                                                                               | 776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| Cleas                                                                                                                                                                                                                       | ileas                                                                                                                                                          | 1005                                                                                                                                                                  | Clear                                                                                                                                                                                            | Close                                                                                                                                                                                                              | Clean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
| N                                                                                                                                                                                                                           | N                                                                                                                                                              | N                                                                                                                                                                     | Al                                                                                                                                                                                               | N                                                                                                                                                                                                                  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                                             | _ <u></u>                                                                                                                                                      |                                                                                                                                                                       | <u> </u>                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                                             | 3 NOA<br>1 Poly<br>1 Poly<br>1 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |

Λ

| Date: <u>2-2</u>                                                                                                                                                              |                                                              | Form (Min                                                   | imal Drawdo                                                  | own)                                |                                                              | Kenr                                                                 | nedy/Jer                                                   | nks C                                                                                       | onsultant     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------|
|                                                                                                                                                                               | 4.15                                                         |                                                             | Well                                                         | Number:                             | MI                                                           | 1).7                                                                 | 1-1                                                        | 2.1                                                                                         | 24-15         |
| Project Name:                                                                                                                                                                 | Real Real                                                    | -                                                           | - Moni                                                       | ment Type                           | Stickup                                                      | ~ 7                                                                  | (A D)                                                      | 0)                                                                                          |               |
| Project Number: 139                                                                                                                                                           | 6013                                                         |                                                             | - Woll                                                       | Diameter (in)                       | 2 inch                                                       |                                                                      | <u> </u>                                                   | 6)                                                                                          |               |
| Sampling Personnet:                                                                                                                                                           | MI CI                                                        |                                                             | - Well                                                       | Condition:                          | 2 1101                                                       |                                                                      |                                                            |                                                                                             |               |
| Water Level Meter:                                                                                                                                                            |                                                              | 12 1 0                                                      | - Total                                                      | Cosing Donth                        | (#): LO                                                      | <b>DG</b> 19                                                         | 34.                                                        |                                                                                             | Reference     |
| Purging Equipment:                                                                                                                                                            | ertale                                                       | Trobe                                                       | - <sup>10(a)</sup>                                           | Casing Deput                        |                                                              | -371                                                                 | - toc                                                      |                                                                                             |               |
|                                                                                                                                                                               | istalt ic                                                    |                                                             | Danil                                                        | med interval (                      | π):<br>                                                      |                                                                      | toc                                                        |                                                                                             | - TOO         |
| Sampling Time:                                                                                                                                                                | 900                                                          |                                                             | _ Depu                                                       |                                     | iter (it): <u>(.</u>                                         | 66                                                                   | toc                                                        |                                                                                             |               |
| Purce Denth (ft):                                                                                                                                                             | 1.01                                                         |                                                             | _ Deptr                                                      | 1 to LNAPL (π                       | ): vven                                                      |                                                                      |                                                            |                                                                                             |               |
| Total Discharge (dai):                                                                                                                                                        | ~15                                                          |                                                             |                                                              |                                     | Multiplier for                                               | 2 0                                                                  | 16                                                         |                                                                                             |               |
| Water Disposal:                                                                                                                                                               | <u> </u>                                                     | 511                                                         | - vvater                                                     | (ft) +                              | Casing                                                       |                                                                      | 64 -                                                       | Casing<br>((                                                                                | Volume<br>al) |
| Weather:                                                                                                                                                                      | JITE J                                                       | J gar ur                                                    |                                                              | <u> </u>                            |                                                              | 6 1                                                                  | 4 -                                                        | <u> </u>                                                                                    |               |
|                                                                                                                                                                               |                                                              |                                                             |                                                              |                                     |                                                              | 0 1.                                                                 |                                                            |                                                                                             |               |
|                                                                                                                                                                               |                                                              |                                                             | libration Date/                                              | Time                                |                                                              |                                                                      | C Sample                                                   | es                                                                                          | T             |
|                                                                                                                                                                               | 1121                                                         | <u> </u>                                                    | 14.15 07                                                     | MS                                  | Туре                                                         |                                                                      | Sample                                                     | ID                                                                                          | Time          |
| Outer.                                                                                                                                                                        | Jub                                                          |                                                             | ······                                                       |                                     |                                                              |                                                                      |                                                            |                                                                                             |               |
|                                                                                                                                                                               |                                                              |                                                             |                                                              |                                     |                                                              |                                                                      |                                                            |                                                                                             |               |
| Sample                                                                                                                                                                        | Sample                                                       | e Containers                                                |                                                              | Field                               | Turbidity/                                                   | Ana                                                                  | lysis                                                      | N                                                                                           | IS/MSD &      |
| J <sup>ID</sup> No.                                                                                                                                                           | Туре                                                         | Pres.                                                       | Vol.                                                         | Filtered                            | Color                                                        | Requ                                                                 | ested                                                      | c                                                                                           | omments       |
| MW-1-22415 2                                                                                                                                                                  | Anber                                                        |                                                             | 500                                                          |                                     | Cher                                                         | D.,                                                                  |                                                            |                                                                                             |               |
| 2                                                                                                                                                                             | VOA                                                          |                                                             | 40                                                           |                                     |                                                              | Mash                                                                 |                                                            |                                                                                             |               |
| 3                                                                                                                                                                             | VOA                                                          | HCI                                                         | Ĩ                                                            |                                     |                                                              | (a - 8                                                               | ETY                                                        |                                                                                             |               |
| 1                                                                                                                                                                             | Poly                                                         |                                                             | 500                                                          |                                     |                                                              | SA IL                                                                | $\frac{1}{2}$                                              |                                                                                             |               |
|                                                                                                                                                                               | 1                                                            | H-50-                                                       |                                                              | <u> </u>                            |                                                              | A                                                                    | verng.                                                     |                                                                                             |               |
| 1                                                                                                                                                                             | +                                                            | 7. Acabil                                                   |                                                              |                                     |                                                              | SIC.                                                                 | <u>ia</u>                                                  |                                                                                             |               |
|                                                                                                                                                                               |                                                              | LIAND                                                       |                                                              |                                     |                                                              | Jul 41                                                               | de<br>r                                                    |                                                                                             |               |
|                                                                                                                                                                               |                                                              | TUNN                                                        |                                                              | <u> </u>                            |                                                              | LISS                                                                 | re.                                                        |                                                                                             |               |
|                                                                                                                                                                               |                                                              | 1                                                           |                                                              |                                     |                                                              |                                                                      |                                                            |                                                                                             |               |
|                                                                                                                                                                               | 1                                                            | 1                                                           |                                                              |                                     |                                                              |                                                                      |                                                            |                                                                                             |               |
|                                                                                                                                                                               |                                                              |                                                             |                                                              |                                     |                                                              |                                                                      |                                                            |                                                                                             |               |
|                                                                                                                                                                               |                                                              | 817                                                         | 822                                                          | 827                                 | 851                                                          | 890                                                                  | 85                                                         | 7                                                                                           | ·<br>····     |
| rarameter (every 5 min)                                                                                                                                                       |                                                              |                                                             |                                                              | i c min                             |                                                              |                                                                      |                                                            | · ·                                                                                         |               |
| Flow Poto (Bol/min)                                                                                                                                                           | 1                                                            |                                                             |                                                              |                                     | ~ς min                                                       | 3 11                                                                 | nin 3                                                      | min                                                                                         | mir           |
| Flow Rate (gal/min)                                                                                                                                                           | 0.1                                                          | 0.1                                                         | 0.1                                                          | 0.1                                 | 0.1                                                          | 3 1                                                                  | nin 3<br>0,1                                               | min                                                                                         | mir           |
| Flow Rate (gal/min)<br>Volume Purged (gal)                                                                                                                                    | 0.1                                                          | 0-1                                                         | 0.1                                                          | 01                                  | 0.1<br>2.5                                                   | 3 n<br>0,1<br>2,8                                                    | 1111 3<br>0,1<br>3,1                                       | min                                                                                         | mir           |
| Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)                                                                                                                | 0.1<br>0.5<br>2.66                                           | 0-1                                                         | 0.1<br>1.5<br>2.63                                           | 01                                  | 0.1<br>2.5<br>2.63                                           | 3 "<br>0.1<br>2.8<br>2.67                                            | 111 3<br>0.1<br>3.1<br>2                                   | min<br>Ø2-3                                                                                 |               |
| Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Femperature (Celsius)                                                                                       | 0.1<br>0.5<br>2.66<br>9.04                                   | 0-1<br>1.0<br>2.71<br>8.99                                  | 0.1<br>1.5<br>7.63<br>8.92                                   | 0.1<br>2.0<br>8.91                  | 0.1<br>2.5<br>2.63<br>9.35                                   | 3 "<br>0.1<br>2.8<br>2.67<br>9.38                                    | nin <u>3</u><br>0,1<br>3.1<br>2.<br>9,4                    | min<br>Ø2-3<br>L                                                                            |               |
| Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Temperature (Celsius)<br>DH                                                                                 | 0.1<br>0.5<br>2.66<br>9.04<br>6.13                           | 0.1<br>1.0<br>2.71<br>8.99<br>6.22                          | 0.1<br>1.5<br>7.63<br>8.92<br>6.40                           | 0.1<br>2.0<br>8.91<br>6.52          | 0.1<br>2.5<br>2.63<br>9.35<br>6.69                           | 3 "<br>0.1<br>2.8<br>2.67<br>9.38<br>6.71                            | in 3<br>0,1<br>3,1<br>2<br>9,4<br>6,7                      | min<br>Ba<br>(                                                                              |               |
| Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Femperature (Celsius)<br>oH<br>Sp. Conductance (mS/cm)                                                      | 0.1<br>0.5<br>2.66<br>9.04<br>6.13<br>0.840                  | 0.1<br>1.0<br>2.71<br>8.99<br>6.22<br>0.82                  | 0.1<br>1.5<br>7.63<br>8.92<br>6.40<br>0.807                  | 0.1<br>2.0<br>8.91<br>6.52          | 0.1<br>2.5<br>2.63<br>9.35<br>6.69<br>0.764                  | 3 "<br>0.1<br>2.8<br>2.67<br>9.38<br>6.71<br>0.765                   | in 3<br>0,1<br>3,1<br>2<br>9,4<br>6,7<br>0,7               | min<br>(b)<br>(<br>)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | mir           |
| Flow Rate (sal/min)<br>Volume Purged (sal)<br>Water Depth (ft)<br>Femperature (Celsius)<br>DH<br>Sp. Conductance (mS/cm)<br>DO (mg/L)                                         | 0.1<br>0.5<br>2.66<br>9.04<br>6.13<br>0.840<br>1.61          | 0.1<br>1.0<br>2.71<br>8.99<br>6.22<br>0.82<br>1.43          | 0.1<br>1.5<br>7.63<br>8.92<br>6.40<br>0.807<br>1.00          | 0.1<br>2.0<br>8.91<br>6.52          | 0.1<br>2.5<br>2.63<br>9.35<br>6.69<br>0.264<br>1.96          | 3 "<br>0.1<br>2.8<br>2.67<br>9.38<br>6.71<br>0.763<br>1.41           | in 3<br>0,1<br>3,1<br>2<br>9,4<br>6,7<br>0,7<br>0,7        | min<br>1023<br>(<br>2<br>6<br>6<br>1<br>8                                                   | mir           |
| Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Femperature (Celsius)<br>DH<br>Sp. Conductance (mS/cm)<br>DO (mg/L)<br>DRP (mV)                             | 0.1<br>0.5<br>2.66<br>9.04<br>6.13<br>0.840<br>1.61<br>-19.0 | 0.1<br>1.0<br>2.71<br>8.99<br>6.22<br>0.82<br>1.42<br>-38.4 | 0.1<br>1.5<br>7.63<br>8.92<br>6.40<br>0.807<br>1.00<br>-35.8 | 0.1<br>2.0<br>8.91<br>6.52          | 0.1<br>2.5<br>2.63<br>9.35<br>6.69<br>0.264<br>1.96<br>-72.8 | 3 "<br>0.1<br>2.8<br>2.67<br>9.38<br>6.71<br>0.763<br>1.41<br>- 76.1 | in 3<br>0,1<br>3,1<br>2<br>9,4<br>6,7<br>0,7<br>0,9<br>- 5 | min<br>(<br>2<br>6<br>6<br>1<br>8<br>1<br>1                                                 | mir           |
| Flow Rate (gal/min)<br>Volume Purged (gal)<br>Water Depth (ft)<br>Femperature (Celsius)<br>oH<br>Sp. Conductance (mS/cm)<br>DO (mg/L)<br>DRP (mV)<br>Furbidity (NTU)<br>Color | 0.1<br>0.5<br>2.66<br>9.04<br>6.13<br>0.840<br>1.61<br>-19.0 | 0.1<br>1.0<br>2.71<br>8.99<br>6.22<br>0.82<br>1.47<br>-38.4 | 0.1<br>1.5<br>7.63<br>8.92<br>6.40<br>0.807<br>1.00<br>-35.8 | 0.1<br>2.0<br>8.91<br>6.52<br>-58.3 | 0.1<br>2.5<br>2.63<br>9.35<br>6.69<br>0.264<br>1.96<br>-72.8 | z "<br>0.1<br>2.8<br>2.67<br>9.38<br>6.71<br>0.765<br>1.41<br>- 76.1 | in 3<br>0,1<br>3.1<br>9.4<br>6.7<br>0.7<br>0.9<br>- 87     | min<br>10-3<br>1<br>3<br>61<br>8<br>5                                                       | mir           |

| Groundwater P          | urge a                                        | nd Sample     | Form (Mir  | imal Drawdo      | own)            |                          | Kennedy/J     | enks Consultants |
|------------------------|-----------------------------------------------|---------------|------------|------------------|-----------------|--------------------------|---------------|------------------|
| Date:                  | 2                                             | -24-15        |            | Well             | Number:         | Μω                       | -9            |                  |
| Project Name:          |                                               | GIDIG         | y Mari     | Monu             | ment Type:      | Stickup                  | :(ft P        | 'VC) Flush: 🦰    |
| Project Number:        | 12                                            | 76010.        |            | Well I           | Diameter (in):  | 2 inch                   |               |                  |
| Sampling Personne      | : HP                                          |               |            | _ Well (         | Condition:      | د)                       | ood - bolt    | s not screaming  |
| Water Level Meter:     | <u></u>                                       | ertace        | trobe      | Total            | Casing Depth    | (ft):3                   | <u>17 toc</u> | Reference:       |
| Purging Equipment:     | reci                                          | STAltic       | S. W. A.   | Scree            | ened Interval ( | ft):                     | toc           |                  |
|                        |                                               |               |            | _ Depth          | to Groundwa     | ater (ft):               | 51 toc        | тос              |
| Sampling Time:         | _12                                           | D             |            | Depth            | to LNAPL (ft    | ): Well                  |               |                  |
| Purge Depth (ft):      | <u> </u>                                      | 0             |            | Volun            | ne Calculatior  | ):<br>                   |               |                  |
| Total Discharge (ga    | <u>):                                    </u> | 6.5           |            | - Water          | Column          | Multiplier for<br>Casing | 2 0.16        | Casing Volume    |
| Water Disposal:        | Ons                                           | Ite 55        | gal da     | ▲                | <b>*</b>        | Diameter (in)            | 4 0.64 =      | (gal)            |
| Weather:               |                                               |               |            |                  |                 | 0.16                     | 6 1.44        |                  |
| Water Quality Meter(   | s)                                            | Mode          | l Ci       | alibration Date/ | Time            |                          | QA/QC Sam     | ples             |
| Temp/pH/SC/ORP/        | 00:                                           | <u>Y</u> \$1_ |            | 2.24.15          |                 | Туре                     | Sampl         | e ID Time        |
| Other: Turb            |                                               | Hach          |            |                  |                 |                          |               |                  |
| Other:                 |                                               |               |            |                  |                 |                          | -             |                  |
| Sample                 |                                               | Sample        | Containers |                  | Field           | Turbidity/               | Analysis      | MS/MSD &         |
| ID                     | No.                                           | Туре          | Pres.      | Vol. aL          | Filtered        | Color                    | Requested     | Commente         |
| 11.).9-2.2415          | 7                                             | Airhea        | 1020       | 500              |                 | Ch                       | 1             | Comments         |
| 10-100(1)              | 2                                             | VIDA          | 109        | 40               |                 | Geor                     | Dr            |                  |
|                        | 7                                             | l             | Lei        | 110              |                 |                          | riethone      |                  |
|                        | <u> </u>                                      | 121           |            |                  |                 |                          | Car DEIX      |                  |
|                        | <u>_</u>                                      | roly          | 2.1.       | 500              |                 |                          | 201-10-100    | 5                |
|                        | <u>`</u>                                      |               | CAPE       | + +              |                 |                          | Dufficle      |                  |
|                        | \                                             |               | 42304      |                  |                 |                          | Amnonia       |                  |
|                        |                                               |               | HICZ       |                  |                 |                          | Viss Fe       |                  |
| ·                      |                                               |               |            |                  |                 |                          |               |                  |
|                        |                                               |               |            |                  |                 |                          |               |                  |
|                        |                                               |               |            |                  |                 |                          | L             |                  |
|                        | Time                                          | 1140          | 1145       | 1150             | 1155            | 1200                     | 12051-        | 210              |
| Parameter (every 5 mi  | n)                                            | 5 min         | 5 mir      | n 🧲 min          | Smin            | 5 min                    | 5 min S       | min min          |
| Flow Rate (al/min)     |                                               | 0.200         | 0.200      | 0.200            | 0,100           | 0.100                    | 0,10001       | 00               |
| Volume Purged (        |                                               |               | 1          | 2                | 2.5             | 3.0                      | 3.5 4         | 0                |
| Water Depth (ft)       | 1                                             | 3,54          | 3.89       | 5.10             | 553             | 5.90                     | 6.29 6        | 38               |
| Temperature (Celsiu    | s)                                            | 10.53         | 10.60      | 10.55            | 10,56           | 100054                   | 10,530        | 57               |
| рН                     |                                               | 6.63          | 6.89       | 6.94             | 692             | 6 91                     | 6.89 6        | 89               |
| Sp. Conductance (mS/d  | cm)                                           | 1.314         | 1.363      | 1-369            | 1.570           | 1.725                    | 1575 1.9      | 79               |
| DO (mg/L)              |                                               | 10,91         | 1.32       | 0.94             | 0,84            | 0.74                     | 70 06         | G                |
| ORP (mV)               |                                               | 111.5         | 78.0       | 49.3             | 37.1            | jų i                     | 0.7 -1        | 2                |
| Turbidity (NTU)        |                                               | 116           | 30.1       | 31.7             | 250             | 734                      | 261 70        | -1               |
| Color                  |                                               | Red Rust      | Clear      | Clear            | 1005            | Clor M                   | Clar Ch       |                  |
| Odor/Evidence of LNAPL |                                               | Λ/            | N          | N N              | N               | ser.                     | N             |                  |
|                        | ·                                             | ···           |            |                  |                 |                          |               |                  |
|                        |                                               |               |            |                  |                 |                          |               |                  |
| Votes:                 |                                               |               |            |                  |                 |                          |               |                  |
|                        |                                               |               |            |                  |                 |                          |               |                  |
|                        |                                               |               |            |                  |                 |                          |               |                  |

|                                                                                                                                                                                               |                                                                       |                                                                                         |                                                                                                                    | mai Drawdo                                                                                     | wn)                                                                                                                  |                          | Kenn                         | eay/Jer       | IKS CO   |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|---------------|----------|------------|
| Date:                                                                                                                                                                                         | 2-'                                                                   | 24.15                                                                                   |                                                                                                                    | Well N                                                                                         | Number:                                                                                                              | MW-                      | IOR                          |               |          |            |
| Project Name:                                                                                                                                                                                 | Co                                                                    | rnet Br                                                                                 | iy                                                                                                                 | Monu                                                                                           | ment Type:                                                                                                           | Stickup:                 |                              | (ft PV        | C)       | Flush: 🔽   |
| Project Number:                                                                                                                                                                               | 139                                                                   | 16010.                                                                                  | 00                                                                                                                 | Well [                                                                                         | Diameter (in):                                                                                                       | 2 inch                   |                              |               | ·        |            |
| Sampling Personne                                                                                                                                                                             | al: Ant                                                               | L- W                                                                                    |                                                                                                                    | Well (                                                                                         | Condition:                                                                                                           | Goo                      | 4                            |               |          |            |
| Water Level Meter:                                                                                                                                                                            | <u>[</u>                                                              | erface P                                                                                | robe                                                                                                               | Total (                                                                                        | Casing Depth                                                                                                         | (ft): 10.                | 49                           | toc           |          | Reference: |
| Purging Equipment                                                                                                                                                                             | Peris                                                                 | baltie Pr                                                                               | ~~~                                                                                                                | Scree                                                                                          | ned Interval (f                                                                                                      | t):                      |                              | toc           |          |            |
|                                                                                                                                                                                               |                                                                       |                                                                                         | ~ ``                                                                                                               | _ Depth                                                                                        | to Groundwa                                                                                                          | ter (ft): <b>3.</b>      | 55                           | toc           |          | TOC        |
| Sampling Time:                                                                                                                                                                                |                                                                       | 1545                                                                                    |                                                                                                                    | _ Depth                                                                                        | to LNAPL (ft)                                                                                                        | : Well                   | -                            |               |          |            |
| Purge Depth (ft):                                                                                                                                                                             | 9                                                                     | 0'                                                                                      |                                                                                                                    | Volum                                                                                          | ne Calculation:                                                                                                      | Distanciana a ser a      |                              |               |          |            |
| Total Discharge (                                                                                                                                                                             | <u>네):</u>                                                            | ~ 4.5                                                                                   |                                                                                                                    | Water                                                                                          | Column                                                                                                               | Multiplier for<br>Casing | 2 0.1                        | 16            | Casing \ | /olume     |
| Water Disposal:                                                                                                                                                                               | On.                                                                   | ite <u>SI</u>                                                                           | god ctrue                                                                                                          | <u>n,   '</u>                                                                                  | ft) *                                                                                                                | Diameter (in)            | 4 0.6                        | 54 =          | (ga      | d)         |
| Weather:                                                                                                                                                                                      | tony '                                                                | <u>~ 50°F</u>                                                                           |                                                                                                                    | _ <b>L</b>                                                                                     |                                                                                                                      | 0.16                     | 6 1.4                        | 14            |          |            |
| Water Quality Meter                                                                                                                                                                           | (s)                                                                   | Model                                                                                   | I Cai                                                                                                              | libration Date/                                                                                | Time                                                                                                                 |                          | QA/Q                         | C Sample      | es       |            |
| Temp/pH/SC/ORP/                                                                                                                                                                               | DO:                                                                   | · YSL                                                                                   | 2.                                                                                                                 | 24.15                                                                                          |                                                                                                                      | Туре                     |                              | Sample        | ID       | Time       |
| Other:                                                                                                                                                                                        |                                                                       | Hach                                                                                    |                                                                                                                    | The second second                                                                              |                                                                                                                      | -                        | İ                            | 1 P           | 4        |            |
| Other:                                                                                                                                                                                        |                                                                       |                                                                                         |                                                                                                                    |                                                                                                |                                                                                                                      |                          |                              |               | ]        |            |
| Sample                                                                                                                                                                                        | T                                                                     | Sample                                                                                  | Containers                                                                                                         |                                                                                                | Field                                                                                                                | Turbidity/               | Δnai                         | ia            | T MS     | 2/HED 2    |
| ID                                                                                                                                                                                            | No.                                                                   | Type                                                                                    | Pres.                                                                                                              | Vol. ,                                                                                         | Filtered                                                                                                             | Color                    | Requ                         | ysis<br>reted |          | SMOU a     |
| MA1.)_102-7745                                                                                                                                                                                | 1 7                                                                   | A.L.                                                                                    |                                                                                                                    | 5012                                                                                           | 111010-                                                                                                              |                          | D                            | 15160         | <u> </u> | millerna   |
| Falm-thur com                                                                                                                                                                                 | 2                                                                     | 110A                                                                                    | 110.                                                                                                               | 40                                                                                             |                                                                                                                      | Clear                    | M-Ha                         |               |          |            |
|                                                                                                                                                                                               | 2                                                                     | 1                                                                                       | HCI                                                                                                                | 1                                                                                              |                                                                                                                      |                          | rieno                        | Me .          |          |            |
|                                                                                                                                                                                               |                                                                       |                                                                                         |                                                                                                                    | 500                                                                                            | }                                                                                                                    |                          | CA A                         | E1X           |          |            |
|                                                                                                                                                                                               |                                                                       | roig                                                                                    | m h                                                                                                                | 1                                                                                              |                                                                                                                      |                          | JUL-IU                       | Colleg.       | -        |            |
|                                                                                                                                                                                               |                                                                       |                                                                                         | CARL .                                                                                                             |                                                                                                | 1 1                                                                                                                  | 1                        |                              |               |          |            |
|                                                                                                                                                                                               |                                                                       |                                                                                         | ч со.                                                                                                              |                                                                                                |                                                                                                                      |                          | Jultick                      | •             |          |            |
|                                                                                                                                                                                               |                                                                       |                                                                                         | Hason                                                                                                              |                                                                                                |                                                                                                                      |                          | Agnoro                       | ia            |          |            |
|                                                                                                                                                                                               |                                                                       |                                                                                         | HISON                                                                                                              |                                                                                                |                                                                                                                      |                          | Annov<br>Diss Fe             | 11a<br>1      |          |            |
|                                                                                                                                                                                               |                                                                       |                                                                                         | Hason<br>Hason                                                                                                     |                                                                                                |                                                                                                                      |                          | Agnorov<br>Diss Fr           | iia<br>E      |          |            |
|                                                                                                                                                                                               |                                                                       | !                                                                                       | H-504<br>H1003                                                                                                     |                                                                                                |                                                                                                                      |                          | Agnoros<br>Diss Fi           | 11a<br>E      |          |            |
|                                                                                                                                                                                               |                                                                       |                                                                                         | H-504<br>H0303                                                                                                     |                                                                                                |                                                                                                                      |                          | Agnoros<br>Diss Fi           | <u> </u>      |          |            |
|                                                                                                                                                                                               | Time                                                                  | 152.5                                                                                   | Hasoa<br>Hasoa<br>1520                                                                                             |                                                                                                | 1540                                                                                                                 |                          | Annos<br>Diss Fi             |               |          |            |
| Parameter (every 5 m                                                                                                                                                                          | Time                                                                  | 1525<br>5 min                                                                           | Hason<br>Hason<br>1520<br>5 min                                                                                    |                                                                                                | 1 <u>540</u><br>5 min                                                                                                | min                      | Diss Fi                      |               | min      | min        |
| Parameter (every 5 m<br>Flow Rate (tal/min)                                                                                                                                                   | Time                                                                  | 152.5<br>5 min<br>0.1                                                                   | Hason<br>Hason<br>1520<br>5 min<br>0,1                                                                             | 1525<br>5 min                                                                                  | 1540<br>5 min<br>0.1                                                                                                 | min                      | Julhide<br>Minoro<br>Diss Fi |               | min      | min        |
| Parameter (every 5 m<br>Flow Rate (kal/min)<br>Volume Purged (kal/                                                                                                                            | Time                                                                  | 1525<br>5 min<br>0.1<br>0.5                                                             | Hason<br>Hason<br>1520<br>5 min<br>0.1<br>1.0                                                                      | 1575<br>5 min<br>0.1<br>1.5                                                                    | 1940<br>5 min<br>0.1<br>2.0                                                                                          | min                      | Diss Fi                      |               | min      | min        |
| Parameter (every 5 m<br>Flow Rate (fal/min)<br>Volume Purged (fal<br>Water Depth (ft)                                                                                                         | Time                                                                  | 1525<br>5 min<br>0.1<br>0.5<br>5.00                                                     | Hasoa<br>Hasoa<br>1520<br>5 min<br>0.1<br>1.0<br>5.00                                                              | 1575<br>5 min<br>0.1<br>1.5<br>5.00                                                            | 1540<br>5 min<br>0.1<br>2.0<br>6.48                                                                                  | min                      | Diss F                       |               | min      | min        |
| Parameter (every 5 m<br>Flow Rate (kal/min)<br>Volume Purged (kal<br>Water Depth (k)<br>Temperature (Celsi                                                                                    | Time<br>nin)                                                          | 1525<br>5 min<br>0.1<br>0.5<br>5.00<br>11.00                                            | Hasoa<br>Hasoa<br>1520<br>S min<br>0.1<br>1.0<br>S.00<br>10.99                                                     | 1525<br>5 min<br>0.1<br>1.5<br>5.00<br>10.96                                                   | 1540<br>5 min<br>0.1<br>2.0<br>6.48<br>(0.98                                                                         | min                      | Diss Fi                      |               | min      | min        |
| Parameter (every 5 m<br>Flow Rate (tal/min)<br>Volume Purged (tal<br>Water Depth (t)<br>Temperature (Celsi<br>pH                                                                              | Time<br>tin)                                                          | 1525<br>5 min<br>0.1<br>0.5<br>5.00<br>11.00<br>6.61<br>7 5/0                           | Hason<br>Hason<br>Hason<br>5 min<br>0.1<br>1.0<br>5.00<br>10.99<br>6.580                                           | 1575<br>5 min<br>0.1<br>1.5<br>5.00<br>10.96<br>6.58                                           | 1540<br>5 min<br>0.1<br>2.0<br>6.48<br>10.98<br>6.62                                                                 | min                      | Diss Fi                      |               | min      | min        |
| Parameter (every 5 m<br>Flow Rate (al/min)<br>Volume Purged (al/<br>Water Depth (it)<br>Temperature (Celsin<br>pH<br>Sp. Conductance (mS                                                      | Time<br>nin)                                                          | 1525<br>5 min<br>0.1<br>0.5<br>5.00<br>11.00<br>6.61<br>3.569                           | H-SO-<br>H1203<br>H1203<br>H1203<br>S min<br>0.1<br>1.0<br>S.00<br>10.99<br>6.580<br>3.569                         | 1525<br>5 min<br>0.1<br>1.5<br>5.00<br>10.96<br>6.58<br>3.559                                  | 1540<br>5 min<br>0.1<br>2.0<br>6.48<br>10.98<br>6.62<br>3.579                                                        | min                      | Diss F                       |               | min      | min        |
| Parameter (every 5 m<br>Flow Rate (kal/min)<br>Volume Purged (kal/<br>Water Depth (k)<br>Temperature (Celsi<br>pH<br>Sp. Conductance (mS<br>DO (mg/L)                                         | Time<br>in)<br>U<br>/cm)                                              | 1525<br>5 min<br>0.1<br>0.5<br>5.00<br>11.00<br>6.61<br>3.569<br>1.70                   | Hasoa<br>Hasoa<br>S min<br>O.1<br>1.0<br>S.00<br>10.99<br>6.580<br>3.569<br>0.96<br>5.01                           | ISDS<br>5 min<br>0.1<br>1.5<br>5.00<br>10.96<br>6.58<br>3.559<br>0.87<br>0.87                  | 1540<br>5 min<br>0.1<br>2.0<br>6.48<br>(0.98<br>6.62<br>3.574<br>6.62                                                | min                      | Diss Fi                      |               | min      | mir        |
| Parameter (every 5 n<br>Flow Rate (tal/min)<br>Volume Purged (tal/<br>Water Depth (t)<br>Temperature (Celsi<br>pH<br>Sp. Conductance (mS<br>DO (mg/L)<br>ORP (mV)<br>Turbidity (NTU)          | Time<br>tin)<br>U<br>(cm)                                             | 1525<br>5 min<br>0.1<br>0.5<br>5.00<br>11.00<br>6.61<br>3.569<br>1.70<br>62.7           | H-50<br>H100<br>5 min<br>0.1<br>1.0<br>5.00<br>10.99<br>6.580<br>3.569<br>0.96<br>58.1                             | IST<br>5 min<br>0.1<br>1.5<br>5.00<br>10.96<br>6.58<br>3.559<br>0.87<br>56.3<br>11.72          | 1540<br>5 min<br>0.1<br>2.0<br>6.48<br>10.98<br>6.62<br>3.574<br>6.62<br>3.574<br>6.69<br>50.5<br>7.48               | min                      | Diss Fi                      |               | min      | mir        |
| Parameter (every 5 m<br>Flow Rate (fal/min)<br>Volume Purged (fal<br>Water Depth (ft)<br>Temperature (Celsi<br>pH<br>Sp. Conductance (mS<br>DO (mg/L)<br>ORP (mV)<br>Turbidity (NTU)<br>Color | Time<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1525<br>5 min<br>0.1<br>0.5<br>5.00<br>11.00<br>6.61<br>3.569<br>1.70<br>6.2.7<br>6.2.7 | Hason<br>Hason<br>Hason<br>S min<br>0.1<br>1.0<br>5.00<br>10.99<br>6.580<br>3.569<br>0.96<br>58.1<br>4.20<br>Class | 1525<br>5 min<br>0.1<br>1.5<br>5.00<br>10.96<br>6.58<br>3.559<br>0.87<br>56.3<br>4.23<br>Class | 1540<br>5 min<br>0.1<br>2.0<br>6.48<br>(0.98<br>6.62<br>3.57<br>6.62<br>3.57<br>6.62<br>50.5<br>3.69<br>50.5<br>3.68 | min                      | Julhick<br>Annoo<br>Diss Fi  |               | min      | mir        |

# Attachment B

Laboratory Analytical Reports

![](_page_23_Picture_0.jpeg)

Analytical Resources, Incorporated Analytical Chemists and Consultants

10 March 2015

Alexander Lesher Kennedy Jenks Consultants 32001 32<sup>nd</sup> Ave S., Suite 100 Federal Way, WA 98001

### RE: Client Project: Ecology Cornet Bay Marina, 1396010.00 ARI Job No: ZX74

Dear Alexander:

Please find enclosed the original Chain-of-Custody (COC) record and the final results for the samples from the project referenced above. Nine water samples and one trip blank were received on February 25, 2015. The samples were analyzed for BETX, NWTPH-G, MEE, NWTPH-Dx, dissolved iron and conventional parameters as instructed.

The percent recoveries for the surrogate, d4-1,2-dichloroethane, were high following the BETX analyses of several of these samples. Since no target compounds are associated with this surrogate, no corrective actions were taken.

All samples were initially analyzed for MEE on 2/27/15. The surrogate, propane, was not recovered following the analysis of sample MW-7-22415. This sample was re-analyzed on 3/4/15. The re-analysis proceeded without incident of note. The results for the re-analysis only have been submitted.

There were no further analytical complications noted.

An electronic copy of this report and all supporting raw data will be kept on file at ARI. Should you have any questions regarding these results, please feel free to call me at any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

dem

Mark D. Harris Project Manager 206/695-6210 markh@arilabs.com

Enclosures

cc: file ZX74

MDH/mdh

Page 1 of

Lines of Liability. And with period an equested services in accordance with appropriate memory curvening concerded and with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

| Analytical Chemists and Consultants Cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Receipt For</b>                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARI Client: <u>Hennedy Jenks</u><br>COC No(s): <u>NA</u> Project Name: <u>(</u><br>Delivered by: Fed-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Or Net Bay Marin<br>Ex UPS Couries Hand Delivered                                               | 12<br>Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Assigned ARI Job No: Tracking No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 | NÀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Preliminary Examination Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Were intact, properly signed and dated custody seals attached to the outside of to cooler?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YES                                                                                             | NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Were custody papers included with the cooler?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES                                                                                             | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were custody papers properly filled out (ink, signed, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES                                                                                             | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry) Time:505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.6                                                                                             | .8 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| If cooler temperature is out of compliance fill out form 00070F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp Gun ID#:                                                                                   | 90877952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cooler Accepted by: Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date:Date: | 7 Time: 1330                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Complete suctedy forms and attach all shipping d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AL                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| complete custody forms and attach an simpling d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | locuments                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Log-In Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | locuments                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Was a temperature blank included in the cooler?         What kind of packing material was used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | raies Foam Block Paper Other:                                                                   | es (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Units and attach an shipping d         Log-In Phase:         Was a temperature blank included in the cooler?         What kind of packing material was used?         Was sufficient ice used (if appropriate)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | igies Foam Block Paper Other:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Uog-In Phase:         Was a temperature blank included in the cooler?         What kind of packing material was used?         Was sufficient ice used (if appropriate)?         Were all bottles sealed in individual plastic bags?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rgies Foam Block Paper Other:<br>NA Y                                                           | ES NO<br>ES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Unit of packing material was used?       Bubble Wrap         Was sufficient ice used (if appropriate)?         Were all bottles sealed in individual plastic bags?         Did all bottles arrive in good condition (unbroken)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | igies Foam Block Paper Other:<br>NA Y                                                           | ES NO<br>ES NO<br>ES NO<br>ES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unit of packing material was used?       Bubble Wrap       Wet Ice       Gel Packs       Bag         Was sufficient ice used (if appropriate)?       Bubble Wrap       Wet Ice       Gel Packs       Bag         Were all bottles sealed in individual plastic bags?       Did all bottles arrive in good condition (unbroken)?       Were all bottle labels complete and legible?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rgies Foem Block Paper Other:<br>NA (<br>Y                                                      | ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Use of the number of containers listed on COC match with the number of containers received?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Igies Foam Block Paper Other:<br>NA Y<br>Y<br>                                                  | ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Log-In Phase:         Was a temperature blank included in the cooler?         What kind of packing material was used?         Was sufficient ice used (if appropriate)?         Were all bottles sealed in individual plastic bags?         Did all bottles arrive in good condition (unbroken)?         Were all bottle labels complete and legible?         Did the number of containers listed on COC match with the number of containers received?         Did all bottle labels and tags agree with custody papers?                                                                                                                                                                                                                                                                                                                                                                                                                                 | rgies Foem Block Paper Other:<br>NA Y<br>Y<br>                                                  | ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Log-In Phase:         Was a temperature blank included in the cooler?         What kind of packing material was used?         Was sufficient ice used (if appropriate)?         Were all bottles sealed in individual plastic bags?         Did all bottles arrive in good condition (unbroken)?         Were all bottle labels complete and legible?         Did the number of containers listed on COC match with the number of containers received?         Did all bottle labels and tags agree with custody papers?         Were all bottles used correct for the requested analyses?                                                                                                                                                                                                                                                                                                                                                               | Igies Foam Block Paper Other:<br>NA Y<br>Y<br>                                                  | ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Log-In Phase:         Was a temperature blank included in the cooler?         What kind of packing material was used?         Was sufficient ice used (if appropriate)?         Were all bottles sealed in individual plastic bags?         Did all bottles arrive in good condition (unbroken)?         Were all bottle labels complete and legible?         Did the number of containers listed on COC match with the number of containers received?         Did all bottle labels and tags agree with custody papers?         Were all bottles used correct for the requested analyses?         Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding                                                                                                                                                                                                                                                          | Igies Form Block Paper Other:            NA            Y            Y            Y            Y | ES NO<br>ES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Log-In Phase:         Was a temperature blank included in the cooler?         What kind of packing material was used?         Was sufficient ice used (if appropriate)?         Were all bottles sealed in individual plastic bags?         Did all bottles arrive in good condition (unbroken)?         Were all bottle labels complete and legible?         Did the number of containers listed on COC match with the number of containers received?         Did all bottle labels and tags agree with custody papers?         Were all bottles used correct for the requested analyses?         Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding Were all VOC vials free of air bubbles?                                                                                                                                                                                                                  | rgies Foem Block Paper Other.<br>NA (<br>Y<br>Y<br><br>y<br>                                    | ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES NO<br>ES ES ES<br>ES ES<br>ES NO<br>ES NO |

| Were all VOC vials free of a | ir bubble | s?        |                    | •••••••••             |            | NA   | YES       |
|------------------------------|-----------|-----------|--------------------|-----------------------|------------|------|-----------|
| Was sufficient amount of sal | mple sen  | t in each | bottle?            |                       |            |      | YES       |
| Date VOC Trip Blank was m    | ade at A  | RI        |                    |                       |            | NA   | 2/19/5    |
| Was Sample Split by ARI :    | NA        | YES       | Date/Time:         | Equipm                | ient:      |      | Split by: |
| Samples Logged by:           |           | A         | Date:              | abstis                | Time:      | 1610 |           |
|                              |           | ** Noti:  | fy Project Manager | of discrepancies or o | oncerns ** |      |           |

| Sample ID on Bottle          | Sample ID on COC           | Sample ID on Bottle                           | Sample ID on COC       |
|------------------------------|----------------------------|-----------------------------------------------|------------------------|
| (                            |                            |                                               |                        |
|                              | -                          |                                               |                        |
|                              |                            |                                               |                        |
| Additional Notes, Discrepand | cies, & Resolutions:       | 2011 20 20415-1                               | La MW-10R-22415-100    |
| MW-4R-22415=15               | sm mw-9-22415              | = 1PB 11W-1-212-20413                         | -) in a long to 12-240 |
| mw-9-22415 only 1            | has 7 containers,          | no containers for metals                      | , conv analysis.       |
| Ву: Д                        | Date: 1/25/11/10/05 dont h | ave labels (2) marked or                      | nlids                  |
| Small Air Bubbles Peabu      | bbles'                     | Small → "sm" (<2 mm)                          |                        |
| - 2mm 2-4                    | mm > 4 mm                  | Peabubbles $\rightarrow$ "pb" ( 2 to < 4 mm ) |                        |
| · · · · · · ·                |                            | Large $\rightarrow$ "lg" (4 to < 6 mm)        |                        |
|                              |                            | Headspace → "hs" (>6 mm)                      |                        |

PRESERVATION VERIFICATION 02/25/15 Page 1 of 1

Inquiry Number: NONE Analysis Requested: 02/25/15 Contact: Schreiner, Ty Client: Kennedy Jenks Consultants Logged by: AV Sample Set Used: Yes-481 Validatable Package: No Deliverables:

![](_page_26_Picture_2.jpeg)

ARI Job No: ZX74

PC: Mark VTSR: 02/25/15 Project #: 1396010.00
Project: Cornet Bay Marina
Sample Site:
SDG No:
Analytical Protocol: In-house

| LOGNUM<br>ARI ID        | CLIENT ID     | CN<br>>12 | 2 >12 | 2 NH. | 3 COI<br><2 | 0 F00 | 3 MET<br><2 | PHEN<br><2 | PHOS<br><2 | TKN<br><2 | N023<br><2 | TOC<br>22 | \$2<br>>9 | PHD F | e2+ D<br><2 F | MET DOC<br>LT FLT | PARAMETER | ADJUSTEI<br>TO | D LOT<br>NUMBER | AMOUNT<br>ADDED | DATE/BY |
|-------------------------|---------------|-----------|-------|-------|-------------|-------|-------------|------------|------------|-----------|------------|-----------|-----------|-------|---------------|-------------------|-----------|----------------|-----------------|-----------------|---------|
| 15-3521<br><b>ZX74A</b> | MW-7-22415    |           |       | C     |             |       | DIS         |            |            |           |            |           | 5         |       |               | ĸ                 |           |                |                 |                 | Ĩ       |
| 15-3522<br><b>ZX74B</b> | MW-1R-22415   |           |       | 10    |             |       | DIS         |            |            |           |            |           | - 1       |       |               | л                 |           |                |                 |                 |         |
| 15-3523<br><b>ZX74C</b> | MW-4R-22415   |           |       | - \$  |             |       | DIS         |            |            |           |            |           | 11        |       |               | Х                 |           |                |                 |                 |         |
| 15-3524<br><b>ZX74D</b> | MW-9-22415    |           |       | -     |             |       | *           |            |            |           |            |           |           |       |               |                   |           |                |                 |                 |         |
| 15-3525<br><b>ZX74E</b> | MW-2R-22415   |           |       | Ç     |             |       | DIS         |            |            |           |            |           | 1         |       |               | д                 |           |                |                 |                 |         |
| 15-3526<br><b>ZX74F</b> | MW-1-2R-22415 |           |       | >¢    |             |       | SIC         |            |            |           |            |           | 1         |       |               | x                 |           |                |                 |                 |         |
| 15-3527<br><b>ZX74G</b> | MW-10R-22415  |           |       | > C   |             |       | SIC         |            |            |           |            | -         | 1         |       |               | ×                 |           |                |                 |                 |         |
| 15-3528<br><b>ZX74H</b> | SEEP-1-22415  |           |       | 2     |             |       | -           |            |            |           |            |           |           |       |               |                   |           |                |                 |                 |         |
| 15-3529<br><b>ZX74I</b> | SEEP-2-22415  |           |       | -     |             |       |             |            |            |           |            |           |           |       |               |                   |           |                |                 |                 |         |
| (+                      | = Pass F.     | Fai       | 1     | R     | 1fid        | - J   | Sal         | er         | Rol        | 101       | 4<br>Y     | Sho       | ¥         | · la  | P             | 000               | a toul    | H              |                 |                 |         |

N Date 2/25 Checked By \_

PRESERVATION VERIFICATION 02/26/15 Page 1 of 1 Inquiry Number: NONE Analysis Requested: 02/25/15 Contact: Schreiner, Ty Client: Kennedy Jenks Consultants Logged by: AV Sample Set Used: Yes-481 Validatable Package: No Deliverables:

![](_page_27_Picture_2.jpeg)

ARI Job No: ZX74

PC: Mark VTSR: 02/25/15 Project #: 1396010.00 Project: Cornet Bay Marina Sample Site: SDG No: Analytical Protocol: In-house

| LOGNUM<br>ARI ID        | CLIENT ID     | CN<br>>12 | WAD<br>>12 | NH3<br><2 | COD<br><2 | F0G<br><2 | MET<br><2 | PHEN<br><2 | PHOS<br><2 | TKN<br><2 | N023<br><2 | T0C | S2<br>>9 | PHD Fe | 2+ DI | TT FLT | PARAMETER | ADJUSTED<br>TO | LOT<br>NUMBER | AMOUNT<br>ADDED | DATE/BY |
|-------------------------|---------------|-----------|------------|-----------|-----------|-----------|-----------|------------|------------|-----------|------------|-----|----------|--------|-------|--------|-----------|----------------|---------------|-----------------|---------|
| 15-3521<br><b>ZX74A</b> | MW-7-22415    |           |            |           |           |           | DIS       |            |            |           |            |     |          |        |       | ~      |           |                |               |                 |         |
| 15-3522<br><b>ZX74B</b> | MW-1R-22415   |           |            |           |           |           | DIS       |            |            |           |            |     |          |        |       |        |           |                |               |                 |         |
| 15-3523<br><b>ZX74C</b> | MW-4R-22415   |           |            |           |           |           | DIS       |            |            |           |            |     |          |        |       |        |           |                |               |                 |         |
| 15-3524<br><b>ZX74D</b> | MW-9-22415    |           |            | fail      |           |           | pis       |            |            |           |            | đ   | ai       |        | ~     | 2      |           |                |               |                 |         |
| 15-3525<br><b>ZX74E</b> | MW-2R-22415   |           |            |           |           |           | DIS       |            |            |           |            |     |          |        | -     |        |           |                |               |                 |         |
| 15-3526<br><b>ZX74F</b> | MW-1-2R-22415 |           |            |           |           |           | DIS       |            |            |           |            |     |          |        | ~     |        |           |                |               |                 |         |
| 15-3527<br><b>ZX74G</b> | MW-10R-22415  |           |            |           |           |           | DIS       |            |            |           |            |     |          |        | -     |        |           |                |               |                 |         |
| 15-3528<br><b>ZX74H</b> | SEEP-1-22415  |           |            |           |           |           |           |            |            |           |            |     |          |        |       |        |           |                |               |                 |         |
| 15-3529<br><b>ZX741</b> | SEEP-2-22415  |           |            |           |           |           |           |            |            |           |            |     |          |        |       |        |           |                |               |                 |         |

Checked By July Date 2/26/Ne15

# Sample ID Cross Reference Report

![](_page_28_Picture_1.jpeg)

ARI Job No: ZX74 Client: Kennedy Jenks Consultants Project Event: 1396010.00 Project Name: Cornet Bay Marina

|     | Sample ID     | ARI<br>Lab ID | ARI<br>LIMS ID | Matrix | Sample Date/Time | VTSR                             |
|-----|---------------|---------------|----------------|--------|------------------|----------------------------------|
| 1.  | MW-7-22415    | ZX74A         | 15-3521        | Water  | 02/24/15 09.00   | 02/25/15 13.30                   |
| 2.  | MW-1R-22415   | ZX74B         | 15-3522        | Water  | 02/24/15 10:00   | 02/25/15 13.30<br>02/25/15 13.30 |
| 3.  | MW-4R-22415   | ZX74C         | 15-3523        | Water  | 02/24/15 11:10   | 02/25/15 13.30                   |
| 4.  | MW-9-22415    | ZX74D         | 15-3524        | Water  | 02/24/15 12.10   | 02/25/15 13.30                   |
| 5.  | MW-2R-22415   | ZX74E         | 15-3525        | Water  | 02/24/15 14:10   | 02/25/15 13.30                   |
| 6.  | MW-1-2R-22415 | ZX74F         | 15-3526        | Water  | 02/24/15         | 02/25/15 13.30                   |
| 7.  | MW-10R-22415  | ZX74G         | 15-3527        | Water  | 02/24/15 15.45   | 02/25/15 13.30<br>02/25/15 13.30 |
| 8.  | SEEP-1-22415  | ZX74H         | 15-3528        | Water  | 02/24/15 13.40   | 02/25/15 13.30                   |
| 9.  | SEEP-2-22415  | ZX74I         | 15-3529        | Water  | 02/24/15 13.45   | 02/25/15 13.30                   |
| 10. | TRIP BLANKS   | ZX74J         | 15-3530        | Water  | 02/24/15         | 02/25/15 13:30                   |

Printed 02/26/15 Page 1 of 1

![](_page_29_Picture_0.jpeg)

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Data Reporting Qualifiers**

Effective 12/31/13

# **Inorganic Data**

- U Indicates that the target analyte was not detected at the reported concentration
- \* Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but  $\geq$  the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

# **Organic Data**

- U Indicates that the target analyte was not detected at the reported concentration
- \* Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

![](_page_30_Picture_0.jpeg)

Analytical Resources, Incorporated Analytical Chemists and Consultants

- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Laboratory Quality Assurance Plan

Page 2 of 3

![](_page_31_Picture_0.jpeg)

Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Geotechnical Data**

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

### ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Page 1 of 1

![](_page_32_Picture_1.jpeg)

Lab Sample ID: ZX74A LIMS ID: 15-3521 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 14:23 Sample ID: MW-7-22415

SAMPLE

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ  | Result | Q |
|-------------|---------------|------|--------|---|
| 71-43-2     | Benzene       | 0.20 | < 0.20 | U |
| 108-88-3    | Toluene       | 0.20 | < 0.20 | U |
| 100-41-4    | Ethylbenzene  | 0.20 | < 0.20 | U |
| 1330-20-7   | Total Xylenes | 0.60 | < 0.60 | U |
| 179601-23-1 | m,p-Xylene    | 0.40 | < 0.40 | U |
| 95-47-6     | o-Xylene      | 0.20 | < 0.20 | U |

Reported in µg/L (ppb)

| d4-1 2-Dichloroethane  | 1238  |  |
|------------------------|-------|--|
| d8-Toluene             | 99.88 |  |
| Bromofluorobenzene     | 106%  |  |
| d4-1,2-Dichlorobenzene | 103%  |  |

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: MW-1R-22415 Page 1 of 1

![](_page_33_Picture_1.jpeg)

# SAMPLE

Lab Sample ID: ZX74B LIMS ID: 15-3522 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 14:49 QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ  | Result | Q |
|-------------|---------------|------|--------|---|
| 71-43-2     | Benzene       | 0.20 | < 0.20 | U |
| 108-88-3    | Toluene       | 0.20 | < 0.20 | U |
| 100-41-4    | Ethylbenzene  | 0.20 | < 0.20 | U |
| 1330-20-7   | Total Xylenes | 0.60 | < 0.60 | U |
| 179601-23-1 | m,p-Xylene    | 0.40 | < 0.40 | U |
| 95-47-6     | o-Xylene      | 0.20 | < 0.20 | U |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 121%  |
|------------------------|-------|
| d8-Toluene             | 99.6% |
| Bromofluorobenzene     | 1068  |
| d4-1,2-Dichlorobenzene | 1048  |
|                        |       |

![](_page_34_Picture_0.jpeg)

### ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Page 1 of 1

Sample ID: MW-4R-22415 SAMPLE

Lab Sample ID: ZX74C LIMS ID: 15-3523 Matrix: Water Data Release Authorized:

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 15:15 Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ  | Result | Q |
|-------------|---------------|------|--------|---|
| 71-43-2     | Benzene       | 0.20 | < 0.20 | U |
| 108-88-3    | Toluene       | 0.20 | < 0.20 | U |
| 100-41-4    | Ethylbenzene  | 0.20 | < 0.20 | U |
| 1330-20-7   | Total Xylenes | 0.60 | < 0.60 | U |
| 179601-23-1 | m,p-Xylene    | 0.40 | < 0.40 | U |
| 95-47-6     | o-Xylene      | 0.20 | < 0.20 | U |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 120%  |
|------------------------|-------|
| d8-Toluene             | 99.78 |
| Bromofluorobenzene     | 106%  |
| d4-1,2-Dichlorobenzene | 102%  |
|                        |       |

### ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: MW-9-22415 Page 1 of 1

![](_page_35_Picture_1.jpeg)

Lab Sample ID: ZX74D LIMS ID: 15-3524 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 15:41 QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

SAMPLE

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| Analyte       | LOQ                                                                                      | Result                                                                                      | Q                                                                                |
|---------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Benzene       | 0.20                                                                                     | < 0.20                                                                                      | U                                                                                |
| Toluene       | 0.20                                                                                     | < 0.20                                                                                      | U                                                                                |
| Ethylbenzene  | 0.20                                                                                     | < 0.20                                                                                      | U                                                                                |
| Total Xylenes | 0.60                                                                                     | < 0.60                                                                                      | U                                                                                |
| m,p-Xylene    | 0.40                                                                                     | < 0.40                                                                                      | U                                                                                |
| o-Xylene      | 0.20                                                                                     | < 0.20                                                                                      | U                                                                                |
|               | Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes<br>m,p-Xylene<br>o-Xylene | AnalyteLOQBenzene0.20Toluene0.20Ethylbenzene0.20Total Xylenes0.60m,p-Xylene0.40o-Xylene0.20 | Analyte         LOQ         Result           Benzene         0.20         < 0.20 |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 122%  |  |
|------------------------|-------|--|
| d8-Toluene             | 97.9% |  |
| Bromofluorobenzene     | 101%  |  |
| d4-1,2-Dichlorobenzene | 103%  |  |
|                        |       |  |
# ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: MW-2R-22415



1 of 1 Page

Lab Sample ID: ZX74E LIMS ID: 15-3525 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 16:09 SAMPLE

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Sample Amount: 2.00 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ | Result | Q |  |
|-------------|---------------|-----|--------|---|--|
| 71-43-2     | Benzene       | 1.0 | < 1.0  | U |  |
| 108-88-3    | Toluene       | 1.0 | < 1.0  | U |  |
| 100-41-4    | Ethylbenzene  | 1.0 | < 1.0  | U |  |
| 1330-20-7   | Total Xylenes | 3.0 | < 3.0  | U |  |
| 179601-23-1 | m,p-Xylene    | 2.0 | < 2.0  | Ū |  |
| 95-47-6     | o-Xylene      | 1.0 | < 1.0  | U |  |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 118% |
|------------------------|------|
| d8-Toluene             | 101% |
| Bromofluorobenzene     | 106% |
| d4-1,2-Dichlorobenzene | 102% |
|                        |      |

# ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Page 1 of 1



Lab Sample ID: 2X74F LIMS ID: 15-3526 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 16:35 Sample ID: MW-1-2R-22415 SAMPLE

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ  | Result | Q  |
|-------------|---------------|------|--------|----|
| 71-43-2     | Benzene       | 0.20 | 0.42   |    |
| 108-88-3    | Toluene       | 0.20 | < 0.20 | IJ |
| 100-41-4    | Ethylbenzene  | 0.20 | < 0.20 | U  |
| 1330-20-7   | Total Xylenes | 0.60 | < 0.60 | U  |
| 179601-23-1 | m,p-Xylene    | 0.40 | < 0.40 | U  |
| 95-47-6     | o-Xylene      | 0.20 | < 0.20 | U  |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 124%  |
|------------------------|-------|
| d8-Toluene             | 97.9% |
| Bromofluorobenzene     | 1048  |
| d4-1,2-Dichlorobenzene | 1048  |

# ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: MW-10R-22415 Page 1 of 1



Lab Sample ID: ZX74G LIMS ID: 15-3527 Matrix: Water Data Release Authorized:, Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 17:04 SAMPLE

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Sample Amount: 2.00 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ | Result | Q  |
|-------------|---------------|-----|--------|----|
| 71-43-2     | Benzene       | 1.0 | < 1.0  | U  |
| 108-88-3    | Toluene       | 1.0 | < 1.0  | U  |
| 100-41-4    | Ethylbenzene  | 1.0 | < 1.0  | IJ |
| 1330-20-7   | Total Xylenes | 3.0 | < 3.0  | IJ |
| 179601-23-1 | m,p-Xylene    | 2.0 | < 2.0  | U  |
| 95-47-6     | o-Xylene      | 1.0 | < 1.0  | U  |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 123% |
|------------------------|------|
| d8-Toluene             | 100% |
| Bromofluorobenzene     | 104% |
| d4-1,2-Dichlorobenzene | 1048 |
|                        |      |

## ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Page 1 of 1



Lab Sample ID: ZX74H LIMS ID: 15-3528 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 17:30 Sample ID: SEEP-1-22415 SAMPLE

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ  | Result | Q  |
|-------------|---------------|------|--------|----|
| 71-43-2     | Benzene       | 0.20 | < 0.20 | U  |
| 108-88-3    | Toluene       | 0.20 | < 0.20 | IJ |
| 100-41-4    | Ethylbenzene  | 0.20 | < 0.20 | Ū  |
| 1330-20-7   | Total Xylenes | 0.60 | < 0.60 | U  |
| 179601-23-1 | m,p-Xylene    | 0.40 | < 0.40 | U  |
| 95-47-6     | o-Xylene      | 0.20 | < 0.20 | U  |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 132% |
|------------------------|------|
| d8-Toluene             | 1008 |
| Bromofluorobenzene     | 104% |
| d4-1,2-Dichlorobenzene | 105% |
|                        |      |





Page 1 of 1 Sample ID: SEEP-2-22415 SAMPLE

Lab Sample ID: ZX74I LIMS ID: 15-3529 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 17:56 QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ  | Result | Q |
|-------------|---------------|------|--------|---|
| 71-43-2     | Benzene       | 0.20 | 0.81   | - |
| 108-88-3    | Toluene       | 0.20 | < 0.20 | U |
| 100-41-4    | Ethylbenzene  | 0.20 | < 0.20 | U |
| 1330-20-7   | Total Xylenes | 0.60 | < 0.60 | U |
| 179601-23-1 | m,p-Xylene    | 0.40 | < 0.40 | U |
| 95-47-6     | o-Xylene      | 0.20 | < 0.20 | U |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 1348  |
|------------------------|-------|
| d8-Toluene             | 99.38 |
| Bromofluorobenzene     | 102%  |
| d4-1,2-Dichlorobenzene | 1048  |
|                        |       |

## ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Page 1 of 1



Lab Sample ID: ZX74J LIMS ID: 15-3530 Matrix: Water Data Release Authorized: A Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 13:31 Sample ID: TRIP BLANKS SAMPLE

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ  | Result | Q |
|-------------|---------------|------|--------|---|
| 71-43-2     | Benzene       | 0.20 | < 0.20 | U |
| 108-88-3    | Toluene       | 0.20 | < 0.20 | U |
| 100-41-4    | Ethylbenzene  | 0.20 | < 0.20 | U |
| 1330-20-7   | Total Xylenes | 0.60 | < 0.60 | U |
| 179601-23-1 | m,p-Xylene    | 0.40 | < 0.40 | U |
| 95-47-6     | o-Xylene      | 0.20 | < 0,20 | U |

Reported in µg/L (ppb)

| d4-1,2-Dichloroethane  | 118%  |
|------------------------|-------|
| d8-Toluene             | 97.78 |
| Bromofluorobenzene     | 106%  |
| d4-1,2-Dichlorobenzene | 102%  |



# ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: MB-030515A Page 1 of 1

Lab Sample ID: MB-030515A LIMS ID: 15-3521 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst: NT2/PAB Date Analyzed: 03/05/15 12:38

# METHOD BLANK

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

| CAS Number  | Analyte       | LOQ  | Result | Q |
|-------------|---------------|------|--------|---|
| 71-43-2     | Benzene       | 0.20 | < 0.20 | U |
| 108-88-3    | Toluene       | 0.20 | < 0.20 | U |
| 100-41-4    | Ethylbenzene  | 0.20 | < 0.20 | U |
| 1330-20-7   | Total Xylenes | 0.60 | < 0.60 | U |
| 179601-23-1 | m,p-Xylene    | 0.40 | < 0.40 | U |
| 95-47-6     | o-Xylene      | 0.20 | < 0.20 | U |

Reported in µg/L (ppb)

| 0       |
|---------|
| 20      |
| 5       |
| 5       |
| 1 01 01 |



## ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: LCS-030515A Page 1 of 1

LAB CONTROL SAMPLE

Lab Sample ID: LCS-030515A LIMS ID: 15-3521 Matrix: Water Data Release Authorized: Reported: 03/06/15

Instrument/Analyst LCS: NT2/PAB LCSD: NT2/PAB Date Analyzed LCS: 03/05/15 11:46 LCSD: 03/05/15 12:12

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL LCSD: 10.0 mL Purge Volume LCS: 10.0 mL LCSD: 10.0 mL

| Analyte LCS        | Spike<br>Added-LCS | LCS<br>Recovery | LCSD | Spike<br>Added-LCSD | LCSD<br>Recovery | RPD  |
|--------------------|--------------------|-----------------|------|---------------------|------------------|------|
| Benzene 11.1       | 10.0               | 111%            | 11.2 | 10.0                | 112%             | 0.98 |
| Toluene 10.4       | 10.0               | 1048            | 10.4 | 10.0                | 1048             | 0.08 |
| Ethylbenzene 10.3  | 10.0               | 103%            | 10.2 | 10.0                | 102%             | 1.0% |
| Total Xylenes 31.0 | 30.0               | 103%            | 32.2 | 30.0                | 1078             | 3.8% |
| m,p-Xylene 20.6    | 20.0               | 103%            | 21.4 | 20.0                | 1078             | 3.88 |
| o-Xylene 10.4      | 10.0               | 104%            | 10.8 | 10.0                | 108%             | 3.8% |

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

|                        | LCS  | LCSD |
|------------------------|------|------|
| d4-1,2-Dichloroethane  | 116% | 115% |
| d8-Toluene             | 1018 | 102% |
| Bromofluorobenzene     | 102% | 104% |
| d4-1,2-Dichlorobenzene | 103% | 104% |
|                        |      |      |



Matrix: Water

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00

| ARI ID          | Client ID         | PV  | DCE        | TOL   | BFB  | DCB     | TOT OUT |
|-----------------|-------------------|-----|------------|-------|------|---------|---------|
| MB-030515A      | Method Blank      | 10  | 116%       | 99.1% | 106% | 102%    | 0       |
| LCS-030515A     | Lab Control       | 10  | 116%       | 101%  | 102% | 103%    | 0       |
| LCSD-030515A    | Lab Control Dup   | 10  | 115%       | 102%  | 104% | 104%    | 0       |
| ZX74A           | MW-7-22415        | 10  | 1238*      | 99.88 | 106% | 103%    | 1       |
| ZX74B           | MW-1R-22415       | 10  | 1218*      | 99.6% | 106% | 104%    | 1       |
| ZX74C           | MW-4R-22415       | 10  | 120%       | 99.78 | 106% | 102%    | 0       |
| ZX74D           | MW-9-22415        | 10  | 122%*      | 97.98 | 101% | 103%    | 1       |
| ZX74E           | MW-2R-22415       | 10  | 118%       | 1018  | 106% | 102%    | 0       |
| ZX74F           | MW-1-2R-22415     | 10  | 124%*      | 97.98 | 104% | 104%    | 1       |
| ZX74G           | MW-10R-22415      | 10  | 123%*      | 100%  | 104% | 104%    | 1       |
| ZX74H           | SEEP-1-22415      | 10  | 1328*      | 100%  | 104% | 105%    | 1       |
| ZX74I           | SEEP-2-22415      | 10  | 1348*      | 99.3% | 102% | 104%    | 1       |
| ZX74J           | TRIP BLANKS       | 10  | 118%       | 97.7% | 106% | 102%    | 0       |
|                 |                   | LCS | MB LIMI    | TS    |      | OC LIMI | TS      |
| SW8260C         |                   |     |            |       |      | -       |         |
| (DCE) = d4 - 1, | 2-Dichloroethane  |     | (80 - 120) |       |      | (80-12  | 0)      |
| (TOL) = d8 - Tc | oluene            |     | (80 - 120) |       |      | (80-12  | 0)      |
| (BFB) = Bromo   | ofluorobenzene    |     | (80 - 120) |       |      | (80-12  | 0)      |
| (DCB) = d4 - 1, | 2-Dichlorobenzene |     | (80-120)   |       |      | (80-12  | 0)      |

Prep Method: SW5030B Log Number Range: 15-3521 to 15-3530 ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG Matrix: Water



Data Release Authorized: Reported: 03/09/15 QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina Event: 1396010.00

| ARI ID               | Client ID     | Analysis<br>Date | DL  | Range                            | Result         |
|----------------------|---------------|------------------|-----|----------------------------------|----------------|
| MB-022615<br>15-3521 | Method Blank  | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC ID                | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 96.6%<br>93.4% |
| ZX74A<br>15-3521     | MW-7-22415    | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC ID                | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 97.5%<br>91.3% |
| ZX74B<br>15-3522     | MW-1R-22415   | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC ID                | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 97.6%<br>95.6% |
| ZX74C<br>15-3523     | MW-4R-22415   | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC TD                | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 97.2%<br>94.0% |
| ZX74D<br>15-3524     | MW-9-22415    | 02/26/15<br>PID3 | 1.0 | Gasoline                         | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 98.3%<br>96.1% |
| ZX74E<br>15-3525     | MW-2R-22415   | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC ID                | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 100%<br>98.0%  |
| ZX74F<br>15-3526     | MW-1-2R-22415 | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC ID                | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 101%<br>95.7%  |
| ZX74G<br>15-3527     | MW-10R-22415  | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC ID                | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 98.98<br>98.48 |
| ZX74H<br>15-3528     | SEEP-1-22415  | 02/26/15<br>PTD3 | 1.0 | Gasoline                         | < 0.25 U       |
|                      |               | 1100             |     | Trifluorotoluene<br>Bromobenzene | 97.5%<br>99.3% |
| ZX74I<br>15-3529     | SEEP-2-22415  | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC ID                | < 0.25 U       |
|                      |               |                  |     | Trifluorotoluene<br>Bromobenzene | 81.3%<br>82.5% |

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG Matrix: Water



OC Report No: ZX74-Kennedy Jenks Consultants



Data Release Authorized: /// Reported: 03/09/15

| 6 | Report No: | ZA14-Kennedy Jenks |
|---|------------|--------------------|
|   | Project:   | Cornet Bay Marina  |
|   | Event:     | 1396010.00         |
|   |            |                    |

| ARI ID           | Client ID   | Analysis<br>Date | DL  | Range                                                 | Result                         |
|------------------|-------------|------------------|-----|-------------------------------------------------------|--------------------------------|
| ZX74J<br>15-3530 | TRIP BLANKS | 02/26/15<br>PID3 | 1.0 | Gasoline<br>HC ID<br>Trifluorotoluene<br>Bromobenzene | < 0.25 U<br><br>90.0%<br>89.1% |

Gasoline values reported in mg/L (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline. GRO: Positive result that does not match an identifiable gasoline pattern. ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG Page 1 of 1



Sample ID: LCS-022615 LAB CONTROL SAMPLE

Lab Sample ID: LCS-022615 LIMS ID: 15-3521 Matrix: Water Data Release Authorized: Reported: 03/09/15

Date Analyzed LCS: 02/26/15 14:56 LCSD: 02/26/15 15:25 Instrument/Analyst LCS: PID3/ML LCSD: PID3/ML QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Dilution Factor LCS: 1.0 LCSD: 1.0

| Analyte                     | LCS   | Spike<br>Added-LCS | LCS<br>Recovery | LCSD | Spike<br>Added-LCSD | LCSD<br>Recovery | RPD  |
|-----------------------------|-------|--------------------|-----------------|------|---------------------|------------------|------|
| Gasoline Range Hydrocarbons | 1.07  | 1.00               | 107%            | 1.03 | 1.00                | 103%             | 3.8% |
|                             | Repor | rted in mg/        | 'L (ppm)        |      |                     |                  |      |

RPD calculated using sample concentrations per SW846.

# TPHG Surrogate Recovery

|                  | LCS   | LCSD  |
|------------------|-------|-------|
| Trifluorotoluene | 99.4% | 97.5% |
| Bromobenzene     | 96.68 | 94.9% |



# TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: ZX74 Matrix: Water QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina Event: 1396010.00

| Client ID     | TFT   | BBZ   | TOT OUT |
|---------------|-------|-------|---------|
| MB-022615     | 96.6% | 93.4% | 0       |
| LCS-022615    | 99.48 | 96.6% | 0       |
| LCSD-022615   | 97.5% | 94.98 | 0       |
| MW-7-22415    | 97.5% | 91.3% | 0       |
| MW-1R-22415   | 97.6% | 95.6% | 0       |
| MW-4R-22415   | 97.28 | 94.0% | 0       |
| MW-9-22415    | 98.38 | 96.1% | 0       |
| MW-2R-22415   | 100%  | 98.0% | 0       |
| MW-1-2R-22415 | 101%  | 95.7% | 0       |
| MW-10R-22415  | 98.9% | 98.4% | 0       |
| SEEP-1-22415  | 97.5% | 99.3% | 0       |
| SEEP-2-22415  | 81.3% | 82.5% | 0       |
| TRIP BLANKS   | 90.08 | 89.1% | 0       |
|               |       |       |         |

|       |   |                  | LCS/MB LIMITS | QC LIMITS  |
|-------|---|------------------|---------------|------------|
| (TFT) | = | Trifluorotoluene | (80-120)      | (80 - 120) |
| (BBZ) | = | Bromobenzene     | (80-120)      | (80-120)   |

Log Number Range: 15-3521 to 15-3530

FORM II TPHG













|           | $\begin{array}{c} \text{UVOLTS } (\times 10^{4}) \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$ | Colu    | Samp    | Date               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------------|
| ы-        |                                                                                                                                                     | nn phas | le Info | : 26-F             |
|           |                                                                                                                                                     | et RTX  | ‡ ZX74D | EB-2015<br>MW-9-22 |
|           |                                                                                                                                                     | 502-2 F |         | 18:58<br>415       |
| 1-        |                                                                                                                                                     | -10     |         |                    |
|           |                                                                                                                                                     |         |         |                    |
|           | TFT(Surr) (8,408)                                                                                                                                   |         |         |                    |
|           |                                                                                                                                                     |         |         |                    |
| • • •     | / chem                                                                                                                                              |         |         |                    |
|           | 3/pid3                                                                                                                                              |         |         |                    |
|           | 1/201E                                                                                                                                              |         |         |                    |
| · · · · · | 0226-4                                                                                                                                              |         |         |                    |
|           | *b/0226                                                                                                                                             | Col     | Ope     | Ins                |
|           | a011.td                                                                                                                                             | umn dia | rator;  | trument            |
| я-<br>,   | 10226a0                                                                                                                                             | meter:  | ¥       | ;‡ pid3            |
| 10.       | BB(Surr) (15,833)                                                                                                                                   | 0,18    |         | .i                 |
|           |                                                                                                                                                     |         |         |                    |
|           |                                                                                                                                                     |         |         |                    |
|           |                                                                                                                                                     |         |         |                    |
| 19        |                                                                                                                                                     |         |         |                    |
| 20        |                                                                                                                                                     |         |         |                    |
| N         |                                                                                                                                                     |         |         |                    |
| - 14      |                                                                                                                                                     |         |         |                    |
| 22        |                                                                                                                                                     |         |         |                    |
| 23        |                                                                                                                                                     |         |         |                    |







| 0.70<br>0.70<br>0.68<br>0.66<br>0.66<br>0.66<br>0.66 | UVOLTS (x10 <sup>4</sup> )<br>VUVOLTS (x10 <sup>4</sup> )<br>V 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1<br>V 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1<br>V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Calumn whasat RTX 502-2 FID           | Date : 26-FEB-2015 20:50<br>Client ID: SEEP-1-22415<br>Sample Info: ZX74H |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------|
| 2-<br>                                               | T<br>TFT(Surr) (8,407)                                                                                                                                                           |                                       |                                                                           |
|                                                      | -BB(Surr) (15,833)                                                                                                                                                               | Operator: ML<br>Column diameter: 0,18 | Instrument: pid3+i                                                        |
|                                                      |                                                                                                                                                                                  |                                       |                                                                           |

| 0.66<br>0.65<br>0.65<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.59<br>0.59<br>0.59<br>0.59<br>0.59<br>0.59<br>0.59<br>0.59 | UVOLTS (x10^4)<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Column phase: RTX 502-2 FID           | Sample Info: ZX74I | Client ID: SEEP-2-22415 | Date : 26-FEB-2015 21:19 |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|--------------------|-------------------------|--------------------------|
| 10 11 12 13 14 15 16 17 18                                                                                                                   | -288(Surr) (15,833)                                     | Operator: ML<br>Column diameter: 0,18 |                    | Instrument: pid3.i      |                          |
| 20 21 22 23                                                                                                                                  |                                                         |                                       |                    |                         |                          |



ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET METHANE ETHANE ETHENE Modified RSK 175 Page 1 of 1 Matrix: Water

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Received: 02/25/15

Data Release Authorized: MW Reported: 03/04/15

| ARI ID   | Sample ID     | Analysis<br>Date | DL  | Analyte | RL  | Result   |
|----------|---------------|------------------|-----|---------|-----|----------|
| ZX74A    | MW-7-22415    | 03/04/15         | 1.0 | Methane | 0.7 | 700      |
| 15-3521  |               |                  |     | Ethane  | 1.2 | < 1.2 U  |
|          |               |                  |     | Ethene  | 1.1 | < 1.1 U  |
| ZX74B    | MW-1R-22415   | 02/27/15         | 1.0 | Methane | 0.7 | < 0.7 U  |
| 15-3522  |               |                  |     | Ethane  | 1.2 | < 1.2 U  |
|          |               |                  |     | Ethene  | 1.1 | < 1,1 U  |
| ZX74C    | MW-4R-22415   | 02/27/15         | 1.0 | Methane | 0.7 | 96.2     |
| 15-3523  |               |                  |     | Ethane  | 1.2 | < 1.2 U  |
|          |               |                  |     | Ethene  | 1.1 | < 1.1 U  |
| ZX74D    | MW-9-22415    | 02/27/15         | 1.0 | Methane | 0.7 | 241      |
| 15-3524  |               |                  |     | Ethane  | 1.2 | < 1.2 U  |
|          |               |                  |     | Ethene  | 1.1 | < 1.1 U  |
| ZX74E    | MW-2R-22415   | 02/27/15         | 1.0 | Methane | 0.7 | 116      |
| 15-3525  |               |                  |     | Ethane  | 1.2 | < 1.2 U  |
|          |               |                  |     | Ethene  | 1.1 | < 1.1 U  |
| ZX74F    | MW-1-2R-22415 | 02/27/15         | 1.0 | Methane | 0.7 | 70.1     |
| 15-3526  |               |                  |     | Ethane  | 1.2 | < 1.2 U  |
|          |               |                  |     | Ethene  | 1.1 | < 1.1 U  |
| ZX74G    | MW-10R-22415  | 02/27/15         | 1.0 | Methane | 0.7 | 1,680    |
| 15-3527  |               |                  |     | Ethane  | 1.2 | < 1.2 U  |
|          |               |                  |     | Ethene  | 1.1 | < 1.1 U  |
| 022715MB | Method Blank  | 02/27/15         | 1.0 | Methane | 0.7 | < 0.7 11 |
| 030415MB | Method Blank  | 03/04/15         | 1.0 | Methane | 0.7 | < 0.7 U  |
| 022715MB | Method Blank  | 02/27/15         | 1.0 | Ethane  | 1.2 | < 1.2 U  |
| 030415MB | Method Blank  | 03/04/15         | 1.0 | Ethane  | 1.2 | < 1.2 U  |
| 022715MB | Method Blank  | 02/27/15         | 1.0 | Ethene  | 1.1 | < 1.1 U  |
| 030415MB | Method Blank  | 03/04/15         | 1.0 | Ethene  | 1.1 | < 1.1 U  |

Reported in ug/L (ppb)



ORGANICS ANALYSIS DATA SHEET METHANE ETHANE ETHENE Modified RSK 175 Page 1 of 1 Matrix: Water

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Received: 02/25/15

Data Release Authorized: MWV Reported: 03/04/15

| ARI ID                  | Analysis<br>Date | Analyte | Spike | Result         | Recovery         | RPD  |
|-------------------------|------------------|---------|-------|----------------|------------------|------|
| 022715LCS<br>030415LCSD | 02/27/15         | Methane | 654   | 658<br>675     | 100.6%<br>103.1% | 0.1% |
| 030415LCS               | 03/04/15         | Methane | 654   | 674            | 103.0%           |      |
| 022715LCS<br>030415LCSD | 02/27/15         | Ethane  | 1,230 | 1,240<br>1,270 | 101.1%<br>103.5% | 0.0% |
| 030415LCS               | 03/04/15         | Ethane  | 1,230 | 1,270          | 103.5%           |      |
| 022715LCS<br>030415LCSD | 02/27/15         | Ethene  | 1,150 | 1,130<br>1,160 | 98.7%<br>101.3%  | 0.9% |
| 030415LCS               | 03/04/15         | Ethene  | 1,150 | 1,170          | 102.2%           |      |

Reported in ug/L (ppb)

# ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS



NWTPHD by GC/FID-Silica and Acid Cleaned Extraction Method: Page 1 of 1

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00

Matrix: Water Data Release Authorized: Reported: 03/10/15

| ARI ID               | Sample ID               | Extraction<br>Date | Analysis<br>Date | EFV<br>DF   | Range/Surrogate                                | RL           | Result                        |
|----------------------|-------------------------|--------------------|------------------|-------------|------------------------------------------------|--------------|-------------------------------|
| MB-030315<br>15-3521 | Method Blank<br>HC ID:  | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>91.2% |
| ZX74A<br>15-3521     | MW-7-22415<br>HC ID:    | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>86.1% |
| ZX74B<br>15-3522     | MW-1R-22415<br>HC ID:   | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>83.4% |
| ZX74C<br>15-3523     | MW-4R-22415<br>HC ID:   | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>77.6% |
| ZX74D<br>15-3524     | MW-9-22415<br>HC ID:    | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.11<br>0.22 | < 0.11 U<br>< 0.22 U<br>87.6% |
| ZX74E<br>15-3525     | MW-2R-22415<br>HC ID:   | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>88.8% |
| ZX74F<br>15-3526     | MW-1-2R-22415<br>HC ID: | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>88.7% |
| ZX74G<br>15-3527     | MW-10R-22415<br>HC ID:  | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>86.1% |
| ZX74H<br>15-3528     | SEEP-1-22415<br>HC ID:  | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>94.6% |
| ZX74I<br>15-3529     | SEEP-2-22415<br>HC ID:  | 03/03/15           | 03/09/15<br>FID9 | 1.00<br>1.0 | Diesel Range<br>Motor Oil Range<br>o-Terphenyl | 0.10<br>0.20 | < 0.10 U<br>< 0.20 U<br>84.1% |

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.



# CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00

| Client ID     | OTER  | TOT OUT |
|---------------|-------|---------|
| MB-030315     | 91.2% | 0       |
| LCS-030315    | 87.3% | 0       |
| LCSD-030315   | 89.0% | 0       |
| MW-7-22415    | 86.1% | 0       |
| MW-1R-22415   | 83.4% | 0       |
| MW-4R-22415   | 77.6% | 0       |
| MW-9-22415    | 87.6% | 0       |
| MW-2R-22415   | 88.8% | 0       |
| MW-1-2R-22415 | 88.78 | 0       |
| MW-10R-22415  | 86.1% | 0       |
| SEEP-1-22415  | 94.6% | 0       |
| SEEP-2-22415  | 84.1% | 0       |

| LCS/MB | LIMITS | QC | LIMITS |
|--------|--------|----|--------|
|        |        |    |        |

(OTER) = o-Terphenyl

(50-150) (50-150)

Prep Method: SW3510C Log Number Range: 15-3521 to 15-3529







MANUAL INTEGRATION

- 1. Baseline correction
- 2. Poor chromatography
- 3. Peak not found
- 4. Totals calculation (5.) Surrogate Skimmed

Analyst: ML

Date: 3/10/15





MANUAL INTEGRATION

- 1. Baseline correction
- 2. Poor chromatography
- 3. Peak not found
- 4. Totals calculation
- 5) Surrogate Skimmed

Analyst: \_\_\_\_\_

Date: 3/10/15




















Matrix: Water Data Release Authorized: Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Client ID: MW-7-22415 ARI ID: 15-3521 ZX74A

| Analyte           | Date<br>Batch        | Method     | Units  | RL    | Sample    |
|-------------------|----------------------|------------|--------|-------|-----------|
| N-Ammonia         | 02/26/15<br>022615#1 | EPA 350.1M | mg-N/L | 0.500 | 8.38      |
| N-Nitrate         | 02/26/15             | Calculated | mg-N/L | 0.010 | < 0.010 U |
| N-Nitrite         | 02/25/15<br>022515#1 | EPA 353.2  | mg-N/L | 0.010 | < 0.010 U |
| Nitrate + Nitrite | 02/26/15<br>022615#1 | EPA 353.2  | mg-N/L | 0.010 | < 0.010 U |
| Sulfate           | 03/04/15<br>030415#1 | EPA 375.2  | mg/L   | 10.0  | 25.3      |
| Sulfide           | 02/26/15<br>022615#1 | SM4500-S2D | mg/L   | 0.050 | < 0.050 U |

RL Analytical reporting limit



Matrix: Water Data Release Authorized: Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Client ID: MW-1R-22415 ARI ID: 15-3522 ZX74B

|                   | Date                 |            |        |       |        |
|-------------------|----------------------|------------|--------|-------|--------|
| Analyte           | Batch                | Method     | Units  | RL    | Sample |
| N-Ammonia         | 02/26/15<br>022615#1 | EPA 350.1M | mg-N/L | 0.010 | 0.037  |
| N-Nitrate         | 02/26/15             | Calculated | mg-N/L | 0.100 | 5.38   |
| N-Nitrite         | 02/25/15<br>022515#1 | EPA 353.2  | mg-N/L | 0.010 | 0.025  |
| Nitrate + Nitrite | 02/26/15<br>022615#1 | EPA 353.2  | mg-N/L | 0.100 | 5.41   |
| Sulfate           | 03/04/15<br>030415#1 | EPA 375.2  | mg/L   | 10.0  | 44.7   |
| Sulfide           | 02/26/15<br>022615#1 | SM4500-S2D | mg/L   | 0.050 | 0.161  |

RL Analytical reporting limit



Matrix: Water Data Release Authorized Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Client ID: MW-4R-22415 ARI ID: 15-3523 ZX74C

| Analyte           | Date<br>Batch        | Method     | Units  | RL    | Sample    |
|-------------------|----------------------|------------|--------|-------|-----------|
| N-Ammonia         | 02/26/15<br>022615#1 | EPA 350.1M | mg-N/L | 0.010 | 0.013     |
| N-Nitrate         | 02/26/15             | Calculated | mg-N/L | 0.010 | 0.503     |
| N-Nitrite         | 02/25/15<br>022515#1 | EPA 353.2  | mg-N/L | 0.010 | 0.010     |
| Nitrate + Nitrite | 02/26/15<br>022615#1 | EPA 353.2  | mg-N/L | 0.010 | 0.513     |
| Sulfate           | 03/04/15<br>030415#1 | EPA 375.2  | mg/L   | 2.0   | 10.0      |
| Sulfide           | 02/26/15<br>022615#1 | SM4500-S2D | mg/L   | 0.050 | < 0.050 U |

RL Analytical reporting limit



Matrix: Water Data Release Authorized: Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Client ID: MW-9-22415 ARI ID: 15-3524 ZX74D

| Analyte           | Date<br>Batch        | Method     | Units  | RL    | Sample    |  |
|-------------------|----------------------|------------|--------|-------|-----------|--|
| N-Ammonia         | 02/26/15<br>022615#1 | EPA 350.1M | mg-N/L | 0.010 | 0.462     |  |
| N-Nitrate         | 02/26/15             | Calculated | mg-N/L | 0.010 | 0.011     |  |
| N-Nitrite         | 02/26/15<br>022615#1 | EPA 353.2  | mg-N/L | 0.010 | < 0.010 U |  |
| Nitrate + Nitrite | 02/26/15<br>022615#1 | EPA 353.2  | mg-N/L | 0.010 | 0.011     |  |
| Sulfate           | 03/04/15<br>030415#1 | EPA 375.2  | mg/L   | 10.0  | 65.6      |  |
| Sulfide           | 02/26/15<br>022615#1 | SM4500-S2D | mg/L   | 0.050 | < 0.050 U |  |

RL Analytical reporting limit



Matrix: Water Data Release Authorized: Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Client ID: MW-2R-22415 ARI ID: 15-3525 ZX74E

|                   | Date                 |            |        |       |        |
|-------------------|----------------------|------------|--------|-------|--------|
| Analyte           | Batch                | Method     | Units  | RL    | Sample |
| N-Ammonia         | 02/26/15<br>022615#1 | EPA 350.1M | mg-N/L | 0.010 | 0.318  |
| N-Nitrate         | 02/26/15             | Calculated | mg-N/L | 0.010 | 0.083  |
| N-Nitrite         | 02/25/15<br>022515#1 | EPA 353.2  | mg-N/L | 0.010 | 0.012  |
| Nitrate + Nitrite | 02/26/15<br>022615#1 | EPA 353.2  | mg-N/L | 0.010 | 0.095  |
| Sulfate           | 03/04/15<br>030415#1 | EPA 375.2  | mg/L   | 10.0  | 66.5   |
| Sulfide           | 02/26/15<br>022615#1 | SM4500-S2D | mg/L   | 0.050 | 0.100  |

RL Analytical reporting limit



Matrix: Water Data Release Authorized Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Client ID: MW-1-2R-22415 ARI ID: 15-3526 ZX74F

| Analyte           | Date<br>Batch        | Method     | Units  | RL    | Sample    |
|-------------------|----------------------|------------|--------|-------|-----------|
| N-Ammonia         | 02/26/15<br>022615#1 | EPA 350.1M | mg-N/L | 0.010 | 0.309     |
| N-Nitrate         | 02/26/15             | Calculated | mg-N/L | 0.010 | 0.104     |
| N-Nitrite         | 02/25/15<br>022515#1 | EPA 353.2  | mg-N/L | 0.010 | < 0.010 U |
| Nitrate + Nitrite | 02/26/15<br>022615#1 | EPA 353.2  | mg-N/L | 0.010 | 0.104     |
| Sulfate           | 03/04/15<br>030415#1 | EPA 375.2  | mg/L   | 10.0  | 65.3      |
| Sulfide           | 02/26/15<br>022615#1 | SM4500-S2D | mg/L   | 0.050 | 0.071     |

RL Analytical reporting limit



Matrix: Water Data Release Authorized: Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

Client ID: MW-10R-22415 ARI ID: 15-3527 ZX74G

| Analyte           | Date<br>Batch        | Method     | Units  | RL    | Sample    |
|-------------------|----------------------|------------|--------|-------|-----------|
| N-Ammonia         | 02/26/15<br>022615#1 | EPA 350.1M | mg-N/L | 0.100 | 3.31      |
| N-Nitrate         | 02/26/15             | Calculated | mg-N/L | 0.010 | 0.095     |
| N-Nitrite         | 02/25/15<br>022515#1 | EPA 353.2  | mg-N/L | 0.010 | 0.014     |
| Nitrate + Nitrite | 02/26/15<br>022615#1 | EPA 353.2  | mg-N/L | 0.010 | 0.109     |
| Sulfate           | 03/04/15<br>030415#1 | EPA 375.2  | mg/L   | 40.0  | 363       |
| Sulfide           | 02/26/15<br>022615#1 | SM4500-S2D | mg/L   | 0.050 | < 0.050 U |

RL Analytical reporting limit



Matrix: Water Data Release Authorized: Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: NA Date Received: NA

| Analyte           | Method     | Date                 | Units  | Blank                  | ID       |
|-------------------|------------|----------------------|--------|------------------------|----------|
| N-Ammonia         | EPA 350.1M | 02/26/15             | mg-N/L | < 0.010 U              | FB       |
| N-Nitrite         | EPA 353.2  | 02/25/15<br>02/26/15 | mg-N/L | < 0.010 U<br>< 0.010 U | FB<br>FB |
| Nitrate + Nitrite | EPA 353.2  | 02/26/15             | mg-N/L | < 0.010 U              | FB       |
| Sulfate           | EPA 375.2  | 03/04/15             | mg/L   | < 2.0 U                | FB       |
| Sulfide           | SM4500-S2D | 02/26/15             | mg/L   | < 0.050 U              |          |

FB Filtration Blank

LAB CONTROL RESULTS-CONVENTIONALS ZX74-Kennedy Jenks Consultants



Matrix: Water Data Release Authorized Reported: 03/05/15

Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: NA Date Received: NA

| Analyte/Method        | QC ID | Date     | Units | LCS   | Spike<br>Added | Recovery |
|-----------------------|-------|----------|-------|-------|----------------|----------|
| Sulfide<br>SM4500-S2D | ICVL  | 02/26/15 | mg/L  | 0.515 | 0.501          | 102.8%   |



Matrix: Water Data Release Authorized: Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: NA Date Received: NA

| Analyte/SRM ID                   | Method     | Date                 | Units  | SRM            | True<br>Value  | Recovery        |
|----------------------------------|------------|----------------------|--------|----------------|----------------|-----------------|
| N-Ammonia<br>ERA #360114         | EPA 350.1M | 02/26/15             | mg-N/L | 0.480          | 0.500          | 96.0%           |
| N-Nitrite<br>ERA #141113         | EPA 353.2  | 02/25/15<br>02/26/15 | mg-N/L | 0.486<br>0.501 | 0.500<br>0.500 | 97.2%<br>100.2% |
| Nitrate + Nitrite<br>ERA #320614 | EPA 353.2  | 02/26/15             | mg-N/L | 0.479          | 0.500          | 95.8%           |
| Sulfate<br>ERA 131013            | EPA 375.2  | 03/04/15             | mg/L   | 15.2           | 15.0           | 101.3%          |



Matrix: Water Data Release Authorized: Reported: 03/05/15 Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

| Analyte       | Me         | thod     | Date     | Units  | Sample  | Replicate(s) | RPD/RSD |
|---------------|------------|----------|----------|--------|---------|--------------|---------|
| ARI ID: ZX74A | Client ID: | MW-7-224 | 15       |        |         |              |         |
| N-Ammonia     | EPA        | 350.1M   | 02/26/15 | mg-N/L | 8.38    | 8.97         | 6.8%    |
| N-Nitrite     | EPA        | 353.2    | 02/25/15 | mg-N/L | < 0.010 | < 0.010      | NA      |
| Sulfate       | EPA        | 375.2    | 03/04/15 | mg/L   | 25.3    | 26.0         | 2.7%    |





Project: Cornet Bay Marina Event: 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

| Analyte              | Method      | Date     | Units  | Sample  | Spike | Spike<br>Added | Recovery |
|----------------------|-------------|----------|--------|---------|-------|----------------|----------|
| ARI ID: ZX74A Client | ID: MW-7-22 | 415      |        |         |       |                |          |
| N-Ammonia            | EPA 350.1M  | 02/26/15 | mg-N/L | 8.38    | 58.3  | 50.0           | 99.8%    |
| N-Nitrite            | EPA 353.2   | 02/25/15 | mg-N/L | < 0.010 | 0.481 | 0.500          | 96.2%    |
| Nitrate + Nitrite    | EPA 353.2   | 02/26/15 | mg-N/L | < 0.010 | 0.477 | 0.500          | 95.4%    |
| Sulfate              | EPA 375.2   | 03/04/15 | mg/L   | 25.3    | 175   | 150            | 99.8%    |



Page 1 of 1

# Sample ID: MW-7-22415 SAMPLE

Lab Sample ID: ZX74A LIMS ID: 15-3521 Matrix: Water Data Release Authorized: Reported: 03/02/15

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number | Analyte | LOQ  | mg/L | Q |
|--------------|--------------|--------------------|------------------|------------|---------|------|------|---|
| 6010C        | 02/27/15     | 6010C              | 02/27/15         | 7439-89-6  | Iron    | 0.05 | 9.13 |   |



# Sample ID: MW-7-22415 DUPLICATE

Lab Sample ID: ZX74A LIMS ID: 15-3521 Matrix: Water Data Release Authorized: Reported: 03/02/15 QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: 02/24/15 Date Received: 02/25/15

### MATRIX DUPLICATE QUALITY CONTROL REPORT

|         | Analysis |        |           |      | Control |   |
|---------|----------|--------|-----------|------|---------|---|
| Analyte | Method   | Sample | Duplicate | RPD  | Limit   | Q |
| Iron    | 6010C    | 9.13   | 9.14      | 0.1% | +/- 20% |   |

Reported in mg/L

\*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit



# Sample ID: MW-7-22415 MATRIX SPIKE

Lab Sample ID: ZX74A LIMS ID: 15-3521 Matrix: Water Data Release Authorized: Reported: 03/02/15 

# MATRIX SPIKE QUALITY CONTROL REPORT

|         | Analysis |        |       | Spike | 8        |   |
|---------|----------|--------|-------|-------|----------|---|
| Analyte | Method   | Sample | Spike | Added | Recovery | Q |
| Iron    | 6010C    | 9.13   | 11.1  | 2.00  | 98.5%    | Н |

Reported in mg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%



# Sample ID: MW-1R-22415 SAMPLE

Lab Sample ID: ZX74B LIMS ID: 15-3522 Matrix: Water Data Release Authorized: Reported: 03/02/15 

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number | Analyte | LOQ  | mg/L | Q |
|--------------|--------------|--------------------|------------------|------------|---------|------|------|---|
| 6010C        | 02/27/15     | 6010C              | 02/27/15         | 7439-89-6  | Iron    | 0.05 | 0.83 |   |



Page 1 of 1

# Sample ID: MW-4R-22415 SAMPLE

Lab Sample ID: ZX74C LIMS ID: 15-3523 Matrix: Water Data Release Authorized: Reported: 03/02/15 

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number      | Analyte | LOQ | mg/L | Q |
|--------------|--------------|--------------------|------------------|-----------------|---------|-----|------|---|
|              |              |                    | Sec. Sec.        | N 8 9 1 1 1 1 1 |         |     |      |   |

6010C 02/27/15 6010C 02/27/15 7439-89-6 Iron 0.05 0.31



Page 1 of 1

### Sample ID: MW-9-22415 SAMPLE

Lab Sample ID: ZX74D LIMS ID: 15-3524 Matrix: Water Data Release Authorized: Reported: 03/02/15 QC Report No: ZX74-Kennedy Jenks Consultants
Project: Cornet Bay Marina
 1396010.00
Date Sampled: 02/24/15
Date Received: 02/25/15

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number | Analyte | LOQ  | mg/L | Q |
|--------------|--------------|--------------------|------------------|------------|---------|------|------|---|
| 6010C        | 02/27/15     | 6010C              | 02/27/15         | 7439-89-6  | Iron    | 0.05 | 0.05 | U |



### Sample ID: MW-2R-22415 SAMPLE

Lab Sample ID: ZX74E LIMS ID: 15-3525 Matrix: Water Data Release Authorized: Ab Reported: 03/02/15 QC Report No: ZX74-Kennedy Jenks Consultants
Project: Cornet Bay Marina
 1396010.00
Date Sampled: 02/24/15
Date Received: 02/25/15

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number | Analyte | LOQ  | mg/L | Q |
|--------------|--------------|--------------------|------------------|------------|---------|------|------|---|
| 6010C        | 02/27/15     | 6010C              | 02/27/15         | 7439-89-6  | Iron    | 0.05 | 3.91 |   |



# Sample ID: MW-1-2R-22415 SAMPLE

Lab Sample ID: ZX74F LIMS ID: 15-3526 Matrix: Water Data Release Authorized: Reported: 03/02/15 

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number | Analyte | LOQ  | mg/L | Q |
|--------------|--------------|--------------------|------------------|------------|---------|------|------|---|
| 6010C        | 02/27/15     | 6010C              | 02/27/15         | 7439-89-6  | Iron    | 0.05 | 1.94 |   |



# Sample ID: MW-10R-22415 SAMPLE

Lab Sample ID: ZX74G LIMS ID: 15-3527 Matrix: Water Data Release Authorized Reported: 03/02/15 

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number | Analyte | LOQ  | mg/L | Q |
|--------------|--------------|--------------------|------------------|------------|---------|------|------|---|
| 6010C        | 02/27/15     | 6010C              | 02/27/15         | 7439-89-6  | Iron    | 0.05 | 1.91 |   |



Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: ZX74MB LIMS ID: 15-3523 Matrix: Water Data Release Authorized: Reported: 03/02/15

QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: NA Date Received: NA

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number | Analyte | LOQ  | mg/L | Q |
|--------------|--------------|--------------------|------------------|------------|---------|------|------|---|
| 6010C        | 02/27/15     | 6010C              | 02/27/15         | 7439-89-6  | Iron    | 0.05 | 0.05 | U |



# Sample ID: LAB CONTROL

Lab Sample ID: ZX74LCS LIMS ID: 15-3523 Matrix: Water Data Release Authorized Reported: 03/02/15 QC Report No: ZX74-Kennedy Jenks Consultants
Project: Cornet Bay Marina
1396010.00
Date Sampled: NA
Date Received: NA

# BLANK SPIKE QUALITY CONTROL REPORT

| Analyte        | Analysis<br>Method | Spike<br>Found | Spike<br>Added | %<br>Recovery | Q |
|----------------|--------------------|----------------|----------------|---------------|---|
| Iron           | 6010C              | 1.98           | 2.00           | 99.0%         |   |
| Reported in mg | /L                 |                |                |               |   |

N-Control limit not met Control Limits: 80-120%



#### Sample ID: METHOD BLANK

Lab Sample ID: 2X74MB LIMS ID: 15-3524 Matrix: Water Data Release Authorized Reported: 03/02/15

QC Report No: ZX74-Kennedy Jenks Consultants
Project: Cornet Bay Marina
 1396010.00
Date Sampled: NA
Date Received: NA

| Prep<br>Meth | Prep<br>Date | Analysis<br>Method | Analysis<br>Date | CAS Number | Analyte | LOQ  | mg/L | Q |
|--------------|--------------|--------------------|------------------|------------|---------|------|------|---|
| 6010C        | 02/27/15     | 6010C              | 02/27/15         | 7439-89-6  | Iron    | 0.05 | 0.05 | U |



Sample ID: LAB CONTROL

Lab Sample ID: ZX74LCS LIMS ID: 15-3524 Matrix: Water Data Release Authorized: Reported: 03/02/15 QC Report No: ZX74-Kennedy Jenks Consultants Project: Cornet Bay Marina 1396010.00 Date Sampled: NA Date Received: NA

# BLANK SPIKE QUALITY CONTROL REPORT

| Method | Found           | Added                                 | Recovery                                                 | Q                                                                               |
|--------|-----------------|---------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|
| 6010C  | 1.99            | 2.00                                  | 99.5%                                                    |                                                                                 |
|        | Method<br>6010C | Method     Found       6010C     1.99 | Method     Found     Added       6010C     1.99     2.00 | Method     Found     Added     Recovery       6010C     1.99     2.00     99.5% |

Reported in mg/L

N-Control limit not met Control Limits: 80-120%